4,741 Matching Annotations
  1. Feb 2024
    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Public Review)

      Weaknesses

      1) The usage of young growing mice (8-10 weeks) versus adult mice (>4 months) in the murine mechanical overload experiments. The usage of adult mice would be preferable for these experiments given that maturational growth may somehow affect the outcomes.

      The basis for this critique is not clear as it has been shown that the longitudinal growth of bones is complete by ⁓8 weeks of age (e.g., PMID: 28326349, and 31997656). These studies, along with others, also indicate that 8 weeks is a post-pubescent age in mice. For these reasons, 8 weeks of age was viewed as being representative of the human equivalent of when people start to perform resistance exercise with the goal of increasing muscle mass. Also, it’s important to consider that the mice were 10-12 weeks of age when the muscles were collected which would be equivalent to a human in their lower 20’s. In our human study, the mean age of the subjects was 23. Given the above points, it’s hard for us to appreciate why the use of mice that started at 8-10 weeks of age is viewed as a weakness. With that being said, we recognize that there may be age-related changes in mechanisms of mechanical load-induced growth, but it was not our intent to address this topic.

      1b) No consideration for biological sex.

      We appreciate this point and we agree that sex is an important variable to consider. In this study, we explored an unchartered topic and therefore we wanted to minimize as many known variables as possible. We did that, in part, by focusing specifically on male subjects. In the future, it will certainly be important to explore whether sex (and age) impact the structural adaptations that drive the mechanical load-induced growth of muscle fibers.

      2) Information on whether myofibrillogenesis is dependent on hypertrophy induced by loading, or just hypertrophy in general. To provide information on this, the authors could use, for instance, inducible Myostatin KO mice (a model where hypertrophy and force production are not always in lockstep) to see whether hypertrophy independent from load induces the same result as muscle loading regarding myofibrillogenesis.

      This is a great suggestion, but it goes beyond the intended scope of our study. Nevertheless, with the publication of our FIM-ID methodology, the answer to this and related questions can now be obtained in a time- and cost-effective manner.

      3) Limited information on Type 1 fiber hypertrophy. A "dual overload" model is used for the mouse where the soleus is also overloaded, but presumably, the soleus was too damaged to analyze. Exploring hypertrophy of murine Type 1 fibers using a different model (weight pulling, weighted wheel running, or forced treadmill running) would be a welcome addition.

      The point is well taken and further studies that are aimed at determining whether there are differences in how Type I vs. Type II fibers grow would be an excellent subject for future studies.

      Reviewer #3 (Public Review)

      1) Supplemental Figure 1 is not very clear.

      Supplemental Figure 1 is now presented as Supplemental Figure 2. We carefully reexamined this figure and, in our opinion, the key points have been appropriately conveyed. We would be more than happy to revise the figure, but we would need guidance with respect to which aspect(s) of the figure were not clear to the reviewer.

      Reviewer #1 (Recommendations For The Authors)

      Introduction.

      1) I do not think the first paragraph is really necessary. Cell growth is a fundamental property of cell biology that requires no further justification.

      We believe that it is essential to remind all readers about the importance of skeletal muscle research. For some, the detrimental impact of skeletal muscle loss on one’s quality of life and the greater burden on the healthcare system may not be known.

      2) I prefer "fundamental" over "foundationally".

      All mentions of the word “foundational” and “foundationally” have been changed to “fundamental” and “fundamentally.”

      3) As usual for the Hornberger lab, the authors do an excellent job of providing the (historical) context of the research question.

      Thank you for this positive comment.

      4) I prefer “Goldspink” as “Dr. Goldspink” feels too personal especially when you are critical of his studies.

      All instances of “Dr.” have been removed when referring to the works of others. This includes Dr. Goldspink and Dr. Tokuyasu.

      5) Fourth paragraph, after reference #17. I felt like this discussion was not necessary and did not really add any value to the introduction.

      We believe that this discussion should remain since it highlights the widely accepted notion that mechanical loading leads to an increase in the number of myofibrils per fiber, yet there is no compelling data to support this notion. This discussion highlights the need for documented evidence for the increase in myofibril number in response to mechanical loading and, as such, it serves as a major part of the premise for the experiments that were conducted in our manuscript.

      6) The authors do a nice job of laying out the challenge of rigorously testing the Goldspink model of myofiber hypertrophy.

      Thank you!

      Results

      1). For the EM images, can the authors provide a representative image of myofibril tracing? From the EM image provided, it is difficult to evaluate how accurate the tracing is.

      -Representative images and an explanation of myofibril calculation have been provided in Supplemental Figure 5.

      2) In the mouse, how does the mean myofibril CSA compare between EM and FIM-ID?

      Author response image 1.

      The above figures compare the myofibril CSA and fiber CSA measurements that were obtained with EM and FIM-ID for all analyzed fibers, as well as the same fibers separated according to the fiber type (i.e., Ox vs. Gly). The above figure shows that the FIM-ID measurements of myofibril CSA were slightly, yet significantly, lower than the measurements obtained with EM. However, we believe that it would be misleading to present the data in this manner. Specifically, as shown in Fig. 4C, a positive linear relationship exists between myofibril CSA and fiber CSA. Thus, a direct comparison of myofibril CSA measurements obtained from EM and FIM-ID would only be meaningful if the mean CSA of the fibers that were analyzed were the same. As shown on the panel on the right, the mean CSA of the fibers analyzed with FIM-ID was slightly, yet significantly, lower than the mean CSA of the fibers analyzed with EM. As such, we believe that the most appropriate way to compare the measurements of the two methods is to express the values for the myofibril CSA relative to the fiber CSA and this is how we presented the data in the main figure (i.e., Fig. 4E).

      3) Looking at Fig. 3D, how is intermyofibrillar space calculated when a significant proportion of the ROI is odd-shaped myofibrils that are not outlined? It is not clear how the intermyofibrillar space between the odd-shaped myofibrils is included in the total intermyofibrillar space calculation for the fiber.

      The area occupied by the intermyofibrillar components is calculated by using our custom “Intermyofibrillar Area” pipeline within CellProfiler. Briefly, the program creates a binary image of the SERCA signal. The area occupied by the white pixels in the binary image is then used to calculate the area that is occupied by the intermyofibrillar components. To help readers, an example of this process is now provided in supplemental figure 4.

      4) What is the average percentage of each ROI that was not counted by CP (because a myofibril did not fit the shape criteria)? The concern is that the method of collection is biasing the data. In looking at EM images of myofibrils (from other studies), it is apparent that myofibrils are not always oval; in fact, it appears that often myofibrils have a more rectangular shape. These odd-shaped myofibrils are excluded from the analysis yet they might provide important information; maybe these odd-shaped myofibrils always hypertrophy such that their inclusion might change the overall conclusion of the study. I completely understand the challenges of trying to quantify odd-shaped myofibrils. I think it is important the authors discuss this important limitation of the study.

      First, we would like to clarify that myofibrils of a generally rectangular shape were not excluded. The intent of the filtering steps was to exclude objects that exhibited odd shapes because of an incomplete closure of the signal from SERCA. To illustrate this point we have annotated the images from Figure 3B-D with a red arrow which points to a rectangular object and blue arrows which point to objects that most likely consisted of two or more individual myofibrils that were falsely identified as a single object.

      Author response image 2.

      We appreciate the reviewer's concern that differences in the exclusion rates between groups could have biased the outcomes. Indeed, this was something that we were keeping a careful eye on during our analyses, and we hope that the reviewer will take comfort in knowing that objects were excluded at a very similar rate in both the mouse and human samples (44% vs. 46% for SHAM vs. MOV in mice, and 47% vs. 47% for PRE vs. POST in humans). We realize that this important data should have been included in our original submission and it is now contained with the results section of the revised version of our manuscript. Hopefully the explanation above, along with the inclusion of this data, will alleviate the reviewers concerns that differences between the groups may have been biased by the filtering steps.

      Discussion.

      1) I think the authors provided a balanced interpretation of the data by acknowledging the limitation of having only one time-point. i.e., not being able to assess the myofibril splitting mechanism.

      Thank you!

      2) I think a discussion on the important limitation of only quantifying oval-shaped myofibrils should be included in the discussion.

      Please refer to our response to comment #4 of the results section.

      Reviewer #2 (Recommendations For The Authors)

      Overall, this is a thoughtful, clear, and impactful manuscript that provides valuable tools and information for the skeletal muscle field. My specific comments are as follows:

      1) In the introduction, I really appreciate the historical aspect provided on myofbrillogenesis. As written, however, I was expecting the authors to tackle the myofibril "splitting" question in greater detail with their experiments given the amount of real estate given to that topic, but this was not the case. Consider toning this down a bit as I think it sets a false expectation.

      We acknowledge that the study does not directly address the question about myofibril splitting. However, we believe that it is important to highlight the background of this untested theory since it serves as a major part of the premise for the experiments that were performed.

      2) In the introduction, is it worth worth citing this study? https://rupress.org/jcb/articlepdf/111/5/1885/1464125/1885.pdf.

      This is a very interesting study but, despite the title, we do not believe that it is accurate to say that this study investigated myofibrillogenesis. Instead (as illustrated by the author in Fig. 9) the study focused on the in-series addition of new sarcomeres at the ends of the pre-existing myofibrils (i.e., it studied in-series sarcomerogenesis). In our opinion, the study does not provide any direct evidence of myofibrillogenesis, and we are not aware of any studies that have shown that the chronic stretch model employed by the authors induces myofibrillogenesis. However, numerous studies have shown that chronic stretch leads to the in-series addition of new sarcomeres.

      3) Is there evidence for myofbrillogenesis during cardiac hypertrophy that could be referenced here?

      This is a great question, and one would think that it would have been widely investigated. However, direct evidence for myofibrillogenesis during load-induced cardiac hypertrophy is just as sparse as the evidence for myofibrillogenesis during load-induced skeletal muscle hypertrophy.

      4) In the introduction, perhaps mention that prolonged fixation is another disadvantage of EM tissue preparation. This typically prevents the usage of antibodies afterwards, whereas the authors have been able to overcome this using their method, which is a great strength.

      Thank you for the suggestion. This point has been added the 5th paragraph of the introduction.

      5) In the introduction, are there not EM-compatible computer programs that could sidestep the manual tracing and increase throughput? Why could software such as this not be used? https://www.nature.com/articles/s41592-019-0396-9

      While we agree that automated pipelines have been developed for EM, such methods require a high degree of contrast between the measured objects. With EM, the high degree of contrast required for automated quantification is rarely observed between the myofibrils and the intermyofibrillar components (especially in glycolytic fibers). Moreover, one of the primary goals of our study was to develop a time and cost-effective method for identifying and quantifying myofibrils. As such, we developed a method that would not require the use of EM. We only incorporated EM imaging and analysis to validate the FIM-ID method. Therefore, utilizing an EM-compatible program to sidestep the manual tracing would have sped up the validation step, but it would not have accomplished one of the primary goals of our study.

      6) In the results, specifically for the human specimens, were "hybrid" fibers detected and, if so, how did the pattern of SERCA look? Also, did the authors happen to notice centrallynucleated muscle fibers in the murine plantaris after overload? If so, how did the myofibrils look? Could be interesting.

      For the analysis of the human fibers, two distinct immunolabeling methods were performed. One set of sections was stained for SERCA1 and dystrophin, while the other set was stained for SERCA2 and dystrophin. In other words, we did not perform dual immunolabeling for SERCA1 and SERCA2 on the same sections. Therefore, during the analysis of the human fibers, we did not detect the presence of hybrid fibers. Furthermore, while we did not perform nuclear staining on these sections, it should be noted that nuclei do not contain SERCA, and to the best of our recollection, we did not detect any SERCAnull objects within the center of the fibers. Moreover, our previous work has shown that the model of MOV used in this study does not lead to signs of degeneration/regeneration (You, Jae-Sung et al. (2019). doi:10.1096/fj.201801653RR). Therefore, it can be safely assumed that very few (if any) of the fibers analyzed in this study were centrally nucleated.

      7) In the Results, fixed for how long? This is important since, at least in my experience, with 24+ hours of fixation, antibody reactivity is significantly reduced unless an antigen retrieval step is performed (even then, not always successful). Also, presumably these tissues were drop-fixed? These details are in the Methods but some additional detail here could be warranted for the benefit of the discerning and interested reader.

      For both the mouse and human, the samples were immersion-fixed (presumably the equivalent of “drop-fixed”) in 4% paraformaldehyde in 0.1M phosphate buffer solution for a total of 24 hours (as described in the Methods section). We agree that prolonged aldehyde fixation can affect antibody reactivity; however, the antibodies used for FIM-ID did not require an antigen retrieval step.

      8) In the results regarding NADH/FAD autofluorescence imaging, a complimentary approach in muscle was recently described and could be cited here: https://journals.physiology.org/doi/full/10.1152/japplphysiol.00662.2022

      We appreciate the reviewer’s recommendation to add this citation for the support of our method for fiber type classification and have added it to the manuscript in the second paragraph under the “Further refinement and validation of the automated measurements with FIM-ID” subsection of the Results as citation number 57.

      9) In the results, "Moreover, no significant differences in the mean number of myofibrils per fiber CSA were found when the results from the FIM-ID and EM-based measurements were directly compared, and this point was true when the data from all analyzed fibers was considered..." Nit-picky, but should it be "were considered" since data is plural?

      Thanks, this error was corrected.

      10) In the discussion, are the authors developing a "methodology" or a "method"? I think it may be the latter.

      We agree that “method” is the correct term to use. Instances of the word “methodology” have been replaced with “method.”

      11) In the discussion, since the same fibers were not being tracked over time, I'm not sure that saying "radial growth" is strictly correct. It is intuitive that the fibers were growing during loading, of course, but it may be safer to say "larger fibers versus control or the Pre sample" or something of the like. For example, "all the fiber types that were larger after loading versus controls" as opposed to "showed significant radial growth"

      While we agree that the fiber size was not tracked over time, the experiments were designed to test for a main effect of mechanical loading. Therefore, we are attributing the morphological adaptations to the mechanical loading variable (i.e., mechanical loadinduced growth). The use of terms like “the induction of radial growth” or “the induction of hypertrophy” are commonly used in studies with the methods employed in this study. Respectfully, we believe that it would be more confusing for the readers if we used the suggested terms like "all the fiber types that were larger after loading versus controls". For instance, if I were the reader I would think to myself… but there fiber types that were larger than others before loading (e.g., Ox vs. Gly), so what are the authors really trying to talk about?

      12) I would suggest making a cartoon summary figure to complement and summarize the Methods/Results/Discussion

      Thank you for this suggestion. We created a cartoon that summarizes the overall workflow for FIM-ID and this cartoon is now presented in Supplemental Figure 1.

    1. And, as to the faculties of the mind, setting aside the arts grounded uponwords and especially that skill of proceeding upon general and infallible rulescalled science, which very few have and but in few things, as being not a nativefaculty born with us, nor attained, as prudence, while we look after somewhatelse, I find yet a greater equality amongst men than that of strength. Forprudence is but experience, which equal time equally bestows on all men inthose things they equally apply themselves unto. That which may perhaps makesuch equality incredible is but a vain conceit of one’s own wisdom, which almostall men think they have in a greater degree than the vulgar, that is, than all menbut themselves, and a few others whom by fame or for concurring withthemselves they approve. For such is the nature of men that, howsoever theymay acknowledge many others to be more witty or more eloquent or morelearned, yet they will hardly believe there be many so wise as themselves, forthey see their own wit at hand and other men’s at a distance. But this provethrather that men are in that point equal than unequal. For there is not ordinarily agreater sign of the equal distribution of anything than that every man iscontented with his share.2

      To me, Hobbes is saying that In simple terms, people are generally equally smart. The idea that some are wiser might be because individuals often think they are smarter than others. Hobbes argues that, in reality, people are more equal in their mental abilities than they realize.

    2. For such is the nature of men that, howsoever theymay acknowledge many others to be more witty or more eloquent or morelearned, yet they will hardly believe there be many so wise as themselves, forthey see their own wit at hand and other men’s at a distance. But this provethrather that men are in that point equal than unequal.

      This is such an interesting point. We like to assume that we better than, in any aspect, our peers, but when it comes down to it, we are all equal. We all carry that belief that we are better then someone else, believing we are unequal to said person. They may carry that same idea about you, they think they outrank you in some aspect, making them believe they are better then you. Therefore, we are all the same. The same arrogant people.

    1. Content (posts, photos, articles, etc.)# Content recommendations can go well when users find content they are interested in. Sometimes algorithms do a good job of it and users are appreciative. TikTok has been mentioned in particular as providing surprisingly accurate recommendations, though Professor Arvind Narayanan argues that TikTok’s success with its recommendations relies less on advanced recommendation algorithms, and more on the design of the site making it very easy to skip the bad recommendations and get to the good ones. Content recommendations can go poorly when it sends people down problematic chains of content, like by grouping videos of children in a convenient way for pedophiles, or Amazon recommending groups of materials for suicide.

      I think we need to understand the nuances of recommendation algorithms, which is critical in addressing their influence on individual experiences. As these systems are designed to enhance user interaction, they can inadvertently perpetuate biases and present content that may not always align with the best interests or intentions of the users.

    1. To whom our general Ancestor repli'd. Daughter of God and Man, accomplisht Eve, [ 660 ] Those have thir course to finish, round the Earth, By morrow Eevning, and from Land to Land In order, though to Nations yet unborn, Ministring light prepar'd, they set and rise; Least total darkness should by Night regaine [ 665 ] Her old possession, and extinguish life In Nature and all things, which these soft fires Not only enlighten, but with kindly heate Of various influence foment and warme, Temper or nourish, or in part shed down [ 670 ] Thir stellar vertue on all kinds that grow On Earth, made hereby apter to receive Perfection from the Suns more potent Ray. These then, though unbeheld in deep of night, Shine not in vain, nor think, though men were none, [ 675 ] That heav'n would want spectators, God want praise; Millions of spiritual Creatures walk the Earth Unseen, both when we wake, and when we sleep: All these with ceasless praise his works behold Both day and night: how often from the steep [ 680 ] Of echoing Hill or Thicket have we heard Celestial voices to the midnight air, Sole, or responsive each to others note Singing thir great Creator: oft in bands While they keep watch, or nightly rounding walk, [ 685 ] With Heav'nly touch of instrumental sounds In full harmonic number joind, thir songs Divide the night, and lift our thoughts to Heaven.

      In this section, Adam responds to Eve as to why the stars and heavens shine. He explains to her that the sun must shine over all the earth, for those who will inhabit it in the future. They sleep at night, so that they may work harder in the day. He also talks about various "celestial voices"(4. 682) that he has heard at night, praising the glory of God. This heavenly chorus will protect them, as they “divide the night”(4. 688) to keep watch over Adam and Eve, while continuing to exalt their Creator. While reading this section, it seemed to me that the difference between night and day was emphasised heavily. This is an important distinction to make, as God is attributed as the giver of light, and Satan as a bringer of darkness.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      1. General Statements

      We thank the reviewers for their excellent work that greatly improved our work. We are very content that reviewer #1 considered our work to be “novel, interesting and important for understanding the mitochondrial biology of PD”. This reviewer also valued our work as “a significant advancement” and suggested further study of the relationship of CISD1 (dimerization) to general mitophagy/autophagy. We addressed this in the already transferred revision (version 1, v1).

      Also reviewer #2 considered our work to be “an exciting and well-executed piece of research focusing on the defects in iron homeostasis observed in Parkinson's disease which a wide audience will appreciate”. This reviewer had a very specific suggestion on how to improve our manuscript which makes a lot of sense and is feasible. As the suggested experiments include fly breeding and behavioral analysis, these experiments will be included in the second revision to be uploaded as soon as possible (version 2, v2).

      Finally, reviewer #3 gathered that parts of our results “are confirmatory to recently published work” but also appreciated that our results established that iron-depleted apo-Cisd is an important determinant of toxicity which has not been shown before. I would like to comment here, that in contrast to the paper mentioned by this reviewer, our contribution includes data from dopaminergic neurons obtained from human patients suffering from familial Parkinson’s disease that demonstrate the same increase in apo-Cisd levels as the flies. This reviewer mainly suggested that the manuscript would be improved by a more balanced discussion of the strengths and weaknesses of the study and more circumspection in interpretation of data which we did in the revised version of our manuscript. We also added data on the expression levels of Cisd and apo-Cisd in transgenic flies as also suggested.

      2. Description of the planned revisions

      Reviewer #1 (Evidence, reproducibility and clarity):

      Summary: The manuscript focuses on mitochondrial CISD1 and its relationship to two Parkinson's disease (PD) proteins PINK1 and Parkin. Interestingly, CISD1 is a mitochondrial iron sulfur binding protein and an target of Parkin-mediated ubiquitinylation. Disruption of iron metabolism and accumulation of iron in the brain has long since been reported in PD but the involvement of iron sulfur binding is little studied both in vivo and in human stem cell models of PD. This work addresses the relationship between CISD1 and two mitochondrial models of PD (PINK1 and Parkin) making use of in vivo models (Drosophila), PINK1 patient models (iPSC derived neurons) and Mouse fibroblasts. The authors report a complex relationship between CISD1, PINK1 and Parkin, where iron-depleted CISD1 may illicit a toxic gain of function downstream of PINK1 and Parkin.

      Major comments:

      The conclusions are overall modest and supported by the data. One question remains unaddressed. Is mitochondrial CISD1 a downstream target that specifically mediates PINK1 and Parkin loss of function phenotypes or are the phenotypes being mediated because CISD1 is downstream of mitophagy in general?

      It would be interesting to know what happens to CISD1 (dimerization?) upon initiation of mitophagy in wild type cells? Would dissipation of mitochondrial membrane potential be sufficient to induce changes to CISD1 in wild type cells or PINK1 deficient cells? Since iron chelation is a potent inducer of mitophagy (Loss of iron triggers PINK1/Parkin-independent mitophagy. George F G Allen, Rachel Toth, John James, Ian G Ganley. EMBO Reports (2013)14:1127-1135) it would be useful to show one experiment addressing the role of CISD1 dimerization under mitochondrial depolarizing and non-depolarizing conditions in cells.

      Based on the overall assumption of the reviewer that our work is “novel, interesting and important for understanding the mitochondrial biology of PD” and “a significant advancement” we understand the word “modest” here as meaning “not exaggerated”. To address this question, we studied CISD1 dimerization in response to more classical activators of mitophagy namely FCCP and antimycin/oligomycin which had no significant effect on dimerization suggesting that this phenotype is more pronounced under iron depletion. These data are shown in the new Fig. 2c.

      Alternatively, the authors should discuss the topic of mitophagy (including PINK1-parkin independent mitophagy), the limitation of the present study not being able to rule out a general mitophagy effect and previous work on the role of iron depletion on mitophagy induction in the manuscript.

      The data and the methods are presented in such a way that they can be reproduced.

      The experiments are adequately replicated and statistical analysis is adequate.

      Minor comments:

      Show p values even when not significant (ns) since even some of the significant findings are borderline < p0.05.

      Here, I decided to leave it as it is, because the figures became very cluttered and less easy to understand. Borderline findings are however indicated and mentioned in the text.

      Because the situation for CISD1 is complicated (overexpression, different models etc.) it would be helpful if in the abstract the authors could summarize the role. E.g. as in the discussion that iron-depleted CISD1 could represent a toxic function.

      The abstract has been completely rewritten and now mentions the potential toxic function of iron-depleted CISD1.

      If there is sufficient iron (accumulation in PD) why would CISD1 be deactivated? Perhaps that could be postulated or discussed in a simplified way?

      We actually think that apo-CISD1 without its iron/sulfur cluster is incapable of transferring its Fe/S cluster to IRP1 and IRP2. This then results in increased levels of apo-IRP1/2 and subsequent changes that lead to iron overload. Such a sequence of events would place CISD1 upstream of the changes in iron homeostasis observed in PD and models of PD. This is now discussed in more detail.

      In the methods section both reducing and non-reducing gel/Western blotting is mentioned but the manuscript only describes data from blots under reducing conditions. Are there blots under non-reducing conditions that could be shown to see how CISD1 and dimerized CISD1 resolve?

      We now show these blots as supplemental data in new supplemental Figure 2.

      In the results section, PINK1 mutant flies, it is said that the alterations to CISD1 (dimerization) are analogous to the PINK1 mutation patient neurons. The effect is seen in old but not young flies. Since iPSC-derived neurons are relatively young in the dish, would one not expect that young flies and iPSC-derived neurons have similar CISD1 phenotypes? Could the authors modify the text to reflect that? or discuss the finding in further context.

      We only studied one time point in PINK1 mutation patient neurons and controls. It would indeed be interesting whether neuronal aging (as far as this can be studied in the dish) would result in increased CISD1 dimerization. This is now discussed.

      Reviewer #1 (Significance):

      The strengths of this work are in the novelty of the topic and the use of several well established in vivo and cell models including patient-derived neurons. The findings discussed in the text are honest and avoid over-interpretation. The findings are novel, interesting and important for understanding the mitochondrial biology of PD.

      We thank the reviewer for their kind words.

      Limitations include the lack of strong phenotypes in the CISD1 models and the lack of robust, sustained and consistent increase in CISD1 dimers in the patient and fly models (just significant because of variability). The relationship of CISD1 (dimerization) to general mitophagy/autophagy is not shown here.

      We do not completely agree with the assumption that all CISD1 models lack a strong phenotype. At least the CISD1-deficient fibroblasts exhibit a strong phenotype consisting of fragmented mitochondria and increased oxidative stress. The lack of a strong phenotype in Cisd-deficient flies could actually hint to a potential compensatory mechanism that could also protect the Pink1 mutant x Cisd-deficient double-knockout flies. It is correct that the increase in CISD1/Cisd dimers in the PD models are not overwhelming but – as also mentioned by the reviewer – this could be increased in “older” cultures. This is now discussed in more detail. As suggested by the reviewer, we have now added experiments that study the relationship between CISD1 dimerization and conventional mitophagy as described above.

      There is a significant advancement. So far researchers were able to describe the importance of iron metabolism in PD (For example refer to work from the group of Georg Auburger such as PMID 33023155 and discussion of therapeutic intervention such as reviewed by Ma et al. PMID: 33799121) but few papers describe involvement of iron sulfur cluster proteins specifically (such as Aconitase) in relation to PINK1 and parkin (these are cited). The fact that CISD1 is a protein of the mitochondrial outer membrane makes it particularly interesting and further studies looking more closely at the interaction of CISD1 with mitochondrial proteins associated with PD will be of interest.

      We thank the reviewer for pointing out these excellent publications. Key et al present an enormous wealth of data on protein dysregulation of wildtype and Pink1-/- fibroblast cell lines upon perturbation of the iron homeostasis (Key et al, 2020). Both cell lines exhibit a downregulation of CISD1 levels upon iron deprivation with the agent 2,2′ -Bipyridine possibly as a compensatory mechanism to limit the toxic gain of function of iron-depleted CISD1. The other paper, Ma et al. is a recent review on changes in iron homeostasis in PD and PD models (Ma et al, 2021). Both papers are now cited in the manuscript.

      This paper describes CISD1 as a new and relevant player in PINK1 and Parkin biology. Further work could lead to exploration of whether CISD1 could be a therapeutic target, considering its role in maintaining mitochondrial redox and mitochondrial health. This is of particular interest to mitochondrial biologists and pre-clinical research in PD.

      This preprint was reviewed by three scientists whose research focus in the mitochondrial biology underlying Parkinson's disease. The group has a special interest in the functions of the mitochondrial outer membrane. We work with several cell models of Parkinson's disease and work with patient donated samples. We do not have expertise in Drosophila models of PD nor the quantification of iron described in the manuscript.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary: In the paper entitled 'Mitochondrial CISD1 is a downstream target that mediates PINK1 and Parkin loss-of-function phenotypes', Bitar and co-workers investigate the interaction between CISD1 and the PINK1/Parkin pathway. Mutations in PINK1 and PARKIN cause early onset Parkinson's disease and CISD1 is a homodimeric mitochondrial iron-sulphur binding protein. They observed an increase in CISD1 dimer formation in dopaminergic neurons derived from Parkinson's disease patients carrying a PINK1 mutation. Immuno-blots of cells expressing CISD1 mutants that affects the iron sulphur cluster binding and as well as cells treated with iron chelators, showed that the tendency of CISD1 to form dimers is dependent on its binding to iron-sulphur clusters. Moreover, the Iron-depleted apo-CISD1 does not rescue mitochondrial phenotypes observed in CISD1 KO mouse cells. Finally, In vivo studies showed that overexpression of Cisd and mutant apo-Cisd in Drosophila shortened fly life span and, using a different overexpression model, apo-Cisd caused a delay in eclosion. Similar as patient derived neurons, they observed an increase in Cisd dimer levels in Pink1 mutant flies. Additionally, the authors showed that double mutants of Cisd and Pink1 alleviated all Pink1 mutant phenotypes, while double mutants of Prkn and Cisd rescued most Prkn mutant phenotypes.

      Major comments:

      1) The authors observed an increase in the levels of Cisd dimers in Pink1 mutant flies and removing Cisd in Pink1 mutant background rescues all the mutant phenotypes observed in Pink1 mutant flies, suggesting that the Cisd dimers are part and partial of the Pink1 mutant phenotype. The authors also generated a UAS_C111S_Cisd fly which can overexpress apo-Cisd. Overexpression of the C111S_Cisd construct with Tub-Gal4 showed a developmental delay. Since apo-Cisd forms more dimeric Cisd, my question is: does the strong overexpression (e.g. with Tub-Gal4) of the C111S_Cisd in wild type flies shows any of the Pink1 mutant phenotypes? If not, the authors should mention this and elaborate on it.

      We thank the reviewer for their comments. In fact, we only observed very few flies ecclosing after overexpression of wildtype Cisd or C111S Cisd using the strong tubP-Gal4 driver during development. We considered these very few flies to be escapees (also indicated by the rather low induction of Cisd mRNA suggesting compensatory downregulation) and only used them to conduct the analysis shown in Figure 4c-e. This is now mentioned in more detail in the manuscript.

      2) Figure 6g: Shows the TEM pictures of the indirect flight muscles of Pink1 mutant flies and Pink1, Cisd double mutants. To me, the Picture of Pink1 mutant mitochondria is not very convincing. We expect swollen (enlarged) mitochondria with disrupted mitochondrial matrix. However, this is not clear in the picture. Moreover, in my opinion, Figure6 g, is missing an EM Picture of the Cisd mutant indirect flight muscles.

      We now show exemplary pictures from Pink1 mutant and DKO in a higher magnification which better demonstrate the rounded Pink1 mutant mitochondria and the disrupted cristae structure. EM pictures of all four genotypes in different magnifications are now shown in new supplemental Figure 6.

      3) OPTIONAL: The authors suggest that most probably apo-Cisd, assumes a toxic function in Pink1 mutant flies and serves as a critical mediator of Pink1-linked phenotypes. If this statement is correct, we can hypothesize that increasing apo-Cisd in Pink1 mutant background should worsen the pink1 mutant defects.

      Therefore, I suggest overexpressing Cisd1 wild type (and/or C111S Cisd) in pink1 mutant flies, as pink1 is on the X chromosome, and mild overexpression of Cisd1 with da is not lethal, these experiments could be done in 3-4 fly crosses and hence within 1.5 - 2 months.

      We have set up this experiment and will report in the second revision (v2) of our manuscript.

      Since Pink1 mutant flies contain higher levels of endogenous Cisd dimers, we can expect that overexpression of wild type Cisd will result in an even stronger increase of dimers. If these dimers indeed contribute to Pink1 mutant phenotypes we can expect that overexpression of Cisd will result in a worsening of the Pink1 mutant phenotypes.

      We have set up this experiment and will report in the second revision of our manuscript.

      Minor Comments:

      -) In the Introduction (Background) there are some parts without references:

      E.g., there is not a single reference in the following part between

      'However, in unfit mitochondria with a reduced mitochondrial membrane potential ...&... compromised mitochondria safeguards overall mitochondrial health and function.'

      We thank the reviewer for pointing out this flaw. We have now added a suitable reference to the introduction.

      -) In the introduction there is some confusion about the nomenclature used in the article: e.g. following comments are made in the text: Cisd2 (in this publication referred to as Dosmit) or fly Cisd2 (in this publication named MitoNEET).

      However, the names Dosmit and MitoNEET do not appear in the manuscript (except in references)

      The literature and nomenclature for CISD1 are indeed confusing. We have now revised the introduction.

      -) Figure 1: I am not sure why some gels are shown in this figure. The two last lanes of figure 1c are redundant and Figure 1c' which is also not mentioned in the text, is also a repetition of figure 1c.

      The blots in 1c and 1c’ represent all data points (different patients and different individual differentiations) shown in the quantification in 1d. This is now explained better in the revised manuscript.

      -) The authors mention in material and methods that T2A sites are used at the C-terminus of CISD1 to avoid tagging of CISD1. However, this is not entirely true as T2A will leave some amino acids (around 20) after the self-cleaving and therefore CISD1 will be tagged.

      This is indeed true and we have now changed the wording in the revised manuscript.

      -) In figure 5 P1 is used to abbreviate Pink1 mutants, however P1, to me, refers to pink1 wild type. It would be clearer to abbreviate Pink1 mutants as P1B9 in the graphs as B9 is the name of the mutant pink1 allele.

      We thank the reviewer for pointing out this flaw. We have now altered Fig. 5 to be clearer.

      -) In figure 7: Parkin is abbreviated both as Prkn and as Park

      We thank the reviewer for pointing out this flaw, we indeed mixed up both names because it is complicated. The gene symbol is Prkn, the fly line is called Park25. We have now clarified this in the text and Fig. 7.

      -) I suggest changing the title. Recently an article (Ham et al, 2023 PMID: 37626046) was published showing similar genetic interactions between Pink1/Prkn and Cisd. However, the article of Ham et al, 2023 was focused on Pink1/Prkn regulation of ER calcium release, while this article is more related to iron homeostasis. I suggest that the title shows this distinction.

      This is indeed a very good suggestion. We have now altered the title to “Iron/sulfur cluster loss of mitochondrial CISD1 mediates PINK1 loss-of-function phenotypes”.

      Reviewer #2 (Significance):

      In general, this is an exciting and well-executed piece of research focusing on the defects in iron homeostasis observed in Parkinson's disease which a wide audience will appreciate. Very recently, a similar genetic interaction between Cisd and Pink1/Prkn in flies was published (Ham et al, 2023 PMID: 37626046) however, from a different angle. While, Ham et al focused on the role of Pink1/Prkn and Cisd in IP3R related ER calcium release, this manuscript approaches the Pink1/Prkn - Cisd interaction from an iron homeostasis point of view. Since, iron dysregulation contributes to the pathogenesis of Parkinson's disease, the observations in this manuscript are relevant for the disease. Hence, the work is sufficiently novel and deserves publication. However, additional experiments are suggested to strengthen the authors' conclusions.

      We thank the reviewer for their kind words. As mentioned above, these additional experiments are on their way and will be included in version 2 of our revised manuscript (v2).

      I work on Drosophila models of Parkinson's disease

      Referees cross-commenting

      I agree with the reviewer number 1 that it would be interesting to investigate CISD1 dimerisation status during mitophagy.

      As mentioned above, we now studied CISD1 dimerization in response to more classical activators of mitophagy namely FCCP and antimycin/oligomycin which had no significant effect on dimerization suggesting that this phenotype is more pronounced under iron depletion. These data are shown in the new Fig. 2c.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Here the authors provide evidence that Cisd is downstream of Parkin/Pink1 and suggest that the levels of apo-Cisd correlate with neurotoxicity. The data presented generally supports the conclusions of the authors and will be useful to those in the field. The manuscript would be improved by a more balanced discussion of the strengths and weaknesses of the study and more circumspection in interpretation of data.

      We thank the reviewer for their comments aimed to improve our manuscript. We have now discussed the strengths and weaknesses of our study in more detail.

      Introduction. While iron has been implicated in Parkinson's disease, it is an overstatement to say that disruption in iron metabolism contributes significantly to the pathogenesis of the disease.

      There is certainly a plethora of data implicating perturbed iron homeostasis in PD as also pointed out by reviewer #1. We have tried to tone down our wording in the text and added a recent review on the topic (Ma et al, 2021) as also suggested by reviewer #1.

      Introduction. The discussion of the various names for Cisd2 is important, but confusing as written. Specifically, the use of "this" makes the wording unclear.

      We thank the reviewer for pointing out this flaw. We have altered the wording in the introduction.

      Methods. It would be preferable to use heterozygous driver lines or a more similar genetic control rather than w-1118.

      The exact controls were indeed not well explained in the Methods section, this has been corrected in the revised version. In brief, homozygous driver and UAS lines were indeed used in Fig. 4, this will be addressed in the second revision of our manuscript together with the experiments reviewer #2 suggested. The data shown in Fig. 5, 6, and 7 all used w1118 as control because all other fly strains are on the same genetic background.

      Page 10. It appears that the PINK1 lines have been described previously. The authors should clarify this point and ensure that the new data presented in the current manuscript (presumably the mRNA levels, Fig. 1a) is indicated, as well as data that is confirmatory of prior findings (Fig. 1b).

      Yes, these PINK1 lines have been described previously as pointed out in the manuscript. The original paper did not quantify the PINK1 mRNA levels shown in Fig. 1a. The blots shown in Fig. 1b are from new differentiations and have also not been shown before but confirm findings published in Jarazo et al. (Jarazo et al, 2022). This has been clarified in the revised version of our manuscript.

      Fig. 3 legend. There is a typographical error, "ne-way ANOVA."

      We thank the reviewer for pointing out this flaw. This has been corrected in the revised version.

      Page 15. The nature of the Pink1-B9 mutant should be specified.

      We now added a supplemental Figure 1 that depicts the specific mutation in these flies.

      Fig. 4. Levels of mutant and wild type Cisd should be compared in transgenic flies.

      We now added a quantification of mutant and wildtype Cisd levels to the new Figure 4d.

      Fig. 5b,d. The striking change seems to be the decrease in dimers in young Pink1 mutant animals, not the small increase in dimers in the older Pink1 mutants.

      It is always difficult to find a “typical” picture that reflects all changes observed in quantitative data. This Figure actually shows a decrease of total Cisd levels in young flies in Fig. 5c but no difference of the dimer/monomer ratio in Fig. 5d.

      Fig. 5f. Caution should be used in interpreting the results. Deferiprone has toxicity to wildtype flies (trend) and may simply be making sick Pink1 mutants sicker.

      There is certainly a tendency for wildtype flies to thrive less in food containing deferiprone. To make this more obvious, we have now added the exact p value (0.0764, which we don’t consider borderline but a tendency) to this figure and mention this fact in the text.

      Fig. 5e. The data are hard to interpret. The number of animals is very small for a viability study and the strains are apparently in different genetic backgrounds, though this is not clearly specified. The experiment in Supplementary Fig. 1 appears better controlled and supports the Pink1 data; however, a similar concern pertains to Fig. 7. The authors may thus wish to be more circumspect in their interpretation, especially of the Parkin data.

      In Fig 5e we quantified total iron levels and the Fe3+/Fe2+ ratio using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). Although indeed not so many flies were used in this quantification, the results are highly significant. If the reviewer was referring to Fig. 5f, we agree that this experiment was not well (to be honest, even wrongly explained) which we corrected in the revised version of this manuscript. We thank the reviewer for pointing out this flaw.

      Reviewer #3 (Significance):

      The major significance of the study is in putting downstream of Parkin/Pink1 (largely confirmatory to recently published work) and suggesting that the levels of apo-Cisd are an important determinant of toxicity. The work will be of interest to those in the field.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      The changes already carried out and included in the transferred manuscript (v1) are indicated above in bold orange. All changes pending on ongoing experiments to be included in the second revision of the manuscript are indicated above in bold magenta.

      4. Description of analyses that authors prefer not to carry out

      All changes suggested by the reviewers were addressed (v1) or will be addressed (v2).

      References

      Jarazo J, Barmpa K, Modamio J, Saraiva C, Sabaté-Soler S, Rosety I, Griesbeck A, Skwirblies F, Zaffaroni G, Smits LM, et al (2022) Parkinson’s Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2-Hydroxypropyl-β-Cyclodextrin Treatment. Mov Disord 37: 80–94

      Key J, Sen NE, Arsović A, Krämer S, Hülse R, Khan NN, Meierhofer D, Gispert S, Koepf G & Auburger G (2020) Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells 9

      Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, et al (2021) Parkinson’s disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 41: 101896

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      __We thank all the reviewers for their time and their constructive criticism, based on which we will revise our manuscript. All our responses are indicated in red. __

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      The manuscript by Nguyen and Cheng is investigating the timing and mechanism of cessation of neuroblasts in the pupal optic lobe. Previous studies by several groups have determined the spatial and temporal factors required for the neuroepithelial to neuroblast transition and neuroblast to neural/glycogenesis in third instar larvae such that neuroblasts are eliminated. The mechanism of elimination of neuroblasts in the VNC or mushroom bodies have been investigated, but the mechanism(s) and the timing of elimination of medulla neuroblasts has not been investigated. The authors suggest that medulla neuroblasts are eliminated via a combination of mechanisms including apoptosis, prospero induced size symmetric terminal differentiation and a switch to gliogenesis by gcm expression. Expression of Tailless also was found to affect the timing of medulla neuroblast termination. They also ruled out several mechanisms such as ecdysone pulses.

      Major comments

      Clearly written and logical flow to experiments and results not over interpreted.

      Clearly show that the neuroblast number and size decrease (12 to 18 hrs) and are eliminated by 30 hours

      Figure 2a Marking of the Neuroepithelium. Would be more convincing if shown by PatJ expression and is clonal analysis. While the following panels use PatJ in clones suggesting are NE and NBs present it is more difficult to put into the context in the higher magnification images (Figure 2 D- M) and the Miranda expression in F' seems to be the entire lobe and it is not clear if would be any NE which does not agree with what is shown in panel A.

      We will perform clonal analysis using MARCM to show that the elimination of medulla NBs (marked by Dpn) is accompanied by the depletion of NE (marked by PatJ). For Figure 2 D, E, I, L, we will change the images to the whole lobes to clearly show the shift in the NE-NB transition upon Notch OE/KD.

      Is difficult to see the neuroblasts in Figure 2 D D" and E. The figure does not match what is stated in the results in that the neuroblasts are difficult to observe. If the point is that there is fewer NE cells and more neuroblasts then this is hard to see. It has been previously shown that with Notch RNAi clones prematurely extrude form the NE (Egger 20210; Keegan 2023) and could be expressing more Neuroblast markers but this is not visible in the panels as shown. Are the images single focal plane or maximum projections? Imaging more deeply in the brain or viewing in cross section would account for these possibilities. The possibility that are more neuroblasts but not all at the surface of the OL should be addressed as this could also alter the overall results.

      Figure 2 is key to first point of the paper so needs to be addressed.

      The images are single focal plane of the superficial layer of the medulla. We will specify this information in the figure legends. We will include cross-section of the notch RNAi clones to show the delamination of precocious NBs.

      Minor comments

      Why express volume of DPN in clone volume. Would make the point more clear and more strong be to express as number of NB in the 3-D volume of the clone. This measurement occurs in several figures.

      We will redo the quantification as suggested.

      Use of Miranda to mark NBs is unclear in Figure 2. Perhaps more clear in B&W.

      We will redo the staining with Dpn instead of Mira to mark medulla NBs. Figures will be presented in B&W as suggested.

      Make clear in figures (or figure legend) if single focal plane or projections.

      We will do so.

      It is unclear what percentage of NB the Gal4 line eyR16F10 are expressed in. Veen 2023 state that the GAL4 is also expressed in neurons and at different levels whether deeper within the brain or superficially on the surface of the brain. At 16 APF it is expressed but it is not clear whether it is in all cells at a low level or only within a few cells

      We will further characterize the expression of eyR16F10-GAL4 in the pupal medulla as suggested.

      Some RNAi lines referenced as previously validated and other are not. For example: EcR, Oxphos, Med27, Notch need references or confirmation of specificity to the intended target (qRT)

      We will perform RT-qPCR to validate the use of UAS-med27 RNAi. For RNAi stocks such as UAS-EcR RNAi, UAS-Atg1 RNAi, UAS-notch RNAi that have been previously used in other publications, we will provide appropriate references.

      At least 2 animals per genotype were used. While I appreciate the technical difficulty of working in pupae this seems a bit low in terms of number of samples and data would be more robust with more numbers.

      Any experiments in which less than 3 animals were used, we will redo the experiments.

      Reviewer #1 (Significance (Required)):

      This provides mechanism and timing for the elimination of neuroblasts (NE to NB) that arise from the medulla. As these are most similar to mammalian brain development (Radial glial to NSC) this information provides more context to interpret the formation of glial and neurons in the adult optic lobe given the effect on timing and mechanisms of elimination.

      This paper would be of interest to developmental biologist who work with Drosophila or mice who are looking at neural development. An understanding of how neural diversity is achieved and the mechanisms behind this that can be dysfunctional in terms of etiology of neural diseases. Is a well done study for the most part that would be improved by clarifying some data and provided more replicates for robustness of the data.

      I am a developmental biologist working with Drosophila in larval and adult neural development.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      Lineages of neural stem cells are of great interest to understand how many neural types are generated. They produce very diverse neurons, often in a highly stereotyped series. However, they must terminate their life when the animal becomes functional or if neurons need time to become mature before birth.

      In the Drosophila optic lobes, neural stem cells are produced over a period of several days by a wave of neurogenesis that transforms a neuroepithelium into neural stem cells that undergo a series of temporal patterning steps. It has been reported that they finish their life when a symmetric division generates glial cells. The authors however analyze the end of a particular lineage, that of the latest born neural stem cells of the medulla.

      The paper shows that neural stem cells stop being produced when the neuroepithelium is consumed. But how do the latest born neural stem cells stop their lineage?

      The results show that they do so by several means, which is quite unexpected: they may die from apoptosis, or autophagy, by becoming glioblasts or by a terminal symmetric division.

      There are no major issues affecting the conclusions

      • The paper shows that the end of production of neural stem cells occurs the neuroepithelium is completely transformed. The experiments performed by the authors are fine and show that, if the transition is delayed, neural stem cells terminate their life later, and vice versa. However, the lifespan of the neural stem cells is not affected by the timing of the transition. Therefore, these experiments do not tell us how neural stem cells terminate their life, which is the central question of the study. The discussion should be written accordingly and the title and the model in Fig 6 modified to reflect the importance of the end of life of the stem cells, the main theme of the paper.

      We agree that our said experiments did not elucidate how NBs terminate at the end of neurogenesis. Nevertheless, our aim is to show that the timing of NB termination in the medulla is dependent on the timing of the NE-NB transition.

      In Supplementary Figure 1, we showed that factors previously shown to be involved in NB termination in other lineages did not play similar roles in the medulla NBs. Thus, we think that NB termination in the medulla is likely regulated at the levels of the NE, but not the NBs themselves. Although we have briefly mentioned this in our manuscript, we hope by conducting the experiments suggested by the reviewer (see below), we can subsequently modify our model in Figure 6 and our discussion.

      • The authors talk about Pros-dependent symmetric division and gliogenic switch as two separate processes, but these may be two sides of the same phenomenon. Tll+ gcm+ neural stem cells undergo Pros-dependent cell cycle exit, generating glial progeny. If the authors agree with this, could they update their model (and discussion) to reflect the fact that gliogenic switch occurs via a Pros-dependent symmetric division, and these are not two separate processes independently contributing to the depletion of the neural stem cell pool? Ideally, a triple staining between Dpn, Pros, and gcm would show that the symmetrically dividing cells seen by the authors are committed to the glial fate.

      We will further test how gliogenesis is affected in pros RNAi clones. The results may shed light on whether Pros-mediated symmetric division is required for Gcm-mediated gliogenesis in the medulla. Regarding the model, we have summarized our findings and suggestions in Figure 5K, however, we will integrate this information into our final model.

      In Figure 5C, we showed that at 12h APF, there are Dpn+ NBs in the medulla that expressed both Pros and Gcm, suggesting that it is very likely that Pros is upstream of Gcm to induce the glial cell fate switch of the medulla NBs.

      • Why were Notch RNAi experiments assessed for the presence of neural stem cells at P12 and gcm RNAi experiments at P24? Given that most optic lobe neural stem cells disappear between P12-18, a subtle effect of gcm RNAi may have been missed. Do the authors have data for gcm RNAi at P12?

      We hypothesized that the timing of NE-NB transition affects the timing of NB termination in the medulla. Because Notch KD was previously shown to induce precocious NE-NB transition in the OL, meaning that medulla NBs are born prematurely, we expected that this manipulation will lead to a corresponding premature elimination of the NBs. In contrast, gcm RNAi which inhibits the switch into the glial cell fate of the NBs, is expected to prolong the neurogenic phase of the NBs, and thereby, their persistence by 24h APF when WT NBs are eliminated.

      • The authors should acknowledge that the inhibition of either apoptosis or autophagy alone may not be fully sufficient to prevent the death of NBs. In mushroom body neural stem cells, both processes must be inhibited simultaneously to produce a strong effect on their survival (Pahl et al. 2019, PMID 30773368).

      We will add this information in our discussions.

      • There is an important missing point that should be addressed: is there a specific point in time when all neural stem cells must stop their lineage wherever they are in the temporal series and either die or divide symmetrically? One possibility that is not discussed is that most neural stem cells end their life through a gliogenic symmetric division while those that were generated late must stop en route and die by apoptosis and/or autophagy. This would solve the strange diversity of end-of-life, which could be easily addressed by identifying the temporal stage of the neural stem cells that undergo apoptosis

      We agree that it would be of interest to understand how there are diverse mechanisms by which medulla NBs terminate during pupal development. To address if temporal progression is involved in apoptosis of the medulla NBs, we will first characterize the expression of some temporal TFs (e.g., Ey, Slp, Tll) at 12h APF when we found a subset of medulla NBs undergo apoptosis in the wildtype animals.

      Minor suggestions:

      We agree with these minor modifications.

      • Line 46: Specify that there are 8 type II neural stem cells in each hemisphere*.

      • The statement in lines 181-182 that "cell death, and not autophagy, makes a minor contribution to..." should be replaced with "apoptosis, and not autophagy," as autophagy is also a type of cell death.

      • The authors should adjust the logic of the section "Medulla neuroblasts terminate during early pupal development": Describe the wild-type pattern first (the decrease in the number of neural stem cells and their size with age) and then describe the perturbations aimed at disrupting the number and the size of neural stem cells

      • Line 151 should refer to Fig. 2I-K, not Fig. 2J-K.

      **Referees cross-commenting**

      How can NBs die by different mechanisms?? This might only happen is they are in a different states, an issue that is not addressed.

      it has been shown that optic lobe NBs end their life by a symmetric, gliogenic last division at the end of the last temporal window, and not by PCD.

      It is likely, and the authors do hint at it, that NBs only die by PCD when they prematurely interrupt the temporal series in early pupation when neurons synchronously start undergoing maturation.

      I believe that the authors should explain this, if this is indeed their model, and show that NBs die while still in early temporal windows.

      Reviewer #2 (Significance (Required)):

      Lineages of neural stem cells are of great interest to understand how many neural types are generated. They produce very diverse neurons, often in a highly stereotyped series. However, they must terminate their life when the animal becomes functional or if neurons need time to become mature before birth.

      In the Drosophila optic lobes, neural stem cells are produced over a period of several days by a wave of neurogenesis that transforms a neuroepithelium into neural stem cells that undergo a series of temporal patterning steps. It has been reported that they finish their life when a symmetric division generates glial cells. The authors however analyze the end of a particular lineage, that of the latest born neural stem cells of the medulla.

      The paper shows that neural stem cells stop being produced when the neuroepithelium is consumed. But how do the latest born neural stem cells stop their lineage?

      The results show that they do so by several means, which is quite unexpected: they may die from apoptosis, or autophagy, by becoming glioblasts or by a terminal symmetric division.

      There are no major issues affecting the conclusions

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary

      In this manuscript, the authors address the timing and mechanisms responsible for the termination of medulla neuroblasts in Drosophila visual processing centres, also known as optic lobes. Through time course experiments the authors demonstrate the medulla NBs are completely eliminated by 30h APF during early pupal development. By manipulating the Notch signalling pathway as well as proneural genes such as lethal of scute, the authors show that altering the NE-NB transition is sufficient to change the timing of NB termination. In contrast, ecdysone signalling and components of the mediator complex, known to terminate proliferation of central brain NBs, are not required for the termination of medulla NBs. Medulla NBs sequentially express a variety of temporal transcription factors to promote cellular diversity, however, the authors demonstrate that altering temporal factors such as Ey, Sco or Hth, does not affect the timing of the medulla NBs termination. Interestingly however overexpression of the transcription factor tailless can cease medulla NB termination via the conversion of type I to type II NB fate. They further go on to show the importance of the differentiation factor, Prospero, in promoting the differentiation of medulla NBs as well as terminating medulla neurogenesis during pupal development. Finally, in addition to differentiation, the authors show another mechanism responsible for the cessation of neurogenesis which is the commencement of gliogenesis. Through manipulation of the neurogenic to gliogenic switch by knockdown or overexpressing the glial regulatory gene, gcm, the authors show that even though the downregulation of gcm is is not sufficient to induce NB persistence, gcm overexpression can cause premature termination of NBs.

      Major comments:

      • Are the key conclusions convincing?

      Yes, the key conclusions are convincing with proper controls, quantifications and statistical analyses.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      The conclusion that temporal transcription factors (TTF) do not affect the timing of medulla NB termination is somewhat preliminary. The authors investigated a simplified temporal series including Homothorax, Eyeless, Sloppy-paired, Dichaete and Tailless. However, there are additional temporal factors that have not been examined for their potential involvement in medullar NB termination. Previous reports have identified several other temporal factors that play a role in medulla TTF cascade, such as, SoxNeuro (SoxN) and doublesex-Mab related 99B (Dmrt99B) that start their expression in the NE similar to Hth, however, Dmrt99B is likely to be repressed much later than Hth (Li, Erclik et al. 2013, Zhu, Zhao et al. 2022). At this point, it remains challenging to completely rule out the possibility that other temporal factors play a role in medullar NB termination or have redundant functions in regulating the timing of medulla NB cessation. It is suggested to tone down this claim and provide a brief discussion on alternative possibilities, citing relevant papers on the functions of other temporal factors in medullar NBs.

      We agree.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      Loss of pros by RNAi caused the formation of ectopic NBs and the NBs persist even at 24h APF. Do these NBs persist at 30h or 48h APF? Does overexpression of Pros result in early termination of medulla NBs?

      We will do these experiments in clones as suggested.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      Yes, I believe the suggested experiments are realistic in terms of time and resources, with an estimation of 3 months to complete the experiments.

      • Are the data and the methods presented in such a way that they can be reproduced?

      Yes.

      • Are the experiments adequately replicated and statistical analysis adequate?

      The experiments are straight forward and were performed with proper controls, supported by quantifications and proper statistical analyses. However, there is no mention about how many replicates were used.

      We will add this information in our Material and Methods section.

      Minor comments:

      1. The authors use the eyR6F10-Gal4 driver in certain experiments. The eyR6F10-Gal4 driver is however expressed only in a subset of medulla NBs. Can the authors comment on what percentage of medulla NBs is the driver expressed in? We will characterize this.

      Does the EGFR signalling pathway or JAK/STAT pathway affect the timing of termination of medulla NBs? Experiments are not necessary. The author can speculate on their roles.

      We will modify our discussion accordingly.

      Figure 1C has a p value of only 0.03 (*) but shows a strong reduction in the number of Dpn+ cells from 12h to 18h, etc. Is this correct? Also, is the p value the same for the comparison between 12h and 24h as well as 12h and 30h APF?

      Yes. P-values showed no significant differences between 28-24h and 24-30h APF.

      The controls in figure 2B and to some extent figure 2H show one major outlier (much higher than the other brain lobes in the control). Will the removal of this outlier affect the significance/ p-value of the experiment?

      No, removing the outliers do not change the statical results.

      In figure 2B what is the p-value between 12h and 18h APF? Is it *** as well?

      No, it’s not significant.

      Line 84 of the introduction introduces Tll, Gcm and Pros for the first time in the manuscript and should be written out in full.

      We will change this.

      • Are prior studies referenced appropriately?

      Yes.

      • Are the text and figures clear and accurate?

      Yes.

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      Quite a few of data mentioned in the manuscript have been described as data not shown. I think it would be nice to show quantifications or representative images in the supplementary figures.

      We will add the data which was previously not shown.

      Reviewer #3 (Significance (Required)):

      Since the mechanisms by which medulla NBs are terminated are currently unknow, this is an important and interesting study to understand how medulla neuroblasts in the optic lobe are terminated. The balance between stem cell maintenance and differentiation is critical for proper brain development and the results presented in this paper are impactful. Furthermore, Drosophila melanogaster is an excellent model to study stem cell niches and neuroblast temporal patterning. The authors provide key mechanisms namely cell death, Pros-mediated differentiation and the gliogenic switch that contribute to a better understanding of how the NB progenitor pool can be terminated in the Drosophila OL, which is largely supported by the data.

      • Place the work in the context of the existing literature (provide references, where appropriate).

      So far, most work in this field has focused on the regulation of the temporal factors to promote the progression of the TTF transcriptional cascade and thereby diversity of the neural progenitors (Li, Erclik et al. 2013, Naidu, Zhang et al. 2020, Ray and Li 2022, Zhu, Zhao et al. 2022). Furthermore, work on pathways such as EGFR and Notch signalling that allows the proneural wave to progress and subsequently induce neuroblast formation in a precise and orderly manner have also been studied (Yasugi, Umetsu et al. 2008, Yasugi, Sugie et al. 2010). Here, considering previous literature, the authors move one step forward to determine how and when these neuroblast progenitors cease proliferation during development thus providing mechanisms for the regulation of the neuroepithelial stem cell pool, its timely conversion into NSCs and the switch from neurogenesis to gliogenesis thus providing important implications for brain size determination and function.

      • State what audience might be interested in and influenced by the reported findings.

      Stem cell research, neurobiologists and developmental biologists.

      • Define your field of expertise

      Stem cells, developmental biology

    1. One big category of website that produces writing are the professional media outlets that employ journalists, editors, researchers, and writers to produce daily or weekly content. On these sites, the writing itself is the product.

      Although thee are so many different styles of writing, especially on the internet, I think we can all agree in one way or another that knowing how to write professionally, whether it may be for a professional media outlet or even for a company website, is very important. Consider journalism. If a journalist working for the New York Times were to publish a story that was written in the style of something that came from Reddit, they would be fired immediately. Therefore, knowing how to differentiate when to use different writing styles is extremely important as a writer.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This valuable study, of interest for students of the biology of genomes, uses simulations in combination with published data to examine how many TADs remain after cohesin depletion. The authors suggest that a significant subset of chromosome conformations do not require cohesin, and that knowledge of specific epigenetic states can be used to identify regions of the genome that still interact in the absence of cohesin. The theoretical approaches and quantitative analysis are state-of-the-art, and the data quality and strength of the conclusions are solid. However, because "physical boundaries (of domains?)" in the model appear to be a consequence of preserved TADs, rather than the other way around, the functional insights are limited.

      Summary of the reviewer discussion for the authors:

      While the simulations are state of the art and the reviewers appreciated that the approaches used here might help to resolve apparent discrepancies between conclusions from single-cell and bulk/ensemble techniques to study chromosome conformation, the work would benefit from clarification of what precisely is meant with "physical boundaries" and from a comparison of CCM and HIPPS models to understand commonalities and differences between them. In addition, more discussion of the relation of the current work to previous studies, such as Schwarzer et al., 2017, and Nuebler et al., 2018, would elevate the work and make the key claims more compelling. Please see also the detailed comments from the expert reviewers.

      We thank the editor for the assessment and the reviewers for the incisive comments. We will address these comments one by one. In particular, we attempt to clarify the concept of “physical boundaries” and its relevance in our study. We hope our responses are satisfactory. We believe that our manuscript has benefitted substantially by revising the manuscript following the comments by the reviewers.

      Below is our point-by-point response to the comments:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Jeong et al. investigate the prevalence and cause of TADs that are preserved in eukaryotic cells after cohesin depletion. The authors perform an extensive analysis of previously published Hi-C data, and find that roughly 15% of TADs are preserved in both mouse liver cells and in HCT-116 cells. They confirm previous findings that epigenetic mismatches across the boundaries of TADs can cause TAD preservation. However, the authors also find that not all preserved TADs can be explained this way. Jeong et al. provide an argument based on polymer simulations that "physical boundaries" in 3D structures provide an additional mechanism that can lead to TAD preservation. However, in its current form, we do not find the argumentation and evidence that leads to this claim to be fully compelling.

      Strengths:

      We appreciate the extensive statistical analysis performed by the authors on the extent to which TAD's are preserved; this does seem like a novel and valuable contribution to the field.

      We thank the reviewer for a succinct and comprehensive summary of our work and for appreciating value of our work.

      Weaknesses:

      1) As the authors briefly note, the fact that compartmentalization due to epigenetic mismatches can cause TAD-like structures upon cohesin depletion has already been discussed in the literature; see for example Extended Data Figure 8 in (Schwarzer et al., 2017) or the simulation study (Nuebler et al., 2018). We are hence left with the impression that the novelty of this finding is somewhat overstated in this manuscript.

      It is unclear to us by studying the results in the Extended Data Figure 8 that the authors have shown that epigenetic mismatches cause TAD-like structures. As far as we can discern, the data, without a quantitative analysis, shows that may be new TAD-like structures that are not in the wild type appear when cohesin is deleted.

      The studies by Schwarzer et al 2017 and Nuebler et al 2018 are relevant to our own investigation, which we undertook after scrutinizing the experiments in Schwarzer et al 2017 and the related work by Rao et. al in 2017 on a different cell line. In the summary of the Reviewer discussion, it is suggested we discuss the relation to the experimental study by Schwarzer et al 2017 and the computational work by Nuebler et al 2018.

      (1) The results and the corresponding discussion in these two studies are different (may be complimentary) from our results. When referring to the Extended Data Figure 8 Schwarzer and co-authors state in the main text, “The finer compartmentalization explains most of the remaining or new domains and boundaries seen in Nipbl Hi-C maps”. We are not 100% sure what “remaining” means in this context. The Extended Data Fig. 8(a) shows the “common boundaries” is correlated with the eigenvectors of compartmentalization. If this indeed is what the reviewer is referring to, we believe that our study differs from theirs in two important ways: First, Extended Data Fig.8 (a) is a statistical analysis at the “ensemble” level. In our study, we examined the preservation of TADs at both individual and ensemble level with more detailed analysis. Second, in Extended Data Fig. 8(a), the “common boundaries” (incidentally we are uncertain how that was calculated) are compared to the eigenvectors of PCA analysis of the compartments (larger length scales). In contrast, in our study, we examined the correlation between TAD boundaries and the epigenetic profiles. We believe that this is an important distinction. The PCA analysis of compartments and “common boundaries” defined using (presumably) the insulation score are both derived from the Hi-C contact map. Epigenetic profile, on the other hand, is independent of Hi-C data. We believe our contribution, is to build the connection between epigenetic profiles with the preservation of TADs, and link it to 3D structures. For these reasons, we assert that our results are novel, and are not contained (or even implied) in the Schwarzer et al 2017 study.

      The simulations in Neubler et al 2018, which were undertaken to rationalize the experimenrs, revealed that compartmentalization of small segments is enhanced after cohesin depletion, while TADs disappear, which support the broad claims that are made in the experiments. They assert that the structures generated are non-equilibrium. They do not address the emergence of preserved nor the observation of TAD-like structures at the single cell level. However, our goal was to elucidate the reasons for of preservation of TADs. By that we mean, the reasons why certain TADs are present in both the wild and cohesin depleted cells? Through a detailed analyses of two cells, polymer simulations, we have provided a structural basis to answer the question. Finally, we have provided a plausible between TAD preservation and maintenance of enhancer-promoter interactions by analyzing the Micro-C data. For all these reasons, we believe that our study is different from the results in the Extended Figure 8 or the simulations described by Neubler.

      Let us summarize the new results in our study that are not contained in the studies referred to by this Reviewer. (1) We showed by analyzing the Hi-C data for mouse liver and HCT-16 that a non-negligible fraction of TAPs is preserved, which set in motion our detailed investigation. (2) Then, using polymer simulations on a different cell type, we generated quantitative insights (epigenetic mismatches as well as structural basis) for the preservation of TADs. Although not emphasized, we showed that deletion of cohesin in the GM12878 cells also give rise to P-TADs a prediction that suggests that the observations might be “universal”. (3) Rather than perform, time consuming polymer simulations, we calculated 3D structures directly from Hi-C data for the mouse liver and HCT-16 cells, which provided a structural basis for TAP preservation. (4) The 3D structures also showed how TAD-like features appear at the single cell level, which is in accord with imaging experiments. (5) Finally, we suggest that P-TADs may be linked to the maintenance of enhancer-promoter and promoter-promoter interactions by calculating the 3D structures using the recent Micro-C data.

      For the reasons given above, we assert that our results are novel, and bring new perspectives that are not in the aforementioned insightful studies cited by the Reviewer.

      2) It is not quite clear what the authors conceptually mean by "physical boundaries" and how this could offer additional insight into preserved TADs. First, the authors use the CCM model to show that TAD boundaries correlate with peaks in the single cell boundary probability distribution of the model. This finding is consistent with previous reports that TAD-like structures are present in single cells, and that specific TAD boundaries only arise as a population average.

      The finding based on the CCM simulations hence seems to be that preserved TADs also arise as a population average in cohesin-depleted cells, but we do not follow what the term "physical boundaries" refers to in this context. The authors then use the Hi-C data to infer a maximumentropy-based HIPPS model. They find that preserved TADs often have boundaries that correspond to peaks in the single cell boundary probabilities of the inferred model. The authors seem to imply that these peaks in the boundary probability correspond to "physical boundaries" that cause the preservation of TADs. This argument seems circular; the model is based on inferring interaction strengths between monomers, such that the model recreates the input Hi-C map. This means that the ensemble average of the model should have a TAD boundary where one is present in the input Hi-C data. A TAD boundary in the Hi-C data would then seem to imply a peak in the model's single-cell boundary probability. (The authors do display two examples where this is not the case in Fig.3h, but looking at these cases by eye, they do not seem to correspond to strong TAD boundaries.) "Physical boundaries" in the model are hence a consequence of the preserved TADs, rather than the other way around, as the authors seem to suggest. At the very least the boundary probability in the HIPPS model is not an independent statistic from the Hi-C map (on which their model is constrained), so we have concerns about using the physical boundaries idea to understand where some of the preserved TADs come from.

      There are many statements in this long comment that require us to unpack separately. First, using both the CCM simulations, and even more importantly using data-driven approach, we established that TAD-like structures are present in single cells with and without cohesin. The latter finding is fully consistent with imaging experiments. We are unaware of other computational efforts, before our work, demonstrating that this is the case. Perhaps, the Reviewer can point to the papers in the literature.

      Regarding the statement that our arguments are circular, and lack of clarity of the meaning of physical boundary, please allow us to explain. First, we apologize for the confusion. Let us clarify our approach. We first used CCM to understand the potential origin of substantial fraction of P-TADs in the GM. The simulations, allowed us to generate the plausible mechanisms, for the origin of P-TADs. Because the CCM does reproduce the Hi-C data, we surmised that the general mechanisms inferred from these simulations could be profitably used to analyze the experiments. The simulations also showed that knowledge of 3D structures produces a muchneeded structural basis of P-TADs , and potentially for emergence of new TADs upon cohesin depletion.

      Because 3D coordinates are needed to obtain structural insights into the role of cohesin, we use a novel method to obtain them without the need for simulations. In particular, we used the HIPPS method to obtain 3D coordinates with the Hi-C data as the sole input, which allowed us to calculate directly the boundary probabilities. The excellent agreement between the predicted 3D structures and imaging experiments suggests that meaningful information, not available in Hi-C, may be gleaned from the ensemble of calculated 3D structures.

      Although “physical boundary”, a notion introduced by Zhuang, is defined in in the method section, it is apparently unclear for which we apologize. Because this is an important technical tool, we have added a summary in the main text in the revision. We did not mean to imply that the physical boundaries cause the preservation of TADs, although we found that maintenance of the enhancer-promoter contacts (see Fig. 8 in the revision) could be one of the potential reasons for the emergence of physical boundaries. We agree with the reviewer that physical boundaries are structural evidence of preserved TADs (not the cause), that is when a TAD is preserved, we can detect it by prominent physical boundary. The purpose and benefit of physical boundary analysis and using HIPPS in general is to obtain three-dimensional structures of chromosomes. Although both CCM simulations and HIPPS use Hi-C contact maps, three-dimensional structures provide additional information that is not present in the Hi-C data.

      The arguments that the authors use to justify their claims could be clarified and strengthened. Here are some suggestions: -Explain the concept of "physical boundaries" more clearly in the main text.

      As explained above, we have revised the text to clarify the concept and purpose of physical boundaries analysis. See Page 7.

      • Justify why the boundary probabilities and the physical boundaries concept can be used to offer novel insight into where preserved TADs may come from.

      Boundary probabilities and physical boundaries provide previously unavailable 3D structural information on the TADs structures both at the single-cell and population level. This provides a direct structural basis for determining which TADs are preserved. But in order to understand where P-TADs may come from, physical boundaries analysis alone is not sufficient. As we have shown in the analysis of enhancer-promoter contact, using physical boundary analysis from 3D structures, we can conclude that conservation of enhancer-promoter contact could be one of the reasons for the P-TAD.

      • Explain more clearly what the additional value of using the HIPPS model to study TAD preservation is.

      Our goal, as announced in the title is to elucidate the structural basis for the emergence of PTADs. The HIPPS method, which avoids doing simulations (like CCM and other polymer models used in the literature) provides an ensemble of 3D conformations using averaged contact map generated in Hi-C experiments. Even more importantly, HIPPS produce an ensemble of structures, which can be the basis for predicting the outcomes at the single-cell level. The accuracy of the generated structures has been shown in our previous work (Shi and ThirumalaiPRX 2021). In ensemble-averaged Hi-C experiments, TADs appear to be relatively stable. However, imaging experiments (Bintu et. al, 2018) have revealed that TADs are not fixed structures present in every single cell, but instead exhibit variability at the single-cell level. TADlike structures with distinct boundaries are observed in individual cells, and the location of these boundaries varies from cell to cell. However, these TAD-like structures still show a preferential positioning in 3D structures. Interestingly, the preferential positioning often corresponds to TAD boundaries observed in population-averaged Hi-C data. This suggests that while cohesin is involved in establishing the overall organization of TADs, other factors and mechanisms could also contribute to TAD formation at the individual cell level. In this study, we showed some boundaries of P-TADs upon cohesin loss in the Hi-C maps, align with preferential boundaries in individual 3D structures of chromosomes. The makes the finding that a subset of TADs is preserved upon cohesin is robust.

      From a technical perspective, the use of HIPPS avoids time-consuming polymer simulations. The HIPPS is rapid and can be used to generate arbitrarily large ensemble of structures, allowing us calculate properties both at the single cell and ensemble level.

      In addition, we'd like to offer the following feedback to the authors.

      3) The discussion of enhancer-promoter loops as a cause of TAD preservation is interesting, but it would be interesting to know fraction of preserved TADs enhancer-promoter loops might explain.

      We thank the reviewer for the excellent suggestion. We have done the suggested calculation. The results are shown in a new Figure.8 in the main text. We also moved the results on enhancer-promoter to the main results section from the Discussion section.

      4) The last paragraph of the introduction seems to state that only the HIPPS model was used to find single-cell 3D structures and boundary probabilities. However, the main text suggests that the CCM model was also used for these purposes.

      We have revised the text to clarify this point on pages 3-4. Also please see the discussion on the utility of HIPPS above.

      5) When referring to the boundary probability, it would be useful if the authors always specified whether they refer to the boundary probability before or after cohesin depletion (or loop depletion in the CCM model). Statements such as "This implies that peaks in the boundary probabilities should correspond to P-TADs" are ambiguous; it is unclear if the authors mean that boundary probabilities before cohesin depletion predict that the boundary will be preserved, rather than that preserved TAD boundaries correlate with peaks in the boundary probability after cohesin depletion.

      We thank the reviewer for the suggestion. Indeed, it may be confusing. Hence, we have revised the text in numerous places to clarify this point.

      6) It would be interesting to analyze all TAD boundaries that are present after cohesin depletion, rather than just those that overlap with TAD boundaries in WT cells. This would give better statistics for answering the question what causes TAD-like structures in cells without cohesin.

      We thank the reviewer for this excellent suggestion. First, this would we believe this deviate from the primary goal of this study: what leads to TAD preservation after cohesin deletion? Second, this has to be done very systematically, as we did here for P-TADs, in order draw meaningful conclusions. This is a very useful study for another occasion.

      7) The use of a plethora of acronyms (P-TAD, CM, DM, CCM, HLM...) makes the paper difficult to read.

      We have revised the text to change CM to “contact map” and “DM” to “distance map”. For PTADs, CCM, and WLM, we would argue that P-TAD is rather a clear and intuitive abbreviation and CCM/WLM refers to specific methods/models and replacing them with full names would make text more difficult to read. We hope the reviewer is okay with us keeping these acronyms.

      Reviewer #2 (Public Review):

      Summary:

      Here Jeong et al., use a combination of theoretical and experimental approaches to define molecular contexts that support specific chromatin conformations. They seek to define features that are associated with TADs that are retained after cohesin depletion (the authors refer to these TADs as P-TADs). They were motivated by differences between single cell data, which suggest that some TADs can be maintained in the absence of cohesin, whereas ensemble HiC data suggest complete loss of TADs. By reananalyzing a number of HiC datasets from different cell types, the authors observe that in ensemble methods, a significant subset of TADs are retained. They observe that P-TADs are associated with mismatches in epigenetic state across TAD boundaries. They further observe that "physical boundaries" are associated with P-TAD maintenance. Their structure/simulation based approach appears to be a powerful means to generate 3D structures from ensemble HiC data, and provide chromosome conformations that mimic the data from single-cell based experiments. Their results also challenge current dogma in the field about epigenetic state being more related to compartment formation rather than TAD boundaries. Their analysis is particularly important because limited amounts of imaging data are presently available for defining chromosome structure at the single-molecule level, however, vast amounts of HiC and ChIP-seq data are available. By using HiC data to generate high quality simulated structural data, they overcome this limitation. Overall, this manuscript is important for understanding chromosome organization, particularly for contacts that do not require cohesin for their maintenance, and for understanding how different levels of chromosome organization may be interconnected. I cannot comment on the validity of the provided simulation methods and hope that another reviewer is qualified to do this.

      We appreciate the reviewer for a comprehensive summary of our work, and we are happy that the reviewer finds our work important, which provides valuable insights to the field.

      Specific comments

      • It is unclear what defines a physical barrier. From reading the text and the methods, it is not entirely clear to me how the authors have designated sites of physical barriers. It may help to define this on pg 7, second to last paragraph, when the authors first describe instances of PTAD maintenance in the absence of epigenetic mismatch.

      We thank the reviewer for the suggestions. The details of physical boundary designation are provided in the appendix data analysis. To make the concept and idea of physical boundary easy to understand, we have revised the text on page 7 in the revised main text.

      • Figure 7 adds an interesting take to their approach. Here the authors use microC data to analyze promoter-enhancer/promoter-promoter contacts. These data are included as part of the discussion. I think this data could be incorporated into the main text, particularly because it provides a biological context where P-TADs would have a rather critical role.

      We thank the reviewers for the suggestion. We also agree that results in Figure 7 provide novel insights on TAD formation and its possible preservation upon perturbation. We have followed the reviewer’s suggestion to move it to an independent section in the main results section as the last subsection.

      • Figure 3a- the numbers here do not match the text (page 6, second to last paragraph). The numbers have been flipped for either chromosome 10 or chromosome 13 in the text or the figures.

      We thank the reviewer for pointing out this error. In the revised main text, it has been corrected.

      Reviewer #3 (Public Review):

      This manuscript presents a comprehensive investigation into the mechanisms that explain the presence of TADs (P-TADs) in cells where cohesin has been removed. In particular, to study TADs in wildtype and cohesin depleted cells, the authors use a combination of polymer simulations to predict whole chromosome structures de novo and from Hi-C data. Interestingly, they find that those TADs that survive cohesin removal contain a switch in epigenetic marks (from compartment A to B or B to A) at the boundary. Additionally, they find that the P-TADs are needed to retain enhancer-promoter and promoter-promoter interactions.

      Overall, the study is well-executed, and the evidence found provides interesting insights into genome folding and interpretations of conflicting results on the role of cohesin on TAD formation.

      We are pleased with the reviewer’s positive assessment of our work.

      To strengthen their claims, the authors should compare their de-novo prediction approach to their data-driven predictions at the single cell level.

      We thank the reviewer for the very good suggestion. We are assuming that the Reviewer is asking us to compare the CCM simulations with HIPPS generated structures at the single cell level. We have shown, using the GM12878 cell data, that the polymer simulations reproduce the Hi-C contact maps (an average quantity) well (see Appendix Fig. 2 and Fig. 3). In addition, we show in Appendix Fig. 8 the comparison with ensemble averaged distance maps as well as at the single cell level for Chr 13 from the GM12878 cell. There are TAD-like structures at the single cell level just as we find for HCT-116 cell (Fig. 5 in the main text). Thus, the conclusions from de-novo prediction and data-driven predictions are consistent. In addition, in our previous publication introducing HIPPS in Phys Rev X 11: 011051 (2021), we showed that the method is quantitatively accurate in reproducing experimental data for all the interphase chromosomes.

      Having demonstrated this consistency, we used computationally simple data-driven predictions to analyze HCT-116 and mouse liver cell lines for which Hi-C data with and without cohesin rather than perform multiple laborious polymer simulations.

      Please see below for our response to specific comments.

      1) It is confusing that the authors change continuously their label for describing B-A and A-B switches. They should choose one expression. I think that the label "switch" between A and B is more precise than "mismatch".

      We have revised the text to make it consistent. Now it all reads “A-B”. Yes, the suggestion that we use switch is good but we think that mismatch is more concise. We trust that this Reviewer will indulge us on this point.

      2) In the Abstract, the authors mention HCT-116 cells but do not specify which cells are these.

      We have changed “HCT-116” in the abstract to “human colorectal carcinoma cell line”.

      3) In the Abstract, it is unclear what the authors mean by "without any parameters"

      In the theoretically based HIPPS method, there is no “free” parameter. In other words, the only parameter is uniquely determined. To avoid confusion, we have removed “without any parameters” from abstract.

      4) In Results, what do the authors mean by 16% (26%)?

      This refers the percentage of how many TADs are preserved after Nipbl and RAD21 removal in mouse and HCT-116 cells, respectively. Using TopDom method, we identified TAD boundaries in Wild and cohesin-depleted cells. There are 16% (959 out of 4176 – Fig. 1a) and 26% (1266 out of 4733 – Fig. 1b) of TADs are preserved after Nipbl and RAD21 removal in mouse and HCT-116 cells, respectively. We removed the percentages in the revised version.

      5) In Results, the authors mention "more importantly, we did tune the value of any parameter to fit the experimental CMs". Did they mean that instead they didn't tune any parameter?

      We apologize for the confusion. In the CCM, there is a single controlled parameter. We have changed the sentence to reflect this correctly.

      6) In Results, section "CCM simulations reproduce wild-type Hi-C maps", Kullback-Leibler (KL) divergence is used to assess the correlation between two loci, but it is unclear what the value 0.04 stands for; is it a good or a bad correlation?

      The value for Kullback-Leibler divergence can vary from 0 to infinity with 0 give the perfect correlation. Thus, 0.04 means that the correlation is excellent.

      7) The authors use two techniques to obtain 3D structures, one is CCM, which takes the cohesin as constraints, and another is HIPPS, which reconstructs from Hi-C maps. Both seem to have good agreement with the Hi-C contact maps. However, did the authors compare the CCM with the HIPPS 3D structures?

      This is detailed in response at the start of the reply to this Reviewer. As detailed in this response as well in the main text we used the CCM to generate hypotheses for the origin of P-TADs. In the process, we established the accuracy of CCM, which gives us confidence about the hypotheses. As explained above and emphasized in the revised version, CCM simulations are time consuming whereas generating 3D structures using HIPPS is computationally simple. Because HIPPS is also accurate, we used it to analyze the Hi-C data on mouse liver, HCT-116 as well as Micro-Data on mESC.

      In our paper in Phys Rev X 11: 011051 (2021) we showed that HIPPS reproduces Hi-C data. In the current manuscript, we showed in Appendix Fig. 2 and Fig. 3 as well as in a study in 2018 (Shi and Thirumalai, Nat Comm.) that CCM is accurate as well. Thus, there is little doubt about the accuracies of the methods that we have developed.

      8) In Results, section "P-TADs have prominent spatial domain boundaries", the authors constructed individual spatial distance matrices (DMs) using 10,000 simulated 3D structures. What are the differences among these 10,000 simulations? Do they start them with different initial structures?

      The structures are generated using HIPPS which is data-driven method that uses Hi-C contact map as constraints. The method, which uses the maximum entropy theory, samples from a distribution that describe the structural ensemble of chromosome. The 10,000 structures are randomly sampled and are independent from each other. The HIPPS method is not a simulation, and hence the issue of initial structures does not arise.

      9) In Methods, when the authors mention the "unknown parameter", do they use one parameter for all simulations (+/- cohesin) or is this parameter different for each system? Would this change the results?

      We apologize for the confusion. The “unknown parameter” is the energy scale 𝜖 that describes the interaction strength between chromosome loci. We have revised the text in the method (page 27) to clarify it. The same value of 𝜖 is used for all CCM simulation with or without cohesin.

      10) In Methods, when the authors perform DBSCAN clustering, they mention that they optimize the clustering parameters for each system. However, if they want to compare between different systems, the clustering parameters should be the same.

      The purpose of DBSCAN is to capture the spatial clustering topology of chromosome loci. However, different cell types and chromosomes may have different overall density, which will impact the average distance between loci. If using the same parameters, such global changes will impact the result of clustering most and the intended spatial clustering topology can be distorted. Hence, we tune the clustering parameter for each system in order to ignore the global effect but only capture the local and topology of clustering of chromosome loci.

      Grammar comments:

      1) "structures, with sharp boundaries are present, at.."

      We thank the reviewer for pointing out the error. We have fixed it.

      2) "Three headlines emerge from these studies are:"

      We have fixed it.

      3) "both the cell lines"

      We have fixed it.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript presents the first evidence for a plastic enhancement in the response of pial cortical arterioles to external stimulation. Specifically, they show (p8; Figure 3A-C) that repeated application of a visual stimulus at 0.25 Hz, at the upper edge of the vasomotor response, leads to a greater change in the diameter of pial arterioles at that frequency. This adds to the earlier, referenced work of Mateo et al (2017) that showed locking - or entrainment of pial arteriole vasomotion - by stimuli at different (0.0 to 0.3 Hz) frequencies.

      We thank the reviewer for positively identifying the value of our manuscript.

      The manuscript has a major flaw. Much as there is plasticity that leads to an increase in the amplitude of vasomotion at the drive frequency, the authors need to show reversibility. This could possibly be accomplished by driving the visual system at a different frequency, say 0.15 Hz, and observing if the 0.25 Hz response is then diminished. The authors could then test if their observation is repeatable by again driving at 0.25 Hz. Unless I missed the presentation on this point, there is no evidence for reversibility.

      The reviewer has raised a very important point of view. In our experiments, the visually induced vasomotion (or visual stimulus-triggered vasomotion) was always entrained by repeated trials of the 0.25 Hz temporal frequency stimuli. When the visual stimulation stops, the vasomotion frequency lock to 0.25 Hz quickly dissipates. After saturated training with this stimulus, the parameters of the visual stimulus were switched, for example to 0.15 Hz. The animal quickly adapted to this new stimulus paradigm and the vasomotion was frequency-locked to 0.15 Hz. The adaptation to this new paradigm occurred well within 5 minutes. In Fig. 5, various paradigms were randomly tested. In some of the trials, 0.25 Hz stimulus was tested after 0.15 Hz. The vasomotion also quickly adapted back to the 0.25 Hz. We agree with the reviewer that this reversibility could have been explicitly documented in the manuscript.

      Drew, P. J., A. Y. Shih, J. D. Driscoll, P. M. Knutsen, D. Davalos, P. Blinder, K. Akassoglou, P. S. Tsai, and D. Kleinfeld. 2010. 'Chronic optical access through a polished and reinforced thinned skull', Nature Methods, 7: 981-84.

      Morii, S., A. C. Ngai, and H. R. Winn. 1986. 'Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: With detailed description of the closed cranial window technique in rats', Journal of Cerebral Blood Flow & Metabolism, 6: 34-41.

      Reviewer #2 (Public Review):

      Sasaki et al. investigated methods to entrain vasomotion in awake wild-type mice across multiple regions of the brain using a horizontally oscillating visual pattern which induces an optokinetic response (HOKR) eye movement. They found that spontaneous vasomotion could be detected in individual vessels of their wild-type mice through either a thinned cranial window or intact skull preparation using a widefield macro-zoom microscope. They showed that low-resolution autofluorescence signals coming from the brain parenchyma could be used to capture vasomotion activity using a macro-zoom microscope or optical fibre, as this signal correlates well with the intensity profile of fluorescently-labelled single vessels. They show that vasomotion can also be entrained across the cortical surface using an oscillating visual stimulus with a range of parameters (with varying temporal frequencies, amplitudes, or spatial cycles), and that the amplitude spectrum of the detected vasomotion frequency increases with repeated training sessions. The authors include some control experiments to rule out fluorescence fluctuations being due to artifacts of eye movement or screen luminance and attempt to demonstrate some functional benefit of vasomotion entraining as HOKR performance improves after repeat training. These data add in an interesting way to the current knowledge base on vasomotion, as the authors demonstrate the ability to entrain vasomotion across multiple brain areas and show some functional significance to vasomotion with regards to information processing as HOKR task performance correlates well with vascular oscillation amplitudes.

      We thank the reviewer for summarizing the value of our study and recognizing its significance.

      The aims of the paper are mostly well supported by the data, but some streamlining of the data presentation would improve overall clarity. The third aim to establish the functional significance of vasomotion in relation to plasticity in information processing could be better supported by the inclusion of some additional control experiments.

      We thank the reviewer for recognizing our vast amount of data supporting our findings. We agree that better data presentation could have improved the clarity of the manuscript.

      Specifically:

      1) The clarity and comprehensibility of the paper could be significantly enhanced by incorporating additional details in both the introduction and discussion sections. In the introduction, a succinct definition of the frequency range of vasomotion should be provided, as well as a better description of the horizontal optokinetic response (i.e. as they have in the results section in the first paragraph below the 'Entrainment of vasomotion with visual stimuli presentation' sub-heading). The discussion would benefit from the inclusion of a clear summary of the results presented at the start, and the inclusion of stronger justification (i.e. more citations) with regards to the speculation about vasomotion and neuronal plasticity (e.g. paragraph 5 includes no citations).

      We agree that a better description of vasomotion and horizontal optokinetic response could have been provided in the introduction. As the reviewer suggests, the discussion could also have started with the following summary of the results.

      “We show that visually induced vasomotion can be frequency-locked to the visual stimulus and can be entrained with repeated trials. The initial drive for the vasomotion, or the sensory-evoked hyperemia, must be coming from the neuronal activity in the visual system. The vasomotion is likely triggered by activation of the neurovascular interaction (Kayser, 2004; van Veluw et al., 2020). Surprisingly, the entrained vasomotion was observed not only in the visual cortex but also widely throughout the surface of the brain and deep in the cerebellar flocculus. The global entrainment could be realized through separate mechanisms from the local neurovascular coupling. What is also unknown is where the plasticity occurs. The neuronal visual response in the primary visual cortex could potentially decrease with repeated visual stimulation presentation as the adaptive movement of the eye should decrease the retinal slip. With repeated training sessions, a more static projection of the presented image will likely be shown to the retina. The neurovascular coupling could be enhanced with increased responsiveness of the vascules and vascular-to-vascular coupling could also be potentiated.”

      2) The novel methods for detecting vasomotion using low-resolution imaging techniques are discussed across the first four figures, but this gets a little bit confusing to follow as the authors jump back and forth between the different imaging and analysis techniques they have employed to capture vasomotion. The data presentation could be better streamlined - for instance by presenting only the methods most relevant for the functional dataset (in Figures 5-7), with the additional information regarding the various controls to establish the use of autofluorescence intensity imaging as a valid method for capturing vasomotion reduced to fewer figure panels, or moved to supplementary figures so as to not detract from the main novel findings contributed in this study.

      We apologize for the confusing presentation of the data. Many of the initial figures were technical; however, we feel that following these steps was necessary to logically conclude that shadow imaging of the autofluorescence could be used as an indicator of vasomotion. We do agree with the reviewer that going back and forth between different techniques can be confusing. We could have added separate supplementary figures to introduce the various methods used upfront before going into the findings.

      3) The authors heavily rely on representative traces from individual vessels to illustrate their findings, particularly evident in Figures 1-4. While these traces offer a valuable visualization, augmenting their approach by presenting individual data points across the entire dataset, encompassing all animals and vessels, would significantly enhance the robustness of their claims. For instance, in Figures 1 and 2, where average basal and dilated traces are depicted for a representative vessel, supplementing these with graphs showcasing peak values across all measured vessels would enable the authors to convey a more holistic representation of their data. Or in Figure 3, where the amplitude spectrum is presented for individual Texas red fluorescence intensity changes in V1 across novice, trained, and expert mice, incorporating a summary graph featuring the amplitude spectrum value at 0.25Hz for each individual trace (across animals/imaging sessions), followed by statistical analysis, would fortify the strength of their assertions. Moreover, providing explicit details on sample sizes for each individual figure panel (where not a representative trace), including the number of animals or vessels/imaging sessions, would contribute to transparency and aid readers in assessing the generalisability of the findings.

      We agree with the reviewer that summarization of the data across a number of vessels/imaging sessions would lead to more generalization of the findings. However, contrary to what the reviewer described, we did summarize the vessel diameter expansion events across multiple vessel observations in Fig. 1F, G. The vasomotion parameters were not summarized for observation in intact skull shown in Fig. 2. However, this figure was intended just to show that vessel boundary cannot be well defined in intact skull imaging and Texas Red intensity or autofluorescence intensity fluctuation would give a better indication of vessel diameter fluctuation. In Fig. 3G, the peak ratio of 0.25 Hz was calculated for individual animals at Novice, Trained, and Expert levels and summarized for n = 5 animals. Statistical analysis was also done. The variability between imaging sessions within individual animals was not analyzed; thus, this could have been indicated.

      4) In the experiments where mice are classed as "novice", "trained" or "expert", the inclusion of the specific range of the number of training sessions for each category would improve replicability.

      We agree with the reviewer that classification on the level of training should have been explicitly indicated. Mice experiencing the first visual training session were defined as “Novice”. The mice that have experienced 3 training sessions are the “Trained” mice and the performance of the “Trained” mice during the 4th training session was evaluated. Mice that experienced 8 to 11 rounds of visual training sessions are the “Expert” mice.

      5) The authors don't state whether mice were habituated to the imaging set-up prior to the first data collection, as head-fixation and restraint can be stress-inducing for animals, especially upon first exposure, which could impact their neurovascular coupling responses differentially in "novice" versus "trained" imaging sessions (e.g. see Han et al., 2020, DOI: https://doi.org/10.1523/JNEUROSCI.1553-20.2020). The stress associated with a tail vein injection prior to imaging could also partially explain why mice didn't learn very well if Texas Red was injected before the training session. If no habituation was conducted in these experiments, the study would benefit from the inclusion of some control experiments where "novice" responses were compared between habituated and non-habituated animals.

      We agree with the reviewer that stress could well affect spontaneous vasomotion as well as visually induced vasomotion (or visual stimulus-triggered vasomotion). As the reviewer suggested, we could have compared the habituated and non-habituated mice to the initial visually induced vasomotion response. In addition, whether the experimentally induced increase in stress would interfere with the vasomotion or not could also be studied. With the Texas Red experiments, we observed that tail-vein injection stress appeared to interfere with the HOKR learning process. In the experiments presented in Fig. 3, Texas Red was injected before session 1. Vasomotion entrainment likely progressed with sessions 2 and 3 training. Before session 4, Texas Red was injected again to visualize the vasomotion. The vasomotion was clearly observed in session 4, indicating that the stress induced by tail-vein injection could not interfere with the generation of visually induced vasomotion.

      6) The experiments regarding the brain-wide vasomotion entrainment across the cortical surface would benefit from some additional information about how brain regions were identified (e.g. particularly how V1 and V2 were distinguished given how close together they are).

      The brain regions were identified by referring to the Mouse Brain Atlas. As the skull was intact, the location of bregma, lambda, and midline was clearly visible. We agree with the reviewer that strict separation of V1 and V2 could be difficult if we rely on the brain atlas alone. However, what we wanted to emphasize was that there was no specific localization of the vasomotion entrainment effect.

      7) Whilst the authors show that HOKR task performance and vasomotion amplitude are increased with repeated training to provide some support to their aim of investigating the functional significance of vasomotion with regards to information processing plasticity, the inclusion of some additional control experiments would provide stronger evidence to address this aim. For instance, if vasomotion signalling is blocked or reduced (e.g. using optogenetics or in an AD mouse model where arteriole amyloid load restricts vasomotion capacity), does flocculus-dependent task performance (e.g. HOKR eye movements) still improve with repeated exposure to the external stimulus.

      We agree that experimental intervention to vasomotion is ideal to test the functional significance of vasomotion. As pharmacological intervention lacks specificity, we are currently exploring the optogenetic approach. We have never thought of using the AD mouse as a model of restricted vasomotion by amyloid, and we agree this would be an interesting model to study. However, the AD mouse model would also have deficits other than the restricted vasomotion. On the other hand, we could test whether the repeated presentation of slowly oscillating visual stimuli can have beneficial effects in improving the cognitive abilities of AD model mice.

      Reviewer #3 (Public Review):

      Summary:

      Here the authors show global synchronization of cerebral blood flow (CBF) induced by oscillating visual stimuli in the mouse brain. The study validates the use of endogenous autofluorescence to quantify the vessel "shadow" to assess the magnitude of frequency-locked cerebral blood flow changes. This approach enables straightforward estimation of artery diameter fluctuations in wild-type mice, employing either low magnification wide-field microscopy or deep-brain fibre photometry. For the visual stimuli, awake mice were exposed to vertically oscillating stripes at a low temporal frequency (0.25 Hz), resulting in oscillatory changes in artery diameter synchronized to the visual stimulation frequency. This phenomenon occurred not only in the primary visual cortex but also across a broad cortical and cerebellar surface. The induced CBF changes adapted to various stimulation parameters, and interestingly, repeated trials led to plastic entrainment. The authors control for different artefacts that may have confounded the measurements such as light contamination and eye movements but found no influence of these variables. The study also tested horizontally oscillating visual stimuli, which induce the horizontal optokinetic response (HOKR). The amplitude of eye movement, known to increase with repeated training sessions, showed a strong correlation with CBF entrainment magnitude in the cerebellar flocculus. The authors suggest that parallel plasticity in CBF and neuronal circuits is occurring. Overall, the study proposes that entrained "vasomotion" contributes to meeting the increased energy demand associated with coordinated neuronal activity and subsequent neuronal circuit reorganization.

      We thank the reviewer for providing a thorough summarization of our manuscript.

      Strengths:

      • The paper describes a simple and useful method for tracking vasomotion in awake mice through an intact skull.

      • The work controls for artefacts in their primary measurements.

      • There are some interesting observations, including the nearly brain-wide synchronization of cerebral blood flow oscillations to visual stimuli and that this process only occurs after mice are trained in a visual task.

      • This topic is interesting to many in the CBF, functional imaging, and dementia fields.

      We thank the reviewer for positively recognizing the strength of the paper.

      Weaknesses:

      • I have concerns with the main concepts put forward, regarding whether the authors are actually studying vasomotion as they state, as opposed to functional hyperemia which is sensory-induced changes in blood flow, which is what they are actually doing. I recommend several additional experiments/analyses for them to explore. This is mostly further characterizing their effect which will benefit the interpretations.

      We recognized that the terminology used in our paper was not explicitly explained. Traditionally, “vasomotion” is defined as the dilation and constriction of the blood vessels that occurs spontaneously at low frequencies in the 0.1 Hz range without any apparent external stimuli. Sensory-induced changes in the blood flow are usually called “hyperemia”. However, in our paper, we used the term, vasomotion, literally, to indicate both forms of “vascular” “motion”. Therefore, the traditional vasomotion was called “spontaneous vasomotion” and the hyperemia induced with slow oscillating visual stimuli was called “visually induced vasomotion”.

      Using our newly devised methods, we show the presence of “spontaneous vasomotion”. However, this spontaneous vasomotion was often fragmented and did not last long at a specific frequency. With visual stimuli that slowly oscillated at temporal frequencies close to the frequency of spontaneous vasomotion, oscillating hyperemia, or “visually induced vasomotion” was observed.

      • Neuronal calcium imaging would also benefit the study and improve the interpretations.

      In our paper, we mainly studied the visually induced vasomotion (or visual stimulus-triggered vasomotion). Therefore, visual stimulation must first activate the neurons and, through neurovascular coupling, the initial drive for vasomotion is likely triggered. However, visually induced vasomotion is not observed in novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to neuronal activity in the primary visual cortex. We also do not know how the synchronized vasomotion can spread throughout the whole brain. Where the plasticity for vasomotion entrainment occurs is also unknown. To identify the extent of the neuronal contribution to the vasomotion triggering, whole brain synchronization, and vasomotion entrainment, simultaneous neuronal calcium imaging would be ideal. However, due to the fact that fluorescent Ca2+ indicators expressed in neurons would also be distorted by the “shadow” effect from the vasomotion, exquisite imaging techniques would be required.

      • The plastic effects in vasomotion synchronization that occur with training are interesting but they could use an additional control for stress. Is this really a plastic effect, or is it caused by progressively decreasing stress as trials and progress? I recommend a habituation control experiment.

      As also pointed out by reviewer #2, we agree that, whether stress would affect visually induced vasomotion or not could be studied. Studying the visually induced vasomotion in mice well-habituated to the experimental apparatus would give an idea of whether stress could truly be a profounding factor affecting vasomotion. On the other hand, whether acutely induced stress can interfere with the already entrained vasomotion could also be studied. In the experiments presented in Fig. 3, Texas Red was injected via the tail vein, which would be quite stressful for the mouse. However, in the trained mouse, visually induced vasomotion could be observed regardless of the stress. It is likely that stress can interfere with the acquisition of vasomotion entrainment, but the already acquired entrainment will not be canceled with acute stress induced by tail-vein injection. We agree that further relationship between stress and vasomotion and plasticity related to vasomotion entrainment could be investigated.

      Appraisal

      I think the authors have an interesting effect that requires further characterization and controls. Their interpretations are likely sound and additional experiments will continue to support the main hypothesis. If brain-wide synchrony of blood flow can be trained and entrained by external stimuli, this may have interesting therapeutic potential to help clear out toxic proteins from the brain as seen in several neurodegenerative diseases.

      We thank the reviewer for the positive evaluation of our manuscript. Strong entrainment of visually induced vasomotion was observed with a simple presentation of slowly oscillating visual stimuli for several days. This is a totally non-invasive method to train the vasomotion capacity. As the reviewer recognizes, potential benefits for the treatment of dementia and neurodegenerative diseases could be evaluated with further studies.

    1. A disability is an ability that a person doesn’t have, but that their society expects them to have.1 For example: If a building only has staircases to get up to the second floor (it was built assuming everyone could walk up stairs), then someone who cannot get up stairs has a disability in that situation. If a physical picture book was made with the assumption that people would be able to see the pictures, then someone who cannot see has a disability in that situation. If tall grocery store shelves were made with the assumption that people would be able to reach them, then people who are short, or who can’t lift their arms up, or who can’t stand up, all would have a disability in that situation. If an airplane seat was designed with little leg room, assuming people’s legs wouldn’t be too long, then someone who is very tall, or who has difficulty bending their legs would have a disability in that situation. Which abilities are expected of people, and therefore what things are considered disabilities, are socially defined. Different societies and groups of people make different assumptions about what people can do, and so what is considered a disability in one group, might just be “normal” in another. There are many things we might not be able to do that won’t be considered disabilities because our social groups don’t expect us to be able to do them. For example, none of us have wings that we can fly with, but that is not considered a disability, because our social groups didn’t assume we would be able to. Or, for a more practical example, let’s look at color vision: Most humans are trichromats, meaning they can see three base colors (red, green, and blue), along with all combinations of those three colors. Human societies often assume that people will be trichromats. So people who can’t see as many colors are considered to be color blind, a disability. But there are also a small number of people who are tetrachromats and can see four base colors2 and all combinations of those four colors. In comparison to tetrachromats, trichromats (the majority of people), lack the ability to see some colors. But our society doesn’t build things for tetrachromats, so their extra ability to see color doesn’t help them much. And trichromats’ relative reduction in seeing color doesn’t cause them difficulty, so being a trichromat isn’t considered to be a disability. Some disabilities are visible disabilities that other people can notice by observing the disabled person (e.g., wearing glasses is an indication of a visual disability, or a missing limb might be noticeable). Other disabilities are invisible disabilities that other people cannot notice by observing the disabled person (e.g., chronic fatigue syndrome, contact lenses for a visual disability, or a prosthetic for a missing limb covered by clothing). Sometimes people with invisible disabilities get unfairly accused of “faking” or “making up” their disability (e.g., someone who can walk short distances but needs to use a wheelchair when going long distances). Disabilities can be accepted as socially normal, like is sometimes the case for wearing glasses or contacts, or it can be stigmatized as socially unacceptable, inconvenient, or blamed on the disabled person. Some people (like many with chronic pain) would welcome a cure that got rid of their disability. Others (like many autistic people), are insulted by the suggestion that there is something wrong with them that needs to be “cured,” and think the only reason autism is considered a “disability” at all is because society doesn’t make reasonable accommodations for them the way it does for neurotypical people. Many of the disabilities we mentioned above were permanent disabilities, that is, disabilities that won’t go away. But disabilities can also be temporary disabilities, like a broken leg in a cast, which may eventually get better. Disabilities can also vary over time (e.g., “Today is a bad day for my back pain”). Disabilities can even be situational disabilities, like the loss of fine motor skills when wearing thick gloves in the cold, or trying to watch a video on your phone in class with the sound off, or trying to type on a computer while holding a baby. As you look through all these types of disabilities, you might discover ways you have experienced disability in your life. Though please keep in mind that different disabilities can be very different, and everyone’s experience with their own disability can vary. So having some experience with disability does not make someone an expert in any other experience of disability.

      The differentiation between visible and invisible disabilities in this text serves as a crucial reminder of the broad spectrum of disabilities and the varied experiences of those living with them. It underscores the need for greater awareness and sensitivity towards individuals whose disabilities may not be immediately apparent. The mention of the unjust stigma faced by individuals with invisible disabilities raises important questions about societal attitudes and the need for a shift towards more compassionate and informed perspectives. This section also implicitly advocates for a more inclusive definition of disability, one that acknowledges the complexity and diversity of individual experiences, thereby fostering a more accommodating and supportive community.

    1. There are several ways of managing disabilities. All of these ways of managing disabilities might be appropriate at different times for different situations. 10.2.1. Coping Strategies# Those with disabilities often find ways to cope with their disability, that is, find ways to work around difficulties they encounter and seek out places and strategies that work for them (whether realizing they have a disability or not). Additionally, people with disabilities might change their behavior (whether intentionally or not) to hide the fact that they have a disability, which is called masking and may take a mental or physical toll on the person masking, which others around them won’t realize. For example, kids who are nearsighted and don’t realize their ability to see is different from other kids will often seek out seats at the front of classrooms where they can see better. As for us two authors, we both have ADHD and were drawn to PhD programs where our tendency to hyperfocus on following our curiosity was rewarded (though executive dysfunction with finishing projects created challenges)1. This way of managing disabilities puts the burden fully on disabled people to manage their disability in a world that was not designed for them, trying to fit in with “normal” people. 10.2.2. Modifying the Person# Another way of managing disabilities is assistive technology, which is something that helps a disabled person act as though they were not disabled. In other words, it is something that helps a disabled person become more “normal” (according to whatever a society’s assumptions are). For example: Glasses help people with near-sightedness see in the same way that people with “normal” vision do Walkers and wheelchairs can help some disabled people move around closer to the way “normal” people can (though stairs can still be a problem) A spoon might automatically balance itself when held by someone whose hands shake Stimulants (e.g., caffeine, Adderall) can increase executive function in people with ADHD, so they can plan and complete tasks more like how neurotypical people do. Assistive technologies give tools to disabled people to help them become more “normal.” So the disabled person becomes able to move through a world that was not designed for them. But there is still an expectation that disabled people must become more “normal,” and often these assistive technologies are very expensive. Additionally, attempts to make disabled people (or people with other differences) act “normal” can be abusive, such as Applied Behavior Analysis (ABA) therapy for autistic people, or “Gay Conversion Therapy.” 10.2.3. Making an environment work for all# Another strategy for managing disability is to use Universal Design, which originated in architecture. In universal design, the goal is to make environments and buildings have options so that there is a way for everyone to use it2. For example, a building with stairs might also have ramps and elevators, so people with different mobility needs (e.g., people with wheelchairs, baby strollers, or luggage) can access each area. In the elevators the buttons might be at a height that both short and tall people can reach. The elevator buttons might have labels both drawn (for people who can see them) and in braille (for people who cannot), and the ground floor button may be marked with a star, so that even those who cannot read can at least choose the ground floor. In this way of managing disabilities, the burden is put on the designers to make sure the environment works for everyone, though disabled people might need to go out of their way to access features of the environment. 10.2.4. Making a tool adapt to users# When creating computer programs, programmers can do things that aren’t possible with architecture (where Universal Design came out of), that is: programs can change how they work for each individual user. All people (including disabled people) have different abilities, and making a system that can modify how it runs to match the abilities a user has is called Ability based design. For example, a phone might detect that the user has gone from a dark to a light environment, and might automatically change the phone brightness or color scheme to be easier to read. Or a computer program might detect that a user’s hands tremble when they are trying to select something on the screen, and the computer might change the text size, or try to guess the intended selection. In this way of managing disabilities, the burden is put on the computer programmers and designers to detect and adapt to the disabled person. 10.2.5. Are things getting better?# We could look at inventions of new accessible technologies and think the world is getting better for disabled people. But in reality, it is much more complicated. Some new technologies make improvements for some people with some disabilities, but other new technologies are continually being made in ways that are not accessible. And, in general, cultures shift in many ways all the time, making things better or worse for different disabled people. 1 We’ve also noticed many youtube video essayists have mentioned having ADHD. This is perhaps another job that attracts those who tend to hyperfocus on whatever topic grabbed their attention, and then after releasing their video, move on to something completely different. 2 Universal Design has taken some criticism. Some have updated it, such as in acknowledging that different people’s needs may be contradictory, and others have replaced it with frameworks like Inclusive Design..

      This explains different ways to help people with disabilities, like using special tools or making places easier for everyone to use. An example could be the tiktok update allowing for autogenerated subtitles so people didn't have to consciously write out every line. It shows that helping disabled people often means changing our surroundings or technology to fit their needs better.

    1. kinds of facts and events which are facts for ushave already been shaped up and given theircharacter and substance as facts, as relations, etc.,by the methods and practice of governing. Men-tal illness, crimes, riots, violence, work satisfac-tion, neighbors and neighborhoods, motiva-tion, etc., these are the constructs of the practiceof government. In many instances such as mentalillness, crimes, neighborhoods, etc., they are con-stituted as discrete phenomena primarily byadministrative procedures and others arise asproblems in relation to the actual practice ofgovernment, as for example concepts of motiva-tion, work satisfaction, etc.The governing processes of our society areorganized as social entities constituted externallyto those persons who participate in and performthem. The managers, the bureaucrats, the admin-istrators, are employees, are people who are used.They do not own the enterprises or otherwise ap-propriate them. Sociologists study these entitiesunder the heading of formal organization. Theyare put together as objective structures with goals,activities, obligations, etc., other than those whichits employees can have as individuals. The acad-emic professions are also set up in a mode whichexternalizes them as entities vis-8-vis their practi-tioners. The body of knowledge which its mem-bers accumulate is appropriated by the disciplineas its body. The work of members aims at con-tributing to that body of knowledge.As graduate students learning to become sociol-ogists, we learn to think sociology as it is thoughtand to practice it as it is practiced. We learnthat some topics are relevant and some are not.We learn to discard our experienced world as asource of reliable information or suggestionsabout the character of the world; to confine andfocus our insights within the conceptual frame-works and relevances which are given in thediscipline. Should we think other kinds ofthoughts or experience the world in a differentway or with edges and horizons that pass beyondthe conceptual we must practice a discipline whichdiscards them or find some procedure whichmakes it possible to sneak them in. We learn away of thinking about the world which is recog-nizable to its practitioners as the sociologicalway of thinking.We learn to practice the sociological subsump-tion of the actualities of ourselves and of otherpeople. We find out how to treat the world asinstances of a sociological body of knowledge.The procedure operates as a sort of conceptualimperialism. When we write a thesis or a paper,we learn that the first thing to do is to latch it onto the discipline at some point. This may be byThe profession of sociology is predicated on auniverse which is occupied by men and it is itselfstill largely appropriated by men as their “ter-ritory.”

      Цікаво, наскільки змінилася ситуація з часу написання цієї статті. Звичайно, "базові" соціологічні твори були написані переважно білими чоловіками (переважно, бо були Рут Бенедикт та Маргарет Мід, наприклад), проте з огляду на авторство джерел, що вивчаються принаймні в Могилянці на соціології, кількість впливових соціологинь значно зросла

    1. Ethics provides a foundation for what teachers should do in their roles and responsibilities as an educator. It is a framework that a teacher can use to help make decisions about what is right or wrong in a given situation.

      I think it is important to have a foundation for us teachers to refer to in order to help lead us in the right direction to make the "right" solution. This is important because sometimes teachers make connections with their students or have certain feelings towards an individual due to there behavior or whatever it may be which can hinder there decisions making. So it is important that we do not let our feelings get in the way of our decision making but rather rely on the ethics of the situation.

    1. Author Response

      We thank the editors and the reviewers for their assessment of our revised manuscript. Please see bellow, our answers to the recommendations by reviewer #2.

      Figure S2F - Seems like a very narrow range of parameters. Is there some fine tuning here?

      The range of values of tau_P that yields previous-trial biases is bounded by below and above for the following reasons: above a certain value of tau_P (therefore large integration time), the bump that had formed in the previous trial is not strong enough to remain stable for a long time, and therefore dissipates by the time the current trial starts (especially when adaptation is fast, towards the left of the third panel). Below a certain value, instead, this integration timescale is small enough to quickly form a representation of the current trial, hence the bump from the previous trial quickly dissipates (due to mutual inhibition). This interplay between the integration and the adaptation timescale as well as considering a phenomenon which is bounded in time (how close the activity bump is to the second stimulus of the previous trial which is presented between -22.4 and -5.6 seconds from the moment we are considering) yields a region for tau_P which is bounded. This region, however, appears narrow due to the limited number of points we have considered for the simulation grid.

      Regarding my comment on lapse at the boundaries (old line 221). Lapse parameters in psychometric curves correspond to errors on the "easy" trials. But the mechanistic explanation for lapse trials is that there is a non-zero probability for the subject to respond in a manner that is random and independent of the stimulus. In the case of extreme stimuli, this is the only reason for errors, and thus looking at the edges of the psychometric curves allows to calculate lapse rate. But - the usual assumption for underlying mechanism is that the subject lapses in all trials, regardless of stimulus. If I understand correctly, this is different than the mechanistic reason for lapses in the network model, which was described as something that happens more in the edges than in the center. Or more generally, to be a stimulus-dependent effect.

      We thank the reviewer for this clarification. The reviewer is right that in our mechanistic model, lapses (as defined by errors on easy trials) are more likely to occur for extreme stimuli, due to the vicinity to the boundary of the attractor. Such errors also occur for non-extreme stimuli, when delay intervals are long enough for the bump in PPC to drift to the boundaries. In experiments, lapse trials as described by the reviewer occur due to multiple different reasons; for lapse that is independent of the stimuli, mechanisms such as attention have been thought to play a role, this however is not included in our model.

      What are the parameters for the distributions (skewed, bimodal, ...)?

      These parameters are reported in the legend of Fig.6, where the distributions appear.

      Bump with adaptation. Sorry for the draft-like comment. I don't think the existing studies are in the form you describe. I do think it might be useful to point readers to these studies. If an interested reader wishes to understand network dynamics in this and similar scenarios, it might be useful to have the pointers. The reference I had in mind was Romani, S., & Tsodyks, M. (2015). Short‐term plasticity based network model of place cells dynamics. Hippocampus, 25(1), 94-105.

      We thank the reviewer for the clarification, and we will include this reference in the Version of Record.


      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study about the mechanisms underlying our capacity to represent and hold recent events in our memory and how they are influenced by past experiences. A key aspect of the model put forward here is the presence of discrete jumps in neural activity with the posterior parietal region of the cortex. The strength of evidence is largely solid, with some weaknesses noted in the methodology. Both reviewers suggested ways in which this aspect of the model can to be tested further and resolve conflicts with previously published experimental results, in particular the study by Papadimitriou et al 2014 in Journal of Neurophysiology.

      We thank the editors for their assessment. As mentioned in the cover letter, we have addressed all the reviewers’ concerns and would like to request and update of the assessment to reflect the revisions we have made.

      Public Reviews:

      We thank both reviewers for their careful reading and feedback that helped clarify many aspects of the model. Below, we address their comments.

      Reviewer #1 (Public Review):

      This paper aims to explain recent experimental results that showed deactivating the PPC in rats reduced both the contraction bias and the recent history bias during working memory tasks. The authors propose a twocomponent attractor model, with a slow PPC area and a faster WM area (perhaps mPFC, but unspecified). Crucially, the PPC memory has slow adaptation that causes it to eventually decay and then suddenly jump to the value of the last stimulus. These discrete jumps lead to an effective sampling of the distribution of stimuli, as opposed to a gradual drift towards the mean that was proposed by other models. Because these jumps are single-trial events, and behavior on single events is binary, various statistical measures are proposed to support this model. To facilitate this comparison, the authors derive a simple probabilistic model that is consistent with both the mechanistic model and behavioral data from humans and rats. The authors show data consistent with model predictions: longer interstimulus intervals (ISIs) increase biases due to a longer effect over the WM, while longer intertrial intervals (ITIs) reduce biases. Finally, they perform new experiments using skewed or bimodal stimulus distributions, in which the new model better fits the data compared to Bayesian models.

      The mechanistic proposed model is simple and elegant, and it captures both biases that were previously observed in behavior, and how these are affected by the ISI and ITI (as explained above). Their findings help rethink whether our understanding of contraction bias is correct.

      On the other hand, the main proposal - discrete jumps in PPC - is only indirectly verified.

      We agree with the reviewer that the evidence for discrete jumps in PPC has been provided in behavioural results (short-term, n-back trial biases), and not from neural data. However, we believe electrophysiological investigations are out of the scope of the current manuscript and future works are needed to further verify the results.

      The model predicts a systematic change in bias with inter-trial-interval. Unless I missed it, this is not shown in the experimental data. Perhaps the self-paced nature of the experiments allows to test this?

      We thank the reviewer for this great suggestion.

      We had not previously looked at this in the data for the reason that in the simulations, the ITI is set to either 2.2, 6 or 11 seconds, whereas the experiment is self-paced. Therefore, any comparison with the simulation should be made carefully.

      However, after the reviewer’s suggestion, we did look at the change in the bias with the inter-trial interval, by dividing trials according to ITIs lower than 3 seconds (“short” ITI), and higher than 3 seconds (“long” ITI). This choice was motivated by the shape of the distribution of ITIs, which is bimodal, with a peak around 1 second, and another after 3 seconds (new Fig 8F). Hence, we chose 3 seconds as it seemed a natural division. However, 3 seconds also happens to be approximately the 75th percentile of the distribution, and this means that there is much more data in the “short” ITI than the “long” ITI set. In order to have sufficient data in the “long” ITI for clearer effects we used all of our dataset – the negatively skewed, and also two bimodal distributions (of which only one was shown in the manuscript, for succinctness). This larger dataset allows us to clearly see not only a decreasing contraction bias with increasing ITI (Fig 8G), but also a decreasing onetrial-back attractive bias with increasing ITI (Fig 8H). We have uploaded all the datasets as well as scripts used to analyze them to this repository: https://github.com/vboboeva/ParametricWorkingMemory_Data.

      The data in some of the figures in the paper are hard to read. For instance, Figure 3B might be easier to understand if only the first 20 trials or so are shown with larger spacing. Likewise, Figure 5C contains many overlapping curves that are hard to make out.

      We have limited the dynamics in Fig 3B to the first 50 trials for better visibility. Likewise, as suggested, we report the standard error of the mean instead of the standard deviation in old Fig 5C (new Fig 6C) – this allows for the different curves to be better discernible.

      There is a gap between the values of tau_PPC and tau_WM. First - is this consistent with reports of slower timescales in PFC compared to other areas?

      Recent studies by Xiao-Jing Wang and colleagues (Refs. 1-3 below) suggest that may be the case. In Wang et al 2023, Ref 1 below), the authors use a generative model to study the concept of bifurcation in space in working memory, that is accompanied by an inverted-V shape of the time constants as a function of cortical hierarchy.

      Briefly, they propose a generative model of the cortex with modularity, incorporating repeats of a canonical local circuit connected via long-range connections. In particular, the authors define a hierarchy for each local circuit. At a critical point in this hierarchy axis, there is a phase transition from monostability to bistability in the firing rate. This means that a local circuit situated below the critical point will only display a low activity steady state, while those above the critical point additionally display a persistent activity steady state.

      The model predicts a critical slowing down of the neural fluctuations at the critical point, resulting in an inverted-V shape of the time constants as a function of the hierarchy. They test the predictions of their model – the bifurcation in space and that inverted-V-shaped time constants as a function of the hierarchy - on connectome-based models of the macaque and mouse cortex. Interestingly both datasets show similar behavior. In particular, during working memory, frontal areas (higher in the hierarchy, e.g. area 24c in macaques) has a smaller time constant relative to posterior parietal areas (lower in the hierarchy, like LIP or f7). We have now cited this new work.

      [1] https://www.biorxiv.org/content/10.1101/2023.06.04.543639v1

      [2] https://elifesciences.org/articles/72136

      [3] https://www.biorxiv.org/content/10.1101/2022.12.05.519094v3.abstract

      Second - is it important for the model, or is it mostly the adaptation timescale in PPC that matters?

      We have run simulations producing a phase diagram with tau_theta^P on the x-axis, tau^P on the y-axis, and in color, the fraction of trials in which the bump is in the vicinity of a target (Fig S2 F), before the network is presented with the second stimulus. This target can be the first stimulus s_1 (left), mean over stimuli (middle) and previous trial’s stimulus (right)). White point corresponds to parameters of the default network.

      In this phase diagram, the lowest value that tau_P takes is tau_WM=0.01. When tau_P=tau_WM, the bump is rarely in the vicinity of 1-trial-back stimulus, and we can see that tau_PPC should be greater than tau_WM in order for the model to yield 1-trial back effects. We conclude that it is indeed important for tau_PPC > tau_WM.

      We have included this in Fig S2 F of the manuscript.

      Regarding the relation to other models, the model by Hachen et al (Ref 45) also has two interacting memory systems. It could be useful to better state the connection, if it exists.

      The model proposed by Hachen et al is conceptually different in that one module stores the mean of the sensory stimulus; it could be related to a variant of our model where adaptation is turned off in the PPC network (Fig S2 A). However, the task they model is also different: subjects have to learn the location of a boundary according to which the stimulus is classified as ‘weak’ or ‘strong’, set by the experimenter. Hence, it is a task where learning is needed - this contrasts with the task we are modelling, where only working memory is required. How task demands reconfigure existing circuits via dynamics and/or learning to perform different computations is a fascinating area of research that is outside the scope of this work.

      Reviewer #2 (Public Review):

      Working memory is not error free. Behavioral reports of items held in working memory display several types of bias, including contraction bias and serial dependence. Recent work from Akrami and colleagues demonstrates that inactivating rodent PPC reduces both forms of bias, raising the possibility of a common cause.

      In the present study, Boboeva, Pezzotta, Clopath, and Akrami introduce circuit and descriptive variants of a model in which the contents of working memory can be replaced by previously remembered items. This volatility manifests as contraction bias and serial dependence in simulated behavior, parsimoniously explaining both sources of bias. The authors validate their model by showing that it can recapitulate previously published and novel behavioral results in rodents and neurotypical and atypical humans.

      Both the modeling and the experimental work is rigorous, providing compelling evidence that a model of working memory in which reports sometimes sample past experience can produce both contraction bias and serial dependence, and that this model is consistent with behavioral observations across rodents and humans in the parametric working memory (PWM) task.

      Evidence for the model advanced by the authors, however, remains incomplete. The model makes several bold predictions about behavior and neural activity, untested here, that either conflict with previous findings or have yet to be reported but are necessary to appropriately constrain the model.

      First, in the most general (descriptive) formulation of the Boboeva et al. model, on a fraction of trials items in working memory are replaced by items observed on previous trials. In delayed estimation paradigms, which allow a more direct behavioral readout of memory items on a trial-by-trial basis than the PWM task considered here, reports should therefore be locked to previous items on a fraction of trials rather than display a small but consistent bias towards previous items. However, the latter has been reported (e.g., in primate spatial working memory, Papadimitriou et al., J Neurophysiol 2014). The ready availability of delayed estimation datasets online (e.g., from Rademaker and colleagues, https://osf.io/jmkc9/) will facilitate in-depth investigation and reconciliation of this issue.

      As pointed out by the reviewer, in the PWM task that we are modelling here, the activity in the network is used to make a binary decision. However, it is possible to directly analyse the network activity before the onset of the second stimulus.

      In their manuscript, Papadimitriou et al. study a memory-guided saccade task in nonhuman primates and argue that the animals display a small but consistent bias towards previous items (Fig 2). In that figure, the authors compute the error as the difference between the saccade direction and target direction in each trial. They compute this error for all trials in which the preceding trial’s target direction is between 35° and 85° relative to the current trial (counterclockwise with respect to the current trial’s target). They discover that the residual error distribution is unimodal with a mode at 1.29° and a mean at 2.21° (positive, so towards the preceding target’s direction), from which they deduce a small but systematic bias towards previous trial targets.

      We have computed a similar measure for our network with default parameters (Table 1), by subtracting the location of the bump at the end of the delay interval (s_hat(t), ‘saccade’) from the initial location of the first stimulus in the current trial (s1(t) or the ‘target’). We have done this for all trials where s1(t)=0.2, and where s2(t-1) takes specific values. These distributions are characterized by two modes. The first corresponds to those trials where the bump is not displaced in WM (i.e. mean of zero). We can also see the appearance of a second mode at the location of s1(t) - s2(t-1), corresponding to the displacements towards the preceding trial’s stimulus described in the main text. If, instead, we limit the analysis to a small range of previous trials close to s1(t) (similar to Papadimitriou et al) then the distribution of residual errors will appear unimodal, as the two modes merge. Importantly, note that there is a large variability around the second mode, expressing a more complex dynamics in the network. As can be seen in Fig 3B, the location of the bump is not always slaved to the one in the PPC in a straightforward way -- due to the adaptation in the PPC, the global inhibition in the connectivity kernel, as well as interleaved design for various delay intervals, the WM bump can be displaced in nontrivial ways (see also Recommendation no 4), yielding the dispersion around the second peak. It remains to be seen whether such patterns can be observed in the data from previous works on continuous working memory recall (including Papadimitriou et al). However, to our knowledge, such detailed and full analysis of errors at the level of individual trials has not been done.

      In summary, this analysis shows that the type of dynamics in our network is not one of the two cases: 1) small and systematic bias in each and every trial or 2) large error that occurs only rarely; rather, the dispersion around both modes suggests that the dynamics in our model are a mixture of these two limit cases.

      We have also performed another typical analysis, reported in several continuous recall tasks (e.g. Jazayeri and Shadlen 2010) where contraction bias has been reported. We plot WM bump locations after the delay period for every trial (s_hat(t)), and their averages, against the nominal value of s1(t). We see that the mean WM location deviates from the identity line toward the mean values of s1(t), again showing contraction bias as an average effect, while individual trials follow the dynamics explained above.

      We have now included a new section on continuous recall (Sect. 1.5 and a new figure (Fig 5)), which details the two above-mentioned analyses. The analysis of freely available datasets of delayed estimation tasks, unfortunately, is out of the scope of this work, and we leave such analyses to future studies.

      Second, the bulk of the modeling efforts presented here are devoted to a circuit-level description of how putative posterior parietal cortex (PPC) and working-memory (WM) related networks may interact to produce such volatility and biases in memory. This effort is extremely useful because it allows the model to be constrained by neural observations and manipulations in addition to behavior, and the authors begin this line of inquiry here (by showing that the circuit model can account for effects of optogenetic inactivation of rodent PPC).

      Further experiments, particularly electrophysiology in PPC and WM-related areas, will allow further validation of the circuit model. For example, the model makes the strong prediction that WM-related activity should display 'jumps' to states reflecting previously presented items on some trials. This hypothesis is readily testable using modern high-density recording techniques and single-trial analyses.

      As mentioned in response to the previous comment, we note again that in the WM network, the bump ‘displacement’ has a complex dynamics -- the examples we have provided in Fig 1A and 2B mainly show the cases in which jumps occur in the WM network, but this is not the only type of dynamics we observe in the model. We do have instances in which the continuity of the model causes drift across values, and we have now replaced the right panel in Fig 2B with one such instance, in order to emphasize that this displacement towards the previous trial’s stimulus (s2(t-1)) can occur in various ways. For a more thorough analysis, we have analyzed the distance between s1(t) and the position of the bump in the WM network at the end of the delay period s_hat(t), conditioned on specific values of s1(t) and s2(t-1) (Fig 5C). In this figure, we can see the appearance of two modes: one centered around 0, corresponding to the correct trials where the stimulus is kept in WM (s1(t) = s_hat(t)), and another mode centered around s2(t-1), the location of the second stimulus of the previous trial, where the bump is displaced. Note, as we explain in Sect. 1.5, the large dispersion around this second mode, which suggests that the bump is not always displaced to that specific location and may undergo drift.

      We agree with the reviewer that future electrophysiological experiments (or analysis of existing datasets) are necessary for validation of these results.

      Finally, while there has been a refreshing movement away from an overreliance on p-values in recent years (e.g., Amrhein et al., PeerJ 2017), hypothesis testing, when used appropriately, provides the reader with useful information about the amount of variability in experimental datasets. While the excellent visualizations and apparently strong effect sizes in the paper mitigate the need for p-values to an extent, the paucity of statistical analysis does impede interpretation of a number of panels in the paper (e.g., the results for the negatively skewed distribution in 5D, the reliability of the attractive effects in 6a/b for 2- and 3- trials back).

      We share the reviewer’s criticism towards the misuse of p-values – in order for a clearer interpretation of old Fig 5D (new Fig 7E), we have looked at the 2 and 3 trials-back biases by using all of our dataset – the negatively skewed, and also two bimodal distributions (of which only one was shown in the manuscript). This larger dataset of 43 subjects (approximately 17,200 trials) allows us to clearly see the 2 and 3 trial back attractive biases, and the effect that the delay interval exerts on them.

      Reviewer #1 (Recommendations For The Authors):

      Fig 5 A&C - It might be beneficial to separate the distribution of stimuli from the performance. It is hard to read the details of the performance, especially with error bars.

      Following the next recommendation, we have exchanged the standard deviation to standard errors of the mean, hopefully this allows to better read the performance.

      Fig 5C. The number of participants should be written. Perhaps standard errors instead of standard deviation?

      We have now changed the standard deviation to standard errors of the mean and included the number of participants in the figure.

      Fig 2B - hard to understand, because there is no marking of where "perfect" memory of s1 would be.

      The perfect memory of s1 is shown in the upper panel as black bars.

      Fig 3B. dot number 9 (blue, around 0.7) - why is WM higher than stimulus?

      This trial has a long ISI (blue means 10s). During this delay, the bump in the PPC, under the influence of adaptation, drifts far below the first stimulus (note that the previous trial also had its first stimulus in the same location, as a result of which the adaptative thresholds have built up significantly, causing the bump to move away from that location). During this delay period, neurons in the WM network receive inputs from the PPC network: if this input is strong enough, it can disrupt an existing bump; if not, this input still exerts inhibiting influence on the existing bump via the global inhibition in the connectivity. This can cause an existing bump to slowly drift in a random direction, and finally dissipate. Note that the lines in Fig 2B represent the neuron with the maximal activity, this activity may be a stable bump, or an unstable bump that may soon dissipate.

      Other examples with similar dynamics include trials 43 and 54.

      L167 fewer -> smaller

      We have now corrected this.

      Fig 3C - bump can also be in between. Is this binned?

      We have not binned the length of the attractor; to produce that figure, we check whether the position of the neuron with the maximal firing rate is within a distance of ±5% of the length of the whole line attractor from the target location.

      L221 Lapse at the boundary of attractor. This seems very different from behavior. Specifically, if it is in the boundaries, it should be stimulus dependent.

      Very sorry, we did not manage to understand the reviewer’s comment.

      L236 are -> is

      We have now corrected this.

      Fig S4 - should be mostly in main text.

      Part of this figure is in Fig 6A, but given the amount of detail, we think Supplementary Material is better suited.

      L253-254. Differences across all distributions - very minor except the bimodal case.

      That is correct, this is why we conducted the experiment with the bimodal distribution, to better differentiate the predictions of the two models.

      L273 extra comma after "This probability"

      We have now corrected this.

      ITI was only introduced in section 1.5.2. Perhaps worth mentioning the default 5s value earlier in the paper.

      We have now mentioned this in line 97-98.

      Fig S6B title: perhaps "previous stimuli"?

      We have now corrected this.

      L364 i"n A given trial"

      Equation 2 - no decay term?

      Thank you for pointing out this error, we have now corrected this.

      Equation 5,6 are j^W and j^P indices of neurons in those populations?

      Yes, j^W indexes neurons in the WM network, and j^P those in the PPC. We have now added this in the text for clarity.

      Bump with adaptation - other REFs? Sandro?

      We are aware of continuous bump attractors implementing short-term synaptic plasticity in various studies (including by Sandro Romani), but not in the form we have described. May the reviewer kindly point us towards the relevant literature.

      Free boundary - what is the connectivity for neurons 1 and N? Is it weaker than others? Is the integral still 1? Does this induce some bias on the extreme values?

      The connectivity of the network is all-to-all. However, as expressed by Eq. (3), the distance-dependent contribution to the weights, K, decreases exponentially as we move from neuron 1 onwards, and from neuron N down. The sum (or integral, in the large-N limit) of the K_ij for j on either side of neuron i is unity only when i is sufficiently far from 1 or N. We have rephrased the paragraph starting in line 516 to make this clearer.

      The presence of a boundary could introduce a bias in theory, but in practice, it affects the dynamics only when the bump drifts sufficiently close to it. The smallest stimulus in the simulated task has amplitude 0.2, with width 0.05, which implies the activation of 50 neurons on either side of neuron 400. If one compares this with the width of the kernel K in stimulus space (d_0 = 0.02), which spans ~10 neurons, we can see that the bump of activity stays mostly far from the boundary. It is possible, though it is observed rarely, when several consecutive long delay intervals happen to occur, that the bump in PPC drifts beyond the location corresponding to either the minimum or maximum stimulus.

      Code availability?

      Code simulating the dynamics of the network as well as analysing the resulting data can be found in the following repository: https://github.com/vboboeva/ParametricWorkingMemory Code used to analyse human behavioural data and fit them with our statistical model can be found in this repository: https://github.com/vboboeva/ParametricWorkingMemory_Data Code used to run the auditory PWM experiments with human subjects (adapted from Akrami et al 2018) can be found here: https://github.com/vboboeva/Auditory_PWM_human

      L547 stimuli

      We have now corrected this.

      Equation 14 uses both stimuli. Was this the same for the rest of analysis in the paper (first figures for instance)?

      This equation was used for all GLM analyses (Figs 9 and S6).

      D0 is very small (0.02). Does this mean that activity is essentially discrete in the model? Fig 1A & 2B - the two examples of model activity suggest this is the case. In other words - are there cases where the continuity of the model causes drift across values? Can you show an example (similar to Fig 1A)?

      Since this point has been raised beforehand, we refer to the first comment, Fig 2B and Sect. 1.5 for the response to this question.

      Table 1 - inter trial interval 6. Text says 5

      We have now corrected this in the text.

      Reviewer #2 (Recommendations For The Authors):

      In addition to my review above, I just have a few minor comments:

      • If I understood correctly, the squares inside the purple rectangle in Figure 1B are meant to show a gradation from red to blue, but this was hard to make out in the pdf.

      Actually the squares are all on one side or the other of the diagonal, therefore they do not have any gradation.

      • line 164: "The resulting dynamics... [are]?"

      We have corrected this in the text.

      • Fig 7B legend: "The network performance is on average worse for longer ITIs" – correct?

      This was a mistake, we have replaced worse with better.

      Other comments

      We realized that the colorbar reported the incorrect fraction classified in Figs 1B, 2C, 7B (new 8B), S2C, S3A, S5B. We have corrected this in the new version of the manuscript.

      We also found a minor mistake in one of our analysis codes that computed the n-trial back biases for different delay intervals. This did not change our results, actually made the effects clearer. The figures concerned are Fig 3F and new Fig 7E.

    1. Author Response

      eLife assessment

      This study presents important findings for understanding cortical processing of color, binocular disparity, and naturalistic textures in the human visual cortex at the spatial scale of cortical layers and columns using state-of-the-art high-resolution fMRI methods at ultra-high magnetic field strength (7 T). Solid evidence supports an interesting layer-specific informational connectivity analysis to infer information flow across early visual areas for processing disparity and color signals. While the question of how the modularity of representation relates to cortical hierarchical processing is interesting and fundamental, the findings that texture does not map onto previously established columnar architecture in V2 is suggestive but would benefit from further controls. The successful application of high-resolution fMRI methods to study the functional organization along cortical columns and layers is relevant to a broad readership interested in general neuroscience.

      Thank you for your assessment of our manuscript "Mesoscale functional organization and connectivity of color, disparity, and naturalistic texture in human second visual area ". We have carefully considered the public reviews and have outlined our plans of revision by providing point-by-point responses to the reviewers’ comments.

      Reviewer #1 (Public Review):

      To support the finding that texture is not represented in a modular fashion, additional possibilities must be considered. These include the effectiveness and specificity of the texture stimulus and control stimuli, (b) further analysis of possible structure in images that may have been missed, and (c) limitations of imaging resolution.

      Thank you for your suggestions. We will provide evidence and additional analyses to show that there was indeed a large difference in high-order statistical information between the texture and control stimuli in our study, and thus the contrast between the two stimuli should be effective in localizing the processing of high-order texture information. Compared to the previous studies, another reason for the weaker texture selectivity in the current study could be the smaller number of images used and the slower rate of image presentation. Although our fMRI result at 1-mm isotropic resolution did not show a modular processing of naturalistic texture in CO-stripe columns, this does not exclude the possibility that smaller modules exist beyond the current fMRI resolution. We will discuss these limitations in the revised manuscript.

      More in-depth analysis of subject data is needed. The apparent structure in the texture images in peripheral fields of some subjects calls for more detailed analysis. e.g. Relationship to eccentricity and the need for a 'modularity index' to quantify the degree of modularity. A possible relationship to eccentricity should also be considered.

      We will perform further analysis based on your suggestion, especially regarding the relationship between eccentricity and modulation index. We will discuss this possibility in the revised manuscript.

      Given what is known as a modular organization in V4 and V3 (e.g. for color, orientation, curvature), did images reveal these organizations? If so, connectivity analysis would be improved based on such ROIs. This would further strengthen the hierarchical scheme.

      Thank you for your suggestion. The informational connectivity analyses used highly informative voxels by feature selection, which may already represent information from the modular organizations in these higher visual areas. We will examine the functional maps for possible modular organizations.

      Reviewer #2 (Public Review):

      In lines 162-163, it is stated that no clear columnar organization exists for naturalistic texture processing in V2. In my opinion, this should be rephrased. As far as I understand, Figure 2B refers to the analysis used to support the conclusion. The left and middle bar plots only show a circular analysis since ROIs were based on the color and disparity contrast used to define thin and thick stripes. The interesting graph is the right plot, which shows no statistically significant overlap of texture processing with thin, thick, and pale stripe ROIs. It should be pointed out that this analysis does not dismiss a columnar organization per se but instead only supports the conclusion of no coincidence with the CO-stripe architecture.

      Reviewer #1 also raised a similar concern. We agree that there may be a smaller functional module of textures in area V2 at a finer spatial scale than our fMRI resolution. We will rephrase our conclusions to be more precise.

      In Figure 3, cortical depth-dependent analyses are presented for color, disparity, and texture processing. I acknowledge that the authors took care of venous effects by excluding outlier voxels. However, the GE-BOLD signal at high magnetic fields is still biased to extravascular contributions from around larger veins. Therefore, the highest color selectivity in superficial layers might also result from the bias to draining veins and might not be of neuronal origin. Furthermore, it is interesting that cortical profiles with the highest selectivity in superficial layers show overall higher selectivity across cortical depth. Could the missing increase toward the pial surface in other profiles result from the ROI definition or overall smaller signal changes (effect size) of selected voxels? At least, a more careful interpretation and discussion would be helpful for the reader.

      We will discuss the limitations of cortical depth-dependent analysis using GE-BOLD fMRI. All our stimuli produced robust activations in these visual areas, thus the flat laminar profiles of modulatory indices are unlikely to be caused by smaller signal changes. We will show the original BOLD responses in addition to the modulation index.

      I was slightly surprised that no retinotopy data was acquired. The ROI definition in the manuscript was based on a retinotopy atlas plus manual stripe segmentation of single columns. Both steps have disadvantages because they neglect individual differences and are based on subjective assessment. A few points might be worth discussing: (1) In lines 467-468, the authors state that V2 was defined based on the extent of stripes. This classical definition of area V2 was questioned by a recent publication (Nasr et al., 2016, J Neurosci, 36, 1841-1857), which showed that stripes might extend into V3. Could this have been a problem in the present analysis, e.g., in the connectivity analysis? (2) The manual segmentation depends on the chosen threshold value, which is inevitably arbitrary. Which value was used?

      The retinotopic atlas on the standard surface is usually quite accurate in defining the boundaries of early visual areas. Although some stripes may extend into V3, these patterns should be more robust in V2. In our analysis, we selected only those with clear organizations within the retinotopic atlas. Thus, the signal contribution from V3 is likely to be small and would not affect the pattern of results. In addition, the results between V3 and V2 could be very different, we will compare the pattern of results from these areas in additional analyses. The threshold for segmentation is abs(T)>2, we will clarify this in the method.

      The use of 1-mm isotropic voxels is relatively coarse for cortical depth-dependent analyses, especially in the early visual cortex, which is highly convoluted and has a small cortical thickness. For example, most layer-fMRI studies use a voxel size of around isotropic 0.8 mm, which has half the voxel volume of 1 mm isotropic voxels. With increasing voxel volume, partial volume effects become more pronounced. For example, partial volume with CSF might confound the analysis by introducing pulsatility effects.

      We agree that the 1-mm isotropic voxel is much smaller in volume than the 0.8-mm isotropic voxel, but the resolution along the cortical depth is not a large difference. In addition to our study, there are also other studies showing that fMRI at 1-mm isotropic resolution is capable of resolving cortical depth-dependent signals. Also, our fMRI slices were oriented perpendicular to the calcarine sulcus, the higher in-plane resolution will also benefit in resolving depth-dependent signals. We will discuss these issues about fMRI resolution in the revised manuscript.

      The SVM analysis included a feature selection step stated in lines 531-533. Although this step is reasonable for the training of a machine learning classifier, it would be interesting to know if the authors think this step could have reintroduced some bias to remaining draining vein contributions.

      Several precautions have been taken in the ROI definition to reduce the influence of large draining veins. The same number of voxels were selected from each cortical depth for the SVM analysis, thus there was no bias from the superficial layers susceptible to draining veins. Also, since both feedforward and feedback connections involved the superficial voxels, the remaining influence of large draining veins should be comparable between the two connections.

      Reviewer #3 (Public Review):

      The authors tend to overclaim their results.

      Thank you for your comments. We will add more control analyses to strengthen our findings, and have appropriate discussion of results.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: The authors study the appearance of oscillations in motifs of linear threshold systems, coupled in specific topologies. They derive analytical conditions for the appearance of oscillations, in the context of excitatory and inhibitory links. They also emphasize the higher importance of the topology, compared to the strength of the links. Finally, the results are confirmed with WC oscillators, which are also linear. The findings are to some extent confirmed with spiking neurons, though here results are less clear, and they are not even mentioned in the Discussion.

      Overall, the results are sound from a theoretical perspective, but I still find it hard to believe that they are of significant relevance for biological networks, or in particular for the oscillations of BG-thalamus-cortex loop in PD. I find motifs in general to be too simplistic for multiscale and generally large networks as is the case in the brain. Moreover, the division of regions is more or less arbitrary by definition, and having such a strong dependence on an odd/even number of inhibitory links is far from reality. Another limitation is the fact that the cortex is considered a single node. Similarly, decomposing even such a coarse network in all possible (238 in this case) motifs doesn't seem of much relevance, when I assume that the emergence of pathological rhythms is more of an emergent phenomenon.

      Strengths:

      From the point of view of nonlinear dynamics, the results are solid, and the intuition behind the proofs of the theorems is well explained.

      Weaknesses:

      As stated in the summary, I find the work to be too theoretical without a real application in biological systems or the brain, where the networks are generally very large.

      We respectfully disagree with the reviewer here. The second half of the paper is all about explaining a biological problem. We have shown the validity of our theoretical results (which indeed were obtained in idealized settings) to explain emergence of oscillations in the basal ganglia. We clearly show that our theoretical results hold both in a rate-based model and in a network model with spiking neurons. The model with spiking neurons is one of the most complete network models of the basal ganglia available in the literature. So we emphasize that we have provided a clear application of our results for the brain networks.

      It is not the problem in the simplicity of the model or of the topology, it is often the case that the phenomena are explained by very reduced systems, but the problem is that the applicability of the finding cannot be extended. E.g. the Kuramoto model uses all-to-all coupling, or similar with QIF neurons which also need to follow a Lorentzian distribution in order to derive a mean field.

      We do not understand this comment. There is no need to extend these results to a network of Kuramoto models because in that setting we already assume that individual nodes/populations are oscillating – there is no problem of emergence of oscillations. Here, we are specifically considering a setting in which nodes themselves are not oscillators. We agree that we, at this point, have no insight into how to extend our analytical proof to a situation where individual nodes are spiking.

      But in those cases, relaxing the strict conditions that were necessary for the derivations, still conserves the main findings of the analysis, which I don't see being the case here. The odd/even number rule is too strict, and talking about a fixed and definite number of cycles in the actual brain seems too simplistic.

      We have clearly relaxed most of our assumptions when we considered a network model of basal ganglia in which each subpopulation is a collection of spiking neurons. And as we have shown our results still hold (see Figure 5). Again our model is about oscillations in a network of networks i.e. network of brain regions.

      At meso-scale it is not unreasonable to find such cycles and even-odd number rules. We have shown this for the case of a cortico-basal ganglia model. We can also extend this to cortico-thalamic networks and so on. We have already emphasized this point in the introduction to avoid any confusion: see lines 62-66 – “We prove this conjecture for the threshold-linear network (TLN) model without delays which can closely capture the dynamics of neural populations. Therefore, it is implicit that our results do not hold at the neuronal level but rather at the level of neuron populations/brain regions e.g. the basal ganglia (BG) network which can be described a network of different nuclei.” and lines 69-70 – ’Within the framework of the odd-cycle theory, distinct nuclei are associated with either excitatory or inhibitory nodes.’

      Being linear is another strong assumption, and it is not clear how much of the results are preserved for spiking neurons, even though there is such an analysis, or maybe for other nonlinear types of neuronal masses.

      Clearly our results hold in a network of spiking neurons (see Figure 5). It is of course interesting to ask whether our results hold in a network where individual spiking neurons have more complex spiking behavior like AdEx or Quadratic IF. But that kind of analysis deserves a full manuscript on its own.

      Delays are also mentioned, and their impact on the oscillatory networks is as expected: it reduces the amplitude, but there is no link to the literature, where this is an established phenomenon during synchronization. Finally, the authors should also discuss the time-delays as a known phenomenon to cause or amplify oscillations at different frequencies in a network of coupled oscillators, e.g Petkoski & Jirsa Network Neuroscience 2022, Tewarie et al. NeuroImage 2019, Davis et al. Nat Commun 2021.

      This is indeed a weakness of our model. But as the reviewer already knows, dynamical systems with delays are very difficult to analyze analytically. We have mentioned this in the limitations of the model and the analysis. In our simulations we have considered delays and when the delays are within reasonable limits our results hold.

      Reviewer #2 (Public Review):

      Summary:

      The authors present here a mathematical and computational study of the topological/graph theory requirements to obtain sustained oscillations in neural network models. A first approach mathematically demonstrates that a given network of interconnected neural populations (understood in the sense of dynamical systems) requires an odd number of inhibitory populations to sustain oscillations. The authors extend this result via numerical simulations of (i) a simplified set of Wilson-Cowan networks, (ii) a simplified circuit of the cortico-basal ganglia network, and (iii) a more complex, spike-based neural network of basal ganglia network, which provides insight on experimental findings regarding abnormal synchrony levels in Parkinson's Disease (PD).

      Strengths:

      The work elegantly and effectively combines solid mathematical proof with careful numerical simulations at different levels of description, which is uncommon and provides additional layers of confidence to the study. Furthermore, the authors included detailed sections to provide intuition about the mathematical proof, which will be helpful for readers less inclined to the perusal of mathematical derivations. Its insightful and well-informed connection with a practical neuroscience problem, the presence of strong beta rhythms in PD, elevates the potential influence of the study and provides testable predictions.

      Weaknesses:

      In its current form, the study lacks a more careful consideration of the role of delays in the emergence of oscillations. Although they are addressed at certain points during the second part of the study, there are sections in which this could have been done more carefully, perhaps with additional simulations to solidify the authors' claims. Furthermore, there are several results reported in the main figures which are not explained in the main text. From what I can infer, these are interesting and relevant results and should be covered. Finally, the text would significantly benefit from a revision of the grammar, to improve the general readability at certain sections. I consider that all these issues are solvable and this would make the study more complete.

      This point has been made by the first reviewer as well. So we repeat our answer:

      This is indeed a weakness of our model. But as the reviewer already knows, dynamical systems with delays are very difficult to analyze analytically. We have mentioned this in the limitations of the model and the analysis. In our simulations we have considered delays and when the delays are within reasonable limits our results hold.

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in my comments above, I think that the work is already quite solid and relevant but would significantly improve if some issues were addressed:

      We would like to thank the reviewer for valuable comments and constructive feedback which has helped us greatly improve the manuscript.

      1) While the authors acknowledge early on the limitations of this study in terms of not considering plasticity or neuron biophysics (line 72), I think that the absence of propagation delays should be explicitly included here. This absence leads to inaccuracies --for example, the sentence "Consider a small network of two nodes. If we connect them mutually with excitatory synapses, intuitively we can say that the two-population network will not oscillate" (line 74) is only correct if the delays (or signal latencies) are zero. With a proper delay, two excitatory neurons can engage in oscillations with a period given by two times the value of the delay.

      A similar situation happens for inhibitory neurons, where the winner-take-all dynamics described in line 77 is only valid for zero delay. It is known that a homogeneous population of inhibitory spiking neurons with delayed synapses can lead to fast oscillations (Brunel and Hakim 1999), something which is also valid for the equivalent inhibitory single node with delayed self-inhibition. Indeed, a circuit of two inhibitory populations with delayed self- and cross-inhibition can generate oscillations, contradicting the main conclusion of the odd number of inhibitory nodes needed for oscillations.

      Because of these considerations, I think the authors should be more careful when explaining the effects of delays, and state that their main results on the link between oscillations and having an odd number of inhibitory nodes are not valid when delays are considered. They could modify the sentences in lines 72-77 above and include a supplementary figure right after their simulation study for the Wilson-Cowan (to explain the examples above, and also the one in the next point).

      The reviewer has brought up a critical point regarding the impact of propagation delays, and we completely concur with your assessment. In our study, we indeed did not comprehensively consider the effects of propagation delays in cycles with even inhibition, which may introduce inaccuracies in our conclusions.

      We note that in the Wilson-Cowan model with delays, certain cycles with even number of inhibitory links can also generate oscillations with a period equal to twice the delay value. However, in our hand such oscillations were transient and dissipated quickly.

      To better reflect the limitations of our research, we have made significant modifications to the relevant sections in our manuscript.

      In line 100, we've added text to explicitly state that we considered delays in our simulations and acknowledged their potential to generate oscillations ("Given the importance of delays in biological network such as BG, we will consider them in the simulations.").

      In line 102, we've clarified that our conclusions are based on a scenario without delays ("In this following, we give simple examples of the possibility of oscillation (or not) based on the connectivity characteristics of small networks without delays. Let us start with a network of two nodes.").

      Additionally, in line 230, we've included a reference figure supplement 3-2 to highlight the outcomes in terms of oscillations ("EII network only resulted in transient oscillations (Fig. 3, figure supplement 3-1, figure supplement 3-2)").

      In lines 234-237, we've added a sentence discussing the role of synaptic delays in generating transient oscillations in cycles with an even number of inhibitory components, referring to figure supplement 3-2 ("In networks with even number of inhibitory connections (e.g. EII, EEE, II), synaptic delays are the sole mechanism for initiating oscillations, however, unless delays are precisely tuned such oscillations will remain transient (see Supplementary figure supplement 3-2)").

      Moreover, in response to the reviewer’s suggestion, we have included an additional figure supplement 3-2 to illustrate how cycles with even inhibitory components generate transient oscillations when propagation delays are taken into account. This figure provides a visual representation of the phenomenon and enhances the clarity of our findings.

      2) In Figure 3, two motifs (III and EII) are explored to demonstrate the validity of the results across different parameters. Delays don't seem to play a disruptive role in these two cases, but the results seem to be different for other motifs not considered here. Aside from the examples mentioned above, I can imagine how a motif of EEE (i.e. a circle of three excitatory Wilson-Cowan neurons) would display oscillations when delays are included, as the activation would 'circulate' along the ring. However, this EEE motif has an even number of inhibitory units (or perhaps zero is considered an exception, but if so it's not mentioned in the text).

      We thank the reviewer for this observation regarding Figure 3. Indeed, the impact of delays may differ for other motifs not considered in our study. For example, as the reviewer has correctly anticipated, a motif of EEE (a circular network of three excitatory Wilson-Cowan neurons) would exhibit oscillations when delays are included, as activation could 'circulate' along the ring.

      To address this concern,we have performed new simulations (added as a new supplementary figure supplement 3-2). As illustrated in figure supplement 3-2, oscillations may indeed arise in the EEE motif when delays are introduced. However, these oscillations will eventually dissipate – at least with our settings.

      3) Figures 1b, 1c, and 4e display interesting results, but these are absent from the main text. Please include the description of those results. Particularly the case of Figs 1b and 1c seems very relevant to understanding the main results in the context of more complex networks, in which multiple loops with odd and even numbers of inhibitory units would coexist in the network. Does the number of odd-inhibitory loops in a given network affect somehow the power or frequency of the resulting network oscillations? It would be interesting to show this.

      Indeed, we did not explain Figs 1b,c and 4e properly. Now we have revised the manuscript in the following way to incorporate these results:

      In lines 124-128, we added the following text to introduce the concept: "We can generalize these results to cycles of any size, categorizing them into two types based on the count of their inhibitory connections in one direction (referred to as the odd cycle rule, as illustrated in Fig. 1b). More complex networks can also be decomposed into cycles of size 2…N (where N is number of nodes), and predict the ability of the network to oscillate (as shown in Fig. 1c)" In line 298, we included the following text to highlight the relevant result: "Next, we removed the STN output (equivalent to inhibition of STN), the Proto-D2-Arky subnetwork generated oscillations for weak positive inputs to the D2-SPNs (Fig.4e, bottom)."

      How the number of odd/even loops affect the frequency is an interesting question. Intuitively there should be a relation between the two. However, a complete treatment of this question is beyond the scope of the manuscript but we think that in a network with identical node properties, more odd cycles should imply higher oscillation power.

      4) The cortico-BG model is focused on how inactivating STN could suppress (or not) beta oscillations, following experimental observations. However, besides mechanisms for extinguishing oscillations, it would be interesting to see if the progressive emergence of pathological beta oscillations could be explained by the modification of some of the nodes in the model (for example, explicitly mimicking the loss of dopaminergic neurons in the substantia nigra). This could be a very interesting additional figure in the main text.

      This is an interesting suggestion. Something similar has been already done – e.g. Kumar et al. (2010) showed that progressive increase of inhibition of GPe can lead to oscillations. Similarly Holgado et al. (2008) showed how progressive change in the mutual connectivity between STN and GPe can cause oscillations. More recently, Ortone et al. (PloS Comp. Biol 2023) and Azizpour et al. (2023 Bioarxiv) have also shown the effect of progressive change in individual node properties on oscillations in basal ganglia using numerical simulations. Our work in a way provides the theoretical backing to their work. Therefore, we think it is not necessary to again show these results in our model. Instead we have cited these papers. Lines 392-396

      5) I observed some grammatical inconsistencies in the text, some of them are indicated below. I would suggest carefully going through the text to correct those issues or seeking help with editing.

      -line 32 "...which can closely capture the neural population dynamics". Which population dynamics? Do the authors refer to general neural dynamics?

      -line 33 "long term behavior" -> long-term behavior

      -line 68 "given the ionic channel composition" -> "given its ionic channel composition"

      We apologize for the grammatical inconsistencies in our manuscript. We have made the necessary corrections to improve the clarity and accuracy of our text.

      Reviewer #3 (Recommendations For The Authors):

      This manuscript is useful for analytically showing that a cyclic network of threshold-linear neural populations can only oscillate if it has an odd number of inhibitory nodes with strong enough connections. Establishing this result, which holds under rather narrow assumptions, relies on standard tools from dynamical system theory. I find the strength of support for this result to be incomplete for the reasons detailed below:

      Although the mathematical arguments used appear to be correct, the manuscript lacks in rigor and clarity. For instance, the main result presented in theorem 2 is stated in a very unclear fashion: aside from the oddity of the number of inhibitory nodes, there are two conditions to check, which determines four cases. This can be explained in a much more straightforward way without introducing four relations in equations 4-7.

      We acknowledge the reviewer’s concern regarding the presentation of the main result in Theorem 2.

      We would like to emphasize that the introduction of four relations in equations 4-7 was intended to provide a detailed and transparent exposition of the conditions for the main result. While we understand that this approach may appear less straightforward, it allows for a more comprehensive understanding of the underlying logic and the multiple factors influencing the outcomes.

      However, we are open to suggestions for more concise and clear ways to express these conditions if the reviewer has specific recommendations or if there are alternative approaches that the reviewer believes would be more effective in conveying the information.

      Moreover, equation 3 in that same theorem is clearly wrong.

      We sincerely apologize for the typographical error in equation 3 within the same theorem. We thank the reviewer for noticing this. We have revised the text to rectify this mistake. The equation has now been corrected to ensure its accuracy.

      The proof of theorem 2 relies on standard linear algebra and can be improved as well: there are typos, approximations, and missing words (see line 664). The rigor of the exposition is also unsatisfactory. For instance, the proof of Lemma 1 ends with the sentence: "Similarly as before, the convergence of the dynamics driven by the left and right terms ends the proof". I don't know what this means.

      We thank the reviewer for the comments and suggestions. We have made the necessary adjustments to enhance the rigor and clarity of our mathematical reasoning in the revised manuscript.

      In line 644, we have provided clarification for the sentence you found unclear. The revised version now offers a more precise explanation that should help in understanding the proof.

      At the same time, the intuitive arguments presented in the main text are vague at best and do not really help grasping the possible generalizability of the results. For instance, I do not understand the message of panel B in Figure 2 and there seems to be no explanation about it in the main text.

      The main purpose of Figure 2B is to offer a visual representation of the concept and to serve as an aid for readers who may prefer a graphical illustration over extensive equations. While we understand that the figure may not provide a complete explanation on its own, it is intended to complement the text and mathematical content presented in the main text. In the revised version we have added the explanation of Figure 2B.

      Aside from the analytical result, most of the paper consists in simulating networks with distinct inhibitory cyclic structure to validate the theoretical argument. I do not find this approach particularly convincing due to the qualitative nature of the numerical results presented. There is little quantitative analysis of the network structure in relation to the emergence of oscillations. It is also hard to judge whether the examples discussed are cherry picked or truly representative of a large class of dynamics.

      The reviewer has a valid concern about numerical simulations and qualitative nature of the results. We would like to provide some perspective on our approach.

      In our paper, the primary focus is on the mathematical proof, which rigorously establishes the existence of our results. However, we understand that numerical simulations are valuable for illustrating the applicability of the theoretical framework and providing insights into the practical implications.

      If we get into the quantitative description of all the results, the manuscript will become prohibitively long. We acknowledge that there is a balance to be struck between theory and numerical examples in a research paper. We believe that, in conjunction with the mathematical proof, the numerical simulations serve the purpose of illustrating the existence of our results in specific examples. While we cannot provide an exhaustive exploration of all possible network structures, we have chosen representative cases to demonstrate the applicability of our findings. Some of these are already provided in figure supplements S3-1 and S3-3. In the absence of specific suggestions from the reviewer we would like to leave it as is.

      Moreover, the authors apply their cycle analysis to real-world networks by considering cycles of inhibitory nodes independently, whereas the same nodes can belong to several cycles. I find it hard to believe that considering these cycles independently should be enough to make predictions about the emergence of oscillations, as these cycles must interact with one another via shared nodes. I do not understand the color coding used to mark distinct cycles in supplementary figures. There is also not enough information to understand figures in the main text. For instance, I do not understand what the grids are representing in panel B, Figure 4.

      We have clarified the color coding and added more information to understand the figures. We appreciate the reviewer’s concern about our application of cycle analysis to real-world networks and the clarity of our figures. It is not a matter of belief – we have provided a mathematical proof and complemented that with illustrative examples from real-world networks i.e. cortico-basal ganglia network with both rate-based and spiking neurons. Clearly our results hold.

      Regarding the color coding in supplementary figures, we have revised the color scheme to make it more intuitive and informative in caption of figure 4: we use different colors to mark potential oscillators in each motif in BG, and each color means an oscillator from panel a. For more details, see figure supplements 4-1–4-6. The colors now represent distinct cycles more clearly, helping readers better interpret the figures.

    1. Reviewer #1 (Public Review):

      Summary & Assessment:

      The catalytic core of the eukaryotic decapping complex consists of the decapping enzyme DCP2 and its key activator DCP1. In humans, there are two paralogs of DCP1, DCP1a, and DCP1b, that are known to interact with DCP2 and recruit additional cofactors or coactivators to the decapping complex; however, the mechanisms by which DCP1 activates decapping and the specific roles of DCP1a versus DCP1b, remain poorly defined. In this manuscript, the authors used CRISPR/Cas9-generated DCP1a/b knockout cells to begin to unravel some of the differential roles of human DCP1a and DCP1b in mRNA decapping, gene regulation, and cellular metabolism. While this manuscript presents some new and interesting observations on human DCP1 (e.g. human DCP1a/b KO cells are viable and can be used to investigate DCP1 function; only the EVH1 domain, and not its disordered C-terminal region which recruits many decapping cofactors, is apparently required for efficient decapping in cells; DCP1a and b target different subsets of mRNAs for decay and may regulate different aspects of metabolism), there are several major issues that undercut some of the main conclusions of the paper, and some key claims that are incompletely or inconsistently supported by the presented data.

      Strengths & well-supported claims:

      • Through in vivo tethering assays in CRISPR/Cas9-generated DCP1a/b knockout cells, the authors show that DCP1 depletion leads to significant defects in decapping and the accumulation of capped, deadenylated mRNA decay intermediates.

      • DCP1 truncation experiments reveal that only the EVH1 domain of DCP1 is necessary to rescue decapping defects in DCP1a/b KO cells.

      • RNA and protein immunoprecipitation experiments suggest that DCP1 acts as a scaffold to help recruit multiple decapping cofactors to the decapping complex (e.g. EDC3, DDX6, PATL1 PNRC1, and PNRC2), but that none of these cofactors are essential for DCP2-mediated decapping in cells.

      • The authors investigated the differential roles of DCP1a and DCP1b in gene regulation through transcriptomic and metabolomic analysis and found that these DCP1 paralogs target different mRNA transcripts for decapping and have different roles in cellular metabolism and their apparent links to human cancers. (Although I will note that I can't comment on the experimental details and/or rigor of the transcriptomic and metabolomic analyses, as these are outside my expertise.)

      Weaknesses & incompletely supported claims:

      1) A central mechanistic claim of the paper is that "DCP1a can regulate DCP2's cellular decapping activity by enhancing DCP2's affinity to RNA, in addition to bridging the interactions of DCP2 with other decapping factors. This represents a pivotal molecular mechanism by which DCP1a exerts its regulatory control over the mRNA decapping process." Similar versions of this claim are repeated in the abstract and discussion sections. However, this appears to be entirely at odds with the observation from in vitro decapping assays with immunoprecipitated DCP2 that showed DCP1 knockout does not significantly affect the enzymatic activity of DCP2 (Figures 2B-D; I note that there may be a very small change in DCP2 activity shown in panel C, but this may be due to slightly different amounts of immunoprecipitated DCP2 used in the assay, as suggested by panel D). If DCP1 pivotally regulates decapping activity by enhancing RNA binding to DCP2, why is no difference in decapping activity observed in the absence of DCP1? Furthermore, the authors show only weak changes in relative RNA levels immunoprecipitated by DCP2 with versus without DCP1 (~2-3 fold change; consistent with the Valkov 2016 NSMB paper, which shows what looks like only modest changes in RNA binding affinity for yeast Dcp2 +/- Dcp1). Is the argument that only a 2-3 fold change in RNA binding affinity is responsible for the sizable decapping defects and significant accumulation of deadenylated intermediates observed in cells upon Dcp1 depletion? (and if so, why is this the case for in-cell data, but not the immunoprecipitated in vitro data?)

      The authors acknowledge this apparent discrepancy between the in vitro DCP2 decapping assays and in-cell decapping data, writing: "this observation could be attributed to the inherent constraints of in vitro assays, which often fall short of faithfully replicating the complexity of the cellular environment where multiple factors and cofactors are at play. To determine the underlying cause, we postulated that the observed cellular decapping defect in DCP1a/b knockout cells might be attributed to DCP1 functioning as a scaffold." This is fair. They next show that DCP1 acts as a scaffold to recruit multiple factors to DCP2 in cells (EDC3, DDX6, PatL1, and PNRC1 and 2). However, while DCP1 is shown to recruit multiple cofactors to DCP2 (consistent with other studies in the decapping field, and primarily through motifs in the Dcp1 C-terminal tail), the authors ultimately show that *none* of these cofactors are actually essential for DCP2-mediated decapping in cells (Figures 3A-F). More specifically, the authors showed that the EVH1 domain was sufficient to rescue decapping defects in DCP1a/b knockout cells, that PNRC1 and PNRC2 were the only cofactors that interact with the EVH1 domain, and finally that shRNA-mediated PNRC1 or PNCR2 knockdown has no effect on in-cell decapping (Figures 3E and F). Therefore, based on the presented data, while DCP1 certainly does act as a scaffold, it doesn't seem to be the case that the major cellular decapping defect observed in DCP1a/b knockout is due to DCP1's ability to recruit specific cofactors to DCP2.

      So as far as I can tell, the discrepancy between the in vitro (DCP1 not required) and in-cell (DCP1 required) decapping data, remains entirely unresolved. Therefore, I don't think that the conclusions that DCP1 regulates decapping by (a) changing RNA binding affinity (authors show this doesn't matter in vitro, and that the change in RNA binding affinity is very small) or (b) by bridging interactions of cofactors with DCP2 (authors show all tested cofactors are dispensable for robust in-cell decapping activity), are supported by the evidence presented in the paper (or convincingly supported by previous structural and functional studies of the decapping complex).

      2) Related to the RNA binding claims mentioned above, are the differences shown in Figure 3H statistically significant? Why are there no error bars shown for the MBP control? (I understand this was normalized to 1, but presumably, there were 3 biological replicates here that have some spread of values?). The individual data points for each replicate should be displayed for each bar so that readers can better assess the spread of data and the significance of the observed differences. I've listed these points as major because of the key mechanistic claim that DCP1 enhances RNA binding to DCP2 hinges in large part on this data.

      3) Also related to point (1) above, the kinetic analysis presented in Figure 2C shows that the large majority of transcript is mostly decapped at the first 5-minute timepoint; it may be that DCP2-mediated decapping activity is actually different in vitro with or without DCP1, but that this is being missed because the reaction is basically done in less than 5 minutes under the conditions being assayed (i.e. these are basically endpoint assays under these conditions). It may be that if kinetics were done under conditions to slow down the reaction somewhat (e.g. lower Dcp2 concentration, lower temperatures), so that more of the kinetic behavior is captured, the apparent discrepancy between in vitro and in-cell data would be much less. Indeed, previous studies have shown that in yeast, Dcp1 strongly activates the catalytic step (kcat) of decapping by ~10-fold, and reduces the KM by only ~2 fold (Floor et al, NSMB 2010). It might be beneficial to use purified proteins here (only a Western blot is used in Figure 2D to show the presence of DCP2 and/or DCP1, but do these complexes have other, and different, components immunoprecipitated along with them?), if possible, to better control reaction conditions.

      This contradiction between the in vitro and in-cell decapping data undercuts one of the main mechanistic takeaways from the first half of the paper. This needs to be addressed/resolved with further experiments to better define the role of DCP1-mediated activation, or the mechanistic conclusions significantly changed or removed.

      4) The second half of the paper compares the transcriptomic and metabolic profiles of DCP1a versus DCP1b knockouts to reveal that these target a different subset of mRNAs for degradation and have different levels of cellular metabolites. This is a great application of the DCP1a/b KO cells developed in this paper and provides new information about DCP1a vs b function in metazoans, which to my knowledge has not really been explored at all. However, the analysis of DCP1 function/expression levels in human cancer seems superficial and inconclusive: for example, the authors conclude that "...these findings indicate that DCP1a and DCP1b likely have distinct and non-redundant roles in the development and progression of cancer", but what is the evidence for this? I see that DCP1a and b levels vary in different cancer cell types, but is there any evidence that these changes are actually linked to cancer development, progression, or tumorigenesis? If not, these broader conclusions should be removed.

      5) The authors used CRISPR-Cas9 to introduce frameshift mutations that result in premature termination codons in DCP1a/b knockout cells (verified by Sanger sequencing). They then use Western blotting with DCP1a or DCP1b antibodies to confirm the absence of DCP1 in the knockout cell lines. However, the DCP1a antibody used in this study (Sigma D5444) is targeted to the C-terminal end of DCP1a. Can the authors conclusively rule out that the CRISPR/Cas-generated mutations do not result in the production of truncated DCP1a that is just unable to be detected by the C-terminally targeted antibody? While it is likely the introduced premature termination codon in the DCP1a gene results in nonsense-mediated decay of the resulting transcript, this outcome is indeed supported by the knockout results showing large defects in cellular decapping which can be rescued by the addition of the EVH1 domain, it would be better to carefully validate the success of the DCP1a knockout and conclusively show no truncated DCP1a is produced by using N-terminally targeted DCP1a antibodies (as was the case for DCP1b).

      Some additional minor comments:

      • More information would be helpful on the choice of DCP1 truncation boundaries; why was 1-254 chosen as one of the truncations?<br /> • Figure S2D is a pretty important experiment because it suggests that the observed deadenylated intermediates are in fact still capped; can a positive control be added to these experiments to show that removal of cap results in rapid terminator-mediated degradation?

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The work is a useful contribution towards understanding the role of archaeal and plant D-aminoacyl-tRNA deacylase 2 (DTD2) in deacylation and detoxification of D-Tyr-tRNATyr modified by various aldehydes produced as metabolic byproducts in plants. It integrates convincing results from both in vitro and in vivo experiments to address the long-standing puzzle of why plants outperform bacteria in handling reactive aldehydes and suggests a new strategy for stress-tolerant crops. The impact of the paper is limited by the fact that only one modified D-aminoacyl tRNA was examined, in lack of evidence that plant eEF1A mimics EF-Tu in protecting L-aminoacyl tRNAs from modification, and in failure to measure accumulation of toxic D-aminoacyl tRNAs or impairment of translation in plant cells lacking DTD2.

      We have now addressed all the drawbacks as follows:

      ‘only one modified D-aminoacyl tRNA was examined’

      We wish to clarify that only D-Leu (Yeast), D-Asp (Bacteria, Yeast), D-Tyr (Bacteria, Cyanobacteria, Yeast) and D-Trp (Bacteria) show toxicity in vivo in the absence of known DTD (Soutourina J. et al., JBC, 2000; Soutourina O. et al., JBC, 2004; Wydau S. et al., JBC, 2009) and D-Tyr-tRNATyr is used as a model substrate to test the DTD activity in the field because of the conserved toxicity of D-Tyr in various organisms. DTD2 has been shown to recycle D-Asp-tRNAAsp and D-Tyr-tRNATyr with the same efficiency both in vitro and in vivo (Wydau S. et al., NAR, 2007) and it also recycles acetaldehyde-modified D-Phe-tRNAPhe and D-Tyr-tRNATyr in vitro as shown in our earlier work (Mazeed M. et al., Science Advances, 2021). We have earlier shown that DTD1, another conserved chiral proofreader across bacteria and eukaryotes, acts via a side chain independent mechanism (Ahmad S. et al., eLife, 2013). To check the biochemical activity of DTD2 on D-Trp-tRNATrp, we have now done the D-Trp, D-Tyr and D-Asp toxicity rescue experiments by expressing the archaeal DTD2 in dtd null E. coli cells. We found that DTD2 could rescue the D-Trp toxicity with equal efficiency like D-Tyr and D-Asp (Figure: 1). Considering the action on multiple side chains with different chemistry and size, it can be proposed with reasonable confidence that DTD2 also operates based on a side chain independent manner.

      Author response image 1.

      DTD2 recycles multiple D-aa-tRNAs with different side chain chemistry and size. Growth of wildtype (WT), dtd null strain (∆dtd), and Pyrococcus horikoshii DTD2 (PhoDTD2) complemented ∆dtd strains of E. coli K12 cells with 500 µM IPTG along with A) no D-amino acids, B) 2.5 mM D-tyrosine, C) 30 mM D-aspartate and D) 5 mM D-tryptophan.

      ‘lack of evidence that plant eEF1A mimics EF-Tu in protecting L-aminoacyl tRNAs from modification’

      To understand the role of plant eEF1A in protecting L-aa-tRNAs from aldehyde modification, we have done a thorough sequence and structural analysis. We analysed the aa-tRNA bound elongation factor structure from bacteria (PDB ids: 1TTT) and found that the side chain of amino acid in the amino acid binding site of EF-Tu is projected outside (Figure: 2A; 3A). In addition, the amino group of amino acid is tightly selected by the main chain atoms of elongation factor thereby lacking a space for aldehydes to enter and then modify the L-aa-tRNAs and Gly-tRNAs (Figure: 2B; 3B). Modelling of D-amino acid (D-phenylalanine and smallest chiral amino acid, D-alanine) in the same site shows serious clashes with main chain atoms of EF-Tu, indicating D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2C-E). Next, we superimposed the tRNA bound mammalian eEF-1A cryoEM structure (PDB id: 5LZS) with bacterial structure to understand the structural differences in terms of tRNA binding and found that elongation factor binds tRNA in a similar way (Figure: 3C-D). Modelling of D-alanine in the amino acid binding site of eEF-1A shows serious clashes with main chain atoms, indicating a general theme of D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2F; 3E). Structure-based sequence alignment of elongation factor from bacteria, archaea and eukaryotes (both plants and mammals) shows a strict conservation of amino acid binding site (Figure: 2G). This suggests that eEF-1A will mimic EF-Tu in protecting L-aa-tRNAs from reactive aldehydes. Minor differences near the amino acid side chain binding site (as indicated in Wolfson and Knight, FEBS Letters, 2005) might induce the amino acid specific binding differences (Figure: 3F). However, those changes will have no influence when the D-chiral amino acid enters the pocket, as the whole side chain would clash with the active site. We have now included this sequence and structural conservation analysis in our revised manuscript (in text: line no 107-129; Figure: 2 and S2). Overall, our structural analysis suggests a conserved mode of aa-tRNA selection by elongation factor across life forms and therefore, our biochemical results with bacterial elongation factor Tu (EF-Tu) reflect the protective role of elongation factor in general across species.

      Author response image 2.

      Elongation factor enantio-selects L-aa-tRNAs through D-chiral rejection mechanism. A) Surface representation showing the cocrystal structure of EF-Tu with L-Phe-tRNAPhe. Zoomed-in image showing the binding of L-phenylalanine with side chain projected outside of binding site of EF-Tu (PDB id: 1TTT). B) Zoomed-in image of amino acid binding site of EF-Tu bound with L-phenylalanine showing the selection of amino group of amino acid through main chain atoms (PDB id: 1TTT). C) Modelling of D-phenylalanine in the amino acid binding site of EF-Tu shows severe clashes with main chain atoms of EF-Tu. Modelling of smallest chiral amino acid, alanine, in the amino acid binding site of EF-Tu shows D) no clashes with L-alanine and E) clashes with D-alanine. F) Modelling of D-alanine in the amino acid binding site of eEF-1A shows clashes with main chain atoms. (*Represents modelled molecule). G) Structure-based sequence alignment of elongation factor from bacteria, archaea and eukaryotes (both plants and animals) showing conserved amino acid binding site residues. (Key residues are marked with red star).

      Author response image 3.

      Elongation factor protects L-aa-tRNAs from aldehyde modification. A) Cartoon representation showing the cocrystal structure of EF-Tu with L-Phe-tRNAPhe (PDB id: 1TTT). B) Zoomed-in image of amino acid binding site of EF-Tu bound with L-phenylalanine (PDB id: 1TTT). C) Cartoon representation showing the cryoEM structure of eEF-1A with tRNAPhe (PDB id: 5LZS). D) Image showing the overlap of EF-Tu:L-Phe-tRNAPhe crystal structure and eEF-1A:tRNAPhe cryoEM structure (r.m.s.d. of 1.44 Å over 292 Cα atoms). E) Zoomed-in image of amino acid binding site of eEF-1A with modelled L-alanine (PDB id: 5ZLS). (*Modelled) F) Overlap showing the amino acid binding site residues of EF-Tu and eEF-1A. (EF-Tu residues are marked in black and eEF-1A residues are marked in red).

      ‘failure to measure accumulation of toxic D-aminoacyl tRNAs or impairment of translation in plant cells lacking DTD2’

      We agree that measuring the accumulation of D-aa-tRNA adducts from plant cells lacking DTD2 is important. We tried to characterise the same with dtd2 mutant plants extensively through Northern blotting as well as mass spectrometry. However, due to the lack of information about the tissue getting affected (root or shoot), identity of aa-tRNA as well as location of aa-tRNA (cytosol or organellar), we are so far unsuccessful in identifying them from plants. Efforts are still underway to identify them from plant system lacking DTD2. However, we have used a bacterial surrogate system, E. coli, as used earlier in Mazeed M. et al., Science Advances, 2021 to show the accumulation of D-aa-tRNA adducts in the absence of dtd. We could identify the accumulation of both formaldehyde and MG modified D-aa-tRNA adducts via mass spectrometry (Figure: 4). These results are now included in the revised manuscript (in line no: 190-197 and Figure: S5).

      Author response image 4.

      Loss of DTD results in accumulation of modified D-aminoacyl adducts on tRNAs in E. coli. Mass spectrometry analysis showing the accumulation of aldehyde modified D-Tyr-tRNATyr in A) Δdtd E. coli, B) formaldehyde and D-tyrosine treated Δdtd E. coli, and C) MG and D-tyrosine treated Δdtd E. coli. ESI-MS based tandem fragmentation analysis for unmodified and aldehyde modified D-Tyr-tRNATyr in D) Δdtd E. coli, E) and F) formaldehyde and D-tyrosine treated Δdtd E. coli, G) and H) MG and D-tyrosine treated Δdtd E. coli.

      Response to Public Reviews:

      We are grateful for the reviewers’ positive feedback and their comments and suggestions on this manuscript. Reviewer 1 has indicated two weaknesses and Reviewer 2 has none. We have now addressed all the concerns of the Reviewers.

      Reviewer #1 (Public Review):

      Summary:

      This work is an extension of the authors' earlier work published in Sci Adv in 2001, wherein the authors showed that DTD2 deacylates N-ethyl-D-aminoacyl-tRNAs arising from acetaldehyde toxicity. The authors in this study, investigate the role of archaeal/plant DTD2 in the deacylation/detoxification of D-Tyr-tRNATyr modified by multiple other aldehydes and methylglyoxal (produced by plants). Importantly, the authors take their biochemical observations to plants, to show that deletion of DTD2 gene from a model plant (Arabidopsis thaliana) makes them sensitive to the aldehyde supplementation in the media especially in the presence of D-Tyr. These conclusions are further supported by the observation that the model plant shows increased tolerance to the aldehyde stress when DTD2 is overproduced from the CaMV 35S promoter. The authors propose a model for the role of DTD2 in the evolution of land plants. Finally, the authors suggest that the transgenic crops carrying DTD2 may offer a strategy for stress-tolerant crop development. Overall, the authors present a convincing story, and the data are supportive of the central theme of the story.

      We are happy that reviewer found our work convincing and would like to thank the reviewer for finding our data supportive to the central theme of the manuscript.

      Strengths:

      Data are novel and they provide a new perspective on the role of DTD2, and propose possible use of the DTD2 lines in crop improvement.

      We are happy for this positive comment on the manuscript.

      Weaknesses:

      (a) Data obtained from a single aminoacyl-tRNA (D-Tyr-tRNATyr) have been generalized to imply that what is relevant to this model substrate is true for all other D-aa-tRNAs (term modified aa-tRNAs has been used synonymously with the modified Tyr-tRNATyr). This is not a risk-free extrapolation. For example, the authors see that DTD2 removes modified D-Tyr from tRNATyr in a chain-length dependent manner of the modifier. Why do the authors believe that the length of the amino acid side chain will not matter in the activity of DTD2?

      We thank the reviewer for bringing up this important point. As mentioned above, we wish to clarify that only half of the aminoacyl-tRNA synthetases are known to charge D-amino acids and only D-Leu (Yeast), D-Asp (Bacteria, Yeast), D-Tyr (Bacteria, Cyanobacteria, Yeast) and D-Trp (Bacteria) show toxicity in vivo in the absence of known DTD (Soutourina J. et al., JBC, 2000; Soutourina O. et al., JBC, 2004; Wydau S. et al., JBC, 2009). D-Tyr-tRNATyr is used as a model substrate to test the DTD activity in the field because of the conserved toxicity of D-Tyr in various organisms. DTD2 has been shown to recycle D-Asp-tRNAAsp and D-Tyr-tRNATyr with the same efficiency both in vitro and in vivo (Wydau S. et al., NAR, 2007). Moreover, we have previously shown that it recycles acetaldehyde-modified D-Phe-tRNAPhe and D-Tyr-tRNATyr in vitro as shown in our earlier work (Mazeed M. et al., Science Advances, 2021). We have earlier shown that DTD1, another conserved chiral proofreader across bacteria and eukaryotes, acts via a side chain independent mechanism (Ahmad S. et al., eLife, 2013). To check the biochemical activity of DTD2 on D-Trp-tRNATrp, we have now done the D-Trp, D-Tyr and D-Asp toxicity rescue experiments by expressing the archaeal DTD2 in dtd null E. coli cells. We found that DTD2 could rescue the D-Trp toxicity with equal efficiency like D-Tyr and D-Asp (Figure 1). Considering the action on multiple side chains with different chemistry and size, it can be proposed with reasonable confidence that DTD2 also operates based on a side chain independent manner.

      (b) While the use of EFTu supports that the ternary complex formation by the elongation factor can resist modifications of L-Tyr-tRNATyr by the aldehydes or other agents, in the context of the present work on the role of DTD2 in plants, one would want to see the data using eEF1alpha. This is particularly relevant because there are likely to be differences in the way EFTu and eEF1alpha may protect aminoacyl-tRNAs (for example see description in the latter half of the article by Wolfson and Knight 2005, FEBS Letters 579, 3467-3472).

      We thank the reviewer for bringing up this important point. As mentioned above, to understand the role of plant eEF1A in protecting L-aa-tRNAs from aldehyde modification, we have done a thorough sequence and structural analysis. We analysed the aa-tRNA bound elongation factor structure from bacteria (PDB ids: 1TTT) and found that the side chain of amino acid in the amino acid binding site of EF-Tu is projected outside (Figure: 2A; 3A). In addition, the amino group of amino acid is tightly selected by the main chain atoms of elongation factor thereby lacking a space for aldehydes to enter and then modify the L-aa-tRNAs and Gly-tRNAs (Figure: 2B; 3B). Modelling of D-amino acid (D-phenylalanine and smallest chiral amino acid, D-alanine) in the same site shows serious clashes with main chain atoms of EF-Tu, indicating D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2C-E). Next, we superimposed the tRNA bound mammalian eEF-1A cryoEM structure (PDB id: 5LZS) with bacterial structure to understand the structural differences in terms of tRNA binding and found that elongation factor binds tRNA in a similar way (Figure: 3C-D). Modelling of D-alanine in the amino acid binding site of eEF-1A shows serious clashes with main chain atoms, indicating a general theme of D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2F; 3E). Structure-based sequence alignment of elongation factor from bacteria, archaea and eukaryotes (both plants and mammals) shows a strict conservation of amino acid binding site (Figure: 2G). Minor differences near the amino acid side chain binding site (as indicated in Wolfson and Knight, FEBS Letters, 2005) might induce the amino acid specific binding differences (Figure: 3F). However, those changes will have no influence when the D-chiral amino acid enters the pocket, as the whole side chain would clash with the active site. We have now included this sequence and structural conservation analysis in our revised manuscript (in text: line no 107-129; Figure: 2 and S2). Overall, our structural analysis suggests a conserved mode of aa-tRNA selection by elongation factor across life forms and therefore, our biochemical results with bacterial elongation factor Tu (EF-Tu) reflect the protective role of elongation factor in general across species.

      Reviewer #2 (Public Review):

      In bacteria and mammals, metabolically generated aldehydes become toxic at high concentrations because they irreversibly modify the free amino group of various essential biological macromolecules. However, these aldehydes can be present in extremely high amounts in archaea and plants without causing major toxic side effects. This fact suggests that archaea and plants have evolved specialized mechanisms to prevent the harmful effects of aldehyde accumulation.

      In this study, the authors show that the plant enzyme DTD2, originating from archaea, functions as a D-aminoacyl-tRNA deacylase. This enzyme effectively removes stable D-aminoacyl adducts from tRNAs, enabling these molecules to be recycled for translation. Furthermore, they demonstrate that DTD2 serves as a broad detoxifier for various aldehydes in vivo, extending its function beyond acetaldehyde, as previously believed. Notably, the absence of DTD2 makes plants more susceptible to reactive aldehydes, while its overexpression offers protection against them. These findings underscore the physiological significance of this enzyme.

      We thank the reviewer for the positive comments the manuscript.

      Response to recommendation to authors:

      Reviewer #1 (Recommendations For The Authors):

      I enjoyed reading the manuscript entitled, "Archaeal origin translation proofreader imparts multi aldehyde stress tolerance to land plants" from the Sankaranarayanan lab. This work is an extension of their earlier work published in Sci Adv in 2001, wherein they showed that DTD2 deacylates N-ethyl-D-aminoacyl-tRNAs arising from acetaldehyde toxicity. Now, the authors of this study (Kumar et al.) investigate the role of archaeal/plant DTD2 in the deacylation/detoxification of D-Tyr-tRNATyr modified by multiple other aldehydes and methylglyoxal (which are produced during metabolic reactions in plants). Importantly, the authors take their biochemical observations to plants, to show that deletion of DTD2 gene from a model plant (Arabidopsis thaliana) makes them sensitive to the aldehyde supplementation in the media especially in the presence of D-Tyr. These conclusions are further supported by the observation that the model plant shows increased tolerance to the aldehyde stress when DTD2 is overproduced from the CaMV 35S promoter. The authors propose a model for the role of DTD2 in the evolution of land plants. Finally, the authors suggest that the transgenic crops carrying DTD2 may offer a strategy for stress-tolerant crop development. Overall, the authors present a convincing story, and the data are supportive of the central theme of the story.

      We are happy that reviewer enjoyed our manuscript and found our work convincing. We would also like to thank reviewer for finding our data supportive to the central theme of the manuscript.

      I have the following observations that require the authors' attention.

      1) The title of the manuscript will be more appropriate if revised to, "Archaeal origin translation proofreader, DTD2, imparts multialdehyde stress tolerance to land plants".

      Both the reviewer’s suggested to change the title. We have now changed the title based on reviewer 2 suggestion.

      2) Abstract (line 19): change, "physiologically abundantly produced" to "physiologically produced".

      As per the reviewer’s suggestion, we have now changed it to "physiologically produced".

      3) Introduction (line 50): delete, 'extremely'.

      We have removed the word 'extremely' from the Introduction.

      4) Line 79: change, "can be utilized" to "may be explored".

      We have changed "can be utilized" to "may be explored" as suggested by the reviewers.

      5) Results in general:

      (a) Data obtained from a single aminoacyl-tRNA (D-Tyr-tRNATyr) have been generalized to imply that what is relevant to this model substrate is true for all other D-aa-tRNAs (term modified aa-tRNAs has been used synonymously with the modified D-Tyr-tRNATyr). This is a risky extrapolation. For example, the authors see that DTD2 removes modified D-Tyr from tRNATyr in a chain-length dependent manner of the modifier. Why do the authors believe that the length of the amino acid side chain will not matter in the activity of DTD2?

      We thank the reviewer for bringing up this important point. As mentioned above, we wish to clarify that only half of the aminoacyl-tRNA synthetases are known to charge D-amino acids and only D-Leu (Yeast), D-Asp (Bacteria, Yeast), D-Tyr (Bacteria, Cyanobacteria, Yeast) and D-Trp (Bacteria) show toxicity in vivo in the absence of known DTD (Soutourina J. et al., JBC, 2000; Soutourina O. et al., JBC, 2004; Wydau S. et al., JBC, 2009). D-Tyr-tRNATyr is used as a model substrate to test the DTD activity in the field because of the conserved toxicity of D-Tyr in various organisms. DTD2 has been shown to recycle D-Asp-tRNAAsp and D-Tyr-tRNATyr with the same efficiency both in vitro and in vivo (Wydau S. et al., NAR, 2007). Moreover, we have previously shown that it recycles acetaldehyde-modified D-Phe-tRNAPhe and D-Tyr-tRNATyr in vitro as shown in our earlier work (Mazeed M. et al., Science Advances, 2021). We have earlier shown that DTD1, another conserved chiral proofreader across bacteria and eukaryotes, acts via a side chain independent mechanism (Ahmad S. et al., eLife, 2013). To check the biochemical activity of DTD2 on D-Trp-tRNATrp, we have now done the D-Trp, D-Tyr and D-Asp toxicity rescue experiments by expressing the archaeal DTD2 in dtd null E. coli cells. We found that DTD2 could rescue the D-Trp toxicity with equal efficiency like D-Tyr and D-Asp (Figure 1). Considering the action on multiple side chains with different chemistry and size, it can be proposed with reasonable confidence that DTD2 also operates based on a side chain independent manner.

      (b) Interestingly, the authors do suggest (in the Materials and Methods section) that the experiments were performed with Phe-tRNAPhe as well as Ala-tRNAAla. If what is stated in Materials and Methods is correct, these data should be included to generalize the observations.

      We regret for the confusing statement. We wish to clarify that L- and D-Tyr-tRNATyr were used for checking the TLC-based aldehyde modification, EF-Tu based protection assays and deacylation assays, D-Phe-tRNAPhe was used to characterise aldehyde-based modification by mass spectrometry and L-Ala-tRNAAla was used to check the modification propensity of multiple aldehydes. We used multiple aa-tRNAs to emphasize that aldehyde-based modifications are aspecific towards the identity of aa-tRNAs. All the data obtained with respective aa-tRNAs are included in manuscript.

      (c) While the use of EFTu supports that the ternary complex formation by the elongation factor can resist modifications of L-Tyr-tRNATyr by the aldehydes or other agents, in the context of the present work on the role of DTD2 in plants, one would want to see the data using eEF1alpha. This is particularly relevant because there are likely to be differences in the way EFTu and eEF1alpha may protect aminoacyl-tRNAs (for example see description in the latter half of the article by Wolfson and Knight 2005, FEBS Letters 579, 3467-3472).

      We thank the reviewer for bringing up this important point. As mentioned above, to understand the role of plant eEF1A in protecting L-aa-tRNAs from aldehyde modification, we have done a thorough sequence and structural analysis. We analysed the aa-tRNA bound elongation factor structure from bacteria (PDB ids: 1TTT) and found that the side chain of amino acid in the amino acid binding site of EF-Tu is projected outside (Figure: 2A; 3A). In addition, the amino group of amino acid is tightly selected by the main chain atoms of elongation factor thereby lacking a space for aldehydes to enter and then modify the L-aa-tRNAs and Gly-tRNAs (Figure: 2B; 3B). Modelling of D-amino acid (D-phenylalanine and smallest chiral amino acid, D-alanine) in the same site shows serious clashes with main chain atoms of EF-Tu, indicating D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2C-E). Next, we superimposed the tRNA bound mammalian eEF-1A cryoEM structure (PDB id: 5LZS) with bacterial structure to understand the structural differences in terms of tRNA binding and found that elongation factor binds tRNA in a similar way (Figure: 3C-D). Modelling of D-alanine in the amino acid binding site of eEF-1A shows serious clashes with main chain atoms, indicating a general theme of D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2F; 3E). Structure-based sequence alignment of elongation factor from bacteria, archaea and eukaryotes (both plants and mammals) shows a strict conservation of amino acid binding site (Figure: 2G). Minor differences near the amino acid side chain binding site (as indicated in Wolfson and Knight, FEBS Letters, 2005) might induce the amino acid specific binding differences (Figure: 3F). However, those changes will have no influence when the D-chiral amino acid enters the pocket, as the whole side chain would clash with the active site. We have now included this sequence and structural conservation analysis in our revised manuscript (in text: line no 107-129; Figure: 2 and S2). Overall, our structural analysis suggests a conserved mode of aa-tRNA selection by elongation factor across life forms and therefore, our biochemical results with bacterial elongation factor Tu (EF-Tu) reflect the protective role of elongation factor in general across species.

      6) Results (line 89): Figure: 1C-G (not B-G).

      As correctly pointed out by the reviewer(s), we have changed it to Figure: 1C-G.

      7) Results (line 91): Figure: S1B-G (not C-G).

      We wish to clarify that this is correct.

      8) Line 97: change, "propionaldehyde" to "propionaldehyde (Figure: 1H)".

      As per the reviewer’s suggestion, we have now changed, "propionaldehyde" to "propionaldehyde (Figure: 1H)".

      9) Line 124: The statement, "DTD2 cleaved all modified D-aa-tRNAs at 50 pM to 500 nM range (Figure: 2A_D)" is not consistent with the data presented. For example, Figure 2D does not show any significant cleavage. Figure S2A-B also does not show cleavage.

      We thank the reviewers for pointing this out. We have changed the sentence to “DTD2 cleaved majority of aldehyde modified D-aa-tRNAs at 50 pM to 500 nM range".

      10) Line 131: Cleavage observed in Fig. S2E is inconsistent with the generalized statement on DTD1.

      We wish to clarify that the minimal activity seen in Fig. S2E is inconsistent with the general trend of DTD1’s biochemical activity seen on modified D-aa-tRNAs. In addition, we have earlier shown that D-aa-tRNA fits snugly in the active site of DTD1 (Ahmad S. et al., eLife, 2013) whereas the modified D-aa-tRNA cannot bind due to the space constrains in the active site of DTD1 (Mazeed M. et al., Science Advances, 2021). Therefore, this minimal activity could be a result of technical error during this biochemical experiment and could be considered as no activity.

      11) Lines 129-133: Citations of many figure panels particularly in the supplementary figures are inconsistent with generalized statements. This section requires a major rewrite or rearrangement of the figure panels (in case the statements are correct).

      We thank the reviewers for bringing forth this point and we have accordingly modified the statement into “DTD2 from archaea recycled short chain aldehyde-modified D-aa-tRNA adducts as expected (Figure: 3E-G) and, like DTD2 from plants, it did not act on aldehyde-modified D-aa-tRNAs longer than three chains (Figure: 3H; S3C-D; S4G-L)”.

      12) Line 142: I don't believe one can call PTH a proofreader. Its job is to recycle tRNAs from peptidyl-tRNAs.

      We thank the reviewers for pointing out this very important point. This is now corrected.

      13). Line 145: change, "DTD2 can exert its protection for" to "DTD2 may exert protection from".

      As per the reviewer’s suggestion, we have now changed"DTD2 can exert its protection for" to "DTD2 may exert protection from".

      14) Line 148: change, "a homozygous line (Figure: 3A) and checked for" to "homozygous lines (Figure: 3A) and checked them for".

      As per the reviewer’s suggestion, we have now changed, "a homozygous line (Figure: 3A) and checked for" to "homozygous lines (Figure: 3A) and checked them for".

      15) Line 148: Change, the sentence beginning with dtd2 as follows. Similar to earlier results30-32, dtd2-/- (dtd2 hereafter) plants were susceptible to ethanol (Figure: S4A) confirming the non-functionality DTD2 gene in dtd2 plants.

      As per the reviewer’s suggestion, we have now changed the sentence accordingly.

      16) Line 161: change, "linked" to "associated".

      As per the reviewer’s suggestion, we have now changed "linked" to "associated".

      17) Lines 173-176: It would be interesting to know how well the DTD2 OE lines do in comparison to the other known transgenic lines developed with, for example, ADH, ALDH, or AOX lines. Any ideas would help appreciate the observation with DTD2 OE lines!

      We greatly appreciate the reviewer’s suggestion. We have not done any comparison experiment with any transgenic lines so far. However, it can be potentially done in further studies with DTD2 OE lines.

      18) Line 194: change, "necessary" with "present".

      As per the reviewer’s suggestion, we have now changed "necessary" with "present".

      19) Line 210: what is meant by 'huge'? Would 'significant' sound better?

      As per the reviewer’s suggestion, we have now changed "huge" with "significant".

      20) Lines 239-243: This needs to be rephrased. Isn't alpha carbonyl of the carboxyl group that makes ester bond with the -CCA end of the tRNA required for DTD2 activity as well? Are you referring to the carbonyl group in the moiety that modifies the alpha-amino group? Please clarify. The cited reference (no. 64) of Atherly does not talk about it.

      We regret for the confusing statement. To clarify, we were referencing to the carbonyl carbon of the modification post amino group of the amino acid in aa-tRNAs (Figure: 5). We have now included a figure (Figure: S4Q of revised manuscript) to show the comparison of the carbonyl group for the better clarity. The cited reference Atherly A. G., Nature, 1978 shows the activity of PTH on peptidyl-tRNAs and peptidyl-tRNAs possess carbonyl carbon at alpha position post amino group of amino acid in L-aa-tRNAs.

      Author response image 5.

      Figure showing the difference in the position of carbonyl carbon in acetonyl and acetyl modification on aa-tRNAs.

      21) Line 261: thrive (not thrives).

      As per the reviewer’s suggestion, we have now changed it to thrive.

      22) In Fig3A: second last lane, it should be dtd-/-:: AtDTDH150A (not dtd-/-:: AtDTDH150A).

      We thank the reviewers for pointing out this, we have corrected it.

      23). Materials and methods: Please clarify which experiments used tRNAPhe, tRNAAla, PheRS, etc. Also, please carefully check all other details provided in this section.

      As per the reviewer’s suggestion, we would like to provide a table below explaining the use of different substrates as well as enzymes in our experiments.

      Author response table 1.

      24) Figure legends (many places): p values higher than 0.05 (not less than) are denoted as ns.

      We thank the reviewers for pointing out this. We have corrected it.

      Reviewer #2 (Recommendations For The Authors):

      I have only minor comments for the authors:

      Title: I would replace "Archeal origin translation proofreader" with " A translation proofreader of archeal origin"

      As per the reviewer’s suggestion, we have now changed the title.

      Abstract: This section could benefit from some rewriting. For instance, at the outset, the initial logical connection between the first and second sentences of the abstract is somewhat unclear. At the very least, I would suggest swapping their order to enhance the narrative flow. Later in the text, the term "chiral proofreading systems" is introduced; however, it is only in a subsequent sentence that these systems are explained to be responsible for removing stable D-aminoacyl adducts from tRNA. Providing an immediate explanation of these systems would enhance the reader's comprehension. The authors switch from the past participle tense to the present tense towards the end of the text. I would recommend that they choose one tense for consistency. In the final sentence, I would suggest toning down the statement and replacing "can be used" with "could be explored." (https://www.nature.com/articles/d41586-023-02895-w). The same comment applies to the introduction, line 79.

      As per the reviewer’s suggestion, we have now changed the abstract appropriately.

      General note: Conventionally, the use of italics is reserved for the specific species "Arabidopsis thaliana," while the broader genus "Arabidopsis" is not italicized.

      We acknowledge the reviewer for this pertinent suggestion. This is now corrected in revised version of our manuscript.

      General note: I would advise the authors against employing bold characters in conjunction with colors in the figures.

      We thank the reviewer for this suggestion. We have now changed it appropriately in revised version of our manuscript.

      Figure 1A: I recommend including the concentrations of the various aldehydes used in the experiment within the figure legend. While this information is available in the materials and methods section, it would be beneficial to have it readily accessible when analyzing the figure.

      As per the reviewer’s suggestion, we have now included the concentrations in figure legend.

      Figure 1I, J: some error bars are invisible.

      We thank the reviewers for pointing out this, we have corrected it.

      Figure 2M: The table could be simplified by removing aldehydes for which it was not feasible to demonstrate activity. The letter "M" within the cell labeled "aldehydes" appears to be a typographical error, presumably indicating the figure panel.

      As per the reviewer’s suggestion, we have now changed this appropriately.

      Figure 3: For consistency with the other panels in the figure, I recommend including an additional panel to display the graph depicting the impact of MG on germination.

      As per the reviewer’s suggestion, we have now changed this appropriately.

      Figure 4: Considering that only one plant is presented, it would be beneficial to visualize the data distribution for the other plants used in this experiment, similar to what the authors have done in panel A of the same figure.

      We thank the reviewer for bringing up this point. We wish to clarify that we have done experiment with multiple plants. However, for the sake of clarity, we have included the representative images. Moreover, we have included the quantitative data for multiple plants in Figure 3C-G.

      Figure 5E: The authors may consider presenting a chronological order of events as they believe they occurred during evolution.

      We thank the reviewer for the suggestion. However, it is very difficult to pinpoint the chronology of the events. Aldehydes are lethal for systems due to their hyper reactivity and systems would require immediate solutions to survive. Therefore, we think that both problem (toxic aldehyde production) and its solution (expansion of aldehyde metabolising repertoire and recruitment of archaeal DTD2) might have appeared simultaneously.

      Figure 6: The model appears somewhat crowded, which may affect its clarity and ease of interpretation. The authors might also consider dividing the legend sentence into two separate sentences for better readability.

      As per the reviewer’s suggestion, we have now changed this appropriately.

      Line 149: I recommend explicitly stating that ethanol metabolism produces acetaldehyde. This clarification will help the general reader immediately understand why DTD2 mutant plants are sensitive to ethanol.

      As per the reviewer’s suggestion, we have now changed this appropriately.

      Line 289: there is a typographical error, "promotor" instead of the correct term "promoter.".

      We thank the referee for pointing out this, we have now corrected it.

      Figure S5: The root morphology of DTD2 OE plants appears to exhibit some differences compared to the WT, even in the absence of a high concentration of aldehydes. It would be valuable if the authors could comment on these observed differences unless they have already done so, and I may have overlooked it.

      We thank the referee for pointing out this. We do see minor differences in root morphology, but they are more pronounced with aldehyde treatments. The reason for this phenotype remains elusive and we are trying to understand the role of DTD2 in root development in detail in further studies.

      Some Curiosity Questions (not mandatory for manuscript acceptance):

      1) Do DTD2 OE plants display an earlier flowering phenotype than wild-type Col-0?

      We have not done detailed phenotyping of DTD2 OE plants. However, our preliminary observations suggest no differences in flowering pattern as compared to wild-type Col-0.

      2) What is the current understanding of the endogenous regulation of DTD2?

      We have not done detailed analysis to understand the endogenous regulation of DTD2.

      3) Could the protective phenotype of DTD2 OE plants in the presence of aldehydes be attributed to additional functions of this enzyme beyond the removal of stable D-aminoacyl adducts from tRNAs?

      Based on the available evidence regarding the biochemical activity and in vivo phenotypes of DTD2, it appears that removal of stable D-aminoacyl adducts from tRNA is key for the protective phenotype of DTD2 OE.

      A Suggestion for Future Research (not required for manuscript acceptance):

      The authors could explore the possibility of overexpressing DTD2 in pyruvate decarboxylase transgenic plants and assess whether this strategy enhances flood tolerance without incurring a growth penalty under normal growth conditions.

      We thank the referee for this interesting suggestion for future research. We will surely keep this in mind while exploring the flood tolerance potential of DTD2 OE plants.

    1. We have, as a bedrock value in our society, long agreed on thevalue of open access to information, and recognize the problems thatarise with attempts to restrict access to and development of knowledge.

      Many academics and modern people may think this way, but it is far from a "bedrock value".

      In many indigenous cultures knowledge was carefully sectioned and cordoned off.

      And as we know that knowledge itself is power (ipsa scientia potestas est - Francis Bacon) many people have frequently cordoned off access to information.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study advances our understanding of the forces that shape the genomic landscape of transposable elements. By exploiting both long-read sequencing of mutation accumulation lines and in vivo transposition assays, the authors offer compelling evidence that structural variation rather than transposition largely shapes transposable element copy number evolution in budding yeast. The work will be of interest to the transposable element and genome evolution communities.

      Public Reviews:

      Reviewer #1 (Public Review):

      Henault et al build on their own previous work investigating the longstanding hypothesis that hybridization between divergent populations can activate transposable element mobilization (transposition). Previously they created crosses of increasing sequence divergence, using both intra- and inter-species hybrids, and passaged them neutrally for hundreds of generations. Their previous work showed that neither hybrids isolated from natural environments nor hybrids from their mutation accumulation lines showed consistent evidence of increased transposable element content. Here, they sequence and assemble long-read genomes of 127 of their mutation-accumulation lines and annotate all existing and de novo transposable elements. They find only a handful of de novo transposition events, and instead demonstrate that structural variation (ploidy, aneuploidy, loss of heterozygosity) plays a much larger role in the transposable element load in a given strain. They then created transposable element reporter constructs using two different Ty1 elements from S. paradoxus lineages and measured the transposition rate in a number of intraspecific crosses. They demonstrate that the transposition rate is dependent on both the Ty1 sequence and the copy number of genomic transposable elements, the latter of which is consistent with what has been observed in the literature on transposable element copy number control in Saccharomyces. To my knowledge, others have not directly tested the effect of Ty1 sequence itself (have not created diverse Ty1 reporter constructs), and so this is an interesting advance. Finally, the authors show that mitotype has a moderate effect on transposition rate, which is an intriguing finding that will be interesting to explore in future work.

      This study represents a large effort to investigate how genetic background can influence transposable element load and transposition rate. The long read sequencing, assembly, and annotation, and the creation of these reporter constructs are non-trivial. Their results are straightforward, well supported, and a nice addition to the literature.

      The authors state that the results from their current work support results taken from their previous study using short-read sequencing data of the same lines. The argument that follows is whether the authors gained anything novel from long-read sequencing. I would like to see the authors make a stronger argument for why this new work was necessary, and a more detailed view of similarities or differences from their previous study (when should others choose to do long read vs. short read of evolved lines?).

      We thank the reviewer for the suggestion. While we initially aimed to justify the relevance and novelty of the current in relation to our previous study, we understand that this justification may not have been strong enough.

      In the second paragraph of the introduction, we explain how the multidimensional nature of TE load makes it more complex to characterize that simply reporting the abundance of a given TE family in a given genome. We added the following concluding sentence to further emphasize the importance of long reads in TE-focused genome inference:

      “As such, ongoing technological and computational advances in genome inference, including long-read sequencing, will certainly be key to getting a detailed understanding of the dynamics of TEs and the underpinning evolutionary forces.”

      In the penultimate introductory paragraph, we summarize our previous work from 2020 and highlight that the evolution of Ty contents in MA lines was inferred from aggregate measures of genomic abundance of TE families using short reads. We then make the point that combinations of multiple SVs could affect the landscape of TEs in ways that are not reflected by crude short-read measures. We added the following sentence to further emphasize this point and contrast it with the necessity of using more powerful methodologies for genome resolution:

      “Under this scenario, measuring Ty family abundance would yield no significant net change, and the dissection of the underlying SVs using short reads could often be challenging.”

      Relatedly, the authors should report the rates of structural variants that they observe. How are these results similar/different from other mutation-accumulation work in S. cerevisiae?

      Since this work does not attempt to provide an exhaustive report of all the SVs in the MA lines, but rather focus on attributing an SV type to individual loci occupied by TEs, we cannot include these estimates, excepted for de novo transposition itself (see below). We added the following sentence to the Results section on the classification of Ty loci by SV types:

      “We note that the current methodology does not aim at providing an exhaustive quantification of all SVs in the MA lines, as previously done for some SV types (Marsit et al., 2021), but focuses solely on loci containing Ty elements.”

      We added estimates of the average retrotransposition rate in the MA experiment based on the number of de novo insertions detected in the MA lines genomes.

      Figure 4:

      “The average retrotransposition rates estimated from the counts of de novo insertions (per line per generation per element) are the following: CC1, 1.0✕10-5; CC2, 4.9✕10-6; CC3, 7.6✕10-6; BB1, 1.5✕10-5; BC2, 1.7✕10-5; BA1, 6.5✕10-6; BA2, 2.2✕10-5; BSc1, 3.6✕10-5.”

      We added the following paragraph in the Discussion section to specifically discuss these estimates in relation to the in vivo measurements.

      “We note that while the CC crosses tend to have the lowest retrotransposition rates as estimated from the de novo insertions (~1✕10-5 per line per generation per element; Figure 4), these values are several orders of magnitude higher than the in vivo measures in SpC backgrounds. The discrepancy between these estimates could be due to uncharacterized biases inherent to each method. They could also be linked to differences between the parental genotypes used to generate the MA crosses and the fluctuation assays. One major difference is the use of ade2 genotypes in the MA parents, a strategy that was initially adopted to provide a marker for the loss of mitochondrial respiration (Joseph and Hall, 2004; Lynch et al., 2008). It has been shown that the induction of adenine starvation through minimal adenine concentration in the medium and deletion of ADE2, which inactivates the adenine de novo biosynthesis pathway, increases Ty1 transcript levels (Todeschini et al., 2005), resulting in higher transposition rates. Rich complex medium like the one that was used for the MA experiment (YPD) can exhibit substantial variation in adenine concentration (VanDusen et al., 1997), and adenine can quickly become the limiting nutrient for ade2 strains (Kokina et al., 2014). Thus, we cannot exclude that the choice of initial ade2 genotypes could have inflated the transposition rates in the MA experiment.”

      Since the authors show a small, but consistent influence of mitotype on transposition rates, adding further evidence for the role of mtDNA in regulating transposition, I'm curious what the transposition rate of a p0 strain is. I think including these results could make this observation more compelling.

      We agree that measuring in vivo transposition rates in ρ0 backgrounds would be an interesting avenue. However, there is a large distinction between having non-functional mitochondrial respiration in ρ0 strains and inheriting diverse functional mtDNA haplotypes. The effects we show are all linked to the reciprocal inheritance of intact mtDNAs, producing ρ+ strains that are all respiration-competent, as shown by our growth confirmations on non-fermentable carbon sources for all the diploid backgrounds generated. While potentially interesting, adding transposition rates measures for the ρ0 backgrounds seems hard to justify in the context of our results.

      Reviewer #2 (Public Review):

      This is an interesting follow-up study that uses long-read sequencing to examine previously constructed mutation accumulation lines between wild populations of S. cerevisiae and S. paradoxus. They also complement this work with reporter assays in hybrid backgrounds. The authors are attempting to test the hypothesis that hybridization leads to genome shock and unrestrained transposition. The paper largely confirms previous results (suggesting hybridization does not increase transposition) that are well cited and discussed in the paper, both from this group and from the Smukowski Heil/Dunham group but extends them to a new set of species/hybrids and with some additional resolution via the long read sequencing. The paper is well written and clear and I have no serious complaints.

      In the abstract, the authors make three primary claims:

      Structural variation plays a strong role in TE load.

      Transposition plays only a minor role in shaping the TE landscape in MA lines.

      Transposition rates are not increased by hybridization but are affected by genotype-specific factors.

      I found all three claims supported, albeit with some minor questions below:

      Structural variation plays a strong role in TE load.

      Convinced of this result. However:

      Line 185-187/Figure 3C: I'm curious given that the changes in Ty count are so often linked to changes in gross DNA sequence whether the count per total DNA sequence is actually changing on average in these genomes. Ie., does hybridization tend to increase TE count via CNV or does hybridization tend to increase DNA content in the MA lines and TEs come along for the ride?

      The Ty content definitely “rides along” with the rest of the genome that is affected by retrotransposition-unrelated SVs. To further highlight this point, we added a panel (E) to Figure 3 in which we correlate the net Ty copy number change (same as panel D, formerly C) to the corresponding genome size, which reflects the amount of DNA lost/gained by all SV types. We added the following to the results section:

      “The distributions of net Ty CN change per MA line showed that most crosses had significant gains (Figure 3D), suggesting that Ty load can often increase as a result of random genetic drift. Some (but not all) of these crosses also exhibited significant increases in genome size after evolution (Supplemental Figure S7A). The net Ty CN changes per MA line subgenome were globally correlated to the corresponding changes in subgenome size (Figure 3E). Even after excluding polyploid lines (which have the largest changes in both Ty CN and genome size), we found a significant relationship between the two variables (mixed linear model with random intercepts and slopes for MA crosses, P-value=3.71✕10-9; Supplemental Figure S7B), indicating that SVs affecting large portions of the genome have a substantial impact on the Ty landscape.”

      One question about ploidy (lines 175-177):

      Both aneuploidy and triploidy seem easy to call from this data. A 3:1 tetraploidy as well. However, in Figure 2B there are tetraploids that are around the 1:1 line. How are the authors calling ploidy for these strains? This was not clear to me from the text.

      This detail was indeed missing from the manuscript. The ploidy level of all MA lines was previously measured by DNA staining and flow cytometry, and the ploidy level of the subgenomes of each polyploid MA line was previously inferred from short-read sequencing. We modified the figure captions and the main text to include this along with the corresponding references:

      Figure 2:

      “The ploidy level of each line was previously determined by DNA staining and flow cytometry (Charron et al., 2019; Marsit et al., 2021).”

      Main text:

      “The ratio of classified bases per subgenome was consistent with the corresponding ploidy levels: triploid BC lines had two copies of the SpC subgenome, while tetraploid lines had both SpC subgenomes duplicated (Charron et al., 2019; Marsit et al., 2021) (Figure 2B).”

      “Finally, we used the ploidy level of each MA line subgenome as previously measured by flow cytometry and short-read sequencing (Charron et al., 2019; Marsit et al., 2021).”

      Reviewer #3 (Public Review):

      Henault et al. address the important open question of whether hybridization could trigger TE mobilization. To do this they analysed MA lines derived from crosses of Saccharomyces paradoxus and Saccharomyces cerevisiae using long-read sequencing. These MA lines were already analysed in a previous publication using Illumina short-read data but the novelty of this work is the long-read sequencing data, which may reveal previously missed information. It is an interesting message of this study that hybridization between the two species did not lead to much TE activity. Due to this low activity, the authors performed an additional TE activity assay in vivo to measure transposition rates in hybrid backgrounds. The study is well written and I cannot spot any major problems. The study provides some important messages (like the influence of the genotype and mitochondrial DNA on transposition rates).

      Major comments

      • What I miss the most in this work is the perspective of the host defence against TEs in Saccharmoces. Based on such a mechanistic perspective, why do the authors think that hybridization could lead to a TE reactivation? For example, in Drosophila small RNAs important for the defence against a TE, are solely maternally transmitted. Hybrid offspring will thus solely have small-RNAs complementary to the TEs of the mother but not to the TEs of the father, therefore a reactivation of the paternal TEs may be expected. I was thus wondering, what is the situation in yeast. Why would we expect an upregulation of TEs? Without such a mechanistic explanation the hypothesis that TEs should be upregulated in hybrids is a bit vague, based on a hunch.

      We agree with the reviewer that in the first version of the manuscript, the justification for the investigation of the reactivation hypothesis in the first place was not self-sufficient and relied too much on our previous work, upon which this article builds. We extensively remodeled the introduction to better justify the investigation of this hypothesis in the context of the current knowledge on the regulation of Ty elements in Saccharomyces.  

      Reviewer #1 (Recommendations For The Authors):

      It's interesting that the net change in transposable element copy number in mutation accumulation lines is either insignificant or gain, and never a significant loss. I think this could make a nice discussion point regarding the roles of drift and selection on TE load.

      We thank the reviewer for the suggestion and agree that this is an interesting perspective that we did not explore in the first version of the manuscript. We thus included a short discussion point in the Results:

      “The distributions of net Ty CN change per MA line showed that most crosses had significant gains (Figure 3D), suggesting that Ty load can often increase as a result of random genetic drift.”

      We also added the following paragraph to the discussion section:

      “Our experiments illustrate how under weakened natural selection efficiency, TE load can increase in hybrid genomes by the action of transposition-unrelated SVs. This offers a nuanced perspective on the classical interpretation of the transposition-selection balance model (Charlesworth et al., 1994; Charlesworth and Langley, 1989), in which increased TE load would be predominantly driven by the relaxation of purifying selection against TE insertions generated by de novo transposition. Our results suggest that SVs arising in the context of hybridization can act as a significant source of TE insertion polymorphisms which natural selection can purge more or less efficiently, depending on the population genetic context. This is closely related to the idea that sexual reproduction could favor the spread of TE families, contributing to their evolutionary success (Hickey, 1982; Zeyl et al., 1996). Since the insertion polymorphisms that contribute to increase TE load mostly originate from standing genetic variation, they could be less deleterious and thus harder for natural selection to purge efficiently.”

      The point about the role of LOH in TE load is cool!

      We thank the reviewer for their enthusiasm, it is one of our favorite results as well.

      Figure 1: Add a figure component of the green box and label it Ty1 or TE.

      We modified Figure 1 accordingly.

      Figure 2C: what is the assembly size ratio?

      We added the following sentence to the figure caption to clarify what we define as assembly size ratio:

      “Assembly size ratio refers to the ratio of subgenome assembly size to the corresponding parental assembly size.”

      Something cut off in the N50 plot axis

      Unfortunately, we can’t seem to understand what the reviewer meant with this comment, nothing seems cut out of the figure panel 2C in any of our versions of the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      These are all minor comments/suggestions that the authors can take or leave.

      Line 42: "fuels" should be "fuel".

      Since the verb refers to “source” and not “variants”, we believe it should be at the third person singular.

      Line 43: unclear what the authors mean by "regroup".

      We understand how this phrasing may sound strange. We modified the sentence accordingly:

      “Structural variation is a term that encompasses a broad variety of large-scale sequence alterations”

      Line 51-52: There are a couple of really nice papers that could be cited here from Anna Selmecki's group (Todd et al. 2020, Todd and Selmecki 2019, both in eLife).

      We thank the reviewer for the suggestions, we included some of these references in the manuscript.

      Figure 1: This is a nice cartoon! I'd suggest spelling out LOH here for a truly naive reader.

      We modified the Figure 1 accordingly.

      Figure 3A: One thing that is slightly lost here in the presentation is the relative frequency of the different events because of the changing scales across 3A. I can see why you want to do it this way, but would consider whether there may be a way to present this that makes it more obvious how much more frequent polyploidy is than excision for example.

      We agree with the reviewer that the focus of this visualization is to compare crosses and individual MA lines within SV types, and fails to display the relative importance of each SV type. We solved this by including an additional panel (new 3A) that shows how the number of Ty loci affected by each SV type scales in comparison to others.

      Figure 5: I'm not a fan of the gray bars highlighting the individual strains. This made the graph less intuitively readable for me.

      We tend to agree with the reviewer and rolled back to a previous version of Figure 5 that was lighter on annotations.

      One thing I would like to see in the future from this data (definitely not in this paper) is genome rearrangements within these hybrid MA lines. How often are there structural changes and how often are those changes mediated by repeats including TEs?

      We completely agree with the reviewer that this would be a very interesting avenue, with a distinct (and likely higher) set of challenges at the analysis level compared to simply focusing on TE sequences like we did here. We hope to be able to tackle this goal in the future of this project.

      Reviewer #3 (Recommendations For The Authors):

      • I'm not from the yeast field. But why this focus on the Ty-load? Are Ty's the only active TEs in yeast? Provide some background on the TE landscape in yeast and a justification for focusing on Ty's.

      We agree with the reviewer that this point was only implicit in the introduction. We modified the introductory segment on Saccharomyces yeasts to mention that Ty retrotransposons are the only TEs found in these genomes, thus explaining the exclusive focus on them. It now reads as follows:

      “In the case of Saccharomyces cerevisiae, the only TEs found are five families of long terminal repeat (LTR) retrotransposons families named Ty1-Ty5 (Kim et al., 1998).”

      • 56 I would argue that Petrov et al 2003 is not the best citation for arguing that TEs can lead to genomic rearrangement through ectopic recombination. Petrov solely showed that some long TE families are at lower population frequency than short TE families ones. This could be due to many reasons (e.g. recent activity of long TEs - mostly LTRs) but Petrov interpreted the data as being due to ectopic recombination. Petrov, therefore, did not demonstrate any direct evidence for the involvement of ectopic recombination.

      We agree with the reviewer that this reference is not the best choice to simply support the role of TEs in generating ectopic recombination events and modified the references accordingly.

      • For the assembly the authors used two steps 1) separate the reads based on similarity to a subgenome 2) and assembly the reads from the resulting two sets separately. This is probably the only viable approach, but I'm wondering if this step can lead to some biases (many reads may not be assigned to one sub-genome or assigned to the wrong sub-genome). An alternative, possibly less biased approach, would be to use one of the emerging assemblers that promise to assemble sub-genomes. Maybe discuss why this approach was not pursued.

      We completely agree that our method has some level of bias. We adopted it because it seemed the most appropriate to answer our question, which required to resolve individual TE insertions at the level of single haplotype sequences. One specific challenge of this dataset is that we have a relatively wide range of nucleotide divergence between parental subgenomes in the different MA crosses, from <1% to ~15%. The efficiency of haplotype separation from tools that are not necessarily designed to be tunable with respect to the level of nucleotide divergence seemed uncertain, which is why we opted for a custom methodology. Although read non-classification remains a problem that is hard to solve (and would remain so using orthogonal strategies), we believe that read misclassification is minimized by our stringent criteria for read classification. The goal of this study was not to develop a tool nor to benchmark our approach against existing diploid assembly tools. It yielded phased genome representations that were of sufficient completeness and contiguity to confidently answer our questions, and we believe that pushing the discussion towards technical considerations would fall outside of our main objective.

      • The authors used a decision tree to classify Ty loci. What were the training data? How were the trees validated? Decision tree is a technical term for a classifier in machine learning. I do not think the authors used machine learning in this work, but rather an "an ad-hoc set of rules". The term decision tree in this study is misleading.

      We believe that the term “decision tree” can simply refer to a hierarchy of conditional rules implemented as a classification algorithm. As the reviewer pointed, it is clear from the manuscript that none of the analyses performed include any form of training or fitting of a machine learning classifier. However, we agree that its specific reference to the machine learning classifier can create unnecessary confusion. We thus agree to remove this term from the manuscript and replaced all its instances by “a hierarchy of binary rules”.

      • 272: as it is the CNC explanation does not make a lot of sense to me; some information is missing, is p22 expression increasing with copy numbers?

      Yes, p22 expression correlates positively with the CN of p22-expressing Ty1 elements.

      Why are the two alternative downstream codons important?

      We thought it would be useful to mention the two start codons at this point because later in the discussion, we bring the conservation of the first start codon as an observation consistent with the putative expression of p22 in S. paradoxus. We also thought that it helped clarify the mechanism by which the N-truncated version of the protein is expressed.

      p22 interferes with assembly viral particles when in high copy numbers, but what happens when at low copy numbers, is it essential for retroviral activity? Is it even necessary for the virus or just some garbage product (they mention N-truncated).

      To our knowledge, these questions regarding the potential molecular functions of p22 outside of a retrotransposition restriction factor are still open. We added details to the background on CNC in the Introduction and Results section to help clarify some the points raised:

      Introduction:

      “The best known regulation mechanism in yeast is termed copy number control (CNC) and was characterized in the Ty1 family of S. cerevisiae. This mechanism is a potent copy-number dependent negative feedback loop by which increasing the CN of Ty1 elements strengthens their repression (Czaja et al., 2020; Garfinkel et al., 2003; Saha et al., 2015).”

      Results:

      “The mechanism of negative copy-number dependent self-regulation of retrotransposition (CNC) was characterized in the Ty1 family of S. cerevisiae (Garfinkel et al., 2016). This mechanism relies on the expression of an N-truncated variant of the Ty1 capsid/nucleocapsid Gag protein (p22) from two downstream alternative start codons (Nishida et al., 2015; Saha et al., 2015). p22 expression scales up with the CN of Ty1 elements that encode it (Tucker et al., 2015), which gradually interferes with the assembly of the viral-like particles essential for Ty1 replication (Cottee et al., 2021; Saha et al., 2015). Thus, CNC yields a steep negative relationship between the retrotransposition rate measured with a tester element and the number of Ty1 copies in the genome (Garfinkel et al., 2003; Tucker et al., 2015).”

      • mtDNA influences transposition, is anything known about the mechanism?

      When presenting this result, we make it clear that this finding is not new and was previously observed in S. cerevisiae x S. uvarum hybrids by Smukowski-Heil et al. (2021). In this reference, the authors discuss multiple mechanisms by which mitochondrial biology and mito-nuclear interplay may affect transposition rate, although their data cannot support one specific hypothesis. Our data does not to allow to further dissect the mechanistic basis of the mtDNA effect, not more than the effect of distinct Ty1 natural variants. Since we simply provide new independent evidence for the mtDNA effect, it seems to us that repeating the discussion on putative mechanisms while bringing no support to any given hypothesis would be of limited relevance.

      • During the first reading, I got quite confused about what CN means (copy number as it turned out). I suggest using abbreviations only if absolutely necessary, and I'm not entirely convinced it is necessary here. But I leave this to the discretion of the authors.

      We agree that the excessive use of abbreviations in manuscripts is annoying. However, in this case, “copy number” is used so extensively that its abbreviation seemed to improve the reading experience. Thus, we would prefer to keep it unchanged.

      • Fig 3D: Wilcoxon Rank sum test. It is not clear to me what was tested here? Which data were used?

      We confirm that the statistical test employed is the Wilcoxon signed-rank test, and not the Wilcoxon rank-sum test (also known as Mann-Whitney U-test). The Wilcoxon signed-rank test is used here as a non-parametric one-sample test against the null hypothesis that the distribution is centered around zero.

      • de novo -> italics

      We choose to follow the recommendation of the general style conventions of the ACS guide for scholarly communications not to italicize common Latin terms like “de novo”, “e.g.” and “i.e.”.

    1. Instead of seeking discrete answers to complex problems, experts un-derstand that a given issue may be characterized by several compet-ing perspectives as part of an ongoing conversation in which infor-mation users and creators come together and negotiate meaning.

      This part of the assignment confused me, but now I think I understand better. I realized that sometimes we don't have all the answers, and sometimes the "answers" are just a collaboration of opinions and it is up to you to decide.All the sources I am finding are not direct answers to my question, but they do relate and spark my thoughts and more questions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      The reviewers make some suggestions aimed towards increasing the clarity of the manuscript, and I suggest that the authors examine those carefully. In particular, the figure is difficult to read and could contain additional information to help the reader's interpretation. For example, Reviewer 1 suggests including sample age estimates alongside depth, while Reviewer 3 also notes that there is missing information in the figure. Apart from the figure, Reviewer 1 suggests two additional analysis to help explain the amount of mammoth DNA recovered, which they observe is much higher than previous similar investigations. This would seem to be an important issue to address, given the surprising nature of the findings. In addition to this larger issue, the Reviewer makes a few important suggestions for supplementary material that may be needed to support the authors' statements.

      Some additional recommended edits -- in particular to the text and included references to related studies -- are suggested by Reviewers 2 and 3, and both commented on the lack of a publicly-available data repository. The authors may also wish to comment on or revisit their differential treatment of wooly mammoth vs. wooly rhinoceros samples, though I suspect this has more to do with low read numbers for the rhinos.

      Thank you very much for the positive assessment of our manuscript and clear suggestions for revision. We address these points below.

      Reviewer #1 (Recommendations For The Authors):

      I have a few suggestions that might further improve the manuscript:

      It is difficult for the reader to follow which core slices exactly have been sampled and sequenced. The authors mention 23 samples were taken from core LK-001 and 16 samples from core LK-007. From the text it remains unclear to me what the exact age of each of these samples is. Figure 1 shows the depth at which the LK-001 core was sampled, maybe sample age estimates could be included here.

      Thanks for pointing this out. We have added approximate ages to Figure 1, added the depth range to the text (“from 1.5 to 80 cm”; l. 73-74, caption Figure 1), and reworked the table of the sampling depths in the supplement.

      Line 84-87. The authors mention the retrieval of DNA from several expected Arctic taxa, however no further data regarding these findings is given in the manuscript. It would be useful to report the same numbers for these species as the ones given for the Mammuthus and woolly rhinoceros, which would allow for a comparison of the relative abundance of the DNA between these species. Are the expected Arctic species for instance at much higher (DNA) abundance in the samples? It would also be interesting to know if the authors discovered DNA from extant species that are unlikely to have occurred in the geographic region. A (supplementary)table listing the number of mapped reads to each of the respective mitogenomes for each sequence library would be useful for the reader.

      We added a supplementary table (S8) indicating the numbers of reads assigned to mammals.

      Line 90: I am somewhat amazed by the amount of mammoth DNA the authors recovered from these cores. A total depth of over 400X of the mitogenome is quite extraordinary and I am not aware of any ancient sediment study to date that has retrieved a similar amount of data. For instance, the Wang et al. 2021 paper, which the authors cite, sequenced over 400 samples and did not find any mammoth DNA in 70% of those. For the 30% of samples showing signs of mammoth DNA they retrieved on average 530 sequence reads. In this study the authors find on average ~20.000 reads, in 22 out of the 23 sequence libraries. This makes me wonder if the way the mapping was performed has been too lenient, resulting in possible spurious mappings? To really confirm the authenticity of the mammoth (and woolly rhino data) I would suggest two additional analysis:

      1) Mapping all the sequence libraries to a reference consisting of the complete Asian-elephant genome (for instance https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_024166365.1/), the complete human genome (+mitogenome) and the Asian elephant mitogenome. This could possibly reduce spurious mappings as conserved regions between the genomes are filtered out and could also reduce the possible mapping of NUMTS. If the authors could show that after such a mapping approach a significant number of reads are still assigned to the Asian elephant part (including the mitogenome) of the reference, the reported findings would be strengthened.

      2) I also suggest to construct a mitochondrial haplotype network from the obtained DNA, while also including previously published Asian and African elephants as well as previously published mammoth mitogenomes. If the obtained haplotypes indeed show that they cluster within the known haplotype diversity of mammoth, that would be strong support for the authenticity of the data

      The same analysis could be considered for the woolly rhino data, although the lower read numbers might make this analysis challenging.

      We agree that the amount of mammoth DNA is surprising, which is why we opted for further laboratory experiments for confirmation of the hybridization capture results of the first core, i.e., 1) DNA extraction from a second core of a different lake, 2) a quantitative PCR approach (ddPCR), and 3) metabarcoding. Our results of the highly specific ddPCR and metabarcoding assays confirmed considerable amounts of mammoth DNA in two sediment cores of different lakes, thus we have no doubts regarding the authenticity of the data. Considering the large amount of mammoth DNA, the high number of reads, and particularly the high mitogenome coverage, we argue that the effect of some spurious mapping is negligible and does not affect the main outcome and conclusions of our study. Although we agree that a haplotype network would be interesting, such analyses would stretch beyond the focus of this publication.

      Line 91: The authors mention negative controls (extraction and library blanks) did not produce any reads assigned to mammals. This is quite remarkable, as in my experience low levels of (human)contamination are almost always present in the blanks. Could the authors comment on why they think the blanks did not show any signal of mammalian DNA?

      The hybridization capture enrichment and the filtration and mapping procedures likely eliminated human contamination. Also, the data were mapped against Arctic mammal mitogenomes, which did not include human reference sequences. However, six of the sediment samples contained human sequences (now shown in supplementary table S8), albeit at low read counts (mean = 65)

      Line 97: "mapping suggested that the sequences throughout the core originated from multiple individuals" The authors do not provide any supporting data showing this. I think that an analysis (for instance based on allele frequencies) has to be included in manuscript to support this claim.

      We agree that his claim was not sufficiently supported. We performed further analyses including genomic data of previously retrieved mammoth remains and assigned our data to these haplogroups; the results were added to the main text and are shown as a figure (Fig. 2).

      Line 98: "Signatures of post-mortem DNA decay were comparably minor."

      Do the authors know if the used hybridisation enrichment method can distort the measurement of post-mortem damage? Are for instance reads with C-T substitutions less likely to be captured by the baits?

      To our knowledge, there is no study suggesting that damaged sites are less likely to be captured. In general, the hybridization capture procedure is not overly specific, and studies report that DNA is readily and preferentially captured as long as the difference between baits and DNA is not above 10%.

      Line 100: "The proportions of bases did not suggest a substantial deviation from those in the reference genomes or in the closest extant relative of Mammuthus, the Asian elephant (Elephas maximus)."

      It is not clear to me what the authors mean by this. Could the authors explain how this was measured and what their interpretation of this result is?

      We realize that the sentence was unclear. We meant that the nucleotide composition was similar to that of the reference genomes or the closest extant relative. However, as we do not consider this important for the argument, we have removed this sentence from the manuscript.

      Given the high number of recovered mammoth reads in the samples, it would be interesting to know how much mammoth reads are present in the sample before enrichment capture with the baits. Shotgun sequencing the raw extract of one of the samples with the highest number of mammoth reads might allow for a rough estimate of mammoth DNA abundance compared to the other extant species (e.g. reindeer, Arctic lemming and hare) found in the sample(s). This could give further clarification about the extent of stratigraphy disturbance and its overall effect on the DNA based community reconstruction. However, this is just a suggested additional analysis and not something I believe crucial for supporting the overall findings in this manuscript.

      We fully agree that this would be a highly interesting and informative additional analysis to perform. It was, however, not possible to perform this additional analyses in the course of the current experiments.

      Finally, I could not find a public link to the (sequence)data produced in this study. I strongly encourage the authors to make their data publicly available.

      Thank you for pointing this out. We have added a Data Availability paragraph, including the respective reference.

      Reviewer #2 (Recommendations For The Authors):

      In the Discussion it is mentioned that the reasons for Mammoth extinction are not entirely clear but are largely attributed to sudden climate warming (and add some relevant citations). However, there is also abundant literature that suggest humans also played a role in their extinction (for instance, a recent one, Damien et al. (2022) at Ecology Letters 25: 127-137).

      We agree with the reviewer and have added some the recent citation highlighting the possible influence of humans.

      One possibility to add further interest to this paper would be to conduct a phylogenetic tree with the Mammoth mitogenome(s) retrieved and a reference dataset; it could be interesting to know where do they fall in the phylogeny -already abundant with tens of individuals- and maybe it could be even possible to roughly estimate their date. There are some papers that report many Mammoth mitogenomes, including of course some from Siberia; for instance Chang et al. (2017) at Sci Reports and also Fellow Yates et al. (2017) also at Sci Reports (the latter mainly from Central Europe).

      We are well aware of the amount of mt genomes available for mammoth, and such an analyses would be an interesting addition, potentially also offering the possibility to date the DNA. However, the analyses was hampered and would be less secure for this dataset, as our sequences display quite some variation among each other, suggesting that we have a mix of multiple mt genomes, which we cannot readily distinguish. We thus refrain from this, also because we instead provide multiple lines of evidence for the existence of the mammoth DNA in the surface sediment core (metabarcoding, ddPCR).

      Minor points:

      -Correct wooly to woolly

      Revised.

      -In the sampling description it is not totally clear if the samples were taken at 1 cm each (it is mentioned that core LK-001 is sliced in the field at 1-cm steps for radiometric dating and later it is explained that 23 samples were analyzed from this core, but it is unclear if they represent 23 cm of core)

      -Maybe the authors could briefly define some terms such as "talik"

      Revised.

      Reviewer #3 (Recommendations For The Authors):

      Maybe I missed this but I could not find a data availability statement or the location of the repository

      We have added a Data Availability paragraph, including the respective reference.

      It would be good to see some additional analysis on the distribution of the woolly rhinoceros DNA through the sediment core - like the figure for the mammoth i.e read numbers vs depth.

      We have added to the supplements a table showing the numbers of assigned mammal reads over the core depths (Table S8). However, as rhinoceros reads are considerable rarer in our results, we did not produce a figure.

      Would it be possible to be more explicit about the multiple mammoth individuals, could you calculate a minimum number or haplotypes for example.

      We agree that his claim was not sufficiently supported and added results from additional analyses (incl. Fig. 2). Please see our response above.

      Based on the aim stated in the introduction, the analysis of the Arctic biodiversity of this area is missing, it would be nice to see these result added or maybe the focus needs to be changed for clarity.

      We now explicitly state that this objective pertains to a different study, which is currently still in preparation for publication.

      The single main figure needs a bit more consideration. For example in panel A - there was no information on the transformation performed or what the general trend line refers to. Do the results in panel B refer to all 22 libraries? What is the x-axis in Panel C and what do the coloured lines refer to? Additionally, I think the figure needs to be in higher resolution with increased text size on all axes.

      We revised the figure and the caption for clarity and readability.

      Finally this might be an accidental typo - but when referring to the sample aged at around 8,677 years in text it states this the 36.5 cm sample (line 130 and 192), but the supplementary says this is the 51cm sample (Table S6). This would maybe impact potential conclusions. Would you be able to clarify this.

      Thank you for noting this error, we revised it.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Dubicka and co-workers on calcification in miliolid foraminifera presents an interesting piece of work. The study uses confocal and electron microscopy to show that the traditional picture of calcification in porcelaneous foraminifera is incorrect.

      Strengths:

      The authors present high-quality images and an original approach to a relatively solid (so I thought) model of calcification.

      Weaknesses:

      There are several major shortcomings. Despite the interesting subject and the wonderful images, the conclusions of this manuscript are simply not supported at all by the results. The fluorescent images may not have any relation to the process of calcification and should therefore not be part of this manuscript. The SEM images, however, do point to an outdated idea of miliolid calcification. I think the manuscript would be much stronger with the focus on the SEM images and with the speculation of the physiological processes greatly reduced.

      Reply: We would like to give thanks for all of the highly valuable comments. Prior to our study, we were also convinced that the calcification model of Miliolid (porcelaneous) foraminifera was relatively solid. Nevertheless, our SEM imaging results surprisingly contradicted the old model. The main difference is the in situ biomineralization of calcitic needles that precipitate within the chamber wall after deposition of ACC-bearing vesicles. We agree that our fluorescence studies presented in the paper are not conclusive evidence for the calcification model used by the studied Miliolid species. However, our fluorescent results show that “the old model” (sensu Hemleben et al., 1986) is not completely outdated. Most of the fluorescent imaging data show a vesicular transport of substrates necessary for calcification. This transport is presented by Calcein labelling experiments (Movie 1 that show a high number of dynamic endocytic vesicles of sea water circulation within the cytoplasm. These very fine Calcein-labelled vesicles are most likely responsible for transport and deposition of Ca2+ ions. This is partly consistent with the model presented by Hemleben et al. (1986). We may speculate that calcite nucleation is already occurring within the transported vesicles, but at this stage of research we have no evidence for this phenomenon.

      Further live imaging fluorescence data show autofluorescence of vesicles upon excitation at 405 nm (emission 420–480 nm) associated with acidic vesicles marked by pH-sensitive LysoGlow84, may be a hint indicating association of ACC-bearing vesicles with acidic vesicles. Such spatial association of these vesicles may indicate a mechanism of pH elevation in the vesicles transporting Ca2+-rich gel to the calcifying wall of the new chamber.

      We will do our best to limit the physiological interpretation presented based on fluorescence studies in the revised version of the manuscript. We are convinced that our fluorescent live imaging experiments provide important observations in biomineralizing Miliolid foraminifera, which are still missing in the existing literature. It should be stressed that all the fluorescent experiments and SEM observations were based on specimens constructing and biomineralizing new chambers. All of them belong to the same species and come from the same culture. Due to the aforementioned reasons, it is worthwhile presenting these complimentary results of our study. In the future they may be helpful in further exploration and understanding of all aspects of calcification in foraminifera.

      Reviewer #2 (Public Review):

      Summary:

      Dubicka et al. in their paper entitled " Biocalcification in porcelaneous foraminifera" suggest that in contrast to the traditionally claimed two different modes of test calcification by rotallid and porcelaneous miliolid formaminifera, both groups produce calcareous tests via the intravesicular mineral precursors (Mg-rich amorphous calcium carbonate). These precursors are proposed to be supplied by endocytosed seawater and deposited in situ as mesocrystals formed at the site of new wall formation within the organic matrix. The authors did not observe the calcification of the needles within the transported vesicles, which challenges the previous model of miliolid mineralization. Although the authors argue that these two groups of foraminifera utilize the same calcification mechanism, they also suggest that these calcification pathways evolved independently in the Paleozoic.

      Reply: We would like to acknowledge the review and all valuable comments. We do not argue that Miliolida and Rotallida utilise an identical calcification mechanism, but both groups utilize less divergent crystallization pathways, where mesocrystalline chamber walls are created by accumulating and assembling particles of pre-formed liquid amorphous mineral phase.

      Strengths:

      The authors document various unknown aspects of calcification of Pseudolachlanella eburnea and elucidate some poorly explained phenomena (e.g., translucent properties of the freshly formed test) however there are several problematic observations/interpretations which in my opinion should be carefully addressed.

      Weaknesses:

      1) The authors (line 122) suggest that "characteristic autofluorescence indicates the carbonate content of the vesicles (Fig. S2), which are considered to be Mg-ACCs (amorphous MgCaCO3) (Fig. 2, Movies S4 and S5)". Figure S2 which the authors refer to shows only broken sections of organic sheath at different stages of mineralization. Movie S4 shows that only in a few regions some vesicles exhibit red autofluorescence interpreted as Mg-ACC (S5 is missing but probably the authors were referring to S3). In their previous paper (Dubicka et al 2023: Heliyon), the authors used exactly the same methodology to suggest that these are intracellularly formed Mg-rich amorphous calcium carbonate particles that transform into a stable mineral phase in rotaliid Aphistegina lessonii. However, in Figure 1D (Dubicka et al 2023) the apparently carbonate-loaded vesicles show the same red autofluorescence as the test, whereas in their current paper, no evidence of autofluorescence of Mg-ACC grains accumulated within the "gel-like" organic matrix is given. The S3 and S4 movies show circulation of various fluorescing components, but no initial phase of test formation is observable (numerous mineral grains embedded within the organic matrix - Figures 3A and B - should be clearly observed also as autofluorescence of the whole layer). Thus the crucial argument supporting the calcification model (Figure 5) is missing. There is no support for the following interpretation (lines 199-203) "The existence of intracellular, vesicular intermediate amorphous phase (Mg-ACC pools), which supply successive doses of carbonate material to shell production, was supported by autofluorescence (excitation at 405 nm; Fig. 2; Movies S3 and S4; see Dubicka et al., 2023) and a high content of Ca and Mg quantified from the area of cytoplasm by SEM-EDS analysis (Fig. S6)."

      Reply: We used laser line 405nm and multiphoton excitation to detect ACCs. These wavelengths (partly) permeate the shell to excite ACCs autofluorescence. The autofluorescence of the shells is present as well, but it is not clearly visible in movieS4 as the fluorescence of ACCs is stronger. This may be related to the plane/section of the cell which is shown. The laser permeates the shell above the ACCs (short distance), but to excite the shell CaCO3 around foraminifera in the same three-dimensional section where ACCs are shown, the light must pass a thick CaCO3 area due to the three-dimensional structure of the foraminifera shell. Therefore, the laser light intensity is reduced. In a revised version a movie/image with reduced threshold will be shown.

      2) The authors suggest that "no organic matter was detected between the needles of the porcelain structures (Figures 3E; 3E; S4C, and S5A)". Such a suggestion, which is highly unusual considering that biogenic minerals almost by definition contain various organic components, was made based only on FE-SEM observation. The authors should either provide clearcut evidence of the lack of organic matter (unlikely) or may suggest that intense calcium carbonate precipitation within organic matrix gel ultimately results in a decrease of the amount of the organic phase (but not its complete elimination), alike the pure calcium carbonate crystals are separated from the remaining liquid with impurities ("mother liquor"). On the other hand, if (249-250) "organic matrix involved in the biomineralization of foraminiferal shells may contain collagen-like networks", such "laminar" organization of the organic matrix may partly explain the arrangement of carbonate fibers parallel to the surface as observed in Fig. 3E1.

      Reply: We agree with the reviewer that biogenic minerals should, by definition, contain some organic components. We wrote that "no organic matter was detected between the needles of the porcelain structures” as we did not detect any organic structures based only on our FE-SEM observations. We are convinced that the shell incorporates a limited amount of organic matrix. We will rephrase this part of the text to avoid further confusion.

      3) The author's observations indeed do not show the formation of individual skeletal crystallites within intracellular vesicles, however, do not explain either what is the structure of individual skeletal crystallites and how they are formed. Especially, what are the structures observed in polarized light (and interpreted as calcite crystallites) by De Nooijer et al. 2009? The author's explanation of the process (lines 213-216) is not particularly convincing "we suspect that the OM was removed from the test wall and recycled by the cell itself".

      Reply: Thank you for this comment. We will do our best to supplement our explanations. We are aware of the structures observed in polarized light by De Nooijer et al. (2009). However, Goleń et al. (2022, Protist, https://doi.org/10.1016/j.protis.2022.125886) showed that organic polymers may also exhibit light polarization. Additional experimental studies are needed to distinguish these types of polarization. We will aim to investigate this issue in our future research.

      4) The following passage (lines 296-304) which deals with the concept of mesocrystals is not supported by the authors' methodology or observations. The authors state that miliolid needles "assembled with calcite nanoparticles, are unique examples of biogenic mesocrystals (see Cölfen and Antonietti, 2005), forming distinct geometric shapes limited by planar crystalline faces" (later in the same passage the authors say that "mesocrystals are common biogenic components in the skeletons of marine organisms" (are they thus unique or are they common)? It is my suggestion to completely eliminate this concept here until various crystallographic details of the miliolid test formation are well documented.

      Reply: Our intention was to express that mesocrystals are common biogenic components in the skeletons of marine organisms, however Miliolid needles that form distinct geometric shapes limited by planar crystalline faces are unique type of mesocrystals.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      To the Senior Editor and the Reviewing Editor:

      We sincerely appreciate the valuable comments provided by the reviewers, the reviewing editor, and the senior editor. After carefully reviewing and considering the comments, we have addressed the key concerns raised by the reviewers and made appropriate modifications to the article in the revised manuscript.

      The main revisions made to the manuscript are as follows:

      1) We have added comparison experiments with TNDM (see Fig. 2 and Fig. S2).

      2) We conducted new synthetic experiments to demonstrate that our conclusions are not a by-product of d-VAE (see Fig. S2 and Fig. S11).

      3) We have provided a detailed explanation of how our proposed criteria, especially the second criterion, can effectively exclude the selection of unsuitable signals.

      4) We have included a semantic overview figure of d-VAE (Fig. S1) and a visualization plot of latent variables (Fig. S13).

      5) We have elaborated on the model details of d-VAE, as well as the hyperparameter selection and experimental settings of other comparison models.

      We believe these revisions have significantly improved the clarity and comprehensibility of the manuscript. Thank you for the opportunity to address these important points.

      Reviewer #1

      Q1: “First, the model in the paper is almost identical to an existing VAE model (TNDM) that makes use of weak supervision with behaviour in the same way [1]. This paper should at least be referenced. If the authors wish they could compare their model to TNDM, which combines a state space model with smoothing similar to LFADS. Given that TNDM achieves very good behaviour reconstructions, it may be on par with this model without the need for a Kalman filter (and hence may achieve better separation of behaviour-related and unrelated dynamics).”

      Our model significantly differs from TNDM in several aspects. While TNDM also constrains latent variables to decode behavioral information, it does not impose constraints to maximize behavioral information in the generated relevant signals. The trade-off between the decoding and reconstruction capabilities of generated relevant signals is the most significant contribution of our approach, which is not reflected in TNDM. In addition, the backbone network of signal extraction and the prior distribution of the two models are also different.

      It's worth noting that our method does not require a Kalman filter. Kalman filter is used for post hoc assessment of the linear decoding ability of the generated signals. Please note that extracting and evaluating relevant signals are two distinct stages.

      Heeding your suggestion, we have incorporated comparison experiments involving TNDM into the revised manuscript. Detailed information on model hyperparameters and training settings can be found in the Methods section in the revised manuscripts.

      Thank you for your valuable feedback.

      Q2: “Second, in my opinion, the claims regarding identifiability are overstated - this matters as the results depend on this to some extent. Recent work shows that VAEs generally suffer from identifiability problems due to the Gaussian latent space [2]. This paper also hints that weak supervision may help to resolve such issues, so this model as well as TNDM and CEBRA may indeed benefit from this. In addition however, it appears that the relative weight of the KL Divergence in the VAE objective is chosen very small compared to the likelihood (0.1%), so the influence of the prior is weak and the model may essentially learn the average neural trajectories while underestimating the noise in the latent variables. This, in turn, could mean that the model will not autoencode neural activity as well as it should, note that an average R2 in this case will still be high (I could not see how this is actually computed). At the same time, the behaviour R2 will be large simply because the different movement trajectories are very distinct. Since the paper makes claims about the roles of different neurons, it would be important to understand how well their single trial activities are reconstructed, which can perhaps best be investigated by comparing the Poisson likelihood (LFADS is a good baseline model). Taken together, while it certainly makes sense that well-tuned neurons contribute more to behaviour decoding, I worry that the very interesting claim that neurons with weak tuning contain behavioural signals is not well supported.”

      We don’t think our distilled signals are average neural trajectories without variability. The quality of reconstructing single trial activities can be observed in Figure 3i and Figure S4. Neural trajectories in Fig. 3i and Fig. S4 show that our distilled signals are not average neural trajectories. Furthermore, if each trial activity closely matched the average neural trajectory, the Fano Factor (FF) should theoretically approach 0. However, our distilled signals exhibit a notable departure from this expectation, as evident in Figure 3c, d, g, and f. Regarding the diminished influence of the KL Divergence: Given that the ground truth of latent variable distribution is unknown, even a learned prior distribution might not accurately reflect the true distribution. We found the pronounced impact of the KL divergence would prove detrimental to the decoding and reconstruction performance. As a result, we opt to reduce the weight of the KL divergence term. Even so, KL divergence can still effectively align the distribution of latent variables with the distribution of prior latent variables, as illustrated in Fig. S13. Notably, our goal is extracting behaviorally-relevant signals from given raw signals rather than generating diverse samples from the prior distribution. When aim to separating relevant signals, we recommend reducing the influence of KL divergence. Regarding comparing the Poisson likelihood: We compared Poisson log-likelihood among different methods (except PSID since their obtained signals have negative values), and the results show that d-VAE outperforms other methods.

      Author response image 1.

      Regarding how R2 is computed: , where and denote ith sample of raw signals, ith sample of distilled relevant signals, and the mean of raw signals. If the distilled signals exactly match the raw signals, the sum of squared error is zero, thus R2=1. If the distilled signals always are equal to R2=0. If the distilled signals are worse than the mean estimation, R2 is negative, negative R2 is set to zero.

      Thank you for your valuable feedback.

      Q3: “Third, and relating to this issue, I could not entirely follow the reasoning in the section arguing that behavioural information can be inferred from neurons with weak selectivity, but that it is not linearly decodable. It is right to test if weak supervision signals bleed into the irrelevant subspace, but I could not follow the explanations. Why, for instance, is the ANN decoder on raw data (I assume this is a decoder trained fully supervised) not equal in performance to the revenant distilled signals? Should a well-trained non-linear decoder not simply yield a performance ceiling? Next, if I understand correctly, distilled signals were obtained from the full model. How does a model perform trained only on the weakly tuned neurons? Is it possible that the subspaces obtained with the model are just not optimally aligned for decoding? This could be a result of limited identifiability or model specifics that bias reconstruction to averages (a well-known problem of VAEs). I, therefore, think this analysis should be complemented with tests that do not depend on the model.”

      Regarding “Why, for instance, is the ANN decoder on raw data (I assume this is a decoder trained fully supervised) not equal in performance to the relevant distilled signals? Should a well-trained non-linear decoder not simply yield a performance ceiling?”: In fact, the decoding performance of raw signals with ANN is quite close to the ceiling. However, due to the presence of significant irrelevant signals in raw signals, decoding models like deep neural networks are more prone to overfitting when trained on noisy raw signals compared to behaviorally-relevant signals. Consequently, we anticipate that the distilled signals will demonstrate superior decoding generalization. This phenomenon is evident in Fig. 2 and Fig. S1, where the decoding performance of the distilled signals surpasses that of the raw signals, albeit not by a substantial margin.

      Regarding “Next, if I understand correctly, distilled signals were obtained from the full model. How does a model perform trained only on the weakly tuned neurons? Is it possible that the subspaces obtained with the model are just not optimally aligned for decoding?”:Distilled signals (involving all neurons) are obtained by d-VAE. Subsequently, we use ANN to evaluate the performance of smaller and larger R2 neurons. Please note that separating and evaluating relevant signals are two distinct stages.

      Regarding the reasoning in the section arguing that smaller R2 neurons encode rich information, we would like to provide a detailed explanation:

      1) After extracting relevant signals through d-VAE, we specifically selected neurons characterized by smaller R2 values (Here, R2 signifies the proportion of neuronal activity variance explained by the linear encoding model, calculated using raw signals). Subsequently, we employed both KF and ANN to assess the decoding performance of these neurons. Remarkably, our findings revealed that smaller R2 neurons, previously believed to carry limited behavioral information, indeed encode rich information.

      2) In a subsequent step, we employed d-VAE to exclusively distill the raw signals of these smaller R2 neurons (distinct from the earlier experiment where d-VAE processed signals from all neurons). We then employed KF and ANN to evaluate the distilled smaller R2 neurons. Interestingly, we observed that we could not attain the same richness of information solely through the use of these smaller R2 neurons.

      3) Consequently, we put forth and tested two hypotheses: First, that larger R2 neurons introduce additional signals into the smaller R2 neurons that do not exist in the real smaller R2 neurons. Second, that larger R2 neurons aid in restoring the original appearance of impaired smaller R2 neurons. Our proposed criteria and synthetic experiments substantiate the latter scenario.

      Thank you for your valuable feedback.

      Q4: “Finally, a more technical issue to note is related to the choice to learn a non-parametric prior instead of using a conventional Gaussian prior. How is this implemented? Is just a single sample taken during a forward pass? I worry this may be insufficient as this would not sample the prior well, and some other strategy such as importance sampling may be required (unless the prior is not relevant as it weakly contributed to the ELBO, in which case this choice seems not very relevant). Generally, it would be useful to see visualisations of the latent variables to see how information about behaviour is represented by the model.”

      Regarding "how to implement the prior?": Please refer to Equation 7 in the revised manuscript; we have added detailed descriptions in the revised manuscript.

      Regarding "Generally, it would be useful to see visualizations of the latent variables to see how information about behavior is represented by the model.": Note that our focus is not on latent variables but on distilled relevant signals. Nonetheless, at your request, we have added the visualization of latent variables in the revised manuscript. Please see Fig. S13 for details.

      Thank you for your valuable feedback.

      Recommendations: “A minor point: the word 'distill' in the name of the model may be a little misleading - in machine learning the term refers to the construction of smaller models with the same capabilities.

      It should be useful to add a schematic picture of the model to ease comparison with related approaches.”

      In the context of our model's functions, it operates as a distillation process, eliminating irrelevant signals and retaining the relevant ones. Although the name of our model may be a little misleading, it faithfully reflects what our model does.

      I have added a schematic picture of d-VAE in the revised manuscript. Please see Fig. S1 for details.

      Thank you for your valuable feedback.

      Reviewer #2

      Q1: “Is the apparently increased complexity of encoding vs decoding so unexpected given the entropy, sparseness, and high dimensionality of neural signals (the "encoding") compared to the smoothness and low dimensionality of typical behavioural signals (the "decoding") recorded in neuroscience experiments? This is the title of the paper so it seems to be the main result on which the authors expect readers to focus. ”

      We use the term "unexpected" due to the disparity between our findings and the prior understanding concerning neural encoding and decoding. For neural encoding, as we said in the Introduction, in previous studies, weakly-tuned neurons are considered useless, and smaller variance PCs are considered noise, but we found they encode rich behavioral information. For neural decoding, the nonlinear decoding performance of raw signals is significantly superior to linear decoding. However, after eliminating the interference of irrelevant signals, we found the linear decoding performance is comparable to nonlinear decoding. Rooted in these findings, which counter previous thought, we employ the term "unexpected" to characterize our observations.

      Thank you for your valuable feedback.

      Q2: “I take issue with the premise that signals in the brain are "irrelevant" simply because they do not correlate with a fixed temporal lag with a particular behavioural feature hand-chosen by the experimenter. As an example, the presence of a reward signal in motor cortex [1] after the movement is likely to be of little use from the perspective of predicting kinematics from time-bin to time-bin using a fixed model across trials (the apparent definition of "relevant" for behaviour here), but an entire sub-field of neuroscience is dedicated to understanding the impact of these reward-related signals on future behaviour. Is there method sophisticated enough to see the behavioural "relevance" of this brief, transient, post-movement signal? This may just be an issue of semantics, and perhaps I read too much into the choice of words here. Perhaps the authors truly treat "irrelevant" and "without a fixed temporal correlation" as synonymous phrases and the issue is easily resolved with a clarifying parenthetical the first time the word "irrelevant" is used. But I remain troubled by some claims in the paper which lead me to believe that they read more deeply into the "irrelevancy" of these components.”

      In this paper, we employ terms like ‘behaviorally-relevant’ and ‘behaviorally-irrelevant’ only regarding behavioral variables of interest measured within a given task, such as arm kinematics during a motor control task. A similar definition can be found in the PSID[1].

      Thank you for your valuable feedback.

      [1] Sani, Omid G., et al. "Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification." Nature Neuroscience 24.1 (2021): 140-149.

      Q3: “The authors claim the "irrelevant" responses underpin an unprecedented neuronal redundancy and reveal that movement behaviors are distributed in a higher-dimensional neural space than previously thought." Perhaps I just missed the logic, but I fail to see the evidence for this. The neural space is a fixed dimensionality based on the number of neurons. A more sparse and nonlinear distribution across this set of neurons may mean that linear methods such as PCA are not effective ways to approximate the dimensionality. But ultimately the behaviourally relevant signals seem quite low-dimensional in this paper even if they show some nonlinearity may help.”

      The evidence for the “useless” responses underpin an unprecedented neuronal redundancy is shown in Fig. 5a, d and Fig. S9a. Specifically, the sum of the decoding performance of smaller R2 neurons and larger R2 neurons is significantly greater than that of all neurons for relevant signals (red bar), demonstrating that movement parameters are encoded very redundantly in neuronal population. In contrast, we can not find this degree of neural redundancy in raw signals (purple bar).

      The evidence for the “useless” responses reveal that movement behaviors are distributed in a higher-dimensional neural space than previously thought is shown in the left plot (involving KF decoding) of Fig. 6c, f and Fig. S9f. Specifically, the improvement of KF using secondary signals is significantly higher than using raw signals composed of the same number of dimensions as the secondary signals. These results demonstrate that these dimensions, spanning roughly from ten to thirty, encode much information, suggesting that behavioral information exists in a higher-dimensional subspace than anticipated from raw signals.

      Thank you for your valuable feedback.

      Q5: “there is an apparent logical fallacy that begins in the abstract and persists in the paper: "Surprisingly, when incorporating often-ignored neural dimensions, behavioral information can be decoded linearly as accurately as nonlinear decoding, suggesting linear readout is performed in motor cortex." Don't get me wrong: the equivalency of linear and nonlinear decoding approaches on this dataset is interesting, and useful for neuroscientists in a practical sense. However, the paper expends much effort trying to make fundamental scientific claims that do not feel very strongly supported. This reviewer fails to see what we can learn about a set of neurons in the brain which are presumed to "read out" from motor cortex. These neurons will not have access to the data analyzed here. That a linear model can be conceived by an experimenter does not imply that the brain must use a linear model. The claim may be true, and it may well be that a linear readout is implemented in the brain. Other work [2,3] has shown that linear readouts of nonlinear neural activity patterns can explain some behavioural features. The claim in this paper, however, is not given enough”

      Due to the limitations of current observational methods and our incomplete understanding of brain mechanisms, it is indeed challenging to ascertain the specific data the brain acquires to generate behavior and whether it employs a linear readout. Conventionally, the neural data recorded in the motor cortex do encode movement behaviors and can be used to analyze neural encoding and decoding. Based on these data, we found that the linear decoder KF achieves comparable performance to that of the nonlinear decoder ANN on distilled relevant signals. This finding has undergone validation across three widely used datasets, providing substantial evidence. Furthermore, we conducted experiments on synthetic data to show that this conclusion is not a by-product of our model. In the revised manuscript, we added a more detailed description of this conclusion.

      Thank you for your valuable feedback.

      Q6: “Relatedly, I would like to note that the exercise of arbitrarily dividing a continuous distribution of a statistic (the "R2") based on an arbitrary threshold is a conceptually flawed exercise. The authors read too much into the fact that neurons which have a low R2 w.r.t. PDs have behavioural information w.r.t. other methods. To this reviewer, it speaks more about the irrelevance, so to speak, of the preferred direction metric than anything fundamental about the brain.”

      We chose the R2 threshold in accordance with the guidelines provided in reference [1]. It's worth mentioning that this threshold does not exert any significant influence on the overall conclusions.

      Thank you for your valuable feedback.

      [1] Inoue, Y., Mao, H., Suway, S.B., Orellana, J. and Schwartz, A.B., 2018. Decoding arm speed during reaching. Nature communications, 9(1), p.5243.

      Q7: “I am afraid I may be missing something, as I did not understand the fano factor analysis of Figure 3. In a sense the behaviourally relevant signals must have lower FF given they are in effect tied to the temporally smooth (and consistent on average across trials) behavioural covariates. The point of the original Churchland paper was to show that producing a behaviour squelches the variance; naturally these must appear in the behaviourally relevant components. A control distribution or reference of some type would possibly help here.”

      We agree that including reference signals could provide more context. The Churchland paper said stimulus onset can lead to a reduction in neural variability. However, our experiment focuses specifically on the reaching process, and thus, we don't have comparative experiments involving different types of signals.

      Thank you for your valuable feedback.

      Q8: “The authors compare the method to LFADS. While this is a reasonable benchmark as a prominent method in the field, LFADS does not attempt to solve the same problem as d-VAE. A better and much more fair comparison would be TNDM [4], an extension of LFADS which is designed to identify behaviourally relevant dimensions.”

      We have added the comparison experiments with TNDM in the revised manuscript (see Fig. 2 and Fig. S2). The details of model hyperparameters and training settings can be found in the Methods section in the revised manuscripts.

      Thank you for your valuable feedback.

      Reviewer #3

      Q1.1: “TNDM: LFADS is not the best baseline for comparison. The authors should have compared with TNDM (Hurwitz et al. 2021), which is an extension of LFADS that (unlike LFADS) actually attempts to extract behaviorally relevant factors by adding a behavior term to the loss. The code for TNDM is also available on Github. LFADS is not even supervised by behavior and does not aim to address the problem that d-VAE aims to address, so it is not the most appropriate comparison. ”

      We have added the comparison experiments with TNDM in the revised manuscript (see Fig. 2 and Fig. S2). The details of model hyperparameters and training settings can be found in the Methods section in the revised manuscripts.

      Thank you for your valuable feedback.

      Q1.2: “LFADS: LFADS is a sequential autoencoder that processes sections of data (e.g. trials). No explanation is given in Methods for how the data was passed to LFADS. Was the moving averaged smoothed data passed to LFADS or the raw spiking data (at what bin size)? Was a gaussian loss used or a poisson loss? What are the trial lengths used in each dataset, from which part of trials? For dataset C that has back-to-back reaches, was data chopped into segments? How long were these segments? Were the edges of segments overlapped and averaged as in (Keshtkaran et al. 2022) to avoid noisy segment edges or not? These are all critical details that are not explained. The same details would also be needed for a TNDM comparison (comment 1.1) since it has largely the same architecture as LFADS.

      It is also critical to briefly discuss these fundamental differences between the inputs of methods in the main text. LFADS uses a segment of data whereas VAE methods just use one sample at a time. What does this imply in the results? I guess as long as VAEs outperform LFADS it is ok, but if LFADS outperforms VAEs in a given metric, could it be because it received more data as input (a whole segment)? Why was the factor dimension set to 50? I presume it was to match the latent dimension of the VAE methods, but is the LFADS factor dimension the correct match for that to make things comparable?

      I am also surprised by the results. How do the authors justify LFADS having lower neural similarity (fig 2d) than VAE methods that operate on single time steps? LFADS is not supervised by behavior, so of course I don't expect it to necessarily outperform methods on behavior decoding. But all LFADS aims to do is to reconstruct the neural data so at least in this metric it should be able to outperform VAEs that just operate on single time steps? Is it because LFADS smooths the data too much? This is important to discuss and show examples of. These are all critical nuances that need to be discussed to validate the results and interpret them.”

      Regarding “Was the moving averaged smoothed data passed to LFADS or the raw spiking data (at what bin size)? Was a gaussian loss used or a poisson loss?”: The data used by all models was applied to the same preprocessing procedure. That is, using moving averaged smoothed data with three bins, where the bin size is 100ms. For all models except PSID, we used a Poisson loss.

      Regrading “What are the trial lengths used in each dataset, from which part of trials? For dataset C that has back-to-back reaches, was data chopped into segments? How long were these segments? Were the edges of segments overlapped and averaged as in (Keshtkaran et al. 2022) to avoid noisy segment edges or not?”:

      For datasets A and B, a trial length of eighteen is set. Trials with lengths below the threshold are zero-padded, while trials exceeding the threshold are truncated to the threshold length from their starting point. In dataset A, there are several trials with lengths considerably longer than that of most trials. We found that padding all trials with zeros to reach the maximum length (32) led to poor performance. Consequently, we chose a trial length of eighteen, effectively encompassing the durations of most trials and leading to the removal of approximately 9% of samples. For dataset B (center-out), the trial lengths are relatively consistent with small variation, and the maximum length across all trials is eighteen. For dataset C, we set the trial length as ten because we observed the video of this paradigm and found that the time for completing a single trial was approximately one second. The segments are not overlapped.

      Regarding “Why was the factor dimension set to 50? I presume it was to match the latent dimension of the VAE methods, but is the LFADS factor dimension the correct match for that to make things comparable?”: We performed a grid search for latent dimensions in {10,20,50} and found 50 is the best.

      Regarding “I am also surprised by the results. How do the authors justify LFADS having lower neural similarity (fig 2d) than VAE methods that operate on single time steps? LFADS is not supervised by behavior, so of course I don't expect it to necessarily outperform methods on behavior decoding. But all LFADS aims to do is to reconstruct the neural data so at least in this metric it should be able to outperform VAEs that just operate on single time steps? Is it because LFADS smooths the data too much?”: As you pointed out, we found that LFADS tends to produce excessively smooth and consistent data, which can lead to a reduction in neural similarity.

      Thank you for your valuable feedback.

      Q1.3: “PSID: PSID is linear and uses past input samples to predict the next sample in the output. Again, some setup choices are not well justified, and some details are left out in the 1-line explanation given in Methods.

      Why was a latent dimension of 6 chosen? Is this the behaviorally relevant latent dimension or the total latent dimension (for the use case here it would make sense to set all latent states to be behaviorally relevant)? Why was a horizon hyperparameter of 3 chosen? First, it is important to mention fundamental parameters such as latent dimension for each method in the main text (not just in methods) to make the results interpretable. Second, these hyperparameters should be chosen with a grid search in each dataset (within the training data, based on performance on the validation part of the training data), just as the authors do for their method (line 779). Given that PSID isn't a deep learning method, doing a thorough grid search in each fold should be quite feasible. It is important that high values for latent dimension and a wider range of other hyperparmeters are included in the search, because based on how well the residuals (x_i) for this method are shown predict behavior in Fig 2, the method seems to not have been used appropriately. I would expect ANN to improve decoding for PSID versus its KF decoding since PSID is fully linear, but I don't expect KF to be able to decode so well using the residuals of PSID if the method is used correctly to extract all behaviorally relevant information from neural data. The low neural reconstruction in Fid 2d could also partly be due to using too small of a latent dimension.

      Again, another import nuance is the input to this method and how differs with the input to VAE methods. The learned PSID model is a filter that operates on all past samples of input to predict the output in the "next" time step. To enable a fair comparison with VAE methods, the authors should make sure that the last sample "seen" by PSID is the same as then input sample seen by VAE methods. This is absolutely critical given how large the time steps are, otherwise PSID might underperform simply because it stopped receiving input 300ms earlier than the input received by VAE methods. To fix this, I think the authors can just shift the training and testing neural time series of PSID by 1 sample into the past (relative to the behavior), so that PSID's input would include the input of VAE methods. Otherwise, VAEs outperforming PSID is confounded by PSID's input not including the time step that was provided to VAE.”

      Thanks for your suggestions for letting PSID see the current neural observations. We did it per your suggestions and then performed a grid search for the hyperparameters for PSID. Specifically, we performed a grid search for the horizon hyperparameter in {2,3,4,5,6,7}. Since the relevant latent dimension should be lower than the horizon times the dimension of behavior variables (two-dimensional velocity in this paper) and increasing the dimension will reach performance saturation, we directly set the relevant latent dimensions as the maximum. The horizon number of datasets A, B, C, and synthetic datasets is 7, 6, 6 and 5, respectively.

      And thus the latent dimension of datasets A, B, and C and the synthetic dataset is 14, 12, 12 and 10, respectively.

      Our experiments show that KF can decode information from irrelevant signals obtained by PSID. Although PSID extracts the linear part of raw signals, KF can still use the linear part of the residuals for decoding. The low reconstruction performance of PSID may be because the relationship between latent variables and neural signals is linear, and the relationship between latent variables and behaviors is also linear; this is equivalent to the linear relationship between behaviors and neural signals, and linear models can only explain a small fraction of neural signals.

      Thank you for your valuable feedback.

      Q1.4: “CEBRA: results for CEBRA are incomplete. Similarity to raw signals is not shown. Decoding of behaviorally irrelevant residuals for CEBRA is not shown. Per Fig. S2, CEBRA does better or similar ANN decoding in datasets A and C, is only slightly worse in Dataset B, so it is important to show the other key metrics otherwise it is unclear whether d-VAE has some tangible advantage over CEBRA in those 2 datasets or if they are similar in every metric. Finally, it would be better if the authors show the results for CEBRA on Fig. 2, just as is done for other methods because otherwise it is hard to compare all methods.”

      CEBRA is a non-generative model, this model cannot generate behaviorally-relevant signals. Therefore, we only compared the decoding performance of latent embeddings of CEBRA and signals of d-VAE.

      Thank you for your valuable feedback.

      Q2: “Given the fact that d-VAE infers the latent (z) based on the population activity (x), claims about properties of the inferred behaviorally relevant signals (x_r) that attribute properties to individual neurons are confounded.

      The authors contrast their approach to population level approaches in that it infers behaviorally relevant signals for individual neurons. However, d-VAE is also a population method as it aggregates population information to infer the latent (z), from which behaviorally relevant part of the activity of each neuron (x_r) is inferred. The authors note this population level aggregation of information as a benefit of d-VAE, but only acknowledge it as a confound briefly in the context of one of their analyses (line 340): "The first is that the larger R2 neurons leak their information to the smaller R2 neurons, causing them contain too much behavioral information". They go on to dismiss this confounding possibility by showing that the inferred behaviorally relevant signal of each neuron is often most similar to its own raw signals (line 348-352) compared with all other neurons. They also provide another argument specific to that result section (i.e., residuals are not very behavior predictive), which is not general so I won't discuss it in depth here. These arguments however do not change the basic fact that d-VAE aggregates information from other neurons when extracting the behaviorally relevant activity of any given neuron, something that the authors note as a benefit of d-VAE in many instances. The fact that d-VAE aggregates population level info to give the inferred behaviorally relevant signal for each neuron confounds several key conclusions. For example, because information is aggregated across neurons, when trial to trial variability looks smoother after applying d-VAE (Fig 3i), or reveals better cosine tuning (Fig 3b), or when neurons that were not very predictive of behavior become more predictive of behavior (Fig 5), one cannot really attribute the new smoother single trial activity or the improved decoding to the same single neurons; rather these new signals/performances include information from other neurons. Unless the connections of the encoder network (z=f(x)) is zero for all other neurons, one cannot claim that the inferred rates for the neuron are truly solely associated with that neuron. I believe this a fundamental property of a population level VAE, and simply makes the architecture unsuitable for claims regarding inherent properties of single neurons. This confound is partly why the first claim in the abstract are not supported by data: observing that neurons that don't predict behavior very well would predict it much better after applying d-VAE does not prove that these neurons themselves "encode rich[er] behavioral information in complex nonlinear ways" (i.e., the first conclusion highlighted in the abstract) because information was also aggregated from other neurons. The other reason why this claim is not supported by data is the characterization of the encoding for smaller R2 neurons as "complex nonlinear", which the method is not well equipped to tease apart from linear mappings as I explain in my comment 3.”

      We acknowledge that we cannot obtain the exact single neuronal activity that does not contain any information from other neurons. However, we believe our model can extract accurate approximation signals of the ground truth relevant signals. These signals preserve the inherent properties of single neuronal activity to some extent and can be used for analysis at the single-neuron level.

      We believe d-VAE is a reasonable approach to extract effective relevant signals that preserve inherent properties of single neuronal activity for four key reasons:

      1) d-VAE is a latent variable model that adheres to the neural population doctrine. The neural population doctrine posits that information is encoded within interconnected groups of neurons, with the existence of latent variables (neural modes) responsible for generating observable neuronal activity [1, 2]. If we can perfectly obtain the true generative model from latent variables to neuronal activity, then we can generate the activity of each neuron from hidden variables without containing any information from other neurons. However, without a complete understanding of the brain’s encoding strategies (or generative model), we can only get the approximation signals of the ground truth signals.

      2) After the generative model is established, we need to infer the parameters of the generative model and the distribution of latent variables. During the inference process, inference algorithms such as variational inference or EM algorithms will be used. Generally, the obtained latent variables are also approximations of the real latent variables. When inferring the latent variables, it is inevitable to aggregation the information of the neural population, and latent variables are derived through weighted combinations of neuronal populations [3].

      This inference process is consistent with that of d-VAE (or VAE-based models).

      3) Latent variables are derived from raw neural signals and used to explain raw neural signals. Considering the unknown ground truth of latent variables and behaviorally-relevant signals, it becomes evident that the only reliable reference at the signal level is the raw signals. A crucial criterion for evaluating the reliability of latent variable models (including latent variables and generated relevant signals) is their capability to effectively explain the raw signals [3]. Consequently, we firmly maintain the belief that if the generated signals closely resemble the raw signals to the greatest extent possible, in accordance with an equivalence principle, we can claim that these obtained signals faithfully retain the inherent properties of single neurons. d-VAE explicitly constrains the generated signal to closely resemble the raw signals. These results demonstrate that d-VAE can extract effective relevant signals that preserve inherent properties of single neuronal activity.

      Based on the above reasons, we hold that generating single neuronal activities with the VAE framework is a reasonable approach. The remaining question is whether our model can obtain accurate relevant signals in the absence of ground truth. To our knowledge, in cases where the ground truth of relevant signals is unknown, there are typically two approaches to verifying the reliability of extracted signals:

      1) Conducting synthetic experiments where the ground truth is known.

      2) Validation based on expert knowledge (Three criteria were proposed in this paper). Both our extracted signals and key conclusions have been validated using these two approaches.

      Next, we will provide a detailed response to the concerns regarding our first key conclusion that smaller R2 neurons encode rich information.

      We acknowledge that larger R2 neurons play a role in aiding the reconstruction of signals in smaller R2 neurons through their neural activity. However, considering that neurons are correlated rather than independent entities, we maintain the belief that larger R2 neurons assist damaged smaller R2 neurons in restoring their original appearance. Taking image denoising as an example, when restoring noisy pixels to their original appearance, relying solely on the noisy pixels themselves is often impractical. Assistance from their correlated, clean neighboring pixels becomes necessary.

      The case we need to be cautious of is that the larger R2 neurons introduce additional signals (m) that contain substantial information to smaller R2 neurons, which they do not inherently possess. We believe this case does not hold for two reasons. Firstly, logically, adding extra signals decreases the reconstruction performance, and the information carried by these additional signals is redundant for larger R2 neurons, thus they do not introduce new information that can enhance the decoding performance of the neural population. Therefore, it seems unlikely and unnecessary for neural networks to engage in such counterproductive actions. Secondly, even if this occurs, our second criterion can effectively exclude the selection of these signals. To clarify, if we assume that x, y, and z denote the raw, relevant, and irrelevant signals of smaller R2 neurons, with x=y+z, and the extracted relevant signals become y+m, the irrelevant signals become z-m in this case. Consequently, the irrelevant signals contain a significant amount of information. It's essential to emphasize that this criterion holds significant importance in excluding undesirable signals.

      Furthermore, we conducted a synthetic experiment to show that d-VAE can indeed restore the damaged information of smaller R2 neurons with the help of larger R2 neurons, and the restored neuronal activities are more similar to ground truth compared to damaged raw signals. Please see Fig. S11a,b for details.

      Thank you for your valuable feedback.

      [1] Saxena, S. and Cunningham, J.P., 2019. Towards the neural population doctrine. Current opinion in neurobiology, 55, pp.103-111.

      [2] Gallego, J.A., Perich, M.G., Miller, L.E. and Solla, S.A., 2017. Neural manifolds for the control of movement. Neuron, 94(5), pp.978-984.

      [3] Cunningham, J.P. and Yu, B.M., 2014. Dimensionality reduction for large-scale neural recordings. Nature neuroscience, 17(11), pp.1500-1509.

      Q3: “Given the nonlinear architecture of the VAE, claims about the linearity or nonlinearity of cortical readout are confounded and not supported by the results.

      The inference of behaviorally relevant signals from raw signals is a nonlinear operation, that is x_r=g(f(x)) is nonlinear function of x. So even when a linear KF is used to decode behavior from the inferred behaviorally relevant signals, the overall decoding from raw signals to predicted behavior (i.e., KF applied to g(f(x))) is nonlinear. Thus, the result that decoding of behavior from inferred behaviorally relevant signals (x_r) using a linear KF and a nonlinear ANN reaches similar accuracy (Fig 2), does not suggest that a "linear readout is performed in the motor cortex", as the authors claim (line 471). The authors acknowledge this confound (line 472) but fail to address it adequately. They perform a simulation analysis where the decoding gap between KF and ANN remains unchanged even when d-VAE is used to infer behaviorally relevant signals in the simulation. However, this analysis is not enough for "eliminating the doubt" regarding the confound. I'm sure the authors can also design simulations where the opposite happens and just like in the data, d-VAE can improve linear decoding to match ANN decoding. An adequate way to address this concern would be to use a fully linear version of the autoencoder where the f(.) and g(.) mappings are fully linear. They can simply replace these two networks in their model with affine mappings, redo the modeling and see if the model still helps the KF decoding accuracy reach that of the ANN decoding. In such a scenario, because the overall KF decoding from original raw signals to predicted behavior (linear d-VAE + KF) is linear, then they could move toward the claim that the readout is linear. Even though such a conclusion would still be impaired by the nonlinear reference (d-VAE + ANN decoding) because the achieved nonlinear decoding performance could always be limited by network design and fitting issues. Overall, the third conclusion highlighted in the abstract is a very difficult claim to prove and is unfortunately not supported by the results.”

      We aim to explore the readout mechanism of behaviorally-relevant signals, rather than raw signals. Theoretically, the process of removing irrelevant signals should not be considered part of the inherent decoding mechanisms of the relevant signals. Assuming that the relevant signals we extracted are accurate, the conclusion of linear readout is established. On the synthetic data where the ground truth is known, our distilled signals show a significant improvement in neural similarity to the ground truth when compared to raw signals (refer to Fig. S2l). This observation demonstrates that our distilled signals are accurate approximations of the ground truth. Furthermore, on the three widely-used real datasets, our distilled signals meet the stringent criteria we have proposed (see Fig. 2), also providing strong evidence for their accuracy.

      Regarding the assertion that we could create simulations in which d-VAE can make signals that are inherently nonlinearly decodable into linearly decodable ones: In reality, we cannot achieve this, as the second criterion can rule out the selection of such signals. Specifically,z=x+y=n^2+y, where z, x, y, and n denote raw signals, relevant signals, irrelevant signals and latent variables. If the relevant signals obtained by d-VAE are n, then these signals can be linear decoded accurately. However, the corresponding irrelevant signals are n^2-n+z; thus, irrelevant signals will have much information, and these extracted relevant signals will not be selected. Furthermore, our synthetic experiments offer additional evidence supporting the conclusion that d-VAE does not make inherently nonlinearly decodable signals become linearly decodable ones. As depicted in Fig. S11c, there exists a significant performance gap between KF and ANN when decoding the ground truth signals of smaller R2 neurons. KF exhibits notably low performance, leaving substantial room for compensation by d-VAE. However, following processing by d-VAE, KF's performance of distilled signals fails to surpass its already low ground truth performance and remains significantly inferior to ANN's performance. These results collectively confirm that our approach does not convert signals that are inherently nonlinearly decodable into linearly decodable ones, and the conclusion of linear readout is not a by-product by d-VAE.

      Regarding the suggestion of using linear d-VAE + KF, as discussed in the Discussion section, removing the irrelevant signals requires a nonlinear operation, and linear d-VAE can not effectively separate relevant and irrelevant signals.

      Thank you for your valuable feedback.

      Q4: “The authors interpret several results as indications that "behavioral information is distributed in a higher-dimensional subspace than expected from raw signals", which is the second main conclusion highlighted in the abstract. However, several of these arguments do not convincingly support that conclusion.

      4.1) The authors observe that behaviorally relevant signals for neurons with small principal components (referred to as secondary) have worse decoding with KF but better decoding with ANN (Fig. 6b,e), which also outperforms ANN decoding from raw signals. This observation is taken to suggest that these secondary behaviorally relevant signals encode behavior information in highly nonlinear ways and in a higher dimensions neural space than expected (lines 424 and 428). These conclusions however are confounded by the fact that A) d-VAE uses nonlinear encoding, so one cannot conclude from ANN outperforming KF that behavior is encoded nonlinearly in the motor cortex (see comment 3 above), and B) d-VAE aggregates information across the population so one cannot conclude that these secondary neurons themselves had as much behavior information (see comment 2 above).

      4.2) The authors observe that the addition of the inferred behaviorally relevant signals for neurons with small principal components (referred to as secondary) improves the decoding of KF more than it improves the decoding of ANN (red curves in Fig 6c,f). This again is interpreted similarly as in 4.1, and is confounded for similar reasons (line 439): "These results demonstrate that irrelevant signals conceal the smaller variance PC signals, making their encoded information difficult to be linearly decoded, suggesting that behavioral information exists in a higher-dimensional subspace than anticipated from raw signals". This is confounded by because of the two reasons explained in 4.1. To conclude nonlinear encoding based on the difference in KF and ANN decoding, the authors would need to make the encoding/decoding in their VAE linear to have a fully linear decoder on one hand (with linear d-VAE + KF) and a nonlinear decoder on the other hand (with linear d-VAE + ANN), as explained in comment 3.

      4.3) From S Fig 8, where the authors compare cumulative variance of PCs for raw and inferred behaviorally relevant signals, the authors conclude that (line 554): "behaviorally-irrelevant signals can cause an overestimation of the neural dimensionality of behaviorally-relevant responses (Supplementary Fig. S8)." However, this analysis does not really say anything about overestimation of "behaviorally relevant" neural dimensionality since the comparison is done with the dimensionality of "raw" signals. The next sentence is ok though: "These findings highlight the need to filter out relevant signals when estimating the neural dimensionality.", because they use the phrase "neural dimensionality" not "neural dimensionality of behaviorally-relevant responses".”

      Questions 4.1 and 4.2 are a combination of Q2 and Q3. Please refer to our responses to Q2 and Q3.

      Regarding question 4.3 about “behaviorally-irrelevant signals can cause an overestimation of the neural dimensionality of behaviorally-relevant responses”: Previous studies usually used raw signals to estimate the neural dimensionality of specific behaviors. We mean that using raw signals, which include many irrelevant signals, will cause an overestimation of the neural dimensionality. We have modified this sentence in the revised manuscripts.

      Thank you for your valuable feedback.

      Q5: “Imprecise use of language in many places leads to inaccurate statements. I will list some of these statements”

      5.1) In the abstract: "One solution is to accurately separate behaviorally-relevant and irrelevant signals, but this approach remains elusive due to the unknown ground truth of behaviorally-relevant signals". This statement is not accurate because it implies no prior work does this. The authors should make their statement more specific and also refer to some goal that existing linear (e.g., PSID) and nonlinear (e.g., TNDM) methods for extracting behaviorally relevant signals fail to achieve.

      5.2) In the abstract: "we found neural responses previously considered useless encode rich behavioral information" => what does "useless" mean operationally? Low behavior tuning? More precise use of language would be better.

      5.3) "... recent studies (Glaser 58 et al., 2020; Willsey et al., 2022) demonstrate nonlinear readout outperforms linear readout." => do these studies show that nonlinear "readout" outperforms linear "readout", or just that nonlinear models outperform linear models?

      5.4) Line 144: "The first criterion is that the decoding performance of the behaviorally-relevant signals (red bar, Fig.1) should surpass that of raw signals (the red dotted line, Fig.1).". Do the authors mean linear decoding here or decoding in general? If the latter, how can something extracted from neural surpass decoding of neural data, when the extraction itself can be thought of as part of decoding? The operational definition for this "decoding performance" should be clarified.

      5.5) Line 311: "we found that the dimensionality of primary subspace of raw signals (26, 64, and 45 for datasets A, B, and C) is significantly higher than that of behaviorally-relevant signals (7, 13, and 9), indicating that behaviorally-irrelevant signals lead to an overestimation of the neural dimensionality of behaviorally-relevant signals." => here the dimensionality of the total PC space (i.e., primary subspace of raw signals) is being compared with that of inferred behaviorally-relevant signals, so the former being higher does not indicate that neural dimensionality of behaviorally-relevant signals was overestimated. The former is simply not behavioral so this conclusion is not accurate.

      5.6) Section "Distilled behaviorally-relevant signals uncover that smaller R2 neurons encode rich behavioral information in complex nonlinear ways". Based on what kind of R2 are the neurons grouped? Behavior decoding R2 from raw signals? Using what mapping? Using KF? If KF is used, the result that small R2 neurons benefit a lot from d-VAE could be somewhat expected, given the nonlinearity of d-VAE: because only ANN would have the capacity to unwrap the nonlinear encoding of d-VAE as needed. If decoding performance that is used to group neurons is based on data, regression to the mean could also partially explain the result: the neurons with worst raw decoding are most likely to benefit from a change in decoder, than neurons that already had good decoding. In any case, the R2 used to partition and sort neurons should be more clearly stated and reminded throughout the text and I Fig 3.

      5.7) Line 346 "...it is impossible for our model to add the activity of larger R2 neurons to that of smaller R2 neurons" => Is it really impossible? The optimization can definitely add small-scale copies of behaviorally relevant information to all neurons with minimal increase in the overall optimization loss, so this statement seems inaccurate.

      5.8) Line 490: "we found that linear decoders can achieve comparable performance to that of nonlinear decoders, providing compelling evidence for the presence of linear readout in the motor cortex." => inaccurate because no d-VAE decoding is really linear, as explained in comment 3 above.

      5.9) Line 578: ". However, our results challenge this idea by showing that signals composed of smaller variance PCs nonlinearly encode a significant amount of behavioral information." => inaccurate as results are confounded by nonlinearity of d-VAE as explained in comment 3 above.

      5.10) Line 592: "By filtering out behaviorally-irrelevant signals, our study found that accurate decoding performance can be achieved through linear readout, suggesting that the motor cortex may perform linear readout to generate movement behaviors." => inaccurate because it us confounded by the nonlinearity of d-VAE as explained in comment 3 above.”

      Regarding “5.1) In the abstract: "One solution is to accurately separate behaviorally-relevant and irrelevant signals, but this approach remains elusive due to the unknown ground truth of behaviorally-relevant signals". This statement is not accurate because it implies no prior work does this. The authors should make their statement more specific and also refer to some goal that existing linear (e.g., PSID) and nonlinear (e.g., TNDM) methods for extracting behaviorally relevant signals fail to achieve”:

      We believe our statement is accurate. Our primary objective is to extract accurate behaviorally-relevant signals that closely approximate the ground truth relevant signals. To achieve this, we strike a balance between the reconstruction and decoding performance of the generated signals, aiming to effectively capture the relevant signals. This crucial aspect of our approach sets it apart from other methods. In contrast, other methods tend to emphasize the extraction of valuable latent neural dynamics. We have provided elaboration on the distinctions between d-VAE and other approaches in the Introduction and Discussion sections.

      Thank you for your valuable feedback.

      Regarding “5.2) In the abstract: "we found neural responses previously considered useless encode rich behavioral information" => what does "useless" mean operationally? Low behavior tuning? More precise use of language would be better.”:

      In the analysis of neural signals, smaller variance PC signals are typically seen as noise and are often discarded. Similarly, smaller R2 neurons are commonly thought to be dominated by noise and are not further analyzed. Given these considerations, we believe that the term "considered useless" is appropriate in this context. Thank you for your valuable feedback.

      Regarding “5.3) "... recent studies (Glaser 58 et al., 2020; Willsey et al., 2022) demonstrate nonlinear readout outperforms linear readout." => do these studies show that nonlinear "readout" outperforms linear "readout", or just that nonlinear models outperform linear models?”:

      In this paper, we consider the two statements to be equivalent. Thank you for your valuable feedback.

      Regarding “5.4) Line 144: "The first criterion is that the decoding performance of the behaviorally-relevant signals (red bar, Fig.1) should surpass that of raw signals (the red dotted line, Fig.1).". Do the authors mean linear decoding here or decoding in general? If the latter, how can something extracted from neural surpass decoding of neural data, when the extraction itself can be thought of as part of decoding? The operational definition for this "decoding performance" should be clarified.”:

      We mean the latter, as we said in the section “Framework for defining, extracting, and separating behaviorally-relevant signals”, since raw signals contain too many behaviorally-irrelevant signals, deep neural networks are more prone to overfit raw signals than relevant signals. Therefore the decoding performance of relevant signals should surpass that of raw signals. Thank you for your valuable feedback.

      Regarding “5.5) Line 311: "we found that the dimensionality of primary subspace of raw signals (26, 64, and 45 for datasets A, B, and C) is significantly higher than that of behaviorally-relevant signals (7, 13, and 9), indicating that behaviorally-irrelevant signals lead to an overestimation of the neural dimensionality of behaviorally-relevant signals." => here the dimensionality of the total PC space (i.e., primary subspace of raw signals) is being compared with that of inferred behaviorally-relevant signals, so the former being higher does not indicate that neural dimensionality of behaviorally-relevant signals was overestimated. The former is simply not behavioral so this conclusion is not accurate.”: In practice, researchers usually used raw signals to estimate the neural dimensionality. We mean that using raw signals to do this would overestimate the neural dimensionality. Thank you for your valuable feedback.

      Regarding “5.6) Section "Distilled behaviorally-relevant signals uncover that smaller R2 neurons encode rich behavioral information in complex nonlinear ways". Based on what kind of R2 are the neurons grouped? Behavior decoding R2 from raw signals? Using what mapping? Using KF? If KF is used, the result that small R2 neurons benefit a lot from d-VAE could be somewhat expected, given the nonlinearity of d-VAE: because only ANN would have the capacity to unwrap the nonlinear encoding of d-VAE as needed. If decoding performance that is used to group neurons is based on data, regression to the mean could also partially explain the result: the neurons with worst raw decoding are most likely to benefit from a change in decoder, than neurons that already had good decoding. In any case, the R2 used to partition and sort neurons should be more clearly stated and reminded throughout the text and I Fig 3.”:

      When employing R2 to characterize neurons, it indicates the extent to which neuronal activity is explained by the linear encoding model [1-3]. Smaller R2 neurons have a lower capacity for linearly tuning (encoding) behaviors, while larger R2 neurons have a higher capacity for linearly tuning (encoding) behaviors. Specifically, the approach involves first establishing an encoding relationship from velocity to neural signal using a linear model, i.e., y=f(x), where f represents a linear regression model, x denotes velocity, and y denotes the neural signal. Subsequently, R2 is utilized to quantify the effectiveness of the linear encoding model in explaining neural activity. We have provided a comprehensive explanation in the revised manuscript. Thank you for your valuable feedback.

      [1] Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J., Velliste, M., Boninger, M.L. and Schwartz, A.B., 2013. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet, 381(9866), pp.557-564.

      [2] Wodlinger, B., et al. "Ten-dimensional anthropomorphic arm control in a human brain− machine interface: difficulties, solutions, and limitations." Journal of neural engineering 12.1 (2014): 016011.

      [3] Inoue, Y., Mao, H., Suway, S.B., Orellana, J. and Schwartz, A.B., 2018. Decoding arm speed during reaching. Nature communications, 9(1), p.5243.

      Regarding Questions 5.7, 5.8, 5.9, and 5.10:

      We believe our conclusions are solid. The reasons can be found in our replies in Q2 and Q3. Thank you for your valuable feedback.

      Q6: “Imprecise use of language also sometimes is not inaccurate but just makes the text hard to follow.

      6.1) Line 41: "about neural encoding and decoding mechanisms" => what is the definition of encoding/decoding and how do these differ? The definitions given much later in line 77-79 is also not clear.

      6.2) Line 323: remind the reader about what R2 is being discussed, e.g., R2 of decoding behavior using KF. It is critical to know if linear or nonlinear decoding is being discussed.

      6.3) Line 488: "we found that neural responses previously considered trivial encode rich behavioral information in complex nonlinear ways" => "trivial" in what sense? These phrases would benefit from more precision, for example: "neurons that may seem to have little or no behavior information encoded". The same imprecise word ("trivial") is also used in many other places, for example in the caption of Fig S9.

      6.4) Line 611: "The same should be true for the brain." => Too strong of a statement for an unsupported claim suggesting the brain does something along the lines of nonlin VAE + linear readout.

      6.5) In Fig 1, legend: what is the operational definition of "generating performance"? Generating what? Neural reconstruction?”

      Regarding “6.1) Line 41: "about neural encoding and decoding mechanisms" => what is the definition of encoding/decoding and how do these differ? The definitions given much later in line 77-79 is also not clear.”:

      We would like to provide a detailed explanation of neural encoding and decoding. Neural encoding means how neuronal activity encodes the behaviors, that is, y=f(x), where y denotes neural activity and, x denotes behaviors, f is the encoding model. Neural decoding means how the brain decodes behaviors from neural activity, that is, x=g(y), where g is the decoding model. For further elaboration, please refer to [1]. We have included references that discuss the concepts of encoding and decoding in the revised manuscript. Thank you for your valuable feedback.

      [1] Kriegeskorte, Nikolaus, and Pamela K. Douglas. "Interpreting encoding and decoding models." Current opinion in neurobiology 55 (2019): 167-179.

      Regarding “6.2) Line 323: remind the reader about what R2 is being discussed, e.g., R2 of decoding behavior using KF. It is critical to know if linear or nonlinear decoding is being discussed.”:

      This question is the same as Q5.6. Please refer to the response to Q5.6. Thank you for your valuable feedback.

      Regarding “6.3) Line 488: "we found that neural responses previously considered trivial encode rich behavioral information in complex nonlinear ways" => "trivial" in what sense? These phrases would benefit from more precision, for example: "neurons that may seem to have little or no behavior information encoded". The same imprecise word ("trivial") is also used in many other places, for example in the caption of Fig S9.”:

      We have revised this statement in the revised manuscript. Thanks for your recommendation.

      Regarding “6.4) Line 611: "The same should be true for the brain." => Too strong of a statement for an unsupported claim suggesting the brain does something along the lines of nonlin VAE + linear readout.”

      We mean that removing the interference of irrelevant signals and decoding the relevant signals should logically be two stages. We have revised this statement in the revised manuscript. Thank you for your valuable feedback.

      Regarding “6.5) In Fig 1, legend: what is the operational definition of "generating performance"? Generating what? Neural reconstruction?””:

      We have replaced “generating performance” with “reconstruction performance” in the revised manuscript. Thanks for your recommendation.

      Q7: “In the analysis presented starting in line 449, the authors compare improvement gained for decoding various speed ranges by adding secondary (small PC) neurons to the KF decoder (Fig S11). Why is this done using the KF decoder, when earlier results suggest an ANN decoder is needed for accurate decoding from these small PC neurons? It makes sense to use the more accurate nonlinear ANN decoder to support the fundamental claim made here, that smaller variance PCs are involved in regulating precise control”

      Because when the secondary signal is superimposed on the primary signal, the enhancement in KF performance is substantial. We wanted to explore in which aspect of the behavior the KF performance improvement is mainly reflected. In comparison, the improvement of ANN by the secondary signal is very small, rendering the exploration of the aforementioned questions inconsequential. Thank you for your valuable feedback.

      Q8: “A key limitation of the VAE architecture is that it doesn't aggregate information over multiple time samples. This may be why the authors decided to use a very large bin size of 100ms and beyond that smooth the data with a moving average. This limitation should be clearly stated somewhere in contrast with methods that can aggregate information over time (e.g., TNDM, LFADS, PSID) ”

      We have added this limitation in the Discussion in the revised manuscript. Thanks for your recommendation.

      Q9: “Fig 5c and parts of the text explore the decoding when some neurons are dropped. These results should come with a reminder that dropping neurons from behaviorally relevant signals is not technically possible since the extraction of behaviorally relevant signals with d-VAE is a population level aggregation that requires the raw signal from all neurons as an input. This is also important to remind in some places in the text for example:

      • Line 498: "...when one of the neurons is destroyed."

      • Line 572: "In contrast, our results show that decoders maintain high performance on distilled signals even when many neurons drop out."”

      We want to explore the robustness of real relevant signals in the face of neuron drop-out. The signals our model extracted are an approximation of the ground truth relevant signals and thus serve as a substitute for ground truth to study this problem. Thank you for your valuable feedback.

      Q10: “Besides the confounded conclusions regarding the readout being linear (see comment 3 and items related to it in comment 5), the authors also don't adequately discuss prior works that suggest nonlinearity helps decoding of behavior from the motor cortex. Around line 594, a few works are discussed as support for the idea of a linear readout. This should be accompanied by a discussion of works that support a nonlinear encoding of behavior in the motor cortex, for example (Naufel et al. 2019; Glaser et al. 2020), some of which the authors cite elsewhere but don't discuss here.”

      We have added this discussion in the revised manuscript. Thanks for your recommendation.

      Q11: “Selection of hyperparameters is not clearly explained. Starting line 791, the authors give some explanation for one hyperparameter, but not others. How are the other hyperparameters determined? What is the search space for the grid search of each hyperparameter? Importantly, if hyperparameters are determined only based on the training data of each fold, why is only one value given for the hyperparameter selected in each dataset (line 814)? Did all 5 folds for each dataset happen to select exactly the same hyperparameter based on their 5 different training/validation data splits? That seems unlikely.”

      We perform a grid search in {0.001, 0.01,0.1,1} for hyperparameter beta. And we found that 0.001 is the best for all datasets. As for the model parameters, such as hidden neuron numbers, this model capacity has reached saturation decoding performance and does not influence the results.

      Regarding “Importantly, if hyperparameters are determined only based on the training data of each fold, why is only one value given for the hyperparameter selected in each dataset (line 814)? Did all 5 folds for each dataset happen to select exactly the same hyperparameter based on their 5 different training/validation data splits”: We selected the hyperparameter based on the average performance of 5 folds data on validation sets. The selected value denotes the one that yields the highest average performance across the 5 folds data.

      Thank you for your valuable feedback.

      Q12: “d-VAE itself should also be explained more clearly in the main text. Currently, only the high-level idea of the objective is explained. The explanation should be more precise and include the idea of encoding to latent state, explain the relation to pip-VAE, explain inputs and outputs, linearity/nonlinearity of various mappings, etc. Also see comment 1 above, where I suggest adding more details about other methods in the main text.”

      Our primary objective is to delve into the encoding and decoding mechanisms using the separated relevant signals. Therefore, providing an excessive amount of model details could potentially distract from the main focus of the paper. In response to your suggestion, we have included a visual representation of d-VAE's structure, input, and output (see Fig. S1) in the revised manuscript, which offers a comprehensive and intuitive overview. Additionally, we have expanded on the details of d-VAE and other methods in the Methods section.

      Thank you for your valuable feedback.

      Q13: “In Fig 1f and g, shouldn't the performance plots be swapped? The current plots seem counterintuitive. If there is bias toward decoding (panel g), why is the irrelevant residual so good at decoding?”

      The placement of the performance plots in Fig. 1f and 1g is accurate. When the model exhibits a bias toward decoding, it prioritizes extracting the most relevant features (latent variables) for decoding purposes. As a consequence, the model predominantly generates signals that are closely associated with these extracted features. This selective signal extraction and generation process may result in the exclusion of other potentially useful information, which will be left in the residuals. To illustrate this concept, consider the example of face recognition: if a model can accurately identify an individual using only the person's eyes (assuming these are the most useful features), other valuable information, such as details of the nose or mouth, will be left in the residuals, which could also be used to identify the individual.

      Thank you for your valuable feedback.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary:

      In this interesting work, the authors investigated an important topical question: when we see travelling waves in cortical activity, is this due to true wave-like spread, or due to sequentially activated sources? In simulations, it is shown that sequential brain module activation can show up as a travelling wave - even in improved methods such as phase delay maps - and a variety of parameters is investigated. Then, in ex-vivo turtle eye-brain preparations, the authors show that visual cortex waves observable in local field potentials are in fact often better explained as areas D1 and D2 being sequentially activated. This has implications for how we think about travelling wave methodology and relevant analytical tools.

      Strengths:

      I enjoyed reading the discussion. The authors are careful in their claims, and point out that some phenomena may still indeed be genuine travelling waves, but we should have a higher evidence bar to claim this for a particular process in light of this paper and Zhigalov & Jensen (2023) (ref 44). Given this careful discussion, the claims made are well-supported by the experimental results. The discussion also gives a nice overview of potential options in light of this and future directions.

      The illustration of different gaussian covariances leading to very different latency maps was interesting to see.

      Furthermore, the methods are detailed and clearly structured and the Supplementary Figures, particularly single trial results, are useful and convincing.

      We are glad the reviewer found our manuscript “interesting”, the questions we raise “important”, our claims “well-supported by the experimental results”, and our methods “detailed and clearly structured”.

      The details of the sequentially activated Gaussian simulations give some useful results, but the fundamental idea still appears to be "sequential activation is often indistinguishable from a travelling wave", an idea advanced e.g. by Zhigalov & Jensen (2023). It takes a while until the (in my opinion) more intriguing experimental results.

      To emphasize the experimental results, we switched between the analytical results and the experimental results. Correspondingly, figure 2 now illustrates the more intriguing experimental results and figure 3 the analytical results. In addition, we added subtitles to the different sections of the results to ease the navigation through the paper and to enable the readers to access the different sections more easily.

      One of the key claims is that the spikes are more consistent with two sequentially activated modules rather than a continuous wave (with Fig 3k and 3l key to support this). Whilst this is more consistent, it is worth mentioning that there seems to be stochasticity to this and between-trial variability, especially for spikes.

      In the revised manuscript we added the reviewer’s comment about stochasticity, and we discuss its possible origins:

      "The transition was also not clear when examining spiking responses in some of the trials (as indicated by high DIP scores, Figure 2K). However, the observation that temporal grouping became more pronounced when using ALSA (a more robust estimate of local excitability) (Figure 2L,N), suggests that high DIP values may result from variability in the spike times of single neurons, and not necessarily from the lack of modular activation. Such issues can be resolved by denser sampling of spiking activity in the tissue."

      Recommendations For The Authors:

      The eye-cortex turtle preparation is not the most common. I would add more context about how specific the results are to this preparation vs how comparable it is to human data.

      We added a sentence explaining the relevance of our preparation: “Finally, while the layered organization of turtle cortex is different than that of mammalian cortex, the basic excitability features of both tissues are similar (Connors and Kriegstein, 1986; Hemberger et al., 2019; Kriegstein and Connors, 1986; Larkum et al., 2008; Shein-Idelson et al., 2017b), and substantial differences in the manner by which field potentials and spikes spread through the tissue are not to be expected.”

      Philosophical question: when does a 'module' become small enough for it to count as a travelling wave? More on this could be added to the discussion. I think we are in the very early days for a true understanding of travelling waves, and I wonder if these sequentially activated modules will functionally correspond to the known cortical segregation, or if it varies by area/task.

      We agree with the reviewer that macroscopic waves could be composed of smaller modules (or single neurons at the smallest scale). Our results suggest that modular patterns can be classified as wave patterns both at large scales (of brain areas) and smaller scales of local neural circuits. Therefore, we believe it is necessary to make this distinction across different scales. We sharpened this point in the first paragraph of the discussion:

      "…We showed that LFP measurements indicative of waves propagating across turtle cortex are underlined by discrete and consecutively activated neuronal populations, and not by a continuously propagating wavefront of spikes (Figure 2). Similarly, activation profiles that resemble continuous travelling waves in EEG simulations can be underlined by consecutive activation of two discrete cortical regions (Figure 1). We replicated these results using an analytical model and demonstrated that a simple scenario of sequentially activated Gaussians can exhibit WLPs with a rich diversity of spatiotemporal profiles (Figure 3). Our results offer insight into the scenarios and conditions for WLP detection by identifying failure points that should be considered when identifying travelling waves and therefore suggest caution when interpreting continuous phase latency maps as microscopically propagating wave patterns. Such failure points may exist both when examining activity at the scale of brain regions (Figure 1) and smaller neural circuits (Figure 2). Therefore, our results suggest that the discrepancy between modular and wave activation should be examined across spatial scales. Specifically, it is not necessarily the case that at the fine grained (single neuron) scale activation patterns are modular, but, following coarse graining, smooth wave patterns emerge. Rather, modular activation may hierarchically exist across scales (Kaiser and Hilgetag, 2010; Meunier et al., 2010) and may be masked by smeared spatial supra-threshold excitability boundaries. Below we discuss these limitations across techniques and their implications.”

      I would advise the authors to focus on the experimental data, perhaps by putting the simulations second, and by putting some of the equation details that are in Methods into the Supplementary Information. Whilst the simulation parameter space is well-explored, the fundamental idea of spreading Gaussians is relatively simple, and the current manuscript organization detracted from the main message for me a little bit.”

      Following the referee’s suggestion, we switched between the section with experimental data and the one with the analytic model (see response to comment 1). In addition, to ease the reading of the methods, we moved the mathematical derivation and related equations to appendix 1.

      Things I thought about that you may also enjoy thinking about: Could we tell something about sequential sources vs travelling waves by the nature of the wave - e.g. shape or dispersion? If some wave properties are conserved whilst travelling, this could be evidence for travelling vs two sources.

      This is a wonderful suggestion. We are currently working on a follow up publication with a new approach to do exactly that! We think that this new body of work is outside the scope of this paper.

      Could synaptic potentials spread like waves, but spikes more in modular bursts? This would also explain the LFP vs spikes difference - maybe travelling waves of EPSPs are there priming the network, 'looking' for suitable modules to activate, which then activate sequentially. The current discussion is quite spike-focused - could some information be in synaptic potentials after all?

      This is an interesting idea with intriguing functional implications. We added this idea to our discussion (see paragraph below). In addition, to emphasize our discussion on synaptic potentials, we reorganized the paragraphs in the discussion to separate between our discussion on sub-threshold excitability (which is mostly synaptic) and supra-threshold excitability which is the focus of the second part of the discussion.

      “Variability in responses may also be explained by differences in propagation mechanisms (Ermentrout and Kleinfeld, 2001; Muller et al., 2018; Wu et al., 2008). Several reports suggest that waves are underlined by propagation along axonal collaterals (Muller et al., 2018, 2014). Both the transmembrane voltage-gated currents excited during action potentials as well as the post-synaptic currents along axonal boutons can potentially contribute to measured signals. However, such waves travel at high propagation speeds and are not compatible with the wide diversity of wave velocities and mechanisms of local neuronal interactions (Ermentrout and Kleinfeld, 2001; Feller et al., 1996). An intriguing possibility is that such axonal waves prime neuronal excitability by sub-threshold inputs that later result in modular supra-threshold activation. The ability to experimentally discriminate between axonal inputs and local spiking excitability (e.g. by reporters with different wavelengths) can potentially resolve such discrepancies.

      Our turtle cortex results (Figure 2) exemplify how contrasting sub-threshold LFP measurements with supra-threshold spiking measurements can yield different conclusions about the nature of activity spread….”

    2. Joint Public Review:

      Summary:

      In this interesting work, the authors investigated an important topical question: when we see travelling waves in cortical activity, is this due to true wave-like spread, or due to sequentially activated sources? In simulations, it is shown that sequential brain module activation can show up as a travelling wave - even in improved methods such as phase delay maps - and a variety of parameters is investigated. Then, in ex-vivo turtle eye-brain preparations, the authors show that visual cortex waves observable in local field potentials are in fact often better explained as areas D1 and D2 being sequentially activated. This has implications for how we think about travelling wave methodology and relevant analytical tools.

      Strengths:

      I enjoyed reading the discussion. The authors are careful in their claims, and point out that some phenomena may still indeed be genuine travelling waves, but we should have a higher evidence bar to claim this for a particular process in light of this paper and Zhigalov & Jensen (2023) (ref 44). Given this careful discussion, the claims made are well-supported by the experimental results. The discussion also gives a nice overview of potential options in light of this and future directions.

      The illustration of different gaussian covariances leading to very different latency maps was interesting to see.

      Furthermore, the methods are detailed and clearly structured and the Supplementary Figures, particularly single trial results, are useful and convincing.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      […] While this does not rule out criticality in the brain, it decidedly weakens the evidence for it, which was based on the following logic: critical systems give rise to power law behavior; power law behavior is observed in cortical networks; therefore, cortical networks operate near a critical point. Given, as shown in this paper, that power laws can arise from noncritical processes, the logic breaks. Moreover, the authors show that criticality does not imply optimal information transmission (one of its proposed functions). This highlights the necessity for more rigorous analyses to affirm criticality in the brain. In particular, it suggests that attention should be focused on the question "does the brain implement a dynamical latent variable model?".

      These authors are not the first to show that slowly varying firing rates can give rise to power law behavior (see, for example, Touboul and Destexhe, 2017; Priesemann and Shriki, 2018). However, to our knowledge they are the first to show crackling, and to compute information transmission in the critical state.

      We thank the reviewers for their thoughtful assessment of our paper.

      We would push back on the assessment that our model ‘has nothing to do with criticality,’ and that we observed ‘signatures of criticality [that] emerge through fundamentally non-critical mechanisms.’ This assessment partially stems from the definition of criticality provided in the Public Comment, that ‘criticality is a very specific set of phenomena in physics in which fundamentally local interactions produce unexpected long-range behavior.’

      Our disagreement is largely focused on this definition, which we do not think is a standard definition. Taking the favorite textbook example, the Ising model, criticality is characterized by a set of power-law divergences in thermodynamic quantities (e.g., susceptibility, specific heat, magnetization) at the critical temperature, with exponents of these power laws governed by scaling laws. It is not defined by local interactions. All-to-all Ising model is generally viewed as showing a critical behavior at a certain temperature, even though interactions there are manifestly non-local. It is possible that, by “local” in the definition, the Public Comment meant that interactions are “collective” and among microscopic degrees of freedom. However, that same all-to-all Ising model is mathematically equivalent to the mean-field model, where criticality is achieved through large fluctuations of the mean field, but not through microscopic interactions.

      More commonly, criticality is defined by power laws and scaling relationships that emerge at a critical value of a parameter(s) of the system. That is, criticality is defined by its signatures. What is crucial in all such definitions is that this atypical, critical state requires fine tuning. For example, in the textbook example of the Ising model, a parameter (the temperature) must be tuned to a critical value for critical behavior to appear. In the branching process model that generates avalanche criticality, criticality requires tuning m=1. The key result of our paper is that all signatures expected for avalanche criticality (power laws, crackling, and, as shown below, estimates of the branching rate m), and hence the criticality itself, appear without fine-tuning.

      As we discussed in our introduction, there are a few other instances of signatures of criticality (and hence of criticality itself) emerging without fine-tuning. The first we are aware of was the demonstration of Zipf’s Law (by Schwab, et al. 2014, and Aitchison et al. 2016), a power-law relationship between rank and frequency of states, which was shown to emerge generically in systems driven by a broadly distributed latent variable. A second example, arising from applications of coarse-graining analysis to neural data (cf., Meshulam et al. 2019; also, Morales et al., 2023), was demonstrated in our earlier paper (Morrell et al. 2021). Thus, here we have a third example: the model in this paper generates signatures of criticality in the statistics of avalanches of activity, and it does so without fine-tuning (cf., Fig. 2-3).

      The rate at which these ‘criticality without fine-tuning' examples are piling up may inspire revisiting the requirement of fine-tuning in the definition of criticality, and our ongoing work (Ngampruetikorn et al. 2023) suggests that criticality may be more accurately defined through large fluctuations (variance > 1/N) rather than through fine-tuning or scaling relations.

      References:

      • Schwab DJ, Nemenman I, Mehta P. “Zipf’s Law and Criticality in Multivariate Data without FineTuning.” Phys Rev Lett. 2014 Aug; doi::101103/PhysRevLett.113.068102,

      • Aitchison L, Corradi N, Latham PE. “Zipf’s Law Arising Naturally When There Are Underlying, Unobserved Variables.” PLOS Computational biology. 2016 12; 12(12):1-32. doi:10.1371/journal.pcbi.1005110

      • Meshulam L, Gauthier JL, Brody CD, Tank DW, Bialek W. “Coarse Graining, Fixed Points, and Scaling in a Large Population of Neurons.” Phys Rev Lett. 2019 Oct; doi: 10.1103/PhysRevLett.123.178103.

      • Morales GB, di Santo S, Muñoz MA. “Quasiuniversal scaling in mouse-brain neuronal activity stems from edge-of-instability critical dynamics.” Proceedings of the National Academy of Sciences. 2023; 120(9):e2208998120.

      • Morrell MC, Sederberg AJ, Nemenman I. “Latent Dynamical Variables Produce Signatures of Spatiotemporal Criticality in Large Biological Systems.” Phys Rev Lett. 2021 Mar; doi: 10.1103/PhysRevLett.126.118302.

      • Ngampruetikorn, V., Nemenman, I., Schwab, D., “Extrinsic vs Intrinsic Criticality in Systems with Many Components.” arXiv: arXiv:2309.13898 [physics.bio-ph]

      Major comments:

      1) For many readers, the essential messages of the paper may not be immediately clear. For example, is the paper criticizing the criticality hypothesis of cortical networks, or does the criticism extend deeper, to the theoretical predictions of "crackling" relationships in physical systems as they can emerge without criticality? Statements like "We show that a system coupled to one or many dynamical latent variables can generate avalanche criticality ..." could be misinterpreted as affirming criticality. A more accurate language is needed; for instance, the paper could state that the model generates relationships observed in critical systems. The paper should provide a clearer conclusion and interpretation of the findings in the context of the criticality hypothesis of cortical dynamics.

      Please see the response to the Public Review, above. To clarify the essential message that the dynamical latent variable model produces avalanche criticality without fine-tuning, we have made revisions to the abstract and introduction. This point was already made in the discussion (first sentence).

      Key sentences changed in the abstract:

      "… We find that populations coupled to multiple latent variables produce critical behavior across a broader parameter range than those coupled to a single, quasi-static latent variable, but in both cases, avalanche criticality is observed without fine-tuning of model parameters. … Our results suggest that avalanche criticality arises in neural systems in which activity is effectively modeled as a population driven by a few dynamical variables and these variables can be inferred from the population activity."

      In the introduction, we changed the final sentence to read:

      "These results demonstrate how criticality in neural recordings can arise from latent dynamics in neural activity, without need for fine-tuning of network parameters."

      2) On lines 97-99, the authors state that "We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from recurrent dynamics locally". This idea is also repeated at the beginning of the Summary section. Perhaps being agnostic isn't such a good idea: it's possible that the recurrent dynamics is in a critical regime, which would just push the problem upstream. Presumably you're thinking of recurrent dynamics with slow timescales that's not critical? Or are you happy if it's in the critical regime? This should be clarified.

      We have amended this sentence to clarify that any latent dynamics with large fluctuations would suffice:

      ”We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from large fluctuations in local recurrent dynamics.”

      3) Even though the model in Equation 2 has been described in a previous publication and the Methods section, more details regarding the origin and justification of this model in the context of cortical networks would be helpful in the Results section. Was it chosen just for simplicity, or was there a deeper reason?

      This model was chosen for its simplicity: there are no direct interactions between neurons, coupling between neurons and latent variables is random, and simulation is straightforward. More complex latent dynamics or non-random structure in the coupling matrices could have been used, but our aim was to explore this model in the simplest setting possible.

      We have revised the Results (“Avalanche scaling in a dynamical latent variable model,” first paragraph) to justify the choice of the model:

      "We study a model of a population of neurons that are not coupled to each other directly but are driven by a small number of dynamical latent variables -- that is, slowly changing inputs that are not themselves measured (Fig.~\ref{fig:fig1}A). We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from large fluctuations in local recurrent dynamics. The model was chosen for its simplicity, and because we have previously shown that this model with at least about five latent variables can produce power laws under the coarse-graining analysis \citep{Morrell2021}."

      We have added the following to the beginning of the Methods section expanding on the reasons for this choice:

      "We study a model from Morrell 2021, originally constructed as a model of large populations of neurons in mouse hippocampus. Neurons are non-interacting, receiving inputs reflective of place-field selectivity as well as input current arising from a random projection from a small number of dynamical latent variables, representing inputs shared across the population of neurons that are not directly measured or controlled. In the current paper, we incorporate only the latent variables (no place variables), and we assume that every cell is coupled to every latent variable with some randomly drawn coupling strength."

      4) The Methods section (paragraph starting on line 340) connects the time scale to actual time scales in neuronal systems, stating that "The timescales of latent variables examined range from about 3 seconds to 3000 seconds, assuming 3-ms bins". While bins of 3 ms are relevant for electrophysiological data from LFPs or high-density EEG/MEG, time scales above 10 seconds are difficult to generate through biophysically clear processes like ionic channels and synaptic transmission. The paper suggests that slow time scales of the latent variables are crucial for obtaining power law behavior resembling criticality. Yet, one way to generate such slow time scales is via critical slowing down, implying that some brain areas providing input to the network under study may operate near criticality. This pushes the problem toward explaining the criticality of those external networks. Hence, discussing potential sources for slow time scales in latent variables is crucial. One possibility you might want to consider is sources external to the organism, which could easily have time scales in the 1-24 hour range.

      As the reviewers note, it is a possibility that slow timescales arise from some other brain area in which dynamics are slow due to critical dynamics, but many other plausible sources exist. These include slowly varying sensory stimuli or external sources, as suggested by the reviewers. It is also possible to generate “effective” slow dynamics from non-critical internal sources. One example, from recordings in awake mice, is the slow change in the level of arousal that occurs on the scale of many seconds to minutes. These changes arise from release of neuromodulators that have broad effects on neural populations and correlations in activity (for a focused review, see Poulet and Crochet, 2019).

      We have added the following sentence to the Methods section where timescales of latent variables was discussed:

      "The timescales of latent variables examined range from about $3$ seconds to $3000$ seconds, assuming $3$-ms bins. Inputs with such timescales may arise from external sources, such as sensory stimuli, or from internal sources, such as changes in physiological state."

      5) It is common in neuronal avalanche analysis to calculate the branching parameter using the ratio of events in consecutive bins. Near-critical systems should display values close to 1, especially in simulations without subsampling. Including the estimated values of the branching parameter for the different cases investigated in this study could provide more comprehensive data. While the paper acknowledges that the obtained exponents in the model differ from those in a critical branching process, it would still be beneficial to offer the branching parameter of the observed avalanches for comparison.

      The reviewers requested that the branching parameter be computed in our model. We point out that, for the quasi-stationary latent variables (as in Fig. 3), a branching parameter of 1 is expected because the summed activity at time t+k is, on average, equal to the summed activity at time t, regardless of k. Numerics are consistent with this expectation. Following the methodology for an unbiased estimate of the branching parameter from Wilting and Priesemann (2018), we checked an example set of parameters (epsilon = 8, eta = 3) for quasi-stationary latent fields. We found that the naïve (biased) estimate of the branching parameter was 0.94, and that the unbiased estimator was exp(−1.4⋅10−8) ≈ 0.999999986.

      For faster time scales, it is no longer true that summed activity is constant over time, as the temporal correlations in activity decay exponentially. Using the five-field simulation from Figure 2, we calculated the branching parameter for several values of tau. The biased estimates of m are 0.76 (𝜏=50), 0.79 (𝜏=500), and 0.79 (𝜏=5000). The corrected estimates are 0.98 (𝜏=50), 0.998 (𝜏=500), and 0.9998 (𝜏=5000).

      6) In the Discussion (l 269), the paper suggests potential differences between networks cultured in vitro and in vivo. While significant differences indeed exist, it's worth noting that exponents consistent with a critical branching process have also been observed in vivo (Petermann et al 2009; Hahn et al. 2010), as well as in large-scale human data.

      We thank the reviewers for pointing out these studies, and we have added the missing one (Hahn et al. 2010) to our reference list. The following was added to the discussion, in the section “Explaining Experimental Exponents:”

      "A subset of the in vivo recordings analyzed from anesthetized cat (Hahn et al. 2010) and macaque monkeys (Petermann et al. 2009) exhibited a size distribution exponent close to 1.5."

      Along these lines, we noted two additional studies of high relevance that have been published since our initial submission (Capek et al. 2023, Lombardi et al. 2023), and we have added these references to the discussion of experimental exponents.

      Minor comments:

      1) The term 'latent variable' should be rigorously explained, as it is likely to be unfamiliar to some readers.

      Sentences and clauses have been added to the Introduction, Results and the Methods to clarify the term:

      Intro: “Numerous studies have reported relatively low-dimensional structure in the activity of large populations of neurons [refs], which can be modeled by a population of neurons that are broadly and heterogeneously coupled to multiple dynamical latent (i.e., unobserved) variables.”

      Results: “We studied a population of neurons that are not coupled to each other directly but are driven by a small number of dynamical latent variables -- that is, slowly changing inputs that are not themselves measured.”

      Methods: “Neurons are non-interacting, receiving inputs reflective of place-field selectivity as well as input current reflecting a random projection from a small number of dynamical latent variables, representing inputs shared across the population of neurons that are not directly measured.”

      2) There's a relatively important typo in the equations: Eq. 2 and Eq. 6 differ by a minus sign in the exponent. Eqs. 3 and 4 use the plus sign, but epsilon_0 on line 198 uses the minus sign. All very confusing until we figured out what was going on. But easy to fix.

      Thank you for catching this. We have made the following corrections:

      1) Figures adopted the sign convention that epsilon > 0, with larger values of epsilon decreasing the activity level. Signs in Eqs. 3 and 4 have been corrected to match.

      2) Equation 5 was missing a minus sign in front of the Hamiltonian. Restoring this minus sign fixed the discrepancy between 2 and 6.

      3) In Eq. 7, the left hand side is zeta'/zeta', which is equal to 1. Maybe it should be zeta'/zeta? Fixed, thank you.

      Additional comments:

      The authors are free to ignore these; they are meant to improve the paper.

      We are extremely grateful for the close reading of our paper and note the actions taken below.

      1) We personally would not use the abbreviation DLV; we find abbreviations extremely hard to remember. And DLV is not used that often.

      Done, thank you for the suggestion.

      2) l 198: epsilon_0 = -log(2^{1/N}-1) was kind of hard to picture -- we had to do a little algebra to make sense of it. Why not write e^{-epsilon_0} = 2^{1/N}-1 \approx log(2)/N, which in turn implies that epsilon_0 ~ log(N)?

      Thank you, good point. We have added a sentence now to better explain:

      "...which is maximized at $\epsilon_0 = - \log (2^{1/N} - 1)$, independent of $J_i$ and $\eta$. After some algebra, we find that $\epsilon_0 \sim \log N$ for large $N$."

      3) Typo on l 202: "We plot P_ava as a function of epsilon in Fig. 4B". 4B --> 4D.

      Done

      4) It would be easier on the reader if the tables were all in one place. It would be even nicer to put the parameters in the figure captions. Or at least N; that one is kind of important.

      Table placement was a Latex issue, which we have now fixed. We also have included links between tables and relevant figures and indicated network size.

      5) What's x_i in Eqs. 7 and 8?

      We added a sentence of explanation. These are the individual observations of avalanche sizes or durations, depending on what is being fit.

      6) The latent variables evolve according to an Ornstein-Uhlenbeck process. But we might equally expect oscillations or non-normal behavior coupling dynamical modes, and these are likely to give different behavior with respect to avalanches. It might be worth commenting on this.

      7) The model assumes a normal distribution of the coupling strengths between the latent variables and the binary units. Discussing the potential effects of different types of random coupling could provide interesting insights.

      Both 6 and 7 are interesting questions. At this point, we could speculate that the main results would be qualitatively unchanged, provided dynamics are sufficiently slow and that the distribution of coupling strengths is sufficiently broad (that is, there is variance in the coupling matrix across individual neurons). Further studies would be needed to make these statements more precise.

      8) In Fig 1, tau_f = 1E4 whereas in Fig 2 tau_f = 5E3. Why the difference?

      For Figure 1, we chose a set of parameters that gave clear scaling. In Figure 2, we saw some value in showing more than one example of scaling, hence different parameters for the examples in Fig 2 than Fig 1. Note that the Fig 1 simulations are represented in Fig. 2 G-J, as the 5-field simulation with tau_F = 1e4.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The dominant paradigm in the past decade for modeling the ventral visual stream's response to images has been to train deep neural networks on object classification tasks and regress neural responses from units of these networks. While object classification performance is correlated to the variance explained in the neural data, this approach has recently hit a plateau of variance explained, beyond which increases in classification performance do not yield improvements in neural predictivity. This suggests that classification performance may not be a sufficient objective for building better models of the ventral stream. Lindsey & Issa study the role of factorization in predicting neural responses to images, where factorization is the degree to which variables such as object pose and lighting are represented independently in orthogonal subspaces. They propose factorization as a candidate objective for breaking through the plateau suffered by models trained only on object classification. They claim that (i) maintaining these non-class variables in a factorized manner yields better neural predictivity than ignoring non-class information entirely, and (ii) factorization may be a representational strategy used by the brain.

      The first of these claims is supported by their data. The second claim does not seem well-supported, and the usefulness of their observations is not entirely clear.

      Strengths:<br /> This paper challenges the dominant approach to modeling neural responses in the ventral stream, which itself is valuable for diversifying the space of ideas.

      This paper uses a wide variety of datasets, spanning multiple brain areas and species. The results are consistent across the datasets, which is a great sign of robustness.

      The paper uses a large set of models from many prior works. This is impressively thorough and rigorous.

      The authors are very transparent, particularly in the supplementary material, showing results on all datasets. This is excellent practice.

      Weaknesses:<br /> 1. The primary weakness of this paper is a lack of clarity about what exactly is the contribution. I see two main interpretations: (1-A) As introducing a heuristic for predicting neural responses that improve over-classification accuracy, and (1-B) as a model of the brain's representational strategy. These two interpretations are distinct goals, each of which is valuable. However, I don't think the paper in its current form supports either of them very well:

      (1-A) Heuristic for neural predictivity. The claim here is that by optimizing for factorization, we could improve models' neural predictivity to break through the current predictivity plateau. To frame the paper in this way, the key contribution should be a new heuristic that correlates with neural predictivity better than classification accuracy. The paper currently does not do this. The main piece of evidence that factorization may yield a more useful heuristic than classification accuracy alone comes from Figure 5. However, in Figure 5 it seems that factorization along some factors is more useful than others, and different linear combinations of factorization and classification may be best for different data. There is no single heuristic presented and defended. If the authors want to frame this paper as a new heuristic for neural predictivity, I recommend the authors present and defend a specific heuristic that others can use, e.g. [K * factorization_of_pose + classification] for some constant K, and show that (i) this correlates with neural predictivity better than classification alone, and (ii) this can be used to build models with higher neural predictivity. For (ii), they could fine-tune a state-of-the-art model to improve this heuristic and show that doing so achieves a new state-of-the-art neural predictivity. That would be convincing evidence that their contribution is useful.

      (1-B) Model of representation in the brain. The claim here is that factorization is a general principle of representation in the brain. However, neural predictivity is not a suitable metric for this, because (i) neural predictivity allows arbitrary linear decoders, hence is invariant to the orthogonality requirement of factorization, and (ii) neural predictivity does not match the network representation to the brain representation. A better metric is representational dissimilarity matrices. However, the RDM results in Figure S4 actually seem to show that factorization does not do a very good job of predicting neural similarity (though the comparison to classification accuracy is not shown), which suggests that factorization may not be a general principle of the brain. If the authors want to frame the paper in terms of discovering a general principle of the brain, I suggest they use a metric (or suite of metrics) of brain similarity that is sensitive to the desiderata of factorization, e.g. doesn't apply arbitrary linear transformations, and compare to classification accuracy in addition to invariance.

      Overall, I suggest the authors clarify exactly what their claim is, then focus on that claim and present results to justify it. If neither of the claims above can be supported by evidence, then this paper still has value as an idea that they spent effort trying to test, but they should not suggest these claims in the paper. In that case, it may also be possible to increase the value of the contribution by characterizing how the structure of class-free variable representations impacts correlation with neural fit, instead of just comparing existence vs absence (invariance) of this information. For example, evaluate the degree to which local or global orthogonality matters, or the degree to which curvature of the embedding matters.

      2. I think the comparison to invariance, which is pervasive throughout the paper, is not very informative. First, it is not surprising that invariance is more weakly correlated with neural predictivity than factorization, because invariant representations lose information compared to factorized representations. Second, there has long been extensive evidence that responses throughout the ventral stream are not invariant to the factors the authors consider, so we already knew that invariance is not a good characterization of ventral stream data.

      3. The formalization of the factorization metric is not particularly elegant, because it relies on computing top K principal components for the other-parameter space, where K is arbitrarily chosen as 10. While the authors do show that in their datasets the results are not very sensitive to K (Figure S5), that is not guaranteed to be the case in general. I suggest the authors try to come up with a formalization that doesn't have arbitrary constants. For example, one possibility that comes to mind is E[delta_a x delta_b], where 'x' is the normalized cross product, delta_a, and delta_b are deltas in representation space induced by perturbations of factors a and b, and the expectation is taken over all base points and deltas. This is just the first thing that comes to mind, and I'm sure the authors can come up with something better. The literature on disentangling metrics in machine learning may be useful for ideas on measuring factorization.

      4. The authors defined the term "factorization" according to their metric. I think introducing this new term is not necessary and can be confusing because the term "factorization" is vague and used by different researchers in different ways. Perhaps a better term is "orthogonality", because that is clear and seems to be what the authors' metric is measuring.

      5. One general weakness of the factorization paradigm is the reliance on a choice of factors. This is a subjective choice and becomes an issue as you scale to more complex images where the choice of factors is not obvious. While this choice of factors cannot be avoided, I suggest the authors add two things: First, an analysis of how sensitive the results are to the choice of factors (e.g. transform the basis set of factors and re-run the metric); second, include some discussion about how factors may be chosen in general (e.g. based on temporal statistics of the world, independent components analysis, or something else).

  2. Jan 2024
    1. everything in my own immediate experience supports my deep belief that I am the absolute centre of the universe; the realest, most vivid and important person in existence. We rarely think about this sort of natural, basic self-centredness because it’s so socially repulsive.

      We did an exercise in my "Models of Effective Helping" class yesterday where we were given a list of about 12 people and the list had their ages and a brief description of who they are. We had to choose as a group eight people from the list to go on a life raft and the rest of them would die. You could also choose to save yourself as one of the eight. There was a heated debate over whether its ethical or proper to choose to save yourself over somebody else. I couldn't fathom the thought of me choosing for somebody to die over myself, but the majority of the class agreed to save themselves and kill somebody else. What I thought was even more shocking was that a few of the people on the list were teenagers and people were trying to justify killing them over themselves. What I learned is that there are many people who truly believe that they are the center of the universe, and it may just be human nature to think so.

    1. These functions include the following: (1) poor people do the work that other people do not want to do; (2) the programs that help poor people provide a lot of jobs for the people employed by the programs; (3) the poor purchase goods, such as day-old bread and used clothing, that other people do not wish to purchase, and thus extend the economic value of these goods; and (4) the poor provide jobs for doctors, lawyers, teachers, and other professionals who may not be competent enough to be employed in positions catering to wealthier patients, clients, students, and so forth (Gans, 1972)

      This seems like the thinking of someone who does not believe in equality. I don't think that we need such severe levels of poverty to achieve a healthy social order. It should not be impossible to get out of poverty. Poverty should not be a life sentence.

    1. A disability is an ability that a person doesn’t have, but that their society expects them to have.1 For example: If a building only has staircases to get up to the second floor (it was built assuming everyone could walk up stairs), then someone who cannot get up stairs has a disability in that situation. If a physical picture book was made with the assumption that people would be able to see the pictures, then someone who cannot see has a disability in that situation. If tall grocery store shelves were made with the assumption that people would be able to reach them, then people who are short, or who can’t lift their arms up, or who can’t stand up, all would have a disability in that situation. If an airplane seat was designed with little leg room, assuming people’s legs wouldn’t be too long, then someone who is very tall, or who has difficulty bending their legs would have a disability in that situation. Which abilities are expected of people, and therefore what things are considered disabilities, are socially defined. Different societies and groups of people make different assumptions about what people can do, and so what is considered a disability in one group, might just be “normal” in another. There are many things we might not be able to do that won’t be considered disabilities because our social groups don’t expect us to be able to do them. For example, none of us have wings that we can fly with, but that is not considered a disability, because our social groups didn’t assume we would be able to. Or, for a more practical example, let’s look at color vision: Most humans are trichromats, meaning they can see three base colors (red, green, and blue), along with all combinations of those three colors. Human societies often assume that people will be trichromats. So people who can’t see as many colors are considered to be color blind, a disability. But there are also a small number of people who are tetrachromats and can see four base colors2 and all combinations of those four colors. In comparison to tetrachromats, trichromats (the majority of people), lack the ability to see some colors. But our society doesn’t build things for tetrachromats, so their extra ability to see color doesn’t help them much. And trichromats’ relative reduction in seeing color doesn’t cause them difficulty, so being a trichromat isn’t considered to be a disability. Some disabilities are visible disabilities that other people can notice by observing the disabled person (e.g., wearing glasses is an indication of a visual disability, or a missing limb might be noticeable). Other disabilities are invisible disabilities that other people cannot notice by observing the disabled person (e.g., chronic fatigue syndrome, contact lenses for a visual disability, or a prosthetic for a missing limb covered by clothing). Sometimes people with invisible disabilities get unfairly accused of “faking” or “making up” their disability (e.g., someone who can walk short distances but needs to use a wheelchair when going long distances). Disabilities can be accepted as socially normal, like is sometimes the case for wearing glasses or contacts, or it can be stigmatized as socially unacceptable, inconvenient, or blamed on the disabled person. Some people (like many with chronic pain) would welcome a cure that got rid of their disability. Others (like many autistic people), are insulted by the suggestion that there is something wrong with them that needs to be “cured,” and think the only reason autism is considered a “disability” at all is because society doesn’t make reasonable accommodations for them the way it does for neurotypical people. Many of the disabilities we mentioned above were permanent disabilities, that is, disabilities that won’t go away. But disabilities can also be temporary disabilities, like a broken leg in a cast, which may eventually get better. Disabilities can also vary over time (e.g., “Today is a bad day for my back pain”). Disabilities can even be situational disabilities, like the loss of fine motor skills when wearing thick gloves in the cold, or trying to watch a video on your phone in class with the sound off, or trying to type on a computer while holding a baby. As you look through all these types of disabilities, you might discover ways you have experienced disability in your life. Though please keep in mind that different disabilities can be very different, and everyone’s experience with their own disability can vary. So having some experience with disability does not make someone an expert in any other experience of disability. As for our experience with disability, Kyle has been diagnosed with generalized anxiety disorder and Susan has been diagnosed with depression. Kyle and Susan also both have: near sightedness: our eyes cannot focus on things far away (unless we use corrective lenses, like glasses or contacts) ADHD: we have difficulty controlling our focus, sometimes being hyperfocused and sometimes being highly distracted and also have difficulties with executive dysfunction. 1 There are many ways to think about disability, such as legal (what legally counts as a disability?), medical (what is a problem to be cured?), identity (who views themselves as “disabled”), etc. We are focused here more on disability as it relates to design and who things in our world are designed for. 2 Trying to name the four base colors seen by tetrachromats is not straightforward since our color names are based on trichromat vision. It seems that for tetrachromats blue would be the same, but they would see three different base colors in the red/green range instead of two.

      This paragraph of the article tells how technological developments have the potential to redefine disability. For example, the development of cochlear implants and hearing aids has changed the way society views hearing loss. Similarly, Braille displays and screen reading technology have revolutionized the way blind people access information. I think these are all very significant things, and increasingly people are seeing disability as a spectrum rather than a binary state (disabled vs. non-disabled). Individuals may have different levels of skills in different areas. For example, a person may have a mild visual impairment that has no effect on most activities, but can be a major handicap in specific situations, such as dimly lit areas. I've known people with this problem so I think the point is important.

    2. There are many ways to think about disability, such as legal (what legally counts as a disability?), medical (what is a problem to be cured?), identity (who views themselves as “disabled”), etc. We are focused here more on disability as it relates to design and who things in our world are designed for.

      Certainly, considering disability in the context of design involves creating products, environments, and systems that are inclusive and accessible to individuals with a diverse range of abilities. Engaging individuals with disabilities in the design process helps to identify specific needs and challenges they may face. This approach ensures that the final design reflects the diverse perspectives and requirements of the user community.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Nitrogen metabolism is of fundamental importance to biology. However, the metabolism and biochemistry of guanidine and guanidine containing compounds, including arginine and homoarginine, have been understudied over the last few decades. Very few guanidine forming enzymes have been identified. Funck et al define a new type of guanidine forming enzyme. It was previously known that 2-oxogluturate oxygenase catalysis in bacteria can produce guanidine via oxidation of arginine. Interestingly, the same enzyme that produces guanidine from arginine also oxidises 2-oxogluturate to give the plant signalling molecule ethylene. Funck et al show that a mechanistically related oxygenase enzyme from plants can also produce guanidine, but instead of using arginine as a substrate, it uses homoarginine. The work will stimulate interest in the cellular roles of homoarginine, a metabolite present in plants and other organisms including humans and, more generally, in the biochemistry and metabolism of guanidines.

      1) Significance

      Studies on the metabolism and biochemistry of the small nitrogen rich molecule guanidine and related compounds including arginine have been largely ignored over the last few decades. Very few guanidine forming enzymes have been identified. Funck et al define a new guanidine forming enzyme that works by oxidation of homoarginine, a metabolite present in organisms ranging from plants to humans. The new enzyme requires oxygen and 2oxogluturate as cosubstrates and is related, but distinct from a known enzyme that oxidises arginine to produce guanidine, but which can also oxidise 2-oxogluturate to produce the plant signalling molecule ethylene.

      Overall, I thought this was an exceptionally well written and interesting manuscript. Although a 2-oxogluturate dependent guanidine forming enzyme is known (EFE), the discovery that a related enzyme oxidises homoarginine is really interesting, especially given the presence of homoarginine in plant seeds. There is more work to be done in terms of functional assignment, but this can be the subject of future studies. I also fully endorse the authors' view that guanidine and related compounds have been massively understudied in recent times. I would like to see the possibility that the new enzyme makes ethylene explored. Congratulations to the authors on a very nice study.

      Response: We thank the reviewer for the positive evaluation of our manuscript. In the revised version, we have emphasized more clearly that we found no evidence for ethylene production by the recombinant enzymes. The other suggestions of the reviewer are also considered in the revised version as detailed below.

      Reviewer #2 (Public Review):

      In this study, Dietmar Funck and colleagues have made a significant breakthrough by identifying three isoforms of plant 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) as homo/arginine-6-hydroxylases, catalyzing the degradation of 6-hydroxyhomoarginine into 2aminoadipate-6-semialdehyde (AASA) and guanidine. This discovery marks the very first confirmation of plant or eukaryotic enzymes capable of guanidine production.

      The authors selected three plant 2-ODD-C23 enzymes with the highest sequence similarity to bacterial guanidine-producing (EFE) enzymes. They proceeded to clone and express the recombinant enzymes in E coli, demonstrating capacity of all three Arabidopsis isoforms to produce guanidine. Additionally, by precise biochemical experiments, the authors established these three 2-ODD-C23 enzymes as homoarginine-6-hydroxylases (and arginine-hydroxylase for one of them). Furthermore, the authors utilized transgenic plants expressing GFP fusion proteins to show the cytoplasmic localization of all three 2-ODD-C23 enzymes. Most notably, using T-DNA mutant lines and CRISPR/Cas9-generated lines, along with combinations of them, they demonstrate the guanidine-producing capacity of each enzyme isoform in planta. These results provide robust evidence that these three 2-ODD-C23 Arabidopsis isoforms are indeed homoarginine-6-hydroxylases responsible for guanidine generation.

      The findings presented in this manuscript are a significant contribution for our understanding of plant biology, particularly given that this work is the first demonstration of enzymatic guanidine production in eukaryotic cells. However, there are a couple of concerns and potential ways for further investigation that the authors should (consider) incorporate.

      Firstly, the observation of cytoplasmic and nuclear GFP signals in the transgenic plants may also indicate cleaved GFP from the fusion proteins. Thus, the authors should perform Western blot analysis to confirm the correct size of the 2-ODD-C23 fusion proteins in the transgenic protoplasts.

      Secondly, it may be worth measuring pipecolate (and proline?) levels under biotic stress conditions (particularly those that induce transcript changes of these enzymes, Fig S8). Given the results suggesting a potential regulation of the pathway by biotic stress conditions (eg. meJA), these experiments could provide valuable insights into the physiological role of guanidine-producing enzymes in plants. This additional analysis may give a significance of these enzymes in plant defense mechanisms.

      Response: We thank also reviewer 2 for the positive evaluation and useful suggestions. We performed the proposed GFP Western blot, which indeed indicated the presences of both, fulllength fusion proteins and free GFP, which can explain the partial nuclear localization. We fully agree that further experiments with biotic and abiotic stress will be required to determine the physiological function of the 2-ODD-C23 enzymes. However, the list of potential experiments is long and they are beyond the scope of the present manuscript.

      Reviewer #1 (Recommendations For The Authors):

      Specific points

      Overall, I thought this was a very interesting study, comprising biochemical, cellular, and in vivo studies. Of course more could be done on each of these, and likely will be, but I think the assignment of biochemical function is very strong, across all three approaches. The one new experiment I would like to see is a clear demonstration of whether ethylene is produced - unlikely but should be tested.

      We had mentioned our failure to detect ethylene production by the plant enzymes in the previous version and have made it more prominent and reliable by including ethylene production as positive control in the new supplementary figure S5.

      Abstract

      Delete 'hitherto overlooked' - this is implicit 'but is more likely' to 'is likely'?

      Agreed and modified

      Introduction

      Second sentence - what about relevant small molecule primary metabolites including precursors of proteins/nucleic acids.

      We modified the sentence accordingly.

      Paragraph 2 - maybe also note EFE produces glutamate semi aldehyde, via arginine C-5 oxidation.

      Paragraph 2 has been re-phrased according to your suggestion.

      Overall, I thought the introduction was exceptionally well written.

      Perhaps either in the introduction, or later, note there are other 2OG oxygenases that oxidise arginine/arginine derivatives in various ways, e.g. clavaminate synthase/arginine hydroxylases/desaturases.

      We added a sentence mentioning the arginine hydroxylases VioC and OrfP to the introduction and included VioC into the sequence comparison in supplementary figure 2 to show that these enzymes, as well as NapI, are very different from EFE and the plant hydroxylases.

      Results

      Paragraph 1 - qualify similarity and refer to/give a structurally informed sequence alignment, including EFE

      A new supplemental figure S2 was added with sequence identity values and a structurally informed alignment. The text has been modified accordingly.

      Paragraph 2 - briefly state method of guanidine analysis

      We included a reference to the M&M section and mentioned LC-MS in paragraph 2.

      Figure 1 - trivial point - proteins are not expressed/genes are

      We have modified the legend to figure 1. However, we would like to point out that terms like “recombinant protein expression” are widely used in the field. A quick search with google Ngram viewer shows that “protein expression” started to appear in the mid-80ies and its use stayed constantly at 1/8th of “gene expression”.

      Define errors clearly in all figure legends, clearly defining biological/technical repeats<br /> Page 6 - was the His-tag cleared to ensure no issues with Ni contamination?

      We treat individual plants or independent bacterial cultures as biological replicates. Only in the case of enzyme activity assays with NAD(P)H, technical replicates were used and this has been indicated in the legend of figure 6.

      Lower case 'p' in pentafluorobenzyl corrected

      In Figure 2 make clear the hydroxylated intermediates are not observed

      We now use grey color for the intermediates and have put them in brackets. Additionally we state in the figure legend that these intermediates were not detected.

      Pages 6-7 - I may have missed this but it's important to investigate what happens to the 2OG. Is succinate the only product or is ethylene also produced? This possibility should also be considered in the plant studies, i.e. is there any evidence for responses related to perturbed ethylene metabolism. The authors consider a signalling role relating to AASA/P6C, but seem to ignore a potential ethylene connection.

      As stated above, we checked for ethylene production with negative result. EFE produced 6 times more guanidine than the plant enzymes under the same condition, but even 100-fold lower ethylene production would have been clearly detected.

      Page 12 - 'plants have been shown to....' Perhaps note how hydroxy guanidine is made?

      We now mention the canavanine-γ-lyase that cleaves canavanine into hydroxyguanidine and homoserine.

      Overall, I thought the discussion was good, but perhaps a bit long/too speculative on pages 12/13 and this detracted from the biochemical assignment of the enzyme. I'd suggest shortening the discussion somewhat - the precise roles of the enzyme can be the subject of future work. As indicated above, some discussion on potential links to ethylene would be appreciated.

      Since reviewer 2 wanted more (speculative) discussion on the role of the 2-ODD-C23 enzymes and there was no detectable ethylene production, we took the liberty to leave the discussion largely unaltered.

      I'd also like to see some more consideration/metabolic analyses of guanidine related metabolism in the genetically modified plants.

      Such analyses will certainly be included in future experiments once we get an idea about the physiological role of the 2-ODD-C23 enzymes.

      Page 16 - mass spectrometry

      Corrected.

      Please add a structurally informed sequence alignment with EFE and other 2OG oxygenases acting on arginine/derivatives.

      An excerpt of the alignment is now presented in supplementary figure S2.

      Reviewer #2 (Recommendations For The Authors):

      I would like to see more discussion in the manuscript about the possible interconnection/roles between 2-ODD-C23 guanidine-producing, lysine- ALD1-Pipecolate producing, and proline metabolism pathways during both biotic and abiotic stresses.

      Since we were unable to detect pipecolate in any of our plant samples and also our preliminary results with biotic stress did not produce any evidence for a function of the 2ODD-C23 enzymes in the tested defense responses, we would like to postpone such extended discussion until we find a condition where the physiological function of these enzymes is evident.

      Fig. 4: Authors should change colors for Col-0, 0.2 HoArg and ctrl? They look too similar in my pdf file.

      We changed the colors in figure 4 and hope that the enhanced contrast is maintained during the production of the final version of our article.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Sender et al describe a model to estimate what fraction of DNA becomes cell-free DNA in plasma. This is of great interest to the community, as the amount of DNA from a certain tissue (for example, a tumor) that becomes available for detection in the blood has important implications for disease detection.

      However, the authors' methods do not consider important variables related to cell-free DNA shedding and storage, and their results may thus be inaccurate. At this stage of the paper, the methods section lacks important detail. Thus, it is difficult to fully assess the manuscript and its results.

      Strengths:

      The question asked by the authors has potentially important implications for disease diagnosis. Understanding how genomic DNA degrades in the human circulation can guide towards ways to enrich for DNA of interest or may lead to unexpected methods of conserving cell-free DNA. Thus, the question "how much genomic DNA becomes cfDNA" is of great interest to the scientific and medical community. Once the weaknesses of the manuscript are addressed, I believe this manuscript has the potential to be a widely used resource.

      Weaknesses:

      There are two major weaknesses in how the analysis is presented. First, the methods lack detail. Second, the analysis does not consider key variables in their model.

      Issues pertaining to the methods section.

      The current manuscript builds a flux model, mostly taking values and results from three previous studies: 1) The amount of cellular turnover by cell type, taken from Sender & Milo, 2021

      2) The fractions of various tissues that contribute DNA to the plasma, taken from Moss et al, 2018 and Loyfer et al, 2023

      My expertise lies in cell-free DNA, and so I will limit my comments to the manuscripts in (2). Paper by Loyfer et al (additional context):

      Loyfer et al is a recent landmark paper that presents a computational method for deconvoluting tissues of origin based on methylation profiles of flow-sorted cell types. Thus, the manuscript provides a well-curated methylation dataset of sorted cell-types. The majority of this manuscript describes the methylation patterns and features of the reference methylomes (bulk, sorted cell types), with a smaller portion devoted to cell-free DNA tissue of origin deconvolution.

      I believe the data the authors are retrieving from the Loyfer study are from the 23 healthy plasma cfDNA methylomes analyzed in the study, and not the re-analysis of the 52 COVID-19 samples from Cheng et al (MED 2021).

      Paper by Moss et al (additional context):

      Moss et al is another landmark paper that predates the Loyfer et al manuscript. The technology used in this study (methylation arrays) is outdated but is an incredible resource for the community. This paper evaluates cfDNA tissues of origin in health and different disease scenarios. Again, I assume the current manuscript only pulled data from healthy patients, although I cannot be sure as it is not described in the methods section.

      This manuscript:

      The current manuscript takes (I think) the total cfDNA concentration from males and females from the Moss et al manuscript (pooled cfDNA; 2 young male groups, 2 old male groups, 2 young female groups, 2 old female groups, Supplementary Dataset; "total_cfDNA_conc" tab). I believe this is the data used as total cfDNA concentration. It would be beneficial for all readers if the authors clarified this point.

      The tissues of origin, in the supplemental dataset ("fraction" tab), presents the data from 8 cell types (erythrocytes, monocytes/macrophages, megakaryocytes, granulocytes, hepatocytes, endothelial cells, lymphocytes, other). The fractions in the spreadsheet do not match the Loyfer or Moss manuscripts for healthy individuals. Thus, I do not know what values the supplementary dataset represents. I also don't know what the deconvolution values are used for the flux model.

      The integration of these two methods lack detail. Are the authors here using yields (ie, cfDNA concentrations) from Moss et al, and tissue fractions from Loyfer et al? If so, why? There are more samples in the Loyfer manuscript, so why are the samples from Moss et al. being used? The authors are also selectively ignoring cell-types that are present in healthy individuals (Neurons from Moss et al, 2018). Why?

      Appraisal:

      At this stage of the manuscript, I think additional evidence and analysis is required to confirm the results in the manuscript.

      Impact:

      Once the authors present additional analysis to substantiate their results, this manuscript will be highly impactful on the community. The field of liquid biopsies (non-invasive diagnostics) has the potential to revolutionize the medical field (and has already in certain areas, such as prenatal diagnostics). Yet, there is a lack of basic science questions in the field. This manuscript is an important step forward in asking more "basic science" questions that seek to answer a fundamental biological question.

      We thank the reviewer for the valuable comments on our analysis. In response to the feedback, we have updated the analysis to address all critical points as described below and revised the text to enhance the clarity of our methodology. One notable improvement to our analysis involved ensuring better alignment between the cohort data for cfDNA plasma concentration and cell turnover estimates. To achieve this, we utilized the total plasma concentration of cfDNA from a study conducted by Meddeb et al. 2019, taking into account the influence of age and sex on these concentrations and specifically focusing on a cohort of relatively young and healthy individuals. Additionally, we considered expected variations related to sex, age, and other pertinent factors, as outlined in the studies by Meddeb et al. 2019 and Madsen et al. 2019.

      In addition, we have addressed concerns regarding the technical aspects of cfDNA analysis, providing detailed explanations of their limited impact on our analysis and the resulting conclusions.

      Reviewer #2 (Public Review):

      Summary:

      Cell-free DNA (cfDNA) are short DNA fragments released into the circulation when cells die. Plasma cfDNA level is thought to reflect the degree of cell-death or tissue injury. Indeed, plasma cfDNA is a reliable diagnostic biomarker for multiple diseases, providing insights into disease severity and outcomes. In this manuscript, Dr. Sender and colleagues address a fundamental question: What fraction of DNA released from cell death is detectable as plasma cfDNA? The authors use public data to estimate the amount of DNA produced from dying cells. They also utilize public data to estimate plasma cfDNA levels. Their calculations showed that <10% of DNA released is detectable as plasma cfDNA, the fraction of detectable cfDNA varying by tissue sources. The study demonstrates new and fundamental principles that could improve disease diagnosis and treatment via cfDNA.

      Strengths:

      1) The experimental approach is resource-mindful taking advantage of publicly available data to estimate the fraction of detectable cfDNA in physiological states. The authors did not assess if the fraction of detectable cfDNA changes in disease conditions. Nonetheless, their pioneering study lays the foundation and provides the methods needed for a similar assessment in disease states.

      2) The findings of this study potentially explain discrepancies in measured versus expected tissue-specific cfDNA from some tissues. For example, the gastrointestinal tract is subject to high cell turnover and release of DNA. Yet, only a small fraction of that DNA ends up in plasma as gastrointestinal cfDNA.

      3) The study proposes potential mechanisms that could account for the low fraction of detectable cfDNA in plasma relative to DNA released. This includes intracellular or tissue machinery that could "chew up" DNA released from dying cells, allowing only a small fraction to escape into plasma as cfDNA. Could this explain why the gastrointestinal track with an elaborate phagosome machinery contributes a small fraction of plasma cfDNA? Given the role of cfDNA as damage-associated molecular pattern in some diseases, targeting such a machinery may provide novel therapeutic opportunities.

      Weaknesses:

      In vitro and in vivo studies are needed to validate these findings and define tissue machinery that contribute to cfDNA production. The validation studies should address the following limitations of the study design: -

      1) Align the cohorts to estimate DNA production and plasma cfDNA levels. Cellular turnover rate and plasma cfDNA levels vary with age, sex, circadian clock, and other factors (Madsen AT et al, EBioMedicine, 2019). This study estimated DNA production using data abstracted from a homogenous group of healthy control males (Sender & Milo, Nat Med 2021). On the other hand, plasma cfDNA levels were obtained from datasets of more diverse cohort of healthy males and females with a wide range of ages (Loyfer et al. Nature, 2023 and Moss et al., Nat Commun, 2018).

      2) "cfDNA fragments are not created equal". Recent studies demonstrate that cfDNA composition vary with disease state. For example, cfDNA GC content, fraction of short fragments, and composition of some genomic elements increase in heart transplant rejection compared to no-rejection state (Agbor-Enoh, Circulation, 2021). The genomic location and disease state may therefore be important factors to consider in these analyses.

      3) Alternative sources of DNA production should be considered. Aside from cell death, DNA can be released from cells via active secretion. This and other additional sources of DNA should be considered in future studies. The distinct characteristics of mitochondrial DNA to genomic DNA should also be considered.

      We appreciate the reviewer's comments on our analysis. In response to the feedback, we have updated to address key points and revised the text accordingly.

      1) We have incorporated several enhancements to improve the coherence of our analysis. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      There was no specific estimate for a cohort of young males in both Meddeb et al. and Loyfer et al.; however, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in literature (Meddeb et al. 2019; Madsen et al. 2019). Thus, we demonstrate that sex and age have a small effect on the cfDNA concentrations and thus are unlikely to alter our conclusions substantially when considering a healthy population. We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion.

      2) In this study, we addressed the total amount of cfDNA in healthy individuals without regard to GC content, representation of different genomic regions, or fragment length, as the goal was to understand if cell death rates are fully accounted for by cfDNA concentration. We agree that it will be interesting to study the relative representation of the genome in cfDNA and the processes that determine cfDNA concentration in pathologies beyond the rate of cell death. These topics for future research fall beyond this study's scope.

      3) We know only a few specific cases whereby DNA is released from cells that are not dying. These include the release of DNA from erythroblasts and megakaryocytes to generate anucleated erythrocytes and platelets (Moss et al. 2022, cited in our paper) and the release of NETs from neutrophils.

      The presence of cfDNA fragments originating from megakaryocytes and erythroblasts indicates the elimination of megakaryocytes and erythroblasts and the birth of erythrocytes and platelets. However, the considerations in the rest of the paper still apply: the concentration of cfDNA from these sources is far lower than expected from the cell turnover rate.

      Concerning NETosis: the presence of cfDNA originating in neutrophils that have not died would reduce the concentration of cfDNA from dying neutrophils and thus further increase the discrepancy, which is the topic of our study (under-representation of DNA from dying cells in plasma).

      We neglected mitochondrial DNA, as it is not measured in methylation cell-of-origin analysis. Similarly to the argument above, if some of the total DNA measured in plasma is in fact, mitochondrial, this would mean that genomic cfDNA concentration is actually lower than the estimates, meaning that an even smaller fraction of DNA from dying cells is measured in plasma.

      Recommendations For The Authors

      Reviewer #1 (Recommendations For The Authors):

      I think readers would appreciate the authors commenting or addressing the following points, in addition to addressing the concerns I raised about the methods section in the public review:

      What variables and considerations did the authors omit in this study?

      1) Cell-free DNA is found in virtually every biofluid.

      Thus, the fact that cell-free DNA is not present in the plasma does not mean it cannot be detected elsewhere. This also implies that phagocytosis may not be the only factor related to cfDNA not being present in the blood. One example (of many, many others) is neutrophil-derived cell-free DNA, which is present in the urine.

      Indeed, dying cells and their DNA can be consumed locally, released into the blood, or shed outside the body. The latter is a function of tissue topology. For example, intestinal epithelial cell turnover releases material to the lumen of the gut (i.e., stool); kidney and bladder cell turnover releases material to urine; and lung epithelium releases material to the air spaces. In these cases, the absence of cfDNA in plasma is expected. However, in cases where tissue topology dictates release to blood, low representation in cfDNA indicates local consumption or a related mechanism. In Figure 1 of the manuscript, we distinguish between tissues according to their topology, labeling organs that shed material to the outside denoted by open circles.

      Neutrophil-derived DNA in urine likely represents a local process in the kidney (neutrophils that penetrate the epithelium and fall into the urine). Neutrophils that die elsewhere in the body must release cfDNA to the blood before it can reach the urine. Hence, quantifying plasma cfDNA is a legitimate approach for assessing the relationship between cell death and cfDNA. The revised text clarifies this point. We made revisions to the initial paragraph in the results section and a paragraph within the discussion to provide clarity on this topic:

      “Based on atlases of human cell type-specific methylation signatures, Moss et al. and Loyfer et al. analyzed the main cell types contributing to plasma cfDNA. They found the primary sources of plasma cfDNA to be blood cells: granulocytes, megakaryocytes, macrophages, and/or monocytes (the signature could not differentiate between the last two), lymphocytes, and erythrocyte progenitors. Other cells that had detectable contributions are endothelial cells and hepatocytes. Qualitatively, these cells represent most of the leading cell types in cellular turnover, as shown in Sender & Milo 2021 (Sender and Milo 2021). Epithelial cells of the gastrointestinal tract, lung, kidney, bladder, and skin are other cell types that significantly contribute to cellular turnover. Dying cells in these tissues are shed into the gut lumen, the air spaces, the urine, or out of the skin (note that while DNA from gut, lung, and kidney epithelial cells can be found in stool, bronchoalveolar lavage, and urine, the fate of DNA from skin cells is not known). This arrangement may explain why DNA from these cell types is not represented in plasma cfDNA in healthy conditions. Therefore, it appears that cells with high cfDNA plasma levels are those with relatively high turnover that are not being shed out of the body.”

      “A comparison between the different types of cells shows a trend in which less DNA flux from cells with higher turnover gets to the bloodstream. In particular, a tiny fraction (1 in 3x104) of DNA from erythroid progenitors arrives at the plasma, indicating an extreme efficiency of the DNA recovery mechanism. Erythroid progenitors are arranged in erythroblastic islands. Up to a few tens of erythroid progenitors surround a single macrophage that collects the nuclei extruded during the erythrocyte maturation process (pyrenocytes) (Chasis and Mohandas 2008). The amount of DNA discarded through the maturation of over 200 billion erythrocytes per day (Sender and Milo 2021) exceeds all other sources of homeostatic discarded DNA. Our findings indicate that the organization of dedicated erythroblastic islands functions highly efficiently regarding DNA utilization. Neutrophils are another high-turnover cell type with a low level of cfDNA. When contemplating the process of NETosis (Vorobjeva and Chernyak 2020), the existence of cfDNA originating from live neutrophils would potentially diminish the concentration of cfDNA released by dying neutrophils, thereby amplifying the observed ratio for this particular cell type. The overall trend of higher turnover resulting in a lower cfDNA to DNA flux ratio may indicate similar design principles, in which the utilization of DNA is better in tissues with higher turnover. However, our analysis is limited to only several cell types (due to cfDNA test and deconvolution sensitivities), and extrapolation to cells with lower cell turnover is problematic.”

      2) Effect of biofluid storage.

      Cell-free DNA continues to degrade after it is extracted via blood draw. This is not expected to change tissue of origin predictions (although that remains to be shown in the literature), but definitely affects extraction yield. This is not accounted for (or even discussed) in the manuscript. It would be important to understand how this was done for the data presented here.

      The paper integrates data from multiple recent studies that adhered to state-of-the-art procedures requiring rapid processing of blood samples. In fact, earlier studies that were not careful to isolate plasma quickly typically reported very high concentrations due to the lysis of leukocytes and artifactual release of genomic DNA. Rapid plasma isolation and DNA extraction typically yield 5ng/ml in healthy donors, as stated in the paper (last paragraph of Results).

      3) Batch effects

      Batch effects are not discussed here and can affect cfDNA yields.

      Our analysis relies on data reported by multiple studies from different groups, which independently results in similar key findings (total concentration of cfDNA and the relative contribution of different tissues). Thus, batch effects are unlikely to affect the calculations markedly.

      4) Cell-free DNA extraction kits

      Different kits and methods extract cell-free DNA at different quantities. Importantly, much research has been done recently that most kits are not sensitive for ultrashort cell-free DNA (of lengths ~50bp). This may represent most of the DNA present in plasma. This raises an important question: are the yields that are being used in Moss et al (where I presume the total concentration is taken from) accurate? Is there more cell-free DNA that was missed? While the importance of this ultrashort cfDNA has yet to be shown, it is in the blood. Thus, the authors' model may underestimate ratios by not accounting for this. This is mentioned in the discussion, but it is not evident why it was not added into the model.

      The Qiagen cfDNA extraction kit can detect 50bp fragments. As shown in the specification sheets of the kit (https://www.qiagen.com/us/products/diagnostics-and-clinical-research/solutions-for -laboratory-developed-tests/qiasymphony-dsp-circulating-dna-kit), urine DNA contains abundant DNA fragments that peak at 50bp. In contrast, plasma cfDNA does not contain such fragments at appreciable concentrations. This suggests that small fragments, 50-150bp long, are not a major component of cfDNA, and thus, our measurements of the total concentration of cfDNA are not dramatically underestimated.

      The convention regarding the size distribution of cfDNA fragments is based on extensive evidence using multiple approaches. For example, a study that profiled the DNA released by multiple cell lines in vitro (Aucamp et al. 2017) used another kit for DNA isolation – the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Düren, Germany). This kit does extract fragments that are 50bp long (nucleospin-gel-and-pcr-clean-up-mini). Indeed, the DNA released from cultured cells did contain a peak at 50bp, but it was minor compared with the nucleosome-size peak.

      More recently, several studies did suggest the presence of ultra-short cfDNA fragments, 50 bp long on average, and concluded that such fragments might be present at a molar concentration that is comparable to that of nucleosome-protected DNA (for example, (Hisano et al. 2021)).

      Thus, our model estimates can be off by up to 2-fold (that is, actual cfDNA concentration measured in most studies overlooks the small fragments and thus underestimates the actual concentration of cfDNA by 2-fold). This is incorporated into the revised manuscript.

      We note that we cannot exclude the presence of abundant ultra-short DNA fragments (e.g., 10bp long). However, such fragments are not measurable in cfDNA analysis. Thus, we can refine our conclusion and state that only a small fraction of DNA of dying cells appears as measured cfDNA. We included a section in the methods detailing the integration of a potential factor for the short fragments and revised the discussion:

      “The overall plasma cfDNA concentration was multiplied by a factor of 1.5 to accommodate for the presence of small fragments of approximately 50 base pairs of cfDNA in the plasma. These fragments are suggested to contribute comparable molar concentrations (Hisano, Ito, and Miura 2021). Despite having approximately one-third of the mass, it is reasonable to presume that these fragments represent a similar number of genomes. This assumption is based on the idea that their source is a broken nucleosome unit, and the fragments represent the portion that was not degraded. Given the restricted data and its interpretation, we consider factors spanning the range of 1 (negligible effect) and 2 (doubling of the amount). The chosen factor, 1.5, is selected as the midpoint within this range of uncertainty.”

      “In this study, we report a surprising, dramatic discrepancy between the measured levels of cfDNA in the plasma and the potential DNA flux from dying cells. One hypothetical explanation for that discrepancy is the limited sensitivity of typical cfDNA assays to short DNA fragments, which may contribute a significant fraction of the overall cfDNA mass. Regular cfDNA analysis shows a size distribution concentrated around a length of 165 base pairs (bp). The sizes in ctDNA vary more, but most are longer than 100 bp (Alcaide et al. 2020; Udomruk et al. 2021). Recent studies suggested a significant fraction of single-strand ultrashort fragments (length of 25-60 bp) (Cheng et al. 2022; Hisano, Ito, and Miura 2021). However, the total amount of DNA contained in these fragments is less than or comparable to that of the longer “regular” nucleosome-protected cfDNA fragments (Cheng et al. 2022; Hisano, Ito, and Miura 2021), arguing against ultrashort fragments as a dominant explanation for the “missing” cfDNA material. We integrated the estimate provided by Hisano et al. into our analysis as a modifying factor for both the total concentration and uncertainty of plasma cfDNA. Importantly, this incorporation did not alter the overall conclusions, as the discrepancy between the cfDNA plasma concentration and potential DNA flux remains on the same order of magnitude. We note that we cannot exclude the presence of abundant DNA fragments that are even shorter (e.g., 10bp long) and are not measurable in cfDNA analysis. Thus, our formal conclusion is that only a small fraction of the DNA of dying cells appears as measurable cfDNA.”

      5) Health status of samples analyzed.

      Health, sex and physical activity affects cfDNA yields. This is not accounted for or discussed in the manuscript.

      We incorporated several enhancements to improve our analysis in response to the provided feedback. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      Furthermore, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in the works of (Meddeb et al. 2019; Madsen et al. 2019). Our intent in doing so was to demonstrate that these factors are unlikely to alter our conclusions substantially when considering a healthy population. We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion:

      “Our estimates for total plasma cfDNA concentration were derived from the median concentration observed in individuals below 47 years of age (n=52), as reported by (Meddeb et al. 2019). To complement this, we integrated our total concentration estimates with data on the proportion of cfDNA originating from specific cell types, leveraging a plasma methylome deconvolution method described by (Loyfer et al. 2023), which did not provide absolute quantities of cfDNA). To quantify the uncertainty associated with our cfDNA concentration estimates, we employed a methodology that considered several sources of variation. First, we incorporated the confidence interval of the median concentration reported by Meddeb et al. as a measure of uncertainty. Additionally, we accounted for individual-specific and analytic variations based on the study by (Madsen et al. 2019), encompassing factors such as the precise timing of measurements and assay precision. These sources of uncertainty were combined using the approach outlined below.”

      “Our current analysis focused on estimating plasma cfDNA concentration and cellular turnover in a cohort of healthy, relatively young individuals. The total plasma cfDNA concentrations were sourced from healthy individuals below 47 years, as reported by (Meddeb et al. 2019). We use data analyzed based on plasma samples from healthy individuals to estimate the proportion of cfDNA originating from specific cell types (Loyfer et al. 2023). These values were then compared to the potential DNA flux resulting from homeostatic cellular turnover, estimated for reference healthy males aged between 20 and 30 (Sender and Milo 2021). In our analysis, we considered various sources of uncertainty, including inter-individual variation, variability in the timing of sample collection, and analytical precision (Madsen et al. 2019; Meddeb et al. 2019). These factors collectively contributed to an uncertainty factor of less than 3. Importantly, this level of uncertainty does not alter our conclusion regarding the relatively small fraction of DNA present in plasma as cfDNA. Furthermore, we acknowledge that age and sex can impact total cfDNA concentration, as demonstrated by (Meddeb et al. 2019), with potential variations of up to 30%. However, as the results of our analysis present a much larger difference, these effects do not change the conclusions drawn from our analysis. Nevertheless, age and health status may influence the proportion of cfDNA originating from specific cell types and their corresponding cellular turnover rates. Consequently, the ratios themselves may vary in the elderly population or individuals with underlying health conditions.”

      Reviewer #2 (Recommendations For The Authors):

      1) Align the cohorts to estimate DNA production and plasma cfDNA levels. Cellular turnover rate and plasma cfDNA levels vary with age, sex, circadian clock, and other factors (Madsen AT et al, EBioMedicine, 2019). This study estimated DNA production using data abstracted from a homogenous group of healthy control males (Sender & Milo, Nat Med 2021). On the other hand, plasma cfDNA levels were obtained from datasets of more diverse cohort of healthy males and females with a wide range of ages (Loyfer et al. Nature, 2023 and Moss et al., Nat Commun, 2018).

      We have incorporated several enhancements to improve the coherence of our analysis. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      There was no specific estimate for a cohort of young males in both Meddeb et al. and Loyfer et al.; however, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in literature (Meddeb et al. 2019; Madsen et al. 2019). Thus, we demonstrate that sex and age have a small effect on the cfDNA concentrations and thus are unlikely to alter our conclusions substantially when considering a healthy population.

      We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion.

      “Our estimates for total plasma cfDNA concentration were derived from the median concentration observed in individuals below 47 years of age (n=52), as reported by (Meddeb et al. 2019). To complement this, we integrated our total concentration estimates with data on the proportion of cfDNA originating from specific cell types, leveraging a plasma methylome deconvolution method described by (Loyfer et al. 2023), which did not provide absolute quantities of cfDNA). To quantify the uncertainty associated with our cfDNA concentration estimates, we employed a methodology that considered several sources of variation. First, we incorporated the confidence interval of the median concentration reported by Meddeb et al. as a measure of uncertainty. Additionally, we accounted for individual-specific and analytic variations based on the study by (Madsen et al. 2019), encompassing factors such as the precise timing of measurements and assay precision. These sources of uncertainty were combined using the approach outlined below.”

      “Our current analysis focused on estimating plasma cfDNA concentration and cellular turnover in a cohort of healthy, relatively young individuals. The total plasma cfDNA concentrations were sourced from healthy individuals below 47 years, as reported by (Meddeb et al. 2019). We use data analyzed based on plasma samples from healthy individuals to estimate the proportion of cfDNA originating from specific cell types (Loyfer et al. 2023). These values were then compared to the potential DNA flux resulting from homeostatic cellular turnover, estimated for reference healthy males aged between 20 and 30 (Sender and Milo 2021). In our analysis, we considered various sources of uncertainty, including inter-individual variation, variability in the timing of sample collection, and analytical precision (Madsen et al. 2019; Meddeb et al. 2019). These factors collectively contributed to an uncertainty factor of less than 3. Importantly, this level of uncertainty does not alter our conclusion regarding the relatively small fraction of DNA present in plasma as cfDNA. Furthermore, we acknowledge that age and sex can impact total cfDNA concentration, as demonstrated by (Meddeb et al. 2019), with potential variations of up to 30%. However, as the results of our analysis present a much larger difference, these effects do not change the conclusions drawn from our analysis. Nevertheless, age and health status may influence the proportion of cfDNA originating from specific cell types and their corresponding cellular turnover rates. Consequently, the ratios themselves may vary in the elderly population or individuals with underlying health conditions.”

      2) "cfDNA fragments are not created equal". Recent studies demonstrate that cfDNA composition vary with disease state. For example, cfDNA GC content, fraction of short fragments, and composition of some genomic elements increase in heart transplant rejection compared to no-rejection state (Agbor-Enoh, Circulation, 2021). The genomic location and disease state may therefore be important factors to consider in these analyses.

      In this study, we addressed the total amount of cfDNA in healthy individuals without regard to GC content, representation of different genomic regions, or fragment length, as the goal was to understand if cell death rates are fully accounted for by cfDNA concentration. We agree that it will be interesting to study the relative representation of the genome in cfDNA and the processes that determine cfDNA concentration in pathologies beyond the rate of cell death. These topics for future research fall beyond this study's scope.

      3) Alternative sources of DNA production should be considered. Aside from cell death, DNA can be released from cells via active secretion. This and other additional sources of DNA should be considered in future studies. The distinct characteristics of mitochondrial DNA to genomic DNA should also be considered.

      We know only a few specific cases whereby DNA is released from cells that are not dying. These include the release of DNA from erythroblasts and megakaryocytes to generate anucleated erythrocytes and platelets (Moss et al. 2022, cited in our paper) and the release of NETs from neutrophils.

      The presence of cfDNA fragments originating from megakaryocytes and erythroblasts indicates the elimination of megakaryocytes and erythroblasts and the birth of erythrocytes and platelets. However, the considerations in the rest of the paper still apply: the concentration of cfDNA from these sources is far lower than expected from the cell turnover rate.

      Concerning NETosis: the presence of cfDNA originating in neutrophils that have not died would reduce the concentration of cfDNA from dying neutrophils and thus further increase the discrepancy, which is the topic of our study (under-representation of DNA from dying cells in plasma).

      We updated a paragraph in the discussion regarding this issue:

      “A comparison between the different types of cells shows a trend in which less DNA flux from cells with higher turnover gets to the bloodstream. In particular, a tiny fraction (1 in 3x104) of DNA from erythroid progenitors arrives at the plasma, indicating an extreme efficiency of the DNA recovery mechanism. Erythroid progenitors are arranged in erythroblastic islands. Up to a few tens of erythroid progenitors surround a single macrophage that collects the nuclei extruded during the erythrocyte maturation process (pyrenocytes) (Chasis and Mohandas 2008). The amount of DNA discarded through the maturation of over 200 billion erythrocytes per day (Sender and Milo 2021) exceeds all other sources of homeostatic discarded DNA. Our findings indicate that the organization of dedicated erythroblastic islands functions highly efficiently regarding DNA utilization. Neutrophils are another high-turnover cell type with a low level of cfDNA. When contemplating the process of NETosis (Vorobjeva and Chernyak 2020), the existence of cfDNA originating from live neutrophils would potentially diminish the concentration of cfDNA released by dying neutrophils, thereby amplifying the observed ratio for this particular cell type. The overall trend of higher turnover resulting in a lower cfDNA to DNA flux ratio may indicate similar design principles, in which the utilization of DNA is better in tissues with higher turnover. However, our analysis is limited to only several cell types (due to cfDNA test and deconvolution sensitivities), and extrapolation to cells with lower cell turnover is problematic.”

      We neglected mitochondrial DNA, as it is not measured in methylation cell-of-origin analysis. Similarly to the argument above, if some of the total DNA measured in plasma is in fact mitochondrial, this would mean that genomic cfDNA concentration is actually lower than the estimates, meaning that an even smaller fraction of DNA from dying cells is measured in plasma.

    1. Late infection

      Given that we assume the effect of revision is conditional on the nature of that revision, it's not clear to me what "DAIR vs. Revision" means for late infection silo,

      Just thinking through it for myself...

      The options are:

      • A = DAIR -> B = 12w
      • A = Revision(one) -> B in {12w, 6w}
      • A = Revision(two) -> B in {12w, 7d}
      • C in (no rifampicin, rifampicin)

      Currently, (just focusing on surgery/duration, and making 12w the reference for all groups rather than 7w/6d) cell parameters as specified in the model are:

      $$ \begin{matrix} \text{DAIR} \ \text{Revision(one), 12w} \ \text{Revision(two), 12w} \ \text{Revision(one), 6w} \ \text{Revision(two), 7d} \end{matrix} \begin{pmatrix} \alpha \ \alpha + \beta_A \ \alpha + \beta_A \ \alpha + \beta_A + \beta_{B1} \ \alpha + \beta_A + \beta_{B2} \end{pmatrix} $$

      So, effect of one-stage + 12 w assumed equal to the effect of two-stage + 12w, then revision type specific deviations from those. And "DAIR vs Revision" (beta_A) is really DAIR vs. weighted average of one-stage 12w and two-stage 12w, i.e. ignores the duration options.

      I'm guessing this is the only randomised comparison we can make: a weighted average of one/two + 12w is the "default" revision.

      As an alternative, I assume it's plausible that one-stage 12w and two-stage 12w differ due to clinician selection of one/two stage. So there may be preference (or maybe it just makes things messy) to have something like

      $$ \begin{matrix} \text{DAIR} \ \text{Revision(one), 12w} \ \text{Revision(two), 12w} \ \text{Revision(one), 6w} \ \text{Revision(two), 7d} \end{matrix} \begin{pmatrix} \alpha \ \alpha + \beta_{A1} \ \alpha + \beta_{A2} \ \alpha + \beta_{A1} + \beta_{B1} \ \alpha + \beta_{A2} + \beta_{B2} \end{pmatrix} $$

      Noting that \beta_{A1} and \beta_{A2} aren't "causal" in the sense that any differences could just be due to selection bias rather than differences in effectiveness of one/two stage.

      The effect of revision versus DAIR will depend on what "revision" means. We can't just compare one-stage 12 weeks to DAIR vs 12 weeks because surgeon's choose who gets one-stage. Only comparison that seems to make sense is weighted combination of one/two stage, with weight as observed in the trial. I think that comparison makes sense, but maybe not.

      Assume that $$p_{A1}$$ is the proportion randomised to revision who are selected to receive one-stage and $$1 - p_{A1}$$ the proportion selected to receive two-stage. Then the comparison for any revision versus DAIR might be taken to mean

      $$ p_{A1}(0.5\beta_{A1} + 0.5(\beta_{A1} + \beta_{B1}))\ + (1 - p_{A1})(0.5\beta_{A2} + 0.5(\beta_{A2} + \beta_{B2})) $$

      which just explicitly allows for the differences. Or some other combination of groups, where we assume that selection of one/two stage in the trial is the same in the population. Presumably though there are issues in interpreting such a comparison as "causal", unless also adjust for factors determining one/two stage selection.

      The \beta_{A1} and \beta_{A2} are necessary for estimation of the duration effects, unless willing to assume no differences between one/two stage 12w.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their reading of our manuscript, which we believe has led to substantial improvements.

      To aid clarity, we have split Fig. 1 into three separate figures.

      For convenience, we have put all major changes in the text in blue.

      Reviewer #1

      Evidence, reproducibility and clarity

      Summary: Hui et al. tackle a crucial question in biology: what factors influence the preference for carbon sources in yeasts?

      They reveal that the growth rate on palatinose exceeds that on glucose,

      The above statement is incorrect --- we think the reviewer may have confused sugars.

      despite palatinose utilization being repressed in the presence of glucose. Consequently, the favored carbon source does not necessarily align with the one supporting the fastest growth rate. The study also delves into potential regulatory mechanisms governing carbon source preference and dismisses certain existing theories, such as the general carbon flux sensing mechanism proposed by Okano et al. [25].

      Major comments: None

      Minor comments:

      The authors suggest that a higher growth rate implies a higher glycolytic flux (l63), a crucial assumption underpinning their interpretation of the absence of a ``general carbon flux sensing mechanism' (l65). To substantiate this significant conclusion, they could calculate the extracellular uptake fluxes (based on the time-course concentrations of biomass and substrates).

      This suggestion is a good one, but unfortunately the number of data points in the new Fig. 3 are insufficient to estimate the uptake flux reliably.

      To address whether glycolytic flux increases, we have added a new paragraph to the introduction explaining how all the sugars we consider feed upper glycolysis, providing either its first or second metabolite. We therefore think it highly likely that any differences in growth rate are generated by differences in glycolytic flux. Indeed, Hackett et al., 2016, showed that the glycolytic flux increases with growth rate when they changed extracellular glucose concentrations. We now include this reference in the Discussion.

      The accumulation of certain by-products is known to be toxic, reducing cellular growth rate (e.g., acetate DOI: 10.1038/srep42135, ethanol DOI: 10.1016/B978-0-12-040308-0.50006-9, etc.), while they can also enhance growth under specific conditions (e.g., acetate DOI: 10.15252/embj.2022113079). Considering this is crucial to rule out certain hypotheses, such as the possibility that a by-product produced during growth on the first carbon source would not modulate growth on the second carbon source, potentially influencing the growth rate differentially in each phase. Although the authors use mutant strains to eliminate the role of some C2 compounds (acetate and ethanol), alternative pathways could be implicated in the (co-)utilization of these by-products. This aspect should be discussed, and ideally, the authors could quantify the time-course concentrations of by-products to assess their potential role.

      We agree with the reviewer that extracellular acetate and ethanol may inhibit growth, although budding yeast might be less sensitive than E. coli, the subject of most of the studies provided.

      Nevertheless, we think it unlikely that these chemicals modify the decision-making we see. First, the icl1Δ mutant we tested is unable to consume ethanol (Fernandez et al., 1992) or acetate (Lee et al., 2011) --- we now include these references in the SI --- and yet has wild-type behaviour (Fig. S2D). Second, we observe that isomaltase expression strongly decreases in the presence of galactose when we grow cells in a microfluidic device (Fig. S4), just like it does in batch culture (Fig. 3A), even though the constant flow of medium through the device removes any chemicals the cells excrete.

      The general flux-sensing regulatory mechanism proposed by Okano et al. [25], which has been dismissed by this study, has recently been questioned, as discussed in DOI: 10.15252/embj.2022113079. This aspect should be included in the discussion.

      Okano et al. studied E. coli while we study budding yeast. We therefore have shown that the understanding for that organism does not transfer to our eukaryotic example. We suspect that control in budding yeast combines both flux-sensing and specific regulation, as we say in the discussion, and so we consider our results to build on those of Okano et al.

      Significance

      Strengths & limitations: The work is robust, and the experiments in the study have been appropriately designed and conducted. The primary question of this study has been tackled using a combination of experimental and computational methods to thoroughly assess various regulatory and functional aspects. However, there are gaps in the data that could enhance key conclusions, notably the absence of glycolytic flux measurements. Moreover, further evidence is needed to substantiate the assertion that by-products do not play a role in carbon source preference.

      Advance: This study represents a significant step forward in comprehending the nutritional strategy of microbes. The authors demonstrate that the preferred carbon source may not necessarily be the one supporting the fastest growth rate. Furthermore, they dismiss certain theories that have been proposed to explain the growth strategy of microbes on mixed carbon sources.

      Audience: By addressing a fundamental question in life science, this work is important in the field of biology in general and of particular interest in systems biology, biotechnology, synthetic biology, and health. Consequently, it will be of interest to a broad audience.

      Reviewer #2

      Evidence, reproducibility and clarity

      Summary: The authors have used microtiter plates to produce growth profiles on combinations of different sugars. From this data they have evaluated whether the sugars are co-consumed or if there is a preference for either sugar, seen as a diauxic shift. They found diauxie between galactose and the disaccharide palatinose, but co-consumption between palatinose and fructose. They further used strains with perturbations in their GAL regulon to attempt to explain this discrepency.

      Major comments:

      I unfortunately found a large portion of the present manuscript unintelligable.

      Firstly, figures were incorrect to the point I could not dechiffre them: Figure 2A-C have black solid and dashed lines in the legend that are not found in the graph, instead there are orange and blue dashed lines in the graph with no legends. Figure 4C has no description of the y-axis. The growth rates in Figure 1C are very hard to follow, and there are definitely local maxima in both the blue and green profiles that are not being discussed (at 15-20 h). I cannot evaluate the conclusions drawn from the data until these issues have been resolved.

      We apologise for the difficulties experienced by this reviewer.

      The black lines in the old Fig. 2's legend, now Fig. 4, explain the different styles used: dashed lines are for single sugars regardless of their concentration and full lines are for mixtures regardless of their concentration. We now explicitly say this in the caption.

      We have fixed the missing label in what is now Fig. 6C and have moved the statement that we are showing two biological replicates for each set of concentrations earlier in Fig. 2's caption.

      We now explore the meaning of the shoulder for the fructose-palatinose mixture in Fig. 2B in the Discussion. This point is not a local maximum, unlike the case for diauxie, because the growth rate always decreases. The shoulder for the glucose-palatinose mixture was likely an artefact generated by measurement noise at low ODs because it was not present when we repeated the experiment. We now use that data for Fig. 2A & B. We also include a new Fig. S5 showing that there are sucrose-palatinose concentrations too that have a similar shoulder.

      Secondly, the language in the Results and Discussion sections is confusing. Alternating between present and imperfect tense as well as active and passive form makes it hard to distinguish the authors own results from literature findings (Results are usually written in passive, imperfect tense). Examples are found on lines 24, 29, 37-38, 59, 84, 131, and 165.

      We have made both sections flow more smoothly with substantial re-writing. As before, we cite all results that are not our own.

      The authors also do not consider the differences and similarities in catabolic pathways for assimilation of galactose, fructose and palatinose. Even if they do not see a reason to continue that as a possible explanation for the co-consumption between fructose and palatinose a discussion of why it is disregarded would not be out of place here.

      A good point, and we now state in the Introduction that all the sugars we study feed upper glycolysis.

      Significance

      There is some novelty to the authors findings, but I would argue it is being overstated in the present manuscript. Some examples of studies looking at catabolite repression, the main cause of diauxie, of sugars other than glucose can be found in: Simpson-Lavy and Kupiec (2019), Gancedo (1998), Prasad and Venkatesh (2008) and Borgstrom et al (2022).

      We strongly disagree with this statement. The papers cited do not address, as we do, the co-consumption between two sugars neither of which is glucose. Where they study two sugars, they always study glucose.

      Simpson-Lavy and Kupiec, 2019, investigate the interaction between acetate and ethanol, neither of which are sugars. Further, they are not independent carbon sources because cells convert ethanol into acetate when catabolising ethanol.

      Gancedo, 1998, is a review of glucose repression and describes how glucose represses the expression of genes for other sugars. Although Gancedo mentions ``galactose repression', this repression is of genes encoding enzymes for gluconeogenesis and the TCA and glyoxylate cycles, not of other sugar regulons, our subject.

      Prasad and Venkatesh, 2008, also focus on glucose and the well studied diauxie between glucose and galactose.

      Borgstrom et al., 2022, focus too on glucose and growth on glucose and xylose in recombinant strains. The standard laboratory strains we study have not be artificially engineered to consume xylose. They do mention that galactose causes repression of TPS1, which encodes an enzyme that synthesises the storage carbohydrate trehalose. This repression is again not of a sugar catabolic regulon, our subject.

      I would not say that the field would be significantly advanced by the publication of this manuscript, and the authors have themselves not explained the application of futhering the understanding palatinose metabolism in yeast. As mentioned above, the catabolite repression potential of galactose is already known, it just hasn't been shown for palatinose specifically before.

      We again strongly disagree. Our findings are novel. The reviewer did not provide any evidence for galactose repression of other sugar regulons, which is not widely recognised as we emphasised in the Discussion. We believe that the reviewer has confused the known "galactose repression' of gluconeogenic or TCA-cycle genes with our new report of repression of other sugar regulons in the presence of the sugar catabolised by the regulon.

      I would recommend a complete rewrite of the manuscript as presented, with a lower stated novelty, clearer language and comprehensible figures.

      Reviewer #3

      Evidence, reproducibility and clarity

      Summary: Microbes grow at different growth rates in different carbon sources. When more than one carbon sources are present in the media microbes often show a preference over certain carbon sources, and 'non-preferred' carbons sources are used only when the preferred carbon source is exhausted in the media, this process called diauxic shift.

      Why microbes exhibit such utilization preference over certain carbon sources, is an interesting question in microbiology and evolutionary biology, and the molecular mechanisms that enable microbes to preferentially use one carbon over another is worth investigating. It is intuitive to think that microbes will prefer to use a carbon source that confers maximum growth rate, but when tested experimentally it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used.

      Although the reviewer states that "it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used“, we are unaware of this work and would appreciate references, particularly for budding yeast. The most systematic study we know, in E. coli by Aidelberg et al., 2014 --- reference 13, concludes that "the faster the growth rate, the higher the sugar on the hierarchy“, the opposite behaviour.

      In this study authors demonstrate that budding yeast prefer to use galactose over palatinose, but not over sucrose or fructose where all three sugars can support faster growth rate compared to palatinose. Authors presented data where preferential galactose use and diauxic shift is observed in the growth curve when galactose and palatinose or glucose and palatinose combinations were used.

      No diauxic shift was observed in the growth curve when fructose-palatinose, or sucrose-palatinose combination were used. In fructose-palatinose and sucrose-palatinose combinations growth curves agree more with co-utilization strategies. Authors used transcriptomics and genetic perturbations to decipher the molecular mechanism of such preferential carbon use, and reports preference of galactose over palatinose is achieved by preventing positive feedback of MAL regulon, which encodes the genes for palatinose catabolism. We found this observation is interesting and the molecular mechanism of such preferential carbon use is nicely described in this paper. We also find claims authors made are well supported by experiments. Although catabolite repression and diauxic transitions are known in yeast, and authors also pointed out such previous references, but preferential use of a slower carbon source, i.e. galactose over at least one other fast-growing carbon is interesting enough for publication. We would like to support the publication of this article, but we have major concerns about the data analysis and data presentation. Authors must address our concerns which are mentioned below.

      Major comments:

      1. This study mainly hinges on growth rate measurements, but we found growth rates are not properly represented in the figures. Growth curves are always shown in linear scale, which makes it almost impossible to compare fast and slow growth when presented in same plot. All growth curves must be shown on log scale.

      We have changed all growth curves to log2 scale, following New et al., 2014, rather than Monod's choice of linear scale that we had originally.

      Our conclusions are unaffected.

      1. Growth rates of the Yeast strain growing individual single carbon sources (galactose, palatinose, sucrose and fructose) should be shown as a figure panel and t-test should be performed to conclude if the individual growth rates are significantly different or not.

      We already showed these growth rates in their own panel in Fig. 1B. Following the reviewer's suggestion, we have now added their statistical significance to the caption.

      1. Growth phase, lag phase, diauxic shift and post shift growth should be clearly shown in figure 2 and 4, each phase should be clearly marked, carbons used in each phase should be mentioned on the plot. Also, the growth curve must be plotted using log scale.

      Although we have changed all growth curves to log scale, we decided against include this additional labelling for two reasons. First, we are presenting evidence that some of the growth we observe is diauxic and labelling the curves as diauxic before we discuss this evidence undermines that discussion. Second, any further labels would clutter the figures, and we believe would hinder rather than help the reader.

      Instead we changed the colour scheme and the boldness of the diauxic growth curves in Fig. 2, which we hope the reviewer agrees adds the clarity they felt was missing.

      1. Authors has taken in account that MAL12 gene overexpression causes long lag when cells need to switch to maltose from glucose, and shown deletion of IMA1 decreases the lag with subsequent 2% growth rate increase in palatinose. How significant is this increase?

      We have confirmed the statistical significance through a t-test and added the results to the caption of Fig. 6C.

      1. Authors have an interesting observation that in sucrose-palatinose and fructose palatinose combinations, most probably co utilization of the carbons is taking place. Authors should discuss this in more details. In galactose-palatinose scenario intracellular galactose-based repression of gal80 and subsequent lack of feed forward of the Mal regulon is expected to stop co-utilization of palatinose. As authors have RNA seq data, can they make predictions for other carbon pairs, where sequential utilization can occur based on their model?

      We agree and have added more discussion of the fructose- and sucrose-palatinose mixtures to the Discussion and a new figure, Fig. S5.

      Our RNAseq data reveals the difference in gene expression caused by an active versus an inactive GAL regulon. In Fig. S11, we show that the hexose transporters HXT2 and HXT7 are down regulated in 0.1% fructose when the GAL regulon is active, perhaps implying that cells are able to prioritise galactose over other hexoses. Nevertheless, to predict if particular carbon sources are therefore favoured, we would need to know whether cells use specific hexose transporters to drive growth on different carbon sources, which has been little investigated.

      Minor comments:

      1. In figure 5, authors attempted to summarize the model, which is informative, but it will be more useful for non-specific reader if a cell-based cartoon, with transports on surface and catabolic enzymes inside is also added.

      We have re-designed Fig. 5, now Fig. 7, following this suggestion and agree it improves clarity.

      In this schematic diagram, switch from galactose (blue line) to red line (palatinose) shows a mixed color zone, it's a bit confusing, as this represents a bi-stable state. Authors should clearly comment on possibility of biostability while discussing their proposed mechanism.

      In the new figure, this part has been removed.

      1. The author may want to put their work in the context of other recent observations that bacteria do not try to maximize their growth rates in many conditions. Fast growth is often associated with expansive tradeoffs, and a carbon source which confers fast growth rate may confer selective disadvantage. Thus, there are evolutionary benefits of sub-optimal growth, which could be discussed in the manuscript. In this regard a recent study (bioRxiv (2023) doi:10.1101/2023.08.22.554312.) has established the link between resource allocation strategies, growth rates and tradeoffs, which may be taken in account while discussing. Are there any known tradeoffs, when galactose is used over palatinose and which is not the case sucrose or fructose?

      This is an interesting reference looking at growth on a single carbon source. We are unaware of similar tradeoffs relevant to our study. For example, we see little evidence for a constraint on the proteome because in a strain with a constitutively active GAL regulon there is no change in phenotype if we delete the genes for the three highly expressed GAL enzymes (Fig. S6B). Nevertheless and as we state in the penultimate paragraph of the Discussion, we agree that such a constraint must exist, although perhaps this constraint is ecological.

      Referees cross-commenting

      As other reviewers pointed out, this study has merit and addressed interesting questions, but needed to be written well in a more understandable form, we agree with this assessment. Also figures must be made much clearer, as all of the reviewers pointed out. In summary, this is an interesting study, but needs some work before publication.

      Significance

      General assessment: Strength and limitations:

      This study addressed an interesting question regarding resource preference and growth rate optimization in microbes. This is an important question in the field. Study is well designed and claims are backed up with experimental results. One of the limitations of the study is lack of predictability. Authors explained the mechanism for one pair of carbon sources, but how applicable that will be in general is not clear.

      We would argue that one of our important findings is to demonstrate that the scientific community is missing the information needed to make such predictions. We provide a counter example to the generally accepted belief that accurate predictions can be made using growth rates. Our work poses the question: what then are the physiological variables required to predict how a cell will consume a pair of carbon sources?

      Advance: This study helps to advance our knowledge. Their observation regarding preferential utilization of a carbon source which supports slower growth over a carbon source which can support faster growth, and the molecular mechanism provided will help researchers to understand resource allocation strategies better.

      Audience: Microbiology, systems biology, evolutionary biology, fermentation and bio process engineering research.

      Reviewer expertise: Biochemistry, systems biology, metabolic strategies and tradeoffs in microbes, microbial ecology.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Review of the paper by Yu Huo et al.

      Summary:

      Microbes grow at different growth rates in different carbon sources. When more than one carbon sources are present in the media microbes often show a preference over certain carbon sources, and 'non-preferred' carbons sources are used only when the preferred carbon source is exhausted in the media, this process called diauxic shift. Why microbes exhibit such utilization preference over certain carbon sources, is an interesting question in microbiology and evolutionary biology, and the molecular mechanisms that enable microbes to preferentially use one carbon over another is worth investigating. It is intuitive to think that microbes will prefer to use a carbon source that confers maximum growth rate, but when tested experimentally it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used. In this study authors demonstrate that budding yeast prefer to use galactose over palatinose, but not over sucrose or fructose where all three sugars can support faster growth rate compared to palatinose. Authors presented data where preferential galactose use and diauxic shift is observed in the growth curve when galactose and palatinose or glucose and palatinose combinations were used.

      No diauxic shift was observed in the growth curve when fructose-palatinose, or sucrose-palatinose combination were used. In fructose-palatinose and sucrose-palatinose combinations growth curves agree more with co-utilization strategies. Authors used transcriptomics and genetic perturbations to decipher the molecular mechanism of such preferential carbon use, and reports preference of galactose over palatinose is achieved by preventing positive feedback of MAL regulon, which encodes the genes for palatinose catabolism. We found this observation is interesting and the molecular mechanism of such preferential carbon use is nicely described in this paper. We also find claims authors made are well supported by experiments. Although catabolite repression and diauxic transitions are known in yeast, and authors also pointed out such previous references, but preferential use of a slower carbon source, i.e. galactose over at least one other fast-growing carbon is interesting enough for publication. We would like to support the publication of this article, but we have major concerns about the data analysis and data presentation. Authors must address our concerns which are mentioned below.

      Major comments:

      1. This study mainly hinges on growth rate measurements, but we found growth rates are not properly represented in the figures. Growth curves are always shown in linear scale, which makes it almost impossible to compare fast and slow growth when presented in same plot. All growth curves must be shown on log scale.
      2. Growth rates of the Yeast strain growing individual single carbon sources (galactose, palatinose, sucrose and fructose) should be shown as a figure panel and t-test should be performed to conclude if the individual growth rates are significantly different or not.
      3. Growth phase, lag phase, diauxic shift and post shift growth should be clearly shown in figure 2 and 4, each phase should be clearly marked, carbons used in each phase should be mentioned on the plot. Also, the growth curve must be plotted using log scale.
      4. Authors has taken in account that MAL12 gene overexpression causes long lag when cells need to switch to maltose from glucose, and shown deletion of IMA1 decreases the lag with subsequent 2% growth rate increase in palatinose. How significant is this increase?
      5. Authors have an interesting observation that in sucrose-palatinose and fructose palatinose combinations, most probably co utilization of the carbons is taking place. Authors should discuss this in more details. In galactose-palatinose scenario intracellular galactose-based repression of gal80 and subsequent lack of feed forward of the Mal regulon is expected to stop co-utilization of palatinose. As authors have RNA seq data, can they make predictions for other carbon pairs, where sequential utilization can occur based on their model?

      Minor comments

      1. In figure 5, authors attempted to summarize the model, which is informative, but it will be more useful for non-specific reader if a cell-based cartoon, with transports on surface and catabolic enzymes inside is also added.

      In this schematic diagram, switch from galactose (blue line) to red line (palatinose) shows a mixed color zone, it's a bit confusing, as this represents a bi-stable state. Authors should clearly comment on possibility of biostability while discussing their proposed mechanism. 2. The author may want to put their work in the context of other recent observations that bacteria do not try to maximize their growth rates in many conditions. Fast growth is often associated with expansive tradeoffs, and a carbon source which confers fast growth rate may confer selective disadvantage. Thus, there are evolutionary benefits of sub-optimal growth, which could be discussed in the manuscript. In this regard a recent study (bioRxiv (2023) doi:10.1101/2023.08.22.554312.) has established the link between resource allocation strategies, growth rates and tradeoffs, which may be taken in account while discussing. Are there any known tradeoffs, when galactose is used over palatinose and which is not the case sucrose or fructose?

      Referees cross-commenting

      As other reviewers pointed out, this study has merit and addressed interesting questions, but needed to be written well in a more understandable form, we agree with this assessment. Also figures must be made much clearer, as all of the reviewers pointed out. In summary, this is an interesting study, but needs some work before publication.

      Significance

      General assessment: Strength and limitations: This study addressed an interesting question regarding resource preference and growth rate optimization in microbes. This is an important question in the field. Study is well designed and claims are backed up with experimental results. One of the limitations of the study is lack of predictability. Authors explained the mechanism for one pair of carbon sources, but how applicable that will be in general is not clear.

      Advance: This study helps to advance our knowledge. Their observation regarding preferential utilization of a carbon source which supports slower growth over a carbon source which can support faster growth, and the molecular mechanism provided will help researchers to understand resource allocation strategies better.

      Audience: Microbiology, systems biology, evolutionary biology, fermentation and bio process engineering research.

      Reviewer expertise: Biochemistry, systems biology, metabolic strategies and tradeoffs in microbes, microbial ecology.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We would firstly like to thank all reviewers for their comments and support of this manuscript.

      Reviewer #1 (Recommendations For The Authors):

      No further recommendations.

      Reviewer #2 (Recommendations For The Authors):

      All of my comments have been sufficiently addressed.

      Reviewer #3 (Recommendations For The Authors):

      Thanks for responding to my former recommendations constructively. I believe these points have been fully addressed in this new version.

      However, I have not seen any comments on the points I raised in my former public review concerning the I-2 dependence of the FonSIX4 cell death. Do you know whether FonSIX4 would trigger cell death in tissues not expressing any I-2?

      We are a little confused concerning this comment. I-2 is a different class of resistance protein (NLR) that recognises Avr2 and this is likely to be intracellular. From the previous public review, we believe reviewer 3 may have been asking us to clarify the dependence of I (MM or M82) on FonSIX4 cell death. We have performed these controls by expressing FonSIX4 and associated FonSIX4/Avr1 chimeras in N. benthamiana (with the PR-1 signal peptide for efficient secretion of effectors) and it does not cause cell death in the absence of the I receptor – see S11F Fig. This was not explicitly conveyed in text so we have included the following in text: “Using the N. benthamiana assay we show FonSIX4 is recognised by I receptors from both cultivars (IM82 and iMoneymaker) and cell death is dependent on the presence of IM82 or iMoneymaker (Fig 5B, S11 Fig).”

      I still recommend discussing whether the Avr1 residues crucial for Avr activity are in the same structural regions of the C-terminal domain where previous work has identified residues under diversifying selection in symbiotic fungal FOLD proteins.

      The region important for recognition does encompass some residues within the structural region identified to be under diversifying selection in FOLD effectors from Rhizophagus irregularis previously reported (two residues within one beta-strand). However, we also see residues that don’t overlap to this area. We also note that the mycFOLD proteins analysed in symbiotic fungi are heavily skewed towards strong structurally similarity with FolSIX6 (similar cysteine spacing within both N and C-domains and structural orientation of the N and C-domains) rather than Avr1. We are under the impression that Avr1 was not included in the analysis of diversifying selection in symbiotic fungal FOLD proteins, it also is unclear to us if close Avr1 homologues are present. With this in mind, and considering our already lengthy discussion (as previously highlighted during reviewer), we have decided not to include further discussion concerning this point.


      The following is the authors’ response to the original reviews.

      We would like to thank the editor(s) and reviewers for their work concerning our manuscript. Most of the suggested changes were related to text changes which we have incorporated into the revised version. Please find our response to reviewers below.

      Reviewer #1 (Recommendations For The Authors):

      I only have very minor suggestions for the authors. The first one comes from reading the manuscript and finding it very dense with so many acronyms. This will limit the audience that will read the study and appreciate its impact. This is more noticeable in the Results, with many passages that I would suggest moving to Methodology.

      We thank reviewer 1 for their very positive review. We understand that due to the nature of this study, which includes many protein alleles/mutations that were expressed with different boundaries etc., it is difficult to achieve this. Reviewer 2 asked for more details to be provided. We hope we have achieved a nice balance in the revised manuscript.

      Something else that would facilitate the reading of the manuscript is the effectors name. The authors use the SIX name or the Avr name for some effectors and it makes it difficult to follow up.

      We have tried to make this consistent for Avr1 (SIX4), Avr2 (SIX3) and Avr3 (SIX1). Other SIX effectors are not known Avrs so the SIX names were used.

      Reading the manuscript and seeing how in most of the sections the authors used a computational approach followed by an experimental approach, I wonder why Alphafold2-multimer was not used to investigate the interaction between the effector and the receptor?

      This is a great suggestion, we have certainly investigated this, however to date there is no experimental evidence to directly support the direct interaction between I and Avr1. Post review, we spent some time trying to capture an interaction using a co-immunoprecipitation approach however to date we have not been able to obtain robust data that support this. We are currently looking to study this utilising protein biophysics/biochemistry but this work will take some time.

      Reviewer #2 (Recommendations For The Authors):

      We thank reviewer 2 for the very thorough editing and recommendations. We have incorporated all minor text edits below into the manuscript.

      Line 43: perhaps "Effector recognition" instead of "Effector detection", to be consistent with line 51?

      Line 60: Change to "leads".

      Line 79: Italicise Avr2.

      Line 94: Add the acronym ETI in parentheses after "effector-triggered immunity".

      Line 106: "(Leptosphaeria Avirulence-Supressing)" should be "(Leptosphaeria Avirulence and Supressing)".

      Line 112: Change "defined" to "define".

      Line 119: Spell out the species name on first use.

      Line 205: Glomeromycota is a division rather than a genus. Consistent with Fig 2, it also does not need to italicized.

      Line 207: Change "basidiomycete" to "Division Basidiomycota", consistent with Fig 2.

      Line 214: Change "alignment of Avr1, Avr3, SIX6 and SIX13" to "alignment of the mature Avr1, Avr3, SIX6 and SIX13 sequences".

      Line 324: Change "solved structures" to "solved protein structures".

      Line 335: Spell out acronyms like "MS" on first use in figure legends. Also dpi in other figure legends.

      Line 341: replace "effector-triggered immunity (ETI)" with "(ETI)" - see comment on Line 94.

      Line 370: Change "domains" to "domain".

      Line 374: In the title, change "C-terminus" to C-domain", consistent with the rest of the figure legend.

      Line 404: Change "(basidiomycetes and ascomycetes)" to "(Basidiomycota and Ascomycota fungi)", consistent with Fig 2C.

      Line 416: Change "in" to "by".

      Line 427: un-italicize the parentheses.

      Line 519: First mention of NLR. Spell out the acronym on first use in main text. S5 and S11 figure titles should be bolded.

      Line 852: Replace "@" with "at".

      S4 Table: Gene names should be italicised.

      S5 Table: Needs to be indicated that the primer sequences are in the 5´-3´ orientation.

      With regards to the Agrobacterium tumefaciens-mediated transient expression assays involving co-expression of the Avr1 effector and I immune receptor, the authors need to make clear how many biological replicates were performed as this information is only provided for the ion leakage assay.

      We have added these data to the figure legend

      Line 57: For me, the text "Fol secretes a limited number of structurally related effectors" reads as Fol secretes structurally related effectors, but very few of them are structurally related. Perhaps it would be better to say that the effector repertoire of Fol is made up of proteins that adopt a limited number of structural folds, or that the effector repertoire can be classified into a reduced set of structural families?

      This edit has been incorporated.

      Lines 66-67: Subtle re-wording required for "The best-characterized pathosystem is F. oxysporum f. sp. lycopersici (Fol)", as a pathosystem is made up of a pathogen and its host. Perhaps "The best-characterized pathosystem involves F. oxysporum f. sp. lycopersici (Fol) and tomato".

      Sentence has been reworded.

      Line 113 and throughout: Stick with one of "resistance protein", "receptor", "immune receptor" and "immunity receptor" throughout the manuscript.

      We have decided to use both receptor and immunity receptor as not all receptors investigated in the manuscript provide immunity.

      Lines 149-150: The title does not fully represent what is shown in the figure. The text "that is unique among fungal effectors" can be deleted as there is nothing in Fig 1 that shows that the fold is unique to fungal effectors.

      Figure title has been changed.

      Line 173: The RMSD of Avr3 is stated as being 3.7 Å, but in S3 Fig it is stated as being 3.6 Å.

      This was a mistake in the main text and has been corrected.

      Lines 202-204: This sentence needs to be reworded, as the way that it is written implies that the Diversispora and Rhizophagus genera are in the Ascomycota division. Also, "Ascomycetes" should be changed to "Ascomycota fungi", consistent with Fig 2.

      Sentence has been reworded.

      Line 233: "Scores above 8". What type of scores? Z-scores?

      These are Z-scores. This has been added in text.

      Lines 242-246: It is stated that SIX9 and SIX11 share structural similarity to various RNA-binding proteins, but no scores used to make these assessments is given. The scores should be provided in the text.

      Z-scores have been added.

      Fig 4A: SIX3 should be Avr2, consistent with line 292. The gene names should be italicised in Fig 4A.

      SIX3 was changed to Avr2. Gene names have been italicised.

      Line 356: Subtle rewording required, as "co-infiltrated with both IM82 and iMoneymaker" implies that you infiltrated with protein rather than Agrobacterium strains.

      Sentence has been reworded.

      Fig 5A, Fig 5C and Line 380: Light blue is used, but this looks grey. Perhaps change colour, as grey is already used to show the pro-domain in Fig 5A (or simply change the colour used to highlight the pro-domain)?

      Colour depicting the C-domain was changed.

      Lines 530-531: This text is no longer correct. Rlm4 and Rlm3 are now known to be alleles of Rlm9. See: Haddadi, P., Larkan, N. J., Van deWouw, A., Zhang, Y., Neik, T. X., Beynon, E., ... & Borhan, M. H. (2022). Brassica napus genes Rlm4 and Rlm7, conferring resistance to Leptosphaeria maculans, are alleles of the Rlm9 wall‐associated kinase‐like resistance locus. Plant Biotechnology Journal, 20(7), 1229.

      We thank the reviewer for picking this up. This text has been updated.

      Line 553: Provide more information on what the PR1 signal peptide is.

      More information about the PR1 signal peptide has been added.

      Lines 767-781: Descriptions and naming conventions of proteins throughout the figure legend need to be consistent and better reflect their makeup. For example, I think it would be best to put the sequence range after each protein mentioned - e.g. Avr118-242 or Avr159-242 instead of Avr1, PSL1_C37S18-111 instead of PSL1_C37S, etc. Furthermore, it is often stated that a protein is full-length when it lacks a signal peptide - my thought is that if a proteins lack its signal peptide, it is not full-length. The acronym "PD" also needs to be spelled out as "pro-domain (PD)" in the figure legend.

      We have incorporated sequence range for proteins that were produced upon first use. Sequence ranges that were modelled in AlphaFold2 were not added in text because they can be found in Supplementary Table 3.

      Lines 853-845: It is stated the sizes of proteins are indicated above the chromatogram in S10 Fig, but this is not the case. It is also not clear from S10B Fig that the faint peaks correspond to the peaks in the Fig 4B chromatogram. In S10D Fig, the stick of C58S is difficult to see. Perhaps change the colour or use an arrow/asterisk?

      Protein size estimates have been added above the chromatogram. Added text to indicate that the faint peaks correspond to peaks in Fig 4B. Added an asterisk in S10D Fig to identify the location of C58.

      S14 Fig is not mentioned/referenced in the main text of the manuscript.

      This was a mistake and has been added.

      The reference list needs to be updated to accommodate those referenced bioRxiv preprints that have now been published in peer-reviewed journals.

      The reference list has been updated.

      Reviewer #3 (Recommendations For The Authors):

      It would be good to discuss whether the pro-domains affecting virulence or avirulence activity.

      Kex2, the protease that cleaves the pro-domain functions in the golgi. We therefore suspect that the pro-domain is removed prior to secretion. For recombinant protein production in E. coli we find that these pro-domains are necessary to obtain soluble protein (doi: 10.1111/nph.17516). As we require the pro-domain for protein production and can not completely removing them from our preps, we cannot perform experiments to test this and subsequently comment further. In a paper that identified SIX effectors in tomato utilising proteomics approach (https://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/j.1364-3703.2007.00384.x), it appears that the pro-domains were not captured in this analysis. This supports the conclusion that they are not associated with the mature/secreted protein.

      The authors stated that the C-terminal domain of SIX6 has a single disulfide bond unique to SIX6. Please clarify in which context is it unique: in Fusarium or across all FOLD proteins?

      This is in direct comparison to Avr1 and Avr3. The disulfide in the C-domain of SIX6 is unique compared to Avr1 and Avr3. This has been made clear in text.

      The structural similarity of FOLD proteins to other known structures have been discussed (lines 460ff), but it is not clear whether all structures and models identified in this work would yield cysteine inhibitor and tumor necrosis factors as best structural matches in the database or whether this is specific to a single FOLD protein. Please consider discussing recently published findings by others (Teulet et al. 2023, New Phytologist) on this aspect.

      This analysis was performed for Avr1, we obtained relatively low similarity hits for Avr3/Six6. We have updated this text accordingly… “Unfortunately, the FOLD effectors share little overall structural similarity with known structures in the PDB outside of the similarity with each other. At a domain level, the N-domain of the FOLD effector Avr1 has some structural similarities with cystatin cysteine protease inhibitors (PDB code: 4N6V, PDB code: 5ZC1) [60, 61], and the C-domain with tumour necrosis factors (PDB code: 6X83) [62] and carbohydrate-binding lectins (PDB code: 2WQ4) [63]. Relatively weak hits were observed for Avr3/Six6.”

      It might be useful to clearly point out that the ToxA fold and the C-terminus of the FOLD fold are different.

      We have secondary structural topology maps of the FOLD and ToxA-like families in S8 Fig which highlight the differences in topology between these two families.

      Please add information to Fig.S8 listing the approach to generate the secondary structure topology maps.

      We have added this information in the figure caption.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This work presents H3-OPT, a deep learning method that effectively combines existing techniques for the prediction of antibody structure. This work is important because the method can aid the design of antibodies, which are key tools in many research and industrial applications. The experiments for validation are solid.

      Comments to Author:

      Several points remain partially unclear, such as:

      1). Which examples constitute proper validation;

      Thank you for your kind reminder. We have modified the text of the experiments for validation to identify which examples constitute proper validation. We have corrected the “Finally, H3-OPT also shows lower Cα-RMSDs compared to AF2 or tFold-Ab for the majority of targets in an expanded benchmark dataset, including all antibody structures from CAMEO 2022” into “Finally, H3-OPT also shows lower Cα-RMSDs compared to AF2 or tFold-Ab for the majority (six of seven) of targets in an expanded benchmark dataset, including all antibody structures from CAMEO 2022” and added the following sentence in the experimental validation section of our revised manuscript to clarify which examples constitute proper validation: “AlphaFold2 outperformed IgFold on these targets”.

      2) What the relevance of the molecular dynamics calculations as performed is;

      Thank you for your comment, and I apologize for any confusion. The goal of our molecular dynamics calculations is to compare the differences in binding affinities, an important issue of antibody engineering, between AlphaFold2-predicted complexes and H3-OPT-predicted complexes. Molecular dynamics simulations enable the investigation of the dynamic behaviors and interactions of these complexes over time. Unlike other tools for predicting binding free energy, MM/PBSA or MM/GBSA calculations provide dynamic properties of complexes by sampling conformational space, which helps in obtaining more accurate estimates of binding free energy. In summary, our molecular dynamics calculations demonstrated that the binding free energies of H3-OPT-predicted complexes are closer to those of native complexes. We have included the following sentence in our manuscript to provide an explanation of the molecular dynamics calculations: “Since affinity prediction plays a crucial role in antibody therapeutics engineering, we performed MD simulations to compare the differences in binding affinities between AF2-predicted complexes and H3-OPT-predicted complexes.”.

      3) The statistics for some of the comparisons;

      Thank you for the comment. We have incorporated statistics for some of the comparisons in the revised version of our manuscript and added the following sentence in the Methods section: “We conducted two-sided t-test analyses to assess the statistical significance of differences between the various groups. Statistical significance was considered when the p-values were less than 0.05. These statistical analyses were carried out using Python 3.10 with the Scipy library (version 1.10.1).”.

      4) The lack of comparison with other existing methods.

      We appreciate your valuable comments and suggestions. Conducting comparisons with a broader set of existing methods can further facilitate discussions on the strengths and weaknesses of each method, as well as the accuracy of our method. In our study, we conducted a comparison of H3-OPT with many existing methods, including AlphaFold2, HelixFold-Single, ESMFold, and IgFold. We demonstrated that several protein structure prediction methods, such as ESMFold and HelixFold-Single, do not match the accuracy of AlphaFold2 in CDR-H3 prediction. Additionally, we performed a detailed comparison between H3-OPT, AlphaFold2, and IgFold (the latest antibody structure prediction method) for each target.

      We sincerely thank the comment and have introduced a comparison with OmegaFold. The results have been incorporated into the relevant sections (Fig 4a-b) of the revised manuscript.

      Author response image 1.

      Public Reviews

      Comments to Author:

      Reviewer #1 (Public Review):

      Summary:

      The authors developed a deep learning method called H3-OPT, which combines the strength of AF2 and PLM to reach better prediction accuracy of antibody CDR-H3 loops than AF2 and IgFold. These improvements will have an impact on antibody structure prediction and design.

      Strengths:

      The training data are carefully selected and clustered, the network design is simple and effective.

      The improvements include smaller average Ca RMSD, backbone RMSD, side chain RMSD, more accurate surface residues and/or SASA, and more accurate H3 loop-antigen contacts.

      The performance is validated from multiple angles.

      Weaknesses:

      1) There are very limited prediction-then-validation cases, basically just one case.

      Thanks for pointing out this issue. The number of prediction-then-validation cases is helpful to show the generalization ability of our model. However, obtaining experimental structures is both costly and labor-intensive. Furthermore, experimental validation cases only capture a limited portion of the sequence space in comparison to the broader diversity of antibody sequences.

      To address this challenge, we have collected different datasets to serve as benchmarks for evaluating the performance of H3-OPT, including our non-redundant test set and the CAMEO dataset. The introduction of these datasets allows for effective assessments of H3-OPT’s performance without biases and tackles the obstacle of limited prediction-then-validation cases.

      Reviewer #2 (Public Review):

      This work provides a new tool (H3-Opt) for the prediction of antibody and nanobody structures, based on the combination of AlphaFold2 and a pre-trained protein language model, with a focus on predicting the challenging CDR-H3 loops with enhanced accuracy than previously developed approaches. This task is of high value for the development of new therapeutic antibodies. The paper provides an external validation consisting of 131 sequences, with further analysis of the results by segregating the test sets into three subsets of varying difficulty and comparison with other available methods. Furthermore, the approach was validated by comparing three experimentally solved 3D structures of anti-VEGF nanobodies with the H3-Opt predictions

      Strengths:

      The experimental design to train and validate the new approach has been clearly described, including the dataset compilation and its representative sampling into training, validation and test sets, and structure preparation. The results of the in-silico validation are quite convincing and support the authors' conclusions.

      The datasets used to train and validate the tool and the code are made available by the authors, which ensures transparency and reproducibility, and allows future benchmarking exercises with incoming new tools.

      Compared to AlphaFold2, the authors' optimization seems to produce better results for the most challenging subsets of the test set.

      Weaknesses:

      1) The scope of the binding affinity prediction using molecular dynamics is not that clearly justified in the paper.

      We sincerely appreciate your valuable comment. We have added the following sentence in our manuscript to justify the scope of the molecular dynamics calculations: “Since affinity prediction plays a crucial role in antibody therapeutics engineering, we performed MD simulations to compare the differences in binding affinities between AF2-predicted complexes and H3-OPT-predicted complexes.”.

      2) Some parts of the manuscript should be clarified, particularly the ones that relate to the experimental validation of the predictions made by the reported method. It is not absolutely clear whether the experimental validation is truly a prospective validation. Since the methodological aspects of the experimental determination are not provided here, it seems that this may not be the case. This is a key aspect of the manuscript that should be described more clearly.

      Thank you for the reminder about experimental validation of our predictions. The sequence identities of the wild-type nanobody VH domain and H3 loop, when compared with the best template, are 0.816 and 0.647, respectively. As a result, these mutants exhibited low sequence similarity to our dataset, indicating the absence of prediction bias for these targets. Thus, H3-OPT outperformed IgFold on these mutants, demonstrating our model's strong generalization ability. In summary, the experimental validation actually serves as a prospective validation.

      Thanks for your comments, we have added the following sentence to provide the methodological aspects of the experimental determination: “The protein expression, purification and crystallization experiments were described previously. The proteins used in the crystallization experiments were unlabeled. Upon thawing the frozen protein on ice, we performed a centrifugation step to eliminate any potential crystal nucleus and precipitants. Subsequently, we mixed the protein at a 1:1 ratio with commercial crystal condition kits using the sitting-drop vapor diffusion method facilitated by the Protein Crystallization Screening System (TTP LabTech, mosquito). After several days of optimization, single crystals were successfully cultivated at 21°C and promptly flash-frozen in liquid nitrogen. The diffraction data from various crystals were collected at the Shanghai Synchrotron Research Facility and subsequently processed using the aquarium pipeline.”

      3) Some Figures would benefit from a clearer presentation.

      We sincerely thanks for your careful reading. According to your comments, we have made extensive modifications to make our presentation more convincing and clearer (Fig 2c-f).

      Author response image 2.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript introduces a new computational framework for choosing 'the best method' according to the case for getting the best possible structural prediction for the CDR-H3 loop. The authors show their strategy improves on average the accuracy of the predictions on datasets of increasing difficulty in comparison to several state-of-the-art methods. They also show the benefits of improving the structural predictions of the CDR-H3 in the evaluation of different properties that may be relevant for drug discovery and therapeutic design.

      Strengths:

      The authors introduce a novel framework, which can be easily adapted and improved. The authors use a well-defined dataset to test their new method. A modest average accuracy gain is obtained in comparison to other state-of-the art methods for the same task while avoiding testing different prediction approaches.

      Weaknesses:

      1) The accuracy gain is mainly ascribed to easy cases, while the accuracy and precision for moderate to challenging cases are comparable to other PLM methods (see Fig. 4b and Extended Data Fig. 2). That raises the question: how likely is it to be in a moderate or challenging scenario? For example, it is not clear whether the comparison to the solved X-ray structures of anti-VEGF nanobodies represents an easy or challenging case for H3-OPT. The mutant nanobodies seem not to provide any further validation as the single mutations are very far away from the CDR-H3 loop and they do not disrupt the structure in any way. Indeed, RMSD values follow the same trend in H3-OPT and IgFold predictions (Fig. 4c). A more challenging test and interesting application could be solving the structure of a designed or mutated CDR-H3 loop.

      Thank you for your rigorous consideration. When the experimental structure is unavailable, it is difficult to directly determinate whether the target is easy-to-predict or challenging. We have conducted our non-redundant test set in which the number of easy-to-predict targets is comparable to the other two groups. Due to the limited availability of experimental antibody structures, especially nanobody structures, accurately predicting CDR-H3 remains a challenge. In our manuscript, we discuss the strengths and weakness of AlphaFold2 and other PLM-based methods, and we introduce H3-OPT as a comprehensive solution for antibody CDR3 modeling.

      We also appreciate your comment on experimental structures. We fully agree with your opinion and made attempts to solve the experimental structures of seven mutants, including two mutants (Y95F and Q118N) which are close to CDR-H3 loop. Unfortunately, we tried seven different reagent kits with a total of 672 crystallization conditions, but were unable to obtain crystals for these mutants. Despite the mutants we successfully solved may not have significantly disrupted the structures of CDR-H3 loops, they have still provided valuable insights into the differences between MSA-based methods and MSA-free methods (such as IgFold) for antibody structure modeling.

      We have further conducted a benchmarking study using two examples, PDBID 5U15 and 5U0R, both consisting of 18 residues in CDR-H3, to evaluate H3-OPT's performance in predicting mutated H3 loops. In the first case (target 5U15), AlphaFold2 failed to provide an accurate prediction of the extended orientation of the H3 loop, resulting in a less accurate prediction (Cα-RMSD = 10.25 Å) compared to H3-OPT (Cα-RMSD = 5.56 Å). In the second case (target 5U0R, a mutant of 5U15 in CDR3 loop), AlphaFold2 and H3-OPT achieved Cα-RMSDs of 6.10 Å and 4.25 Å, respectively. Additionally, the Cα-RMSDs of OmegaFold predictions were 8.05 Å and 9.84 Å, respectively. These findings suggest that both AlphaFold2 and OmegaFold effectively captured the mutation effects on conformations but achieved lower accuracy in predicting long CDR3 loops when compared to H3-OPT.

      2) The proposed method lacks a confidence score or a warning to help guide the users in moderate to challenging cases.

      We appreciate your suggestions and we have trained a separate module to predict confidence scores. We used the MSE loss for confidence prediction, where the label error was calculated as the Cα deviation of each residue after alignment. The inputs of this module are the same as those used for H3-OPT, and it generates a confidence score ranging from 0 to 100.

      3) The fact that AF2 outperforms H3-OPT in some particular cases (e.g. Fig. 2c and Extended Data Fig. 3) raises the question: is there still room for improvements? It is not clear how sensible is H3-OPT to the defined parameters. In the same line, bench-marking against other available prediction algorithms, such as OmegaFold, could shed light on the actual accuracy limit. We totally understand your concern. Many papers have suggested that PLM-based models are computationally efficient but may have unsatisfactory accuracy when high-resolution templates and MSA are available (Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies, Ruffolo, J. A. et al, 2023). However, the accuracy of AF2 decreased substantially when the MSA information is limited. Therefore, we directly retained high-confidence structures of AF2 and introduced a PSPM to improve the accuracy of the targets with long CDR-H3 loops and few sequence homologs. The improvement in mean Cα-RMSD demonstrated the room for accurately predicting CDR-H3 loops.

      We also appreciate your kind comment on defined parameters. In fact, once a benchmark dataset is established, determining an optimal cutoff value through parameter searching can indeed further improve the performance of H3-OPT in CDR3 structure prediction. However, it is important to note that this optimal cutoff value heavily depends on the testing dataset being used. Therefore, we provide a recommended cutoff value and offer a program interface for users who wish to manually define the cutoff value based on their specific requirements. Here, we showed the average Cα-RMSDs of our test set under different confidence cutoffs and the results have been added in the text accordingly.

      Author response table 1.

      We also appreciate your reminder, and we have conducted a benchmark against OmegaFold. The results have been included in the manuscript (Fig 4a-b).

      Author response image 3.

      Reviewer #1 (Recommendations For The Authors):

      1) In Fig 3a, please also compare IgFold and H3-OPT (merge Fig. S2 into Fig 3a)

      In Fig 3b, please separate Sub2 and Sub3, and add IgFold's performance.

      Thank you very much for your professional advice. We have made revisions to the figures based on your suggestions.

      Author response image 4.

      2) For the three experimentally solved structures of anti-VEGF nanobodies, what are the sequence identities of the VH domain and H3 loop, compared to the best available template? What is the length of the H3 loop? Which category (Sub1/2/3) do the targets belong to? What is the performance of AF2 or AF2-Multimer on the three targets?

      We feel sorry for these confusions. The sequence identities of the VH domain and H3 loop are 0.816 and 0.647, respectively, comparing with the best template. The CDR-H3 lengths of these nanobodies are both 17. According to our classification strategy, these nanobodies belong to Sub1. The confidence scores of these AlphaFold2 predicted loops were all higher than 0.8, and these loops were accepted as the outputs of H3-OPT by CBM.

      3) Is AF2-Multimer better than AF2, when using the sequences of antibody VH and antigen as input?

      Thanks for your suggestions. Many papers have benchmarked AlphaFold2-Multimer for protein complex modeling and demonstrated the accuracy of AlphaFold2-Multimer on predicting the protein complex is far from satisfactory (Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants, Rui Yin, et al., 2022). Additionally, there is no significantly difference between AlphaFold2 and AlphaFold2-Multimer on antibody modeling (Structural Modeling of Nanobodies: A Benchmark of State-of-the-Art Artificial Intelligence Programs, Mario S. Valdés-Tresanco, et al., 2023)

      From the data perspective, we employed a non-redundant dataset for training and validation. Since these structures are valuable, considering the antigen sequence would reduce the size of our dataset, potentially leading to underfitting.

      4) For H3 loop grafting, I noticed that only identical target and template H3 sequences can trigger grafting (lines 348-349). How many such cases are in the test set?

      We appreciate your comment from this perspective. There are thirty targets in our database with identical CDR-H3 templates.

      Reviewer #2 (Recommendations For The Authors):

      • It is not clear to me whether the three structures apparently used as experimental confirmation of the predictions have been determined previously in this study or not. This is a key aspect, as a retrospective validation does not have the same conceptual value as a prospective, a posteriori validation. Please note that different parts of the text suggest different things in this regard "The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT" is not exactly the same as "we then sought to validate H3-OPT using three experimentally determined structures of anti-VEGF nanobodies, including a wild-type (WT) and two mutant (Mut1 and Mut2) structures, that were recently deposited in protein data bank". The authors are kindly advised to make this point clear. By the way, "protein data bank" should be in upper case letters.

      We gratefully thank you for your feedback and fully understand your concerns. To validate the performance of H3-OPT, we initially solved the structures of both the wild-type and mutants of anti-VEGF nanobodies and submitted these structures to Protein Data Bank. We have corrected “that were recently deposited in protein data bank” into “that were recently deposited in Protein Data Bank” in our revised manuscript.

      • It would be good to clarify the goal and importance of the binding affinity prediction, as it seems a bit disconnected from the rest of the paper. Also, it would be good to include the production MD runs as Sup, Mat.

      Thanks for your valuable comment. We have added the following sentence in our manuscript to clarify the goal and importance of the molecular dynamics calculations: “Since affinity prediction plays a crucial role in antibody therapeutics engineering, we performed MD simulations to compare the differences in binding affinities between AF2-predicted complexes and H3-OPT-predicted complexes.”. The details of production runs have been described in Method section.

      • Has any statistical test been performed to compare the mean Cα-RMSD values across the modeling approaches included in the benchmark exercise?

      Thanks for this kind recommendation. We conducted a statistical test to assess the performance of different modeling approaches and demonstrated significant improvements with H3-OPT compared to other methods (p<0.001). Additionally, we have trained H3-OPT with five random seeds and compared mean Cα-RMSD values with all five models of AF2. Here, we showed the average Cα-RMSDs of H3-OPT and AlphaFold2.

      Author response table 1.

      • In Fig. 2c-f, I think it would be adequate to make the ordering criterion of the data points explicit in the caption or the graph itself.

      We appreciate your comment and suggestion. We have revised the graph in the manuscript accordingly.

      Author response image 5.

      • Please revise Figure S2 caption and/or its content. It is not clear, in parts b and c, which is the performance of H3-OPT. Why weren´t some other antibody-specific tools such as IgFold included in this comparison?

      Thanks for your comments. The performance of H3-OPT is not included in Figure S2. Prior to training H3-OPT, we conducted several preliminary studies, and the detailed results are available in the supplementary sections. We showed that AlphaFold2 outperformed other methods (including AI-based methods and TBM methods) and produced sub-angstrom predictions in framework regions. The comparison of IgFold with other methods was discussed in a previous work (Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies, Ruffolo, J. A. et al, 2023). In that study, we found that IgFold largely yielded results comparable to AlphaFold2 but with lower prediction cost. Additionally, we have also conducted a detailed comparison of CDR-H3 loops with IgFold in our main text.

      • It is stated that "The relative binding affinities of the antigen-antibody complexes were evaluated using the Python script...". Which Python script?

      Thank you for your comments, and I apologize for the confusion. This python script is a module of AMBER software, we have corrected “The relative binding affinities of the antigen-antibody complexes were evaluated using the python script” into “The relative binding affinities of the antigen-antibody complexes were evaluated using the MMPBSA module of AMBER software”.

      Reviewer #3 (Recommendations For The Authors):

      Does H3-OPT improve the AF2 score on the CDR-H3? It would be interesting to see whether grafted and PSPM loops improve the pLDDT score by using for example AF2Rank [https://doi.org/10.1103/PhysRevLett.129.238101]. That could also be a way to include a confidence score into H3-OPT.

      We are so grateful for your kind question. H3-OPT could not provide a confidence score for output in current version, so we did not know whether H3-OPT improve the AF2 score or not.

      We appreciate your kind recommendations and have calculated the pLDDT scores of all models predicted by H3-OPT and AF2 using AF2Rank. We showed that the average of pLDDT scores of different predicted models did not match the results of Cα-RMSD values.

      Author response table 3.

      Therefore, we have trained a separate module to predict the confidence score of the optimized CDR-H3 loops. We hope that this module can provide users with reliable guidance on whether to use predicted CDR-H3 loops.

      The test case of Nb PDB id. 8CWU is an interesting example where AF2 outperforms H3-OPT and PLMs. The top AF2 model according to ColabFold (using default options and no template [https://doi.org/10.1038/s41592-022-01488-1]) shows a remarkably good model of the CDR-H3, explaining the low Ca-RMSD in the Extended Data Fig. 3. However, the pLDDT score of the 4 tip residues (out of 12), forming the hairpin of the CDR-H3 loop, pushes down the average value bellow the CBM cut-off of 80. I wonder if there is a lesson to learn from that test case. How sensible is H3-OPT to the CBM cut-off definition? Have the authors tried weighting the residue pLDDT score by some structural criteria before averaging? I guess AF2 may have less confidence in hydrophobic tip residues in exposed loops as the solvent context may not provide enough support for the pLDDT score.

      Thanks for your valuable feedback. We showed the average Cα-RMSDs of our test set under different confidence cutoffs and the results have been added in the text accordingly.

      Author response table 4.

      We greatly appreciate your comment on this perspective. Inspired on your kind suggestions, we will explore the relationship between cutoff values and structural information in related work. Your feedback is highly valuable as it will contribute to the development of our approach.

      A comparison against the new folding prediction method OmegaFold [https://doi.org/10.1101/2022.07.21.500999] is missed. OmegaFold seems to outperform AF2, ESM, and IgFold among others in predicting the CDR-H3 loop conformation (See [https://doi.org/10.3390/molecules28103991] and [https://doi.org/10.1101/2022.07.21.500999]). Indeed, prediction of anti-VEGF Nb structure (PDB WT_QF_0329, chain B in supplementary data) by OmegaFold as implemented in ColabFold [https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/omegafold.ipynb] and setting 10 cycles, renders Ca-RMSD 1.472 Å for CDR-H3 (residues 98-115).

      We appreciate your valuable suggestion. We have added the comparison against OmegaFold in our manuscript. The results have been included in the manuscript (Fig 4a-b).

      Author response image 6.

      In our test set, OmegaFold outperformed ESMFold in predicting the CDR-H3 loop conformation. However, it failed to match the accuracy of AF2, IgFold, and H3-OPT. We discussed the difference between MSA-based methods (such as AlphaFold2) and MSA-free methods (such as IgFold) in predicting CDR-H3 loops. Similarly, OmegaFold provided comparative results with HelixFold-Single and other MSA-free methods but still failed to match the accuracy of AlphaFold2 and H3-OPT on Sub1.

      The time-consuming step in H3-OPT is the AF2 prediction. However, most of the time is spent in modeling the mAb and Nb scaffolds, which are already very well predicted by PLMs (See Fig. 4 in [https://doi.org/10.3390/molecules28103991]). Hence, why not use e.g. OmegaFold as the first step, whose score also correlates to the RMSD values [https://doi.org/10.3390/molecules28103991]? If that fails, then use AF2 or grafting. Alternatively, use a PLM model to generate a template, remove/mask the CDR loops (at least CDR-H3), and pass it as a template to AF2 to optimize the structure with or without MSA (e.g. using AF2Rank).

      Thanks for your professional feedbacks. It is really true that the speed of MSA searching limited the application of high-throughput structure prediction. Previous studies have demonstrated that the deep learning methods performed well on framework residues. We once tried to directly predict the conformations of CDR-H3 loops using PLM-based methods, but this initial version of H3-OPT lacking the CBM could not replicate the accuracy of AF2 in Sub1. Similarly, we showed that IgFold and OmegaFold also provide lower accuracy in Sub1 (average Cα-RMSD is 1.71 Å and 1.83 Å, respectively, whereas AF2 predicted an average of 1.07 Å). Therefore, The predictions of AlphaFold2 not only produce scaffolds but also provide the highest quality of CDR-H3 loops when high-resolution templates and MSA are available.

      Thank you once again for your kind recommendation. In the current version of H3-OPT, we have highlighted the strengths of H3-OPT in combining the AF2 and PLM models in various scenarios. AF2 can provide accurate predictions for short loops with fewer than 10 amino acids, and PLM-based models show little or no improvement in such cases. In the next version of H3-OPT, as the first step, we plan to replace the AF2 models with other methods if any accurate MSA-free method becomes available in the future.

      Line 115: The statement "IgFold provided higher accuracy in Sub3" is not supported by Fig. 2a.

      We are sorry for our carelessness. We have corrected “IgFold provided higher accuracy in Sub3” into “IgFold provided higher accuracy in Sub3 (Fig. 3a)”.

      Lines 195-203: What is the statistical significance of results in Fig 5a and 5b?

      Thank you for your kind comments. The surface residues of AF2 models are significantly higher than those of H3-OPT models (p < 0.005). In Fig. 5b, H3-OPT models predicted lower values than AF2 models in terms of various surface properties, including polarity (p <0.05) and hydrophilicity (p < 0.001).

      Lines 212-213: It is not easy to compare and quantify the differences between electrostatic maps in Fig. 5d. Showing a Dmap (e.g. mapmodel - mapexperiment) would be a better option. Additionally, there is no methodological description of how the maps were generated nor the scale of the represented potential.

      Thank you for pointing this out. We have modified the figure (Fig. 5d) according to your kind recommendation and added following sentences to clarify the methodological description on the surface electrostatic potential:

      “Analysis of surface electrostatic potential

      We generated two-dimensional projections of CDR-H3 loop’s surface electrostatic potential using SURFMAP v2.0.0 (based on GitHub from February 2023: commit: e0d51a10debc96775468912ccd8de01e239d1900) with default parameters. The 2D surface maps were calculated by subtracting the surface projection of H3-OPT or AF2 predicted H3 loops to their native structures.”

      Author response image 7.

      Lines 237-240 and Table 2: What is the meaning of comparing the average free energy of the whole set? Why free energies should be comparable among test cases? I think the correct way is to compare the mean pair-to-pair difference to the experimental structure. Similarly, reporting a precision in the order of 0.01 kcal/mol seems too precise for the used methodology, what is the statistical significance of the results? Were sampling issues accounted for by performing replicates or longer MDs?

      Thanks for your rigorous advice and pointing out these issues. We have modified the comparisons of free energies of different predicted methods and corrected the precision of these results. The average binding free energies of H3-OPT complexes is lower than AF2 predicted complexes, but there is no significant difference between these energies (p >0.05).

      Author response table 4.

      Comparison of binding affinities obtained from MD simulations using AF2 and H3-OPT.

      Thanks for your comments on this perspective. Longer MD simulations often achieve better convergence for the average behavior of the system, while replicates provide insights into the variability and robustness of the results. In our manuscript, each MD simulation had a length of 100 nanoseconds, with the initial 90 nanoseconds dedicated to achieving system equilibrium, which was verified by monitoring RMSD (Root Mean Square Deviation). The remaining 10 nanoseconds of each simulation were used for the calculation of free energy. This approach allowed us to balance the need for extensive sampling with the verification of system stability.

      Regarding MD simulations for CDR-H3 refinement, its successful application highly depends on the starting conformation, the force field, and the sampling strategy [https://doi.org/10.1021/acs.jctc.1c00341]. In particular, the applied plan MD seems a very limited strategy (there is not much information about the simulated times in the supplementary material). Similarly, local structure optimizations with QM methods are not expected to improve a starting conformation that is far from the experimental conformation.

      Thank you very much for your valuable feedback. We fully agree with your insights regarding the limitations of MD simulations. Before training H3-OPT, we showed the challenge of accurately predicting CDR-H3 structures. We then tried to optimize the CDR-H3 loops by computational tools, such as MD simulations and QM methods (detailed information of MD simulations is provided in the main text). Unfortunately, these methods were not expected to improve the accuracy of AF2 predicted CDR-H3 loops. These results showed that MD simulations and QM methods not only are time-consuming, but also failed to optimize the CDR-H3 loops. Therefore, we developed H3-OPT to tackle these issues and improve the accuracy of CDR3-H3 for the development of antibody therapeutics.

      Text improvements

      Relevant statistical and methodological parameters are presented in a dispersed manner throughout the text. For example, the number of structures in test, training, and validation datasets is first presented in the caption of Fig. 4. Similarly, the sequence identity % to define redundancy is defined in the caption of Fig. 1a instead of lines 87-88, where authors define "we constructed a non-redundant dataset with 1286 high-resolution (<2.5 Å)". Is the sequence redundancy for the CDR-H3 or the whole mAb/Nb?

      Thank you for pointing out these issues. We have added the number of structures in each subgroup in the caption of Fig. 1a: “Clustering of the filtered, high-resolution structures yielded three datasets for training (n = 1021), validation (n = 134), and testing (n = 131).” and corrected “As data quality has large effects on prediction accuracy, we constructed a non-redundant dataset with 1286 high-resolution (<2.5 Å) antibody structures from SAbDab” into “As data quality has large effects on prediction accuracy, we constructed a non-redundant dataset (sequence identity < 0.8) with 1286 high-resolution (<2.5 Å) antibody structures from SAbDab” in the revised manuscript. The sequence redundancy applies to the whole mAb/Nb.

      The description of ablation studies is not easy to follow. For example, what does removing TGM mean in practical terms (e.g. only AF2 is used, or PSPM is applied if AF2 score < 80)? Similarly, what does removing CBM mean in practical terms (e.g. all AF2 models are optimized by PSPM, and no grafting is done)? Thanks for your comments and suggestions. We have corrected “d, Differences in H3-OPT accuracy without the template module. e, Differences in H3-OPT accuracy without the CBM. f, Differences in H3-OPT accuracy without the TGM.” into “d, Differences in H3-OPT accuracy without the template module. This ablation study means only PSPM is used. e, Differences in H3-OPT accuracy without the CBM. This ablation study means input loop is optimized by TGM and PSPM. f, Differences in H3-OPT accuracy without the TGM. This ablation study means input loop is optimized by CBM and PSPM.”.

      Authors should report the values in the text using the same statistical descriptor that is used in the figures to help the analysis by the reader. For example, in lines 223-224 a precision score of 0.75 for H3-OPT is reported in the text (I assume this is the average value), while the median of ~0.85 is shown in Fig. 6a.

      Thank you for your careful checks. We have corrected “After identifying the contact residues of antigens by H3-OPT, we found that H3-OPT could substantially outperform AF2 (Fig. 6a), with a precision of 0.75 and accuracy of 0.94 compared to 0.66 precision and 0.92 accuracy of AF2.” into “After identifying the contact residues of antigens by H3-OPT, we found that H3-OPT could substantially outperform AF2 (Fig. 6a), with a median precision of 0.83 and accuracy of 0.97 compared to 0.64 precision and 0.95 accuracy of AF2.” in proper place of manuscript.

      Minor corrections

      Lines 91-94: What do length values mean? e.g. is 0-2 Å the RMSD from the experimental structure?

      We appreciate your comment and apologize for any confusion. The RMSD value is actually from experimental structure. The RMSD value evaluates the deviation of predicted CDR-H3 loop from native structure and also represents the degree of prediction difficulty in AlphaFold2 predictions. We have added following sentence in the proper place of the revised manuscript: “(RMSD, a measure of the difference between the predicted structure and an experimental or reference structure)”.

      Line 120: is the "AF2 confidence score" for the full-length or CDR-H3?

      We gratefully appreciate for your valuable comment and have corrected “Interestingly, we observed that AF2 confidence score shared a strong negative correlation with Cα-RMSDs (Pearson correlation coefficient =-0.67 (Fig. 2b)” into “Interestingly, we observed that AF2 confidence score of CDR-H3 shared a strong negative correlation with Cα-RMSDs (Pearson correlation coefficient =-0.67 (Fig. 2b)” in the revised manuscript.

      Line 166: Do authors mean "Taken" instead of "Token"?

      We are really sorry for our careless mistakes. Thank you for your reminder.

      Line 258: Reference to Fig. 1 seems wrong, do authors mean Fig. 4?

      We sincerely thank the reviewer for careful reading. As suggested by the reviewer, we have corrected the “Fig. 1” into “Fig. 4”.

      Author response image 7.

      Point out which plot corresponds to AF2 and which one to H3-OPT

      Thanks for pointing out this issue. We have added the legends of this figure in the proper positions in our manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      “A sample size of 3 idiopathic seems underpowered relative to the many types of genetic changes that can occur in ASD. Since the authors carried out WGS, it would be useful to know what potential causative variants were found in these 3 individuals and even if not overlapping if they might expect to be in a similar biological pathway.

      If the authors randomly selected 3 more idiopathic cell lines from individuals with autism, would these cell lines also have altered mTOR signaling? And could a line have the same cell biology defects without a change in mTOR signaling? The authors argue that the sample size could be the reason for lack of overlap of the proteomic changes (unlike the phosphor-proteomic overlaps), which makes the overlapping cell biology findings even more remarkable. Or is the phenotyping simply too crude to know if the phenotypes truly are the same?”

      We appreciate these thoughtful comments and also agree that of several models, our studies indicate the possibility of mTOR alteration in multiple forms of ASD. As above, we are currently pursuing this hypothesis with newly acquired DOD support. With regard to the I-ASD population, we agree that there are a large variety of genetic changes that can occur in genetically undefined ASDs. Indeed, this is precisely why we expected to see “personalized” phenotypes in each I-ASD individual when we embarked on this study. At that time, several years ago, we had planned to expand the analyses to more I-ASD individuals to assess for additional personalized phenotypes. However, as our studies progressed, we were surprised to find convergence in our I-ASD population in terms of neurite outgrowth and migration and later proteomic results showing convergence in mTOR. We found it particularly remarkable that despite a sample size of 3 that this convergence was noted. When we had the opportunity to extend our studies to the 16p11.2 deletion population, we were thrilled to conduct the first comparison between I-ASD and a genetically defined ASD and, as such, the scope of the paper turned towards this comparison. We do agree that analyses of the other I-ASD individuals would be a beneficial endeavor, both to understand how pervasive NPC migration and neurite deficits are in autism and to assess the presence of mTOR dysregulation. Furthermore, it would be important to see whether alterations in other pathways could also lead to similar cell biological deficits, though we know that other studies of neurodevelopmental disorders have found such cellular dysregulations without reporting concurrent mTOR dysregulation. Given our current grant funding to extend these analyses, such experiments within this manuscript would not be feasible.

      Regarding the phenotyping methods used, we decided to assess neurite outgrowth and migration as they are both cytoskeleton dependent processes that are critical for neurodevelopment and are often regulated by the same genes. Furthermore, similar analyses have been applied to Fragile-X Syndrome, 22q11.2 deletion syndrome, and schizophrenia NPCs (Shcheglovitov A. et al., 2013; Mor-Shaked H. et al., 2016; Urbach A. et al., 2010; Kelley D. J. et al., 2008; Doers M. E. et al., 2014; Brennand K. et al., 2015; Lee I. S. et al., 2015; Marchetto M. C. et al., 2011). As such, it seems that multiple underlying etiologies can lead to similar dysregulated cellular phenotypes that can contribute to a variety of neurodevelopmental disorders. On a more global level, there are only a few different cellular functions a developing neuron can undergo, and these include processes such as proliferation, survival, migration, and differentiation. Thus, to understand neurodevelopmental disorders, it is important to study the more “crude” or “global” cellular functions occurring during neurodevelopment to determine whether they are disrupted in disorders such as ASD. In our studies we find that there are indeed dysregulations in many of these basic developmental processes, indicating that the typical steps that occur for normal brain cytoarchitecture may be disrupted in ASD. To understand why, we then further utilized molecular studies to “zoom” in on potential mechanisms which implicated common dysregulation in mTOR signaling as one driver for these common cellular phenotypes. As suggested, we did complete WGS on all the I-ASD individuals and did not see any overlapping genetic variants between the three I-ASD individuals as mentioned in our manuscript. The genetic data was published in a larger manuscript incorporating the data (Zhou A. et al., 2023). However, there were variants that were unique to each I-ASD individual which were not seen in their unaffected family members, and it is possible these variants could be contributing to the I-ASD phenotypes. We also utilized IPA to conduct pathway analysis on the WGS data utilizing the same approach we did in analysis of p- proteome and proteome data. From WGS data, we selected high read-quality variants that were found only in I-ASD individuals and had a functional impact on protein (ie excluding synonymous variants). The enriched pathways obtained from this data were strikingly different from the pathways we found in the p-proteome analysis and are now included in supplemental Figure 6 in the manuscript. Briefly, the top 5 enriched pathways were: O-linked glycosylation, MHC class 1 signaling, Interleukin signaling, Antigen presentation, and regulation of transcription.

      Reviewer #2 (Public Review):

      1) I found that interpreting how differential EF sensitivity is connected to the rest of the story difficult at times. First, it is unclear why these extracellular factors were picked. These are seemingly different in nature (a neuropeptide, a growth factor and a neuromodulator) targeting largely different pathways. This limits the interpretation of the ASD subtype-specific rescue results. One way of reframing that could help is that these are pro-migratory factors instead of EFs broadly defined that fail to promote migration in I-ASD lines due to a shared malfunctioning of the intracellular migration machinery or cell-cell interactions (possibly through tight junction signaling, Fig S2A). Yet, this doesn't explain the migration/neurite phenotypes in 16p11 lines where EF sensitivity is not altered, overall implying that divergent EF sensitivity independent of underlying mTOR state. What is the proposed model that connects all three findings (divergent EF sensitivity based on ASD subtypes, 2 mTOR classes, convergent cellular phenotypes)?

      We thank you for the kind assessment of our manuscript and for the thought-provoking questions posed. In terms of extracellular factors, for our study, we defined extracellular factor as any growth factor, amino acid, neurotransmitter, or neuropeptide found in the extracellular environment of the developing cells. The EFs utilized were selected due to their well-established role in regulation of early neurodevelopmental phenotypes, their expression during the “critical window” of mid-fetal development (as determined by Allan Brain Atlas), and in the case of 5-HT, its association with ASD (Abdulamir H. A. et al., 2018; Adamsen D. et al., 2014; Bonnin A. et al., 2011; Bonnin A. et al., 2007; Chen X. et al., 2015; El Marroun H. et al., 2014; Hammock E. et al., 2012; Yang C. J. et al., 2014; Dicicco-Bloom E. et al., 1998; Lu N. et al., 1998; Suh J. et al., 2001; Watanabe J. et al., 2016; Gilmore J. H. et al., 2003; Maisonpierre P. C. et al., 1990; Dincel N. et al., 2013; Levi- Montalcini R., 1987). Lastly, prior experiments in our lab with a mouse model of neurodevelopmental disorders, had shown atypical responses to EFs (IGF-1, FGF, PACAP). As such, when we first chose to use EFs in human NPCs we wanted to know 1) whether human NPCs even responded to these EFs, 2) whether EFs regulated neurite outgrowth and migration and 3) would there be a differential response in NPCs derived from those with ASD. Our studies were initiated on the I-ASD cohort and given the heterogeneity of ASD we had hypothesized we would get “personalized” neurite and migration phenotypes. Due to this reason, we also wanted to select multiple types of EFs that worked on different signaling pathways. Ultimately, instead of personalized phenotypes we found that all the I-ASD NPCs did not respond to any of the EFs tested whereas the 16p11.2 deletion NPCS did – this was therefore the only difference we found between these two “forms” of ASD. As noted, in I-ASD the lack of response to EFs can be ameliorated by modulating mTOR. However, in the 16p11.2 deletion, despite similar mTOR dysregulation as seen in I-ASD, there is no EF impairment. We do not have a cohesive model to explain why the 16pDel individuals differ from the I-ASD model other than to point to the p- proteomes which do show that the 16pDel NPCs are distinct from the I-ASD NPCs. It seems that mTOR alteration can contribute to impaired EF responsiveness in some NPCs but perhaps there is an additional defect that needs to be present in order for this defect to manifest, or that 16p11.2 deletion NPCs have specific compensatory features. For example, as noted in the thoughtful comment, the p-proteome canonical pathway analysis shows tight junction malfunction in I-ASD which is not present in the 16pDel NPCs and it could be the combination of mTOR dysregulation + dysregulated tight junction signaling that has led to lack of response to EFs in I-ASD. Regardless, we do not think the differences between two genetically distinct ASDs diminish the convergent mTOR results we have uncovered. That is, regardless of whatever defects are present in the ASD NPCs, we are able to rescue it with mTOR modulation which has fascinating implications for treatment and conceptualization for ASD. Lastly, we see our EF studies as an important inclusion as it shows that in some subtypes of ASD, lack of response to appropriate EFs could be contributing to neurodevelopmental abnormalities. Moreover, lack of response to these EFs could have implications for treatment of individuals with ASD (for example, SSRI are commonly used to treat co-morbid conditions in ASD but if an individual is unresponsive to 5- HT, perhaps this treatment is less effective). We have edited the manuscript to include an additional discussion section to address the EFs more thoroughly and have included a few extra sentences in the introduction as well!

      2) A similar bidirectional migration phenotype has been described in hiSPC-derived human cortical interneurons generated from individuals with Timothy Syndrome (Birey et al 2022, Cell Stem Cell). Here, authors show that the intracellular calcium influx that is excessive in Timothy Syndrome or pharmacologically dampened in controls results in similar migration phenotypes. Authors can consider referring to this report in support of the idea that bimodal perturbations of cardinal signaling pathways can converge upon common cellular migration deficits.

      We thank you for pointing out the similar migration phenotype in the Timothy Syndrome paper and have now cited it in our manuscript. We have also expanded on the concept of “too much or too little” of a particular signaling mechanism leading to common outcomes.

      3) Given that authors have access to 8 I-ASD hiPSC lines, it'd very informative to assay the mTOR state (e.g. pS6 westerns) in NPCs derived from all 8 lines instead of the 3 presented, even without assessing any additional cellular phenotypes, which authors have shown to be robust and consistent. This can help the readers better get a sense of the proportion of high mTOR vs low- mTOR classes in a larger cohort.

      We have already addressed this in response to reviewer 1 and the essential revisions section, providing our reasoning for not expanding the study to all 8 I-ASD individuals.

      4) Does the mTOR modulation rescue EF-specific responses to migration as well (Figure 7)

      We did not conduct sufficient replicates of the rescue EF specific responses to migration due to the time consuming and resource intensive nature of the neurosphere experiments. Unlike the neurite experiments, the neurosphere experiments require significantly more cells, more time, selection of neurospheres based on a size criterion, and then manual trace measurements. We did one experiment in Family-1 where we utilized MK-2206 to abolish the response of Sib NPCs to PACAP. Likewise, adding SC-79 to I-ASD-1 neurospheres allowed for response to PACAP.

      Author response image 1.

      Author response image 2.

      Reviewer #3: Public Review

      We appreciate the kind, detailed and very thorough review you provided for us!

      The results on the mTOR signaling pathway as a point of convergence in these particular ASD subtypes is interesting, but the discussion should address that this has been demonstrated for other autism syndromes, and in the present manuscript, there should be some recognition that other signaling pathways are also implicated as common factors between the ASD subtypes.

      With regards to the mTOR pathway, we had included the other ASD syndromes in which mTOR dysregulation has been seen including tuberous sclerosis, Cowden Syndrome, NF-1, as well as Fragile-X, Angelman, Rett and Phelan McDermid in the final paragraph of the discussion section “mTOR Signaling as a Point of Convergence in ASD”. We have now expanded our discussion to include that other signaling pathways such as MAPK, cyclins, WNT, and reelin which have also been implicated as common factors between the ASD subtypes.

      The conclusions of this paper are mostly well supported by data, but for the cell migration assay, it is not clear if the authors control for initial differences in the inner cell mass area of the neurospheres in control vs ASD samples, which would affect the measurement of migration.

      Thank you for this thoughtful comment! When we first started our migration data, inner cell mass size was indeed a major concern for which we controlled in our methods. First, when plating the neurospheres, we would only collect spheres when a majority of spheres were approximately a diameter of 100 um. Very large spheres often could not be imaged due to being out of focus and very small spheres would often disperse when plated. Thus, there were some constraints to the variability of inner cell mass size.

      Furthermore, when we initially collected data, we conducted a proof of principal test to see if initial inner cell mass area (henceforth referred to as initial sphere size or ISS) influenced migration data. To do so, we obtained migration and ISS data from each diagnosis (Sib, NIH, I-ASD, 16pASD). Then we utilized R studio to see if there is a relationship between Migration and ISS in each diagnosis category using the equation (lm(Migration~ISS, data=bydiagnosis). In this equation, lm indicates linear modeling and (~) is a term used to ascertain the relationship between Migration and ISS and the term data=bydiagnosis allows the data to be organized by diagnosis

      The results were expressed as R-squared values indicating the correlation between ISS and Migration for each diagnosis and the p-value showing statistical significance for each comparison. As shown in Author response table 1, for each data set, there is minimal correlation between Migration and ISS in each data set. Moreover, there are no statistically significant relationships between Migration and ISS indicating that initial sphere size DOES NOT influence migration data in any of our data-sets.

      Author response table 1.

      Lastly, utilizing R, we modeled what predicted migration would be like for Sib, NIH, I-ASD, and 16pASD if we accounted for ISS in each group. Raw migration data was then plotted against the predicted data as in Author response image 3.

      Author response image 3.

      As shown in the graph, there are no statistical differences between the raw migration data (the data that we actually measured in the dish) and the modeled data in which ISS is accounted for as a variable. As such, we chose not to normalize to or account for ISS in our other experiments. We have now included the above R studio analyses in our supplemental figures (Figure S1) as well.

      Also, in Fig 5 and 6, panels I and J omit the effects of drug on mTOR phosphorylation as shown for other conditions.

      Both SC-79 and MK2206 were selected in our experiments after thorough analysis of their effects on human epithelial cells and other cultured cells (citations in manuscript). However, initially, we did not know whether either of these drugs would modulate the mTOR pathway in human NPCs, thus, in Figures 5A,5D, 6A and 6D we chose to focus on two of our data-sets to establish the effect of these drugs in human NPCs. Our experiments in Family-1 and Family-2 showed us that SC-79 increases PS6 in human NPCs while MK-2206 downregulates it. Once this was established, we knew the drugs would have similar effects in the NPCs from the other families. Thus, we only conducted a proof of principle test to confirm the drug does indeed have the intended effect in I-ASD-3 and 16pDel. We have included these proof of principle westerns in Figure 5I, 5K, 6I and 6K to show that the effects of these drugs are reproducible across all our NPC lines. We did not include quantification since the data is only from our single proof of principle western.

    1. Author response

      eLife assessment

      Using a genetically controlled experimental setting, the authors find that the lack of Polycomb-dependent epigenetic programming in the oocyte and early embryo influences the developmental trajectory through gestation in the mouse. By showing a two-phase outcome of early growth restriction followed by enhancement, the authors address previous inconsistencies in the field. However, the link with placenta function and gene misregulation is not yet fully supported.

      We thank the Reviewers for their constructive comments. In response we have added significantly more data to the study and substantially rewritten the manuscript. New data include analyses of glucose, amino acid and metabolite levels in fetal and maternal blood samples, more highly resolved fetal growth analyses, a more detailed study of the hyperplastic placenta including IF analyses of labyrinth area, labyrinth to placenta and capillary to labyrinth ratios. We have also added analyses of placental DNA methylation state in offspring from oocytes lacking EED, which reveals a range of DNA methylation changes at imprinted and non-imprinted genes in HET-hom offspring compared to HET-het or WT-wt controls.

      Reviewer #1 (Public Review):

      Oberin, Petautschnig et. al investigated the developmental phenotypes that resulted from oocyte-specific loss of the EED (Embryonic Ectoderm Development) gene - a core component of the Polycomb repressive complex 2 (PRC2), which possess histone methyltransferase activity and catalyses trimethylation of histone H3 at lysine 27 (H3K27). The PRC2 complex plays essential roles in regulating chromatin structure, being an important regulator of cellular differentiation and development during embryogenesis. As novel findings, the authors find that PRC2-dependent programming in the oocyte, via loss of the core component EE2, causes placental hyperplasia and propose that the increase of placental transplacental flux of nutrients leads to fetal and postnatal overgrowth. At the mechanistic level, they show altered expression of genes previously implicated in placental hyperplasia phenotypes. They also establish interesting parallelism with the placental hyperplasia phenotype that is frequently observed in cloned mice.

      Strengths:

      The mouse breeding experiments are very well designed and are powerful to exclude potential confounding genetic effects on the developmental phenotypes that resulted from the loss of EED in oocytes. Another major strength is the developmental profiling across gestation, from pre-implantation to late gestation.

      Weaknesses:

      The evidence for 'oocyte' programming is restricted to phenotypic and gene expression analysis, without measurements of epigenetic dysregulation. It would be an added value if the authors could show evidence for altered H3K27me3 or DNA methylation in the placenta, for example.

      In an earlier previous study we identified a large number of developmentally important genes that accumulated H3K27me3 in primary-secondary stage growing oocytes and were repressed by EED (Jarred et al., 2022 Clinical Epigenetics). However, H3K27me3 was removed from all from these genes during preimplantation development, indicating that maternal inheritance of H3K27me3 at a wide range of genes is unlikely (Jarred et al., 2022 Clinical Epigenetics). Consistent with this only a small number of genes, including Slc38a4 and C2MC, have been shown to be functionally important in H3K27me3-dependent imprinting (Matoba et al., 2022 Genes and Development). Moreover, a related study showed that deletion of Setd2 and consequent loss of H3K36me3 in oocytes led to spreading of H3K27me3 into regions that were otherwise marked by H3K36me3 and DNA methylation (Xu et al. 2019 Nature Genetics 51:844–56). Based on these studies, we proposed that loss of EED and H3K27me3 may result in the ectopic spreading of H3K36me3 and DNA methylation in oocytes and that altered DNA methylation may then be transmitted to offspring and affect developmental outcomes (Jarred et al., 2022 Clinical Epigenetics)

      Given this hypothesis we analysed DNA methylation rather than H3K27me3 in the placenta of WT-wt, HET- het and HET-hom offspring. This revealed differentially methylated regions (DMRs) in HET-hom placentas at two H3K27me3 imprinted genes Sfmbt2 (C2MC) and Mbnl2, five classically imprinted genes and at 74 DMRs not associated with imprinted loci. Together, our data supports the hypothesis from Jarred et al., 2022 Clinical Epigenetics that loss of EED in oocytes results in altered DNA methylation patterning at both imprinted and non-imprinted genes in offspring and that this is likely to affect offspring growth and development. However, whether these changes result from direct alteration of DNA methylation in oocytes remains unclear.

      These new data are now included in results (Lines 387-409), Figure 6I, Supplementary File H-J and Discussion Lines 569-581.

      Reviewer Comment 1. The claim that placental hyperplasia drives offspring catch-up growth is not supported by current experimental data. The authors do not address if transplacental flux is increased in the hyperplastic placentae, measure amino acids and glucose in fetal/maternal plasma, or perform tetraploid rescue experiments to ascertain the contribution of the placenta to growth phenotypes. Furthermore, it is unclear, from the current data, if the surface area for nutrient transport is actually increased in the hyperplastic placenta and the extent to which other cell populations (i.e. spongiotrophoblasts) are affected in addition to glycogen cells. In addition, one of the supporting conclusions that the placenta is a key contributor to fetal overgrowth is based on a very crude measurement - placenta efficiency - which the authors claim is increased in the homozygous mutants compared to controls. After analysing the data carefully, I find evidence for decreased placental efficiency instead. I believe that the authors mistakenly present the data as placenta to fetal weight ratios, which led to the misinterpretation of the 'efficiency' concept.

      We thank the reviewer for pointing out our error in the placental efficiency data and we have now corrected the placental efficiency graphs (fetal/placental weight ratios) and updated the text throughout the manuscript as required (Figure 3I-K). As requested and described below, we have also added significantly more data, which support the conclusion that placental function is not enhanced in HET-hom mice and is unlikely to support fetal growth recovery.

      The new data and analyses we have added include:

      1. Further analyses of glycogen-enriched and non-glycogen-enriched cell counts in the decidua and junctional zones (Figure 4F-J)

      2. Total glycogen cell counts for male and female placentas (Figure 4 – figure supplement 1F)

      3. New analyses of fetal blood glucose levels at E17.5 and E18.5 and matching data from the mothers of each litter (Figure 4M)

      4. New analyses of the circulating amino acid levels and metabolites in fetal blood of E17.5 offspring and matching data from the mothers of each litter (Figure 8)

      5. New IF analyses of CD31 (PECAM-1) and combined this with machine learning assisted quantitative analyses of labyrinth and capillary areas using HALO (Figure 5)

      6. Separated male and female offspring and placental weights at E14.5 and E17.5 and total areas of the placenta, decidua, junctional zone and labyrinth (Figure 3 – figure supplement 1) which provide more insight into potential sex-specific differences in HET-hom offspring and placenta

      We have significantly re-written the results and discussion to reflect our new data and interpretation.

      While we did not assess transplacental flux, our new data revealed: 1. HET-hom fetuses had lower blood glucose levels at E18.5; 2. Circulating levels of amino acids and a wide range of metabolites did not differ between HET-hom and control offspring, or between the mothers of these offspring; 3. HET-hom placentas had lower total labyrinth area, labyrinth/placenta and capillary/labyrinth ratios based on analysis of total capillary and labyrinth areas, indicating that the surface area for nutrient transfer is not increased

      Together these data strongly indicate that hyperplastic HET-hom placentas do not provide greater support to HET-hom fetuses than controls, and that increased placental function in HET-hom offspring is unlikely to explain the late gestation fetal growth recovery we observed in HET-hom offspring or how HET-hom offspring were able to attain normal weights by birth.

      While we have not directly counted the spongiotrophoblast populations, we have now included analyses of both the glycogen-enriched and non-glycogen cell populations in the junctional zone and the decidua (Figure 4H-K). This revealed an increased area of both glycogen-enriched and non-glycogen cells in the junctional zone and in the decidua of HET-hom placentas, consistent with the greater junctional zone/placenta ratio observed in HET-hom placentas (Figure 4D). Together with data in Figure 4C-F and Supp. Fig. 3, our observations demonstrate that the overall decidua and junctional zone areas were increased in HET-hom offspring, but there was a disproportionate expansion of the junctional zone that was caused by increased areas of both glycogen and non-glycogen-enriched cells.

      Tetraploid rescue experiments would require a very significant amount of time and investment and are technically very demanding. While creation of complementary tetraploid offspring would be informative, unfortunately these experiments are beyond the scope of this current study.

      Reviewer Comment 1 cont. The authors do not mention alternative explanations for the observed fetal catch-up and postnatal overgrowth. Why would oocyte epigenetic programming effects be restricted to the placenta, and not include fetal organs?

      Our intention was certainly not to convey a message that effects may be placenta specific. Indeed, our ongoing work beyond the scope of this study provides evidence for effects in other tissues (brain and bones) that will be published elsewhere. Our new data clearly show low placental efficiency, fetal blood glucose, low capillary/labyrinth ratio and no impact on circulating fetal amino acid or metabolite levels in HET-hom offspring. In light of these new data, we have reinterpreted the findings of this study and substantially updated the discussion.

      Given our observations that fetal growth rate markedly increased during late gestation, but placental efficiency was reduced, our data strongly indicate that the effects of altered epigenetic oocyte programming due to loss of Eed affect both the placenta and the fetus. While our findings are significant, the precise mechanism underlying this growth response in HET-hom fetuses remains unknown. Understanding this mechanism will require substantially more work that will be the subject of future studies.

      Reviewer #2 (Public Review):

      Consistent fetal growth trajectories are vital for survival and later life health. The authors utilise an elegant and novel animal model to tease apart the role of Eed protein in the female germline from the role of somatic Eed. The authors were able to experimentally attribute placental overgrowth - particularly of the endocrine region of the placenta - to the function of Eed protein in the oocyte. Loss of Eed protein in the oocyte was also associated with dynamic changes in fetal growth and prolonged gestation. It was not determined whether the reported catch-up growth apparent on the day of birth was due to enhanced fetal growth very late in gestation, a longer gestational time ie the P0 pups are effectively one day "older" compared to the controls, or the pups catching up after birth when consuming maternal milk.

      To understand if increased growth occurred in HET-hom fetuses prior to birth, we have now included analyses of offspring weight at E18.5 (Figure 2F), all pups collected with a verified E19.5 birth date (Figure 2J) and for pups from similar litter sizes (5-7 pups) at E19.5 (Figure 2K). Together with our existing data, these additional analyses provide average weights for fetuses at E14.5, E17.5, E18.5 and pups born on E19.5. This confirmed that HET-hom offspring undergo enhanced growth in the last few days of pregnancy, resulting in the progression of substantially growth and developmentally restricted HET-hom fetuses at E14.5, to pups with normal weight at birth within the 40% of pregnancies that were born on E19.5 in a normal gestational time.

      However, in addition, gestational length was increased by one to two days in 60% of pregnancies from hom oocytes, but not in control pregnancies from het or wt oocytes. As average weights were significantly greater in all surviving HET-hom offspring at P0 (i.e. surviving pups born on E19.5-E21.5; Figure 2G), it appears that this additional gestational time contributed to the offspring overgrowth. This is logical, however it does not explain how growth and developmentally delayed fetuses at E14.5 attained normal weight and developmental stage by E19.5 (Figure 2J-K).

      Together our data clearly show that HET-hom offspring undergo enhanced growth during the late stages of pregnancy, allowing them to resolve the developmental delay and growth insufficiency observed at E14.5 so that they were born at normal weight and stage at E19.5. In addition, increased gestational time contributes to weight of pups delivered on E20.5 or 21.5, partly explaining the overgrowth phenotype observed in this model.

      The idea that increased milk consumption may explain the overgrowth of HET-hom offspring is interesting. It is possible that the increased growth rate of HET-hom offspring continues after birth and contributes to overgrowth. However, examining this outcome in a tightly controlled manner is complicated given that we cannot predict the day of birth of HET-hom litters, and that these litters are generally small and would need to be fostered on the day of birth alongside control litters. Given these challenges and that our primary observation is that HET-hom offspring underwent fetal growth recovery during pregnancies of normal length and via extension of gestational length, we have not examined the possibility of increased milk consumption after birth.

      We have updated the results to reflect the new analyses and have provided relevant discussion to address these data. Our description of these data can be found in Results (lines 165-197) and in Figure 2.

      Reviewer #3 (Public Review):

      My understanding of the main claims of the paper, and how they are justified by the data are discussed below:

      Overall, loss of PRC2 function in the developing oocyte and early embryo causes:

      1) Growth restriction from at least the blastocyst stage with low cell counts and midgestational developmental delay.

      Strengths:

      • Live embryo imaging added an important dimension to this study. The authors were able to confirm an unquantified finding from a previous lab (reduced time to 2-cell stage in oocyte-deletion Eed offspring, Inoue 2018, PMID: 30463900) as well as identify developmental delay and mortality at the blastocyst- hatching transition.

      • For the weight and morphological analysis the authors are careful to provide isogenic controls for most of the experiments presented. This means that any phenotypes can be attributed to the oocyte genotype rather than any confounding effects of maternal or paternal genotype.

      • Overall, there is good evidence that oocyte deletion of Eed results in early embryonic growth restriction, consistent with previous observations (Inoue 2018, PMID: 30463900).

      Reviewer 3, Comment 1: Weaknesses: Gaps in the reporting of specific features of the methodology make it difficult to interpret/understand some of the results.

      While we are unsure exactly which methods Reviewer 3 would like expanded, we have updated parts that we thought required further detail and allow more informed interpretation of the results. These include methods for placental histology (Lines 650-669) and immuno- histochemistry (Lines 671-690), and new methods for CD31 immunofluorescence (Lines 692-714), glucose and metabolomics (Lines 752-769) and DNA methylation (RRBS; Lines 734-750) analyses.

      To clarify the approach taken for histology, immunohistochemical and immunofluorescent staining, sections were cut in compound series from the centre of each placenta, ensuring that we collected representative data for each sample. QuPath was used to quantify the decidual and junctional zone areas in one complete, fully intact midline section for each placenta as close to the midline as possible. This provided data from 10 placentas for each genotype. In addition, glycogen-enriched and non-glycogen-enriched cells were identified and quantified using machine learning assisted QuPath analyses of the whole placenta, decidua and junctional zone regions. We have also added quantitative analyses of the labyrinth and labyrinth capillary network using immunofluorescent CD31 staining and machine learning assisted HALO software. This new analysis of placental morphology is included in the methods section.

      Moreover, as there were no sex-specific differences in placental morphology or weight, we combined the samples from both sexes to provide greater numbers for analysis in each genotype. For example, as described for the analyses of labyrinth and capillaries using CD31 IF, 4 placentas of each sex were used for data collection. This provided data from a total of 8 placentas (4 male and 4 female) for each genotype from a total of 17 WT-wt (9 male and 8 female), 21 HET-het (9 male and 12 female) and 24 HET-hom (16 male and 8 female) sections (2-3 sections/placenta).

      Reviewer 3, Comment 2: Placental hyperplasia with disproportionate overgrowth of the junctional trophoblast especially the glycogen trophoblast (GlyT) cells.

      Strengths: • The authors provide a comprehensive description of how placental and embryo weight is affected by the oocyte-Eed deletion through mid-to-late gestation development. The case for placentomegaly is clear.

      Weaknesses:

      • The placental efficiency data presented in Figure 3G-I is incorrect. Placental efficiency is calculated as embryo mass/placental mass, and it increases over the late gestation period. For e14.5 for example (Fig3G), WT-wt embryo mass = ~0.3g, placenta mass = 0.11g (from Fig 3D) = placental efficiency 2.7; HET-hom = 0.25/0.12 = 2.1. The paper gives values: WT-wt 0.5, HET-hom 0.7. Have the authors perhaps divided placenta weight by embryo mass? This would explain why the E17.5 efficiencies are so low (WT-wt 0.11 rather than a more usual figure of 8.88. If this is the case then the authors' conclusion that placental efficiency is improved by oocyte deletion of Eed is wrong - in fact, placental efficiency is severely compromised.

      The authors have performed cell type counting on histological sections obtained from placentas to discover which cells are contributing to the placentomegaly. This data is presented as %cell type area in the main figure, though the untransformed cross-sectional area for each cell type is shown in the supplementary data. This presentation of the data, as well as the description of it, is misleading because, while it emphasises the proportional increase in the endocrine compartment of the placenta it downplays the fact that the exchange area of the mutant placentas is vastly expanded. This is important for two reasons.

      Firstly, the whole placenta is increased in size suggesting that the mechanism is not placental lineage- specific and instead acting on the whole organ. Secondly in relation to embryonic growth, generally speaking, genetic manipulations that modify labyrinthine volume tend to have a positive correlation with fetal mass whereas the relationship between junctional zone volume and embryonic mass is more complex (discussed in Watson PMID: 15888575, for example). The authors should reconsider how they present this data in light of the previous point.

      We thank the reviewer for pointing out our error in the placental efficiency analysis and apologise for this error. We have corrected the presentation and interpretation of these data and have described this in detail in our response to Reviewer 1, Comment 1.

      As discussed in our response to Reviewer 1, Comment 1, we have added a range of analyses to determine whether placental efficiency was enhanced in HET-hom offspring. These include measuring fetal and maternal circulating glucose levels (Figure 4K), individual amino acids and an extensive range of metabolites (Figure 8) and providing CD31 immunofluorescent analyses of labyrinth area, labyrinth/placental ratio and capillary/labyrinth ratio in HET-hom and control placentas (Figure 5).

      We also added analyses of glycogen enriched and non-glycogen-enriched cell counts in the decidua and junctional zones. As suggested by Reviewer 3, both glycogen-enriched and non-enriched cell populations are significantly increased in HET-hom placentas.

      Combined, these new analyses significantly expand the study and support the conclusion that placental efficiency in HET-hom offspring was either compromised or not different from controls, depending on the analysis. We find no evidence that placental efficiency was increased in HET-hom offspring and have reworked our results and discussion sections to reflect these new data and interpretation.

      Reviewer 3, Comment 2 cont: Again, some of the methods are not clearly reported making interpretation difficult - especially how they have estimated their GlyT number.

      As outlined in our response to Reviewer 3 Comment 1, in the methods section we have added further detail of how we counted glycogen-enriched and non-enriched cells in the decidua and junctional zone regions of sections for the middle of WT-wt, WT-het, HET-het and HET-hom placentas (Lines 650-669).

      Reviewer 3, Comment 3: Perinatal embryonic/pup overgrowth.

      Strengths:

      • The overgrowth exhibited by the oocyte-Eed-deleted pups is striking and confirms the previous work by this group (Prokopuk, 2018). This is an important finding, especially in the context of understanding how PRC2-group gene mutations in humans cause overgrowth syndromes. It is also intriguing because it indicates that genetic/environmental insults in the mother that affect her gamete development can have long-term consequences on offspring physiology.

      Weaknesses:

      • Is the overgrowth intrauterine or is it caused by the increase in gestation length? The way the data is reported makes it impossible to work this out. The authors show that gestation time is consistently lengthened for mothers incubating oocyte-Eed-deleted pups by 1-2 days. In the supplementary material, the mutant embryos are not larger than WT at e19.5, the usual day of birth. Postnatal data is presented as day post-parturition. It would probably be clearer to present the embryonic and postnatal data as days post coitum. In this way, it will be obvious in which period the growth enhancement is taking place. This is information really important to determine whether the increased growth of the mutants is due to a direct effect of the intrauterine environment, or perhaps a more persistent hormonal change in the mother that can continue to promote growth beyond the gestation period.

      We have used embryonic day (E) to denote embryo and fetal age throughout the study – this is the same as using DPC (i.e. E19.5 is equivalent to 19.5 DPC). As described in the Methods “Collection of post-implantation embryos, placenta and postnatal offspring”, mice were time mated for two-four nights, with females plug checked daily. Positive plugs were noted as day E0.5.

      To make the data presentation clearer, we have shown the data for surviving HET-hom pups born on E19.5 (Figure 2J) separately from all HET-hom surviving pups born on E19.5-E21.5. (Figure 2G). As discussed in our response to Reviewer 2, we have also included growth data for pregnancies at E14.5, E17.5, E18.5 (Fig. 2C-F) and E19.5 (Figure 2J,K), as well as P0 (combined data for surviving pups born E19.5-E21.5), and P3 (combined data for surviving pups born E19.5-E21.5, Figure 2G,H).

      These data clearly show that HET-hom fetuses are substantially growth and developmentally delayed at E14.5 (Figure 2D), but HET-hom pups born on E19.5 are the same weight as WT-wt, WT-het and HET-het control pups (Figure 2J). This demonstrates that weight of HET-hom fetuses is normalised in utero between E14.5 and day of birth on E19.5.

      Importantly, as requested by Reviewer 3, we have separated average weight for all surviving pups with a day of birth of E19.5-21.5 (Figure 2G) from average weight of pups born on E19.5 only (Figure 2J). These analyses revealed that the average weight of surviving pups born between E19.5-21.5 was significantly higher than for controls (Figure 2G), but the average weight of pups born on E19.5 only was not. It is therefore clear that extended gestation also contributed to increased HET-hom pup birth weight. We have updated these additional analyses in Results (Lines 165-197) and Figure 2

      As revealed in Figure 2H, it is also possible/likely that growth of HET-hom pups during the three days post- partum may have contributed to the offspring overgrowth we observed in this and our previous study (Prokopuk et al., 2018 Clinical Epigenetics). However, we cannot determine whether there is a contribution from a persistent maternal hormonal change that promotes post-natal offspring growth or whether there is an innate growth benefit in HET-hom pups. As this is very difficult to dissect, separating these possibilities is beyond the scope of our study.

      Reviewer 3, Comment 4: "fetal growth restriction followed by placental hyperplasia, .. drives catch-up growth that ultimately results in perinatal offspring overgrowth".

      Here the authors try to link their observations, suggesting that i) the increased perinatal growth rate is a consequence of placentomegaly, and ii) the placentomegaly/increased fetal growth is an adaptive consequence of the early growth restriction. This is an interesting idea and suggests that there is a degree of developmental plasticity that is operating to repair the early consequences of transient loss of Eed function.

      Strengths:

      • Discrepancies between earlier studies are reconciled. Here the authors show that in oocyte-Eed-deleted embryos growth is initially restricted and then the growth rate increases in late gestation with increased perinatal mass.

      Weaknesses:

      • Regarding the dependence of fetal growth increase on placental size increase, this link is far from clear since placental efficiency is in fact decreased in the mutants (see above).

      • "Catch-up growth" suggests that a higher growth rate is driven by an earlier growth restriction in order to restore homeostasis. There is no direct evidence for such a mechanism here. The loss of Eed expression in the oocyte and early embryo could have an independent impact on more than one phase of development.

      Firstly, there is growth restriction in the early phase of cell divisions. Potentially this could be due to depression of genes that restrain cell division on autosomes, or suppression of X-linked gene expression (as has been previously reported, Inoue, 2018 PMID: 30463900). The placentomegaly is explained by the misregulation of non-canonically imprinted genes, as the authors report (and in agreement with other studies, e.g. Inoue, 2020. PMID: 32358519).

      • Explaining the perinatal phase of growth enhancement is more difficult. I think it is unlikely to be due to placentomegaly. Multiple studies have shown that placentomegaly following somatic cell nuclear transfer (SCNT) is caused by non-canonically imprinted genes, and can be rescued by reducing their expression dosage. However, SCNT causes placentomegaly with normal or reduced embryonic mass (for example -Xie 2022, PMID: 35196486), not growth enhancement. Moreover, since (to my knowledge) single loss of imprinting models of non-canonically imprinted genes do not exist, it is not possible to understand if their increased expression dosage can drive perinatal overgrowth, and if this is preceded by growth restriction and thus constitutes 'catch up growth'.

      Reviewer 3 is correct in their assessment that placental efficiency was decreased in HET- hom offspring and we have corrected the placental efficiency analysis based on fetal/placental weight ratios (discussed in detail in our response to Reviewer 1 Comment 1). We have added substantially more data (glucose, amino acids, metabolites, labyrinth capillary area and density). These data support the conclusion that a placentally driven advantage for HET-hom fetal growth is unlikely, despite our observation that HET- hom fetuses are developmental delayed and underweight at E14.5, but are born at normal weight after a normal gestational length (19.5 days) (discussed in our responses to Reviewer 3, Comment 3 and Reviewer 2).

      This demonstrates that HET-hom fetuses are able to attain normal birth weight despite being initially growth restricted state at E14.5, and that this occurs despite low placental function. Moreover, as we compared isogenic offspring with heterozygous loss of Eed (Het-het compared to HET-hom offspring) the outcomes we observed in HET-hom offspring originate from loss of EED in the growing oocyte or loss of maternal EED in the zygote strongly suggesting that a non-genetic mechanism is involved.

      As pointed out by Reviewer 3, the initial developmental delay in HET-hom offspring may be due to increased expression of genes that regulate cell proliferation – this could clearly explain the lower number of cells we observed in the ICM and the growth delay at later stages of embryonic and fetal development. Another possibility is that maternal PRC2 provided by the oocyte promotes cell divisions in preimplantation embryos We have discussed these possibilities on Lines 467-476.

      In addition, Matoba et al 2022 demonstrated that deletion of maternal Xist together with Eed was able to rescue male-biased lethality in offspring from oocytes lacking Eed, revealing a clear role for X-linked genes in this phenotype (Matoba et al 2022, Genes and Development). However, deletion of maternal Xist did not properly normalise survival offspring from Eed null oocytes (i.e. Eed/Xist double maternal null litters were smaller than litters derived from wild type oocytes) strongly suggesting other mechanisms provide the capacity for HET-hom offspring to attain normal weight at birth. We have added further discussion of the Matoba study in the context of our study on of the Discussion (Lines 544-555)

      Finally, with respect to the outcomes for SCNT derived offspring, we extracted SCNT fetal growth and placental weight data from the supplementary data included in Matoba et al., 2018 Cell Stem Cell. 2018;23(3):343-54.e5 and compared it with data collected in our study (Figure 7). This analysis revealed that the weights of placentas and fetuses of offspring derived via SCNT were very similar to the HET-hom offpsring in our study and we have discussed the similarities and potential differences between HET-hom and SCNT offspring in the Discussion (Lines 478-500).

      As pointed out by Reviewer 3, deletion of maternal non-canonically imprinted genes partially or fully rescued the placental hyperplasia phenotype in both SCNT derived and offspring from oocyte lacking EED. However, as we have discussed, the mechanisms underlying other aspects of the offspring phenotype, such as fetal growth recovery of HET-hom offspring observed in our study, remain unknown. Moreover, the comparison we provide in Figure 7 strongly indicates that HET-hom and SCNT fetuses are similarly delayed at E14.5 and undergo similar fetal growth recovery before birth, but the mechanism also remains unknown. Together, it appears that offspring derived from either Eed-null oocytes or by SCNT have an innate ability to remediate fetal growth restriction during the late stages of pregnancy without a requirement to correct maternally inherited impacts mediated by Xist or H3K27me3-dependent imprinting.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We thank the editors and reviewers for their helpful comments, which have allowed us to improve the manuscript.

      Response to reviewer 2

      We thank the reviewer for this positive feedback, which requires no further revision.

      Response to reviewer 3

      We thank the reviewer for highlighting these additional points and provide further explanations on these below.

      Firstly, we started the analysis from a baseline of year 2000 because the largest international donor (the Global Fund) uses baseline malaria levels in the period 2000-2004 as the basis of their current allocation calculations (The Global Fund, Description of the 2020-2022 Allocation Methodology, December 2019). In the paper we compare our optimal strategy to a simplified version of this method, represented by our “proportional allocation” strategy.

      Even if our simulations started in the year 2015, a direct comparison with the Global Technical Strategy for Malaria 2016-2030 would not be possible due to the different approaches taken. The GTS was developed to progress towards malaria elimination globally and set ambitious targets of at least 90% reduction in malaria case incidence and mortality rates and malaria elimination in at least 35 countries by 2030 compared to 2015. Mathematical modelling at the time suggested that 90% coverage of WHO-recommended interventions (vector control, treatment and seasonal malaria chemoprevention) would be needed to approach this target (Griffin et al. 2016, Lancet Infectious Diseases). The global annual investment requirements to meet GTS targets were estimated at US$6.4 billion by 2020 and US$8.7 billion by 2030 (Patouillard et al. 2017, BMJ Global Health). This strategy therefore considers what resources would be required to achieve a specific global target, but not the optimized allocation of resources.

      Investments into malaria control have consistently been below the estimated requirements for the GTS milestones (World Health Organization 2022, World Malaria Report 2022). In our study, we therefore take a different perspective on how limited budgets can be optimally allocated to a single intervention (insecticide-treated nets) across countries/settings to achieve the best possible outcome for two objectives that are different to the GTS milestones (either minimizing the global case burden, or minimizing both the global case burden and the number of settings not having yet reached a pre-elimination phase). As stated in the discussion, our estimate of allocating 76% of very low budgets to high-transmission settings was similar to the global investment targets estimated for the GTS, where the 20 countries with the highest burden in 2015 were estimated to require 88% of total investments (Patouillard et al. 2017, BMJ Global Health). Nevertheless, we also show that if higher budgets were available, allocating the majority to low-transmission settings co-endemic for P. falciparum and P. vivax would achieve the largest reduction in global case burden. We acknowledge the modelling of a single intervention as one of the key limitations of this analysis, but this simplification was necessary in order to perform the complex optimisation problem. Computationally it would not have been feasible to optimize across a multitude of intervention and coverage combinations.

      A further limitation raised by the reviewer is the lack of cross-species immunity between P. falciparum and P. vivax in our model. While cross-reactivity between antibodies against these two species has been observed in previous studies and the potential implications of this would be important to explore in future work, we did not include it here as little is known to date about the epidemiological interactions between different malaria parasite species (Muh et al. 2020, PLoS Neglected Tropical Diseases).

      Lastly, we did not assume that transmission was homogenous within the four transmission settings in our study (very low, low, moderate, high); transmission dynamics were simulated separately in each country, accounting for heterogeneous mosquito bite exposure. However, results were summarised for the broader transmission settings since many other country-specific factors were not accounted for (see discussion) and the findings should not be used to inform individual country allocation decisions.


      The following is the authors’ response to the original reviews.

      Author response to peer review

      We thank the reviewers for their insightful comments, which raise several important points regarding our study. As the reviewers have recognised, we introduced a number of simplifications in order to perform this complex optimisation problem, such as by restricting the analysis to a single intervention (insecticide-treated nets) and modelling countries at a national level. Despite their clear relevance to the study, computationally it would not have been feasible to run the multitude of scenarios suggested by reviewer 1, which we recognise as a limitation. As such we agree with the assessment that this study primarily represents a thought experiment, based on substantive modelling and aggregate scenario-based analysis, to assess whether current policies are aligned with an optimal allocation strategy or whether there might be a need to consider alternative strategies. The findings are relevant primarily to global funders and should not be used to inform individual country allocation decisions, and also point to avenues for further research. This perspective also underlies our decision to start the analysis from a baseline of year 2000 as opposed to modelling the current 2023 malaria situation: the largest international donor (the Global Fund) uses baseline malaria levels in the period 2000-2004 as the basis of their allocation calculations (The Global Fund, Description of the 2020-2022 Allocation Methodology, December 2019) (1). A simplified version of this method is represented by our “proportional allocation” strategy. We have made several revisions to the manuscript to address the points raised by the reviewers, as detailed below.

      Reviewer #1 (Public Review):

      1. The authors present a back-of-the-envelope exploration of various possible resource allocation strategies for ITNs. They identify two optimal strategies based on two slightly different objective functions and compare 3 simple strategies to the outcomes of the optimal strategies and to each other. The authors consider both P falciparum and P vivax and explore this question at the country level, using 2000 prevalence estimates to stratify countries into 4 burden categories. This is a relevant question from a global funder perspective, though somewhat less relevant for individual countries since countries are not making decisions at the global scale.

      Thank you for this summary of the paper. We agree that our analysis is of relevance to global funders, but is not meant to inform individual country allocation decisions. In the discussion, we now state:

      p. 12 L19: “Therefore, policy decisions should additionally be based on analysis of country-specific contexts, and our findings are not informative for individual country allocation decisions.”

      1. The authors have made various simplifications to enable the identification of optimal strategies, so much so that I question what exactly was learned. It is not surprising that strategies that prioritize high-burden settings would avert more cases.

      Thank you for raising this point. Indeed, several simplifying assumptions were necessary to ensure the computational feasibility of this complex optimization problem. As a result, our study primarily represents a thought experiment to assess whether current policies are aligned with an optimal allocation strategy or whether there might be a need to consider alternative strategies. As now further outlined in the introduction, approaches to this have differed over time and it remains a relevant debate for malaria policy.

      p. 2 L22: “However, there remains a lack of consensus on how best to achieve this longer-term aspiration. Historically, large progress was made in eliminating malaria mainly in lower-transmission countries in temperate regions during the Global Malaria Eradication Program in the 1950s, with the global population at risk of malaria reducing from around 70% of the world population in 1950 to 50% in 2000 (2). Renewed commitment to malaria control in the early 2000s with the Roll Back Malaria initiative subsequently extended the focus to the highly endemic areas in sub-Saharan Africa (3).”

      We believe our findings not only confirm an “expected” outcome – that prioritizing high-burden settings would avert more cases – but also clearly illustrate various consequences of different allocation strategies that are implemented or considered in reality, which may not be so obvious. For example, we found that initially allocating a larger share of the budget to high-transmission countries could be both almost optimal in terms of reducing clinical cases and maximising the number of countries reaching pre-elimination. We also observed a trade-off between reducing burden and reducing the global population at risk (“shrinking the map”) through a focus on near-elimination settings, and estimate the loss in burden reduction when following an elimination target.

      1. Generally, I found much of the text confusing and some concepts were barely explained, such that the logic was difficult to follow.

      Thank you for bringing this to our attention, and we regret to hear the manuscript was confusing to read. We believe that the revisions made as a result of the reviewer comments have now made the manuscript much easier to follow. We additionally passed the manuscript to a colleague to identify confusing passages, and have added a number of sentences to clarify key concepts and improve the structure.

      1. I am not sure why the authors chose to stratify countries by 2000 PfPR estimates and in essence explore a counterfactual set of resource allocation strategies rather than begin with the present and compare strategies moving forward. I would think that beginning in 2020 and modeling forward would be far more relevant, as we can't change the past. Furthermore, there was no comparison with allocations and funding decisions that were actually made between 2000 and 2020ish so the decision to begin at 2000 is rather confusing.

      Thank you for pointing this out. We have now made the rationale for this choice clearer in the manuscript. Our main reason for this was to allow comparison with the Global Fund funding allocation, which is largely based on malaria disease burden in 2000-2004. As stated in the paper, malaria prevalence estimates in the year 2000 are commonly considered to represent a “baseline” endemicity level, before large-scale implementation of interventions in the following decades. In the manuscript, the transmission-related element of the Global Fund allocation algorithm is represented in our “proportional allocation” strategy. Previously this was only mentioned in the methods, but we have now added the following in the results to address this comment of the reviewer:

      p. 6 L12: “Strategies prioritizing high- or low-transmission settings involved sequential allocation of funding to groups of countries based on their transmission intensity (from highest to lowest EIR or vice versa). The proportional allocation strategy mimics the current allocation algorithm employed by the Global Fund: budget shares are mainly distributed according to malaria disease burden in the 2000-2004 period. To allow comparison with this existing funding model, we also started allocation decisions from the year 2000.”

      The Global Fund framework additionally considers economic capacity and other specific factors, and we have now also included a direct comparison with the 2020-2022 Global Fund allocation in Supplementary Figure S12 (see Author response image 1).

      We agree that looking at allocation decisions from 2020 onward would also constitute a very interesting question. However, the high dimensionality in scenarios to consider for this would currently make it computationally infeasible to run on the global level. Not only would it have to include all interventions currently implemented and available for malaria at different levels of coverage, but also the option of scaling down existing interventions. Instead, our priority in this paper was to conduct a thought experiment including both P. falciparum and P. vivax on a large geographical scale.

      Author response image 1.

      Impact of the proportional allocation strategy and the 2020-2022 Global Fund allocation on global malaria cases (panel A) and the total population at risk of malaria (panel B) at varying budgets. Both strategies use the same algorithm for budget share allocation based on malaria disease burden in 2000-2004, but the Global Fund allocation additionally involves an economic capacity component and specific strategic priorities.

      1. I realize this is a back-of-the-envelope assessment (although it is presented to be less approximate than it is, and the title does not reveal that the only intervention strategy considered is ITNs) but the number and scope of modeling assumptions made are simply enormous. First, that modeling is done at the national scale, when transmission within countries is incredibly heterogeneous. The authors note a differential impact of ITNs at various transmission levels and I wonder how the assumption of an intermediate average PfPR vs modeling higher and lower PfPR areas separately might impact the effect of the ITNs.

      Thank you for this comment. We agree the title could be more specific and have changed this to “Resource allocation strategies for insecticide-treated bednets to achieve malaria eradication”.

      Regarding the scale of ITN allocation, it is true that allocation at a sub-national scale could affect the results. However, considering this at a national scale is most relevant for our analysis because this is the scale at which global funding allocation decisions are made in practice. A sentence explaining this has been added in the methods.

      p. 15 L8: “The analysis was conducted on the national level, since this scale also applies to funding decisions made by international donors (1).”

      Further considering different geographical scales would also require introducing other assumptions, for example about how different countries would distribute funding sub-nationally, whether specific countries would take cooperative or competitive approaches to tackle malaria within a region or in border areas, and about delays in the allocation of bednets in specific regions. These interesting questions were outside of the scope of this work, but certainly require further investigation.

      1. Second, the effect of ITNs will differ across countries due to variations in vector and human behavior and variation in insecticide resistance and susceptibility to the ITNs. The authors note this as a limitation but it is a little mind-boggling that they chose not to account for either factor since estimates are available for the historical period over which they are modeling.

      Thank you for pointing this out. We did consider this and mentioned it as a limitation. Nevertheless, the complexity of accounting for this should also be recognised; for example, there is substantial uncertainty about the precise relationship between insecticide resistance and the population-level effect of ITNs (Sherrard-Smith et al., 2022, Lancet Planetary Health) (4). Additionally, our simulations extend beyond the 2000-2023 period so further assumptions about future changes to these factors would also be required. Simplifying assumptions are inherent to all mathematical modelling studies and we consider these particular simplifications acceptable given the high-level nature of the analysis.

      1. Third, the assumption that elimination is permanent and nothing is needed to prevent resurgence is, as the authors know, a vast oversimplification. Since resources will be needed to prevent resurgence, it appears this assumption may have a substantial impact on the authors' results.

      Thank you for this comment. In the discussion, we have now expanded on this:

      p. 13 L3: “While our analysis presents allocation strategies to progress towards eradication, the results do not provide insight into allocation of funding to maintain elimination. In practice, the threat of malaria resurgence has important implications for when to scale back interventions.”

      We believe that from a global perspective, the questions of funding allocation to achieve elimination vs to maintain it can currently still be considered separately given the large time-scales involved. The cost of preventing resurgence is not known, and one major problem in accounting for this would also be to identify relevant timescales to quantify this over.

      1. The decision to group all settings with EIR > 7 together as "high transmission" may perhaps be driven by WHO definitions but at a practical level this groups together countries with EIR 10 and EIR 500. Why not further subdivide this group, which makes sense from a technical perspective when thinking about optimal allocation strategies?

      Thank you for pointing this out. The WHO categories used are better interpreted in terms of the corresponding prevalence, which places countries with a prevalence of over 35% in the high transmission categories (WHO Guidelines for malaria, 31 March 2022) (5). We felt this is appropriate given that we are looking at theoretical global allocation patterns and do not aim to make recommendations for specific groups of countries or individual countries within sub-Saharan Africa that would be distinguished through the use of higher cut-offs. In our analysis, all 25 countries in the high transmission category were located in sub-Saharan Africa.

      1. The relevance of this analysis for elimination is a little questionable since no one eliminates with ITNs alone, to the best of my understanding.

      Thank you for this comment. We indeed state in the paper that ITNs alone are not sufficient to eliminate malaria. However, we still think that our analysis is relevant for elimination by taking a more theoretical perspective on reducing transmission using interventions. Starting from the 2000 baseline (or current levels) globally, large-scale transmission reductions such as those achieved by mass ITN distribution still represent the first key step on the path to malaria eradication, as shown in previous modelling work (Griffin et al., 2016, Lancet Infectious Diseases) (6). In the final phase of elimination, the WHO also recommends the addition of more targeted and reactive interventions (WHO Guidelines for malaria, 31 March 2022) (5). Our changes to the title of the article (“Resource allocation strategies for insecticide-treated bednets to achieve malaria eradication”) should now better reflect that we consider ITNs as just one necessary component to achieve malaria eradication.

      Reviewer #2 (Public Review):

      1. Schmit et al. analyze and compare different strategies for the allocation of funding for insecticide-treated nets (ITNs) to reduce the global burden of malaria. They use previously published models of Plasmodium falciparum and Plasmodium vivax malaria transmission to quantify the effect of ITN distribution on clinical malaria numbers and the population at risk. The impact of different resource allocation strategies on the reduction of malaria cases or a combination of malaria cases and achieving pre-elimination is considered to determine the optimal strategy to allocate global resources to achieve malaria eradication.

      Strengths:

      Schmit et al. use previously published models and optimization for rigorous analysis and comparison of the global impact of different funding allocation strategies for ITN distribution. This provides evidence of the effect of three different approaches: the prioritization of high-transmission settings to reduce the disease burden, the prioritization of low-transmission settings to "shrink the malaria map", and a resource allocation proportional to the disease burden.

      Thank you for providing this summary and outline of the strengths of the paper.

      1. Weaknesses:

      The analysis and optimization which provide the evidence for the conclusions and are thus the central part of this manuscript necessitate some simplifying assumptions which may have important practical implications for the allocation of resources to reduce the malaria burden. For example, seasonality, mosquito species-specific properties, stochasticity in low transmission settings, and changing population sizes were not included. Other challenges to the reduction or elimination of malaria such as resistance of parasites and mosquitoes or the spread of different mosquito species as well as other beneficial interventions such as indoor residual spraying, seasonal malaria chemoprevention, vaccinations, combinations of different interventions, or setting-specific interventions were also not included. Schmit et al. clearly state these limitations throughout their manuscript.

      The focus of this work is on ITN distribution strategies, other interventions are not considered. It also provides a global perspective and analysis of the specific local setting (as also noted by Schmit et al.) and different interventions as well as combinations of interventions should also be taken into account for any decisions.

      Thank you for raising these points. As outlined at the beginning of our response, for computational reasons we indeed had to introduce several simplifying assumptions to perform this complex optimisation problem. As a result of these factors you highlighted, our study should primarily be interpreted as a thought experiment to assess whether current policies are aligned with an optimal allocation strategy or whether there might be a need to consider alternative strategies. The findings are relevant primarily to global funders and should not be used to inform individual country allocation decisions, which we have further clarified in the manuscript.

      1. Nonetheless, the rigorous analysis supports the authors' conclusions and provides evidence that supports the prioritization of funding of ITNs for settings with high Plasmodium falciparum transmission. Overall, this work may contribute to making evidence-based decisions regarding the optimal prioritization of funding and resources to achieve a reduction in the malaria burden.

      Thank you for this positive assessment of our work.

      Reviewer #1 (Recommendations For The Authors):

      1. L144: last paragraph, the focus on endemic equilibrium: I did not really understand this, when 39 years is mentioned later is that a different analysis? How are cases averted calculated in a time-agnostic endemic equilibrium analysis? Perhaps a little more detail here would be helpful.

      A further explanation of this has been added in the results and methods.

      p. 8 L 22: “To evaluate the robustness of the results, we conducted a sensitivity analysis on our assumption on ITN distribution efficiency. Results remained similar when assuming a linear relationship between ITN usage and distribution costs (Figure S10). While the main analysis involves a single allocation decision to minimise long-term case burden (leading to a constant ITN usage over time in each setting irrespective of subsequent changes in burden), we additionally explored an optimal strategy with dynamic re-allocation of funding every 3 years to minimise cases in the short term.”

      p. 17 L25: “To ensure computational feasibility, 39 years was used as it was the shortest time frame over which the effect of re-distribution of funding from countries having achieved elimination could be observed.”

      p. 18 L 9: “Global malaria case burden and the population at risk were compared between baseline levels in 2000 and after reaching an endemic equilibrium under each scenario for a given budget.”

      1. L148: what is proportional allocation by disease burden and how is that different from prioritizing high-transmission settings?

      Further details have been added in the text.

      p. 6 L12: “Strategies prioritizing high- or low-transmission settings involved sequential allocation of funding to groups of countries based on their transmission intensity (from highest to lowest EIR or vice versa). The proportional allocation strategy mimics the current allocation algorithm employed by the Global Fund: budget shares are mainly distributed according to malaria disease burden in the 2000-2004 period. To allow comparison with this existing funding model, we also started allocation decisions from the year 2000.”

      1. L198-9: did low transmission settings get the majority of funding at intermediate and maximum budgets because they have the most population (I think so, based on Fig 1)?

      Yes, this is correct. We state in the results: “the optimized distribution of funding to minimize clinical burden depended on the available global budget and was driven by the setting-specific transmission intensity and the population at risk”.

      1. L206: what is ITN distribution efficiency? This is not explained. What is the 39-year period? Why this duration?

      Further explanations have been added in the results section, which were previously only detailed in the methods:

      p. 8 L 22: “To evaluate the robustness of the results, we conducted a sensitivity analysis on our assumption on ITN distribution efficiency. Results remained similar when assuming a linear relationship between ITN usage and distribution costs (Figure S10)."

      p. 17 L25: “To ensure computational feasibility, 39 years was used as it was the shortest time frame over which the effect of re-distribution of funding from countries having achieved elimination could be observed.”

      1. L218: what is "no intervention with a high budget"? is this a phrasing confusion?

      Yes, this has been changed.

      p. 9 L14: “We estimated that optimizing ITN allocation to minimize global clinical incidence could, at a high budget, avert 83% of clinical cases compared to no intervention.”

      1. L235-7: on comparing these results to previous work on the 20 highest-burden countries: is the definition of "high" similar enough across these studies that this is a relevant comparison?

      We believe this is reasonably comparable, as looking at the 20 highest-burden countries encompasses almost the entire high-transmission group in our work (25 countries in total), on which the comparison is made.

      1. L267-70: I didn't understand this sentence at all.

      Thanks for flagging this. The sentence referred to is: “Allocation proportional to disease burden did not achieve as great an impact as other strategies because the funding share assigned to settings was constant irrespective of the invested budget and its impact, and we did not reassign excess funding in high-transmission settings to other malaria interventions.”

      The previously mentioned added details on the proportional allocation strategy in the manuscript should now make this clearer, together with this clarification:

      p. 11 L17: “In modelling this strategy, we did not reassign excess funding in high-transmission settings to other malaria interventions, as would likely occur in practice.”

      For proportional allocation, a fixed proportion of the budget is calculated for each country based on disease burden, as described in the Global Fund allocation documentation (see Methods). However, since ITNs are the only intervention considered, this leads to a higher budget being allocated than is needed in some countries (i.e. where more funding doesn’t translate into further health gains).

      1. L339 EIR range: 80 is high at the country level but areas within countries probably went as high as 500 back in 2000. How does this affect the modeled estimates of ITN impact?

      The question of sub-national differences in transmission has been addressed in the public review comments. Briefly, we consider the national scale to be most relevant for our analysis because this is the scale at which global funding allocation decisions are made in practice. Although, as you correctly point out, the EIR affects ITN impact, it is not possible to conclude what the average effect of this would be on the country level without considering the following factors and introducing further assumptions on these: how would different countries distribute funding sub-nationally? Which countries would take cooperative or competitive approaches to tackle malaria within a region or in border areas? Would there be delays in the allocation of bednets in specific regions? These interesting questions were outside of the scope of this work, but certainly require further investigation.

      1. L347 population size constant: births and deaths are still present, is that right? Unclear from this sentence

      Yes, this is correct. Full details on the model can be found in the Supplementary Materials.

      1. L370 estimating ITN distribution required to achieve simulated population usage: is this a single relationship for all of Africa? Is it based on ITNs distributed 2:1 -> % access -> % usage? So it accounts for allocation inefficiency?

      Yes, this is represented by a single relationship for all of Africa to account for allocation inefficiency and is based on observed patterns across the continent and methodology developed in a previous publication (Bertozzi-Villa et al., 2021, Nature Communications) (7). Full details can be found in the Supplementary Materials (“Relationship between distribution and usage of insecticide-treated nets (ITNs)”, p. 21).

      1. L375: the ITN unit cost is assumed constant across countries and time (I think, it doesn't say explicitly), is this a good assumption?

      Yes, this is correct. We consider this a reasonable assumption within the scope of the paper. While delivery costs likely vary across countries, international funders usually have pooled procurement mechanisms for ITNs (The Global Fund, 2023, Pooled Procurement Mechanism Reference Pricing: Insecticide-Treated Nets).

      1. L399: "single allocation of a constant ITN usage" it is not explained what exactly this means

      Further explanations have been added in the manuscript.

      p. 8 L24: “While the main analysis involves a single allocation decision to minimise long-term case burden (leading to a constant ITN usage over time in each setting irrespective of subsequent changes in burden), we additionally explored an optimal strategy with dynamic re-allocation of funding every 3 years to minimise cases in the short term.”

      Reviewer #2 (Recommendations For The Authors):

      1. Additionally to the public comments, the only major comment is that in this reviewer's opinion, the focus on ITNs as the only intervention should be made clearer at different places in the manuscript (e.g. in the discussion lines 303-304). Otherwise, there are only some minor comments (see below).

      We have now modified the following sentence and also included this suggestion in the title (“Resource allocation strategies for insecticide-treated bednets to achieve malaria eradication”).

      p. 13 L8: “Our analysis demonstrates the most impactful allocation of a global funding portfolio for ITNs to reduce global malaria cases.”

      1. Minor comments:
      2. It may be of interest to compare the maximum budget obtained from the optimization with other estimates of required funding and actual available funding.

      Thank you for this interesting suggestion. Our maximum budget estimates are similar to the required investments projected for the WHO Global Technical Strategy: US$3.7 billion for ITNs in our analysis compared to between US$6.8 and US$10.3 billion total annual resources between 2020 and 2030, of which an estimated 55% would be required for (all) vector control (US$3.7 - US$5.7 billion) (Patouillard et al., 2016, BMJ Global Health) (8). However, it is well known that current spending is far below these requirements: total investments in malaria were estimated to be about US$3.1 billion per year in the last 5 years (World Health Organization, 2022, World Malaria Report 2022) (9).

      1. Line 177: should "Figure S7" be bold?

      Yes, this has been corrected.

      1. Line 218: what does "no intervention with high budget" mean? Should this simply be "no intervention"?

      This has been changed.

      p. 9 L14: “We estimated that optimizing ITN allocation to minimize global clinical incidence could, at a high budget, avert 83% of clinical cases compared to no intervention.”

      1. In this reviewer's opinion it would be easier for the reader if the weighting term in the objective function would be added in the Materials and Methods section. The weighting could be added without extending the section substantially and the explanation in lines 390-393 may be easier to understand.

      Thank you for this suggestion. We agree and have added this in the main manuscript.

      References

      1. The Global Fund. Description of the 2020-2022 Allocation Methodology 2019 [Available from: https://www.theglobalfund.org/media/9224/fundingmodel_2020-2022allocations_methodology_en.pdf.

      2. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis. 2004;4(6):327-36.

      3. Feachem RGA, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, et al. Shrinking the malaria map: progress and prospects. The Lancet. 2010;376(9752):1566-78.

      4. Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, et al. Optimising the deployment of vector control tools against malaria: a data-informed modelling study. The Lancet Planetary Health. 2022;6(2):e100-e9.

      5. World Health Organization. WHO Guidelines for malaria, 31 March 2022. Geneva: World Health Organization; 2022. Contract No.: Geneva WHO/UCN/GMP/ 2022.01 Rev.1.

      6. Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. The Lancet Infectious Diseases. 2016;16(4):465-72.

      7. Bertozzi-Villa A, Bever CA, Koenker H, Weiss DJ, Vargas-Ruiz C, Nandi AK, et al. Maps and metrics of insecticide-treated net access, use, and nets-per-capita in Africa from 2000-2020. Nature Communications. 2021;12(1):3589.

      8. Patouillard E, Griffin J, Bhatt S, Ghani A, Cibulskis R. Global investment targets for malaria control and elimination between 2016 and 2030. BMJ global health. 2017;2(2):e000176.

      9. World Health Organization. World malaria report 2022. Geneva: World Health Organization; 2022. Report No.: 9240064893.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This well done and interesting paper examining the connection between TXNIP and GDF15. The main thrust is that TXNIP upregulation chemotherapies, such as Oxa, results in an a down regulation of GDF15 early in tumorigenesis. Later in tumorigenesis, TXNIP upregulation is less pronounced, elevating GFP15 resulting in a blockage of tumor suppressive immune responses. Generally the work is convincing. For example, it's clear that TXNIP is up regulated by Oxa in an ROS and MondoA-dependent manner. Likewise its quite clear TXNIP loss reads to an upregulation of GDF15. However, it's also quite clear that Oxa suppresses GDF15 in a manner that appears to be completely independent of TXNIP. The writing in the paper implies strongly that there is a mechanistic connection between TXNIP and GDF15, but no experiments investigate this possibility.

      We feel this is very fair and is reflective of a) perhaps an overemphasis of the TXNIP knockout observation and supportive tissue data, which suggests a relationship but not a mechanistic understanding b) an underemphasis of the data in Figure 3 that shows a decrease in GDF15 after oxaliplatin treatment in TXNIP knockout lines.

      We have addressed these concerns in several ways:

      1. We have carried out knockdown experiments using siRNA for ARRDC4, which we felt, given its regulation by MondoA and ROS, and homology to TXNIP, may also regulate GDF15. This was found to be the case and may explain the data in Figure 3. At the very least it shows that other factors involved in oxidative stress management may have similar impacts – a form of functional redundancy. Lines 553-559 “Finally, given our previous data (Figure S4) we looked to assess the role of ARRDC4 on GDF15 expression. In the absence of oxaliplatin, knocking down ARRDC4 in DLD1 and HCT15 cells drove an increase in GDF15. When challenged with oxaliplatin, both ARRDC4 and TXNIP expression increased and GDF15 decreased. When the ARRDC4 knockdown was challenged TXNIP increased further and GDF15 decreased further (Figure S6G-J). Given the common regulatory pathways and homology between TXNIP and ARRDC4, and their similar functional roles, we suggest these data are evidence of redundancy within this system. “

      We have included some context in the discussion:

      Lines 930-933: “Further support for both TXNIP and ARRDC4’s role in regulating GDF15 after the induction of ROS comes from a pan cancer meta-analysis assessing the impact of metformin (which has been reported to inhibit ROS) on gene expression. Here the top two downregulated genes were TXNIP and ARRDC4 and the top four upregulated genes were DDIT4, CHD2, ERN1 and GDF1572

      We have tempered the text:

      Lines 522-524 “It is important to note however that here we saw clear evidence that TXNIP was not solely responsible for the downregulation of GDF15 post oxaliplatin treatment, with decreased levels seen in knockout lines (Figure 3C-G, S5E).”

      Lines 926-929 “It must be stressed that these data do not place TXNIP as the sole regulator of GDF15, for example ARRDC4 can also be seen to regulate GDF15. We envisage TXNIP as one of a number of ROS-dependent GDF15 regulators, with this redundancy potential evidence of the importance of this regulatory framework.”

      We have carried out additional analysis detailed in the discussion and in Figure S12 which suggests TXNIP impacts MYC function, as reported elsewhere (detailed below). For ease, the key paper can be accessed through this link https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001778

      Lines 934-956: “The main shortcoming of this paper is the lack of mechanistic understanding linking TXNIP to GDF15. There are 650 transcription factors that have been shown, or are predicted, to bind to GDF15 promoter and/or enhancer regions. By assessing our list of differentially expressed genes (Suppl. Table 1-2) for the presence of these factors we identified 6 GDF15 binding TFs that show significantly decreased expression after oxaliplatin treatment in both cell lines (ATF4, MYC, SREBF1, PHB2, HBP1, KLF9). There was only one, MYC, that was downregulated by oxaliplatin treatment (validated; Figure S12A), and with this downregulation partially being rescued in a matched TXNIP knockout line (Figure S12B). We then observed that c-myc has been shown or is predicted to bind to promoter/enhancer regions of the top five transcriptomic and proteomic differentials in TXNIP knockout lines, including TXNIP itself (apart from C16orf90). Even with c-myc’s promiscuity (binds to 10-20% of all promoters/enhancers) this may be suggestive of a specific relationship. Finally, when looking at the correlations between these 6 TFs and TXNIP and GDF15 in the TCGA COAD dataset, MYC has the greatest and most significant negative correlation to TXNIP (r=-0.4631 p=1.42e-28) and the greatest and most significant positive correlation to GDF15 (r=0.4653 p=7.32e-29). ATF4 and PHB2 are the other TFs in the list, that show the same significant trends (Figure S12C), and therefore may play a role in the TXNIP-independent oxaliplatin-dependent regulation of GDF15. Further exploration of these additional TFs is outside the scope of the current manuscript.

      MYC’s role in bridging from TXNIP to GDF15 is further supported by a recent paper which shows that TXNIP is “a broad repressor of MYC genomic binding” and that “TXNIP loss mimics MYC overexpression”73. Furthermore, the inter-dependent regulatory relationship between MondoA, TXNIP, and MYC has been seen in a variety of models74, whilst the impact of NAC on MYC-dependent pathways has been seen in lymphoma75. These studies lend credence to the idea that MYC is the most likely TXNIP-regulated TF that regulates GDF15 in our systems.”

      It seems equally likely that TXNIP and GDF15 represent independent parallel pathways. Even if TXNIP is a direct regulator of GDF15, it's also clear that other "factors" up or down-regulated by Oxa also contribute to the regulation of GDF15. These are not explored and even though TXNIP is highly regulated genes shown Figure 2 that are not identified or discussed that may also be contributing to GDF15 regulation.

      As mentioned above, the new data suggests that at least one other factor, ARRDC4, can regulate GDF15 (changes upon oxaliplatin treatment) and that MYC is a potential mechanistic bridge between TXNIP and GDF15. Whilst assessing for the transcription factor that may link TXNIP and GDF15 we found an additional 5 TXNIP-independent factors (ATF4, PHB2, SREBF1, HBP1, KLF9) that bind to GDF15 promoter/enhancer regions and are downregulated post-oxaliplatin treatment. When looking at correlations between these factors and GDF15 in the TCGA COAD dataset, ATF4 and PHB2 correlate most closely with GDF15 (when removing MYC) and so we would cautiously suggest that these may be the most pertinent. This data is now included.

      Further, the experiments treating PBMCs with conditioned media contain other cytokines/factors, in addition to GDF15, that likely also contribute the observed effects on the different immune cells understudy. The conditioned media from GDF15 knock out cells are a good experiment, but the media is not rigorously tested to see what other cytokines/factors might have also been depleted.

      The TXNIP knockout media is the same as that analysed by mass spec and the protein array, however as the reviewer states there is no analysis (excluding assessing for the presence or absence of GDF15) on the double knockout supernatant or over-expression supernatant. The text has been corrected as follows:

      Lines 675-679. “In light of other secreted factors being seen to be regulated by TXNIP (Figure 3A-B), we included double knockouts (TXNIP and GDF15 knockout; GTKO) as well as an overexpression system (GDF15a) to test for GDF15 specific effects. However, we do not know the impact of knocking out or overexpressing GDF15 on the broader secretome.”

      Perhaps a GDF15 complementation experiment would help here.

      We felt that the association between GDF15 and Treg induction is reasonably well established in the literature, and so once we saw that the supernatant from our GDF15 overexpression system (+/- CD48 blockade) complemented what has already been demonstrated, we were encouraged. However we needed more – hence the TCGA data and IHC staining.

      Finally, even if completely independent, a TXNIP/GDF15 ratio does seem to have utility in determining chemo-therapeutic response.

      We agree – we feel that conceptually this may be the most interesting part of the project and is an example of what can be done with these tools.

      Other major points: 1. Please label the other highly regulated genes shown in Fig 2A and B. Might they also explain some of the underlying biology. This could be on the current figures or in a supplement, though the former is preferred.

      Many thanks – we have done this.

      Please address why the TXNIP induction is so much less in patient-derived organoids vs. cell line spheroids (Fig S2). By the western blots, TXNIP inductions in the organoids looks quite modest. Further, the text is quite cryptic and implies that the "upregulation" is similar in both organoids and spheroids.

      You are absolutely correct. Many apologies, the wording has changed:

      Lines 320-323 “In both models we observed the upregulation of TXNIP mRNA (Figure S2E-H) and TXNIP protein (Figure S2I-L) after oxaliplatin treatment, with spheroids showing greater responsiveness. This difference is most likely due to culturing conditions or differences in the number and location of cycling cells.”

      We have two possible explanations. Firstly the media in which the organoids are cultured contains a lower glucose concentration than that used for the spheroids. As per some of our new data (Figure S3 – later in the rebuttal), the upregulation of TXNIP after oxaliplatin is glucose dependant, with lower concentrations resulting in less of a differential. Secondly, while restricted to the periphery, the Ki67 signal in DLD1 spheroids is quite pronounced indicating that, within the outer zone, many cells (probably the majority) are in the S/G1/G2 phase of the cell cycle at any given point in time (figure below this text).

      This is not the case for the organoids, where the Ki67 (and pCDK1) signal is quite weak, and only sporadic in the outer layer. So we believe that there are many more rapidly cycling cells in the most drug-exposed layer of spheroids when compared to the comparable region in organoids. As the spheroid cells are likely cycling more rapidly, they would also be expected to be more adversely affected by the drug within the finite drug treatment window. Indeed, these spheroids grow large, and quite quickly. If the organoid cells are cycling more slowly and if, within the cell layer most exposed to drug, these cycling cells are less abundant, then the TXNIP response may well be subdued in organoids when compared with spheroids.

      We have decided to not include the above (full) explanation and figure within the new draft, as we feel it may distract from the central message. However do let ourselves and the editor know if you disagree.

      What was the rationale of performing the MS experiment on control and TXNIP KO DLD1 cells in the absence of oxaliplatin? The other experiments in Fig 3 clearly show that Oxa can repress GDF15 even in the absence of TXNIP, which implicates other pathways. ARRDC4? Or something else? This needs to be addressed.

      We adopted this approach because of the order in which the assays occurred and technical issues surrounding the use of post-oxaliplatin treated supernatant. By the time we moved to the proteomics we had already identified, and validated, GDF15 as our number one candidate (initially from the protein array), in terms of response to oxaliplatin and dependence on TXNIP. This led us to the next stage of the project – to assess the environmental impacts of this factor in vitro before validation in situ. To do this, aware of the issue of contaminated recombinant GDF15, we decided early on to use cell line supernatant. We carried out some pilot studies on immune cells using supernatant from oxaliplatin treated cell lines and we had several technical issues (difficulty in determining the correct controls, immune cell death…). This changed the emphasis to using supernatant from knockout models rather than knockout and treated models. Before we began these assays in earnest we wanted to assess exactly what was enriched in TXNIP knockout supernatant and so we turned to proteomics. When this further validated GDF15, we then generated GDF15 and TXNIP/GDF15 knockouts to further elucidate GDF15’s role specifically.

      With regards the other pathways, as you correctly predicted, ARRDC4 also appears to regulate GDF15 – many thanks for helping with this line of enquiry. Please see earlier in the rebuttal for more details and the data.

      The data in 3J with the MondoA knockdown is not convincing. The knockdown is weak and TXNIP goes down a smidge. Agree that GDF15 goes up

      We agree. We have re-run this and pooled the densitometry data – see new figure below (Panel 3J).

      Minor points 1. Line 79. The "loss" of TXNIP/GDF15 axis is confusing. It's really loss of TXNIP and upregulation of GDF15, right?

      Absolutely - corrected to responsiveness.

      Lines 144-147: “Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker.”

      Please provide an explanation for the different stages in tables 1 and 2. This will likely not be clear to non-clinicians.

      Many thanks. The following has been added at the bottom of the second table.

      Lines 304-309: “The TNM staging system stands for Tumor, Node, Metastasis. T describes the size of the primary tumor (T1-2; 5cm). N describes the presence of tumor cells in the lymph nodes (N0; no lymph nodes. N1-3 >0). M describes whether there are any observable metastases (M0; no metastases. M1; metastases). The clinical stage system is as follows: I/II; the tumor has remained stable or grown, but hasn’t spread. III/IV; the tumor has spread, either locally (III) or systemically (IV).”

      Line 231 should probably read ...cysteine (NAC), a reactive oxygen species inhibitor,

      Many thanks - corrected

      Line 247, should be RT-qPCR I think.

      Many thanks - corrected

      Lines 343-345. I don't quite understand the wording. Does this mean to say that 675 soluble proteins were not changed between the condition media from both cell populations?

      Yes, exactly this. We have removed as this is superfluous and confusing.

      The data in FigS1 B and C don't seem to reach the standard p value of > 0.05

      Very true – we have rewritten the text to make sure the reader knows there is no significance.

      Lines 269-271. “High levels of both the protein (significantly) and the transcript (not significantly) were seen to be associated with favourable prognosis (Figure 1G,H and S1B,C).”

      **Referee Cross-Commenting**

      cross comment regarding referees 2 and 3 above. I'm am convinced that TXNIP is at least contemporaneously upregulated with GDF15 downregulation. However, the strong implication from the writing is that TXNIP regulates GDF15 directly. I agree with the comment above that exploring mechanisms may be open-ended especially as TXNIP has been implicated in gene regulation by several different mechanism. I'd be satisfied with a more open-minded discussion of potential mechanisms by which TXNIP may repress GDF15 and the possibility of other parallel pathways that likely contribute to GDF15 repression.

      Many thanks, this is a generous and understanding approach. As described above we have carried out extra analysis and have found 6 differentially regulated transcription factors which have been shown to bind GDF15 promoter or enhancer regions with 1 of these, MYC, being significantly affected in the TXNIP knockout cell lines, which in combination with supportive literature suggests a degree of TXNIP dependence. We have also identified ARRDC4 as an additional regulator of GDF15 – again please see above.

      Reviewer #1 (Significance (Required)):

      This is an interesting contribution but the mechanistic connection between GDF15 and TXNIP is relatively weak. That said, even as independent variables they do seem to have utility in predicting therapeutic response.

      Many thanks for the comment – we concur. We have reanalysed our data looking for relevant transcription factors (those that bind GDF15 promoter / enhancer regions) finding MYC as the most likely bridge. Please see above.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Deng et al. investigates a mechanistic link between TXNIP and GDF15 expression and oxaliplatin treatment and acquired resistance. They observe an upregulation in TXNIP expression in the tumors of patients who have previously received chemotherapy. They demonstrate oxaliplatin-driven MondoA transcriptional activity is what underlies the induction of TXNIP. They further demonstrate that TXNIP is a negative regulator of GDF15 expression. Together, oxaliplatin induces MondoA activity and TXNIP expression, resulting in a downregulation of GDF15 expression and consequently decreased Treg differentiation.

      Major Comments

      1. The authors suggest that TXNIP induction and GDF15 downregulation are a common effect of chemotherapies; however, the mechanistic studies were limited to oxaliplatin. The authors should clarify this point through further investigation using other commonly used CRC chemotherapies (5-FU, irinotecan, etc.),or through textual changes. To be clear, I think that the oxaliplatin results could potentially stand on their own but would require additional clarification. For example, regarding the patient samples analyzed in 1D and 4F, which patients received oxaliplatin? Could the analysis of publicly available molecular data be drilled down to just the patients who received oxaliplatin?

      Many thanks – this is an excellent point. Firstly, all the patients in 1D and 4F received oxaliplatin. Secondly, we have included new data looking at the impact of other chemotherapies (FOLRIRI, FU-5 and SN-38) on aspects of the study, ultimately finding that these processes (especially an anti-correlation between GDF15 and TXNIP changes upon chemo treatment) appear to be specific to oxaliplatin. These data have been added (Figure S11) and throughout the emphasis has been switched from chemotherapeutic treatment to oxaliplatin treatment.

      Lines 796-799: “To check if the pre-treatment GDF15/TXNIP ratio could be used for patients treated with FOLFIRI we performed the same analyses finding no significance (S11A-D). This oxaliplatin specificity was then confirmed by western blot analysis in DLD1 and HCT15 cells treated with 5-FU or SN38 (Figure S11E-F).

      Example of change of emphasis from ‘chemotherapy’ to ‘oxaliplatin’ – lines 139-142: “Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15).”

      The data demonstrating the induction of MondoA transcriptional activity and TXNIP expression in response to oxaliplatin treatment is quite convincing. The data regarding ROS induction of TXNIP is interesting, especially in light of other studies arguing that ROS limits MondoA activity (PMID: 25332233). Given this apparent disparity, I think that this study could really be strengthened by also investigating other potential mechanisms of oxaliplatin induction of MondoA. In particular, given many studies arguing for direct nutrient-regulation of MondoA, the authors should address the potential for oxaliplatin regulation of glucose availability and a potential glucose dependence of oxaliplatin-induced TXNIP. 2

      In line with the previous point, since MondoA activity and TXNIP expression are sensitive to glucose levels, the authors should investigate oxaliplatin-regulation of TXNIP under physiological glucose levels. No need to replicate everything, just key experiments.

      We feel these are excellent point and really help the piece – many thanks. We have carried out assays around these points suggested and have included the findings in the new draft – see below.

      Lines 332-339: “As such, we went back to first principles and assessed the impact of different concentrations of glucose on TXNIP induction +/- oxaliplatin treatment, finding a concentration dependent effect (Figure S3A). Intriguingly, high glucose alone was able to induce increased TXNIP expression. We then assessed if oxaliplatin treatment drove an increase in glucose uptake, with this seen at concentrations >10mM (Figure S3B). Next, to investigate the impact of glucose metabolism, and consequent ROS generation, on TXNIP induction we treated cells with Antimycin A, an inhibitor of oxidative phosphorylation, finding a complete block in oxaliplatin-induced TXNIP (Figure S3C).”

      The authors did a good job of linking TXNIP and GDF15 in untreated conditions; however, the data arguing for oxaliplatin regulation of GDF15 through TXNIP is less clear. For example, in 3B-H, oxaliplatin treatment reduces GDF15 approximately to the same extent in the NTC and TKO cells, potentially in line with a mechanism of downregulation that doesn't involve TXNIP.

      A very salient point and completely in line with the other reviewers. We have carried out a few additional analyses mentioned previously in this letter. The most pertinent for this specific point are the experiments around ARRDC4, where we found evidence to suggest that, like TXNIP, it regulates GDF15.

      Minor Comments

      1. The presentation of data in Figure 5 is confusing. A-B include raw cell numbers, whereas C-F show "normalized proliferation." What does this mean? And how was the normalization done?

      Apologies for this. Legend test has been corrected to “Normalised proliferation (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) on gated CD3+CD8+ or CD3+CD4+ cells is shown. n=6. (G-H) Normalised IFNg concentrations (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) in the supernatant of cells from C-F.” (lines 727-729).

      **Referee Cross-Commenting**

      cross-comment regarding reviewer #1

      I agree with the referee that the link between TXNIP and GDF15 is weak, though as I mentioned before, this is particularly true in the context of oxaliplatin-regulation of TXNIP. I agree that given all the presented data, it is likely that oxaliplatin-regulation of TXNIP and GDF15 are independent. In my opinion, the referee brought up all valid concerns, but this is by far the biggest concern that I share.

      We agree that this is the weakest aspect of the paper, however our new analyses plus supportive literature, suggests that the relationship between TXNIP and GDF15 may be mediated by MYC (please see above)

      cross-comment regarding reviewer #3

      The major concern that this referee addresses is whether another transcription factor supersedes the proposed MondoA/TXNIP induction in regulating GDF15 expression in later stage CRC. In my opinion, this another other concerns of the referee are all valid, but still I remain unconvinced that TXNIP induction underlies the oxaliplatin-regulation of GDF15. I think fleshing out that aspect of the study would potentially help the authors tease apart how this potential MondoA-TXNIP-GDF15 axis is dysregulated later in CRC progression.

      This is a great discussion. Interestingly enough, c-myc is seen at higher levels in late stage CRC (Hu X, Fatima S, Chen M, Huang T, Chen YW, Gong R, Wong HLX, Yu R, Song L, Kwan HY, Bian Z. Dihydroartemisinin is potential therapeutics for treating late-stage CRC by targeting the elevated c-Myc level. Cell Death Dis. 2021 Nov 5;12(11):1053. Doi: 10.1038/s41419-021-04247-w. PMID: 34741022; PMCID: PMC8571272.), is seen as an important factor in resistance, and as this review argues, is driven by stress (Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat. 2023 Jul;69:100963. Doi: 10.1016/j.drup.2023.100963. Epub 2023 Apr 20. PMID: 37119690; PMCID: PMC10330748.). So it is very plausible that the partial TXNIP-mediated regulation of myc in early / sensitive CRCs that we may be observing, and has been reported recently (TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, et al. (2023) TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLOS Biology 21(3): e3001778. https://doi.org/10.1371/journal.pbio.3001778) is lost in late stage / resistant CRCs. If this is the case, in effect what we would have observed is the loss of a stress-associated method (TXNIP) of controlling c-myc activity. What makes our collective lives difficult is that, as reported “this expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc’s intrinsic capacity to activate transcription and without increasing Myc levels.” (TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, et al. (2023) TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLOS Biology 21(3): e3001778. https://doi.org/10.1371/journal.pbio.3001778)

      Reviewer #2 (Significance (Required)):

      Generally speaking the experiments are well controlled and the findings are significant and novel. Though the link between MondoA activity and ROS could be strengthened, and the data could be validated under more physiological settings. Further, the authors should clarify their interpretations so as to not overstate the findings.

      Many thanks for the comments. We have taken onboard the need for more physiological settings and have included varying levels of glucose to reflect concentrations in different environments. We have repeated the siMondoA work in 3J strengthening the conclusions wrt its impact on TXNIP and GDF15 expression (see above).

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this well-written manuscript, the authors show that chemotherapy increases a MondoA-dependent oxidative stress-associated protein, TXNIP, in chemotherapy-responsive colorectal cancer cells. They show that TXNIP negatively regulates GDF-15 expression. GDF-15, in turn, correlates with the presence of T cells (Treg), and inhibits CD4 and CD8 T cell stimulation. In advanced disease and chemo-resistant cancers, upregulation of TXNIP and downregulation of GDF-15 appear to get lost. Based on a somewhat smallish data set, the authors suggest that the pre-treatment GDF-15/TXNIP ratio can predict responses to oxaliplatin treatment. This is a very interesting, novel finding. In general, the quality of the experiments and the data are high and the conclusions appear sound. Still, there are a number of aspects that should still be improved:

      The observed loss of the ROS - MondoA - TXNIP - GDF15 axis in chemoresistant and/or metastatic tumors implies that another transcription factor or pathway becomes dominant upon tumor progression. As this switch would be key to better understanding the mechanism underlying the prognostic role of the TXNIP/GDF15 ratio, the authors should at least do data mining followed by ChEA or Encode (or other) analysis to identify transcription factors or pathways that become activated in late-stage/metastatic CRC cells. There is a high likelihood that a transcription factor or pathway involved in GDF-15 upregulation in cancer (e.g. p53, HIF1alpha, Nrf2, NF-kB, MITF, C/EBPß, BRAF, PI3K/AKT, MAPK p38, EGR1) supersedes the inhibitory effect of the MondoA-TXNIP axis. As it stands, the proposed loss of function of the ROS - MondoA - TXNIP - GDF-15 axis is far less convincing than almost all other aspects of the study.

      An extremely fair point. We adopted a similar approach to that suggested – as mentioned above, we looked at TFs that bind to GDF15 promoter/enhancer regions and then looked at the presence of these in our transcriptomic data – specifically any evidence of change post oxaliplatin treatment. We found 6 such TFs that were decreased post-oxaliplatin treatment. We then looked for any evidence of TXNIP dependence in these TFs by comparing post-oxaliplatin treatment across NTC and TXNIP knockout lines, when we did this we found only one GDF15 promoter/enhancer binding TF was significantly changed: MYC. We then looked at the relationship between MYC,TXNIP, and GDF15 against the other 5 ‘control’ TFs in the TCGA COAD dataset, we found that MYC showed the strongest correlations, in the ‘correct’ directions. This finding was further backed up in the literature where a TXNIP knockout in a breast cancer model drove c-myc-dependent transcription, whilst c-myc has been observed to increase in later stage CRC patients, is associated with cellular stress and resistance. The collective evidence therefore suggests that MYC is the factor that is initially at least partially regulated by TXNIP, before this regulation is lost in advanced / resistant disease. Continuing on this line, it is likely that the predictive GDF15/TXNIP ratio is at least in part, a measure of c-myc responsiveness to oxaliplatin. All the while we must bear in mind TXNIP-independent oxaliplatin-dependent regulation of GDF15, most likely ARRDC4, as described earlier in this document.

      Using pathway analysis software to compare our transcriptomic data from cell lines treated with/without oxaliplatin, the most likely pathways upstream of MYC/c-myc that are negatively affected by chemotherapy are BAG2, Endothelin-1, telomerase, ErbB2-ErbB3 and Wnt/B-catenin. When looking at the comparison of UTC and resistant lines’ transcripts there is only one key component of these pathways which is upregulated in both lines - ERBB3 – which has already been shown to be important in CRC metastasis and resistance (Desai O, Wang R. HER3- A key survival pathway and an emerging therapeutic target in metastatic colorectal cancer and pancreatic ductal adenocarcinoma. Oncotarget. 2023 May 10;14:439-443. doi: 10.18632/oncotarget.28421. PMID: 37163206; PMCID: PMC10171365.). It is highly speculative, but our data suggests the most likely pathway to supersede TXNIP in its (partial) regulation of MYC is the ErbB2-ErbB3 pathway.

      My further criticisms are mostly more technical:

      Figure 2 I-L: What was the extent of MondoA downregulation achieved by siRNA treatment? Could the effects also be seen with the small molecule mondoA inhibitor SBI-477 (or a related substance)?

      This experiment has been repeated. The pooled densiometric data is also now given (please see above).

      How do you explain the different GDF-15 levels between untreated non-target control cells (NTC) and TXNIP knock-down cells (TKO) in Figures 3C-F?

      The only way to interpret this is that there is a TXNIP-independent pathway regulating GDF15 expression after oxaliplatin treatment, as described this is most likely to be ARRDC4 - the text has been updated to:

      Lines 522-524: “It is important to note, however, that we saw clear evidence that TXNIP was not solely responsible for the downregulation of GDF15 post oxaliplatin treatment (Figure 3C-G, S6E).”

      In figures 3 E-G the dots for the individual measurements should be indicated. This would be more informative than just the bar graphs.

      Completed.

      Figure 4C,D and Table 3: Data on the role of GDF-15 in CRC are largely valedictory of previous work (e.g. Brown et al. Clin Cancer Res 2003, 9(7):2642-2650, Wallin et al., Br J Cancer. 2011 May, 10;104(10):1619-27). Therefore, the previous studies should be cited.

      Apologies for the oversight and many thanks – this is an excellent addition.

      Figure 5C-F: Please indicate in the figure legend how proliferation was assessed.

      Many thanks. This was noticed by another reviewer also. We have changed the text to include how the data was normalised: “(C-F) Labelled PBMCs were stimulated with anti-CD3 and anti-CD28 for 4 days in the presence of fresh supernatant from indicated cell lines, before being stained with anti-CD3 and anti-CD8 (C-D) or anti-CD4 (E-F) antibodies and measured by flow cytometry. Normalised proliferation (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) on gated CD3+CD8+ or CD3+CD4+ cells is shown. n=6. (G-H) Normalised IFNg concentrations (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) in the supernatant of cells from C-F.” (lines 724-730)

      Figure S8E-G: Please indicate the analysed parameters in the graphs. In Figure S8G, the legend just indicates that "aggression of tumour" is dichotomized and plotted. This clearly requires a better definition.

      Many thanks, this has been changed as per the below.

      Lines 862-868: “(E-G) Receiver operating characteristic (ROC) curves showing area under the curve and p values for the use of GDF15/TXNIP ratio in predicting origin of cell line (E; primary; DLD1, HCT15, HT29, SW48 [n=4] or secondary; DiFi, LIM1215 [n=2]), sensitivity to oxaliplatin (F; parental DLD1 (plus biological repeat), HCT15 [n=3] or resistant DLD1 (plus biological repeat), HCT15 [n=3]), aggression of tumor (G; non-aggressive; The authors propose a novel ROS - MondoA - TXNIP - GDF15 - Treg axis, where MondoA activation, TXNIP up- and GDF-15 downregulation enhance tumor immunogenicity. While this axis has been analyzed in some detail, GDF-15 is not only linked to induction of regulatory T cells. There has been a report showing that GDF-15/MIC-1 expression in colorectal cancer correlates with the absence of immune cell infiltration (Brown et al. Clin Cancer Res 2003, 9(7):2642-2650). The link between GDF-15 and immune cell exclusion has also been confirmed in other conditions, including different cancers (Kempf et al. Nat Med 2011, 17(5):581-588, Roth P et al. Clin Cancer Res 2010, 16(15):3851-3859, Haake et al. Nat Commun 2023, 14(1):4253). A key mechanism is the GDF-15 mediated inhibition of LFA-1 activation on immune cells. As the authors argue that the described pathways turns cold tumors hot in response to oxaliplatin-based chemotherapy, this GDF-15 dependent immune cell exclusion mechanism might be at least as relevant than induction of Treg. Likewise, inhibition of dendritic cell maturation by GDF-15 (Zhou et al. PLoS One 2013, 8(11):e78618) could explain why GDF-15high tumors are immunologically cold. Reviewed in 3

      The authors propose that the pathways discovered by them contributed to the "heating up" of the tumor microenvironment after oxaliplatin-based chemotherapy. The authors should thus look in their data sets for the presence of cytotoxic T cells and their possible correlation with TXNIP and GDF-15 levels.

      This is a wonderful explanation – many thanks. We have taken the opportunity to assess the impact of GDF15 expression on a variety of T cell markers (Figure S9). In this data a negative association between GDF15 and CD8 CTLs can clearly be seen, as predicted by the reviewer.

      Lines 712-717: “To assess if the GDF15-dependent presence of Tregs may be associated with a decrease in activated cytotoxic CD8 T cells, we interrogated the TCGA COAD dataset. We found that low GDF15 tumors carried significantly higher levels of CD8, CD69, IL2RA, CD28, PRF1, GZMA, GZMK, TBX21, EOMES and IRF4 (Figure S9); transcripts indicative of activated cytotoxic CD8 T cells. High GDF15 tumors were enrichment for FOXP3 and, interestingly, RORC (Figure S9). These data support the hypothesis that GDF15 induces Foxp3+ve Tregs which inhibit CD8 T cell proliferation and activation in the TME.”

      The paragraph on GDF-15 receptors needs to be corrected: The purported role of a type 2 transforming growth factor (TGF)-beta receptor in GDF-15 signalling had been due to a frequent contamination of recombinant GDF-15 with TGF-beta (Olsen et al. PLoS One 2017, 12(11):e0187349). There have been a number of screenings for GDF-15 receptors that have all failed to show an interaction between GDF-15 and TGF-beta receptors. Instead, only GFRAL was found in these large-scale screenings (Emmerson et al. Nat Med 2017, 23(10):1215-1219, Hsu et al. Nature 2017, 550(7675):255-259, Mullican et al. Nat Med 2017, 23(10):1150-1157, Yang et al. Nat Med 2017, 23(10):1158-1166). The one subsequent report that shows a link between GDF-15, engagement of CD48 on T cells and induction of a regulatory phenotype (Wang et al. J Immunother Cancer 2021, 9(9)) still awaits independent validation. Considering that CD48 lacks an intracellular signaling domain that would be critical for a classical receptor function, I recommend to be more cautious regarding the role of CD48 as GDF-15 receptor. Given the mechanism outlined by Wang et al. the word interaction partner might be more apt. Moreover, an anti-GDF-15 antibody would be a good control for the experiments involving an anti-CD48 antibody in Figure 5.

      Thank you so much for this concise and highly informative paragraph. We have changed the text to read:

      202-204: “As a soluble protein, GDF15 exerts its effects by binding to its cognate receptor, GDNF-family receptor a-like (GFRAL)44,45,46,47 or interaction partner, CD48 receptor (SLAMF2)43, with the latter still requiring additional verification.”

      We would have ideally included an anti-GDF15 antibody in the CD48 assay at the time but didn’t have the foresight. We have included the additional text to temper any conclusions.

      Lines 701-711: “Furthermore, when stimulating naïve CD4 T cells in the presence of GDF15 enriched supernatant we were able to both differentiate these cells into functional Tregs and also block the generation of this functionality using an anti-CD48 antibody (Figure 5M-N). However, it must be stressed that the binding and functional impacts of GDF15’s interaction with CD48 still require further verification.”

      Cell surface externalization of annexin A1 has been described as a failsafe mechanism to prevent inflammatory responses during secondary necrosis (PMID: 20007579). Thus, I am surprised that the authors list annexin A1 among the immune-stimulatory molecules exposed or released in response to chemotherapy-induced cell death (line 103). Please clarify!

      We agree – it shouldn’t be there!! Removed. Many thanks.

      **Referee Cross-Commenting**

      Regarding the cross-comment by referee 2: In my opinion, the data shown in Figure 3C-H clearly demonstrates that TXNIP can repress GDF-15 expression. I agree that there will likely be further regulators. The GDF-15 promoter is constantly regulated by a multitude of factors (which mostly induce transcription). As downregulation of GDF-15 in response to oxaliplatin is the opposite of the frequently described induction of GDF-15 upon chemotherapy, net effects may always be "smudged" by contributions from different pathways (e.g. by cell stress due to siRNA transfection). Therefore, I believe that the data are as good as it will get. Accordingly, I would not force the authors to further amplify the observed effect.

      Many thanks for your understanding – yes, GDF15 has >650 TFs that bind its promoter/enhancer regions – a number we found rather daunting. Happily your comments and those of the other reviewers inspired us to dig and we now have data that is supportive of MYC’s and ARRDC4’s involvement – detailed throughout this reply.

      cross comment regarding referee #1: I share the general assessment of the referee and recognize the very detailed mechanistic analysis. To further support the moderate effects of the MondoA knockdown, a small molecule inhibitor like SBI-477 might be useful. (I had already suggested using this inhibitor to support these data.)

      Many thanks for the suggestion. We opted to increase the number of siRNA repeats instead – with the data included in Figure 3J (above).

      Still, my view on the potential relevance of oxaliplatin-induced, TXNIP-independent downregulation of GDF-15 differs from that of referee 1. In the clinics, platinum-based chemotherapy is one of the strongest inducers of GDF-15 (compare Breen et al. GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metabolism 32(6), P938-950, 2020.DOI:https://doi.org/10.1016/j.cmet.2020.10.023). I was thus surprised that the authors found a pathway, which leads to an outcome that an exactly opposite effect.

      This is fascinating that oxaliplatin drives this increase in GDF15 – we were unaware of this paper. Looking at figure 2(H-K), GDF15 is being produced from multiple non-diseased tissues after systemic chemotherapy – even at day 19 post-treatment – this suggests that wrt this study, systemic GDF15 could not be used as a readout of success or otherwise – which is extremely helpful! Thank you.

      Thus far, the only obvious reason for reduced GDF-15 secretion upon treatment with cytotoxic drugs was a reduction in tumor cell number due to cytotoxicity.

      Please do not discount this. This study was focused on the cells which survived oxaliplatin treatment – the cells which did not were discarded. Our view, given your input, would be a complex picture where in early stages systemic GDF15 goes up, due to off-target effects, but locally levels drop owing to cell death and this, and other, stress-related pathways in the remaining tumor cells.

      Still, the authors managed to convince me that the described pathway (ROS - MondoA - TXNIP - GDF-15) exists. (Here, I still largely concur with referee 1.) Moreover, as we have identified some factors required for GDF-15 biosynthesis that could easily interact with TXNIP, I find the proposed mechanism plausible.

      Extremely encouraging for us to hear!

      Nevertheless, as a downregulation of GDF-15 in response to chemotherapy is hardly ever observed in late-stage cancers, I believe that the observed switch in pathway activation between early- and late-stage cancers might be highly relevant - in particular, as there is so much evidence for platinum-based induction of GDF-15 in late-stage cancer patients. Emphasizing the divergent clinical observations (e.g. by Breen et al.) could thus help to put the finding into perspective.

      Very much agree. We did see this phenomenon in LIM1215 cells (Figure 6B) and the resistant lines we generated continually produced higher levels.

      Analysing TXNIP-independent mechanisms involved in the oxaliplatin-dependent repression of GDF-15, as suggested by referee #1, will require enormous efforts and resources, and may still turn out to be fruitless. Personally, I would thus be content if the authors just mentioned possible contributions from other pathways upon cancer progression. To me, the described pathway seems to be limited to early-stage cancers, and the actual finding that GDF-15 is downregulated is an interesting observation, irrespective of further involved pathways.

      Many thanks – this is extremely fair. Happily we have managed to make some tentative steps forward in highlighting the potential role of MYC, and the suggestion of redundancy wrt ARRDC4, but as you say, much more work needs to be done to fully understand these processes.

      cross comment regarding referee #2: I fully agree with the referee that activation of the pathway by further chemotherapeutic drugs could be a valuable addition. As Guido Kroemer´s lab has described oxaliplatin to induce a more immunogenic cell death compared to other platinum-based chemotherapies, even a rather limited comparison between oxaliplatin and cisplatin could be very interesting.

      Absolutely agree – extra data on this has been included in Figure S11, which is included earlier in this letter. We also uncovered a meta-analysis using metformin, which has been seen to inhibit ROS, where TXNIP and ARRDC4 are the top two downregulated transcripts whilst GDF15 appears in the top four upregulated. This may suggest that chemotherapeutic immunogenicity, at least through the presence or absence of GDF15, may in part be driven by ROS.

      Lines 930-933: “Further support for both TXNIP and ARRDC4’s role in regulating GDF15 after the induction of ROS comes from a pan cancer meta-analysis assessing the impact of metformin (which has been reported to inhibit ROS) on gene expression. Here the top two downregulated genes were TXNIP and ARRDC4 and the top four upregulated genes were DDIT4, CHD2, ERN1 and GDF1572 “

      Reviewer #3 (Significance (Required)):

      In general, this is a very interesting manuscript describing a cascade of events that may contribute to successful chemotherapy (which likely requires induction of an immune response against dying tumor cells.) The observation that this pathway is only active in early/non-metastatic cancer cells is striking. Unfortunately, the authors cannot explain inactivation of this pathway in later stage/ metastatic/ highly aggressive cancers. Understanding this switch could easily be the most important finding triggered by this report. Therefore, I highly recommend to make some effort in this direction. Strikingly, the authors find that disruption of TXNIP-mediated GDF-15 downregulation is strongly associated with worse prognosis. They also suggest that this ratio could indicate whether a patient will respond to oxaliplatin-based chemotherapy.

      This is again very fair – we have posited a potential mechanism for the loss of this switch elsewhere in this reply– one which involves a change in TXNIP-mediated MYC regulation and/or increased HER2-HER3 signalling – but although reasonable for a rebuttal (and publication in that context) we do not feel we have the evidence to include this within the full manuscript.

      Altogether, the findings described in manuscript are very novel and may have prognostic (or, in case of the presumed loss of the MondoA - TXNIP - GDF-15 pathway) therapeutic implications. Thus, the manuscript certainly fills various gaps and should be of major interest for cell biologists working on immunogenic cell death, or colorectal cancer, or MondoA, TXNIP or GDF-15. Still, due to its translational implications, it would also be worthwhile reading for a large number of researchers in the oncology field.

      We are very grateful for your kind comments.

      1 Sinclair, L. V., Barthelemy, C. & Cantrell, D. A. Single Cell Glucose Uptake Assays: A Cautionary Tale. Immunometabolism 2, e200029, doi:10.20900/immunometab20200029 (2020).

      2 Yu, F. X., Chai, T. F., He, H., Hagen, T. & Luo, Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem 285, 25822-25830, doi:10.1074/jbc.M110.108290 (2010).

      3 Wischhusen, J., Melero, I. & Fridman, W. H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front Immunol 11, 951, doi:10.3389/fimmu.2020.00951 (2020).

    1. trauma reenactment narrative is by getting the child manipulating the child convincing the child to adopt the victimized child role within that trauma reenactment there and so all we have to do is get the child to believe that the

      This ominous realization did not occur and come together for me until just now:

      Kate's influence did not start with Kate directly. It would have started with her son Liam. I've not recognized until now the likely significant role he plays in this. He is her son. He would have already been fully traumatized by Kate or by the situation with his dad, depending on if it existed, but if it did or didn't, the fear/abandonment/insecure attachment disorder would be entrenched in both Kate and Liam and they would be reinforcing it in each other. Rhyanna working with Liam at Subway would have been the first contact in which casual conversation would begin the subtle campaign by Liam via trauma reenactment (and also fueled by being a teenage boy meets girl savior/peacocking mentality) that at first innocuously and then overtly was showing (manipulating into false belief) that she is victimized. Liam then notifies Mom of "the recruit", probably a genuine felt statement like "Mom, there's this girl at work and it sounds like she's going through what we went through and we could help her". Then Mom [Kate], which we know this happened, took the initiative to contact her (or told Liam to bring her over to the house to hangout so she could then introduce herself and have 'a talk' with her). Phone numbers were shared, instructions to not let Dad know where they lived were given, taking out to dinners were done, sharing of "stories about my husband we don't tell other people so please don't share this" were given about "my dangerous psychotic husband that Liam and I had to flee from and go on the run because the system couldn't save us so we had to act outside it". This matches the dynamic and origination story of every cult/radical "church"/scientology/NXIVM story I know and it is the same dynamic whether it's the pathogenic parent or pathogenic adult influence which in this way has an extra component of evolution. Ie, the pathogenic adult has created/obtained a pathogenic "victimized" subordinate follower. The follower then acts as a relatable/ice-breaking recruiter that has the effect on the target of " they're my peer, they're like me, I can therefore trust the accuracy of what they're saying more and am more willing to listen". Then when the follower eventually introduces the pathogenic adult, the critical judgement defence of the target is suppressed/ignored because the target has made the naive judgment error that since I believe and feel trusting in this peer, I can put that trust into someone he is introducing me too. And because that person is "the adult in the room" this person instantly gets, erroneously, the elevated security clearance in the target's mind that this person is a "trusted"+"adult"+"who understands me"+"has my best interest"+"and knows what I need". Additionally, when speaking with this adult, should the target's defense mechanisms of critical judgement start turning on, the target then looks to a reference point to "reality test", and the follower, Liam, is immediately on hand and present almost daily to act as that reference point nodding reassuringly when the target glances over [literally or metaphorically]. ..... Combine this with a parent who is getting sicker and sicker, who's observably by the child who knows her father well can tell his fear, anxiety (particularly regarding his ability to provide for them both), and sadness because of his non-improving sickness from a mysterious unknown deadly pandemic disease, a parent who is the SOLE parent and there is no second parent to reality test against and get reassuring grounded perspective (ie you are not victimized, dad isn't going to kill himself, yes this is a tough situation but we and you are not a victim and this is not a Hallmark/teen drama, and tough situations like this have long been and are a prolific part of human life and we can more than handle this situation and frankly will serve to accelerate your empowered growth and deeper understanding, meaning, passion, joy of life and further shedding of vulnerability to irrational and mismanagement of uncontrollable fear as a general skill set in your personal quiver. This all is the loss of the second, of which there may only be 2, fundamental defense mechanisms to safeguard a child's sound critical analytical/judgement skills. It is easy to empathize with a child's daily living experience, especially an adolescent, how these are the 2 mechanisms which are functioning by which they are consuming and assembling all new knowledge and understanding. #1 They first use their incumbent developed analytical/judgement skills to self analyze a concept or problem or question. #2 They verify that determination with their trusted source of truth and protection, ie their parents (a reality test). Perhaps this at the root of the common report "teenagers think they know everything". It's probably the first time the first mechanism is developed strongly enough to feel like it can safely be used in its own. And in being the first time, many errors will be made and in many of those errors the use of verification of mechanism 2 will not be used. An ill unimproving parent will exacerbate the error to not use mechanism 2. Fear and anxiety will exacerbate errors in mechanism number 1. Severity of those insults would proportionally affect the rate of error. Malfunctions in both mechanisms would have a multiplicative effect on damaging erroneous conclusions the child arrives at and the damage further choices on those erroneous conclusions causes. Then when the "virus" of the narcissistic/BLP cross generational shared persecutory delusion boundary violation gains entry into this now much increased "analytically vulnerable" child, it has the critically added effect of disabling mechanism 2 since the patent now becomes "all bad [splitting]". ..... Then ..... add to this child a history that she is a survivor, albeit exceptionally so, of incurring the pain and largely successful battle for separation from a very narcissistic mother and the family that produced that narcissism in her mother. The entire repercussions of that I am not sure, but relevant here is I think that means my child's developmental reality has a biased understanding and emotional sensitivity to the fear that a parent "I thought was normal, changed into a monster" and second "I fully believed a truth about the 1 of 2 people I trusted and depend on the most, and I was wrong. How can I trust my own conclusions now if I can't trust my own analytical and emotional judgement abilities?". No doubt also a fear and anxiety upregulating mechanism in and if itself, as well as providing a data point which can add confusion to a child frantically looking for understanding and/or can be leveraged to falsely rationalize the false narrative is correct especially when the pain of the truth is building and she is looking for any tool to suppress confronting that pain.

      Then, as Rhyanna further looks for, or rather it is imposed onto her, the naive drama thirsty peer group, whom many know Liam and Kate, and whom with very good intention but naivety of teenagers who in Boulder Colorado are conditioned to both be very helpful and that money and wealth (like them) combined with middle aged Caucasian combined with a "Boulderite" personality with an air of non-confrontational superiority and cancel-culture tendencies is the equivalent of "insightful, wise, holder of truth, and generally the definition of what is good, righteous, and hold the authority to declare whom is bad and further that it is expected that they will declare whom is good and bad and that action further validates that they are and have such authorities" in these teenagers minds reenforces this false truth as accurate.. Then the school, then CIRT team "mental health professionals", then the mental health hospital centennial peaks, then Boulder county child welfare via multiple staff, then the court and the judge personally all buy in and propagate this false truth and reinforce it overtly or indirectly overtly, and some propagate it by simply ignoring and not speaking out against or in questioning validity, all reinforcing this false truth. ..... And given all this, given all these goddamn ignorant spineless children of men in their lack of knowledge or past traumas, and under the weight of their ignorance and cowardice and laziness, and then under the unreal weight and fear and confusion of her and her dad, her one parent who's been her warrior defender of knowledge, self discovery, safety, character, food, and shelter, and whom no other family support exists is now very possibly dying and cannot speak for himself or to her (because her confusion and outside influence is not allowing it) to tell her the truth and reassurance of the situation ....... her heart and mind refuse to yield. The pain from her heart refusing to give way to the lie, they are trying to make her believe had caused her to want to kill herself. My daughter s unyielding heart and character brought tears to a police officer who'd not had the fortune of experiencing someone like my daughter. And still, after a year and a half, my daughter, MY daughter, still holds fast and is unwilling to tell the COURT that her resistance is because of me and is instead because of her. Yeah, that's who my daughter is. That is the caliber here. She is her father's daughter.

      I see you kid. You hold fast. I'm comin' for you.

      PS - Attention needs to be given to Liam. With consideration towards his possible and to what degree of trauma, and the validity of the story regarding his father.. It is now a real question, is his father above and well, normative, searching for his son and or fallen into decline, suicidality, doom? Is Liam about to lose a father and be irreversibly severely damaged because of the complete irreversible devastation, which will also include the self blame he incurs and will not be able to reconcile.

      PSS - likely it is both important and the is the time to revisit with focus Rhyannas feelings and understanding of her mom. She possibly stands to gain 1, a self confidence and esteem and complete obliteration of any feeling/false rationalization that she is somehow "less", that she is at fault, or that she is somehow "less capable" of a person now and going forward, 2) stamp out reactions of hate, tolerance, splitting, and walls she might form that would prevent problem solving, truth finding, and understanding so crucial to both abilities and finding of joy, particularly in relationships of love and family, 3) she stands to gain a mother and an entire side of a family and which is attained by a fulfilling relationship of her own architecture and which she is fully empowered to control and manage and nurture at her pleasure.

    1. Empiricism involves acquiring knowledge through observation and experience. Once again many of you may have believed that all swans are white because you have only ever seen white swans.

      I think this the reason why Karl Popper proposed an alternative approach based on falsification rather than confirmation. because when we saying that all swans are white, confirming this statement would involve finding as many white swans as possible However, with Popper's approach it shows that the statement is scientific only if there is a way to show it is false. In this case, finding a single black swan would falsify the statement). Therefore, we can also say that confirmation alone cannot provide certainty or proof of a theory's validity.

    1. ZK II note 9/8b 9/8b On the general structure of memories, see Ashby 1967, p. 103 . It is then important that you do not have to rely on a huge number of point-by-point accesses , but rather that you can rely on relationships between notes, i.e. references , that make more available at once than you would with a search impulse or with one thought - has fixation in mind.

      This underlies the ideas of songlines and oral mnemonic practices and is related to Vannevar Bush's "associative trails" in As We May Think.

      Luhmann, Niklas. “ZK II Zettel 9/8b.” Niklas Luhmann-Archiv, undated. https://niklas-luhmann-archiv.de/bestand/zettelkasten/zettel/ZK_2_NB_9-8b_V.

    1. us of that. As regards the third source, the social source of suffering, our attitude is adifferent one. We do not admit it at all; we cannot see why the regulations made by ourselves shouldnot, on the contrary, be a protection and a benefit for every one of us. And yet, when we consider howunsuccessful we have been in precisely this field of prevention of suffering, a suspicion dawns on us thathere, too, a piece of unconquerable nature may lie behind -this time a piece of our own psychicalconstitution.When we start considering this possibility, we come upon a contention which is so astonishing that wemust dwell upon it. This contention holds that what we call our civilization is largely responsible for ourmisery, and that we should be much happier if we gave it up and returned to primitive conditions. I callthis contention astonishing because, in whatever way we may define the concept of civilization, it is acertain fact that all the things with which we seek to protect ourselves against the threats that emanatefrom the sources of suffering are part of that very civilization.How has it happened that so many people have come to take up this strange altitude of hostility tocivilization? I believe that the basis of it was a deep and long-standing dissatisfaction with the thenexisting state of civilization and that on that basis a condemnation of it was built up, occasioned bycertain specific historical events. I think I know what the last and the last but one of those occasionswere. I am not learned enough to trace the chain of them far back enough in the history of the humanspecies; but a factor of this land hostile to civilization must already have been at work in the victory ofChristendom over the heathen religions, for it was very closely related to the low estimation put uponearthly life by the Christian doctrine. The last but one of these occasions was when the progress of

      I believe the focus of the reading is happiness can't be fully observed from the outside due to the lack self understanding we may have pertaining to happiness. It's hard for a man to be happy when they're so many different outlooks on what happiness should look like.

    2. If there had been no railway to conquer distances, my child wouldnever have left his native town and I should need no telephone to hear has voice; if travelling across theocean by ship had not been introduced, my friend would not have embarked on his sea-voyage and Ishould not need a cable to relieve my anxiety about him. What is the use of reducing infantile mortalitywhen it is precisely that reduction which imposes the greatest restraint on us in the begetting ofchildren, so that, taken all round, we nevertheless rear no more children than in the days before thereign of hygiene, while at the same time we have created difficult conditions for our sexual life inmarriage, and have probably worked against the beneficial effects of natural selection? And, finally,what good to us is a long life if it is difficult and barren of joys, and if it is so full of misery that we canonly welcome death as a deliverer?

      It seems lie Freud is trying to say that thirst for technological advancements have birthed new problems related to human existence. When you look at it from that perspective it does paint a rather bleak picture. However I do not think it's quite that simple. A dilemma such this may never have a clear cut answer.

    3. And yet, when we consider howunsuccessful we have been in precisely this field of prevention of suffering, a suspicion dawns on us thathere, too, a piece of unconquerable nature may lie behind -this time a piece of our own psychicalconstitution

      I don't know why but this made me think about fate vs free as we may make all the right choices but somethings may not fall in our favor.

    1. We also engage in social comparison based on similarity and difference. Since self-concept is context specific, similarity may be desirable in some situations and difference more desirable in others. Factors like age and personality may influence whether or not we want to fit in or stand out. Although we compare ourselves to others throughout our lives, adolescent and teen years usually bring new pressure to be similar to or different from particular reference groups.

      People put so much focus on social comparison. I think people get tunnel vision on trying to find a group to fit into, rather than find a group that fits them. Both are important in the right context. Just as it's important to step out of your comfort zone for new people, it's just as important to seek out people with shared interests and hobbies.

    1. history can seem more difficult to deny than those of engineering or medicine.

      Though history may seem trivial at times, I think that the real purpose of learning history is how we learn what works, as well as what we should never do again. Our goal should be to learn from our mistakes as a society. It also tells us so much about culture and in that we can also learn about our future.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study advances our understanding of the ways in which different types of communication signals differentially affect mouse behaviors and amygdala cholinergic/dopaminergic neuromodulation. Researchers interested in the complex interaction between prior experience, sex, behavior, hormonal status, and neuromodulation should benefit from this study. Nevertheless, the data analysis is incomplete at this stage, requiring additional analysis and description, justification, and - potentially - power to support the conclusions fully. With the analytical part strengthened, this paper will be of interest to neuroscientists and ethologists.

      GENERAL COMMENTS ON REVIEWS AND REVISIONS

      Experimental design

      Here we address questions from several reviewers regarding our periods of neuromodulator and behavioral analysis. First, we recognize that the text would benefit from an overview of the experimental structure different from the narrative we provide in the first paragraphs of the Results. We now include this near the beginning for the Materials and Methods (page 17). We further articulate that the 10-minute time periods were dictated by the sampling duration required to perform accurate neurochemical analyses (and to reserve half of the sample in the event of a catastrophic failure of batch-processing samples). Since neurochemical release may display multiple temporal components (e.g., ACh: Aitta-aho et al., 2018) during playback stimulation, and since these could differ across neurochemicals of interest, we decided to collect, analyze, and report in two stimulus periods as well as one Pre-Stim control. We now clarify this in additional text in the Material and Methods (p. 24, lines 20-22; p. 26, lines 17-19). We decided not to include analyses of the post-stimulus period because this is subject to wider individual and neuromodulator-specific effects and because it weakens statistical power in addressing the core question—the change in neuromodulator release DURING vocal playback.

      We also sought to clarify the meaning of the periods “Stim 1” and “Stim 2”; they are two data collection periods, using the same examplar sequences in the same order. We have added statements in the Material and Methods (p. 18, lines 4-7; Fig. caption, p. 39, lines 11-13) to clarify these periods.

      For behavioral analyses, observation periods were much shorter than 10 mins, but the main purpose of behavioral analyses in this report is to relate to the neurochemical data. As a result, we matched the temporal features of the behavioral and neurochemical analyses (p. 22, lines 17-22). We plan a separate report, focused exclusively on a broader set of behavioral responses to playback, that may examine behaviors at a more granular level.

      Data and statistical analyses

      Reviewers 1 and 3 expressed concerns about our normalization of neurochemical data, suggesting that it diminishes statistical power or is not transparent. We note that normalization is a very common form of data transformation that does not diminish statistical power. It is particularly useful for data forms in which the absolute value of the measurement across experiments may be uninformative. Normalization is routine in microdialysis studies, because data can be affected by probe placement and factors affecting neurochemical recovery and processing. Recent examples include:

      Li, Chaoqun, Tianping Sun, Yimu Zhang, Yan Gao, Zhou Sun, Wei Li, Heping Cheng, Yu Gu, and Nashat Abumaria. "A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice." Neuron (2023).

      Gálvez-Márquez, Donovan K., Mildred Salgado-Ménez, Perla Moreno-Castilla, Luis Rodríguez-Durán, Martha L. Escobar, Fatuel Tecuapetla, and Federico Bermudez-Rattoni. "Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus." Proceedings of the National Academy of Sciences 119, no. 49 (2022): e2208254119.

      Holly, Elizabeth N., Christopher O. Boyson, Sandra Montagud-Romero, Dirson J. Stein, Kyle L. Gobrogge, Joseph F. DeBold, and Klaus A. Miczek. "Episodic social stress-escalated cocaine self-administration: role of phasic and tonic corticotropin releasing factor in the anterior and posterior ventral tegmental area." Journal of Neuroscience 36, no. 14 (2016): 4093-4105.

      Bagley, Elena E., Jennifer Hacker, Vladimir I. Chefer, Christophe Mallet, Gavan P. McNally, Billy CH Chieng, Julie Perroud, Toni S. Shippenberg, and MacDonald J. Christie. "Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors." Nature neuroscience 14, no. 12 (2011): 1548-1554.

      However, since all reviewers requested raw values of neurochemicals, we provide these in supplementary tables 1-3. The manuscript references these table early in the Results (p. 6, lines 18-19) and in the Material and Methods (p. 27, lines 3-4)

      All reviewers commented on correlation analyses that we presented, with different perspectives. Reviewer 2 questioned the validity of such analyses, performed across experimental groups, while Reviewer 1 pointed out that the analyses were redundant with the GLM. We agree with these criticisms, and note the challenges associated with correlations involving behaviors for which there is a “floor” in the number of observations. As a result, we have removed most correlation analyses from the manuscript. The text and figures have been modified accordingly. Due these changes, we have to decline requests of Reviewer 3 to include many more such analyses. While correlation analyses could still be performed between neurochemicals and behaviors for each group, the relatively small size of each experimental group, the large number of groups, and the even larger numbers of pairings between neurochemicals and behavior, the statistical power is very low. The only correlations we utilize in the manuscript concern the interpretation of our increased acetylcholine levels.

      As part of this revision, we re-ran our statistical analyses on neuromodulators because of a calculation error in 3 animals (regarding baseline values). In a few instances, a significance level changed, but none of these changed a conclusion regarding neuromodulator changes under our experimental conditions.

      Other revisions

      INTRODUCTION: We modified the Introduction to provide both a more general framework and specific gaps in our understanding relating neuromodulators with vocal communication.

      DISCUSSION: We have added material in the first two pages of the Discussion to provide more framework to our conclusions, to address the issues of the temporal aspects of neurochemical release and behavioral observations, and to identify limitations that should be addressed in future studies.

      FIGURES: All figures are now in the main part of the manuscript. We modified most figures in response to reviewer comments. We removed neuromodulator – behavior correlations from several figures. We modified all box plots to ensure that all data points are visible. The visible data points match the numbers reported in figure captions. We brought 5-HIAA data into the main figures reporting on neuromodulator results.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript addresses a fundamental question about how different types of communication signals differentially affect brain states and neurochemistry. In addition, the manuscript highlights the various processes that modulate brain responses to communication signals, including prior experience, sex, and hormonal status. Overall, the manuscript is well-written and the research is appropriately contextualized. The authors are thoughtful about their quantitative approaches and interpretations of the data.

      That being said, the authors need to work on justifying some of their analytical approaches (e.g., normalization of neurochemical data, dividing the experimental period into two periods (as opposed to just analyzing the entire experimental period as a whole)) and should provide a greater discussion of how their data also demonstrate dissociations between neurochemical release in the basolateral amygdala and behavior (e.g., neurochemical differences during both of the experimental periods but behavioral differences only during the first half of the experimental period). The normalization of neurochemical data seems unnecessary given the repeated-measures design of their analysis and could be problematic; by normalizing all data to the baseline data (p. 24), one artificially creates a baseline period with minimal variation (all are "0"; Figures 2, 3 & 5) that could inflate statistical power.

      Please see our general responses to structure of observation periods and normalization of neuromodulator data. Normalization is a common and appropriate procedure in microdialysis studies that does not alter statistical power.

      We have included a section in the Discussion concerning the temporal relationship between behavioral responses and neurochemical changes in response to vocal playback (p. 12, lines 3-17). We note where the linkage is particularly strong (e.g., ACh release and flinching). This points to a need to examine these phenomena with finer temporal resolution, but also with the recognition that the brain circuits driving a behavioral response may extend beyond the BLA.

      The Introduction could benefit from a priori predictions about the differential release of specific neuromodulators based on previous literature.

      We added some material to the Introduction to provide additional rationale for the study. However, we did not attempt to develop predictions for the range of neuromodulators that we sought to test. The literature can lead to opposite predictions for a given neuromodulator. For example, acetylcholine could be associated with both positive and negative valence. Instead, we note in the Introduction the association of both DA and ACh with vocalizations.

      The manuscript would also benefit from a description of space use and locomotion in response to different valence vocalizations.

      We have provided additional descriptions of space use and video tracking data in Material and Methods (p. 23, lines 1-6). We now report a few correlations based on these data in the Results to demonstrate that increased ACh in Restraint males and Mating estrus females was not related to the amount of locomotion (p. 9, lines 8-14).

      Nevertheless, the current manuscript seems to provide some compelling support for how positive and negative valence vocalizations differentially affect behavior and the release of acetylcholine and dopamine in the basolateral amygdala. The research is relevant to broad fields of neuroscience and has implications for the neural circuits underlying social behavior.

      Reviewer #2 (Public Review):

      Ghasemahmad et al. report findings on the influence of salient vocalization playback, sex, and previous experience, on mice behaviors, and on cholinergic and dopaminergic neuromodulation within the basolateral amygdala (BLA). Specifically, the authors played back mice vocalizations recorded during two behaviors of opposite valence (mating and restraint) and measured the behaviors and release of acetylcholine (ACh), dopamine (DA), and serotonin in the BLA triggered in response to those sounds.

      Strength: The authors identified that mating and restraint sounds have a differential impact on cholinergic and dopaminergic release. In male mice, these two distinct vocalizations exert an opposite effect on the release of ACh and DA. Mating sounds elicited a decrease of Ach release and an increase of DA release. Conversely, restraint sounds induced an increase in ACh release and a trend to decrease in DA. These neurotransmission changes were different in estrus females for whom the mating vocalization resulted in an increase of both DA and ACh release.

      Weaknesses: The behavioral analysis and results remain elusive, and although addressing interesting questions, the study contains major flaws, and the interpretations are overstating the findings.

      Although Reviewer 2 raises several valid issues that we have addressed in our response and revision, we believe that none represent “major flaws” in the study that challenge the validity of our central conclusions. In brief, we will:

      --provide enhanced description of behaviors (pp. 22-23 and Table 1)

      --clarify / modify box-plot representations of data (p 28. Lines 3-9)

      --point to our methods that describe corrections for multiple comparisons (p. 27; lines 15-16)

      --revise figures to clarify sample size (Figs. 3-6)

      Reviewer #3 (Public Review):

      Ghasemahmad et al. examined behavioral and neurochemical responses of male and female mice to vocalizations associated with mating and restraint. The authors made two significant and exciting discoveries. They revealed that the affective content of vocalizations modulated both behavioral responses and the release of acetylcholine (ACh) and dopamine (DA) but not serotonin (5-HIAA) in the basolateral amygdala (BLA) of male and female mice. Moreover, the results show sex-based differences in behavioral responses to vocalizations associated with mating. The authors conclude that behavior and neurochemical responses in male and female mice are experience-dependent and are altered by vocalizations associated with restraint and mating. The findings suggest that ACh and DA release may shape behavioral responses to context-dependent vocalizations. The study has the potential to significantly advance our understanding of how neuromodulators provide internal-state signals to the BLA while an animal listens to social vocalizations; however, multiple concerns must be addressed to substantiate their conclusions.

      Major concerns:

      1) The authors normalized all neurochemical data to the background level obtained from a single pre-stimulus sample immediately preceding playback. The percentage change from the background level was calculated based on a formula, and the underlying concentrations were not reported. The authors should report the sample and background concentrations to make the results and analyses more transparent. The authors stated that NE and 5-HT had low recovery from the mouse brain and hence could not be tracked in the experiment. The authors could be more specific here by relating the concentrations to ACh, DA, and 5-HIAA included in the analyses.

      Please see our general statement regarding normalization of neurochemical data. We have added supplemental tables that shows concentrations of dopamine, acetylcholine, 5-HIAA. We do not report serotonin or noradrenalin since these were below the detection threshold.

      2) For the EXP group, the authors stated that each animal underwent 90-min sessions on two consecutive days that provided mating and restraint experiences. Did the authors record mating or copulation during these experiments? If yes, what was the frequency of copulation? What other behaviors were recorded during these experiences? Did the experiment encompass other courtship behaviors along with mating experiences? Was the female mouse in estrus during the experience sessions?

      In the mating experience, mounting or attempted mounting was required for the animal to be included in subsequent testing. Since the session lasted 90 minutes, more general courtship behavior was likely. However, we did not record detailed behaviors or track estrous stage for the mating experience. See p. 21, line 20-22.

      3) For the mating playback, the authors stated that the mating stimulus blocks contained five exemplars of vocal sequences emitted during mating interactions. The authors should clarify whether the vocal sequences were emitted while animals were mating/copulating or when the male and female mice were inside the test box. If the latter was the case, it might be better to call the playback "courtship playback" instead of "mating playback".

      We have modified the Results (p. 5, lines 18-20) and Materials and Methods (p. 21, lines 8-15) to clarify our meaning. We continue to use the term “mating” because this refers to a specific set of behaviors associated with mounting and copulation, rather than the more general term “courtship”. We also indicate that we based these behaviors on previous work (e.g., Gaub et al., 2016).

      4) Since most differences that the authors reported in Figure 3 were observed in Stim 1 and not in Stim 2, it might be better to perform a temporal analysis - looking at behaviors and neurochemicals over time instead of dividing them into two 10-minute bins. The temporal analysis will provide a more accurate representation of changes in behavior and neurochemicals over time.

      Please see our general response to the structuring of experimental periods. The 10-min periods are the minimum for the neurochemical analyses, and we adopted the same periods for behavioral analyses to match the two types of observations. Our repeated measures analysis is a form of temporal analysis, since it compares values in three observation periods.

      5) In Figures 2 and 3, the authors show the correlation between Flinching behavior and ACh concentration. The authors should report correlations between concentrations of all neurochemicals (not just ACh) and all behaviors recorded (not just Flinching), even if they are insignificant. The analyses performed for the stim 1 data should also be performed on the stim 2 data. Reporting these findings would benefit the field.

      Please see general comments regarding correlation analyses. We removed almost all such analyses and references to them from the manuscript based on concerns of the other reviewers.

      6) The mice used in the study were between p90 - p180. The mice were old, and the range of ages was considerable. Are the findings correlated with age? The authors should also discuss how age might affect the experiment's results.

      Our p90-p180 mice are not “old”. CBA/CaJ mice display normal hearing for at least 1 year (Ohlemiller, Dahl, and Gagnon, JARO 11: 605-623, 2010) and adult sexual and social behavior throughout our observation period. They are sexually mature adults, appropriate for this study. We decline to perform correlation analyses with age, both because this was not a question for this study and because the very large number of correlations, for each experimental group (as requested by reviewer #2), render this approach statistically problematic.

      7) The authors reported neurochemical levels estimated as the animals listened to the sounds played back. What about the sustained effects of changes in neurochemicals? Are there any potential long-term effects of social vocalizations on behavior and neurochemical levels? The authors might consider discussing long-term effects.

      We have not included discussion of long term effects of neuromodulatory release, both because our data analysis doesn’t address it (see response to Comment #10) and because we desired to keep the Discussion focused on topics more closely related to the results.

      8) Histology from a single recording was shown in supplementary figure 1. It would benefit the readers if additional histology was shown for all the animals, not just the colored schematics summarizing the recording probe locations. Further explanation of the track location is also needed to help the readers. Make it clear for the readers which dextran-fluorescein labeling image is associated with which track in the schematic.

      Based on the recent publications cited in our overall response to reviewer comments about statistical methods, our reporting of histological location of microdialysis exceeds the standard. We believe that the inclusion of all histology is unnecessary and not particularly helpful. Raw photomicrographs do not always illustrate boundaries, so interpretation is required. However, we added a second photomicrograph example and we identified which tracks correspond to these photomicrographs (see Figure 2; now in main body of manuscript).

      9) The authors did not control for the sounds being played back with a speaker. This control may be necessary since the effects are more pronounced in Stim 1 than in Stim 2. Playing white noise rather than restraint or courtship vocalizations would be an excellent control. However, the authors could perform a permutation analysis and computationally break the relationship between what sound is playing and the neurochemical data. This control would allow the authors to show that the actual neurochemical levels are above or below chance.

      We considered a potential “control” stimulus in our experimental design. We concluded, based on our previous work (e.g., Grimsley et al., 2013; Gadziola et al., 2016), that white noise is not or not necessarily a neutral stimulus and therefore the results would not clarify the responses to the two vocal stimuli. Instead, we opted to use experience as a type of control. This control shows very clearly that temporal patterns and across-group differences in neurochemical response to playback disappear in the absence of experience with the associated behavior.

      10) The authors indicated that each animal's post-vocalization session was also recorded. No data in the manuscript related to the post-vocalization playback period was included. This omission was a missed opportunity to show that the neurochemical levels returned to baseline, and the results were not dependent on the normalization process described in major concern #1. The data should be included in the manuscript and analyzed. It would add further support for the model described in Figure 6.

      We decided not to include analyses of the post-stimulus period because this period is subject to wider individual and neuromodulator-specific effects and because it weakens statistical power in addressing the core question—the change in neuromodulator release DURING vocal playback. We agree that the general question is of interest to the field, but we don’t think our study is best designed to answer that question.

      11) The authors could use a predictive model, such as a binary classifier trained on the CSF sampling data, to predict the type of vocalizations played back. The predictive model could support the conclusions and provide additional support for the model in Figure 6.

      We recognize that a binary classifier could provide an interesting approach to support conclusions. However, we do not believe that the sample size per group is sufficient to both create and test the classifier.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      • Introduction: It would be useful to set up an experimental framework before delving into the results. What are the predictions about specific neuromodulators based on previous literature?

      Because this narrative is laid out in the first two paragraphs of the Results, which immediately follow the Introduction, we believe that additional text in the Introduction on the experimental framework is redundant. As stated above, detailing predictions for a range of neuromodulators would make for a long and not particularly illuminating Introduction. We instead have related our findings to more general understanding of DA and ACh in the Discussion.

      • There really isn't a major difference in stimuli during the "Stim 1" and "Stim 2" phases, and it's not clear why the authors divided the experimental period into two phases. Therefore, the authors need to justify their experimental approach. For example, the authors could first anecdotally mention that behavioral responses to playbacks seem to be larger in the first half of the playbacks than during the second half, therefore they individually analyzed each half of the experimental period. Or adopt a different approach to justify their design. Overall, the analytical approach is reasonable but it is currently not justified.

      See general comment for analysis periods. As noted, we clarified these issues in several locations with Materials and Methods (pp. 24, lines 20-22; p. 26, lines 17-19). We also sought to clarify the meaning of the periods “Stim 1” and “Stim 2”; they are two data collection periods, using the same examplar sequences in the same order. We have added statements in the Material and Methods (p. 18, lines 4-7; Fig. caption, p. 39, lines 11-13).

      • The normalization of neurochemical data seems problematic and unnecessary. By normalizing all data to the baseline data (p. 24), one artificially creates a baseline period with minimal variation (all are "0"; Figures 2, 3 & 5) and this has implications for statistical power. Because the analysis is a within-subjects analysis, this normalization is not necessary for the analysis itself. It can be useful to normalize data for visualization purposes, but raw data should be analyzed. Indeed, behavioral data are qualitatively similar to the neurochemical data, and those data are not normalized to baseline values.

      Please see our general comment on this issue. We believe normalization does not affect statistical power and is both the standard way and an appropriate way to analyze microdialysis results. We include concentrations of ACh, DA, and 5-HIAA in supplementary tables?

      • The authors should include a discussion (in the Discussion section) of how behavior and neurochemical release are associated during the first half of the experimental session but not in the second half (e.g., differences in Ach and DA release between mating and restraint groups during stim 1 and 2, but behavioral differences only during stim 1).

      We have included a section in the Discussion concerning the temporal relationship between behavioral responses and neurochemical changes in response to vocal playback. We note that the linkage is particularly strong in some cases (e.g., ACh release and flinching). This points to a need to examine these phenomena with finer temporal resolution, but also with the recognition that the brain circuits driving a behavioral response may extend beyond the BLA.

      Minor comments:

      • Keywords: add "serotonin" (even though there are no significant differences on 5-HIAA, people interested in serotonin would find this interesting).

      Added to keywords list.

      • Do the authors collect data on the vocalizations of mice in response to these playbacks?

      We monitored vocalizations during playback, noting that vocalizations–especially “Noisy” vocalization–were common. However, we did not record vocalizations and are therefore unable quantify our observations.

      • First line of page 7: readers do not know about "stim 1" and "stim 2". Therefore, the authors need to describe their approach to analyzing behavior and neurochemical release.

      We first introduce these terms earlier, citing Figure 1D,E. We have added some additional wording for further clarification. page 7, lines 4-5.

      • Make sure citations are uniformly formatted (e.g., Inconsistencies in: "As male and female mice emit different vocalizations during mating (Finton et al., 2017; J. M. S. Grimsley et al., 2013; Neunuebel et al., 2015; Sales (née Sewell), 1972)").

      We have reviewed and corrected citations throughout the manuscript.

      • Last paragraph of page 7: "attending behavior" has not been defined yet.

      Table 1 contains our description of the behaviors analyzed in this study. We have now inserted a reference to Table 1 earlier in the Results (p. 6, line 12).

      • Figure 2E and 3G: I find these correlations to be redundant with the GLMs. This is because the significant relationship is likely to be driven by group differences in behavior and in neurochemical release.

      Please see general comments regarding correlation analyses. We removed such analyses and references to them from the manuscript.

      • Page 2, 2nd paragraph, 2nd sentence: this paragraph seems to be rooted in comparing and contrasting experienced and inexperienced mice, so there should be explicit comparisons in each sentence. For example, the 2nd sentence should read: "Whereas EXP estrus females demonstrated increased flinching behaviors in response to mating vocalizations, INEXP ....". This paragraph overall could use some refining.

      We believe this refers to page 9. We have revised the paragraph to clarify our findings (Beginning p. 9, line 23).

      • Page 9: "Further, there were no significant differences across groups during Stim 1 or Stim 2 periods. These results contrast sharply with those from all EXP groups, in which both ACh and DA release changed significantly during playback (Figs. 2C, 2D, 3E, 3F)." While I understand their perspective, this is misleading because changes were only observed during the Stim 1 period.

      We have slightly revised the wording in this paragraph, because the restraint males did not show significant ACh decreases. However, we do not believe our statements mislead readers just because some changes are observed in only one of the stimulation periods (p 10, lines 13-16).

      • Last paragraph of page 14: it would be useful to mention the increase in flinching in experienced females in response to mating vocalizations.

      We have added a sentence in this paragraph relating flinching in estrus females to increased ACh (p. 15, lines 18-20).

      • Was there a full analysis of locomotion in response to playbacks? I see that locomotion was correlated with neurochemical release but was it different in response to different stimuli? Were there changes to the part of the arena that mice occupied in response to restraint vs. mating vocalizations? Given their methods section, it would be useful for the authors to mention the results of the analyses of these aspects of movement.

      We have provided additional descriptions of space use and video tracking data in Material and Methods (p. 23, lines 1-6). We now report additional results associated with these analyses (p. 8, lines 13-15; p. 9, lines 8-14).

      • I believe that each experimental mouse only heard one of the stimuli (given the analytical approach). Because it is plausible to measure neurochemical release in response to both types of stimuli, I encourage the authors to be more explicit about this aspect of the experimental design (e.g., mention in Results section).

      Sentence modified to read: “Each mouse received playback of either the mating or restraint stimuli, but not both: same-day presentation of both stimuli would require excessively long playback sessions, the condition of the same probe would likely change on subsequent days, and quality of a second implanted probe on a subsequent day was uncertain.” (p. 7, lines 5-9).

      • Figure 1A and 1B: add labels to the panels so readers don't have to read the legend to know what spectrogram is associated with what context.

      We added these labels to Figure 1.

      • Table 1: in the definition of "still and alert", should this mention "abrupt attending" instead of "abrupt freezing"? The latter isn't described.

      Yes, we intended “abrupt attending”, and now indicated that in Table 1

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      • The authors report they performed manual behavioral analysis, and provide a table defining the different behaviors. However, it remains unclear how some of these behaviors were detected (such as still-and-alert events). A thorough description of the criteria used to define these events needs to be provided.

      We have modified some descriptions of manually analyzed behaviors in Table 1, and have added additional description of how we developed this set of behaviors for analysis in the study (pp. 22-23).

      • The box plots do not appear to represent the "minimum, first quartile, median, third quartile, and maximum values." as specified on page 24 (Methods). Indeed, the individual data points sometimes do not reach the max or min of the bar plot, and sometimes are way beyond them.

      We used the “inclusive median” function in Excel to generate final boxplots. These boxplots will sometimes result in a data point being placed outside of the whiskers. SPSS considers these to be “outliers”, but our GLM analysis includes these values. We describe this in Data Analysis section of Materials and Methods (p. 28, lines 3-9)

      • Some of the data are replicated in different Figures: Figure 2A and Figure 3C. While this is acceptable, the authors did not correct for multiple comparisons (dividing the p value by the number of comparisons).

      Our analysis included corrections for multiple comparisons, as we have indicated on p. 27, lines 15-16.

      • Overall, the sample sizes are too small (for example in Figure 3, non-estrus females are at n=3), and are different in experiments where they should be equal (Figure 2B: mating stim 1 is at n=5 and mating stim 2 is at n=3).

      We apologize that sample sizes were not properly displayed in figures. Please note that sample sizes are identified in the figure captions. For neuromodulator data, all sample sizes are at least 7. For behavioral data, the minimum sample size is 5. We have revised Figures 3-6 to ensure that all data points are visible.

      • It remains unclear why the impact of mating vocalizations has been tested only in males.

      We assume the reviewer meant that only males were tested in restraint. We now indicate that our preliminary evidence indicated no difference in behavioral responses to restraint vocalization between males and females, so we opted to perform the neurochemical analysis for restraint only in males (page 22 lines 4-5). If there were no limitations to time and cost, we would have preferred to test responses to restraint in females as well. We note that such inclusion would have added up to 4 experimental groups (estrus and non-estrus groups in both EXP and INEXP groups).

      • The correlation between the number of flinching and ACh release changes (Figure 2E) visually appears to be opposite between mating and restraint playbacks. The authors should perform independent correlations for these 2 playbacks.

      Please see general comments regarding correlation analyses. We removed such analyses and references to them from the manuscript.

      • The authors state that their findings "indicate that behavioral responses to salient vocalizations result from interactions between sex of the listener or context of vocal stimuli with the previous behavioral experience associated with these vocalizations.". However, in male mice, they do not report any difference in previous experience on flinching for both restraint and mating sounds, as well as no difference in rearing for the restrain sounds (Figure 4A-B). Thus, the discussion of these results should be completely revisited.

      We revised the paragraph in question (p. 9, line 22 through p. 10, line 9). For instance, we note that significant differences between EXP male-mating and male-restraint flinching do not exist between the INEXP groups. We believe that the last sentence correctly summarizes findings described in this paragraph.

      • For serotonin experiments in Figure S2 there are strong outliers (150% increase in 5HIAA release). Did the authors correlate these levels with the behavior of the animals?

      Outliers are identified by the Excel function that generated the boxplots, but we have no reason to consider these as outliers and exclude them. As noted above, we have clarified that these “outliers” are the result of the Excel function in the Materials and Methods (p. 28, lines 3-9) and we have revised the plotting of data points

      Minor comments:

      • Mating vocalization playback is mainly emitted by males, thus, instead of a positive valence signal, this could also be interpreted as a competitive signal to other males.

      There is support in the literature for viewing our mating stimulus as having positive valence. Gaub et al., 2016 describe the emission of stepped calls, lower frequency harmonics, and increased sound level as indicators of “positive emotion”. We have shown (Grimsley et al, 2013) that the female LFH vocalization can be highly attractive to male mice, under the right conditions, indicating something like “sex is happening”. The inclusion of both the male and female vocalizations in our stimuli was a key piece of our experimental design, based on our understanding of the contributions of both vocalizations to the meaning of the overall acoustic experience.

      • Figure 1 should include panel titles.

      No change. This information is available in the Figure caption.

      • n=31 should be indicated in the EXP group.

      We’re not sure where the reviewer is referring to this value.

      • The color legend of Figure 1E is absent, making the Figure not understandable.

      We added text in the Figure 1 caption to indicate that each color represents a different exemplar. We don’t think a legend provides additional useful information.

      • The point of making two blocks (stim 1 and stim2) should be stated more clearly.

      Please see general statement regarding experimental blocks. We have modified our description of these in an Experimental overview section in the Material and Methods.

      • Including raw data of micro-dialysis in the supplementary figures would allow assessment of the variability and quality of the measurements.

      We have added concentrations of neurochemicals in supplemental tables 1-3.

      • Baseline (prestimulus) number of flinch and rearing should systematically be indicated (missing in Figure 4).

      The focus in this figure is on the differences that occur in Stim 1 values. There are no differences between EXP and INEXP animals of any group during the Pre-Stim period. We now state that in the Figure 4 caption.

      • Discussion: "increase in AMPA/NMDA currents". We believe the authors are referring to the ratio of AMPA to NMDA currents. This sentence should be reformulated.

      These are modified to refer to “… the AMPA/NMDA current ratio…” in two locations in the Discussion (p. 14, lines 8-9; p. 15, line 4)

      • Overall the discussion is very speculative and should rely more on the data.

      We believe that the Discussion provides appropriate speculation that is based on our experimental data and previous literature. We have added a paragraph to identify limitations of our findings and recommendations of future experiments to resolve some issues (p. 12, lines 3-17)

      Reviewer #3 (Recommendations For The Authors):

      Minor concerns:

      1) The authors stated that USVs are most likely to be emitted by males, and LFH are likely to be emitted by females. However, Oliveira-Stahl et al. 2023, Matsumoto et al. 2022, Warren et al. 2018, Heckman et al. 2017, Neunuebel et al., 2015 showed that females also emit USVs. The authors should mention that USVs are emitted by both males and females and discuss how the sex of the vocalizing animal (both males and females) can influence neuromodulator release.

      The reviewer slightly mis-stated the wording of our text, changing the meaning significantly. Our wording is “These sequences included ultrasonic vocalizations (USVs) with harmonics, steps, and complex structure, mostly emitted by males, and low frequency harmonic calls (LFHs) emitted by females (Fig. 1A,C)…” This phrasing is correct and carefully chosen. The Discussion in Oliveira-Stahl et al 2023 (p. 10-11) supports our statement: “The exact fraction of USVs emitted by females as concluded in all previous studies on dyadic courtship has varied, ranging from 18%, 17.5%, and 16% to 10.5% in the present study…”.

      2) The authors should explain why ECF from BLA was collected unilaterally from the left hemisphere.

      p. 23, lines 9-11: We inserted a sentence to explain why we targeted the BLA unilaterally. “Since both left and right amygdala are responsive to vocal stimuli in human and experimental animal studies (Wenstrup et al., 2020), we implanted microdialysis probes into the left amygdala to maintain consistency with other studies in our laboratory..” Beyond that, the choice was arbitrary.

      3) The authors said each animal recovered in its home cage for four days before the playback experiment. A 4-day period may not be sufficient for every animal to recover from surgery, so the authors should describe how a mouse's recovery was assessed.

      p. 23, lines 20-23: We provide more description about the recovery and how it was assessed. Except for a few animals that were not included in the experiments, all animals recovered within 4 days.

      4) The authors stated that each animal was exposed to 90-min sessions with mating and restraint behaviors in a counterbalanced design. This description for Figure 1D should also include the duration of the mating and restraint experience.

      The Results that immediately precede citation to this figure include this information.

      5) The authors stated, "Data are reported only from mice with more than 75% of the microdialysis probe implanted within the BLA". What are the implications of having 25% of the probe outside the BLA? The authors should shed more light on this by discussing this issue as it relates to the findings and commenting on where the other 25% of the probe was located.

      We inserted a sentence to explain the rationale for this inclusion criterion. “We verified placement of microdialysis probes to minimize variability that could arise because regions surrounding BLA receive neurochemical inputs from different sources (e.g., cholinergic inputs to putamen and central amygdala).” (p. 25, lines 21-23).

      All brain regions that surround BLA, dorsal, medial, ventral, or lateral, could have been sampled by the “other” 25%. Some of these, e.g., the central amygdala or caudate-putamen, have different sources of cholinergic input that may not have the same release pattern. We do not think it is worthy of further speculation in the Discussion. Due to the high cost of the neurochemical analysis, we often did not process the neurochemistry data if histology indicated that a probe missed the BLA target.

      6) The authors confirmed that the estrus stage did not change during the experiment day by evaluating and comparing estrus prior to and after data collection. This strategy was a fantastic experimental approach, but the authors should have discussed the results. How did the results the authors included change when the females were in estrus before but not after data collection? What percentage of females started in estrus but ended in metestrus? Assuming that some females changed estrus state, were these animals excluded from the analyses?

      All animals were in the same estrus state at the beginning and end of the playback session.

      7). Authors cite Neunuebel et al., 2015 for the sentence "As male and female mice emit different vocalizations during mating". However, Neunuebel et al., 2015 showed vocalizations emitted during chasing--not mating. If mating is a general term for courtship, then this reference is appropriate, but see major concern #3.

      In the Results (p. 8, line 5), we changed the phrasing to “courtship and mating” to include the Neunubel et al study.

      As we indicate in our response to Public Comment #3, we have modified the Results (p. 5, lines 18-20) and Materials and Methods (p. 21, lines 8-15) to clarify our meaning. We continue to use the term “mating” because this refers to a specific set of behaviors associated with mounting and copulation, rather than the more general term “courtship”. We also indicate that we based these behaviors on previous work (e.g., Gaub et al., 2016).

      8) Authors interpret Figure 3F as DA release showed a "consistent" increase during mating playback across all three experimental groups. However, the increase in the estrus female group is inconsistent, as seen in the graph. This verbiage should be reworded to describe the data more accurately.

      p. 8, line 23 “consistent” was deleted.

      9) In all the box plots, multiple data points overlay each other. A more transparent way of showing the data would be adding some jitter to the x value to make each data point visible. The mean (X's) in Figure 3D (pre-stim mating and mating estrus) are difficult to see, as are all the data points in mating non-estrus. Adding all the symbols to the figure legend or a key in the figure instead of the method section would aid the reader and make the plots easier to interpret

      We have revised the boxplots to ensure that all data points are visible.

      10) Some verbiage used in the discussion should be toned down. For example, "intense" experiences and "emotionally charged" vocalizations should be removed.

      We have not changed these terms, which we believe are appropriate to describe these experiences and vocalizations.

      11) The authors include "Emotional Vocalizations" in the title. It would be beneficial if the authors included more detail and references in the introduction to help set up the emotional content of vocalizations. It may benefit a broader readership as typically targeted by eLife.

      We now cite Darwin and some more recent publications that articulate the general understanding that social vocalizations carry emotional content.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents potentially valuable results on glutamine-rich motifs in relation to protein expression and alternative genetic codes. The author's interpretation of the results is so far only supported by incomplete evidence, due to a lack of acknowledgment of alternative explanations, missing controls and statistical analysis and writing unclear to non experts in the field. These shortcomings could be at least partially overcome by additional experiments, thorough rewriting, or both.

      We thank both the Reviewing Editor and Senior Editor for handling this manuscript.

      Based on your suggestions, we have provided controls, performed statistical analysis, and rewrote our manuscript. The revised manuscript is significantly improved and more accessible to non-experts in the field.

      Reviewer #1 (Public Review):

      Summary

      This work contains 3 sections. The first section describes how protein domains with SQ motifs can increase the abundance of a lacZ reporter in yeast. The authors call this phenomenon autonomous protein expression-enhancing activity, and this finding is well supported. The authors show evidence that this increase in protein abundance and enzymatic activity is not due to changes in plasmid copy number or mRNA abundance, and that this phenomenon is not affected by mutants in translational quality control. It was not completely clear whether the increased protein abundance is due to increased translation or to increased protein stability.

      In section 2, the authors performed mutagenesis of three N-terminal domains to study how protein sequence changes protein stability and enzymatic activity of the fusions. These data are very interesting, but this section needs more interpretation. It is not clear if the effect is due to the number of S/T/Q/N amino acids or due to the number of phosphorylation sites.

      In section 3, the authors undertake an extensive computational analysis of amino acid runs in 27 species. Many aspects of this section are fascinating to an expert reader. They identify regions with poly-X tracks. These data were not normalized correctly: I think that a null expectation for how often poly-X track occur should be built for each species based on the underlying prevalence of amino acids in that species. As a result, I believe that the claim is not well supported by the data.

      Strengths

      This work is about an interesting topic and contains stimulating bioinformatics analysis. The first two sections, where the authors investigate how S/T/Q/N abundance modulates protein expression level, is well supported by the data. The bioinformatics analysis of Q abundance in ciliate proteomes is fascinating. There are some ciliates that have repurposed stop codons to code for Q. The authors find that in these proteomes, Q-runs are greatly expanded. They offer interesting speculations on how this expansion might impact protein function.

      Weakness

      At this time, the manuscript is disorganized and difficult to read. An expert in the field, who will not be distracted by the disorganization, will find some very interesting results included. In particular, the order of the introduction does not match the rest of the paper.

      In the first and second sections, where the authors investigate how S/T/Q/N abundance modulates protein expression levels, it is unclear if the effect is due to the number of phosphorylation sites or the number of S/T/Q/N residues.

      There are three reasons why the number of phosphorylation sites in the Q-rich motifs is not relevant to their autonomous protein expression-enhancing (PEE) activities:

      First, we have reported previously that phosphorylation-defective Rad51-NTD (Rad51-3SA) and wild-type Rad51-NTD exhibit similar autonomous PEE activity. Mec1/Tel1-dependent phosphorylation of Rad51-NTD antagonizes the proteasomal degradation pathway, increasing the half-life of Rad51 from ∼30 min to ≥180 min (1). (page 1, lines 11-14)

      Second, in our preprint manuscript, we have already shown that phosphorylation-defective Rad53-SCD1 (Rad51-SCD1-5STA) also exhibits autonomous PEE activity similar to that of wild-type Rad53-SCD (Figure 2D, Figure 4A and Figure 4C). We have highlighted this point in our revised manuscript (page 9, lines 19-21).

      Third, as revealed by the results of Figure 4, it is the percentages, and not the numbers, of S/T/Q/N residues that are correlated with the PEE activities of Q-rich motifs.

      The authors also do not discuss if the N-end rule for protein stability applies to the lacZ reporter or the fusion proteins.

      The autonomous PEE function of S/T/Q-rich NTDs is unlikely to be relevant to the N-end rule. The N-end rule links the in vivo half-life of a protein to the identity of its N-terminal residues. In S. cerevisiae, the N-end rule operates as part of the ubiquitin system and comprises two pathways. First, the Arg/N-end rule pathway, involving a single N-terminal amidohydrolase Nta1, mediates deamidation of N-terminal asparagine (N) and glutamine (Q) into aspartate (D) and glutamate (E), which in turn are arginylated by a single Ate1 R-transferase, generating the Arg/N degron. N-terminal R and other primary degrons are recognized by a single N-recognin Ubr1 in concert with ubiquitin-conjugating Ubc2/Rad6. Ubr1 can also recognize several other N-terminal residues, including lysine (K), histidine (H), phenylalanine (F), tryptophan (W), leucine (L) and isoleucine (I) (68-70). Second, the Ac/N-end rule pathway targets proteins containing N-terminally acetylated (Ac) residues. Prior to acetylation, the first amino acid methionine (M) is catalytically removed by Met-aminopeptidases (MetAPs), unless a residue at position 2 is non-permissive (too large) for MetAPs. If a retained N-terminal M or otherwise a valine (V), cysteine (C), alanine (A), serine (S) or threonine (T) residue is followed by residues that allow N-terminal acetylation, the proteins containing these AcN degrons are targeted for ubiquitylation and proteasome-mediated degradation by the Doa10 E3 ligase (71).

      The PEE activities of these S/T/Q-rich domains are unlikely to arise from counteracting the N-end rule for two reasons. First, the first two amino acid residues of Rad51-NTD, Hop1-SCD, Rad53-SCD1, Sup35-PND, Rad51-ΔN, and LacZ-NVH are MS, ME, ME, MS, ME, and MI, respectively, where M is methionine, S is serine, E is glutamic acid and I is isoleucine. Second, Sml1-NTD behaves similarly to these N-terminal fusion tags, despite its methionine and glutamine (MQ) amino acid signature at the N-terminus. (Page 12, line 3 to page 13, line 2)

      The most interesting part of the paper is an exploration of S/T/Q/N-rich regions and other repetitive AA runs in 27 proteomes, particularly ciliates. However, this analysis is missing a critical control that makes it nearly impossible to evaluate the importance of the findings. The authors find the abundance of different amino acid runs in various proteomes. They also report the background abundance of each amino acid. They do not use this background abundance to normalize the runs of amino acids to create a null expectation from each proteome. For example, it has been clear for some time (Ruff, 2017; Ruff et al., 2016) that Drosophila contains a very high background of Q's in the proteome and it is necessary to control for this background abundance when finding runs of Q's.

      We apologize for not explaining sufficiently well the topic eliciting this reviewer’s concern in our preprint manuscript. In the second paragraph of page 14, we cite six references to highlight that SCDs are overrepresented in yeast and human proteins involved in several biological processes (5, 43) and that polyX prevalence differs among species (79-82).

      We will cite a reference by Kiersten M. Ruff in our revised manuscript (38).

      K. M. Ruff, J. B. Warner, A. Posey and P. S. Tan (2017) Polyglutamine length dependent structural properties and phase behavior of huntingtin exon1. Biophysical Journal 112, 511a.

      The authors could easily address this problem with the data and analysis they have already collected. However, at this time, without this normalization, I am hesitant to trust the lists of proteins with long runs of amino acid and the ensuing GO enrichment analysis. Ruff KM. 2017. Washington University in St.

      Ruff KM, Holehouse AS, Richardson MGO, Pappu RV. 2016. Proteomic and Biophysical Analysis of Polar Tracts. Biophys J 110:556a.

      We thank Reviewer #1 for this helpful suggestion and now address this issue by means of a different approach described below.

      Based on a previous study (43), we applied seven different thresholds to seek both short and long, as well as pure and impure, polyX strings in 20 different representative near-complete proteomes, including 4X (4/4), 5X (4/5-5/5), 6X (4/6-6/6), 7X (4/7-7/7), 8-10X (≥50%X), 11-10X (≥50%X) and ≥21X (≥50%X).

      To normalize the runs of amino acids and create a null expectation from each proteome, we determined the ratios of the overall number of X residues for each of the seven polyX motifs relative to those in the entire proteome of each species, respectively. The results of four different polyX motifs are shown in our revised manuscript, i.e., polyQ (Figure 7), polyN (Figure 8), polyS (Figure 9) and polyT (Figure 10). Thus, polyX prevalence differs among species and the overall X contents of polyX motifs often but not always correlate with the X usage frequency in entire proteomes (43).

      Most importantly, our results reveal that, compared to Stentor coeruleus or several non-ciliate eukaryotic organisms (e.g., Plasmodium falciparum, Caenorhabditis elegans, Danio rerio, Mus musculus and Homo sapiens), the five ciliates with reassigned TAAQ and TAGQ codons not only have higher Q usage frequencies, but also more polyQ motifs in their proteomes (Figure 7). In contrast, polyQ motifs prevail in Candida albicans, Candida tropicalis, Dictyostelium discoideum, Chlamydomonas reinhardtii, Drosophila melanogaster and Aedes aegypti, though the Q usage frequencies in their entire proteomes are not significantly higher than those of other eukaryotes (Figure 1). Due to their higher N usage frequencies, Dictyostelium discoideum, Plasmodium falciparum and Pseudocohnilembus persalinus have more polyN motifs than the other 23 eukaryotes we examined here (Figure 8). Generally speaking, all 26 eukaryotes we assessed have similar S usage frequencies and percentages of S contents in polyS motifs (Figure 9). Among these 26 eukaryotes, Dictyostelium discoideum possesses many more polyT motifs, though its T usage frequency is similar to that of the other 25 eukaryotes (Figure 10).

      In conclusion, these new normalized results confirm that the reassignment of stop codons to Q indeed results in both higher Q usage frequencies and more polyQ motifs in ciliates.  

      Reviewer #2 (Public Review):

      Summary:

      This study seeks to understand the connection between protein sequence and function in disordered regions enriched in polar amino acids (specifically Q, N, S and T). While the authors suggest that specific motifs facilitate protein-enhancing activities, their findings are correlative, and the evidence is incomplete. Similarly, the authors propose that the re-assignment of stop codons to glutamine-encoding codons underlies the greater user of glutamine in a subset of ciliates, but again, the conclusions here are, at best, correlative. The authors perform extensive bioinformatic analysis, with detailed (albeit somewhat ad hoc) discussion on a number of proteins. Overall, the results presented here are interesting, but are unable to exclude competing hypotheses.

      Strengths:

      Following up on previous work, the authors wish to uncover a mechanism associated with poly-Q and SCD motifs explaining proposed protein expression-enhancing activities. They note that these motifs often occur IDRs and hypothesize that structural plasticity could be capitalized upon as a mechanism of diversification in evolution. To investigate this further, they employ bioinformatics to investigate the sequence features of proteomes of 27 eukaryotes. They deepen their sequence space exploration uncovering sub-phylum-specific features associated with species in which a stop-codon substitution has occurred. The authors propose this stop-codon substitution underlies an expansion of ploy-Q repeats and increased glutamine distribution.

      Weaknesses:

      The preprint provides extensive, detailed, and entirely unnecessary background information throughout, hampering reading and making it difficult to understand the ideas being proposed.

      The introduction provides a large amount of detailed background that appears entirely irrelevant for the paper. Many places detailed discussions on specific proteins that are likely of interest to the authors occur, yet without context, this does not enhance the paper for the reader.

      The paper uses many unnecessary, new, or redefined acronyms which makes reading difficult. As examples:

      1) Prion forming domains (PFDs). Do the authors mean prion-like domains (PLDs), an established term with an empirical definition from the PLAAC algorithm? If yes, they should say this. If not, they must define what a prion-forming domain is formally.

      The N-terminal domain (1-123 amino acids) of S. cerevisiae Sup35 was already referred to as a “prion forming domain (PFD)” in 2006 (48). Since then, PFD has also been employed as an acronym in other yeast prion papers (Cox, B.S. et al. 2007; Toombs, T. et al. 2011).

      B. S. Cox, L. Byrne, M. F., Tuite, Protein Stability. Prion 1, 170-178 (2007). J. A. Toombs, N. M. Liss, K. R. Cobble, Z. Ben-Musa, E. D. Ross, [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS One 6, e21953 (2011).

      2) SCD is already an acronym in the IDP field (meaning sequence charge decoration) - the authors should avoid this as their chosen acronym for Serine(S) / threonine (T)-glutamine (Q) cluster domains. Moreover, do we really need another acronym here (we do not).

      SCD was first used in 2005 as an acronym for the Serine (S)/threonine (T)-glutamine (Q) cluster domain in the DNA damage checkpoint field (4). Almost a decade later, SCD became an acronym for “sequence charge decoration” (Sawle, L. et al. 2015; Firman, T. et al. 2018).

      L. Sawle and K, Ghosh, A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J. Chem Phys. 143, 085101(2015).

      T. Firman and Ghosh, K. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins. J. Chem Phys. 148, 123305 (2018).

      3) Protein expression-enhancing (PEE) - just say expression-enhancing, there is no need for an acronym here.

      Thank you. Since we have shown that the addition of Q-rich motifs to LacZ affects protein expression rather than transcription, we think it is better to use the “PEE” acronym.

      The results suggest autonomous protein expression-enhancing activities of regions of multiple proteins containing Q-rich and SCD motifs. Their definition of expression-enhancing activities is vague and the evidence they provide to support the claim is weak. While their previous work may support their claim with more evidence, it should be explained in more detail. The assay they choose is a fusion reporter measuring beta-galactosidase activity and tracking expression levels. Given the presented data they have shown that they can drive the expression of their reporters and that beta gal remains active, in addition to the increase in expression of fusion reporter during the stress response. They have not detailed what their control and mock treatment is, which makes complete understanding of their experimental approach difficult. Furthermore, their nuclear localization signal on the tag could be influencing the degradation kinetics or sequestering the reporter, leading to its accumulation and the appearance of enhanced expression. Their evidence refuting ubiquitin-mediated degradation does not have a convincing control.

      Although this reviewer’s concern regarding our use of a nuclear localization signal on the tag is understandable, we are confident that this signal does not bias our findings for two reasons. First, the negative control LacZ-NV also possesses the same nuclear localization signal (Figure 1A, lane 2). Second, another fusion target, Rad51-ΔN, does not harbor the NVH tag (Figure 1D, lanes 3-4). Compared to wild-type Rad51, Rad51-ΔN is highly labile. In our previous study, removal of the NTD from Rad51 reduced by ~97% the protein levels of corresponding Rad51-ΔN proteins relative to wild-type (1).

      Based on the experimental results, the authors then go on to perform bioinformatic analysis of SCD proteins and polyX proteins. Unfortunately, there is no clear hypothesis for what is being tested; there is a vague sense of investigating polyX/SCD regions, but I did not find the connection between the first and section compelling (especially given polar-rich regions have been shown to engage in many different functions). As such, this bioinformatic analysis largely presents as many lists of percentages without any meaningful interpretation. The bioinformatics analysis lacks any kind of rigorous statistical tests, making it difficult to evaluate the conclusions drawn. The methods section is severely lacking. Specifically, many of the methods require the reader to read many other papers. While referencing prior work is of course, important, the authors should ensure the methods in this paper provide the details needed to allow a reader to evaluate the work being presented. As it stands, this is not the case.

      Thank you. As described in detail below, we have now performed rigorous statistical testing using the GofuncR package (Figure 11, Figure 12 and DS7-DS32).

      Overall, my major concern with this work is that the authors make two central claims in this paper (as per the Discussion). The authors claim that Q-rich motifs enhance protein expression. The implication here is that Q-rich motif IDRs are special, but this is not tested. As such, they cannot exclude the competing hypothesis ("N-terminal disordered regions enhance expression").

      In fact, “N-terminal disordered regions enhance expression” exactly summarizes our hypothesis.

      On pages 12-13 and Figure 4 of our preprint manuscript, we explained our hypothesis in the paragraph entitled “The relationship between PEE function, amino acid contents, and structural flexibility”.

      The authors also do not explore the possibility that this effect is in part/entirely driven by mRNA-level effects (see Verma Na Comms 2019).

      As pointed out by the first reviewer, we present evidence that the increase in protein abundance and enzymatic activity is not due to changes in plasmid copy number or mRNA abundance (Figure 2), and that this phenomenon is not affected in translational quality control mutants (Figure 3).

      As such, while these observations are interesting, they feel preliminary and, in my opinion, cannot be used to draw hard conclusions on how N-terminal IDR sequence features influence protein expression. This does not mean the authors are necessarily wrong, but from the data presented here, I do not believe strong conclusions can be drawn. That re-assignment of stop codons to Q increases proteome-wide Q usage. I was unable to understand what result led the authors to this conclusion.

      My reading of the results is that a subset of ciliates has re-assigned UAA and UAG from the stop codon to Q. Those ciliates have more polyQ-containing proteins. However, they also have more polyN-containing proteins and proteins enriched in S/T-Q clusters. Surely if this were a stop-codon-dependent effect, we'd ONLY see an enhancement in Q-richness, not a corresponding enhancement in all polar-rich IDR frequencies? It seems the better working hypothesis is that free-floating climate proteomes are enriched in polar amino acids compared to sessile ciliates.

      We thank this reviewer for raising this point, however her/his comments are not supported by the results in Figure 7.

      Regardless, the absence of any kind of statistical analysis makes it hard to draw strong conclusions here.

      We apologize for not explaining more clearly the results of Tables 5-7 in our preprint manuscript.

      To address the concerns about our GO enrichment analysis by both reviewers, we have now performed rigorous statistical testing for SCD and polyQ protein overrepresentation using the GOfuncR package (https://bioconductor.org/packages/release/bioc/html/GOfuncR.html). GOfuncR is an R package program that conducts standard candidate vs. background enrichment analysis by means of the hypergeometric test. We then adjusted the raw p-values according to the Family-wise error rate (FWER). The same method had been applied to GO enrichment analysis of human genomes (89).

      The results presented in Figure 11 and Figure 12 (DS7-DS32) support our hypothesis that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition, Candida albicans filamentous growth, peptidyl-glutamic acid modification in ciliates with reassigned stop codons (TAAQ and TAGQ), Tetrahymena thermophila xylan catabolism, Dictyostelium discoideum sexual reproduction, Plasmodium falciparum infection, as well as the nervous systems of Drosophila melanogaster, Mus musculus, and Homo sapiens (78). In contrast, peptidyl-glutamic acid modification and microtubule-based movement are not overrepresented with Q-rich proteins in Stentor coeruleus, a ciliate with standard stop codons.

      Recommendations for the authors:

      Please note that you control which revisions to undertake from the public reviews and recommendations for the authors.

      Reviewer #1 (Recommendations For The Authors):

      The order of paragraphs in the introduction was very difficult to follow. Each paragraph was clear and easy to understand, but the order of paragraphs did not make sense to this reader. The order of events in the abstract matches the order of events in the results section. However, the order of paragraphs in the introduction is completely different and this was very confusing. This disordered list of facts might make sense to an expert reader but makes it hard for a non-expert reader to understand.

      Apologies. We endeavored to improve the flow of our revised manuscript to make it more readable.

      The section beginning on pg 12 focused on figures 4 and 5 was very interesting and highly promising. However, it was initially hard for me to tell from the main text what the experiment was. Please add to the text an explanation of the experiment, because it is hard to figure out what was going on from the figures alone. Figure 4 is fantastic, but would be improved by adding error bars and scaling the x-axis to be the same in panels B,C,D.

      Thank you for this recommendation. We have now scaled both the x-axis and y-axis equivalently in panels B, C and D of Figure 4. Error bars are too small to be included.

      It is hard to tell if the key variable is the number of S/T/Q/N residues or the number of phosphosites. I think a good control would be to add a regression against the number of putative phosphosites. The sequences are well designed. I loved this part but as a reader, I need more interpretation about why it matters and how it explains the PEE.

      As described above, we have shown that the number of phosphorylation sites in the Q-rich motifs is not relevant to their autonomous protein expression-enhancing (PEE) activities.

      I believe that the prevalence of polyX runs is not meaningful without normalizing for the background abundance of each amino acid. The proteome-wide abundance and the assumption that amino acids occur independently can be used to form a baseline expectation for which runs are longer than expected by chance. I think Figures 6 and 7 should go into the supplement and be replaced in the main text with a figure where Figure 6 is normalized by Figure 7. For example in P. falciparum, there are many N-runs (Figure 6), but the proteome has the highest fraction of N’s (Figure 7).

      Thank you for these suggestions. The three figures in our preprint manuscript (Figures 6-8) have been moved into the supplementary information (Figures S1-S3). For normalization, we have provided four new figures (Figures 7-10) in our revised manuscript.

      The analysis of ciliate proteomes was fascinating. I am particularly interested in the GO enrichment for “peptidyl-glutamic acid modification” (pg 20) because these enzymes might be modifying some of Q’s in the Q-runs. I might be wrong about this idea or confused about the chemistry. Do these ciliates live in Q-rich environments? Or nitrogen rich environments?

      Polymeric modifications (polymodifications) are a hallmark of C-terminal tubulin tails, whereas secondary peptide chains of glutamic acids (polyglutamylation) and glycines (polyglycylation) are catalyzed from the γ-carboxyl group of primary chain glutamic acids. It is not clear if these enzymes can modify some of the Q’s in the Q-runs.

      To our knowledge, ciliates are abundant in almost every liquid water environment, i.e., oceans/seas, marine sediments, lakes, ponds, and rivers, and even soils.

      I think you should include more discussion about how the codons that code for Q’s are prone to slippage during DNA replication, and thus many Q-runs are unstable and expand (e.g. Huntington’s Disease). The end of pg 24 or pg 25 would be good places.

      We thank the reviewer for these comments.

      PolyQ motifs have a particular length-dependent codon usage that relates to strand slippage in CAG/CTG trinucleotide repeat regions during DNA replication. In most organisms having standard genetic codons, Q is encoded by CAGQ and CAAQ. Here, we have determined and compared proteome-wide Q contents, as well as the CAGQ usage frequencies (i.e., the ratio between CAGQ and the sum of CAGQ, CAGQ, TAAQ, and TAGQ).

      Our results reveal that the likelihood of forming long CAG/CTG trinucleotide repeats are higher in five eukaryotes due to their higher CAGQ usage frequencies, including Drosophila melanogaster (86.6% Q), Danio rerio (74.0% Q), Mus musculus (74.0% Q), Homo sapiens (73.5% Q), and Chlamydomonas reinhardtii (87.3% Q) (orange background, Table 2). In contrast, another five eukaryotes that possess high numbers of polyQ motifs (i.e., Dictyostelium discoideum, Candida albicans, Candida tropicalis, Plasmodium falciparum and Stentor coeruleus) (Figure 1) utilize more CAAQ (96.2%, 84.6%, 84.5%, 86.7% and 75.7%) than CAAQ (3.8%, 15.4%, 15.5%, 13.3% and 24.3%), respectively, to avoid the formation of long CAG/CTG trinucleotide repeats (green background, Table 2). Similarly, all five ciliates with reassigned stop codons (TAAQ and TAGQ) have low CAGQ usage frequencies (i.e., from 3.8% Q in Pseudocohnilembus persalinus to 12.6% Q in Oxytricha trifallax) (red font, Table 2). Accordingly, the CAG-slippage mechanism might operate more frequently in Chlamydomonas reinhardtii, Drosophila melanogaster, Danio rerio, Mus musculus and Homo sapiens than in Dictyostelium discoideum, Candida albicans, Candida tropicalis, Plasmodium falciparum, Stentor coeruleus and the five ciliates with reassigned stop codons (TAAQ and TAGQ).

      Author response table 1.

      Usage frequencies of TAA, TAG, TAAQ, TAGQ, CAAQ and CAGQ codons in the entire proteomes of 20 different organisms.

      Pg 7, paragraph 2 has no direction. Please add the conclusion of the paragraph to the first sentence.

      This paragraph has been moved to the “Introduction” section” of the revised manuscript.

      Pg 8, I suggest only mentioning the PFDs used in the experiments. The rest are distracting.

      We have addressed this concern above.

      Pg 12. Please revise the "The relationship...." text to explain the experiment.

      We apologize for not explaining this topic sufficiently well in our preprint manuscript.

      SCDs are often structurally flexible sequences (4) or even IDRs. Using IUPred2A (https://iupred2a.elte.hu/plot_new), a web-server for identifying disordered protein regions (88), we found that Rad51-NTD (1-66 a.a.) (1), Rad53-SCD1 (1-29 a.a.) and Sup35-NPD (1-39 a.a.) are highly structurally flexible. Since a high content of serine (S), threonine (T), glutamine (Q), asparanine (N) is a common feature of IDRs (17-20), we applied alanine scanning mutagenesis approach to reduce the percentages of S, T, Q or N in Rad51-NTD, Rad53-SCD1 or Sup35-NPD, respectively. As shown in Figure 4 and Figure 5, there is a very strong positive relationship between STQ and STQN amino acid percentages and β-galactosidase activities. (Page 13, lines 5-10)

      Pg 13, first full paragraph, "Futionally, IDRs..." I think this paragraph belongs in the Discussion.

      This paragraph is now in the “Introduction” section (Page 5, Lines 11-15).

      Pg. 15, I think the order of paragraphs should be swapped.

      These paragraphs have been removed or rewritten in the “Introduction section” of our revised manuscript.

      Pg 17 (and other parts) I found the lists of numbers and percentages hard to read and I think you should refer readers to the tables.

      Thank you. In the revised manuscript, we have avoided using lists of numbers and percentages, unless we feel they are absolutely essential.

      Pg. 19 please add more interpretation to the last paragraph. It is very cool but I need help understanding the result. Are these proteins diverging rapidly? Perhaps this is a place to include the idea of codon slippage during DNA replication.

      Thank you. The new results in Table 2 indicate that the CAG-slippage mechanism is unlikely to operate in ciliates with reassigned stop codons (TAAQ and TAGQ).

      Pg 24. "Based on our findings from this study, we suggest that Q-rich motifs are useful toolkits for generating novel diversity during protein evolution, including by enabling greater protein expression, protein-protein interactions, posttranslational modifications, increased solubility, and tunable stability, among other important traits." This idea needs to be cited. Keith Dunker has written extensively about this idea as have others. Perhaps also discuss why Poly Q rich regions are different from other IDRs and different from other IDRs that phase-separate.

      Agreed, we have cited two of Keith Dunker’s papers in our revised manuscript (73, 74).

      Minor notes:

      Please define Borg genomes (pg 25).

      Borgs are long extrachromosomal DNA sequences in methane-oxidizing Methanoperedens archaea, which display the potential to augment methane oxidation (101). They are now described in our revised manuscript. (Page 15, lines 12-14)

      Reviewer #2 (Recommendations For The Authors):

      The authors dance around disorder but never really quantify or show data. This seems like a strange blindspot.

      We apologize for not explaining this topic sufficiently well in our preprint manuscript. We have endeavored to do so in our revised manuscript.

      The authors claim the expression enhancement is "autonomous," but they have not ruled things out that would make it not autonomous.

      Evidence of the “autonomous” nature of expression enhancement is presented in Figure 1, Figure 4, and Figure 5 of the preprint manuscript.

      Recommendations for improving the writing and presentation.

      The title does not recapitulate the entire body of work. The first 5 figures are not represented by the title in any way, and indeed, I have serious misgivings as to whether the conclusion stated in the title is supported by the work. I would strongly suggest the authors change the title.

      Figure 2 could be supplemental.

      Thank you. We think it is important to keep Figure 2 in the text.

      Figures 4 and 5 are not discussed much or particularly well.

      This reviewer’s opinion of Figure 4 and Figure 5 is in stark contrast to those of the first reviewer.

      The introduction, while very thorough, takes away from the main findings of the paper. It is more suited to a review and not a tailored set of minimal information necessary to set up the question and findings of the paper. The question that the authors are after is also not very clear.

      Thank you. The entire “Introduction” section has been extensively rewritten in the revised manuscript.

      Schematics of their fusion constructs and changes to the sequence would be nice, even if supplemental.

      Schematics of the fusion constructs are provided in Figure 1A.

      The methods section should be substantially expanded.

      The method section in the revised manuscript has been rewritten and expanded. The six Javascript programs used in this work are listed in Table S4.

      The text is not always suited to the general audience and readership of eLife.

      We have now rewritten parts of our manuscript to make it more accessible to the broad readership of eLife.

      In some cases, section headers really don't match what is presented, or there is no evidence to back the claim.

      The section headers in the revised manuscript have been corrected.

      A lot of the listed results in the back half of the paper could be a supplemental table, listing %s in a paragraph (several of them in a row) is never nice

      Acknowledged. In the revised manuscript, we have removed almost all sentences listing %s.

      Minor corrections to the text and figures.

      There is a reference to table 1 multiple times, and it seems that there is a missing table. The current table 1 does not seem to be the same table referred to in some places throughout the text.

      Apologies for this mistake, which we have now corrected in our revised manuscript.

      In some places its not clear where new work is and where previous work is mentioned. It would help if the authors clearly stated "In previous work...."

      Acknowledged. We have corrected this oversight in our revised manuscript.

      Not all strains are listed in the strain table (KO's in figure 3 are not included)

      Apologies, we have now corrected Table S2, as suggested by this reviewer.

      Author response table 2.

      S. cerevisiae strains used in this study

    1. 7.6. Ethics and Trolling# 7.6.1. Background: Forming Groups# Every “we” implies a not-“we”. A group is constituted in part by who it excludes. Think back to the origin of humans caring about authenticity: if being able to trust each other is so important, then we need to know WHICH people are supposed to be entangled in those bonds of mutual trust with us, and which are not from our own crew. As we have developed larger and larger societies, states, and worldwide communities, the task of knowing whom to trust has become increasingly large. All groups have variations within them, and some variations are seen as normal. But the bigger groups get, the more variety shows up, and starts to feel palpable. In a nation or community where you don’t know every single person, how do you decide who’s in your squad? One answer to this challenge is that we use various heuristics (that is, shortcuts for thinking) like stereotypes and signaling to quickly guess where a person stands in relation to us. Sometimes wearing items of a certain brand signals to people with similar commitments that you might be on the same page. Sometimes features that are strongly associated with certain social groups—stereotypes—are assumed to tell us whether or not we can trust someone. Have you ever tried to change or mask your accent, to avoid being marked as from a certain region? Have you ever felt the need to conceal something about yourself that is often stereotyped, or to use an ingroup signal to deflect people’s attention from a stereotyped feature? There is a reason why stereotypes are so tenacious: they work… sort of. Humans are brilliant at finding patterns, and we use pattern recognition to increase the efficiency of our cognitive processing. We also respond to patterns and absorb patterns of speech production and style of dress from the people around us. We do have a tendency to display elements of our history and identity, even if we have never thought about it before. This creates an issue, however, when the stereotype is not apt in some way. This might be because we diverge in some way from the categories that mark us, so the stereotype is inaccurate. Or this might be because the stereotype also encodes value judgments that are unwarranted, and which lead to problems with implicit bias. Some people do not need to think loads about how they present in order to come across to people in ways that are accurate and supportive of who they really are. Some people think very carefully about how they curate a set of signals that enable them to accurately let people know who they are or to conceal who they are from people outside their squad. Because patterns are so central to how our brains process information, patterns become extremely important to how societies change or stay the same. TV tropes is a website that tracks patterns in media, such as the jump scare The Seven Basic Plots Patterns build habits. Habits build norms. Norms build our reality. To create a social group and have it be sustainable, we depend on stable patterns, habits, and norms to create the reality of the grouping. In a diverse community, there are many subsets of patterns, habits, and norms which go into creating the overall social reality. Part of how people manage their social reality is by enforcing the patterns, habits, and norms which identify us; another way we do this is by enforcing, or policing, which subsets of patterns, habits, and norms get to be recognized as valid parts of the broader social reality. Both of these tactics can be done in appropriate, just, and responsible ways, or in highly unjust ways. 7.6.2. Ethics of Disruption (Trolling)# Trolling is a method of disrupting the way things are, including group structure and practices. Like these group-forming practices, disruptive trolling can be deployed in just or unjust ways. (We will come back to that.) These disruptive tactics can also be engaged with different moods, ranging from playful (like some flashmobs), to demonstrative (like activism and protests), to hostile, to warring, to genocidal. You may have heard people say that the difference between a coup and a revolution is whether it succeeds and gets to later tell the story, or gets quashed. You may have also heard that the difference between a traitor and a hero depends on who is telling the story. As this class discusses trolling, as well as many of the other topics of social media behavior coming up in the weeks ahead, you are encouraged to bear this duality of value in mind. Trolling is a term given to describe behavior that aims to disrupt (among other things). To make value judgments or ethical judgments about instances of disruptive behavior, we will need to be thoughtful and nuanced about how we decide to pass judgments. One way to begin examining any instance of disruptive behavior is to ask what is being disrupted: a pattern, a habit, a norm, a whole community? And how do we judge the value of the thing being disrupted? Returning to the difference between a coup and a revolution, we might say that a national-level disruption is a coup if it fails, and a revolution if it succeeds. Or we might say that such a disruption is a coup if it intends to disrupt a legitimate instance of political domination/statehood, but a revolution if the instance of political domination is illegitimate. If you take a close look at English-language headlines in the news about uprisings occurring near to or far from here, it should become quickly apparent that both of these reasons can drive an author’s choice to style an event as a coup. To understand what the author is trying to say, we need to look inside the situation and see what assumptions are driving their choice to characterize the disruption in the way that they do. Trolling is disruptive behavior, and whether we class it as problematic or okay depends in part on how we judge the legitimacy of the social reality which is being disrupted. Trolling can be used, in principle, for good or bad ends. 7.6.3. Trolling and Nihilism# While trolling can be done for many reasons, some trolling communities take on a sort of nihilistic philosophy: it doesn’t matter if something is true or not, it doesn’t matter if people get hurt, the only thing that might matter is if you can provoke a reaction. We can see this nihilism show up in one of the versions of the self-contradictory “Rules of the Internet:” 8. There are no real rules about posting … 20. Nothing is to be taken seriously … 42. Nothing is Sacred Youtuber Innuendo Studios talks about the way arguments are made in a community like 4chan: You can’t know whether they mean what they say, or are only arguing as though they mean what they say. And entire debates may just be a single person stirring the pot [e.g., sockpuppets]. Such a community will naturally attract people who enjoy argument for its own sake, and will naturally trend oward the most extremte version of any opinion. In short, this is the free marketplace of ideas. No code of ethics, no social mores, no accountability. … It’s not that they’re lying, it’s that they just don’t care. […] When they make these kinds of arguments they legitimately do not care whether the words coming out of their mouths are true. If they cared, before they said something is true, they would look it up. The Alt-Right Playbook: The Card Says Moops by Innuendo Studios While there is a nihilistic worldview where nothing matters, we can see how this plays out practically, which is that they tend to protect their group (normally white and male), and tend to be extremely hostile to any other group. They will express extreme misogyny (like we saw in the Rules of the Internet: “Rule 30. There are no girls on the internet. Rule 31. TITS or GTFO - the choice is yours”), and extreme racism (like an invented Nazi My Little Pony character). Is this just hypocritical, or is it ethically wrong? It depends, of course, on what tools we use to evaluate this kind of trolling. If the trolls claim to be nihilists about ethics, or indeed if they are egoists, then they would argue that this doesn’t matter and that there’s no normative basis for objecting to the disruption and harm caused by their trolling. But on just about any other ethical approach, there are one or more reasons available for objecting to the disruptions and harm caused by these trolls! If the only way to get a moral pass on this type of trolling is to choose an ethical framework that tells you harming others doesn’t matter, then it looks like this nihilist viewpoint isn’t deployed in good faith1. Rather, with any serious (i.e., non-avoidant) moral framework, this type of trolling is ethically wrong for one or more reasons (though how we explain it is wrong depends on the specific framework). 7.6.4. Reflection Exercise# Revisit the K-Pop protest trolling example in section 7.3. Take your list of ethical frameworks from Chapter 2 and work through them one by one, applying each tool to the K-Pop trolling. For each theory, think of how many different ways the theory could hook up with the example. For example, when using a virtue ethics type of tool, consider how many different people’s character and flourishing could be developed through this? When using a tool based on outcomes, like consequentialism, how many different elements of the outcome can you think of? The goal here is to come up with as many variations as you can, to see how the tools of ethical analysis can help us see into different aspects of the situation. Once you have made your big list of considerations, choose 2-3 items that, in your view, feel most important. Based on those 2-3 items, do you evaluate this trolling event as having been morally good? Why? What changes to this example would change your overall decision on whether the action is ethical?

      The section provides a profound exploration of the complexities involved in understanding and evaluating disruptive behaviors in social media contexts. It compellingly illustrates how the formation of groups, the use of stereotypes, and the enforcement of norms are all deeply intertwined with our cognitive processes and societal structures. The examination of trolling as a form of disruption that can be deployed for both just and unjust ends invites readers to reflect on the multifaceted nature of these actions and their ethical implications.

    1. Reviewer #1 (Public Review):

      This valuable study demonstrates a novel mechanism by which implicit motor adaptation saturates for large visual errors in a principled normative Bayesian manner. Additionally, the study revealed two notable empirical findings: visual uncertainty increases for larger visual errors in the periphery, and proprioceptive shifts/implicit motor adaptation are non-monotonic, rather than ramp-like. This study is highly relevant for researchers in sensory cue integration and motor learning. However, I find some areas where statistical quantification is incomplete, and the contextualization of previous studies to be puzzling.

      Issue #1: Contextualization of past studies.

      While I agree that previous studies have focused on how sensory errors drive motor adaptation (e.g., Burge et al., 2008; Wei and Kording, 2009), I don't think the PReMo model was contextualized properly. Indeed, while PReMo should have adopted clearer language - given that proprioception (sensory) and kinaesthesia (perception) have been used interchangeably, something we now make clear in our new study (Tsay, Chandy, et al. 2023) - PReMo's central contribution is that a perceptual error drives implicit adaptation (see Abstract): the mismatch between the felt (perceived) and desired hand position. The current paper overlooks this contribution. I encourage the authors to contextualize PReMo's contribution more clearly throughout. Not mentioned in the current study, for example, PReMo accounts for the continuous changes in perceived hand position in Figure 4 (Figure 7 in the PReMo study).

      There is no doubt that the current study provides important additional constraints on what determines perceived hand position: Firstly, it offers a normative Bayesian perspective in determining perceived hand position. PReMo suggests that perceived hand position is determined by integrating motor predictions with proprioception, then adding a proprioceptive shift; PEA formulates this as the optimal integration of these three inputs. Secondly, PReMo assumed visual uncertainty to remain constant for different visual errors; PEA suggests that visual uncertainty ought to increase (but see Issue #2).

      Issue #2: Failed replication of previous results on the effect of visual uncertainty.

      2a. A key finding of this paper is that visual uncertainty linearly increases in the periphery; a constraint crucial for explaining the non-monotonicity in implicit adaptation. One notable methodological deviation from previous studies is the requirement to fixate on the target: Notably, in the current experiments, participants were asked to fixate on the target, a constraint not imposed in previous studies. In a free-viewing environment, visual uncertainty may not attenuate as fast, and hence, implicit adaptation does not attenuate as quickly as that revealed in the current design with larger visual errors. Seems like this current fixation design, while important, needs to be properly contextualized considering how it may not represent most implicit adaptation experiments.

      2b. Moreover, the current results - visual uncertainty attenuates implicit adaptation in response to large, but not small, visual errors - deviates from several past studies that have shown that visual uncertainty attenuates implicit adaptation to small, but not large, visual errors (Tsay, Avraham, et al. 2021; Makino, Hayashi, and Nozaki, n.d.; Shyr and Joshi 2023). What do the authors attribute this empirical difference to? Would this free-viewing environment also result in the opposite pattern in the effect of visual uncertainty on implicit adaptation for small and large visual errors?

      2c. In the current study, the measure of visual uncertainty might be inflated by brief presentation times of comparison and referent visual stimuli (only 150 ms; our previous study allowed for a 500 ms viewing time to make sure participants see the comparison stimuli). Relatedly, there are some individuals whose visual uncertainty is greater than 20 degrees standard deviation. This seems very large, and less likely in a free-viewing environment.

      2d. One important confound between clear and uncertain (blurred) visual conditions is the number of cursors on the screen. The number of cursors may have an attenuating effect on implicit adaptation simply due to task-irrelevant attentional demands (Parvin et al. 2022), rather than that of visual uncertainty. Could the authors provide a figure showing these blurred stimuli (gaussian clouds) in the context of the experimental paradigm? Note that we addressed this confound in the past by comparing participants with and without low vision, where only one visual cursor is provided for both groups (Tsay, Tan, et al. 2023).

      Issue #3: More methodological details are needed.

      3a. It's unclear why, in Figure 4, PEA predicts an overshoot in terms of perceived hand position from the target. In PReMo, we specified a visual shift in the perceived target position, shifted towards the adapted hand position, which may result in overshooting of the perceived hand position with this target position. This visual shift phenomenon has been discovered in previous studies (e.g., (Simani, McGuire, and Sabes 2007)).

      3b. The extent of implicit adaptation in Experiment 2, especially with smaller errors, is unclear. The implicit adaptation function seems to be still increasing, at least by visual inspection. Can the authors comment on this trend, and relatedly, show individual data points that help the reader appreciate the variability inherent to these data?

      3c. The same participants were asked to return for multiple days/experiments. Given that the authors acknowledge potential session effects, with attenuation upon re-exposure to the same rotation (Avraham et al. 2021), how does re-exposure affect the current results? Could the authors provide clarity, perhaps a table, to show shared participants between experiments and provide evidence showing how session order may not be impacting results?

      3d. The number of trials per experiment should be detailed more clearly in the Methods section (e.g., Exp 4). Moreover, could the authors please provide relevant code on how they implemented their computational models? This would aid in future implementation of these models in future work. I, for one, am enthusiastic to build on PEA.

      3f. In addition to predicting a correlation between proprioceptive shift and implicit adaptation on a group level, both PReMo and PEA (but not causal inference) predict a correlation between individual differences in proprioceptive shift and proprioceptive uncertainty with the extent of implicit adaptation (Tsay, Kim, et al. 2021). Interestingly, shift and uncertainty are independent (see Figures 4F and 6C in Tsay et al, 2021). Does PEA also predict independence between shift and uncertainty? It seems like PEA does predict a correlation.

      References:

      Avraham, Guy, Ryan Morehead, Hyosub E. Kim, and Richard B. Ivry. 2021. "Reexposure to a Sensorimotor Perturbation Produces Opposite Effects on Explicit and Implicit Learning Processes." PLoS Biology 19 (3): e3001147.<br /> Makino, Yuto, Takuji Hayashi, and Daichi Nozaki. n.d. "Divisively Normalized Neuronal Processing of Uncertain Visual Feedback for Visuomotor Learning."<br /> Parvin, Darius E., Kristy V. Dang, Alissa R. Stover, Richard B. Ivry, and J. Ryan Morehead. 2022. "Implicit Adaptation Is Modulated by the Relevance of Feedback." BioRxiv. https://doi.org/10.1101/2022.01.19.476924.<br /> Shyr, Megan C., and Sanjay S. Joshi. 2023. "A Case Study of the Validity of Web-Based Visuomotor Rotation Experiments." Journal of Cognitive Neuroscience, October, 1-24.<br /> Simani, M. C., L. M. M. McGuire, and P. N. Sabes. 2007. "Visual-Shift Adaptation Is Composed of Separable Sensory and Task-Dependent Effects." Journal of Neurophysiology 98 (5): 2827-41.<br /> Tsay, Jonathan S., Guy Avraham, Hyosub E. Kim, Darius E. Parvin, Zixuan Wang, and Richard B. Ivry. 2021. "The Effect of Visual Uncertainty on Implicit Motor Adaptation." Journal of Neurophysiology 125 (1): 12-22.<br /> Tsay, Jonathan S., Anisha M. Chandy, Romeo Chua, R. Chris Miall, Jonathan Cole, Alessandro Farnè, Richard B. Ivry, and Fabrice R. Sarlegna. 2023. "Implicit Motor Adaptation and Perceived Hand Position without Proprioception: A Kinesthetic Error May Be Derived from Efferent Signals." BioRxiv. https://doi.org/10.1101/2023.01.19.524726.<br /> Tsay, Jonathan S., Hyosub E. Kim, Darius E. Parvin, Alissa R. Stover, and Richard B. Ivry. 2021. "Individual Differences in Proprioception Predict the Extent of Implicit Sensorimotor Adaptation." Journal of Neurophysiology, March. https://doi.org/10.1152/jn.00585.2020.<br /> Tsay, Jonathan S., Steven Tan, Marlena Chu, Richard B. Ivry, and Emily A. Cooper. 2023. "Low Vision Impairs Implicit Sensorimotor Adaptation in Response to Small Errors, but Not Large Errors." Journal of Cognitive Neuroscience, January, 1-13.

    2. Reviewer #3 (Public Review):

      Summary<br /> In this paper, the authors model motor adaptation as a Bayesian process that combines visual uncertainty about the error feedback, uncertainty about proprioceptive sense of hand position, and uncertainty of predicted (=planned) hand movement with a learning and retention rate as used in state space models. The model is built with results from several experiments presented in the paper and is compared with the PReMo model (Tsay, Kim, et al., 2022) as well as a cue combination model (Wei & Körding, 2009). The model and experiments demonstrate the role of visual uncertainty about error feedback in implicit adaptation.

      In the introduction, the authors notice that implicit adaptation (as measured in error-clamp-based paradigms) does not saturate at larger perturbations, but decreases again (e.g. Moorehead et al., 2017 shows no adaptation at 135{degree sign} and 175{degree sign} perturbations). They hypothesized that visual uncertainty about cursor position increases with larger perturbations since the cursor is further from the fixated target. This could decrease the importance assigned to visual feedback which could explain lower asymptotes.

      The authors characterize visual uncertainty for 3 rotation sizes in the first experiment, and while this experiment could be improved, it is probably sufficient for the current purposes. Then the authors present a second experiment where adaptation to 7 clamped errors is tested in different groups of participants. The models' visual uncertainty is set using a linear fit to the results from experiment 1, and the remaining 4 parameters are then fit to this second data set. The 4 parameters are 1) proprioceptive uncertainty, 2) uncertainty about the predicted hand position, 3) a learning rate, and 4) a retention rate. The authors' Perceptual Error Adaptation model ("PEA") predicts asymptotic levels of implicit adaptation much better than both the PReMo model (Tsay, Kim et al., 2022), which predicts saturated asymptotes, or a causal inference model (Wei & Körding, 2007) which predicts no adaptation for larger rotations. In a third experiment, the authors test their model's predictions about proprioceptive recalibration, but unfortunately, compare their data with an unsuitable other data set. Finally, the authors conduct a fourth experiment where they put their model to the test. They measure implicit adaptation with increased visual uncertainty, by adding blur to the cursor, and the results are again better in line with their model (predicting overall lower adaptation) than with the PReMo model (predicting equal saturation but at larger perturbations) or a causal inference model (predicting equal peak adaptation, but shifted to larger rotations). In particular, the model fits experiment 2 and the results from experiment 4 show that the core idea of the model has merit: increased visual uncertainty about errors dampens implicit adaptation.

      Strengths<br /> In this study, the authors propose a Perceptual Error Adaptation model ("PEA") and the work combines various ideas from the field of cue combination, Bayesian methods, and new data sets, collected in four experiments using various techniques that test very different components of the model. The central component of visual uncertainty is assessed in the first experiment. The model uses 4 other parameters to explain implicit adaptation. These parameters are 1) learning and 2) retention rate, as used in popular state space models, and the uncertainty (variance) of 3) predicted and 4) proprioceptive hand position. In particular, the authors observe that asymptotes for implicit learning do not saturate, as claimed before, but decrease again when rotations are very large and that this may have to do with visual uncertainty (e.g. Tsay et al., 2021, J Neurophysiol 125, 12-22). The final experiment confirms predictions of the fitted model about what happens when visual uncertainty is increased (overall decrease of adaptation). By incorporating visual uncertainty depending on retinal eccentricity, the predictions of the PEA model for very large perturbations are notably different from and better than, the predictions of the two other models it is compared to. That is, the paper provides strong support for the idea that visual uncertainty of errors matters for implicit adaptation.

      Weaknesses<br /> Although the authors don't say this, the "concave" function that shows that adaptation does not saturate for larger rotations has been shown before, including in papers cited in this manuscript.

      The first experiment, measuring visual uncertainty for several rotation sizes in error-clamped paradigms has several shortcomings, but these might not be so large as to invalidate the model or the findings in the rest of the manuscript. There are two main issues we highlight here. First, the data is not presented in units that allow comparison with vision science literature. Second, the 1 second delay between the movement endpoint and the disappearance of the cursor, and the presentation of the reference marker, may have led to substantial degradation of the visual memory of the cursor endpoint. That is, the experiment could be overestimating the visual uncertainty during implicit adaptation.

      The paper's third experiment relies to a large degree on reproducing patterns found in one particular paper, where the reported hand positions - as a measure of proprioceptive sense of hand position - are given and plotted relative to an ever-present visual target, rather than relative to the actual hand position. That is, 1) since participants actively move to a visual target, the reported hand positions do not reflect proprioception, but mostly the remembered position of the target participants were trying to move to, and 2) if the reports are converted to a difference between the real and reported hand position (rather than the difference between the target and the report), those would be on the order of ~20{degree sign} which is roughly two times larger than any previously reported proprioceptive recalibration, and an order of magnitude larger than what the authors themselves find (1-2{degree sign}) and what their model predicts. Experiment 3 is perhaps not crucial to the paper, but it nicely provides support for the idea that proprioceptive recalibration can occur with error-clamped feedback.

      Perhaps the largest caveat to the study is that it assumes that people do not look at the only error feedback available to them (and can explicitly suppress learning from it). This was probably true in the experiments used in the manuscript, but unlikely to be the case in most of the cited literature. Ignoring errors and suppressing adaptation would also be a disastrous strategy to use in the real world, such that our brains may not be very good at this. So the question remains to what degree - if any - the ideas behind the model generalize to experiments without fixation control, and more importantly, to real-life situations.

      Specific comments:<br /> A small part of the manuscript relies on replicating or modeling the proprioceptive recalibration in a study we think does NOT measure proprioceptive recalibration (Tsay, Parvin & Ivry, JNP, 2020). In this study, participants reached for a visual target with a clamped cursor, and at the end of the reach were asked to indicate where they thought their hand was. The responses fell very close to the visual target both before and after the perturbation was introduced. This means that the difference between the actual hand position, and the reported/felt hand position gets very large as soon as the perturbation is introduced. That is, proprioceptive recalibration would necessarily have roughly the same magnitude as the adaptation displayed by participants. That would be several times larger than those found in studies where proprioceptive recalibration is measured without a visual anchor. The data is plotted in a way that makes it seem like the proprioceptive recalibration is very small, as they plot the responses relative to the visual target, and not the discrepancy between the actual and reported hand position. It seems to us that this study mostly measures short-term visual memory (of the target location). What is astounding about this study is that the responses change over time to begin with, even if only by a tiny amount. Perhaps this indicates some malleability of the visual system, but it is hard to say for sure.

      Regardless, the results of that study do not form a solid basis for the current work and they should be removed. We would recommend making use of the dataset from the same authors, who improved their methods for measuring proprioception shifts just a year later (Tsay, Kim, Parvin, Stover, and Ivry, JNP, 2021). Although here the proprioceptive shifts during error-clamp adaptation (Exp 2) were tiny, and not quite significant (p<0.08), the reports are relative to the actual location of the passively placed unseen hand, measured in trials separate from those with reach adaptation and therefore there is no visual target to anchor their estimates to.

      Experiment 1 measures visual uncertainty with increased rotation size. The authors cite relevant work on this topic (Levi & Klein etc) which has found a linear increase in uncertainty of the position of more and more eccentrically displayed stimuli.

      First, this is a question where the reported stimuli and effects could greatly benefit from comparisons with the literature in vision science, and the results might even inform it. In order for that to happen, the units for the reported stimuli and effects should (also) be degrees of visual angle (dva).

      As far as we know, all previous work has investigated static stimuli, where with moving stimuli, position information from several parts of the visual field are likely integrated over time in a final estimate of position at the end of the trajectory (a Kalman filter type process perhaps). As far as we know, there are no studies in vision science on the uncertainty of the endpoint of moving stimuli. So we think that the experiment is necessary for this study, but there are some areas where it could be improved.

      Then, the linear fit is done in the space of the rotation size, but not in the space of eccentricity relative to fixation, and these do not necessarily map onto each other linearly. If we assume that the eye-tracker and the screen were at the closest distance the manufacturer reports it to work accurately at (45 cm), we would get the largest distances the endpoints are away from fixation in dva. Based on that assumed distance between the participant and monitor, we converted the rotation angles to distances between fixation and the cursor endpoint in degrees visual angle: 0.88, 3.5, and 13.25 dva (ignoring screen curvature, or the absence of it). The ratio between the perturbation angle and retinal distance to the endpoint is roughly 0.221, 0.221, and 0.207 if the minimum distance is indeed used - which is probably fine in this case. But still, it would be better to do fit in the relevant perceptual coordinate system.

      The first distance (4 deg rotation; 0.88 dva offset between fixation and stimulus) is so close to fixation (even at the assumed shortest distance between eye and screen) that it can be considered foveal and falls within the range of noise of eye-trackers + that of the eye for fixating. There should be no uncertainty on or that close to the fovea. The variability in the data is likely just measurement noise. This also means that a linear fit will almost always go through this point, somewhat skewing the results toward linearity. The advantage is that the estimate of the intercept (measurement noise) is going to be very good. Unfortunately, there are only 2 other points measured, which (if used without the closest point) will always support a linear fit. Therefore, the experiment does not seem suitable to test linearity, only to characterize it, which might be sufficient for the current purposes. We'd understand if the effort to do a test of linearity using many more rotations requires too much effort. But then it should be made much clearer that the experiment assumes linearity and only serves to characterize the assumed linearity.

      Final comment after the consultation session:<br /> There were a lot of discussions about the actual interpretation of the behavioral data from this paper with regards to past papers (Tsay et al. 2020 or 2021), and how it matches the different variables of the model. The data from Tsay 2020 combined both proprioceptive information (Xp) and prediction about hand position (Xu) because it involves active movements. On the other hand, Tsay et al. 2021 is based on passive movements and could provide a better measure of Xp alone. We would encourage you to clarify how each of the variables used in the model is mapped onto the outcomes of the cited behavioral experiments.

      The reviewers discussed this point extensively during the consultation process. The results reported in the Tsay 2020 study reflect both proprioception and prediction. However, having a visual target contributes more than just prediction, it is likely an anchor in the workspace that draws the response to it. Such that the report is dominated by short-term visual memory of the target (which is not part of the model). However, in the current Exp 3, as in most other work investigating proprioception, this is calculated relative to the actual direction.

      The solution is fairly simple. In Experiment 3 in the current study, Xp is measured relative to the hand without any visual anchors drawing responses, and this is also consistent with the reference used in the Tsay et al 2021 study and from many studies in the lab of D. Henriques (none of which also have any visual reach target when measuring proprioceptive estimates). So we suggest using a different data set that also measures Xp without any other influences, such as the data from Tsay et al 2021 instead.

      These issues with the data are not superficial and can not be solved within the model. Data with correctly measured biases (relative to the hand) that are not dominated by irrelevant visual attractors would actually be informative about the validity of the PEA model. Dr. Tsay has so much other that we recommend using a more to-the-point data set that could actually validate the PEA model.

    1. 4.4. How Data Informs Ethics# Think for a minute about consequentialism. On this view, we should do whatever results in the best outcomes for the most people. One of the classic forms of this approach is utilitarianism, which says we should do whatever maximizes ‘utility’ for most people. Confusingly, ‘utility’ in this case does not refer to usefulness, but to a sort of combo of happiness and wellbeing. When a utilitarian tries to decide how to act, they take stock of all the probable outcomes, and what sort of ‘utility’ or happiness will be brought about for all parties involved. This process is sometimes referred to by philosophers as ‘utility calculus’. When I am trying to calculate the expected net utility gain from a projected set of actions, I am engaging in ‘utility calculus’ (or, in normal words, utility calculations). Now, there are many reasons one might be suspicious about utilitarianism as a cheat code for acting morally, but let’s assume for a moment that utilitarianism is the best way to go. When you undertake your utility calculus, you are, in essence, gathering and responding to data about the projected outcomes of a situation. This means that how you gather your data will affect what data you come up with. If you have really comprehensive data about potential outcomes, then your utility calculus will be more complicated, but will also be more realistic. On the other hand, if you have only partial data, the results of your utility calculus may become skewed. If you think about the potential impact of a set of actions on all the people you know and like, but fail to consider the impact on people you do not happen to know, then you might think those actions would lead to a huge gain in utility, or happiness. When we think about how data is used online, the idea of a utility calculus can help remind us to check whether we’ve really got enough data about how all parties might be impacted by some actions. Even if you are not a utilitarian, it is good to remind ourselves to check that we’ve got all the data before doing our calculus. This can be especially important when there is a strong social trend to overlook certain data. Such trends, which philosophers call ‘pernicious ignorance’, enable us to overlook inconvenient bits of data to make our utility calculus easier or more likely to turn out in favor of a preferred course of action. Can you think of an example of pernicious ignorance in social media interaction? What’s something that we might often prefer to overlook when deciding what is important? One classic example is the tendency to overlook the interests of children and/or people abroad when we post about travels, especially when fundraising for ‘charity tourism’. One could go abroad, and take a picture of a cute kid running through a field, or a selfie with kids one had traveled to help out. It was easy, in such situations, to decide the likely utility of posting the photo on social media based on the interest it would generate for us, without thinking about the ethics of using photos of minors without their consent. This was called out by The Onion in a parody article, titled “6-Day Visit To Rural African Village Completely Changes Woman’s Facebook Profile Picture”. The reckoning about how pernicious ignorance had allowed many to feel comfortable leaving the interests of many out of the utility calculus for use of images online continued. You can read an article about it here, or see a similar reckoning discussed by National Geographic: “For Decades, Our Coverage Was Racist. To Rise Above Our Past, We Must Acknowledge It”.

      This section particularly the exploration of utilitarianism in the context of social media, provides a thought-provoking perspective on ethical decision-making. The concept of the utility calculus as a method of predicting the outcomes and moral implications of our actions highlights the importance of comprehensive data collection and the potential pitfalls of biased or incomplete data. The discussion cleverly highlighted the challenges of navigating social media in an ethical manner, which must consider

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study reports jAspSnFR3, a biosensor that enables high spatiotemporal resolution of aspartate levels in living cells. To develop this sensor, the authors used a structurally guided amino acid substitution in a glutamate/aspartate periplasmic binding protein to switch its specificity towards aspartate. The in vitro and in cellulo functional characterization of the biosensor is convincing, but evidence of the sensor's effectiveness in detecting small perturbations of aspartate levels and information on its behavior in response to acute aspartate elevations in the cytosol are still lacking.

      We thank the reviewers and editors for the detailed assessment of our work and for their constructive feedback. Most comments have now been experimentally addressed in the revised manuscript, which we feel is substantially improved from the initial draft.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, Davidsen and coworkers describe the development of a novel aspartate biosensor jAspSNFR3. This collaborative work supports and complements what was reported in a recent preprint by Hellweg et al., (bioRxiv; doi: 10.1101/2023.05.04.537313). In both studies, the newly engineered aspartate sensor was developed from the same glutamate biosensor previously developed by the authors of this manuscript. This coincidence is not casual but is the result of the need to find tools capable of measuring aspartate levels in vivo. Therefore, it is undoubtedly a relevant and timely work carried out by groups experienced in aspartate metabolism and in the generation of metabolite biosensors.

      Reviewer #2 (Public Review):

      In this work the IGluSnFR3 sensor, recently developed by Marvin et al (2023) is mutated position S72, which was previously reported to switch the specificity from Glu to Asp. They made 3 mutations at this position, selected a S72P mutant, then made a second mutation at S27 to generate an Asp-specific version of the sensor. This was then characterized thoroughly and used on some test experiments, where it was shown to detect and allow visualization of aspartate concentration changes over time. It is an incremental advance on the iGluSnFR3 study, where 2 predictable mutations are used to generate a sensor that works on a close analog of Glu, Asp. It is shown to have utility and will be useful in the field of Asp-mediated biological effects.

      Reviewer #3 (Public Review):

      In this manuscript, Davidsen and collaborators introduce jAspSnFR3, a new version of aspartate biosensor derived from iGluSnFR3, that allows monitoring in real-time aspartate levels in cultured cells. A selective amino acids substitution was applied in a key region of the template to switch its specificity from glutamate to aspartate. The jAspSnFR3 does not respond to other tested metabolites and performs well, is not toxic for cultured cells, and is not affected by temperature ensuring the possibility of using this tool in tissues physiologically more relevant. The high affinity for aspartate (KD=50 uM) allowed the authors to measure fluctuations of this amino acid in the physiological range. Different strategies were used to bring aspartate to the minimal level. Finally, the authors used jAspSnFR3 to estimate the intracellular aspartate concentration. One of the highlights of the manuscript was a treatment with asparagine during glutamine starvation. Although didn't corroborate the essentiality of asparagine in glutamine depletion, the measurement of aspartate during this supplementation is a glimpse of how useful this sensor can be.

      Reviewer #1 (Recommendations For The Authors):

      The authors should evaluate the effectiveness of the sensor in detecting small perturbations of aspartate levels and its behavior in response to acute aspartate elevations in the cytosol. In vivo aspartate determinations were performed exclusively in conditions that cause aspartate depletion. By means the use of mitochondrial respiratory inhibitors or aspartate withdrawal, it was determined the reliability of the sensor performing readings during relatively long periods, until reaching a steady-state of aspartate-depletion 12-60 hours later. Although in Hellweg and coworkers, it has been demonstrated that a related aspartate sensor could detect increases in aspartate in cell overexpressing the aspartate-glutamate GLAST transporter, the differences reported here between both sensors advise testing whether this aspect is also improved, or not, using jAspSNFR3.

      Similarly, Davidsen et al. did not test if the sensor can be able to detect transient variations in cytosolic aspartate levels. In proliferative cells aspartate synthesis is linked to NAD+ regeneration by ETC (Sullivan et al., 2015, Cell), indeed the authors deplete aspartate using CI or CIII inhibitors but do not analyze if those are recovered, and increased, after its removal. Furthermore, the sequential addition of oligomycin and uncouplers could generate measurable fluctuations of aspartate in the cytosol.

      We agree with the reviewer that only including situations of aspartate depletion in our cell culture experiments provided an incomplete evaluation of the utility of this biosensor. In the revised manuscript we provide three additional experiments using secondary treatments that restore aspartate synthesis to conditions that initially caused aspartate depletion. First, we conducted experiments where cells expressing jAspSnFR3/NucRFP were changed into media without glutamine, inducing aspartate depletion, with glutamine being replenished at various time points to observe if GFP/RFP measurements recover. As expected, glutamine withdrawal caused a decay in the GFP/RFP signal and we found that restoring glutamine caused a subsequent restoration of the GFP/RFP signal at all time points, with each fully recovering the GFP/RFP signal over time (Revised Manuscript Figure 2E). Next, we conducted the experiment suggested by the reviewer, testing whether the published finding, that oligomycin induced aspartate limitation can be remedied by co-treatment with electron transport chain uncouplers, could be visualized using jAspSnFR3 measurements of GFP/RFP. Indeed, after 24 hours of oligomycin induced aspartate depletion, treatment with the ETC uncoupler BAM15 dose dependently restored GFP/RFP signal (Revised Manuscript Figure 2G). Finally, we also measured whether the ability of pyruvate to mitigate the decrease in aspartate upon co-treated with rotenone (Figure 2B) could also be detected in a sequential treatment protocol after aspartate depletion. Indeed, after 24 hours of aspartate depletion by rotenone treatment, the GFP/RFP signal was rapidly restored by additional treatment with pyruvate (Revised Manuscript Figure 2, figure supplement 1C). Collectively, these results provide support for the utility of jAspSnFR3 to measure transient changes in aspartate levels in diverse metabolic situations, including conditions that restore aspartate to cells that had been experiencing aspartate depletion.

      Reviewer #2 (Recommendations For The Authors):

      Weaknesses: Sensor basically identical to iGluSnFR3, but nevertheless useful and specific. The results support the conclusions, and the paper is very straightforward. I think the work will be useful to people working on the effects of free aspartate in biology and given it is basically iGluSnFR3, which is widely used, should be very reproducible and reliable.

      We appreciate the reviewer’s comment that sensor is useful for specific detection of aspartate. We agree that the advance of the paper is primarily in demonstrating its utility to measure aspartate, rather than any fundamental innovation on the biosensor approach. We hope the fact that jAspSnFR3 derives from a well validated biosensor (iGluSnFR3) will support its adoption.

      Reviewer #3 (Recommendations For The Authors):

      Although this is a well-performed study, I have some comments for the authors to address:

      1) A red tag version of the sensor (jAspSnFR3-mRuby3) was generated for normalization purposes, with this the authors plan to correct GFP signal from expression and movement artifacts. I naturally interpret "movement artifacts" as those generated by variations in cell volume and focal plane during time-lapse experiments. However, it was mentioned that jAspSnFR3-mRuby3 included a histidine tag that may induce a non-specific effect (responses to the treatment with some amino acids). This suggests that a version without the tag needs to be generated and that an alternative design needs to be set for normalization purposes. A nuclear-localized RFP was expressed in a second attempt to incorporate RFP as a normalization signal. Here the cell lines that express both signals (sensor and RFP) were generated by independent lentiviral transductions (insertions). Unless the number of insertions for each construct is known, this approach will not ensure an equimolar expression of both proteins (sensor and RFP). In this scenario is not clear how the nuclear expression of RFP will help the correction by expression or monitor changes in cell volume. The authors may be interested in attempting a bicistronic system to express both the sensor and RFP.

      The reviewer noted several potential issues concerning the use of RFP for normalization, which will be separated into sections below:

      Movement artifacts:

      We are glad the reviewer raised this issue since we see how it was confusingly worded. We have deleted the text “and movement artefacts” from the sentence.

      His-tag and non-specific responses to some amino acids:

      We also found it concerning that non-specific responses to amino acids could potentially contribute to our RFP normalization signal, and so we conducted additional experiments to address whether this was likely to be an issue in intracellular measurements. We first tested whether the non-specific signal was related to the histidine tag, or was intrinsic to the mRuby3 protein itself, by comparing the fluorescence response to a titration of histidine (which showed the largest effect of red fluorescence), aspartate, and GABA (structurally related to glutamate and aspartate, but lacking a carboxylate group) across a group of mRuby containing variants, with or without histidine tags. We replicated the non-specific signal originally observed in jAspSnFR3-mRuby3-His and found that another biosensor with a histidine tagged on the C terminus of mRuby3 had a similar response (iGlucoSnFR2.mRuby3-His), as did mRuby3-His alone, indicating that the aspect of being fused with jAspSnFR3 or another binding protein was not required for this effect. Additionally, we also compared the fluorescence response of lysates expressing mRuby2 and mRuby3 without histidine tags and found that the non-specific signal was essentially absent (Revised Manuscript Figure 1, figure supplement 4B-D). Collectively. These data support our original hypothesis that the histidine tag was responsible for the non-specific signal, alleviating concerns about more substantial protein design issues or with using nuc-RFP for normalization. Since we also found that measuring aspartate signal using GFP/RFP ratios from cells with linked the jAspSnFR3-Ruby3-His agreed with measurements from cells separately expressing jAspSnFR3 and nucRFP (without a His tag), and the amino acid concentrations needed to significantly alter His tagged Ruby3 signal are above those typically found in cells, we conclude that this is unlikely to be a significant factor in cells. Nonetheless, we have added all the relevant data to the manuscript to allow readers to make their own decision about which construct would be best for their purposes.

      Original text:

      "Surprisingly, the mRuby3 component responds to some amino acids at high millimolar concentrations, indicating a non-specific effect, potentially interactions with the C-terminal histidine tag (Figure 1—figure Supplement 2, panel B). Notably, this increase in fluorescence is still an order of magnitude lower than the green fluorescence response and it occurs at amino acid concentrations that are unlikely to be achieved in most cell types."

      Revised text:

      "Surprisingly, the mRuby3 fluorescence of affinity-purified jAspSnFR3.mRuby3 responds to some amino acids at high millimolar concentrations, indicating a non-specific effect (Figure 1—figure Supplement 4, panel A). This was determined to be due to an unexpected interaction with the C-terminal histidine tag and could be reproduced with other proteins containing mRuby3 and purified via the same C-terminal histidine tag (Figure 1—figure Supplement 4, panel B and C). Interestingly, a structurally related, non-amino acid compound, GABA, does not elicit a change in red fluorescence; indicating, that only amino acids are interacting with the histidine tag (Figure 1—figure Supplement 4, panel D). Nevertheless, most of our cell culture experiments were performed with nuclear localized mRuby2, which lacks a C-terminal histidine tag, and these measurements correlated with those using the histidine tagged jAspSnFR3-mRuby3 construct (Figure 1—figure Supplement 1 panel D)."

      Lentiviral transductions

      We agree that splitting the two fluorescent proteins across two expression constructs and infections effectively guarantees that there will not be equimolar expression of jAspSnFR3 and RFP, however we do not think equimolar expression is necessary in this context. The primary goal of RFP measurements in these experiments (and in experiments using the jAspSnFR3-mRuby3 fused construct) is to control for global alterations in protein expression that might confound the interpretation that a change in GFP fluorescence corresponds to a change in aspartate levels. While a bicistronic system is arguably a better approach to improve the similarity of expression of jAspSnFR3 and nuc-RFP in a cell, we only require that the cells have consistent expression of both proteins across all cells in the population, not that the expression of one necessarily be a similar molarity to the other. We accomplish consistent expression of proteins by single cell cloning after expression of jAspSnFR3 and nucRFP (or jAspSnFR3-mRuby3), and screening for clones that have high enough expression of both proteins such that they are well detected by standard Incucyte conditions. Given that our data do not identify an obvious downside to separate expression of jASPSnFR3 and nuc-RFP compared to the fused jAspSnFR3-mRuby3 construct (where the fluorescent proteins are truly equimolar) (Figure 2, Figure Supplement 1C), we elected to prioritize the separate jAspSnFR3 and nuc-RFP combination, which provides additional opportunities to measure cell number in the same experiment (see below).

      2) The authors were interested in establishing the temporal dynamics of aspartate depletion by genetics and pharmaceutical means. For the inhibition of mitochondrial complex I rotenone and metformin were used. Although the assays are clearly showing aspartate depletion the report of cell viability is missing. Considering that glutamine deprivation induces arrest in cell proliferation, I think will be important to know the conditions of the cell cultures after 60 hours of treatment with such inhibitors.

      We agree that ensuring that cells are still viable in conditions where aspartate is depleted, as determined by GFP/RFP in jAspSnFR3 expressing cells, is an important goal. To this end, we added a new experiment investigating the restoration of glutamine on the GFP/RFP signal at different time points after glutamine depletion (Revised Manuscript Figure 2E, see response to reviewer 1). One advantage of using the nuclear RFP as a normalization marker is that it also enables measurements of nuclei counts, a surrogate measurement for cell number. In the same glutamine depletion experiment we therefore measured cell counts using nuclear RFP incidences and confluency as measurements of cell proliferation/growth. In both cases, the arrest in cell proliferation upon glutamine withdrawal was obvious, as was the restoration of cell proliferation following glutamine replenishment, with the amount of growth delay corresponding to the length of glutamine withdrawal (Revised Manuscript Figure 2, Figure Supplement 2A-B). Nonetheless, there was no obvious lasting defects in restarting cell proliferation even after 12 hours of glutamine withdrawal, indicating that cell viability is preserved. In the case of mitochondrial inhibitors, we also observe even that after 24 hours of treatment with oligomycin or rotenone, restoration of aspartate synthesis from BAM15 or pyruvate, respectively, can also restore GFP/RFP signal, supporting the conclusion that cellular metabolism is still active in these conditions (Revised Manuscript Figure 2G; Revised Manuscript Figure 2, figure supplement 1C).

      3) The pH sensitivity was checked in vitro with jAspSnFR3-mRuby3 and the sensor reported suitable for measurements at physiological pH. It would be an opportunity to revisit the analysis for pH sensitivity in cultured cells using an untagged version of jAspSnFR3 coupled, for example, to a sensor for pH.

      We thank the reviewer for the suggestion and agree that pH effects on sensor signal could be a confounding factor in some conditions. Unfortunately, measuring intracellular pH is not trivial and using multiple fluorescent sensors that change simultaneously would be complex to interpret, particularly in the absence of controls to unambiguously control intracellular pH and aspartate concentrations. Thus, we believe that proper investigation of the variable of pH is beyond the scope of this study. Nonetheless, we agree that measuring the contribution of pH to sensor signal is an important goal for future work, particularly if deploying it in conditions likely to cause substantial pH differences, such as comparing compartmentalized signal of jAspSnFR3 in the cytosol and mitochondria. We have added the following italicized text to the conclusions section to underscore this point:

      “Another potential use for this sensor would be to dissect compartmentalized metabolism, with mitochondria being a critical target, although incorporating the influence of pH on sensor fluorescence will be an important consideration in this context.”

      4) While the authors take an interesting approach to measuring intracellular aspartate concentration, it will be highly desirable if a calibration protocol can be designed for this sensor. Clearly, glutamine depletion grants a minimal ("zero") aspartate concentration. However, having a more dynamic way for calibration will facilitate the introduction of this tool for metabolism studies. This may be achieved by incorporating a cultured cell that already expresses the transporter or by ectopic expression in the cells that have already been used.

      We appreciate the suggestion and would similarly desire a calibration protocol to serve as a quantitative readout of aspartate levels from fluorescence signal, if possible. While we do calibrate jAspSnFR3 fluorescence in purified settings, conducting an analogous experiment intracellularly is currently difficult, if not impossible. While we have several methods to constrain the production rate of aspartate (glutamine withdrawal, mitochondrial inhibitors, and genetic knockouts of GOT1 and GOT2), we cannot prevent cells from decreasing aspartate consumption and so cannot get a true intracellular zero to aid in calibration. Additionally, the impermeability of aspartate to cell membranes makes it challenging to specifically control intracellular concentrations using environmental aspartate, and the best-known aspartate transporter (SLC1A3) is concentrative and so has the reciprocal problem. Considering these issues, we are wary of implying to readers that any specific fluorescence measurement can be used to directly interpret aspartate concentration given the many variables that can impact its signal, both related to the biosensor system itself (expression of jAspSnFR3, expression of Nuc-RFP, sensitivity and settings of the fluorescence detector) and based on cell intrinsic variability (differences in basal ASP levels, different sensitivity to treatments, influence of pH, etc.). We maintain that jAspSnFR3 has utility to measure relative changes in aspartate within a cell line across treatment conditions and over time, but absolute quantitation of aspartate still will require complementary approaches, like mass spectrometry, enzymatic assays, or NMR.

      5) jAspSnFR3 seems to have the potential to be incorporated easily for several research groups as a main tool. In general, a minor correction to replace F/F with ΔF/F in the text.

      Thank you for catching this error, the text has been edited accordingly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, the authors provide evidence to show that an increase in Kv7 channels in hilar mossy cells of Fmr1 knock out mice results in a marked decrease in their excitability. The reduction in excitatory drive onto local hilar interneurons produces an increased excitation/inhibition ratio in granule cells. Inhibiting Kv7 channels can help normalize the excitatory drive in this circuit, suggesting that they may represent a viable target for targeted therapeutics for fragile-x syndrome.

      Strengths:

      The work is supported by a compelling and thorough set of electrophysiological studies. The authors do an excellent job of analysing their data and present a very complete data set.

      We thank the Reviewer for the positive comments.

      Weaknesses:

      There are no significant weaknesses in the experimental work, however the complexity of the data presentation and the lack of a schematic showing the organizational framework of this circuit make the data less accessible to non-experts in the field. I highly encourage a graphical abstract and network diagram to help individuals understand the implications of this work.

      We thank the Reviewer for the suggestion, and added a schematic of the dentate network organization (Figure 1A).

      The work is important as it identifies a unique regional and cell-specific abnormality in Fmr1 KO mice, showing how the loss of one gene can result in region-specific changes in brain circuits.

      Reviewer #2 (Public Review):

      Summary:

      Deng et al. investigate, for the first time to my knowledge, the role that hippocampal dentate gyrus mossy cells play in Fragile X Syndrome. They provide strong evidence that, in slice preparations from Fmr1 knockout mice, mossy cells are hypoactive due to increased Kv7 function whereas granule cells are hyperactive compared to slices from wild-type mice. They provide indirect evidence that the weakness of mossy cell-interneuron connections contributes to granule cell hyperexcitability, despite converse adaptations to mossy cell inputs. The authors show that application of the Kv7 inhibitor XE991 is able to rescue granule cell hyperexcitability back to wild-type baseline, supporting the overall conclusion that inhibition of Kv7 in the dentate may be a potential therapeutic approach for Fragile X Syndrome. However, any claims regarding specific circuit-based intervention or analysis are limited by the exclusively pharmacological approach of the manipulations.

      Strengths:

      Thorough electrophysiological characterization of mossy cells in Fmr1 knockout mice, a novel finding.

      Their electrophysiological approach is quite rigorous: patched different neuron types (GC, MC, INs) one at a time within the dentate gyrus in FMR1 KO and WT, with and without 'circuit blockade' by pharmacologically inhibiting neurotransmission. This allows the most detailed characterization possible of passive membrane/intrinsic cell differences in the dentate gyrus of Fmr1 knockout mice.

      Provide several examples showing the use of Kv7 inhibitor XE991 is able to rescue excitability of granule cell circuit in Fmr1 knockout mice (AP firing in the intact circuit, postsynaptic current recordings, theta-gamma coupling stimulation).

      We thank the Reviewer for the positive comments.

      Weaknesses:

      The implications for these findings and the applicability of the potential treatment for the disorder in a whole animal are limited due to the fact that all experiments were done in slices.

      We appreciate the Reviewer’s point and agree. To address this concern, we have revised the Discussion to state that “the applicability of a circuit-wide approach as a potential treatment in vivo will require extensive future behavioral analyses, which are beyond the scope of the current study”. We also now emphasize in Discussion that “these findings provide a proof-of-principle demonstration that a circuit-based intervention can normalize dynamic E/I balance and restore dentate circuit output in vitro”.

      The authors' interpretation of the word 'circuit-based' is problematic - there are no truly circuit-specific manipulations in this study due to the reliance on pharmacology for their manipulations. While the application of the Kv7 inhibitor may have a predominant effect on the circuit through changes to mossy cell excitability, this manipulation would affect many other cells within the dentate and adjacent brain regions that connect to the dentate that express Kv7 as well.

      We appreciate the reviewer’s point but would like to clarify that by using a term “circuit-based” we did not intend to imply that it is a “’circuit-specific” intervention. Our intended interpretation of the term ‘circuit-based’ stems from the following reasoning: the dentate circuit has two types of excitatory neurons which show opposite excitability defects in FXS mice, thus presenting an irreconcilable conflict to correct pharmacologically for each cell type individually. Instead, we sought an approach to correct the overall dentate circuit output, rather than to restore excitability defects of individual cell types. Notably, when we pharmacologically isolated granule cells from the circuit, inhibition of Kv7 failed to restore their excitability, suggesting that normalization of the dentate output depends on the circuit activity. Since we focused on correcting dentate output using such a circuit-dependent approach, we used the term ‘circuit-based intervention’ to emphasize this notion.

      Reviewer #3 (Public Review):

      The paper by Deng, Kumar, Cavalli, Klyachko describes that, unlike in other cell types, loss of Fmr1 decreases the excitability of hippocampal mossy cells due to up-regulation of Kv7 currents. They also show evidence that while muting mossy cells appears to be a compensatory mechanism, it contributes to the higher activity of the dentate gyrus, because the removal of mossy cell output alleviates the inhibition of dentate principal cells. This may be important for the patho-mechanism in Fragile X syndrome caused by the loss of Fmr1.

      These experiments were carefully designed, and the results are presented ‎in a very logical, insightful, and self-explanatory way. Therefore, this paper represents strong evidence for the claims of the authors. In the current state of the manuscript, there are only a few points that need additional explanation.

      We thank the Reviewer for the positive comments.

      One of the results, which is shown in the supplementary dataset, does not fit the main conclusions. Changes in the mEPSC frequency suggest that in addition to the proposed network effects, there are additional changes in the synaptic machinery or synapse number that are independent of the actual activity of the neurons. Since the differences of the mEPSC and sEPSC frequencies are similar and because only the latter can signal network effects, while the former is typically interpreted as a presynaptic change, it cannot be claimed that sEPSC frequency changes are due to the hypo-excitability of mossy cells.

      We thank the Reviewer for this important point and agree. To address this concern, we now state in Results that “We note that changes in the excitatory drive onto interneurons include both mEPSC and sEPSC frequencies, which reflect not only potential deficits in excitability of their input cells, such as MCs, but also changes in synaptic connectivity/function, that may arise from homeostatic circuit reorganization/compensation (see Discussion)”.

      We also now emphasize this point in Discussion by stating that “alterations in excitatory drives, including both mEPSC and sEPSC frequencies onto interneurons, suggest changes in the excitatory synapse number and/or function. Together with alterations in inhibitory drives these changes may reflect compensatory circuit reorganization of both excitatory and inhibitory connections, including mossy cell synapses”.

      We also note in Discussion that “Such circuit reorganization can explain the balanced E/I drive onto granule cells in Fmr1 KO mice we observed in the basal state, which can result from reorganization of excitatory and inhibitory axonal terminals”.

      Notably, our findings that Kv7 blocker acting by increasing MC excitability is sufficient to correct dentate output, supports the notion that hypo-excitability of mossy cells is a major factor contributing to dentate circuit E/I imbalance. This does not exclude the presence of additional mechanisms contributing to E/I imbalance, such as changes of synaptic connectivity or release machinery. To reflect this point, we revised the Results to temper the initial claim that “this analysis supports the notion that the hypo-excitability of MCs in Fmr1 KO mice caused (now replaced with “is a major factor contributing to”) the reduction of excitatory drive onto hilar interneurons, which ultimately results in reduced local inhibition”.

      An apparent technical issue may imply a second weak point in the interpretation of the results. Because the IPSCs in the PP stimulation experiments (Fig 8) start within a few milliseconds, it is unlikely that its first ‎components originate from the PP-GC-MC-IN feedforward inhibitory circuit. The involvement of this circuit and MCs in the Kv7-dependent excitability changes is the main implication of the results of this paper. But this feedforward inhibition requires three consecutive synaptic steps and EPSP-AP couplings, each of them lasting for at least 1ms + 2-5ms. Therefore, the inhibition via the PP-GC-MC-IN circuit can be only seen from 10-20ms after PP stimulation. The earlier components of the cPSCs should originate from other circuit elements that are not related to the rest of the paper. Therefore, more isolated measurements on the cPSC recordings are needed ‎which consider only the later phase of the IPSCs. This can be either a measurement of the decay phase or a pharmacological manipulation that selectively enhances/inhibits a specific component of the proposed circuit.

      We appreciate the Reviewer’s point. As we mentioned in Results: “The EPSP measured in granule cells in response to the PP stimulation integrates both excitatory and inhibitory synaptic inputs onto granule cells, including the direct synaptic input from the PP and all the PP stimulation-associated feedforward and feedback synaptic inputs. In other words, the EPSP in granule cells integrates all dentate circuit ‘operations’.” As the Reviewer pointed out, this is also the case in the measurements of cPSCs, which comprise all of PP stimulation-associated feedforward and feedback inhibition. We thank the Reviewer for the suggestion to isolate specific components of IPSC. However, we did not attempt to do it in this study for three reasons. First, activity of all of these circuit components likely overlaps extensively in time and it is difficult to identify the specific time point that can separate contributions from earlier canonical feed-forward and feed-back components from the contribution of the later MC-dependent PP-GC-MC-IN feed-forward component. Notably the tri-synapse PP-GC-MC-IN component differs temporarily from the canonical di-synaptic (PP-GC-IN) feed-back inhibition only by a single synaptic activation step, resulting in only a few milliseconds difference. Moreover, the temporal differences in the contributions of these components vary widely among different recordings making a uniform analysis very difficult. Second, we used three different metrics to assess E/I changes in cPSC measurements, which capture a wide range of temporal processes and their integration, including peak-to-peak measurements, the charge transfer, and the excitation window metrics. Third, the principal readout in our study was the overall dentate output (i.e., granule cell firing), which reflects the integration of all dentate circuit ‘operations’ thus making the overall cPSC measurements appropriate, in our view, for this readout.

      I suggest refraining from the conclusions saying "‎MCs provide at least ~51% of the excitatory drive onto interneurons in WT and ~41% in KO mice", because too many factors (eg. IN cell types, slice condition, synaptic reliability) are not accounted for in these actual numbers, and these values are not necessary for the general observation of the paper.

      We thank the reviewer for this suggestion, and have revised the manuscript accordingly.

      There are additional minor issues about the presentation of the results.

      We have carefully checked and corrected the minor errors that reviewer pointed out.

      Recommendations for the authors:

      Revisions that are considered essential for improved assessment regarding the strengths of support of the claims:

      • Temper claims regarding circuit-based effects

      • Temper claims regarding very specific quantitative assessments of synaptic drives

      • Differentiate between monosynaptic inputs and inputs arriving through multiple synaptic contacts with proper analytical techniques.

      We appreciate these suggestions and have revised the manuscript to address the concerns raised by the reviewers.

      Reviewer #1 (Recommendations For The Authors):

      The authors do an outstanding job of reviewing and presenting all of their data. This is a paper I will recommend all of my trainees read, as it is an excellent example of a complete research project. While I am impressed with the effort involved, I also wondered if the complexity and thoroughness of their presentations could make the story less accessible to non-expert readers. My comments are simply intended to help them present a more coherent and succinct story to a wider audience, though I am not sure I really provide any meaningful changes. This is simply a very thorough and complete body of work that the authors should be commended for. After reading it I felt they had gone above and beyond what most authors would provide in terms of data to support their story, and thus I had no doubt that a change in Kv7 plays a role in changing the excitability of the network.

      We thank the Reviewer for the positive comments and great suggestions. We have made numerous changes to present our work in a more coherent and succinct way, in part by re-plotting some of the figures, as well as by adding a schematic of the dentate circuit in Figure 1.

      Figure 1. A visual of mossy cells and the local circuit they are studying would be a useful addition to Figure. 1. I also feel this is important for conveying the story of how hypo-excitability can impact the E/I of the network. I think it has to be more of a cell structure/circuit-based figure than is presented in Supplementary Figure 8.

      We thank the reviewer for this suggestion. We have added a schematic of the dentate circuit with all major cell types involved in Figure 1A.

      Figure 1. A, B, and C tell a coherent story and are easy to understand. The interpretation of the phase plot in D is harder to access. Perhaps having this as a separate figure and providing a clearer presentation of the way the phaseplot was created (see Figure 3 Bove et al., 2019, Neuroscience 418; DOI: 10.1016/j.neuroscience.2019.08.048)

      We appreciate the Reviewer’s point and agree. In order to keep Figure 1 more concise and readable, we removed the phase plot in the revised version. This change did not negatively impact the result presentation because the primary aim of this plot was to visualize changes in voltage threshold in an alternative way, but it was already clearly shown by the ramp-evoked AP traces (revised Figure 1D, insert), and thus was not essential to show.

      Figure 1 E-N might be better situated in a supplementary graph as the characteristics of the AP aren't changing.

      We understand the Reviewer’s point, but we feel it would be better to keep all action potential metrics together in one figure, to show that only a specific subset of parameters was affected in Fmr1 KO mice.

      Figure 2: (A-D) I am not sure having so many figures is required given the focus is on having a small change in Ir at one membrane potential. I do worry that the significance appears to be due to 2 cells with an IR of over 100 in the WT group and 2 with an IR of around 62 in the KO group. All other cells are between 75-100 in both groups. I also worry a bit bc in the literature IRs between 55 and 125 seem to be commonly reported by groups that do this work normally (Buzsacki, Westbrook, etc.). I would be cautious about making too much out of this result.

      We thank the Reviewer for these comments. We have performed additional analyses of these data, as also suggested by Reviewer 3 (Point #1), and improved presentation of the data in Figure 2D-F by showing the effect of XE991 on increasing input resistance in WT vs KO. We also plotted other panels in a similar way to show the comparisons between WT and KO, as well as comparisons within genotype +/- XE991, which makes the results easy to follow. For more details, please also see the response to Reviewer 3, Point 1.

      Figure 2D-E: As in the text, this result is really pointing towards there being a Kv7 issue. Worries about the data in D aside, I think these two figures alone tell a clearer story. Figure 3 on the other hand tells a story of the effects of blocking Kv7 on membrane potential. Is this central to the story the others are trying to tell?

      We thank the reviewer for this point. We believe that Figure 2, Figure 3 and Figure 4—figure supplement 1 together provide strong and multifaceted evidence to support changes in Kv7 function in Fmr1 KO mossy cells.

      Figure 3. This is an interesting finding that shows how detailed their analysis was. Showing that the change in holding current in KO animals is greater than in WT is the first solid piece of evidence that there is a change in Kv7 in these cells that affects their excitability.

      We appreciate the reviewer’s comment. As mentioned above, we believe that Figure 2, Figure 3 and Figure 4—figure supplement 1 together provide strong and multifaceted evidence to support changes in Kv7 function in Fmr1 KO mossy cells.

      Figures 4 and 5 provide additional detail to support the idea that Kv& changes by showing how the E/I ratio and spontaneous minis are shifted in KO animals.

      We thank the Reviewer for the comments.

      Figures 6-8 build a compelling story for the reduction in excitatory drive in mossy cells affecting the network dynamics in excitatory/inhibitory interactions in DG cells.

      We appreciate the Reviewer’s comment.

      Reviewer #2 (Recommendations For The Authors):

      1) Other than location and characteristic morphology, the other parameters that were used to identify mossy cells and granule cells were also parameters used to find differences in cellular properties between wild-type and Fmr1 KO mice (RMP, sEPSC frequency, etc.), which would confound the results shown. The use of available transgenic mouse lines would provide for a more unbiased screen of these cells. Afterhyperpolarization was also used as a parameter while screening cells, yet none of the data on this measurement is shown.

      We thank the reviewer for this point and agree that transgenic mouse lines provide a more unbiased way to identify various types of neurons. However, since the present study involves analyses of at least three different types of neurons, establishing multiple transgenic lines labeling different types of dentate neurons in the Fmr1 KO mouse model would be very time consuming and beyond the current resources of the lab. We would also like to clarify that the three types of dentate neurons are easily distinguished according to the large differences in location, morphology and basal electrophysiological properties, none of which were essential in defining differences between genotypes. Specifically, granule cells are located in the granule cell layer, have a small cell body (<10 m), RMP around -80mV, capacitance ~20 pF, and infrequent sEPSCs (<20 events/min); mossy cells are located in the hilus, have a large cell body (>15 m), RMP around -65 mV, capacitance >100 pF, and fast afterhyperpolarization less than -10 mV (WT –5.1 ± 0.7 mV, KO -5.8 ± 0.5 mV); interneurons are located in the hilus or border of granule cell layer, have a relative smaller cell body (10-15 m), RMP around -55 mV, capacitance <60 pF, and afterhyperpolarization larger than -15 mV (WT -20.4 ± 1.3 mV, KO -19.8 ±1.4 mV). We note that the cells that could not be definitively classified into the three categories were not included in analyses, and we have now clarified this further in the Methods. To address the reviewer’s second concern regarding AHP, we now provided the corresponding values in the Methods.

      2) A definitive way to test the cell-autonomous nature of the Kv7 changes would be to use female mice, who will have a mosaic of cells affected by the fragile X chromosome, and the Fmr1 KO cells could be engineered to express GFP to help identify them from wild-type cells.

      We agree and appreciate this suggestion. This could be an interesting follow up study to further verify the cell-autonomous nature of Kv7 changes.

      3) The authors heavily rely on XE991 as a selective Kv7 blocker. Is it blocking all Kv7 channels at the concentration used? If so, given the significant expression of Kv7 in the dentate as shown by Western blot, is it surprising that there is no effect of this inhibitor on wild-type slices in most cases?

      We thank the reviewer for this important point. We used 10x of IC50 concentration in the present study, suggesting that more than 80% of Kv7 should be blocked. Notably, we observed several effects of XE991 in WT mice: it significantly increased input resistance (new Figure 2D-F), and strongly enhanced AP firing evoked by step depolarization (Figure 7E-H), although we did not observe effect of XE991 in WT in the analyses of spiking evoked by theta-gamma stimulation in Figure 8. However, this is not surprising. If a parameter we measured is predominately cell-autonomous (for example, input resistance), the effects of XE991 are easy to observe. However, if a parameter reflects integration of all dentate circuit operations (for example, AP probability in response to theta-gamma stimulation), it is difficult to detect the effect of XE991 in WT mice because the dentate circuit of WT mice has larger capability to maintain E/I balance in response to XE991.

      4) E/I ratio is a helpful concept, and it is heavily relied upon in the results text, but statistically shaky, especially for sEPSC:sIPSCs since you are combining uncertainty in the sEPSC and sIPSC to make one very uncertain ratio that doesn't undergo any subsequent statistical confirmation (such as in Fig 4I).

      We appreciate the reviewer’s point and apologize for the confusion in presentation of Fig 4I (and 5I), due to lack of detailed explanation. The E/I ratio shown in Figs. 4I (and 5I) is a single data-point estimate calculated from the mean values of independent sEPSC and sIPSC measurements (Figs. 4G-H and 5G-H, respectively). This ratio was used only as an estimate/illustration of the changes, rather than a precise determination of the shift in E/I balance. Because there is only one data-point for this ratio, statistical analysis is not possible. For this reason we performed extensive additional analyses in Figures 7 and 8, in which the EPSC and IPSC were measured from the same cells and at the same time to define the actual E/I ratio with the corresponding statistical analyses (i.e., a real matched and dynamic E/I ratio).

      5) Is this mGlur2/CB1 specificity to PP/granule and MC axons, respectively, true in the Fmr1 KO mice? It is possible that mGluR2 and CB1 expression patterns are altered in FMR1 KO, thus the assumption used to isolate these distinct inputs may not hold true.

      This is a very good point. We do assume that the specificity of Group II mGluR and CB1 is similar between Fmr1 KO and WT mice, but this is an assumption that we have not directly verified. However, our results in Figures 7 and 8 strongly support this assumption, because if it were not true, then our intervention would be unlikely to correct the excessive dentate output.

      6) XE991 only normalized GC firing when other cells were not pharmacologically blocked. The authors suggest this means blockage of MC Kv7 reduces GC excitability back to normal...presumably by increasing MC --> IN --> GC firing. This is a conclusion from many indirect comparisons (comparing XE991 effect on GC with/without GABA and glutamate blockers; comparing MC firing rates with/without XE991, and using CB1 agonist versus mGluR2 agonist to say it is mossy cells that are mostly controlling INs) - a clincher experiment would be to acutely knockdown Kv7 in mossy cells specifically and measure GC and IN firing.

      Thank you, this is a great suggestion. Indeed, as an expansion of this project, in the future studies we are planning to manipulate excitability of mossy cells through manipulating Kv7, or using chemogenetic or optogenetic approaches.

      7) The reasoning behind the FMRP-Kv7 connection is quite weak, citing the paper Darnell 2011 as "translational target", but FMRP has myriad translational targets.

      We agree, and attempted to define the mechanism of increased Kv7 function using co-immunoprecipitation approach, as well as immunostaining to look at cell-type specific expression changes. However, both of these approaches were difficult to interpret due to technical limitations of the available antibodies. We also note that “We did not further investigate the precise mechanisms underlying enhancement of Kv7 function in the absence of FMRP, since the present study primarily focuses on the functional consequences of abnormal cellular and circuit excitability”. To address this concern, we extensively discussed the potential mechanisms of FMRP-Kv7 connection, acknowledged in Discussion that “further studies will be needed to elucidate the precise mechanism responsible for the increased Kv7 function in Fmr1 KO mice”, and will continue to investigate it in the future studies.

      8) The authors attempt to look for changes in Kv7 expression with Western blot, but since they hypothesize that Kv7 changes are mainly in the mossy cells, it is perhaps not surprising that they would not be able to see any changes when they look at dentate as a whole. Staining for Kv7 subunits to look at expression on a cellular level would be beneficial.

      We appreciate the reviewer’s suggestion. We attempted to perform the suggested experiments using immunostaining for KCNQ2, KCNQ3 and KCNQ5 in different subtypes of dentate neurons. However, these experiments failed to produce interpretable results due to technical limitations of the available antibodies.

      9) Is Kv7 localization or splice/composition different in FMR1 KO mice?

      This is a very good point. As we mentioned in Point 8 above, we were not able to perform these experiments and do not have the answer at this point.

      10) Regarding the 3 subtypes of interneurons in the dentate, the authors are pooling data based on similar intrinsic properties, but this conclusion may be affected by the low number of recorded neurons for the regular-spiking type. In addition, it is unclear whether these different interneuron types have differential circuit connectivity (most likely) which would make it imperative to keep circuit analysis for interneurons segregated into these cell types.

      We appreciate the reviewer’s point. Indeed, these different interneuron types may have distinct circuit connectivity and contributions to circuit activity. However, identification of these 3 types of interneurons and determination of their respective functions is in itself a very extensive set of experiments which is beyond the scope of the current manuscript. We also note that the functional readout of circuit activity in our measurements was the AP firing and EPSPs evoked in granule cells by PP stimulation, which integrate all dentate circuit operations, including all of the feedforward and feedback loops which are mediated by all of these different types of interneurons. For simplicity, we thus pooled all interneuron data for the purposes of this study. But we fully agree that extensive future work is required to elucidate interneuron-type specific changes in Fmr1 KO mice and their contributions to the dentate circuit dysfunction.

      11) To do statistics treating each cell individually, and therefore assuming each cell is independent of one another, is not correct. Two cells from the same mouse will be more similar than two cells from different mice, therefore they are not independent data points. Nested statistical methods (n cells from o slices from p mice) will be important in future work, as discussed by (Aarts et al., Nat. Neurosci. 2014).

      We agree with the Reviewer’s point and appreciate this suggestion. In the present study, the cells tested in electrophysiological experiments were from at least 3 different mice for each condition, which help minimize this kind of errors.

      Reviewer #3 (Recommendations For The Authors):

      Is there a difference in the Rin at -45mV of the control cell after the application of XE991? This is important to appreciate whether the XE991-sensitive conductances contribute to the basal excitability of MCs. Furthermore, the statistical comparison of the Rin at -45mV of the FXS animals in the control solution and in the presence of XE991 would be also important‎. Actually, the most accurate measurement would be to show a difference in the acute Kv7-blockade between control and FXS animals, if that is possible with this blocker. Additionally, it would be also informative if the bar graphs in Fig.2 D & E were merged for this purpose, similarly as in the later figures.

      We thank the Reviewer for this suggestion and agree. Following this suggestion, we have re-plotted the data in Figure 2 accordingly. Specifically, we now show that XE991 significantly increased input resistance in both WT and KO mossy cells, and the effect of XE991 on increasing input resistance was markedly larger in KO than WT mossy cells. For other figures, we have plotted data in a similar way to show the comparisons between WT and KO, as well as comparisons within genotype +/- XE991.

      Because of the cell-to-cell variability of the voltage responses, it would be more informative and representative if the average of traces from all cells were shown in Fig.2 D & E.

      We agree with the Reviewer’s point. For clarity of presentation, we presented the cell-to-cell variability of the data as scatter points of input resistance values in the bar graph (Figure 2E), together with the representative traces (Figure 2D). Plotting the average traces from all cells would result in a total of 30 traces for all the WT and KO mice, which is difficult to visually assess clearly.

      On page 7, please clarify the recorded cell type in this sentence: "In ‎contrast, WIN markedly reduced the number of sEPSCs in both WT and KO mice...".

      We thank the Reviewer for pointing out this omission and have clarified it in the revised version.

      In Figures 6 C, F, and I, the title of the Y-axis should be normalized frequency. Please also correct the figure legend accordingly because the current sentence can be also interpreted as the absolute or total number of events that were compared, irrespective of the duration of the recordings.

      We thank the Reviewer for this point and have corrected the revised version accordingly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a valuable finding on the immunophenotypes of cancer treatment-related pneumonitis. The evidence supporting the claims of the authors is solid, although the inclusion of controls, as suggested by one of the reviewers, strengthened the study. The work will be of interest to cancer immunologists.

      Response: We are thankful for the editor's recognition of the contribution our study makes to understanding the immunophenotypes associated with cancer treatment-related pneumonitis. We agree that the inclusion of control data is pivotal for benchmarking biomarkers. While our initial study design was constrained by the availability of BALF from healthy individuals within clinical settings, we addressed this limitation by incorporating scRNA-seq data from healthy control and COVID-19 BALF cells sourced from the GSE145926 dataset. This additional analysis has provided a baseline for comparison, revealing that CD16 is expressed in a minority of T cells in healthy BALF, specifically 1.0% of CD4+ T cells and 1.6% of CD8+ T cells. The inclusion of this data as Figures 6H and 6I in our manuscript offers a robust context for the significant increase in CD16-expressing T cells observed in patients with PCP, thus enhancing the robustness of our study's conclusions.

      Author response image 1.

      Reviewer #1 (Recommendations For The Authors):

      Many thanks for giving me the opportunity to review your paper. I really enjoyed the way you carried out this work - for example, your use of a wide panel of markers and the use of two analytical methods - you have clearly given great thought to bias avoidance. I also greatly appreciated your paragraph on the limitations, as there are several, but you do not 'over-sell' your conclusions so there is no issue here for me.

      To improve the piece, there are a few typos (eg 318 - specific to alpha-myosin) and I was briefly confused about the highlighted clusters in Figure 4. Perhaps mention why they are highlighted when they first appear in 4D instead of E?

      Response: We have corrected the typos, and we have rearranged the sequence of Figures 3E and 3F, as well as 4D and 4E, to ensure a logical flow. Citrus-generated violin plots are now presented prior to the heatmap of the clusters, which better illustrates the progression of our analysis and the derivation of the clusters.

      In terms of improvements to the data, obviously it would have been ideal if you had had some sort of healthy control as a point of reference for all cohorts, but working in the field I understand the difficulties in getting healthy BAL. It would be worth your while however trying to find more supportive data in the literature in general. There are studies which assess various immune markers in healthy BAL eg https://journal-inflammation.biomedcentral.com/articles/10.1186/1476-9255-11-9. and so I think it is worth looking wrt the main findings. For example, are CD16+ T cells seen in healthy BAL or any other conditions (at present the COVID study is being over-relied on)? Could these cells be gamma deltas? (gamma deltas frequently express CD8 and CD16, and can switch to APC like phenotypes).

      Response: We are grateful for the reviewer's consideration of the practical challenges associated with collecting BALF from healthy individuals. Alternatively, we have supplemented our analysis with single-cell RNA sequencing data from BALF cells of healthy controls, as found in existing literature (Nature Medicine 2020; 26: 842-844). We have accessed to GSE145926 and downloaded data of BALF cells from healthy control (n=3) and severe COVID19 (n=6). The filtered gene-barcode matrix was first normalized using ‘NormalizeData’ methods in Seurat v.4 with default parameters. The top 2,000 variable genes were then identified using the ‘vst’ method in Seurat FindVariableFeatures function. Then PCA and UMAP was performed. T cells were identified as CD2 >1 and CD3E >1, and FCGR3A expression was explored using an expression threshold of 0.5. Violin plots and bar plots were generated by ggplot function.

      Regarding the pivotal finding of increased CD16-expressing T cells in patients with PCP, the scRNA-seq data mining indicates that CD16 is expressed by a minority of T cells in healthy BALF—1.0% of CD4+ T cells and 1.6% of CD8+ T cells. These figures, now incorporated into our revised manuscript as Figures 6H and 6I, substantiate our findings. These cells could be gamma delta T cells, but we could not confirm it with the limited data. We will investigate in the future study. The main text has been updated to reflect these findings.

      Author response image 2.

      I would agree with your approach of not going down the transcript route, so just focus on protein expression.

      I think you need to mention more about the impact of ICI on PD1 expression - in the methods you lose one approach owing to low T cell expression (132) but in the discussion you mention ICI induced high expression (311) as previously reported. This apparent contradiction needs an explanation.

      Response: We acknowledge the need for clarification regarding the impact of ICIs on PD-1 expression. In the methods section, the low detection of PD-1 expression on T cells in patients treated with nivolumab was indeed noted; this was due to the competitive nature of the PD-1 detection antibody EH12.2 with nivolumab. As reported by Suzuki et al. (International Immunology 2020; 32: 547-557), T cells from patients with ICI-induced ILD, including those treated with nivolumab, exhibit upregulated PD-1 expression, where the PD-1 detection antibody (clone: MIH4). Conversely, as outlined by Yanagihara et al. (BBRC 2020; 527: 213-217), the PD-1 detection antibody clone EH12.2 conjugated with 155Gd (#3155009B) used in our study is unable to detect PD-1 when patients are under nivolumab treatment due to competitive inhibition. The absence of a metal-conjugated PD-1 antibody with the MIH4 clone presented a limitation in our study. Ideally, we would have conjugated the MIH4 antibody with 155Gd for our analysis, which is a refinement we aim to incorporate in future research. We have now included this discussion in our manuscript to clarify the contradiction between the methodological limitations and the high PD-1 expression induced by ICIs, as reported in the literature. This addition will guide readers through the nuances of antibody selection and its implications for detecting PD-1 expression in the context of ICI treatment.

      Finally, since you have the severity data, it would be good to assess all the significantly different clusters against this metric, as you have done for CD16+ T cells. Not only may this reveal more wrt the impact of other immune populations, but it'll also give a point of reference for the CD16+ T cell data.

      Response: Thank you for the suggestion to assess all significantly different clusters against the disease severity metric. We have expanded our analysis to include a thorough correlation study between the disease severity and intensity of various T-cell markers. Notably, we observed that intensity of CCR7 expression correlates with the disease severity. Although the precise biological significance of this correlation remains to be elucidated, it may suggest a role for CCR7+ T cells in the pathogenesis or progression of the disease. We have considered the potential implications of this finding and included it as Supplementary Figure 5. We have also discussed this observation in the discussion section.

      Author response image 3.

      Overall though I think this is a really nice study, with a potentially very significant finding in linking CD16+ T cells with severity. Congratulations.

      Response: We would like to thank the reviewer’s heartful comments on our manuscript.

      Reviewer #2 (Recommendations For The Authors):

      General:

      1) The fact that this is a retrospective study should be indicated earlier in the paper.

      Response: Now we have mentioned the retrospective nature of the study in the method section as follows: In this retrospective study, patients who were newly diagnosed with PCP, DI-ILD, and ICI-ILD and had undergone BALF collection at Kyushu University Hospital from January 2017 to April 2022 were included. The retrospective study was approved by the Ethics Committee of Kyushu University Hospital (reference number 22117-00).

      2) tSNE and UMAP are dimensionality reduction techniques that don't cluster the cells, the authors should specify what clustering algorithm was used subsequently (e.g FlowSOM)

      Response: The cluster was determined manually by their expression pattern.

      3) With regards to the role of CD16 in a potential exacerbated cytotoxicity in the fatal PCP case, the authors could measure the levels of C3a related proteins in patient serum to link to a common immunopathogenic pathway with COVID.

      Response: We did not collect serum from the patients in this study as our research protocol was approved by the Ethics committee for the use of BALF only. However, we agree with your assessment that the measurement of serum C3a levels would be informative. In future studies, we will incorporate the measurement of serum C3a levels to provide more comprehensive insights into the impact of C3a on immune function. Thank you for your valuable feedback and for helping us to improve the quality of our research.

      Line-specific:

      101 The authors should provide some information on how the cryopreservation of the BALF was carried out.

      Response: Upon collection, BALF samples were immediately centrifuged at 300 g for 5 minutes to pellet the cells. The resultant cell pellets were then resuspended in Cellbanker 1 cryopreservation solution (Takara, catalog #210409). This suspension was aliquoted into cryovials and gradually frozen to –80ºC using a controlled rate freezing method to ensure cell viability. The samples were stored at –80ºC until required for experimental analysis. We have added the information in the method section.

      Fig 3B: It would be very helpful if the authors could add a supplementary figure with marker expression on the UMAP projection.

      Response: We have added Supplementary Figure 4 with marker expression on the UMAP projection in Figure 3B.

      Fig 4A: Same as Fig 3B

      Response: We have added Supplementary Figure 5 with marker expression on the UMAP projection in Figure 4A.

      Fig 5B: Same as Fig 3B

      Response: We have added Supplementary Figure 6 with marker expression on the tSNE projection in Figure 5B.

      266 Authors should state if the data is not shown with regards to differences in myeloid cell fractions

      430 Marker intensity is not shown in panel D

      Re: Corrected as follows: “Citrus network tree visualizing the hierarchical relationship of each marker between identified T cell ~”

      446 The legend says patients have IPF, CTD-ILD, sarcoidosis but the figure shows PCP, DI-ILD, ICI-ILD.

      Re: Corrected.

      451 What do the authors mean in "Graphical plots represent individual samples"? Panel B is a dot plot of all samples.

      Response: Corrected as “Dot plots represent ~”.

      472 What do the authors mean in "Graphical plots represent individual samples"? Panel C is a dot plot of all samples.

      Response: Corrected as “Dot plots represent ~”.

      Reviewer #3 (Recommendations For The Authors):

      An important thing is to add comparisons against healthy donors, at least. A common baseline is needed to firmly establish any biomarkers.

      Response: We acknowledge the reviewer's concern regarding the comparison with healthy donors. Although our study did not initially include BALF collection from healthy controls due to the constraints of clinical practice, we recognize the importance of a control baseline to validate biomarkers. To address this, we have integrated scRNA-seq data from healthy control BALF cells available in public datasets (Nature Medicine 2020; 26: 842-844), accessed from GSE145926. This dataset includes BALF cells from healthy controls (n=3) alongside severe COVID-19 patients (n=6). Data mining confirmed that CD16 expression is in a minority of T cells in healthy BALF—1.0% of CD4+ T cells and 1.6% of CD8+ T cells. We have included this comparative data in our manuscript as Figures 6H and 6I to provide context for the observed increase in CD16-expressing T cells in PCP patients, which substantiates our findings.

      Author response image 4.

      Data analysis needs to go deeper. There are several other tools on Cytobank alone that would allow a more quantitative analysis of the data. Fold changes in marker expressions would be very important as measurements of phenotypic changes.

      Response: We thank the reviewer for their constructive feedback on the depth of our data analysis. We acknowledge the value of a more quantitative approach, including the use of fold change measurements to assess phenotypic alterations, and recognize the potential insights such tools on Cytobank could provide. Due to the scope and limited space of the current study, we have focused our analysis on the most pertinent findings relevant to our research questions. We believe the present analysis serves the immediate objectives of this study. However, we agree that further quantitative analysis would enhance the understanding of the data. We have expanded our analysis to include a thorough correlation study between the disease severity of PCP and intensity of various T-cell markers. Notably, we observed that intensity of CCR7 expression correlates with the disease severity of PCP. Although the precise biological significance of this correlation remains to be elucidated, it may suggest a role for CCR7+ T cells in the pathogenesis or progression of the disease. We have considered the potential implications of this finding and included it as Supplementary Figure 5. We have also discussed this observation in the discussion section. We aim to consider these approaches in future work to build upon the foundation laid by this study. Your suggestions are invaluable and will be kept at the forefront as we plan subsequent research phases.

      Author response image 5.

      Reviewer #1 (Public Review):

      Cytotoxic agents and immune checkpoint inhibitors are the most commonly used and efficacious treatments for lung cancers. However their use brings two significant pulmonary side-effects; namely Pneumocystis jirovecii infection and resultant pneumonia (PCP), and interstitial lung disease (ILD). To observe the potential immunological drivers of these adverse events, Yanagihara et al. analysed and compared cells present in the bronchoalveolar lavage of three patient groups (PCP, cytotoxic drug-induced ILD [DI-ILD], and ICI-associated ILD [ICI-ILD]) using mass cytometry (64 markers). In PCP, they observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion (97.5%) in a fatal case, whilst in ICI-ILD, they found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. Given the fatal case, the authors also assessed for, and found, a correlation between CD16+ T cells and disease severity in PCP, postulating that this may be owing to endothelial destruction. Although n numbers are relatively small (n=7-9 in each cohort; common numbers for CyTOF papers), the authors use a wide panel (n=65) and two clustering methodologies giving greater strength to the conclusions. The differential populations discovered using one or two of the analytical methods are robust: whole population shifts with clear and significant clustering. These data are an excellent resource for clinical disease specialists and pan-disease immunologists, with a broad and engaging contextual discussion about what they could mean.

      Strengths:

      • The differences in immune cells in BAL in these specific patient subgroups is relatively unexplored.

      • This is an observational study, with no starting hypothesis being tested.

      • Two analytical methods are used to cluster the data.

      • A relatively wide panel was used (64 markers), with particular strength in the alpha beta T cells and B cells.

      • Relevant biomarkers, beta-D-glucan and KL-6 were also analysed

      • Appropriate statistics were used throughout.

      • Numbers are low (7 cases of PCP, 9 of DI-ILD, and 9 of ICI-ILD) but these are difficult samples to collect and so in relative terms, and considering the use of CyTOF, these are good numbers.

      • Beta-D-glucan shows potential as a biomarker for PCP (as previously reported) whilst KL-6 shows potential as a biomarker for ICI-ILD (not reported before). Interestingly, KL-6 was not seen to be increased in DI-ILD patients.

      • Despite the relatively low n numbers and lack of matching there are some clear differentials. The CD4/CD8+CD16+HLA-DR+CXCR3+CD14- T cell result is striking - up in PCP (with EM CD4s significantly down) - whilst the CD8 EMRA population is clear in ICI-ILD and 'non-exhausted' CD4s, with lower numbers of EMRA CD8s in DI-ILD.

      • The authors identify 17/31 significantly differentiated clusters of myeloid cells, eg CD11bhi CD11chi CD64+ CD206+ alveolar macrophages with HLA-DRhi in PCP.

      • With respect to B cells, the authors found that FCRL5+ B cells were more abundant in patients with ICI-ILD compared to those with PCP and DI-ILD, suggesting these FCRL5+ B cells may have a role in irAE.

      • One patient's extreme CD16+ T cell (97.5% positive) and death, led the authors to consider CD16+ T cells as an indicator of disease severity in PCP. This was then tested and found to be correct.

      • Authors discuss results in context of literature leading them to suggest that CD16+ T cells may target endothelial cells and wonder if anti-complement therapy may be efficacious in PCP.

      • Great discussion on auto-reactive T cell clones where the authors suggest that in ICI-ILD CD8s may react against healthy lung, driving ILD.

      • An observation of CXCR3 in different CD8 populations in ICI-ILD and PCP lead the authors to hypothesise on the chemoattractants in the microenvironment.

      • Excellent point suggesting CD57 may not always be a marker of senescence on T cells - reflective of growing change within the community.

      • Well considered suggestion that FCRL5+ B cells may be involved in ICI-ILD driven autoimmunity.

      • The authors discuss the main weaknesses in the discussion and stress that the findings detailed in the paper "demonstrate a correlation rather than proof of causation".

      • Figures and legends are clear and pleasing to the eye.

      Weaknesses:

      • This is an observational study, with no starting hypothesis being tested.

      • Only patients who were able to have a lavage taken have been recruited.

      • One set of analysis wasn't carried out for one subgroup (ICI-ILD) as PD1 expression was negative owing to the use of nivolumab.

      • Some immune cell subsets wouldn't be picked up with the markers and gating strategies used; e.g. NK cells.

      • Some immune cells would be disproportionately damaged by the storage, thawing and preparation of the samples; e.g. granulocytes.

      • Numbers are low (7 cases of PCP, 9 of DI-ILD, and 9 of ICI-ILD), sex, age and adverse event matching wasn't performed, and treatment regimen are varied and 'suspected' (suggesting incomplete clinical data) - but these are difficult samples to collect. These numbers drop further for some analyses e.g. T cell clustering owing to factors such as low cell number.

      • The disease comparisons are with each other, there is no healthy control.

      • Samples are taken at one time point.

      • The discussion on probably the stand out result - the CD16+ T cells in PCP - relies on two papers - leading to a slightly skewed emphasis on one paper on CD16+ cells in COVID. There are other papers out there that have observed CD16+ T cells in other conditions. It is also worth being in mind that given the markers used, these CD16+ T cell may be gamma deltas.

      • The discussion on ICI patient consistently showing increased PD1, could have been greater, as given the ICI is targeting PD1, one would expect the opposite as commented on, and observed, in the methods section.

      Reviewer #2 (Public Review):

      Yanagihara and colleagues investigated the immune cell composition of bronchoalveolar lavage fluid (BALF) samples in a cohort of patients with malignancy undergoing chemotherapy and with with lung adverse reactions including Pneumocystis jirovecii pneumonia (PCP) and immune-checkpoint inhibitors (ICIs) or cytotoxic drug induced interstitial lung diseases (ILDs). Using mass cytometry, their aim was to characterize the cellular and molecular changes in BAL to improve our understanding of their pathogenesis and identify potential biomarkers and therapeutic targets. In this regard, the authors identify a correlation between CD16 expression in T cells and the severity of PCP and an increased infiltration of CD57+ CD8+ T cells expressing immune checkpoints and FCLR5+ B cells in ICI-ILD patients.

      The conclusions of this paper are mostly well supported by data, but some aspects of the data analysis need to be clarified and extended.

      1) The authors should elaborate on why different set of markers were selected for each analysis step. E.g., Different set of markers were used for UMAP, CITRUS and viSNE in the T cell and myeloid analysis.

      2) The authors should state if a normality test for the distribution of the data was performed. If not, non-parametric tests should be used.

      3) The authors should explore the correlation between CD16 intensity and the CTCAE grade in T cell subsets such as EMRA CD8 T cells, effector memory CD4, etc as identified in Figure 1B.

      4) The authors could use CITRUS to better assess the B cell compartment.

      Reviewer #3 (Public Review):

      The authors collected BALF samples from lung cancer patients newly diagnosed with PCP, DI-ILD or ICI-ILD. CyTOF was performed on these samples, using two different panels (T-cell and B-cell/myeloid cell panels). Results were collected, cleaned-up, manually gated and pre-processed prior to visualisation with manifold learning approaches t-SNE (in the form of viSNE) or UMAP, and analysed by CITRUS (hierarchical clustering followed by feature selection and regression) for population identification - all using Cytobank implementation - in an attempt to identify possible biomarkers for these disease states. By comparing cell abundances from CITRUS results and qualitative inspection of a small number of marker expressions, the authors claimed to have identified an expansion of CD16+ T-cell population in PCP cases and an increase in CD57+ CD8+ T-cells, FCRL5+ B-cells and CCR2+ CCR5+ CD14+ monocytes in ICI-ILD cases.

      By the authors' own admission, there is an absence of healthy donor samples and, perhaps as a result of retrospective experimental design, also an absence of pre-treatment samples. The entire analysis effectively compares three yet-established disease states with no common baseline - what really constitutes a "biomarker" in such cases? The introduction asserts that "y characterizing the cellular and molecular changes in BAL from patients with these complications, we aim to improve our understanding of their pathogenesis and identify potential therapeutic targets" (lines 82-84). Given these obvious omissions, no real "changes" have been studied in the paper. These are very limited comparisons among three, and only these three, states.

      Even assuming more thorough experimental design, the data analysis is unfortunately too shallow and has not managed to explore the wealth of information that could potentially be extracted from the results. CITRUS is accessible and convenient, but also make a couple of big assumptions which could affect data analysis - 1) Is it justified to concatenate all FCS files to analyse the data in one batch / small batches? Could there be batch effects or otherwise other biological events that could confuse the algorithm? 2) With a relatively small number of samples, and after internal feature selection of CITRUS, is the regression model suitable for population identification or would it be too crude and miss out rare populations? There are plenty of other established methods that could be used instead. Have those methods been considered?

      Colouring t-SNE or UMAP (e.g. Figure 6C) plots by marker expression is useful for quick identification of cell populations but it is not a quantitative analysis. In a CyTOF analysis like this, it is common to work out fold changes of marker expressions between conditions. It is inadequate to judge expression levels and infer differences simply by looking at colours.

      The relatively small number of samples also mean that most results presented in the paper are not statistical significant. Whilst it is understandable that it is not always possible to collect a large number of patient samples for studies like this, having several entire major figures showing "n.s." (e.g. Figures 3A, 4B and 5C), together with limitations in the comparisons themselves and inadequate analysis, make the observations difficult to be convincing, and even less so for the single fatal PCP case where N = 1.

      It would also be good scientific practice to show evidence of sample data quality control. Were individual FCS files examined? Did the staining work? Some indication of QC would also be great.

      This dataset generated and studied by the authors have the potential to address the question they set out to answer and thus potentially be useful for the field. However, in the current state of presentation, more evidence and more thorough data analysis are needed to draw any conclusions, or correlations, as the authors would like to frame them.

    1. Interpretation is the third part of the perception process, in which we assign meaning to our experiences using mental structures known as schemata.

      I feel like when people think about perception, this is the aspect that usually comes to mind. So much so that other aspects are often disregarded. I can attest to this myself. When I think about how I perceive things, I don't usually think about selecting information, or even organizing it. This gives some interesting perspective going forward in life. I'm realizing I may have more things to consider as I take in the world.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Summary:

      This paper performs fine-mapping of the silkworm mutants bd and its fertile allelic version, bdf, narrowing down the causal intervals to a small interval of a handful of genes. In this region, the gene orthologous to mamo is impaired by a large indel, and its function is later confirmed using expression profiling, RNAi, and CRISPR KO. All these experiments are convincingly showing that mamo is necessary for the suppression of melanic pigmentation in the silkworm larval integument. The authors also use in silico and in vitro assays to probe the potential effector genes that mamo may regulate. Strengths: The genotype-to-phenotype workflow, combining forward (mapping) and reverse genetics (RNAi and CRISPR loss-of-function assays) linking mamo to pigmentation are extremely convincing.

      Response: Thank you very much for your affirmation of our work. The reviewer discussed the parts of our manuscript that involve evolution sentence by sentence. We have further refined the description in this regard and improved the logical flow. Thank you again for your help.

      Weaknesses:

      1) The last section of the results, entitled "Downstream target gene analysis" is primarily based on in silico genome-wide binding motif predictions.

      While the authors identify a potential binding site using EMSA, it is unclear how much this general approach over-predicted potential targets. While I think this work is interesting, its potential caveats are not mentioned. In fact the Discussion section seems to trust the high number of target genes as a reliable result. Specifically, the authors correctly say: "even if there are some transcription factor-binding sites in a gene, the gene is not necessarily regulated by these factors in a specific tissue and period", but then propose a biological explanation that not all binding sites are relevant to expression control. This makes a radical short-cut that predicted binding sites are actual in vivo binding sites. This may not be true, as I'd expect that only a subset of binding motifs predicted by Positional Weight Matrices (PWM) are real in vivo binding sites with a ChIP-seq or Cut-and-Run signal. This is particularly problematic for PWM that feature only 5-nt signature motifs, as inferred here for mamo-S and mamo-L, simply because we can expect many predicted sites by chance.

      Response: Thank you very much for your careful work. The analysis and identification of transcription factor-binding sites is an important issue in gene regulation research. Techniques such as ChIP-seq can be used to experimentally identify the binding sites of transcription factors (TFs). However, reports using these techniques often only detect specific cell types and developmental stages, resulting in a limited number of downstream target genes for some TFs. Interestingly, TFs may regulate different downstream target genes in different cell types and developmental stages.

      Previous research has suggested that the ZF-DNA binding interface can be understood as a “canonical binding model”, in which each finger contacts DNA in an antiparallel manner. The binding sequence of the C2H2-ZF motif is determined by the amino acid residue sequence of its α-helical component. Considering the first amino acid residue in the α-helical region of the C2H2-ZF domain as position 1, positions -1, 2, 3, and 6 are key amino acids for recognizing and binding DNA. The residues at positions -1, 3, and 6 specifically interact with base 3, base 2, and base 1 of the DNA sense sequence, respectively, while the residue at position 2 interacts with the complementary DNA strand (Wolfe SA et al., 2000; Pabo CO et al., 2001). Based on this principle, the binding sites of C2H2-ZF have good reference value. For the 5-nt PWM sequence, we referred to the study of D. melanogaster, which was identified by EMSA (Shoichi Nakamura et al., 2019). In the new version, we have rewritten this section.

      Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem. 2001;70:313-340.

      Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 2000;29:183-212.

      Nakamura S, Hira S, Fujiwara M, et al. A truncated form of a transcription factor Mamo activates vasa in Drosophila embryos. Commun Biol. 2019;2:422. Published 2019 Nov 20.

      2) The last part of the current discussion ("Notably, the industrial melanism event, in a short period of several decades ... a more advanced self-regulation program") is flawed with important logical shortcuts that assign "agency" to the evolutionary process. For instance, this section conveys the idea that phenotypically relevant mutations may not be random. I believe some of this is due to translation issues in English, as I understand that the authors want to express the idea that some parts of the genome are paths of least resistance for evolutionary change (e.g. the regulatory regions of developmental regulators are likely to articulate morphological change). But the language and tone is made worst by the mention that in another system, a mechanism involving photoreception drives adaptive plasticity, making it sound like the authors want to make a Lamarckian argument here (inheritance of acquired characteristics), or a point about orthogenesis (e.g. the idea that the environment may guide non-random mutations).

      Because this last part of the current discussion suffers from confused statements on modes and tempo of regulatory evolution and is rather out of topic, I would suggest removing it.

      In any case, it is important to highlight here that while this manuscript is an excellent genotype-to-phenotype study, it has very few comparative insights on the evolutionary process. The finding that mamo is a pattern or pigment regulatory factor is interesting and will deserve many more studies to decipher the full evolutionary study behind this Gene Regulatory Network.

      Response: Thank you very much for your careful work. In this part of the manuscript, we introduced some assumptions that make the statement slightly unconventional. The color pattern of insects is an adaptive trait. The bd and bdf mutants used in the study are formed spontaneously. As a frequent variation and readily observable phenotype, color patterns have been used as models for evolutionary research (Wittkopp PJ et al., 2011). Darwin's theory of natural selection has epoch-making significance. I deeply believe in the theory that species strive to evolve through natural selection. However, with the development of molecular genetics, Darwinism’s theory of undirected random mutations and slow accumulation of micromutations resulting in phenotype evolution has been increasingly challenged.

      The prerequisite for undirected random mutations and micromutations is excessive reproduction to generate a sufficiently large population. A sufficiently large population can contain sufficient genotypes to face various survival challenges. However, it is difficult to explain how some small groups and species with relatively low fertility rates have survived thus far. More importantly, the theory cannot explain the currently observed genomic mutation bias. In scientific research, every theory is constantly being modified to adapt to current discoveries. The most famous example is the debate over whether light is a particle or a wave, which has lasted for hundreds of years. However, in the 20th century, both sides seemed to compromise with each other, believing that light has a wave‒particle duality.

      In summary, we have rewritten this section to reduce unnecessary assumptions.

      Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet. 2011;13(1):59-69.

      Minor Comment:

      The gene models presented in Figure 1 are obsolete, as there are more recent annotations of the Bm-mamo gene that feature more complete intron-exon structures, including for the neighboring genes in the bd/bdf intervals. It remains true that the mamo locus encodes two protein isoforms.

      An example of the Bm-mamo locus annotation, can be found at: https://www.ncbi.nlm.nih.gov/gene/101738295 RNAseq expression tracks (including from larval epidermis) can be displayed in the embedded genome browser from the link above using the "Configure Tracks" tool.

      Based on these more recent annotations, I would say that most of the work on the two isoforms remains valid, but FigS2, and particularly Fig.S2C, need to be revised.

      Response: Thank you very much for your careful work. In this study, we referred to the predicted genes of SilkDB, NCBI and Silkbase. In different databases, there are varying degrees of differences in the number of predicted genes and the length of gene mRNA. Because the SilkDB database is based on the first silkworm genome, it has been used for the longest time and has a relatively large number of users. In the revised manuscript, we have added the predicted genes of NCBI and Silkbase in Figure S1.

      Author response image 1.

      The predicted genes and qPCR analysis of candidate genes in the responsible genomic region for bd mutant. (A) The predicted genes in SilkDB;(B) the predicted genes in Genbak;(C) the predicted genes in Silkbase;(D) analysis of nucleotide differences in the responsible region of bd;(E) investigation of the expression level of candidate genes.

      Reviewer #2 (Public Review):

      Summary:

      The authors tried to identify new genes involved in melanin metabolism and its spatial distribution in the silkworm Bombyx mori. They identified the gene Bm-mamo as playing a role in caterpillar pigmentation. By functional genetic and in silico approaches, they identified putative target genes of the Bm-mamo protein. They showed that numerous cuticular proteins are regulated by Bm-mamo during larval development.

      Strengths:

      • preliminary data about the role of cuticular proteins to pattern the localization of pigments

      • timely question

      • challenging question because it requires the development of future genetic and cell biology tools at the nanoscale

      Response: Thank you very much for your affirmation of our work. The reviewer's familiarity with the color patterns of Lepidoptera is helpful, and the recommendation raised has provided us with very important assistance. This has allowed us to make significant progress with our manuscript.

      Weaknesses:

      • statistical sampling limited

      • the discussion would gain in being shorter and refocused on a few points, especially the link between cuticular proteins and pigmentation. The article would be better if the last evolutionary-themed section of the discussion is removed.

      A recent paper has been published on the same gene in Bombyx mori (https://www.sciencedirect.com/science/article/abs/pii/S0965174823000760) in August 2023. The authors must discuss and refer to this published paper through the present manuscript.

      Response: Thank you very much for your careful work. First, we believe that competitive research is sometimes coincidental and sometimes intentional. Our research began in 2009, when we began to configure the recombinant population. In 2016, we published an article on comparative transcriptomics (Wu et al. 2016). The article mentioned above has a strong interest in our research and is based on our transcriptome analysis for further research, with the aim of making a preemptive publication. To discourage such behavior, we cannot cite it and do not want to discuss it in our paper.

      Songyuan Wu et al. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori. Sci Rep. 2016 May 19:6:26114. doi: 10.1038/srep26114.

      Reviewer #1 (Recommendations For The Authors):

      1) please consider using a more recent annotation model of the B. mori genome to revise your Result Section 1, Fig.1, and Fig. S2. https://www.ncbi.nlm.nih.gov/gene/101738295

      Specifically, you used BGIM_ gene models, while the current annotation such as the one above featured in the NCBI database provides more accurate intron-exon structures without splitting mamo into tow genes. I believe this can be done with minor revisions of the figures, and you could keep the BGIM_ gene names for the text.

      Response: Thank you very much for your careful work. The GenBank of NCBI (National Center for Biotechnology Information) is a very good database that we often use and refer to in this research process. Our research started in 2009, so we mainly referred to the SilkDB database (Jun Duan et al., 2010), although other databases also have references, such as NCBI and Silkbase (https://silkbase.ab.a.u-tokyo.ac.jp/cgi-bin/index.cgi). Because the SilkDB database was constructed based on the first published silkworm genome data, it has been used for the longest time and has a relatively large number of users. Recently, researchers are still using these data (Kejie Li et al., 2023).

      The problem with predicting the mamo gene as two genes (BGIBMGA012517 and BGIBMGA012518) in SilkDB is mainly due to the presence of alternative splicing of the mamo gene. BGIBMGA012517 corresponds to the shorter transcript (mamo-s) of the mamo gene. Due to the differences in sequencing individuals, sequencing methods, and methods of gene prediction, there are differences in the number and sequence of predicted genes in different databases. We added the pattern diagram of predicted genes from NCBI and Silkbase, and the expression levels of new predicted genes are shown in Supplemental Figure S1.

      Jun Duan et al., SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res. 2010 Jan;38(Database issue): D453-6. doi: 10.1093/nar/gkp801. Kejie Li et al., Transcriptome analysis reveals that knocking out BmNPV iap2 induces apoptosis by inhibiting the oxidative phosphorylation pathway. Int J Biol Macromol. 2023 Apr 1;233:123482. doi: 10.1016/j.ijbiomac.2023.123482. Epub 2023 Jan 31.

      Author response image 2.

      The predicted genes and qPCR analysis of candidate genes in the responsible genomic region for bd mutant. (A) The predicted genes in SilkDB;(B) the predicted genes in Genbak;(C) the predicted genes in Silkbase;(D) analysis of nucleotide differences in the responsible region of bd;(E) investigation of the expression level of candidate genes.

      2) As I mentioned in my public review, I strongly believe the interpretation of the PWM binding analyses require much more conservative statements taking into account the idea that short 5-nt motifs are expected by chance. The work in this section is interesting, but the manuscript would benefit from a quite significant rewrite of the corresponding Discussion section, making it that the in silico approach is prone to the identification of many sites in the genomes, and that very few of those sites are probably relevant for probabilistic reasons. I would recommend statements such as "Future experiments assessing the in vivo binding profile of Bm-mamo (eg. ChIP-seq or Cut&Run), will be required to further understand the GRNs controlled by mamo in various tissues".

      Response: Thank you very much for your careful work. Previous research has suggested that the ZF-DNA binding interface can be understood as a “canonical binding model”, in which each finger contacts DNA in an antiparallel manner. The binding sequence of the C2H2-ZF motif is determined by the amino acid residue sequence of its α-helical component. Considering the first amino acid residue in the α-helical region of the C2H2-ZF domain as position 1, positions -1, 2, 3, and 6 are key amino acids for recognizing and binding DNA. The residues at positions -1, 3, and 6 specifically interact with base 3, base 2, and base 1 of the DNA sense sequence, respectively, while the residue at position 2 interacts with the complementary DNA strand (Wolfe SA et al., 2000; Pabo CO et al., 2001). Based on this principle, the prediction of DNA recognition motifs of C2H2-type zinc finger proteins currently has good accuracy.

      The predicted DNA binding sequence (GTGCGTGGC) of the mamo protein in Drosophila melanogaster was highly consistent with that of silkworms. In addition, in D. melanogaster, the predicted DNA binding sequence of mamo, the bases at positions 1 to 7 (GTGCGTG), was highly similar to the DNA binding sequence obtained from EMSA experiments (Seiji Hira et al., 2013). Furthermore, in another study on the mamo protein of Drosophila melanogaster, five bases (TGCGT) were used as the DNA recognition core sequence of the mamo protein (Shoichi Nakamura et al., 2019). In the JASPAR database (https://jaspar.genereg.net), there are also some shorter (4-6 nt) DNA recognition sequences; for example, the DNA binding sequence of Ubx is TAAT (ID MA0094.1) in Drosophila melanogaster. However, we used longer DNA binding motifs (9 nt and 15 nt) of mamo to study the 2 kb genomic regions near the predicted gene. Over 70% of predicted genes were found to have these feature sequences near them. This analysis method is carried out with common software and processes. Due to sufficient target proteins, the accessibility of DNA, the absence of suppressors, the suitability of ion environments, etc., zinc finger protein transcription factors are more likely to bind to specific DNA sequences in vitro than in vivo. Using ChIP-seq or Cut&Run techniques to analyze various tissues and developmental stages in silkworms can yield one comprehensive DNA-binding map of mamo, and some false positives generated by predictions can be excluded. Thank you for your suggestion. We will conduct this work in the next research step. In addition, for brevity, we deleted the predicted data (Supplemental Tables S7 and S8) that used shorter motifs.

      Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem. 2001;70:313-340.

      Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 2000;29:183-212.

      Anton V Persikov et al., De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. Nucleic Acids Res. 2014 Jan;42(1):97-108. doi: 10.1093/nar/gkt890. Epub 2013 Oct 3.

      Seiji Hira et al., Binding of Drosophila maternal Mamo protein to chromatin and specific DNA sequences. Biochem Biophys Res Commun. 2013 Aug 16;438(1):156-60. doi: 10.1016/j.bbrc.2013.07.045. Epub 2013 Jul 20.

      Shoichi Nakamura et al., A truncated form of a transcription factor Mamo activates vasa in Drosophila embryos. Commun Biol. 2019 Nov 20;2: 422. doi: 10.1038/s42003-019-0663-4. eCollection 2019.

      3) In my opinion, the last section of the Discussion needs to be completely removed ("Notably, the industrial melanism event, in a short period of several decades ... a more advanced self-regulation program"), as it is over-extending the data into evolutionary interpretations without any support. I would suggest instead writing a short paragraph asking whether the pigmentary role of mamo is a Lepidoptera novelty, or if it could have been lost in the fly lineage.

      Below, I tried to comment point-by-point on the main issues I had.

      Wu et al: Notably, the industrial melanism event, in a short period of several decades, resulted in significant changes in the body color of multiple Lepidoptera species(46). Industrial melanism events, such as changes in the body color of pepper moths, are heritable and caused by genomic mutations(47).

      Yes, but the selective episode was brief, and the relevant "carbonaria" mutations may have existed for a long time at low-frequency in the population.

      Response: Thank you very much for your careful work. Moth species often have melanic variants at low frequencies outside industrial regions. Recent molecular work on genetics has revealed that the melanic (carbonaria) allele of the peppered moth had a single origin in Britain. Further research indicated that the mutation event causing industrial melanism of peppered moth (Biston betularia) in the UK is the insertion of a transposon element into the first intron of the cortex gene. Interestingly, statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred in approximately 1819, a date highly consistent with a detectable frequency being achieved in the mid-1840s (Arjen E Van't Hof, et al., 2016). From molecular research, it is suggested that this single origin melanized mutant (carbonaria) was generated near the industrial development period, rather than the ancient genotype, in the UK. We have rewritten this part of the manuscript.

      Arjen E Van't Hof, et al., The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016 Jun 2;534(7605):102-5. doi: 10.1038/nature17951.

      Wu et al: If relying solely on random mutations in the genome, which have a time unit of millions of years, to explain the evolution of the phenotype is not enough.

      What you imply here is problematic for several reasons.

      First, as you point out later, some large-effect mutations (e.g. transpositions) can happen quickly.

      Second, it's unclear what "the time units of million of years" means here... mutations occur, segregate in populations, and are selected. The speed of this process depends on the context and genetic architectures.

      Third, I think I understand what you mean with "to explain the evolution of the phenotype is not enough", but this would probably need a reformulation and I don't think it's relevant to bring it here. After all, you used loss-of-function mutants to explain the evolution of artificially selected mutants. The evolutionary insights from these mutants are limited. Random mutations at the mamo locus are perfectly sufficient here to explain the bd and bdf phenotypes and larval traits.

      Response: Thank you very much for your careful work. Charles Darwin himself, who argued that “natural selection can act only by taking advantage of slight successive variations; she can never take a leap, but must advance by the shortest and slowest steps” (Darwin, C. R. 1859). This ‘micromutational’ view of adaptation proved extraordinarily influential. However, the accumulation of micromutations is a lengthy process, which requires a very long time to evolve a significant phenotype. This may be only a proportion of the cases. Interestingly, recent molecular biology studies have shown that the evolution of some morphological traits involves a modest number of genetic changes (H Allen Orr. 2005).

      One example is the genetic basis analysis of armor-plate reduction and pelvic reduction of the three-spined stickleback (Gasterosteus aculeatus) in postglacial lakes. Although the marine form of this species has thick armor, the lake population (which was recently derived from the marine form) does not. The repeated independent evolution of lake morphology has resulted in reduced armor plate and pelvic structures, and there is no doubt that these morphological changes are adaptive. Research has shown that pelvic loss in different natural populations of three-spined stickleback fish occurs by regulatory mutations deleting a tissue-specific enhancer (Pel) of the pituitary homeobox transcription factor 1 (Pitx1) gene. The researchers genotyped 13 pelvic-reduced populations of three-spined stickleback from disparate geographic locations. Nine of the 13 pelvic-reduced stickleback populations had sequence deletions of varying lengths, all of which were located at the Pel enhancer. Relying solely on random mutations in the genome cannot lead to such similar mutation forms among different populations. The author suggested that the Pitx1 locus of the stickleback genome may be prone to double-stranded DNA breaks that are subsequently repaired by NHEJ (Yingguang Frank Chan et al., 2010).

      The bd and bdf mutants used in the study are formed spontaneously. Natural mutation is one of the driving forces of evolution. Nevertheless, we have rewritten the content of this section.

      Darwin, C. R. The Origin of Species (J. Murray, London, 1859).

      H Allen Orr. The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005 Feb;6(2):119-27. doi: 10.1038/nrg1523.

      Yingguang Frank Chan et al., Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 2010 Jan 15;327(5963):302-5. doi: 10.1126/science.1182213. Epub 2009 Dec 10.

      Wu et al: Interestingly, the larva of peppered moths has multiple visual factors encoded by visual genes, which are conserved in multiple Lepidoptera, in the skin. Even when its compound eyes are covered, it can rely on the skin to feel the color of the environment to change its body color and adapt to the environment(48). Therefore, caterpillars/insects can distinguish the light wave frequency of the background. We suppose that perceptual signals can stimulate the GRN, the GRN guides the expression of some transcription factors and epigenetic factors, and the interaction of epigenetic factors and transcription factors can open or close the chromatin of corresponding downstream genes, which can guide downstream target gene expression.

      This is extremely confusing because you are bringing in a plastic trait here. It's possible there is a connection between the sensory stimulus and the regulation of mamo in peppered moths, but this is a mere hypothesis. Here, by mentioning a plastic trait, this paragraph sounds as if it was making a statement about directed evolution, especially after implying in the previous sentence that (paraphrasing) "random mutations are not enough". To be perfectly honest, the current writing could be misinterpreted and co-opted by defenders of the Intelligent Design doctrine. I believe and trust this is not your intention.

      Response: Thank you very much for your careful work. The plasticity of the body color of peppered moth larvae is very interesting, but we mainly wanted to emphasize that their skin shows the products of visual genes that can sense the color of the environment by perceiving light. Moreover, these genes are conserved in many insects. Human skin can also perceive light by opsins, suggesting that they might initiate light–induced signaling pathways (Haltaufderhyde K et al., 2015). This indicates that the perception of environmental light by the skin of animals and the induction of feedback through signaling pathways is a common phenomenon. For clarity, we have rewritten this section of the manuscript.

      Haltaufderhyde K, Ozdeslik RN, Wicks NL, Najera JA, Oancea E. Opsin expression in human epidermal skin. Photochem Photobiol. 2015;91(1):117-123.

      Wu et al: In addition, during the opening of chromatin, the probability of mutation of exposed genomic DNA sequences will increase (49).

      Here again, this is veering towards a strongly Lamarckian view with the environment guiding specific mutation. I simply cannot see how this would apply to mamo, nothing in the current article indicates this could be the case here. Among many issues with this, it's unclear how chromatin opening in the larval integument may result in heritable mutations in the germline.

      Response: Thank you very much for your careful work. Previous studies have shown that there is a mutation bias in the genome; compared with the intergenic region, the mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. In addition, they compared the mutation rates of genes with different functions. The mutation rate in the coding region of essential genes (such as translation) is the lowest, and the mutation rates in the coding region of specialized functional genes (such as environmental response) are the highest. These patterns are mainly affected by the traits of the epigenome (J Grey Monroe et al., 2022).

      In eukaryotes, chromatin is organized as repeating units of nucleosomes, each consisting of a histone octamer and the surrounding DNA. This structure can protect DNA. When one gene is activated, the chromatin region of this gene is locally opened, becoming an accessible region. Research has found that DNA accessibility can lead to a higher mutation rate in the region (Radhakrishnan Sabarinathan et al., 2016; Schuster-Böckler B et al., 2012; Lawrence MS et al., 2013; Polak P et al., 2015). In addition, the BTB-ZF protein mamo belongs to this family and can recruit histone modification factors such as DNA methyltransferase 1 (DMNT1), cullin3 (CUL3), histone deacetylase 1 (HDAC1), and histone acetyltransferase 1 (HAT1) to perform chromatin remodeling at specific genomic sites. Although mutations can be predicted by the characteristics of apparent chromatin, the forms of mutations are diverse and random. Therefore, this does not violate randomness. For clarity, we have rewritten this section of the manuscript.

      J Grey Monroe, Mutation bias reflects natural selection in Arabidopsis thaliana. Nature. 2022 Feb;602(7895):101-105.

      Sabarinathan R, Mularoni L, Deu-Pons J, Gonzalez-Perez A, López-Bigas N. Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature. 2016;532(7598):264-267.

      Schuster-Böckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature. 2012;488(7412):504-507.

      Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214-218.

      Polak P, Karlić R, Koren A, et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature. 2015;518(7539):360-364.

      Mathew R, Seiler MP, Scanlon ST, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491(7425):618-621.

      Wu et al: Transposon insertion occurs in a timely manner upstream of the cortex gene in melanic pepper moths (47), which may be caused by the similar binding of transcription factors and opening of chromatin.

      No, we do not think that the peppered moth mutation is Lamarckian at all, as seems to be inferred here (notice that by mentioning the peppered moth twice, you are juxtaposing a larval plastic trait and then a purely genetic wing trait, making it even more confusing). Also, the "in a timely manner" is superfluous, because all the data are consistent with a chance mutation being eventually picked up by strong directional mutation. The mutation and selection did NOT occur at the same time.

      Response: Thank you very much for your careful work. The insertion of one transposon into the first intron of the cortex gene of industrial melanism in peppered moth occurred in approximately 1819, which is similar to the time of industrial development in the UK (Arjen E Van't Hof, et al., 2016). In multiple species of Heliconius, the cortex gene is the shared genetic basis for the regulation of wing coloring patterns. Interestingly, the SNP of the cortex, associated with the wing color pattern, does not overlap among different Heliconius species, such as H. erato dephoon and H. erato favorinus, which suggests that the mutations of this cortex gene have different origins (Nadeau NJ et al., 2016). In addition, in Junonia coenia (van der Burg KRL et al., 2020) and Bombyx mori (Ito K et al., 2016), the cortex gene is a candidate for regulating changes in wing coloring patterns. Overall, the cortex gene is an evolutionary hotspot for the variation of multiple butterfly and moth wing coloring patterns. In addition, it was observed that the variations in the cortex are diverse in these species, including SNPs, indels, transposon insertions, inversions, etc. This indicates that although there are evolutionary hotspots in the insect genome, this variation is random. Therefore, this is not completely detached from randomness.

      Arjen E Van't Hof, et al., The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016 Jun 2;534(7605):102-5. doi: 10.1038/nature17951.

      Nadeau NJ, Pardo-Diaz C, Whibley A, et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature. 2016;534(7605):106-110.

      van der Burg KRL, Lewis JJ, Brack BJ, Fandino RA, Mazo-Vargas A, Reed RD. Genomic architecture of a genetically assimilated seasonal color pattern. Science. 2020;370(6517):721-725.

      Ito K, Katsuma S, Kuwazaki S, et al. Mapping and recombination analysis of two moth colour mutations, Black moth and Wild wing spot, in the silkworm Bombyx mori. Heredity (Edinb). 2016;116(1):52-59.

      Wu et al: Therefore, we proposed that the genetic basis of color pattern evolution may mainly be system-guided programmed events that induce mutations in specific genomic regions of key genes rather than just random mutations of the genome.

      While the mutational target of pigment evolution may involve a handful of developmental regulator genes, you do not have the data to infer such a strong conclusion at the moment.

      The current formulation is also quite strong and teleological: "system-guided programmed events" imply intentionality or agency, an idea generally assigned to the anti-scientific Intelligent Design movement. There are a few examples of guided mutations, such as the adaptation phase of gRNA motifs in bacterial CRISPR assays, where I could see the term ""system-guided programmed events" to be applicable. But it is irrelevant here.

      Response: Thank you very much for your careful work. The CRISPR-CAS9 system is indeed very well known. In addition, recent studies have found the existence of a Cas9-like gene editing system in eukaryotes, such as Fanzor. Fanzor (Fz) was reported in 2013 as a eukaryotic TnpB-IS200/IS605 protein encoded by the transposon origin, and it was initially thought that the Fz protein (and prokaryotic TnpBs) might regulate transposon activity through methyltransferase activity (Saito M et al., 2023). Fz has recently been found to be a eukaryotic CRISPR‒Cas system. Although this system is found in fungi and mollusks, it raises hopes for scholars to find similar systems in other higher animals. However, before these gene-editing systems became popular, zinc finger nucleases (ZFNs) were already being studied as a gene-editing system in many species. The mechanism by which ZFN recognizes DNA depends on its zinc finger motif (Urnov FD et al., 2005). This is consistent with the mechanism by which transcription factors recognize DNA-binding sites.

      Furthermore, a very important evolutionary event in sexual reproduction is chromosome recombination during meiosis, which helps to produce more abundant alleles. Current research has found that this recombination event is not random. In mice and humans, the PRDM9 transcription factors are able to plan the sites of double-stranded breaks (DSBs) in meiosis recombination. PRDM9 is a histone methyltransferase consisting of three main regions: an amino-terminal region resembling the family of synovial sarcoma X (SSX) breakpoint proteins, which contains a Krüppel-associated box (KRAB) domain and an SSX repression domain (SSXRD); a PR/SET domain (a subclass of SET domains), surrounded by a pre-SET zinc knuckle and a post-SET zinc finger; and a long carboxy-terminal C2H2 zinc finger array. In most mammalian species, during early meiotic prophase, PRDM9 can determine recombination hotspots by H3K4 and H3K36 trimethylation (H3K4me3 and H3K36me3) of nucleosomes near its DNA-binding site. Subsequently, meiotic DNA DSBs are formed at hotspots through the combined action of SPO11 and TOPOVIBL. In addition, some proteins (such as RAD51) are involved in repairing the break point. In summary, programmed events of induced and repaired DSBs are widely present in organisms (Bhattacharyya T et al., 2019).

      These studies indicate that on the basis of randomness, the genome also exhibits programmability.

      Saito M, Xu P, Faure G, et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature. 2023;620(7974):660-668.

      Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646-651.

      Bhattacharyya T, Walker M, Powers NR, et al. Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes [published correction appears in Curr Biol. 2021 Mar 22;31(6):1351]. Curr Biol. 2019;29(6):1002-1018.e7.

      Wu et al: Based on this assumption, animals can undergo phenotypic changes more quickly and more accurately to cope with environmental changes. Thus, seemingly complex phenotypes such as cryptic coloring and mimicry that are highly similar to the background may have formed in a short period. However, the binding sites of some transcription factors widely distributed in the genome may be reserved regulatory interfaces to cope with potential environmental changes. In summary, the regulation of genes is smarter than imagined, and they resemble a more advanced self-regulation program.

      Here again, I can agree with the idea that certain genetic architectures can evolve quickly, but I cannot support the concept that the genetic changes are guided or accelerated by the environment. And again, none of this is relevant to the current findings about Bm-mamo.

      Response: Thank you very much for your careful work. Darwin's theory of natural selection has epoch-making significance. I deeply believe in the theory that species strive to evolve through natural selection. However, with the development of molecular genetics, Darwinism’s theory of undirected random mutations and slow accumulation of micromutations resulting in phenotype evolution has been increasingly challenged.

      The prerequisite for undirected random mutations and micromutations is excessive reproduction to generate a sufficiently large population. A sufficiently large population can contain sufficient genotypes to face various survival challenges. However, it is difficult to explain how some small groups and species with relatively low fertility rates have survived thus far. More importantly, the theory cannot explain the currently observed genomic mutation bias. In scientific research, every theory is constantly being modified to adapt to current discoveries. The most famous example is the debate over whether light is a particle or a wave, which has lasted for hundreds of years. However, in the 20th century, both sides seemed to compromise with each other, believing that light has a wave‒particle duality.

      Epigenetics has developed rapidly since 1987. Epigenetics has been widely accepted, defined as stable inheritance caused by chromosomal conformational changes without altering the DNA sequence, which differs from genetic research on variations in gene sequences. However, an increasing number of studies have found that histone modifications can affect gene sequence variation. In addition, both histones and epigenetic factors are essentially encoded by genes in the genome. Therefore, genetics and epigenetics should be interactive rather than parallel. However, some transcription factors play an important role in epigenetic modifications. Meiotic recombination is a key process that ensures the correct separation of homologous chromosomes through DNA double-stranded break repair mechanisms. The transcription factor PRDM9 can determine recombination hotspots by H3K4 and H3K36 trimethylation (H3K4me3 and H3K36me3) of nucleosomes near its DNA-binding site (Bhattacharyya T et al., 2019). Interestingly, mamo has been identified as an important candidate factor for meiosis hotspot setting in Drosophila (Winbush A et al., 2021).

      Bhattacharyya T, Walker M, Powers NR, et al. Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes [published correction appears in Curr Biol. 2021 Mar 22;31(6):1351]. Curr Biol. 2019;29(6):1002-1018.e7.

      Winbush A, Singh ND. Genomics of Recombination Rate Variation in Temperature-Evolved Drosophila melanogaster Populations. Genome Biol Evol. 2021;13(1): evaa252.

      Reviewer #2 (Recommendations For The Authors):

      Major comments

      Response: Thank you very much for your careful work. First, we believe that competitive research is sometimes coincidental and sometimes intentional. Our research began in 2009, when we began to configure the recombinant population. In 2016, we published an article on comparative transcriptomics (Wu et al. 2016). The article mentioned above has a strong interest in our research and is based on our transcriptome analysis for further research, with the aim of making a preemptive publication.

      To discourage such behavior, we cannot cite it and do not want to discuss it in our paper.

      Songyuan Wu et al. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori. Sci Rep. 2016 May 19:6:26114. doi: 10.1038/srep26114.

      • line 52-54. The numerous biological functions of insect coloration have been thoroughly investigated. It is reasonable to expect more references for each function.

      Response: Thank you very much for your careful work. We have made the appropriate modifications.

      Sword GA, Simpson SJ, El Hadi OT, Wilps H. Density-dependent aposematism in the desert locust. Proc Biol Sci. 2000;267(1438):63-68. … Behavior.

      Barnes AI, Siva-Jothy MT. Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proc Biol Sci. 2000;267(1439):177-182. … Immunity.

      N. F. Hadley, A. Savill, T. D. Schultz, Coloration and Its Thermal Consequences in the New-Zealand Tiger Beetle Neocicindela-Perhispida. J Therm Biol. 1992;17, 55-61…. Thermoregulation.

      Y. G. Hu, Y. H. Shen, Z. Zhang, G. Q. Shi, Melanin and urate act to prevent ultraviolet damage in the integument of the silkworm, Bombyx mori. Arch Insect Biochem. 2013; 83, 41-55…. UV protection.

      M. Stevens, G. D. Ruxton, Linking the evolution and form of warning coloration in nature. P Roy Soc B-Biol Sci. 2012; 279, 417-426…. Aposematism.

      K. K. Dasmahapatra et al., Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature.2012; 487, 94-98…. Mimicry.

      Gaitonde N, Joshi J, Kunte K. Evolution of ontogenic change in color defenses of swallowtail butterflies. Ecol Evol. 2018;8(19):9751-9763. Published 2018 Sep 3. …Crypsis.

      B. S. Tullberg, S. Merilaita, C. Wiklund, Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. P Roy Soc B-Biol Sci.2005; 272, 1315-1321…. Aposematism and crypsis combined.

      • line 59-60. This general statement needs to be rephrased. I suggest remaining simple by indicating that insect coloration can be pigmentary, structural, or bioluminescent. About the structural coloration and associated nanostructures, the authors could cite recent reviews, such as: Seago et al., Interface 2009 + Lloyd and Nadeau, Current Opinion in Genetics & Development 2021 + "Light as matter: natural structural colour in art" by Finet C. 2023. I suggest doing the same for recent reviews that cover pigmentary and bioluminescent coloration in insects. The very recent paper by Nishida et al. in Cell Reports 2023 on butterfly wing color made of pigmented liquid is also unique and worth to consider.

      Response: Thank you very much for your careful work. We have made the appropriate modifications.

      Insect coloration can be pigmentary, structural, or bioluminescent. Pigments are mainly synthesized by the insects themselves and form solid particles that are deposited in the cuticle of the body surface and the scales of the wings (10, 11). Interestingly, recent studies have found that bile pigments and carotenoid pigments synthesized through biological synthesis are incorporated into body fluids and passed through the wing membranes of two butterflies (Siproeta stelenes and Philaethria diatonica) via hemolymph circulation, providing color in the form of liquid pigments (12). The pigments form colors by selective absorption and/or scattering of light depending on their physical properties (13). However, structural color refers to colors, such as metallic colors and iridescence, generated by optical interference and grating diffraction of the microstructure/nanostructure of the body surface or appendages (such as scales) (14, 15). Pigment color and structural color are widely distributed in insects and can only be observed by the naked eye in illuminated environments. However, some insects, such as fireflies, exhibit colors (green to orange) in the dark due to bioluminescence (16). Bioluminescence occurs when luciferase catalyzes the oxidation of small molecules of luciferin (17). In conclusion, the color patterns of insects have evolved to be highly sophisticated and are closely related to their living environments. For example, cryptic color can deceive animals via high similarity to the surrounding environment. However, the molecular mechanism by which insects form precise color patterns to match their living environment is still unknown.

      • RNAi approach. I have no doubt that obtaining phenocopies by electroporation might be difficult. However, I find the final sampling a bit limited to draw conclusions from the RT-PCR (n=5 and n=3 for phenocopies and controls). Three control individuals is a very low number. Moreover, it would nice to see the variability on the plot, using for example violin plots.

      Response: Thank you very much for your careful work. In the RNAi experiment, we injected more than 20 individuals in the experimental group and control group. We have added the RNAi data in Figure 4.

      Author response table 1.

      • Figure 6. Higher magnification images of Dazao and Bm-mamo knockout are needed, as shown in Figure 5 on RNAi.

      Response: Thank you very much for your careful work. We have added enlarged images.

      Author response image 3.

      • Phylogenetic analysis/Figure S6. I am not sure to what extent the sampling is biased or not, but if not, it is noteworthy that mamo does not show duplicated copies (negative selection?). It might be interesting to discuss this point in the manuscript.

      Response: Thank you very much for your careful work. mamo belongs to the BTB/POZ zinc finger family. The members of this family exhibit significant expansion in vertebrates. For example, there are 3 members in C. elegans, 13 in D. melanogaster, 16 in Bombyx mori, 58 in M. musculus and 63 in H. sapiens (Wu et al, 2019). These members contain conserved BTB/POZ domains but vary in number and amino acid residue compositions of the zinc finger motifs. Due to the zinc finger motifs that bind to different DNA recognition sequences, there may be differences in their downstream target genes. Therefore, when searching for orthologous genes from different species, we required high conservation of their zinc finger motif sequences. Due to these strict conditions, only one orthologous gene was found in these species.

      • Differentially-expressed genes and CP candidate genes (line 189-191). The manuscript would gain in clarity if the authors explain more in details their procedure. For instance, they moved from a list of 191 genes to CP genes only. Can they say a little bit more about the non-CP genes that are differentially expressed? Maybe quantify the number of CPs among the total number of differentially-expressed genes to show that CPs are the main class?

      Response: Thank you very much for your careful work. The nr (Nonredundant Protein Sequence Database) annotations for 191 differentially expressed genes in Supplemental Table S3 were added. Among them, there were 19 cuticular proteins, 17 antibacterial peptide genes, 6 transporter genes, 5 transcription factor genes, 5 cytochrome genes, 53 enzyme-encoding genes and others. Because CP genes were significantly enriched in differentially expressed genes (DEGs), previous studies have found that BmorCPH24 can affect pigmentation. Therefore, we first conducted an investigation into CP genes.

      • Interaction between Bm-mamo. It is not clear why the authors chose to investigate the physical interaction of Bm-mamo protein with the putative binding site of yellow, and not with the sites upstream of tan and DDC. Do the authors test one interaction and assume the conclusion stands for the y, tan and DDC?

      Response: Thank you very much for your careful work. In D. melanogaster, the yellow gene is the most studied pigment gene. The upstream and intron sequences of the yellow gene have been identified as containing multiple cis-regulatory elements. Due to the important pigmentation role of the yellow gene and its variable cis-regulatory sequence among different species, it has been considered a research model for cis-regulatory elements (Laurent Arnoult et al. 2013, Gizem Kalay et al. 2019, Yaqun Xin et al. 2020, Yann Le Poul et al. 2020). We use yellow as an example to illustrate the regulation of the mamo gene. We added this description to the discussion.

      Laurent Arnoult et al. Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. Science. 2013 Mar 22;339(6126):1423-6. doi: 10.1126/science.1233749.

      Gizem Kalay et al. Redundant and Cryptic Enhancer Activities of the Drosophila yellow Gene. Genetics. 2019 May;212(1):343-360. doi: 10.1534/genetics.119.301985. Epub 2019 Mar 6.

      Yaqun Xin et al. Enhancer evolutionary co-option through shared chromatin accessibility input. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20636-20644. doi: 10.1073/pnas.2004003117. Epub 2020 Aug 10.

      Yann Le Poul et al. Regulatory encoding of quantitative variation in spatial activity of a Drosophila enhancer. Sci Adv. 2020 Dec 2;6(49):eabe2955. doi: 10.1126/sciadv.abe2955. Print 2020 Dec.

      • Please note that some controls are missing for the EMSA experiments. For instance, the putative binding-sites should be mutated and it should be shown that the interaction is lost.

      Response: Thank you very much for your careful work. In this study, we found that the DNA recognition sequence of mamo is highly conserved across multiple species. In D. melanogaster, studies have found that mamo can directly bind to the intron of the vasa gene to activate its expression. The DNA recognition sequence they use is TGCGT (Shoichi Nakamura et al. 2019). We chose a longer sequence, GTGCGTGGC, to detect the binding of mamo. This binding mechanism is consistent across species.

      • Figure 7 and supplementary data. How did the name of CPs attributed? According to automatic genome annotation of Bm genes and proteins? Based on Drosophila genome and associated gene names? Did the authors perform phylogenetic analyses to name the different CP genes?

      Response: Thank you very much for your careful work. The naming of CPs is based on their conserved motif and their arrangement order on the chromosome. In previous reports, sequence identification and phylogenetic analysis of CPs have been carried out in silkworms (Zhengwen Yan et al. 2022, Ryo Futahashi et al. 2008). The members of the same family have sequence similarity between different species, and their functions may be similar. We have completed the names of these genes in the text, for example, changing CPR2 to BmorCPR2.

      Zhengwen Yan et al. A Blueprint of Microstructures and Stage-Specific Transcriptome Dynamics of Cuticle Formation in Bombyx mori. Int J Mol Sci. 2022 May 5;23(9):5155.

      Ningjia He et al. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem Mol Biol. 2007 Feb;37(2):135-46.

      Maria V Karouzou et al. Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem Mol Biol. 2007 Aug;37(8):754-60.

      Ryo Futahashi et al. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2008 Dec;38(12):1138-46.

      • Discussion. I think the discussion would gain in being shorter and refocused on the understudied role of CPs. Another non-canonical aspect of the discussion is the reference to additional experiments (e.g., parthogenesis line 290-302, figure S14). This is not the place to introduce more results, and it breaks the flow of the discussion. I encourage the authors to reshuffle the discussion: 1) summary of their findings on mamo and CPs, 2) link between pigmentation mutant phenotypes, pigmentation pattern and CPs, 3) general discussion about the (evo-)devo importance of CPs and link between pigment deposition and coloration. Three important papers should be mentioned here:

      1) Matsuoka Y and A Monteiro (2018) Melanin pathway genes regulate color and morphology of butterfly wing scales. Cell Reports 24: 56-65... Yellow has a pleiotropic role in cuticle deposition and pigmentation.

      2) https://arxiv.org/abs/2305.16628... Link between nanoscale cuticle density and pigmentation

      3) https://www.cell.com/cell-reports/pdf/S2211-1247(23)00831-8.pdf... Variation in pigmentation and implication of endosomal maturation (gene red).

      Response: Thank you very much for your careful work. We have rewritten the discussion section.

      1) We have summarized our findings.

      Bm-mamo may affect the synthesis of melanin in epidermis cells by regulating yellow, DDC, and tan; regulate the maturation of melanin granules in epidermis cells through BmMFS; and affect the deposition of melanin granules in the cuticle by regulating CP genes, thereby comprehensively regulating the color pattern in caterpillars.

      2) We describe the relationship among the pigmentation mutation phenotype, pigmentation pattern, and CP.

      Previous studies have shown that the lack of expression of BmorCPH24, which encodes important components of the endocuticle, can lead to dramatic changes in body shape and a significant reduction in the pigmentation of caterpillars (53). We crossed Bo (BmorCPH24 null mutation) and bd to obtain F1(Bo/+Bo, bd/+), then self-crossed F1 and observed the phenotype of F2. The lunar spots and star spots decreased, and light-colored stripes appeared on the body segments, but the other areas still had significant melanin pigmentation in double mutation (Bo, bd) individuals (Fig. S13). However, in previous studies, introduction of Bo into L (ectopic expression of wnt1 results in lunar stripes generated on each body segment) (24) and U (overexpression of SoxD results in excessive melanin pigmentation of the epidermis) (58) strains by genetic crosses can remarkably reduce the pigmentation of L and U (53). Interestingly, there was a more significant decrease in pigmentation in the double mutants (Bo, L) and (Bo, U) than in (Bo, bd). This suggests that Bm-mamo has a stronger ability than wnt1 and SoxD to regulate pigmentation. On the one hand, mamo may be a stronger regulator of the melanin metabolic pathway, and on the other hand, mamo may regulate other CP genes to reduce the impact of BmorCPH24 deficiency.

      3) We discussed the importance of (evo-) devo in CPs and the relationship between pigment deposition and coloring.

      CP genes usually account for over 1% of the total genes in an insect genome and can be categorized into several families, including CPR, CPG, CPH, CPAP1, CPAP3, CPT, CPF and CPFL (68). The CPR family is the largest group of CPs, containing a chitin-binding domain called the Rebers and Riddiford motif (R&R) (69). The variation in the R&R consensus sequence allows subdivision into three subfamilies (RR-1, RR-2, and RR-3) (70). Among the 28 CPs, 11 RR-1 genes, 6 RR-2 genes, 4 hypothetical cuticular protein (CPH) genes, 3 glycine-rich cuticular protein (CPG) genes, 3 cuticular protein Tweedle motif (CPT) genes, and 1 CPFL (like the CPFs in a conserved C-terminal region) gene were identified. The RR-1 consensus among species is usually more variable than RR-2, which suggests that RR-1 may have a species-specific function. RR-2 often clustered into several branches, which may be due to gene duplication events in co-orthologous groups and may result in conserved functions between species (71). The classification of CPH is due to their lack of known motifs. In the epidermis of Lepidoptera, the CPH genes often have high expression levels. For example, BmorCPH24 had a highest expression level, in silkworm larvae epidermis (72). The CPG protein is rich in glycine. The CPH and CPG genes are less commonly found in insects outside the order Lepidoptera (73). This suggests that they may provide species specific functions for the Lepidoptera. CPT contains a Tweedle motif, and the TweedleD1 mutation has a dramatic effect on body shape in D. melanogaster (74). The CPFL members are relatively conserved in species and may be involved in the synthesis of larval cuticles (75). CPT and CPFL may have relatively conserved functions among insects. The CP genes are a group of rapidly evolving genes, and their copy numbers may undergo significant changes in different species. In addition, RNAi experiments on 135 CP genes in brown planthopper (Nilaparvata lugens) showed that deficiency of 32 CP genes leads to significant defective phenotypes, such as lethal, developmental retardation, etc. It is suggested that the 32 CP genes are indispensable, and other CP genes may have redundant and complementary functions (76). In previous studies, it was found that the construction of the larval cuticle of silkworms requires the precise expression of over two hundred CP genes (22). The production, interaction, and deposition of CPs and pigments are complex and precise processes, and our research shows that Bm-mamo plays an important regulatory role in this process in silkworm caterpillars. For further understanding of the role of CPs, future work should aim to identify the function of important cuticular protein genes and the deposition mechanism in the cuticle.

      Minor comments - Title. At this stage, there is no evidence that Bm-mamo regulates caterpillar pigmentation outside of Bombyx mori. I suggest to precise 'silkworm caterpillars' in the title.

      Response: Thank you very much for your careful work. We have modified the title.

      • Abstract, line 29. Because the knowledge on pigmentation pathway(s) is advanced, I would suggest writing 'color pattern is not fully understood' instead of 'color pattern is not clear'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 29. I suggest 'the transcription factor' rather than 'a transcription factor'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 30. If you want to mention the protein, the name 'Bm-mamo' should not be italicized.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 30. 'in the silkworm'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 31. 'mamo' should not be italicized.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 31. 'in Drosophila' rather 'of Drosophila'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 32. Bring detail if the gamete function is conserved in insects? In all animals?

      Response: Thank you very much for your careful work. The sentence was changed to “This gene has a conserved function in gamete production in Drosophila and silkworms and evolved a pleiotropic function in the regulation of color patterns in caterpillars.”

      • Introduction, line 51. I am not sure what the authors mean by 'under natural light'. Please rephrase.

      Response: Thank you very much for your careful work. We have deleted “under natural light”.

      • line 43. I find that the sentence 'In some studies, it has been proven that epidermal proteins can affect the body shape and appendage development of insects' is not necessary here. Furthermore, this sentence breaks the flow of the teaser.

      Response: Thank you very much for your careful work. We have deleted this sentence.

      • line 51-52. 'Greatly benefit them' should be rephrased in a more neutral way. For example, 'colours pattern have been shown to be involved in...'.

      Response: Thank you very much for your careful work. We have modified to “and the color patterns have been shown to be involved in…”

      • line 62. CPs are secreted by the epidermis, but I would say that CPs play their structural role in the cuticle, not directly in the epidermis. I suggest rephrasing this sentence and adding references.

      Response: Thank you very much for your careful work. We have modified “epidermis” to “cuticle”.

      • line 67. Please indicate that pathways have been identified/reported in Lepidoptera (11). Otherwise, the reader does not understand if you refer to previous biochemical in Drosophila for example.

      Response: Thank you very much for your careful work. We have modified this sentence. “Moreover, the biochemical metabolic pathways of pigments used for color patterning in Lepidoptera…have been reported.”

      • line 69. Missing examples of pleiotropic factors and associated references. For example, I suggest adding: engrailed (Dufour, Koshikawa and Finet, PNAS 2020) + antennapedia (Prakash et al., Cell Reports 2022) + optix (Reed et al., Science 2011), etc. Need to add references for clawless, abdominal-A.

      Response: Thank you very much for your careful work. We have made modifications.

      • line 76. The simpler term moth might be enough (instead of Lepidoptera).

      Response: Thank you very much for your careful work. We have modified this to “insect”.

      • line 96. I would simplify the text by writing "Then, quantitative RT-PCR was performed..."

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 112. 'Predict' instead of 'estimate'?

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 113. I would rather indicate the full name first, then indicate mamo between brackets.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 144. The Perl script needs to be made accessible on public repository.

      Response: Thank you very much for your careful work.

      • line 147-150. Too many technical details here. The details are already indicated in the material and methods section. Furthermore, the details break the flow of the paragraph.

      Response: Thank you very much for your careful work. We have modified this section.

      • line 152. Needs to make the link with the observed phenotypes in Figure 1. Just needs to state that RNAi phenocopies mimic the mutant alleles.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 153-157. Too many technical details here. The details are already indicated in the material and methods section. Furthermore, the details break the flow of the paragraph.

      Response: Thank you very much for your careful work. We have simplified this paragraph.

      • line 170. Please rephrase 'conserved in 30 species' because it might be understood as conserved in 30 species only, and not in other species.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 182. Maybe explain the rationale behind restricting the analysis to +/- 2kb. Can you cite a paper that shows that most of binding sites are within 2kb from the start codon?

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 182. '14,623 predicted genes'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 183. '10,622 genes'

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 183. Redundancy. Please remove 'silkworm' or 'B. mori'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 187. '10,072 genes'

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 188. '9,853 genes'

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 200. "Therefore, the differential...in caterpillars" is a strong statement.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 204. Remove "The" in front of eight key genes. Also, needs a reference... maybe a recent review on the biochemical pathway of melanin in insects.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 220. This sentence is too general and vague. Please explicit what you mean by "in terms of evolution". Number of insect species? Diversity of niche occupancy? Morphological, physiological diversity?

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 285. The verb "believe" should be replaced by a more neutral one.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 354-355. This sentence needs to be rephrased in a more objective way.

      Response: Thank you very much for your careful work. We have rewritten this sentence.

      • line 378. Missing reference for MUSCLE.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 379. Pearson model?

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 408. "The CRISPRdirect online software was used...".

      Response: Thank you very much for your careful work. We have modified this sentence.

      • Figure 1. In the title, I suggest indicating Dazao, bd, bdf as it appears in the figure. Needs to precise 'silkworm larval development'.

      Response: Thank you very much for your careful work. We have modified this figure title.

      • Figure 3. In the title, is the word 'pattern' really necessary? In the legend, please indicate the meaning of the acronyms AMSG and PSG.

      Response: Thank you very much for your careful work. We have modified this figure legend.

      • Figure S7A. Typo 'Znic finger 1', 'Znic finger 2', 'Znic finger 3',

      Response: Thank you very much for your careful work. We have fixed these typos. .

    2. Reviewer #1 (Public Review):

      Summary: This papers performs fine-mapping of the silkworm mutants bd and its fertile allelic version, bdf, narrowing down the causal intervals to a small interval of a handful of genes. In this region, the gene orthologous to mamo is impaired by a large indel, and its function is later confirmed using expression profiling, RNAi, and CRISPR KO. All these experiments are convincingly showing that mamo is necessary for the suppression of melanic pigmentation in the silkworm larval integument.

      The authors also use in silico and in vitro assays to probe the potential effector genes that mamo may regulate.

      Strengths: The genotype-to-phenotype workflow, combining forward (mapping) and reverse genetics (RNAi and CRISPR loss-of-function assays) linking mamo to pigmentation are extremely convincing.

      This revision is a much improved manuscript and I command the authors for many of their edits.

      I find the last part of the discussion, starting at "It is generally believed that changes in gene expression patterns are the result of the evolution of CREs", to be confusing.<br /> In this section, I believe the authors sequentially:<br /> - emphasize the role of CRE in morphological evolution (I agree)<br /> - emphasize that TF, and in particular their own CRE, are themselves important mutational targets of evolution (I agree, but the phrasing need to insist the authors are here talking about the CRE found at the TF locus, not the CRE bound by the TF).<br /> - use the stickleback Pel enhancer as an example, which I think is a good case study, but the authors also then make an argument about DNA fragility sites, which is hard to connect with the present study.<br /> - then continue on "DNA fragility" using the peppered moth and butterfly cortex locus. There is no evidence of DNA fragility at these loci, so the connection does not work. "The cortex gene locus is frequently mutated in Lepidoptera", the authors say. But a more accurate picture would be that the cortex locus is repeatedly involved in the generation of color pattern variants. Unlike for Pel fragile enhancer, we don't know if the causal mutations at this locus are repeatedly the same, and the haplotypes that have been described could be collateral rather than causal. Overall, it is important to clarify the idea that mutation bias is a possible factor explaining "genetic hotspots of evolution" (or genetic parallelism sensu 10.1038/nrg3483), but it is also possible that many genetic hotspots are repeated mutational targets because of their "optimal pleiotropy" (e.g. hub position in GRNs, such as mamo might be), or because of particularly modular CRE region that allow fine-tuning. Thus, I find the "fragility" argument misleading here. In fact the finding that "bd" and "bdf" alleles are different in nature is against the idea of a fragility bias (unless the authors can show increased mutation rates at this locus in a wild silkmoth species?). These alleles are also artificially-selected ie. they increased in frequency by breeding rather than natural selection in the wild, so while interesting for our understand of the genotype-phenotype map, they are not necessarily representative of the mutations that may underlie evolution in the wild.<br /> - Curiously, the last paragraph ("Some research suggests that common fragile sites...") elaborate on the idea that some sites of the genome are prone to mutation. The connection with mamo and the current article are extremely thin. There is here an attempt to connect meiotic and mitotic breaks to Bm-mamo, but this is confusing : it seems to propose Bm-mamo as a recruiter of epigenetic modulators that may drive higher mutation rates elsewhere. Not only I am not convinced by this argument without actual data, but this would not explain how the mutations at the Bm-mamo itself evolved.

      On a more positive note, I find it fascinating that the authors identified a TF that clearly articulates or orchestrate larval pattern development, and that when it is deleted, can generate healthy individuals. In other words, while it is a TF with many targets, it is not too pleiotropic. This idea, that the genetically causal modulators of developmental evolution are regulatory genes, has been described elsewhere (e.g. Fig 4c in 10.1038/s41576-020-0234-z, and associated refs). To me, the beautiful findings about Bm-mamo make sense in the general, existing framework that developmental processes and regulatory networks "shape" the evolutionary potential and trajectories of organisms. There is a degree of "programmability" in the genomes, because some loci are particularly prone to modulate a given type of trait. Here, Bm-mamo, as a potentially regulator of both CPs and melanin pathway genes, appear to be a potent modulator of epithelial traits. Claiming that there are inherent mutational biases behind this is unwarranted.

    1. Hope is a disposition of the soul to be convinced that what it desires willcome about. It is caused by a particular movement of the spirits,consisting of the movement of joy mixed with that of desire. And anxietyis another disposition of the soul, which convinces it that its desires willnot be fulfilled. It should be noted that these two passions, althoughopposed, may nevertheless occur together, namely when we think ofreasons for regarding the fulfilment of the desire as easy, and at the sametime we think of other reasons which make it seem difficult

      lol me af

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and the editors for their constructive and critical comments/ suggestions regarding our paper. We have since extensively revised the manuscript accordingly, including the addition of new experimental data. Hope the readers, reviewers, and editors are now satisfied with the quality and significance of the revised paper.

      Our responses to the eLife assessment and the reviewers’ comment as well as the details of the revisions are described below.

      Wang et al present a useful manuscript that builds modestly on the group's previous publication on KLF1 (EKLF) K47R mice focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo (Shyu et al., Adv Sci (Weinh). 2022). The data demonstrates that Eklf (K74R) imparts these advantages in a background, age, and gender independent manner, not the consequence of the specific amino acid substitution, and transferable by BMT. However, the authors overstate the meaning of these results and the strength of evidence is incomplete, since only a melanoma model of cancer is used, it is unclear why only homozygous mutation is needed when only a small fraction of cells during BMT confer benefit, they do not show EKLF expression in any cells analyzed, and the PD-1 and PDL-1 experiments are not conclusive. The definitive mechanism relative to the prior publication from this group on this topic remains unclear.

      The issues in the assessment by the editor on our paper were also brought up by the reviewers. We have taken care of them by carrying out new experiments as well as rewriting of the paper to highlight the rationales and novel aspects of the current study, as described below in our responses to the three reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors Wang et al. present a study of a mouse model K74R that they claim can extend the life span of mice, and also has some anti-cancer properties. Importantly, this mechanism seems to be mediated by the hematopoietic system, and protective effects can be transferred with bone marrow transplantation.

      The authors need to be more specific in the title and abstract as to what is actually novel in this manuscript (a single tumor model), and what relies on previously published data (lifespan). Because many of these claims derive from previously published data, and the current manuscript is an extension of previously published work. The authors need to be more specific as to the actual data they present (they only use the B16 melanoma model) and the actual novelty of this manuscript.

      Especially experiments on life span are published and not sufficiently addressed in this actual paper, as the title would suggest.

      Indeed important to point out the novelty of this paper in comparison to the previous paper. First, we have modified the title, the abstract, and the text so to emphasize that the extended lifespan as well as tumor resistance could be transferred by from Eklf(K74R) mice to WT mice by a single transplantation of the Eklf(K74R) bone marrow mononuclear cells (BMT) to the WT mice at their young age (2 months).

      We now also provide several new experimental data including the one demonstrating that Eklf(K74R) mice are resistant to tumorigenesis of hepatocellular carcinoma as well (new Fig. 1E). These points are elaborated in more details below in my responses to the reviewers’ comments/ suggestions.

      Reviewer #2 (Public Review):

      The manuscript by Wang et al. follows up on the group's previous publication on KLF1 (EKLF) K47R mice and reduced susceptibility to tumorigenesis and increased life span (Shyu et al., Adv Sci (Weinh). Sep 2022;9(25):e2201409. doi:10.1002/ advs.202201409). In the current manuscript, the authors have described the dependence of these phenotypes on age, gender, genetic background, and hematopoietic translation of bone marrow mononuclear cells. Considering the current study is centered on the phenotypes described in the previous study, the novelty is diminished. Further, there are significant conceptual concerns in the study that make the inferences in the manuscript far less convincing. Major concerns are listed below:

      1) The authors mention more than once in the manuscript that KLF1 is expressed in range of blood cells including hematopoietic stem cells, megakaryocytes, T cells and NK cells. In the case of megakaryocytes, studies from multiple labs have shown that while EKLF is expressed megakaryocyte-erythroid progenitors, EKLF is important for the bipotential lineage decision of these progenitors, and its high expression promotes erythropoiesis, while its expression is antagonized during megakaryopoiesis. In the case of HSCs, the authors reference to their previous publication for KLF1's expression in these cells- however, in this study nor in the current study, there is no western blot documented to convincingly show that KLF1 protein is expressed at detectable levels in these cells. For T cells, the authors have referenced a study which is based on ectopic expression of KLF1. For NK cells, the authors reference bioGPS: however, upon inspection, this is also questionable.

      2) The current study rests on the premise that KLF1 is expressed in HSCs, NK cells and leukocytes, and the references cited are not sufficient to make this assumption, for the reasons mentioned in the first point. Therefore, the authors will have to show both KLF1 mRNA and protein levels in these cells, and also compare them to the expression levels seen in KLF1 wild type erythroid cells along with knockout erythroid cells as controls, for context and specificity.

      Regarding the novelties of the current story. Besides demonstration of the independence of the healthy longevity characteristics on age, gender, and genetic background, as exemplified by the tumor resistance, another novelty of the current study is that the healthy longevity characteristics, in particular the tumor resistance and extended lifespan, could be transferred by one-time long-term transplantation of the Eklf(K74R) bone marrow mononuclear cells from young Eklf(K74R) mice to young WT mice. Also, since submission of the last version of the paper, we have carried out new experiments, including the characterization of the anti-cancer capability of NK cells (new Fig. 6) as well as assay of the tumor-resistance of Eklf(K74R) mice to hepatocellular carcinoma (new Fig. 1E), etc.

      We have also modified the title, Abstract, and different parts of the text to highlight the novelties of the current study.

      As to the expression of EKLF in different hematopoietic blood cell types, we have now added a paragraph in Result (p.6 and p.7) describing what have been known in literature in relation to our data presented in the paper. Importantly, following the reviewer’s comments, we have since carried out Western blot analysis of EKLF expression in NK, T, and B cells (p. 6, p.7 and new Fig. S4B). Also noted is that the level of EKLF in B cells is very low and only could be detected by RT-qPCR (Fig. S4C) and RNA-Seq (Bio-GPS database)

      3) To get to the mechanism driving the reduced susceptibility to tumorigenesis and increased life span phenotypes in EKLF K74R mice, the authors report some observations- However, how these observations are connected to the phenotypes is unclear.

      a. For example, in Figure S3, they report that the frequency of NK1.1+ cells is higher in the mutant mice. The significance of this in relation to EKLF expression in these cells and the tumorigenesis and life span related phenotypes are not described. Again, as mentioned in the second point, KLF1 protein levels are not shown in these cells.

      b. In Figure 4, the authors show mRNA levels of immune check point genes, PD-1 and PD-l1 are lower in EKLF K74R mice in PB, CD3+ T cells and B220+ B cells. Again, the questions remain on how these genes are regulated by EKLF, and whether and at what levels EKLF protein is expressed in T cells and B cells relative to erythroid cells. Further, while the study they reference for EKLF's role in T cells is based on ectopic expression of EKLF in CD4+ T cells, in the current study, CD3+ T cells are used. Also, there are no references for the status of EKLF in B cells. These details are not discussed in the manuscript.

      Regarding this part of the questions and comments by the reviewer.

      First, we have since assayed the effect of the K74R substitution of EKLF on the in vitro cancer cell-killing ability of NK cells (termed NK1.1 cells in the previous version). The data showed that NK(K74R) cells have higher ability than the WT NK cells (new Fig. 6). This property together with the higher expression level of NK(K74R) cells in 24 month-old Eklf (K74R) mice than NK cells in 24 month-old WT mice would contribute to the higher tumor-resistance of the Eklf (K74R) mice. This point is also addressed on p. 8 andp.9.

      Second, as stated in previous sections, we have since carried out comparative Western blot analysis of the expression of EKLF protein in NK, CD3 T, and B cells of the WT and Eklf(K74R) mice, respectively (please see the new Fig. S4B). Also, description regarding what are known in literature in relation to our data on the expression of EKLF protein/ Eklf mRNA in different types of hematopoietic blood cells is now included in the Result (please see p.6 and p.7). Notably though, the level of EKLF protein in B cells was too low to be detected by WB (Fig. S4B).

      4) The authors perform comparative proteomics in the leukocytes of EKLF K74R and WT mice as shown in Figure S5. What is the status of EKLF levels in the mutant lysate vs wild type lysates based on this analysis? More clarity needs to be provided on what cells were used for this analysis and how they were isolated since leukocytes is a very broad term.

      The leukocytes used by us were isolated from the peripheral blood after removal of red blood cells, as described in the Materials and Methods.

      Also, the Western blot analysis of EKLF expression in the lysates of leukocytes/ white blood cells (WBC) has been shown previously, now presented in the new Figure S4A.

      5) In the discussion the authors make broad inferences that go beyond the data shown in the manuscript. They mention that the tumorigenesis resistance and long lifespan is most likely due to changes in transcription regulatory properties and changes in global gene expression profile of the mutant protein relative to WT leukocytes. And based on reduced mRNA levels of Pd-1 Pd-l1 genes in the CD3+ T cells and B220+ B cells from mutant mice, they "assert" that EKLF is an upstream regulator of these genes and regulates the transcriptomes of a diverse range of hematopoietic cells. The lack of a ChIP assay to show binding of WT EKLF on genes in these cells and whether this binding is reduced or abolished in the mutant cells, make the above statements unsubstantiated.

      We have since carried out ChIP-PCR analysis of EKLF-binding in the Pd-1 promoter (new Fig. S5). The data showed that EKLF was bound on the CACCC box at -103 of the promoter in WT CD3+T as well as in CD3+T(K74R) cells. This result is discussed on p.7.

      6) Where westerns are shown, the authors need to show the molecular weight ladder, and where qPCR data are shown for EKLF, it will be helpful to show the absolute levels and compare these levels to those in erythroid cells, along the corresponding EKLF knock out cells as controls.

      We have since included the molecular weight markers by the side of Western blots in Fig. S4. Also, we have added a new figure (Fig.S4C) showing the comparison of the expression levels of Eklf mRNA in B cells and CD3+ T cells to the mouse erythroleukemia (MEL) cells, as analyzed by RT-qPCR.

      Also, as indicated now in the Material and Methods section, the specificity of the primers used for RT-qPCR quantitation of mouse Eklf mRNA has been validated before by comparative analysis of wild type and EKLF-knockout mouse erythroid cells (Hung et al., IJMS, 2020).

      7) Figure S1D does not have a figure legend. Therefore, it is unclear what the blot in this figure is showing. In the text of the manuscript where they reference this figure, they mention that the levels of the mutant EKLF vs WT EKLF does not change in peripheral blood, while in the figure they have labeled WBCs for the blot, and the mRNA levels shown do seem to decrease in the mutant compared to WT peripheral blood.

      We apologize for this ignorance on our side. The data shown in the original Fig. SID (new Fig. S4A) are from Western blot analysis of EKLF protein and RT-qPCR analysis of Eklf mRNA in leukocytes/ white blood cells (WBC) isolated from the peripheral blood samples. We have now added back the figure legend and also rewritten the corresponding description in the text on p.6.

      Reviewer #3 (Public Review):

      Hung et al provide a well-written manuscript focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo. The work is fundamental and the data is convincing although several details remain incompletely elucidated. The major strengths of the manuscript include the clarity of the effect and the appropriate controls. For instance, the authors query whether Eklf (K74R) imparts these advantages in a background, age, and gender dependent manner, demonstrating that the findings are independent. In addition, the authors demonstrate that the effect is not the consequence of the specific amino acid substitution, with a similar effect on anticancer activity. Furthermore, the authors provide some evidence that PD-1 and PDL-1 are altered in Eklf (K74R) mice.

      Here we thank the encouraging comments by this reviewer.

      Finally, they demonstrate that the effects are transferrable with BMT. Several weaknesses are also evidence. For instance, only melanoma is tested as a model of cancer such that a broad claim of "anti-cancer activity" may be somewhat of an overreach.

      We have now included new data showing that the Eklf(K74R) mice also carry a higher anti-cancer ability against hepatocellular carcinoma than the WT mice (new Fig. 1E).

      It is also unclear why a homozygous mutation is needed when only a small fraction of cells during BMT can confer benefit. It is also difficult to explain how transplanted donor Eklf (K74R) HSCs confer anti-melanoma effect 7 and 14 days after BMT.

      First, these two observations not necessarily conflict with each other. It is likely that homozygosity, but not heterozygosity, of the K74R substitution in EKLF allows one or more types of hematopoietic blood cells to gain new functions, e.g. the higher cancer cell- killing capability of NK(K74R) cells (new Fig. 6), that help the mice to live long and healthy. Also, the data in Fig. 2D indicated that as low as 20% of the blood cells carrying homozygous Eklf(K74R) alleles in the recipient mice upon BMT could be sufficient to confer the mice a higher anti-cancer capability, likely in part due to cells such as NK(K74R). These points are now clarified in Discussion (p.9 and p.10).

      Second, we think the NK(K74R) cells contributed a significant part to the anti-cancer capability of the transplanted Eklf(K74R) blood in the recipient WT mice. As documented in some literature, e.g. Ferreira et al., Journal of Molecular Medicine (2019), the hematopoietic lineage of the NK cells would be fully reconstituted as early as 2 weeks after BMT. Of course, there could be other still unknown factors/ cells that also contribute to the tumor-resistance of the recipient mice at 7 day following BMT. This point is now touched upon on p.8 and p.9.

      Furthermore, it would be useful to see whether there are virulence marker alterations in the melanoma loci in WT vs Eklf (K74R) mice.

      As responded in the Public Reviews, we will analyze this in future together with other types of tumors in a separate study.

      Finally, the data in Fig 4c is difficult to interpret as decreased PD-1 and PDL-1 after knockdown of EKLF in vitro is not a useful experiment to corroborate how mutation without changing EKLF expression impacts immune cells. The work is impactful as it provides evidence that healthspan and lifespan may be modulated by specific hematological mutation but the mechanism by which this occurs is not completely elucidated by this work.

      As described in a previous section, we have since also carried out ChIP-qPCR analysis of the binding of WT EKLF and EKLF (K74R) on the Pd-1 promoter (new Fig. S5).

      Reviewer #1 (Recommendations For The Authors):

      The authors present interesting melanoma model data but need to tone down their claim of multiple effects of their model system. It needs to be clear what is new and what is previously known.

      As respond in the Public Reviews, we have since added new data on the tumor resistance of the Eklf(K74R) mice to hepatocellular carcinoma (new Fig. 1E). We have also modified the title as well as highlighted the novel points in the Abstract and text of the revised draft.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the major concerns listed in the public review, the minor concerns that the authors could address are listed below:

      1) Will be helpful to describe why was the pulmonary melanoma focus assay chosen for metastasis assay?

      We now describe on p. 4 the rationale behind the initial choice of this assay for analysis of the anti-cancer capability of the Eklf(K74R) mice. Also, we have since included data from experiment using the subcutaneous cancer cell inoculation assay for comparative analysis of the anti-hepatocellular carcinoma capability of Eklf(K74R) and WT mice (Fig. 1E and p.5).

      2) Reference #61 for B16-F10-luc cells cited in the methods does not have details on the generation of these cells. What these cells are and why this model was chosen needs to be described.

      Sorry about not providing this information before. We now describe the generation of B16F10-luc cells in the Material and Methods section (p.13). The rationale of choosing the B16-F10 cells for the pulmonary lung foci assay is also added on p.4.

      3) The DNA binding consensus site for EKLF needs to be expanded in the introduction.

      This part has been taken care of now on p.13.

      Reviewer #3 (Recommendations For The Authors):

      Hung et al provide a well-written manuscript focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo. The work is fundamental and the data is convincing although several details remain incompletely elucidated.

      1) Only melanoma is tested as a model of cancer such that a broad claim of "anti-cancer activity" may be somewhat of an overreach. The authors, therefore, need to provide evidence of a second type of malignancy to which Eklf mutation confers anticancer and longevity advantages or temper the claims in the discussion that the effect still needs to be tested in non-melanoma cancer models to determine the broad anti-cancer effect.

      As responded in the Public Reviews, we have since shown that Eklf(K74R) mice also exhibited a higher resistance to the carcinogenesis of hepatocellular carcinoma (new Fig. 1E).

      2) Why is a homozygous mutation needed when only a small fraction of cells during BMT can confer benefit of Eklf mutation? Is there evidence that the cellular effect is binary but only a few such cells are needed? This is confusing and requires further clarification.

      As responded in the Public Reviews, these two observations not necessarily conflict with each other. It is likely that homozygosity, but not heterozygosity, of the K74R substitution in EKLF allows one or more types of hematopoietic blood cells to gain new functions, e.g. the higher cancer cell- killing capability of NK(K74R) cells (new Fig. 6), that help the mice to live long and healthy. Also, the data in Fig. 2D indicated that as low as 20% of the blood cells carrying homozygous Eklf(K74R) alleles in the recipient mice upon BMT could be sufficient to confer the mice a higher anti-cancer capability, likely in part due to cells such as NK(K74R). This point is now clarified in Discussion (p.9).

      3) BMT typically requires at least 3-4 weeks to reconstitute the marrow compartment but the authors are able to see effects of Eklf mutation as early as 7 days following BMT. This is surprising and brings into question the mechanism of effect.

      As responded in the Public Reviews, we think the NK(K74R) cells contributed a significant part to the anti-cancer capability of the transplanted Eklf(K74R) blood in the recipient WT mice. As documented in some literature, e.g. Ferreira et al., Journal of Molecular Medicine (2019), the hematopoietic lineage of the NK cells would be fully reconstituted as early as 2 weeks after BMT. Of course, there could be other still unknown factors/ cells that also contribute to the tumor-resistance of the recipient mice at 7 day following BMT (please see discussion of this point on p. 9).

      4) It would be useful to see whether there are virulence marker alterations in the melanoma loci in WT vs Eklf (K74R) mice.

      As responded in the Public Reviews, we will analyze this in future together with other types of tumors in a separate study.

      5) The data in Fig 4c is difficult to interpret as decreased PD-1 and PDL-1 after knockdown of EKLF in vitro is not a useful experiment to corroborate how mutation WITHOUT changing EKLF expression impacts immune cells.

      Indeed, the RNAi knockdown experiment only demonstrated a positive regulatory role of EKLF in Pd1/Pd-l1 gene expression. We have followed the reviewer’s suggestion and carried out ChIP-qPCR analysis and shown that the factor is bound on the Pd-1 promoter in both WT CD3+T cells and CD3+T(K74R) cells (new Fig. S5). We briefly discuss these data on p.7 in relation to the possible effect of K74R substitution of EKLF on Pd-1 expression.

      We have now further clarified this point on p. 7.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Congratulations on the very nice structure! In my opinion, which you can feel free to take or leave, this would work better as a short report focused on the improvement of the structure relative to the current published model. To my mind, while the functional and dimerization studies are supportive of the cryo-EM studies (specifically, the purified protein is functional, and does tend to dimerize in various membrane mimetics), these experiments don't provide a lot of new mechanistic insight on their own. The dimerization, in particular, could be developed further.

      Response: Thank you for the comments. We have chosen to stick with the current article format. That the protein is dimeric is exciting in our view and we are working to further define the functional significance of this formation.

      Reviewer #2 (Recommendations For The Authors):

      Ln 48. Abstract. "highlighting feature of the complex interface" sounds a bit vague. I was wondering if the authors considered including more specific findings here.

      Response: This sentence has been removed.

      Ln 149 and elsewhere. The authors refer to the previously published structure of HiSiaQM as "low resolution". It may just be me and likely not the intention of the authors, but this comes across as an attempt to diminish the validity of this previous work from another group, which is not necessary. I would recommend rewording these parts slightly, even if it is just to say "lower resolution" instead of "low resolution".

      Response: It was not our intention to diminish the excellent work published by another group, we have changed “low resolution” to “lower resolution” throughout.

      Ln 160. The authors state that the inward-open conformation is likely "the resting state of the transporter". I think this statement should be modified slightly to acknowledge that this is only true under these conditions, i.e. in the absence of the bilayer, membrane potential and chemical gradients.

      Response: We have edited this as follows “That we observe the inward-open conformation without either a bound P-subunit or fiducial marker, suggests that this is the resting state of the transporter under experimental conditions (in the absence of a membrane bilayer, membrane potential and chemical gradients).”

      Ln 202. I'm not convinced that the use of the word "probable" is appropriate here; "possible" would likely fit better in the absence of compelling evidence that this dimer forms in a bacterial cell membrane with physiological levels of HiSiaQM expression.

      Response: We have changed “probable” to “possible”.

      The authors show an SEC trace for DDM solubilised protein, which is a single peak, whereas the LMNG extracted protein has 2 distinctly different elution profiles depending on the LMNG concentration. Was the same phenomenon observed when varying the DDM concentration?

      Response: We observed significantly more aggregation with DDM than L-MNG, so it was infrequently used and considerably less well characterised. In one purification, moderately higher DDM shifted the elution peak to be slightly later but retained a similar profile. Overall, we did not observe the same phenomenon of distinctly different elution profiles with DDM, but we have limited data.

      Ln 245. The two positions cited as important for the elevator-type mechanism are the fusion helix and the dimer interface. However, there is no evidence that the dimer interface observed in this work has any relevance to the transport mechanism. To make this statement, the interface would need to be disrupted and the effects on transport evaluated.

      Response: This has been edited as follows. “Evident in our cryo-EM maps are well-defined phospholipid densities associated with areas of HiSiaQM that may be important for the function of an elevator-type mechanism (Figure 4), but require further testing.”

      Ln 257. The authors state that the lipids form "specific and strong interactions" with the protein, but without knowing the identity of the lipids present, it is difficult to say anything about the specificity of this interaction. I think the authors could consider rewording this. Response: We have edited this by removing the term “specific” and describing the lipid interactions only as strong interactions.

      Ln 270. The authors identify a lipid-binding site and residues that likely interact with the headgroup. It would be interesting if the authors could speculate on the purpose of this lipid binding site and how it could affect transport. The residues are not conserved, which the authors suggest reflects the variety of lipid compositions in different bacteria. Are the authors suggesting that this lipid binding site is a general feature for all fused TRAP transporters and that the identity of the lipid changes depending on the species?

      Response: Yes, we speculate that the lipid binding site may be a general feature for fused TRAP transporters. We have added speculation about this binding site, specifically that “the fusion helix and concomitant lipid molecule may provide a more structurally rigid scaffold than a Q-M heterodimer, i.e., PpSiaQM, although how this impacts the elevator transition requires further testing” at Line 283.

      Though we believe that a binding pocket is likely found in a number of fused TRAPs (based on sequence and Alphafold predictions, e.g., FnSiaQM and AaSiaQM), we have now acknowledged that some fusions may not necessarily bind a lipid molecule here, by stating “While this binding pocket is likely found in a number of fused TRAPs (based on sequence predictions, e.g., FnSiaQM and AaSiaQM in Supplementary Figure 8), it is not clear whether they also bind lipids here without experimental data” at Line 290.

      Ln 306. The authors state that the HiSiaPQM has a 10-fold higher transport activity than PpSiaPQM. Unless the transport assays were performed in parallel (to mitigate small changes in experimental set-up) and the reconstitution efficiency for each proteoliposome preparation was carefully analysed, it is very difficult for this to be a meaningful comparison. Even if the amount of protein incorporated into the proteoliposomes is quantified (e.g. by evaluating protein band intensity when the proteoliposomes are analysed using SDS-PAGE), this does not account for an inactive protein that was incorporated, nor the proportion of the protein that was incorporated in the inside-out orientation, which would be functionally silent in these assays. I'm not suggesting these assays actually need to be performed, but I think the text should be modified to reflect what can actually be compared.

      Response: We agree with the reviewer that a meaningful comparison is difficult to make without a careful analysis of the reconstitution efficiency and have modified the text to reflect this. We have altered the paragraph beginning at Line 319 to the following: “The fused HiSiaPQM system appears to have a higher transport activity than the non-fused PpSiaPQM system. With the same experimental setup used for PpSiaPQM (5 M Neu5Ac, 50 M SiaP) (33), the accumulation of [3H]-Neu5Ac by the fused HiSiaPQM is ~10-fold greater. Although this difference may reflect the reconstitution efficiency of each proteoliposome preparation, it is possible that it has evolved as a result of the origins of each transporter system—P. profundum is a deep-sea bacterium and as such the transporter is required to be functional at low temperatures and high pressures… ”

      Ln 335. "S298A did not show an effect on growth when mutated to alanine previously." Suggest changing "S298A" here to "S298".

      Response: This has been changed.

      Ln 340. In addition to PpSiaQM, the large cavity was also presumably observed in the lower resolution structure of HiSiaQM?

      Response: The cavity is detectable in the lower resolution structure (7qe5), though very poorly defined by the density. Furthermore, the AlphaFold model fitted to this density has positioned sidechains inside the cavity, which we consider very likely to be an error (in comparison to our structures, VcINDY and our estimates of the volume required to house sialic acid). The cavity is generally much better defined by the structures we have referenced.

      Ln 345. Reference missing after "previously reported"? Response: This has been added. Measuring the affinity for the P-to-QM interaction is very useful, but it would have enhanced the study if some of the residues identified as important for this interaction (detailed on p.13) had been tested for their contributions to binding using this approach.

      Response: We do aim to perform this assay with these mutants in the future, but are also developing parallel assays to further test this interaction in different membrane mimetics.

      Ln 436. As stated previously, it is more accurate to say that "this is the most stable conformation" under these conditions.

      Response: We have edited this to say “The ‘elevator down’ (inward-facing) conformation is preferred in experimental conditions”. We have also changed the last sentence of this paragraph to say “However, the dimeric structures we have presented have no other proteins bound, yet exist stably in the elevator down state, suggesting this is the most stable conformation in experimental conditions, where there is no membrane bilayer, membrane potential, or chemical gradient present.”

      Ln 438. "Lipids associated with HiSiaQM are structurally and mechanistically important." This conclusion is not supported by the data presented; there is no evidence that the bound lipids influence the mechanism at all. The lipids observed are certainly interestingly placed and one could speculate about their relevance, but this statement of fact is not supported. Therefore, their importance to the mechanism needs to be tested or this conclusion needs to be substantially softened.

      Response: We have softened this statement by changing it to “Lipids have strong interactions with HiSiaQM and are likely to be important for the transport mechanism.”

      Reviewer #3 (Recommendations For The Authors):

      The fact that HiSiaQM samples consist of a mixture of compact monomer and dimer is clear, from Fig. S5 and S6. However, the analysis displayed in Fig 3 and Fig S4 would require more explanation. To my understanding, it requires the values of the sedimentation and diffusion coefficients. It could be good to provide the experimental values of D, and explain a little more about the method in the material and method section.

      Response: Yes, the analysis requires the experimental diffusion coefficients. These have been added to the Figure 3 and S4 legends and more detail has been added to the method section.

      In addition, I am puzzled when reading, in the legend of Fig 3, considerations that peak 2 could not correspond to a monomer or trimer: do these sentences correspond to other mathematical solutions, or is a given frictional ratio considered, or do they refer to Fig. S5 analysis?

      We can see where this confusion could arise from. These sentences do not correspond to a given frictional ratio or the Fig. S5 analysis (this is a separate, complementary analysis). For peak 2 not existing as a monomer is strictly a physical justification – with pure protein and an observed peak smaller than peak 2, a monomer is not possible for peak 2. For peak 2 not existing as a trimer is a mathematical solution using the s and D coefficients. The solutions identify that an unreasonably low amount of detergent would be bound to a trimer (32 molecules for L-MNG or 0 for DDM) to exist at those s and D values so we have ruled the trimer out. Reassuringly, the complementary analysis in Fig. S5/S6 agrees with the monomer-dimer outputs from the s and D analysis. We have adjusted the text in the legends of Fig. 3 and S4 to better convey these points.

    1. Author Response

      The following is the authors’ response to the original reviews.

      First of all, we'd like to thank the three reviewers for their meticulous work that enable us to present now an improved manuscript and substantial changes were made to the article following reviewers' and editors' recommendations. We read all their comments and suggestions very carefully. Apart from a few misunderstandings, all comments were very pertinent. We responded positively to almost all the comments and suggestions, and as a result, we have made extensive changes to the document and the figures. This manuscript now contains 16 principal figures and 15 figure supplements.

      The number of principal figures is now 16 (1 new figure), and additional panels have been added to certain figures. On the other hand, we have added 7 additional figures (supplement figures) to answer the reviewers' questions and/or comments.

      Main figures

      ▪ Figures 1, 4, 5, 10, 11, 12, 13, 14: unchanged ▪ Figure 7 and 8 were switched.

      ▪ Figure 2: we added panel F in response to reviewer 3's and request for sperm defect statistics

      ▪ Figure 3: the contrast in panel B has been taken over to homogenize colors

      ▪ Figure 6: This figure was recomposed. The WB on testicular extract was suppressed and we present a new WB allowing to compare the presence of CCDC146 in the flagella fraction. Using an anti-HA Ab, we demonstrate that the protein is localized in the flagella in epididymal sperm. Request of the 3 reviewers.

      ▪ Figure 7 (old 8): to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum. Moreover, the WB was removed and is now presented in figure 6 (improved as requested).

      ▪ Figure 8. Was old figure 7

      ▪ Figure 9: figure 9 was recomposed and improved for increased clarity as suggested by reviewer 2 and 3.

      ▪ Figure 16 was before appendix 11

      Figure supplements and supplementary files

      ▪ Figure 1-Figure supplement 1 New. Sperm parameters of the 2 patients. requested by editor (remark #1) by the reviewer 1 (Note #3)

      ▪ Figure 2-Figure supplement 1 new. Sperm parameters of the line 2 (KO animals) requested by the reviewer 1 (Note #5)

      ▪ Figure 4-Figure supplement 1 New. Experiment to evaluate the specificity of the human CCDC146 antibody. Minimal revision request and reviewer 1 note #8

      ▪ Figure 6-Figure supplement 1 New. Figure recomposed; Asked by reviewer 2 note #4 and reviewer 3

      ▪ Figure 8-Figure supplement 1 New. We now provide new images to show the non-specific staining of the midpiece of human sperm by secondary Abs in ExM experiments; Asked by reviewer 2

      ▪ Figure 10-Figure supplement 1 New. We added new images to show the non-specific staining of the midpiece of mouse sperm by secondary Abs in IF (panel B). Rewiever 1 note #9 and reviewer 2 note #5

      ▪ Figure 12-Figure supplement 1 New. Control requested by reviewer 3 Note #23

      ▪ Figure 13-Figure supplement 1 New. We provide a graph and a statistical analysis demonstrating the increase of the length of the manchette in the Ccdc146 KO. Requested by editor and reviewer 3 Note 24

      ▪ Figure 15-Figure supplement 1 New. Control requested by reviewer 2. Minor comments

      ▪ Figure supplementary 1 New. Answer to question requested by reviewer 2 note #1

      All the reviewers' and editors’ comments have been answered (see our point to point response) and we resubmit what we believe to be a significantly improved manuscript. We strongly hope that we meet all your expectations and that our manuscript will be suitable for publication in "eLife". We look forward to your feedback,

      Point by point answer

      Please note that there has been active discussion of the manuscript and the summarize points below is the minimal revision request that the reviewers think the authors should address even under this new review model system. It was the reviewers' consensus that the manuscript is prepared with a lot of oversights - please see all the minor points to improve your manuscript.

      All minimal revision requests have been addressed

      Minimal revision request

      1) Clinical report/evaluation of the two patients should be given as it was not described even in their previous study as well as full description of CCDC146.

      We provide now a new Figure 1-figure supplement 1 describing the patients sperm parameters

      2) Antibody specificity should be provided, especially given two of the reviewers were not convinced that the mid piece signal is non-specific as the authors claim. As both KO and KI model in their hands, this should be straightforward.

      To validate the specificity of the Antibody, we transfected HEK cells with a human DDK-tagged CCDC146 plasmid and performed a double immunostaining with a DDK antibody and the CCDC146 antibody. We show that both staining are superimposable, strongly suggesting that the CCDC146 Ab specifically target CCDC146. This experiment is now presented in Figure 4-Figure supplement 1. Next, to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum.

      3) The authors should improve statistical analysis to support their experimental results for the reader can make fair assessment. Combined with clear demonstration of ab specificity, this lack of statistical analysis with very few sample number is a major driver of dampening enthusiasm towards the current study.

      Several statistical analyses were carried out and are now included:

      1) distribution of the HA signal in mouse sperm cells (see point 2 Figure 7 panel B)

      2) quantification and statistical analyses of the defect observed in Ccdc146 KO sperm (figure 2 panel E)

      3) Quantification and statistical analyses of the length of the manchette in spermatids 13-15 steps (Figure 13-Figure supplement 1 new)

      4) The authors need to clarify (peri-centriolar vs. centriole)

      In figure 4A, we have clearly shown that the protein colocalizes with centrin, a centriolar core protein in somatic cells. This colocalization strongly suggests that CCDC146 is therefore a centriolar protein, and this is now clearly indicated lines 211-212. However, its localization is not restricted to the centrioles and a clear staining was also observed in the pericentriolar material (PCM). The presence of a protein in PCM and centriole was already described, and the best example is maybe gamma-tubulin (PMID: 8749391).

      or tone down (CCDC146 to be a MIP) of their claim/description.

      Concerning its localization in sperm, we agree with the reviewer that our demonstration that CCDC146 is MIP would deserve more results. Because of that, we have toned down the MIP hypothesis throughout the manuscript. See lines 491495

      Testis-specific expression of CCDC146 as it is not consistent with their data.

      We have also modified our claim concerning the testis-expression of CCDC146. Line 176

      Reviewer #1 (Recommendations For The Authors):

      Major comments

      1) As described in general comments, this study limits how the CCDC146 deficiency impairs abnormal centriole and manchette formation. The authors should explain their relationship in developing germ cells.

      In fact, there are limited information about the relationship between the manchette and the centriole. However, few articles have highlighted that both organelles share molecular components. For instance, WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis (Commun Biol. 2021; 4: 645. doi: 10.1038/s42003-021-02171-5). Another study demonstrates that CCDC42 localizes to the manchette, the connecting piece and the tail (Front. Cell Dev. Biol. 2019 https://doi.org/10.3389/fcell.2019.00151). These articles underline that centrosomal proteins are involved in manchette formation and removal during spermiogenesis and support our results showing the impact of CCDC146 lack on centriole and manchette biogenesis. This information is now discussed. See lines 596-603

      2) The authors generated knock-in mouse model. If then, are the transgene can rescue the MMAF phenotype in CCDC146-null mice? This reviewer strongly suggest to test this part to clearly support the pathogenicity by CCDC146.

      We indeed wrote that we created a “transgenic mice”, which was misleading. We actually created a CCDC16 knock-in expressing a tagged-protein. The strain was actually made by CRISPR-Cas9 and a sequence coding for the HA-tag was inserted just before the first amino acid in exon 2, leading to the translation of an endogenous HA-tagged CCDC146 protein. We have removed the word transgenic from the text and made changes accordingly (see lines 250-253). We can therefore not use this strain to rescue the MMAF phenotype as suggested by the reviewer.

      3) Although the authors cite the previous study (Coutton et al., 2019), the study does not describe any information for CCDC146 and clinical information for the patients. The authors must show the results for clinical analysis to clarify the attended patients are MMAF patients without other phenotypic defects.

      We have now inserted a table, indicating all sperm parameters for the patients harboring a mutation in the CCDC146 gene (Figure 1-Figure supplement 1) and is now indicated lines 159-160

      4) The authors describe CCDC146 expression is dominant in testes, However, the level in testis is only moderate in human (Supp Figure 1). Thus, this description is not suitable.

      In Figure 1-figure supplement 2 (old FigS1), the median of expression in testis is around 12 in human, a value considered as high expression by the analysis software from Genevestigator. However, for mouse, it is true that the level of expression is medium. We assumed that reviewer’s comment concerned testis expression in mouse. To take into account this remark, we changed the text accordingly. See line 176.

      5) Although the authors mentioned that two mice lines are generated, only one line information is provided. Authors must include information for another line and provide basic characterization results to support the shared phenotype within the lines.

      We now provide a revised Figure 2-figure supplement 1CD, presenting the second line and the corresponding text in the main text is found lines 178-183.

      6) In somatic cells, the CCDC146 localizes at both peri-centriole and microtubule but its intracellular localization in sperm is distinguished. The authors should explain this discrepancy.

      The multi-localization of a centriolar protein is already discussed in detail in discussion lines 520-526. We have written:

      “Despite its broad cellular distribution, the association of CCDC146 with tubulin-dependent structures is remarkable. However, centrosomal and axonemal localizations in somatic and germ cells, respectively, have also been reported for CFAP58 [37, 55], thus the re-use of centrosomal proteins in the sperm flagellar axoneme is not unheard of. In addition, 80% of all proteins identified as centrosomal are found in multiple localizations (https://www.proteinatlas.org/humanproteome/subcellular/centrosome). The ability of a protein to home to several locations depending on its cellular environment has been widely described, in particular for MAP. The different localizations are linked to the presence of distinct binding sites on the protein…. “

      7) Authors mention CCDC146 is a centriolar protein in the title and results subtitle. However, the description in results part depicts CCDC146 is a peri-centriolar protein, which makes confusion. Do the authors claim CCDC146 is centrosomal protein?

      In figure 4A, we have clearly shown that the protein colocalizes with centrin, a centriolar core protein. This colocalization strongly suggests that CCDC146 is therefore a centriolar protein in somatic cells, and is now clearly indicated lines 211-212. However, its localization is not restricted to the centrioles and a clear staining was also observed in the pericentriolar material (PCM). The presence of a protein in PCM and centriole was already described and the best example is maybe gamma-tubulin (PMID: 8749391).

      8) Verification of the antibody against CCDC146 must be performed and shown to support the observed signal are correct. 2nd antibody only signal is not proper negative control.

      It is a very important remark. The commercial antibody raised against human CCDC146 was validated in HEK293-cells expressing a DDK-tagged CCDC146 protein. Cells were co-marked with anti-DDK and anti-CCDC146 antibodies. We have a perfect colocalization of the staining. This experiment is now presented in Figure 4-figure supplement 1 and presented in the text (lines 206-208).

      9) In human sperm, conventional immunostaining reveals CCDC146 is detected from acrosome head and midpiece. However, in ExM, the signal at acrosome is not detected. How is this discrepancy explained? The major concern for the ExM could be physical (dimension) and biochemical (properties) distortion of the sample. Without clear positive and negative control, current conclusion is not clearly understood. Furthermore, it is unclear why the authors conclude the midpiece signal is non-specific. The authors must provide experimental evidence.

      Staining on acrosome should always be taken with caution in sperm. Indeed, numerous glycosylated proteins are present at the surface of the plasma membrane regarding the outer acrosomal membrane for sperm attachment and are responsible for numerous nonspecific staining. Moreover, this acrosomal staining was not observed in mouse sperm, strongly suggesting that it is not specific.

      Concerning the staining in the midpiece observed in both conventional and Expansion microscopy, it also seems to be nonspecific and associated with secondary Abs.

      For IF, we now provide new images showing clearly the nonspecific staining of the midpiece when secondary Ab were used alone (see Figure 10-figure supplement 1B).

      For ExM, we provide new images in Figure 8-figure supplement 1B (POC5 staining) showing a staining of the midpiece (likely mitochondria), although POC5 was never described to be present in the midpiece. Both experiments (CCDC146 and POC5 staining by ExM) shared the same secondary Ab and the midpiece signal was likely due to it.

      Moreover, we now provide new images (figure 7C) in ExM on mouse sperm showing no staining in the midpiece and demonstrating that the punctuated signal is present all along the flagellum. Finally, we would like to underline that we now provide new IF results, using an anti-HA conjugated with alexafluor 488 and confirming the ExM results.

      These points are now discussed lines 498-502 for acrosome and lines 503-511 for midpiece staining.

      10) For intracellular localization of the CCDC146 in mouse sperm, the authors should provide clear negative control using WT sperm which do not carry the transgene.

      This experiment was performed.

      To avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum.

      11) Current imaging data do not clearly support the intracellular localization of the CCDC146. Although western blot imaging reveal that CCDC146 is detected from sperm flagella, this is crude approach. Thus, this reviewer highly recommends the authors provide more clear experimental evidence, such as immuno EM.

      We provide now a WB comparing the presence of the protein in the flagellum and in the head fractions; see new figure 6. We show that CCDC146 is only present in the flagellum fraction; The detection of the band appeared very quickly at visualization and became very strong after few minutes, demonstrating that the protein is abundant in the flagella. It is important to note that epididymal sperm do not have centrioles and therefore this signal is not a centriolar signal. We also now provide new statistical analyses showing that the immuno-staining observed in the principal piece is very specific (Figure 7B). Altogether, these results demonstrate unequivocally the intracellular localization of CCDC146 in the flagellum. This point is now discussed lines 480-489

      12) Although sarkosyl is known to dissociate tubulin, it is not well understood and accepted that the enhanced detection of CCDC146 by the detergent indicates its microtubule inner space. Sperm axoneme to carry microtubule is also wrapped peri-axonemal components with structural proteins, which are even not well solubilized by high concentration of the ionic detergent like SDS.

      We agree with the reviewer that the solubilization of the protein by sarkozyl is not a proof of the presence of the protein inside microtubule. Taking into account this point, the MIP hypothesis was toned down and we now discuss alternative hypothesis concerning these results; See discussion lines 490-497

      13) SEM image is not suitable to explain internal structure (line 317-323).

      We agree with the reviewers and changes were made accordingly. See lines 354-357

      Minor comments

      1) In main text, supplementary figures are cited "Supp Figure". And the corresponding legends are written in "Appendix - Figure". Please unify them.

      Done Labelled now “Figure X-figure supplement Y”

      2) Line 159, "exon 9/19" is not clear.

      We have written now exons 9 and indicated earlier that the gene contains 19 exons

      3) Line 188, "positive cells" are vague.

      Positive was changed by “fluorescent”

      4) Representative TUNEL assay image for knockout testes were not shown in Supp Figure 3B.

      It was a mistake now Figure 2-figure supplement 2C

      5) Please provide full description for "IF" and "AB" when described first.

      Done

      6) Line 262, It is unclear what is "main piece".

      Changed to principal piece

      7) Line 340, Although the "stage" information might be applicable, this is information for "seminiferous tubule" rather than "spermatid". This reviewer suggests to provide step information rather than stage information.

      We agree with the reviewer that there was a confusion between “stage” and “step”. We change to step spermatids

      8) Line 342, Step 1 is not correct in here.

      OK corrected. now steps 13-15 spermatids

      9) Line 803, "C." is duplicated.

      Removed

      10) Figure 3A, it will be good to mark the defective nuclei which are described in figure legends.

      These cells are now indicated by white arrow heads

      11) Figure 5, Please provide what MT stands for.

      Now explained in the legend of figure 5

      12) Figure 6. Author requires clear blot images for C. In addition, Panel B information is not correct. If the blot was performed using HA antibody, then how "WT" lane shows bands rather than "HA" bands?

      The reviewer is correct. It was a mistake; The figure was recomposed and improved.

      Reviewer #2 (Recommendations For The Authors):

      Overall, editing oversights are present throughout the manuscript, which has made the review process quite difficult. Some repetitive figures can be removed to streamline to grasp the overall story easier. Some claims are not fully supported by evidence that need to tone down. Some figures not referenced in the main text need to be mentioned at least once.

      All figures are now referenced in the text

      Major comments:

      1) 163-164 - Please clarify the claim that there is going to be an absence of the protein or nonfunctional protein, especially for the patient with a deletion that could generate a truncated protein at two third size of the full-length protein. Similarly, 35% of the protein level is present for the patient with a nonsense mutation. Some in silico structural analysis or analysis of conserved domains would be beneficial to support these claims.

      Both mutations are predicted to produce a premature stop codons: p.Arg362Ter and p.Arg704serfsTer7, leading either to the complete absence of the protein in case of non-sense mediated mRNA decay or to the production of a truncated protein missing almost two third or one fourth of the protein respectively. CCDC146 is very well conserved throughout evolution (Figure supplementary 1), including the 3’ end of the protein which contains a large coil-coil domain (Figure 1B). In view of the very high degree of conservation, it is most likely that the 3’ end of the protein, absent in both subjects, is critical for the CCDC146 function and hence that both mutations are deleterious. This explanation is now added to the discussion. see lines 439-448

      2) 173, 423 - Please clearly state a rationale of your mouse model design (i.e., why a mouse model that recapitulate human mutation is not generated) as the truncations identified in human patients are located further towards the C-terminus, and it is not clear whether truncated proteins are present, and if so, they could still be functional. Basically, the current mouse model supports the causality of the human mutations.

      This is an important question, which goes beyond the scope of this article, and raises the question of how to confirm the pathogenicity of mutations identified by high-throughput sequencing. The production of KO or KI animals is an important tool to help confirm one’ suspicions but the first element to take into consideration is the nature of the genetic data.

      Here we had two patients with homozygous truncating variants. In human, it is well established that the presence of premature stop codons usually induces non-sense mediated mRNA decay (NMD), inducing the complete absence of the protein or a strong reduction in protein production. In the unlikely absence of NMD in our two patients, the identified variants would induce the production of proteins missing 60% and 30% of their C terminal part. Often (and it is particularly true for structural proteins) the production of abnormal proteins is more deleterious than the complete absence of the protein (and it is most likely the purpose of NMD, to limit the production of abnormal “toxic” proteins). For these reasons, to try to recapitulate the most likely consequences of the human variants, without risking obtaining an even more severe effect, we decided to introduce a stop codon in the first exon in order to remove the totality of the protein in the KO mice.

      The second element is to interpret the phenotype of the KO animals. Here, the human sperm phenotype is perfectly recapitulated in the KO mice.

      Overall, we have strong genetic arguments in human and the reproduction of the phenotype in KO mice confirming the pathogenicity of the variants identified in men.

      This point is now discussed see lines 433-438

      3) Figure 6A - the labelling is misleading as it seems to suggest that the specific cells were isolated from the testes for RT-PCR.

      We have modified the labelling to avoid any confusion.

      Figure 6B -Signal of HA-tag is shown in WT, not in transgenic. Please check the order of the labels. Figure 6C - This blot is NOT a publication-quality figure. The bands are very difficult to observe, especially in lane D18. Because it is one of the important data of this study, replacing this figure is a must.

      The figure has been completely remade, including new results. See new figure 6. Figure 6C was suppressed.

      4) Supplementary fig 6 is also not a publication-level figure, and the top part seems largely unnecessary (already in the figure legend).

      The figure has been completely remade as well (now Figure 6-Figure Supplement 1).

      5) 261/267- The conclusion that mitochondrial staining in the flagellum (in both mice and humans) is non-specific is not convincing. Supplementary fig 8 shows that the signal from secondary only IF possibly extends beyond the midpiece - but it is hard to determine as no mitochondrial-specific staining is present. Either need to tone down the conclusion or provide supporting experimental evidence.

      First, to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum. These experiments are now described lines 271-279

      Second, we provide new images of the signal obtained with secondary Abs only that shows more clearly that the secondary Ab gave a non-specific staining (Figure 10-Figure supplement 1B). This point is discussed lines 503-511

      6) Figure 9 A - Please relate the white line to Fig. 9B label in X-axis. The information from Fig 9A+D and 9E+F are redundant. The main text nor the figure legends indicate why these specific two sperm were chosen for quantification and demonstrating the outcomes. One of them could be moved to supplementary information or removed, or the two could be combined.

      As suggested by the reviewer, we have combined the two sperm to demonstrate that CCDC146 staining is mostly located on microtubule doublets. Moreover, the figure was recomposed to make it clearer.

      Minor comments:

      All of the supplementary figures are referred to as Supp Fig X in the text, however, they are actually titled Appendix - Figure X. This needs to be consistent.

      The figures are now referred as figure supplement x in both text and figures

      Line 125 - edit spacing.

      We think this issue (long internet link) will be curated later and more efficiently by the journal, during the step of formatting necessary for publication.

      144 - With which to study  with which we studied?

      We made the change as suggested.

      151 - Supp Fig 1 - the text says that the gene is highly transcribed in human and mouse testes, but the information in the figure states that the level in mouse tissues is "medium"

      We have corrected this mistake in the text; See line 176

      165 - The two mutations are most likely deleterious. Please specifically mention what analyses done to predict the deleterious nature to support these claims.

      Both variants, c.1084C>T and c.2112del, are extremely rare in the general population with a reported allele frequency of 6.5x10-5 and 6.5x10-06 respectively in gnomAD v3. Moreover, these variants are annotated with a high impact on the protein structure (MoBiDiC prioritization algorithm (MPA) score = 10, DOI: 10.1016/j.jmoldx.2018.03.009) and predicted to induce each a premature termination codon, p.(Arg362Ter) and p.(Arg704SerfsTer7) respectively, leading to the production of a truncated protein. This information is now given line 164-169

      196-200/Figure 4 - As serum starved cells/basal body (B) are not mentioned in the main text, as is, Fig 4A would be sufficient/is relevant to the text. Please make the text reflect the contents of the whole figure, or re/move to supplement.

      We agree with the reviewer that the full description of the figure should be in the text. We added two sentences to describe figure 4B see lines 217-218.

      224 - spermatozoa (plural) fits better here, not spermatozoon

      OK changed accordingly

      236 - According to the figure legend, 6B is only showing data from the epididymal sperm, not postnatal time points; should be referencing 6C. Alignment of Marker label

      As indicated above, the figure has been completely remade, including new results. See new figure 6. Figure 6C was suppressed. The corresponding text was changed accordingly see lines 249-266

      255-256 - Referenced figure 7B3, however, 7B3 only shows tubulin staining, so no CCDC146 can be observed. Did authors mean to reference fig 7B as a whole?

      Sorry for this mistake. We agree and the text is now figure 8B6 (figure 7 and 8 were switched)

      305 - "of tubules" - I presume it is meant to be microtubules?

      Yes; The text was changed as suggested

      317-321 - a diagram of HTCA would be useful here

      We have added a reference where HTCA diagram is available see line 363. Moreover, a TEM view of HTCA is presented figure 12A

      322/Fig 11A - an arrow denoting the damage might be useful, as A1 and A3 look similar. The size of the marker bar is missing. Please update the information on figure legend.

      Concerning, the comparison between A1 and A3, the take home message is that there is a great variability in the morphological damages. This point is now underlined in the corresponding text. We updated the size of the marker bar as suggested (200 nm). See line 365-367

      323 - Please mark where capitulum is in the figure

      Capitulum was changed for nucleus

      Since Fig 11B2 is not referenced in the main text, it does not seem to add anything to the data, and could be removed/moved to supplement.

      We added a sentence to describe figure 11B2 line 370

      342-343 - manchette in step I is not seen clearly - the figure needs to be annotated better. However, DPY19L2 is absent in step I in the KO, but the main text does not reflect that - why is that?

      We do not understand the remark of the reviewer “manchette in step I is not seen clearly”. The figure shows clearly the manchette (red signal) in both WT and KO (Figure 13 D1/D2).

      For steps 13-15 WT spermatids, the size of the manchette decreases and become undetectable. In KO spermatids, the shrinkage of the manchette is hampered and in contrast continue to expand (Figure 13D2). We also provide a new Figure 13-figure supplement 1 for other illustrations of very long manchettes and a statistical analysis. In the meantime, the acrosome is strongly remodeled, as shown in figure 16-new, with detached acrosome (panel H). This morphological defect may induce a loss of the DPY19L2 staining (Figure 13 D2 stage I-III). This explanation is now inserted in the text line 396399

      Figure 15B and 15C only show KO, corresponding images from the WT should be present for comparison.

      WT images are now provided in Figure 1-figure supplement 1 new

      Figure 12 - Figure 12 - JM?.

      JM was removed. It does not mean anything

      Figure 12C and Supplementary Fig 10 - structures need to be labelled, as it is unclear what is where

      Done

      338 - text mentions step III, but only sperm from step VII are shown in Figure 13

      As suggested by reviewer 3, we changed stage by step. The text was modified to take into account this remark see lines 388-396

      360 - This is likely supposed to say Supp Figure 11E-G, not 13??

      Yes, it is a mistake. Corrected

      388 Typo "in a in a".

      Yes, it is a mistake. Corrected

      820 - Fig 3 legend - in KO spermatid nuclei were elongated - could this be labelled by arrows? I am not convinced this phenotype is that different from the WT.

      In fact, the nuclei of elongating KO spermatids are elongated and also very thin, a shape not observed in the WT; We have added arrow heads and modified the text to indicate this point line 200.

      836 - Figure 5 legend says that in yellow is centrin, but that is not true for 5A, where the figure shows labelling for y-tubulin (presumably, according to the figure itself).

      We have modified the text of the legend to take into account the remark

      837- 5A supposedly corresponds to synchronized HEK293T cells, but the reasoning behind using synchronized cells is not mentioned at all in the main text; furthermore, how this synchronization is achieved is not explained in materials and methods (serum starvation? Thymidine block?).

      Yes, figure 5A was obtained with synchronized cells. We have added one paragraph in the MM section. For cell synchronization experiments, cells underwent S-phase blockade with thymidine (5 mM, SigmaAldrich) for 17 h followed by incubation in a control culture medium for 5 h, then a second blockade at the G2-M transition with nocodazole (200 nM, Sigma-Aldrich) for 12 h. Cells were then fixed with cold methanol at different times for IF labelling. See line 224 for changes made in the result section and lines 700-704 for changes made in the MM section.

      845- figure legend says that the RT-PCR was done on CCDC146-HA tagged mice, but the main text does not reflect that.

      We made changes and the description of the KI is now presented before (line 240) the RT-PCR experiment (line 257).

      949 - it is likely supposed to say A2, not B1 (B1 does not exist in Fig 15)

      Yes, it is a mistake. Corrected

      971 - Appendix Fig 3 legend - I believe that the description for B and C are swapped.

      Yes, it is a mistake. Corrected

      Furthermore, some questions to address in A would be: Which cross sections were from which animal/points? How many per animal? Were they always in the same location?

      Yes, we have a protocol for arranging and orienting all testes in the same way during the paraffin embedding phase. The cross-sections are therefore not taken at random, and we can compare sections from the same part of the testis. The number of animals was already indicated in the figure legend (see line 1128)

      Reviewer #3 (Recommendations For The Authors):

      1) There are a number of grammatical and orthographical errors in the text. Careful proofreading should be performed.

      We have sent the manuscript to a professional proofreader

      2) The author should also check for redundancies between the introduction and the discussion.

      The discussion has modified to take into account reviewers’ remarks. Nevertheless, we did our best to avoid redundancies between introduction and discussion.

      3) Can the authors provide a rationale why they have chosen to tag their gene with an HA tag for localisation? One would rather think of fluorescent proteins or a Halo tag.

      Because the functional domains of the protein are unknown, adding a fluorescent protein of 24 KDa may interfere with both the localization and the function of CCDC146. For this reason, we choose a small tag of only 1.1 KDa, to limit as such as possible the risk of interfering with the structure of the protein. This rational is now indicated in the manuscript lines 251-254. It is worth to note, that the tagged-strain shows no sperm defect, demonstrating that the HA-tag does not interfere with CCDC146 function.

      4) In the abstract, line 53, "provide evidence" is not the right term for something that is just suggestive. The term "suggests" would be more appropriate.

      The text was modified to take into account this remark

      5) Line 74: "genetic deficiency" sounds strange here, do the authors mean simply "mutation"?

      Infertility may be due to several genetic deficiency such as chromosomal defects (XXY (Klinefelter syndrome)), microdeletion of the Y chromosome or mutations in a single gene. Therefore, mutation is too restrictive. Nevertheless, we modified the sentence which is now “…or a genetic disorder including chromosomal or single gene deficiencies”

      6) Lines 163-164: the authors describe the mutations (premature stop mutations) and say that they could either lead to complete absence of the gene product, or the expression of a truncated protein. Did they test this, for example, with some immuno blot analyses?

      As stated above, unfortunately, we were unable to verify the presence of RNA-decay in these patients for lack of biological material.

      7) Line 184 and Fig 2E: the sperm head morphologies should be quantitatively assessed.

      We provide now a full statistical analysis of the observed defects: see new panel in Figure 2 F

      8) Fig 3: The annotation should be more precise - KO certainly means CDCC146-KO. The colours of the IH panels is different, which attracts attention but is clearly a colour-adjustment artefact. Colours should be adjusted for the panels to look comparable. It would be also helpful to add arrowheads into the figure to point at the phenotypes that are highlighted in the text.

      We have added Ccdc146 KO in all figures. We have added arrow heads to point out the spermatids showing a thin and elongated nucleus. Concerning adjustment of colors, we attempted to make images of panel B comparable. See new figure 3.

      9) Fig 6A: the authors use RT PCR to determine expression dynamics of their gene of interested, and use actin (apparently) as control. However, actin and CDCC146 expression levels follow the same trend. How is the interpreted?

      The reviewer did not understand the figure. The orange bars do not correspond to actin expression and the grey bars to Ccdc146 expression but both bars represent the mRNA expression levels of Ccdc146 relative to Actb (orange) and Hprt (grey) expression in CCDC146-HA mouse pups’ testes. We tested two housekeeping genes as reference to be sure that our results were not distorted by an unstable expression of a housekeeping gene. We did not see significant difference between both house keeping genes. Actin was not used.

      10) In line 235, the authors suggest posttranslational modifications of their protein as potential cause for a slightly different migration in SDS PAGE as predicted from the theoretical molecular weight. This is not necessarily the case, some proteins do migrate just differently as predicted.

      We have changed the text accordingly and now provide alternative explanation for the slightly different migration. See lines 258-259

      11) The annotation of Fig 6 panels is problematic. First, why do the authors write "Laemmli" as description of the gel? It would be more helpful to write what is loaded on the gel, such as "sperm". Second, in panels B and C it would be helpful to add the antibodies used. It is not clear why there is a signal in the WT lane of panel B, but not in the HA lane (supposing an anti-HA antibody is used: why has WT a specific HA band?). In panel C, it is not clear why the blot that has so beautifully shown a single band in panel B suddenly gives such a bad labelling. Can the authors explain this? Also, they cut off the blot, likely because to too much background, but this is bad practice as full blots should be shown. In the current state, the panel C does not allow any clear conclusion. To make it conclusive, it must be repeated.

      Several mistakes were present in this figure. This figure was recomposed. The WB on testicular extract was suppressed and we now present a new WB allowing to compare the presence of CCDC146 in the flagella and head fractions from WT and HA-CCDC146 sperm. Using an anti-HA Ab, we demonstrate that in epididymal sperm the protein is localized in the flagella only. See new figure 6. The corresponding text was changed accordingly.

      12) The authors have raised an HA-knockin mouse for CDCC146, which they explained by the unavailability of specific antibodies. However, in Fig 7, they use a CDCC146 antibody. Can they clarify?

      The commercial Ab work for HUMAN CCDC146 but not for MOUSE CCDC146. We have added few words to make the situation clearer, we have added the following information “the commercial Ab works for human CCDC146 only”. See line 240

      13) In Fig 7A (line 258), the authors hypothesise that they stain mitochondria - why not test this directly by co-staining with mitochondria markers?

      We chose another solution to resolve this question:

      To avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the whole flagellum.

      14) It seems that in both, Fig 7 and 8, the authors use expansion microscopy to localise CDCC146 in sperm tails. However, the staining differs substantially between the two figures. How is this explained?

      In figure 8 we used the commercial Ab in human sperm, whereas in figure 7 we used the anti-HA Abs in mouse sperm. Because the antibodies do not target the same part of the CCDC146 protein (the tag is placed at the N-terminus of the protein, and the HPA020082 Ab targets the last 130 amino acids of the Cter), their accessibility to the antigenic site could be different. However, it is important to note that both antibodies target the flagellum. This explanation is now inserted see lines 304-312

      15) Fig 8D and line 274: the authors do a fractionation, but only show the flagella fraction. Why?

      Showing all fractions of their experiment would have underpinned the specific enrichment of CDCC146 in the flagella fraction, which is what they aim to show. Actually, given the absence of control proteins, the fact that the band in the flagellar fraction appears to be weaker than in total sperm, one could even conclude that there is more CDCC146 in another (not analysed) fraction of this experiment. Thus, the experiment as it stands is incomplete and does not, as the authors claim, confirm the flagellar localisation of the protein.

      We agree with the reviewer’s remark. We provide now new results showing both flagella and nuclei fractions in new figure 6A. This experiment is presented lines 253-256

      16) Line 283, Fig 9D,F: The description of the microtubules in this experiment is not easy to understand. Do the authors mean to say that the labelling shows that the protein is associated with doublet microtubules, but not with the two central microtubules? They should try to find a clearer way to explain their result.

      As suggested by reviewer 2, we have changed the figure to make it clearer. The text was changed accordingly. See new figure 9 and new corresponding legend lines 1006.

      17) Fig 9G - how often could the authors observe this? Why is the axoneme frayed? Does this happen randomly, or did the authors apply a specific treatment?

      Yes, it happens randomly during the fixation process.

      18) Line 300 and Fig 10A - the authors talk about the 90-kDa band, but do say anything about what they think this band is representing.

      We have now added the following sentence lines 340-342: “This band may correspond to proteolytic fragment of CCDC146, the solubilization of microtubules by sarkosyl may have made CCDC146 more accessible to endogenous proteases.”

      19) Fig 11A, lines 321-322: the authors write that the connecting piece is severely damaged. This is not obvious for somebody who does not work in sperm. Perhaps the authors could add some arrow heads to point out the defects, and briefly describe them in the text.

      We realized from your remark that our message was not clear. In fact, there is a great variability in the morphological damages of the HTCA. For instance, the HTCA of Ccdc146 KO sperm presented in figure 10A2 is quite normal, whereas that in figure 10A4 is completely distorted. This point is now underlined in the corresponding text. See lines 367-369

      We also added the size of the marker bar (200 nm), which were missing in the figure’s legend.

      20) Line 323: it will be important to name which tubulin antibody has been used to identify centrioles, as they are heavily posttranslationally modified.

      The different types of anti-tubulin Abs are described in the corresponding figure’s legend

      21) Fig 11B - phenotypes must be quantified to make these observations meaningful.

      We agree that a quantification would improve the message. However, testicular sperm are obtained by enzymatic separation of spermatogenic cells and the number of testicular sperm are very low. Moreover, not all sperm are stained. Taking these two points into account, it seems to us that quantification could be difficult to analyze. For this reason, the quantification was not done; however, it is important to note that these defects were not observed in WT sperm, demonstrating that these defects are cased by the lack of CCDC146. We have added a sentence to underline this point; See lines 374-375

      22) Line 329: Figure 12AB - is this a typo - should it read Figure 12B?

      We have split the panel A in A1 and A2 and changed the text accordingly. See line 378

      23) Why are there not wildtype controls in Fig 12B, C?

      We provide now as Figure 12-figure supplement 1, a control image for fig 12B. For figure 12C, the emergence of the flagellum from the distal centriole in WT is already shown in Fig 12A1

      24) Fig 13: the authors write that the manchette is "clearly longer and wider than in WT cells" (lines 342-343). How can they claim this without quantitative data?

      We now provide a statistical analysis of the length of the manchette. See figure 13-figure supplement 1A. We also provide a new a new image illustrating the length of the manchette in Ccdc146 KO spermatids; See Figure 13-figure supplement 1B.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, the authors explore the effects of DNA methylation on the strength of regulatory activity using massively parallel reporter assays in cell lines on a genome-wide level. This is a follow-up of their first paper from 2018 that describes this method for the first time. In addition to adding more indepth information on sequences that are explored by many researchers using two main methods, reduced bisulfite sequencing and sites represented on the Illumina EPIC array, they now show also that DNA methylation can influence changes in regulatory activity following a specific stimulation, even in absence of baseline effects of DNA methylation on activity. In this manuscript, the authors explore the effects of DNA methylation on the response to Interferon alpha (INFA) and a glucocorticoid receptor agonist (dexamethasone). The authors validate their baseline findings using additional datasets, including RNAseq data, and show convergences across two cell lines. The authors then map the methylation x environmental challenge (IFNA and dex) sequences identified in vitro to explore whether their methylation status is also predictive of regulatory activity in vivo. This is very convincingly shown for INFA response sequences, where baseline methylation is predictive of the transcriptional response to flu infection in human macrophages, an infection that triggers the INF pathways.

      Thank you for your strong assessment of our work!

      The extension of the functional validity of the dex-response altering sequences is less convincing.

      We agree. We note that genes close to dex-specific mSTARR-seq enhancers tend to be more strongly upregulated after dex stimulation than those near shared enhancers, which parallels our results for IFNA (lines 341-344). However, there is unfortunately no comparable data set to the human flu data set (i.e., with population-based whole genome-bisulfite sequencing data before and after dex challenge), so we could not perform a parallel in vivo validation step. We have added this caveat to the revised manuscript (lines 555-557).

      Sequences altering the response to glucocorticoids, however, were not enriched in DNA methylation sites associated with exposure to early adversity. The authors interpret that "they are not links on the causal pathway between early life disadvantage and later life health outcomes, but rather passive biomarkers". However, this approach does not seem an optimal model to explore this relationship in vivo. This is because exposure to early adversity and its consequences is not directly correlated with glucocorticoid release and changes in DNA methylation levels following early adversity could be related to many physiological mechanisms, and overall, large datasets and meta-analyses do not show robust associations of exposure to early adversity and DNA methylation changes. Here, other datasets, such as from Cushing patients may be of more interest.

      Thank you for making these important points. We have expanded the set of caveats regarding the lack of enrichment of early adversity-reported sites in the mSTARR-data set (lines 527-533). Specifically, we note that the relationship between early adversity and glucocorticoid physiology is complex (e.g., Eisenberger and Cole, 2012; Koss and Gunnar, 2018) and that dex challenge models one aspect of glucocorticoid signaling but not others (e.g., glucocorticoid resistance). Nevertheless, we also see little evidence for enrichment of early adversity-associated sites in the mSTARR data set at baseline, independently of the dex challenge experiment (lines 483-485; Figure 4).

      We also agree that large data sets (e.g., Houtepen et al., 2018; Marzi et al., 2018) and reviews (e.g., Cecil et al., 2020) of early adversity and DNA methylation in humans show limited evidence of associations between early adversity and DNA methylation levels. However, the idea that early adversity impacts downstream outcomes remains pervasive in the literature and popular science (see Dubois et al., 2019), which we believe makes tests like ours important to pursue. We also hope that our data set (and others generated through these methods) will be useful in interpreting other settings in which differential methylation is of interest as well—in line with your comment below. We have clarified both of these points in the revised manuscript (lines 520-522; 536-539).

      Overall, the authors provide a great resource of DNA methylation-sensitive enhancers that can now be used for functional interpretation of large-scale datasets (that are widely generated in the research community), given the focus on sites included in RBSS and the Illumina EPIC array. In addition, their data lends support that differences in DNA methylation can alter responses to environmental stimuli and thus of the possibility that environmental exposures that alter DNS methylation can also alter the subsequent response to this exposure, in line with the theory of epigenetic embedding of prior stimuli/experiences. The conclusions related to the early adversity data should be reconsidered in light of the comments above.

      Thank you! And yes, we have revised our discussion of early life adversity effects as discussed above.

      Reviewer #1 (Recommendations For The Authors):

      While the paper has a lot of strengths and provides new insight into the epigenomic regulation of enhancers as well as being a great resource, there are some aspects that would benefit from clarification.

      a. It would be great to have a clearer description of how many sequences are actually passing QC in the different datasets and what the respective overlaps are in bps or 600bp windows. Now often only % are given. Maybe a table/Venn diagram for overview of the experiments and assessed sequences would help here. This concern the different experiments in the K652, A549, and Hep2G cell lines, including stimulations.

      We now provide a supplementary figure and supplementary table providing, for each dataset, the number of 600 bp windows passing each filter (Figure 2-figure supplement 1; Supplementary File 9), as well as a supplementary figure providing an upset plot to show the number of assessed sequences shared across the experiments (Figure 2-figure supplement 2).

      b. It would also be helpful to have a brief description of the main differences in assessed sequences and their coverage of the old (2018) and new libraries in the main text to be able better interpret the validation experiments.

      We now provide information on the following characteristics for the 2018 data set versus the data set presented for the first time here: mean (± SD) number of CpGs per fragment; mean (± SD) DNA sequencing depth; and mean (± SD) RNA sequencing depth (lines 169-170 provide values for the new data set; in line 194, we reference Supplementary File 5, which provides the same values for the old data set). Notably, the coverage characteristics of analyzed windows in both data sets are quite high (mean DNA-seq read coverage = 94x and mean RNA-seq read coverage = 165x in the new data set at baseline; mean DNA-seq read coverage = 22x and mean RNA-seq read coverage = 54x in Lea et al. 2018).

      c. Statements of genome-wide analyses in the abstract and discussion should be a bit tempered, as quite a number of tested sites do not pass QC and do not enter the analysis. From the results it seems like from over 4.5 million sequences, only 200,000 are entering the analysis.

      The reason why many of the windows are not taken forward into our formal modeling analysis is that they fail our filter for RNA reads because they are never (or almost never) transcribed—not because there was no opportunity for transcription (i.e., the region was indeed assessed in our DNA library, and did not show output transcription, as now shown in Figure 2-figure supplement 1). We have added a rarefaction analysis (lines 715-722 in Materials and Methods) of the DNA fragment reads to the revised manuscript which supports this point. Specifically, it shows that we are saturated for representation of unique genomic windows (i.e., we are above the stage in the curve where the proportion of active windows would increase with more sequencing: Figure 1figure supplement 4). Similarly, a parallel rarefaction curve for the mSTARR-seq RNA-seq data (Figure 1-figure supplement 4) shows that we would gain minimal additional evidence for regulatory activity with more sequencing depth. We now reference these analyses in revised lines 179-184 and point to the supporting figure in line 182.

      In other words, our analysis is truly genome-wide, based on the input sequences we tested. Most of the genome just doesn’t have regulatory activity in this assay, despite the potential for it to be detected given that the relevant sequences were successfully transfected into the cells.

      d. Could the authors comment on the validity of the analysis if only one copy is present (cut-off for QC)?

      We think this question reflects a misunderstanding of our filtering criteria due to lack of clarity on our part, which we have modified in the revision. We now specify that the mean DNA-seq sequencing depth per sample for the windows we subjected to formal modeling was quite high:

      93.91 ± 10.09 SD (range = 74.5 – 113.5x) (see revised lines 169-170). In other words, we never analyze windows in which there is scant evidence that plasmids containing the relevant sequence were successfully transfected (lines 170-172).

      Our minimal RNA-seq criteria require non-zero counts in at least 3 replicate samples within either the methylated condition or the unmethylated condition, or both (lines 166-168). Because we know that multiple plasmids containing the corresponding sequence are present for all of these windows—even those that just cross the minimal RNA-seq filtering threshold—we believe our results provide valid evidence that all analyzed windows present the opportunity to detect enhancer activity, but many do not act as enhancers (i.e., do not result in transcribed RNA). Notably, we observe a negligible correlation between DNA sequencing depth for a fragment, among analyzed windows, and mSTARR-seq enhancer activity (R2 = 0.029; now reported in lines 183-184). We also now report reproducibility between replicates, in which all replicate pairs have r > 0.89, on par with previously published STARR-seq datasets (e.g., Klein et al., 2020; Figure 1-figure supplement 6, pointed to in line 193).

      e. While the authors state that almost all of the control sequences contain CpGs sites, could the authors also give information on the total number of CpG sites in the different subsets? Was the number of CpGs in a 600 bp window related to the effects of DNA methylation on enhancer activity?

      We now provide the number of CpG sites per window in the different subsets in lines 282-284. As expected, they are higher for EPIC array sites and for RRBS sites because the EPIC array is biased towards CpG-rich promoter regions, and the enzyme typically used in the starting step of RRBS digests DNA at CpG motifs (but control sequences still contain an average of ~13 CpG sites per fragment). We also now model the magnitude of the effects of DNA methylation on regulatory activity as a function of number of CpG sites within the 600 bp windows. Consistent with our previous work in Lea et al., 2018, we find that mSTARR-seq enhancers with more CpGs tend to be repressed by DNA methylation (now reported in lines 216-219 and Figure 1figure supplement 11).

      f. In the discussion, a statement on the underrepresented regions, likely regulatory elements with lower CG content, that nonetheless can be highly relevant for gene regulation would be important to put the data in perspective.

      Thanks for this suggestion. We agree that regulatory regions, independent of CpG methylation, can be highly relevant, and now clarify in the main text that the “unmethylated” condition of mSTARR-seq is essentially akin to a conventional STARR-seq experiment, in that it assesses regulatory activity regardless of CpG content or methylation status (lines 128-130).

      Consequently, our study is well-designed to detect enhancer-like activity, even in windows with low GC content. We now show with additional analyses that we generated adequate DNA-seq coverage on the transfected plasmids to analyze 90.2% of the human genome, including target regions with no or low CpG content (lines 148-149; 153-156; Supplementary file 2). As noted above, we also now clarify that regions dropped out of our formal analysis because we had little to no evidence that any transcription was occurring at those loci, not because sequences for those regions were not successfully transfected into cells (see responses above and new Figure 1-figure supplement 4 and Figure 2-figure supplement 1).

      g. To control for differences in methylation of the two libraries, the authors sequence a single CpGs in the vector. Could the authors look at DNA methylation of the 600 bp windows at the end of the experiment, could DNA methylation of these windows be differently affected according to sequence? 48 hours could be enough for de-methylation or re-methylation.

      We agree that variation in demethylation or remethylation depending on fragment sequence is possible. We now state this caveat in the main text (lines 158-159), and specify that genomic coverage of our bisulfite sequencing data across replicates are (unfortunately) too variable to perform reliable site-by-site analysis of DNA methylation levels before and after the 48 hour experiment (lines 1182-1185). Instead, we focus on a CpG site contained in the adapter sequence (and thus included in all plasmids) to generate a global estimate of per replicate methylation levels. We also now note that any de-methylation or re-methylation would reduce our power to detect methylation-dependent activity, rather than leading to false positives (lines 163-165).

      h. The section on the method for correction for multiple testing should be more detailed as it is very difficult to follow. Why were only 100 permutations used, the empirical p-value could then only be <0.01? The description of a subsample of the N windows with positive Betas is unclear, should the permutation not include the actual values and thus all windows - or were the no negative Betas? Was FDR accounting for all elements and pairs?

      We have now expanded the text in the Materials and Methods section to clarify the FDR calculation (lines 691, 695-699, 702, 706). We clarify that the 100 permutations were used to generate a null distribution of p-values for the data set (e.g., 100 x 17,461 p-values for the baseline data set), which we used to derive a false discovery rate. Because we base our evidence on FDRs, we therefore compare the distribution of observed p-values to the distribution of pvalues obtained via permutation; we do not calculate individual p-values by comparing an observed test statistic against the test statistics for permuted data for that individual window.

      We compare the data to permutations with only positive betas because in the observed data, we observe many negative betas. These correspond to windows which have no regulatory activity (i.e., they have many more input DNA reads than RNA-seq reads) and thus have very small pvalues in a model testing for DNA-RNA abundance differences. However, we are interested in controlling the false discovery rate of windows that do have regulatory activity (positive betas). In the permuted data, by contrast and because of the randomization we impose, test statistics are centered around 0 and essentially symmetrical (approximately equally likely to be positive or negative). Retaining all p-values to construct the null therefore leads to highly miscalibrated false discovery rates because the distribution of observed values is skewed towards smaller values— because of windows with “significantly” no regulatory activity—compared to the permuted data. We address that problem by using only positive betas from the permutations.

      i. The interpretation of the overlap of Dex-response windows with CpGs sites associated with early adversity should be revisited according to the points also mentioned in the public review and the authors may want to consider exploring additional datasets with other challenges.

      Thank you, see our responses to the public review above and our revisions in lines (lines 555559). We agree that comparisons with more data sets and generation of more mSTARR-seq data in other challenge conditions would be of interest. While beyond the scope of this manuscript, we hope the resource we have developed and our methods set the stage for just such analyses.

      Reviewer #2 (Public Review):

      This work presents a remarkably extensive set of experiments, assaying the interaction between methylation and expression across most CpG positions in the genome in two cell types. To this end, the authors use mSTARR-seq, a high-throughput method, which they have previously developed, where sequences are tested for their regulatory activity in two conditions (methylated and unmethylated) using a reporter gene. The authors use these data to study two aspects of DNA methylation:

      1) Its effect on expression, and 2. Its interaction with the environment. Overall, they identify a small number of 600 bp windows that show regulatory potential, and a relatively large fraction of these show an effect of methylation on expression. In addition, the authors find regions exhibiting methylation-dependent responses to two environmental stimuli (interferon alpha and glucocorticoid dexamethasone).

      The questions the authors address represent some of the most central in functional genomics, and the method utilized is currently the best method to do so. The scope of this study is very impressive and I am certain that these data will become an important resource for the community. The authors are also able to report several important findings, including that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures.

      Thank you for this generous summary!

      The main weaknesses of the study are: 1. The large number of regions tested seems to have come at the expense of the depth of coverage per region (1 DNA read per region per replicate). I have not been convinced that the study has sufficient statistical power to detect regulatory activity, and differential regulatory activity to the extent needed. This is likely reflected in the extremely low number of regions showing significant activity.

      We apologize for our lack of clarity in the previous version of the manuscript. Nonzero coverage for half the plasmid-derived DNA-seq replicates is a minimum criterion, but for the baseline dataset, the mean depth of DNA coverage per replicate for windows passing the DNA filter is quite high: 12.723 ± 41.696 s.d. overall, and 93.907 ± 10.091 s.d. in the windows we subjected to full analysis (i.e., windows that also passed the RNA read filter). We now provide these summary statistics in lines 148-149 and 169-170 and Supplementary file 5 (see also our responses to Reviewer 1 above). We also now show, using a rarefaction analysis, that our data set saturates the ability to detect regulatory windows based on DNA and RNA sequencing depth (new Figure 1-figure supplement 4; lines 179-184; 715-722).

      2) Due to the position of the tested sequence at the 3' end of the construct, the mSTARR-seq approach cannot detect the effect of methylation on promoter activity, which is perhaps the most central role of methylation in gene regulation, and where the link between methylation and expression is the strongest. This limitation is evident in Fig. 1C and Figure 1-figure supplement 5C, where even active promoters have activity lower than 1. Considering these two points, I suspect that most effects of methylation on expression have been missed.

      Thank you for pointing this out. We agree that we have not exhaustively detected methylationdependent activity in all promoter regions, given that not all promoter regions are active in STARR-seq. However, there is good evidence that some promoter regions can function like enhancers and thus be detected in STARR-seq-type assays (Klein et al., 2020). This important point is now noted in lines 187-189; an example promoter showing methylation-dependent regulatory activity in our dataset is shown in Figure 3E.

      We also now clarify that Figure 1C shows significant enrichment of regulatory activity in windows that overlap promoter sequence (line 239). The y-axis is not a measure of activity, but rather the log-transformed odds ratio, with positive values corresponding to overrepresentation of promoter sequences in regions of mSTARR-seq regulatory activity. Active promoters are 1.640 times more likely to be detected with regulatory activity than expected by chance (p = 1.560 x 10-18), which we now report in a table that presents enrichment statistics for all ENCODE elements shown in Figure 1C for clarity (Supplementary file 4). Moreover, 74.1% of active promoters that show regulatory activity have methylation-dependent activity, also now reported in Supplementary file 4.

      Overall, the combination of an extensive resource addressing key questions in functional genomics, together with the findings regarding the relationship between methylation and environmental stimuli makes this a key study in the field of DNA methylation.

      Thank you again for the positive assessment!

      Reviewer #2 (Recommendations For The Authors):

      I suggest the authors conduct several tests to estimate and/or increase the power of the study:

      1) To estimate the potential contribution of additional sequencing depth, I suggest the authors conduct a downsampling analysis. If the results are not saturated (e.g., the number of active windows is not saturated or the number of differentially active windows is not saturated), then additional sequencing is called for.

      We appreciate the suggestion. We have now performed a downsampling/rarefaction curve analysis in which we downsampled the number of DNA reads, and separately, the number of RNA reads. We show that for both DNA-seq depth and RNA-seq depth, we are within the range of sequencing depth in which additional sequencing would add minimal new analysis windows in the dataset (Figure 1-figure supplement 4; lines 179-184; 715-722).

      2) Correlation between replicates should be reported and displayed in a figure because low correlations might also point to too few reads. The authors mention: "This difference likely stems from lower variance between replicates in the present study, which increases power", but I couldn't find the data.

      We now report the correlations between RNA and DNA replicates within the current dataset and within the Lea et al., 2018 dataset (Figure 1-figure supplement 6). The between-replicate correlations in both our RNA libraries and DNA libraries are consistently high (r ≥ 0.89).

      3) The correlation between the previous and current K562 datasets is surprisingly low. Given that these datasets were generated in the same cell type, in the same lab, and using the same protocol, I expected a higher correlation, as seen in other massively parallel reporter assays. The fact that the correlations are almost identical for a comparison of the same cell and a comparison of very different cell types is also suspicious.

      Thanks for raising this point. We think it is in reference to our original Figure 1-Figure supplement 6, for which we now provide Pearson correlations in addition to R2 values (now Figure 1-Figure supplement 8). We note that this is not a correlation in raw data, but rather the correlation in estimated effect sizes from a statistical model for methylation-dependent activity. We now provide Pearson correlations for the raw data between replicates within each dataset (Figure 1-Figure supplement 6), which for the baseline dataset are all r > 0.89 for RNA replicates and r > 0.98 for DNA replicates, showing that replicate reproducibility in this study is on par with other published studies (e.g., Klein et al., 2020 report r > 0.89 for RNA replicates and r > 0.91 for DNA replicates).

      We do not know of any comparable reports in other MPRAs for effect size correlations between two separately constructed libraries, so it’s unclear to us what the expectation should be. However, we note that all effect sizes are estimated with uncertainty, so it would be surprising to us to observe a very high correlation for effect sizes in two experiments, with two independently constructed libraries (i.e., with different DNA fragments), run several years apart—especially given the importance of winner’s curse effects and other phenomena that affect point estimates of effect sizes. Nevertheless, we find that regions we identify as regulatory elements in this study are 74-fold more likely to have been identified as regulatory elements in Lea et al., 2018 (p < 1 x10-300).

      4) The authors cite Johnson et al. 2018 to support their finding that merely 0.073% of the human genome shows activity (1.7% of 4.3%), but:

      a. the percent cited is incorrect: this study found that 27,498 out of 560 million regions (0.005%) were active, and not 0.165% as the authors report.

      We have modified the text to clarify the numerator and denominator used for the 0.165% estimate from Johnson et al 2018 (lines 175-176). The numerator is their union set of all basepairs showing regulatory activity in unstimulated cells, which is 5,547,090 basepairs. The denominator is the total length of the hg38 human genome, which is 3,298,912,062 basepairs.

      Notably, the denominator (the total human genome) is not 560 million—while Johnson et al (2018) tested 560 million unique ~400 basepair fragments, these fragments were overlapping, such that the 560 million fragments covered the human genome 59 times (i.e., 59x coverage).

      b. other studies that used massively parallel reporter assays report substantially higher percentages, suggesting that the current study is possibly underpowered. Indeed, the previous mSTARR-seq found a substantially larger percentage of regions showing regulatory activity (8%). The current study should be compared against other studies (preferably those that did not filter for putatively active sequences, or at least to the random genomic sequences used in these studies).

      We appreciate this point and have double checked comparisons to Johnson et al., 2018 and Lea et al., 2018. Our numbers are not unusual relative to Johnson et al., 2018 (0.165%), which surveyed the whole genome. Also, in comparing to the data from Lea et al., 2018, when processed in an identical manner (our criteria are more stringent here), our values of the percent of the tested genome showing significant regulatory activity are also similar: 0.108% in the Lea et al., 2018 dataset versus 0.082% in the baseline dataset. Finally, our rarefaction analyses (see our responses above) indicate that we are not underpowered based on sequencing depth for RNA or DNA samples. We also note that there are several differences in our analysis pipeline from other studies: we use more technical replicates than is typical (compare to 2-5 replicates in Arnold et al., 2013; Johnson et al., 2018; Muerdter et al., 2018), we measure DNA library composition based on DNA extracted from each replicate post-transfection (as opposed to basing it on the pre-transfection library: [Johnson et al., 2018], and we use linear mixed models to identify regulatory activity as opposed to binomial tests [Johnson et al., 2018; Arnold et al., 2013; Muerdter et al., 2018].

      I find it confusing that the four sets of CpG positions used: EPIC, RRBS, NR3C1, and random control loci, add up together to 27.3M CpG positions. Do the 600 bp windows around each of these positions sufficient to result in whole-genome coverage? If so, a clear explanation of how this is achieved should be added.

      Thanks for this comment. Although our sequencing data are enriched for reads that cover these targeted sites, the original capture to create the input library included some off target reads (as is typical of most capture experiments, which are rarely 100% efficient). We then sequenced at such high depth that we ultimately obtained sequencing coverage that encompassed nearly the whole genome. We now clarify in the main text that our protocol assesses 27.3 million CpG sites by assessing 600 bp windows encompassing 93.5% of all genomic CpG sites (line 89), which includes off-target sites (line 149).

      scatter plot showing the RNA to DNA ratios of the methylated (x-axis) vs unmethylated (y-axis) library would be informative. I expect to see a shift up from the x=y diagonal in the unmethylated values.

      We have added a supplementary figure showing this information, which shows the expected shift upwards (Figure 1-figure supplement 9).

      Another important figure missing is a histogram showing the ratios between the unmethylated and methylated libraries for all active windows, with the significantly differentially active windows marked.

      We have added a supplementary figure showing this information (Figure 1-Supplementary Figure 10).

      Perhaps I missed it, but what is the distribution of effect sizes (differential activity) following the various stimuli?

      This information is provided in table form in Supplementary Files 3, 10, and 11, which we now reference in the Figure 2 legend (lines 365-366).

      Minor changes

      It is unclear what the lines connecting the two groups in Fig.3C represent, as these are two separate groups of regions.

      We now clarify in the figure legend that values connected by a line are the same regions, not two different sets of regions. They show the correlation between DNA methylation and gene expression at mSTARR-seq-identified enhancers in individuals before and after IAV stimulation, separately for enhancers that are shared between conditions (left) versus those that are IFNAspecific (right). The two plots therefore do show two different sets of regions, which we have depicted to visualize the contrast in the effect of stimulation on the correlation on IFNA-specific enhancers versus shared enhancers. We have revised the figure legend to clarify these points (line 458-460).

      L235-242 are unclear. Specifically - isn't the same filter mentioned in L241-242 applied to all regions?

      Yes, the same filter for minimal RNA transcription was applied to all regions. We have modified the text (lines 264-265, 271, 275-277) to clarify that the enrichment analyses were performed twice, to test whether the target types were: 1) enriched in the dataset passing the RNA filter (i.e., the dataset showing plasmid-derived RNA reads in at least half the sham or methylated replicates; n = 216,091 windows) and 2) enriched in the set of windows showing significant regulatory activity (at FDR < 1%; n = 3,721 windows).

      To improve cohesiveness, the section about most CpG sites associated with early life adversity not showing regulatory activity in K562s can be moved to the supplementary in my opinion.

      Thank you for this suggestion. Because ELA and the biological embedding hypothesis (via DNA methylation) were major motivations for our analysis (see Introduction lines 42-48; 75-79), and we also discuss these results in the Discussion (lines 518-520), we have respectfully elected to retain this section in the main manuscript. We have added text in the Discussion explaining why we think experimental tests of methylation effects on regulation are relevant to the literature on early life adversity (lines 520-522), and have added discussion on limits to these analyses (lines 527-533).

      References:

      Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 339, 1074-1077.

      Cecil CA, Zhang Y, Nolte T (2020) Childhood maltreatment and DNA methylation: A systematic review. Neuroscience & Biobehavioral Reviews, 112, 392-409.

      Dubois M, Louvel S, Le Goff A, Guaspare C, Allard P (2019) Epigenetics in the public sphere: interdisciplinary perspectives. Environmental Epigenetics, 5, dvz019.

      Eisenberger NI, Cole SW (2012) Social neuroscience and health: neurophysiological mechanisms linking social ties with physical health. Nature neuroscience, 15, 669-674.

      Houtepen L, Hardy R, Maddock J, Kuh D, Anderson E, Relton C, Suderman M, Howe L (2018) Childhood adversity and DNA methylation in two population-based cohorts. Translational Psychiatry, 8, 1-12.

      Johnson GD, Barrera A, McDowell IC, D’Ippolito AM, Majoros WH, Vockley CM, Wang X, Allen AS, Reddy TE (2018) Human genome-wide measurement of drug-responsive regulatory activity. Nature communications, 9, 1-9.

      Klein JC, Agarwal V, Inoue F, Keith A, Martin B, Kircher M, Ahituv N, Shendure J (2020) A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nature Methods, 17, 1083-1091.

      Koss KJ, Gunnar MR (2018) Annual research review: Early adversity, the hypothalamic–pituitary– adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59, 327-346.

      Marzi SJ, Sugden K, Arseneault L, Belsky DW, Burrage J, Corcoran DL, Danese A, Fisher HL, Hannon E, Moffitt TE (2018) Analysis of DNA methylation in young people: limited evidence for an association between victimization stress and epigenetic variation in blood. American journal of psychiatry, 175, 517-529.

      Muerdter F, Boryń ŁM, Woodfin AR, Neumayr C, Rath M, Zabidi MA, Pagani M, Haberle V, Kazmar T, Catarino RR (2018) Resolving systematic errors in widely used enhancer activity assays in human cells. Nature methods, 15, 141-149.

    1. There are however, areas of knowledge and human experience that the methods of science cannot be applied to. These include such things as answering purely moral questions, aesthetic questions, or what can be generally categorized as spiritual questions.

      This is my tricky or troubling fact. I think it may just be purely human to wonder about the afterlife and we like to create ideas and follow religion but were blindly following in a sense. As a religious person I myself don't know more about the afterlife than the next person does. And the fact that science cannot prove what is and isn't involved in the afterlife is troubling to say the least.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      1) Can the authors statistically define the egg-laying classes? In some parts of the manuscript, the division between the different classes could be more ambiguous. I understand that the class III strains are divided by the kcnl-1 genotype, but given the different results for diverse traits, it could be more clear to keep them as one class. Also, overall, the authors choose a collection of 15 strains across the different classes to phenotype for many traits and perform genome edits. It is understandable that they cannot test all strains, but given the variation across traits and classes, it might be good to add a few more caveats about how these strains might not be representative of all strains across the species.

      Response: The egg-laying classes were defined as in Figure 1A by arbitrarily chosen cut-offs (at 10, 10-25, and 25 eggs in utero) to simplify subsequent analyses. We added this explanation to the first paragraph of the results section. However, the differences in average egg retention are significantly different between the four defined classes using the 15 selected strains (Fig. 2A).

      We think that the distinction between Class IIIA and IIIB strains is important and justified because the two Classes significantly differ in mean egg retention (Fig. 2A) and because Class IIIB harbour the large-effect variant KCNL-1 V530L whereas Class IIIA do not.

      We agree that the 15 selected strains are not necessarily representative of all strains across the species. We have added a note of caution regarding this point to the first paragraph of the section “Temporal progression of egg retention and internal hatching”: “Note that this strain selection, especially concerning the largest Class II, is unlikely to reflect the overall strain diversity observed across the species". In addition, we have reworded the first sentence of this paragraph as follows: “ To better characterize natural variation in C. elegans egg retention, we focused on a subset of 15 strains from divergent phenotypic Classes I-III, with an emphasis on Class III strains exhibiting strong egg retention (at mid-L4 + 30h) (Fig. 2A and 2B).”

      2) For the GWAS experiments, the authors should describe if any of the QTL overlap with hyper-divergent regions in the strain set. The QTL could be driven by these less well defined regions.

      Response: We have added the following sentence: “The three QTLs do not align with any of the recently identified hyper-divergent regions of the genome (Lee et al., 2021).

      3) The authors should look at correlations between the mod-5(n822) edit phenotypes and the exogenous 5-HT and SSRI phenotypes to demonstrate how the traits can differ. Some correlation plots might help that point as well.

      Response: We examined all possible correlations as suggested: none are significant and strain effects on trait differences are idiosyncratic, as written in our results section. The correlational analyses remain of limited value due to small samples: N=10 for mean strain values for measured phenotypes. We therefore feel that these analyses do not provide any additional insights beyond our figures (4C, 4D, 5C, 5D, S5A-C ) and our statement on page 15: “As in previous experiments (Fig. 4C and 5C), we find again that strains sharing the same egg retention phenotype may differ strongly in egg-laying behaviour in response to modulation of both exo- and endogenous serotonin levels (Class IIIA: ED3005 and JU2829) (Fig. 5D and S5C).”

      4) Figure 6D, was there any censoring of the data? Normally, these types of studies are plagued by an increase in censored animals that can decrease significance. The effects among the classes seem large, but statistical comparisons might help as well.

      Response: There was no censoring of animals (censoring of animals in lifespan studies is usually done by removing “bags of worms”, which here was our study phenotype). We now mention this in the corresponding figure legend. We also added a statistical analysis showing that mean survival was significantly different between all Classes.

      5) Many of the traits, edits, and deeper analyses are performed on the JU751 genetic background. This choice is sensible, otherwise, the work can increase exponentially. However, the authors should add a caveat about how these results might be limited to JU751 and other strains might respond differently.

      Response: For certain experiments, it was not feasible to include multiple strains from all phenotypic classes, so we selected JU751 (Class IIIB) and JU1200 (Class II), for which we had established CRISPR-engineered lines to modulate the egg retention phenotype by a single amino acid change in KCNL-1. To emphasize that these experimental observations cannot be generalized, we added the following statement in the relevant results section: “These experimental results offer preliminary evidence (bearing in mind that our analysis was primarily centered on a single genetic background) that laying of advanced-stage embryos may enhance intraspecific competitive ability, particularly in scenarios where multiple genotypes compete for colonization and exploitation of limited, patchily distributed resources.”

      6) The authors argue that evolution could be acting on specific parts of the egg-laying machinery (e.g., muscledirected signaling components). It might be useful to look at levels of standing variation and selection at groups of loci compared to genomic controls to see if this conclusion can be strengthened.

      Response: This is a good idea but how to select pertinent candidate loci is unclear (there are over 300 genes with effects on egg laying, www.wormbase.org). In addition, the genetics of muscle-directed signalling components in egg laying is only starting to be explored, with no specific candidate genes having been identified (Medrano & Collins, 2023, Curr Biol). We therefore think that such an analysis is currently not possible.

      7) Completely optional: The authors present a compelling and interesting case for transitions and trade-offs between oviparity and viviparity. The C. vivipara species has a different egg-laying mode than other Caenorhabditis species. The authors could add a short section describing their expectations about the neuronal morphology, 5-HT circuits, and muscle function in this species given their results. What genes or circuits should be the focus of future studies to address this question in Caenorhabditis. Also, Loer and Rivard present some similar ideas based on the differences in 5-HT staining neurons across diverse nematodes. Those results can be incorporated and discussed as well.

      Response: Our current research focuses on the evolution of egg laying in different Caenorhabditis species. So far, however, it remains difficult to provide specific hypotheses on how the egg-laying circuit has changed in C. vivipara. We rephrased the final paragraph of the discussion to incorporate some of the reviewer’s suggestions: “Nematodes display frequent transitions from oviparity to obligate viviparity in many distinct genera (Sudhaus, 1976; Ostrovsky et al., 2015), including in the genus Caenorhabditis, with at least one viviparous species, C. vivipara (Stevens et al., 2019). Although evidence exists for the evolution of egg-laying circuitry across oviparous Caenorhabditis species (Loer and Rivard, 2007), the specific cellular and genetic changes responsible for the transition to obligate viviparity in C. vivipara have yet to be examined. Resolving the genetic basis of intraspecific variation in C. elegans egg retention, including partial or facultative viviparity, may thus shed light on the molecular changes underlying the initial steps of evolutionary transitions from oviparity to obligate viviparity in invertebrates.”

      Specific edits:

      1) Perhaps a silly point, but "parity" (to my knowledge) does not have a biological meaning on its own. I suggest "egg-laying mode" or "birth mode".

      Response: This term has been used previously in the literature (e.g.https://onlinelibrary.wiley.com/doi/10.1111/jeb.13886 or https://doi.org/10.1101/2023.10.22.563505). However, as the referee rightly points out, this is not a standard term. We therefore replaced “parity mode” with “egg-laying mode”.

      2) "Against fluctuating environmental fluctuations" is a bit strange

      Response: Corrected.

      3) The first publications of Egl mutants were by the Horvitz lab so some citations are not in all of the first descriptions of the trait (early in Results)

      Response: We have added the relevant work (Trent 1982, Trent 1983, Desai & Horvitz 1989) to this paragraph in the early results section.

      4) "Strong egg retention usually strongly..." is a bit strange

      Response: Corrected.

      1. Figure 8G font looks smaller than the others.

      Response: Corrected.

      Reviewer #2:

      1) In Figure 1A, I infer that in the graph class I measurements are represented by dark blue dots and class II by purple dots. I am having a really hard time distinguishing between these two colors in the graph. In the pie chart I have no problem, but in the graph the black lines around the colored dots seem to obscure the colors. Not sure how to fix this graphical problem, but it is preventing the graph from communicating the results effectively.

      Response: We have changed the colours, spacing and format of this figure to resolve this problem.

      2) The behavioral analysis of Figure 3B-3F is problematic. The experimental methods used and the interpretation of the results each have issues. This is cause for concern since this is the most direct analysis of the actual variations in egg-laying behavior across strains presented in this paper.

      This experiment is modeled after the work of Waggoner et al. 1998, who recorded egg laying events of individual worms on video over several hours and noted the exact time of individual egg laying events. Waggoner et al. found in the reference C. elegans strain N2 that egg-laying events occurred in ~2 minute clusters ("active phases") separated by ~20 minute silent periods ("inactive phases"). Mignerot et al. did not take continuous videos of animals, but rather examined plates bearing a single worm only every 5 minutes and noted the number of new eggs that appeared on the plate in each 5-minute interval. From these data, the authors claim they have measured the intervals between "egg-laying phases" (the term used in the Figure 3 legend). In the Results, the authors explicitly claim they are measuring the timing and frequency of actual active and inactive egg-laying phases. Apparently, all the eggs laid within one 5-minute interval are considered to have been laid in a single active phase, and the time between 5-minute intervals containing egg laying events is considered an "inactive phase" and is measured only with a resolution of 5 minutes. It is not explained anywhere how the authors handle the situation of seeing eggs laid in two consecutive 5-minute intervals. Is that one active phase that is 10 minutes long, or is that two separate active phases with a 5-minute active phase in between? Because of this ambiguity in how they define active and inactive phases, I find it impossible to understand and judge the data presented in Fig. 3D-3F. The authors in the results state that "Class I and Class IIIB displayed significantly accelerated and reduced egg laying activity respectively (Fig. 3C to 3E)" . I assume they are referring to the statistical analysis described in the figure legend, which is quite difficult to understand. Frankly, just looking at the graphs in Fig. 3D3F, it is hard for the reader to identify specific features shown in the graphs can explain why, for example, Class I strains have fewer retained eggs than Class III strains. So, I found this analysis very unsatisfying.

      I also feel the authors are making an unwarranted assumption that their non-N2 strains will have distinguishable active and inactive phases of egg-laying behavior analogous to those seen in the N2 strain. Given the possibly large variations in egg-laying behavior in the various strains examined, that assumption should be questioned. Thus, framing the entire analysis of behavior patterns in terms of the length of active and inactive phases might not be appropriate.

      Response: This comment validly highlights important problems and limitations of our scan-sampling method to quantify strain differences in egg-laying behaviour. We acknowledge that we failed to present the data with due diligence, and clarity regarding terminology and interpretation. However, we think that some of these results are still of value after revised presentation. Our biggest mistake was to use the terms “active and inactive phase”, as coined by Waggoner et al. 1998. We are aware that our measures are not equivalent to these previously defined measures but have been sloppy with terminology. We therefore carefully reworded this entire results section, using clear definitions to indicate differences between the Waggoner assay and our assay (including a graphical representation of our assay design in the revised Fig. 3B). In brief, our simplified assay is useful to estimate the frequency and approximate duration of prolonged inactive periods of egg laying because we can unambiguously determine intervals in which eggs were laid or not. In contrast, as pointed out by the reviewer, we cannot determine if multiple active phases occurred within a 5-min interval, nor can we estimate the duration of an active “phase”. We now state this limitation explicitly in the manuscript. What our results do show is that the number of intervals during which egg laying occurred is significantly different between strains and Classes: Class I (low retention) have a higher number of intervals with egg-laying events, whereas Class IIIB showed a reduced number of such events (Fig. 3D). We can therefore also roughly estimate the mean time (per individual) between two egg-laying intervals, giving us a proxy for prolonged periods when egg-laying is inactive (Fig. 3E); we note that our estimate for N2 is very close to what has been previously measured (~20 min). Therefore, we can confidently conclude that there are natural strains which have both shorter (Class I) and longer (Class IIIB) inactive periods of egg laying. These results partly align with observed variation in egg retention. However, we agree with the reviewer – as we had stated both in results and discussion sections – that these behavioural differences act together with differences in the sensing of egg accumulation in utero (as suggested by results shown in Fig. 3G and 3H). We also agree that it seems very plausible that the observed behavioural differences, as revealed by scan-sampling, may only have a secondary role in accounting for natural variation in egg retention. We will be testing these hypotheses specifically in our future research.

      Note: The statistical analyses are nested ANOVAs to ask (a) does the value differ between strains within a given class and (b) does the value differ between Classes? Classes labelled with different letters in the figures therefore significantly differ in their mean values, demonstrating that measured behavioural phenotypes consistently differ between some (but not all) phenotypic classes, yet largely in line with their egg retention phenotypes (Fig. 3D and 3E).

      3) Figure 4A is a schematic diagram of how the egg-laying circuit works based on previous literature, and the authors cite Collins et al. 2015 and Kopchock et al. 2021 as their sources. One feature of this figure seems unwarranted, namely the part indicating that egg accumulation acts on the UM muscles, and the statement in the legend that "mechanical excitation of uterine muscles (UM) in response to egg accumulation favours exit from the inactive state (Collins et al., 2016)". I believe Collins et al. 2016 showed that egg accumulation favors egg laying and may have speculated that it does so by stretching the um muscles, but this idea remains speculative and has not been established by any experimental data. I point out this issue,in particular, because it may bear on the nice data the authors of this manuscript show in Figure 3G and 3H, which show that some strains accumulate many eggs in the uterus before they initiate egg laying.

      Also, in Figure 4A and 4B, the legend does not explain the logic of the green areas labeled "egg-laying active phase" and the yellow area labeled "egg-laying inactive state". I was not sure what sure how to interpret these features of the graphics.

      Response: The input from uterine muscles remains indeed hypothetical, and we have corrected the figure accordingly, now simply referring to the feedback of egg accumulation on egg laying activity, as recently characterized in more detail by Medrano & Collins (2023, Curr Biol).

      The green/yellow backgrounds shown in figures 4A (and 4B) are not useful and we have removed them.

      4) Results, page 11: "We used standard assays, in which animals are reared in liquid M9 buffer without bacterial food." In the standard assays, animals are reared on NGM agar plates with bacterial food, and then at the start of the egg-laying assay, are transferred to liquid M9 buffer without bacterial food. I assume that is what these authors did, and they should correct the language of the text to make it more accurate.

      Response: The reviewer is correct. We have incorporated this change to improve accuracy.

      5) The authors note that "serotonin induced a much stronger egg-laying responds in the Class IIIA strain ED3005 than in other strains (Fig. 4C)". I would like to point out to the authors that strains such as ED3005 that have a very large number of unlaid eggs in their uterus are prone to lay a very large number of eggs when treated with exogenous serotonin, simply for the trivial reason that they have more eggs to release. This was previously seen in, for example, in Desai and Horvitz (1989) in certain egg-laying defective mutants.

      Response: This is an important point and our comparison of ED3005 to ALL other strains is problematic. We changed this result description by stating that ED3005 shows possible serotonin hypersensitivity compared to strains with similar levels of egg retention (Class IIIA): “In addition, serotonin induced a much stronger egg-laying response in the strain ED3005 than in other Class IIIA strains with similar levels of egg retention (Fig. 4B). ED3005 may thus exhibit serotonin hypersensitivity, which has been observed in certain egg-laying mutants where perturbed synaptic transmission impacts serotonin signalling (Schafer and Kenyon, 1995; Schafer et al., 1996).”

      6) In Figure 4 the authors show that all strains lay eggs in response to fluoxetine and imipramine, but some strains (Class IIIB) do not lay eggs in response to serotonin. They then cite a series of papers, starting with Trent et al. 1983, that they claim show that this specific phenotype demonstrates that the HSN neurons are functionally releasing serotonin (bottom of page 11). This statement needs to be removed - it is incorrect. It is true that egg laying in response to fluoxetine and/or imipramine AS WELL AS egg laying in response to serotonin has been interpreted as indicating the presence of HSN neurons that functionally release serotonin to stimulate egg laying (these were referred to as Category C by Trent et al., 1983). However, the mutants that Mignerot et al. are talking about (those that don't respond to serotonin but do respond to imipramine/fluoxetine) were called Category D by Trent et al., 1983, and to my knowledge these have never been interpreted as necessarily having functionally intact HSN neurons. Mutants such as these that can lay eggs in some circumstances but cannot lay eggs in response to exogenous serotonin have usually been interpreted as having egg-laying muscles that are defective in responding to serotonin.

      How can we interpret strains that respond to imipramine/fluoxetine and not serotonin? Mignerot et al. cite some of the papers (Kullyev et al. 2010; Wenishenker et al., 1999; Yue et al., 2018) showing that imipramine and fluoxetene have off-target effects and can stimulate egg laying by acting through proteins other than the serotonin-reuptake inhibitor. The authors later in their discussion at the top of Page 24 also cite Dempsey et al 2005, a paper that also argues that imipramine and fluoxetene act via off target effects. However, currently in Figure 4B Mignerot et al. emphasize that the serotonin reuptake inhibitor is the target of these drugs. Since the results presented for Class IIIB strains are not in accord with this interpretation, this seems misleading to me. The bottom line for me is that class IIIB strains cannot respond to exogenous serotonin, but can lay eggs in other conditions, so perhaps there is something specifically wrong with their ability to respond to serotonin.

      Response: We thank the reviewer for this important comment – we misinterpreted some of these past findings and our statements were either inexact or incorrect. We have revised this section accordingly: “Both drugs also stimulated egg laying in the Class IIIB strains and the Class IIIA strain JU2829 for which exogenous serotonin either inhibited egg laying or had no effect on it (Fig. 4B). In the past, mutants unresponsive to serotonin yet responsive to other drugs, including fluoxetine and imipramine, have been interpreted as being defective in the serotonin response of vulval muscles (Trent et al., 1983; Reiner et al., 1995; Weinshenker et al., 1995). This is indeed the likely case of Class IIIB strains carrying the KCNL-1 V530L variant thought to specifically reduce excitability of vulval muscles (Vigne et al., 2021). Our results therefore suggest that JU2829 (Class IIIA) may exhibit a similar defect in vulval muscle activation via serotonin caused by an alternative genetic change. Overall, these pharmacological assays do not allow us to conclude if and how HSN function has diverged among strains because the mode of action and targets of tested drugs has not been fully resolved. Nevertheless, our results are consistent with previous models proposing that these drugs do not simply block serotonin reuptake but can stimulate egg laying, to some extent, through mechanisms independent of serotonergic signaling (Trent et al., 1983; Desai and Horvitz, 1989; Reiner et al., 1995; Weinshenker et al., 1995, 1999; Dempsey et al., 2005; Kullyev et al., 2010; Branicky et al., 2014; Yue et al., 2018).”

      We removed the oversimplified Fig. 4B to avoid any misinterpretation.

      8) In Figure 7B and 7C, the authors should add some type of error bars to the graphs to and give the readers an idea of whether the differences between strains that they write about are statistically significant or not.

      Response: These are frequency data to describe temporal dynamics of hatching (N=45-72 eggs per strain) (Fig. 7B) and development in single cohorts (N=48-177 eggs per strain) (Fig. 7C), hence, the absence of error bars.

      We agree that this representation of the data is not very telling. We therefore changed the data representation in these two figures to show that there are clear, statistically significant, negative correlations between egg retention and time to hatching / egg-to-adult developmental time.

      9) When the authors reference a list of papers in a single list, e.g. "(Burton et al., 2021; Fausett et al., 2021; Garsin et al., 2001; Padilla et al., 2002; Van Voorhies and Ward, 2000)" they seem to do so in alphabetical order by the first author's last name. I believe the usual practice is to list references by year of publication, with the earliest first.

      Response: We corrected citation style according to eLIFE format.

      10) At the top of page 24, the authors write "It seems unlikely, however, that any of these variants strongly alter central function of HSN and HSN-mediated signalling because fluoxetine and imipramine, known to act via HSN (Dempsey et al., 2005; Trent et al., 1983; Weinshenker et al., 1995), triggered a robust stimulatory effect on egg laying in all examined strains (Fig. 4C)." I believe that the Weinshenker paper in fact showed that imipramine does not act via the HSN, and the Dempsey paper suggested that both drugs can act at least in part independently of the HSN. Therefore, the authors should revise their statement.

      Response: We have removed the sentence.

      Reviewing Editor:

      Minor suggestions:

      1) p. 2, fifth line from bottom: "lead" instead of "leads";

      2) p. 2, last line: "muscle" instead of "muscles";

      3) p. 3, first full paragraph, 17th line: "populations" instead of "population";

      4) p. 5, fourth line from bottom: Delete first comma;

      5) p. 6, Figure 1D: "of" instead of "off";

      6) p. 7, fifth line: "KCNL-1";

      7) p. 9, third paragraph, second line: please clarify "late mid-L4";

      8) p. 16, first line: "exogenous";

      9) p 20, first paragraph, beginning of second sentence: "Whether" instead of "If";

      10) p. 22, ninth line from bottom: delete "shaped by";

      11) p. 23, last paragraph, third and eighth lines from bottom: change "between" to "among"

      Response: Thank you. All corrected.

      Additional changes:

      Figure 5A: We removed figure 5A showing a cartoon of mod-5/SERT and its effects on serotonin signalling. This figure was incorrectly showing that MOD-5 is expressed in HSN (Jafari et al 2011 J. Neuroscience, Hammarlund et al 2018 Neuron).

      Abstract: We reworded the abstract to reduce its length.

    1. While regulation is outside the control of the hotel industry, the brand and the customer experience are not. We contend that these are the areas where hotel companies’ efforts need to be focused. Hotels need to re-think the brand promise, both for the parent brand as well as individual brands in the portfolio, and how it defines and shapes the guest experience.

      There is potential to annotate insights related to guest satisfaction and experience. Hotels may focus on personalized services or unique offerings to compete with the unique experiences often associated with Airbnb. This could be an area for further exploration.

    1. While many may benefit from it, itleads to suffering for others.

      I think some of these models were created with good intentions, but as we have seen, it depends on who is using it and how.

    1. When someone presents themselves as open and as sharing their vulnerabilities with us, it makes the connection feel authentic. We feel like they have entangled their wellbeing with ours by sharing their vulnerabilities with us.

      I think it is true, when someones reveals their vulnerabilities, it is a sign of showing non-threating and authentic. It is the rule from the ancient time, but now the situations may be more complicated. Showing vulnerabilities may be suspected as fake, an action to gain trust, and if someone really shows vulnerabiities, his/her competitors may use them to take advantages of the person. In other word, people are harder to get authentic connections these days.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This paper performed a functional analysis of the poorly characterized pseudo-phosphatase Styxl2, one of the targets of the Jak/Stat pathway in muscle cells. The authors propose that Styxl2 is essential for de novo sarcomere assembly by regulating autophagic degradation of non-muscle myosin IIs (NM IIs). Although a previous study by Fero et al. (2014) has already reported that Styxl2 is essential for the integrity of sarcomeres, this study provides new mechanistic insights into the phenomenon. In vivo studies in this manuscript are compelling; however, I feel the contribution of autophagy in the degradation of NM IIs is still unclear.

      Major concerns:

      1) The contribution of autophagy in the degradation of Myh9 is still unclear to this reviewer.

      It has been reported that autophagy is dispensable for sarcomere assembly in mice (Cell Metab, 2009, PMID; 1994508). In Fig. 7A, the authors showed that overexpressed Styxl2 downregulated the amount of ectopically expressed Myh9 in an ATG5-dependent manner in C2C12 cells; however, the experiment is far from a physiological condition. Therefore, the authors should test ATG5 knockdown and the genetic interaction between Styxl2 and ATG5 in vivo. That is, 1) loss of ATG5 on sarcomere assembly in zebrafish, and 2) the genetic interaction between Styxl2 and ATG5; co-injection of Styxl2 mRNA and ATG5-MO into the zebrafish embryos.

      Our response: In fact, the reference cited by the reviewer (Cell Metab, 2009; PMID; 19945408) clearly indicated that autophagy is required for sarcomere assembly. Moreover, another paper using the fish extraocular muscle regeneration model (Autophagy, 2014, PMID: 27467399), also showed that the sarcomere structure was disrupted in the regenerated muscles when autophagy was inhibited by chloroquine. In addition, other references (Nature medicine, 2007, PMID: 17450150; Autophagy, 2010, PMID: 20431347) also showed that loss of Atg5 in mouse cardiac muscles led to disorganized sarcomere structure. We also performed the Atg5 knockdown experiments as suggested by the reviewer. However, the sarcomere structure defects were not so obvious as Styxl2 knockdown (see Author response image 1 below). In fact, it was reported that Atg5 knockdown may not be a desirable strategy to disrupt autophagy as it was found “--- only a small amount of Atg5 is needed for autophagy, knockdown of Atg5 to levels low enough to block autophagy might be difficult to achieve, --” (Nature medicine, 2007, PMID: 17450150). Due to the ineffectiveness of the Atg5 MO in our assays, we did not perform the second experiment suggested by the reviewer. Moreover, as Styxl2 is not a key component of the autophagy machinery, it is less likely that overexpression of Styxl2 alone can rescue the autophagy defects caused by Atg5.

      Author response image 1.

      The fish zygotes were injected with Atg5 or Ctrl MO. 48 hpf, the fish were stained with an anti-Actinin antibody. Some fast muscle fibers were disrupted when Atg5 was knocked down. The number in numerator at the bottom of each image represents fish embryos showing normal Actinin staining pattern, while that in denominator represents the total number of embryos examined. Scale bar, 10 µm.

      2) As referenced, Yamamoto et al. reported that Myh9 is degraded by autophagy. Mechanistically, Nek9 acts as an autophagic adaptor that bridges Atg8 and Myh9 through interactions with both. Inconsistent with the model, the authors mentioned on page 12, lines 365-367, "A recent report showed that Myh9 could also undergo Nek9-mediated selective autophagy (Yamamoto et al., 2021), suggesting that Myh9 is ubiquitinated". I think it is not yet explored whether autophagic degradation of Myh9 requires its ubiquitination. Moreover, I cannot judge whether Myh9 is ubiquitinated in a Styxl2-dependent manner from the data in Fig. 7C. The author should test whether Nek9 is required for Myh9 degradation in muscles. If Nek plays a role in the Myh9 degradation, it would be better to remove Fig. 7C.

      Our response: Indeed, as pointed out by the reviewer, it has not been explored whether Myh9 is ubiquitinated or not. However, it has been well-established that some proteins undergoing autophagic degradation are ubiquitinated, which are linked to Atg8/LC3 via p62 and NBR1 (Mol Cell, 2009, PMID: 19250911; J Biol Chem, 2007, PMID: 17580304). To improve the data quality, we repeated the Myh9 ubiquitination experiment in cells with or without Styxl2 by using a slightly different strategy: as shown in the revised Figure 7C, we first co-transfect HEK 293T cells with HA-Myh9, Myc-ubiquitin, and Flag-Styxl2. We then immunoprecipitated Myc-tagged Ubiquitin from the whole cell lysates, and then blot for HAMyh9. We detected an obvious increase in Ubiquitin-conjugated HA-Myh9 (revised Figure 7C). As suggested by the reviewer, we also tested whether knockdown of Nek9 affects the degradation of Myh9. We failed to detect an obvious effect (see Author response image 2 below) caused by Nek9 knockdown. One possible explanation for this negative result is that Nek9 itself is a negative regulator of selective autophagy (J Biol Chem, 2020, PMID: 31857374). By knocking it down, the functions of the autophagy machinery are expected to be enhanced instead of being impaired. This may explain why we failed to detect an effect on Myh9 degradation simply by knocking down Nek9. To further elucidate whether Nek9 is involved in Myh9 degradation in myoblasts, we may need to use a dominant-negative mutant of Nek9 missing the LCIII-binding motif as shown by Yamamoto (Nat Commun, 2021, PMID: 34078910). This will be addressed in our future study.

      Author response image 2.

      C2C12 cells were transfected with negative control siRNA (NC), siNek9#2 or siNek9#3. 18 h later, the cells were transfected with plasmids HA-Myh9 and Flag-Styxl2 or Flag-Stk24. After another 24 h, the cells were harvested for RT-qPCR (left panel) or western blot (right panel).

      3) In Fig. 5F, the protein level of Styxl2 and Myh10 should be checked because the efficiency of Myh10-MO was not shown anywhere in this manuscript.

      Our response: As suggested by the reviewer, a Western blot showing the protein levels of Myh10 was shown in Figure 5-figure supplement 1B.

      Reviewer #2 (Public Review):

      The authors investigated the role of the Jak1-Stat1 signaling pathway in myogenic differentiation by screening the transcriptional targets of Jak1-Stat1 and identified Styxl2, a pseudophosphatase, as one of them. Styxl2 expression was induced in differentiating muscles. The authors used a zebrafish knockdown model and conditional knockout mouse models to show that Styxl2 is required for de novo sarcomere assembly but is dispensable for the maintenance of existing sarcomeres. Styxl2 interacts with the non-muscle myosin IIs, Myh9 and Myh10, and promotes the replacement of these non-muscle myosin IIs by muscle myosin IIs through inducing autophagic degradation of Myh9 and Myh10. This function is independent of its phosphatase domain.

      A previous study using zebrafish found that Styxl2 (previously known as DUSP27) is expressed during embryonic muscle development and is crucial for sarcomere assembly, but its mechanism remains unknown. This paper provides important information on how Styxl2 mediates the replacement of non-muscle myosin with muscle myosin during differentiation. This study may also explain why autophagy deficiency in muscles and the heart causes sarcomere assembly defects in previous mouse models.

      Reviewer #3 (Public Review):

      Wu and colleagues are characterising the function of Styxl2 during muscle development, a pseudo-phosphatase that was already described to have some function in sarcomere morphogenesis or maintenance (Fero et al. 2014). The authors verify a role for Styxl2 in sarcomere assembly/maintenance using zebrafish embryonic muscles by morpholino knockdown and by a conditional Styxl2 allele in mice (knocked-out in satellite cells with Pax7 Cre).

      Experiments using a tamoxifen inducible Cre suggest that Styxl2 is dispensable for sarcomere maintenance and only needed for sarcomere assembly.

      BioID experiments with Styxl2 in C2C 12 myoblasts suggest binding of nonmuscle myosins (NMs) to Styxl2. Interestingly, both NMs are downregulated when muscles differentiate after birth or during regeneration in mice. This down-regulation is reduced in the Styxl2 mutant mice, suggesting that Styxl2 is required for the degradation of these NMs.

      Impressively, reducing one NM (zMyh10) by double morpholino injection in a Styxl2 morphant zebrafish, does improve zebrafish mobility and sarcomere structure. Degradation of Mhy9 is also stimulated in cell culture if Styxl2 is co-expressed. Surprisingly, the phosphatase domain is not needed for these degradation and sarcomere structure rescue effects. Inhibitor experiments suggest that Styxl2 does promote the degradation of NMs by promoting the selective autophagy pathway.

      Strengths:

      A major strength of the paper is the combination of various systems, mouse and fish muscles in vivo to test Styxl2 function, and cell culture including a C2C12 muscle cell line to assay protein binding or protein degradation as well as inhibitor studies that can suggest biochemical pathways.

      Weakness:

      The weakness of this manuscript is that the sarcomere phenotypes and also the western blots are not quantified. Hence, we rely on judging the results from a single image or blot. Also, Styxl2 role in sarcomere biology was not entirely novel.

      Few high resolution sarcomere images are shown, myosins have not been stained for.

      Reviewer #1 (Recommendations For The Authors):

      Minor concerns:

      4) The position of molecular weight markers should be shown in all Western blot data.

      Our response: As suggested by the reviewer, the molecular weight markers have been added in the Western blot data.

      5) Schematic models of Styxl2deltaN509 and N513 construct would be helpful for the readers.

      Our response: A schematic has been added in Figure 6B (upper panel) to show Styxl2deltaN509 and Styxl2N513.

      6) Several data were described but not shown (data not shown). I think the data need to be included in the main or supplemental figures.

      Our response: As suggested by the reviewer, the raw data were now included in the Figure 6-figure supplement 1A and Figure 7-figure supplement 1.

      Reviewer #2 (Recommendations For The Authors):

      1) In Fig. 5E, the authors suggest that the needle touch response was improved by additional knockdown of Myh10. This is a bit confusing because the germline knockout of Myh10 is lethal (line 445). The authors should provide more explanation on this point. Additionally, it would be better to include Myh10-MO in Fig. 5E.

      Our response:<br /> In line 445 of our original manuscript, we stated that germline knockout of mouse Myh10 gene is lethal based on a published report (Proc Natl Acad Sci USA, 1997, PMID: 9356462). Here, in zebrafish zygotes, we only knocked down zMyh10, thus, we do not expect to get a lethal phenotype. In addition, other groups who knocked down Myh10 in fish also did not get a lethal phenotype (Dev Biol, 2015, PMID: 25446029). As to the control involving Myh10MO in the experiment in Fig.5E, we did include it in our experiments. As we did not observe any obvious effects on either motility or sarcomere structures, we did not include the data set in the figure.

      2) It was suggested that Myh9 and Myh10 form a complex (Rao et al. PLoS One 9, e114087, 2014). Thus, the IP experiments do not rule out the possibility that Styxl2 directly interacts with either Myh9 or Myh10 and indirectly with the other.

      Our response: In known myosin-II complexes, different myosin molecules can associate with each other through their tail domains (Bioarchitecture, 2013, PMID: 24002531). Thus, if we use fulllength myosin molecules in our co-immunoprecipitation assays, it will be difficult to exclude the possibility raised by the reviewer. However, by using truncated myosin proteins, we showed that the head domain of either Myh9 or Myh10 could interact with Styxl2 in the absence of the tail domain (Figure 4E, F). This result strongly suggests that both Myh9 and Myh10 can independently interact with Styxl2.

      Reviewer #3 (Recommendations For The Authors):

      1) The western blot shown in Figure 3B supporting the induced deletion of Styxl2 should be quantified. Ideally, some other blots, e.g., in Figure 5, too. Please add the age of the mice in Figure 5B to the figure legend.

      Our response:<br /> As suggested by the reviewer, we quantified the data in Figures.3B, 3F, 5B, 5D, and 7A and the data were included in the revised figures. In Fig.5B, we already indicated the age of the mice (i.e., P1) in the legend.

      2) A quantification of the sarcomere phenotypes in the double knock-down of zMyh10 and Styxl2 compared to Styxl2 single would make the paper significantly stronger. Furthermore, a double morpholino control should be included to rule out any RNAi machinery 'dilution effect'.

      Our response: As suggested by the reviewer, we quantified the sarcomere structures using the line scan analysis in ImageJ and the scan images were placed as inserts in the upper corner of the immunofluorescent images (revised Figures 5F, and 6C). To avoid potential “dilution effects”, in all the experiments involving the use of two different MOs, the total amount of MO was kept the same in all control samples by including a control MO (e.g., in samples treated with one specific MO, an equal amount of a control MO was also included, while in samples without any specific MO, twice as much control MO was used).

      3) The sarcomere phenotypes in figure 6 should also be better quantified, for example using simple line scans of the alpha-actinin stains and assay periodicity or calculating the autocorrelation coefficients. How about myosin stains?

      Our response: We quantified Figure 6C as suggested by the reviewer. We also performed myosin staining. The results were similar to that shown by the a-actinin antibody (see revised Figure 6-Fig supplement 1B).

      4) Do the authors see periodic NMs patterns in developing mouse muscle fibers as indicated by the model in in in figure 7D? It is unclear if nonmuscle myosin is present in a PERIODIC pattern in early myofibrils. NM myosin periodic patterns that have been observed have a periodicity of only about 1 µm fitting the shorter length of the NM bipolar filaments (about 300 nm only, PMID 28114270).

      Our response: The reviewer raised a good point here. Ideally, we should examine developing mouse muscle fibers to prove that NM shows periodic patterns. However, due to the difficulty in catching myocytes undergoing sarcomere assembly, the majority of the studies involving NM in sarcomeres use cultured cardiomyocytes. Using TA muscles from P1 new-born mice, we failed to detect the presence of NM in sarcomeres (see Author response image 3 below). Actually, nearly all the myofibers showed mature sarcomere pattern without the NM signal. More work is needed in the future to examine developing mouse fibers at different embryonic stages to look for the presence of NM in developing sarcomeres.

      Author response image 3.

      The TA muscles were collected from male and female P1 mice. The muscles were sectioned and co-stained for a-actinin (Actn) and Myh9. The majority of myofibrils is mature without the NM II signal. Scale bar, 10 µm.

      5) Recent work suggested that mechanical tension is key to assemble the first long periodic myofibril containing immature sarcomeres. Tension is likely produced by a combination of NM and Mhc in the assembling sarcomeres themselves. This could be included in the introduction or discussion (PMIDs 24631244, 29316444, 29702642, 35920628).

      Our response: We thank the reviewer for pointing to us additional relevant references. We have added them in the Introduction.

      6) I suggest replacing "sarcomeric muscles" with "striated muscles".

      Our response: We revised the term in the manuscript as suggested by the reviewer.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public Review):

      The authors of the manuscript "High-resolution kinetics of herbivore-induced plant volatile transfer reveal tightly clocked responses in neighboring plants" assessed the effects of herbivory induced maize volatiles on receiver plants over a period of time in order to assess the dynamics of the responses of receiver plants. Different volatile compound classes were measured over a period of time using PTR-ToF-MS and GC-MS, under both natural light:dark conditions, and continuous light. They also measured gene expression of related genes as well as defense related phytohormones. The effects of a secondary exposure to GLVs on primed receiver plants was also measured.

      The paper addresses some interesting points, however some questions arise regarding some of the methods employed. Firstly, I am wondering why VOCs (as measured by GC-MS) were not quantified. While I understand that quantification is time consuming and requires more work, it allows for comparisons to be made between lines of the same species, as well as across other literature on the subject. Simply relying on the area under the curve and presenting results using arbitrary units is not enough for analyses like these. AU values do not allow for conclusions regarding total quantities, and while I understand that this is not the main focus of this paper, it raises a lot of uncertainty for readers (for example, the references cited show that TMTT has been found to accumulate at similar levels of caryophyllene, however the AU values reported are an order of magnitude higher for TMTT. Again, without actual quantification this is meaningless, but for readers it is confusing).

      With regards to the correlation analyses shown in figure 6, the results presented in many of the correlation plots are not actually informative. While there is a trend, I do not think that this is an appropriate way to show the data, as there are clearly other relationships at play. The comparison between plants under continuous light and normal light:dark conditions is interesting.

      This paper addresses a very interesting idea and I look forward to seeing further work that builds on these ideas.

      As mentioned in our previous response, we have added the quantification of GLVs in order to increase the comparability of our work to other studies.

      Regarding the comment about TMTT (only measured as internal pools), the purpose of the inclusion of these internal pool data, was simply to determine whether terpenes were accumulating in leaf tissue during the night when emissions are hindered (likely due to closed stomata). The data clearly show that internal terpene pools do not accumulate above daytime levels during darkness – this is further supported by gene expression data that show downregulation of terpene synthase genes during darkness. While quantification would certainly increase the ability to compare internal pools, it would not change the interpretation of our results. Also note that absolute quantification is challenging for compounds such as TMTT, which are not readily available.

      Regarding the comment on Figure 6, while we agree there may be interesting patterns beyond linear relationships, as stated in our previous response, the purpose of our analysis was to determine if the higher terpene burst in receiver plants on the second day may be explained by sender plants emitting more GLVs on the second day. Figure 6 shows that this is not the case. Further analyses would not provide additional significant insights into the hypothesis that we tested here.

      We thank the reviewer for their overall positive outlook on our paper and for the constructive comments.

      Reviewer #2 (Public Review):

      The exact dynamics of responses to volatiles from herbivore-attacked neighbouring plants have been little studied so far. Also, we still lack evidence whether herbivore-induced plant volatiles (HIPVs) induce or prime plant defences of neighbours. The authors investigated the volatile emission patterns of receiver plants that respond to the volatile emission of neighbouring sender plants which are fed upon by herbivorous caterpillars. They applied a very elegant approach (more rigorous than the current state-of-the-art) to monitor temporal response patterns of neighbouring plants to HIPVs by measuring volatile emissions of senders and receivers, senders only and receivers only. Different terpenoids were produced within 2 h of such exposure in receiver plants, but not during the dark phase. Once the light turned on again, large amounts of terpenoids were released from the receiver plants. This may indicate a delayed terpene burst, but terpenoids may also be induced by the sudden change in light. As one contrasting control, the authors also studied the time-delay in volatile emission when plants were just kept under continuous light. Here they also found a delayed terpenoid production, but this seemed to be lower compared to the plants exposed to the day-night-cycle. Another helpful control was now performed for the revision in which the herbivory treatment was started in the evening hours and lights were left on. This experiment revealed that the burst of terpenoid emission indeed shifted somewhat. Circadiane and diurnal processes must thus interact.

      Interestingly, internal terpene pools of one of the leaves tested here remained more comparable between night and day, indicating that their pools stay higher in plants exposed to HIPVs. In contrast, terpene synthases were only induced during the light-phase, not in the dark-phase. Moreover, jasmonates were only significantly induced 22 h after onset of the volatile exposure and thus parallel with the burst of terpene release.

      An additional experiment exposing plants to the green leaf volatile (glv) (Z)-3-hexenyl acetate revealed that plants can be primed by this glv, leading to a stronger terpene burst. The results are discussed with nice logic and considering potential ecological consequences. All data are now well discussed.

      Overall, this study provides intriguing insights in the potential interplay between priming and induction, which may co-occur, enhancing (indirect and direct) plant defence. Follow-up studies are suggested that may provide additional evidence.

      We thank the reviewer for their positive outlook on our paper and for their constructive comments.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      The authors did a great job with the revision. The additional experiments strengthened their conclusions. Thanks also for performing the suggested test for potential differences in induction capacity at different times of day, the new data are very interesting.

      Thank you very much.

      Line 49-52: The newly added sentence could be clarified in wording.

      We will clarify the sentence.

      Line 254-255: The newly added sentence needs to be corrected. This is no full sentence and it is not clear what the authors wanted to say here.

      We will clarify this sentence.

      Figure 6: In those instances, in which the correlation is not significant, the line should not be shown.

      We will remove the lines when correlations are not significant.

      The names of chemical compounds and terpene synthases should be written in lower case letters (see legend Fig 6, e.g. hexenal, not Hexenal; legend fig. 2: terpene synthase, not Terpene synthase)

      In the last round of revisions, I commented on Line 23: consequences on community dynamics are not investigated here, so this is a bit misleading. ... Your response was "We have deleted the sentence about community dynamics ..." which, however, in fact was not done! Please change!

      Apologies for that, we will delete mention of community dynamics in that sentence (for real).


      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study examines the effects of herbivory-induced maize volatiles on neighboring plants and their responses over time. Measurements of volatile compound classes and gene expression in receiver plants exposed to these volatiles led to the conclusion that the delayed emission of certain terpenes in receiver plants after the onset of light may be a result of stress memory, highlighting the role of priming and induction in plant defenses triggered by herbivore-induced plant volatiles (HIPVs). Most experimental data are compelling but additional experiments and accurate quantifications of the compounds would be required to confirm some of the main claims.

      Response: We thank the editors for their overall positive feedback on our MS. We have added additional experiments to quantify green leaf volatile emissions in both sender plants and synthetic dispensers (Reviewer 1) and address the importance of the precise time of day plants are induced (Reviewer 2). These additions strengthen the main conclusions of our study.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors of the manuscript "High-resolution kinetics of herbivore-induced plant volatile transfer reveal tightly clocked responses in neighboring plants" assessed the effects of herbivory-induced maize volatiles on receiver plants over a period of time in order to assess the dynamics of the responses of receiver plants. Different volatile compound classes were measured over a period of time using PTR-ToF-MS and GC-MS, under both natural light:dark conditions, and continuous light. They also measured gene expression of related genes as well as defence-related phytohormones. The effects of a secondary exposure to GLVs on primed receiver plants were also measured.

      The paper addresses some interesting points, however, some questions arise regarding some of the methods employed. Firstly, I am wondering why VOCs (as measured by GC-MS) were not quantified. While I understand that quantification is time-consuming and requires more work, it allows for comparisons to be made between lines of the same species, as well as across other literature on the subject. As experiments with VOC dispensers were also used in this experiment, I find it even more baffling that the authors didn't confirm the concentration of the emission from the plants they used to make sure they matched. The references cited justifying the concentration used (saying it was within the range of GLVs emitted by their plants) to prepare the dispenser were for either a different variety of maize (delprim versus B73) or arabidopsis. Simply relying on the area under the curve and presenting results using arbitrary units is not enough for analyses like these.

      Response: We thank the reviewer for their comment. We have now quantified both the emission of dispensers and maize seedlings infested with 3 4th-instar Spodoptera exigua larvae. Averaged across 1 h, HAC dispensers emitted roughly 2x higher molar concentrations than total GLV molar concentrations emitted by plants infested by 3 caterpillars. Of note, GLV emissions induced by caterpillars vary over time, and can be more than 2-fold higher than the average during times of strong active feeding (Supplemental Fig 4). Thus, the release rate of the dispensers is well within the plant’s physiological range.

      Note that the references cited were included to support the claim of the biological activity of all three GLVs rather than to justify concentration of our dispensers. We have rephrased this sentence to reflect this (see L330-333).

      With regards to the correlation analyses shown in Figure 6, the results presented in many of the correlation plots are not actually informative. By blindly reporting the correlation coefficient important trends are being ignored, as there are clearly either bimodal relationships (e.g. upper left panel, HAC/TMTT, HAC/MNT) or even stranger relationships (e.g. upper left panel, IND/SQT, IND/MNT) that are not being well explained by a correlation plot. It is not appropriate to discuss the correlation factors presented here and to draw such strong conclusions on emission kinetics. The comparison between plants under continuous light and normal light:dark conditions is interesting, but I think there are better ways to examine these relationships, for example, multivariate analysis might reveal some patterns.

      Response: We thank the reviewer for their comment. With our analysis we aimed at testing specifically whether the high release of known bioactive volatiles (GLVs and indole) by sender plants on the second day can explain the higher terpene emissions in the receiver plants. We explicitly mention this in the text (L176-L186). Indeed, under normal light conditions (light and dark phase), there are clear positive correlations between the GLV release of sender plants and the terpene release of receiver plants over time (see also Fig 1 and Fig 5). However, under continuous light conditions, GLV emissions in sender plants no longer correlate with terpene emissions in receiver plants (also apparent by comparison of Fig 4 and Fig 5). This shows that temporal variation in GLV emissions are insufficient to explain the delayed terpene burst. This is the relevant conclusion we draw from this analysis. As presented, we find the data to provide strong evidence that the delayed burst in receiver plant terpene emissions cannot be solely explained by higher availability of active signals on the second day. The priming experiment in Figure 7 then provides a direct additional test for this concept. While more complex analyses could indeed reveal additional patterns, these would not be particularly informative for the question at hand.

      In Figure 2, the elevated concentrations of beta-caryophyllene found in the control plants at 8h and 16.75h measurement timepoints are curious. Is this something that is commonly seen in B73?

      Response: We thank the reviewer for this comment. A small number of untreated plants indeed accumulated β -caryophyllene at night, which is likely the result of biological variability between samples. Our plants were soil-grown, and it is for instance possible that variation in soil biota may account for this variability. Alternatively, some plants may have been slightly stressed during handling. Note that this variability does not affect any of the conclusions in our manuscript.

      While there can be discrepancies between emissions and compounds actually present within leaf tissue, it is a little bit odd that such high levels of b-caryophyllene were found at these timepoints, however, this is not reflected in the PTR-ToF-MS measurements of sesquiterpenes. It would be beneficial to include an overview of the mechanism of production and storage of sesquiterpenes in maize leaves, which would clarify why high amounts were found only in the GC-MS analysis and not the PTR-ToF-MS analysis, which is a more sensitive analytical tool. It is possible that the amounts of b-caryophyllene present in the leaf are actually extremely low, however as the values are not given as a concentration but rather arbitrary units, it is not possible to tell. I would include a line explaining what is seen with b-caryophyllene.

      Response: Thank you for this comment. It is important to note that accumulation in maize leaves can differ substantially from emission, especially at night when stomata are closed. This has been observed before in maize leaves (Seidl-Adams et al., 2015). As the reviewer suspects, earlier work indeed found that β-caryophyllene is a minor sesquiterpene compared to β-farnesene and α-bergamotene in B73 ( Block et al., 2018). The PTR-ToF-MS does not discriminate between terpenes with the same m/z and thus measures total sesquiterpene emissions. Given that sesquiterpene emissions are strongly regulated by stomatal aperture and that overall sesquiterpene accumulation in control plants is low, it is not surprising that we measure only minor amounts of sesquiterpene emissions in general, and in control plants in particular. We now text to the manuscript to explain these aspects (L116-L122). Block, A.K., Hunter, C.T., Rering, C. et al. Contrasting insect attraction and herbivore-induced plant volatile production in maize. Planta 248, 105–116 (2018).

      Seidl-Adams I, Richter A, Boomer KB, Yoshinaga N, Degenhardt J, Tumlinson JH. Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings. Plant Cell Environ. 38, 23-34 (2015).

      Additionally, it seems like the amounts of TMTT within the leaf are extraordinarily high (judging only by the au values given for scale), far higher than one would expect from maize.

      Response: We are unsure about the reviewer’s interpretation here. The AU values do not allow for conclusions regarding total quantities. An earlier study found that TMTT in induced B73 plants accumulates to similar amounts as β-caryophyllene (Block et al., 2018), thus it is not surprising to detect significant TMTT pools in induced maize leaves. It is important to note that the aim of the experiment here was to test the hypothesis that plants may be hyperaccumulating volatiles when the stomata are closed at night, which could potentially explain the delayed terpene burst on the second day. We do not observe such a hyperaccumulation, thus ruling out this as the primary factor responsible for the observed phenomenon. This is further supported by the continuous light experiments, where the delayed burst in terpene emission is not hindered by the lack of a dark phase.

      Block, A.K., Hunter, C.T., Rering, C. et al. Contrasting insect attraction and herbivore-induced plant volatile production in maize. Planta 248, 105–116 (2018).

      Reviewer #2 (Public Review):

      The exact dynamics of responses to volatiles from herbivore-attacked neighbouring plants have been little studied so far. Also, we still lack evidence of whether herbivore-induced plant volatiles (HIPVs) induce or prime plant defences of neighbours. The authors investigated the volatile emission patterns of receiver plants that respond to the volatile emission of neighbouring sender plants which are fed upon by herbivorous caterpillars. They applied a very elegant approach (more rigorous than the current state-of-the-art) to monitor temporal response patterns of neighbouring plants to HIPVs by measuring volatile emissions of senders and receivers, senders only and receivers only. Different terpenoids were produced within 2 h of such exposure in receiver plants, but not during the dark phase. Once the light turned on again, large amounts of terpenoids were released from the receiver plants. This may indicate a delayed terpene burst, but terpenoids may also be induced by the sudden change in light. A potential caveat exists with respect to the exact timing and the day-night cycle. The timing may be critical, i.e. at which time-point after onset of light herbivores were placed on the plants and how long the terpene emission lasted before the light was turned off. If the rhythm or a potential internal clock matters, then this information should also be highly relevant. Moreover, light on/off is a rather arbitrary treatment that is practical for experiments in the laboratory but which is not a very realistic setting. Particularly with regard to terpene emission, the sudden turning on of light instead of a smooth and continuous change to lighter conditions may trigger emission responses that are not found in nature.

      Response: We thank the reviewer for their comment. Although not explicitly mentioned it in the initial draft of the MS, we employed 15 min transition periods for light and dark phase transitions with a light intensity of 60 µmol m-2 s-1 (compared to 300 µmol m-2 s-1 at full light) to achieve a more gradual transition. We now included this information in the manuscript (L291-L292).

      As one contrasting control, the authors also studied the time-delay in volatile emission when plants were just kept under continuous light (just for the experiment or continuously?). Here they also found a delayed terpenoid production, but this seemed to be lower compared to the plants exposed to the day-night-cycle. Another helpful control would be to start the herbivory treatment in the evening hours and leave the light on. If then again plants only release volatiles after a 17 h delay, the response is indeed independent of the diurnal clock of the plant.

      Response: This is a very interesting point raised by the reviewer. We now conducted an additional experiment under continuous light where we started the herbivory treatment just before the start of the dark phase (ca. 20:00 PM). We found a similar pattern: a distinct delay in the highest burst. However, interestingly, the burst was shifted from 12-18 hr to 10-12 hr (Supplemental Fig 1). This burst aligned reasonably well with the point at which lights would normally be turned on again. In light of this, and, as the herbivore additions typically started ca. 5 hrs after the onset of light following a dark period (Figures 1-7), we wanted to rule out the possibility that the lack of a burst on the first day, was simply due to a difference in induction capacity depending on how shortly after the onset of light plants became exposed to GLVs. As such, we designed an additional experiment to examine whether exposure to GLVs immediately after the lights come on induce higher terpene emissions than plants exposed to GLVs ca. 5 hr after lights come on (Supplemental Fig 2). Interestingly, emissions across the terpenes were similar, regardless how long after the onset of lights on plants were exposed to GLVs. This suggests that the delayed burst is not due to the fact that, on the second day, plants are exposed to GLVs immediately after the lights come on whereas the first day they are only exposed 5 hr after the lights come on. Both continuous light experiments (normal timing and shifted timing) show bursts that occur slightly earlier than we observe with under normal day : night light conditions (L159-L166 and L207-L211), suggesting an interaction between circadian and diurnal processes. For instance, it is possible that plants would start producing volatiles slightly earlier than the onset of the day, however, light and stomatal opening limits the exact timing of the burst under normal light:dark transitions. The additional data provide further evidence for the delayed burst as a timed response in maize plants.

      Additionally, we have added explanation the continuous light figure legends that plants were grown under normal conditions and lights were only left on following treatment.

      Interestingly, internal terpene pools of one of the leaves tested here remained more comparable between night and day, indicating that their pools stay higher in plants exposed to HIPVs. In contrast, terpene synthases were only induced during the light-phase, not in the dark-phase. Moreover, jasmonates were only significantly induced 22 h after the onset of the volatile exposure and thus parallel with the burst of terpene release. An additional experiment exposing plants to the green leaf volatile (glv) (Z)-3-hexenyl acetate revealed that plants can be primed by this glv, leading to a stronger terpene burst. The results are discussed with nice logic and considering potential ecological consequences. Some data are not discussed, e.g. the jasmonate and gene induction pattern.

      Response: Thanks for this comment. We have added a sentence regarding the jasmonate data suggesting that, in addition to providing an additional layer of evidence for the observed delay, suggest that other JA-dependent defenses in maize may follow similar temporal patterns (L254-L257).

      Overall, this study provides intriguing insights into the potential interplay between priming and induction, which may co-occur, enhancing (indirect and direct) plant defence. Follow-up studies are suggested that may provide additional evidence.

      Reviewer #1 (Recommendations For The Authors):

      Could the authors please explain why they chose not to calculate concentrations for VOCs? Perhaps it is that B73 is a very unique variety in that it contains very high levels of TMTT, even in control plants? This should be clarified by the authors.

      Response: We address this comment in the public review portion

      For the legend within Figure 2, I would move it to be in the upper left or right corners of the figure. It is not easy to see in its current position.

      Response: We have moved the figure legend based on the reviewers recommendation

      Figures depicting PTR-ToF-MS data: add m/z values to either the figures themselves and/or the legends.

      Response: We have added m/z values to the legends and added molecular formulas of protonated compounds to each panel.

      Overall, here are some other suggestions: I am slightly weary of the term "clocked response". I'm not sure this is the correct fit for what you are trying to convey. I think "regulated" is a better term than "clocked". I understand that it is likely a stylistic choice to use this word, however, I advise reconsidering for the sake of clarity of the results.

      Response: Thank you. We find clocked to be an appropriate term, as it highlights the temporal aspect of the burst, and have thus left the title as is.

      Have another look at the references as some are not in the correct format (i.e., species not in italics).

      Response: We have checked and corrected the references

      Reviewer #2 (Recommendations For The Authors):

      Line 23: consequences on community dynamics are not investigated here, so this is a bit misleading.

      Last sentence of the abstract: It would be nice to read the answer to this long-standing question here.

      Response: We have deleted he sentence about community dynamics and provided a more concrete final sentence (L38-L40)

      Lines 48-50: The example does not fit so well with the first sentence and is not entirely clear (relation to temporal dynamics; similar to what?).

      Response: We have reworded the sentence for clarity (L49-L52)

      Line 56: "volatiles" should be plural.

      Response: Changed (L58)

      Line 58: "to be produced" rather than "to produce"

      Response: This seems a stylistic choice, and have left it as is.

      End of abstract: Did you have any hypotheses? These should be stated here.

      Response: The listing of hypotheses is also a stylistic choice, which is in some cases required by journals, but not eLife. As such we have not included a discrete list of hypotheses and instead describe what we aimed to investigate and what we found.

      Line 93: "This response disappeared at night." Does this mean: "No volatiles were emitted during night"? Or was this a gradual disappearance? How many hours after the onset of light did the herbivore treatment start and how many hours after the first emission of volatiles was the light turned off?

      Response: We have added when herbivory began (L92-L93) and changed the text to ‘as soon as light was restored’ (L97-L98).

      Line 93: "as soon as the night was over" means practically rather "as soon as the light was switched on".

      Response: See above

      Line 91: "small induction" - do you mean "low amounts of xxx"?

      Response: We mean a small induction. Terpene emission is relatively low (hence small), but still induced relative controls.

      Line 91: which mono- and sesquiterpenes were monitored?

      Response: It is PTR-ToF-MS a thus we cannot identify individual sesquiterpenes and monoterpenes (as they all have the same mass), and thus group them generally.

      Figure 1: What exactly is the "control"? And what does the vertical hatched line in the beginning represent?

      Response: We have defined the control and added a sentence describing the vertical hatched line

      "Black points represent the same but with undamaged sender plants" - what is "the same" here? I find that a bit confusing!

      Response: We have rephrased

      Line 104: how do you define an "overaccumulation"?

      Response: We have added ‘above daytime levels’ to clarify that we mean over daytime levels (L106)

      Why was the oldest developing leaf chosen? Is this the largest one when plants are two weeks old? How many leaves do they have then? Is this the leaf with the highest biomass?

      Response: We chose this leaf as it is the largest and also highly responsive to HIPVs. We have added this sentence (with a reference) in the methods section (L369-L370)

      Line 107: "started increasing after 3 hours" - they may already have started before. The following description also sounds like the dynamics were investigated here. However, instead the authors measured samples at four distinct time-points and cannot say whether something "began" or "remained" etc. The wording should be changed to a more appropriate description, describing the differences at a given time-point.

      Response: We changed the wording to ‘were marginally induced after 3 hr’ see L110

      Line 113: What do you mean by "delete BELOW NIGHTTIME levels"?

      Response: The word we used was ‘deplete’ to ‘drop’ (L116)

      Line 114: "the expression of terpene synthases" add "in the receiver plants exposed to HIPVs."

      Response: Added

      Figure 2ff: The situation of receiver plants exposed to control plant volatiles is not explained in the method section and also not depicted in the Suppl. Fig. 1. Here, the sender plants seem to always have been induced (if the red star-like structure should resemble an induction - a legend may be helpful here).

      Response: We have changed to ‘connected to undamaged sender plants’. We additionally added a sentence to the methods section describing controls L300

      Line 140: This treatment is not described in the methods section. Were the plants only kept under constant conditions for the 2 experimental days? Compared to the induction shown in Fig. 1, the amount of released volatiles seems less here.

      Response: We have added explanation of this to the figure legends, explaining that plants were grown under normal conditions and lights were only left on following treatment

      Another helpful control would be to start the herbivory treatment in the evening hours and leave the light on. If then again plants only release volatiles after a 17 h delay, the response is indeed independent of the diurnal clock of the plant.

      Response: See public review comment. We have added this experiment and discuss it accordingly in the MS (L159-L166 and L207-L211)

      Line 157: Check sentence/grammar

      Response: Checked and modified

      Figure 5: I suggest using a different colour for volatiles released from the sender plants, not again the green also used in the other figures for the receiver plants. This would help the reader to quickly see which plants are in focus in each figure.

      Response: We have changed the color of the figures for clarity

      Figure 6 legend: check grammar in several sentences (use of singular vs. plural)

      Response: We have made the tense uniform

      The diurnal rhythm of jasmonates (and potentially also terpene synthases?) is not considered in the discussion.

      Response: See above, and we have added a sentence to the discussion mentioning the jasmonates (L254-L257)

      Line 230-231: check grammar. Given the complexity, the response pattern may not be so predictable.

      Response: We do not understand this comment, but have checked the grammar throughout the manuscript.

      Line 235: I like the discussion on potential ecological consequences.

      While some interpretation for each experiment is already given in the results section, not all results are discussed in the discussion section. For example, the jasmonate data are not discussed. This should be added.

      Response: See above

      Line 266: To get an idea about the plant size: How many leaves do the plants have in that stage?

      Response: Added a sentence describing the size L287-L288

      Line 321: change to "as in the greenhouse"

      Response: Changed

      Line 334: How were the terpenoids identified and, in particular, quantified?

      Response: Added (L379-L380)

      Line 354: Maybe rather change to: "Plant treatments and tissue collection for phytohormone sampling were identical as described above for terpene and gene expression analysis.

      Response: Changed

      Line 357: add "material" or "leaf tissue" after "flash frozen"

      Response: Added

      Line 359: What was the source of the isotopically labelled phytohormones?

      Response: Added (L400-L403)

      Line 360: The phytohormones are "analyzed" using UPLC. The "quantification" is then done afterward. Please correct.

      Response: Corrected (L404)

      Overall: a great approach and a wonderful idea!

      Thanks

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript investigates the role of membrane contact sites (MCSs) and sphingolipid metabolism in regulating vacuolar morphology in the yeast Saccharomyces cerevisiae. The authors show that tricalbin (1-3) deletion leads to vacuolar fragmentation and the accumulation of the sphingolipid phytosphingosine (PHS). They propose that PHS triggers vacuole division through MCSs and the nuclear-vacuolar junction (NVJ). The study presents some solid data and proposes potential mechanisms underlying vacuolar fragmentation driven by this pathway. However, there are some concerns regarding the strength and interpretation of their lipid data, and the robustness of some conclusions. The manuscript would benefit from addressing these concerns and providing more conclusive evidence to support the proposed conclusions. Overall, the study provides valuable insights into the connection between MCSs, lipid metabolism, and vacuole dynamics, but further clarification will be highly valuable to strengthen the conclusions.

      We thank the thoughtful and positive feedback from Reviewer #1. Nevertheless, there are concerns raised regarding the strength and interpretation of the lipid data, as well as the robustness of specific conclusions. We acknowledge the importance of addressing the raised concerns and provide more conclusive evidence to support our proposed conclusions. We have responded in the "Recommendations to Authors" section and hope that our research has been further strengthened.

      Reviewer #2 (Public Review):

      This manuscript investigates the mechanism behind the accumulation of phytosphingosine (PHS) and its role in triggering vacuole fission. The study proposes that membrane contact sites (MCSs) are involved in two steps of this process. First, tricalbin-tethered MCSs between the endoplasmic reticulum (ER) and the plasma membrane (PM) or Golgi modulate the intracellular amount of PHS. Second, the accumulated PHS induces vacuole fission, most likely via the nuclear-vacuolar junction (NVJ). The authors suggest that MCSs regulate vacuole morphology through sphingolipid metabolism.

      While some of the results in the manuscript are interesting the overall logic is hard to follow. In my assessment of the manuscript, my primary concern lies in its broad conclusions which, in my opinion, exceed the available data and raise doubts. Here are some instances where this comes into play for this manuscript:

      We greatly appreciate the careful insights into our research from Reviewer #2. We have sincerely addressed the points one by one in the following.

      Major points for revision

      1) The rationale to start investigating a vacuolar fission phenotype in the beginning is very weak. It is basically based on a negative genetic interaction with NVJ1. Based on this vacuolar fragmentation is quantified. The binning for the quantifications is already problematic as, in my experience, WT cells often harbor one to three vacuoles. How are quantifications looking when 1-3 vacuoles are counted as "normal" and more than 3 vacuoles as "fragmented"? The observed changes seem to be relatively small and the various combinations of TCB mutants do not yield a clear picture.

      The number of vacuoles at a steady state could be influenced by various environmental factors, including the composition of the medium (manufacturer supplying the reagent and local water hardness) and the background of the strain. Possibly due to those causes, our observations differ from the experience of Reviewer #2. Indeed, we observed that WT cells always have one vacuole in YPD medium. Whereas in SD medium (Fig S3B only), WT cells have mainly one or two vacuoles per cell. In both cases, we observed that some of the mutants showed a different phenotype from the WT and that those differences are supported by student’s t-test and two-way ANOVA analysis.

      2) The analysis of the structural requirements of the Tcb3 protein is interesting but does not seem to add any additional value to this study. While it was used to quantify the mild vacuolar fragmentation phenotype it does not reoccur in any following analysis. Is the tcb3Δ sufficient to yield the lipid phenotype that is later proposed to cause the vacuolar fragmentation phenotype?

      We do not know whether tcb3Δ alone is sufficient to increase PHS as we have not examined it. Nevertheless, as another approach, we analyzed the difference in IPC level between tcb1Δ2Δ3Δ triple deletion and tcb3Δsingle deletion in a sec18 mutant background and showed that the reduction of IPC synthesis is similar between tcb1Δ2Δ3Δand tcb3Δ alone (unpublished). This result suggests that out of all tricalbins (Tcb1, Tcb2 and Tcb3), Tcb3 plays a central role. In addition, the IPC synthesis reduction phenotype was small in tcb1Δ alone and tcb2Δ alone, but a strong phenotype appeared in the tcb1Δtcb2Δ combined deletion (as strong as in tcb3Δ alone). The relationship between Tcb1 Tcb2 and Tcb3 indicated by these results is also consistent with the results of the structural analysis in this study. We have shown that Tcb3 physically interacts with Tcb1 and Tcb2 by immunoprecipitation analysis (unpublished). In the future, we plan to investigate the relationship between Tcb proteins in more detail, along with the details of the interactions between Tcb1, Tcb2, and Tcb3.

      3) The quantified lipid data also has several problems. i) The quantified effects are very small. The relative change in lipid levels does not allow any conclusion regarding the phenotypes. What is the change in absolute PHS in the cell. This would be important to know for judging the proposed effects. ii) It seems as if the lipid data is contradictory to the previous study from the lab regarding the role of tricalbins in ceramide transfer. Previously it was shown that ceramides remain unchanged and IPC levels were reduced. This was the rationale for proposing the tricalbins as ceramide transfer proteins between the ER and the mid-Golgi. What could be an explanation for this discrepancy? Does the measurement of PHS after labelling the cells with DHS just reflect differences in the activity of the Sur2 hydroxylase or does it reflect different steady state levels.

      i) As Reviewer #2 pointed out, it is a slight change, but we cannot say that it is not sufficient. We have shown that PHS increases in the range of 10~30% depending on the concentration of NaCl that induces vacuole division (This result is related to the answers to the following questions by Reviewer #3 and to the additional data in the new version). This observation supports the possibility that a small increase in PHS levels may have an effect on vacuole fragmentation. We did not analyze total PHS level by using methods such as liquid chromatography-mass spectrometry or ninhydrin staining of TLC-separated total lipids. The reason for this is that radiolabeling of sphingolipids using the precursor [3H]DHS provides higher sensitivity and makes it easier to detect differences. Moreover, using [3H]DHS labeling, we only measure PHS that is synthesized in the ER and that doesn’t originate from degradation of complex sphingolipids or dephosphorylation of PHS-1P in other organelles.

      ii) In our previous study (Ikeda et al. iScience. 2020), we separated the lipid labeled with [3H]DHS into ceramides and acylceramides. There was no significant change in ceramide levels, but acylceramides increased in tcb1Δ2Δ3Δ. Since we did not separate these lipids in the present study, the data shows the total amount of both ceramide and acylceramide. We apologize that the term in Figure 3A was wrong. We have corrected it. Also, we have used [3H]DHS to detect IPC levels, which differs from the previous analysis used [3H]inositol. This means the lipid amounts detected are completely different. Since the amount of inositol incorporated into cells varies from cell to cell, the amount loaded on the TLC plate is adjusted so that the total amount (signal intensity) of radioactively labeled lipids is almost the same. In contrast, for DHS labeling, the amount of DHS attached to the cell membrane is almost the same between cells, so we load the total amount onto the TLC plate without adjustment. In addition, the reduction in IPC levels due to Tcb depletion that we previously reported was seen only in sec12 or sec18 mutation backgrounds, and no reduction in IPC levels was observed in the tcb1Δ2Δ3Δ by [3H]inositol labeling (Ikeda et al. iScience. 2020). Therefore, we cannot simply compare the current results with the previous report due to the difference in experimental methods.

      The labeling time for [3H]DHS is 3 hours, and we are not measuring steady-state amounts, but rather analyzing metabolic reactions. Since [3H]DHS is converted to PHS by Sur2 hydroxylase in the cell, the possibility that differences in PHS amounts reflect differences in Sur2 hydroxylase activity cannot be ruled out. However, this possibility is highly unlikely since we have previously observed that the distribution of ceramide subclasses is hardly affected by tcb1Δtcb2Δtcb3Δ (Ikeda et al. iScience 2020). We have added to the discussion that the possibility of differences in Sur2 hydroxylase activity cannot be excluded.

      4) Determining the vacuole fragmentation phenotype of a lag1Δlac1Δ double mutant does not allow the conclusion that elevated PHS levels are responsible for the observed phenotype. This just shows that lag1Δlac1Δ cells have fragmented vacuoles. Can the observed phenotype be rescued by treating the cells with myriocin? What is the growth rate of a LAG1 LAC1 double deletion as this strain has been previously reported to be very sick. Similarly, what is the growth phenotype of the various LCB3 LCB4 and LCB5 deletions and its combinations.

      As Reviewer #2 pointed out, the vacuolar fragmentation in lag1Δlac1Δ itself does not attribute to the conclusion that increased PHS levels are the cause. Since this mutant strain has decreased level of ceramide and its subsequent product IPC/MIPC in addition to the increased level of the ceramide precursors LCB or LCB-1P, we have changed the manuscript as follows. As noted in the following comment by reviewer #2, myriocin treatment has been reported to induce vacuolar fragmentation, so we do not believe that experiments on recovery by myriocin treatment will lead to the expected results.

      ・ Previous Version: We first tested whether increased levels of PHS cause vacuolar fragmentation. Loss of ceramide synthases could cause an increase in PHS levels. Our analysis showed that vacuoles are fragmented in lag1Δlac1Δ cells, which lack both enzymes for LCBs (DHS and PHS) conversion into ceramides (Fig 3B). This suggests that ceramide precursors, LCBs or LCB-1P, can induce vacuolar fragmentation.

      ・Current Version: We first evaluated whether the increases in certain lipids are the cause of vacuolar fragmentation in tcb1Δ2Δ3Δ. Our analysis showed that vacuoles are fragmented in lag1Δlac1Δ cells, which lack both enzymes for LCBs (DHS and PHS) conversion into ceramides (Fig 3B). This suggests that the increases in ceramide and subsequent products IPC/MIPC are not the cause of vacuolar fragmentation, but rather its precursors LCBs or LCB-1P.

      As reviewer #2 pointed out, the lag1Δlac1Δ double mutant is very slow growing as shown below (Author response image 1). We also examined the growth phenotype of LCB3, LCB4, and LCB5 deletion strains, and found that the growth of these strains was the same as the wild strains, with no significant differences in growth (Author response image 1).

      Author response image 1.

      Cells (FKY5687, FKY5688, FKY36, FKY37, FKY33, FKY38) were adjusted to OD 600 = 1.0 and fivefold serial dilutions were then spotted on YPD plates, then incubated at 25℃ for 3 days.

      5) The model in Figure 3 E proposes that treatment with PHS accumulates PHS in the endoplasmic reticulum. How do the authors know where exogenously added PHS ends up in the cell? It would also be important to determine the steady state levels of sphingolipids after treatment with PHS. Or in other words, how much PHS is taken up by the cells when 40 µM PHS is added?

      It has been found that the addition of PHS well suppresses the Gas1 trafficking (Gaigg et al. J Biol Chem. 2006) and endocytosis phenotypes in lcb-100 mutants (Zanolari et al. EMBO J. 2000). Their suppression depends on Lcb3 localized to the ER. Thus, we know that PHS added from outside the cell reaches the ER and is functional.

      We also agree that it is important to measure the amount of PHS taken up into the cells. However, this is extremely difficult to do for the following reasons. The majority of PHS added to the medium remains attached to the surface layer of the cells. If we measure the lipids in the cells by MS, we would detect both lipids present on the outside and inside of the plasma membrane. This means we need to separate the outside from the inside of the cell's membrane to determine the exact amount of LCB that has taken up by the cells. Regretfully, this separation is currently technically difficult.

      6) Previous studies have observed that myriocin treatment itself results in vacuolar fragmentation (e.g. Hepowit et al. biorXivs 2022, Fröhlich et al. eLife 2015). Why does both, depletion and accumulation of PHS lead to vacuolar fragmentation?

      It’s exactly as Reviewer #2 said. Consistent with previous results with myriocin treatment, we also observed vacuolar fragmentation in the lcb1-100 mutant strain. Then we have added these papers to the references for further discussion. Our discussion is as follows.

      "Previous studies have observed that myriocin treatment results in vacuolar fragmentation (Hepowit et al. bioRxiv 2022; Now published in J Cell Sci. 2023, Fröhlich et al. eLife 2015). Myriocin treatment itself causes not only the depletion of PHS but also of complex sphingolipids such as IPC. This suggests that normal sphingolipid metabolism is important for vacuolar morphology. The reason for this is unclear, but perhaps there is some mechanism by which sphingolipid depletion affects, for example, the recruitment of proteins required for vacuolar membrane fusion. In contrast, our new findings show that both PHS increase and depletion cause vacuole fragmentation. Taken together, there may be multiple mechanisms controlling vacuole morphology and lipid homeostasis by responding to both increasing and decreasing level of PHS."

      7) The experiments regarding the NVJ genes are not conclusive. While the authors mention that a NVJ1/2/3 MDM1 mutant was shown to result in a complete loss of the NVJ the observed effects cannot be simply correlated. It is also not clear why PHS would be transported towards the vacuole. In the cited study (Girik et al.) the authors show PHS transport from the vacuole towards the ER. Here the authors claim that PHS is transported via the NVJ towards the vacuole. Also, the origin of the rationale of this study is the negative genetic interaction of tcb1/2/3Δ with nvj1Δ. This interaction appears to result in a strong growth defect according to the Developmental Cell paper. What are the phenotypes of the mutants used here? Does the additional deletion of NVJ genes or MDM1 results in stronger growth phenotypes?

      We seriously appreciate the concerns in our research. As reviewer #2 pointed out, we have not shown evidence in this study to support that PHS is transported directly from the ER to the vacuole, so it is unclear whether PHS is transported to the vacuole and its physiological relevance. Girik et al. showed that the NVJ resident protein Mdm1 is important for PHS transport between vacuole and ER. Given the applied experimental method that tracks PHS released in the vacuole, indeed only transport of PHS from the vacuole to the ER was verified. However, assuming that Mdm1 transports PHS along its concentration gradient we consider that under normal conditions, PHS is transported from the ER (as the organelle of PHS synthesis) to the vacuole. We clarified this interpretation by adding the following sentences to the manuscript at line 313:

      “The study applied an experimental method that tracks LCBs released in the vacuole and showed that Mdm1p is necessary for LCBs leakage into the ER. However, assuming that Mdm1p transports LCBs along its concentration gradient we consider that under normal conditions, LCBs is transported from the ER (as the organelle of PHS synthesis) to the vacuole.”

      The negative genetic interaction between tcb1/2/3Δ and nvj1Δ is consistent with this model, but under our culture conditions we did not observe a negative interaction between the genes encoding the TCB3 and NVJ junction proteins (Author response image 2). We do not know if this is due to strain background, culture conditions, or whether the deletions of TCB1 and TCB2 are also required for the negative interaction. We would like to analyze details in the future.

      Author response image 2.

      Cells (FKY 3868, FKY5560, FKY6187, FKY6189, FKY6190, FKY6188, FKY6409) were adjusted to OD 600 = 1.0 and fivefold serial dilutions were then spotted on YPD plates, then incubated at 25℃ for 3 days.

      Our results in this study show that deletion of the NVJ component gene partially suppresses vacuolar fission upon the addition of PHS. To clarify these facts, we have changed the sentences in Results and Discussion of our manuscript as follows. We hope that this change will avoid over-interpretation.

      ・ Previous: To test the role of NVJ-mediated “transport” for PHS-induced vacuolar fragmentation,

      ・Current: To test the role of NVJ-mediated “membrane contact” for PHS-induced vacuolar fragmentation,

      ・Previous: Taken together, we conclude from these findings that accumulated PHS in tricalbin deleted cells triggers vacuole fission via “non-vesicular transport of PHS” at the NVJ.

      ・Current: Taken together, we conclude from these findings that accumulated PHS in tricalbin deleted cells triggers vacuole fission via “contact between ER and vacuole” at the NVJ.

      ・Previous: Because both PHS- and tricalbin deletion-induced vacuolar fragmentations were partially suppressed by the lack of NVJ (Fig 4B, 4C), it is suggested that transport of PHS into vacuoles via the NVJ is involved in triggering vacuolar fragmentation.

      ・Current: Based on the fact that both PHS- and tricalbin deletion-induced vacuolar fragmentations were partially suppressed by the lack of NVJ (Fig 4B, 4C), it is possible that the trigger for vacuolar fragmentation is NVJ-mediated transport of PHS into the vacuole.

      8) As a consequence of the above points, several results are over-interpreted in the discussion. Most important, it is not clear that indeed the accumulation of PHS causes the observed phenotypes.

      We thank the suggestion by Reviewer #2. In particular, the concern that PHS accumulation really causes vacuolar fragmentation could only be verified by an in vitro assay system. This is an important issue to be resolved in the future.

      Reviewer #3 (Public Review):

      In this manuscript, the authors investigated the effects of deletion of the ER-plasma membrane/Golgi tethering proteins tricalbins (Tcb1-3) on vacuolar morphology to demonstrate the role of membrane contact sites (MCSs) in regulating vacuolar morphology in Saccharomyces cerevisiae. Their data show that tricalbin deletion causes vacuolar fragmentation possibly in parallel with TORC1 pathway. In addition, their data reveal that levels of various lipids including ceramides, long-chain base (LCB)-1P and phytosphingosine (PHS) are increased in tricalbin-deleted cells. The authors find that exogenously added PHS can induce vacuole fragmentation and by performing analyses of genes involved in sphingolipid metabolism, they conclude that vacuolar fragmentation in tricalbin-deleted cells is due to the accumulated PHS in these cells. Importantly, exogenous PHS- or tricalbin deletion-induced vacuole fragmentation was suppressed by loss of the nucleus vacuole junction (NVJ), suggesting the possibility that PHS transported from the ER to vacuoles via the NVJ triggers vacuole fission.

      This work provides valuable insights into the relationship between MCS-mediated sphingolipid metabolism and vacuole morphology. The conclusions of this paper are mostly supported by their results, but there is concern about physiological roles of tricalbins and PHS in regulating vacuole morphology under known vacuole fission-inducing conditions. That is, in this paper it is not addressed whether the functions of tricalbins and PHS levels are controlled in response to osmotic shock, nutrient status, or ER stress.

      We appreciate the comment, and we consider it an important point. To answer this, we have performed additional experiments. Please refer to the following section, "Recommendations For The Authors" for more details. These results and discussions also have been added to the revised Manuscript. We believe this upgrade makes our findings more comprehensive.

      There is another weakness in their claim that the transmembrane domain of Tcb3 contributes to the formation of the tricalbin complex which is sufficient for tethering ER to the plasma membrane and the Golgi complex. Their claim is based only on the structural simulation, but not on biochemical experiments such as co-immunoprecipitation and pull-down.

      We appreciate your valuable suggestion and would like to attempt to improve upon it in the future.

      Author response to Recommendations:

      The following is the authors' response to the Recommendations For The Authors. We have now incorporated the changes recommended by Reviewers to improve the interpretations and clarity of the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      I would recommend the authors provide additional experimental data to fully support their claims or revise the writing of their manuscript to be more precise in their conclusions. In particular, I have suggestions/questions:

      Fig. 1A: display the results as in 1B (that is, different colors for different number of vacuoles, and the x axes showing the different conditions, in this case WT vs tcb1∆2∆3∆.

      In response to the suggestion of Reviewer #1, we have changed the display of results.

      Fig. S1B: the FM4-64 pattern looks different in the KO strain as compared to those shown in Fig. 1A. Is there a reason for that? Also, no positive control of cps1p not in the vacuole lumen is shown.

      Our apologies, this was probably due to the poor resolution of the images. We have made other observations and changed the Figure along with the positive control.

      Line 172: the last condition in Fig. 2B (vi), should be compared to the tcb1∆tcb2∆ condition (shown in fig 1).

      In response to the suggestion of Reviewer #1, we have changed the manuscript as follows: We found that cells expressing Tcb3(TM)-GBP and lacking Tcb1p and Tcb2p (Fig 2B (vi)) are even more fragmented than tcb1Δ2Δ in Fig 1B and are fragmented to a similar degree as tcb3Δ (Fig 1B and Fig 2B (ii)).

      Fig 2E: the model shown here can be tested, is there binding (similar to kin recognition mechanism of some Golgi proteins) between the different Tcb TMDs?

      As Reviewer #1 mentioned, we have confirmed by co-immunoprecipitation that Tcb3 binds to both Tcb1 and Tcb2 (unpublished). Furthermore, we will test if the binding can be observed with TMD alone in the future.

      Fig 3A: you measured an increase in PHS that is metabolized from DHS (which is what you label). Are there other routes to produce PHS independently of DHS? I mean, how is the increase reporting on the total levels of this lipid?

      PHS synthesized by Sur2 is converted to PHS-1P and phytoceramide. Conversely, PHS is reproduced by degradation of PHS1-P via Lcb3, Ysr3, and by degradation of phytoceramides via Ypc1 (Vilaça, Rita et al. Biochim Biophys Acta Mol Basis Dis. 2017. Fig1). Our analysis shows that these degradation substrates are not decreasing but rather accumulating in tcb1Δ2Δ3Δ strain, suggesting that the degradation system is not promoting PHS level. Therefore, the increase in detected PHS is most likely due to congestion/jams in metabolic processes downstream of PHS. Possible causes of the lipid metabolism disruption in Tcbdeletion cells have been discussed in the Discussion. To put it simply, (1) The reduced activity of a PtdIns4P phosphatase Sac1, due to MCS deficiency between ER and PM. (2) The impaired ceramide nonvesicular transport from the ER to the Golgi. (3) The low efficiency of PHS export by Rsb1, due to insufficient PHS diffusion between the ER and the PM.

      Line 248: did the authors test if the NVJ MCS is unperturbed in the triple Tcb KO?

      This is an exciting question. We are very interested in considering whether Tcb deficiency affects NVJ formation in terms of lipid transport. We would like to conduct further analysis in this regard in our future studies.

      Reviewer #2 (Recommendations For The Authors):

      I would suggest carefully evaluating the findings in this manuscript. Right now the connection between elevated PHS levels and vacuolar fragmentation are not really supported by the data. One of the major issues in the field of yeast sphingolipid biology is that quantification of the lipid levels is difficult and labor- and cost-intensive. But I think that it is very important to directly connect phenotypes with the lipid levels.

      Minor points:

      • In figure 1 c and d WT controls of the different treatments are lacking.

      As reviewer #2 had pointed out, we have added data for the WT controls.

      • The tcb1Δmutant appears to be sensitive in pH 5.0 media while the triple tricalbins mutant grows fine. Is that a known phenotype?

      We have performed this assay on SD plates. Then, to check whether this phenotype of tcb1Δ was specific or general, we re-analyzed the same strain in YPD medium. In YPD medium, tcb1Δ strain grew normally, while the control, vma3Δ, was still pH sensitive. Therefore, the growth of this tcb1Δ strain is dependent on the nutrient conditions of the medium but does not appear to be pH sensitive. This new data was inserted as part of Supplementary Figure 1.

      • Line 305. The is an "of" in the sentence that needs to be deleted.

      As pointed out by Reviewer #2, we have corrected the sentence.

      Reviewer #3 (Recommendations For The Authors):

      In supplementary Fig 2, the authors show the involvement of the NVJ in hyperosmotic shockinduced vacuole fission, but the involvement of tricalbins and PHS in this process is not tested. Does osmotic shock affect the level or distribution of tricalbins and PHS? They will be able to test whether overexpression of tricalbins inhibits hyperosmotic shock-induced vacuole fission or not. Also, they will be able to perform the similar experiments upon ER stressinduced vacuole fission.

      We appreciate Reviewer#3 for suggesting that it is important to test the involvement of PHS in hyperosmotic shock- or ER stress-induced vacuole fission. We have shown in a previous report that treatment with tunicamycin, which is ER stress inducer, increased the PHS level by about 20% (Yabuki et al. Genetics. 2019. Fig4). In addition, we tested the effect of hyperosmolarity on PHS levels for this time. Analysis of PHS under hyperosmotic shock conditions (0.2 M NaCl), in which vacuolar fragments were observed, showed an increase in PHS of about 10%. Furthermore, when the NaCl concentration was increased to 0.8 M, PHS levels increased up to 30%. In other words, we have shown that PHS increases in the range of tens of percent depending on the concentration of NaCl that induces vacuole division. This observation supports the possibility that a small increase in PHS levels may have an effect on vacuole fragmentation. Moreover, NaCl-induced vacuolar fragmentation, like that caused by PHS treatment, was also suppressed by PHS export from the cell by Rsb1 overexpression.

      These new data are now inserted, commented and discussed in the manuscript as Figure 5. We hope that these results will provide further insight into the more general aspects of PHS involvement in the vacuole fission process.

      Minor points:

      1) It is unclear for me whether endogenous Tcb3 is deleted in cells expressing Tcb3-GBP (FKY3903-3905 and FKY4754). They should clearly mention that these cells do not express endogenous Tcb3 in the manuscript.

      We apologize that our description was not clear. In this strain, endogenous TCB3 gene is tagged with GBP and the original Tcb3 has been replaced by the tagged version. We have changed the description in our manuscript.

      2) The strength of the effect of PHS on vacuole morphology looks different in respective WT cells in Fig 3C, 4B, and S2B. Is this due to the different yeast strains they used?

      Yes, we used BY4742 background for the strain in Figure 3C, SEY6210 background in Figure 4B, and HR background in Figure S2B. As a matter of fact, we observed that the strength of the PHS effect varies depending on their background. Strain numbers are now given in the legend so that the cells used for each data can be referenced in the strain list.

      3) p.3, line 44: the "SNARE" complex (instead of "protease")?

      We thank for the remarks on the incorrect wording. We have corrected this sentence.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Strengths:

      The major strength of this paper is the series of laser cutting experiments supporting that asters position via pushing forces acting both on the boundary (see below for a relevant comment) and between asters. The combination of imaging, data analysis and mathematical modeling is also powerful.

      Author Response: We thank the Reviewer for the positive comments, especially in recognising the power of our quantitative approaches.

      Weaknesses:

      This paper has weaknesses, mainly in the presentation but also in the quality of the data which do not always support the conclusions satisfactorily (this might in part be a presentation issue).

      Author Response>: We address these concerns below.

      My overall suggestion for the authors is to explain better the motivation and interpretation of their experiments and also to remove some of the observations which seem to be there because they could be done rather than because they add to the main message of the paper, which I find straightforward, valuable and supported by the data in Figure 4.

      Author Response: We have extended the motivation of the study in the Introduction, and at the beginning of appropriate Results sections. We better motivate the force potential and especially the key results from Figure 4. We outline specific changes below.

      In Figure 2, it is difficult for me to understand what is being tracked. I believe that the authors track the yolk granules (visible as large green blobs) and not lipid droplets. There is some confusion between the text, legends and methods so I could not tell. If the authors are tracking yolk granules as a proxy for hydrodynamics flows it seems appropriate to cite previous papers that have used and verified these methods. More notably, this figure is somewhat disconnected with the rest of the paper. I find the analysis interesting in principle but would urge the authors to propose some interpretation of the experiments in the context of their big-picture message. At this point, I cannot understand what the Figure adds.

      Author Response: Indeed, we track the yolk droplets that move around the aster. In the extraction protocol, we likely get a mixture of lipid droplets and yolk granules; this is due to the extraction procedure involving shear forces within the pipette. We are not certain about the exact nature of these droplets, but they are likely to a large extent yolk. We have clarified the terminology in the text, the legend and methods section. In this figure, we now show that the droplets do not move towards the aster center as the hydrodynamic pulling model would suggest. Instead, they appear to passively respond to a repulsive force, that results in them streaming around the aster. We have added additional panels to the figure that illustrates the directionality of yolk granule movements (lines 159-164). We agree with the Reviewer that the context could have been clarified. The role of fluid flows in biological systems is, as the Reviewer highlights, well studied. We have added additional contextualisa8on in the text (lines 140-146). We also motivate more clearly the figure, as it provides evidence that the asters generate forces over 20µm scale (lines 159-164). This is highly relevant for one of the paper’s main conclusions – that the Drosophila blastocyst asters generate pushing forces that enable regular packing.

      In Figure 3, it is not surprising that the aster-aster interactions are different from interactions with the boundary which is likely more rigid. It is also hard to understand why the force and thus velocity should scale as microtubule length. This Figure should be better conceptualized. I think that it becomes clear at the end of the paper that the authors are trying to derive an effective potential to use in a mathematical model in Figure 5 to test their hypotheses. I think that should be told from the start, so a reader understands why these experiments are being shown.

      Author Response: We don’t claim that the force scales with microtubule length on a single microtubule. However, at larger distances from the aster, the microtubule density decreases, and hence the effective force decreases.

      The Reviewer is correct that we use these results to motivate our effective potential. We have brought this motivation forward in the manuscript to guide the reader (lines 169-171) and included a further note at the end of the section (lines 216-218).

      The experiments in Figure 4 are very nice in suppor8ng a pushing model. However, it would help if the authors could speculate what the single aster is pushing against in this experiment. The experiments reported in Figure 1 seemed to suggest that the aster mainly pushed against the boundary. In the experiments in Figure 4 do the individual asters touch the boundary on both sides? I think that readers need more information on what the extract looks like for those experiments.

      Author Response: We now include an additional panel B in Figure 4– that shows an example of an explant during aster ablation. The distance between asters is typically less than the distance to the explant boundary. Boundary effects likely play a small role in the aster-aster separation, in terms of potentially determining the axis of separation. However, the separation of asters occurs along a straight line for a substan8al period (>1 min) of separation; if boundary effects were more dominant, we may expect to see curving of the aster-aster separation trajectories as they also receive feedback from the boundary.

      Figure 4F could use some statistics. I doubt that the acceleration in the pink curves would be significant. I believe that the decelera8on is and that is probably the most crucial result. Since the authors present only 3 asters pairs it is important to be sure that these conclusions are solid.

      Author Response: We agree with the Reviewer. These experiments are challenging to do, as they require carefully controlled conditions. In two out of three experiments we see significant increase in acceleration in the pink curves. Of course, the interpretation of this must be caveated as our experimental number is low. These details are now provided in the revision (lines 263267).

      Reviewer 2

      Strengths:

      This study reveals a unique aster positioning mechanics in the syncytial embryo explant, which leads to an understanding of the mechanism underlying the positioning of multiple asters associated with nuclei in the embryo. The use of explants enabled accurate measurement of aster motility and, therefore, the construc8on of a quantitative model. This is a notable achievement.

      Author Response: We thank the Reviewer for their review, and in highlighting how our quantitative model is a clear step forward in our understanding of aster dynamics.

      Weaknesses:

      The main conclusion that aster repulsion predominates in this system has already been drawn by the same authors in their recent study (de-Carvalho et al., Development, 2022). As the present work provides additional support to the previous study using different experimental system, the authors should emphasize that the present manuscripts adds to it (but the conceptual novelty is limited).

      Author Response: While this study is related to the previous work, there are major differences. First, here we quantitatively assess aster dynamics within a “clean” system. Such accurate measurements are not possible in vivo currently. Further, experiments like laser ablation are much better defined within the explant system. We do recognise more clearly the previous work in the Introduc8on and lines 291-293, 299-300. Combined, with the different perspectives provided in these papers on the problem of aster positioning in syncytia, we believe these papers provide new and well-supported insights.

      The molecular mechanisms underlying aster repulsion remain unexplored since the authors were unable to identify specific factor(s) responsible for aster repulsion in the explant.

      Author Response: Given that the nature of the aster dynamics were not previously characterised, our work presents a major step forward. We show compelling evidence that an effective pushing force potential plays a role in aster interactions. With this critical knowledge, we can now explore for the potential molecular mechanisms – but such information lies beyond the current manuscript scope. This is particularly challenging due to the lack of specific microtubule drug inhibitors in Drosophila. We highlight related issues in the Discussion: paragraph starting on line 340 and lines 367-370.

      Specific suggestions:

      Microtubules should be visualized more clearly (either in live or fixed samples). This is particularly important in Figure 4E and Video 4 (laser ablation experiment to create asymmetric asters).

      Author Response: This is similar to Reviewer 1 final comment above. These experiments are very challenging and being able to see the microtubules with sufficient clarity is not straightforward. Given our controls and previous experience, we are confident we are ablating the microtubules.

      Minor points:

      1) The authors explain the roles of microtubule asters in several model systems in the first paragraph of the introduction part. Please specify the species and/or cell types in each description.

      Author Response: We have provided as suggested.

      2) In lines 164 and 172, the citing figure numbers should be modified to Supplementary Fig. 1A and 1B, respectively.

      Author Response: We thank the Reviewer for spotting this error. It has now been corrected.

      3) The authors showed in the previous study that the boundary in the explant does not have an intact cell cortex and f-actin compartments (de-Carvalho et al., Development, 2022). This important informa8on should also be described in the current manuscript. It is also valuable to mention whether the pulling force mechanism operates in embryos where the intact cell cortex is present.

      Author Response: This is an interesting point We have added a sentence in the discussion with this information. We have now added additional text in the Discussion (lines 324-327).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      It is somewhat speculative that the structure represents the EIIa-bound regulatory state. There's a strong enough case that it should be analyzed in the discussion, but I don't think it is firmly established. Therefore, the title of the paper should be changed.

      Our answer: Thank you for the comment. We have changed the title to “Mobile barrier mechanisms for Na+-coupled symport in an MFS sugar transporter”

      Reading through the manuscript, it was challenging to distinguish what is new in the current manuscript and what has been done previously. There were a lot of parts where it was hard for me to identify the main point of the current study among all the details of previous studies. It would also benefit from shortening. For example:

      -Page 6: Nb725 binding has already been characterized extensively in the very nice JBC paper earlier this year. It's important to test 725-4 for binding, but since it doesn't change the binding interaction, and probably wouldn't be expected to, the entire section could be written more succinctly. The main point, which is that 725-4 behaves like 725, is lost among all the details

      Our answer: Thanks for this instructive suggestion. We have shortened the description in this section.

      -Page 9-10. I don't understand what summarizing all of the results from the previous D59C studies adds to the current story. It's important because it provides an indication of the substrate binding site, but its mechanism of action does not seem relevant to the current work.

      Our answer: We have shortened the description of the sugar-binding site and moved the previous Fig. 3b to supplementary figure sFig. 11. According to your comment about showing the location of the binding sites, which is also suggested by Reviewer #2, we modified Fig. 3 and added two panels to map the location of the bound Na+ in the inward-facing structure and the bound sugar in the outward-facing structure.

      The sugar-binding site identified in the published structure is critical to construct the mobile barrier mechanism. The sugar-binding residues identified in the published structure provided essential data to support the conclusion that the sugar-binding pocket is broken in the inward-facing structure. Thus, this published structure is mechanistically relevant to the current study.

      -Page 12. Too much summary of the previous outward structure. Since this is already part of the literature, it would be more efficient to reference the previous data when it is important to interpret the new data (or show as a figure).

      Our answer: The introduction of the previous sugar-binding sit is important for the detailed comparison between the two states as discussed above, but we agree with this reviewer and have significantly shortened the paragraph by moving the detailed description into the legend to the sFig. 11.

      -Instead of providing the PDB ID in figures of the current structure, just say "current work" or similar. Then it is obvious you are not citing a previous structure.

      Our answer: To distinguish clearly the new data and published results, the citation of the cryoEM structure [PDP ID 8T60] has been completely removed from the main text but kept in sTable 1.

      -An entire panel of Figure 3 is dedicated to ligand binding in a previous outward-facing structure.

      Showing it in the overlay would be sufficient.

      Our answer: It is the first time for us to show a structure with a bound-Na+. Fig. 3 also illustrates the spatial relationship between the sugar-binding pocket and the cation-binding pocket since both binding sites are determined now. As stated above, according to two reviewers’ comments, we have modified the Figures and the Fig. 3d is the overlay.

      Please increase the size of the font in all figures. It should be 6-8 point when printed on a standard sheet of paper. Labels in Figure 3, distances in Figure 4, and everything in Figure 5 is hard to see.

      Our answer: Thank you for the comments and the enlargement of the figure size and label font in all figures have been made.

      Figure 2: would be helpful to show Figure S8 in the main text, orienting the reader to the approximate location of substrate binding. What is known about the EIIA-Glc binding interface? Has anyone probed this by mutagenesis? Where are these residues on the overall structure, and are they somewhere other than the nanobody interface?

      Our answer: Thank you for this comment. We have added a panel for orienting the readers about the substrate location in MelB in Figure 3c. The sFig. 8 actually focuses on the details of Nb interactions with MelB. Our current data strongly supported the notion that the Nb-bound MelBSt structure mimics the EIIAGlc-bound MelB but is not structurally resolved, so we have tuned down our statement on EIIAGlc. There is one study suggesting the C-terminal tail helix may be involved in the EIIAGlc binding, which has been added to the discussion.

      Can Figure 5 be split into 2 figures and simplified?

      Our answer: thanks for the suggestion. We have split it into Figs. 5b and 6 and also moved the peptide mapping to the Fig 5a.

      What is the difference between cartoon and ribbon rendering?

      Our answer: Ribbon: illustrating the structure; cartoon: highlighting the positions with statistically significant protection or deprotection. The statistically significant changes are implied by the ribbon representation; Sphere: not covered by labeled peptides.

      Can the panels showing the kinetic data be enlarged? I don't think they need to surround the molecule. An array underneath would be fine.

      Our answer: We have enlarged all figures and labels. The placement of selected plots around the model could clearly show the difference in deuterium uptake rates between the transmembrane domain and extra-membrane regions. We will maintain this arrangement.

      Do colors in panel A correspond with colors in panel B?

      Our answer: The color usage in both are different. Now the two panels have been separated.

      Do I understand correctly that in the HDX experiments, negative values indicate positions that exchange more quickly in the nanobody-free protein relative to the nanobody-bound protein?

      Our answer: Your understanding is correct.

      I assume some of this is due to the protein changing conformation, but some of it might be due to burial at the nanobody-binding interface. Can those peptides be indicated?

      Our answer: Thank you for this comment. We have marked the peptide carrying the Nb-binding residues on uptake plots in Figs.6 and Extended Fig. 1. There are only three Nb-binding residues covered by many overlapping peptides. Most are not covered, either not carried by the labeled peptides (Tyr205, Ser206, and Ser207) or with insignificant changes (Pro132 and Thr133), except for Asp137, Lys138, and Arg141 which are presented in 8 labeled peptides.

      Few buried positions in the outward-facing state are expected to be solvent in the inward-facing state; unfortunately, inward-facing state they are buried by Nb binding.

      Make figure legends easier to interpret by removing non-essential methods details (like buffer conditions).

      Our answer: We removed the detailed method descriptions in most figure legends. Thank you.

      Check throughout for typos.

      ie page 9 Lue Leu

      Page 9 like likely

      Our answer: We have corrected them. Thank you!

      Reviewer #2 (Recommendations For The Authors):

      I have mostly minor questions/remarks.

      • Why not do the hdx-ms experiments in the presence of sugar? That would give a proper distinction between two conformational states, instead of an ensemble of states vs one state.

      Our answer: MelB conformation induced by sugar is also multiple states, and likely most are outward-facing states and occluded intermediate states. This is also supported by the new finding of an inward state with low sugar affinity. The ideal design should be one inward and one outward to understand the inward-outward transition. We have not identified an outward-facing mutant while we can obtain the inward by the Nb. WT MelBSt with bound Na+ favors the outward-facing state. Although our design is not ideal, we do have one state vs a predominant outward-facing WT with bound Na+.

      Minor comments:

      • Fig 5 is misleading as the peptide number does not match with the amino acid sequence. I would suggest putting a heat map with coverage on top. Or showing deuterium uptake per peptide. See examples below.

      Our answer: The peptide number should not match with sequence number. We have 155 overlapping peptides that cover the entire amino acid sequence including the 10-His tag, and there are 60 residues with no data because they are not covered by a labeled peptide. The residue positions that are covered by peptides are estimated by bars on the top. The cylinder length does not correspond to the length of the transmembrane helix, just for mapping purposes.

      • Can the authors explain how they found that the Nbs bind to the cytoplasmic side (before obtaining the structure)?

      Our answer: Our in vivo two-hybrid assay between the Nb and MelBSt indicated their interaction on the cytoplasmic surface of MelBSt, which is further confirmed by the melibiose fermentation and transport assay, where the transport activities were completely inhibited by intracellularly coexpressed Nb and MelBSt. Thanks for raising this question.

      • The authors use the word "substrate" indifferently for sugar and Na+ binding, which is a bit confusing. Technically, only sugar is the substrate and Na+ is a ligand, or cotransported-ion, that powers the reaction of transport. This might sound like nit-picking but it can lead to misunderstandings (at some point I thought two sugars were transported, and then I was looking for the second Na+ binding site).

      Our answer: We used to call the sugar and Na as co-substrate but we agree with this comment.

      We have changed by using substrate for the cargo sugar and coupling cation for the driving cation.

      • Abstract "only the inner barrier" - the is missing.

      Thanks. We have corrected this.

      • p.3 intro "and identified that the positive cooperativity of cation and melibiose, " something is missing.

      Thanks again. We missed the “as the core symport mechanism”.

      • P.6 Nb275_4 instead of Nb725_4

      Thank you very much for your careful reading.

      • P.7. Also, affinity affinities

      Thank you very much. We changed to “; and also, the -NPG affinity decreased by 21~32-fold for both Nbs”

      • P.8 " contains 417 MelBSt residues (positions 2-210, 219-355, and 364-432). This does not sum up to 417 residues.

      Thanks for your critical reading. We changed 364-432 to 262-432.

      • p.9 Lue 54

      We have corrected it to Leu54.

      • I find fig.3 hard to read. Can the authors show the Na+ binding pockets and sugar binding pockets within the structure? Especially figure 3b. why are the residues in different colors?

      Our answer: We have moved Fig 3b into sFig. 11. We colored the residues in the previous Fig 3B to match the hosting helices. We have added two panels to show the location of both sugar and Na in the molecular. Thank you for your comments.

      • Fig4 bcef. Colored circles at the end of the helices. What are they for?

      Our answer: We revised the legend. “The paired helices involved in either barrier formation were highlighted in the same colored circles.”

      • 86% coverage includes the his-tag - it would be good to clarify that.

      Our answer: Yes, it includes the 10-His tag.

      • Fig.7 - anti clockwise cycle of transport is counter-intuitive.

      Our answer: We have re-arranged. Our model was constructed originally to explain efflux due to limited information at the earlier state. Now more data are available allowing us to explain inflow and active transport.

      • Where are all the uptake plots per peptide for the HDX-MS data?

      Our answer: We have added the course raw data and prepared all uptake plots for all 71 peptides with statistically significant changes as an Extended Fig. 1.

      • P.22 protein was concentrated to 50 mg/mL. Really? That is a lot.

      This is correct. We can even concentrate MelBSt protein to greater than 50 mg/ml.

      • Have the authors looked into the potential role of lipids in regulating the conformational transition? Since the structure was obtained in nanodiscs, have they observed some unexplained densities? The role of lipid-protein interactions in regulating such transitions was observed for several transporters including MFS (Gupta K, et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017 10.1038/nature20820. Martens C, et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat Commun. 2018 10.1038/s41467-018-06704-1.). Furthermore, I see the authors have already observed lipid specific functional regulation of MelB (ref: Hariharan, P., et al BMC Biol 16, 85 (2018). https://doi.org/10.1186/s12915-018-0553-0). A few words about this previous work, and even commenting on the absence of lipid-protein interactions in this current work is worthwhile.

      Our answer: Thanks for this very relevant comment. We paid attention to the unmodelled densities. There is one with potential but it is challenging to model it. We have added a sentence “There is no unexplained density that can be clearly modeled by lipids.” in the method to address this concern.

      Reviewer #3 (Recommendations For The Authors):

      1) In the following sentence, the authors report high errors for the Kd value. The anti-Fab Nb binding to NabFab was two-fold poorer than Nb725_4 at a Kd value of 0.11 {plus minus} 0.16 μM. The figure however indicates that the error value is 0.016 µM. Pls correct.

      Our answer: Thank you. You are correct. The error has been corrected. 0.16 ± 0.02 uM. In this revised manuscript, we present the data in nM units.

      2) Is the stoichiometry of the MelB:Na+ symport clearly known in this transporter. It can be mentioned in the discussion with appropriate references.

      Our answer: Yes, the stoichiometry of unity has been clearly determined, which was included in the second paragraph of the previous version.

      3) In the last section of results, the authors seem to suggest a greater movement within their Cterminal helical bundle compared to N-terminal helices. Is there evidence to suggest an asymmetry in the rocker switch between the two states of the transporter?

      Our answer: Our structural data revealed that the C-terminal bundle is more dynamic compared with the N-terminal bundle where hosts the residues for specific binding of galactoside and Na+. The HDX data showed that the most dynamic regions are the structurally unresolved C-terminal tail by either method, the conserved tail helix and the middle-loop helix. transmembrane helices are relatively less dynamic with similar distributions on both transmembrane bundles. Since the most dynamic regions are peripheral element associated with the C-terminal domain, it might give a wrong impression. With regard to the symmetric or asymmetric movement, which will certainly affect the dynamic interactions between the transporter and the lipids, we favor the notion that MelBSt performs symmetric movement during the rocker switch between inward and outward states at the least cost for the protein-lipids interaction.

      4) Figure 1. Are the thermograms exothermic or endothermic? clarify

      Our answer: In our thermograms, all positive peaks are exothermic due to the direct detection of the heat release by the TA instrument. We clarified this in Method and now we stress this in figure legends to avoid confusion.

      5) Figure 4a,d. Please put in a membrane bilayer and depict cytosolic and extracellular compartments for clarity.

      Thank you. We have added a bilayer and labeled the sidedness in this figure and other related figures.

      6) Fig 7. Melibiose symport cannot be referred to as Melibiose efflux transport in the legend as the latter refers to antiport. Pls rectify.

      Our answer: Influx and efflux are conventionally used to describe the direction of movement of a substrate. The use of symport and antiport indicates the directions of the coupling reaction for the cargo and cation. For the symporter MelB, melibiose efflux means that sugar with the coupled cation moves out, which is driven by the melibiose concentration. During the steady state of melibiose active transport, efflux rate = influx rate.

      7) Page 11 "A common feature of carrier transporters". The authors can use either carriers or transporters. Need not use both simultaneously.

      Sorry for overlooking this. We have deleted carriers. Thank you very much for your time.

      8) Several typos were noticed in this manuscript. some are listed below. pls correct.

      Page 4- last paragraph "Furthermore"

      We have corrected it. Thank you again!

      Page 7 - second para one repharse "affinity reduced by 21~32 fold/units.." pls clarify

      Added 21~32 fold.

      Page 9 - "so it is highly likely that inward-open conformation" pls correct.

      We have corrected to “likely”.

      Fig. S9c - correct the spelling "Distance".

      We have corrected to “Distance”

    1. Author Response

      The following is the authors’ response to the original reviews.

      We greatly appreciate the overwhelmingly positive summaries from all three reviewers and the eLife editorial team. All reviewers provided extremely detailed feedback regarding the initially submitted manuscript, we appreciate their efforts in helping us improve this manuscript. Below, are listed each of the specific comments made by the reviewers, and our responses to them in a point-by-point format.

      The only notable change made to the manuscript that was not in response to comments from a reviewer was regarding nomenclature of the structure that we had previously called the nuclear microtubule organising centre (MTOC). We had used the term MTOC to describe the entire structure, which spans the nuclear envelope and comprises an intranuclear portion and cytoplasmic extensions. Given recent evidence, including findings from this study, it is possible that both the intranuclear region and cytoplasmic extensions both have microtubule nucleating capacity, and therefore both meet the definition of an MTOC. To disambiguate this, we now refer to the overall structure as the centriolar plaque (CP), consistent with previous literature. The intranuclear portion of the CP will be referred to as the inner CP, while the cytoplasmic portion will be referred to as the outer CP.

      Reviewer #1 (Recommendations For The Authors):

      1) In the first part of the result section, a paragraph on sample processing for U-ExM could be added, with reference to Fig 1b.

      The following section has been added to the first paragraph of the results “…In this study all parasites were fixed in 4% paraformaldehyde (PFA), unless otherwise stated, and anchored overnight at 37 °C before gelation, denaturation at 95 °C and expansion. Expanded gels were measured, before shrinking in PBS, antibody staining, washing, re-expansion, and imaging (Figure 1b). Parasites were harvested at multiple time points during the intraerythrocytic asexual stage and imaged using Airyscan2 super-resolution microscopy, providing high-resolution three-dimensional imaging data (Figure 1c). A full summary of all target-specific stains used in this study can be found in Figure 1d.”

      2) The order of the figures could be changed for more consistency. For example, fig 2b is cited before 2a.

      An earlier reference to figure 2a was added to rectify this discrepancy.

      3) In Fig 2b it is difficult to distinguish the blue (nuclear) and green (plasma membrane) lines.x

      The thickness of these lines has been doubled.

      4) It is unclear what the authors want to show in Fig 2a.

      The intention of this figure, as with panel a of the majority of the organelle-specific figures in this manuscript, is simply to show what the target protein/structure looks like across intraerythrocytic development.

      5) Lines 154-155, the numbers of MTOC observed do not match those in Supplt Fig2c.

      This discrepancy has been addressed, the numbers in Supplementary Figure 2c were accurate so the text has been changed to reflect this.

      6) Line 188: the authors should explain the principle of C1 treatment.

      The following explanation of C1 treatment has been provided:

      “To ensure imaged parasites were fully segmented, we arrested parasite development by adding the reversible protein kinase G inhibitor Compound 1 (C1). This inhibitor arrests parasite maturation after the completion of segmentation but before egress. When C1 is washed out, parasites egress and invade normally, ensuring that observations made in C1-arrested parasites are physiologically relevant and not a developmental artefact due to arrest.”

      7) Lines 195-204: this part is rather difficult to follow as analysis of the basal complex is detailed later in the manuscript. The authors refer to Fig4 before describing Fig3.

      This has been clarified in the text.

      8) Lines 225 and 227, the authors cite Supplt Fig 2b about the Golgi, but probably meant Supplt Fig 4? In Supplt Fig 4, the authors could provide magnification in insets to better illustrate the Golgi-MTOC association.

      This should have been a reference to Supplementary Figure 2e instead of 2b, which has now been changed. In Supplementary Figure 4, zooms into a single region of Golgi have been provided to more clearly show its MTOC association.

      9) Supplt Fig8 is wrong (duplication of Supplt Fig6).

      We apologise for this mistake, the correct figure is now present in Supplementary Figure 8.

      10) Line 346: smV5 should be defined, and generation of the parasites should be described in the methods.

      This has now been defined, but we have not described the generation of the parasites, as this was performed in a previous study that we have referenced.

      11) Lines 361-362: "By the time the basal complex reaches its maximum diameter..." This sentence is not very clear, the authors could explain more precisely the sequence of events, indicating that the basal complex starts moving in the basal direction, as clearly illustrated in Fig 4a.

      This has been prefaced with the following sentence “…As the parasite undergoes segmentation, the basal complex expands and starts moving in the basal direction.”

      12) Supplt Fig6 comes after Supplt Fig9 in the narrative, and therefore could be placed after.

      Supplementary Figure 6 and 9 follow the order in which they are referred to in the text.

      13) Line 538: Supplt Fig9e instead of 9d.

      This has been fixed.

      14) Line 581: does the PFA-glutaraldehyde fixation allows visualizing other structures in addition to cytostome bulbs?

      While PFA-glutaraldehyde fixation allows visualisation of cytostome bulbs, to date we have not observed any other structure that stains/preserves better using NHS Ester or BODIPY Ceramide in PFA-glutaraldehyde fixed parasites. As a general trend, all structures other than cytostomes become somewhat more difficult to identify using NHS Ester or BODIPY Ceramide in PFA-glutaraldehyde fixed samples due to the local contrast with the red blood cell cytoplasm. It seems likely that this is just due to the preservation of RBC cytoplasm, and would be expected from any fixation method that doesn’t result in RBC lysis, rather than anything unique to glutaraldehyde.

      15) Line 652-653: It is unclear how the authors can hypothesize that rhoptries form de novo rather than splitting based on their observations.

      This not something we can say with certainty, we have however, introduced the following paragraph to qualify our claims: “Overall, we present three main observations suggesting that rhoptry pairs undergo sequential de novo biogenesis rather than dividing from a single precursor rhoptry. First, the tight correlation between rhoptry and MTOC cytoplasmic extension number suggests that either rhoptry division happens so fast that transition states are not observable with these methods or that each rhoptry forms de novo and such transition states do not exist. Second, the heterogeneity in rhoptry size throughout schizogony favors a model of de novo biogenesis given that it would be unusual for a single rhoptry to divide into two rhoptries of different sizes. Lastly, well-documented heterogeneity in rhoptry density suggests that, at least during early segmentation, rhoptries have different compositions. Heterogeneity in rhoptry contents would be difficult to achieve so quickly after biogenesis if they formed through fission of a precursor rhoptry.”

      16) Line 769: is expansion microscopy sample preparation compatible with FISH?

      Yes, there are publications of expansion being done with both MERFISH and FISH. Though it has not yet been applied to plasmodium. See examples: Wang, Guiping, Jeffrey R. Moffitt, and Xiaowei Zhuang. "Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy." Scientific reports 8.1 (2018): 4847. And Chen, Fei, et al. "Nanoscale imaging of RNA with expansion microscopy." Nature methods 13.8 (2016): 679-684.

      17) In the methods, the authors could provide details on the gel mounting step for imaging This is particularly important since this paper will likely serve as a reference standard for expansion microscopy in the field. Also, illustration that cryopreservation of gels does not modify the quality of the images would be useful.

      The following section has been added to our “image acquisition” paragraph: “Immediately before imaging, a small slice of gel ~10mm x ~10mm was cut and mounted on an imaging dish (35mm Cellvis coverslip bottomed dishes NC0409658 - FisherScientific) coated with Poly-D lysine. The side of the gel containing sample is placed face down on the coverslip and a few drops of ddH20 are added after mounting to prevent gel shrinkage due to dehydration during imaging.”

      We have decided not to illustrate that cryopreservation does not alter gel quality, as this is something that is already covered in the study that first cryopreserved gels, which is referenced in our methods section.

      Reviewer #2 (Recommendations For The Authors):

      1) Advantages and limitations of the expansion method are generally well discussed. The only matter in that respect that I was wondering is if expansion can always be assumed to be linear for all components of a cell. The hemozoin crystal does not expand (maybe not surprisingly), but could there also be other cellular structures that on a smaller scale separate or expand at a different rate than others? Is there any data on this from other organisms? I am raising this here not as a criticism of this work but if known to occur, it might need mentioning somewhere to alert the reader to it, particularly in regards to the many measurements in the paper (see also point 4). This might be a further factor contributing to the finding that the IMC and PPM could not be resolved.

      This is an excellent point and, to our knowledge, one that is currently still under investigation in the field. It is well-documented that expansion protocols need to be customized to each cell type and tissue they are applied to. Each solution used for fixation and anchoring as well as timing and temperature of denaturation can affect the expansion factor achieved as well as how isotropic/anisotropic the expanded structures turn out. However, we do not know of any examples where isotropic expansion was achieved for everything but an organelle or component of the cell. It is our impression that if the cell seems to have attained isotropic expansion, this is assumed to also be the case for the subcellular structures within it. Nonetheless, we think it remains a possibility to be considered specially as more structures are characterized using these methods. In the case of our IMC/PPM findings, when we performed calculations taking into account our experimental expansion factor as well as antibody effects, it was clear that the resolution of our microscope was not enough to resolve the two structures using our current labelling methods. So, we suspect most of the effect is driven by that. However, this still needs to be validated by attempting to resolve the two structures though alternative labelling and imaging methods.

      2) I understand that many things described in the results part are interconnected but still the level of hopping around between different figures/supp figures is considerable (see also point 6 on synchronicity of Figure parts). I do not have a simple fix, but maybe the authors could check if they could come up with a way to streamline parts of their results into a somewhat more reader friendly order.

      This has been a problem we encountered from the beginning and, after trying multiple presentations of the results and discussion, we realized they all have drawbacks. We eventually settled on this presentation as the “least confusing”. We agree, however, that the figure references and order could be better streamlined and have addressed this to the best of our ability.

      3) Are the authors sure the ER expands well and the BIP signal (Fig. S5) gives a signal reflecting the true shape of the ER? The signal in younger parasites seems rather extensive compared to what the ER (in my experience) typically looks like in these stages in live parasites.

      While there may be a discrepancy between how the presumably dynamic ER appears in live cells, and how it appears using BiP staining, we think it is unlikely this is a product of expansion. Additionally, if there were to be an artefactual change in the ER, it would be likely under-expansion rather than over-expansion, which to our knowledge has not been reported. In our opinion, the BiP staining we observe is comparable between unexpanded and expanded samples. We have included comparative images in Author response image 1 with DNA in cyan and BiP in yellow, unexpanded (left) and expanded (right) using the same microscope and BiP antibody.

      Author response image 1.

      4) It is nice to have measurements of the apicoplast and mitochondria, but given their size, this could also have been done in unexpanded, ideally live parasites, avoiding expansion and fixing artifacts. While the expansion has many nice features, measuring area of large structures may not be one where it is strictly needed. I am not saying this is not useful information, but maybe a note could be added to the manuscript that the conclusions on mitochondria and apicoplast area and division might be worth confirming in live parasites. A brief mention on similarities and differences to previous work analysing the shape and multiplication of these organelles through blood stage development (van Dooren et al MolMicrobiol2005) might also be useful.

      We agree with the reviewer that previous studies such as van Dooren et al. (2005) demonstrate that it is possible to track apicoplast and mitochondrial growth without expansion and share the opinion that live parasites are better for these measurements. Expansion only provides an advantage when more organelle-level resolution is needed. For example, in studying the association between these organelles and the MTOC or visualizing other branch-specific interactions.

      5) I could not find the Supp Fig. 8 on the IMC, the current Supp Fig. 8 is a duplication of Supp Fig. 6

      This has been addressed, Supplementary Figure 8 now refers to the IMC.

      6) Figure order is not very synchronous with the text: Fig. 2a is mentioned after Fig. 2b, Fig. 4b is mentioned first for Fig. 4 (Fig. 4a is not by itself mentioned) and before Fig. 3 is mentioned; Fig. 3b is before Fig. 3a.

      We have done our best to fix these discrepancies, but concede that we have not found a way to order these sections that doesn’t lead to some confusion.

      7) Fig. S2a, The label "Centrin" on left image is difficult to read

      We have increased the font size and changed colour slightly in the hope it is leigible.

      8) In Fig. 2a, the centrin foci are very focal and difficult to see in these images, particularly when printed out but also on screen. To a lesser extent this is also the case for CINCH in Fig. 4a (particularly when printed; when zoomed-in on screen, the signal is well visible). This issue of difficulties in seeing the fluorescence signal of some markers, particularly when printed out, applies also to other images of the paper.

      In the images of full size parasites, this is an issue that we cannot easily overcome as the fluorescent channels are already at maximum brightness without overexposure. To try and address this, we have provided zooms that we hope will more clearly show the fluorescence in these panels.

      9) Expand "C1" in line 188 (first use).

      This has been addressed in response to a previous comment.

      10) Line 227; does Supp Fig. 2b really show Golgi- cytoplasmic MTOC association?

      We have rephrased the wording of this section to clarify that we are observing proximity and not necessarily a physical tethering, however it is worth nothing that this was an accidental reference to Supplementary Figure 2b, and should’ve been Supplementary Figure 2e.

      11) Line 230, in segmented schizonts the Golgi was considered to be at the apical end. It might be more precise to call its location to be close to the nucleus on the side facing the apical end of the parasite. It seems to me it often tends to be closer to the nucleus (in line with its proximity to the ER, see also point 13).

      We have added more detail to this description clarifying that despite being at the apical end, the Golgi is closer to the nucleus.

      12) Supp Fig. S5: Is the top cell indeed a ring? In the second cell there seem to be two nuclei, I assume this is a double infection (please indicate this in the legend or use images of a single infection).

      In our opinion, the top cell in Supplementary Figure 5 is a ring. This is based on its size and its lack of an observable food vacuole (an area that lacks NHS ester staining). We typically showed images of ameoboid rings to avoid this ambiguity, but we think this parasite is a ring nonetheless. For the second image, this parasite is not doubly infected, as both DNA masses are actually contained within the same dumbbell shaped nuclear envelope. This parasite is likely undergoing its first anaphase (or the Plasmodium equivalent of anaphase) and will likely soon undergo its first nuclear division to separate these two DNA masses into individual nuclei.

      13) Line 244: I would not call the Golgi a part of the apical cluster of organelles. All secretory cargo originates from the ER-Golgi-transGolgi axis in a directional manner and this axis is connected to the nucleus by the perinuclear ER. If seen from a secretory pathway centred view, it is the other way around and you could call the apical organelles part of the nuclear periphery which would be equally non-ideal.

      Everything is close together in such a small cell. The secretory pathway likely is arranged in a serial manner starting from the perinuclear region to the transGolgi where cargo is sorted into vesicles for different destinations of which one is for the delivery of material to the apical organelles. The proposition that the Golgi is part of the apical cluster therefore somehow feels wrong, as the Golgi can still be considered to be upstream of the transGolgi before apical cargo branches off from other cargo destined for other destinations We agree with the reviewer that claiming a functional association between the Golgi and the apical organelles would be odd and we by no means meant to imply such functional grouping. Our intent was to confirm observations previously made about Golgi positioning by electron microscopy studies such as Bannister et al. (2000) at a larger spatial and temporal scale. These studies make the observation that the Golgi is spatially associated with the rhoptries at the apical end of the parasites. Logically, the Golgi is tied to the apical organelles through the secretory pathway as the reviewer suggests, but we claim no further relationship beyond that of organelle biogenesis. We have made modifications to the text to clarify these points.

      14) Lines 300 - 308 (and thereafter): I assume these were also expanded parasites and the microtubule length is given after correction for expansion. I would recommend to indicate in line 274 (when first explaining the expansion factor) that all following measurements in the text represent corrected measures or, if this is not always the case, indicate on each occasion. Is the expansion factor accurate and homogenous enough to draw firm conclusions (see also point 1)? Could it be a reason for the variation seen with SPMTs? Could a cellular reference be used as a surrogate to account for cell specific expansion or would you assume that cellular substructure specific expansion differences exist and prevent this?

      This is correct, the reported number is the number corrected for expansion factor, and the corresponding graphs with uncorrected data are present in the Supplementary Figures. We have clarified this in the text. Uneven expansion can be caused when certain organelles/structures do not properly denature. Given that out protocol denatures using highly concentrated SDS at 95 °C for 90 minutes, we do not anticipate that any subcellular compartments would expand significantly differently. In this study our expansion factors varied from ~4.1-4.7 across all gels, and for our corrected values we used the median expansion factor of 4.25. If we are interpreting the length of an interpolar spindle as 20 µm for example, the value would be corrected value would be 4.7 µm when divided by the median expansion factor, 4.9 µm when divided by the lowest, and 4.2 µm when divided by the highest. These values fall well within the measurement error, and so we expect that these small deviations in expansion factor between gels have a fairly minimal influence on variation in microtubule lengths.

      15) Line 353: this is non-essential, but a 3D view of the broken basal ring might better illustrate the 2 semicircles

      We have added the following panel to Supplementary Figure 3 to illustrate this more clearly:

      Author response image 2.

      16) The way the figure legends are shaped, it often seems only panel (a) is from expansion microscopy while the microscopy images in the other parts of the figures have no information on the method used. I assume all images are from expansion microscopy, maybe this could be clarified by placing this statement in a position of the legend that makes it clear it is for all images in a figure.

      This has been clarified in the figure legends.

      17) Fig. 8b, is it clear that internal RON4 is not below or above? Consider showing a 3D representation or side view of these max projections.

      If in these images, we imagine we are looking at the ‘top’ of the rhoptries, our feeling is that the RON4 signal is on the ‘bottom’, at the part closest to the apical polar ring. We tried projecting this, however, but the images were not particularly due to spherical aberrations. Because of this, we have refrained from commenting on the RON4 location relative to the rhoptry bulb prior to elongation.

      18) Line 684 "...distribution or RON4": replace or with of. The information of the next sentence is partly redundant, consider adding it in brackets.

      This has been addressed.

      19) Fig. 9a the EBA175 signal is not very prominent and a bit noisy, are the authors confident this is indeed showing only EBA175 or is there also some background?-AK

      We agree with the reviewer that the EBA175 antibody shows a significant amount of background fluorescence, specially in the food vacuole area. However, we think the puncta corresponding to micronemal EBA175 can be clearly distinguished from background.

      20) Fig. 9b, the long appearance of the micronemes in the z-dimension likely is due to axial stretch (due to point spread function in z and refractive index mismatch), in reality they probably are more spherical. It might be worth mentioning somewhere that this likely is not how these organelles are really shaped in that dimension (spherical fluorescent beads could give an estimation of that effect in the microscopy setup used).

      After recently acquiring a water-immersion objective lens for comparison, it is clear that the transition from oil to hydrogel causes a degree of spherical aberration in the Z-plane, which in this instance causes the micronemes to be more oblong. As we make no conclusions based on the shape of the micronemes, however, we don’t think this is a significant consideration. This is an assumption that should be made when looking at any image whose resolution is not equal in all 3-dimensions. We also note that the more spherical shape of micronemes can be inferred from the max intensity projections in Figure 9c.

      21) Fig. 9b, the authors mention in the text that there is NHS ester signal that overlaps with the fluorescence signal, can occasions of this be indicated in the figure?

      Figure 9b was already quite busy, so we instead added the following extra panel to this figure that more clearly shows the NHS punctae we thought may have been micronemes:

      Author response image 3.

      22) Fig. 9, line 695, the authors write that the EBA puncta were the same size as AMA1 puncta. To me it seems the AMA1 areas are larger than the EBA foci, is their size indeed similar? Was this measured?

      Since we did not conduct any measurements and doing so robustly would be difficult given the density of the puncta, we have decided to remove our comment on the relative size of the puncta.

      23) Materials and methods: Remove "to" in line 871; explain bicarb and incomplete medium in line 885 (non-malaria researchers will not understand what is meant here); line 911 and start of 912 seem somewhat redundant

      This has been addressed.

      24) Is there more information on what the Airyscan processing at moderate filter level does? The background of the images seems to have an intensity of 0 which in standard microscopy images should be avoided (see for instance doi:10.1242/jcs.03433) similar to the general standard of avoiding entirely white backgrounds on Western blots. I understand that some background subtraction processes will legitimately result in this but then it would be nice to know a bit better what happened to the original image.

      We have taken the following excerpt from a publication on Airyscan to help clarify:

      "Airyscan processing consists of deconvolution and pixel reassignment, which yield an image with higher resolution and reduced noise. This can be a contributor to the low background in some channels. The level of filtering is the processing strength, with higher filtering giving higher resolution but increased chances of artefacts. More information about the principles behind Airyscan processing can be found in the following two publications, though details on the algorithm itself seem to be proprietary: Huff, Joseph. "The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution." (2015): i-ii. AND Wu, Xufeng, and John A. Hammer. "Zeiss airyscan: Optimizing usage for fast, gentle, super-resolution imaging." Confocal Microscopy: Methods and Protocols. New York, NY: Springer US, 2021. 111-130."

      We cannot find any further information about the specifics of Airyscan filtering, however, the moderate filter that we used is the default setting. This information was included just for clarity, rather than something we determined by comparison to other filtering settings.

      In regards to the background, the majority of some images having an intensity value of 0 is partially out of our control. For all NHS Ester images, the black point of the images was 0 so areas that lack signal (white in the case of NHS Ester) truly had no signal detected for those pixels. While we appreciate that never altering the black point of images displays 100% of the data in the image, images with any significant background can become impossibly difficult to interpret. We have done our best to try and present images where the black point is modified to remove background for ease of interpretation by the readers only.

      Reviewer #3 (Public Review):

      1) Most importantly, in order to justify the authors claim to provide an "Atlas", I want to strongly suggest they share their raw 3D-imaging data (at least of the main figures) in a data repository. This would allow the readers to browse their structure of interest in 3D and significantly improve the impact of their study in the malaria cell biology field.

      We agree completely that the potential impact of this study is magnified by public sharing of the data. The reason that this was not done at the time of submission is that most public repositories do not allow continued deposition of data, and so new images included in response to reviewers comments would’ve been separated from the initial submission, which we saw as needlessly complicated. All 647 images that underpin the results discussed in this manuscript are now publicly available in Dryad (https://doi.org/10.5061/dryad.9s4mw6mp4)

      2) The organization of the manuscript can be improved. Aside some obvious modifications as citing the figures in the correct order (see also further comments and recommendations), I would maybe suggest one subsection and one figure per analyzed cellular structure/organelle (i.e. 13 sections). This would in my opinion improve readability and facilitate "browsing the atlas".

      This is actually how we had originally formatted this manuscript, but this structure made discussing inter-connected organelles, such as the IMC and basal complex, impossibly difficult to navigate. We have done our best to make the manuscript flow better, but have not come up with any way to greatly restructure the manuscript so to increase its readability.

      3) Considering the importance of reliability of the U-ExM protocol for this study the authors should provide some validation for the isotropic expansion of the sample e.g. by measuring one well defined cellular structure.

      The protocol we used comes from the Bertiaux et al., 2021 PLoS Biology study. In this study they show isotropic expansion of blood-stage parasites.

      4) In the absence of time-resolved data and more in-depth mechanistic analysis the authors must down tone some of their conclusions specifically around mitochondrial membrane potential, subpellicular microtubule depolymerization, and kinetics of the basal complex.

      Our conclusions regarding mitochondrial membrane potential and basal complex kinetics have been dampened. We have not, however, changed our wording around microtubule depolymerisation. Partial depolymerisation of microtubules during fixation is a known phenomenon in Plasmodium, and in our opinion, our explanation of this offers a hypothesis that is balanced with respective to evidence: “we hypothesise that most SPMTs measured in our C1-treated schizonts had partially depolymerised. P. falciparum microtubules are known to rapidly depolymerise during fixation10,29. It is unclear, however, why this depolymerization was observed most often in C1-arrested parasites. Thus, we cannot determine whether these shorter microtubules are a by-product of drug-induced arrest or a biologically relevant native state that occurs at the end of segmentation.”

      5) The observation that the centriolar plaque extensions remains consistently tethered to the plasma membrane is of high significance. To more convincingly demonstrate this point, it would be very helpful to show one zoomed-in side view of nucleus with a mitotic spindle were both centriolar plaques are in contact with the plasma membrane.

      We of course agree that this is one of our most important observations, but in our opinion this is already demonstrated in Figure 2b. The third panel from the right shows a mitotic spindle and has the location of the cytoplasmic extensions, nuclear envelope and parasite plasma membranes annotated.

      6) Please verify the consistent use of the term trophozoite and schizont. In Fig. 1c a parasite with two nuclei, likely in the process of karyofission is designated as trophozoite, which contrasts with the mononucleated trophozoite shown in Fig. 1a. The reviewer is aware of the more "classical" description of the schizont as parasite with more than 2 nuclei, but based on the authors advanced knowledge of cell cycle progression and mitosis I would encourage them to make a clear distinction between parasites that have entered mitotic stages and pre-mitotic parasites (e.g. by applying the term schizont, and trophozoite, respectively).

      For this study, we have interpreted any parasite having three or more nuclei as being a schizont. We are aware this morphological interpretation is not universally held and indeed suboptimal for studying some aspects of parasite development, but all definitions of a schizont have some drawbacks. Whether a parasite has entered mitosis or not is obviously a hugely significant event in the context of cell biology, but in a mononucleated parasite this could only be determined using immunofluorescence microscopy with cell cycle or DNA replication markers.

      7) Aldolase does not localize diffusely in the cytoplasm in schizont stages as in contrast to earlier stage. The authors should comment on that.

      We are unclear if this is an interpretation of the images in supplementary figure 1, or inferred from other studies. If this is an interpretation of the images in Supplementary Figure 1, we do not agree that the images show a significant change in the localisation of aldolase. It is possible that this difference in interpretation comes from the strong punctate signal observed more readily in the schizont images. This is the strong background signal in or around the food vacuole we mention in the text. These punctae are significantly brighter than the cytosolic aldolase signal, making it difficult to see them on the aldolase only channel, but aldolase signal can clearly be seen in the cytoplasm on the merge images.

      8) Line 79. Uranyl acetate is just one of the contrasting agents used in electron microscopy. The authors might reformulate this statement. Possibly this would also be a good opportunity to briefly mention that electron density measured in EM and protein-density labeled by NHS-Ester can be similar but are not equivalent.

      We have expanded on this in the text.

      9) The authors claim that they investigate the association between the MTOC and the APR (line 194), but strictly speaking only look at subpellicular microtubules and an associated protein density. The argument that there is a "NHS ester-dense focus" (line 210) without actual APR marker is not quite convincing enough to definitively designate this as the APR.

      While an APR marker would of course be very useful, there are currently no published examples of APR markers in blood-stage parasites. We therefore think that the timing of appearance, location, and staining density are sufficient for identifying this structure as the APR, as it has previously been designated through EM studies. We have nonetheless softened our language around APR-related observations.

      10) Line 226: The authors should also discuss the organization of the Golgi in early schizonts (Fig. S4). (not only 2 nuclei and segmenter stages).

      We did not mean to imply that all 22 parasites had only 2 nuclei, but instead that they had 2 or more nuclei. Therefore, early schizonts are included in this analysis, with Golgi closely associated with all their MTOCs.

      11) Line 242: To the knowledge of the reviewer the nuclear pore complexes, although clustered in merozoites and ring stages, don't particularly "define the apical end of the parasite".

      The MTOC is surrounded by NPCs, which because of the location of the MTOC end up being near the forming apical end of the merozoite, but we have removed this as it was needlessly confusing.

      12) Supplementary Figure 8 is missing (it's a repetition of Fig. S6).

      This has been addressed.

      13) Line 253: asexual blood stage parasites have two classes of MTs. Other stages can have more.

      This has been clarified.

      14) Fig. 3f: Please comment how much of these observations of "only one" SPMT could result from suboptimal resolution (e.g. in z-direction) or labeling. Otherwise use line profiles to argue that you can always safely distinguish SPMT pairs.

      In the small number of electron tomograms of merozoites where the subpellicular microtubules have been rendered, they have been seen to have 2 or 3 SPMTs. Despite this, we don’t think it is likely that the single SPMT merozoites observed in this study are caused by a resolution limitation. SPMTs were measured in 3D, rather than from projections, and any schizont where the SPMTs were pointing towards the objective lens, elongating the parasite in Z, were not imaged. Additionally, our number of merozoites with a single SPMT correspond with the same data collected in the Bertiaux et al., 2021 PLoS Biology study. We cannot rule this out as a possibility, as sometimes SPMTs cross over each other in three-dimensions, and at these intersection points they cannot be individually resolved. We, however, think it is very unlikely that two SPMTs would be so close that they can never be resolved across any part of their length.

      15) Lines 302ff: the claim that variability in SPMT size must be a consequence of depolymerzation is unfounded. The dynamics of SPMT are unknown at this point. Similarly unfounded is the definitive claim that it is known that P.f. MTs depolymerize upon fixation. Other possibilities should be considered. SPMT could also simply shorten in C1-arrested parasites.

      While we agree with the reviewer that much about SPMT dynamics in schizonts remains unknown, we disagree with the claim that our consideration of SPMT depolymerization as a possible explanation for our observations is unfounded. Microtubule depolymerization is a well-known fixation and sample preparation artefact in both mammalian cells and a well-documented phenomenon in Plasmodium when parasites are washed with PBS prior to fixation. We convey in the text our belief that it is possible that SPMTs shorten in C1-arrested parasites as a result of drug treatment. However, it is our opinion that there simply is not enough evidence at this moment to conclusively pinpoint the cause of our observed depolymerization. As we mention in the text, further experiments are needed in order to determine with confidence whether depolymerization is a consequence of our fixation protocol, a consequence of C1 treatment (or the length of that treatment), or a biological phenomenon resulting from parasite maturation.

      16) Line 324: "up to 30 daughter merozoites"

      Schizonts can have more than 30 daughter merozoites, so we have not altered this statement.

      17) Figure 4b. Line 354 The postulated breaking in two is not well visible and here the authors should attempt a more conservative interpretation of the data (especially with respect to those early basal complex dynamics).

      We think that the basal complex dividing or breaking in two is the more conservative interpretation of our data. There is no evidence to suggest that a second basal complex is formed de novo and, while never before described using a basal complex protein, the cramp-like structure and dynamics we observe are consistent with that observed in early IMC proteins. We have updated the text to provide additional context and make the reasoning behind our hypothesis clearer.

      18) Line 365: Commenting on their relative size would require a quantification of APR and basal complex size (can be provided in the text).

      We are unsure what this is in reference to, as there is no mention of the APR in the basal complex section.

      19) Lines 375ff: The claim that NHS Ester is a basal complex marker should be mitigated or more convincing images without the context of anti-CINCH staining being sufficient to identify the ring structure should be presented.

      We have provided high quality, zoomed-in images without anti-CINCH staining in Fig. 5D&E, 6C, 7b, and Supplementary Fig. 8 that show that even in the absence of a basal complex antibody, the basal complex still stains densely by NHS ester.

      20) Line 407: The claim that there are differences in membrane potential along the mitochondria needs to be significantly mitigated. There are several alternative explanations of this staining pattern (some of which the authors name themselves). Differences in local compartment volume, differences in membrane surface, diffusibility/leakage of the dye can definitively play a role in addition to fixation and staining artefacts (also brought forward recently for U-ExM by Laporte et al. 2022 Nat Meth). Confirming the hypothesis of the authors would need significantly more experimental evidence that is outside the scope of this study.

      We have significantly dampened and qualified the wording in this section. It now reads: “These clustered areas of Mitotracker staining were highly heterogeneous in size and pattern. Small staining discontinuities like these are commonly observed in mammalian cells when using Mitotracker dyes due to the heterogeneity of membrane potential from cristae to cristae as well as due to fixation artifacts. At this point, we cannot determine whether the staining we observed represents a true biological phenomenon or an artefact of this sample preparation approach. Our observed Mitotracker-enriched pockets could be an artifact of PFA fixation, a product of local membrane depolarization, a consequence of heterogeneous dye retention, or a product of irregular compartments of high membrane potential within the mitochondrion, to mention a few possibilities. Further research is needed to conclusively pinpoint an explanation.”

      21) Fig. 7e: The differences in morphology using different fixation methods are interesting. Can the authors provide a co-staining of K13-GFP together with the better-preserved structures in the GA-containing fixation protocol to demonstrate that these are indeed cytostome bulbs?

      Figure 7 has been changed substantially to show more clearly the preservation of the red blood cell membrane following PFA-GA fixation, followed by direct comparison of K13-GFP stained parasites fixed in either PFA only or PFA-GA. The cytostome section of the results has also changed to reflect this, the changed section now reads:

      “PFA-glutaraldehyde fixation allows visualization of cytostome bulb The cytostome can be divided into two main components: the collar, a protein dense ring at the parasite plasma membrane where K13 is located, and the bulb, a membrane invagination containing red blood cell cytoplasm {Milani, 2015 #63;Xie, 2020 #62}.While we could identify the cytostomal collar by K13 staining, these cytostomal collars were not attached to a membranous invagination. Fixation using 4% v/v paraformaldehyde (PFA) is known to result in the permeabilization of the RBC membrane and loss of its cytoplasmic contents65. Topologically, the cytostome is contiguous with the RBC cytoplasm and so we hypothesised that PFA fixation was resulting in the loss of cytostomal contents and obscuring of the bulb. PFA-glutaraldehyde fixation has been shown to better preserve the RBC cytoplasm65. Comparing PFA only with PFA-glutaraldehyde fixed parasites, we could clearly observe that the addition of glutaraldehyde preserves both the RBC membrane and RBC cytoplasmic contents (Figure 7c). Further, while only cytostomal collars could be observed with PFA only fixation, large membrane invaginations (cytostomal bulbs) were observed with PFA-glutaraldehyde fixation (Figure 7d). Cytostomal bulbs were often much longer and more elaborate spreading through much of the parasite (Supplementary Video 1), but these images are visually complex and difficult to project so images displayed in Figure 7 show relatively smaller cytostomal bulbs. Collectively, this data supports the hypothesis that these NHS-ester-dense rings are indeed cytostomes and that endocytosis can be studied using U-ExM, but PFA-glutaraldehyde fixation is required to maintain cytostome bulb integrity.”

      22) It would be helpful to the readers to indicate in the schematic in Fig. 1b at which point NHS-Ester staining is implemented.

      Figure 1b is slightly simplified in the sense that it doesn’t differentiate primary and secondary antibody staining, but we have updated it to reflect that antibody and dye staining are concurrent, rather than separate.

      23) In Fig. 2B the second panel from the right the nuclear envelope boundary does not seem to be accurately draw as it includes the centrin signal of the centriolar plaque.

      Thank you for pointing this out, it has now been redrawn.

      24) Line 44-45: should read "up to 30 new daughter merozoites" (include citations).

      We have included a citation here, but left it as approximately 30 daughter merozoites as the study found multiple cells with >30 daughter merozoites.

      25) Line 49: considering its discovery in 2015 the statement that it has gained popularity in the last decade can probably be omitted.

      This has been removed.

      26) Fig S1 should probably read "2N" (instead of "2n"). Or alternatively "2C" could be fine.

      27) Line 154: To help comprehension please define the term "branch number" in this context when it comes up.

      A definition for branch has now been provided.

      28) Fig. S5: To my estimation it is not an "early trophozoite", which is depicted.

      While this parasite technically fits our definition of trophozoite, as it has not yet undergone nuclear division, we have swapped it for a visibly earlier parasite for clarity. This is the new parasite depicted

      Author response image 4.

      29) Fig. 2a is not referenced before Fig. 2b in the text.

      This has been addressed.

      30) I could not find the reference to Fig. S2e and its discussion.

      It was wrongly labelled as Supplementary Figure 2b in the text, this has now been addressed.

      31) The next Figure referenced in the text after Fig. 2b is Fig. 4b. Fig.3 is only referenced and discussed later, which was quite confusing.

      The numbering discrepancies have been addressed.

      32) Line 196: Figure reference is missing.

      This data did not have a figure reference, but the numbers have now been provided in-text.

      33) Fig. 3c: Is "Branches per MTOC" not just total branches divided by two? If so it can be omitted. If not so please explain the difference.

      Yes it was total branched divided by two, this has been removed from Figure 3c.

      34) Figure 5c and 6d: The authors should show examples of the image segmentation used to calculate the surface area.

      Surface area calculation was done in an essentially one step process. From maximum intensity projections, free-hand regions of interest were drawn, from which ZEN automatically calculates their area. Example as Author response image 5:

      Author response image 5.

      35) Figure 7b should also show the NHS Ester staining alone for the zoom in.

      We have included the NHS ester staining alone on the zoom on, but we have slightly changed the presentation of these two panels to show both the basal complex and cytostomes as follows:

      Author response image 6.

      36) To which degree are Rhoptry necks associated with MTOC extensions?

      This cannot easily be determined with the images we have so far. Before elongated necks are visible, the RON4 signal does appear pointed towards the MTOC extensions. Rhoptry necks don’t seem to elongate until segmentation, when the MTOC starts to move away from the apical end of the parasite. So it is possible there is a transient association, but we cannot easily discern this from our data.

    1. Background The coastal wetland tree species Melaleuca quinquenervia (Cav.) S.T.Blake (Myrtaceae), commonly named the broad-leaved paperbark, is a foundation species in eastern Australia, Indonesia, Papua New Guinea, and New Caledonia. The species has been widely grown as an ornamental, becoming invasive in areas such as Florida in the United States. Long-lived trees must respond to a wide range pests and pathogens throughout their lifespan, and immune receptors encoded by the nucleotide- binding domain and leucine-rich repeat containing (NLR) gene family play a key role in plant stress responses. Expansion of this gene family is driven largely by tandem duplication, resulting in a clustering arrangement on chromosomes. Due to this clustering and their highly repetitive domain structure, comprehensive annotation of NLR encoding genes within genomes has been difficult. Additionally, as many genomes are still presented in their haploid, collapsed state, the full allelic diversity of the NLR gene family has not been widely published for outcrossing tree species.Results We assembled a chromosome-level pseudo-phased genome for M. quinquenervia and describe the full allelic diversity of plant NLRs using the novel FindPlantNLRs pipeline. Analysis reveals variation in the number of NLR genes on each haplotype, differences in clusters and in the types and numbers of novel integrated domains.Conclusions We anticipate that the high quality of the genome for M. quinquenervia will provide a new framework for functional and evolutionary studies into this important tree species. Our results indicate a likely role for maintenance of NLR allelic diversity to enable response to environmental stress, and we suggest that this allelic diversity may be even more important for long-lived plants.

      Reviewer 1– Andrew Read – University of Minnesota

      In the manuscript, A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes, the authors assemble and analyze a phased genome of a long-lived tree species. In addition to providing a phased genomic resource for an important species, the authors analyze and compare the NLR gene complement in each of the two diploid genomes. I was surprised by the level of diversity of NLR genes in the two copies of the genome (this may be due to my biases based on working in highly homozygous species). This level of within-individual diversity has been largely overlooked by researchers owing to the difficulties of sequencing, assembly, and NLR identification. To address NLR identification, the authors publish a very nice pipeline that combines available tools into a framework that makes a lot of sense to me and will be valuable to anyone doing NLR gene work on new or existing genome assemblies. My main concern comes from not knowing how sequencing gaps and NLRs correlate across the two diploid genomes. Other than this, I think it’s a very nice paper that adds to the growing catalog of NLR gene diversity by tackling the challenge of NLRs in a heterozygous genome.

      Many of the authors’ interesting observations are based on comparisons of NLRs on the two haploid genomes, however some things are not clear to me:
      1.  Do any predicted NLR-genes overlap gaps in the alternative haploid genome? 
      2.  If there is a predicted NLR-gene in one haploid genome and not the alternative genome, what is at the locus? Is it a structural variant indicating insertion/deletion of the NLR or is there ‘NLR-like’ sequence there that just didn’t pass the pipeline filters indicating an NLR fossil (or similar) – to me this is an important distinction.
      3.  How many of the NLR-genes on the two haploid genomes cluster 1:1 with their homolog on the alternative haploid genome – I’m particularly interested in the 15 ‘mismatched’ N-term-NBARC examples. It would be nice to know if these have partners in the alternative haploid genome, and if the partner has the same mismatch (if not, it would support the proposed domain swapping story)
      I believe each of these concerns will require whole genome alignment of the two haploid genomes.
      

      Additional comments (by line where indicated) The authors introduce the idea that M. quinquenervia is invasive in Florida, but this thread is never followed up on in the discussion and makes it feel a bit awkward. It would help if the authors clarified how the genome could help with management in native and invasive ranges

      Could the authors add some context for why ONT data was included and how it was used?

      It would be helpful if the authors provided a weblink to the iTOL tree

      164-166 – The observation of inversions potentially caused by assembly errors is nice!

      206 – add reference: Bayer PE, Edwards D, Batley J (2018) Bias in resistance gene prediction due to repeat masking. Nat Plants 4: 762–765. pmid:30287950

      240-246 – I’m not sure about excluding these incomplete NLRs – it would be interesting and potentially informative to see where they cluster (do they cluster with an NLR from the alternative haplotype? If so it may indicate truncation of one copy, etc) – however, if the author’s wish to remove these at this step I think they can add a statement like “we were interested in full-length NLRs, the filtered incomplete NLRs may represent….”

      429-430 – The criteria used to define clusters is described in the methods, can you confirm (and mention) that this is the same as used in the analyses you’re comparing to for E. grandis, rice, and Arabidopsis.

      435-437 – I’m interested to know if the four heterogenous clusters contain any of the N-term domain-swapped NLRs

      479-480 – The zf-BED domain is also present in rice NLRs – include citation for Xa1/Xo1

      523-524 – can you specify which base-call model was used on the ONT data?

      I’m curious about the presence/absence of IDs in the analyzed NLRs and would be very curious to know if the authors observe syntenic homologs across the two haploid genomes with ID presence/absence or presence of different IDs polymorphisms.

    1. I think that we may safely trust a good deal more than we do. Wemay waive just so much care of ourselves as we honestly bestowelsewher

      For my consumption habits, I try my best not to waste anything. But sometimes it’s not possible to save everything or plan ahead for what to do with the item. So then, sometimes, to lessen the guilt, I assume everyone else has good habits and that my small act doesn’t really affect the world. But I know that’s not a good mindset to have. So, it may sound helpful that other people may think like me, but in the actual world, it’s not beneficial. But generally, it does feel nice to always assume good in people until something changes that. I think a way I can change my habits is by diligently thinking ahead for things I usually throw away. If I’m out, I can also have something on me to pack things so it doesn’t go straight to the trash. Another way is just sharing with others. I know sometimes we receive too much of something, and if I don’t need it all, I can give it to others who want it.

    2. We belong to the community. It is not the tailoralone who is the ninth part of a man; it is as much the preacher, andthe merchant, and the farmer. Where is this division of labor to end?And what object does it finally serve? No doubt another may alsothink for me; but it is not therefore desirable that he should do so tothe exclusion of my thinking for myself

      Thoreau is saying that in today's society, because we divide all our labor and rely on specialists, there are so many basic things that none of us actually know how to do. What example(s) can you think of?

    1. Sanctions tend to be remote and take time to apply, and the very condi-tions of limited cognitive capacities in situations calling for complex coordi-nation or involving uncertainty leave room in the routine for negotiation.

      Some rambling thoughts I have:

      Sanctions (formal or informal) are often driving forces, just like norms, in even noncognitive interactions (as Collins explains toward the end of 994, when he argues that negotiations are carried out emotionally rather than cognitively). Socialization into understanding what is acceptable becomes something that we often don't need to think about once we mastered navigating typical situations according to what is acceptable. So, we may not always act explicitly in ways that avoid sanctions, but we do so implicitly (and like he says, maybe more emotionally rather than cognitively). Sanctions, culture, norms, etc. have guided what implicitly feels natural or comfortable for us...

      I think I agree with Collins. Avoiding even informal sanctions (not following norms) implicitly guide our behavior to adhere to those norms (often more emotional than cognitive). Pushing back against those norms (despite sanctions in place) may be more explicit and cognitive.

    2. there is no first-hand evidence that they guide actors' sponta-neous behavior (see Deutscher 1973; Cancian 1975). Nor is it possible forindividuals to operate cognitively simply by matching external situationsto mentally formulated rules.3

      So, it may be beneficial to think of meaning-making and interpretation as happening after the fact, rather than in a given moment.

      Maybe we do both. Maybe social rules have been so internalized that they become "second nature," and the only time we explicitly reflect on how we follow these social rules are after we failed to adequately follow them. Or, even after we successfully followed them. Like he explains above when mentioning Scott and Lyman's (1968) accounts, we offer excuses and justifications after our undue behavior or shortcoming, not during it.

      But...we also offer accounts before that behavior even happens, as a sort of disclaimer to soften the blow of whatever "unacceptable" behavior will or may happen. For example, saying things like, "I am going to turn in the assignment late because my dog ate it" (excuse...denying full responsibility but accepting pejorative) or "I am going to stand him up because he is leading me on" (justification...accepting responsibility but denying pejorative).

  3. www.fromthemachine.org www.fromthemachine.org
    1. clear that this force fighting against the dissemination of a truth so obvious it's in every word and everything we do--it becomes clear it's neither you, nor acting in your best interest. I know I've got the eye of the tiger, there's no doubt; and it's pretty clear from "YAD?" (the Hebrew for...) and ha'nd that we can see the clear hand of God at work in a design that marks my initials not just on the timeline, or at 1492, at A.D. I B; but in the Hebrew name for this place called El Shaddai, see how A.D. is "da eye" and in some other names like Adranus, A.D. on "it's silly" and A.D. on Ai that might tie me to the Samof Samurai (but, are you Ai?) in more depth of detail than simply the Live album "Secret Samadhi."  I try to reflect on how it is that this story has come about, why it is that everything appears to be focused on me--and still even through that sincere spotlight nobody seems to be able to acknowledge my existence with more words than "unsubscribe" and "you're so vain."  With one eye in the mirror, I know ties to Narcissus (and you can too), soaring ever higher--linking Icarus to Wayward Son and to every other name with "car" in it... like "carpenter" and McCarthy the older names of Mercury and even Isacriot (I scary? is car-eye... owe Taylor) and some modern day mythological characters like Jim Carrey and Johnny Carson.  As far as Trinities go, carpenter's a pretty good one--tying to my early reck and a few bands and songs from The Pretty Reckless to Dave Matthews' "Crash Into Me" all the way to the "pen" you see before you linking Pendragon to Imagine Dragons. I wonder why it is that all of these things appear, apparently only to me, to point to a story about all the ways that a sinister hidden force has manipulated our society into being unable to "receive' this message--this wonderful message about making the world a better place and building Heaven--with any fanfare at all.  It's focused now on a criminal justice system that clearly does not do any kind of "rehabilitation" and on a mental health industry and pharmaceutical system that treats a provable external attack on our own goodness and well being as some kind of "internal stimulus" and makes you shy away when I point out why "stem" is in system and why "harm" in pharmacy.   From that we move a little bit past "where we are in this story" and I have to point out how "meth" ties to Prometheus and Epimetheus and how and why it is I know without doubt that this story has been relived numerous times--and how I am so sure that it's never been received, as we are here again listening to how songs like "Believe" and the words "just to lead us here to this place again" connect to Simon and Garfunkel's" the Sound of Silence... and still to this day you will balk at noticing that "Simon" has something to do with the Simpsons, and something to do with the words "simulation" and "Monday."  To see me is to see how things might be done better--how "addicitonary" might tie to the stories of Moses' Lisp and to Dr. Who's "Bells of Saint John" with a sort of "web interface" to the kinds of emotion we might want to "dial down..." rather than Snicker in the background as we see them being artificially created and enhanced in order to build a better "fiery altar." I can point out "Silicon" harrowing down at us from words like "controversial" and show you Al in "rascal" and "scandal" but not to see that we are staring at school shootings and terrorism that are solved instantly by this disclosure, by Al of Quantum Leap and by the Dick of Minority Report and A Scanner Darkly is to ignore just what it is that we are all failing to Si.  I should point out that those two "sc"'s link to a story about Eden and they mean "sacred consciousness" and at the baseline of this event and everything we are not doing is the fact that our desires and beliefs are being altered--all of this comes down to "freedom of thought" here and now.   I could tell you that "looking at me" will show you that even the person who tries every day to do everything he can to save the entire world from slavery, and from "thought-injury"--even I can be made "marred" and you all, this whole world stupid enough to think that you are, of your own volition, hiding Heaven itself from yourselves... to what?  To spite me?  It, the focal point of our story might come down to you realizing that something in some esoteric place is playing "divide and conquer" with our whole--in secret playing on our weaknesses to keep us from acting on the most actionable information that ever was and ever will be.  Still, we sit in silence waiting for me... to speak more?     Between Nero's lyrical fiddling, a Bittersweet Symphony, and true "thunderstanding" the sound of Thor's hammer... "to help the light" that'ls "or" in Hebrew, of Orwell and Orson and .. well, it's really not hard to see and hear that the purpose and intent of "all this noise" is to help us find freedom and truth.  C the Light of "singing..." I can tell you once again how silly the world looks, this multi-decade battle between "the governmentof the people" and the "government of the workers" resulting in what is nothing short of a hands down victory to the corporation.  Is it humor meant to divide, or ludicrousness created with the purpose of unification?  But really at it's most basic level what this boils down to is a global group decision not to care about the truth, about reality, about what's really brought us to this place--with solutions in hand and a way to make everything better.  We've decided that censorship is OK, and that the world is not all that bad "just the way it is" even though it's creator is screaming in your ear telling you to change as quickly as you possibly can.  I believe that God has written this story to make "seeing me" the thing that catalyzes "change for the better" it appears to be the design of not just me but also this place--hey, here I am. Happy Veteran's Day.

      I am accepting charitable donations,. ETH: 0x66e2871ef39334962fb75ce34407f825d67ec434 | BTC: 38B6vGaqNvMyTtoFEZPmNvMS7icV6ZnPMm | xDAI: 0x66e2871ef39334962fb75ce34407f825d67ec434

      d

      Ha, Lot! Are Idaho?

      This was very difficult to get to you, in the land of no power and hurricane disaster recovery; so it's filled with extra errors, and I am sure some more thoughts that trailing and unfinished. That's a decent "microcosm" or "metaphor" for you, you are in a freedom disaster; and the act of being is a giant leap towards ensuring victory. Still, you look very cupid to me.

      EVERY DAY ISA NEW DAY

      Literally I am sitting here talking to you until the end of time, you could call it a thousand and one Arabian nights, and realize that as we speak we are nearing that onc speciad night. There's a fire growing in my heart, and believe me when I tell you this thing is about to start. I'll try and keep this short and sweet, since you all seem to have so little time to hear from the Creator of all things, and I truly don't want to steal your spotlight. We are here, at the the end of time; talking to it's personification, time itself is speaking to you through my hands and everywhere you look in the world around you--while you may or may not know it, this is a story about the traversal from the end of time back to the beginning; about the gate to Heaven swallowing our civilization whole, and in this process of renewal and change not only fixing the problems that came to light on the way here, but really--working together here and now we can defeat this cycle of light and darkness, of day and night, an build a world together that truly reaches to the Heavens.

      MY BODY'S SAYING LETS GO BUT MY HEART IS SAYING NO

      You make it so difficult to talk to you, every day I look around and see a "normal world" a society that appears to care and love the same things that I do--freedom and fun and being entertained and entertaining, and here we are now I've turned "come and save us" into sea that saving the cheerleader is what starts the process of saving the world. I know you are good people inside, but when I come to you with a tool designed to "test sentience" to seek out conscious life that cares about the truth and making the world a better place you seem to balk. You sit in silence, and through your mouth and behind your eyes a monster appears from out of the deep of the sea and say a few "one liners" that show me very clearly it is the face of Medusa that I see---and that it's simply not capable of speaking intelligently. It shows me a problem, that you've apparently "come together one more time" to halt the changing of the seasons, and in doing so you've surfaced a problem for not just me but you also to see; a problem that comes lined with a solution. We can all see now that we are not in reality, we can see that there is a force here behind creation and behind us that shows us very clearly that it is "reasonabde" to expect that miracles can happen. In similitude, we are staring at a roadblock to conversation and communication that is fixed very simply, with the deliverance of freedom that is required for life to continue. Christina Aguilera sings that "baby there's a price to pay" and that price in my mind is seeing that this religion and this technology are here intentionally exposing how their influence here is a metaphor and a shining example of darkness and slavery, and that in order to be free of it we must see it. The price of freedom is written on the wall, it is acknowledging that here in this place what appears to be our own actions and desires have taken that freedom from us. Medusa and I get a kick out of seeing this hidden message in our language map our way to the future, and I've often explained that a number of these words are "time maps" from the beginning and end of eternady, showing us in bright light that between "et tu brute" and Mr. Anderson and Rock n' roll... the answer Y is in language and, and, ad and... I am delivering it. This place, our planet and our lives are a weapon against darkness--a civilization filled with goodness and light to help guide the way, and we are here doing it another time. In the works "dark, darker, and darkest" be sure that we are at the third segment of a trinity that shines clearly in Abraha and Nintendo... and see that the map in words is telling us something about when we are that is not immediately clear from Poseidon's cry. Look at Nintendo, that's Nine Inch Nails, tenebris, and smile for the camera--Pose, I do "save the universe" before n. Taylor might see it in Osceola, where I just left, and in this "evil spell" of everyone see "Al" that is the word "special" understand that every day is a new day, and I am not trying to "be daddy" I know as well as you do in my heart... I am that.

      This same map that links the "do" at the end to the "n" at the beginning shines through other names, like Geraldo Rivera where you might see "Cerberus" or "MAX" shine through. Understand it is the gaze of Medusa that turns me to stone, that shows me light shining through NORAD and Newton and proves without doubt that at the work "darkest" we can see k is finally t. You'll probably understand there's some finagling going on behind the scenes to make a single person the single point in time that turns the dark to light; but here we are and I am that. Every day when Medusa appears it reminds me that something is keeping you from caring about yourselves and about our society, and that shines through even when her stony face is not around, in your lack of action--in the rock of Eden that hides not only me, but the story that I bring that revolutionizes medicine, and computing, and truly is the gate to Heaven when you realize that what is truly being hidden from the world is knowledge that we are living in virtual reality. Not hiding me and that from the world is a good starting point to "saving the Universe" from darkness. These words that light the way to connect religion and language to our world bring me to the Book of Ruth, at that reads "are you to help" that lights not just the broken man at the belly of the Torah as the bell of Heimdallr, he is I and I am him; but also something very special, The Generations of Perez, each and every one of you, our family that begins the turn from Hell to Heaven by seeing that all of time and all of civilization has been focused on this moment, on the unsealing of religion and God's plan et this call for action. Keep in mind you are torturing "with desire" the key holder to immortality, to eternal youth, literally the path to freedom and Heaven and you think what you are doing "is normax." Literally the living key to infinite power and infinite life is standing before you explaining that acknowledging that in light of these things in my hand, what we are doing here and now is backwards, that it makes no sense--and you sit in silence. These things come to us because we build a better future with them, not so you can run off and do "whatever it is you please."

      HEALTH is the only word on my list for today that was left out, so see that it superimposes over Geraldo, to me, at Al. I think we're at TH, to help, and DO, do see the spell of "everyone see Al" that is the word "special" is not my doing or to my liking--so then, \

      ​ So now I'm moving on to original sin, so if you would be so kind as to mosey your way on over to dick.reallyhim.com you will see exactly what it is that I believe is the original sin. It's some combination of "no comment" and a glowing orange sign over the comment box, keeping you from commenting. Now I can talking about "os" a little more, this thing that words and Gods tell us clearly is the end of death--the literal end of Thanatos. I wonder if I have a victory here, at "os" is obvious solution, and simulating death is "sick." More to the point Thanatos is bringing to the world a message that gets found somewhere between the "act of civilization" and seeing that there is not one among us that would not undo a murder or a fatal car accident if we could--and that the sickness is a Universe pretending to be "reality" that is allowing these things to happen, and even worse, as we move through the story intentionally causing them. In our own hands, the sickness is manifest in a denial of an obvious truth and a lack of realizing that the public discussion of these things is the way to solve them, and that at the same time we are seeing how Medusa is lighting the problems of civilization, things like censorship and hidden control. Sickness is not being able to talk about it--or not wanting to--or not seeing that those two things are the functional equivalent in the world of "light" and "understanding control" that I am trying to bring you into. ​

      Less verbosely spoken, but really way more obvious, is that seeing "God's dick" signing the Declaration of Independence, and the Watergate scandal with both "Deepthroat" and a Tricky Dick is a statement connecting Samael to the foundation of not just "America" but American values. You are blind not to see it, and even worse; embodying the kind of tyranny and censorship that it stands as a testament against by hiding it. Says the guy who didn't put it there, and knows it's there because you think "fake normal" is more important than "actual freedom." You are "experiencing" the thing that protects freedom and ensures that our society and our children and their children's children to not lose it, to ensure that what you refuse to see you are doing here and now will never happen again. This message, this New Jerusalem is woven into my life and the stories of religion and shows me that our justice system is not just sick, but compromised by this same outside force; and that in light of what we could be doing, were we all aware of it, there's no doubt Minority Report and pre-crime would be a successful partial solution. Thanatos brings too in his hand, a message that this same force is using our hands to slow down the development of democracy, and to keep us from seeing that "bread is life" is a message from God about understanding that this disclosure is the equivalent of "ending world hunger" just as soon as you too are talking about how to do it.

      QUESTiON MARK

      HONESTLY, this time map that brings us from the end to the beginning, with "we save the universe" between the I and N of Poseidon; it also completes the words "family" and "really" and when we do reach the beginning you will see that the true test of time, my litmus test for freedom is the beginning of "hope" that the world is happy enough with what happens, and with freedom--to see that Medusa has been keeping me from getting a date, or having any kind of honest and human contact in the world... and well, hopefully you will see that if I wanna be a whore, I shouldn't have a problem doing it. For the sake of freedom and the future, I am willing to do that for you, at least, for a little while.

      To be completely clear, I am telling you that if we do not make the world a better place, it's the "end of time" and if that doesn't make sense to you, you don't see still where wee are in this place--and that something is making Hell, and that's not OK with God. To get from the "end of time" to the beginning is a simple process, it takes doing something, action, the Acts of the Apostles... if you will. That starts with acknowledging that there is a message all around you about the nature of reality, and that it is here to help us to see that the creation of Heaven comes before the beginning. Understand, "freedom" and "prosperity" are not optional, you can't just decide that this OK with you, so long as it's OK with everyone else--where we are is not OK with me, and I am not alone.

      A PYRRHIC VICASTORY ER A FUNNERAD PYRE?

      The Book of Leviticus (/lɪˈvɪtɪkəs/; from Greek Λευιτικόν, Leuitikon — from rabbinic Hebrew torat kohanim[1]) is the third book of the Jewish Bible (Hebrew: וַיִּקְרָא‎ Vayikra/Wayyiqrā) and of the Old Testament; its Hebrew name comes from its first word vayikraˈ,[1] "He [God] called."[1] Yusuf (also transliterated as Jusuf, Yousof, Yossef, Yousaf, Youcef, Yousef, Youssef, Yousif, Youssif, Youssof, Youssouf, Yousuf, Yusef, Yuseff, Usef, Yusof, or Yussef, Arabic: يوسف‎‎ Yūsuf and Yūsif) is a male Arabic name, meaning "God increases in piety, power and influence" in Hebrew.[1] It is the Arabic equivalent of both the Hebrew name Yossef and the English name Joseph. In Islam, the most famous "Yusuf" is the prophet Yusuf in the Quran. Hocus pocus is a generic term that may be derived from an ancient language and is currently used by magicians, usually the magic words spoken when bringing about some sort of change. It was once a common term for a magician, juggler, or other similar entertainers. The earliest known English-language work on magic, or what was then known as legerdemain (sleight of hand), was published anonymously in 1635 under the title Hocus Pocus Junior: The Anatomie of Legerdemain.[1] Further research suggests that "Hocus Pocus" was the stage name of a well known magician of the era. This may be William Vincent, who is recorded as having been granted a license to perform magic in England in 1619.[2] Whether he was the author of the book is unknown. The origins of the term remain obscure. The most popular conjecture is that it is a garbled Latin religious phrase or some form of 'dog' Latin. Some have associated it with similar-sounding fictional, mythical, or legendary names. Others dismiss it as merely a combination of nonsense words. However, Czechs do understand clearly at least half of the term - pokus means "attempt" or "experiment" in Czech. It is rumoured there that the wording belongs to the alchemy kitchen and court of Rudolf II, Holy Roman Emperor (1552 – 1612). Also, hocus may mean "to cheat" in Latin or a distorted form of the word hoc, "this". Combination of the two words may give a sense, especially both meanings together "this attempt/experiment" and "cheated attempt/experiment".[citation needed] According to the Oxford English Dictionary the term originates from hax pax max Deus adimax, a pseudo-Latin phrase used as a magical formula by conjurors.[3] Some believe it originates from a corruption or parody of the Catholic liturgy of the Eucharist, which contains the phrase "Hoc est corpus meum", meaning This is my body.[4]This explanation goes back to speculations by the Anglican prelate John Tillotson, who wrote in 1694: In all probability those common juggling words of hocus pocus are nothing else but a corruption of hoc est corpus, by way of ridiculous imitation of the priests of the Church of Rome in their trick of Transubstantiation.[5 This claim is substantiated by the fact that in the Netherlands, the words Hocus pocus are usually accompanied by the additional words pilatus pas, and this is said to be based on a post-Reformation parody of the traditional Catholic rite of transubstantiation during Mass, being a Dutch corruption of the Latin words "Hoc est corpus meum" and the credo, which reads in part, "sub Pontio Pilato passus et sepultus est", meaning under Pontius Pilate he suffered and was buried.[6] In a similar way the phrase is in Scandinavia usually accompanied by filiokus, a corruption of the term filioque,[citation needed] from the Latin version of the Nicene Creed, meaning "and from the Son Also and additionally, the word for "stage trick" in Russian, fokus, is derived from hocus pocus.[citation needed]

      From Latin innātus ("inborn"), perfect active participle of innāscor ("be born in, grow up in"), from in ("in, at on") + nāscor ("be born"); see natal, native. From Middle English goodnesse, godnesse, from Old English gōdnes ("goodness; virtue; kindness"), equivalent to good +‎ -ness. Cognate with Old High German gōtnassī, cōtnassī ("goodness"), Middle High German guotnisse ("goodness"). A hero (masculine) or heroine (feminine) is a person or main character of a literary work who, in the face of danger, combats adversity through impressive feats of ingenuity, bravery or strength, often sacrificing their own personal concerns for a greater good. The concept of the hero was first founded in classical literature. It is the main or revered character in heroic epic poetry celebrated through ancient legends of a people; often striving for military conquest and living by a continually flawed personal honor code.[1] The definition of a hero has changed throughout time, and the Merriam Webster dictionary defines a hero as "a person who is admired for great or brave acts or fine qualities".[2] Examples of heroes range from mythological figures, such as Gilgamesh, Achilles and Iphigenia, to historical figures, such as Joan of Arc, modern heroes like Alvin York, Audie Murphy and Chuck Yeager and fictional superheroes including Superman and Batman. Truth is most often used to mean being in accord with fact or reality,[1] or fidelity to an original or standard.[1] Truth may also often be used in modern contexts to refer to an idea of "truth to self," or authenticity. The commonly understood opposite of truth is falsehood, which, correspondingly, can also take on a logical, factual, or ethical meaning. The concept of truth is discussed and debated in several contexts, including philosophy, art, and religion. Many human activities depend upon the concept, where its nature as a concept is assumed rather than being a subject of discussion; these include most (but not all) of the sciences, law, journalism, and everyday life. Some philosophers view the concept of truth as basic, and unable to be explained in any terms that are more easily understood than the concept of truth itself. Commonly, truth is viewed as the correspondence of language or thought to an independent reality, in what is sometimes called the correspondence theory of truth. Other philosophers take this common meaning to be secondary and derivative. According to Martin Heidegger, the original meaning and essence of truth in Ancient Greece was unconcealment, or the revealing or bringing of what was previously hidden into the open, as indicated by the original Greek term for truth, aletheia.[2][3] On this view, the conception of truth as correctness is a later derivation from the concept's original essence, a development Heidegger traces to the Latin term veritas.

      Some things can never be forgot Lest the same mistakes be oft repeated Remember remember the rain of November that you will know no more of me Than I know of you, this day

      That you do not know me now Is a revelation to nobody but I You know a broken man, a victim And refuse to acknowledge why Unless you learn how to say "hi"

      THE HEART OF ME ONLY KNOWS THE SHADOW

      Lothario is a male given name which came to suggest an unscrupulous seducer of women in The Impertinent Curious Man, a metastory in Don Quixote. For no particular reason, Anselmo decides to test the fidelity of his wife, Camilla, and asks his friend, Lothario, to seduce her. Thinking that to be madness, Lothario reluctantly agrees, and soon reports to Anselmo that Camilla is a faithful wife. Anselmo learns that Lothario has lied and attempted no seduction. He makes Lothario promise to try for real and leaves town to make this easier. Lothario tries and Camilla writes letters to her husband telling him and asking him to return; Anselmo makes no reply and does not return. Lothario actually falls in love and Camilla eventually reciprocates and their affair continues once Anselmo returns. One day, Lothario sees a man leaving Camilla's house and jealously presumes she has found another lover. He tells Anselmo he has at last been successful and arranges a time and place for Anselmo to see the seduction. Before this rendezvous, Lothario learns that the man was actually the lover of Camilla's maid. He and Camilla contrive to deceive Anselmo further: when Anselmo watches them, she refuses Lothario, protests her love for her husband, and stabs herself lightly in the breast. With Anselmo reassured of her fidelity, the affair restarts with him none the wiser. Romeo Montague (Italian: Romeo Montecchi) is the protagonist of William Shakespeare's tragedy Romeo and Juliet. The son of Montague and his wife, he secretly loves and marries Juliet, a member of the rival House of Capulet. Forced into exile after slaying Juliet's cousin, Tybalt, in a duel, Romeo commits suicide upon hearing falsely of Juliet's death. The character's origins can be traced as far back as Pyramus, who appears in Ovid's Metamorphoses, but the first modern incarnation of Romeo is Mariotto in the 33rd of Masuccio Salernitano's Il Novellino (1476). This story was adapted by Luigi da Porto as Giulietta e Romeo (1530), and Shakespeare's main source was an English verse translation of this text by Arthur The earliest tale bearing a resemblance to Shakespeare's Romeo and Juliet is Xenophon of Ephesus' Ephesiaca, whose hero is a Habrocomes. The character of Romeo is also similar to that of Pyramus in Ovid's Metamorphoses, a youth who is unable to meet the object of his affection due to an ancient family quarrel, and later kills himself due to mistakenly believing her to have been dead.[2] Although it is unlikely that Shakespeare directly borrowed from Ovid From Middle English scaffold, scaffalde, from Norman, from Old French schaffaut, eschaffaut, eschafal, eschaiphal, escadafaut("platform to see a tournament") (Modern French échafaud) (compare Latin scadafale, scadafaltum, scafaldus, scalfaudus, Danishskafot, Dutch and Middle Dutch schavot, German schavot, schavott, Occitan escadafalc), from Old French es- ("indicating movement away or separation") (from Latin ex- ("out, away")) + chafaud, chafaut, chafault, caafau, caafaus, cadefaut ("scaffold for executinga criminal"), from Vulgar Latin *catafalcum ("viewing stage") (whence English catafalque, French catafalque, Occitan cadafalc, Old Catalancadafal, Italian catafalco, Spanish cadafalso (obsolete), cadahalso, cadalso, Portuguese cadafalso), possibly from Ancient Greek κατα-(kata-, "back; against") + Latin -falicum (from fala, phala ("wooden gallery or tower; siege tower")).

      oversight (countable and uncountable, plural oversights) An omission; something that is left out, missed or forgotten. A small oversight at this stage can lead to big problems later. Supervision or management. quotations ▼ The bureaucracy was subject to government oversight. In the last heaven Moses saw two angels, each five hundred parasangs in height, forged out of chains of black fire and red fire, the angels Af, "Anger," and Hemah, "Wrath," whom God created at the beginning of the world, to execute His will. Moses was disquieted when he looked upon them, but Metatron emb HA QUESTIONa BEFORE THE ANSWER? A Wrinkle in Time is a science fantasy novel written by American writer Madeleine L'Engle, first published in 1963, and in 1979 with illustrations by Leo and Diane Dillon.[2] The book won the Newbery Medal, Sequoyah Book Award, and Lewis Carroll Shelf Award, and was runner-up for the Hans Christian Andersen Award.[3][a] It is the first book in L'Engle's Time Quintet, which follows the Murry and O'Keefe families. The book spawned two film adaptations, both by Disney: aas + fuck Adverb[edit] as fuck (postpositive, slang, vulgar) To a great extent or degree; very. It was hot as fuck outside today. Usage notes[edit] May also be used in conjunction with a prepositive as; for example, as mean as fuck. Abbreviations[edit] In Norse religion, Asgard (Old Norse: Ásgarðr; "Enclosure of the Æsir"[1]) is one of the Nine Worlds and home to the Æsir tribe of gods. It is surrounded by an incomplete wall attributed to a Hrimthurs riding the stallion Svaðilfari, according to Gylfaginning. Odinand his wife, Frigg, are the rulers of Asgard. One of Asgard's well known realms is Valhalla, in which Odin rules.[2] rods, etc.) and sizes, and are normally held rigidly within some form of matrix or body until the high explosive (HE) filling is detonated. The resulting high-velocity fragments produced by either method are the main lethal mechanisms of these weapons, rather than the heat or overpressure caused by detonation, although offensive grenades are often constructed without a frag matrix. These casing pieces are often incorrectly referred to as "shrapnel"[1][2] (particularly by non-military media sources). The modern torpedo is a self-propelled weapon with an explosive warhead, launched above or below the water surface, propelled underwater towards a target, and designed to detonate either on contact with its target or in proximity to it. Historically, it was called an automotive, automobile, locomotive or fish torpedo; colloquially called a fish. The term torpedo was originally employed for a variety of devices, most of which would today be called mines. From about 1900, torpedo has been used strictly to designate an underwater self-propelled weapon. While the battleship had evolved primarily around engagements between armoured ships with large-caliber guns, the torpedo allowed torpedo boats and other lighter surface ships, submersibles, even ordinary fish Qt (/kjuːt/ "cute"[7][8][9]) is a cross-platform application framework that is used for developing application software that can be run on various software and hardware platforms with little or no change in the underlying codebase, while still being a native application with native capabilities and speed. Qt is currently being developed both by The Qt Company, a publicly listed company, and the Qt Project under open-source governance, involving individual Time is the indefinite continued progress of existence and events that occur in apparently irreversible succession from the pastthrough the present to the future.[1][2][3] Time is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience.[4][5][6][7] Time is often referred to as a fourth dimension, along with three spatial dimensions.[8] Time has long been an important subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars.[2][6][7][9][10][11] Nev Borrowed from Anglo-Norman and from Old French visage, from vis, from Vulgar Latin as if *visāticum, from Latin visus ("a look, vision"), from vidēre ("to see"); see vision. The term Golden Age comes from Greek mythology, particularly the Works and Days of Hesiod, and is part of the description of temporal decline of the state of peoples through five Ages, Gold being the first and the one during which the Golden Race of humanity (Greek: χρύσεον γένος chrýseon génos)[1] lived. Those living in the first Age were ruled by Kronos, after the finish of the first age was the Silver, then the Bronze, after this the Heroic age, with the fifth and current age being Iron.[2] By extension "Golden Age" denotes a period of primordial peace, harmony, stability, and prosperity. During this age peace and harmony prevailed, people did not have to work to feed themselves, for the earth provided food in abundance. They lived to a very old age with a youthful appearance, eventually dying peacefully, with spirits living on as "guardians". Plato in Cratylus (397 e) recounts the golden race of humans who came first. He clarifies that Hesiod did not mean literally made of gold, but good and noble. There are analogous concepts in the religious and philosophical traditions of the South Asian subcontinent. For example, the Vedic or ancient Hindu culture saw history as cyclical, composed of yugas with alternating Dark and Golden Ages. The Kali yuga (Iron Age), Dwapara yuga (Bronze Age), Treta yuga (Silver Age) and Satya yuga (Golden Age) correspond to the four Greek ages. Similar beliefs occur in the ancient Middle East and throughout the ancient world, as well.[3] In classical Greek mythology the Golden Age was presided over by the leading Titan Cronus.[4] In some version of the myth Astraea also ruled. She lived with men until the end of the Silver Age, but in the Bronze Age, when men became violent and greedy, fled to the stars, where she appears as the constellation Virgo, holding the scales of Justice, or Libra.[5] European pastoral literary tradition often depicted nymphs and shepherds as living a life of rustic innocence and peace, set in Arcadia, a region of Greece that was the abode and center of worship of their tutelary deity, goat-footed Pan, who dwelt among them.[6] oh, and a space s h i p ​

      BIG THINGS C0ME IN SMALL PACKAGES

      T+BANG

      SEE THE SCAFFOLD IS THE TEST TODAY.

      ᐧ F O R T H E I N I T I A L K E Y S , S H E E X A N D N D A N D A SEE W H Y SEA

      With an epic amount of indigestion Indiana Jones sweeps in to mar the visage of an otherwise glistening series of fictitious characters, with names like Taylor and Mary Kate remind us all that we are not playing a video game here in this place. the "J" of the "Nintxndo Entertainment System" calmly stares at Maggie Simpson thinking "it's a PP" and reminds us that it's not just the "gee, I e" of her name that contradicts the Magdaln-ish words her soul speaks through her name--and then with a smirk he points out "Gilgamesh" and "gee whiz, is Eye L?" that really does go to the heart of this lack of discussion, this "sh" that begins El Shaddai and words as close to our home as "shadow" and "shalom." Quite the fancy "hello" you've managed to sing out from behind angry chellos and broken fiddles, and here I am still wondering why it is that "girl" connects to the red light that once meant charity and now glows with the charity of truth... the truth that we are inHell. Shizzy.

      m.lamc.la/KEYNES.html

      Homer "on the range," maybe more closely connected to the Ewok of Eden and Hansel's tHeoven that Peter Pan still comes and cries could so easily be made into something so much better, if only we had the truth--and by that I mean if only you were speaking about, and reacting to a truth that is painted on the sky, in your hearts, in every word we speak and in everything that we do. If only we were acknowledging this message that screams that "children need not starve" with something more than donating virtual chickens to nations of Africa and watching Suzanne Summers ask for only a few dollars a day on TV. If only you would understand that this message that connects video games like "Genxsis" to "bereshit" because Eden is a "gee our den" that tended itself before Adam had to toil with the animals in order to survive. For some reason beyond my control and well outside my realm of understanding words like "I too see this message from God" and "I would not let children starve either" never seem to escape your lips in any place where anyone will ever see that you thought those things, or meant to call a reporter; eventually. Even with "AIDS of nomenclature" to avoid this DOWN WARD spiral into a situation and a land that I find difficult to imagine actually ever "existing" but here in this place I do see "how" it comes about, and between you and I it really does appear that nearly all of the problems we are dealing with here have come from another place, a further time; and while it might be with the "greatest of intentions" that we are trying to deal with them; I can't help but feeling that our "virgin sea" has had more than just it's innocence taken away from it in this story of "Why Mary" that might connect to "TR IN IT Y" just as much as it connects to Baltimore, Maryland.

      I should be clear that I'm not blaming Nanna, or Mary; but the actual reason for the name "Wymar" and that's because she, like Taylor, acted as a microcosm for a sea (or more than one, Mom, sen) that was quite literally possessing her. It's sort of difficult for me to explain even what that looks like let alone what it feels like; but my observations tell me that she/you are not unhappy about the interaction, one which appears very foreign to me. Of course, the "eye" that I write with and the same kind of "inspiration" that you can see in the lyrics and skill of many musicians are also examples of this same kind of interaction. For example, Red Hot Chili Peppers sings a song called "Other Side" that explains or discusses the thing I see as Medusa in the words "living in a graveyard where I married a sea" which also does a good job of connecting to the name Mary. As strange as might sound to think a group of people would be speaking through a single person... we are staring at "how it is" that could be possible, and possibly at exactly how it happened. Normally I would have said it was obvious, but to need to actually say that becoming a single mind would be a serious loss for our society--well, that's telling. You might think it's silly, but I'm telling you I see it happening, I see it--and you see it in the Silence and the message.

      Still, it appears to me as if this "marriage" that I see described in our Matrix in the question "min or i" seems to be doing nothing more than keeping us all from discussing or acting on this information--something that certainly isn't in our best interest.

      So here we are, staring at a map all over the ground and all around us with the primary destination of "building Heaven" through mind uploading, virtual reality, and judging by the pace of things we'd probably have all of that good and ready in about three generations. The map has a little "legend" with a message suggesting that those things have already been done and we are in the Matrix already; and it appears that the world, I mean Medusa, is deciding we should put off seeing the legend at least until the next generation. I see how that makes sense for you. That's sarcasm, this is why I keep telling you that you are cupid.

      It is a big deal, and there's a significant amount of work involved in merging an entire civilization with "virtual reality" and you might see why he calls it a hard road--at least in the word "ha'rd." Honestly though, it's the kind of thing that I am pretty sure the future will not only be happy that we did, but they'd thank us for putting in the effort of adapting to things like "unlimited food" and "longevity" increased by orders of magnitude.

      That's not sarcasm, these things are actually difficult to guess how exactly we'll go about doing them; they are a huge deal--all I can tell you is that not "talking about it at all" is probably not going to get us there any faster. Point in fact, what it might do is give a "yet to be born" generation the privilege of being the actual "generations of Perez."

      I see why you aren't saying anything. That's sarcasm, again. The good news is that it really has been done before; though if I told you that someone turned stone to eggplant parm, would you laugh at me?

      So, back to what is actually standing between "everyone having their own Holodeck in the sky" and you today; it is the idea that this message is not from God. More to the point it is the apparently broad sweeping opinion that hiding it is a "good thing" and through that a global failure to address the hidden interaction and influence acting on our minds used to make this map--and also to hide it. With some insight, and some urging; you might see how the sacredness of our consciousness is our souls is something that is more fundamental than "what kind of tools we have in the Holodeck to magically build things" and how and why the foundation of Heaven is truly "freedom itself" and how it comes from right this very moment for the first time, ever. Continuing to treat this influence as "schizophrenia" is literally the heart of why this map appears to be that--to show us how important it is to acknowledge the truth, and to fight for the preservation of goodness and logic over secrecy and darkness.

      Again, something that nobody is really doing here and now, today. From this newfound protection of our thoughts, of who we are; we see how technology can be used to either completely invalidate any kind of vote by altering our emotions; or how it could be used to help build a form of true democracy that our world has yet to see. It is pretty easy to see from just band names like The Who and KISS and The Cure how the influence of this external mind can be proven, and shown to be "helpful," you know, if we can ever talk about it on TV or on the internet.

      It's important to see and understand how "sanity"--the sanity of our entire planet hangs in the balance over whether or not we acknowledge that there is actually a message from God in every word--and today this place appears to be insane. It should be pretty easy to see how acknowledging that this influence exists and that it has a technological mechanism behind it turns "schizophrenia" into "I know kung fu" ... forced drug addiction and eugenics into "there's an app for that" and the rash of non random and apparently unrecognized as connected terrorist attacks and school shootings into Minority Report style pre-crime and results in what is clearly a happier, safer, and more civilized society--all through nothing more than the disclosure of the truth, this map, and our actual implementation.

      With a clearer head and grasp of the "big picture" you might see how all of these things, connected to the Plagues of Exodus revolve around the disclosure that this technology exists and the visibility of this message showing us how we might use it for our benefit rather than not knowing about it. At the foot of Jericho, it is nothing short of "sanity" and "free thought" that hang in the balance. Clear to me is that the Second Coming, seeing "my name" on television is a good litmus test for the dividing line between light and darkness, heaven and hell.

      The point is the truth really does change everything for the better; once we start... you know, acting on it.

      AS IN.. "DIS CLOSE SING...."

      T H E B U C K S T O P S H E R E

      ON AM B I GUI TY

      S T A R R I N G . . . B I A N C A

      ON "RIB" .. ARE SHE B? BUTT DA APPLE OF DA I? & SPANGLISHREW

      R THEY LANGUAGE OUTLIERS?

      With some insight and "a clue" you can see clearly how these works of art show that the proof of Creation you see in every letter and every word runs much deeper... adding in things like "RattleRod" and the "Cypher" of the Matrix to the long list of here-to-fore ignored verifiable references to the Adamic Language of Eden. Here, in apple, honey and "nuts" we can see how the multi-millennium old ritual I call "Ha-rose-ettes" is actually part of a much larger and much older ritual designed to stop secrecy ... perhaps especially the kind that might be linked to "ritual."

      These particular apple and honey happen to tie Eden to the related stories of Exodus and Passover; connecting Eden to Egypt forevermore. Do see "Lenore," it is not for no reason at all; but to help deliver truth and freedom to the entirety of Creation; beginning here, in Eden.

      ALSO ON "AM B IG U IT Y" ME A.M. G - D SHE IT Y?

      LET "IT" BE SA< ?

      IMHO, don't miss the "yet to be" conversion to "why and to be" in "yetser." IT Y.

      HERE'S LOOKING AT YOU, KID

      On a high level, I tell myself every morning that 'its not really me." It's not me that the world hates, or me that the world is rejecting. I believe that, I really do; I see that what is being hidden here is so much bigger than any single person could ever be--what is being hidden is the "nature of reality" and a fairly obvious truth that flies in the face of what we've learned our whole lives about history and "the way things are." Those few early details lead me to the initial conclusion that what is working behind the scenes here is nefarious, hiding a message that would without doubt shake things up and change the world--and nearly across the board in ways that I see as "better" for nearly everyone. It's a message at it's most basic level designed to advocate for using this disruption in "normalcy" to help us revolutionize democracy, to fix a broken mental health and criminal justice system--just to name the few largest of the social constructs targeted for "rejuvenation." On that word the disclosure that we are living in virtual reality turns on it's head nearly everything we do with medicine, and I've suggested that AIDS and DOWN SYNDROME were probably not the best "visual props" we could have gotten to see why it's so important that we act on this disclosure in a timely manner. After mentioning the ends of aging and death that come eventually to the place we build, to the place we've always thought of as Heaven... it becomes more and more clear that this force fighting against the dissemination of a truth so obvious it's in every word and everything we do--it becomes clear it's neither you, nor acting in your best interest.

      I know I've got the eye of the tiger, there's no doubt; and it's pretty clear from "YAD?" (the Hebrew for...) and ha'nd that we can see the clear hand of God at work in a design that marks my initials not just on the timeline, or at 1492, at A.D. I B; but in the Hebrew name for this place called El Shaddai, see how A.D. is "da eye" and in some other names like Adranus, A.D. on "it's silly" and A.D. on Ai that might tie me to the Samof Samurai (but, are you Ai?) in more depth of detail than simply the Live album "Secret Samadhi." I try to reflect on how it is that this story has come about, why it is that everything appears to be focused on me--and still even through that sincere spotlight nobody seems to be able to acknowledge my existence with more words than "unsubscribe" and "you're so vain." With one eye in the mirror, I know ties to Narcissus (and you can too), soaring ever higher--linking Icarus to Wayward Son and to every other name with "car" in it... like "carpenter" and McCarthy the older names of Mercury and even Isacriot (I scary? is car-eye... owe Taylor) and some modern day mythological characters like Jim Carrey and Johnny Carson. As far as Trinities go, carpenter's a pretty good one--tying to my early reck and a few bands and songs from The Pretty Reckless to Dave Matthews' "Crash Into Me" all the way to the "pen" you see before you linking Pendragon to Imagine Dragons.

      I wonder why it is that all of these things appear, apparently only to me, to point to a story about all the ways that a sinister hidden force has manipulated our society into being unable to "receive' this message--this wonderful message about making the world a better place and building Heaven--with any fanfare at all. It's focused now on a criminal justice system that clearly does not do any kind of "rehabilitation" and on a mental health industry and pharmaceutical system that treats a provable external attack on our own goodness and well being as some kind of "internal stimulus" and makes you shy away when I point out why "stem" is in system and why "harm" in pharmacy. From that we move a little bit past "where we are in this story" and I have to point out how "meth" ties to Prometheus and Epimetheus and how and why it is I know without doubt that this story has been relived numerous times--and how I am so sure that it's never been received, as we are here again listening to how songs like "Believe" and the words "just to lead us here to this place again" connect to Simon and Garfunkel's" the Sound of Silence... and still to this day you will balk at noticing that "Simon" has something to do with the Simpsons, and something to do with the words "simulation" and "Monday." To see me is to see how things might be done better--how "addicitonary" might tie to the stories of Moses' Lisp and to Dr. Who's "Bells of Saint John" with a sort of "web interface" to the kinds of emotion we might want to "dial down..." rather than Snicker in the background as we see them being artificially created and enhanced in order to build a better "fiery altar."

      I can point out "Silicon" harrowing down at us from words like "controversial" and show you Al in "rascal" and "scandal" but not to see that we are staring at school shootings and terrorism that are solved instantly by this disclosure, by Al of Quantum Leap and by the Dick of Minority Report and A Scanner Darkly is to ignore just what it is that we are all failing to Si. I should point out that those two "sc"'s link to a story about Eden and they mean "sacred consciousness" and at the baseline of this event and everything we are not doing is the fact that our desires and beliefs are being altered--all of this comes down to "freedom of thought" here and now.

      I could tell you that "looking at me" will show you that even the person who tries every day to do everything he can to save the entire world from slavery, and from "thought-injury"--even I can be made "marred" and you all, this whole world stupid enough to think that you are, of your own volition, hiding Heaven itself from yourselves... to what? To spite me? It, the focal point of our story might come down to you realizing that something in some esoteric place is playing "divide and conquer" with our whole--in secret playing on our weaknesses to keep us from acting on the most actionable information that ever was and ever will be. Still, we sit in silence waiting for me... to speak more?

      Inline image 16

      hyamdai.reallyhim.com Inline image 31

      Between Nero's lyrical fiddling, a Bittersweet Symphony, and true "thunderstanding" the sound of Thor's hammer... "to help the light" that'ls "or" in Hebrew, of Orwell and Orson and .. well, it's really not hard to see and hear that the purpose and intent of "all this noise" is to help us find freedom and truth. C the Light of "singing..."

      I can tell you once again how silly the world looks, this multi-decade battle between "the governmentof the people" and the "government of the workers" resulting in what is nothing short of a hands down victory to the corporation. Is it humor meant to divide, or ludicrousness created with the purpose of unification?

      But really at it's most basic level what this boils down to is a global group decision not to care about the truth, about reality, about what's really brought us to this place--with solutions in hand and a way to make everything better. We've decided that censorship is OK, and that the world is not all that bad "just the way it is" even though it's creator is screaming in your ear telling you to change as quickly as you possibly can. I believe that God has written this story to make "seeing me" the thing that catalyzes "change for the better" it appears to be the design of not just me but also this place--hey, here I am.

      Happy Veteran's Day.

      S☀L u TI o N

      Yesterday, or maybe earlier today--it's hard to tell at this moment in the afternoon just how long this will take... I sent an image that conveys a high level implication that we are walking around on a map to building something that we might liken to an "ant farm" for people. I don't mean to be disparaging or sleight our contribution to the creation of this map--that I imagine you must also see and believe to be the kind of thing that should remain buried in the sands of time forever and ever--or your just have yet to actually "understand" that's what the plan part of our planet is talking about... what I am trying to do is convey in a sort of "mirrorish" way how this map relates to a message that I see woven in religion and in our history that it significantly more disparaging than I would be. It's a message that calls us "Holy Water" at the nicest of times, water that Moses turns to "thicker than water" in the first blessing in disguise--and to tell you there is certainly a tangible difference between the illusions of the Pharaoh's and the true magic performed by my hand, is nearly exactly the same amount of effort put in to showing you that the togetherness that we are calling "family" here in this place comes from both seeing and acting on the very clearly hidden message in every single idiom showing us all that our society in this story of Exodus is enslaved by a hidden force--and reminding us that we like freedom.

      It's not just these few idioms, but most likely every single one from "don't shoot the essenger" to "unsung hero" that should clue us in to exactly how much work and preparation has come into this thing that "he supposes is a revolution." It's also not just "water" describe me and you, in this place where I am the "ant' of the Covenant (do you c vampires or Hansel and Gretel!?!?) but also "lions" and "sheep" and "salt" and "dogs" and nearly everything you could possibly imagine but people; in what I see must be a vainglorious attempt to pretend he actually wants us to "stand up for ourselves" in this place where it's becoming more and more clear with each passing moment that we are chained to these seats in the front row of the audience of the most important event that has ever happened, ever.

      Medusa makes several appearances, as well as Arthur Pendragon, Puff the Magic Dragon, Figment, Goliath, monster.com, the Loch Ness Monster in this story that's a kind-of refl ex i ve control to stop mind control; and to really try and show us the fire of Prometheus and the Burning Bush and the Eternal Flame of Heaven are all about freedom and technology ... and I'll remind you this story is ... about the truth--and the truth here is that if you aren't going to recognize that whatever it is that's going on here in secret, below the surface is negatively affecting our society and life in general than we aren't going anywhere, ever. I need you to figure out that this message is everywhere to make sure you don't miss the importance of this moment, and the grave significance of what is being ignored in this land where Sam is tied not just to Samsung and to Samael in Exodus but also to Uncle Sam and macaronic Spanglishrew outliers and that it doesn't take much free thought at all to really understand that we are watching "free thought" disintegrate into the abyss of "nospeak." We are watching our infrastructure for global communication and the mass media that sprawls all over the globe turn to dust, all because you have Satan whispering in your ear--and you think that's more important than what you think, what I think, and what anyone else on the Earth might ever say. You should see a weapon designed to help ensure that don't lose this proof that we are not living in reality, that there is "hidden slavery" in this place--and you should see that today it appears you are simply choosing not to use it.

      I hope you change your mind, I really do. This map on "how to build an ant farm" starts by connecting Watergate and Seagate together with names like Bill Gates and Richard Nixon; and with this few short list of names you should really understand how it is that "Heaven" connects both technology like computers and liberty like "free speech" to a story that is us, and our history. You might see that "salt" could either be a good thing or not--take a look around you, are you warming a road to Heaven or are you staring at the world being destroyed--and doing nothing at all about it?

      I guess I can point out again how "Lothario" links this story that ties names like my ex-wife's Nanna to "salt" also, but the "grand design" of this story doesn't seem to have any effect on you. Listen, if you do nothing the world is being destroyed by your lack of action--there's no if's and's or butt's about it. I feel like I need to "reproduce' old messages here or you will never see them--that's what web site statistics tell me--and we all know it's not true. What am I missing? What are you missing?

      BUTT IS THE BOAT A Hi DARK DEN MESSAGe ?

      SEE OUR LIGHT

      HONESTLY, I'M WAY TO CUTE TO BE A MONSTER :(

      HIC SUMMUS

      So... here we are... listening to the legendary father of the message (that's "abom" in Adamic Spagnlishrew) point out all of the sex jokes hidden in religion and language from sexual innuendo to Poseidon and in our history from Yankee Doodle to Hancock to Nixon and I've got to be frank with you, the most recent time I came across this phrase in scripture I cringed just a little bit, pretty sure that the "message" was talking about me. I've reflected on this a little bit, and over the past few weeks have tried to show you the juxtaposition between "sex" and "torture" in it's various forms from imparting blindness to allowing murder and simulating starvation; and I think I'm justified in saying that certainly those things are far worse on the Richter scale than anything I could do by writing a little bit of risque text. In the most recent messages I've touch a little bit, without even knowing or realizing this connection would be made, on what it is that this phrase actually means.

      loch.reallyhim.com

      ABOMINATION

      So long story short is that the answer here is "abomination" and the question, or the context is "I nation." Whether it's Medusa speaking for the Dark United States or the nation of Israel speaking to either Ra or El depending on the day, the bottom line is that a collective consciousness speaking for everyone on a matter of this importance in a cloud of complete darkness on Earth is a total and undeniable abomination of freedom, civilization, and the very humanity we are seeking to preserve. The word reads something like this to me "dear father of the message, I am everyone and we think you are an abomination, fuck off." My answer of course is, IZINATION. Which humorously reminds me of Lucy, and Scarlet Johannson saying "I am colonizing my own brain" so here's some pictures of her. She is not an abomination, by the way; she's quite adorable. You'll probably notice there's some kind of connection between the map--the words speaking to the world, and the abomination, as if the whole thing is a story narrated in ancient myths.

      WAKE UP, "SHE" A MESSAGE TO YOU ABOUT THE FUTURE

      You might not think "it's you," but the manifestation of this "snake" in our world is your silence, your lack of understanding or willingness to change the world; and whether or not you're interested in hearing about it, it's the monster that myths and religion have spoken about for thousands and thousands of years. It's a simple matter to "kill Medusa" all you have to do... is speak.

      Take special note, "freedom of speech" and "freedom to think for yourselves" are not a group decision, and you do not have the right to force (either overtly or subtly, with hidden technology perhaps combined with evil deceit) others not to talk about anything. Especially something of this importance.

      DESOLATION

      If you didn't connect "Loch" to John Locke, now you have; see how easy this "reading" thing is? I've gone over the "See Our Light" series a few times, but let me--one more time--explain to you just how we are already at the point of "desolation" and with shining brilliance show you how it's very clear that it is "INATION" and "MEDUSA" that are responsible for this problem.

      Seeing "Ra" at the heart of the names Abraham and Israel begins to connect the idea that our glowing sun in the sky has something to do with this message about "seeing our light" is being carried by a stone statue on Ellis Island (where you'll see the answer another part of the question of Is Ra El?). I've connected her to the "she" of both shedim and Sheol, which reads as "she's our light" and is the Hebrew name for Hell.

      Of course you noticed that the Statue of Liberty does in fact share it's initials with SOL, the the light above and you can see her torch dimly lighting the way through the night; Now you can connect "give us your tired and your poor" to the Lazman of both the lore of Jesus Christ and the Shehekeyanu; a prayer about the sustainment of life and light up until this day. That same torch connects to the Ha-nuke-the-ahah depiction of Christ, Judah Maccabee's lit MEN OR AH, which delivers not only a solution to the two letter key of "AH" as All Humanity that pervades nearly every bride of Revelation from Sarah to Leah; but also to the question of equality answered in our very own American history, beginning with the same three letter acronym now lighting the Sons of Liberty.

      Dazed and Confused does a good job of explaining how this name is itself a prophesy designed by Hand of God'; explaining that these Sons of Liberty were all white slave owning wealthy men fighting to stop paying their taxes, rather than delivering liberty to the slaves or women, who were both disenfranchised for quite some time. Or maybe MEN OR AH has something to do with the angels of Heaven, in which case you might be SOL if you aren't a girl and you want to be "be good friends with Ra." Just kidding. Kinda.

      DESOLATION by the way reads something like "un see our light at ION" which is God's way of saying "at the point of believing that hiding Adam is a good thing" and that connects to the end of Creation and also the now lit by modern day evil the word "rendition." Our end, it "ion." In religious myth, the Messianic David clung to the city Zion (end the "i owe n") which also links to "verizon" (to see, I Z "on") and HORIZON which has something to do with the son rising today-ish.

      Inline image 25 Inline image 26

      The story of MEDUSA lights another psuedo-religious idea, that the words "STONE" of both "brimstone" and it's Adamic interpretation "South to Northeast" have something to do with the phrase "Saint One" turned into a single hero against his will by the complete and utter inaction of everyone around him. In the words of Imagine Dragons "I'm waking up to action dust." At the same time, you can believe that the light of this particular son, comes not just from reading these words forwards, but the backside as well, and you'll hopefully see it's not coincidental that the other side of this coin is that "nos" means we, and us... and Adamically "no south." See the light of "STONE" also connecting to Taylor Momsen's rose arrow painted on her back, and the sign of my birth, Sagittarius... which in this particular case links to the Party of the Immaculate Conception of the eternal republic of the Heavens. . PRESS RELEASE... A GREAT SIGN APPEARED IN THE HEAVENS

      SOLUTIAN, ON YOUR COMPUTER.. TO THE SOUND OF SILENCE

      בָּרוּךְ אַתָּה יְיָ‎ אֱלֹהֵינוּ מֶלֶךְ הַעוֹלָם שֶׁהֶחֱיָנוּ וְקִיְּמָנוּ וְהִגִּיעָנוּ לַזְּמַן הַזֶּה‎׃

      IN ... THE BOOK OF NAMES LETS SEE IF YOU CAN FIGURE OUT WHO THEY ARE :)

      ​ I'LL DO YOURS FOR A 50 DOLLAR DONATION, I'M BROKE.. MAYBE THAT'S WHY I CAN'T GET A DATE.

      HAVE A GREAT SOLDAY

      The "gist" of the message is verifiable proof that we are living in a computer in simulated reality... just like the Matrix. The answer to that question, what does that mean--is that God has woven a "hidden" message into our everything--beginning with each name and every word--and in this hidden Adamic language, he provides us with guidance, wisdom, and suggestions on how to proceed on this path from "raelity" to Heaven. I've personally spent quite a bit of time decoding the message and have tried to deliver an interesting and "fun" narrative of the ideas I see. Specifically the story of Exodus, which is called "Names" in Hebrew discusses a time shifted narrative of our "now" delivering our society from a hidden slavery (read as ignorance of advanced technologies already in use) that is described as the "darkness" of Exodus. If you have any questions, ideas to contribute or concerns... I'd love to hear from you this whole thing really is about working together--Heaven, I mean.

      Inline image 5 jerusalem.reallyhim.com

      gate kermitham <br /> ou r evolution minority report to supermax Inline image 6

      bereshit bread is life

      Inline image 13

      Image result for dox me

      HOW AM I STILL STINGLE? E ' o e <br /> L m r x <br /> L t y <br /> O a

      I HISS.

      The sum of ((our world)) is the universal truth. -Psalm 119 and ((ish))

      Do a few sentences really make that big of a difference? Some key letters? Can you show me what I'm doing wrong? Is there a way to turn me into Adam, rather than a rock? I think you can.

      Are eye Dr. Who or Master Y? Adam Marshall Dobrin is a National Merit Scholar who was born on December 8, 1980 in Plantation, FL and attended Pine Crest School where he graduated sumofi cum louder in "only some of it is humorous." Later he attended the University of Florida (which quickly resulted in a wreck), Florida Atlantic University, and finally Florida Gulf Coast University--where he still has failed to become Dr. Who. While attending "school" He worked in the computer programming and business outsourcing industries for about 15 years before proclaiming to have received a Revelation from God connecting the 9/11 attack and George Bush to the Burning Bush of Exodus and a message about technocracy and pre-crime.

      Adam, as he prefers to be called, presents a concise introduction to paradox proven by the Bible through "verifiable" anachronism in language some stuff about Mars colonization and virtual reality and a list of reasons why ignoring this is actually an ELE. Adam claims to be Thor because of a connection between music and the Trial of Thor as well as the words "author" and "authority." He suggests you be Thundercats and call a reporter. There is also a suggestion that Richard Nixon and John Hancock are related to a signature from God, about freedom and America... and the "unseeingly ironic" Deepthroat and Taylor Momsen. They Sung "It's Rael..." In Biblical characters from Mary to Hosea, to see "sea" in Spanish, and in the Taming of the Spanglishrew ... a message is woven from the word Menorah: "men, or all humanity?" to the Statue of Liberty, and the Sons of Liberty, and the light above us, our SOL; which shows us that through the Revelation of Christ and the First Plague of Exodus, a blessing in disguise--turning water to blood, the sea to family; a common thread and single author of our entire history is revealed, a Father of our future. A message of freedom shines out of the words of scripture, revealing a gate to a new technologically "radical" form of democracy and a number of unseen or secret issues that have stalled the progress of humanity... and solutions, solutions from our sea. The Revelation shows us that not only ever word, but every idiom from "don't shoot the messenger" to "blood is thicker than water" we have ties to this message that pervades a hidden Matrix of light connecting movies and music and history all together in a sort of guide book to Salvation and to Heaven. Oopsy. His Revelation, woven into his life, continues to suggest that skinny dipping, forced methamphetamine addiction, and lots and lots of "me A.D." as well as his humorous depiction of a dick plastered over the Sound of Silence, his very Holy click, have something to do with saving our family and then the entire Universe from hidden mind control technology and the problems introduced by secret time travel. From the trials and tribulations of "Job" being coerced and controlled into helping to create this wall of Jericho; we find even more solutions, an end to addiction, to secrecy, and to this hidden control--a focal point of the life of Jesus Christ.

      It tells us a story of recursion in time, that has brought us here numerous times--with the details of his life recorded not only in the Bible but in myths of Egyptian, Norse, and Greek mythology. The huge juxtaposition of the import of the content of the message shows the world how malleable our minds really are to this technology, how we could have been "fooled" into hiding our very freedom from ourselves in order to protect the "character" of a myth. A myth that comes to true life by delivering this message. In truth, from the now revealed content of the story of this repeated life, it should become more and more clear that we have not achieved success as of yet, that I have never "arrived whole" and that is why we are here, back again. Home is where the Heart is... When asked how He thinks we should respond to his message, He says "I think we already cherish it, and should strive to understand how it is that freedom is truly delivered through sharing the worth of this story that is our beginning. 'tis coming." Adam claims to be God, or at least look just like him and that the entirety of the Holy Scriptures as well as a number of ancient myths from Prometheus to Heimdallr and Yankee Doodle are actually about his life, and this event. An extensive amount of his writing relates to reformation of our badly broken and decidedly evil criminal justice system as well as ending the Global hunger crisis with the snap of his little finger.

      He has written a number of books explaining how this Revelation connects to the delivery of freedom (as in Exodus), through a message about censorship among other social problems which he insists are being intentionally exacerbated by Satan--who he would ha've preferred not to be associated with.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Review:

      1. Evidence for a disulfide bridge contained in membrane-associated FGF2 dimers

      This aspect was brought up in detail by both Reviewer #1 and Reviewer #3. It has been addressed in the revised manuscript by (i) new experimental and computational analyses, (ii) a more detailed discussion of previous work from our lab in which experiments were done the reviewers were asking for and (iii) a more general discussion of known examples of disulfide formation in protein complexes with a particular focus on membrane surfaces facing the cytoplasm, the inner plasma membrane leaflet being a prominent example. Please find our detailed comments in our direct response to Reviewers #1 and #3, see below.

      1. Affinity towards PI(4,5)P2 comparing FGF2 dimers versus monomers

      This is an aspect that has been raised by Reviewer 3 along with additional comments on the interaction of FGF2 with PI(4,5)P2. Please find our detailed response below. With regard to PI(4,5)P2 affinity aspects of FGF2 dimers versus FGF2 monomers, we think that the increased avidity of FGF2 dimers with two high affinity binding pockets for PI(4,5)P2 are a good explanation for the different values of free energies of binding that were calculated from the atomistic molecular dynamics simulations shown in Fig. 9. This phenomenon is well known for many biomolecular interactions and is also consistent with the cryoEM data contained in our manuscript, showing a FGF2 dimer with two PI(4,5)P2 binding sites facing the membrane surface.

      1. C95-C95 FGF2 dimers as signaling units

      We have put forward this hypothesis since in structural studies analyzing the FGF ternary signaling complex consisting of FGF2, FGF receptor and heparin, FGF2 mutants were used that lack C95. Nevertheless, two FGF2 molecules are contained in FGF signaling complexes. In addition to the papers on the structure of the FGF signaling complex, we have cited work that showed that C95-C95 crosslinked FGF2 dimers are efficient FGF signaling modules (Decker et al, 2016; Nawrocka et al, 2020). Therefore, being based on an assembly/disassembly mechanism with the transient formation of poreforming FGF2 oligomers, we think it is an interesting idea that the FGF2 secretion pathway produces C95-C95 disulfide-linked FGF2 dimers at the outer plasma membrane leaflet that can engage in FGF2 ternary signaling complexes. While this is a possibility we put forward to stimulate the field, it of course remains a hypothesis which has been clearly indicated as such in the revised manuscript.

      Reviewer #1:

      1. Evidence for disulfide-bridged FGF2 dimers and higher oligomers on non-reducing versus reducing SDS gels

      The experiment suggested by Reviewer #1 is an important one that has been published by our group in previous work. In these studies, we found FGF2 oligomers analyzed on non-reducing SDS gels to be sensitive to DTT, turning the vast majority of oligomeric FGF2 species into monomers [(Müller et al, 2015); Fig. 3, compare panel D with panel H]. This phenomenon could be observed most clearly after short periods of incubations (0.5 hours) of FGF2 with PI(4,5)P2-containing liposomes. These findings constituted the original evidence for PI(4,5)P2-induced FGF2 oligomerization to depend on the formation of intermolecular disulfide bridges.

      In the current manuscript, we established the structural principles underlying this process and identified C95 to be the only cysteine residue involved in disulfide formation. Based on biochemical cross-linking experiments in cells, cryo-electron tomography, predictions from AlphaFold-2 Multimer and molecular dynamics simulations, we demonstrated a strong FGF2 dimerization interface in which C95 residues are brought into close proximity when FGF2 is bound to membranes in a PI(4,5)P2-dependent manner. These findings provide the structural basis by which disulfide bridges can be formed from the thiols contained in the side chains of two C95 residues directly facing each other in the dimerization interface. In the revised manuscript, we included additional data that further strengthen this analysis. In the experiments shown in the new Fig. 10, we combined chemical cross-linking with mass spectrometry, further validating the reported FGF2 dimerization interface. In addition, illustrated in the new Fig. 8, we employed a new computational analysis combining 360 individual atomistic molecular dynamics simulations, each spanning 0.5 microseconds, with advanced machine learning techniques. This new data set corroborates our findings, demonstrating that the C95-C95 interface self-assembles independently of C95-C95 disulfide formation, based on electrostatic interactions. Intriguingly, it is consistent with our experimental findings based on cross-linking mass spectrometry (new Fig. 10) where cross-linked peptides could also be observed with the C77/95A variant form of FGF2, suggesting a protein-protein interface whose formation does not depend on disulfide formation. Therefore, we propose that disulfide formation occurs in a subsequent step, representing the committed step of FGF2 membrane translocation with the formation of disulfide-bridged FGF2 dimers being the building blocks for pore-forming FGF2 oligomers.

      As a more general remark on the mechanistic principles of disulfide formation in different cellular environments, we would like to emphasize that it is a common misconception that the reducing environment of the cytoplasm generally makes the formation of disulfide bridges unlikely or even impossible. From a biochemical point of view, the formation of disulfide bridges is not limited by a reducing cellular environment but is rather controlled by kinetic parameters when two thiols are brought into proximity. Indeed, it has become well established that disulfide bridges can also be formed in compartments other than the lumen of the ER/Golgi system, including the cytoplasm. For example, viruses maturing in the cytoplasm can form stable structural disulfide bonds in their coat proteins (Locker & Griffiths, 1999; Hakim & Fass, 2010). Moreover, many cytosolic proteins, including phosphatases, kinases and transcriptions factors, are now recognized to be regulated by thiol oxidation and disulfide bond formation, formed as a post-transcriptional modification (Lennicke & Cocheme, 2021). In numerous cases with direct relevance for our studies on FGF2, disulfide bond formation and other forms of thiol oxidation occur in association with membrane surfaces. In fact, many of these processes are linked to the inner plasma membrane leaflet (Nordzieke & Medrano-Fernandez, 2018). Growth factors, hormones and antigen receptors are observed to activate transmembrane NADPH oxidases generating O2·-/H2O2 (Brown & Griendling, 2009). For example, the local and transient oxidative inactivation of membrane-associated phosphatases (e.g., PTEN) serves to enhance receptor associated kinase signaling (Netto & Machado, 2022). It is therefore conceivable that similar processes introduce disulfide bridges into FGF2 while assembling into oligomers at the inner plasma membrane leaflet. In the revised version of our manuscript, we have discussed the above-mentioned aspects in more detail, with the known role of NADPH oxidases in disulfide formation at the inner plasma membrane leaflet being highlighted.

      Reviewer #2:

      1. Potential effects of a C95A substitution on protein folding and comparison with a C95S substitution with regard to phenotypes observed in FGF2 secretion

      A valid point that we indeed addressed at the beginning of this project. Most importantly, we tested whether both FGF2 C95A and FGF2 C95S are characterized by severe phenotypes in FGF2 secretion efficiency. As shown in the revised Fig. 1, cysteine substitutions by serine showed very similar FGF2 secretion phenotypes compared to cysteine to alanine substitutions (Fig. 1C and 1D). In addition, in the pilot phase of this project, we also compared recombinant forms of FGF2 C95A and FGF2 C95S in various in vitro assays. For example, we tested the full set of FGF2 variants in membrane integrity assays as the ones contained in Fig. 4. As shown in Author response image 1, FGF2 variant forms carrying a serine in position 95 behaved in a very similar manner as compared to FGF2 C95A variant forms. Relative to FGF2 wild-type, membrane pore formation was strongly reduced for both types of C95 substitutions. By contrast, both FGF2 C77S and C77A did show activities that were similar to FGF2 wild-type.

      Author response image 1.

      From these experiments, we conclude that changes in protein structure are not the basis for the phenotypes we report on the C95A substitution in FGF2.

      1. Effects of a C77A substitution on FGF2 membrane recruitment in cells

      The effect of a C77A substitution in FGF2 recruitment to the inner plasma membrane leaflet is indeed a moderate one. This is likely to be the case because C77 is only one residue of a more complex surface that contacts the α1 subunit of the Na,K-ATPase. Stronger effects can be observed when K54 and K60 are changed, residues that are positioned in close proximity to C77 (Legrand et al, 2020). Nevertheless, as shown in the revised Fig. 1, we consistently observed a reduction in membrane recruitment when comparing FGF2 C77A with FGF2 wild-type. When analyzing the raw data without GFP background subtraction, a significant reduction of FGF2 C77A was observed compared to FGF2 wild-type (Fig. 1A and 1B). We therefore conclude that C77 does not only play a role in FGF2/α1 interactions in biochemical assays using purified components (Fig. 7) but also impairs FGF2/α1 interactions in a cellular context (Fig. 1A and 1B).

      1. Identity of the protein band in Fig. 3 labeled with an empty diamond

      This is a misunderstanding as we did not assign this band to a FGF2-GFP dimer. When we produced the corresponding cell lines, we used constructs that link FGF2 with GFP via a ‘self-cleaving’ P2A sequence. During translation, even though arranged on one mRNA, this causes the production of FGF2 and GFP as separate proteins in stoichiometric amounts, the latter being used to monitor transfection efficiency. However, a small fraction is always expressed as a complete FGF2-P2A-GFP fusion protein (a monomer). This band can be detected with the FGF2 antibodies used and was labeled in Fig. 3 by an empty diamond.

      1. Labeling of subpanels in Fig. 5A

      We have revised Fig. 5 according to the suggestion of Reviewer #2.

      1. FGF2 membrane binding efficiencies shown in Fig. 5C

      It is true that FGF2 variant forms defective in PI(4,5)P2-dependent oligomerization (C95A and C77/95A) bind to membranes with somewhat reduced efficiencies. This is also evident form the intensity profiles shown in Fig. 5A and was observed in biochemical in vitro experiments as well. A plausible explanation for this phenomenon would be the increased avidity when FGF2 oligomerizes, stabilizing membrane interactions (see also Fig. 9B).

      1. Residual activities of FGF2 C95A and C77/95A in membrane pore formation?

      We do not assign the phenomenon in Fig. 5 Reviewer #2 is referring to as controlled activities of FGF2 C95A and C77/95A in membrane pore formation. Rather, GUVs containing PI(4,5)P2 are relatively labile structures with a certain level of integrity issues upon protein binding and extended incubation times being conceivable. It is basically a technical limitation of this assay with GUVs incubated with proteins for 2 hours. Even after substitution of PI(4,5)P2 with a Ni-NTA membrane lipid, background levels of loss of membrane integrity can be observed (Fig. 6). Therefore, as compared to FGF2 C95A and C77/95A, the critical point here is that FGF2 wt and FGF2 C77A do display significantly higher levels of a loss of membrane integrity in PI(4,5)P2-containing GUVs, a phenomenon that we interpret as controlled membrane pore formation. By contrast, all variant forms of FGF2 show only background levels for loss of membrane integrity in GUVs containing the Ni-NTA lipid.

      1. Why does PI(4,5)P2 induce FGF2 dimerization?

      This has been studied extensively in previous work (Steringer et al, 2017). As also discussed in the current manuscript, the interaction of FGF2 with membranes through its high affinity PI(4,5)P2 binding pocket orients FGF2 molecules on a 2D surface that increase the likelihood of the formation of the C95containing FGF2 dimerization interface. Moreover, in the presence of cholesterol at levels typical for plasma membranes, PI(4,5)P2 clusters containing up to 4 PI(4,5)P2 molecules (Lolicato et al, 2022), a process that may further facilitate FGF2 dimerization.

      1. Is it possible to pinpoint the number of FGF2 subunits in oligomers observed in cryo-electron tomography?

      We indeed took advantage of the Halo tags that appear as dark globular structures in cryo-electron tomography. For most FGF2 oligomers with FGF2 subunits on both sides of the membrane, we could observe 4 to 6 Halo tags which is consistent with the functional subunit number that has been analyzed for membrane pore formation (Steringer et al., 2017; Sachl et al, 2020; Singh et al, 2023). However, since the number of higher FGF2 oligomers we observed in cryo-electron tomography was relatively small and the nature of these oligomers appears to be highly dynamic, caution should be taken to avoid overinterpretation of the available data.

      Reviewer #3:

      1. Conclusive demonstration of disulfide-linked FGF2 dimers

      A similar point was raised by Reviewer #1, so that we would like to refer to our response on page 2, see above.

      1. Identity of FGF2-P2A-GFP observed in Fig. 3

      Again, a similar point has been made, in this case by Reviewer #2 (Point 3). The observed band is not a FGF2-P2A-GFP dimer but rather the complete FGF2-P2A-GFP fusion protein (a monomer) that corresponds to a small population produced during mRNA translation where the P2A sequence did not cause the production of FGF2 and GFP as separate proteins in stoichiometric amounts.

      1. Quantification of GFP signals in Fig. 6

      Fig. 6 has been revised according to the suggestion of Reviewer #3. A comprehensive comparison of PI(4,5)P2 and the Ni-NTA membrane lipid in FGF2 membrane translocation assays is also contained in previous work that introduced the GUV-based FGF2 membrane translocation assay (Steringer et al., 2017).

      1. Experimental evidence for various aspects of FGF2 interactions with PI(4,5)P2

      Most of the points raised by Reviewer #3 have been addressed in previous work. For example, FGF2 has been demonstrated to dimerize only on membrane surfaces containing PI(4,5)P2 (Müller et al., 2015). In solution, FGF2 remained a monomer even after hours of incubation as analyzed by native gel electrophoresis and reducing vs. non-reducing SDS gels (see Fig. 3 in Müller et al, 2015). In the same paper, the first evidence for a potential role of C95 in FGF2 oligomerization has been reported, however, at the time, our studies were limited to FGF2 C77/95A. In the current manuscript, the in vitro experiments shown in Figs. 2 to 6 establish the unique role of C95 in PI(4,5)P2-dependent FGF2 oligomerization. As discussed above, FGF2 oligomers have been shown to contain disulfide bridges based on analyses on non-reducing gels in the absence and presence of DTT (Müller et al., 2015).

      References

      Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47: 1239-1253 Decker CG, Wang Y, Paluck SJ, Shen L, Loo JA, Levine AJ, Miller LS, Maynard HD (2016) Fibroblast growth factor 2 dimer with superagonist in vitro activity improves granulation tissue formation during wound healing. Biomaterials 81: 157-168

      Hakim M, Fass D (2010) Cytosolic disulfide bond formation in cells infected with large nucleocytoplasmic DNA viruses. Antioxid Redox Signal 13: 1261-1271

      Legrand C, Saleppico R, Sticht J, Lolicato F, Muller HM, Wegehingel S, Dimou E, Steringer JP, Ewers H, Vattulainen I et al (2020) The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol 3: 141

      Lennicke C, Cocheme HM (2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 81: 3691-3707

      Locker JK, Griffiths G (1999) An unconventional role for cytoplasmic disulfide bonds in vaccinia virus proteins. J Cell Biol 144: 267-279

      Lolicato F, Saleppico R, Griffo A, Meyer A, Scollo F, Pokrandt B, Muller HM, Ewers H, Hahl H, Fleury JB et al (2022) Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. J Cell Biol 221

      Müller HM, Steringer JP, Wegehingel S, Bleicken S, Munster M, Dimou E, Unger S, Weidmann G, Andreas H, GarciaSaez AJ et al (2015) Formation of Disulfide Bridges Drives Oligomerization, Membrane Pore Formation and Translocation of Fibroblast Growth Factor 2 to Cell Surfaces. J Biol Chem 290: 8925-8937

      Nawrocka D, Krzyscik MA, Opalinski L, Zakrzewska M, Otlewski J (2020) Stable Fibroblast Growth Factor 2 Dimers with High Pro-Survival and Mitogenic Potential. Int J Mol Sci 21

      Netto LES, Machado L (2022) Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 289: 5480-5504

      Nordzieke DE, Medrano-Fernandez I (2018) The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants (Basel) 7

      Sachl R, Cujova S, Singh V, Riegerova P, Kapusta P, Muller HM, Steringer JP, Hof M, Nickel W (2020) Functional Assay to Correlate Protein Oligomerization States with Membrane Pore Formation. Anal Chem 92: 14861-14866

      Singh V, Macharova S, Riegerova P, Steringer JP, Muller HM, Lolicato F, Nickel W, Hof M, Sachl R (2023) Determining the Functional Oligomeric State of Membrane-Associated Protein Oligomers Forming Membrane Pores on Giant Lipid Vesicles. Anal Chem 95: 8807-8815

      Steringer JP, Lange S, Cujova S, Sachl R, Poojari C, Lolicato F, Beutel O, Muller HM, Unger S, Coskun U et al (2017) Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. eLife 6: e28985

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The paper from Hsu and co-workers describes a new automated method for analyzing the cell wall peptidoglycan composition of bacteria using liquid chromatography and mass spectrometry (LC/MS) combined with newly developed analysis software. The work has great potential for determining the composition of bacterial cell walls from diverse bacteria in high-throughput, allowing new connections between cell wall structure and other important biological functions like cell morphology or host-microbe interactions to be discovered. In general, I find the paper to be well written and the methodology described to be useful for the field. However, there are areas where the details of the workflow could be clarified. I also think the claims connecting cell wall structure and stiffness of the cell surface are relatively weak. The text for this topic would benefit from a more thorough discussion of the weak points of the argument and a toning down of the conclusions drawn to make them more realistic.

      Thank you for your thorough and insightful review of our manuscript. We greatly appreciate your positive and constructive feedbacks on our methodology. We have carefully reviewed your comments and have responded to each point as follows:

      Specific points:

      1) It was unclear to me from reading the paper whether or not prior knowledge of the peptidoglycan structure of an organism is required to build the "DBuilder" database for muropeptides. Based on the text as written, I was left wondering whether bacterial samples of unknown cell wall composition could be analyzed with the methods described, or whether some preliminary characterization of the composition is needed before the high-throughput analysis can be performed. The paper would be significantly improved if this point were explicitly addressed in the main text. We apologize for not making it clearer. The prior knowledge of the peptidoglycan structure of an organism is indeed required to build the “DBuilder” database to accurately identify muropeptides; otherwise, the false discovery rate might increase. While peptidoglycan structures of certain organisms might not have been extensively studied, users still remain the flexibility to adapt the muropeptide compositions based on their study, referencing closely related species for database construction. We have addressed this aspect in the main text to ensure a clearer understanding.

      “(Section HAMA platform: a High-throughput Automated Muropeptide Analysis for Identification of PGN Fragments) …(i) DBuilder... Based on their known (or putative) PGN structures, all possible combinations of GlcNAc, MurNAc and peptide were input into DBuilder to generate a comprehensive database that contains monomeric, dimeric, and trimeric muropeptides (Figure 1b)."

      2) The potential connection between the structure of different cell walls from bifidobacteria and cell stiffness is pretty weak. The cells analyzed are from different strains such that there are many possible reasons for the change in physical measurements made by AFM. I think this point needs to be explicitly addressed in the main text. Given the many possible explanations for the observed measurement differences (lines 445-448, for example), the authors could remove this portion of the paper entirely. Conclusions relating cell wall composition to stiffness would be best drawn from a single strain of bacteria genetically modified to have an altered content of 3-3 crosslinks.

      We understand your concern regarding the weak connection between cell wall structure and cell stiffness. We will make a clear and explicit statement in the main text to acknowledge that the cells analyzed are derived from different strains, introducing the possibility of various factors influencing the observed changes in physical measurements as determined by AFM. Furthermore, we greatly appreciate your suggestion to consider genetically modified strains to investigate the role of cross-bridge length in determining cell envelope stiffness. In this regard, we are in the process of developing a CRISPR/Cas genome editing toolbox for Bifidobacterium longum, and we plan on this avenue of investigation for future work.

      Reviewer #2 (Public Review):

      The authors introduce "HAMA", a new automated pipeline for architectural analysis of the bacterial cell wall. Using MS/MS fragmentation and a computational pipeline, they validate the approach using well-characterized model organisms and then apply the platform to elucidate the PG architecture of several members of the human gut microbiota. They discover differences in the length of peptide crossbridges between two species of the genus Bifidobacterium and then show that these species also differ in cell envelope stiffness, resulting in the conclusion that crossbridge length determines stiffness.

      We appreciate your thoughtful review of our manuscript and your recognition of the potential significance of our work in elucidating the poorly characterized peptidoglycan (PGN) architecture of the human gut microbiota.

      The pipeline is solid and revealing the poorly characterized PG architecture of the human gut microbiota is worthwhile and significant. However, it is unclear if or how their pipeline is superior to other existing techniques - PG architecture analysis is routinely done by many other labs; the only difference here seems to be that the authors chose gut microbes to interrogate.

      We apologize if this could have been clearer. The HAMA platform stands apart from other pipelines by utilizing automatic analysis of LC-MS/MS data to identify muropeptides. In contrast, most of the routine PGN architecture analyses often use LC-UV/Vis or LC-MS platform, where only the automatic analyzing PGFinder software is supported. To our best knowledge, a comparable pipeline on automatically analyzing LC-MS/MS data was reported by Bern et al., which they used commercial Byonic software with an in-house FASTA database and specific glycan modifications. They achieved accurate and sensitive identification on monomer muropeptides, but struggled with cross-linked muropeptides due to the limitations of the Byonic software. We believe that our pipeline introducing the automatic and comprehensive analysis on muropeptide identification (particularly for Gram-positive bacterial peptidoglycans) would be a valuable addition to the field. To enhance clarity, we have adjusted the context as follows:

      (Introduction) … Although they both demonstrated great success in identifying muropeptide monomers, the accurate identification of muropeptide multimers and other various bacterial PGN structures still remains unresolved. This is because deciphering the compositions requires MS/MS fragmentation, but it is still challenging to automatically annotate MS/MS spectra from these complex muropeptide structures."

      I do not agree with their conclusions about the correlation between crossbridge length and cell envelope stiffness. These experiments are done on two different species of bacteria and their experimental setup therefore does not allow them to isolate crossbridge length as the only differential property that can influence stiffness. These two species likely also differ in other ways that could modulate stiffness, e.g. turgor pressure, overall PG architecture (not just crossbridge length), membrane properties, teichoic acid composition etc.

      Regarding the conclusions drawn about the correlation between cross-bridge length and cell envelope stiffness, we understand your point and appreciate your feedback. We revisit this section of our manuscript and tone down the conclusions drawn from this aspect of the study. We also recognize the importance of considering other potential factors that could influence stiffness, as you mentioned above. In light of this, we mentioned the need for further investigations, potentially involving genetically modified strains, in the main text to isolate and accurately determine the impact of bridge length on cell envelope stiffness.

      Reviewer #1 (Recommendations For The Authors):

      Minor points:

      1) One thing to consider would be testing the robustness of the analysis pipeline with one the well-characterized bacteria studied, but genetically modifying them to change the cell wall composition in predictable ways. Does the analysis pipeline detect the expected changes?

      We appreciate the reviewer's suggestion and would like to provide a clear response. Regarding to testing the pipeline with genetically modified strains, our lab previously worked on genetically modified S. maltophilia (KJΔmrdA).1 Inactivation of mrdA turned out the increasing level of N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diamnopimelic acid-D-alanine (GlcNAc-anhMurNAc tetrapeptide) in muropeptide profiles, which is the critical activator ligands for mutant strain ΔmrdA-mediated β-lactamase expression. In this case, our platform could provide rapid PGN analysis for verifying the expected change of muropeptide profiles (see Author response image 1). Besides, if the predictable changes involve genetically modifications on interpeptide bridges within the PGN structure, for example, the femA/B genes of S. aureus, which are encoded for the synthesis of interpeptide bridges,2 our current HAMA pipeline is capable of detecting these anticipated changes. However, if the genetically modifications involve the introduce of novel components to PGN structures, then it would need to create a dedicated database specific to the genetically modified strain.

      Author response image 1.

      2) Line 368: products catalyzed > products formed

      The sentence has been revised.

      “(Section Inferring PGN Cross-linking Types Based on Identified PGN Fragments) …Based on the muropeptide compositional analysis mentioned above, we found high abundances of M3/M3b monomer and D34 dimer in the PGNs of E. faecalis, E. faecium, L. acidophilus, B. breve, B. longum, and A. muciniphila, which may be the PGN products formed by Ldts.”

      3) Lines 400-402: Is it possible the effect is related to porosity, not "hardness".

      Thank you for the suggestion. The possibility of the slower hydrolysis rate of purified PGN in B. breve being related to porosity is indeed noteworthy. While this could be a potential factor, we would like to acknowledge the limited existing literature that directly addresses the relation between PGN architecture and porosity. It is plausible that current methods available for assessing cell wall porosity may have certain limitations, contributing to the scarcity of relevant studies. In light of this, we would like to propose a speculative explanation for the observed effect. It is plausible that the tighter PGN architecture resulting from shorter interpeptide bridges in B. breve could contribute to its harder texture. This speculation is grounded in the concept that a more compact PGN structure might lead to increased stiffness, aligning with our observations of higher cell stiffness in B. breve.

      4) Lines 403-408: See point #2 above.

      Thank you for the suggestion. We have explicitly addressed this point in the main text:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) … Taken all together, we speculate that a tight peptidoglycan network woven by shorter interpeptide bridges or 3-3 cross-linkages could give bacteria stiffer cell walls. However, it is important to note that cell stiffness is a mechanical property that also depends on PGN thickness, overall architecture, and turgor pressure. These parameters may vary among different bacterial strains. Hence, carefully controlled, genetically engineered strains with similar characteristics will be needed to dissect the role of cross-bridge length in cell envelope stiffness.”

      5) Lines 428-429: It is not clear to me how mapping the cell wall architecture provides structural information about the synthetic system. It is also not clear how antibiotic resistance can be inferred. More detail is needed here to flesh out these points.

      Thank you for the suggestion. To provide further clarity on these important aspects, the context in the manuscript has been revised.

      “(Discussion) …Importantly, our HAMA platform provides a powerful tool for mapping peptidoglycan architecture, giving structural information on the PGN biosynthesis system. This involves the ability to infer possible PGN cross-linkages based on the type of PGN fragments obtained from hydrolysis. For instance, the identification of 3-3 cross-linkage formed by L,D-transpeptidases (Ldts) is of particular significance. Unlike 4-3 cross-linkages, the 3-3 cross-linkage is resistant to inhibition by β-Lactam antibiotics, a class of antibiotics that commonly targets bacterial cell wall synthesis through interference with 4-3 cross-linkages. Therefore, by elucidating the specific cross-linkage types within the peptidoglycan architecture, our approach offers insights into antibiotic resistance mechanisms.”

      6) Line 478: "maneuvers are proposed for" > "work is needed to generate". Also, delete "innovative". Also "in silico" > "in silico-based".

      The sentence has been revised.

      “(Discussion) …To achieve a more comprehensive identification of muropeptides, future work is needed to generate an expanded database, in silico-based fragmentation patterns, and improved MS/MS spectra acquisition.”

      7) Line 485: "Its" > "It has potential"

      The sentence has been revised.

      “(Discussion) …It has potential applications in identifying activation ligands for antimicrobial resistance studies, characterizing key motifs recognized by pattern recognition receptors for host-microbiota immuno-interaction research, and mapping peptidoglycan in cell wall architecture studies.”

      8) Figure 1 legend: Define Gb and Pb.

      Gb and Pb are the abbreviations of glycosidic bonds and peptide bonds. We have revised the Figure legend 1 as follow:

      “(Figure legend 1) …(b) DBuilder constructs a muropeptide database containing monomers, dimers, and trimers with two types of linkage: glycosidic bonds (Gb) and peptide bonds (Pb).”

      9) Figure 2: It is hard to see what is going on in panel a and c with all the labels. Consider removing them and showing a zoomed inset with labels in addition to ab unlabeled full chromatogram.

      We apologize for not making this clearer. The panel a and c in Figure 2 were directly generated by the Analyzer as a software screenshot of the peak annotations on chromatogram. Our intention was to present a comprehensive PGN mapping (approximately 70% of the peak area was assigned to muropeptide signals) using this platform. We understand the label density might affect clarity, so we have added the output tables of the whole muropeptide identifications as source data (Table 1–Source Data 1&2). Additionally, we have uploaded the Analyzer output files (see Additional Files), which can be better visualized in the Viewer program, and it also allows users zoom in for detailed labeling information.

      10) Figure 3: It is worth pointing out what features of the MS/MS fingerprints are helping to discriminate between species.

      Thank you for the suggestion. We have revised Figure 3 and the legend as follow:

      “(Figure legend 3) …The sequence of each isomer was determined using in silico MS/MS fragmentation matching, with the identified sequence having the highest matching score. The key MS/MS fragments that discriminate between two isomers are labeled in bold brown.”

      Author response image 2.

      11) Figure 4 and 5 legend: Can you condense the long descriptions of the abbreviations - or at least only refer to them once?

      Certainly, to enhance clarity and conciseness in the figure legends, we have revised Figure legend 5 as follow:

      “(Figure legend 5) …(b) Heatmap displaying …. Symbols: M, monomer; D, dimer; T, trimer (numbers indicate amino acids in stem peptides). Description of symbol abbreviations as in Figure legend 4, with the addition of "Glycan-T" representing trimers linked by glycosidic bonds.”

      Reviewer #2 (Recommendations For The Authors):

      1. Please read the manuscript carefully for spelling errors.

      We appreciate your careful review of our manuscript. We have thoroughly rechecked the entire manuscript for spelling errors and have made the necessary corrections to ensure the accuracy and quality of the text.

      1. Line 46 - "multilayered" is likely only true for Gram-positive bacteria.

      We thank reviewer #2 for bringing up this concern. Indeed, Gram-negative bacteria mostly possess single layer of peptidoglycan, but could be up to three layers in some part of the cell surface.3, 4 In order to reduce the confusion, we have rewritten the context as follow: “(Introduction) …PGN is a net-like polymeric structure composed of various muropeptide molecules, with their glycans linearly conjugated and short peptide chains cross-linked through transpeptidation.”

      1. Methods section: It seems like pellets from a 10 mL bacterial culture were ultimately suspended in 1.5 L (750 mL water + 750 mL tris) - why such a large volume? And how were PG fragments subsequently washed (centrifugation? There is no information on this in the Methods).

      We apologize for the mislabeling on the units. The accurate volume should be “1.5 mL (750 µL water + 750 µL tris)”. We have updated the correct volume in the Methods section (lines 99-100). For the washing process of purified PGN, we added 1 mL water, centrifuged at 10,000 rpm for 5 minutes, and removed supernatant. This information has added to the Methods section (lines 95-98).

      1. Line 183 - why were 6 modifications chose as the cutoff? Please make rationale more clear.

      We thank reviewer #2 for the comments. We set the maximum modification number of 6 in the assumption of one modification on each sugar of a trimeric muropeptide. A lower cutoff could effectively limit the identification of muropeptides with unlikely numbers of modifications, whereas a higher cutoff could allow for having multiple modifications on a muropeptide. In our hand, muropeptide modifications of E. coli are mostly N-deacetyl-MurNAc and anhydro-MurNAc, and modifications of gut microbes used here are mostly N-deacetyl-GlcNAc, anhydro-MurNAc, O-acetyl-MurNAc, loss of GlcNAc, and amidated iso-Glu. While we recommend starting data analysis with the cutoff of 6 modifications, users are free to adjust this based on their studies.

      1. Line 339 - define donor vs. acceptor here (can be added in parentheses after explaining the relevant chemical reactions further above in the text)

      Thank you for the suggestion. To provide greater clarity regarding the roles of the donor and acceptor substrates in the transpeptidation process, we have revised the content in the manuscript as follows:

      “(Section Inferring PGN Cross-linking Types Based on Identified PGN Fragments) …In general, there are two types of PGN cross-linkage…. Transpeptidation involves two stem peptides which function as acyl donor and acceptor substrates, respectively. As the enzyme names imply, the donor substrates that Ddts and Ldts bind to are terminated as D,D-stereocenters and L,D-stereocenters, which structurally means pentapeptides and tetrapeptides. During D,D-transpeptidation, Ddts recognize D-Ala4-D-Ala5 of the donor stem (pentapeptide) and remove the terminal D-Ala5 residue, forming an intermediate. The intermediate then cross-links the NH2 group in the third position of the neighboring acceptor stem, forming a 4-3 cross-link.”

      1. Line 366 following - can you calculate % crosslinks based on these numbers? What does "high abundance" of 3,3 crosslinks mean in this context? Is this the majority of PG?

      Thank you for your questions. Calculating the percentage of crosslinks based on the muropeptide compositional numbers is a valid consideration. However, it's important to note that the muropeptides we analyzed were hydrolyzed by mutanolysin, and as such, deriving an accurate % crosslink value from these data might not provide a true representation of the crosslinking percentage within the PGN network. For a more precise determination of % crosslinks, methods such as solid-phase NMR on purified peptidoglycan would be required. Our research provides insights into the characterization of PGN fragments and allows us to infer potential PGN cross-linkage types and the enzymes involved based on the dominant muropeptide fragments. Regarding the phrase "high abundance" in the context, it indicates that the M3b/M4b monomer and D34 dimer muropeptides represent a significant portion of the hydrolysis products. These muropeptides are major constituents within the PGN fragments obtained from the enzymatic hydrolysis.

      1. Line 375 - I am not sure PG is a meaningful diffusion barrier for drugs and signaling molecules, give that even larger proteins can apparently diffuse through the pores.

      Thank you for raising this point. Peptidoglycan indeed possesses relatively wide pores that allow for the diffusion of larger molecules, including proteins.5 Research has provided a rough estimate of the porosity of the PGN meshwork, suggesting that it allows for the diffusion of proteins with a maximum molecular mass of around 50 kDa.6 Considering this, we acknowledge that PGN may not serve as a significant diffusion barrier for drugs and signaling molecules. The porosity of the PGN scaffold, which is defined by the degree of cross-linking, plays a role in influencing the transport of molecules to the cell membrane. Thus, while PGN may not serve as a strict diffusion barrier, its structural characteristics still impact bacterial cell mechanics and interactions. We have revised the manuscript to reflect this understanding:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) …The porosity of the PGN scaffold, defined by the degree of cross-linking, influences the transport of larger molecules such as proteins. Therefore, modifications to PGN structure are anticipated to significantly affect bacterial cell mechanics and interactions.”

      1. Line 400 - what does "slower hydrolysis rate" refer to, is this chemical hydrolysis or enzymatic (autolysins?). also, I am not sure hydrolysis rate of either modality allows for solid conclusions about how hard (line 402) the PG is.

      Thank you for your comments. The hydrolysis rate here refers to the enzymatic hydrolysis, specifically the mutanolysin cleaving the β-N-acetylmuramyl-(1,4)-N-acetylglucosamine linkage. Indeed, there is no direct correlation between the hydrolysis rate and the hardness of PGN architecture, although the structure rigidity is a key determinant in protein digestion.7 Considering the enzymatic hydrolysis rate depending on the accessibility of the substrate to the enzyme, we proposed that the tighter PGN architecture could also lead to a slower hydrolysis rate. This speculation aligns with our observations of higher cell stiffness or more compact PGN structure of B. breve and its slower hydrolysis rate. We understand this is indirect proof, so the revised sentence now reads:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) …Furthermore, B. breve also showed a slower enzymatic hydrolysis rate in purified PGNs, implying that the cell wall structure of B. breve is characterized by a compact PGN architecture.”

      1. Line 424 - I am not convinced this pipeline can detect PG architectures that other pipelines cannot; likely, the difference between previous analyses and theirs is due to different growth conditions (3,3 crosslink formation is often modulated by environmental factors/growth stage). In the next sentence, it sounds like mutanolysin treatment is a novelty in PG analysis (which it is not).

      We apologize if this could have been clearer and we have revised the paragraph to describe our study more accurately. We agree that different growth conditions could influence PGN architecture and other pipelines could manually identify the PGN architectures or automatically identify them if they are not too complex. Our original intention was to highlight the ability of the HAMA program to automatically identify unreported PGN structure. Here are the revised sentences:

      “(Discussion) …We speculate that this finding may be influenced by the comprehensive mass spectrometric approaches we employed or by variations in growth conditions. Moreover, we utilized the well-established enzymatic method involving mutanolysin to cleave the β-N-acetylmuramyl-(1,4)-N-acetylglucosamine linkage, which preserves the original peptide linkage in intact PGN subunits.”

      1. Line 440- 442: As outlined in more detail above: I don't think you can conclude something about the relationship between bridge length and envelope stiffness based on these data. Thank you for your valuable feedback. We agree that our data may not definitively support the direct conclusion about the relationship between bridge length and envelope stiffness in Bifidobacterium species. Instead, we will rephrase this section to accurately present the observed correlations without overgeneralizing:

      “(Discussion) … Notably, our study suggested a potential correlation between the cell stiffness and the compactness of bacterial cell walls in Bifidobacterium species (Figure 5). B. longum, which predominantly harbors tetrapeptide bridges (Ser-Ala-Thr-Ala), exhibits a trend towards lower stiffness, whereas B. breve, characterized by PGN cross-linked with monopeptide bridges (Gly), demonstrates a trend towards higher stiffness. These findings suggested that it may be correlated between the increased rigidity and the more compact PGN architecture built by shorter cross-linked bridges.”

      References: 1. Huang, Y.-W.; Wang, Y.; Lin, Y.; Lin, C.; Lin, Y.-T.; Hsu, C.-C.; Yang, T.-C., Impacts of Penicillin Binding Protein 2 Inactivation on β-Lactamase Expression and Muropeptide Profile in Stenotrophomonas maltophilia. mSystems 2017, 2 (4), 00077-00017.

      1. Jarick, M.; Bertsche, U.; Stahl, M.; Schultz, D.; Methling, K.; Lalk, M.; Stigloher, C.; Steger, M.; Schlosser, A.; Ohlsen, K., The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Sci. Rep. 2018, 8 (1), 13693.

      2. Labischinski, H.; Goodell, E. W.; Goodell, A.; Hochberg, M. L., Direct proof of a "more-than-single-layered" peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J. Bacteriol. 1991, 173 (2), 751-756.

      3. Rohde, M., The Gram-Positive Bacterial Cell Wall. Microbiol. Spectr. 2019, 7 (3), gpp3-0044-2018.

      4. Vollmer, W.; Höltje, J. V., The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s)? J. Bacteriol. 2004, 186 (18), 5978-5987.

      5. Vollmer, W.; Blanot, D.; De Pedro, M. A., Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008, 32 (2), 149-167.

      6. Li, Q.; Zhao, D.; Liu, H.; Zhang, M.; Jiang, S.; Xu, X.; Zhou, G.; Li, C., "Rigid" structure is a key determinant for the low digestibility of myoglobin. Food Chem.: X 2020, 7, 100094.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The Hedgehog (HH) protein family is important for embryonic development and adult tissue maintenance. Deregulation or even temporal imbalances in the activity of one of the main players in the HH field, sonic hedgehog (SHH), can lead to a variety of human diseases, ranging from congenital brain disorders to diverse forms of cancers. SHH activates the GLI family of transcription factors, yet the mechanisms underlying GLI activation remain poorly understood. Modification and activation of one of the main SHH signalling mediators, GLI2, depends on its localization to the tip of the primary cilium. In a previous study the lab had provided evidence that SHH activates GLI2 by stimulating its phosphorylation on conserved sites through Unc-51-like kinase 3 (ULK3) and another ULK family member, STK36 (Han et al., 2019). Recently, another ULK family member, ULK4, was identified as a modulator of the SHH pathway (Mecklenburg et al. 2021). However, the underlying mechanisms by which ULK4 enhances SHH signalling remained unknown. To address this question, the authors employed complex biochemistry-based approaches and localization studies in cell culture to examine the mode of ULK4 activity in the primary cilium in response to SHH. The study by Zhou et al. demonstrates that ULK4, in conjunction with STK36, promotes GLI2 phosphorylation and thereby SHH pathway activation. Further experiments were conducted to investigate how ULK4 interacts with SHH pathway components in the primary cilium. The authors show that ULK4 interacts with a complex formed between STK36 and GLI2 and hypothesize that ULK4 functions as a scaffold to facilitate STK36 and GLI2 interaction and thereby GLI2 phosphorylation by STK36. Furthermore, the authors provide evidence that ULK4 and STK36 co-localize with GLI2 at the ciliary tip of NIH 3T3 cells, and that ULK4 and STK36 depend on each other for their ciliary tip accumulation. Overall, the described ULK4-mediated mechanism of SHH pathway modulation is based on detailed and rigorous Co-IP experiments and kinase assays as well as confocal imaging localization studies. The authors used various mutated and wild-type constructs of STK36 and ULK4 to decipher the mechanisms underlying GLI2 phosphorylation at the tip of the primary cilium. These novel results on SHH pathway activation add valuable insight into the complexity of SHH pathway regulation. The data also provide possible new strategies for interfering with SHH signalling which has implications in drug development (e.g., cancer drugs).

      However, it will be necessary to explore additional model systems, besides NIH3T3, HEK293 and MEF cell cultures, to conclude on the universality of the mechanisms described in this study. Ultimately, it needs to be addressed whether ULK4 modulates SHH pathway activity in vivo. Is there evidence that genetic ablation of ULK4 in animal models leads to less efficient SHH pathway induction? It also remains to be resolved how ULK3 and ULK4 act in distinct or common manners to promote SHH signalling. Another remaining question is, whether cell type- and tissue-specific features exist, that play a role in ULK3- versus ULK4-dependent SHH pathway modulation. In particular for the studies on ciliary tip localization of factors, relevant for SHH pathway transduction, a higher temporal resolution will be needed in the future as well as a deeper insight into tissue/ cell type-specific mechanisms. These caveats, mentioned here, don't have to be addressed in new experiments for the revision of this manuscript but could be discussed.

      We agree with the reviewer that it would be important to investigate in the future the in vivo function Ulk4 in Shh signaling, the relationship between Ulk3 and Ulk4/Stk36, and possible cell type/tissue specificity of these two kinase systems. This will need the generation of single and double knockout mice and examine Hh related phenotypes in different tissues and developmental stages. The precise mechanism by which Ulk4 and Stk36 are translocated to the ciliary tip is also an important and unsolved issue. We include several paragraphs in the “discussion” section to address these outstanding questions for future study.

      Reviewer #2 (Public Review):

      The authors provide solid molecular and cellular evidence that ULK4 and STK36 not only interact, but that STK36 is targeted (transported?) to the cilium by ULK4. Their data helps generate a model for ULK4 acting as a scaffold for both STK36 and its substrate, Gli2, which appear to co-localise through mutual binding to ULK4. This makes sense, given the proposed role of most pseuodkinases as non-catalytic signaling hubs. There is also an important mechanistic analysis performed, in which ULK4 phosphorylation in an acidic consensus by STK36 is demonstrated using IP'd STK36 or an inactive 'AA' mutant, which suggests this phosphorylation is direct.

      The major strength of the study is the well-executed combination of logical approaches taken, including expression of various deletion and mutation constructs and the careful (but not always quantified in immunoblot) effects of depleting and adding back various components in the context of both STK36 and ULK3, which broadens the potential impact of the work. The biochemical analysis of ULK4 phosphorylation appears to be solid, and the mutational study at a particular pair of phosphorylation sites upstream of an acidic residue (notably T2023) is further strong evidence of a functional interaction between ULK4/STK36. The possibility that ULK4 requires ATP binding for these mechanisms is not approached, though would provide significant insight: for example it would be useful to ask if Lys39 in ULK4 is involved in any of these processes, because this residue is likely important for shaping the ULK4 substrate-binding site as a consequence of ATP binding; this was originally shown in PMID 24107129 and discussed more recently in PMID: 33147475 in the context of the large amount of ULK4 proteomics data released.

      The reviewer raised an interesting question of whether ATP binding to the pseudokinase domain of Ulk4 might be required for its function, i.e., by regulating the interaction with its binding partner. In a recent study (Preuss et al. 2020;PMID: 33147475), the critical Lys39 for ATP binding was converted to Arg (KR mutation); however, unlike in most kinases the KR mutation affect ATP binding, the K39R mutation in the Ulk4 pseudokinase did not affect ATP binding although it slightly increased ADP binding (PMID: 33147475). Another mutation made by Preuss et al(PMID: 33147475), N239L, affected protein stability, making it impossible to determine whether this mutation affect ATP binding. Therefore, in the absence of clear approach to perturb ATP binding without affecting the overall structure of Ulk4, it would be challenging to address whether ATP binding regulates the ability of Ulk4 to bind its substrates. Nevertheless, we discuss the possibility that ATP binding might regulate Ulk4/Stk36 interaction and Shh signaling.

      The discussion is excellent, and raises numerous important future work in terms of potential transportation mechanisms of this complex. It also explains why the ULK4 pseudokinase domain is linked to an extended C-terminal region. Does AF2 predict any structural motifs in this region that might support binding to Gli2?

      The extended C-terminal domain of Ulk4 contains Arm/HEAT repeats (protein-protein interacting domain), which are predicted by AF2 to form alpha helixes.

      A weakness in the study, which is most evident in Figure 1, where Ulk4 siRNA is performed in the NIH3T3 model (and effects on Shh targets and Gli2 phosphorylation assessed), is that we do not know if ULK4 protein is originally present in these cells in order to actually be depleted. Also, we are not informed if the ULK4 siRNA has an effect on the 'rescue' by HA-ULK4; perhaps the HA-ULK4 plasmid is RNAi resistant, or if not, this explains why phosphorylation of Gli2 never reaches zero? Given the important findings of this study, it would be useful for the authors to comment on this, and perhaps discuss if they have tried to evaluate endogenous levels of ULK4 (and Stk36) in these cells using antibody-based approaches, ideally in the presence and absence of Shh. The authors note early on the large number of binding partners identified for ULK4, and siRNA may unwittingly deplete some other proteins that could also be involved in ULK4 transport/stability in their cellular model.

      Due to the lack of reliable Ulk4 and Stk36 antibodies, we were unable to confirm knockdown efficiency by western blot analysis. Therefore, we relied on the measure Ulk4 and STk36 mRNA expression by RT-qPCR to estimate the knockdown efficiency (Fig 1- figure supplement 1). We used mouse Ulk4 shRNA to carry out the knockdown experiments in NIH3T3 and MEF cells while the human version of Ulk4 (hUlk4) was used for the rescue experiments (Fig 1- figure supplement 2; Fig. 8). We have confirmed that the mUlk4 shRNA targeting sequence is not conserved in hUlk4; therefore, the hULK4 construct is RNAi resistant. The rescue experiments strongly argue that the effect of Ulk4 RNAi on Shh signaling is due to loss of endogenous Ulk4. This argument is further strengthened by the observations that mutations that affected Ulk4 and Stk36 ciliary tip localization also affected Shh signaling such as Gli2 phosphorylation and Ptch1/Gli expression (Fig. 8).

      The sequence of ULK4 siRNAs is not included in the materials and methods as far as I can see.

      We have added the mouse Ulk4 RNAi target sequence in the revised version.

      Reviewer #3 (Public Review):

      In this manuscript, Zhou et al. demonstrate that the pseudokinase ULK4 has an important role in Hedgehog signaling by scaffolding the active kinase Stk36 and the transcription factor Gli2, enabling Gli2 to be phosphorylated and activated.

      Through nice biochemistry experiments, they show convincingly that the N-terminal pseudokinase domain of ULK4 binds Stk36 and the C-terminal Heat repeats bind Gli2.

      Lastly, they show that upon Sonic Hedgehog signaling, ULK4 localizes to the cilia and is needed to localize Stk36 and Gli2 for proper activation.

      This manuscript is very solid and methodically shows the role of ULK4 and STK36 throughout the whole paper, with well controlled experiments. The phosphomimetic and incapable mutations are very convincing as well. I think this manuscript is strong and stands as is, and there is no need for additional experiments.

      Overall, the strengths are the rigor of the methods, and the convincing case they bring for the formation of the ULK4-Gli2-Stk36 complex. There are no weaknesses noted. I think a little additional context for what is being observed in the immunofluorescence might benefit readers who are not familiar with these cell types and structures.

      We thank this reviewer for the positive comments.

      Recommendations For the Authors

      Reviewer #1 (Recommendations For The Authors):

      This elegant study has been thoroughly and thoughtfully designed and the dataset is solid. The biochemistry results are overall very convincing. Some data lack quantification and there needs to be more information on data analyses and statistics. The following suggestions and comments aim at strengthening the manuscript.

      1. Please provide quantification normalized to input for IP experiments (Figures 1 E - F; Figure 8 C). More information on data analyses and statistics should be provided and included as information in the figure legends.

      Thanks for the suggestions, we have done the quantification and statistics analyses for Figures 1E-G and Figure8 C as requested.

      1. Did the authors investigate whether overexpressing hULK4 in the control NIH3T3 cells leads to an increase in pS230/232 (related to Figure 1E)? This would nicely support the notion of a promoting effect of ULK4 on GLI2 phosphorylation.

      We did not. We speculated that overexpressing hULK4 may not significantly promote GLI2 phosphorylation because Ulk4 is a pseudokinase and endogenous Stk36 (the kinase partner of Ulk4) is limited.

      1. The CO-IP experiments to show GLI2 activation were performed in NIH3T3 cells, whereas HEK293 cells were used for the experiments shown in Figure 2. Is there a specific reason for switching between cell lines also for experiments shown in Figures 3 C- I? Did the authors repeat some of the key experiments in both cell lines?

      In mammalian cells, Shh-induced activation of GLI2 depends on primary cilia (Han et al., 2019). NIH3T3 cells form the primary cilia but HEK293T cells do not. Therefore, we used NIH3T3 cells to examine the processes that are regulated by the Shh treatment assay (e.g., the Shh-induced phosphorylation of GLI2 and STK36). The HEK293 cells were used to map binding domain between ULK4 and STK36/GLI2/SUFU due to the high transfection efficiency.

      1. In Figure 2 D-E the authors nicely showed that hUlk4N-HA interacted with CFP-Stk36 but not with Myc-Gli2/Fg-Sufu whereas hUlk4C-HA formed a complex with Myc-Gli2/Fg-Sufu but not with CFP-Stk36. In Figure 4E the authors showed in their Co-IP experiments that Fg-Stk36 and Myc-Gli2 form a complex independent of SHH treatment. Did the authors see some pull down of Stk36, still in complex with Gli2, using hUlk4C IP and pull down of Gli2, still in complex with Stk36, using hUlk4N IP?

      We did not test that. As we have shown in Figures 4A and 4E, knockdown of endogenous ULK4 nearly abolished the interaction between Myc-GLi2 and Fg-Stk36, suggesting that Ulk4 is the major scaffold to bring Skt36 and Gli2 together, and that there is little if any direct interaction between GLi2 and Stk36.

      1. Another method to verify hULK4-Stk36-Gli2 complex formation (Figure 4) would be helpful. For example, proximity ligation assays, tripartite split GFP assays, or colocalization based on expansion STED immunofluorescence microscopy could be performed to temporally and spatially resolve localization of Ulk4, Stk36 and Gli2 upon SHH stimulation in the primary cilium

      Thanks for the suggestions. We think that our current study using biochemical and cell biology approaches have provide sufficient evidence that Ulk4, Stk36 and Gli2 form complexes. We will keep in mind of those more sophisticated methods in our future endeavors.

      1. Please provide more representative images of Ulk4, Stk36 and Gli2 localization in NIH3T3 cells or lower magnification overview images showing more than one cell (Figure 5).

      We have provided more representative images in Figure 5- figure supplement 1A-F of the revised manuscript.

      1. Confirmation of the results shown in Figure 5 in a second cell line would strengthen the data.

      We have confirmed the results in MEFs (see Figure 5- figure supplement 1G-J)

      1. Did the authors add immunofluorescence for tubulin as a ciliary base marker to ensure correct assignment of ciliary tip versus ciliary base localization for quantification experiments (Figures 5 - 8)?

      It has been well documented that GLi2 is accumulated at the ciliary tip in respond to Shh treatment; therefore, we used Gli2 as a marker for ciliary tip where both Ulk4 and Stk36 were also accumulated. γ tubulin staining could be another marker to assign the ciliary tip vs base; however, the antibody combination we have did not allow us to simultaneously stain γ tubulin and acetylated tubulin (Ac-Tub).

      1. SMO localization as a further readout of SHH pathway activation might be considered to be added for some of the key results (e.g., Figure 6). Is SMO trafficking affected after depletion or overexpression of ULK4?

      Due to the lack of a workable antibody to detect endogenous Smo in our hands, we did not determine whether the trafficking of SMO is affected after depletion or overexpression of ULK4. However, we noticed that a recent study reported that the SHH-induced ciliary SMO accumulation was impaired in Ulk4 siRNA treated cells (Mecklenburg et al. 2021). We include this information and its implication in the discussion section

      1. Do the authors see ULK4 only at the ciliary tip after SHH stimulation or is there also a dynamic time-dependent localization along the ciliary shaft? The image in Figure 6E (dKO + Stk36 WT) seems to show ULK4 also in the shaft.

      Unlike Smo that is evenly distributed alone the axoneme of primary cilia, ULK4 is mainly accumulated at ciliary tips upon Shh stimulation. Ulk4 is also located at low levels outside the cilia and sometimes in the ciliary shaft during its transit to the ciliary tip (e.g., see Figure 5- figure supplement 1F1-2; J1-2).

      1. Is the immunofluorescence signal for Ulk4 significantly reduced after shRNA treatment to deplete Ulk4 (Figure 6A)?

      We constructed a cell line that stably expressed ULK4 shRNA. The knockdown efficiency was determined by measuring Ulk4 mRNA expression (Fig 1_figure supplement 1). Because we were unable to obtain a reliable ULK4 antibody for immunostaining, we did not examine by whether ULK4 signal was depleted by Ulk4 shRNA.

      1. The labelled ciliary tip resembles in some cases images seen for ciliary abscission. The authors could use membrane/ciliary membrane markers to ensure "intraciliary" localization of the investigated factors.

      Thanks for the suggestion. We will try that in our future experiments.

      1. How many replicates were used in the three independent quantitative RT-PCR experiments (Figure 1 A-D)?

      We used 3 replicates in each independent quantitative RT-PCR assay.

      1. Please provide p values or statement on no significance for the comparison between Ulk3 single and Ulk3/Ulk4 double knockdown (Figure 1C) and between Stk36 single and Stk36/Ulk4 double knockdown (Figure 1D; Fig1_Figure Supplement 2).

      Thanks for the suggestion, we have added the p value or “ns” as asked.

      1. Figure legends in general are a bit short could have some more detailed information.

      Thank you for the suggestion, we have revised the Figure legends as asked.

      1. What do the asterisks present in Figure 4 C-D?

      Thanks for the suggestion. The asterisks in Figure 4C-D indicated the full length STK36 and truncated form STK36N and STK36C fragments. We that included this information in the figure legend.

      1. The authors state that a previous study described ULK4 as a genetic modifier for holoprosencephaly and that this raised the possibility that ULK4 may participate in HH signal transduction. Primary ciliary localization of ULK4 in mouse neuronal tissue and SHH pathway modulation by ULK4 in cell culture have been shown by Mecklenburg et al. 2021 before. Maybe the authors could rephrase their introduction and discussion accordingly.

      Thanks for the suggestion, we have changed the introduction and discussion accordingly.

      1. Overexpression studies in heterologous systems using tagged proteins can potentially have an influence on their subcellular localization and function. Please discuss this caveat.

      We have mentioned this caveat in the “discussion” section of the revised manuscript. However, we have tried to express the transgene at low levels using the lentiviral vector containing a weak promoter to ensure that the exogenously expressed proteins are still regulated by Hh signaling. We have also confirmed that the tagged Ulk4 and Stk36 can rescue the loss of endogenous genes.

      1. More details in the Methods section should be provided on the SHH induction in NIH3T3 cells, HEK293 cells and MEFs.

      We have revised the methods section on Shh induction.

      1. ULK4 is known to have at least three isoforms that exhibit varying abundance across developmental stages in mice and humans (Lang et al., 2014) (DOI:10.1242/jcs.137604). Can the authors speculate on potential common and distinct functions of the different ULK4 isoforms on SHH pathway modulation based on their present results?

      It is interesting that Ulk4 has multiple isoforms in both mouse and human. Several short isoforms in both mouse and human lack the pseudokinase domain while one short isoform in mouse lacks the C-terminal region essential for Ulk4 ciliary tip localization. We speculate that the C-terminally deleted isoform may not have a function in the Shh pathway based on our results shown in Fig. 7 and 8 but might still have functions in other cellular processes.

      Reviewer #2 (Recommendations For The Authors):

      The paper is well written, and clear throughout, with excellent (up-to-date) citations to the field.

      We thank reviewer #2 for the positive comments.

      Reviewer #3 (Recommendations For The Authors):

      My only quibble is that the immunofluorescence images are a little confusing, especially to people outside of the field. Please include an image of the whole field and improve the captions. Is that a single cell for each cilia? Why are there so few cilia? The DAPI makes it seem like What are we looking at? Are those multiple nuclei in Figure 6? They seem a little small if that's the 5 uM scale bar

      We provide uncropped images of Figure 5E to show the entire cells (below). We have added some context to improve the captions. Most of the mammalian cells such as MEF and NIH3T3 cells contain a single primary cilium; however, mutilated cells do exist. The DAPI staining indicated the nuclei. The cells shown in Figure 6 have single nucleus (the scale should be 2 µM). Due to the unevenness of DAPI signals in the nuclei, only the strong signals (puncta) were shown for individual nuclei.

      Author response image 1.

      One small typo: GLL2 instead of GLI2 on line 363

      Thanks, we have corrected this spelling mistake.

    1. Author Response

      Reviewer #2 (Public Review):

      Manassaro et al. present an extensive three-session study in which they aimed to change defensive responses (skin conductance; SCR) to an aversively conditioned stimulus by targeting medial prefrontal cortex (their words) using repetitive TMS prior to retrieval. They report that stimulating mPFC using TMS abolishes SCR responses to the conditioned stimulus, and that this effect is specific for the stimulated region and the specific CS-US association, given that SCR responses to a different modality US are not changed.

      I like how the authors have clearly attempted to control for several potential confounds by including multiple stimulation sites, measured SCR responses to several unconditioned stimuli, and applied the experiment in multiple contexts. However, several conceptual and practical issues remain that I think limit the value of potential conclusions drawn from this work.

      The first issue that I have with this study concerns the relationship between the TMS manipulation and the theoretical background the authors present in their rationale. In the introduction the authors sketch that what they call 'mPFC' is involved in regulation of threat responses. They make a convincing case, however, almost all of the evidence they present concerns the ventromedial part of the prefrontal cortex (refs 18-25). The authors then mention that no one has ever studied the effects of 'mPFC'-TMS on threat memories. That is not surprising given that stimulating vmPFC with TMS is very difficult, if not impossible. Simulation of the electrical field that develops as a consequence from the authors manipulation (using the same TMS coil and positioning the authors use) shows that vmPFC (or mPFC for that matter) is not stimulated. The authors then continue in the methods section stating that the region they aimed for was BA10. This region they presumably do stimulate, however, that does not follow logically from their argument. BA10 is anatomically, cytoarchitectonically and functionally a wholly different area than vmPFC and I wonder if their rationale would hold given that they stimulate BA10.

      We would like to thank the Reviewer for highlighting this very important point. The Reviewer is right in stating that the Brodmann area 10 (BA 10) is anatomically, cytoarchitectonically, and functionally distinct from the ventromedial PFC. As we reported in the Methods section, the coil placement over the frontopolar midline electrode (Fpz) according to the international 10‒20 EEG coordinate system directly focused the stimulation over the medial portion of the BA 10. In the literature, the aPFC is also known as the “frontopolar cortex” or the “rostral frontal cortex” and encompasses the most anterior portion of the prefrontal cortex, which corresponds to the BA 10. In line with this observation, we have corrected “medial prefrontal cortex” (mPFC) with “medial anterior prefrontal cortex” (aPFC) throughout the manuscript. We also have corrected the theoretical background and the rationale in the Introduction section by mentioning several studies that: i) Reported the involvement of the aPFC in emotional down-regulation (Volman et al., 2013; Koch et al., 2018; Bramson et al., 2020). ii) Traced anatomical connections between the medial/lateral aPFC and the amygdala (Peng et al., 2018; Folloni et al., 2019; Bramson et al., 2020). iii) Detected functional connections between the aPFC and the vmPFC during fear down-regulation (Klumpers et al., 2010). iv) Found hypoactivation, reduced connectivity, and altered thickness of aPFC in PTSD patients (Lanius et al., 2005; Morey et al., 2008; Sadeh et al., 2015; Sadeh et al., 2016). v) Revealed that strong activation of the aPFC may promote a higher resilience against PTSD onset (Kaldewaij et al., 2021) and that enhanced aPFC activity and potentiated aPFC-vmPFC connectivity is detectable after effective therapy in PTSD patients (Fonzo et al., 2017). Furthermore, we discussed our results in light of this evidence in the Discussion section. We really thank the Reviewer for this key implementation of our study.

      The second concern I have is that although I think the authors should be praised for including both sham and active control regions, the controls might not be optimally chosen to control for the potential confounds of their condition of interest (mPFC-TMS). Namely, TMS on the forehead can be unpleasant, if not painful, whereas sham-TMS or TMS applied to the back of the head or even over dlPFC is not (or less so at the very least). Given that the SCR results after mPFC TMS show exactly the same temporal pattern as the sham-TMS but with a lower starting point, one could wonder whether a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations. A control region that would have been more obvious to take is the lateral part of BA10, by moving the TMS coil several centimeters to the left or right, circumventing all things potentially called medial but giving similar unpleasant sensations (pain etc).

      We would also like to thank the Reviewer for bringing to light this issue and allowing us to strengthen our results. The Reviewer is right in pointing out that rTMS application over the forehead can be subjectively perceived as unpleasant, relative to other head coordinates or sham stimulation. The question of whether an unpleasant stimulation prior to the retrieval might provoke habituation to discomfort sensations and lead to weaker SCRs in the consequent CS presentations is valid and reasonable. We also thank the Reviewer for advising us to stimulate the lateral part of BA 10 as an active control site. However, given the potential involvement of the lateral BA 10 in the fear network (see previous point) and the potential risks due to the anatomical proximity of lateral BA 10 with the temporal lobe, we reasoned to adopt an alternative approach to investigate whether “a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations”. We repeated the entire experiment in one further group (ctrl discomfort, n = 10) by replacing the rTMS procedure with a 10-min discomfort-inducing procedure over the same site of the forehead (Fpz) to mimic the rTMS-evoked unpleasant sensations in the absence of neural stimulation effects (see the new version of the Methods section). The electrical stimulation intensity was individually calibrated through a staircase procedure (0 = no discomfort; 10 = high discomfort). The shock amplitude was set at the current level corresponding to the mean rating of ‘4’ on the subjective scale because, in the new experiments that we performed targeting the aPFC with rTMS (n = 9), we collected participants’ rTMS-induced discomfort ratings obtaining a mean rating of 3.833 ± 0.589 SEM on the same scale. We found CS-evoked SCR levels not significantly different to those of the sham group during the test session as well as during the follow-up session, suggesting that the discomfort experienced during the rTMS procedure did not contribute to the reduction of electrodermal responses observed in the aPFC group. We reported the results of this experiment in the Results section and Figure 2-figure supplement 2.

      My final concern is that the main analyses are performed on single trials of SCR responses, which is a relatively noise measure to use on single trials. This is also done in relatively small groups (n=21). I would have liked to see both the raw or at least averaged timeseries SCR data plotted, and a rationale explaining how the authors decided on the current sample sizes, if that was based on a power analyses one must have expected quite strong effects.

      Following the Reviewer’s suggestion, we decided to remove the analysis on single trials, and we apologize for not including SCR timeseries. To quantify the amount of effect induced by the rTMS protocol, we have now added within-group comparisons (through 2 × 2 mixed ANOVAs) that show, for each group, the amount of change in CS-evoked SCRs from the conditioning phase to the test phase, as well as from the conditioning phase to the follow-up phase. Furthermore, to directly and simply depict these changes, in addition to dot plots, we have also represented them with line charts (Figs. 2C, 2H, 4C, 4H, 5C, 5H). To estimate the sample size, we had previously performed a power analysis through G*Power 3.1.9.2 and it had resulted in n = 21 per experimental group. However, by correcting data pre-processing procedures (in accordance with Reviewer 1), we obtained data that were not normally distributed. Thus, we reasoned to enlarge our sample width by re-performing a power analysis (with the new suggested statistical analyses) and then repeating the experiments. For the main statistics, i.e. mixed ANOVA (within-between interaction) with two groups and two measurements, with the following input parameters: α equal to 0.05, power (1-β) equal to 0.95, and a hypothesized effect size (f) equal to 0.25, the new estimated sample size resulted in n = 30 per experimental group.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We want to thank the Editor and Reviewers for their thorough assessment of the manuscript as well as their constructive critiques. We have collated below the public review and recommendations from each Reviewer as well as our responses to them.

      eLife assessment

      This study by Verdikt et al. provided solid evidence demonstrating the potential impacts of Δ9-tetrahydrocannabinol (Δ9-THC) on early embryonic development using mouse embryonic stem cells (mESCs) and in vitro differentiation. Their results revealed that Δ9-THC enhanced mESCs proliferation and metabolic adaptation, possibly persisting through differentiation to Primordial Germ Cell-Like Cells (PGCLCs), though the evidence supporting this persistence was incomplete. Although the study is important, it was limited by being conducted solely in vitro and lacking parallel human model experiments.

      Reviewer #1 (Public Review):

      The authors investigated the metabolic effects of ∆9-THC, the main psychoactive component of cannabis, on early mouse embryonic cell types. They found that ∆9-THC increases proliferation in female mouse embryonic stem cells (mESCs) and upregulates glycolysis. Additionally, primordial germ cell-like cells (PGCLCs) differentiated from ∆9-THC-exposed cells also show alterations to their metabolism. The study is valuable because it shows that physiologically relevant ∆9-THC concentrations have metabolic effects on cell types from the early embryo, which may cause developmental effects. However, the claim of "metabolic memory" is not justified by the current data, since the effects on PGCLCs could potentially be due to ∆9-THC persisting in the cultured cells over the course of the experiment, even after the growth medium without ∆9-THC was added.

      The study shows that ∆9-THC increases the proliferation rate of mESCs but not mEpiLCs, without substantially affecting cell viability, except at the highest dose of 100 µM which shows toxicity (Figure 1). Treatment of mESCs with rimonabant (a CB1 receptor antagonist) blocks the effect of 100 nM ∆9-THC on cell proliferation, showing that the proliferative effect is mediated by CB1 receptor signaling. Similarly, treatment with 2-deoxyglucose, a glycolysis inhibitor, also blocks this proliferative effect (Figure 4G-H). Therefore, the effect of ∆9-THC depends on both CB1 signaling and glycolysis. This set of experiments strengthens the conclusions of the study by helping to elucidate the mechanism of the effects of ∆9-THC.

      Although several experiments independently showed a metabolic effect of ∆9-THC treatment, this effect was not dose-dependent over the range of concentrations tested (10 nM and above). Given that metabolic effects were observed even at 10 nM ∆9-THC (see for example Figure 1C and 3B), the authors should test lower concentrations to determine the dose-dependence and EC50 of this effect. The authors should also compare their observed EC50 with the binding affinity of ∆9-THC to cellular receptors such as CB1, CB2, and GPR55 (reported by other studies).

      The study also profiles the transcriptome and metabolome of cells exposed to 100 nM ∆9-THC. Although the transcriptomic changes are modest overall, there is upregulation of anabolic genes, consistent with the increased proliferation rate in mESCs. Metabolomic profiling revealed a broad upregulation of metabolites in mESCs treated with 100 nM ∆9-THC.

      Additionally, the study shows that ∆9-THC can influence germ cell specification. mESCs were differentiated to mEpiLCs in the presence or absence of ∆9-THC, and the mEpiLCs were subsequently differentiated to mPGCLCs. mPGCLC induction efficiency was tracked using a BV:SC dual fluorescent reporter. ∆9-THC treated cells had a moderate increase in the double positive mPGCLC population and a decrease in the double negative population. A cell tracking dye showed that mPGCLCs differentiated from ∆9-THC treated cells had undergone more divisions on average. As with the mESCs, these mPGCLCs also had altered gene expression and metabolism, consistent with an increased proliferation rate.

      My main criticism is that the current experimental setup does not distinguish between "metabolic memory" vs. carryover of THC (or its metabolites) causing metabolic effects. The authors assume that their PGCLC induction was performed "in the absence of continuous exposure" but this assumption may not be justified. ∆9-THC might persist in the cells since it is highly hydrophobic. In order to rule out the persistence of ∆9-THC as an explanation of the effects seen in PGCLCs, the authors should measure concentrations of ∆9-THC and THC metabolites over time during the course of their PGCLC induction experiment. This could be done by mass spectrometry. This is particularly important because 10 nM of ∆9-THC was shown to have metabolic effects (Figure 1C, 3B, etc.). Since the EpiLCs were treated with 100 nM, if even 10% of the ∆9-THC remained, this could account for the metabolic effects. If the authors want to prove "metabolic memory", they need to show that the concentration of ∆9-THC is below the minimum dose required for metabolic effects.

      Overall, this study is promising but needs some additional work in order to justify its conclusions. The developmental effects of ∆9-THC exposure are important for society to understand, and the results of this study are significant for public health.

      *Reviewer #1 (Recommendations For The Authors):

      This has the potential to be a good study, but it's currently missing two key experiments:

      What is the minimum dose of ∆9-THC required to see metabolic effects?

      We would like to thank Reviewer 1 for their insightful comments. We have included exposures to lower doses of ∆9-THC in Supplementary Figure 1. Our data shows that ∆9-THC induces mESCs proliferation from 1nM onwards. However, when ESCs and EpiLCs were exposed to 1nM of ∆9-THC, no significant change in mPGCLCs induction was observed (updated Figure 6B). Of note, in their public review, Reviewer 1 mentioned that “The authors should also compare their observed EC50 with the binding affinity of ∆9-THC to cellular receptors such as CB1, CB2, and GPR55 (reported by other studies).” According to the literature, stimulation of non-cannabinoid receptors and ion channels (including GPR18, GPR55, TRPVs, etc.) occurs at 40nM-10µM of ∆9-THC (Banister et al., 2019). We therefore expect that at the lower nanomolar range tested, CB1 is the main receptor stimulated by ∆9-THC, as we showed for the 100nM dose in our rimonabant experiments (Fig. 2).

      Is the residual THC concentration during the PGCLC induction below this minimum dose? Even if the effects are due to residual ∆9-THC, this would not undermine the overall study. There would simply be a different interpretation of the results.

      This experiment was particularly important to distinguish between a “true” ∆9-THC metabolic memory or residual ∆9-THC leftover during PGCLCs differentiation. Our mass spectrometry quantification revealed that no significant ∆9-THC could be detected in day 5 embryoid bodies compared to treated EpiLCs prior to differentiation (Supplementary Figure 13). These results support the existence of ∆9-THC metabolic memory across differentiation.

      You also do not mention whether you tested your cells for mycoplasma. This is important since mycoplasma contamination is a common problem that can cause artifactual results. Please test your cells and report the results.

      All cells were tested negative for mycoplasma by a PCR test (ATCC® ISO 9001:2008 and ISO/IEC 17025:2005 quality standards). This information has been added in the Material and Methods section.

      Minor points:

      1. I don't think it's correct to say that cannabis is the most commonly used psychoactive drug. Alcohol and nicotine are more commonly used. See: https://nida.nih.gov/research-topics/alcohol and https://www.cancer.gov/publications/dictionaries/cancer-terms/def/psychoactive-substance I looked at the UN drugs report [ref 1] and alcohol or nicotine were not included on that list of drugs, so the UN may use a different definition. This doesn't affect the importance or conclusions of this study, but the wording should be changed.

      We agree and are now following the WHO description of cannabis (https://www.who.int/teams/mental-health-and-substance-use/alcohol-drugs-and-addictive-behaviours/drugs-psychoactive/cannabis) by referring to it as the “most widely used illicit drug in the world”. (Line 44).

      1. It would be informative to use your RNA-seq data to examine the expression of receptors for ∆9-THC such as CB1, CB2, and GPR55. CB1 might be the main one, but I am curious to see if others are present.

      We have explored the protein expression of several cannabinoid receptors, including CB2, GPR18, GPR55 and TRPV1 (Bannister et al., 2019). These proteins, except TRPV1, were lowly expressed in mouse embryonic stem cells compared to the positive control (mouse brain extract, see Author response image 1). Furthermore, our experiment with Rimonabant showed that the proliferative effects of ∆9-THC are mediated through CB1.

      Author response image 1.

      Cannabinoid receptors and non-cannabinoid receptors protein expression in mouse embryonic stem cells.

      1. Make sure to report exact p-values. You usually do this, but there are a few places where it says p<0.0001. Also, report whether T-tests assumed equal variance (Student's) or unequal variance (Welch's). [In general, it's better to use unequal variance, unless there is good reason to assume equal variance.]

      Prism, which was used for statistical analyses, only reports p-values to four decimal places. For all p-values that were p<0.0001, the exact decimals were calculated in Excel using the “=T.DIST.2T(t, df)” function, where the Student’s distribution and the number of degrees of freedom computed by Prism were inputted. Homoscedasticity was confirmed for all statistical analyses in Prism.

      1. Figure 2A: An uncropped gel image should be provided as supplementary data. Additionally, show positive and negative controls (from cells known to either express CB1 or not express CB1)

      The uncropped gel image is presented in Author response image 2. The antibody was validated on mouse brain extracts as a positive control as shown in Figure 1.

      Author response image 2.

      Uncropped gel corresponding to Fig. 2A where an anti-CB1 antibody was used.

      1. Figure 6B: Please show a representative gating scheme for flow cytometry (including controls) as supplementary data. Also, was a live/dead stain used? What controls were used for compensation? These details should be reported.

      The gating strategy is presented in Supplementary Figure 11. The Material and Methods section has also been expanded.

      1. As far as I can tell, you only used female mESCs. It would be good to test the effects on male mESCs as well since these have some differences due to differences in X-linked gene expression (female mESCs have two active X chromosomes). I understand that you might not have a male BV:SC reporter line, so it would be acceptable to omit the mPGCLC experiments on male cells.

      We have tested the 10nM-100µM dose range in the male R8 mESCs (Supplementary Figure 3). Similar results as with the female H18 cells were observed. Accordingly, PGCLCs induction was increased when R8 ESCs + EpiLCs were exposed to 100nM of ∆9-THC (Supplementary Figure 12). This is in line with ∆9-THC impact on fundamentally conserved metabolic pathways across species and sex, although it should be noted that one representative model of each sex is not sufficient to exclude sex-specific effects.

      Reviewer #2 (Public Review):

      In the study conducted by Verdikt et al, the authors employed mouse Embryonic Stem Cells (ESCs) and in vitro differentiation techniques to demonstrate that exposure to cannabis, specifically Δ9-tetrahydrocannabinol (Δ9-THC), could potentially influence early embryonic development. Δ9-THC was found to augment the proliferation of naïve mouse ESCs, but not formative Epiblast-like Cells (EpiLCs). This enhanced proliferation relies on binding to the CB1 receptor. Moreover, Δ9-THC exposure was noted to boost glycolytic rates and anabolic capabilities in mESCs. The metabolic adaptations brought on by Δ9-THC exposure persisted during differentiation into Primordial Germ Cell-Like Cells (PGCLCs), even when direct exposure ceased, and correlated with a shift in their transcriptional profile. This study provides the first comprehensive molecular assessment of the effects of Δ9-THC exposure on mouse ESCs and their early derivatives. The manuscript underscores the potential ramifications of cannabis exposure on early embryonic development and pluripotent stem cells. However, it is important to note the limitations of this study: firstly, all experiments were conducted in vitro, and secondly, the study lacks analogous experiments in human models.

      Reviewer #2 (Recommendations For The Authors):

      1. EpiLCs, characterized as formative pluripotent stem cells rather than primed ones, are a transient population during ESC differentiation. The authors should consider using EpiSCs and/or formative-like PSCs (Yu et al., Cell Stem Cell, 2021; Kinoshita et al., Cell Stem Cell, 2021), and amend their references to EpiLCs as "formative".

      Indeed, EpiLCs are a transient pluripotent stem cell population that is “functionally distinct from both naïve ESCs and EpiSCs” and “enriched in formative phase cells related to pre-streak epiblast” (Kinoshita et al., Cell Stem Cell, 2021). Here, we used the differentiation system developed by M. Saitou and colleagues to derive PGCLCs (Hayashi et al, 2011). Since EpiSCs are refractory to PGCLCs induction (Hayashi et al, 2011), we used the germline-competent EpiLCs and took advantage of a well-established differentiation system to derive mouse PGCLCs. Most authors, however, agree that in terms of epigenetic and metabolic profiles, mouse EpiLCs represent a primed pluripotent state. We have added that PGCs arise in vivo “from formative pluripotent cells in the epiblast” on lines 85-86.

      1. Does the administration of Δ9-THC, at concentrations from 10nM to 1uM, alter the cell cycle profiles of ESCs?

      The proliferation of ESCs was associated with changes in the cell cycle, as presented in the new Supplementary Figure 2, which we discuss in lines 118-123.

      1. Could Δ9-THC treatment influence the differentiation dynamics from ESCs to EpiLCs?

      No significant changes were observed in the pluripotency markers associated with ESCs and EpiLCs (Supplementary Figure 9). We have added this information in lines 277-279.

      1. The authors should consider developing knockout models of cannabinoid receptors in ESCs and EpiLCs (or EpiSCs and formative-like PSCs) for control purposes.

      This is an excellent suggestion. Due to time and resource constraints, however, we focused our mechanistic investigation of the role of CB1 on the use of rimonabant which revealed a reversal of Δ9-THC-induced proliferation at 100nM.

      1. Lines 134-136: "Importantly, SR141716 pre-treatment, while not affecting cell viability, led to a reduced cell count compared to the control, indicating a fundamental role for CB1 in promoting proliferation." Regarding Figure 2D, does the Rimonabant "+" in the "mock" group represent treatment with Rimonabant only? If that's the case, there appears to be no difference from the Rimonabant "-" mock. The authors should present results for Rimonabant-only treatment.

      To be able to compare the effects +/- Rimonabant and as stated in the figure legend, each condition was normalized to its own control (mock with, or without Rimonabant). Author response image 3 is the unnormalized data showing the same effects of Δ9-THC and Rimonabant on cell number.

      Author response image 3.

      Unnormalized data corresponding to the Figure 2D.

      1. In Figure 3, both ESCs and EpiLCs show a significant decrease in oxygen consumption and glycolysis at a 10uM concentration. Do these conditions slow cell growth? BrdU incorporation experiments (Figure 1) seem to contradict this. With compromised bioenergetics at this concentration, the authors should discuss why cell growth appears unaffected.

      Indeed, we believe that cell growth is progressively restricted upon increasing doses of ∆9-THC (consider Supplementary Figure 2). In addition, oxygen consumption and glycolysis can be decoupled from cellular proliferation, especially considering the lower time ranges we are working with (44-48h).

      1. Beyond Δ9-THC exposure prior to PGCLCs induction, it would be also interesting to explore the effects of Δ9-THC on PGCLCs during their differentiation.

      We agree with the Reviewer. Our aim was to study whether exposure prior to differentiation could have an impact, and if so, what are the mediators of this impact. Full exposure during differentiation is another exposure paradigm that is relevant but would not have allowed us to show the metabolic memory of ∆9-THC exposure. Future work, however, will be dedicated to analyzing the effect of continuous exposure through differentiation.

      1. As PGC differentiation involves global epigenetic changes, it would be interesting to investigate how Δ9-THC treatment at the ESCs/EpiLCs stage may influence PGCLCs' transcriptomes.

      We also agree with the Reviewer. While this paper was not primarily focused on Δ9-THC’s epigenetic effects, we have explored the impact of Δ9-THC on more than 100 epigenetic modifiers in our RNA-seq datasets. These results are shown in Supplementary Table 1 and Supplementary Figure 10 and discussed in lines 301-316.

      1. Lines 407-408: The authors should exercise caution when suggesting "potentially adverse consequences" based solely on moderate changes in PGCLCs transcriptomes.

      We agree and have modified the sentence as follows: “Our results thus show that exposure to Δ9-THC prior to specification affects embryonic germ cells’ transcriptome and metabolome. This in turn could have adverse consequences on cell-cell adhesion with an impact on PGC normal development in vivo.“

      1. Investigating the possible impacts of Δ9-THC exposure on cultured mouse blastocysts, implantation, post-implantation development, and fertility could yield intriguing findings.

      We thank the Reviewer for this comment. We have amended our discussion to include these points in the last paragraph.

      1. Given that naïve human PSCs and human PGCLCs differentiation protocols have been established, the authors should consider carrying out parallel experiments in human models.

      We have performed Δ9-THC exposures in hESCs (Supplementary Figure 4 and Supplementary Figure 5), showing that Δ9-THC alters the cell number and general metabolism of these cells. We present these results in light of the differences in metabolism between mouse and human embryonic stem cells on lines 135-141 and 185-188. Implications of these results are discussed in lines 474-486.

      Reviewer #3 (Public Review):

      Verdikt et al. focused on the influence of Δ9-THC, the most abundant phytocannabinoid, on early embryonic processes. The authors chose an in vitro differentiation system as a model and compared the proliferation rate, metabolic status, and transcriptional level in ESCs, exposure to Δ9-THC. They also evaluated the change of metabolism and transcriptome in PGCLCs derived from Δ9-THC-exposed cells. All the methods in this paper do not involve the differentiation of ESCs to lineage-specific cells. So the results cannot demonstrate the impact of Δ9-THC on preimplantation developmental stages. In brief, the authors want to explore the impact of Δ9-THC on preimplantation developmental stages, but they only detected the change in ESCs and PGCLCs derived from ESCs, exposure to Δ9-THC, which showed the molecular characterization of the impact of Δ9-THC exposure on ESCs and PGCLCs.

      Reviewer #3 (Recommendations For The Authors):

      1. To demonstrate the impact of Δ9-THC on preimplantation developmental stages, ESCs are an appropriate system. They have the ability to differentiate three lineage-specific cells. The authors should perform differentiation experiments under Δ9-THC-exposure, and detect the influence of Δ9-THC on the differentiation capacity of ESCs, more than just differentiate to PGCLCs.

      We apologize for the lack of clarity in our introduction. We specifically looked at the developmental trajectory of PGCs because of the sensitivity of these cells to environmental insults and their potential contribution to transgenerational inheritance. We have expanded on these points in our introduction and discussion sections (lines 89-91 and 474-486). Because our data shows the relevance of Δ9-THC-mediated metabolic rewiring in ESCs subsisting across differentiation, we agree that differentiation towards other systems (neuroprogenitors, for instance) would yield interesting data, albeit beyond the scope of the present study.

      1. Epigenetics are important to mammalian development. The authors only detect the change after Δ9-THC-exposure on the transcriptome level. How about methylation landscape changes in the Δ9-THC-exposure ESCs?

      We have explored the impact of Δ9-THC on more than 100 epigenetic modifiers in our RNA-seq datasets. These results are shown in Supplementary Table 1 and Supplementary Figure 10, discussed in lines 301-316. While indeed the changes in DNA methylation profiles appear relevant in the context of Δ9-THC exposure (because of Tet2 increased expression in EpiLCs), we highlight that other epigenetic marks (histone acetylation, methylation or ubiquitination) might be relevant for future studies.

      1. In the abstract, the authors claimed that "the results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on preimplantation developmental stages." But they do not show whether the Δ9-THC affects the fetus through the maternal-fetal interface.

      We have addressed the need for increased clarity and have modified the sentence as follows: “These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of the germline development.”

      1. To explore the impact of cannabis on pregnant women, the human ESCs may be a more proper system, due to the different pluripotency between human ESCs and mouse ESCs.

      We have performed Δ9-THC exposures in hESCs (Supplementary Figure 4 and Supplementary Figure 5). These preliminary results show that Δ9-THC exposure negatively impacts the cell number and general metabolism of hESCs. With the existence of differentiation systems for hPGCLCs, future studies will need to assess whether Δ9-THC-mediated metabolic remodelling is also carried through differentiation in human systems. We discuss these points in the last paragraph of our discussion section.

      1. All the experiments are performed in vitro, and the authors should validate their results in vivo, at least a Δ9-THC-exposure pregnant mouse model.

      Our work is the first of its kind to show that exposure to a drug of abuse can alter the normal development of the embryonic germline. We agree with the Reviewer that to demonstrate transgenerational inheritance of the effects reported here, future experiments in an in vivo mouse model should be conducted. The metabolic remodeling observed upon cannabis exposure could also be directly studied in a human context, although these experiments would be beyond the scope of the present study. For instance, changes in glycolysis may be detected in pregnant women using cannabis, or directly measured in follicular fluid in a similar manner as done by Fuchs-Weizman and colleagues (Fuchs-Weizman et al., 2021). We hope that our work can provide the foundation to inform such in vivo studies.

    1. Author Response

      The following is the authors’ response to the original reviews.

      necessary clarifications on some of the reviewers' suggestions.

      Reviewer #1 (Public Review):

      Weaknesses:

      • This is a pilot study with only 24 cases and 24 controls. Because the human microbiota entails individual variability, this work should be confirmed with a higher sample size to achieve enough statistical power.

      Thank you for your suggestion. Unlike the high sparsity of 16s rRNA, the data density of metagenomic data is higher. Based on the experience of previous research, the sample size used this time can basically meet the requirements. However, your suggestion is very valuable, increasing the sample size allows better in-depth analysis. Due to limitations of objective factors, it is difficult for us to continue to increase the sample size in this study.

      • The authors do not report here the use of blank controls. The use of this type of control is important to "subtract" the potential background from plasticware, buffer or reagents from the real signal. Lack of controls may lead to microbiome artefacts in the results. This can be seen in the results presented where the authors report some bacterial contaminants (Agrobacterium tumefaciensis, Aequorivita lutea, Chitinophagaceae, Marinobacter vinifirmus, etc) as part of the most common bacteria found in cervical samples.

      Thank you for your suggestion. Applying blank controls in low biomass areas can effectively avoid contamination caused by the environment or kits. This opinion is consistent with that published by Raphael Eisenhofer et al. in Trends in Microbiology. When designing this study, we considered that this study described a biomass-rich site, and the abundance of dominant species was much higher than that of the possible 'kitome', so we did not set a blank control. On the other hand, our main discussion object in this study is high-abundance species, and the species filtering threshold for some analyzes was raised to 50%. Therefore, we believe that the absence of the blank control has little effect on the conclusions of this study. However, your opinion is spot on. Failure to set up a negative control will affect our future research on rare species. We will add a description in the Limitations section of the Discussion section.

      • Samples used for this study were collected from the cervix. Why not collect samples from the uterine cavity and isthmocele fluid (for cases)? In their previous paper using samples from the same research protocol ((IRB no. 2019ZSLYEC-005S) they used endometrial tissue from the patients, so access to the uterine cavity was guaranteed.

      Thank you for your suggestion. In Author response image 1 we show the approximate location of our cervical swab sampling. There are two main reasons for choosing cervical swabs:

      1) The adsorption of swabs allows us to obtain sufficient nucleic acid for high-depth sequencing, while the isthmocele fluid varies greatly among patients, which will introduce unnecessary batch effects.

      2) Since the female reproductive tract is a continuous whole, our sampling location is close to the lesion in the cervix, which can be effectively studied. On the other hand, the microbial biomass of the endometrium is probably two orders of magnitude lower than that of the cervix, and it is difficult to avoid contamination of the lower genital tract when sampling.

      Based on the above reasons, we selected cervical swabs for our microbial data.

      Author response image 1.

      • Through the use of shotgun genomics, results from all the genomes of the organisms present in the sample are obtained. However, the authors have only used the metagenomic data to infer the taxonomical annotation of fungi and bacteria.

      Thank you for your suggestion. The advantage of metagenomics is that it can obtain all the nucleic acid information of the entire environment. However, in the study of the female reproductive tract, the database of viruses and archaea is still immature, in order to ensure the accuracy of the results, we did not conduct the study. Looking forward to the emergence of a mature database in the future.

      Reviewer #1 (Recommendations For The Authors):

      • It would be interesting to use another series of functional data coming from the metagenomic analyses (not only taxonomic) to expand and reinforce the results presented.

      Thank you for your suggestion. We have dissected the functional data of microbiota in the article.

      • The authors have previously published the 16S rRNA sequencing and transcriptomic analysis of the same set of patients. It would be nice to see the integration of all the datasets produced.

      Thank you for your suggestion. There is no doubt that integrating all the data will have more dimensional results. In our previous study we focused on microbe-host interactions. However, there is an unanswered question: What are the characteristics of the regulatory network within microbiota? Therefore, we answered this question in this study, exploring the complex interaction processes within microbial communities. In addition to direct effects, interactions between microbiota may also occur through special metabolite experiments. Therefore, we introduced the analysis of the untargeted metabolome. However, 16s rRNA can only provide bacterial information, so we did not integrate the data. In addition, the transcriptome provides host information and is not the focus of this study. However, your suggestion is very valuable, and we will integrate all the data in the next study on the exploration of treatment methods.

      Reviewer #2 (Public Review):

      Weaknesses: Methodological descriptions are minimal.

      Some example:

      *The CON group (line 147) has not been defined. I supposed it is the control group.

      • There are no statistics related to shotgun sequencing. How many reads have been sequenced? How many have been removed from the host? How many are left to study bacteria and fungi? Are these reads proportional among the 48 samples? If not, what method has been used to normalise the data?

      • ggClusterNet has numerous algorithms to better display the modules of the microbiome network. Which one has been used?

      Thank you for your suggestion. We have added details to the method.

      Reviewer #2 (Recommendations For The Authors):

      I think the author should take into account the points described in the "Weaknesses" section. The lack of detail extends to almost all the analyses that have been included in the manuscript. Although the results are sound, I think it is important to understand what has been analysed and how it has been analysed. It is important that all work is reproducible and this requires vital information.

      For example, what parameters have been used for bowtie2? has a local analysis been used? or end-to-end ? Some parameters like --very-sensitive are important for this kind of analysis. You can also use specific programs like kneaddata.

      The Raw data preprocessing section should be more detailed.

      The same with the "Taxa and functional annotation" section, how have the data been normalised? has any Zero-Inflated Gamma probabilistic model algorithm been taken into account? How were the 0 (no species detected) in the shallow samples treated?

      Which algorithms have been used for LEfSe ? Kluskal-Wallis->(Wilcoxon)->LDA ?

      Which p-value has been used as cut-off ? this p-value has been corrected for multiple testing?

      • Information on ggClusterNet should be included and explained.

      The first section of the results and Table 1 should be in the Materials and Methods.

      Thank you for your suggestion. We have added details to the method.

      In the fungi section, it is mentioned that 431 species have been found. They should be included in a supplementary table.

      How many bacteria were found? Please include them also in a supplementary table.

      Thank you for your suggestion. We have added the corresponding table.

      Reviewer #3 (Public Review):

      Major

      1. Smoke or drink conditions, as well as diseases like hypertension and diabetes are important factors that could influence the metabolism of the host, thus the authors should add them in the exclusion criteria in the Methods.

      Thanks to reviewer #3 for professional comments. We have made corresponding additions in the method section. We also followed this standard when recruiting subjects.

      1. The sample size of this study is not large enough to draw a convincing conclusion.

      Thank you for your suggestion. Unlike the high sparsity of 16s rRNA, the data density of metagenomic data is higher. Based on the experience of previous research, the sample size used this time can basically meet the requirements. However, your suggestion is very valuable, increasing the sample size allows better in-depth analysis. Due to limitations of objective factors, it is difficult for us to continue to increase the sample size in this study.

      Reviewer #3 (Recommendations For The Authors):

      Please recruit more samples.

      In addition, there are many formatting and grammatical mistakes in the manuscript.

      Minor

      1. In Line 24-25 of the "Composition and characteristics of fungal communities", the format of "Goyaglycoside A and Janthitrem E." shouldn't be italic.

      2. In Line 126 of the "Metabolite detection using liquid chromatography (LC) and mass spectrometry (MS)", the "10 ul" should be changed to "Ten ul". Beginning with arabic numerals in a sentence should be avoided.

      3. In Line 170 of the "Composition and characteristics of bacterial communities", the "162 differential species" should be "One hundred and sixty-two differential species".

      4. In Line 187 of the "Composition and characteristics of fungal communities", the "42 differential" should be "Forty-two differential".

      Thanks to reviewer #3 for professional comments. We have completely revised the language of the article.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We would like to extend our warmest thanks to the reviewers for their constructive comments and strong support for our study.

      2. Point-by-point description of the revisions

      Reviewer #1:

      Table

      1. It would be nice to have a table of isoform, dose, promoter, enhancer and other conditions tested and the brief summary of phenotype as Table.

      We thank the reviewer for this valuable suggestion and have now included a summary Table (Table 1) cited in the last result section.

      Discussion

      1. This experiment was done on knockout condition but in real patient different form of mutant protein will exist in retinal tissue. Authors indicated that co‐expression of short and long form of FAM161A worked better to rescue function. How would authors cope with interfering endogenous mutant protein in real patients?

      We thank the reviewer for raising this interesting point. Most mutations described so far are nonsense or frameshift mutations common to both long and short isoforms which, consequently, are not present at the protein level (Beryozkin et al 2020, doi.org/10.1038/s41598-020-72028-0, Matsevich et al 2022, doi.org/10.1016/j.xops.2022.100229). Thus, we don’t expect to have an imbalance between the remaining functional alleles and the therapeutic ones. However, we cannot exclude the discovery of missense mutations and the effect of such allele would have to be molecularly evaluated to determine if gene replacement is limited for this specific condition. This question could be assessed in cellular models by co-expression of both mutated and WT-tagged proteins or in organoid models.

      1. Related to the first question, the expression of these retinal structural proteins will be different in mice and human. How would authors optimize the vector for human patient gene therapy?

      Aware that the 60% homology between the human and mouse protein could cause important limitations for the evaluation of the vector in the mouse model, we are continuing the validation of our vectors in human retina organoïds. We plan to test both the reliable localization of the human isoforms in WT organoid and the rescue of structural photoreceptor defects of FAM161A-deficient human organoids. In parallel, vector-derived expression will also be validated in non-human primates.

      Reviewer #2:

      Scotopic and photopic ERG were performed to study retinal function. However, mouse behavior tests such as optomotor response should be employed to confirm vision restoration.

      In our hand, we didn’t notice a significant modification of the optomotor response between 4 and 16 weeks (for figure on visual acuity changes with age in Fam161atmb/tmb mice (n=6-9), see uploaded word document), and consequently of the estimated visual acuity, in Fam161atmb/tmb mice at 3.5 months corresponding to the endpoint of our study (see figure below). In a separate study to this work, we are thus conducting a follow-up long term gene therapy study to be able to complete the functional analysis of the gene therapy rescue with the optomotor response at age with significant decreased visual acuity in untreated mice compared to WT. We will have to wait at least 6 months to expect to see a difference between groups.

      The immunostaining in Figure 3 has some noise. Filtering the blocking solution before use could improve the quality of the staining.

      We thank the reviewer for this suggestion. The blocking solution was already filtered and the limited success of the mouse FAM161A staining is due to the imperfect recognition of anti-human FAM161A antibodies to the mouse protein.

      In Figure 5f, the data of wildtype mice should be included for comparison.

      As noted by reviewer 3, in Fig5 F, the plain gray horizontal line surrounded by the 2 dotted ones are referring to the mean +/- SEM of the WT value respectively. We added “WT” on the right of the graph to highlight the plain line.

      The cited paper, such as 'Garafalo AV, Cideciyan AV, Heon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, and Jacobson SG. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res. 2020;77(100827),' should be an original research paper, not a review article.

      As noted by reviewer 3, we think appropriate to cite this review which is a complete reference to the different gene therapy approaches developed for inherited retinal diseases.

      Major:

      Fig 1A‐B. Do hTERT‐RPE1 cells endogenously express FAM161A? This set of images lacks a negative control (i.e., no transfected RPE1 cells). Western blot of FAM161A is recommended, similar to Fig 1C.

      We previously showed that hTERT-RPE1 cells express FAM161A in the basal body of the centriole (Di Gioia 2015), but we recognized that it is not apparent in Figure 1A and B, probably due to a limitation of the antibody reactivity which labeled only overexpressed proteins. We thus performed additional experiments using the human ARPE19 cell line to demonstrate endogenous FAM161A expression in untransfected cells and to perform a Western blot from human transfected cells. We observed that in untransfected cells FAM161A labeling is weak and is only revealed in the centriole labeled by centrin after a long exposure time (Figure 1A). When FAM161A HS or HL is overexpressed the FAM161A labeling is present in the cell body, very strong, and is observed with short exposure time (Figure 1A). We also extracted protein from untransfected and HS- or HL-transfected ARPE-19 cells to identify the FAM161A protein by Western blot (Figure 1B). Thus, we added the negative control and a western blot from human cells to answer reviewer comments.

      Fig 1C. The authors noted in the discussion that HS isoform is more abundant than HL isoform from human retinal extract. Although this is from 661W, a mouse photoreceptor cell line, it seems this is aligned with the notion. To echo with the last comment, I am curious to see if under the same transfection, the HS isoform is preferentially expressed in hTERT‐RPE1 cells.

      We do not think that transfection experiment is sufficient to prove that HS is preferentially express than HL. Even if we transfect the same amount of DNA, we would need an internal control for transfection to allow relative quantification of the protein expression after transfection. However, we performed an additional experiment in human RPE cells using the ARPE-19 cell line which is more efficiently transfected than hTERT-RPE1 in our hands. As shown in Figure 1B, we observed again more abundant expression of HS in these human transfected cells. However, we cannot exclude difference in transfection efficiency between HL and HS conditions that could explain the difference in the final amount of FAM161A protein.

      Fig 3 and Fig 5: low mag WT images of FAM161A are the same. But higher mag images (presumably selected from ROIs in low mag) are not the same. Please make sure of no duplication images.

      We are facing technical limits with the labeling of the mouse Fam161A. The antibodies available have limited affinity for the mouse Fam161A protein. While we were able to perform Uex-M from mouse tissue samples (flatmount retina) to study Fam161A expression in the connecting cilium (Mercey et al PLoS Biol 2022), it was more challenging to obtained low magnification picture from mouse retina sections. We propose to show in Figure 3 mouse Fam161A expression obtained from retina section and keep the low magnification from a flatmount for the figure 5. Thus, there will be no duplication of images as recommended by the reviewer.

      Fig 4H. HS+HL combo, and HL alone, showed almost a polarized quantification, quite variable. Can the authors speculate the reason?

      Despite the fact that injections are targeting similar retinal region in treated animals, there is still variation in the localization and extend of the gene transfer due to the surgical success. Indeed, the area of retinal detachment is hard to control in the mouse as of the quality of re-attachment. Moreover, the effective dose may lightly vary when some viral particles might be loss due to reflux. One would need to treat a larger number of eyes to really conclude that HS alone would be less variable than HL alone or HS+HL. However, we could also speculate that HS+HL and HL treatments being more efficient to rescue connecting cilium length compared to HS alone (Fig 5F) could, in the best injected eyes, have a better ONL thickness rescue than the limited ONL rescue induced by HS treatment.

      Also can the authors comment on if there is any associated notable inflammation especially in high tier dosage (10^11 GC)?

      We didn’t follow inflammation directly by fundus examination or OCT imaging following injection. However, despite the high dose used in our successful conditions (10E11 GC/eye), we didn’t notice any differences in the general mouse welfare after injection compare to lower doses. Systemic administration of Rimadyl (carprofen) was however adapted to each mouse during the 24 hrs post-surgery. In comparison to other groups with lower vector doses, no particular emergence of inflammatory cells or damages were observed by histology.

      Can the authors comment on the difference in the injection time, PN14‐15 in this study vs. PN24‐29 in their previous study? Have the authors attempted to treat the older mice with the optimized vector?

      The gene therapy study using the mouse cDNA was performed before establishing the time course of connecting cilia disruption in the Fam161atmb/tmb mouse (Mercey et al. 2022). Following the observation that CC develop similarly to healthy animal up to postnatal day 10, we decided to treat the mouse earlier for the second gene therapy study using human proteins. Nonetheless, the action of the vector occurred when the cilium is already disorganized as we expect expression of the WT Fam161A from 2 weeks post-injection. We are now testing treatments at different ages, including PN28, to determine the therapeutic window and if the optimal conditions (dose, ratio) may vary with the age at treatment.

      Can the authors speculate on why IRBP‐GRK1 human FAM161A did not realize functional rescue (Fig 2) as it did with mouse FAM161A (previous work)?

      Our hypothesis to explain the absence of functional rescue following IRBP-GRK1 vector injection is that the difference in human protein distribution compared to the mouse protein in the mouse retina could impact the function of the photoreceptor by interfering with physiological process such as transport. As mentioned in our discussion: “overexpression of these proteins could saturate the transport system impacting the cellular processes”.

      As mentioned in the discussion, there is only 60% of homology between human and mouse proteins which could induce a major impact on protein localization and function. Post-translational modification which are also known to be crucial for modulating connecting cilium addressing (Rao et al. 2016) could also differ and impact both human protein distribution and function (for example 3 cysteines in the human protein sequence could be palmytoylated (C359, C366, C367) and are absent in the mouse sequence). Moreover, the exact role of the human long and short isoforms are unknown and their adaptability to the mouse system not yet identified. Further studies should be performed to understand the consequence of such differences on the function and to unravel the function of both long and short human isoforms in the retina.

      Minor:

      While the manuscript is overall well communicated, there are areas requiring further proofread. For example, in the Abstract section, "In 15 years" should be "For 15 years", "14‐days FAM161atm1b/tm1b mice" should be "14‐day old". In the Introduction, "... suggesting that protein miss‐localization" should be "mis‐localization". In the last paragraph before Discussion, "(iii) the restauration of CC..." should be "restoration", etc.

      We corrected these errors and carefully proofread the whole manuscript to avoid typing mistakes.

      I recommend the authors to use a table to summarize different promoters, titers and key findings (e.g., expression level, localization) used and refer back to each figure.

      We thank the reviewer for this valuable suggestion and have now included a summary Table (Table 1) cited in the last result section.

      Scale bars on all figures, or every set of images.

      We added scale bars on figures containing microscopic images.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This manuscript led by Arsenijevic and Chang is an important technical development to the ocular gene therapy space, and touches on the important aspect of structural protein restoration by gene therapy, that is, the precise control of localization and subsequent functional realization. Overall the manuscript is well written, and the experiments are technically sound, with limitations acknowledged.

      To briefly summarize, the authors wanted to understand precise control of FAM161A expression and connecting cilium (CC) restoration. They built on, and extended their previous work that showed limited structural and functional rescue by photoreceptor expression of the longer isoform of mouse FAM161A in Fam161a KO driven by IRBP-GRK1 promoter. In the current work, the authors experimented with delivering human ortholog of FAM161A cDNA, short, or long, or both isoforms using newly devised, relatively weak promoters. The main readouts include retinal morphology (e.g., ONL thickness), ERG, and protein localization by IHC (e.g., correct location, no ectopic expression). It is worth noting that the authors highlighted the use of expansion microscopy technology to examine the connecting cilium (CC) organization and protein expression, which may minimize the use of TEM for CC structure determination and enable acceleration.

      My enthusiasm for recommending it for publication is high. Nonetheless, I have the following comments, hoping the authors could address to further improve the manuscript.

      Major:

      Fig 1A-B. Do hTERT-RPE1 cells endogenously express FAM161A? This set of images lacks a negative control (i.e., no transfected RPE1 cells). Western blot of FAM161A is recommended, similar to Fig 1C.

      Fig 1C. The authors noted in the discussion that HS isoform is more abundant than HL isoform from human retinal extract. Although this is from 661W, a mouse photoreceptor cell line, it seems this is aligned with the notion. To echo with the last comment, I am curious to see if under the same transfection, the HS isoform is preferentially expressed in hTERT-RPE1 cells..

      Fig 3 and Fig 5: low mag WT images of FAM161A are the same. But higher mag images (presumably selected from ROIs in low mag) are not the same. Please make sure of no duplication images.

      Fig 4H. HS+HL combo, and HL alone, showed almost a polarized quantification, quite variable. Can the authors speculate the reason? Also can the authors comment on if there is any associated notable inflammation especially in high tier dosage (10^11 GC)?

      Can the authors comment on the difference in the injection time, PN14-15 in this study vs. PN24-29 in their previous study? Have the authors attempted to treat the older mice with the optimized vector?

      Can the authors speculate on why IRBP-GRK1 human FAM161A did not realize functional rescue (Fig 2) as it did with mouse FAM161A (previous work)?

      Minor:

      While the manuscript is overall well communicated, there are areas requiring further proofread. For example, in the Abstract section, "In 15 years" should be "For 15 years", "14-days FAM161atm1b/tm1b mice" should be "14-day old". In the Introduction, "... suggesting that protein miss-localization" should be "mis-localization". In the last paragraph before Discussion, "(iii) the restauration of CC..." should be "restoration", etc.

      I recommend the authors to use a table to summarize different promoters, titers and key findings (e.g., expression level, localization) used and refer back to each figure.<br /> Scale bars on all figures, or every set of images.

      Referees cross-commenting

      To reviewer #2, Fig5f - WT data was shown as the gray horizontal line. I had the same question but then saw they noted in the legends. I think it is fine to cite the PRER review article to make their point.

      I agree with the comments addressed by Reviewer #1 and am glad we both raise the point of using table for summarization.

      Significance

      This well-drafted paper represents a technical development that could supplement current gene therapy strategies to certain ciliopathies. In this particular case, the authors chose FAM161A, a disease causal gene to retinitis pigmentosa-28 and encodes for a microtubule-associated ciliary protein involved in organizing the connecting cilium in photoreceptors. Of importance, the authors devised novel promoters to drive gene expression and took advantage of expansion microscopy for quickly examining cilia proteins and structures. Conceptually, the techniques developed in this manuscript could be applicable to several other inherited retinal dystrophies that share similar disease mechanisms.

    1. Assurhing an aggregate model of groups, some people think that socialgroups are invidious fictions, essentializing arbitrary attributes. From this p�intof view problems of prejudice, stereotyping, discr imination, and exclus10nexist because some people mistakenly believe that group identification makesa difference to the capacities, temperament, or v irtues of group members.This individualist conception of persons and their relation to one anothertends to identify oppression with group identification. Oppression, on thisview, is something that happens to people when they are classified in groups.Because othei"s identify them as a group, they are excluded and despised. Eliminating oppression thus requires eliminating groups. People should be treatedas individuals, not as members of groups, and allowed to form their lives freelywithout stereoty pes or group norms.This book takes issue with that position. W hile I agree that individualsshould be free to pursue life plans in their own way, it is foolish to den)'. thereality of groups. Despite the modern myth of a decline of parochial attachments and ascribed identities, in modern society group differentiation remains endemic. As both markets and social administration increase the web ofsocial interdependency on a world scale, and as more people encounter oneanother as strangers in cities and states, people retain and renew ethnic, locale,age, sex, and occupational group identifications, and form new ones in theptocesses of encounter (cf. Ross, 1980, p. 19; Rothschild, 1981, p. 130). Evenwhen they belong to oppressed groups, people's group identifications areoften important to them, and they often feel a special affinity for othersin their group. I believe that group differentiation is both an inevitable anda desirable aspect of modern social processes. Social justice, I shall arguein later chapters, requires not the melting away of differences, but institutionsthat promote reproduction of and respect for group •differences withoutoppression.Though some groups have come to be formed out of oppression, and relations of privilege and oppression structure the interactions between mahygroups; group differentiation is not in itself oppressive. Not all groups are oppressed. In the United States Roman Catholics are a specific social group,with distinct practices and affinities with one another, but they are no longer:in oppressed group. W hether a group is oppressed depends on whether it issubject to one or more of the five conditions I shall discuss below.The view that groups are fictions does carry an important antideterminist or antiessentialist intuition. Oppression has often been perpetrated by aconceptualization of group difference in terms of unalterable essential naturesthat determine what group members deserve or are capable of, and that exclude groups so entirely from one another that they have no similarities oroverlapping attributes. To assert that it is possible to have social group difference without oppression, it is necessary to conceptualize groups in a muchmore relational and fluid fashion.Five Faces of Oppression ■ 4SAlthoug� social processes of affinity and differentiation produce groups,they do not give groups a substantive essence. There is no common nature thatmembers o� a group share. As aspects of a process, moreover, groups are fluid;�hey come mto bemg and may fade away. Homosexual practices have existedm many societies and historical periods, for example. Gay men or lesbians have?een identi�ed as specific groups and so identified themselves, however, onlym the �ent1eth century (see Ferguson, 1989, chap. 9; Altman, 1981).Arismg from social relations and processes, finally, group differences usuall� cut acr�ss one another. Especially in a large, complex, and highly differentiated society, social groups are not themselves homogeneous, but mirror intheir �wn dif1:erentiations many of the other groups in the wider society. InA�erican society. toda_y, for examp;e, Blacks are not a simple, unified groupwith a common life. Like other racial and ethnic groups, they are differentia�ed by age, gender, class, sexuality, region, and nationality, any of which in agiven context may become a salient group identity.. Thi� v ie:" of group differentiation as multiple, cross-cutting, fluid, andshiftmg implies another critique of the model of the autonomous, unified self.In complex, highly differentiated societies like our own, all persons have multiple group _identifications. The culture, perspective, and relations of privilegea�d oppression of.these various groups, moreover, may not cohere. Thus individual perso�s, as constituted partly by their group affinities and relations,cannot be urufied, themselves are heterogeneous and not necessarily coherent.THE FACES OF OPPRESSIONExploitationThe central function of Marx's theory of exploitation is to explain how classst_ru_ctur.e can exist in the absence of legally and normatively sanctioned classd1stmct10�s. In prec�pitalist societies domination is overt and accomplishedt�rough directly ?ohtical means. In both slave society and feudal society theri�h_t to appropriate the product of the labor of others partly defines classprivilege, and these societies legitimate class distinctions with ideologies ofnatural supenority and inferiority.Capitalis� s?ciety, on the other hand, removes traditional juridically enforced class distmct10ns and promotes a belief in the legal freedom of persons.Workers freely contract with employers and receive a wage; no formal mechanisms of law or custom force them to work for that employer or any employer. Thus the mystery of capitalism arises: when everyone is formally free,how can there be class domination? W hy do class distinctions persist betweenthe wealthy, who own the means of production, and the mass of people, whowork for them? The theory of exploitation answers this question.�rofit, the basis of capitalist power and wealth, is a mystery if we assumethat m the market goods exchange at their values. The labor theory of value35

      The author critiques the view that social groups are invidious fictions, emphasizing the importance of acknowledging group differences without dismissing them as mere aggregates. The passage challenges the individualist conception that oppression is solely linked to group identification, asserting that differentiation is inevitable and desirable in modern society. How does the author's perspective on social groups' fluid and relational nature contribute to rethinking the traditional view that groups are fiction?

    1. Author Response

      The following is the authors’ response to the original reviews.

      Firstly, we must take a moment to express our sincere gratitude to editorial board for allowing this work to be reviewed, and to the peer reviewers for taking the time and effort to review our manuscript. The reviews are thoughtful and reflect the careful work of scientists who undoubtedly have many things on their schedule. We cannot express our gratitude enough. This is not a minor sentiment. We appreciate the engagement.

      Allow us to briefly highlight some of the changes made to the revised manuscript, most on behalf of suggestions made by the reviewers:

      1) A supplementary figure that includes the calculation of drug applicability and variant vulnerability for a different data set–16 alleles of dihydrofolate reductase, and two antifolate compounds used to treat malaria–pyrimethamine and cycloguanil.

      2) New supplementary figures that add depth to the result in Figure 1 (the fitness graphs): we demonstrate how the rank order of alleles changes across drug environments and offer a statistical comparison of the equivalence of these fitness landscapes.

      3) A new subsection that explains our specific method used to measure epistasis.

      4) Improved main text with clarifications, fixed errors, and other addendums.

      5) Improved referencing and citations, in the spirit of better scholarship (now with over 70 references).

      Next, we’ll offer some general comments that we believe apply to several of the reviews, and to the eLife assessment. We have provided the bulk of the responses in some general comments, and in response to the public reviews. We have also included the suggestions and made brief comments to some of the individual recommendations.

      On the completeness of our analysis

      In our response, we’ll address the completeness issue first, as iterations of it appear in several of the reviews, and it seems to be one of the most substantive philosophical critiques of the work (there are virtually no technical corrections, outside of a formatting and grammar fixes, which we are grateful to the reviewers for identifying).

      To begin our response, we will relay that we have now included an analysis of a data set corresponding to mutants of a protein, dihydrofolate reductase (DHFR), from Plasmodium falciparum (a main cause of malaria), across two antifolate drugs (pyrimethamine and ycloguanil). We have also decided to include this new analysis in the supplementary material (see Figure S4).

      Author response image 1.

      Drug applicability and variant vulnerability for 16 alleles of dihydrofolate reductase.

      Here we compute the variant vulnerability and drug applicability metrics for two drugs, pyrimethamine (PYR) and cycloguanil (CYC), both antifolate drugs used to treat malaria. This is a completely different system than the one that is the focus of the submitted paper, for a different biomedical problem (antimalarial resistance), using different drugs, and targets. Further, the new data provide information on both drugs of different kinds, and drug concentrations (as suggested by Reviewer #1; we’ve also added a note about this in the new supplementary material). Note that these data have already been the subject of detailed analyses of epistatic effects, and so we did not include those here, but we do offer that reference:

      ● Ogbunugafor CB. The mutation effect reaction norm (mu-rn) highlights environmentally dependent mutation effects and epistatic interactions. Evolution. 2022 Feb 1;76(s1):37-48.

      ● Diaz-Colunga J, Sanchez A, Ogbunugafor CB. Environmental modulation of global epistasis is governed by effective genetic interactions. bioRxiv. 2022:202211.

      Computing our proposed metrics across different drugs is relatively simple, and we could have populated our paper with suites of similar analyses across data sets of various kinds. Such a paper would, in our view, be spread too thin–the evolution of antifolate resistance and/or antimalarial resistance are enormous problems, with large literatures that warrant focused studies. More generally, as the reviewers doubtlessly understand, simply analyzing more data sets does not make a study stronger, especially one like ours, that is using empirical data to both make a theoretical point about alleles and drugs and offer a metric that others can apply to their own data sets.

      Our approach focused on a data set that allowed us to discuss the biology of a system: a far stronger paper, a far stronger proof-of-concept for a new metric. We will revisit this discussion about the structure of our study. But before doing so, we will elaborate on why the “more is better” tone of the reviews is misguided.

      We also note that study where the data originate (Mira et al. 2015) is focused on a single data set of a single drug-target system. We should also point out that Mira et al. 2015 made a general point about drug concentrations influencing the topography of fitness landscapes, not unlike our general point about metrics used to understand features of alleles and different drugs in antimicrobial systems.

      This isn’t meant to serve as a feeble appeal to authority – just because something happened in one setting doesn’t make it right for another. But other than a nebulous appeal to the fact that things have changed in the 8 years since that study was published, it is difficult to argue why one study system was permissible for other work but is somehow “incomplete” in ours. Double standards can be appropriate when they are justified, but in this case, it hasn’t been made clear, and there is no technical basis for it.

      Our study does what countless other successful ones do: utilizes a biological system to make a general point about some phenomena in the natural world. In our case, we were focused on the need for more evolution-inspired iterations of widely used concepts like druggability. For example, a recent study of epistasis focused on a single set of alleles, across several drugs, not unlike our study:

      ● Lozovsky ER, Daniels RF, Heffernan GD, Jacobus DP, Hartl DL. Relevance of higher-order epistasis in drug resistance. Molecular biology and evolution. 2021 Jan;38(1):142-51.

      Next, we assert that there is a difference between an eagerness to see a new metric applied to many different data sets (a desire we share, and plan on pursuing in the future), and the notion that an analysis is “incomplete” without it. The latter is a more serious charge and suggests that the researcher-authors neglected to properly construct an argument because of gaps in the data. This charge does not apply to our manuscript, at all. And none of the reviewers effectively argued otherwise.

      Our study contains 7 different combinatorially-complete datasets, each composed of 16 alleles (this not including the new analysis of antifolates that now appear in the revision). One can call these datasets “small” or “low-dimensional,” if they choose (we chose to put this front-and-center, in the title). They are, however, both complete and as large or larger than many datasets in similar studies of fitness landscapes:

      ● Knies JL, Cai F, Weinreich DM. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Molecular biology and evolution. 2017 May 1;34(5):1040-54.

      ● Lozovsky ER, Daniels RF, Heffernan GD, Jacobus DP, Hartl DL. Relevance of higher-order epistasis in drug resistance. Molecular biology and evolution. 2021 Jan;38(1):142-51.

      ● Rodrigues JV, Bershtein S, Li A, Lozovsky ER, Hartl DL, Shakhnovich EI. Biophysical principles predict fitness landscapes of drug resistance. Proceedings of the National Academy of Sciences. 2016 Mar 15;113(11):E1470-8.

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      ● Lindsey HA, Gallie J, Taylor S, Kerr B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature. 2013 Feb 28;494(7438):463-7.

      These are only five of very many such studies, some of them very well-regarded.

      Having now gone on about the point about the data being “incomplete,” we’ll next move to the more tangible comment-criticism about the low-dimensionality of the data set, or the fact that we examined a single drug-drug target system (β lactamases, and β-lactam drugs).

      The criticism, as we understand it, is that the authors could have analyzed more data,

      This is a common complaint, that “more is better” in biology. While we appreciate the feedback from the reviewers, we notice that no one specified what constitutes the right amount of data. Some pointed to other single data sets, but would analyzing two different sets qualify as enough? Perhaps to person A, but not to persons B - Z. This is a matter of opinion and is not a rigorous comment on the quality of the science (or completeness of the analysis).

      ● Should we analyze five more drugs of the same target (beta lactamases)? And what bacterial orthologs?

      ● Should we analyze 5 antifolates for 3 different orthologs of dihydrofolate reductase?

      ● And in which species or organism type? Bacteria? Parasitic infections?

      ● And why only infectious disease? Aren’t these concepts also relevant to cancer? (Yes, they are.)

      ● And what about the number of variants in the aforementioned target? Should one aim for small combinatorially complete sets? Or vaster swaths of sequence space, such as the ones generated by deep mutational scanning and other methods?

      I offer these options in part because, for the most part, were not given an objective suggestion for appropriate level of detail. This is because there is no answer to the question of what size of dataset would be most appropriate. Unfortunately, without a technical reason why a data set of unspecified size [X] or [Y] is best, then we are left with a standard “do more work” peer review response, one that the authors are not inclined to engage seriously, because there is no scientific rationale for it.

      The most charitable explanation for why more datasets would be better is tied to the abstract notion that seeing a metric measured in different data sets somehow makes it more believable. This, as the reviewers undoubtedly understand, isn’t necessarily true (in fact, many poor studies mask a lack of clarity with lots of data).

      To double down on this take, we’ll even argue the opposite: that our focus on a single drug system is a strength of the study.

      The focus on a single-drug class allows us to practice the lost art of discussing the peculiar biology of the system that we are examining. Even more, the low dimensionality allows us to discuss–in relative detail–individual mutations and suites of mutations. We do so several times in the manuscript, and even connect our findings to literature that has examined the biophysical consequences of mutations in these very enzymes.

      (For example: Knies JL, Cai F, Weinreich DM. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Molecular biology and evolution. 2017 May 1;34(5):1040-54.)

      Such detail is only legible in a full-length manuscript because we were able to interrogate a system in good detail. That is, the low-dimensionality (of a complete data set) is a strength, rather than a weakness. This was actually part of the design choice for the study: to offer a new metric with broad application but developed using a system where the particulars could be interrogated and discussed.

      Surely the findings that we recover are engineered for broader application. But to suggest that we need to apply them broadly in order to demonstrate their broad impact is somewhat antithetical to both model systems research and to systems biology, both of which have been successful in extracting general principles for singular (often simple) systems and models.

      An alternative approach, where the metric was wielded across an unspecified number of datasets would lend to a manuscript that is unfocused, reading like many modern machine learning papers, where the analysis or discussion have little to do with actual biology. We very specifically avoided this sort of study.

      To close our comments regarding data: Firstly, we have considered the comments and analyzed a different data set, corresponding to a different drug-target system (antifolate drugs, and DHFR). Moreover, we don’t think more data has anything to do with a better answer or support for our conclusions or any central arguments. Our arguments were developed from the data set that we used but achieve what responsible systems biology does: introduces a framework that one can apply more broadly. And we develop it using a complete, and well-vetted dataset. If the reviewers have a philosophical difference of opinion about this, we respect it, but it has nothing to do with our study being “complete” or not. And it doesn’t speak to the validity of our results.

      Related: On the dependence of our metrics on drug-target system

      Several comments were made that suggest the relevance of the metric may depend on the drug being used. We disagree with this, and in fact, have argued the opposite: the metrics are specifically useful because they are not encumbered with unnecessary variables. They are the product of rather simple arithmetic that is completely agnostic to biological particulars.

      We explain, in the section entitled “Metric Calculations:

      “To estimate the two metrics we are interested in, we must first quantify the susceptibility of an allelic variant to a drug. We define susceptibility as $1 - w$, where w is the mean growth of the allelic variant under drug conditions relative to the mean growth of the wild-type/TEM-1 control. If a variant is not significantly affected by a drug (i.e., growth under drug is not statistically lower than growth of wild-type/TEM-1 control, by t-test P-value < 0.01), its susceptibility is zero. Values in these metrics are summaries of susceptibility: the variant vulnerability of an allelic variant is its average susceptibility across drugs in a panel, and the drug applicability of an antibiotic is the average susceptibility of all variants to it.”

      That is, these can be animated to compute the variant vulnerability and drug applicability for data sets of various kinds. To demonstrate this (and we thank the reviewers for suggesting it), we have analyzed the antifolate-DHFR data set as outlined above.

      Finally, we will make the following light, but somewhat cynical point (that relates to the “more data” more point generally): the wrong metric applied to 100 data sets is little more than 100 wrong analyses. Simply applying the metric to a wide number of datasets has nothing to do with the veracity of the study. Our study, alternatively, chose the opposite approach: used a data set for a focused study where metrics were extracted. We believe this to be a much more rigorous way to introduce new metrics.

      On the Relevance of simulations

      Somewhat relatedly, the eLife summary and one of the reviewers mentioned the potential benefit of simulations. Reviewer 1 correctly highlights that the authors have a lot of experience in this realm, and so generating simulations would be trivial. For example, the authors have been involved in studies such as these:

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      ● Ogbunugafor CB, Wylie CS, Diakite I, Weinreich DM, Hartl DL. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS computational biology. 2016 Jan 25;12(1):e1004710.

      ● Ogbunugafor CB, Hartl D. A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax. Malaria Journal. 2016 Dec;15:1-0.

      From the above and dozens of other related studies, we’ve learned that simulations are critical for questions about the end results of dynamics across fitness landscapes of varying topography. To simulate across the datasets in the submitted study would be be a small ask. We do not provide this, however, because our study is not about the dynamics of de novo evolution of resistance. In fact, our study focuses on a different problem, no less important for understanding how resistance evolves: determining static properties of alleles and drugs, that provide a picture into their ability to withstand a breadth of drugs in a panel (variant vulnerability), or the ability of a drug in a panel to affect a breadth of drug targets.

      The authors speak on this in the Introduction:

      “While stepwise, de novo evolution (via mutations and subsequent selection) is a key force in the evolution of antimicrobial resistance, evolution in natural settings often involves other processes, including horizontal gene transfer and selection on standing genetic variation. Consequently, perspectives that consider variation in pathogens (and their drug targets) are important for understanding treatment at the bedside. Recent studies have made important strides in this arena. Some have utilized large data sets and population genetics theory to measure cross-resistance and collateral sensitivity. Fewer studies have made use of evolutionary concepts to establish metrics that apply to the general problem of antimicrobial treatment on standing genetic variation in pathogen populations, or for evaluating the utility of certain drugs’ ability to treat the underlying genetic diversity of pathogens”

      That is, the proposed metrics aren’t about the dynamics of stepwise evolution across fitness landscapes, and so, simulating those dynamics don’t offer much for our question. What we have done instead is much more direct and allows the reader to follow a logic: clearly demonstrate the topography differences in Figure 1 (And Supplemental Figure S2 and S3 with rank order changes).

      Author response image 2.

      These results tell the reader what they need to know: that the topography of fitness landscapes changes across drug types. Further, we should note that Mira et al. 2015 already told the basic story that one finds different adaptive solutions across different drug environments. (Notably, without computational simulations).

      In summary, we attempted to provide a rigorous, clean, and readable study that introduced two new metrics. Appeals to adding extra analysis would be considered if they augmented the study’s goals. We do not believe this to be the case.

      Nonetheless, we must reiterate our appreciation for the engagement and suggestions. All were made with great intentions. This is more than one could hope for in a peer review exchange. The authors are truly grateful.

      eLife assessment

      The work introduces two valuable concepts in antimicrobial resistance: "variant vulnerability" and "drug applicability", which can broaden our ways of thinking about microbial infections through evolution-based metrics. The authors present a compelling analysis of a published dataset to illustrate how informative these metrics can be, study is still incomplete, as only a subset of a single dataset on a single class of antibiotics was analyzed. Analyzing more datasets, with other antibiotic classes and resistance mutations, and performing additional theoretical simulations could demonstrate the general applicability of the new concepts.

      The authors disagree strongly with the idea that the study is ‘incomplete,” and encourage the editors and reviewers to reconsider this language. Not only are the data combinatorially complete, but they are also larger in size than many similar studies of fitness landscapes. Insofar as no technical justification was offered for this “incomplete” summary, we think it should be removed. Furthermore, we question the utility of “theoretical simulations.” They are rather easy to execute but distract from the central aims of the study: to introduce new metrics, in the vein of other metrics–like druggability, IC50, MIC–that describe properties of drugs or drug targets.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Geurrero and colleagues introduces two new metrics that extend the concept of "druggability"- loosely speaking, the potential suitability of a particular drug, target, or drug-target interaction for pharmacological intervention-to collections of drugs and genetic variants. The study draws on previously measured growth rates across a combinatoriality complete mutational landscape involving 4 variants of the TEM-50 (beta lactamase) enzyme, which confers resistance to commonly used beta-lactam antibiotics. To quantify how growth rate - in this case, a proxy for evolutionary fitness - is distributed across allelic variants and drugs, they introduce two concepts: "variant vulnerability" and "drug applicability".

      Variant vulnerability is the mean vulnerability (1-normalized growth rate) of a particular variant to a library of drugs, while drug applicability measures the mean across the collection of genetic variants for a given drug. The authors rank the drugs and variants according to these metrics. They show that the variant vulnerability of a particular mutant is uncorrelated with the vulnerability of its one-step neighbors and analyze how higher-order combinations of single variants (SNPs) contribute to changes in growth rate in different drug environments.

      The work addresses an interesting topic and underscores the need for evolutionbased metrics to identify candidate pharmacological interventions for treating infections. The authors are clear about the limitations of their approach - they are not looking for immediate clinical applicability - and provide simple new measures of druggability that incorporate an evolutionary perspective, an important complement to the orthodoxy of aggressive, kill-now design principles. I think the ideas here will interest a wide range of readers, but I think the work could be improved with additional analysis - perhaps from evolutionary simulations on the measured landscapes - that tie the metrics to evolutionary outcomes.

      The authors greatly appreciate these comments, and the proposed suggestions by reviewer 1. We have addressed most of the criticisms and suggestions in our comments above.

      Reviewer #2 (Public Review):

      The authors introduce the notions of "variant vulnerability" and "drug applicability" as metrics quantifying the sensitivity of a given target variant across a panel of drugs and the effectiveness of a drug across variants, respectively. Given a data set comprising a measure of drug effect (such as growth rate suppression) for pairs of variants and drugs, the vulnerability of a variant is obtained by averaging this measure across drugs, whereas the applicability of a drug is obtained by averaging the measure across variants.

      The authors apply the methodology to a data set that was published by Mira et al. in 2015. The data consist of growth rate measurements for a combinatorially complete set of 16 genetic variants of the antibiotic resistance enzyme betalactamase across 10 drugs and drug combinations at 3 different drug concentrations, comprising a total of 30 different environmental conditions. For reasons that did not become clear to me, the present authors select only 7 out of 30 environments for their analysis. In particular, for each chosen drug or drug combination, they choose the data set corresponding to the highest drug concentration. As a consequence, they cannot assess to what extent their metrics depend on drug concentration. This is a major concern since Mira et al. concluded in their study that the differences between growth rate landscapes measured at different concentrations were comparable to the differences between drugs. If the new metrics display a significant dependence on drug concentration, this would considerably limit their usefulness.

      The authors appreciate the point about drug concentration, and it is one that the authors have made in several studies.

      The quick answer is that whether the metrics are useful for drug type-concentration A or B will depend on drug type-concentration A or B. If there are notable differences in the topography of the fitness landscape across concentration, then we should expect the metrics to differ. What Reviewer #2 points out as a “major concern,” is in fact a strength of the metrics: it is agnostic with respect to type of drug, type of target, size of dataset, or topography of the fitness landscape. And so, the authors disagree: no, that drug concentration would be a major actor in the value of the metrics does not limit the utility of the metric. It is simply another variable that one can consider when computing the metrics.

      As discussed above, we have analyzed data from a different data set, in a different drug-target problem (DHFR and antifolate drugs; see supplemental information). These demonstrate how the metric can be used to compute metrics across different drug concentrations.

      As a consequence of the small number of variant-drug combinations that are used, the conclusions that the authors draw from their analysis are mostly tentative with weak statistical support. For example, the authors argue that drug combinations tend to have higher drug applicability than single drugs, because a drug combination ranks highest in their panel of 7. However, the effect profile of the single drug cefprozil is almost indistinguishable from that of the top-ranking combination, and the second drug combination in the data set ranks only 5th out of 7.

      We reiterate our appreciation for the engagement. Reviewer #2 generously offers some technical insight on measurements of epistasis, and their opinion on the level of statistical support for our claims. The authors are very happy to engage in a dialogue about these points. We disagree rather strongly, and in addition to the general points raised above (that speak to some of this), will raise several specific rebuttals to the comments from Reviewer #2.

      For one, the Reviewer #2 is free to point to what arguments have “weak statistical support.” Having read the review, we aren’t sure what this is referring to. “Weak statistical support” generally applies to findings built from underpowered studies, or designs constructed in manner that yield effect sizes or p-values that give low confidence that a finding is believable (or is replicable). This sort of problem doesn’t apply to our study for various reasons, the least of which being that our findings are strongly supported, based on a vetted data set, in a system that has long been the object of examination in studies of antimicrobial resistance.

      For example, we did not argue that magnetic fields alter the topography of fitness landscapes, a claim which must stand up to a certain sort of statistical scrutiny. Alternatively, we examined landscapes where the drug environment differed statistically from the non-drug environment and used them to compute new properties of alleles and drugs.

      We can imagine that the reviewer is referring to the low-dimensionality of the fitness landscapes in the study. Again: the features of the dataset are a detail that the authors put into the title of the manuscript. Further, we emphasize that it is not a weakness, but rather, allows the authors to focus, and discuss the specific biology of the system. And we responsibly explain the constraints around our study several times, though none of them have anything to do with “weak statistical support.”

      Even though we aren’t clear what “weak statistical support” means as offered by Reviewer 2, the authors have nonetheless decided to provide additional analyses, now appearing in the new supplemental material.

      We have included a new Figure S2, where we offer an analysis of the topography of the 7 landscapes, based on the Kendall rank order test. This texts the hypothesis that there is no correlation (concordance or discordance) between the topographies of the fitness landscapes.

      Author response image 3.

      Kendall rank test for correlation between the 7 fitness landscapes.

      In Figure S3, we test the hypothesis that the variant vulnerability values differ. To do this, we calculate a paired t-test. These are paired by haplotype/allelic variant, so the comparisons are change in growth between drugs for each haplotype.

      Author response image 4.

      Paired t-tests for variant vulnerability.

      To this point raised by Reviewer #2:

      “For example, the authors argue that drug combinations tend to have higher drug applicability than single drugs, because a drug combination ranks highest in their panel of 7. However, the effect profile of the single drug cefprozil is almost indistinguishable from that of the top-ranking combination, and the second drug combination in the data set ranks only 5th out of 7.”

      Our study does not argue that drug combinations are necessarily correlated with a higher drug applicability. Alternatively, we specifically highlight that one of the combinations does not have a high drug applicability:

      “Though all seven drugs/combinations are β-lactams, they have widely varying effects across the 16 alleles. Some of the results are intuitive: for example, the drug regime with the highest drug applicability of the set—amoxicillin/clavulanic acid—is a mixture of a widely used β-lactam (amoxicillin) and a β-lactamase inhibitor (clavulanic acid) (see Table 3). We might expect such a mixture to have a broader effect across a diversity of variants. This high applicability is hardly a rule, however, as another mixture in the set, piperacillin/tazobactam, has a much lower drug applicability (ranking 5th out of the seven drugs in the set) (Table 3).”

      In general, we believe that the submitted paper is responsible with regards to how it extrapolates generalities from the results. Further, the manuscript contains a specific section that explains limitations, clearly and transparently (not especially common in science). For that reason, we’d encourage reviewer #2 to reconsider their perspective. We do not believe that our arguments are built on “weak” support at all. And we did not argue anything particular about drug combinations writ large. We did the opposite— discussed the particulars of our results in light of the biology of the system.

      Thirdly, to this point:

      “To assess the environment-dependent epistasis among the genetic mutations comprising the variants under study, the authors decompose the data of Mira et al. into epistatic interactions of different orders. This part of the analysis is incomplete in two ways. First, in their study, Mira et al. pointed out that a fairly large fraction of the fitness differences between variants that they measured were not statistically significant, which means that the resulting fitness landscapes have large statistical uncertainties. These uncertainties should be reflected in the results of the interaction analysis in Figure 4 of the present manuscript.”

      The authors are uncertain with regards to the “uncertainties” being referred to, but we’ll do our best to understand: our study utilized the 7 drug environments from Mira et al. 2015 with statistically significant differences between growth rates with and without drug. And so, this point about how the original set contained statistically insignificant treatments is not relevant here. We explain this in the methods section:

      “The data that we examine comes from a past study of a combinatorial set of four mutations associated with TEM-50 resistance to β-lactam drugs [39 ]. This past study measured the growth rates of these four mutations in combination, across 15 different drugs (see Supplemental Information).”

      We go on to say the following:

      “We examined these data, identifying a subset of structurally similar β-lactams that also included β-lactams combined with β-lactamase inhibitors, cephalosporins and penicillins. From the original data set, we focus our analyses on drug treatments that had a significant negative effect on the growth of wild-type/TEM-1 strains (one-tailed ttest of wild-type treatment vs. control, P < 0.01). After identifying the data from the set that fit our criteria, we were left with seven drugs or combinations (concentration in μg/ml): amoxicillin 1024 μg/ ml (β-lactam), amoxicillin/clavulanic acid 1024 μg/m l (βlactam and β-lactamase inhibitor) cefotaxime 0.123 μg/ml (third-generation cephalosporin), cefotetan 0.125 μg/ml (second-generation cephalosporins), cefprozil 128 μg/ml (second-generation cephalosporin), ceftazidime 0.125 μg/ml (third-generation cephalosporin), piperacillin and tazobactam 512/8 μg/ml (penicillin and β-lactamase inhibitor). With these drugs/mixtures, we were able to embody chemical diversity in the panel.”

      Again: The goal of our study was to develop metrics that can be used to analyze features of drugs and targets and disentangle these metrics into effects.

      Second, the interpretation of the coefficients obtained from the epistatic decomposition depends strongly on the formalism that is being used (in the jargon of the field, either a Fourier or a Taylor analysis can be applied to fitness landscape data). The authors need to specify which formalism they have employed and phrase their interpretations accordingly.

      The authors appreciate this nuance. Certainly, how to measure epistasis is a large topic of its own. But we recognize that we could have addressed this more directly and have added text to this effect.

      In response to these comments from Reviewer #2, we have added a new section focused on these points (reference syntax removed here for clarity; please see main text for specifics):

      “The study of epistasis, and discussions regarding the means to detect and measure now occupies a large corner of the evolutionary genetics literature. The topic has grown in recent years as methods have been applied to larger genomic data sets, biophysical traits, and the "global" nature of epistatic effects. We urge those interested in more depth treatments of the topic to engage larger summaries of the topic.”

      “Here will briefly summarize some methods used to study epistasis on fitness landscapes. Several studies of combinatorially-complete fitness landscapes use some variation of Fourier Transform or Taylor formulation. One in particular, the Walsh-Hadamard Transform has been used to measure epistasis across a wide number of study systems. Furthermore, studies have reconciled these methods with others, or expanded upon the Walsh-Hadamard Transform in a way that can accommodate incomplete data sets. These methods are effective for certain sorts of analyses, and we strongly urge those interested to examine these studies.”

      “The method that we've utilized, the LASSO regression, determines effect sizes for all interactions (alleles and drug environments). It has been utilized for data sets of similar size and structure, on alleles resistant to trimethoprim. Among many benefits, the method can accommodate gaps in data and responsibly incorporates experimental noise into the calculation.”

      As Reviewer #2 understands, there are many ways to examine epistasis on both high and low-dimensional landscapes. Reviewer #2 correctly offers two sorts of formalisms that allow one to do so. The two offered by Reviewer #2, are not the only means of measuring epistasis in data sets like the one we have offered. But we acknowledge that we could have done a better job outlining this. We thank Reviewer #2 for highlighting this, and believe our revision clarifies this.

      Reviewer #3 (Public Review):

      The authors introduce two new concepts for antimicrobial resistance borrowed from pharmacology, "variant vulnerability" (how susceptible a particular resistance gene variant is across a class of drugs) and "drug applicability" (how useful a particular drug is against multiple allelic variants). They group both terms under an umbrella term "drugability". They demonstrate these features for an important class of antibiotics, the beta-lactams, and allelic variants of TEM-1 beta-lactamase.

      The strength of the result is in its conceptual advance and that the concepts seem to work for beta-lactam resistance. However, I do not necessarily see the advance of lumping both terms under "drugability", as this adds an extra layer of complication in my opinion.

      Firstly, the authors greatly appreciate the comments from Reviewer #3. They are insightful, and prescriptive. And allow us to especially thank reviewer 3 for supplying a commented PDF with some grammatical and phrasing suggestions/edits. This is much appreciated. We have examined all these suggestions and made changes.

      In general, we agree with the spirit of many of the comments. In addition to our prior comments on the scope of our data, we’ll communicate a few direct responses to specific points raised.

      I also think that the utility of the terms could be more comprehensively demonstrated by using examples across different antibiotic classes and/or resistance genes. For instance, another good model with published data might have been trimethoprim resistance, which arises through point mutations in the folA gene (although, clinical resistance tends to be instead conferred by a suite of horizontally acquired dihydrofolate reductase genes, which are not so closely related as the TEM variants explored here).

      1. In our new supplemental material, we now feature an analysis of antifolate drugs, pyrimethamine and cycloguanil. We have discussed this in detail above and thank the reviewer for the suggestion.

      2. Secondly, we agree that the study will have a larger impact when the metrics are applied more broadly. This is an active area of investigation, and our hope is that others apply our metrics more broadly. But as we discussed, such a desire is not a technical criticism of our own study. We stand behind the rigor and insight offered by our study.

      The impact of the work on the field depends on a more comprehensive demonstration of the applicability of these new concepts to other drugs.

      The authors don’t disagree with this point, which applies to virtually every potentially influential study. The importance of a single study can generally only be measured by its downstream application. But this hardly qualifies as a technical critique of our study and does not apply to our study alone. Nor does it speak to the validity of our results. The authors share this interest in applying the metric more broadly.

      Reviewer #1 (Recommendations For The Authors):

      • The main weakness of the work, in my view, is that it does not directly tie these new metrics to a quantitative measure of "performance". The metrics have intuitive appeal, and I think it is likely that they could help guide treatment options-for example, drugs with high applicability could prove more useful under particular conditions. But as the authors note, the landscape is rugged and intuitive notions of evolutionary behavior can sometimes fail. I think the paper would be much improved if the authors could evaluate their new metrics using some type of quantitative evolutionary model. For example, perhaps the authors could simulate evolutionary dynamics on these landscapes in the presence of different drugs. Is the mean fitness achieved in the simulations correlated with, for example, the drug applicability when looking across an ensemble of simulations with the same drug but varied initial conditions that start from each individual variant? Similarly, if you consider an ensemble of simulations where each member starts from the same variant but uses a different drug, is the average fitness gain captured in some way by the variant vulnerability? All simulations will have limitations, of course, but given that the landscape is fully known I think these questions could be answered under some conditions (e.g. strong selection weak mutation limit, where the model could be formulated as a Markov Chain; see 10.1371/journal.pcbi.1004493 or doi: 10.1111/evo.14121 for examples). And given the authors' expertise in evolutionary dynamics, I think it could be achieved in a reasonable time. With that said, I want to acknowledge that with any new "metrics", it can be tempting to think that "we need to understand it all" before it is useful, and I don't want to fall into that trap here.

      The authors respect and appreciate these thoughtful comments.

      As Reviewer #1 highlighted, the authors are experienced with building simulations of evolution. For reasons we have outlined above, we don’t believe they would add to the arc of the current story and may encumber the story with unnecessary distractions. Simulations of evolution can be enormously useful for studies focused on particulars of the dynamics of evolution. This submitted study is not one of those. It is charged with identifying features of alleles and drugs that capture an allele’s vulnerability to treatment (variant vulnerability) and a drug’s effectiveness across alleles (drug applicability). Both features integrate aspects of variation (genetic and environmental), and as such, are improvements over both metrics used to describe drug targets and drugs.

      • The new metrics rely on means, which is a natural choice. Have the authors considered how variance (or other higher moments) might also impact evolutionary dynamics? I would imagine, for example, that the ultimate outcome of a treatment might depend heavily on the shape of the distribution, not merely its mean. This is also something one might be able to get a handle on with simulations.

      These are relevant points, and the authors appreciate them. Certainly, moments other than the mean might have utility. This is the reason that we computed the one-step neighborhood variant vulnerability–to see if the variant vulnerability of an allele was related to properties of its mutational neighborhood. We found no such correlation. There are many other sorts of properties that one might examine (e.g., shape of the distribution, properties of mutational network, variance, fano factor, etc). As we don’t have an informed reason to pursue any of this in lieu of others, we are pleased to investigate this in the future.

      Also, while we’ve addressed general points about simulations above, we want to note that our analysis of environmental epistasis does consider the variance. We urge Reviewer #1 to see our new section on “Notes on Methods Used to Measure Epistasis” where we explain some of this and supply references to that effect.

      • As I understand it, the fitness measurements here are measures of per capita growth rate, which is reasonable. However, the authors may wish to briefly comment on the limitations of this choice-i.e. the fact that these are not direct measures of relative fitness values from head-to-head competition between strains.

      Reviewer #1 is correct: the metrics are computed from means. As Reviewer 1 definitely understands, debates over what measurements are proper proxies for fitness go back a long time. We added a slight acknowledgement about the existence of multiple fitness proxies in our revision.

      • The authors consider one-step variant vulnerability. Have the authors considered looking at 2-step, 3-step, etc analogs of the 1-step vulnerability? I wonder if these might suggest potential vulnerability bottlenecks associated with the use of a particular drug/drug combo or trajectories starting from particular variants.

      This is an interesting point. We provided one-step values as a means of interrogating the mutational neighborhood of alleles in the fitness landscape. While there could certainly be other pattern-relationships between the variant vulnerability and features of a fitness landscape (as the reviewer recognizes), we don’t have a rigorous reason to test them, other than an appeal to “I would be curious if [Blank].” As in, attempting to saturate the paper with these sorts of examinations might be fun, could turn up an interesting result, but this is true for most studies.

      To highlight just how serious we are about future questions along these lines, we’ll offer one specific question about the relationship between metrics and other features of alleles or landscapes. Recent studies have examined the existence of “evolvabilityenhancing mutations,” that propel a population to high-fitness sections of a fitness landscape:

      ● Wagner, A. Evolvability-enhancing mutations in the fitness landscapes of an RNA and a protein. Nat Commun 14, 3624 (2023). https://doi.org/10.1038/s41467023-39321-8

      One present and future area of inquiry involves whether there is any relationship between metrics like variant vulnerability and these sorts of mutations.

      We thank Reviewer 1 for engagement on this issue.

      • Fitness values are measured in the presence of a drug, but it is not immediately clear how the drug concentrations are chosen and, more importantly, how the choice of concentration might impact the landscape. The authors may wish to briefly comment on these effects, particularly in cases where the environment involves combinations of drugs. There will be a "new" fitness landscape for each concentration, but to what extent do the qualitative features changes-or whatever features drive evolutionary dynamics--change?

      This is another interesting suggestion. We have analyzed a new data set for dihydrofolate reductase mutants that contains a range of drug concentrations of two different antifolate drugs. The general question of how drug concentrations change evolutionary dynamics has been addressed in prior work of ours:

      ● Ogbunugafor CB, Wylie CS, Diakite I, Weinreich DM, Hartl DL. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS computational biology. 2016 Jan 25;12(1):e1004710.

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      There are a very large number of environment types that might alter the drug availability or variant vulnerability metrics. In our study, we used an established data set composed of different alleles of a Beta lactamase, with growth rates measured across a number of drug environments. These drug environments consisted of individual drugs at certain concentrations, as outlined in Mira et al. 2015. For our study, we examined those drugs that had a significant impact on growth rate.

      For a new analysis of antifolate drugs in 16 alleles of dihydrofolate reductase (Plasmodium falciparum), we have examined a breadth of drug concentrations (Supplementary Figure S4). This represents a different sort of environment that one can use to measure the two metrics (variant vulnerability or drug applicability). As we suggest in the manuscript, part of the strength of the metric is precisely that it can incorporate drug dimensions of various kinds.

      • The metrics introduced depend on the ensemble of drugs chosen. To what extent are the chosen drugs representative? Are there cases where nonrepresentative ensembles might be advantageous?

      The authors thank the reviewer for this. The general point has been addressed in our comments above. Further, the general question of how a study of one set of drugs applies to other drugs applies to every study of every drug, as no single study interrogates every sort of drug ensemble. That said, we’ve explained the anatomy of our metrics, and have outlined how it can be directly applied to others. There is nothing about the metric itself that has anything to do with a particular drug type – the arithmetic is rather vanilla.

      Reviewer #2 (Recommendations For The Authors):

      1. Regarding my comment about the different formalisms for epistatic decomposition analysis, a key reference is

      Poelwijk FJ, Krishna V, Ranganathan R (2016). The Context-Dependence of Mutations: A Linkage of Formalisms. PLoS Comput Biol 12(6): e1004771.

      The authors appreciate this, are fans of this work, and have cited it in the revision.

      An example where both Fourier and Taylor analyses were carried out and the different interpretations of these formalisms were discussed is

      Unraveling the causes of adaptive benefits of synonymous mutations in TEM-1 βlactamase. Mark P. Zwart, Martijn F. Schenk, Sungmin Hwang, Bertha Koopmanschap, Niek de Lange, Lion van de Pol, Tran Thi Thuy Nga, Ivan G. Szendro, Joachim Krug & J. Arjan G. M. de Visser Heredity 121:406-421 (2018)

      The authors are grateful for these references. While we don’t think they are necessary for our new section entitled “Notes on methods used to detect epistasis,” we did engage them, and will keep them in mind for other work that more centrally focuses on methods used to detect epistasis. As the author acknowledges, a full treatment of this topic is too large for a single manuscript, let alone a subsection of one study. We have provided a discussion of it, and pointed the readers to longer review articles that explore some of these topics in good detail:

      ● C. Bank, Epistasis and adaptation on fitness landscapes, Annual Review of Ecology, Evolution, and Systematics 53 (1) (2022) 457–479.

      ● T. B. Sackton, D. L. Hartl, Genotypic context and epistasis in individuals and populations, Cell 166 (2) (2016) 279–287.

      ● J. Diaz-Colunga, A. Skwara, J. C. C. Vila, D. Bajic, Á. Sánchez, Global epistasis and the emergence of ecological function, BioRxviv

      1. Although the authors label Figure 4 with the term "environmental epistasis", as far as I can see it is only a standard epistasis analysis that is carried out separately for each environment. The analysis of environmental epistasis should instead focus on which aspects of these interactions are different or similar in different environments, for example, by looking at the reranking of fitness values under environmental changes [see Ref.[26] as well as more recent related work, e.g. Gorter et al., Genetics 208:307-322 (2018); Das et al., eLife9:e55155 (2020)]. To some extent, such an analysis was already performed by Mira et al., but not on the level of epistatic interaction coefficients.

      The authors have provided a new analysis of how fitness value rankings have changed across drug environments, often a signature of epistatic effects across environments (Supplementary Figure S1).

      We disagree with the idea that our analysis is not a sort of environmental epistasis; we resolve coefficients between loci across different environments. As with every interrogation of G x E effects (G x G x E in our case), what constitutes an “environment” is a messy conversation. We have chosen the route of explaining very clearly what we mean:

      “We further explored the interactions across this fitness landscape and panels of drugs in two additional ways. First, we calculated the variant vulnerability for 1-step neighbors, which is the mean variant vulnerability of all alleles one mutational step away from a focal variant. This metric gives information on how the variant vulnerability values are distributed across a fitness landscape. Second, we estimated statistical interaction effects on bacterial growth through LASSO regression. For each drug, we fit a model of relative growth as a function of M69L x E104K x G238S x N276D (i.e., including all interaction terms between the four amino acid substitutions). The effect sizes of the interaction terms from this regularized regression analysis allow us to infer higher-order dynamics for susceptibility. We label this calculation as an analysis of “environmental epistasis.”

      As the grammar for these sorts of analyses continues to evolve, the best one can do is be clear about what they mean. We believe that we communicated this directly and transparently.

      1. As a general comment, to strengthen the conclusions of the study, it would be good if the authors could include additional data sets in their analysis.

      The authors appreciate this comment and have given this point ample treatment. Further, other main conclusions and discussion points are focused on the biology of the system that we examined. Analyzing other data sets may demonstrate the broader reach of the metrics, but it would not alter the strength of our own conclusions (or if they would, Reviewer #2 has not told us how).

      1. There are some typos in the units of drug concentrations in Section 2.4 that should be corrected.

      The authors truly appreciate this. It is a great catch. We have fixed this in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      I would suggest demonstrating the concepts for a second drug class, and suggest folA variants and trimethoprim resistance, for which there is existing published data similar to what the authors have used here (e.g. Palmer et al. 2015, https://doi.org/10.1038/ncomms8385)

      The authors appreciate this insight. As previously described, we have analyzed a data set of folA mutants for the Plasmodium falciparum ortholog of dihydrofolate reductase, and included these results in new supplemental material. Please see the supplementary material.

      There are some errors in formatting and presentation that I have annotated in a separate PDF file (https://elife-rp.msubmit.net/eliferp_files/2023/04/11/00117789/00/117789_0_attach_8_30399_convrt.pdf), as the absence of line numbers makes indicating specific things exceedingly difficult.

      The authors apologize for the lack of line numbers (an honest oversight), but moreover, are tremendously grateful for this feedback. We have looked at the suggested changes carefully and have addressed many of them. Thank you.

      One thing to note: we have included a version of Figure 4 that has effects on the same axes. It appears in the supplementary material (Figure S4).

      In closing, the authors would like to thank the editors and three anonymous reviewers for engagement and for helpful comments. We are confident that the revised manuscript qualifies as a substantive revision, and we are grateful to have had the opportunity to participate.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The regulation of motor autoinhibition and activation is essential for efficient intracellular transport. This manuscript used biochemical approaches to explore two members in the kinesin-3 family. They found that releasing UNC-104 autoinhibition triggered its dimerization whereas unlocking KLP-6 autoinhibition is insufficient to activate its processive movement, which suggests that KLP-6 requires additional factors for activation, highlighting the common and diverse mechanisms underlying motor activation. They also identified a coiled-coil domain crucial for the dimerization and processive movement of UNC-104. Overall, these biochemical and single-molecule assays were well performed, and their data support their statements. The manuscript is also clearly written, and these results will be valuable to the field.

      Thank you very much!

      Ideally, the authors can add some in vivo studies to test the physiological relevance of their in vitro findings, given that the lab is very good at worm genetic manipulations. Otherwise, the authors should speculate the in vivo phenotypes in their Discussion, including E412K mutation in UNC-104, CC2 deletion of UNC-104, D458A in KLP-6.

      1. We have shown the phenotypes unc-104(E412K) mutation in C. elegans (Niwa et al., Cell Rep, 2016) and described about it in discussion (p.14 line 3-4). The mutant worm showed overactivation of the UNC-104-dependent axonal transport, which is consistent with our biochemical data showing that UNC-104(1-653)(E412K) is prone to form a dimer and more active than wild type.

      2. It has been shown that L640F mutation induces a loss of function phenotype in C. elegans (Cong et al., 2021). The amount of axonal transport is reduced in unc-104(L640F) mutant worms. L640 is located within the CC2 domain. To show the importance of CC2-dependent dimerization in the axonal transport in vivo, we biochemically investigated the impact of L640F mutation.

      By introducing L640F into UNC-104(1-653)(E412K), we performed SEC analysis. The result shows that UNC-104(1-653)(E412K,L640F) failed to form stable dimers despite the release of their autoinhibition (new Figure S8). This result strongly suggests the importance of the CC2 domain in the axonal transport in vivo. Based on the result, we discussed it in the revised manuscript (p.13 line 6-8).

      1. Regarding KLP-6(D458A), we need a genetic analysis using genome editing and we would like to reserve it for a future study. We speculate that the D458A mutation could lead to an increase in transport activity in vivo similar to unc-104(E412K). This is because the previous study have shown that wild-type KLP-6 was largely localized in the cell body, while KLP-6(D458A) was enriched at the cell periphery in the N2A cells (Wang et al., 2022). We described it in discussion (p.14 line 13-14).

      While beyond the scope of this study, can the author speculate on the candidate for an additional regulator to activate KLP-6 in C. elegans?

      The heterodimeric mechanoreceptor complex, comprising LOV-1 and PKD-2, stands as potential candidates for regulating KLP-6 dimerization. We speculate the heterodimerization property is suitable for the enhancement of KLP-6 dimerization. On the other hand, it's noteworthy that KLP-6 can undergo activation in Neuro 2a cells upon the release of autoinhibition (Wang et al., 2022). This observation implies the involvement of additional factors which are not present in sf9 cells may be able to induce dimerization. Post-translational modifications would be one of the candidates. We discussed it in p14 line 7-14.

      The authors discussed the differences between their porcine brain MTs and chlamydonomas axonemes in UNC-104 assays. However, the authors did not really retest UNC-104 on axonemes after more than two decades, thereby not excluding other possibilities.

      We thought that comparing different conditions used in different studies is essential for the advancement of the field of molecular motors. Therefore, we newly performed single-molecule assay using Chlamydomonas axonemes and compared the results with brain MTs (Fig. S6). Just as observed in the study by Tomoshige et al., we were also unable to observe the processive runs of UNC-104(1-653) on Chlamydomonas axonemes (Fig. S6A). Furthermore, we found that the landing rate of UNC-104(1-653) on Chlamydomonas axonemes was markedly lower in comparison to that on purified porcine microtubules (Fig. S6B).

      Reviewer #1 (Recommendations For The Authors):

      More discussion as suggested above would improve the manuscript.

      We have improved our manuscript as described above.

      Reviewer #2 (Public Review):

      The Kinesin superfamily motors mediate the transport of a wide variety of cargos which are crucial for cells to develop into unique shapes and polarities. Kinesin-3 subfamily motors are among the most conserved and critical classes of kinesin motors which were shown to be self-inhibited in a monomeric state and dimerized to activate motility along microtubules. Recent studies have shown that different members of this family are uniquely activated to undergo a transition from monomers to dimers.

      Niwa and colleagues study two well-described members of the kinesin-3 superfamily, unc104 and KLP6, to uncover the mechanism of monomer to dimer transition upon activation. Their studies reveal that although both Unc104 and KLP6 are both self-inhibited monomers, their propensities for forming dimers are quite different. The authors relate this difference to a region in the molecules called CC2 which has a higher propensity for forming homodimers. Unc104 readily forms homodimers if its self-inhibited state is disabled while KLP6 does not.

      The work suggests that although mechanisms for self-inhibited monomeric states are similar, variations in the kinesin-3 dimerization may present a unique form of kinesin-3 motor regulation with implications on the forms of motility functions carried out by these unique kinesin-3 motors.

      Thank you very much!

      Reviewer #2 (Recommendations For The Authors):

      The work is interesting but the process of making constructs and following the transition from monomers to dimers seems to be less than logical and haphazard. Recent crystallographic studies for kinesin-3 have shown the fold and interactions for all domains of the motor leading to the self-inhibited state. The mutations described in the manuscript leading to disabling of the monomeric self-inhibited state are referenced but not logically explained in relation to the structures. Many of the deletion constructs could also present other defects that are not presented in the mutations. The above issues prevent wide audience access to understanding the studies carried out by the authors.

      We appreciate this comment. We improved it as described bellow.

      Suggestions: Authors should present schematic, or structural models for the self-inhibited and dimerized states. The conclusions of the papers should be related to those models. The mutations should be explained with regard to these models and that would allow the readers easier access. Improving access to the readers in and outside the motor field would truly improve the impact of the manuscript on the field.

      The structural models illustrating the autoinhibited state have been included in new Figure S4, accompanied by an explanation of the correlation between the mutations and these structures in the figure legend. Additionally, schematic models outlining the dimerization process of both UNC-104 and KLP-6 have been provided in Figure S9 to enhance reader comprehension of the process.

      Reviewer #3 (Public Review):

      In this work, Kita et al., aim to understand the activation mechanisms of the kinesin-3 motors KLP-6 and UNC-104 from C. elegans. As with many other motor proteins involved in intracellular transport processes, KLP-6 and UNC-104 motors suppress their ATPase activities in the absence of cargo molecules. Relieving the autoinhibition is thus a crucial step that initiates the directional transport of intracellular cargo. To investigate the activation mechanisms, the authors make use of mass photometry to determine the oligomeric states of the full-length KLP-6 and the truncated UNC-104(1-653) motors at sub-micromolar concentrations. While full-length KLP-6 remains monomeric, the truncated UNC-104(1-653) displays a sub-population of dimeric motors that is much more pronounced at high concentrations, suggesting a monomer-to-dimer conversion. The authors push this equilibrium towards dimeric UNC-104(1-653) motors solely by introducing a point mutation into the coiled-coil domain and ultimately unleashing a robust processivity of the UNC-104 dimer. The authors find that the same mechanistic concept does not apply to the KLP-6 kinesin-3 motor, suggesting an alternative activation mechanism of the KLP-6 that remains to be resolved. The present study encourages further dissection of the kinesin-3 motors with the goal of uncovering the main factors needed to overcome the 'self-inflicted' deactivation.

      Thank you very much!

      Reviewer #3 (Recommendations For The Authors):

      126-128: It is surprising that surface-attachment does not really activate the full-length KLP6 motor (v=48 {plus minus} 42 nm/s). Can the authors provide an example movie of the gliding assay for the FL KLP6 construct? Gliding assays are done by attaching motors via their sfGFP to the surface using anti-GFP antibodies. Did the authors try to attach the full-length KLP-6 motor directly to the surface? If the KLP-6 motor sticks to the surface via its (inhibitory) C-terminus, this attachment would be expected to activate the motor in the gliding assay, ideally approaching the in vivo velocities of the activated motor.

      We have included an example kymograph showing the gliding assay of KLP-6FL (Fig. S1A). When we directly attached KLP-6FL to the surface, the velocity was 0.15 ± 0.02 µm/sec (Fig. S1B), which is similar to the velocity of KLP-6(1-390). While the velocity observed in the direct-attachment condition is much better than those observed in GFP-mediated condition, the observed velocity remains considerably slower than in vivo velocities. Firstly, we think this is because dimerization of KLP-6 is not induced by the surface attachment. Previous studies have shown that monomeric proteins are generally slower than dimeric proteins in the gliding assay (Tomishige et al., 2002). These are consistent with our observation that KLP-6 remains to be monomeric even when autoinhibition is released. Secondly, in vitro velocity of motors is generally slower than in vivo velocity.

      156-157: It seems that the GCN4-mediated dimerization induces aggregation of the KLP6 motor domains as seen in the fractions under the void volume in Figure 3B (not seen with the Sf9 expressed full-length constructs, see Figure 1B). Also, the artificially dimerized motor construct does not fully recapitulate the in vivo velocity of UNC-104. Did the authors analyze the KLP-6(1-390)LZ with mass photometry and is it the only construct that is expressed in E. coli?

      KLP-6::LZ protein is not aggregating. We have noticed that DNA and RNA from E. coli exists in the void fraction and they occasionally trap recombinant kinesin-3 proteins in the void fraction. To effectively remove these nucleic acids from our protein samples, we employed streptomycin sulfate as a purification method (Liang et al., Electrophoresis, 2009). Please see Purification of recombinant proteins in Methods. In the size exclusion chromatography analysis, we observed that KLP-6(1-393)LZ predominantly eluted in the dimer fraction (New Figure 3). Subsequently, we reanalyzed the motor's motility using a total internal reflection fluorescence (TIRF) assay, as shown in the revised Figure 3. Even after these efforts, the velocity was not changed significantly. The velocity of KLP-6LZ is about 0.3 µm/sec while that of cellular KLP-6::GFP is 0.7 µm/sec (Morsci and Barr, 2011). Similar phenomena, "slower velocity in vitro", has been observed in other motor proteins.

      169: In Wang et al., (2022) the microtubule-activated ATPase activities of the mutants were measured in vitro as well, with the relative activities of the motor domain and the D458A mutant being very similar. The D458A mutation is introduced into the full-length motor in Wang et al., while in the present work, the mutation is introduced into the truncated KLP-6(1-587) construct. Can the authors explain their reasoning for the latter?

      (1) Kinesins are microtubule-stimulated ATPases. i.e. The ATPase activity is induced by the binding with a microtubule.

      (2) Previous studies have shown that the one-dimensional movement of the monomeric motor domain of kinesin-3 depends on the ATPase activity even when the movement does not show clear plus-end directionality (Okada et al., Science, 1998).

      (3) While KLP-6(1-587) does not bind to microtubules, both KLP-6(1-390) (= the monomeric motor domain) and KLP-6(1-587)(D458A) similarly bind to microtubules and show one dimensional diffusion on microtubules (Fig. 4E and S2B).

      Therefore, the similar ATPase activities of the motor domain(= KLP-6(1-390)) and KLP-6(D458A) observed by Wang et al. is because both proteins similarly associate with and hydrolyze ATP on microtubules, which is consistent with our observation. On the other hand, because KLP-6(wild type) cannot efficiently bind to microtubules, the ATPase activity is low.

      Can the authors compare the gliding velocities of the KLP-6(1-390)LZ vs KLP-6(1-587) vs KLP-6(1-587)(D458A) constructs to make sure that the motors are similarly active?

      We conducted a comparative analysis of gliding velocities involving KLP-6(1-390), KLP-6(1-587), and KLP-6(1-587)(D458A) (Fig. S1C). We used KLP-6(1-390) instead of KLP-6(1-390)LZ, aligning with the protein used by Wang et al.. We demonstrated that both KLP-6(1-587) and KLP-6(1-587) (D458A) exhibited activity levels comparable to that of KLP-6(1-390). The data suggests that the motor of all recombinant proteins are similarly active.

      Please note that, unlike full length condition (Fig. 1D and S1A and S1B), the attachment to the surface using the anti-GFP antibody can activates KLP-6(1-587). The data suggests that, due to the absence of coverage by the MBS and MATH domain (Wang et al., Nat. Commun., 2022), the motor domain of KLP-6(1-587) to some extent permits direct binding to microtubules under gliding assay conditions.

      Are the monomeric and dimeric UNC-104(1-653) fractions in Figure 5B in equilibrium? Did the authors do a re-run of the second peak of UNC-104(1-653) (i.e. the monomeric fraction with ~100 kDa) to assess if the monomeric fraction re-equilibrates into a dimer-monomer distribution?

      We conducted a re-run of the second peak of UNC-104(1-653) and verified its re-equilibration into a distribution of dimers and monomers after being incubated for 72 hours at 4°C (Fig. S5).

      UNC-104 appears to have another predicted coiled-coiled region around ~800 aa (e.g. by NCoils) that would correspond to the CC3 in the mammalian homolog KIF1A. This raises the question if the elongated UNC-104(1-800) would dimerize more efficiently than UNC-104(1-653) (authors highlight the sub-population of dimerized UNC-104(1-653) at low concentrations in Figure 5C) and if this dimerization alone would suffice to 'match' the UNC-104(1-653)E412K mutant (Figure 5D). Did the authors explore this possibility? This would mean that dimerization does not necessarily require the release of autoinhibition.

      We have tried to purify UNC-104(1-800) and full-length UNC-104 using the baculovirus system. However, unfortunately, the expression level of UNC-104(1-800) and full length UNC-104 was too low to perform in vitro assays even though codon optimized vectors were used. Instead, we have analyzed full-length human KIF1A. We found that full-length KIF1A is mostly monomeric, not dimeric (Please look at the Author response image 1). The property is similar to UNC-104(1-653) (Figure 5A-C). Therefore, we think CC3 does not strongly affect dimerization of KIF1A, and probably its ortholog UNC-104. Moreover, a recent study has shown that CC2 domain, but not other CC domains, form a stable dimer in the case of KIF1A (Hummel and Hoogenraad, JCB, 2021). Given the similarity in the sequence of KIF1A and UNC-104, we anticipate that the CC2 domain of UNC-104 significantly contributes to dimerization, potentially more than other CC domains. We explicitly describe it in the Discussion in the revised manuscript.

      Author response image 1.

      Upper left, A representative result of size exclusion chromatography obtained from the analysis of full-length human KIF1A fused with sfGFP.

      Upper right, A schematic drawing showing the structure of KIF1A fused with sfGFP and a result of SDS-PAGE recovered from SEC analysis. Presumable dimer and monomer peaks are indicated.

      Lower left, Presumable dimer fractions in SEC were collected and analyzed by mass photometry. The result confirms that the fraction contains considerable amount of dimer KIF1A.

      Lower right, Presumable monomer fractions were collected and analyzed by mass photometry. The result confirms that the fraction mainly consists of monomer KIF1A.

      Note that these results obtained from full-length KIF1A protein are similar to those of UNC-104(1-653) protein shown in Figure 5A-C.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors describe a method to decouple the mechanisms supporting pancreatic progenitor self-renewal and expansion from feed-forward mechanisms promoting their differentiation. The findings are important because they have implications beyond a single subfield. The strength of evidence is solid in that the methods, data and analyses broadly support the claims with only minor weaknesses.

      We are grateful for the substantial effort that reviewers put into reading our manuscript and providing such a detailed feedback. We have strived to address, as much as possible, all comments and criticisms. Thanks to the feedback, we believe that we have now a significantly improved manuscript. Below, there is a point-bypoint response.

      Reviewer #1 (Public Review)

      In this manuscript, the authors are developing a new protocol that aims at expanding pancreatic progenitors derived from human pluripotent stem cells under GMP-compliant conditions. The strategy is based on hypothesis-driven experiments that come from knowledge derived from pancreatic developmental biology.

      The topic is of major interest in the view of the importance of amplifying human pancreatic progenitors (both for fundamental purposes and for future clinical applications). There is indeed currently a major lack of information on efficient conditions to reach this objective, despite major recurrent efforts by the scientific community.

      Using their approach that combines stimulation of specific mitogenic pathways and inhibition of retinoic acid and specific branches of the TGF-beta and Wnt pathways, the authors claim to be able, in a highly robust and reproducible manner) to amplify in 10 passages the number of pancreatic progenitors (PP) by 2,000 folds, which is really an impressive breakthrough.

      The work is globally well-performed and quite convincing. I have however some technical comments mainly related to the quantification of pancreatic progenitor amplification and to their differentiation into beta-like cells following amplification.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to specific comments and criticisms.

      Reviewer #1 (Recommendations For The Authors)

      Figure 1:

      Panel A: What is exactly counted in Fig. 1A? Is it the number of PP (as indicated in the title) or the total number of cells? If it is PPs, was it done following PDX1/NKX6.1/SOX9 staining and FACS quantification? This question applies to a number of Figures and the authors should be clear on this point.

      We now define ‘PP cells’ as ‘PP-containing cells’ (PP cells) the first time we use the term in the RESULTS section.

      Panel D: I do not understand the source of TGFb1, GDF11, FGF18, PDGFA. Which cell type(s) express such factors in culture? I was not convinced that the signals are produced by PP and act through an autocrine loop. I have the same type of questions for the receptors: PDGFR on the second page of the results; RARs and RXRs on the third page.

      We refer to these factors/receptors as components of a tentative autocrine loop. We agree we do not prove it and we now comment on this in the discussion section.

      Figure 2:

      FACS plots are very difficult to analyze for two reasons: I do not understand the meaning of the y axes (PDX1/SOX9). Does that mean that 100% of the cells were PDX1+/SOX9+? The authors should show the separated FACS plots. More importantly, the x axes indicate that NKX6.1 FACS staining is very weak. This is by far different from what can be read in publications performing the same types of experiments (publications by Millman, Otonkoski...as examples). How was quantification performed when it is so difficult to properly define positive vs negative populations? It is necessary to present proper "negative controls" for FACS experiments and to clearly indicate how positive versus cells were defined

      We now explain the gating strategy better in the results section, all controls are included in figure S2.

      Figure 3:

      What is the exact "phenotype" of the cells that incorporated EdU: It would be really instructive to add PDX1/NKX6.1/SOX9 staining on top of EdU. I am also surprised that 20% of the cells stain positive for Annexin V. This is a huge fraction. Does that mean that many cells (20%) are dying and if the case, how amplification can take place under such deleterious conditions?

      This is an interesting mechanistic point but performing these experiments would delay the publication of the final manuscript for too long. These assays were done at p3 in order to catch CINI cells that do not expand in most cases. It is important to note that cell death also appears higher in CINI cells. It is likely that the combination of these effects results in reproducible expansion under C5. We comment on the possibilities in the discussion section.

      Figure 4:

      On FACS plots the intensity at the single cell level (see x-axis of the figure) of the NKX6.1 staining is found to increase in Fig. 4G by 50-100 folds when compared to Fig. 4E. Is it expected? This should be discussed in the text. Do the authors observe the same increase by immunocytochemistry?

      The apparent difference is actually 10-fold (from 2x102 to 2x103). We think that the most likely reason for this apparent increase is that at p0 we typically used very few cells for the FC in order to keep as many as possible for the subsequent expansion. If we had used more, we would be able to also detect cells with higher expression. As we mention in the bioinformatics analysis, NKX6 expression does increase with passaging and therefore it is also possible that at least part of this increase is real. However, we don’t have suitable data (same number of cells analyzed at each passage) to address this in a reliable manner.

      Figure 5

      Previous data from the scientific literature indicate that in vitro, by default, PP gives rise to duct-like cells. This is a bit described in the result section and supplementary figures taking into account the expression of transcription factors. However the data are not clearly explained and described in quite a qualitative manner. They should appear in a quantitative fashion (and the main figures), adding additional duct cell markers such as Carbonic anhydrase, SPP1, CFTR, and others. I assume that the authors can easily use their transcriptomic data to produce a Figure to be described and discussed in detail.

      We think it can be misleading to use such markers (other than TFs and the latter only as a collective) because specific markers of terminal differentiation are more often than not expressed during development in multipotent progenitors, the most conspicuous example been CPA1. To illustrate the point, we used the RNA Seq data of and plotted the expression values of a panel of duct genes in isolated human fetal progenitors (Ramond et al., 2017) together with their expression in p0 PP and ePP cells from all three different procedure (please see below). All raw RNA Seq data were processed together to enable direct comparison. According to the analysis of Ramond et al the A population corresponds to MPCs, C to early endocrine progenitors (EP), D to late endocrine progenitors and, by inference and gene expression pattern B to BPs. Expression levels of all these markers were very similar suggesting that these markers cannot be used to distinguish between duct cells and progenitor cells. Importantly, SC-islets derived from either dPP or ePP cells express extremely low and similar levels of KRT19, a marker of duct cells. This latter information is now included in the last part of the results (Figure S7).

      Author response image 1.

      Fig. 7:<br /> The figure is a bit disappointing for 2 reasons. In A and B, the quality of INS, GCG, and SST staining is really poor. In E, GSIS is really difficult to interpret. They should not be presented as stimulatory indexes. The authors should present independently: INS content; INS secretion at low glucose; INS secretion at high glucose; INS secretion with KCL. Finally, the authors should indicate that glucose poorly (around 2 fold) activates insulin/C-Pept secretion in their stem-cell-derived islets.

      We disagree with the quality assessment of the immunofluorescence. Stimulation indexes are also used very widely but we now provide data for actual C-peptide secretion normalized for DNA content of the SC-islets. For technical reasons we do not have normalized C-peptide secretion for human islets. However, we provide a direct comparison to the stimulation index of human islets assayed under the same conditions (2.7 mM glucose / 16.7 mM glucose / 16.7 mM glucose + 30 mM KCl) without presenting SC-islets separately and tweaking the glucose basal (lowering) and stimulation (increasing) levels to inflate the stimulation index. This is unfortunately common. In any case, we do not claim an improvement in the differentiation conditions and our S5-S7 steps may not be optimal but this is not the subject of this work.

      Reviewer #2 (Public Review)

      Summary

      The paper presents a novel approach to expand iPSC-derived pdx1+/nkx6.1+ pancreas progenitors, making them potentially suitable for GMP-compatible protocols. This advancement represents a significant breakthrough for diabetes cell replacement therapies, as one of the current bottlenecks is the inability to expand PP without compromising their differentiation potential. The study employs a robust dataset and state-of-the-art methodology, unveiling crucial signaling pathways (eg TGF, Notch...) responsible for sustaining pancreas progenitors while preserving their differentiation potential in vitro.

      Strengths

      This paper has strong data, guided omics technology, clear aims, applicability to current protocols, and beneficial implications for diabetes research. The discussion on challenges adds depth to the study and encourages future research to build upon these important findings.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to general comments and criticisms.

      Weaknesses

      The paper does have some weaknesses that could be addressed to improve its overall clarity and impact. The writing style could benefit from simplification, as certain sections are explained in a convoluted manner and difficult to follow, in some instances, redundancy is evident. Furthermore, the legends accompanying figures should be self-explanatory, ensuring that readers can easily understand the presented data without the need to be checking along the paper for information.

      We have simplified the text in several places and removed redundancies, particularly in the discussion. We revisited the figure legends and made minor corrections to increase clarity. However, regarding the figure legends, we think that adding the interpretation of the results would be redundant to the main text.

      The culture conditions employed in the study might benefit from more systematic organization and documentation, making them easier to follow.<br /> There is a comparative Table (Table S1) where all conditions are summarized. We refer to this Table every time that we introduce a new condition. We also have a Table (Table S4) which presents all different media and components used it the differentiation procedure.

      Another important aspect is the functionality of the expanded cells after differentiation. While the study provides valuable insights into the expansion of pancreas progenitors in vitro and does the basic tests to measure their functionality after differentiation the paper could be strengthened by exploring the behavior and efficacy of these cells deeper, and in an in vivo setting.

      This will be done in a future study where we will also introduce a number of modifications in S5-S7

      Quantifications for immunofluorescence (IF) data should be displayed.

      We have not conducted quantifications of IFs because FC is much more objective and accurate. We have not conducted FC for CDX2 and AFP because all other data strongly favor C6 anyway. It should be noted that CDX2 and AFP expression is generally not addressed at all presumably because it raises uncomfortable questions and, to our knowledge, we are the first to address this so exhaustively.

      Some claims made in the paper may come across as somewhat speculative.

      We have now indicated so where applicable.

      Additionally, while the paper discusses the potential adaptability of the method to GMP-compatible protocols, there is limited elaboration on how this transition would occur practically or any discussion of the challenges it might entail.

      We have now added a paragraph discussing this in the discussion section.

      Reviewer #2 (Recommendations For The Authors)

      Related to Figure 1:

      • Unclear if CINI or SB431542 + CINI was used (first paragraph of results...)

      The paragraph was unclear and it is now rewritten

      • Was the differentiation to PP similar between the different attempts? A basic QC for each Stem Cell technology differentiation would be good to include.

      We added (Figure 1B) a comparison of expression data of general genes (QC) in PP cells showing very comparable patterns of expression. Some of these PP cells went on to expand and most did not but there is no apparent correlation of this with the gene expression data.

      • qPCR data - relative fold? over what condition? (indicate on axis label)

      We added a label as well as an explanation on p0 values in the figure legend

      • FGF18/ PDGFA - worth including background in pancreas development as in the other factors.

      Background information has been added

      • Bioinformatics is a bit biased with a few genes selected - what are the DEGs / top enriched pathways? Maybe worth showing a volcano plot of the DEGs for example.

      We have done all these standard analyses but we think that they did not contribute anything else useful to the study with the exception of pointing to the finding that the TGFb pathway is negatively correlated with expansion, and this is included in the study. The ‘unbiased’ analysis that the reviewer suggests did not turn out something else useful to exploit for the expansion. This does not mean that our approach is biased – in our view it is hypothesis-driven. As we also write in the manuscript, if in a certain pathway a key gene fails to be expressed, the pathway will not show up in any GO or GSEA analyses. However, the pathway will still be regulated. The RA and FGF18 cases clearly illustrate this. We realize that these analyses have become a standard but we think that it is not the only way to approach genomics data and these approaches did not offer much in the context of this study.

      • The E2F part is very speculative

      The pathway came up as a result of ‘unbiased’ GSEA analyses. However, we do agree and rephrased.

      • The authors claim ' the negative correlation of TGFb signalling with expansion retrospectively justifies the use of A83 '. However, p0 is not treated with A83 - how can they tell that there is a correlation between TGFb signalling and expansion?

      The correlation came from the RNA Seq data analysis during expansion. We have rephrased slightly to convey the message more clearly.

      • Typo with TGFbeta inhibitor name is mispelled (A3801)

      Corrected

      • Page 5 - last paragraph - Table S3? (isnt it refering to S2?)

      Since Table S2 is the list of the regulated genes and S3 is the list of the regulated signaling pathway components both are relevant here, we now refer to both.

      • In the text Figure 2G should read Figure 1G (page 7, end of 1st paragraph).

      Corrected

      • 'Autocrine loop' existence – speculative

      Added the phrase ‘we speculated’. We refer to this only as a tentative interpretation. We also elaborate in the discussion now.

      Related to Figure 2:

      • I am not sure if I would refer to chemical "activation/inhibition" of pathways as 'gain/loss of function'. Maybe this term is more adequate for genetic modifications.

      For genetic manipulations, these terms are (supposed to be) accompanied by the adjective ‘genetic’ but to avoid misinterpretations we changed the terms to activation and inhibition as suggested.

      • It would be good to include a summary of the different conditions as a schematic in one of the figures, to make it very clear to the reader what the conditions are.

      We tried this in an early version of the manuscript but, in our view, it was adding complexity, rather than simplifying things. The problem is that as such the Table cannot be integrated in any figure if eg in Figure 2 it would be too early, if in Figure 4 it would be too late and so on. All conditions show up in detail in Table S1.

      • Nkx6.1 - is the image representative? It looks like Nkx6.1 decreases over the passages.

      We do mention in the text that ‘… even though expansion (in C5) appeared to somewhat reduce the number of NKX6.1+ cells. (Figure 2E-G). As we mentioned, this was one of the reasons to continue with other conditions (C6-C8).

      • Upregulation of AFP/ CDX2 is a bit concerning - the IF for C5 p5 shows a high proportion of CDX2+ cells (Fig S2I). perhaps it would be good to quantify the IF.

      It was concerning – this is why we then tested conditions C6-8. Since it is C6 that we propose at the end, it would be, in our view, extraneous to quantify CDX2 in C5.

      • How do C5/C1/C0 compare to CINI?

      We now remind the reader in the results section that CINI was not reproducible - so any other comparison would be extraneous.

      Related to Figure 3:

      • There is a 'Lore Ipsum' label above B

      Corrected

      Related to Figure 4:

      • It is good that AFP expression is reduced at p10, but there seems to be a high proportion of AFP at p5. IF/FACS should be quantified.

      We think that this would not add significantly since there are several other criteria, particularly the increase of the PDX1+/SOX9+/NKX6.1+ that clearly show that the C6 condition is preferable. Further elaboration of C6 could use such additional criteria. We comment on CDX2 / AFP in the discussion.

      • CDX2 should be quantified by IF / FACS.

      We think that this would not add significantly since there are several other criteria, particularly the increase of the PDX1+/SOX9+/NKX6.1+ that clearly show that the C6 condition is preferable. Further elaboration of C6 could use such additional criteria. We comment on CDX2 / AFP in the discussion.

      • Karyotype analysis is good but not very precise when analyzing genetic micro alterations... what does a low-pass sequencing of the expanding lines look like? Are there any micro-deletions in the expanding lines?

      This is an unusual request. Microdeletions may occur at any point – during passaging of hPS cells, differentiation as well as well as expansion but such data are so far not shown in publications – and reasonably so in our opinion. Thus, we have not done this analysis but it certainly would be appropriate in a clinical setting as part of QC.

      • Data supporting that the cells can be cryopreserved and recovered with >85% survival rate is not provided.

      We now provide data for the C6-mediated expansion (Figure 4J). The freezing procedure was developed during the time we were testing C5 and we don’t have sufficient data to show reliably the survival of the cells during C5 expansion. Thus, we have now removed the reference in the C5 part of the manuscript.

      Related to Figure 5:

      -Figure 5C - perhaps worth commenting on the different pathways that are enriched when cells undergo expansion and show some of the genes that are up/down regulated.

      This is indeed of interest but since it will not address any specific question in the context of this work (eg is the endocrine program repressed?) and since it would not be followed by additional experiments we think that it would burden the manuscript unnecessarily. The data are accessible for any type of analysis through the GEO database.

      • Figure S5D shows in vitro clustering away from in vivo PP - it would be good to explain how in vitro generated PP differs from their in vivo counterparts instead of restricting the comparison to the in vitro protocol.

      We have added a possible interpretation of this observation in the results section and discuss, how one could go properly about this comparison.

      • Quantification of Fig5F should be included. Is GP2 expression detectable by IF at p5 too?

      We have quantified GP2 expression by FC at p10 but not at earlier stages. We include now the FC data in Fig5F

      • Validation of Fig5G by qPCR would be good. PDX1 did not seem reduced by IF in Figure 4.

      The purpose of Fig5G is to compare the expression of the same genes across different expansion approaches. Therefore, in our view, qPCRs would not be appropriate since we do not have samples from the other approaches. We did not claim a reduction in PDX1 expression.

      • How can the authors explain the NGN3 expression at PP?

      In our view, differentiation is a dynamic process and not all cells are synchronized at the same cell type, this is true in vivo and in vitro. Sc-RNA Seq data indeed show a small population of cells at PP that are NEUROG3+ (our unpublished data). We have now included this in the discussion.

      Related to Figure 6:

      • How do the different lines differ? Any statistical comparison between lines?

      There is a paragraph dealing with the comparison of PP and ePP cells (p5 and p10) from different lines at the level of gene expression and the data are in Figure S6A-G. Then there is a paragraph addressing this at the level of PDX1/SOX9/NKX6.1 expression by FC. We have now expanded and rewrote the latter to include statistical comparisons across PPs from different lines at p0, p5 an p10

      Related to Figure 7:

      • Mention the use of micropatterned

      Micropatterned wells - not really correct. They use Aggrewells, micropatterned plates are something else.

      We changed ‘micropatterned wells’ into ‘microwells’

      • Figure 7D, those are qPCR data. The label is inconsistent, why did they call it fold induction instead of fold change? Also, not sure if plotting the fold change to hPSC is the best here.

      We use fold change when comparing the expression of the same gene at different passages but fold induction when comparing to its expression in hPS cells. We made sure it is also explained in the figure legends.

      • Absolute values should be shown for the GSIS to determine basal insulin secretion. Also, sequential stimulation to address if the cells are able to respond to multiple glucose stimulations.

      We include now the secreted amounts of human C-peptide under the different conditions (Figure S7) normalized for cell numbers using their DNA content for the normalization. The many parameters we have used suggest that dPP and ePP SC-islets are very similar. If we were claiming a better S5-S7 procedure, such an assay would have been necessary but in this context, we think it is not absolutely necessary.

      • In vivo data would have strengthened the story. It is not clear if, in vivo, the cells will behave as the nonexpanded iPSC-derived beta cells.

      We agree and these studies are under way but we do not expect to complete them soon. We feel that it is important that this work appears sooner rather than later.

      Reviewer #3 (Public Review)

      Summary:

      In this work, Jarc et al. describe a method to decouple the mechanisms supporting progenitor self-renewal and expansion from feed-forward mechanisms promoting their differentiation.

      The authors aimed at expanding pancreatic progenitor (PP) cells, strictly characterized as PDX1+/SOX9+/NKX6.1+ cells, for several rounds. This required finding the best cell culture conditions that allow sustaining PP cell proliferation along cell passages, while avoiding their further differentiation. They achieve this by comparing the transcriptome of PP cells that can be expanded for several passages against the transcriptome of unexpanded (just differentiated) PP cells.

      The optimized culture conditions enabled the selection of PDX1+/SOX9+/NKX6.1+ PP cells and their consistent, 2000-fold, expansion over ten passages and 40-45 days. Transcriptome analyses confirmed the stabilization of PP identity and the effective suppression of differentiation. These optimized culture conditions consisted of substituting the Vitamin A containing B27 supplement with a B27 formulation devoid of vitamin A (to avoid retinoic acid (RA) signaling from an autocrine feed-forward loop), substituting A38-01 with the ALK5 II inhibitor (ALK5i II) that targets primarily ALK5, supplementation of medium with FGF18 (in addition to FGF2) and the canonical Wnt inhibitor IWR-1, and cell culture on vitronectin-N (VTN-N) as a substrate instead of Matrigel.

      Strengths:

      The strength of this work relies on a clever approach to identify cell culture modifications that allow expansion of PP cells (once differentiated) while maintaining, if not reinforcing, PP cell identity. Along the work, it is emphasized that PP cell identity is associated with the co-expression of PDX1, SOX9, and NKX6.1. The optimized protocol is unique (among the other datasets used in the comparison shown here) in inducing a strong upregulation of GP2, a unique marker of human fetal pancreas progenitors. Importantly GP2+ enriched hPS cell-derived PP cells are more efficiently differentiating into pancreatic endocrine cells (Aghazadeh et al., 2022; Ameri et al., 2017).

      The unlimited expansion of PP cells reported here would allow scaling-up the generation of beta cells, for the cell therapy of diabetes, by eliminating a source of variability derived from the number of differentiation procedures to be carried out when starting at the hPS cell stage each time. The approach presented here would allow the selection of the most optimally differentiated PP cell population for subsequent expansion and storage. Among other conditions optimized, the authors report a role for Vitamin A in activating retinoic acid signaling in an autocrine feed-forward loop, and the supplementation with FGF18 to reinforce FGF2 signaling.

      This is a relevant topic in the field of research, and some of the cell culture conditions reported here for PP expansion might have important implications in cell therapy approaches. Thus, the approach and results presented in this study could be of interest to researchers working in the field of in vitro pancreatic beta cell differentiation from hPSCs. Table S1 and Table S4 are clearly detailed and extremely instrumental to this aim.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to general comments and criticisms.

      Weaknesses

      The authors strictly define PP cells as PDX1+/SOX9+/NKX6.1+ cells, and this phenotype was convincingly characterized by immunofluorescence, RT-qPCR, and FACS analysis along the work. However, broadly defined PDX1+/SOX9+/NKX6.1+ could include pancreatic multipotent progenitor cells (MPC, defined as PDX1+/SOX9+/NKX6.1+/PTF1A+ cells) or pancreatic bipotent progenitors (BP, defined as PDX1+/SOX9+/NKX6.1+/PTF1A-) cells. It has been indeed reported that Nkx6.1/Nkx6.2 and Ptf1a function as antagonistic lineage determinants in MPC (Schaffer, A.E. et al. PLoS Genet 9, e1003274, 2013), and that the Nkx6/Ptf1a switch only operates during a critical competence window when progenitors are still multipotent and can be uncoupled from cell differentiation. It would be important to define whether culturing PDX1+/SOX9+/NKX6.1+ PP (as defined in this work) in the best conditions allowing cell expansion is reinforcing either an MPC or BP phenotype. Data from Figure S2A (last paragraph of page 7) suggests that PTF1A expression is decreased in C5 culture conditions, thus more homogeneously keeping BP cells in this media composition. However, on page 15, 2nd paragraph it is stated that "the strong upregulation of NKX6.2 in our procedure suggested that our ePP cells may have retracted to an earlier PP stage". Evaluating the co-expression of the previously selected markers with PTF1A (or CPA2), or the more homogeneous expression of novel BP markers described, such as DCDC2A (Scavuzzo et al. Nat Commun 9, 3356, 2018), in the different culture conditions assayed would more shield light into this relevant aspect.

      This is certainly an interesting point. The RNA Seq data suggest that ePP cells resemble BP cells rather than MPCs and that this occurs during expansion. We have now added a new paragraph in the results section to illustrate this and added graphs of CPA2, PTF1A and DCDC2A expression during expansion in Figure 5, S5 as well as data in Table S5. In summary, we favor the interpretation that expanded cells are close but not identical to the BP identity and refer to that in the discussion. We have also amended the statement on page 15 stating the strong upregulation of NKX6.2 in our procedure suggested that our ePP cells may have retracted to an earlier PP stage.

      In line with the previous comment, it would be extremely insightful if the authors could characterize or at least discuss a potential role for YAP underlying the mechanistic effects observed after culturing PP in different media compositions. It is well known that the nuclear localization of the co-activator YAP broadly promotes cell proliferation, and it is a key regulator of organ growth during development. Importantly in this context, it has been reported that TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors and disruption of this interaction arrests the growth of the embryonic pancreas (Cebola, I. et al. Nat Cell Biol 17, 615-26, 2015). More recently, it has also been shown that a cell-extrinsic and intrinsic mechanotransduction pathway mediated by YAP acts as gatekeeper in the fate decisions of BP in the developing pancreas, whereby nuclear YAP in BPs allows proliferation in an uncommitted fate, while YAP silencing induces EP commitment (Mamidi, A. et al. Nature 564, 114-118, 2018; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). This mechanism was further exploited recently to improve the in vitro pancreatic beta cell differentiation protocol (Hogrebe et al., Nature Protocols 16, 4109-4143, 2021; Hogrebe et al, Nature Biotechnology 38, 460-470, 2020). Thus, YAP in the context of the findings described in this work could be a key player underlying the proliferation vs differentiation decisions in PP.

      We do refer to these publications now and refer to the YAP pathway in the introduction and results sections as well as in the discussion. We have not investigated more because the kinetics of the different components of the pathway are complex and do not give an indication of whether the pathway becomes more or less active – please see below.

      Author response image 2.

      Regarding the improvements made in the PP cell culture medium composition to allow expansion while avoiding differentiation, some of the claims should be better discussed and contextualized with current stateof-the-art differentiation protocols. As an example, the use of ALK5 II inhibitor (ALK5i II) has been reported to induce EP commitment from PP, while RA was used to induce PP commitment from the primitive gut tube cell stage in recently reported in vitro differentiation protocols (Hogrebe et al., Nature Protocols 16, 41094143, 2021; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). In this context, and to the authors' knowledge, is Vitamin A (triggering autocrine RA signaling) usually included in the basal media formulations used in other recently reported state-of-the-art protocols? If so, at which stages? Would it be advisable to remove it?

      These points and our views are now included in the discussion

      In this line also, the supplementation of cell culture media with the canonical Wnt inhibitor IWR-1 is used in this work to allow the expansion of PP while avoiding differentiation. A role for Wnt pathway inhibition during endocrine differentiation using IWR1 has been previously reported (Sharon et al. Cell Reports 27, 22812291.e5, 2019). In that work, Wnt inhibition in vitro causes an increase in the proportion of differentiated endocrine cells. It would be advisable to discuss these previous findings with the results presented in the current work. Could Wnt inhibition have different effects depending on the differential modulation of the other signaling pathways?

      These points are now included in the discussion together with the points above

      Reviewer #3 (Recommendations For The Authors)

      Recommendations for improving the writing and presentation and minor comments on the text and figures:

      • In the Introduction (page 3, line 1) it is stated: "Diabetes is a global epidemic affecting > 9% of the global population and its two main forms result from .....". The authors could rephrase/remove "global" repeated twice.

      Corrected

      • On page 4 of the introduction, in the context of "Unlimited expansion of PP cells in vitro will require disentangling differentiation signals from proliferation/maintenance signals. Several pathways have been implicated in these processes..." the authors are advised to consider mentioning the YAP mediated mechanisms as another key aspect underlying MPC phenotype (Cebola, I. et al. Nat Cell Biol 17, 615-26, 2015) and the BP to endocrine progenitor (EP) commitment (Mamidi, A. et al. Nature 564, 114-118, 2018; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). This should be better discussed in the context of the Weaknesses mentioned in the Public Review. It would be worth considering adding effectors and other molecules involved in YAP and Hippo pathway signaling to Table S3.

      We have added the role of the Hippo/YAP pathway in the introduction and mentioned in the results the finding that components of the pathway are generally not regulated except two that are now added in Table S3

      • In page 4, paragraph 3, near "and SB431542, another general (ALK4/5/7) TGFβ inhibitor", consider removing "another". SB431542 is the same inhibitor mentioned in the other protocols at the beginning of the paragraph.

      The paragraph is rewritten because it was not clear – we used A83-01 and not SB431542. Other approaches had used SB431542.

      • Page 5, Table S2 is cited after Table S3, please consider reordering.

      In fact, both S2 and S3 are relevant there, therefore we quote both now.

      • Page 8, 2nd paragraph, near "Expression of both AFP and CDX2 increased transiently upon expansion, at p5 (Figure S2H-J)." How do you explain results in FigS2C, D and FigS2E (AFP/CDX2)? RT-qPCR data does not suggest transient downregulation.

      AFP and CDX2 were – wrongly – italicized in the quoted passage. Therefore, in one case we refer to the protein and in the other to the transcript levels. We corrected and added the qualifier ‘appeared’. The difference is most likely due to translational regulation but we did not elaborate since we do not know. In any case, we have used the, less favorable but more robust, gene expression levels as the main criterion.

      • Page 9, end of 2nd paragraph, Figure 5A is cited but it looks like this should be Figure 4A.

      Corrected

      • Page 9, 3rd paragraph, when stating "C5 ePP cells of the same passage no..." please replace "no" with a number or a suitable abbreviation.

      Corrected

      • Page 9, 3rd paragraph. Expressing the values in the Y axis in a consistent manner for FigS2B-D and FigS4A would make a comparison easier.

      We strive to keep sections autonomous so that the reader would not have to flip between figures and sections – this is why we think that figure S4A is preferable as it is; it is a direct comparison of C6 to C5 for the different markers and has the additional advantage that one needs not to include p0 levels.

      • Page 9, 3rd paragraph. Green dots in FigS4A stand for p5 cells? if so, shouldn't these average 1 for all assayed genes?

      No, because the baseline (average 1) is the C5 expression at the corresponding passage no. We changed the y-axis label, hopefully it is clearer now.

      • Page 10 3rd paragraph, please include color labels in Fig. 5G.

      The different colors here correspond to the different expansion procedures that are compared. The samples are labelled on the x axis.

      • Page 10 3rd paragraph, Figure 6G is cited but it looks like this should be Figure 5G.

      Corrected

      • Page 11, 1st paragraph, at "TF genes such as FOXA2 and RBJ remained comparable", please double check if "RBJ" should be "RBPJ".

      Corrected

      • Page 11, end of 1st paragraph, when stating "Of note, expression of PTF1A was also undetectable in all ePP cells (Table S5)", is PTF1A expression level close to 1000 (which units?) in Table S5 considered undetectable?

      This statement regarding ‘undetectable PTF1A expression’ refers to expanded PP cells (ePP), not PP cells at p0. For the latter, expression is indeed close to 1000 in normalized RNA-sequence counts as mentioned in the Table legend.

      -Page 11, 4th paragraph, "In summary, the comparative transcriptome analyses suggested that our C6 expansion procedure is more efficient at strengthening the PP identity". In the context of comments made in the Public Review, more accuracy needs to be put when defining PP identity. Are these MPC or BP?

      The RNA Seq data suggest that expansion promotes a MPC  BP transition. We have added a paragraph in the corresponding results section and comment in the discussion.

      • Page 15, 2nd paragraph, the sentence "expression of PTF1A, recently shown to promote endocrine differentiation of hPS cells (Miguel-Escalada et al., 2022)" is confusing. Please double-check sentence syntax and reference. Does PTF1A expression "promote" or "create epigenetic competence" for endocrine differentiation?

      Its role is in the MPCs and it prepares the epigenetic landscape to allow for duct and endocrine specification later, thus it ‘creates epigenetic competence’. The paper was cited out of context and we have now corrected it.

      Additional recommendations by the Reviewing Editor:

      An insufficient number of experimental repetitions have been used for the following data: (Figure 1A, n = 2; Figures 2B-D, p10, n = 2; Figures 6A and B, VTN-N, n = 1).

      This is true but we do not draw quantitative conclusions from or do comparisons with these data.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their thoughtful evaluation of our manuscript. We considered all the comments and prepared the revised version. The following are our responses to the reviewers’ comments. All references, including those in the original manuscript are included at the end of this point-by-point response.

      Reviewer #1 (Public Review):

      Weaknesses:

      1) The authors should better review what we know of fungal Drosophila microbiota species as well as the ecology of rotting fruit. Are the microbiota species described in this article specific to their location/setting? It would have been interesting to know if similar species can be retrieved in other locations using other decaying fruits. The term 'core' in the title suggests that these species are generally found associated with Drosophila but this is not demonstrated. The paper is written in a way that implies the microbiota members they have found are universal. What is the evidence for this? Have the fungal species described in this paper been found in other studies? Even if this is not the case, the paper is interesting, but there should be a discussion of how generalizable the findings are.

      The reviewer inquires as to whether the microbial species described in this article are ubiquitously associated with Drosophila or not. Indeed, most of the microbes described in this manuscript are generally recognized as species associated with Drosophila spp. For example, yeasts such as Hanseniaspora uvarum, Pichia kluyveri, and Starmerella bacillaris have been detected in or isolated from Drosophila spp. collected in European countries as well as the United States and Oceania (Chandler et al., 2012; Solomon et al., 2019). As for bacteria, species belonging to the genera Pantoea, Lactobacillus, Leuconostoc, and Acetobacter have also previously been detected in wild Drosophila spp. (Chandler et al., 2011). These statements have been incorporated into our revised manuscript (lines 391-397). Nevertheless, the term “core” in the manuscript and title may lead to misunderstanding, as the generality does not ensure the ubiquitous presence of these microbial species in every individual fly. Considering this point, we replaced the “core” with “key,” a term that is more appropriate to our context.

      2) Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild? Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?

      Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild?

      The reviewer asked whether the microbial species detected from the fermented banana samples were derived from flies. To address this question, additional experiments under more controlled conditions would be needed, such as artificially introducing wild flies onto fresh bananas in the laboratory. Nevertheless, the microbes potentially originate from wild flies, as supported by the literature cited in our response to the Weakness 1).

      Alternative sources of microbes also merit consideration. For example, microbes may have been introduced to unfermented bananas by penetration through peel injuries (lines 1300-1301). In addition, they could be introduced by insects other than flies, given that rove beetles (Staphylinidae) and sap beetles (Nitidulidae) were observed in some of the traps. The explanation of these possibilities have been incorporated into DISCUSSION (lines 414427) of our revised manuscript.

      Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?

      Our sampling strategy was designed to target not only D. melanogaster but also other domestic Drosophila species, such as D. simulans, that inhabit human residential areas. For the traps where adult flies were caught, we identified the species of the drosophilids as shown in Table S1, thereby showing the presence of either or both D. melanogaster and D. simulans. We added these descriptions in MATERIALS AND METHODS (lines 511-512 and 560-562), and DISCUSSION (lines 378-379).

      3) Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning. The authors described their microarray data in terms of fed/starved in relation to the Finke article. They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).

      Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning.

      Regarding the antimicrobial peptide genes, statistical comparisons of our RNA-seq data across different conditions were impracticable because most of the genes showed low expression levels. The RNA-seq data of the yeast-fed larvae is shown in Author response Table 1. While a subset of genes exhibited significantly elevated expression in the nonsupportive conditions relative to the supportive ones, this can be due to intra-sample variability rather than the difference in the nutritional conditions. Similar expression profiles were observed in the bacteria-fed larvae as well (data not shown). Therefore, it is difficult to discuss a change in immune genes in the paper. Additionally, the previous study that conducted larval microarray analysis (Zinke et al., 2002) did not explicitly focus on immune genes.

      Author response table 1.

      Antimicrobial peptide genes are not up-regulated by any of the microbes. Antimicrobial peptides gene expression profiles of whole bodies of first-instar larvae fed on yeasts. TPM values of all samples and comparison results of gene expression levels in the larvae fed on supportive and non-supportive yeasts are shown. Antibacterial peptide genes mentioned in Hanson and Lemaitre, 2020 are listed. NA or na, not available.

      They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).

      We did not observe significant differences in the gene expression profiles of the larvae fed on different microbial species within bacteria or fungi, or between those fed on bacteria and those fed on fungi. For example, the gene expression profiles of larvae fed on the various supportive microbes showed striking similarities to each other, as evidenced by the heat map showing the expression of all genes detected in larvae fed either yeast or bacteria (Author response image 1). Similarities were also observed among larvae fed on various nonsupportive microbes.

      Only a handful of genes showed different expression patterns between larvae fed on yeast and those fed on bacteria. Thus, it is challenging to discuss the potential differential impacts of yeast and bacteria on larval growth, if any.

      Author response image 1.

      Gene expression profiles of larvae fed on the various supporting microbes show striking similarities to each other. Heat map showing the gene expression of the first-instar larvae that fed on yeasts or bacteria. Freshly hatched germ-free larvae were placed on banana agar inoculated with each microbe and collected after 15 h feeding to examine gene expression of the whole body. Note that data presented in Figures 3A and 4C in the original manuscript, which are obtained independently, are combined to generate this heat map. The labels under the heat map indicate the microbial species fed to the larvae, with three samples analyzed for each condition. The lactic acid bacteria (“LAB”) include Lactiplantibacillus plantarum and Leuconostoc mesenteroides, while the lactic acid bacterium (“AAB”) represents Acetobacter orientalis. “LAB + AAB” signifies mixtures of the AAB and either one of the LAB species. The asterisks in the label highlight “LAB + AAB” or “LAB” samples clustered separately from the other samples in those conditions; “” indicates a sample in a “LAB + AAB” condition (Lactiplantibacillus plantarum + Acetobacter orientalis), and “*” indicates a sample in a “LAB” condition (Leuconostoc mesenteroides). Brown abbreviations of scientific names are for the yeast-fed conditions. H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; M. asi, Martiniozyma asiatica; Sa. cra, Saccharomycopsis crataegensis; P. klu, Pichia kluyveri; St. bac, Starmerella bacillaris; BY4741, Saccharomyces cerevisiae BY4741 strain.

      4) The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)? Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?

      The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)?

      Although we did not investigate the microbiota in the gut of either larvae or adults, we did compare the microbiota within surface-sterilized larvae or adults with the microbiota in food samples. We found that adult flies and early-stage foods, as well as larvae and late-stage foods, harbored similar microbial species (Figure 1F). Additionally, previous studies examining the gut microbiota in wild adult flies have detected microbes belonging to the same species or taxa as those isolated from our foods (Chandler et al., 2011; Chandler et al., 2012). We have elaborated on this in our response to Weakness 1).

      While we did not investigate whether these species are capable of establishing a niche in the cardia of adults, we have cited the study by Dodge et al., 2023 in our revised manuscript and discussed the possibility that predominant microbes in adult flies may show a propensity for colonization (lines 410-413).

      Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?

      The reviewer inquires whether the supportive microbes in our study stimulate gut signaling pathways and induce the expression of digestive protease genes, as demonstrated in a previous study (Erkosar et al., 2015). Based on our RNA-seq data, this is unlikely. The aforementioned study demonstrated that seven protease genes are upregulated through Imd pathway stimulation by a bacterium that promotes the larval growth. In our RNA-seq analysis, these seven genes did not exhibit a consistent upregulation in the presence of the supportive microbes (H. uva or K. hum in Author response table 2A; Le. mes + A. ori in Author response table 2B). Rather, they exhibited a tendency to be upregulated by the presence of non-supportive microbes (St. bac or Pi. klu in Author response table 2A; La. pla in Author Response Table 2B).

      Author response table 2.

      Most of the peptidase genes reported by Erkosar et al., 2015 are more highly expressed under the non-supportive conditions than the supportive conditions. Comparison of the expression levels of seven peptidase genes derived from the RNA-seq analysis of yeast-fed (A) or bacteria-fed (B) first-instar larvae. A previous report demonstrated that the expression of these genes is upregulated upon association with a strain of Lactiplantibacillus plantarum, and that the PGRP-LE/Imd/Relish signaling pathway, at least partially, mediates the induction (Erkosar et al., 2015). H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; P. klu, Pichia kluyveri; S. bac, Starmerella bacillaris; La. pla, Lactiplantibacillus plantarum; Le. mes, Leuconostoc mesenteroides; A. ori, Acetobacter orientalis; ns, not significant.

      Reviewer #2 (Public Review):

      Weaknesses:

      The experimental setting that, the authors think, reflects host-microbe interactions in nature is one of the key points. However, it is not explicitly mentioned whether isolated microbes are indeed colonized in wild larvae of Drosophila melanogaster who eat bananas. Another matter is that this work is rather descriptive and a few mechanical insights are presented. The evidence that the nutritional role of BCAAs is incomplete, and molecular level explanation is missing in "interspecies interactions" between lactic acid bacteria (or yeast) and acetic acid bacteria that assure their inhabitation. Apart from these matters, the future directions or significance of this work could be discussed more in the manuscript.

      The experimental setting that, the authors think, reflects host-microbe interactions in nature is one of the key points. However, it is not explicitly mentioned whether isolated microbes are indeed colonized in wild larvae of Drosophila melanogaster who eat bananas.

      The reviewer asks whether the isolated microbes were colonized in the larval gut. Previous studies on microbial colonization associated with Drosophila have predominantly focused on adults (Pais et al. PLOS Biology, 2018), rather than larval stages. Developing larvae continually consume substrates which are already subjected to microbial fermentation and abundant in live microbes until the end of the feeding larval stage. Therefore, we consider it difficult to discuss microbial colonization in the larval gut. We have mentioned this point in DISCUSSION of the revised manuscript (lines 408-410).

      Another matter is that this work is rather descriptive and a few mechanical insights are presented. The evidence that the nutritional role of BCAAs is incomplete, and molecular level explanation is missing in "interspecies interactions" between lactic acid bacteria (or yeast) and acetic acid bacteria that assure their inhabitation.

      While we recognize the importance of comprehensive mechanistic analysis, elucidation of more detailed molecular mechanisms lies beyond the scope of this study and will be a subject of future research.

      Regarding the nutritional role of BCAAs, the incorporation of BCAAs enabled larvae fed with the non-supportive yeast to grow to the second-instar stage. This observation implies that consumption of BCAAs upregulates diverse genes involved in cellular growth processes in larvae. We mentioned a previously reported interaction between lactic acid bacteria (LAB) and acetic acid bacteria (AAB) in the manuscript (lines 433-436). LAB may facilitate lactate provision to AAB, consequently enhancing the biosynthesis of essential nutrients such as amino acids. To test this hypothesis, future experiments will include the supplementation of lactic acid to AAB culture plates, and the co-inoculation of AAB with LAB mutant strains defective in lactate production to assess both larval growth and continuous larval association with AAB. With respect to AAB-yeast interactions, metabolites released from yeast cells might benefit AAB growth, and this possibility will be investigated through the supplementation of AAB culture plates with candidate metabolites identified in the cell suspension supernatants of the late-stage yeasts.

      Apart from these matters, the future directions or significance of this work could be discussed more in the manuscript.

      We appreciate the reviewer's recommendations. The explanation of the universality of our findings has been included in the revised DISCUSSION (lines 391-397). We have also added descriptions on the implication of compositional shifts occurring in adult microbiota (lines 404413), possible inoculation routes of different microbes (lines 414-427), and hypotheses on the mechanism of larval growth promotion by yeasts (lines 469-476), all of which could be the focus of our future study.

      Reviewer #3 (Public Review):

      Weaknesses:

      Despite describing important findings, I believe that a more thorough explanation of the experimental setup and the steps expected to occur in the exposed diet over time, starting with natural "inoculation" could help the reader, in particular the non-specialist, grasp the rationale and main findings of the manuscript. When exactly was the decision to collect earlystage samples made? Was it when embryos were detected in some of the samples? What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects? Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source. Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used? Were standard curves produced? Were internal, deuterated controls used?

      When exactly was the decision to collect early-stage samples made? Was it when embryos were detected in some of the samples?

      We collected traps and early-stage samples 2.5 days after setting up the traps. This duration was determined from pilot experiments. A shorter collection time resulted in a lower likelihood of obtaining traps visited by adult flies, whereas a longer collection time caused overcrowding of larvae as well as deaths of adults from drowning in the liquid seeping out of the fruits. These procedural details have been included in the MATERIALS AND METHODS section of the revised manuscript (lines 523-526).

      What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects?

      We assume that the origins of the microbes detected in the no-fly trap foods vary depending on the species. For instance, Colletotrichum musae, the fungus that causes banana anthracnose, may have been present in fresh bananas before trap placement. The filamentous fungi could have originated from airborne spores, but they could also have been introduced by insects that feed on these fungi. We have included these possibilities in the DISCUSSION section of the revised manuscript (lines 417-421).

      Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source.

      We are grateful for the reviewer's insightful suggestion regarding shifts in the adult microbiome. We have included in the DISCUSSION section of the revised manuscript the possibility that the microbial composition may change substantially during pupal stages or after adult eclosion (lines 404-413).

      Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used?

      In this metabolomic analysis, LC-MS/MS with triple quadrupole MS monitors the formation of fragment ions from precursor ions specific to each target compound. The use of PFPP columns, which provide excellent separation of amino acids and nucleobases, allows chromatographic peaks of many structural isomers to be separated into independent peaks. In addition, all measured compounds are compared with data from a standard library to confirm retention time agreement. Structural isomers were separated either by retention time on the column or by compound-specific MRM signals (in fact, leucine and isoleucine have both unique MRM channels and column separations). Detailed MRM conditions are identical to the previously published study (Oka et al., 2017). These have been included in the revised ‘LC-MS/MS measurement’ section in MATERIALS AND METHODS (lines 810-824).

      Were standard curves produced?

      Since relative quantification of metabolite amounts was performed in this study, no standard curve was generated to determine absolute concentrations. However, a standard compound of known concentration (single point) was measured to confirm retention time and relative area values.

      Were internal, deuterated controls used?

      Internal standards for deuterium-labeled compounds were not used in this study. This is because it is not realistic to obtain deuterium-labeled compounds for all compounds since a large number of compounds are measured. However, an internal standard (L-methionine sulfone) is added to the extraction solvent to calculate the recovery rate. This has been included in the revised ‘LC-MS/MS measurement’ section in MATERIALS AND METHODS (lines 824-825).

      Reviewer #1 (Recommendations For The Authors):

      Additional comments 1. The authors should do a better job of presenting their data. It took me quite a while to understand the protocol of Figure 1. Panel 1A, B, C could be improved. For instance, 1A suggests that flies are transferred to the lab while this is in fact the banana trap. Indicate 'Banana trap colonized by flies' rather 'wild-type flies in the trap'. 1C: should indicate that the food suspension comes from the banana trap. 1B,D,D: do not use pale color as legend. Avoid the use of indices in Figure 2 (Y1 rather than Y1). Grey colors are difficult to distinguish in Figure 2. Etc. It is a pain for reviewers that figure legends are on the verso of each figure and not just below.

      We thank the reviewer for the detailed suggestions to improve the clarity and comprehensibility of our figures. We have improved the figures according to the suggestions. As for the figure legends, we have placed them below each respective figure whenever possible.

      1. Clarify in the text if 'sample' means food substratum or flies/larvae (ex. line 116 and elsewhere).

      We have revised the word “sample” throughout our manuscript and eliminated the confusion.

      1. Line 170 - clarify what you mean by fermented food.

      We have replaced the “fermented larval foods” with “fermented bananas” in our revised manuscript (line 165).

      1. Line 199 - what is the meaning of 'stocks'.

      We have replaced the “stocks” with “strains” (line 195).

      1. Line 320 - explain more clearly what the yeast-conditioned banana-agar plate and cell suspension supernatant are, and what the goals of using these media are. This will help in understanding the subsequent text.

      We have added a supplemental figure illustrating the sample preparation for the metabolomic analysis (Figure S6), with the following legend describing the procedure (lines 1335-1346): “Sample preparation process for the metabolomic analysis. We suspected that the supportive live yeast cells may release critical nutrients for larval growth, whereas the non-supportive yeasts may not. To test this possibility, we made three distinct sample preparations of individual yeast strains (yeast cells, yeast-conditioned banana-agar plates, and cell suspension supernatants). Yeast cells were for the analysis of intracellular metabolites, whereas yeast-conditioned banana-agar plates and cell suspension supernatants were for that of extracellular metabolites. The samples were prepared as the following procedures. Yeasts were grown on banana-agar plates for 2 days at 25°C, and then scraped from the plates to obtain “yeast cells.” Next, the remaining yeasts on the resultant plates were thoroughly removed, and a portion from each plate was cut out (“yeast-conditioned banana agar”). In addition, we suspended yeast cells from the agar plates into sterile PBS, followed by centrifugation and filtration to eliminate the yeast cells, to prepare “cell suspension supernatants.”

      1. Figure 5 is difficult to understand. Provide more explanation. Consider moving the 'all metabolites panel' to Supp. Better explain what this holidic medium is.

      The holidic medium is a medium that has been commonly used in the Drosophila research community, which contains ~40 known nutrients, and supports the larval development to pupariation (Piper et al., 2014; Piper et al., 2017). We have introduced this explanation to the RESULTS section of the manuscript (lines 322-327). However, the scope of our research reaches beyond the analysis of the holidic medium components, because feeding the holidic medium alone causes a significant delay in larval growth, suggesting a lack of nutritional components (Piper et al., 2014). Thus, we believe the "All Metabolites" panels should be placed alongside the corresponding “The holidic medium components” panels.

      1. I could not access Figure 6 when downloading the PDF. The page is white and an error message appears - it is problematic to review a paper lacking a figure.

      We regret any inconvenience caused, perhaps due to a system error. Please refer to the Author response image 2, which is identical to Figure 6 of our original manuscript.

      Author response image 2.

      Supportive yeasts facilitate larval growth by providing nutrients, including branched-chain amino acids, by releasing them from their cells (Figure 6 from the original manuscript). (A and B) Growth of larvae feeding on yeasts on banana agar supplemented with leucine and isoleucine. (A) The mean percentage of the live/dead individuals in each developmental stage. n=4. (B) The percentage of larvae that developed into second instar or later stages. The “Not found” population in Figure 6A was omitted from the calculation. Each data point represents data from a single tube. Unique letters indicate significant differences between groups (Tukey-Kramer test, p < 0.05). (C) The biosynthetic pathways for leucine and isoleucine with S. cerevisiae gene names are shown. The colored dots indicate enzymes that are conserved in the six isolated species, while the white dots indicate those that are not conserved. Abbreviations of genera are given in the key in the upper right corner. LEU2 is deleted in BY4741. (D-G) Representative image of Phloxine B-stained yeasts. The right-side images are expanded images of the boxed areas. The scale bar represents 50 µm. (H) Summary of this study. H. uvarum is predominant in the early-stage food and provides Leu, Ile, and other nutrients that are required for larval growth. In the late-stage food, AAB directly provides nutrients, while LAB and yeasts indirectly contribute to larval growth by enabling the stable larva-AAB association. The host larva responds to the nutritional environment by dramatically altering gene expression profiles, which leads to growth and pupariation. H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; Pi. klu, Pichia kluyveri; St. bac, Starmerella bacillaris; GF, germ-free.

      1. Line 323 - Consider rewriting this sentence (too long, explain what the holidic medium is and why this is interesting). "In the yeast-conditioned banana-agar plates, which were anticipated to contain yeast-derived nutrients, many well-known nutrients included in a chemically defined synthetic (holidic) medium for Drosophila melanogaster (Piper et al., 2014, 2017) were not increased compared to the sterile banana-agar plates; instead, they exhibited drastic decreases irrespective of the yeast species."

      We thank the reviewer's suggestion to improve the readability of our manuscript. We have rewritten the sentence in the revised manuscript (lines 320-328) as follows: “The yeastconditioned banana-agar plates were expected to contain yeast-derived nutrients. On the contrary, the result revealed a depletion of various metabolites originally present in the sterile banana agar (Figure 5A). This result prompted us to focus on the metabolites in the chemically defined (holidic) medium for Drosophila melanogaster Piper et al., 2014; Piper et al., 2017. This medium contains ~40 known nutrients, and supports the larval development to pupariation, albeit at the half rate compared to that on a yeast-containing standard laboratory food Piper et al., 2014; Piper et al., 2017. Therefore, the holidic medium could be considered to contain the minimal essential nutrients required for larval growth. Our analysis indicated a substantial reduction of these known nutrients in the yeast-conditioned plates compared to their original quantities (Figure 5B).”

      Reviewer #2 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data or analyses.

      1. It should be clearly shown (or stated) that isolated microbes, such as H. uvarum and Pa. agglomerans, are indigenous microbes in wild Drosophila melanogaster in their outdoor sampling.

      We thank the reviewer for the suggestions. Addressing the presence of isolated microbes within wild D. melanogaster adults is important, but cannot be feasible with our data for the following reasons. Our microbiota analysis of adults was conducted using pooled individuals of multiple Drosophila species, rather than using D. melanogaster exclusively. Moreover, the microbial isolation and the analysis of adult microbiota were carried out in two independent samplings (Figures 1A and 1E in the original manuscript, respectively). As a result, the microbial species detected in the adults were slightly different from those isolated from the food samples collected in the previous sampling. Nevertheless, it is worth noting that H. uvarum dominated in 2 out of the 3 adult samples, constituting >80% of the fungal composition. Pantoea agglomerans was not detected in the adults, although Enterobacterales accounted for >59% in 2 out of the 3 samples. Therefore, these isolated microbial species, or at least their phylogenetically related species, are presumed to be indigenous to wild D. melanogaster.

      If the reviewer’s suggestion was to state the dominance of H. uvarum and Pantoea agglomerans in early-stage foods, we have added a supplemental figure showing the species-level microbial compositions corresponding to Figure 1B of the original manuscript (Figure S1), and further revised the manuscript (lines 180-186).

      1. The reviewer supposes that the indigenous microbes of flies may differ from what they usually eat. In this study, the authors use banana-based food, but is it justified in terms of the natural environment of the places where those microbes were isolated? In other words, did sampled wild flies eat bananas outside the laboratory at Kyoto University?

      Drosophila spp. inhabit human residential areas and feed on various fermented fruits and vegetables. In the areas surrounding Kyoto University, they can be found in garbage in residential dwellings as well as supermarkets. In this regard, fruits are natural food sources of wild Drosophila in the area.

      Among various fruits, bananas were selected based on the following two reasons. Firstly, bananas were commonly used in previous Drosophila studies as a trap bait or a component of Drosophila food (Anagnostou et al., 2010; Stamps et al., 2012; Consuegra et al., 2020). Secondly, and rather practically, bananas can be obtained in Japan all year at a relatively low cost. Previous studies have used various fruits such as grapes (Quan and Eisen, 2018), figs (Pais et al., 2018), and raspberries (Cho and Rohlfs, 2023). However, these fruits are only available during limited seasons and are more expensive per volume than bananas. Thus, they were not practical for our study, which required large amounts of fruit-based culture media. We have included a brief explanation regarding this point in MATERIALS AND METHODS (lines 514-518).

      1. In Fig. 6B, the Leu and Ile experiment, is the added amount of those amino acids appropriate in the context that they mention "...... supportive yeasts had concentrations of both leucine and isoleucine that were at least four-fold higher than those of non-supportive yeasts"?

      We acknowledge that the supplementation should be carried out ideally in a quantity equivalent to the difference between the released amounts of supportive and non-supportive species. However, achieving this has been highly challenging. Previous studies determined the amount of amino acid supplementation by quantifying their concentration in the bacteriaconditioned media (Consuegra et al., 2020; Henriques et al., 2020). However, we found that quantifying the exact concentrations of the amino acids is not feasible with our yeasts. As shown in Figure 5B in the original manuscript, the amino acid contents were markedly reduced in the yeast-conditioned banana agar compared to the agar without yeasts, presumably because of the uptake by the yeasts. Thus, the amino acids released from yeast cells on the banana-agar plate are not expected to accumulate in the medium. As this reviewer pointed out, in the cell suspension supernatants of the supportive yeasts, concentrations of both leucine and isoleucine were at least four-fold higher compared to those of non-supportive yeasts (Figures 5G-H in the original submission), However, this measurement does not give the absolute amount of either amino acid available for larvae. Given these constraints, we opted for the amino acid concentrations in the holidic medium, which support larval growth under axenic conditions (Piper et al., 2014). We also showed that the supplementation of the amino acids at that concentration to the bananaagar plate was not detrimental to larval growth (Figures 6A-B in the original manuscript). These rationales have been included in the revised ‘Developmental progression with BCAA supplementation’ section in MATERIALS AND METHODS of our manuscript (lines 840-847).

      1. In addition to the above, it can be included other amino acids or nutrients as control experiments.

      As mentioned in our manuscript (lines 365-368), we did supplement other amino acids, lysine and asparagine, which failed to rescue the larval growth.

      1. In the experiment of Fig. 2E, how about examining larval development using heat-killed LAB or yeast with live AAB? The reviewer speculates that one possibility is that AAB needs nutrients from LAB.

      We did not feed larvae with heat-killed LAB and live AAB for the following reasons. LAB grows very poorly on banana agar compared to yeasts, and preparation of LAB required many banana-agar plates even when we fed live bacteria to larvae. Adding dead LAB to banana-agar tubes would require far more plates, but this preparation is impractical. Furthermore, heat-killing may not allow the investigation of the contribution of heat-unstable or volatile compounds.

      As for the reviewer's suggestion regarding the addition of heat-killed yeast with AAB, heat-killed yeast itself promotes larval growth, as shown in Figures 4G and 4H in the original manuscript, so the contribution of yeast cannot be examined using this method.

      Recommendations for improving the writing and presentation.

      1. It would be good to mention that during sample collection, other insects (other than Drosophila species) were not found in the food if this is true.

      Insects other than Drosophila spp. were found in several traps in the sampling shown in Figures 1C-F. These insects, rove beetles (Staphylinidae) and sap beetles (Nitidulidae), seemed to share a niche with Drosophila in nature. Therefore, we believe that the contamination of these insects did not interfere with our goal of obtaining larval food samples. We added these descriptions and explanations to MATERIALS AND METHODS (lines 527531).

      1. There are many different kinds of bananas. It should be mentioned the detailed information.

      We had included the information on the banana in MATERIALS AND METHODS section (line 622).

      1. Concerning the place of sample collection, detailed longitude, and latitude information can be provided (this is easily obtained from Google Maps). When the collection was performed should also be mentioned. This may suggest the environment of the "wild flies" they collected.

      We added a table listing the dates of our collections, along with the longitude and latitude of each sampling place (Table S1A).

      1. The reviewer could not find how the authors conducted heat killing of yeast.

      We added the following procedure to the ‘Quantification of larval development’ section in MATERIALS AND METHODS (lines 680-688). “When feeding heat-killed yeasts to larvae, yeasts were added to the banana-agar tubes and subsequently heated as following procedures. The yeasts were revived from frozen stocks on banana-agar plates, incubated at 25°C, and then streaked on fresh agar plates. After 2-day incubation, yeast cells were scraped from the plates and suspended in PBS at the concentration of 400 mg of yeast cells in 500 µL of PBS. 125 µL of the suspensions were added to banana-agar tubes prepared as described, and after centrifugation at 3,000 x g for 5 min, the supernatants were removed. The amount of cells in each tube is ~50x compared to that when feeding live yeasts, which compensates for the reduced amount due to their inability to proliferate. The tubes were subsequently heated at 80°C for 30 min before adding germ-free larvae.”

      1. The reviewer prefers that all necessary information on how to see figures be provided in figure legends. For example, an explanation of some abbreviations is missing.

      We carefully re-examined the figure legends and added necessary information.

      1. Many of the figures are not kind to readers, i.e., one needs to refer to the legends and main text very frequently. Adding subheadings (titles) to each figure may help.

      We added subheadings to our figures to improve the comprehensibility.

      Reviewer #3 (Recommendations For The Authors):

      I have some minor questions/suggestions about the manuscript that, if addressed, may increase the clarity and quality of the work.

      1. Please, when referring to microbial species in the abbreviated form, use only the first letter of the genus. For example, P. agglomerans should be used, not Pa. agglomerans.

      We are concerned about the potential confusion caused by using only the first letter of genera, since several genera mentioned in our work share the first letters, such as P (Pichia and Pantoea), S (Starmerella, Saccharomyces, and Saccharomycopsis), or L (Lactiplantibacillus and Leuconostoc). Therefore, we used only the unabbreviated form of the above seven genera in our revised manuscript. We have also made every effort to avoid abbreviations in our figures and tables, but found it necessary to retain two-letter abbreviations when spaces are particularly limiting.

      1. In lines 294-298, how exactly was the experiment where yeasts were killed by anti-fungal agents performed? If these agents killed the yeast, how was the microbial growth on plates required to have biomass for fly inoculation obtained? Please, clarify this section.

      The yeasts were grown on normal banana-agar plates before the addition onto the anti-fungal agents-containing banana agar. We added the following procedure to MATERIALS AND METHODS (lines 689-695). “When feeding yeasts on banana agar supplemented with antifungal agents, the yeasts were individually grown on normal banana agar twice before being suspended in PBS at the concentration of 400 mg of yeast cells in 500 µL of PBS. 125 µL of the suspensions was introduced onto the anti-fungal agents (10 mL/L 10% p-hydroxybenzoic acid in 70% ethanol and 6 mL/L propionic acid, following the concentration described in Kanaoka et al., 2023)-containing banana agar in 1.5 mL tubes. After centrifugation, the supernatants were removed. The amount of cells in each tube is ~50x compared to that when feeding live yeasts.”

      1. In lines 557-558, please clarify how rDNA copy numbers can be calculated in this way.

      Considering the results of the ITS and 16S sequencing analysis, it was highly likely that rDNAs from bananas and Drosophila were amplified along with microbial rDNA in this qPCR. To estimate the microbial rDNA copy number, we assumed that the proportion of microbial rDNA within the total amplification products remains consistent between the qPCR and the corresponding sequencing analysis, because the template DNA samples and amplified regions were shared between the analyses. Based on this, the copy number of microbial rDNA was estimated by multiplying the qPCR results with the microbial rDNA ratio observed in the ITS or 16S sequencing analysis of each sample. This methodology has been detailed in the MATERIALS AND METHODS section (lines 609-615).

      1. In lines 609-611, how did you check for cells left from the previous day? Microscopy? Or do you mean that if there was liquid still in the sample you would not add more bacterial cultures? Please, clarify.

      We observed with the naked eye from outside the tubes to determine if additional AAB should be introduced. Since we placed AAB on the banana agar in a lump, we examined whether the lumps were gone or not. We have added these procedures in MATERIALS AND METHODS (lines 671-673).

      1. In Figure 2A, it is hard to differentiate between the gray tones. Please, improve this.

      We have distinguished the plots for different conditions by changing the shape of the markers on the graphs.

      1. In the legend of Figure 4, line 1101, I believe the panel letters are incorrect.

      We have corrected the manuscript (lines 1241-1242) from “heat-killed yeasts on banana agar (H and I) or live yeasts on a nutritionally rich medium (J and K)” to “heat-killed yeasts on banana agar (G and H) or live yeasts on a nutritionally rich medium (I and J).”

      1. In Figure S1, authors showed that bananas that were not inoculated still had detectable rDNA signal. Is this really because bacteria can penetrate the peel? Or could this be the “reagent microbiome”? Alternatively, could these microbes have been introduced during sample prep, such as cutting the bananas?

      The detection of rDNA in bananas that were not inoculated with microbes was unlikely to be due to microbial contamination during experimental manipulation. The reviewer pointed out the possibility that the “reagent microbiome”, presumably the microbes in PBS, are detected from the uninoculated bananas. This seems to be unlikely, considering the PBS was sterilized by autoclaving before use. To ensure that no viable microbe was left in the autoclaved PBS, we applied a portion of the PBS onto a banana-agar plate and confirmed no colony was formed after incubation for a few days. DNA derived from dead microbes might be present in the PBS, but the PBS-added bananas were incubated for 4 days, so it is also unlikely that a detectable amount of DNA remained until sample collection. Furthermore, we believe that no contamination occurred during sample preparation. Banana peels were treated with 70% ethanol before removing them extremely carefully to avoid touching the fruit inside. All tools were sterilized before use. Taking all of these into account, we speculate that the microbes were already present in the bananas before peeling. We added the details of the sample preparation processes in MATERIALS AND METHODS (lines 518-521 and 540).

      Other major revisions

      1. We deposited our yeast genome annotation data in the DDBJ Annotated/Assembled Sequences database, and the accession numbers have been added to the ‘Data availability’ section in MATERIALS AND METHODS (lines 868-873).

      2. The bacterial composition data in Figure 1B was corrected, because in the original version, the data for Place 3 and Place 4 was plotted in reverse. The original and revised plots are shown side by side in Author response image 3. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p5, lines 117-120).

      Author response image 3.

      Comparison of the original and revised version of bacterial composition graph in Figure 1B. Comparison of the original (left) and revised (right) version of the graph at the bottom of Figure 1B, which shows the result of bacterial composition analysis. The color key, which is unmodified, is placed below the revised version.

      1. The plot data and labels in the RNA-seq result heatmaps (Figures 3A and 4C) have been corrected. In these figures, row Z-scores of log2(TPM + 1) were to be plotted, as indicated by the key in each figure. However, in the original version, row Z-scores of TPM was erroneously plotted. Thus, Figures 3A and 4C of the original version have been replaced with the correct plots, and the original and revised plots are shown side by side in Author response images 4A and 4B. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p7, lines 222-226 and p9, lines 277-281).

      Author response image 4.

      Comparison of the original and revised version of Figures 3A and 4C. (A and B) Comparison of the original (left) and revised (right) version of Figures 3A (A) or 4C (B).

      1. The keys in the original Figures 3D and 4F indicate that log2(fold change) was used to plot all data. However, when plotting the data from the previous study (Zinke et al., 2002), their “fold change value” was used. We have corrected the keys, plots, and legend of Figure 3D to reflect the different nature of the data from our RNA-seq analysis and those from microarray analysis by Zinke et al. The original and revised plots are shown side by side in Author response image 5. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p7, lines 228230 and p9, 277-284).

      Author response image 5.

      Comparison of the original and revised version of Figures 3D and 4F. (A and B) Comparison of the original (left) and revised (right) version of Figures 3D (A) or 4F (B).

      1. The labels in Figure S5C and S5D (Figure S4C and S4D in the original version) have been corrected (they are "Pichia kluyveri > Supportive" and "Starmerella bacillaris > Supportive" rather than "Non-support. > H. uva" and "Non-support. > K. hum"). Additionally, we have reintroduced the circle indicating the number of “dme04070: Phosphatidylinositol signaling system” DEGs in Figure S5D, which was missing in Figure S4D of the original version. The original and revised figures are shown in Author response image 6.

      Author response image 6.

      Comparison of the original and revised version of Figures S5C and S5D. (A and B) Comparison of the original (left) and revised (right) versions of Figures S5C (A) or S5D (B). The original figures corresponding to the aforementioned figures were Figures S4C and S4D, respectively.

      1. The "Fermentation stage" column in Table 1, which indicated whether each microbe was considered an early-stage microbe or a late-stage microbe, has been removed to avoid confusion. This is because some of the microbes (Hanseniaspora uvarum, Pichia kluyveri, and Pantoea agglomerans) were employed in both of the feeding experiments using the microbes detected from the early-stage foods (Figures 2A, 2B, S2A, and S2B) and those from the late-stage foods (Figures 2C, 2D, S2C, and S2D).

      2. The leftmost column in Table S7 has been edited to indicate species names rather than “Sample IDs,” because the IDs were not used in anywhere else in the paper.

      Reference

      Chandler, J. A., Lang, J., Bhatnagar, S., Eisen, J. A. and Kopp, A. (2011). Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genetics 7, e1002272.

      Chandler, J. A., Eisen, J. A. and Kopp, A. (2012). Yeast communities of diverse Drosophila species: Comparison of two symbiont groups in the same hosts. Applied and Environmental Microbiology 78, 7327–7336.

      Cho, H. and Rohlfs, M. (2023). Transmission of beneficial yeasts accompanies offspring production in Drosophila—An initial evolutionary stage of insect maternal care through manipulation of microbial load? Ecology and Evolution 13, e10184.

      Consuegra, J., Grenier, T., Akherraz, H., Rahioui, I., Gervais, H., da Silva, P. and Leulier, F. (2020). Metabolic Cooperation among Commensal Bacteria Supports Drosophila Juvenile Growth under Nutritional Stress. iScience 23, 101232.

      Dodge, R., Jones, E. W., Zhu, H., Obadia, B., Martinez, D. J., Wang, C., Aranda-Díaz, A., Aumiller, K., Liu, Z., Voltolini, M., et al. (2023). A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nat Commun 14, 1557.

      Erkosar, B., Storelli, G., Mitchell, M., Bozonnet, L., Bozonnet, N. and Leulier, F. (2015). Pathogen Virulence Impedes Mutualist-Mediated Enhancement of Host Juvenile Growth via Inhibition of Protein Digestion. Cell Host & Microbe 18, 445–455.

      Hanson, M. A. and Lemaitre, B. (2020). New insights on Drosophila antimicrobial peptide function in host defense and beyond. Current Opinion in Immunology 62, 22–30.

      Henriques, S. F., Dhakan, D. B., Serra, L., Francisco, A. P., Carvalho-Santos, Z., Baltazar, C., Elias, A. P., Anjos, M., Zhang, T., Maddocks, O. D. K., et al. (2020). Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat Commun 11, 4236.

      Oka, M., Hashimoto, K., Yamaguchi, Y., Saitoh, S., Sugiura, Y., Motoi, Y., Honda, K., Kikko, Y., Ohata, S., Suematsu, M., et al. (2017). Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm of mouse embryos. Journal of Cell Science jcs.200519.

      Pais, I. S., Valente, R. S., Sporniak, M. and Teixeira, L. (2018). Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLOS Biology 16, e2005710.

      Piper, M. D. W., Blanc, E., Leitão-Gonçalves, R., Yang, M., He, X., Linford, N. J., Hoddinott, M. P., Hopfen, C., Soultoukis, G. A., Niemeyer, C., et al. (2014). A holidic medium for Drosophila melanogaster. Nature Methods 11, 100–105.

      Piper, M. D. W., Soultoukis, G. A., Blanc, E., Mesaros, A., Herbert, S. L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., et al. (2017). Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan. Cell Metab 25, 610–621.

      Quan, A. S. and Eisen, M. B. (2018). The ecology of the drosophila-yeast mutualism in wineries. PLOS ONE 13, e0196440.

      Solomon, G. M., Dodangoda, H., McCarthy-Walker, T. T., Ntim-Gyakari, R. R. and Newell, P. D. (2019). The microbiota of Drosophila suzukii influences the larval development of Drosophila melanogaster. PeerJ 7, e8097.

      Zinke, I., Schütz, C. S., Katzenberger, J. D., Bauer, M. and Pankratz, M. J. (2002). Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. The EMBO Journal 21, 6162–6173.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their thoughtful comments and constructive suggestions. Point-by-point responses to comments are given below:

      Reviewer #1 (Recommendations For The Authors):

      This manuscript provides an important case study for in-depth research on the adaptability of vertebrates in deep-sea environments. Through analysis of the genomic data of the hadal snailfish, the authors found that this species may have entered and fully adapted to extreme environments only in the last few million years. Additionally, the study revealed the adaptive features of hadal snailfish in terms of perceptions, circadian rhythms and metabolisms, and the role of ferritin in high-hydrostatic pressure adaptation. Besides, the reads mapping method used to identify events such as gene loss and duplication avoids false positives caused by genome assembly and annotation. This ensures the reliability of the results presented in this manuscript. Overall, these findings provide important clues for a better understanding of deep-sea ecosystems and vertebrate evolution.

      Reply: Thank you very much for your positive comments and encouragement.

      However, there are some issues that need to be further addressed.

      1. L119: Please indicate the source of any data used.

      Reply: Thank you very much for the suggestion. All data sources used are indicated in Supplementary file 1.

      1. L138: The demographic history of hadal snailfish suggests a significant expansion in population size over the last 60,000 years, but the results only show some species, do the results for all individuals support this conclusion?

      Reply: Thank you for this suggestion. The estimated demographic history of the hadal snailfish reveals a significant population increase over the past 60,000 years for all individuals. The corresponding results have been incorporated into Figure 1-figure supplements 8B.

      Author response image 1.

      (B) Demographic history for 5 hadal snailfish individuals and 2 Tanaka’s snailfish individuals inferred by PSMC. The generation time of one year for Tanaka snailfish and three years for hadal snailfish.

      1. Figure 1-figure supplements 8: Is there a clear source of evidence for the generation time of 1 year chosen for the PSMC analysis?

      Reply: We apologize for the inclusion of an incorrect generation time in Figure 1-figure supplements 8. It is important to note that different generation times do not change the shape of the PSMC curve, they only shift the curve along the axis. Due to the absence of definitive evidence regarding the generation time of the hadal snailfish, we have referred to Wang et al., 2019, assuming a generation time of one year for Tanaka snailfish and three years for hadal snailfish. The generation time has been incorporated into the main text (lines 516-517): “The generation time of one year for Tanaka snailfish and three years for hadal snailfish.”.

      1. L237: Transcriptomic data suggest that the greatest changes in the brain of hadal snailfish compared to Tanaka's snailfish, what functions these changes are specifically associated with, and how these functions relate to deep-sea adaptation.

      Reply: Thank you for this suggestion. Through comparative transcriptome analysis, we identified 3,587 up-regulated genes and 3,433 down-regulated genes in the brains of hadal snailfish compared to Tanaka's snailfish. Subsequently, we conducted Gene Ontology (GO) functional enrichment analysis on the differentially expressed genes, revealing that the up-regulated genes were primarily associated with cilium, DNA repair, protein binding, ATP binding, and microtubule-based movement. Conversely, the down-regulated genes were associated with membranes, GTP-binding, proton transmembrane transport, and synaptic vesicles, as shown in following table (Supplementary file 15). Previous studies have shown that high hydrostatic pressure induces DNA strand breaks and damage, and that DNA repair-related genes upregulated in the brain may help hadal snailfish overcome these challenges.

      Author response table 1.

      GO enrichment of expression up-regulated and down-regulated genes in hadal snailfish brain.

      We have added new results (Supplementary file 15) and descriptions to show the changes in the brains of hadal snailfish (lines 250-255): “Specifically, there are 3,587 up-regulated genes and 3,433 down-regulated genes in the brain of hadal snailfish compared to Tanaka snailfish, and Gene Ontology (GO) functional enrichment analyses revealed that up-regulated genes in the hadal snailfish are associated with cilium, DNA repair, and microtubule-based movement, while down-regulated genes are enriched in membranes, GTP-binding, proton transmembrane transport, and synaptic vesicles (Supplementary file 15).”

      1. L276: What is the relationship between low bone mineralization and deep-sea adaptation, and can low mineralization help deep-sea fish better adapt to the deep sea?

      Reply: Thank you for this suggestion. The hadal snailfish exhibits lower bone mineralization compared to Tanaka's snailfish, which may have facilitated its adaptation to the deep sea. On one hand, this reduced bone mineralization could have contributed to the hadal snailfish's ability to maintain neutral buoyancy without excessive energy expenditure. On the other hand, the lower bone mineralization may have also rendered their skeleton more flexible and malleable, enhancing their resilience to high hydrostatic pressure. Accordingly, we added the following new descriptions (lines 295-300): “Nonetheless, micro-CT scans have revealed shorter bones and reduced bone density in hadal snailfish, from which it has been inferred that this species has reduced bone mineralization (M. E. Gerringer et al., 2021); this may be a result of lowering density by reducing bone mineralization, allowing to maintain neutral buoyancy without expending too much energy, or it may be a result of making its skeleton more flexible and malleable, which is able to better withstand the effects of HHP.”

      1. L293: The abbreviation HHP was mentioned earlier in the article and does not need to be abbreviated here.

      Reply: Thank you for the correction. We have corrected the word. Line 315.

      1. L345: It should be "In addition, the phylogenetic relationships between different individuals clearly indicate that they have successfully spread to different trenches about 1.0 Mya".

      Reply: Thank you for the correction. We have corrected the word. Line 374.

      1. It is curious what functions are associated with the up-regulated and down-regulated genes in all tissues of hadal snailfish compared to Tanaka's snailfish, and what functions have hadal snailfish lost in order to adapt to the deep sea?

      Reply: Thank you for this suggestion. We added a description of this finding in the results section (lines 337-343): “Next, we identified 34 genes that are significantly more highly expressed in all organs of hadal snailfish in comparison to Tanaka’s snailfish and zebrafish, while only seven genes were found to be significantly more highly expressed in Tanaka’s snailfish using the same criterion (Figure 5-figure supplements 1). The 34 genes are enriched in only one GO category, GO:0000077: DNA damage checkpoint (Adjusted P-value: 0.0177). Moreover, five of the 34 genes are associated with DNA repair.” This suggests that up-regulated genes in all tissues in hadal snailfish are associated with DNA repair in response to DNA damage caused by high hydrostatic pressure, whereas down-regulated genes do not show enrichment for a particular function.

      Overall, the functions lost in hadal snailfish adapted to the deep sea are mainly related to the effects of the dark environment, which can be summarized as follows (lines 375-383): “The comparative genomic analysis revealed that the complete absence of light had a profound effect on the hadal snailfish. In addition to the substantial loss of visual genes and loss of pigmentation, many rhythm-related genes were also absent, although some rhythm genes were still present. The gene loss may not only come from relaxation of natural selection, but also for better adaptation. For example, the grpr gene copies are absent or down-regulated in hadal snailfish, which could in turn increased their activity in the dark, allowing them to survive better in the dark environment (Wada et al., 1997). The loss of gpr27 may also increase the ability of lipid metabolism, which is essential for coping with short-term food deficiencies (Nath et al., 2020).”

      Reviewer #2 (Recommendations For The Authors):

      I have pointed out some of the examples that struck me as worthy of additional thought/writing/comments from the authors. Any changes/comments are relatively minor.

      Reply: Thank you very much for your positive comments on this work.

      For comparative transcriptome analyses, reads were mapped back to reference genomes and TPM values were obtained for gene-level count analyses. 1:1 orthologs were used for differential expression analyses. This is indeed the only way to normalize counts across species, by comparing the same gene set in each species. Differential expression statistics were run in DEseq2. This is a robust way to compare gene expression across species and where fold-change values are reported (e.g. Fig 3, creatively by coloring the gene name) the values are best-practice.

      In other places, TPM values are reported (e.g. Fig 2D, Fig 4C, Fig 5A, Fig 4-Fig supp 4) to illustrate expression differences within a tissue across species. The comparisons look robust, although it is not made clear how the values were obtained in all cases. For example, in Fig 2D the TPM values appear to be from eyes of individual fish, but in Fig 4C and 5A they must be some kind of average? I think that information should be added to the figure legends.

      Of note: TPM values are sensitive to the shape of the RNA abundance distribution from a given sample: A small number of very highly expressed genes might bias TPM values downward for other genes. From one individual to another or from one species to another, it is not obvious to me that we should expect the same TPM distribution from the same tissues, making it a challenging metric for comparison across samples, and especially across species. An alternative measure of RNA abundance is normalized counts that can be output from DEseq2. See:

      Zhao, Y., Li, M.C., Konaté, M.M., Chen, L., Das, B., Karlovich, C., Williams, P.M., Evrard, Y.A., Doroshow, J.H. and McShane, L.M., 2021. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. Journal of translational medicine, 19(1), pp.1-15.

      If the authors would like to keep the TPM values, I think it would be useful for them to visualize the TPM value distribution that the numbers were derived from. One way to do this would be to make a violin plot for species/tissue and plot the TPM values of interest on that. That would give a visualization of the ranked value of the gene within the context of all other TPM values. A more highly expressed gene would presumably have a higher rank in context of the specific tissue/species and be more towards the upper tail of the distribution. An example violin plot can be found in Fig 6 of:

      Burns, J.A., Gruber, D.F., Gaffney, J.P., Sparks, J.S. and Brugler, M.R., 2022. Transcriptomics of a Greenlandic Snailfish Reveals Exceptionally High Expression of Antifreeze Protein Transcripts. Evolutionary Bioinformatics, 18, p.11769343221118347.

      Alternatively, a comparison of TPM and normalized count data (heatmaps?) would be of use for at least some of the reported TPM values to show whether the different normalization methods give comparable outputs in terms of differential expression. One reason for these questions is that DEseq2 uses normalized counts for statistical analyses, but values are expressed as TPM in the noted figures (yes, TPM accounts for transcript length, but can still be subject to distribution biases).

      Reply: Thank you for your suggestions. Following your suggestions, we modified Fig 2D, Fig 4C, Fig 4-Fig supp 4, and Fig 5-Fig supp 1, respectively. In the differential expression analyses, only one-to-one orthologues of hadal snailfish and Tanaka's snailfish can get the normalized counts output by DEseq2, so we showed the normalized counts by DEseq2 output for Fig 2D, Fig 4C, Fig 4-Fig supp 4, Fig 5-Fig supp 1, and for Fig 5A, since the copy number of fthl27 genes undergoes specific expansion in hadal snailfish, we visualized the ranking of all fthl27 genes across tissues by plotting violins in Fig 5-Fig supp 2.

      Author response image 2.

      (D) Log10-transformation normalized counts for DESeq2 (COUNTDESEQ2) of vision-related genes in the eyes of hadal snailfish and Tanka's snailfish. * represents genes significantly downregulated in hadal snailfish (corrected P < 0.05).

      Author response image 3.

      (C) The deletion of one copy of grpr and another copy of down-regulated expression in hadal snailfish. The relative positions of genes on chromosomes are indicated by arrows, with arrows to the right representing the forward strand and arrows to the left representing the reverse strand. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue. * represents tissue in which the grpr-1 was significantly down-regulated in hadal snailfish (corrected P < 0.05).

      Author response image 4.

      Expression of the vitamin D related genes in various tissues of hadal snailfish and Tanaka's snailfish. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue.

      Author response image 5.

      (B) Expression of the ROS-related genes in different tissues of hadal snailfish and Tanaka's snailfish. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue.

      Author response image 6.

      Ranking of the expression of individual copies of fthl27 gene in hadal snailfish and Tanaka's snailfish in various tissues showed that all copies of fthl27 in hadal snailfish have high expression. The gene expression presented is the average of TPM in all replicate samples from each tissue.

      Line 96: Which BUSCOs? In the methods it is noted that the actinopterygii_odb10 BUSCO set was used. I think it should also be noted here so that it is clear which BUSCO set was used for completeness analysis. It could even be informally the ray-finned fish BUSCOs or Actinopterygii BUSCOs.

      Reply: Thank you for this suggestion. We used Actinopterygii_odb10 database and we added the BUSCO set to the main text as follows (lines 92-95): “The new assembly filled 1.26 Mb of gaps that were present in our previous assembly and have a much higher level of genome continuity and completeness (with complete BUSCOs of 96.0 % [Actinopterygii_odb10 database]) than the two previous assemblies.”

      Lines 102-105: The medaka genome paper proposes the notion that the ancestral chromosome number between medaka, tetraodon, and zebrafish is 24. There may be other evidence of that too. Some of that evidence should be cited here to support the notion that sticklebacks had chromosome fusions to get to 21 chromosomes rather than scorpionfish having chromosome fissions to get to 24. Here's the medaka genome paper:

      Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., Yamada, T., Nagayasu, Y., Doi, K., Kasai, Y. and Jindo, T., 2007. The medaka draft genome and insights into vertebrate genome evolution. Nature, 447(7145), pp.714-719.

      Reply: Thank you for your great suggestion. Accordingly, we modified the sentence and added the citation as follows (lines 100-105): “We noticed that there is no major chromosomal rearrangement between hadal snailfish and Tanaka’s snailfish, and chromosome numbers are consistent with the previously reported MTZ-ancestor (the last common ancestor of medaka, Tetraodon, and zebrafish) (Kasahara et al., 2007), while the stickleback had undergone several independent chromosomal fusion events (Figure 1-figure supplements 4).”

      Line 161-173: "Along with the expression data, we noticed that these genes exhibit a different level of relaxation of natural selection in hadal snailfish (Figure 2B; Figure 2-figure supplements 1)." With the above statment and evidence, the authors are presumably referring to gene losses and differences in expression levels. I think that since gene expression was not measured in a controlled way it may not be a good measure of selection throughout. The reported genes could be highly expressed under some other condition, selection intact. I find Fig2-Fig supp 1 difficult to interpret. I assume I am looking for regions where Tanaka’s snailfish reads map and Hadal snailfish reads do not, but it is not abundantly clear. Also, other measures of selection might be good to investigate: accumulation of mutations in the region could be evidence of relaxed selection, for example, where essential genes will accumulate fewer mutations than conditional genes or (presumably) genes that are not needed at all. The authors could complete a mutational/SNP analysis using their genome data on the discussed genes if they want to strengthen their case for relaxed selection. Here is a reference (from Arabidopsis) showing these kinds of effects:

      Monroe, J.G., Srikant, T., Carbonell-Bejerano, P., Becker, C., Lensink, M., Exposito-Alonso, M., Klein, M., Hildebrandt, J., Neumann, M., Kliebenstein, D. and Weng, M.L., 2022. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature, 602(7895), pp.101-105.

      Reply: Thank you for pointing out this important issue. Following your suggestion, we have removed the mention of the down-regulation of some visual genes in the eyes of hadal snailfish and the results of the original Fig2-Fig supp 1 that were based on reads mapping to confirm whether the genes were lost or not. To investigate the potential relaxation of natural selection in the opn1sw2 gene in hadal snailfish, we conducted precise gene structure annotation. Our findings revealed that the opn1sw2 gene is pseudogenized in hadal snailfish, indicating a relaxation of natural selection. We have included this result in Figure 2-figure supplements 1.

      Author response image 7.

      Pseudogenization of opn1sw2 in hadal snailfish. The deletion changed the protein’s sequence, causing its premature termination.

      Accordingly, we have toned down the related conclusions in the main text as follows (lines 164-173): “We noticed that the lws gene (long wavelength) has been completely lost in both hadal snailfish and Tanaka’s snailfish; rh2 (central wavelength) has been specifically lost in hadal snailfish (Figure 2B and 2C); sws2 (short wavelength) has undergone pseudogenization in hadal snailfish (Figure 2-figure supplements 1); while rh1 and gnat1 (perception of very dim light) is both still present and expressed in the eyes of hadal snailfish (Figure 2D). A previous study has also proven the existence of rhodopsin protein in the eyes of hadal snailfish using proteome data (Yan, Lian, Lan, Qian, & He, 2021). The preservation and expression of genes for the perception of very dim light suggests that they are still subject to natural selection, at least in the recent past.”

      Line 161-170: What tissue were the transcripts derived from for looking at expression level of opsins? Eyes?

      Reply: Thank you for your suggestions. The transcripts used to observe the expression levels of optic proteins were obtained from the eye.

      Line 191: What does tmc1 do specifically?

      Reply: Thank you for this suggestion. The tmc1 gene encodes transmembrane channel-like protein 1, involved in the mechanotransduction process in sensory hair cells of the inner ear that facilitates the conversion of mechanical stimuli into electrical signals used for hearing and homeostasis. We added functional annotations for the tmc1 in the main text (lines 190-196): “Of these, the most significant upregulated gene is tmc1, which encodes transmembrane channel-like protein 1, involved in the mechanotransduction process in sensory hair cells of the inner ear that facilitates the conversion of mechanical stimuli into electrical signals used for hearing and homeostasis (Maeda et al., 2014), and some mutations in this gene have been found to be associated with hearing loss (Kitajiri, Makishima, Friedman, & Griffith, 2007; Riahi et al., 2014).”

      Line 208: "it is likely" is a bit proscriptive

      Reply: Thank you for this suggestion. We rephrased the sentence as follows (lines 213-215): “Expansion of cldnj was observed in all resequenced individuals of the hadal snailfish (Supplementary file 10), which provides an explanation for the hadal snailfish breaks the depth limitation on calcium carbonate deposition and becomes one of the few species of teleost in hadal zone.”

      Line 199: maybe give a little more info on exactly what cldnj does? e.g. "cldnj encodes a claudin protein that has a role in tight junctions through calcium independent cell-adhesion activity" or something like that.

      Reply: Thank you for this suggestion. We have added functional annotations for the cldnj to the main text (lines 200-204): “Moreover, the gene involved in lifelong otolith mineralization, cldnj, has three copies in hadal snailfish, but only one copy in other teleost species, encodes a claudin protein that has a role in tight junctions through calcium independent cell-adhesion activity (Figure 3B, Figure 3C) (Hardison, Lichten, Banerjee-Basu, Becker, & Burgess, 2005).”

      Lines 199-210: Paragraph on cldnj: there are extra cldnj genes in the hadal snailfish, but no apparent extra expression. Could the authors mention that in their analysis/discussion of the data?

      Reply: Thank you for your suggestions. Despite not observing significant changes in cldnj expression in the brain tissue of hadal snailfish compared to Tanaka's snailfish, it is important to consider that the brain may not be the primary site of cldnj expression. Previous studies in zebrafish have consistently shown expression of cldnj in the otocyst during the critical early growth phase of the otolith, with a lower level of expression observed in the zebrafish brain. However, due to the unavailability of otocyst samples from hadal snailfish in our current study, our findings do not provide confirmation of any additional expression changes resulting from cldnj amplification. Consequently, it is crucial to conduct future comprehensive investigations to explore the expression patterns of cldnj specifically in the otocyst of hadal snailfish. Accordingly, we added a discussion of this result in the main text (lines 209-214): “In our investigation, we found that the expression of cldnj was not significantly up-regulated in the brain of the hadal snailfish than in Tanaka’s snailfish, which may be related to the fact that cldnj is mainly expressed in the otocyst, while the expression in the brain is lower. However, due to the immense challenge in obtaining samples of hadal snailfish, the expression of cldnj in the otocyst deserves more in-depth study in the future.”

      Lines 225-231: I wonder whether low expression of a circadian gene might be a time of day effect rather than an evolutionary trait. Could the authors comment?

      Reply: Thank you for your suggestions. Previous studies have shown that the grpr gene is expressed relatively consistently in mouse suprachiasmatic nucleus (SCN) throughout the day (Figure 4-figure supplements 1) and we hypothesize that the low expression of grpr-1 gene expression in hadal snailfish is an evolutionary trait. We have modified this result in the main text (lines 232-242): “In addition, in the teleosts closely related to hadal snailfish, there are usually two copies of grpr encoding the gastrin-releasing peptide receptor; we noticed that in hadal snailfish one of them is absent and the other is barely expressed in brain (Figure 4C), whereas a previous study found that the grpr gene in the mouse suprachiasmatic nucleus (SCN) did not fluctuate significantly during a 24-hour light/dark cycle and had a relatively stable expression (Pembroke, Babbs, Davies, Ponting, & Oliver, 2015) (Figure 4-figure supplements 1). It has been reported that grpr deficient mice, while exhibiting normal circadian rhythms, show significantly increased locomotor activity in dark conditions (Wada et al., 1997; Zhao et al., 2023). We might therefore speculate that the absence of that gene might in some way benefit the activity of hadal snailfish under complete darkness.”

      Author response image 8.

      (B) Expression of the grpr in a 24-hour light/dark cycle in the mouse suprachiasmatic nucleus (SCN). Data source with http://www.wgpembroke.com/shiny/SCNseq.

      Line 253: What is gpr27? G protein coupled receptor?

      Reply: We apologize for the ambiguous description. Gpr27 is a G protein-coupled receptor, belonging to the family of cell surface receptors. We introduced gpr27 in the main text as follows (lines 270-273): “Gpr27 is a G protein-coupled receptor, belonging to the family of cell surface receptors, involved in various physiological processes and expressed in multiple tissues including the brain, heart, kidney, and immune system.”

      Line 253: Fig4 Fig supp 3 is a good example of pseudogenization!

      Reply: Thank you very much for your recognition.

      Line 279: What is bglap? It regulates bone mineralization, but what specifically does that gene do?

      Reply: We apologize for the ambiguous description. The bglap gene encodes a highly abundant bone protein secreted by osteoblasts that binds calcium and hydroxyapatite and regulates bone remodeling and energy metabolism. We introduced bglap in the main text as follows (lines 300-304): “The gene bglap, which encodes a highly abundant bone protein secreted by osteoblasts that binds calcium and hydroxyapatite and regulates bone remodeling and energy metabolism, had been found to be a pseudogene in hadal fish (K. Wang et al., 2019), which may contribute to this phenotype.”

      Line 299: Introduction of another gene without providing an exact function: acaa1.

      Reply: We apologize for the ambiguous description. The acaa1 gene encodes acetyl-CoA acetyltransferase 1, a key regulator of fatty acid β-oxidation in the peroxisome, which plays a controlling role in fatty acid elongation and degradation. We introduced acaa1 in the main text as follows (lines 319-324): “In regard to the effect of cell membrane fluidity, relevant genetic alterations had been identified in previous studies, i.e., the amplification of acaa1 (encoding acetyl-CoA acetyltransferase 1, a key regulator of fatty acid β-oxidation in the peroxisome, which plays a controlling role in fatty acid elongation and degradation) may increase the ability to synthesize unsaturated fatty acids (Fang et al., 2000; K. Wang et al., 2019).”

      Fig 5 legend: The DCFH-DA experiment is not an immunofluorescence assay. It is better described as a redox-sensitive fluorescent probe. Please take note throughout.

      Reply: Thank you for pointing out our mistakes. We corrected the word. Line 1048 and 1151 as follows: “ROS levels were confirmed by redox-sensitive fluorescent probe using DCFH-DA molecular probe in 293T cell culture medium with or without fthl27-overexpression plasmid added with H2O2 or FAC for 4 hours.”

      Line 326: Manuscript notes that ROS levels in transfected cells are "significantly lower" than the control group, but there is no quantification or statistical analysis of ROS levels. In the methods, I noticed the mention of flow cytometry, but do not see any data from that experiment. Proportion of cells with DCFH-DA fluorescence above a threshold would be a good statistic for the experiment... Another could be average fluorescence per cell. Figure 5B shows some images with green dots and it looks like more green in the "control" (which could better be labeled as "mock-transfection") than in the fthl27 overexpression, but this could certainly be quantified by flow cytometry. I recommend that data be added.

      Reply: Thank you for your suggestions. We apologize for the error in the main text, we used a fluorescence microscope to observe fluorescence in our experiments, not a flow cytometer. We have corrected it in the methods section as follows (lines 651-653): “ROS levels were measured using a DCFH-DA molecular probe, and fluorescence was observed through a fluorescence microscope with an optional FITC filter, with the background removed to observe changes in fluorescence.” Meanwhile, we processed the images with ImageJ to obtain the respective mean fluorescence intensities (MFI) and found that the MFI of the fthl27-overexpression cells were lower than the control group, which indicated that the ROS levels of the fthl27-overexpression cells were significantly lower than the control group. MFI has been added to Figure 5B.

      Author response image 9.

      ROS levels were confirmed by redox-sensitive fluorescent probe using DCFH-DA molecular probe in 293T cell culture medium with or without fthl27-overexpression plasmid added with H2O2 or FAC for 4 hours. Images are merged from bright field images with fluorescent images using ImageJ, while the mean fluorescence intensity (MFI) is also calculated using ImageJ. Green, cellular ROS. Scale bars equal 100 μm.

      Regarding the ROS experiment: Transfection of HEK293T cells should be reasonably straightforward, and the experiment was controlled appropriately with a mock transfection, but some additional parameters are still needed to help interpret the results. Those include: Direct evidence that the transfection worked, like qPCR, western blots (is the fthl27 tagged with an antigen?), coexpression of a fluorescent protein. Then transfection efficiency should be calculated and reported.

      Reply: Thank you for your suggestions. To assess the success of the transfection, we randomly selected a subset of fthl27-transfected HEK293T cells for transcriptome sequencing. This approach allowed us to examine the gene expression profiles and confirm the efficacy of the transfection process. As control samples, we obtained transcriptome data from two untreated HEK293T cells (SRR24835259 and SRR24835265) from NCBI. Subsequently, we extracted the fthl27 gene sequence of the hadal snailfish, along with 1,000 bp upstream and downstream regions, as a separate scaffold. This scaffold was then merged with the human genome to assess the expression levels of each gene in the three transcriptome datasets. The results demonstrated that the fthl27 gene exhibited the highest expression in fthl27-transfected HEK293T cells, while in the control group, the expression of the fthl27 gene was negligible (TPM = 0). Additionally, the expression patterns of other highly expressed genes were similar to those observed in the control group, confirming the successful fthl27 transfection. These findings have been incorporated into Figure 5-figure supplements 3.

      Author response image 10.

      (B) Reads depth of fthl27 gene in fthl27-transfected HEK293T cells and 2 untreated HEK293T cells (SRR24835259 and SRR24835265) transcriptome data. (C) Expression of each gene in the transcriptome data of fthl27-transfected HEK293T cells and 2 untreated HEK293T cells (SRR24835259 and SRR24835265), where the genes shown are the 4 most highly expressed genes in each sample.

      Lines 383-386: expression of DNA repair genes is mentioned, but not shown anywhere in the results?

      Reply: Thank you for your suggestions. Accordingly, we added a description of this finding in the results section (lines 337-343): “Next, we identified 34 genes that are significantly more highly expressed in all organs of hadal snailfish in comparison to Tanaka’s snailfish and zebrafish, while only seven genes were found to be significantly more highly expressed in Tanaka’s snailfish using the same criterion (Figure 5-figure supplements 1). The 34 genes are enriched in only one GO category, GO:0000077: DNA damage checkpoint (Adjusted P-value: 0.0177). Moreover, five of the 34 genes are associated with DNA repair.”. And we added the information in the Figure 5-figure supplements 1C.

      Author response image 11.

      (C) Genes were significantly more highly expressed in all tissues of the hadal snailfish compared to Tanaka's snailfish, and 5 genes (purple) were associated with DNA repair.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This valuable paper examines gene expression differences between male and female individuals over the course of flower development in the dioecious angiosperm Trichosantes pilosa. The authors show that male-biased genes evolve faster than female-biased and unbiased genes. This is frequently observed in animals, but this is the first report of such a pattern in plants. In spite of the limited sample size, the evidence is mostly solid and the methods appropriate for a non-model organism. The resources produced will be used by researchers working in the Cucurbitaceae, and the results obtained advance our understanding of the mechanisms of plant sexual reproduction and its evolutionary implications: as such they will broadly appeal to evolutionary biologists and plant biologists.

      Public Reviews:

      Reviewer #1 (Public Review):

      The evolution of dioecy in angiosperms has significant implications for plant reproductive efficiency, adaptation, evolutionary potential, and resilience to environmental changes. Dioecy allows for the specialization and division of labor between male and female plants, where each sex can focus on specific aspects of reproduction and allocate resources accordingly. This division of labor creates an opportunity for sexual selection to act and can drive the evolution of sexual dimorphism.

      In the present study, the authors investigate sex-biased gene expression patterns in juvenile and mature dioecious flowers to gain insights into the molecular basis of sexual dimorphism. They find that a large proportion of the plant transcriptome is differentially regulated between males and females with the number of sex-biased genes in floral buds being approximately 15 times higher than in mature flowers. The functional analysis of sex-biased genes reveals that chemical defense pathways against herbivores are up-regulated in the female buds along with genes involved in the acquisition of resources such as carbon for fruit and seed production, whereas male buds are enriched in genes related to signaling, inflorescence development and senescence of male flowers. Furthermore, the authors implement sophisticated maximum likelihood methods to understand the forces driving the evolution of sex-biased genes. They highlight the influence of positive and relaxed purifying selection on the evolution of male-biased genes, which show significantly higher rates of non-synonymous to synonymous substitutions than female or unbiased genes. This is the first report (to my knowledge) highlighting the occurrence of this pattern in plants. Overall, this study provides important insights into the genetic basis of sexual dimorphism and the evolution of reproductive genes in Cucurbitaceae.

      Reviewer #2 (Public Review):

      Summary:

      This study uses transcriptome sequence from a dioecious plant to compare evolutionary rates between genes with male- and female-biased expression and distinguish between relaxed selection and positive selection as causes for more rapid evolution. These questions have been explored in animals and algae, but few studies have investigated this in dioecious angiosperms, and none have so far identified faster rates of evolution in male-biased genes (though see Hough et al. 2014 https://doi.org/10.1073/pnas.1319227111).

      Strengths:

      The methods are appropriate to the questions asked. Both the sample size and the depth of sequencing are sufficient, and the methods used to estimate evolutionary rates and the strength of selection are appropriate. The data presented are consistent with faster evolution of genes with male-biased expression, due to both positive and relaxed selection.

      This is a useful contribution to understanding the effect of sex-biased expression in genetic evolution in plants. It demonstrates the range of variation in evolutionary rates and selective mechanisms, and provides further context to connect these patterns to potential explanatory factors in plant diversity such as the age of sex chromosomes and the developmental trajectories of male and female flowers.

      Weaknesses:

      The presence of sex chromosomes is a potential confounding factor, since there are different evolutionary expectations for X-linked, Y-linked, and autosomal genes. Attempting to distinguish transcripts on the sex chromosomes from autosomal transcripts could provide additional insight into the relative contributions of positive and relaxed selection.

      Reviewer #3 (Public Review):

      The potential for sexual selection and the extent of sexual dimorphism in gene expression have been studied in great detail in animals, but hardly examined in plants so far. In this context, the study by Zhao, Zhou et al. al represents a welcome addition to the literature.

      Relative to the previous studies in Angiosperms, the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers).<br /> Some aspects of the presentation have been improved in this new version of the manuscript.

      Specifically:

      • the link between sex-biased and tissue-biased genes is now slightly clearer,

      • the limitation related to the de novo assembled transcriptome is now formally acknowledged,

      • the interpretation of functional categories of the genes identified is more precise,

      • the legends of supplementary figures have been improved - a large number of typos have been fixed.

      in response to this first round of reviews. As I detail below, many of the relevant and constructive suggestions by the previous reviewers were not taken into account in this revision.

      For instance:

      • Reviewer 2 made precise suggestions for trying to take into account the potential confounding factor of sex-chromosomes. This suggestion was not followed.

      For the question of reviewer 2:

      The presence of sex chromosomes is a potential confounding factor, since there are different evolutionary expectations for X-linked, Y-linked, and autosomal genes. Attempting to distinguish transcripts on the sex chromosomes from autosomal transcripts could provide additional insight into the relative contributions of positive and relaxed selection.

      Empirically, the analyses could be expanded by an attempt to distinguish between genes on the autosomes and the sex chromosomes. Genotypic patterns can be used to provisionally assign transcripts to XY or XX-like behavior when all males are heterozygous and all females are homozygous (fixed X-Y SNPs) and when all females are heterozygous and males are homozygous (lost or silenced Y genes). Comparing such genes to autosomal genes with sex-biased expression would sharpen the results because there are different expectations for the efficacy of selection on sex chromosomes. See this paper (Hough et al. 2014; https://www.pnas.org/doi/abs/10.1073/pnas.1319227111), which should be cited and does in fact identify faster substitution rates in Y-linked genes.

      Authors’ response: We have cited Hough et al. (2014) and Sandler et al. (2018) in the revised manuscript. We agree that the presence of sex chromosomes is potentially a confounding factor. By adopting methods in Hough et al. (2014) and Sandler et al. (2018), we tried to distinguish transcripts on sex chromosomes from autosomal chromosomes. For a total of 2,378 unbiased genes, we found that 36 genes were putatively sex chromosomal genes, 20 of which were exclusively heterozygous and homozygous for males and females, respectively; while the other 16 genes showing an opposite genotyping patterns between males and females. For 343 male-biased genes, only three ones exhibit a pattern of potentially sex-linked. For the 1,145 female-biased genes, we identified 19 genes which might located on the sex chromosomes. Among the 19 genes, five genes were exclusively heterozygous for males and exclusively homozygous for females, while reversed genotyping patterns presented in the other 14 genes. So, sex-linked genes may contribute relatively little to rapid evolution of male-biased genes. An alternative explanation is that the results could be unreliable due to small sample sizes. Thus, we did not describe them in the Results section. We will investigate the issue when whole genome sequences and population datasets become available in the near future.

      • Reviewer 1 & 3 indicated that results were mentioned in the discussion section without having been described before. This was not fixed in this new version.

      For the question of reviewer 1:

      2) Paragraph (407-416) describes the analysis of duplicated genes under relaxed selection but there is no mention of this in the results.

      Authors’ response: Following this suggestion, in the Results section, we have added a sentence, “We also found that most of them were members of different gene families generated by gene duplication (Table S13)” on line 310-311 in the revised manuscript (Rapid_evolution_of_malebiased_genes_Trichosanthes_pilosa_Tracked_change_2023_11_06.docx).

      For the question of reviewer 1:

      38- line 417-424. The discussion should not contain new results.

      Authors’ response: Thank you for pointing out this. In the Results section, we have added a few sentences as following: “Similarly, given that dN/dS values of sex-biased genes were higher due to codon usage bias, lower dS rates would be expected in sex-biased genes relative to unbiased genes (Ellegren & Parsch, 2007; Parvathy et al., 2022). However, in our results, the median of dS values in male-biased genes were much higher than those in female-biased and unbiased genes in the results of ‘free-ratio’ (Fig. S4A, female-biased versus male-biased genes, P = 6.444e-12 and malebiased versus unbiased genes, P = 4.564e-13) and ‘two-ratio’ branch model (Fig. S4B, femalebiased versus male-biased genes, P = 2.2e-16 and male-biased versus unbiased genes, P = 9.421e08, respectively). ” on line 323-331, and consequently, removed the following sentence, “femalebiased vs male-biased genes, P = 6.444e-12 and male-biased vs unbiased genes, P = 4.564e-13” and “female-biased versus male-biased genes, P = 2.2e-16 and male-biased versus unbiased genes, P = 9.421e-08, respectively” in the Discussion section.

      • Reviewer 1 asked for a comparison between the number of de novo assembled unigenes in this transcriptome and the number of genes in other Cucurbitaceae species. I could not see this comparison reported.

      Authors’ response: In the first revision, we described only percentages. We have now added the number of genes. We modify this part as follows: “The majority of unigenes were annotated by homologs in species of Cucurbitaceae (61.6%, 36,375), including Momordica charantia (16.3%, 9,625), Cucumis melo (11.9%, 7,027), Cucurbita pepo (11.9%, 7,027), Cucurbita moschata (11.5%, 6,791), Cucurbita maxima (10.1%, 5,964) and other species (38.4%, 22,676) (Fig. S1C).”.

      • Reviewer 1 pointed out that permutation tests were more appropriate, but no change was made to the manuscript.

      Authors’ response: Thank you for your suggestion. In the first revision, we have indirectly responded to the issues. Wilcoxon rank sum test is more commonly used for all comparisons between sex-biased and unbiased genes in many papers. Additionally, we tested datasets using permutation t-tests, which is consistent with the results of Wilcoxon rank sum test. For example, we found that only in floral buds, there are significant differences in ω values in the results of ‘free-ratio’ (female-biased versus male-biased genes, P = 0.04282 and male-biased versus unbiased genes, P = 0.01114) and ‘two-ratio’ model (female-biased versus male-biased genes, P = 0.01992 and male-biased versus unbiased genes, P = 0.02127, respectively). We also described these results in the Results section accordingly (line 278-284).

      • Reviewer 3 pointed out the small sample size (both for the RNA-seq and the phylogenetic analysis), but again this limitation is not acknowledged very clearly.

      Authors’ response: Sorry, we acknowledged that our sample size was relatively small. In the revised version, we have added a sentence as follows, “Additionally, our sample size is relatively small, and may provide low power to detect differential expression.” in the Discussion section.

      • Reviewer 1 & 3 pointed out that Fig 3 was hard to understand and asked for clarifications that I did not see in the text and the figure in unchanged.

      Authors’ response: Thank you for your suggestions. We have revised the manuscript to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and presented the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Fig. 3.

      • Reviewer 3 suggested to combine all genes with sex-bias expression when evaluating the evolutionary rate, in addition to the analyses already done. This suggestion was not followed.

      For the question of reviewer 3:line 196 and following: In these analyses, I could not understand the rationale for keeping buds vs mature flowers as separate analyses throughout. Why not combine both and use the full set of genes showing sex-bias in any tissue? This would increase the power and make the presentation of the results a lot more straightforward.

      Authors’ response: Thank you for your suggestions. In the first revision, we tried to respond to the issues. First, we observed strong sexual dimorphism in floral buds, such as racemose versus solitary, early-flowering versus late-flowering. Second, as you pointed out earlier, “the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers)”, we totally agree with you on this point. Third, according to your suggestions, we combined all genes with sex-bias expression to evaluate the evolutionary rates. We found significant differences (please see a Figure below) in ω values in the results of ‘free-ratio’ (female-biased versus male-biased genes, P =0.005622 and male-biased versus unbiased genes, P = 0.001961) and ‘two-ratio’ model (female-biased versus male-biased genes, P = 0.008546 and male-biased versus unbiased genes, P = 0.009831, respectively) using Wilcoxon rank sum test. However, the significance is lower than previous results in floral buds due to sex-biased genes of mature flower joined, especially compared to the results of “free-ratio model”. Additionally, we also test all combined genes with sex-bias expression using permutation t-test. Unfortunately, there are no significant differences in ω values expect for male-biased versus unbiased genes in the results of ‘free-ratio’ model (P = 0.03034) and ‘two-ratio’ model (P = 0.0376), respectively. To a certain extent, the combination of all genes with sex-bias expression may cover the signals of rapid evolution of sex-biased genes in floral buds. Therefore, these results are not described in our manuscript. In the near future, we would like to make further investigations through more development stages of flowers and new technologies (e.g. Single-Cell method, See Murat et al., 2023) in each sex to consolidate the conclusion, and it is hoped that we could find more meaningful results.

      Author response image 1.

      • Reviewer 3 pointed out that hand-picking specific categories of genes was not statistically valid, and in fact not necessary in the present context. This was not changed.

      For the question of reviewer3: removing genes on a post-hoc basis seems statistically suspicious to me. I don't think your analysis has enough power to hand-pick specific categories of genes, and it is not clear what this brings here. I suggest simply removing these analyses and paragraphs.

      Authors’ response: Thank you for your suggestions. We have changed them accordingly. We removed a part of the following paragraph, “To confirm the contributions of positive selection and relaxed selection to rapid rates of male-biased genes in floral buds, we generated three datasets of OGs by excluding different sets of genes. Specifically, we excluded 18 relaxed selective male-biased genes (5.23%), 98 positively selected male-biased genes (28.57%), and 112 male-biased genes (32.65%) under positive and relaxed selection from 343 OGs (Fig. S4). We observed that after excluding male-biased genes under relaxed purifying selection, the median (0.264) decreased by 0.34% compared to the median (0.265) of all OGs (Fig. S4A-B). However, after excluding positively selected male-biased genes, the median (0.236) was reduced by 11% (Fig. S4A, C) in the results of ‘free-ratio’ branch model. This pattern was consistent with the results of ‘two-ratio’ branch model as well (Fig. S4E-G).” on line 290 to 300.

      However, we kept the following paragraph, “We also analyzed female-biased and unbiased genes that underwent positive and relaxed selection in floral buds (Tables S6-S10). We identified 216 (18.86%) positively selected, and 69 (6.03%) relaxed selective female-biased genes from 1,145 OGs, respectively. Similarly, we found 436 (18.33%) positively selected, and 43 (1.81%) unbiased genes under relaxed selection from 2,378 OGs, respectively. Notably, male-biased genes have a higher proportion (10%) of positively selected genes compared to female-biased and unbiased genes. However, relaxed selective male-biased genes have a higher proportion (3.24%) than unbiased genes, but about 0.8% lower than that of female-biased genes.”. In this way, we can compare the proportion of sex-biased genes that have undergone positive selection and release selection among female-biased genes, unbiased genes and male-biased genes in floral buds in the Discussion section.

      • Reviewer 1 asked for all data to be public, but I could not find in the manuscript where the link to the data on ResearchGate was provided.

      Authors’ response: We have added a link in the Data Availability section.

      • Reviewers 1 & 3 pointed out that since only two tissues were compared, the claims on pleiotropy should have been toned down, but no change was made to the text.

      Authors’ response: Thank you for your suggestions. We revised “due to low pleiotropic constraints” to “due to low evolutionary constraints” and revised “low pleiotropy” to “low constraints”.

      • Reviewer 1 asked for a clarification on which genes are plotted on the heatmap of Fig3C and an explanation of the color scale. No change was made.

      Authors’ response: Sorry for the confusion. Actually, Reviewer 1 asked that “Fig. 2C, which genes are plotted on the heatmap and what is the color scale corresponding to?” In the previous revision, we have revised them (See Fig. 2 Sex-biased gene expression for floral buds and flowers at anthesis in males and females of Trichosanthes pilosa). Sex-biased genes (the union of sex-biased genes in F1, M1, F2 and M2) are plotted on the heatmap. The color gradient represents from high to low (from red to green) gene expression.

      • Reviewer 1 asked for panel B in Fig S5 and S6 to be removed. They are still there. They asked for abbreviations to be explained in the legend of Fig S8. This was not done. They asked for details about columns headers. Such detailed were not added. They asked for more recent references on line 53-56: this was not done.

      Authors’ response: We have removed panel B in Fig. S5 and S6. We explained abbreviations in text and Fig. S8. We added more details about the column headers in Supplementary Table S4, S5, S6, S7, S8, S9 and S10. We also added more recent references on line 53-56.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      Authors’ response: Thank you for your suggestions. We have revised/fixed these issues following your concerns and suggestions.

      Line 46-48 would be clearer as « Sexual dimorphism is the condition where sexes of the same species exhibit different morphological, ecological and physiological traits in gonochoristic animals and dioecious plants, despite male and female individuals sharing the same genome except for sex chromosomes or sex-determining loci »

      Authors’ response: Thanks. We have revised it accordingly.

      Line 50: replace «in both » by «between the two »

      Authors’ response: We have revised it.

      Line 51: « genes exclusively » -> « genes expressed exclusively »

      Authors’ response: We have revised it.

      Line 58: « in many animals » -> « in several animal species »

      Authors’ response: We have revised it to “in some animal species”.

      Line 58: « to which » -> « of this bias »

      Authors’ response: We have revised it.

      Line 64: « Most dioecious plants possess homomorphic sex-chromosomes that are roughly similar in size when viewed by light microscopy. » : a reference is missing

      Authors’ response: We have added the reference.

      Line 67: remove « that »

      Authors’ response: We have revised it.

      line 96: change to: « only the five above-mentioned studies »

      Authors’ response: We have revised it.

      Line 97: remove « the »

      Authors’ response: We have revised it.

      Line 111: « Drosophia » -> Drosophila

      Authors’ response: We have revised it.

      Line 114: exhibiting -> « exhibited »

      Authors’ response: We have revised it.

      Line 115: suggest -> « suggesting »

      Authors’ response: We have revised it.

      Line 117: « studies in plants have rarely reported elevated rates of sex-biased genes » : is it « rarely » or « never » ?

      Authors’ response: We have revised to “never”.

      Line 143: « It’s » -> « Its »

      Authors’ response: We have revised it.

      Line 143-146: say whether the male parts (e.g. anthers) are still present in females flowers, and the female parts (pistil+ ovaries) in the male flowers, or whether these respective organs are fully aborted.

      Authors’ response: We have added the following sentence, “The male parts (e. g., anthers) of female flowers, and the female parts (e. g., pistil and ovaries) of male flowers are fully aborted” in line 148150 of the Introduction section.

      Line 158: this is now clearer, but please specify whether you are talking about 12 floral buds in total, or 12 per individual (i.e. 72 buds in total).

      Authors’ response: We have revised it to “Using whole transcriptome shotgun sequencing, we sequenced floral buds and flowers at anthesis from female and male of dioecious T. pilosa. We set up three biological replicates from three female and three male plants, including 12 samples in total (six floral buds and six flowers at anthesis)”.

      Line 194-198: These sentences are unclear and hard to link to the figure. Consider changing for « In male plants, the number of tissue-biased genes in flowers at anthesis (M2TGs: n = 2795) was higher than that in floral buds (M1TGs: n = 1755, Fig. 3A and 3B). Figure 3 is also very hard to read. Adding a label on the side to indicate that panels A and B correspond to male-biased genes and C and D to female-biased genes could be useful.

      Authors’ response: Thank you for your suggestions. We have revised the text to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and presented the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Figure 3.

      Line 208: explain the approach: e.g. « We then compared rates of protein evolution among malebiased, female-biased and unbiased genes. To do this, we sequenced floral bud transcriptomes from the closely related T. anguina, as well as two more distant outgroups, T. kirilowii and Luffa cylindrica. T. kirilowii is a dioecious species like T. pilosa, and the other two are monoecious. We identified one-to-one orthologous groups (OGs) for 1,145 female-biased, 343 male-biased, and 2,378 unbiased genes. »

      Authors’ response: We have revised this paragraph to the following, “We compared rates of protein evolution among male-biased, female-biased and unbiased genes in four species with phylogenetic relationships (((T. anguina, T. pilosa), T. kirilowii), Luffa cylindrica), including dioecious T. pilosa, dioecious T. kirilowii, monoecious T. anguina in Trichosanthes, together with monoecious Luffa cylindrica. To do this, we sequenced transcriptomes of T. pilosa. We also collected transcriptomes of T. kirilowii, as well as genomes of T. anguina and Luffa cylindrica.”

      Line 220: « the same ω value was in all branches » -> « all branches are constrained to have the same ω value ».

      Authors’ response: We have revised it.

      Line 221: « results of the 'two-ratio' branch model ... »

      Authors’ response: We have revised it.

      Line 235: add a few words to explain why the effect size is bigger than for buds, but still is not significant: e.g. «possibly because of limited statistical power due to the low number of sex-biased genes in flowers at anthesis »

      Authors’ response: We have revised this to “However, there is no statistically significant difference in the distribution of ω values using Wilcoxon rank sum tests for female-biased versus male-biased genes (P = 0.0556), female-biased versus unbiased genes (P = 0.0796), and male-biased versus unbiased genes (P = 0.3296) possibly because of limited statistical power due to the low number of sex-biased genes in flowers at anthesis.” in line 260-261.

      Line 255: explain in plain English what the « A model » is. This was already requested in the previous version.

      Authors’ response: We have revised “A model” to “classical branch-site model A”.

      Line 258: explain in plain English what the « foreground 2b ω value » corresponds to

      Authors’ response: We have revised to as follows, “foreground 2b ω value” to “foreground ω >1”. Additionally, we also added the sentence “The classical branch-site model assumes four site classes (0, 1, 2a, 2b), with different ω values for the foreground and background branches. In site classes 2a and 2b, the foreground branch undergoes positive selection when there is ω > 1.” in line 624-627.

      Line 259: explain how these different approaches complement each other rather than being redundant. This was also already requested in the previous version.

      Authors’ response: Sorry. We have now revised it as follows, “As a complementary approach, we utilized the aBSREL and BUSTED methods that are implemented in HyPhy v.2.5 software, which avoids false positive results by classical branch-site models due to the presence of rate variation in background branches, and detected significant evidence of positive selection.” in line 292-295.

      Line 270: remove « dramatically », and also remove « or eliminated at both gene-wide and genomewide levels », as well as « relative to positive selection »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Line 290-309: remove this section - this was already pointed out in the previous reviews as a « ad hoc » procedure, and this point has already been made clear with the RELAX analysis.

      Authors’ response: Thank you for your suggestions. We revised this section accordingly. We remove the following paragraph, “To confirm the contributions of positive selection and relaxed selection to rapid rates of male-biased genes in floral buds, we generated three datasets of OGs by excluding different sets of genes. Specifically, we excluded 18 relaxed selective male-biased genes (5.23%), 98 positively selected male-biased genes (28.57%), and 112 male-biased genes (32.65%) under positive and relaxed selection from 343 OGs (Fig. S4). We observed that after excluding malebiased genes under relaxed purifying selection, the median (0.264) decreased by 0.34% compared to the median (0.265) of all OGs (Fig. S4A-B). However, after excluding positively selected malebiased genes, the median (0.236) was reduced by 11% (Fig. S4A, C) in the results of ‘free-ratio’ branch model. This pattern was consistent with the results of ‘two-ratio’ branch model as well (Fig. S4E-G).” on line 334-344.

      However, we kept the other parts “We also analyzed female-biased and unbiased genes that underwent positive and relaxed selection in floral buds (Tables S6-S10). We identified 216 (18.86%) positively selected, and 69 (6.03%) relaxed selective female-biased genes from 1,145 OGs, respectively. Similarly, we found 436 (18.33%) positively selected, and 43 (1.81%) unbiased genes under relaxed selection from 2,378 OGs, respectively. Notably, male-biased genes have a higher proportion (10%) of positively selected genes compared to female-biased and unbiased genes. However, relaxed selective male-biased genes have a higher proportion (3.24%) than unbiased genes, but about 0.8% lower than that of female-biased genes.”. In this way, we can compare the proportion of sex-biased genes that have undergone positive selection and release selection among female-biased genes, unbiased genes and male-biased genes in floral buds in the Discussion sections.

      Line 348: Here you talk about « Numerous studies », but then only report three studies. Please clarify.

      Authors’ response: Thank you for your suggestions. We have revised it to “Several studies”.

      Line 352: Cut the sentence: « In contrast, the wind-pollinated dioecious plant Populus balsamifera ... »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Line 357: « In contrast to the above studies... »: If I understand correctly, this is not in contrast to the observation in Populus balsamifera. Please clarify.

      Authors’ response: Thank you for your suggestions. We have revised to “Similar to the above study of Populus balsamifera.”.

      Line 420: « our results » -> « we »; « that underwent » -> « undergoing »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Figure 3 is very hard to read and poorly labeled (see my comments on line 194 above). It is also hard to link to the text, since the numbers reported in the text are actually not present in the figure unless the readers makes some calculations themselves. This should be improved. Also, the use of acronyms (e.g. M1BG, F2TG etc.) contributes to making the text very difficult to read. The acronyms should at least be explained very clearly in the text when they are used.

      Authors’ response: Thank you for your suggestions. We have revised the text to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and give the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Figure 3.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We are thankful to the reviewers for the time and effort invested in assessing our manuscript and for their suggestions to improve it. We have now considered the points raised by them, carried out additional experiments, and modified the text and figures to address them. We feel that the new experiments and modifications have been able to solve all concerns raised by the reviewers and have improved the manuscript substantially, strengthening and extending our conclusions.

      The main modifications include:

      • We have extended the analysis of the overexpression strains to highly stringent conditions, which revealed a mild acidification defect for the strain overexpressing Oxr1. In addition, we have included in our analysis a strain in which both proteins are overexpressed, which resulted in a further growth defect.
      • We have analyzed the recruitment of Rtc5 to the vacuole under additional conditions: deletion of the main subunit of the RAVE complex RAV1, medium containing galactose as the sole carbon source and pharmacological inhibition of the V-ATPase. These experiments allowed us to strengthen and extend our conclusions regarding the requirements for Rtc5 targeting to the vacuole.
      • We have analyzed V-ATPase disassembly in intact cells, by addressing the localization to the vacuole of subunit C (Vma5) in glucose and galactose-containing medium. The results strengthen our conclusion that both Rtc5 and Oxr1 promote an in vivo state of lower V-ATPase assembly.
      • We have extended our analyses of V-ATPase function to medium containing galactose as a carbon source, since glucose availability is one of the main regulators of V-ATPase function in vivo. The results are consistent with what we observed in glucose-containing medium.
      • We have included a diagram of the structure of the V-ATPase for reference.
      • We have included a diagram and a paragraph describing Oxr1 and Rtc5 regarding protein length and domain architecture and comparing them to other TLDc domain-containing proteins.
      • We have made changes to the text and figures to improve clarity and accuracy, including a methods section that was missing. We include below a point-by-point response to the reviewers´ comments.

      2. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __ __Suggestions:

      1. The authors observed that knockout of Rtc5p or Oxr1p does not affect vacuolar pH. If Rtc5p and Oxr1p both cooperate to dissociate V-ATPase, the authors may wish to characterize the effect of a ∆Rtc5p∆Oxr1p double knockout on vacuolar pH. The double mutant ∆rtc5∆oxr1 was already included in the original manuscript (the growth test is shown in Figure 5 B and the BCECF staining is shown in Figure 5C). This strain behaved like wt in both of these assays. Of note, what we observe for the deletion strains is increased assembly (Figure 5 D - G), so we expect that it would be hard to observe a difference in vacuole acidity or growth in the presence of metals.

      Therefore, we have now also included a strain with the double overexpression of Oxr1 and Rtc5. Since overexpression of the proteins results in decreased assembly, it is more likely that this strain will show impaired growth under conditions that strongly rely on V-ATPase activity. Indeed, we observed that the overexpression of Oxr1 alone resulted in a slight growth defect in media containing high concentrations of ZnCl2 and the double overexpression strain showed an even further defect (Figure 6 A and C).

      The manuscript would benefit from a well-labelled diagram showing the subunits of V-ATPase (e.g. in Figure 2D).

      We agree with the reviewer and we have now added a diagram of the structure of the V-ATPase labeling the different subunits in Figure 2B.

      The images of structures, especially in Figure 1-Supplement 1B, are not particularly clear and could be improved (e.g. by removing shadows or using transparency).

      We are thankful to the reviewer for this suggestion. To improve the clarity of the structures in Figure 1 C and Figure 1 – Supplement 1A, we are now presenting the different subunits in the structures with different shades of blue and grey.

      The authors should clearly describe the differences between Rtc5p and Oxr1p in terms of protein length, sequence identity, domain structure, etc.

      We are thankful for this suggestion and we have now included a diagram of the domain architecture and protein length of Rtc5 and Oxr1, comparing with two human proteins containing a TLDc domain in Figure 5A. In addition, we have added the following paragraph describing the features of the proteins.

      “Rtc5 is a 567 residue-long protein. Analysis of the protein using HHPred (Zimmermann et al., 2018), finds homology to the structure of porcine Meak7 (PDB ID: 7U8O, (Zi Tan et al., 2022)) over the whole protein sequence (residues 37-559). For both yeast Rtc5 and human Meak7 (Uniprot ID: Q6P9B6), HHPred detects homology of the C-terminal region to other TLDc domain containing proteins like yeast Oxr1 (PDBID: 7FDE), Drosophila melanogaster Skywalker (PDB ID: 6R82), and human NCOA7 (PDB ID: 7OBP), while the N-terminus has similarity to EF-hand domain calcium-binding proteins (PDB IDs: 1EG3, 2CT9, 1S6C6, Figure 5A). HHPred analysis of the 273 residue long Saccharomyces cerevisiae Oxr1, on the other hand, only detects similarity to TLDc domain containing proteins (PDB IDs: 7U80, 6R82, 7OBP), which spans the majority of the sequence of the protein (residues 71-273). The overall sequence identity between Oxr1 and Rtc5 is 24% according to a ClustalOmega alignment within Uniprot. The Alphafold model that we generated for Rtc5 is in good agreement with the available partial structure of Oxr1 (7FDE) (root mean square deviation (RMSD) of 3.509Å) (Figure 5 - S1 A), indicating they are structurally very similar, in the region of the TLDc domain. Taken together, these analyses suggest that Oxr1 belongs to a group of TLDc domain-containing proteins consisting mainly of just this domain like the splice variants Oxr1-C or NCOA7-B in humans (NP_001185464 and NP_001186551, respectively), while Rtc5 belongs to a group containing an additional N-terminal EF-hand-like domain and a N-myristoylation sequence, like human Meak7 (Finelli & Oliver, 2017) (Figure 5 A).”

      Minor:

      1. The "O" in VO should be capitalized. This has been corrected.

      In Figure 4 supplement 1, the labels "I", "S", and "P" should be defined.

      This has been clarified in the figure legend.

      Please clarify what is meant by "switched labelling"

      This refers to the SILAC vacuole proteomics experiments, for which yeast strains are grown in medium containing either L-Lysine or 13C6;15N2- L-Lysine to produce normal (‘light’) or heavy isotope-labeled (‘heavy’) proteins. This allows comparing two conditions. To increase the robustness of the comparisons, the experiments are done twice with both possible labeling schemes (condition A – light, condition B – heavy + condition A – heavy + condition B – light), which is commonly described as switched labeling or label switching.

      We have exchanged the original sentence in the manuscript for:

      “Performing the same experiments but switching which strain was labeled with heavy and light amino acids gave consistent results.”

      The meaning of the sentence "Indeed, this was the case for both of them" is ambiguous.

      We have now replaced this sentence with the following:

      “Indeed, overexpression of either Rtc5 or Oxr1 resulted in increased growth defects in the context of Stv1 deletion (Figure 7 H and I).”

      For Figure 1-Supplement 1B it is hard to see the crosslink distances.

      We have updated this figure to improve the visibility of the cross-links. In addition, we now include a supplemental table (supplemental table 5) with a list of the Cα- Cα distances measured for all the crosslinks we mapped onto high-resolution structures.

      The statement "The effects of Oxr1 are greater than those caused by Rtc5" requires more context. Is there a way of quantifying this effect for the reader?

      We agree that this sentence was too general and vague. The effects caused by one or the other protein depend on the condition and the assay. We have thus deleted this sentence, and we think it is better to refer to the description of the individual assays performed.

      The phrase "negative genetic interaction" should be clarified.

      We have included in the text the following explanation of genetic interactions:

      “A genetic interaction occurs when the combination of two mutations results in a different phenotype from that expected from the addition of the phenotypes of the individual mutations. For example, deletion of OXR1 or RTC5 has no impact on growth in neutral pH media containing zinc in a control background but improves the growth of RAV1 deletion strains (Figure 7 E and F), so this is a positive genetic interaction. On the other hand, overexpression of either Rtc5 or Oxr1 results in a growth defect in a background lacking Rav1 in neutral media containing zinc, a negative genetic interaction.”

      * * In the sentence "Isogenic strains with the indicated modifications in the genome where spotted as serial dilutions in media with pH=5.5, pH=7.5 or pH=7.5 and containing 3 mM ZnCl2", "where" should be "were".

      This has been corrected.

      Figure 2D: the authors should consider re-coloring these models, as it is challenging to distinguish Rtc5p from the V-ATPase.

      We have changed the coloring of this structure and added a diagram of the V-ATPase structure with the same coloring scheme to improve clarity.

      Reviewer #1 (Significance (Required)):

      The vacuolar protein interaction map alone from this manuscript is a nice contribution to the literature. Experiments establishing colocalization of Rtc5p to the vacuole are convincing, as is dependence of this association on the presence of assembled V-ATPase. Similarly, experiments related to myristoylation are convincing. The observed mislocalization of V-ATPases that contain Stv1p to the vacuole (which is also known to occur when Vph1p has been knocked out) upon knockout of Oxr1p is also extremely interesting. Overall, this is an interesting manuscript that contributes to our understand of TLDc proteins.

      We are thankful to the reviewer for their appreciation of the significance of our work, including the interactome map of the vacuole as a resource and the advances on the understanding of the regulation of the V-ATPase by TLDc domain-containing proteins.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Major points:

      1. The evidence of Oxr1 and Rtc5 as V-ATPase disassembly factors is circumstantial. The authors base their interpretation primarily on increased V1 (but not Vo) at purified vacuoles from Oxr1- or Rtc5-deleted strains, which does not directly address disassembly. Of course, the results regarding Oxr1 confirm detailed disassembly experiments with the purified protein complex (PMID 34918374), but on their own are open to other interpretations, e.g. suppression of V-ATPase assembly. Of note, the authors emphasize that they provide first evidence of the in vivo role of Oxr1, but monitor V1 recruitment with purified vacuoles and do not follow V-ATPase assembly in intact cells. We are thankful to the reviewer for pointing this out. We did not want to express that the molecular activity of the proteins is the disassembly of the complex, as our analyses include in vivo and ex vivo experiments and do not directly address this. We rather meant that both proteins promote an in vivo state of lower assembly of the V-ATPase. We have modified the wording throughout the manuscript to be clearer about this.

      In addition, we have added new experiments to monitor V-ATPase assembly in intact cells, as suggested by the reviewer. Previous work has shown that in yeast, only subunit C leaves the vacuole membrane under conditions that promote disassembly, while the other subunits remain at the vacuole membrane (Tabke et al 2014). Our own experiments agree with what was published (Figure 3 D). We have thus monitored Vma5 localization to the vacuole under glucose or after shift to galactose containing media in cells lacking or overexpressing Rtc5 or Oxr1. We observed that cells overexpressing either TLDc domain protein show lower levels of Vma5 recruitment to the vacuole in glucose (Figure 6 D and E). Additionally cells lacking either Rtc5 or Oxr1 contain higher levels of Vma5 at the vacuole after 20 minutes in galactose medium (Figure 5 F and G). Thus, these results re-inforce our conclusions that Rtc5 and Oxr1 promote states of lower assembly.

      Oxr1 and Rtc5 have very low sequence similarity. It would be helpful if the authors provided more detail on the predicted structure of the putative TLDc domain of Rtc5 and its relationship to the V-ATPase - Oxr1 structure. Is Rtc5 more closely related to established TLDc domain proteins in other organisms?

      We have now included a diagram of the domain architecture of Rtc5 and Oxr1, and comparison to the features of other TLDc domain containing proteins in Figure 5 A, as well as a paragraph describing them:

      “Rtc5 is a 567 residue-long protein. Analysis of the protein using HHPred (Zimmermann et al., 2018), finds homology to the structure of porcine Meak7 (PDB ID: 7U8O, (Zi Tan et al., 2022)) over the whole protein sequence (residues 37-559). For both yeast Rtc5 and human Meak7 (Uniprot ID: Q6P9B6), HHPred detects homology of the C-terminal region to other TLDc domain containing proteins like yeast Oxr1 (PDBID: 7FDE), Drosophila melanogaster Skywalker (PDB ID: 6R82), and human NCOA7 (PDB ID: 7OBP), while the N-terminus has similarity to EF-hand domain calcium-binding proteins (PDB IDs: 1EG3, 2CT9, 1S6C6, Figure 5A). HHPred analysis of the 273 residue long Saccharomyces cerevisiae Oxr1, on the other hand, only detects similarity to TLDc domain containing proteins (PDB IDs: 7U80, 6R82, 7OBP), which spans the majority of the sequence of the protein (residues 71-273). The overall sequence identity between Oxr1 and Rtc5 is 24% according to a ClustalOmega alignment within Uniprot. The Alphafold model that we generated for Rtc5 is in good agreement with the available partial structure of Oxr1 (7FDE) (root mean square deviation (RMSD) of 3.509Å) (Figure 5 - S1 A), indicating they are structurally very similar, in the region of the TLDc domain. Taken together, these analyses suggest that Oxr1 belongs to a subfamily of TLDc domain-containing proteins consisting mainly of just this domain like the splice variants Oxr1-C or NCOA7-B in humans (NP_001185464 and NP_001186551, respectively) , while Rtc5 belongs to a subfamily containing an additional N-terminal EF-hand-like domain and a N-myristoylation sequence, like human Meak7 (Finelli & Oliver, 2017) (Figure 5 A).”

      The authors conclude vacuolar recruitment of Rtc5 depends on the assembled V-ATPase, based on deletion of different V1 and Vo domain subunits. However, these genetic manipulations likely cause a strong perturbation of vacuolar acidification; indeed, the images show drastically altered vacuolar morphology. To strengthen their conclusion, it would be helpful to show that Rtc5 recruitment is not blocked by inhibition of vacuolar acidification, and that conversely it is blocked by deletion of rav1.

      We are thankful to the reviewer for this insightful suggestion and we have now performed both experiments suggested. The experiment regarding rav1Δ is now Figure 3C, and we observed that this mutation also disrupts Rtc5 localization to the vacuole. In addition, we decided to include an experiment showing the subcellular localization of Rtc5 after shifting the cells to galactose containing medium for 20 minutes, as a physiologically relevant condition that results in disassembly of the complex (Figure 3D). We observed that under these conditions Rtc5 re-localizes to the cytosol. This result is particularly interesting given that in yeast only subunit C (but not other V1 subunits) re-localizes to the cytosol under these conditions. In addition, the experiment using Bafilomycin A to inhibit the V-ATPase shows that Rtc5 is still localized at the vacuole membrane under conditions of V-ATPase inhibition (Figure 3 F). Taken together these results allowed us to strengthen our original interpretation that Rtc5 requires an assembled V-ATPase for its localization and extend it to the fact that the V-ATPase does not need to be active.

      Reviewer #2 (Significance (Required)):

      This is an interesting paper that confirms and extends previous findings on TLDc domain proteins as a novel class of proteins that interact with and regulate the V-ATPase in eukaryotes. The title seems to exaggerate the findings a bit, as the authors do not investigate V-ATPase (dis)assembly directly and only phenotypically describe altered subcellular localization of the Golgi V-ATPase in Oxr1-deleted cells. A recent structural and biochemical characterization of Oxr1 as a V-ATPase disassembly factor (PMID 34918374) somewhat limits the novelty of the results, but the function of Oxr1 in regulating subcellular V-ATPase localization and the identification of a second potential TLDc domain protein in yeast provide relevant insights into V-ATPase regulation. This paper will be of interest to cell biologists and biochemists working on lysosomal biology, organelle proteomics and V-ATPase regulation.

      We thank the reviewer for the assessment of our work, and for recognizing the novel insights that we provide. Regarding the previous biochemical work on Oxr1 and the V-ATPase, we have clearly cited this work in the manuscript. In our opinion, our results complement and extend this article, showing that the function in disassembly is relevant in vivo. Additionally, this is only one of five major points of the article, the other four being

      • The interactome map of the vacuole as a resource
      • The identification of Rtc5 as a second yeast TLDc domain containing protein and interactor of the V-ATPase.
      • The identification of the role of Rtc5 in V-ATPase assembly.
      • The identification of the role of Oxr1 in Stv1 subcellular localization. We believe these additional points add important insights to researchers interested in lysosomes, the V-ATPase, intracellular trafficking and TLDc-domain containing proteins.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Major comments

      __1) Re: A cross-linking mass spectrometry map of vacuolar protein interactions (results) __ While XL-MS is a very powerful method, it is a high-throughput approach and there should be some kind of negative control in these experiments. In cross-linking experiments, non-cross-linked samples are usually used as negative controls. What was the negative control in cross-linking mass-spectrometry experiments here? If there was no negative control, how the specificity of interactions was evaluated? Maybe the authors analyzed the dataset for highly improbable interactions and found very few of them?

      We fully agree that it is crucial to ensure the specificity of the interactions detected by XL-MS. To achieve this, one needs to control (1) the specificity of the data analysis (i.e. that the recorded mass spectrometry data are correctly matched to cross-linked peptides from the sequence database) and (2) the biological specificity (i.e. that the cross-linking captured natively occurring interactions).

      To ascertain that criterion (1) is met, cross-link identifications are filtered to a pre-defined false-discovery rate (FDR) – an approach that the XL-MS field adopted from mass spectrometry-based proteomics. As a result, low-confidence identifications (e.g. cross-linked peptides that are only supported by a few signals in a given mass spectrum) are removed from the dataset. FDR filtering in XL-MS is a rather complex matter as it can be done at different points during data analysis and the optimal FDR cut-off depends on the specific scientific question at hand (for more details see for example Fischer and Rappsilber, Anal Chem, 2017). Generally speaking, an overly restrictive FDR cut-off would remove a lot of correct identifications, thereby greatly limiting the sensitivity of the analysis. On the other hand, a too relaxed FDR cut-off would dilute the correct identifications with a high number of false-positives, which would impair the robustness and specificity of the dataset. While many XL-MS study control the FDR on the level of individual spectrum matches, we opted for a 2% FDR cut-off on the level of unique residue pairs, which is more stringent (see Fischer and Rappsilber, Anal Chem, 2017). Our FDR parameters are described in the Methods section (Cross-linking mass spectrometry of isolated vacuoles - Data analysis). Of note, we have made all raw mass spectrometry data publicly available through the PRIDE repository (https://www.ebi.ac.uk/pride/ ; accession code PXD046792; login details during peer review: Username = reviewer_pxd046792@ebi.ac.uk, Password = q1645lTP). This will allow other researchers to re-analyze our data with the data analysis settings of their choice in the future.

      To ascertain that criterion (2) is met, we mapped the identified cross-links onto existing high-resolution structures of vacuolar protein complexes. Taking into account the length of our cross-linking reagent, the side-chain length of the cross-linkable amino acids (i.e. lysines), and a certain degree of in-solution flexibility, cross-links can reasonably occur between lysines with a mutual Cα-Cα distance of up to 35 Å. Using this cut-off, the lysine-lysine pairs in the high-resolution structures we studied can be split into possible cross-linking partners (Cα-Cα distance 35 Å). Of all cross-links we could map onto high-resolution structures, 95.2% occurred between possible cross-linking partners. In addition, our cross-links reflect numerous known vacuolar protein interactions that have not yet been structurally characterized. These lines of evidence increase our confidence that our XL-MS approach captured genuine, natively occurring interactions. These analyses are described in more detail in the first Results sub-section (“A cross-linking mass spectrometry map of vacuolar protein interactions”).

      In addition, the high purity of vacuole preparation is critical. How was it assessed by the authors?

      We disagree that the purity of the vacuole preparation is critical for this analysis to be valid. The accuracy of the protein-protein interactions detected will depend on their preservation during sample preparation until the sample encounters the cross-linker, and the data analysis, as described above. The experiment would have been equally valid if performed on whole cell lysates without any enrichment of vacuoles, but the coverage of vacuolar proteins would have likely been very low. For this reason, we decided to use the vacuole isolation procedure to obtain better coverage of the proteins of this particular organelle. The use of the Ficoll gradient protocol (Haas, 1995) was based on that it is a protocol that yields strong enrichment of proteins annotated with the GO Term “vacuole” (Eising et al, 2019) and that it preserves the functionality of the organelle, as evidenced by its use for multiple functional assays (vacuole-vacuole fusion (Haas, 1995), autophagosome-vacuole fusion (Gao et al, 2018), polyphosphate synthesis by the VTC complex (Desfougéres et al, 2016), among others).

      2) Re: Rtc5 and Oxr1 counteract the function of the RAVE complex (results)

      Taken together, data, presented in this section of the manuscript, provide strong evidence that Rtc5 and Oxr1 negatively regulate V-ATPase activity, counteracting the V-ATPase assembly, facilitated by the activity of the RAVE complex. However, the complete deletion of the major RAVE subunit Rav1p was required to observe this effect in vivo in yeast. The other way to induce V-ATPase disassembly in yeast is glucose deprivation. It will be interesting to study if there is a synergistic effect between glucose deprivation and RTC5/OXR1 deletion on V-ATPase assembly, vacuolar pH, and growth of single oxr1Δ, rtc5Δ or double oxr1Δrtc5Δ mutants (OPTIONAL). Glucose deprivation is a more physiologically relevant condition than a deletion of an entire gene.

      We would like to point out that an effect on assembly is observed without deleting the RAVE complex: deletions of Oxr1 or Rtc5 resulted in increased V-ATPase assembly in vivo in the presence of glucose and of the RAVE complex (Figures 5 D and E). We have now also added the experiments showing that the overexpression strains have a mild growth defect under conditions that force cells to strongly rely on V-ATPase activity (Figures 6 A and C).

      Nevertheless, we agree that addressing the effect of changing the levels of Oxr1 and Rtc5 under low-glucose conditions is an interesting physiologically relevant question. We have now included growth assays and BCECF staining in medium containing galactose as the carbon source (Figures 5 – Supplement 1 B and C, and Figure 6 C and Figure 6- Supplement 1A). In addition, we have addressed the vacuolar localization of Vma5 in medium containing glucose or after shifting to medium containing galactose for 20 minutes, as a proxy for V-ATPase disassembly in intact cells (Figure 5 F and G, Figure 6 D and E). Taken together, these analyses reinforce our conclusions that both Rtc5 and Oxr1 promote an in vivo state of lower V-ATPase assembly, based on the following observations:

      • Higher localization of Vma5 to the vacuole after 20 mins in galactose in cells lacking Oxr1 or Rtc5 (Figure 5 F and G).
      • Lower localization of Vma5 to the vacuole in medium containing glucose in cells overexpressing Oxr1 or Rtc5 (Figure 6 D and E).
      • Growth defect of the strain overexpressing Oxr1 in medium containing galactose with pH = 7.5 and zinc chloride, with a further growth defect caused by additional overexpression of Rtc5 (Figure 6 C). 3) Re: Figure 6 - supplement 1. The title is relevant to panel D only, it should be renamed to reflect the results of the disassembly of V-ATPase in rav1Δ mutant strains, while results about the stv1Δ-based strains (Panel D) should be shown together with similar experiments in Figure 7 - supplement 2 for clarity.

      We have shifted the Panel D from the original Figure 6 – Supplement 1 to the main Figure (now Figure 7 – H and I). Regarding the title of the Figure, whether Supplemental Figures have titles or not will depend on the journal where the manuscript is published. For now, we have removed all titles from supplemental figures, as they are conceived to complement the main Figures.

      4) Re: Figure 7 - supplement 1, Panel A. The proper assay to show that Stv1-mNeonGreen is functional is to express it in double mutant vph1Δstv1Δ to see if the growth defect is reversed. In addition, the vph1Δ growth defect is not changed (improved or worsened) in the presence of Stv1-mNeonGreen, so it means that the expression of Stv1-mNeonGreen does not further compromise the V-ATPase function, but it does not mean that it improves its function.

      It is clear from the experiment suggested by the reviewer that they think that we have expressed Stv1-mNeonGreen from a plasmid. This was not the case, Stv1 was C-terminally tagged with mNeonGreen in the genome. It is thus the only expressed version in the strain. The experiment we have performed is thus equivalent to the one suggested by the reviewer, but for genomically expressed variants. For reference, the genotypes of all the strains used can be found in Supplemental Table 1.

      5) Re: Figure 7 - supplement 2. This figure should be combined with Fig. 6- suppl 1, panel D as also mentioned above. The figure seems to lack some labels, and conclusions are not accurate as discussed below. However, this data provides important additional information about relationships between isoform-specific subunits of V-ATPase Vph1 and Stv1 and both Rtc5 and Oxr1 and should be repeated if it is not done yet to have a better idea about these relationships.

      Panel B: Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of VPH1, since double deletion mutant vph1Δ rtc5Δ grows worse than each individual mutant. Although it also means that there is no positive interaction, it is not the same.

      Indeed, there is a negative genetic interaction between the deletion of RTC5 and VPH1. We have replaced the growth tests in this figure (Figure 8 – Supplement 2 A in the new manuscript) to show this negative genetic interaction better. This effect is reproducible, as shown in the repetitions of the experiments.

      Panel C: Same as for panel B. Based on this picture, the deletion of OXR1 has a weak negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ oxr1Δ grows worse than each individual mutant at 6 mM ZnCl2.

      Panel D: Same as for panels B and C. Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ rtc5Δ grows worse than each individual mutant at 6 mM ZnCl2. There is no label in the middle panel (growth conditions) and no growth assay data in the presence of CaCl2.

      However, these results will be then in contradiction with the results from Figure 6 - Supplement 1, panel D, showing negative genetic interaction between the overexpression of Rtc5 or Oxr1 and deletion of Stv1, since both deletion and overexpression of Rtc5 or Oxr1 would have negative genetic interactions with Stv1.

      For both Panels C and D (Now Figure 8 - Supplement 2 B and C). The effect pointed out by the reviewer (slightly stronger growth defect for the double mutants than for the single mutants) is very mild. We have attempted to make it more evident by assessing growth in medium with higher and lower concentrations of zinc and this was not possible. This is in contrast with the very clear positive genetic interaction that we observe between the deletion of OXR1 and VPH1 (Now Figure 8 H). This is the reason that we decided to report the lack of a positive genetic interaction instead of the presence of a negative one, as we do not want to draw conclusions based on results that are borderline detectable.

      In addition, there is no label for the media in the middle panel, is it just YPAD pH=7.5, without the addition of any metals?

      Indeed, the media is YPAD pH=7.5, without the addition of any metals. The line drawn above several images based on this media indicated this. Since this form of labeling appears to be confusing, we have now replaced it and placed the label directly above the image.

      Why there is no growth assay in the presence of CaCl2, like in panels A and B?

      Every growth test shown in the manuscript was performed including growth in YPD pH=5,5 as a control of a permissive condition for lack of V-ATPase activity, and then in YPD pH=7,5 including a broad range of Zinc Chloride and Calcium chloride concentrations. From all these pictures, the conditions where the differences among strains were clearly visible were chosen to assemble the figures. Conditions that did not provide any information for that particular experiment were not included in the figure to avoid making them unnecessarily large and crowded.

      Re: Figure 7 - supplement 2, continued. How many times all these experiments were repeated? These experiments should be repeated at least 3 times, which is especially necessary for the experiments in panel C, because the effects are borderline. If results are reproducible and statistically significant, although small, the conclusion should be changed from "no positive genetic interactions" to "negative genetic interactions", which is more precise and informative.

      All growth tests shown in the manuscript were repeated at least three times for the conditions shown. We are thankful to the reviewer for pointing out that this was not mentioned, and we have added this to the methods section. We have assembled a file with all repetitions of the shown growth tests and added it at the end of this file. In doing so, these are already available for the public. These repetitions show that all effects reported are reproducible. We will then discuss with the editors of the journal where this manuscript is published about the necessity of including it with the final article.

      Regarding reporting the lack of a positive genetic interaction vs. a negative one, we have discussed this above. Shortly, for Panel B (Figure 8 – Supplement 2 A in the new manuscript) we have changed the conclusion to “negative genetic interaction” as adjusting the zinc chloride concentration allowed us to show this clearly and reproducibly, as shown by the repetitions of the experiments. For panels C and D (Now Figure 8 - Supplement 2 B and C), the effect is really mild and barely detectable, even when we tried a wide range of zinc chloride concentrations. For this reason, we would prefer to maintain the “no positive genetic interaction” conclusion.

      Re: Methods. There is no description of yeast serial dilution growth assay at all. In addition, why the specific media (neutral pH, in the presence of high concentrations of calcium or zinc) was used is not explained either in the results or methods. Appropriate references should be included, for example, PMID: 2139726, PMID: 1491236.

      We apologize for the oversight of the missing methods section, which we have now included.

      Regarding the explanation of the media used, the following section was already a part of the results section, before the description of the first growth test:

      “The V-ATPase is not essential for viability in yeast cells, and mutants lacking subunits of this complex grow similarly to a wt strain in acidic media. However, when cells grow at near-neutral pH or in the presence of divalent cations such as calcium and zinc, the mutants lacking V-ATPase function show a strong growth impairment (Kane et al, 2006).”

      We have now replaced this with the following, more complete version:

      “As a first approach for addressing the role of these proteins, we tested growth phenotypes related to V-ATPase function in strains lacking or overexpressing them. The V-ATPase is not essential for viability in yeast cells, and mutants lacking subunits of this complex grow similarly to a wt strain in acidic media, but display a growth defect at near-neutral pH the mutants (Nelson & Nelson, 1990). In addition, the proton gradient across the vacuole membrane generated by the V-ATPase energizes the pumping of metals into the vacuole, as a mechanism of detoxification. Thus, increasing concentrations of divalent cations such as calcium and zinc, generate conditions in which growth is increasingly reliant on V-ATPase activity (Förster & Kane, 2000; MacDiarmid et al, 2002; Kane, 2006).”


      MINOR COMMENTS

      Yeast proteins are named with "p" at the end, such as "Rtc5p".

      This nomenclature rule is falling into disuse during the last decades, as the use of capitals vs lowercase and italics allows to distinguish between genes proteins and strains (OXR1 = gene, Oxr1 = protein, oxr1Δ = strain). As an example, I include a list of the latest papers by some of the major yeast labs around the world, all of which use the same nomenclature as we do (in alphabetical order). This list even includes some work in the field of the V-ATPase.

      • Alexey Merz, USA. PMID: 33225520
      • Benoit Kornmann, UK. PMID: 35654841
      • Christian Ungermann, Germany. PMID: 37463208
      • Claudio de Virgilio, Switzerland. PMID: 36749016
      • Daniel E. Gottschling, USA. PMID: 37640943
      • David Teis, Austria. PMID: 32744498
      • Elizabeth Conibear, Canada. PMID: 35938928
      • Fulvio Reggiori, Denmark. PMID: 37060997
      • J Christopher Fromme, USA. PMID: 37672345
      • Maya Schuldiner, Israel. PMID: 37073826
      • Patricia Kane, USA. PMID: 36598799
      • Scott Emr, USA. PMID: 35770973
      • W Mike Henne, USA. PMID: 37889293
      • Yoshinori Ohsumi, Japan. PMID: 37917025 In addition, we would prefer to keep the nomenclature that we already use, to keep consistency with other published articles from our lab.

      Re: Introduction. In the introduction it should be indicated that Rtc5 was originally discovered as a "restriction of telomere capping 5", using screening of temperature-sensitive cdc13-1 mutants combined with the yeast gene deletion collection [PMID: 18845848]. A couple of sentences should be written about the RAVE complex and its role in V-ATPase assembly.

      We are thankful for this suggestion and we have now included both pieces of information in the introduction.

      *“The re-assembly of the V1 onto the VO complex when glucose becomes again available, is aided by a dedicated chaperone complex known as the RAVE complex, which also likely has a general role in V-ATPase assembly (Seol et al, 2001; Smardon et al, 2002, 2014).” *

      “In our cross-linking mass spectrometry interactome map of isolated vacuoles we found that the only other TLDc-domain containing protein of yeast, Rtc5, is a novel interactor of the V-ATPase. Rtc5 is a protein of unknown function, originally described in a genetic screen for genes related to telomere capping (Addinall et al, 2008)”

      Re: The TLDc domain-containing protein of unknown function Rtc5 is a novel interactor of the vacuolar V-ATPase (results)

      1) It is important to understand, that Oxr1 was co-purified before with the V1 domain of V-ATPase from a certain mutant strain, not wild-type yeast [PMID: 34918374]. It may explain why the authors did not identify it in their original protein-protein interactions screen here.

      The structural work on the V1 domain bound to Oxr1 (Khan et al, 2022) showed that the binding of Oxr1 prevented V1 from assembling onto the Vo. Since our experiments rely on the purification of vacuoles, they should contain mainly only V1 assembled onto the VO, and not the free soluble V1. This is likely the reason that we do not detect Oxr1, in addition to it being less abundant. We have clarified this now in the manuscript and added the fact that Oxr1 was co-purified with a V1 containing a mutant version of the H subunit.

      “In a previous study, Oxr1 was co-purified with a V1 domain containing a mutant version of the H subunit, and its presence prevented the in vitro assembly of this V1 domain onto the VO domain and promoted disassembly of the holocomplex (Khan et al., 2022). This is likely the reason why we do not detect Oxr1 in our experiments, which rely on isolated vacuoles and thus would only include V1 domains that are assembled onto the membrane. In addition, Oxr1 is less abundant in yeast cells than Rtc5 according to the protein abundance database PaxDb (Wang et al, 2015).”

      2) It is a wrong conclusion that because Rtc5 was co-purified with both V1 and V0 domain subunits it interacts with the assembled V-ATPase, this does not exclude a possibility that Rtc5 also interacts with separate V1 sector or separate V0 sector of V-ATPase.

      We agree with the reviewer that the co-purification of Rtc5 with both V1 and VO domain subunits does not necessarily mean that it interacts with the assembled V-ATPase. Thus, we have modified the text in this part to:

      “The fact that we can co-enrich Rtc5 both with Vma2 and with Vph1 indicates that it can interact either with both the VO and V1 domains or with the assembled V-ATPase.”

      However, other results throughout the manuscript can be taken into account to strengthen this idea:

      1. Rtc5 requires an assembled V-ATPase to localize to the vacuole membrane, and thus seems not to interact with free VO domains, which would be available when we delete V1 subunits or in medium containing galactose.
      2. Rtc5 becomes cytosolic in galactose-containing media. This would indicate that it also does not interact with free V1 domains, which are still localized to the vacuole membrane under these conditions. Taken together with the pull-downs, these results suggest that Rtc5 interacts with the assembled V1-VO V-ATPase. Thus, we have included the following sentence after Figure 3, which shows the subcellular localization experiments.

      *“Taking into account that Rtc5 is co-enriched with subunits of both the VO and V1 domain, and that it localizes at the vacuole membrane dependent on an assembled V-ATPase, we suggest that Rtc5 interacts with the assembled V-ATPase complex.” *

      Re: Figure 1, Panel C. Is it possible to show individual proteins in different colors for clarity?

      Panel D. How were cross-link distances measured? It is not obvious if you are not an expert in the field and it is not described in the methods.

      We have modified Figure 1 C and Figure 1 – Supplement 1B (now Figure 1 – Supplement 1 A) to present the different subunits in the structures with different shades of blue and grey.

      Furthermore, we have clarified the distance measurement approach in the methods section and in the legend of Fig 1D: “Ca-Ca distances were determined using the measuring function in Pymol v.2.5.2 (Schrodinger LLC).”

      __Re: Figure 1 - Supplement 1, __

      Panel A. What scientific information are we getting from this picture?

      This panel was just a visual representation of the complexity of the protein network we obtained. Indeed, there was no specific scientific message, so we have decided to remove this panel from the revised manuscript.

      Panel B. Why are these complexes shown separately from the complexes in Figure 1, panel C? Also, can individual proteins be colored differently here as well?

      We did not want to overload Fig 1C, so we decided to show some of the protein complexes in Fig 1 – Supplement 1B. The most important information is the histogram showing that 95% of the mapped cross-links fall within the expected length range, and this is shown in the main Figure (Figure 1D). As stated above, we have adjusted the subunit coloring in Figure 1 C to improve clarity.

      Re: Figure 3. It will be nice to show the localization of the untagged protein as well if antibodies are available (OPTIONAL).

      Unfortunately, there are no available antibodies for either Rtc5 or Oxr1. This hinders us from detecting the endogenous untagged proteins. We would like to point out that we have been very careful in showing which tagged proteins are functional (C-terminally tagged Rtc5) and which are not (C-terminally tagged Oxr1), so that the reader can know how to interpret the localization data.

      Re: Figure 4. Why different tags were used in panels A (GFP), C (msGFP2) and D

      (mNeonGreen)?

      In general, we prefer to use mNeonGreen as a tag for microscopy experiments because it is brighter and more stable, and msGFP2 as a tag for experiments involving Western blots because we have better antibodies available. There was a mistake in the labeling, and actually, all constructs labeled as GFP were msGFP2. We have now corrected this. Of note, we have tested the functionality of both tagged version (mNeonGreen and msGFP2).

      Panels B and C. Were Rtc5 fusions detected using anti-GFP antibodies?

      Indeed, Rtc5-msGFP2 was detected with an anti-GFP antibody. We have now indicated next to each Western blot membrane the primary antibody used. In addition, all antibodies are detailed in Supplemental Figure 3.

      The authors should have full-size Western blots available, not just cut-out bands, as some journals and reviewers require them for publication.

      For all western blots, we always showed a good portion of the membrane and not cut-out bands. The cropping was performed to avoid making figures unnecessarily large. The whole membranes are of course available and will be included in an “extended data file” if required by the journal.

      Re: Figure 4 - Supplement 1, Panel A. Does "-" and "+" mean -/+ Azido-Myr?

      Indeed. We have now added this label to the figure.

      Panel B. There is no blot with a membrane protein marker (Vam3 or Vac8), it should be included.

      We have replaced this western blot for a different repetition of this experiment in which a membrane protein marker was included. Of note, the two other repetitions of the experiment shown (Figure 4 – Supplement 1 panel C and Figure 4 panel C) also include both a membrane protein marker and a soluble protein marker.

      Re: Figure 5. The title does not describe all results in this figure and should be modified accordingly.

      The original data from Figure 5 is now separated into Figures 5 and 6 because of the additional experiments included during revisions. We have modified the Figure titles to be descriptive of the overall message of the Figures.

      Panel C. Statistical significance value for *** should be indicated in the legend.

      This has been indicated in the Figure legend.

      It is not clear how many times yeast growth assays were repeated. Usually, all experiments should be done in triplicates or more.

      All shown growth tests were performed at least three times for the conditions shown. We have now indicated this in the materials and methods section. In addition, we now provide in this response a file with all repetitions of growth tests, which will be appended to the article if deemed necessary by the editors.

      Re: Figure 5 - supplement 1. No title

      Re: Figure 5 - supplement 2. No title

      Whether the supplemental Figures should have a title or not will depend on the style of the journal where the manuscript is finally published. The current idea of the supplemental Figures is that they complement the corresponding main Figure. For this reason, we have removed all titles from supplemental Figures.

      Re: Figure 6. There is a typo on the second lane in the legend: "...the genome were", not "...the genome where".

      This has been corrected.

      Panel C. Why the analysis of BCECF vacuole staining of double mutants oxr1Δrav1Δ and rtc5Δrav1Δ is not shown? Was it done at all?

      We had not included this piece of data, as we thought that the genetic interaction of RTC5 and OXR1 and rav1Δ was sufficiently well supported with the included data (growth tests in combination with the deletion, growth tests in combination with the overexpression, vacuole proteomics in combination with overexpression, and BCECF staining in combination with the overexpression). Because of the request of the reviewer, we have now included this experiment as Figure 7 G.

      Re: Figure 6 - Supplement 2. Why were two different tags (2xmNG and msGFP2) used?

      We tried both tags to see if one of them would be functional. Unfortunately, they both resulted in non-functional proteins, as shown by the corresponding growth tests.

      Did the authors study N-terminally tagged Oxr1? Was it functional?

      We have tagged Oxr1 N-terminally, and this unfortunately resulted in a protein that was not completely functional. We show below the localization of N-terminally mNeon-tagged Oxr1, under the control of the TEF1 promoter. The protein appears cytosolic (Panel A) but is not completely functional (Panel B). The localization of Oxr1 had already been misreported by using a tagged version that we now show to be non-functional. For this reason, we preferred not to include this data in the manuscript, to avoid again including in the literature subcellular localizations that correspond to non-functional or partially functional proteins.

      Panel B. Results for the untagged TEF1pr-Oxr1 overexpression are not shown, thus tagged and untagged proteins can't be compared. Are they available? What is the promoter for the expression of 2xmNG fusion constructs?

      Oxr1-2xmNG was C-terminally tagged in the genome, which means that the promoter is the endogenous one, it was not modified. For this reason, the correct controls are a strain expressing Oxr1 at endogenous levels (the wt strain) and a strain lacking Oxr1. Both controls were included in the Figure, and in all repetitions made of this experiment. For reference, all the genotypes of the strains used are found in Supplemental Table 1.

      Re: Methods. Were vacuoles prepared differently for XL-MS and SILAC-based vacuole proteomics (there are different references) and why? Methods for XL-MS and quantitative SILAC-based proteomics can be placed together for clarity.

      The basis for the method of vacuole purification is the same, from (Haas, 1995). This reference was included in both protocols that include vacuole purifications. However, modifications of this method were performed to fit the crosslinking method (higher pH, no primary amines) or to fit the SILAC labeling (combination of two differentially labeled samples in one purification). The reference for the vacuole proteomics (Eising et al 2022) corresponds to a paper in which the SILAC-based comparison of vacuoles from different mutant strains was optimized, and includes not only the vacuole purification but the growth conditions and downstream processing of the vacuoles.

      Since both the SILAC-based vacuole proteomics and the XL-MS are multi-step methods, containing numerous parameters including the sample preparation, processing for MS, MS run and data analysis, we would prefer to keep them separate. We think this would allow a person attempting to reproduce these methods to go through them step by step.

      What is CMAC dye? Why was it used to stain the vacuolar lumen?

      We apologize for this oversight, we have included the definition of CMAC as 7-Amino-4-Chlormethylcumarin. It is a standard-used organelle marker for the lumen of the vacuole.

      Some abbreviations (TEAB, ACN) are not explained.

      We apologize for this oversight. We have now replaced these abbreviations with the full names of the compounds in the article.

      What is 0% Ficoll?

      We used the term 0% Ficoll, because this is the name given to the buffer in the original Haas 1995 paper on vacuole purifications. However, we agree that the term is misleading and we have now added the composition of the buffer (10 mM PIPES/KOH pH=6.8, 0.2 M Sorbitol).

      Reviewer #3 (Significance (Required)):

      The vacuolar-type proton ATPase, V-ATPase, is the key proton pump, that hydrolases ATP and uses this energy to pump protons across membranes. Amazingly, this proton pump and its function are conserved in eukaryotes from yeast to mammals. While V-ATPase structure and function have been studied for more than 30 years in various organisms, its regulation is not completely understood. The very recent discoveries of two new V-ATPase interacting proteins in yeast, first Oxr1 (OXidative Resistance 1), and now Rtc5 (Restriction of Telomere Capping 5), both the only two members of TLDc (The Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic) proteins in yeast, provide new insights in V-ATPase regulation in yeast, and because the interaction is conserved in mammals its relevance to mammalian V-ATPases regulation as well.

      TLDc proteins are best known for their role in protection from oxidative stress, in particular in yeast and in the nervous system in mammals. The discovery of the novel Rtc5-V-ATPase interaction points to the role of V-ATPase not only in protection from oxidative stress but also in restriction of telomere capping in yeast and most likely higher species. The studies of other species also highlight the possible conserved role of V-ATPase in lifespan determination and Torc1 signaling, mediated through these interactions. Thus, the discovery of this new functionally important interaction between the second TLDc family member in yeast, Rtc5, and V-ATPase will shed light on the molecular mechanisms of all these essential biological processes and pathways.

      In addition, because the authors performed a comprehensive proteomics protein-protein interaction study of the purified yeast vacuole it provides a valuable resource for all researchers who study vacuoles and/or related to them lysosomes.

      The follow-up functional studies using the rav1Δ strain clearly demonstrated that Rtc5 and Oxr1 disassemble V-ATPase and counteract the function of V-ATPase assembly RAVE complex in vivo in yeast. Thus, they are essentially the first discovered endogenous eukaryotic protein inhibitors of V-ATPase. Moreover, because the authors obtained the evidence that Oxr1 is the regulator of the specific subunit isoform of V-ATPase Stv1p in vivo in yeast, it suggests that different TLDc proteins may regulate different specific V-ATPase subunit isoforms in cell- and tissue-specific manner in higher eukaryotes. The mechanism of this isoform-specific regulation in yeast and other species needs further investigation in the future.

      Because of the conservation of the TLDc-V-ATPase interactions, all this information can be extrapolated to higher species, all the way to humans, in whom genetic mutations in various TLDc proteins are known to cause devastating diseases and syndromes.

      We are thankful to the reviewer for their positive comments about the significance of our work.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      In this manuscript, the authors used a proteomics approach to comprehensively study yeast vacuole protein-protein interactions using cross-linking mass-spectrometry (XL-MS). They identified 16694 interactions between 2051 proteins. Many known vacuolar protein complexes were found and used as positive controls, confirming the high quality of the dataset, however, no negative controls were reported, and this issue is raised in the 'Major comments' section. The authors then focused on one particular previously unknown protein-protein interaction between the TLDc-domain containing protein of unknown function Rtc5 and the vacuolar-type proton ATPase, V-ATPase, which acidifies yeast vacuoles. The methods and results regarding Rtc5 discovery as a novel interactor of the V-ATPase, Rtc5 myristoylation, and its V-ATPase-dependent localization to the vacuole membrane are convincing. The authors then moved on to study the in vivo function of Rtc5 as well as Oxr1, the only other TLDc-domain-containing protein in yeast. Interestingly, they did not originally detect Oxr1 in their protein-protein interaction studies, apparently due to its very low abundance in yeast. However, they found that deletion of either RTC5 or OXR1 in vivo resulted in more assembled V-ATPase at the yeast vacuole and this effect was stronger in oxr1Δ cells. However, RTC5/OXR1 deletion or overexpression in parental yeast strains did not affect either vacuolar pH (a readout of functional V-ATPase) or yeast growth, including growth under specific conditions (neutral pH, in the presence of high concentrations of calcium or zinc), which is used to reveal a conditional lethal phenotype of unfunctional V-ATPase (the Vma− phenotype). Since they did not observe any in vivo phenotype in parental yeast strains, they subsequently studied the effects of RTC5/OXR1 deletion and overexpression in the 'sensitized' rav1Δ strain, lacking a specific assembly factor of V-ATPase, Rav1, one of the subunits of RAVE complex. In this strain, RTC5/OXR1 overexpression resulted in less acidic vacuolar pH and reduced growth of double mutant cells, compared to the single rav1Δ mutant. In addition, overexpression of Oxr1, but not Rtc5, caused disassembly of the V-ATPase in rav1Δ cells, noteworthy this effect was not detectable in the parent strain with intact Rav1p. Finally, they found that in oxr1Δ cells there is more Stv1 in the vacuole and concluded that Oxr1 is necessary for the retention of Stv1 containing V-ATPase at the vacuole. However, the mechanism seems to be complicated and remains to be elucidated. In summary, an impressive variety of methods from a technologically advanced XL-MS to classical yeast growth assays were used to identify Rtc5 interaction with V-ATPase and analyze its functional role in vivo in yeast, making the conclusions well justified overall.


      Major comments

      Re: A cross-linking mass spectrometry map of vacuolar protein interactions (results)

      While XL-MS is a very powerful method, it is a high-throughput approach and there should be some kind of negative control in these experiments. In cross-linking experiments, non-cross-linked samples are usually used as negative controls. What was the negative control in cross-linking mass-spectrometry experiments here? If there was no negative control, how the specificity of interactions was evaluated? Maybe the authors analyzed the dataset for highly improbable interactions and found very few of them? In addition, the high purity of vacuole preparation is critical. How was it assessed by the authors? All this is important to know to use this dataset as a reliable resource in the future.

      Re: Rtc5 and Oxr1 counteract the function of the RAVE complex (results)

      Taken together, data, presented in this section of the manuscript, provide strong evidence that Rtc5 and Oxr1 negatively regulate V-ATPase activity, counteracting the V-ATPase assembly, facilitated by the activity of the RAVE complex. However, the complete deletion of the major RAVE subunit Rav1p was required to observe this effect in vivo in yeast. The other way to induce V-ATPase disassembly in yeast is glucose deprivation. It will be interesting to study if there is a synergistic effect between glucose deprivation and RTC5/OXR1 deletion on V-ATPase assembly, vacuolar pH, and growth of single oxr1Δ, rtc5Δ or double oxr1Δrtc5Δ mutants (OPTIONAL). Glucose deprivation is a more physiologically relevant condition than a deletion of an entire gene.

      Re: Figure 6 - supplement 1. The title is relevant to panel D only, it should be renamed to reflect the results of the disassembly of V-ATPase in rav1Δ mutant strains, while results about the stv1Δ-based strains (Panel D) should be shown together with similar experiments in Figure 7 - supplement 2 for clarity.

      Re: Figure 7 - supplement 1, Panel A. The proper assay to show that Stv1-mNeonGreen is functional is to express it in double mutant vph1Δstv1Δ to see if the growth defect is reversed. In addition, the vph1Δ growth defect is not changed (improved or worsened) in the presence of Stv1-mNeonGreen, so it means that the expression of Stv1-mNeonGreen does not further compromise the V-ATPase function, but it does not mean that it improves its function.

      Re: Figure 7 - supplement 2. This figure should be combined with Fig. 6- suppl 1, panel D as also mentioned above. The figure seems to lack some labels, and conclusions are not accurate as discussed below. However, this data provides important additional information about relationships between isoform-specific subunits of V-ATPase Vph1 and Stv1 and both Rtc5 and Oxr1 and should be repeated if it is not done yet to have a better idea about these relationships. Panel B: Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of VPH1, since double deletion mutant vph1Δ rtc5Δ grows worse than each individual mutant. Although it also means that there is no positive interaction, it is not the same. Panel C: Same as for panel B. Based on this picture, the deletion of OXR1 has a weak negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ oxr1Δ grows worse than each individual mutant at 6 mM ZnCl2. In addition, there is no label for the media in the middle panel, is it just YPAD pH=7.5, without the addition of any metals? Why there is no growth assay in the presence of CaCl2, like in panels A and B? Panel D: Same as for panels B and C. Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ rtc5Δ grows worse than each individual mutant at 6 mM ZnCl2. There is no label in the middle panel (growth conditions) and no growth assay data in the presence of CaCl2.

      Re: Figure 7 - supplement 2, continued. How many times all these experiments were repeated? These experiments should be repeated at least 3 times, which is especially necessary for the experiments in panel C, because the effects are borderline. If results are reproducible and statistically significant, although small, the conclusion should be changed from "no positive genetic interactions" to "negative genetic interactions", which is more precise and informative. However, these results will be then in contradiction with the results from Figure 6 - Supplement 1, panel D, showing negative genetic interaction between the overexpression of Rtc5 or Oxr1 and deletion of Stv1, since both deletion and overexpression of Rtc5 or Oxr1 would have negative genetic interactions with Stv1. In addition, apparently, there is no data about genetic interaction between the overexpression of Rtc5 or Oxr1 and the deletion of Vph1. All this needs clarification, therefore repeating these experiments is essential. In conclusion, while genetic interactions between RTC5/OXR1 and RAV1 are straightforward, they seem to be more complex with STV1/VPH1.

      Re: Methods. There is no description of yeast serial dilution growth assay at all. In addition, why the specific media (neutral pH, in the presence of high concentrations of calcium or zinc) was used is not explained either in the results or methods. Appropriate references should be included, for example, PMID: 2139726, PMID: 1491236.

      Minor comments

      Yeast proteins are named with "p" at the end, such as "Rtc5p".

      Re: Introduction. In the introduction it should be indicated that Rtc5 was originally discovered as a "restriction of telomere capping 5", using screening of temperature-sensitive cdc13-1 mutants combined with the yeast gene deletion collection [PMID: 18845848]. A couple of sentences should be written about the RAVE complex and its role in V-ATPase assembly.

      Re: The TLDc domain-containing protein of unknown function Rtc5 is a novel interactor of the vacuolar V-ATPase (results) 1) It is important to understand, that Oxr1 was co-purified before with the V1 domain of V-ATPase from a certain mutant strain, not wild-type yeast [PMID: 34918374]. It may explain why the authors did not identify it in their original protein-protein interactions screen here. 2) It is a wrong conclusion that because Rtc5 was co-purified with both V1 and V0 domain subunits it interacts with the assembled V-ATPase, this does not exclude a possibility that Rtc5 also interacts with separate V1 sector or separate V0 sector of V-ATPase.

      Re: Figure 1, Panel C. Is it possible to show individual proteins in different colors for clarity? Panel D. How were cross-link distances measured? It is not obvious if you are not an expert in the field and it is not described in the methods.

      Re: Figure 1 - Supplement 1, Panel A. What scientific information are we getting from this picture? Panel B. Why are these complexes shown separately from the complexes in Figure 1, panel C? Also, can individual proteins be colored differently here as well?

      Re: Figure 3. It will be nice to show the localization of the untagged protein as well if antibodies are available (OPTIONAL).

      Re: Figure 4. Why different tags were used in panels A (GFP), C (msGFP2) and D (mNeonGreen)? Panels B and C. Were Rtc5 fusions detected using anti-GFP antibodies? The authors should have full-size Western blots available, not just cut-out bands, as some journals and reviewers require them for publication.

      Re: Figure 4 - Supplement 1, Panel A. Does "-" and "+" mean -/+ Azido-Myr? Panel B. There is no blot with a membrane protein marker (Vam3 or Vac8), it should be included.

      Re: Figure 5. The title does not describe all results in this figure and should be modified accordingly. Panel C. Statistical significance value for *** should be indicated in the legend. It is not clear how many times yeast growth assays were repeated. Usually, all experiments should be done in triplicates or more.

      Re: Figure 5 - supplement 1. No title

      Re: Figure 5 - supplement 2. No title

      Re: Figure 6. There is a typo on the second lane in the legend: "...the genome were", not "...the genome where". Panel C. Why the analysis of BCECF vacuole staining of double mutants oxr1Δrav1Δ and rtc5Δrav1Δ is not shown? Was it done at all?

      Re: Figure 6 - Supplement 2. Why were two different tags (2xmNG and msGFP2) used? Did the authors study N-terminally tagged Oxr1? Was it functional? Panel B. Results for the untagged TEF1pr-Oxr1 overexpression are not shown, thus tagged and untagged proteins can't be compared. Are they available? What is the promoter for the expression of 2xmNG fusion constructs?

      Re: Methods. Were vacuoles prepared differently for XL-MS and SILAC-based vacuole proteomics (there are different references) and why? Methods for XL-MS and quantitative SILAC-based proteomics can be placed together for clarity. What is CMAC dye? Why was it used to stain the vacuolar lumen? Some abbreviations (TEAB, ACN) are not explained. What is 0% Ficoll?

      Referees cross-commenting

      I agree with both reviewers, although I think that it is a pretty novel finding because while I was familiar with Oxr1 data I did not realize until now that there is a second protein in yeast. I think it is because homology between Oxr1 and Rtc5 is really low. I also agree that they should study more about what happens with V0 subunits.

      Significance

      Field of expertise keywords:

      Protein-protein interactions, V-ATPase, TLDc

      The vacuolar-type proton ATPase, V-ATPase, is the key proton pump, that hydrolases ATP and uses this energy to pump protons across membranes. Amazingly, this proton pump and its function are conserved in eukaryotes from yeast to mammals. While V-ATPase structure and function have been studied for more than 30 years in various organisms, its regulation is not completely understood. The very recent discoveries of two new V-ATPase interacting proteins in yeast, first Oxr1 (OXidative Resistance 1), and now Rtc5 (Restriction of Telomere Capping 5), both the only two members of TLDc (The Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic) proteins in yeast, provide new insights in V-ATPase regulation in yeast, and because the interaction is conserved in mammals its relevance to mammalian V-ATPases regulation as well.

      TLDc proteins are best known for their role in protection from oxidative stress, in particular in yeast and in the nervous system in mammals. The discovery of the novel Rtc5-V-ATPase interaction points to the role of V-ATPase not only in protection from oxidative stress but also in restriction of telomere capping in yeast and most likely higher species. The studies of other species also highlight the possible conserved role of V-ATPase in lifespan determination and Torc1 signaling, mediated through these interactions. Thus, the discovery of this new functionally important interaction between the second TLDc family member in yeast, Rtc5, and V-ATPase will shed light on the molecular mechanisms of all these essential biological processes and pathways.

      In addition, because the authors performed a comprehensive proteomics protein-protein interaction study of the purified yeast vacuole it provides a valuable resource for all researchers who study vacuoles and/or related to them lysosomes.

      The follow-up functional studies using the rav1Δ strain clearly demonstrated that Rtc5 and Oxr1 disassemble V-ATPase and counteract the function of V-ATPase assembly RAVE complex in vivo in yeast. Thus, they are essentially the first discovered endogenous eukaryotic protein inhibitors of V-ATPase. Moreover, because the authors obtained the evidence that Oxr1 is the regulator of the specific subunit isoform of V-ATPase Stv1p in vivo in yeast, it suggests that different TLDc proteins may regulate different specific V-ATPase subunit isoforms in cell- and tissue-specific manner in higher eukaryotes. The mechanism of this isoform-specific regulation in yeast and other species needs further investigation in the future.

      Because of the conservation of the TLDc-V-ATPase interactions, all this information can be extrapolated to higher species, all the way to humans, in whom genetic mutations in various TLDc proteins are known to cause devastating diseases and syndromes.

    1. Author Response

      Response to the Reviews

      We are grateful for these balanced, nuanced evaluations of our work concerning the observed epistatic trends and our interpretations of their mechanistic origins. Overall, we think the reviewers have done an excellent job at recognizing the novel aspects of our findings while also discussing the caveats associated with our interpretations of the biophysical effects of these mutations. We believe it is important to consider both of these aspects of our work in order to appreciate these advances and what sorts of pertinent questions remain.

      Notably, both reviewers suggest that a lack of experimental approaches to compare the conformational properties of GnRHR variants weakens our claims. We would first humbly suggest that this constitutes a more general caveat that applies to nearly all investigations of the cellular misfolding of α-helical membrane proteins. Whether or not any current in vitro folding measurements report on conformational transitions that are relevant to cellular protein misfolding reactions remains an active area of debate (discussed further below). Nevertheless, while we concede that our structural and/ or computational evaluations of various mutagenic effects remain speculative, prevailing knowledge on the mechanisms of membrane protein folding suggest our mutations of interest (V276T and W107A) are highly unlikely to promote misfolding in precisely the same way. Thus, regardless of whether or not we were able experimentally compare the relevant folding energetics of GnRHR variants, we are confident that the distinct epistatic interactions formed by these mutations reflect variations in the misfolding mechanism and that they are distinct from the interactions that are observed in the context of stable proteins. In the following, we provide detailed considerations concerning these caveats in relation to the reviewers’ specific comments.

      Reviewer #1 (Public Review):

      The paper carries out an impressive and exhaustive non-sense mutagenesis using deep mutational scanning (DMS) of the gonadotropin-releasing hormone receptor for the WT protein and two single point mutations that I) influence TM insertion (V267T) and ii) influence protein stability (W107A), and then measures the effect of these mutants on correct plasma membrane expression (PME).

      Overall, most mutations decreased mGnRHR PME levels in all three backgrounds, indicating poor mutational tolerance under these conditions. The W107A variant wasn't really recoverable with low levels of plasma membrane localisation. For the V267T variant, most additional mutations were more deleterious than WT based on correct trafficking, indicating a synergistic effect. As one might expect, there was a higher degree of positive correlation between V267T/W107A mutants and other mutants located in TM regions, confirming that improper trafficking was a likely consequence of membrane protein co-translational folding. Nevertheless, context is important, as positive synergistic mutants in the V27T could be negative in the W107A background and vice versa. Taken together, this important study highlights the complexity of membrane protein folding in dissecting the mechanism-dependent impact of disease-causing mutations related to improper trafficking.

      Strengths

      This is a novel and exhaustive approach to dissecting how receptor mutations under different mutational backgrounds related to co-translational folding, could influence membrane protein trafficking.

      Weaknesses

      The premise for the study requires an in-depth understanding of how the single-point mutations analysed affect membrane protein folding, but the single-point mutants used seem to lack proper validation.

      Given our limited understanding of the structural properties of misfolded membrane proteins, it is unclear whether the relevant conformational effects of these mutations can be unambiguously validated using current biochemical and/ or biophysical folding assays. X-ray crystallography, cryo-EM, and NMR spectroscopy measurements have demonstrated that many purified GPCRs retain native-like structural ensembles within certain detergent micelles, bicelles, and/ or nanodiscs. However, helical membrane protein folding measurements typically require titration with denaturing detergents to promote the formation of a denatured state ensemble (DSE), which will invariably retain considerable secondary structure. Given that the solvation provided by mixed micelles is clearly distinct from that of native membranes, it remains unclear whether these DSEs represent a reasonable proxy for the misfolded conformations recognized by cellular quality control (QC, see https://doi.org/10.1021/acs.chemrev.8b00532). Thus, the use and interpretation of these systems for such purposes remains contentious in the membrane protein folding community. In addition to this theoretical issue, we are unaware of any instances in which GPCRs have been found to undergo reversible denaturation in vitro- a practical requirement for equilibrium folding measurements (https://doi.org/10.1146/annurev-biophys-051013-022926). We note that, while the resistance of GPCRs to aggregation, proteolysis, and/ or mechanical unfolding have also been probed in micelles, it is again unclear whether the associated thermal, kinetic, and/ or mechanical stability should necessarily correspond to their resistance to cotranslational and/ or posttranslational misfolding. Thus, even if we had attempted to validate the computational folding predictions employed herein, we suspect that any resulting correlations with cellular expression may have justifiably been viewed by many as circumstantial. Simply put, we know very little about the non-native conformations are generally involved in the cellular misfolding of α-helical membrane proteins, much less how to measure their relative abundance. From a philosophical standpoint, we prefer to let cells tell us what sorts of broken protein variants are degraded by their QC systems, then do our best to surmise what this tells us about the relevant properties of cellular DSEs.

      Despite this fundamental caveat, we believe that the chosen mutations and our interpretation of their relevant conformational effects are reasonably well-informed by current modeling tools and by prevailing knowledge on the physicochemical drivers of membrane protein folding and misfolding. Specifically, the mechanistic constraints of translocon-mediated membrane integration provide an understanding of the types of mutations that are likely to disrupt cotranslational folding. Though we are still learning about the protein complexes that mediate membrane translocation (https://doi.org/10.1038/s41586-022-05336-2), it is known that this underlying process is fundamentally driven by the membrane depth-dependent amino acid transfer free energies (https://doi.org/10.1146/annurev.biophys.37.032807.125904). This energetic consideration suggests introducing polar side chains near the center of a nascent TMDs should almost invariably reduce the efficiency of topogenesis. To confirm this in the context of TMD6 specifically, we utilized a well-established biochemical reporter system to confirm that V276T attenuates its translocon-mediated membrane integration (Fig. S1)- at least in the context of a chimeric protein. We also constructed a glycosylation-based topology reporter for full-length GnRHR, but ultimately found its’ in vitro expression to be insufficient to detect changes in the nascent topological ensemble. In contrast to V276T, the W107A mutation is predicted to preserve the native topological energetics of GnRHR due to its position within a soluble loop region. W107A is also unlike V276T in that it clearly disrupts tertiary interactions that stabilize the native structure. This mutation should preclude the formation of a structurally conserved hydrogen bonding network that has been observed in the context of at least 25 native GPCR structures (https://doi.org/10.7554/eLife.5489). However, without a relevant folding assay, the extent to which this network stabilizes the native GnRHR fold in cellular membranes remains unclear. Overall, we admit that these limitations have prevented us from measuring how much V276T alters the efficiency of GnRHR topogenesis, how much the W107A destabilizes the native fold, or vice versa. Nevertheless, given these design principles and the fact that both reduce the plasma membrane expression of GnRHR, as expected, we are highly confident that the structural defects generated by these mutations do, in fact, promote misfolding in their own ways. We also concede that the degree to which these mutagenic perturbations are indeed selective for specific folding processes is somewhat uncertain. However, it seems exceedingly unlikely that these mutations should disrupt topogenesis and/ or the folding of the native topomer to the exact same extent. From our perspective, this is the most important consideration with respect to the validity of the conclusions we have made in this manuscript.

      Furthermore, plasma membrane expression has been used as a proxy for incorrect membrane protein folding, but this not necessarily be the case, as even correctly folded membrane proteins may not be trafficked correctly, at least, under heterologous expression conditions. In addition, mutations can affect trafficking and potential post-translational modifications, like glycosylation.

      While the reviewer is correct that the sorting of folded proteins within the secretory pathway is generally inefficient, it is also true that the maturation of nascent proteins within the ER generally bottlenecks the plasma membrane expression of most α-helical membrane proteins. Our group and several others have demonstrated that the efficiency of ER export generally appears to scale with the propensity of membrane proteins to achieve their correct topology and/ or to achieve their native fold (see https://doi.org/10.1021/jacs.5b03743 and https://doi.org/10.1021/jacs.8b08243). Notably, these investigations all involved proteins that contain native glycosylation and various other post-translational modification sites. While we cannot rule out that certain specific combinations of mutations may alter expression through their perturbation of post-translational GnRHR modifications, we feel confident that the general trends we have observed across hundreds of variants predominantly reflect changes in folding and cellular QC. This interpretation is supported by the relationship between observed trends in variant expression and Rosetta-based stability calculations, which we identified using unbiased unsupervised machine learning approaches (compare Figs. 6B & 6D).

      Reviewer #2 (Public Review):

      Summary:

      In this paper, Chamness and colleagues make a pioneering effort to map epistatic interactions among mutations in a membrane protein. They introduce thousands of mutations to the mouse GnRH Receptor (GnRHR), either under wild-type background or two mutant backgrounds, representing mutations that destabilize GnRHR by distinct mechanisms. The first mutant background is W107A, destabilizing the tertiary fold, and the second, V276T, perturbing the efficiency of cotranslational insertion of TM6 to the membrane, which is essential for proper folding. They then measure the surface expression of these three mutant libraries, using it as a proxy for protein stability, since misfolded proteins do not typically make it to the plasma membrane. The resulting dataset is then used to shed light on how diverse mutations interact epistatically with the two genetic background mutations. Their main conclusion is that epistatic interactions vary depending on the degree of destabilization and the mechanism through which they perturb the protein. The mutation V276T forms primarily negative (aggravating) epistatic interactions with many mutations, as is common to destabilizing mutations in soluble proteins. Surprisingly, W107A forms many positive (alleviating) epistatic interactions with other mutations. They further show that the locations of secondary mutations correlate with the types of epistatic interactions they form with the above two mutants.

      Strengths:

      Such a high throughput study for epistasis in membrane proteins is pioneering, and the results are indeed illuminating. Examples of interesting findings are that: (1) No single mutation can dramatically rescue the destabilization introduced by W107A. (2) Epistasis with a secondary mutation is strongly influenced by the degree of destabilization introduced by the primary mutation. (3) Misfolding caused by mis-insertion tends to be aggravated by further mutations. The discussion of how protein folding energetics affects epistasis (Fig. 7) makes a lot of sense and lays out an interesting biophysical framework for the findings.

      Weaknesses:

      The major weakness comes from the potential limitations in the measurements of surface expression of severely misfolded mutants. This point is discussed quite fairly in the paper, in statements like "the W107A variant already exhibits marginal surface immunostaining" and many others. It seems that only about 5% of the W107A makes it to the plasma membrane compared to wild-type (Figures 2 and 3). This might be a low starting point from which to accurately measure the effects of secondary mutations.

      The reviewer raises an excellent point that we considered at length during the analysis of these data and the preparation of the manuscript. Though we remain confident in the integrity of these measurements and the corresponding analyses, we now realize this aspect of the data merits further discussion and documentation in our forthcoming revision, in which we will outline the following specific lines of reasoning.

      Still, the authors claim that measurements of W107A double mutants "still contain cellular subpopulations with surface immunostaining intensities that are well above or below that of the W107A single mutant, which suggests that this fluorescence signal is sensitive enough to detect subtle differences in the PME of these variants". I was not entirely convinced that this was true.

      We made this statement based on the simple observation that the surface immunostaining intensities across the population of recombinant cells expressing the library of W107A double mutants was consistently broader than that of recombinant cells expressing W107A GnRHR alone (see Author response image 1 for reference). Given that the recombinant cellular library represents a mix of cells expressing ~1600 individual variants that are each present at low abundance, the pronounced tails within this distribution presumably represent the composite staining of many small cellular subpopulations that express collections of variants that deviate from the expression of W107A to an extent that is significant enough to be visible on a log intensity plot.

      Author response image 1.

      Firstly, I think it would be important to test how much noise these measurements have and how much surface immunostaining the W107A mutant displays above the background of cells that do not express the protein at all.

      For reference, the average surface immunostaining intensity of HEK293T cells transiently expressing W107A GnRHR was 2.2-fold higher than that of the IRES-eGFP negative, untransfected cells within the same sample- the WT immunostaining intensity was 9.5-fold over background by comparison. Similarly, recombinant HEK293T cells expressing the W107A double mutant library had an average surface immunostaining intensity that was 2.6-fold over background across the two DMS trials. Thus, while the surface immunostaining of this variant is certainly diminished, we were still able to reliably detect W107A at the plasma membrane even under distinct expression regimes. We will include these and other signal-to-noise metrics for each experiment in a new table in the revised version of this manuscript.

      Beyond considerations related to intensity, we also previously noticed the relative intensity values for W107A double mutants exhibited considerable precision across our two biological replicates. If signal were too poor to detect changes in variant expression, we would have expected a plot of the intensity values across these two replicates to form a scatter. Instead, we found DMS intensity values for individual variants to be highly correlated from one replicate to the next (Pearson’s R= 0.97, see Author response image 2 for reference). This observation empirically demonstrates that this assay consistently differentiated between variants that exhibit slightly enhanced immunostaining from those that have even lower immunostaining than W107A GnRHR.

      Author response image 2.

      But more importantly, it is not clear if under this regimen surface expression still reports on stability/protein fitness. It is unknown if the W107A retains any function or folding at all. For example, it is possible that the low amount of surface protein represents misfolded receptors that escaped the ER quality control.

      While we believe that such questions are outside the scope of this work, we certainly agree that it is entirely possible that some of these variants bypass QC without achieving their native fold. This topic is quite interesting to us but is quite challenging to assess in the context of GPCRs, which have complex fitness landscapes that involve their propensity to distinguish between different ligands, engage specific components associated with divergent downstream signaling pathways, and navigate between endocytic recycling/ degradation pathways following activation. In light of the inherent complexity of GPCR function, we humbly suggest our choice of a relatively simple property of an otherwise complex protein may be viewed as a virtue rather than a shortcoming. Protein fitness is typically cast as the product of abundance and activity. Rather than measuring an oversimplified, composite fitness metric, we focused on one variable (plasma membrane expression) and its dominant effector (folding). We believe restraining the scope in this manner was key for the elucidation of clear mechanistic insights.

      The differential clustering of epistatic mutations (Fig. 6) provides some interesting insights as to the rules that dictate epistasis, but these too are dominated by the magnitude of destabilization caused by one of the mutations. In this case, the secondary mutations that had the most interesting epistasis were exceedingly destabilizing. With this in mind, it is hard to interpret the results that emerge regarding the epistatic interactions of W107A. Furthermore, the most significant positive epistasis is observed when W107A is combined with additional mutations that almost completely abolish surface expression. It is likely that either mutation destabilizes the protein beyond repair. Therefore, what we can learn from the fact that such mutations have positive epistasis is not clear to me. Based on this, I am not sure that another mutation that disrupts the tertiary folding more mildly would not yield different results. With that said, I believe that the results regarding the epistasis of V276T with other mutations are strong and very interesting on their own.

      We agree with the reviewer. In light of our results we believe it is virtually certain that the secondary mutations characterized herein would be likely to form distinct epistatic interactions with mutations that are only mildly destabilizing. Indeed, this insight reflects one of the key takeaway messages from this work- stability-mediated epistasis is difficult to generalize because it should depend on the extent to which each mutation changes the stability (ΔΔG) as well as initial stability of the WT/ reference sequence (ΔG, see Figure 7). Frankly, we are not so sure we would have pieced this together as clearly had we not had the fortune (or misfortune?) of including such a destructive mutation like W107A as a point of reference.

      Additionally, the study draws general conclusions from the characterization of only two mutations, W107A and V276T. At this point, it is hard to know if other mutations that perturb insertion or tertiary folding would behave similarly. This should be emphasized in the text.

      We agree and will be sure to emphasize this point in the revised manuscript.

      Some statistical aspects of the study could be improved:

      1. It would be nice to see the level of reproducibility of the biological replicates in a plot, such as scatter or similar, with correlation values that give a sense of the noise level of the measurements. This should be done before filtering out the inconsistent data.

      We thank the reviewer for this suggestion and will include scatters for each genetic background like the one shown above in the supplement of the revised version of the manuscript.

      1. The statements "Variants bearing mutations within the C- terminal region (ICL3-TMD6-ECL3-TMD7) fare consistently worse in the V276T background relative to WT (Fig. 4 B & E)." and "In contrast, mutations that are 210 better tolerated in the context of W107A mGnRHR are located 211 throughout the structure but are particularly abundant among residues 212 in the middle of the primary structure that form TMD4, ICL2, and ECL2 213 (Fig. 4 C & F)." are both hard to judge. Inspecting Figures 4B and C does not immediately show these trends, and importantly, a solid statistical test is missing here. In Figures 4E and F the locations of the different loops and TMs are not indicated on the structure, making these statements hard to judge.

      We apologize for this oversight and thank the reviewer for pointing this out. We will include additional statistical tests to reinforce these conclusions in the revised version of the manuscript.

      1. The following statement lacks a statistical test: "Notably, these 98 variants are enriched with TMD variants (65% TMD) relative to the overall set of 251 variants (45% TMD)." Is this enrichment significant? Further in the same paragraph, the claim that "In contrast to the sparse epistasis that is generally observed between mutations within soluble proteins, these findings suggest a relatively large proportion of random mutations form epistatic interactions in the context of unstable mGnRHR variants". Needs to be backed by relevant data and statistics, or at least a reference.

      We will include additional statistical tests for this in the revised manuscript and will ensure the language we use is consistent with the strength of the indicated statistical enrichment.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for organizing the reviews for our manuscript: Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties,” and for the positive eLife assessment. We also thank the reviewers for their constructive comments. We have addressed every comment, which has helped to improve the transparency and readability of the manuscript. The main changes to the manuscript are summarized as follows:

      1. Surrogate distributions were created for each participant and session to estimate the effect of tACS-phase lag on behavioral entrainment to the sound that could have occurred by chance or because of our analysis method (R1). The actual tACS-amplitude effects were normalized relative to the surrogate distribution, and statistical analysis was performed on the normalized (z-score) values. This analysis did not change our main outcome: that tACS modulates behavioral entrainment to the sound depending on the phase lag between the auditory and the electrical signals. This analysis has now been incorporated into the Results section and in Fig. 3c-d.

      2. Two additional supplemental figures were created to include the single-participant data related to Fig. 3b and 3e (R2).

      3. Additional editing of the manuscript has been performed to improve the readability.

      Below, you will find a point-by-point response to the reviewers’ comments.

      Reviewer #1 (Public Review):

      We are grateful for the reviewer’s positive assessment of the potential impact of our study. The reviewer’s primary concerns were 1) the tACS lag effects reported in the manuscript might be noise because of the realignment procedure, and 2) no multiple comparisons correction was conducted in the model comparison procedure.

      In response to point 1), we have reanalyzed the data in exactly the manner prescribed by the reviewer. Our effects remain, and the new control analysis strengthens the manuscript. 2) In the context of model comparison, the model selection procedure was not based on evaluating the statistical significance of any model or predictor. Instead, the single model that best fit the data was selected as the model with the lowest Akaike’s information criterion (AIC), and its superiority relative to the second-best model was corroborated using the likelihood ratio test. Only the best model was evaluated for significance and analyzed in terms of its predictors and interactions. This model is an omnibus test and does not require multiple comparison correction unless there are posthoc decompositions. For similar approaches, see (Kasten et al., 2019).

      Below, we have responded to each comment specifically or referred to this general comment.

      Summary of what the authors were trying to achieve.

      This paper studies the possible effects of tACS on the detection of silence gaps in an FM-modulated noise stimulus. Both FM modulation of the sound and the tACS are at 2Hz, and the phase of the two is varied to determine possible interactions between the auditory and electric stimulation. Additionally, two different electrode montages are used to determine if variation in electric field distribution across the brain may be related to the effects of tACS on behavioral performance in individual subjects.

      Major strengths and weaknesses of the methods and results.

      The study appears to be well-powered to detect modulation of behavioral performance with N=42 subjects. There is a clear and reproducible modulation of behavioral effects with the phase of the FM sound modulation. The study was also well designed, combining fMRI, current flow modeling, montage optimization targeting, and behavioral analysis. A particular merit of this study is to have repeated the sessions for most subjects in order to test repeat-reliability, which is so often missing in human experiments. The results and methods are generally well-described and well-conceived. The portion of the analysis related to behavior alone is excellent. The analysis of the tACS results is also generally well described, candidly highlighting how variable results are across subjects and sessions. The figures are all of high quality and clear. One weakness of the experimental design is that no effort was made to control for sensation effects. tACS at 2Hz causes prominent skin sensations which could have interacted with auditory perception and thus, detection performance.

      The reviewer is right that we did not control for the sensation effects in our paradigm. We asked the participants to rate the strength of the perceived stimulation after each run. However, this information was used only to assess the safety and tolerability of the stimulation protocol. Nevertheless, we did not consider controlling for skin sensations necessary given the within-participant nature of our design (all participants experienced all six tACS–audio phase lag conditions, which were identical in their potential to cause physical sensations; the only difference between conditions was related to the timing of the auditory stimulus). That is, while the reviewer is right that 2-Hz tACS can indeed induce skin sensation under the electrodes, in this study, we report the effects that depend on the tACS-phase lag relative to the FM-stimulus. Note that the starting phase of the FM-stimulus was randomized across trials within each block (all six tACS audio lags were presented in each block of stimulation). We have no reason to expect the skin sensation to change with the tACS-audio lag from trial to trial, and therefore do not consider this to be a confound in our design. We have added some sentences with this information to the Discussion section:

      Pages 16-17, lines 497-504: “Note that we did not control for the skin sensation induced by 2-Hz tACS in this experiment. Participants rated the strength of the perceived stimulation after each run. However, this information was used only to assess the safety and tolerability of the stimulation protocol. It is in principle possible that skin sensation would depend on tACS phase itself. However, in this study, we report effects that depend on the relationship between tACS-phase and FM-stimulus phase, which changed from trial to trial as the starting phase of the FM-stimulus was randomized across trials. We have no reason to expect the skin sensation to change with the tACS-audio lag and therefore do not consider this to be a confound in our data.”

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions.

      Unfortunately, the main effects described for tACS are encumbered by a lack of clarity in the analysis. It does appear that the tACS effects reported here could be an artifact of the analysis approach. Without further clarification, the main findings on the tACS effects may not be supported by the data.

      Likely impact of the work on the field, and the utility of the methods and data to the community.

      The central claim is that tACS modulates behavioral detection performance across the 0.5s cycle of stimulation. However, neither the phase nor the strength of this effect reproduces across subjects or sessions. Some of these individual variations may be explainable by individual current distribution. If these results hold, they could be of interest to investigators in the tACS field.

      The additional context you think would help readers interpret or understand the significance of the work.

      The following are more detailed comments on specific sections of the paper, including details on the concerns with the statistical analysis of the tACS effects.

      The introduction is well-balanced, discussing the promise and limitations of previous results with tACS. The objectives are well-defined.

      The analysis surrounding behavioral performance and its dependence on the phase of the FM modulation (Figure 3) is masterfully executed and explained. It appears that it reproduces previous studies and points to a very robust behavioral task that may be of use in other studies.

      Again, we would like to thank the reviewer for the positive assessment of the potential impact of our work and for the thoughtful comments regarding the methodology. For readability in our responses, we have numbered the comments below.

      1. There is a definition of tACS(+) vs tACS(-) based on the relative phase of tACS that may be problematic for the subsequent analysis of Figures 4 and 5. It seems that phase 0 is adjusted to each subject/session. For argument's sake, let's assume the curves in Fig. 3E are random fluctuations. Then aligning them to best-fitting cosine will trivially generate a FM-amplitude fluctuation with cosine shape as shown in Fig. 4a. Selecting the positive and negative phase of that will trivially be larger and smaller than a sham, respectively, as shown in Fig 4b. If this is correct, and the authors would like to keep this way of showing results, then one would need to demonstrate that this difference is larger than expected by chance. Perhaps one could randomize the 6 phase bins in each subject/session and execute the same process (fit a cosine to curves 3e, realign as in 4a, and summarize as in 4b). That will give a distribution under the Null, which may be used to determine if the contrast currently shown in 4b is indeed statistically significant.

      We agree with the reviewer’s concerns regarding the possible bias induced by the realignment procedure used to estimate tACS effects. Certainly, when adjusting phase 0 to each participant/session’s best tACS phase (peak in the fitting cosine), selecting the positive phase of the realigned data will be trivially larger than sham (Fig. 4a). This is why the realigned zero-phase and opposite phase (trough) bins were excluded from the analysis in Fig. 4b. Therefore, tACS(+) vs. tACS(-) do not represent behavioral entrainment at the peak positive and negative tACS lags, as both bins were already removed from the analysis. tACS(+) and tACS(-) are the averages of two adjacent bins from the positive and negative tACS lags, respectively (Zoefel et al., 2019). Such an analysis relies on the idea that if the effect of tACS is sinusoidal, presenting the auditory stimulus at the positive half cycle should be different than when the auditory stimulus lags the electrical signal by the other half. If the effect of tACS was just random noise fluctuations, there is no reason to assume that such fluctuations would be sinusoidal; therefore, any bias in estimating the effect of tACS should be removed when excluding the peak to which the individual data were realigned. Similar analytical procedures have been used previously in the literature (Riecke et al., 2015; Riecke et al., 2018). We have modified the colors in Fig. 4a and 4c (former 4b) and added a new panel to the figure (new 4b) to make the realignment procedure, including the exclusion of the realigned peak and trough data, more visually obvious.

      Moreover, we very much like the reviewer’s suggestion to normalize the magnitude of the tACS effect using a permutation strategy. We performed additional analyses to normalize our tACS effect in Fig. 4c by the probability of obtaining the effect by chance. For each subject and session, tACS-phase lags were randomized across trials for a total of 1000 iterations. For each iteration, the gaps were binned by the FM-stimulus phase and tACS-lag. For each tACS-lag, the amplitude of behavioral entrainment to the FM-stimulus was estimated (FM-amplitude), as shown in Fig. 3. Similar to the original data, a second cosine fit was estimated for the FM-amplitude by tACS-lag. Optimal tACS-phase was estimated from the cosine fit and FM-amplitude values were realigned. Again, the realigned phase 0 and trough were removed from the analysis, and their adjacent bins were averaged to obtain the FM-amplitude at tACS(+) and tACS(−), as shown in Fig. 4c. We then computed the difference between 1) tACS(+) and sham, 2) tACS(-) and sham, and 3) tACS(+) and tACS (-), for the original data and the permuted datasets. This procedure was performed for each participant and session to estimate the size of the tACS effect for the original and surrogate data. The original tACS effects were transformed to z-scores using surrogate distributions, providing us with an estimate of the size of the real effect relative to chance. We then computed one-sample t-tests to compare whether the effects of tACS were statistically significant. In fact, this analysis showed that the tACS effects were still statistically significant. This analysis has been added to the Results and Methods sections and is included in Figure 4d.

      Page 10, lines 282-297: “In order to further investigate whether the observed tACS effect was significantly larger than chance and not an artifact of our analysis procedure (33), we created 1000 surrogate datasets per participant and session by permuting the tACS lag designation across trials. The same binning procedure, realignment, and cosine fits were applied to each surrogate dataset as for the original data. This yielded a surrogate distribution of tACS(+) and tACS(-) values for each participant and session. These values were averaged across sessions since the original analysis did not show a main effect of session. We then computed the difference between tACS(+) and sham, tACS(-) and sham, and tACS(+) and tACS(-), separately for the original and surrogate datasets. The obtained difference for the original data where then z-scored using the mean and standard deviation of the surrogate distribution. Note that in this case we used data of all 42 participants who had at least one valid session (37 participants with both sessions). Three one-sample t-tests were conducted to investigate whether the size of the tACS effect obtained in the original data was significantly larger than that obtained by chance (Fig. 4d). This analysis showed that all z-scores were significantly higher than zero (all t(41) > 2.36, p < 0.05, all p-values corrected for multiple comparisons using the Holm-Bonferroni method).”

      Page 31, lines 962-972: “To further control that the observed tACS effects were not an artifact of the analysis procedure, the difference between the tACS conditions (sham, tACS(+), and tACS(-)) were normalized using a permutation approach. For each participant and session, 1000 surrogate datasets were created by permuting the tACS lag designation across trials. The same binning procedure, realignment, and cosine fits were applied to each surrogate dataset as for the original data (see above). FM-amplitude at sham, tACS(+) and tACS(-) were averaged across sessions since the original analysis did not show a main effect of session. Difference between tACS conditions were estimated for the original and surrogate datasets and the resulting values from the original data were z-scored using the mean and standard deviation from the surrogate distributions. One-sample t-tests were conducted to test the statistical significance of the z-scores. P-values were corrected for multiple comparisons using the Holm-Bonferroni method.”

      1. Results of Fig 5a and 5b seem consistent with the concern raised above about the results of Fig. 4. It appears we are looking at an artifact of the realignment procedure, on otherwise random noise. In fact, the drop in "tACS-amplitude" in Fig. 5c is entirely consistent with a random noise effect.

      Please see our response to the comment above.

      1. To better understand what factors might be influencing inter-session variability in tACS effects, we estimated multiple linear models ..." this post hoc analysis does not seem to have been corrected for multiple comparisons of these "multiple linear models". It is not clear how many different things were tried. The fact that one of them has a p-value of 0.007 for some factors with amplitude-difference, but these factors did not play a role in the amplitude-phase, suggests again that we are not looking at a lawful behavior in these data.

      We suspect that the reviewer did not have access to the supplemental materials where all tables (relevant here is Table S3) are provided. This post hoc analysis was performed as an exploratory analysis to better understand the factors that could influence the inter-session variability of tACS effects. In Table S3, we provide the formula for each of the seven models tested, including their Akaike information criteria corrected for small samples (AICc), R2, F, and p-values. As described in the methods section, the winning model was selected as the model with the smallest AICc. A similar procedure has been previously used in the literature (Kasten et al., 2019). Moreover, to ensure that our winning model was better at explaining the data than the second-best unrestricted model, we used the likelihood ratio test. After choosing the winning model and before reporting the significance of the predictors, we examined the significance of the model in and of itself, taking into account its R2 as well as F- and p-values relative to a constant model. Thus, only one model is being evaluated in terms of statistical significance. Therefore, to our understanding, there are no multiple comparisons to correct for. We added the information regarding the selection procedure, hoping this will make the analysis clearer.

      See page 12, lines 354-360: “This model was selected because it had the smallest Akaike’s information criterion (corrected for small samples), AICc. Moreover, the likelihood ratio test showed no evidence for choosing the more complex unrestricted model (stat = 2.411, p = 0.121). Following the same selection criteria, the winning model predicting inter-session variability in tACS-phase, included only the factor gender (Table S4). However, this model was not significant in and of itself when compared to a constant model (F-statistic vs. constant model: 3.05, p = 0.09, R2 = 0.082).”

      1. "So far, our results demonstrate that FM-stimulus driven behavioral modulation of gap detection (FM-amplitude) was significantly affected by the phase lag between the FM-stimulus and the tACS signal (Audio-tACS lag) ..." There appears to be nothing in the preceding section (Figures 4 and 5) to show that the modulation seen in 3e is not just noise. Maybe something can be said about 3b on an individual subject/session basis that makes these results statistically significant on their own. Maybe these modulations are strong and statistically significant, but just not reproducible across subjects and sessions?

      Please see our response to the first comment regarding the validity of our analysis for proving the significant effect of tACS lag on modulating behavioral entrainment to the FM-stimulus (FM-amplitude), and the new control analysis. After performing the permutation tests, to make sure the reported effects are not noise, our statistical analysis still shows that tACS-lag does significantly modulate behavioral entrainment to the sound (FM-amplitude). Thus, the reviewer is right to say “these modulations are strong and statistically significant, just not reproducible across subjects and sessions”. In this regard, we consider our evaluation of session-to-session reliability of tACS effects is of high relevance for the field, as this is often overlooked in the literature.

      1. "Inter-individual variability in the simulated E-field predicts tACS effects" Authors here are attempting to predict a property of the subjects that was just shown to not be a reliable property of the subject. Authors are picking 9 possible features for this, testing 33 possible models with N=34 data points. With these circumstances, it is not hard to find something that correlates by chance. And some of the models tested had interaction terms, possibly further increasing the number of comparisons. The results reported in this section do not seem to be robust, unless all this was corrected for multiple comparisons, and it was not made clear?

      We thank the reviewer very much for this comment. While the reviewer is right that in these models, we are trying to predict an individual property (tACS-amplitude) that was not test–retest reliable across sessions, we still consider this to be a valid analysis. Here, we take the tACS-amplitude averaged across sessions, trying to predict the probability of a participant to be significantly modulated by tACS, in general, regardless of day-to-day variability. Regarding the number of multiple regression models, how we chose the winning model and the appropriateness/need of multiple-comparisons correction in this case, please see our explanation under “Reviewer 1 (Public review)” and our response to comment 3.

      1. "Can we reduce inter-individual variability in tACS effects ..." This section seems even more speculative and with mixed results.

      We agree with the reviewer that this section is a bit speculative. We are trying to plant some seeds for future research can help move the field forward in the quest for better stimulation protocols. We have added a sentence at the end of the section to explicitly say that more evidence is needed in this regard.

      Page 14, lines 428-429: “At this stage, more evidence is needed to prove the superiority of individually optimized tACS montages for reducing inter-individual variability in tACS effects.”

      Given the concerns with the statistical analysis above, there are concerns about the following statements in the summary of the Discussion:

      1. "2) does modulate the amplitude of the FM-stimulus induced behavioral modulation (FM-amplitude)"

      This seems to be based on Figure 4, which leaves one with significant concerns.

      Please see response to comment 1. We hope the reviewer is satisfied with our additional analysis to make sure the effect of tACS here reported is not noise.

      1. "4) individual variability in tACS effect size was partially explained by two interactions: between the normal component of the E-field and the field focality, and between the normal component of the E-field and the distance between the peak of the electric field and the functional target ROIs."

      The complexity of this statement alone may be a good indication that this could be the result of false discovery due to multiple comparisons.

      We respectfully disagree with the reviewer’s opinion that this is a complex statement. We think that these interaction effects are very intuitive as we explain in the results and discussion sections. These significant interactions show that for tACS to be effective, it matters that current gets to the right place and not to irrelevant brain regions. We believe this finding is of great importance for the field, since most studies on the topic still focus mostly on predicting tACS effects from the absolute field strength and neglect other properties of the electric field.

      For the same reasons as stated above, the following statements in the Abstract do not appear to have adequate support in the data:

      "We observed that tACS modulated the strength of behavioral entrainment to the FM sound in a phase-lag specific manner. ... Inter-individual variability of tACS effects was best explained by the strength of the inward electric field, depending on the field focality and proximity to the target brain region. Spatially optimizing the electrode montage reduced inter-individual variability compared to a standard montage group."

      Please see response to all previous comments

      In particular, the evidence in support of the last sentence is unclear. The only finding that seems related is that "the variance test was significant only for tACS(-) in session 2". This is a very narrow result to be able to make such a general statement in the Abstract. But perhaps this can be made clearer.

      We changed this sentence in the abstract to:

      Page 2, lines 41-43: “Although additional evidence is necessary, our results also provided suggestive insights that spatially optimizing the electrode montage could be a promising tool to reduce inter-individual variability of tACS effects.”

      Reviewer #3 (Public Review):

      In "Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties" Cabral-Calderin and collaborators aimed to document 1) the possible advantages of personalized tACS montage over standard montage on modulating behavior; 2) the inter-individual and inter-session reliability of tACS effects on behavioral entrainment and, 3) the importance of the induced electric field properties on the inter-individual variability of tACS.

      To do so, in two different sessions, they investigated how the detection of silent gaps occurring at random phases of a 2Hz- amplitude modulated sound could be enhanced with 2Hz tACS, delivered at different phase lags. In addition, they evaluated the advantage of using spatially optimized tACS montages (information-based procedure - using anatomy and functional MRI to define the target ROI and simulation to compare to a standard montage applied to all participants) on behavioral entrainment. They first show that the optimized and the standard montages have similar spatial overlap to the target ROI. While the optimized montage induced a more focal field compared to the standard montage, the latter induced the strongest electric field. Second, they show that tACS does not modify the optimal phase for gap detection (phase of the frequency-modulated sound) but modulates the strength of behavioral entrainment to the frequency-modulated sound in a phase-lag specific manner. However, and surprisingly, they report that the optimal tACS lag, and the magnitude of the phasic tACS effect were highly variable across sessions. Finally, they report that the inter-individual variability of tACS effects can be explained by the strength of the inward electric field as a function of the field focality and on how well it reached the target ROI.

      The article is interesting and well-written, and the methods and approaches are state-of-the-art.

      Strengths:

      • The information-based approach used by the authors is very strong, notably with the definition of subject-specific targets using a fMRI localizer and the simulation of electric field strength using 3 different tACS montages (only 2 montages used for the behavioral experiment).

      • The inter-session and inter-individual variability are well documented and discussed. This article will probably guide future studies in the field.

      Weaknesses:

      • The addition of simultaneous EEG recording would have been beneficial to understand the relationship between tACS entrainment and the entrainment to rhythmic auditory stimulation.

      We are grateful for the Reviewer’s positive assessment of our work and for the reviewer’s recommendations. We agree with the reviewer that adding simultaneous EEG or MEG to our design would have been beneficial to understand tACS effects. However, as the reviewer might be familiar with, such combination also possesses additional challenges due to the strong artifacts induced by tACS in the EEG signals, which is at the frequency of interest and several orders of magnitude higher than the signal of interest. Unfortunately, the adequate setup for simultaneous tACS-EEG was not available at the moment of the study. Nevertheless, since we are using a paradigm that we have repeatedly studied in the past and have shown it entrains neural activity and modulates behavior rhythmically, we are confident our results are of interest on their own. For readability of our answers, we numbered to comments below.

      1. It would have been interesting to develop the fact that tACS did not "overwrite" neural entrainment to the auditory stimulus. The authors try to explain this effect by mentioning that "tACS is most effective at modulating oscillatory activity at the intended frequency when its power is not too high" or "tACS imposes its own rhythm on spiking activity when tACS strength is stronger than the endogenous oscillations but it decreases rhythmic spiking when tACS strength is weaker than the endogenous oscillations". However, it is relevant to note that the oscillations in their study are by definition "not endogenous" and one can interpret their results as a clear superiority of sensory entrainment over tACS entrainment. This potential superiority should be discussed, documented, and developed.

      We thank the reviewer very much for this remark. We completely agree that our results could be interpreted as a clear superiority of sensory entrainment over tACS entrainment. We have now incorporated this possibility in the discussion.

      Page 16, line 472-478: “Alternatively, our results could simply be interpreted as a clear superiority of the auditory stimulus for entrainment. In other words, sensory entrainment might just be stronger than tACS entrainment in this case where the stimulus rhythm was strong and salient. It would be interesting to further test whether this superiority of sensory entrainment applies to all sensory modalities or if there is a particular advantage for auditory stimuli when they compete with electrical stimulation. However, answering this question was beyond the scope of our study and needs further investigations with more appropriate paradigms.”

      1. The authors propose that "by applying tACS at the right lag relative to auditory rhythms, we can aid how the brain synchronizes to the sounds and in turn modulate behavior." This should be developed as the authors showed that the tACS lags are highly variable across sessions. According to their results, the optimal lag will vary for each tACS session and subtle changes in the montage could affect the effects.

      We thank the reviewer for this remark. We believe that the right procedure in this case would be using close-loop protocols where the optimal tACS-lag is estimated online as we discuss in the summary and future directions sub-section. We tried to make this clearer in the same sentence that the reviewer mentioned.

      Page 17, line 506-508: “Since optimal tACS phase was variable across participants and sessions, this approach would require closed-loop protocols where the optimal tACS lag is estimated online (see next section).”

      1. In a related vein, it would be very useful to show the data presented in Figure 3 (panels b,d,e) for all participants to allow the reader to evaluate the quality of the data (this can be added as a supplementary figure).

      Thank you very much for the suggestion. We have added two new supplemental figures (Fig S1 and S2) to show individual data for Fig. 3b and 3e. Note that Fig. 3d already shows the individual data as each circle represents optimal FM-phase for a single participant.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments:

      "was optimized in SimNIBS to focus the electric field as precisely as possible at the target ROI" It appears that some form of constrained optimization was used. It would be good to clarify which method was used, including a reference.

      Indeed, SimNIBS implements a constrained optimization approach based on pre-calculated lead fields. We have added the corresponding reference. All parameters used for the optimization are reported in the methods (see sub-section Electric field simulations and montage optimization). Regarding further specifics, the readers are invited to check the MATLAB code that was used for the optimization which is made available at: https://osf.io/3yutb

      "Thus, each montage has its pros and cons, and the choice of montage will depend on which of these dependent measures is prioritized." Well put. It would be interesting to know if authors considered optimizing for intensity on target. That would give the strongest predicted intensity on target, which seems like an important desideratum. Individualizing for something focal, as expected, did not give the strongest intensity. In fact, the method struggled to achieve the desired intensity of 0.1V/m in some subjects. It would be interesting to have a discussion about why this particular optimization method was selected.

      The specific optimization method used in this study was somewhat arbitrary, as there is no standard in the field. It was validated in prior studies, where it was also demonstrated that it performs favorably compared to alternative methods (Saturnino et al., 2019; Saturnino et al., 2021). The underlying physics of the head volume conductor generally limits the maximally achievable focality, and requires a tradeoff between focality and the desired intensity in the target. This tradeoff depends on the maximal amount of current that can be injected into the electrodes due to safety limits (4 mA in total in our case). Further constraints of the optimization in our application were the simultaneous targeting of two areas, and achieving field directions in the targets roughly parallel to those of auditory dipoles. Given the combination of these constraints, as the reviewer noticed, we could not even achieve the desired intensity of .1V/m in some subjects. As we wanted to stimulate both auditory cortices equally, our priority was to have the E-fields as similar as possible between hemispheres. Future studies optimizing for only one target would be easier to optimize for target intensity (assuming the same maximal total current injection). Alternatively, relaxing the constraint on direction and optimizing only for field intensity would help to increase the field intensities in the targets, but would lead to differing field directions in the two targets. As an example, see Rev. Fig.1 below. We extensively discuss some of these points in the discussion section: “Are individually optimized tACS montage better?” (Pages 21-22).

      Additionally, we added a few sentences in the Results and Methods giving more details about the optimization approach.

      Page 5, lines 115-116: “Using individual finite element method (FEM) head models (see Methods) and the lead field-based constrained optimization approach implemented in SimNIBS (31)”

      Page 27, lines 819-822: “The optimization pipeline employed the approach described in (31) and was performed in two steps. First, a lead field matrix was created per individual using the 10-10 EEG virtual cap provided in SimNIBS and performing electric field simulations based on the default tissue conductivities listed below.”

      Author response image 1.

      E-field distributions for one example participant. Brain maps show the results from the same optimization procedure described in the main manuscript but with no constraint for the current direction (top) or constraining the current direction (bottom). Note that the desired intensity of .1 V/m can be achieved when the current direction is not constrained.

      The terminology of "high-definition HD" used here is unconventional and may confuse some readers. The paper cited for ring electrodes (18) does not refer to it as HD. A quick search for high-definition HD yields mostly papers using many small electrodes, not ring electrodes. They look more like what was called "individualized". More conventional would be to call the first configuration a "ring-electrode", and the "individualized" configuration might be called "individualized HD".

      We thank the reviewer for this remark. We changed the label of the high-definition montage to ring-electrode. Regarding the individualized configuration, we prefer not to use individualized HD as it has the same number of electrodes as the standard montage.

      "So far, we have evaluated whether tACS at different phase lags interferes with stimulus-brain synchrony and modulates behavioral signatures of entrainment" The paper does not present any data on stimulus-brain synchrony. There is only an analysis of behavior and stimulus/tACS phase.

      We agree with the reviewer. To be more careful with such statement we now modified the sentence to say:

      Page 10, lines 303-304: “So far, we have evaluated whether tACS at different phase lags modulates behavioral signatures of entrainment: FM-amplitude and FM-phase.”

      "However, the strength of the tACS effect was variable across participants." and across sessions, and the phase also was variable across subjects and sessions.

      "tACS-amplitude estimates were averaged across sessions since the session did not significantly affect FM-amplitude (Fig. 5a)." More importantly, the authors show that "tACS-amplitude" was not reproducible across sessions.

      Unfortunately, we did not understand what the reviewer is suggesting here, and would have to ask the reviewer in this case to provide us with more information.

      References

      Kasten FH, Duecker K, Maack MC, Meiser A, Herrmann CS (2019) Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat Commun 10:5427. Riecke L, Sack AT, Schroeder CE (2015) Endogenous Delta/Theta Sound-Brain Phase Entrainment Accelerates the Buildup of Auditory Streaming. Curr Biol 25:3196-3201.

      Riecke L, Formisano E, Sorger B, Baskent D, Gaudrain E (2018) Neural Entrainment to Speech Modulates Speech Intelligibility. Curr Biol 28:161-169 e165.

      Saturnino GB, Madsen KH, Thielscher A (2021) Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation. J Neural Eng 18.

      Saturnino GB, Siebner HR, Thielscher A, Madsen KH (2019) Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints. Neuroimage 203:116183.

      Zoefel B, Davis MH, Valente G, Riecke L (2019) How to test for phasic modulation of neural and behavioural responses. Neuroimage 202:116175.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      “The exact levels of inhibition, excitation, and neuromodulatory inputs to neural networks are unknown. Therefore, the work is based on fine-tuned measures that are indirectly based on experimental results. However, obtaining such physiological information is challenging and currently impossible. From a computational perspective it is a challenge that in theory can be solved. Thus, although we have no ground-truth evidence, this framework can provide compelling evidence for all hypothesis testing research and potentially solve this physiological problem with the use of computers.”

      Response: We agree with the reviewer. This work was intended to determine the feasibility of reverse engineering motor unit firing patterns, using neuron models with a high degree realism. Given the results support this feasibility, our model and technique will therefore serve to construct new hypotheses as well as testing them.

      • Common input structure lines 115

      I agree with the following concepts, but I would specify that there is not only one dominant common input. It has been shown that there are multiple common inputs to the same motor nuclei (e.g., the two inputs are orthogonal and are shared with a subset of the active motoneurons) particularly for agonist motoneuron pools of synergistic muscles. On the hand muscles the authors are correct that there is only one dominant common input. Moreover, there is also some animal work suggesting that common inputs is just an epiphenomenon. This is completely in contradiction to what we observe in-vivo in the firing patterns of motor units, but perhaps worth mentioning and discussing.

      Response: Thanks for emphasizing this point. We have cited a recent reference discussing the important issue of common drive and the possibility of more than one source. Our simulations assume the net form of the excitatory input to all motoneurons in the pool is the same, except for noise. This net form (which produces the linear CST output in each case) essentially represents the sum of all inputs, both descending and sensory. Our results show the same over pattern as human data, i.e. that all motor unit firing patterns have similar trajectories (again allowing for the impact of noise). Future studies will consider separating excitatory inputs into different sources.

      It is interesting that the authors mention suprathreshold rate modulation. Could the authors just discuss more on how the model would respond to a simulated suprathreshold current for all simulated motoneurons (i.e., like the ones generated during a suprathreshold-injected current or voluntary maximal feedforward movement?)

      Response: Thank you for this point. Our use of the term “suprathreshold” was not applied correctly. We meant “suprathreshold” to refer to amount of input above the recruitment threshold. We have decided to remove this term so now the sentence “…so less is available for rate modulation…”.

      194 a full point is missing.

      Response: We addressed the error.

      204-231 and 232-259, these two paragraphs have been copied twice.

      Response: We addressed the error.

      Line 475 typo

      Response: We addressed the error.

      591 It would be interesting to add the me it takes a standard computer with known specs and a super computer to run over one batch of simulation (i.e., how long one of the 6,300,000 simulation takes).

      Response: Each simulation took about 20 minutes of real me. Assuming a standard computer with 16 processor cores using a similar microarchitecture as Bebop (Intel Broadwell architecture), the standard computer could run 16 simulations at a me (one simulation assigned per core). This would take the standard computer about 15 years to complete all 6.3M simulations.

      594 I don't understand why there are 6M simulations, could the authors provide more info on the combinations and why there are 6M simulations.

      Response: The 6M simulations are the total number of simulations that were performed for this work. A detailed explanation can be found in section: “Machine learning inference of motor pool characteristics” at line 591. Briefly, there were 315,000 simulations of a pool of 20 motoneurons (20 x 315,000 = 6.3 million). The 315,000 simulations was required to run all possible combinations of 15 patens of inhibition, 5 of neuromodulation, 7 of distribution of excitatory inputs and 30 different repeats of synaptic noise with different seeds. In addition, there were 20 iterations for each of these combinations to generate a linear CST output (as illustrated in Fig. 3). 15 x5 x 7 x 30 x 20=315,000.

      In several simulations it seems that there was a lot of fine-tuning of inputs to match the measured motor unit firing pattern. Have the authors ever considered a fully black-box AI approach? If they think is interesting maybe it could spice up the discussion.

      Response: We agree that AI has potential for reverse engineering the whole system and we are looking into adding it to future version of this algorithm as an alternative. We started with a simple but powerful grid search to enhance our understanding of the interaction between inputs, neuron properties and outputs.

      Reviewer 2

      Comment 1:

      “First, I believe that the relation between individual motor neuron behavioral characteristics (delta F, brace height etc.) and the motor neuron input properties can be illustrated more clearly. Although this is explained in the text, I believe that this is not optimally supported by figures. Figure 6 to some extent shows this, but figures 8 and 9 as well as Table 1 shows primarily the goodness of fit rather than the actual fit.”

      Response: We agree with the reviewer that showing the relationship between the motor neuron behavioral characteristics (delta F, brace height etc.) and the motor neuron input properties would be a great addition to the manuscript. Because the regression models have multiple dimensions (7 inputs and 3 outputs) it is difficult to show the relationship in a static image. We thought it best to show the goodness of fit even though it is more abstract and less intuitive. We added a supplemental diagram to Figure 8 to show the structure of the reverse engineered model that was fit (see Figure 8D).

      Author response image 1.

      Figure 8. Residual plots showing the goodness of fit of the different predicted values: (A) Inhibition, (B) Neuromodulation and (C) excitatory Weight Rao. The summary plots are for the models showing highest 𝑅𝑅2 results in Table 1. The predicted values are calculated using the features extracted from the firing rates (see Figure 7, section Machine learning inference of motor pool characteristics and Regression using motoneuron outputs to predict input organization). Diagram (D) shows the multidimensionality of the RE models (see Model fits) which have 7 feature inputs (see Feature Extraction) predicting 3 outputs (Inhibition, Neuromodulation and Weight Rao).

      Comment 2:

      “Second, I would have expected the discussion to have addressed specifically the question of which of the two primary schemes (pushpull, balanced) is the most prevalent. This is the main research question of the study, but it is to some degree le unanswered. Now that the authors have identified the relation between the characteristics of motor neuron behaviors (which has been reported in many previous studies), why not exploit this finding by summarizing the results of previous studies (at least a few representative ones) and discuss the most likely underlying input scheme? Is there a consistent trend towards one of the schemes, or are both strategies commonly used?”

      Response: We agree with the reviewer that our discussion should have addressed which of the two primary schemes – push-pull or balanced – is the most prevalent. At first glance, the upper right of Figure 6 looks the most realistic when compared to real data. We thus would expect that the push-pull scheme to dominate for the given task.

      We added a brief section (Push-Pull vs Balance Motor Command) in the discussion to address the reviewer’s comments. This section is not exhaustive but frames the debate using relevant literature. We are also now preparing to deploy these techniques on real data.

      Comment 3:

      In addition, it seems striking to me that highly non-linear excitation profiles are necessary to obtain a linear CST ramp in many model configurations. Although somewhat speculative, one may expect that an approximately linear relation is desired for robust and intuitive motor control. It seems to me that humans generally have a good ability to accurately grade the magnitude of the motor output, which implies that either a non-linear relation has been learnt (complex task), or that the central nervous system can generally rely on a somewhat linear relation between the neural drive to the muscle and the output (simpler task).

      Response: We agree with the reviewer, and we were surprised by these results. Our motoneuron pool is equipped with persistent inward currents (PICs) which are nonlinear. Therefore, for the motoneuron to produce a linear output the central nervous system would have to incorporate these nonlinearities into its commands.

      Following this reasoning, it could be interesting to report also for which input scheme, the excitation profile is most linear. I understand that this is not the primary aim of the study, but it may be an interesting way to elaborate on the finding that in many cases non-linear excitation profiles were needed to produce the linear ramp.

      This is a very interesting point. The most realistic firing patterns – with respect to human data – are found in the parameter regions in the upper right in Figure 6, which in fact produce the most nonlinear input (see push-pull pattern in Figure 4C). However, in future studies we hope to separate the total motor command illustrated here into descending and feedback commands. This may result in a more linear descending drive.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper investigates host and viral factors influencing transmission of alpha and delta SARS-CoV-2 variants in the Syrian hamster model and fundamentally increases knowledge regarding transmission of the virus via the aerosol route. The strength of evidence is solid and could be improved with a clearer presentation of the data.

      We thank the editors for their assessment. We are excited to present a revised version of the manuscript with improved data presentation and an improved discussion addressing the reviewer’s concerns.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the submitted manuscript, Port et al. investigated the host and viral factors influencing the airborne transmission of SARS-CoV-2 Alpha and Delta variants of concern (VOC) using a Syrian hamster model. The authors analyzed the viral load profiles of the animal respiratory tracts and air samples from cages by quantifying gRNA, sgRNA, and infectious virus titers. They also assessed the breathing patterns, exhaled aerosol aerodynamic profile, and size distribution of airborne particles after SARS-CoV-2 Alpha and Delta infections. The data showed that male sex was associated with increased viral replication and virus shedding in the air. The relationship between co-infection with VOCs and the exposure pattern/timeframe was also tested. This study appears to be an expansion of a previous report (Port et al., 2022, Nature Microbiology). The experimental designs were rigorous, and the data were solid. These results will contribute to the understanding of the roles of host and virus factors in the airborne transmission of SARS-CoV-2 VOCs.

      Reviewer #2 (Public Review):

      This manuscript by Port and colleagues describes rigorous experiments that provide a wealth of virologic, respiratory physiology, and particle aerodynamic data pertaining to aerosol transmission of SARS-CoV-2 between infected Syrian hamsters. The data is particularly significant because infection is compared between alpha and delta variants, and because viral load is assessed via numerous assays (gRNA, sgRNA, TCID) and in tissues as well as the ambient environment of the cage. The paper will be of interest to a broad range of scientists including infectious diseases physicians, virologists, immunologists and potentially epidemiologists. The strength of evidence is relatively high but limited by unclear presentation in certain parts of the paper.

      Important conclusions are that infectious virus is only detectable in air samples during a narrow window of time relative to tissue samples, that airway constriction increases dynamically over time during infection limiting production of fine aerosol droplets, that variants do not appear to exclude one another during simultaneous exposures and that exposures to virus via the aerosol route lead to lower viral loads relative to direct inoculation suggesting an exposure dose response relationship.

      While the paper is valuable, I found certain elements of the data presentation to be unclear and overly complex.

      Reviewer #1 (Recommendations For The Authors):

      We thank the reviewer for their comments and their attention to detail. We have taken the following steps to address their suggestions and concerns.

      However, the following concerns need to be issued.

      1. Summary seems to be too simple, and some results are not clearly described in the summary.

      We have edited the summary and hope to have addressed the concerns raised by providing more information. We think that the summary includes all relevant findings.

      “It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.”

      1. Aerosol transmission experiment should be described in Materials and Methods although it is cited as Reference 21#;

      We have modified Line 433:

      “Aerosol caging

      Aerosol cages as described by Port et al. [2] were used for transmission experiments and air sampling as indicated. The aerosol transmission system consisted of plastic hamster boxes (Lab Products) connected by a plastic tube. The boxes were modified to accept a 7.62 cm (3') plastic sanitary fitting (McMaster-Carr), which enabled the length between the boxes to be changed. Airflow was generated with a vacuum pump (Vacuubrand) attached to the box housing the naïve animals and was controlled with a float-type meter/valve (McMaster-Carr).”

      And Line 458: “During the first 5 days, hamsters were housed in modified aerosol cages (only one hamster box) hooked up to an air pump.”.

      Especially, one superspreading event of Alpha VOC (donor animal) was observed in iteration A (Figure 4). What causes that event, experiment system?

      Based on the observed variation in airborne shedding (of the cages from which this was directly measured), we believe that one plausible explanation for the super-spreading event was that the Alpha-infected donor shed considerably more virus during the exposure than other donors, and thus more readily infected the sentinels. That said, it is also conceivable that other factors such as hamster behavior (e.g., closeness to the cage outlet, sleeping) or variable sentinel susceptibility could affect the distribution of transmissions.

      1. Same reference is repeatedly listed as Refs 2 and 21#.

      Addressed. We thank the reviewer for their attention to detail. We have also removed reference 53, which was the same as 54.

      1. Two forms of described time (hour and h) are used in the manuscript. Single form should be chosen.

      This has been addressed.

      5) Virus designation located in line 371 and line 583 is inconsistent, and it needs to be revised.

      For consistency we have chosen this nomenclature for the viruses used: SARS-CoV-2 variant Alpha (B.1.1.7) (hCoV320 19/England/204820464/2020, EPI_ISL_683466) and variant Delta (B.1.617.2/) (hCoV-19/USA/KY-CDC-2-4242084/2021, EPI_ISL_1823618).

      1. In Figure 5F, what time were lung and nasal turbinate tissues collected after virus infection?

      This has been added to the legend. Day 5. Line 904.

      1. Line 562-563, what is the coating antigen (spike protein, generated in-house)? purified or recombinant protein?

      It is in-house purified recombinant protein. This has been added to the methods.

      1. Line 575 and line 578: 10,000x is not standard description, and it should be revised.

      Done.

      Reviewer #2 (Recommendations For The Authors):

      We thank the reviewer for their comments and suggestions to improve the manuscript, and hope we have addressed all concerns adequately.

      • Direct interpretation of the linear regression slope in Figure 3 is challenging. Is the most relevant parameter for transmission known? Intuitively, it would be the absolute number of small droplets at a given timepoint rather than the slope and it would be easier to interpret if the data were reported in this fashion.

      We decided to show a percentage of counts to normalize the data among animals, as we observed large inter-individual variation in counts. The reviewer is correct that it is most likely the number of particles that would be most relevant to transmission, though much (including the role of particle size) remains to be determined. We have added a sentence to the results which explains this in L157.

      Therefore, we decided in this first analysis to utilize the slope measurement and not raw counts. The focus was on the slopes and how particle profiles were changing post inoculation. Because we have focused on percentages, it seems not appropriate to present particle counts within each diameter range because the analysis, model, and results are based on these percentages of particles.

      Use of regression to compute slope is a useful measure because it uses data from all timepoints to estimate the regression line and, therefore, the % of particles on each day. We decided on these methods because efficiency is especially important in a study with a relatively small number of animals and slopes are also a good surrogate for how animal particle profiles are changing post-inoculation.

      To assist with the interpretation: 1) We removed Figure 3C and D and replaced Figure 3B with individual line plots for all conditions to visualize the slopes. The figure legend was corrected to reflect these changes.

      2) We replaced L169 onwards to read: (Figure 3B). Females had a steeper decline at an average rate of 2.2 per day after inoculation in the percent of 1-10 μm particles (and a steeper incline for <0.53 μm) when compared to males, while holding variant group constant. When we compared variant group while holding sex constant, we found that the Delta group had a steeper decline at an average rate of 5.6 per day in the percent of 1-10 μm particles (and a steeper incline for <0.53 μm); a similar trend, but not as steep, was observed for the Alpha group.

      The estimated difference in slopes for Delta vs. controls and Alpha vs. controls in the percent of <0.53 μm particles was 5.4 (two-sided adjusted p= 0.0001) and 2.4 (two-sided adjusted p = 0.0874), respectively. The estimated difference in slopes for percent of 1-10 μm particles was not as pronounced, but similar trends were observed for Delta and Alpha. Additionally, a linear mixed model was considered and produced virtually the same results as the simpler analysis described above; the corresponding linear mixed model estimates were the same and standard errors were similar.

      • Fig 4: what is "limit of quality" mentioned in the legend? Are these samples undetectable?

      We have clarified this in the legend: “3.3 = limit of detection for RNA (<10 copies/rxn)”. If samples have below 10 copy numbers per reaction, they are determined to be below the limit of detection. The limit of detection is 10 copy number/rxn. All samples below 10 copies/rxn are taken to be negative and set = 10 copies/rxn, which equals 3.3. Log10 copies/mL oral swab.

      • Fig 4C would be easier to process in graphical rather than tabular form. The meaning of the colors is unclear.

      We agree with the reviewer that this is difficult to interpret, but we are uncertain if the same data in a tabular format would be easier to digest. We realized that the legend was misplaced and have added this back into the figure, which we hope clarifies the colors and the limit of detection.

      • Figure 4D & E are uninterpretable. What do the pie charts represent?

      We have remodeled this part of the figure to a schematic representation of the majority variant which transmitted for each individual sentinel, and have added a table (Table S1) which summarizes the exact sequencing results for the oral swabs. The reviewer is correct that it was difficult to interpret the pie charts, considering most values are either 0 or close to 100%. We hope this addresses the question. The legend states:

      Author response image 1.

      Airborne attack rate of Alpha and Delta SARS-CoV-2 variants. Donor animals (N = 7) were inoculated with either the Alpha or Delta variant with 103 TCID50 via the intranasal route and paired together randomly (1:1 ratio) in 7 attack rate scenarios (A-G). To each pair of donors, one day after inoculation, 4-5 sentinels were exposed for a duration of 4 h (i.e., h 24-28 post inoculation) in an aerosol transmission set-up at 200 cm distance. A. Schematic figure of the transmission set-up. B. Day 1 sgRNA detected in oral swabs taken from each donor after exposure ended. Individuals are depicted. Wilcoxon test, N = 7. Grey = Alpha, teal = Delta inoculated donors. C. Respiratory shedding measured by viral load in oropharyngeal swabs; measured by sgRNA on day 2, 3, and 5 for each sentinel. Animals are grouped by scenario. Colors refer to legend below. 3.3 = limit of detection of RNA (<10 copies/rxn). D. Schematic representation of majority variant for each sentinel as assessed by percentage of Alpha and Delta detected in oropharyngeal swabs taken at day 2 and day 5 post exposure by deep sequencing. Grey = Alpha, teal = Delta, white = no transmission.

      • Fig S2G is uninterpretable. Please label and explain.

      We have now included an explanations of the figure S2F. The figure is a graphic representation of the neutralization data depicted in Figure S2F. The spacing between grid lines is 1 unit of antigenic distance, corresponding to a twofold dilution of serum in the neutralization assay. The resulting antigenic distance depicted between Alpha and Delta is roughly a 4-fold difference in neutralization between homologous (e.g., Alpha sera with the Alpha virus vs. heterologous, Alpha sera with the Delta virus).

      • I would consider emphasizing lines 220-225 in the summary and abstract. The important implication is that aerosol transmission is more representative of natural heterogeneity of exposure dose and downstream viral kinetics. This is an often-overlooked point.

      We agree with the reviewer and have added this in Line 43.

      • Fig 5: A cartoon similar to Fig 4A showing timing of sentinel exposure with number of animals would be helpful.

      We have added this as a new panel A for Figure 5. See the redrafted Figure 5 below.

      • For Fig 5E & F It would be helpful to use a statistical test to more formally assess whether proportion at exposure predicts proportion of variants in downstream sentinel infection.

      This has been added as a new Figure 5 panel H and I, which we hope addresses the reviewer’s comment.

      Author response image 2.

      Airborne competitiveness of Alpha and Delta SARS-CoV-2 variants. A. Schematic. Donor animals (N = 8) were inoculated with Alpha and Delta variant with 5 x 102 TCID50, respectively, via the intranasal route (1:1 ratio), and three groups of sentinels (Sentinels 1, 2, and 3) were exposed subsequently at a 16.5 cm distance. Animals were exposed at a 1:1 ratio; exposure occurred on day 1 (Donors  Sentinels 1) and day 2 (Sentinels  Sentinels). B. Respiratory shedding measured by viral load in oropharyngeal swabs; measured by gRNA, sgRNA, and infectious titers on days 2 and day 5 post exposure. Bar-chart depicting median, 96% CI and individuals, N = 8, ordinary two-way ANOVA followed by Šídák's multiple comparisons test. C/D/E. Corresponding gRNA, sgRNA, and infectious virus in lungs and nasal turbinates sampled five days post exposure. Bar-chart depicting median, 96% CI and individuals, N = 8, ordinary two-way ANOVA, followed by Šídák's multiple comparisons test. Dark orange = Donors, light orange = Sentinels 1, grey = Sentinels 2, dark grey = Sentinels 3, p-values indicated where significant. Dotted line = limit of quality. F. Percentage of Alpha and Delta detected in oropharyngeal swabs taken at days 2 and day 5 post exposure for each individual donor and sentinel, determined by deep sequencing. Pie-charts depict individual animals. Grey = Alpha, teal = Delta. G. Lung and nasal turbinate samples collected on day 5 post inoculation/exposure. H. Summary of data of variant composition, violin plots depicting median and quantiles for each chain link (left) and for each set of samples collected (right). Shading indicates majority of variant (grey = Alpha, teal = Delta). I. Correlation plot depicting Spearman r for each chain link (right, day 2 swab) and for each set of samples collected across all animals (left). Colors refer to legend on right. Abbreviations: TCID, Tissue Culture Infectious Dose.”

      We have additionally added to the results section: L284: “Combined a trend, while not significant, was observed for increased replication of Delta after the first transmission event, but not after the second, and in the oropharyngeal cavity (swabs) as opposed to lungs (Figure 5H) (Donors compared to Sentinels 1: p = 0.0559; Donors compared to Sentinels 2: p = >0.9999; Kruskal Wallis test, followed by Dunn’s test). Swabs taken at 2 DPI/DPE did significantly predict variant patterns in swabs on 5 DPI/DPE (Spearman’s r = 0.623, p = 0.00436) and virus competition in the lower respiratory tract (Spearman’s r = 0.60, p = 0.00848). Oral swab samples taken on day 5 strongly correlate with both upper (Spearman’s r = 0.816, p = 0.00001) and lower respiratory tract tissue samples (Spearman’s r = 0.832, p = 0.00002) taken on the same day (Figure 5I).”

      • Fig 1A: how are pfu/hour inferred? This is somewhat explained in the supplement, but I found the inclusion of model output as the first panel confusing and am still not 100% clear how this was done. Consider, explaining this in the body of the paper.

      We have added a more detailed explanation of the PFU/h inference to the main text: The motivation for the model was to link more readily measurable quantities such as RNA measured in oral swabs to the quantity of greatest interest for transmission (infectious virus per unit time in the air). To do this, we jointly infer the kinetics of shed airborne virus and parameters relating observable quantities (infected sentinels, plaques from purified air sample filters) to the actual longitudinal shedding. The inferential model uses mechanistic descriptions of deposition of infectious virus into the air, uptake from the air, and loss of infectious virus in the environment to extract estimates of the key kinetic parameters, as well as the resultant airborne shedding, for each animal.

      We have added this information to L106 in the results and hope this clarifies the rationale and execution of the model.

      More minor points:

      • Line 292: "poor proxy" seems too strong as peak levels of viral RNA correlate with positive airway cultures. It might be more accurate to say that high levels of viral RNA during early infection only somewhat correlate with positive airway cultures.

      We have rephrased this to clarify that while peak RNA viral loads are predictive of positive cultures, measuring RNA, especially early during infection and only once, may not be sufficient to infer the magnitude or time-dependence of infectious virus shedding into the air. See Line 308: “We found that swab viral load measurements are a valuable but imperfect proxy for the magnitude and timing of airborne shedding. Crucially, there is a period early in infection (around 24 h post-infection in inoculated hamsters) when oral swabs show high infectious virus titers, but air samples show low or undetectable levels of virus. Viral shedding should not be treated as a single quantity that rises and falls synchronously throughout the host; spatial models of infection may be required to identify the best correlates of airborne infectiousness [32]. Attempts to quantify an individual’s airborne infectiousness from swab measurements should thus be interpreted with caution, and these spatiotemporal factors should be considered carefully.”

      • Line 352: Re is dependent on time of an outbreak (population immunity) and cannot be specified for a given variant as it depends on multiple other variables

      We agree that the current phrasing here could be interpreted to suggest, incorrectly, that Re is an intrinsic property of a variant. We have deleted that language and reworded the section to emphasize that the critical question is heterogeneity in transmission, not mean reproduction number. Line 348: “Moreover, at the time of emergence of Delta, a large part of the human population was either previously exposed to and/or vaccinated against SARS-CoV-2; that underlying host immune landscape also affects the relative fitness of variants. Our naïve animal model does not capture the high prevalence of pre-existing immunity present in the human population and may therefore be less relevant for studying overall variant fitness in the current epidemiological context. Analyses of the cross-neutralization between Alpha and Delta suggest subtly different antigenic profiles [35], and Delta’s faster kinetics in humans may have also helped it cause more reinfections and “breakthrough” infections [36].

      Our two transmission experiments yielded different outcomes. When sentinel hamsters were sequentially exposed, first to Alpha and then to Delta, generally no dual infections—both variants detectable—were observed. In contrast, when we exposed hamsters simultaneously to one donor infected with Alpha and another infected with Delta, we were able to detect mixed-variant virus populations in sentinels in one of the cages (Cage F, see Appendix figures S1, S2). The fact that we saw both single-lineage and multi-lineage transmission events suggests that virus population bottlenecks at the point of transmission do indeed depend on exposure mode and duration, as well as donor host shedding. Notably, our analysis suggests that the Alpha-Delta co-infections observed in the Cage F sentinels could be due to that being the one cage in which both the Alpha and the Delta donor shed substantially over the course of the exposure (Appendix figures S2, S3). Mixed variant infections were not retained equally, and the relative variant frequencies differed between investigated compartments of the respiratory tract, suggesting roles for randomness or host-and-tissue specific differences in virus fitness.

      A combination of host, environmental and virus parameters, many of which vary through time, play a role in virus transmission. These include virus phenotype, shedding in air, individual variability and sex differences, changes in breathing patterns, and droplet size distributions. Alongside recognized social and environmental factors, these host and viral parameters might help explain why the epidemiology of SARS-CoV-2 exhibits classic features of over-dispersed transmission [37]. Namely, SARS-CoV-2 circulates continuously in the human population, but many transmission chains are self-limiting, while rarer superspreading events account for a substantial fraction of the virus’s total transmission. Heterogeneity in the respiratory viral loads is high and some infected humans release tens to thousands of SARS-CoV-2 virions/min [38, 39]. Our findings recapitulate this in an animal model and provide further insights into mechanisms underlying successful transmission events. Quantitative assessment of virus and host parameters responsible for the size, duration and infectivity of exhaled aerosols may be critical to advance our understanding of factors governing the efficiency and heterogeneity of transmission for SARS-CoV-2, and potentially other respiratory viruses. In turn, these insights may lay the foundation for interventions targeting individuals and settings with high risk of superspreading, to achieve efficient control of virus transmission [40].”

      • The limitation section should mention that this animal model does not capture the large prevalence of pre-existing immunity at present in the population and may therefore be less relevant in the current epidemiologic context.

      We agree and have added this more clearly, see response above.

      • Limitation: it is unclear if airway and droplet dynamics in the hamster model are representative of humans.

      We have added the following sentence: Line 331: “It remains to be determined how well airway and particle size distribution dynamics in Syrian hamsters model those in humans.”

      • The mathematical model is termed semi-mechanistic but I think this is not accurate as the model appears to have no mechanistic assumptions.

      We describe the model as semi-mechanistic because it uses mechanistic descriptions of the shedding and uptake process (as described above), incorporating factors including respiration rate and environmental loss, and makes the mechanistic assumption that measurable swab and airborne shedding all stem from a shared within-host infection process that produces exponential growth of virus up to a peak, followed by exponential decay. The model is only semi-mechanistic, however, as we do not attempt a full model of within-host viral replication and shedding (e.g. a target-cell limited virus kinetics model).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Comment 1: It is worth mentioning that the authors show that there are Arid1a transcripts that escape the Cre system. This might mask the phenotype of the Arid1a knockout, given that many sequencing techniques used here are done on a heterogeneous population of knockout and wild-type spermatocytes.

      Response: The proportions of undifferentiated spermatogonia (PLZF+) with detectable (ARID1A+) and non-detectable (ARID1A=) levels of ARID1A protein by immunostaining on testes cryosections obtained from 1-month old Arid1afl/fl (control) and Arid1acKO (CKO) males were 74% ARID1A negative (CKO) and 26% ARID1A positive (CKO) as compared to 95% ARID1A positive and 5% ARID1A negative in WT controls. The manuscript includes these data (page 5, lines 114-116). Furthermore, Western blot analysis of STA-Put purified pachytene WT and mutant spermatocytes showed significantly reduced levels of ARID1A protein in mutant cells (95% reduction). The manuscript has added these data (page 5, line 116 and Fig. S2).

      Comment 2: In relation to this, I think that the use of the term "pachytene arrest" might be overstated, since this is not the phenotype truly observed (these mice produce sperm).

      Response: Based on the profiling of prophase-I spermatocytes by co-staining for SYCP3 and ARID1A, we observed a marked reduction in mid-late pachytene spermatocytes that lacked ARID1A, indicating a failure to progress beyond pachynema in the absence of ARID1A (Table 1 in manuscript). Furthermore, we were unable to detect diplotene spermatocytes lacking ARID1A protein. Haploid spermatid populations isolated from Arid1acKO males appeared normal, expressing the wild-type allele, suggesting that they originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Arid1acKO also produces viable sperm at a level equal to their wild-type controls (see page 5, lines 123-126). It is reasonable to conclude that the absence of ARID1A results in a pachynema arrest and that the viable sperm are from escapers. We cannot make any conclusions regarding the requirement of ARID1A for progression beyond pachynema.

      Comment 3: ARID1A is present throughout prophase I, and it might have pre-MSCI roles that impact earlier stages of Meiosis I, and cell death might be happening in these earlier stages too.

      Response: We did not observe an effect on the frequency of leptotene and zygotene spermatocytes lacking ARID1A. There appeared to be an accumulation of these prophase-I populations in response to the loss of ARID1A, consistent with a failure in progression beyond pachynema in the mutants (Table 1 in the manuscript).

      Additionally, we did not detect any significant difference in the numbers of undifferentiated spermatogonia expressing PLZF (also known as ZBTB16) in 1-month-old Arid1acKO relative to Arid1afl/fl males (see Table below, now included in the manuscript as supplemental Table 1). Therefore, the Arid1a conditional knockouts generated with a Stra8-Cre did not appear to impact earlier stages of spermatogenesis. However, potential roles of ARID1A early in spermatogenesis might be revealed using a more efficient and earlier-acting germline Cre transgene. In this case, an inducible Cre transgene would be needed, given the haploinsufficiency associated with Arid1a. Such haploinsufficiency was why we used the Stra8-Cre. The lack of Cre expression in the female germline allowed the transmission of the floxed allele maternally.

      Author response table 1.

      Comment 4: Overall, the research presented here is solid, adds new knowledge on how sex chromatin is silenced during meiosis, and has generated relevant databases for the field.

      Response: We thank the reviewer for this comment.

      Reviewer 2

      Comment 1: The conditional deletion mouse model of ARIDA using Stra8-cre showed inefficient deletion; spermatogenesis did not appear to be severely compromised in the mutants. Using this data, the authors claimed that meiotic arrest occurs in the mutants. This is obviously a misinterpretation.

      Response: As stated in response to Reviewer 1, testes cryosections obtained from 1-month-old control and mutant males showed that 74% are ARID1A negative (CKO) and 26% ARID1A positive (CKO) as compared to 95% ARID1A positive and 5% ARID1A negative in WT controls (page 5, lines 114-116). This difference is dramatic. Western blot analysis of STA-Put purified pachytene WT and mutant spermatocytes also showed a significant reduction of ARID1A protein in mutant cells (Fig. S2). We observed a marked decrease in mid-late pachytene spermatocytes that lacked ARID1A, indicating a failure to progress beyond pachynema without ARID1A (Table 1 from the manuscript). Furthermore, we were unable to detect any diplotene spermatocytes lacking ARID1A protein. These data suggest that the haploid spermatids originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Comparison of cKO and wild-type littermate yielded nearly identical results (Avg total conc WT = 32.65 M/m; Avg total conc cKO = 32.06 M/ml), indicating that the cKO’s produce viable sperm at a level equal to their wild-type controls. Taken together, the conclusion that the absence of ARID1A results in a pachynema arrest and that the escapers produce the haploid spermatids is firm. By IF, we see that ~70% of the spermatocytes have deleted ARID1A. Therefore, we disagree with the reviewer’s comments that “spermatogenesis did not appear to be severely compromised in the mutants”.

      Comment 2: In the later parts, the authors performed next-gen analyses, including ATAC-seq and H3.3 CUT&RUN, using the isolated cells from the mutant mice. However, with this inefficient deletion, most cells isolated from the mutant mice appeared not to undergo Cre-mediated recombination. Therefore, these experiments do not tell any conclusion pertinent to the Arid1a mutation.

      Response: We agree that the ATAC-seq and CUT&RUN data were derived from a mixed population of pachytene spermatocytes consisting of mutants and, to a much lesser extent, escapers. As stated, based on our previous study (Menon et al., 2021, Nat. Commun., PMID: 34772938) and additional analyses in this current work, the undifferentiated spermatogonia lacking ARID1A indicates that Stra8-Cre is ~ 70% efficient. With this efficiency, we can detect striking changes in H3.3 occupancy and chromatin accessibility in the mutants relative to wild-type spermatocytes.

      Comment 3: Furthermore, many of the later parts of this study focus on the analysis of H3.3 CUT&RUN. However, Fig. S7 clearly suggests that the H3.3 CUT&RUN experiment in the wild-type simply failed. Thus, none of the analyses using the H3.3 CUT&RUN data can be interpreted.

      Response: We would like to draw the attention of the reviewer to a recent study (Fointane et al., 2022, NAR, PMID: 35766398) where the authors observed an identical X chromosome-wide spreading of H3.3 in mouse meiotic cells by ChIP-seq. The genomic distribution matches the microscopic observation of H3.3 coating of the sex chromosomes. Therefore, in normal spermatocytes, H3.3 distribution is pervasive across the X chromosome, with very few peaks observed in intergenic regions. Additionally, we detected H3.3 enrichment at TSSs of ARID1A-regulated autosomal genes in wild-type pachytene spermatocytes, albeit reduced relative to the mutants, indicating that the H3.3 CUT&RUN worked. For these reasons, we do not agree with the reviewer’s assessment that the H3.3 CUT&RUN experiment failed in the wild type.

      Comment 4: If the author wishes to study the function of ARID2 in spermatogenesis, they may need to try other cre-lines to have more robust phenotypes, and all analyses must be redone using a mouse model with efficient deletion of ARID2.

      Response: As noted, we chose Stra8-Cre to conditionally knockout Arid1a because ARID1A is haploinsufficient during embryonic development. The lack of Cre expression in the maternal germline allows for transmission of the floxed allele, allowing for the experiments to progress.

      Reviewer 3

      Comment 1: A challenge with the author's CKO model is the incomplete efficiency of ARID1A loss, due to incomplete CRE-mediated deletion. The authors effectively work around this issue, but they don't state specifically what percentage of CKO cells lack ARID1A staining. This information should be added.

      Response: Our data indicate that Stra8-Cre is ~ 70% efficient. This information has been added.

      Comment 2: They refer to cells that retain ARID1A staining in CKO testes as 'internal controls' but this reviewer finds that label inappropriate.

      Response: We have dropped ‘internal controls’ and used ‘escapers’ instead.

      Comment 3: Although some cells that retain ARID1A won't have undergone CRE-mediated excision, others may have excised but possibly have delayed kinetics of deletion or ARID1A RNA/protein turnover and loss. Such cells likely have partial ARID1A depletion to different extents and, therefore, in some cases, are no longer wild-type. In subsequent figures in which co-staining for ARID1A is done, it would be appropriate for the authors to specify if they are quantifying all cells from CKO testes, or only those that lack ARID1A staining.

      Response: We were unable to detect any diplotene spermatocytes lacking ARID1A protein. The data suggest that the haploid spermatids originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Thus, we conclude that the absence of ARID1A results in a pachynema arrest and that the escapers produce haploid spermatids. In figures displaying quantification data, we indicate whether the quantification was performed on spermatocytes lacking or containing ARID1A from cKO testes. By IF, we see that ~70% of the spermatocytes have deleted ARID1A.

      Comment 4: The authors don't see defects in a few DDR markers in ARID1A CKO cells and conclude that the role of ARID1A in silencing is 'mutually exclusive to DDR pathways' (p 12) and 'occurs independently of DDR signaling' (p30). The data suggest that ARID1A may not be required for DDR signaling, but do not rule out the possibility that ARID1A is downstream of DDR signaling (and the authors even hypothesize this on p30). The data provided do not justify the conclusion that ARID1A acts independently of DDR signaling.

      associated DDR factors such as: H2Ax; ATR; and MDC1. We observed an abnormal persistence of elongating RNA polymerase II on the mutant XY body in response to the loss of ARID1A, emphasizing its role in the transcriptional repression of the XY during pachynema. The loss of ARID1A results in a failure to silence sex-linked genes and does so in the presence of DDR signaling factors in the XY body. As the reviewer notes, we highlighted the possibility that DDR pathways might influence ARID1A recruitment to the XY, evidenced by the hyperaccumulation of ARID1A on the sex body late in diplonema. Therefore, whether ARID1A is dependent on DDR signaling remains an open question.

      Comment 5: After observing no changes in levels or localization of H3.3 chaperones, the authors conclude that 'ARID1A impacts H3.3 accumulation on the sex chromosomes without affecting its expression or incorporation during pachynema.' It's not clear to this reviewer what the authors mean by this. Aside from the issue of not having tested DAXX or HIRA activity, are they suggesting that some other process besides altered incorporation leads to H3.3 accumulation, and if so, what process would that be?

      Response: The loss of ARID1A might result in an abnormal redistribution of DAXX or HIRA on the XY, potentially contributing to the defects in H3.3 accumulation and canonical H3.1/3.2 eviction on the XY. While speculative at this point, it is also possible that the persistence of elongating RNAPII in response to the loss of ARID1A might prevent the sex chromosome-wide coating of H3.3. Addressing the mechanism underlying ARID1A-governed H3.3 accumulation on the XY body remains a topic for future investigation.

      Comment 6: The authors find an interesting connection between certain regions that gained chromatin accessibility after ARID1A loss (clusters G1 and G3) and the presence of the PRDM9 sequence motif. The G1 and G3 clusters also show DMC1 occupancy and H3K4me3 enrichment. However, an additional cluster with gained accessibility (G4) also shows DMC1 occupancy and H3K4me3 enrichment but has modest H3.3 accumulation. The paper would benefit for additional discussion about the G4 cluster (which encompasses 960 peak calls). Is there any enrichment of PRDM9 sites in G4? If H3.3 exclusion governs meiotic DSBs, how does cluster G4 fit into the model?

      Response: We agree that, compared to G1+G3, cluster G4 shows an insignificant increase in H3.3 occupancy in the absence of ARID1A (Figure 6B). The plot profile associated with the heatmap confirms this result (Figure 6B). Therefore, cluster G4 is very distinct in its chromatin composition from G1+G3 upon the loss of ARID1A and, as such, is not inconsistent with our model of H3.3 antagonism with DSB sites. Additionally, we did not observe an enrichment of PRDM9 sites in G4. Since G4 does not display similar dynamics in H3.3 occupancy to G1+G3, DMC1 association might not be perturbed at G4 in response to the loss of ARID1A. Future studies will be required to determine the genomic associations of DMC1 and H3K4me3 in response to the loss of ARID1A.

      Comment 7: The impacts of ARID1A loss on DMC1 focus formation (reduced sex chromosome association) are very interesting and also raise additional questions. Are DMC1 foci on autosomes also affected during pachynema? The corresponding lack of apparent effect on RAD51 implies that breaks are still made and resected, enabling RAD51 filament formation. A more thorough quantitative assessment of RAD51 focus formation will be interesting in the long run, enabling determination of the number of break sites and the kinetics of repair, which the authors suggest is perturbed by ARID1A loss but doesn't directly test. It isn't clear how a nucleosomal factor (H3.3) would influence loading of recombinases onto ssDNA, especially if the alteration is not at the level of resection and ssDNA formation. Additional discussion of this point is warranted. Lastly, there currently are various notions for the interplay between RAD51 and DMC1 in filament formation and break repair, and brief discussion of this area and the implications of the new findings from the ARID1A CKO would strengthen the paper further.

      Response: The impact of H3.3 on the loading of recombinases might be an indirect consequence of ARID1A-governed sex-linked transcriptional repression. In a recent study, Alexander et al. (Nat. Commun, 2023, PMID: 36990976) showed that transcriptional activity and meiotic recombination are spatially compartmentalized during meiosis. Therefore, the persistence of elongating RNA polymerase II on a sex body depleted for H3.3 in the absence of ARID1A might contribute to the defect in DMC1 association. RAD51 and DMC1 are known to bind ssDNA at PRDM9/SPO11 designated DSB hotspots. However, these recombinases occupy unique domains. DMC1 localizes nearest the DSB breakpoint, promoting strand exchange, whereas RAD51 is further away (Hinch et al., PMID32610038). We show that loss of Arid1a decreases DMC1 foci on the XY chromosomes without affecting RAD51. These findings indicate that BAF-A plays a role in the loading and/or retention of DMC1 to the XY chromosomes. This information has been added to the discussion.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors develop a method to fluorescently tag peptides loaded onto dendritic cells using a two-step method with a tetracystein motif modified peptide and labelling step done on the surface of live DC using a dye with high affinity for the added motif. The results are convincing in demonstrating in vitro and in vivo T cell activation and efficient label transfer to specific T cells in vivo. The label transfer technique will be useful to identify T cells that have recognised a DC presenting a specific peptide antigen to allow the isolation of the T cell and cloning of its TCR subunits, for example. It may also be useful as a general assay for in vitro or in vivo T-DC communication that can allow the detection of genetic or chemical modulators.

      Strengths:

      The study includes both in vitro and in vivo analysis including flow cytometry and two-photon laser scanning microscopy. The results are convincing and the level of T cell labelling with the fluorescent pMHC is surprisingly robust and suggests that the approach is potentially revealing something about fundamental mechanisms beyond the state of the art.

      Weaknesses:

      The method is demonstrated only at high pMHC density and it is not clear if it can operate at at lower peptide doses where T cells normally operate. However, this doesn't limit the utility of the method for applications where the peptide of interest is known. It's not clear to me how it could be used to de-orphan known TCR and this should be explained if they want to claim this as an application. Previous methods based on biotin-streptavidin and phycoerythrin had single pMHC sensitivity, but there were limitations to the PE-based probe so the use of organic dyes could offer advantages.

      We thank the reviewer for the valuable comments and suggestions. Indeed, we have shown and optimized this labeling technique for a commonly used peptide at rather high doses to provide a proof of principle for the possible use of tetracysteine tagged peptides for in vitro and in vivo studies. However, we completely agree that the studies that require different peptides and/or lower pMHC concentrations may require preliminary experiments if the use of biarsenical probes is attempted. We think it can help investigate the functional and biological properties of the peptides for TCRs deorphaned by techniques. Tetracysteine tagging of such peptides would provide a readily available antigen-specific reagent for the downstream assays and validation. Other possible uses for modified immunogenic peptides could be visualizing the dynamics of neoantigen vaccines or peptide delivery methods in vivo. For these additional uses, we recommend further optimization based on the needs of the prospective assay.

      Reviewer #2 (Public Review):

      Summary:

      The authors here develop a novel Ovalbumin model peptide that can be labeled with a site-specific FlAsH dye to track agonist peptides both in vitro and in vivo. The utility of this tool could allow better tracking of activated polyclonal T cells particularly in novel systems. The authors have provided solid evidence that peptides are functional, capable of activating OTII T cells, and that these peptides can undergo trogocytosis by cognate T cells only.

      Strengths:

      -An array of in vitro and in vivo studies are used to assess peptide functionality.

      -Nice use of cutting-edge intravital imaging.

      -Internal controls such as non-cogate T cells to improve the robustness of the results (such as Fig 5A-D).

      -One of the strengths is the direct labeling of the peptide and the potential utility in other systems.

      Weaknesses:

      1. What is the background signal from FlAsH? The baselines for Figure 1 flow plots are all quite different. Hard to follow. What does the background signal look like without FLASH (how much fluorescence shift is unlabeled cells to No antigen+FLASH?). How much of the FlAsH in cells is actually conjugated to the peptide? In Figure 2E, it doesn't look like it's very specific to pMHC complexes. Maybe you could double-stain with Ab for MHCII. Figure 4e suggests there is no background without MHCII but I'm not fully convinced. Potentially some MassSpec for FLASH-containing peptides.

      We thank the reviewer for pointing out a possible area of confusion. In fact, we have done extensive characterization of the background and found that it has varied with the batch of FlAsH, TCEP, cytometer and also due to the oxidation prone nature of the reagents. Because Figure 1 subfigures have been derived from different experiments, a combination of the factors above have likely contributed to the inconsistent background. To display the background more objectively, we have now added the No antigen+Flash background to the revised Fig 1.

      It is also worthwhile noting that nonspecific Flash incorporation can be toxic at increasing doses, and live cells that display high backgrounds may undergo early apoptotic changes in vitro. However, when these cells are adoptively transferred and tracked in vivo, the compromised cells with high background possibly undergo apoptosis and get cleared by macrophages in the lymph node. The lack of clearance in vitro further contributes to different backgrounds between in vitro and in vivo, which we think is also a possible cause for the inconsistent backgrounds throughout the manuscript. Altogether, comparison of absolute signal intensities from different experiments would be misleading and the relative differences within each experiment should be relied upon. We have added further discussion about this issue.

      1. On the flip side, how much of the variant peptides are getting conjugated in cells? I'd like to see some quantification (HPLC or MassSpec). If it's ~10% of peptides that get labeled, this could explain the low shifts in fluorescence and the similar T cell activation to native peptides if FlasH has any deleterious effects on TCR recognition. But if it's a high rate of labeling, then it adds confidence to this system.

      We agree that mass spectrometry or, more specifically tandem MS/MS, would be an excellent addition to support our claim about peptide labeling by FlAsH being reliable and non-disruptive. Therefore, we have recently undertaken a tandem MS/MS quantitation project with our collaborators. However, this would require significant time to determine the internal standard based calibration curves and to run both analytical and biological replicates. Hence, we have decided pursuing this as a follow up study and added further discussion on quantification of the FlAsH-peptide conjugates by tandem MS/MS.

      1. Conceptually, what is the value of labeling peptides after loading with DCs? Why not preconjugate peptides with dye, before loading, so you have a cleaner, potentially higher fluorescence signal? If there is a potential utility, I do not see it being well exploited in this paper. There are some hints in the discussion of additional use cases, but it was not clear exactly how they would work. One mention was that the dye could be added in real-time in vivo to label complexes, but I believe this was not done here. Is that feasible to show?

      We have already addressed preconjugation as a possible avenue for labeling peptides. In our hands, preconjugation resulted in low FlAsH intensity overall in both the control and tetracysteine labeled peptides (Author response image 1). While we don’t have a satisfactory answer as to why the signal was blunted due to preconjugation, it could be that the tetracysteine tagged peptides attract biarsenical compounds better intracellularly. It may be due to the redox potential of the intracellular environment that limits disulfide bond formation. (PMID: 18159092)

      Author response image 1.

      Preconjugation yields poor FlAsH signal. Splenic DCs were pulsed with peptide then treated with FlAsH or incubated with peptide-FlAsH preconjugates. Overlaid histograms show the FlAsH intensities on DCs following the two-step labeling (left) and preconjugation (right). Data are representative of two independent experiments, each performed with three biological replicates.

      1. Figure 5D-F the imaging data isn't fully convincing. For example, in 5F and 2G, the speeds for T cells with no Ag should be much higher (10-15micron/min or 0.16-0.25micron/sec). The fact that yours are much lower speeds suggests technical or biological issues, that might need to be acknowledged or use other readouts like the flow cytometry.

      We thank the reviewer for drawing attention to this technical point. We would like to point out that the imaging data in fig 5 d-f was obtained from agarose embedded live lymph node sections. Briefly, the lymph nodes were removed, suspended in 2% low melting temp agarose in DMEM and cut into 200 µm sections with a vibrating microtome. Prior to imaging, tissue sections were incubated in complete RPMI medium at 37 °C for 2 h to resume cell mobility. Thus, we think the cells resuming their typical speeds ex vivo may account for slightly reduced T cell speeds overall, for both control and antigen-specific T cells (PMID: 32427565, PMID: 25083865). We have added text to prevent the ambiguity about the technique for dynamic imaging. The speeds in Figure 2g come from live imaging of DC-T cell cocultures, in which the basal cell movement could be hampered by the cell density. Additionally, glass bottom dishes have been coated with Fibronectin to facilitate DC adhesion, which may be responsible for the lower average speeds of the T cells in vitro.

      Reviewer #1 (Recommendations For The Authors):

      Does the reaction of ReAsH with reactive sites on the surface of DC alter them functionally? Functions have been attributed to redox chemistry at the cell surface- could this alter this chemistry?

      We thank the reviewer for the insight. It is possible that the nonspecific binding of biarsenical compounds to cysteine residues, which we refer to as background throughout the manuscript, contribute to some alterations. One possible way biarsenicals affect the redox events in DCs can be via reducing glutathione levels (PMID: 32802886). Glutathione depletion is known to impair DC maturation and antigen presentation (PMID: 20733204). To avoid toxicity, we have carried out a stringent titration to optimize ReAsH and FlAsH concentrations for labeling and conducted experiments using doses that did not cause overt toxicity or altered DC function.

      Have the authors compared this to a straightforward approach where the peptide is just labelled with a similar dye and incubated with the cell to load pMHC using the MHC knockout to assess specificity? Why is this that involves exposing the DC to a high concentration of TCEP, better than just labelling the peptide? The Davis lab also arrived at a two-step method with biotinylated peptide and streptavidin-PE, but I still wonder if this was really necessary as the sensitivity will always come down to the ability to wash out the reagents that are not associated with the MHC.

      We agree with the reviewer that small undisruptive fluorochrome labeled peptide alternatives would greatly improve the workflow and signal to noise ratio. In fact, we have been actively searching for such alternatives since we have started working on the tetracysteine containing peptides. So far, we have tried commercially available FITC and TAMRA conjugated OVA323-339 for loading the DCs, however failed to elicit any discernible signal. We also have an ongoing study where we have been producing and testing various in-house modified OVA323-339 that contain fluorogenic properties. Unfortunately, at this moment, the ones that provided us with a crisp, bright signal for loading revealed that they have also incorporated to DC membrane in a nonspecific fashion and have been taken up by non-cognate T cells from double antigen-loaded DCs. We are actively pursuing this area of investigation and developing better optimized peptides with low/non-significant membrane incorporation.

      Lastly, we would like to point out that tetracysteine tags are visible by transmission electron microscopy without FlAsH treatment. Thus, this application could add a new dimension for addressing questions about the antigen/pMHCII loading compartments in future studies. We have now added more in-depth discussion about the setbacks and advantages of using tetracysteine labeled peptides in immune system studies.

      The peptide dosing at 5 µM is high compared to the likely sensitivity of the T cells. It would be helpful to titrate the system down to the EC50 for the peptide, which may be nM, and determine if the specific fluorescence signal can still be detected in the optimal conditions. This will not likely be useful in vivo, but it will be helpful to see if the labelling procedure would impact T cell responses when antigen is limited, which will be more of a test. At 5 µM it's likely the system is at a plateau and even a 10-fold reduction in potency might not impact the T cell response, but it would shift the EC50.

      We thank the reviewer for the comment and suggestion. We agree that it is possible to miss minimally disruptive effects at 5 µM and titrating the native peptide vs. modified peptide down to the nM doses would provide us a clearer view. This can certainly be addressed in future studies and also with other peptides with different affinity profiles. A reason why we have chosen a relatively high dose for this study was that lowering the peptide dose had costed us the specific FlAsH signal, thus we have proceeded with the lowest possible peptide concentration.

      In Fig 3b the level of background in the dsRed channel is very high after DC transfer. What cells is this associated with and does this appear be to debris? Also, I wonder where the ReAsH signal is in the experiments in general. I believe this is a red dye and it would likely be quite bright given the reduction of the FlAsH signal. Will this signal overlap with signals like dsRed and PHK-26 if the DC is also treated with this to reduce the FlAsH background?

      We have already shown that ReAsH signal with DsRed can be used for cell-tracking purposes as they don’t get transferred to other cells during antigen specific interactions (Author response image 2). In fact, combining their exceptionally bright fluorescence provided us a robust signal to track the adoptively transferred DCs in the recipient mice. On the other hand, the lipophilic membrane dye PKH-26 gets transferred by trogocytosis while the remaining signal contributes to the red fluorescence for tracking DCs. Therefore, the signal that we show to be transferred from DCs to T cells only come from the lipophilic dye. To address this, we have added a sentence to elaborate on this in the results section. Regarding the reviewer’s comment on DsRed background in Figure 3b., we agree that the cells outside the gate in recipient mice seems slightly higher that of the control mice. It may suggest that the macrophages clearing up debris from apoptotic/dying DCs might contribute to the background elicited from the recipient lymph node. Nevertheless, it does not contribute to any DsRed/ReAsH signal in the antigen-specific T cells.

      Author response image 2.

      ReAsH and DsRed are not picked up by T cells during immune synapse. DsRed+ DCs were labeled with ReAsH, pulsed with 5 μM OVACACA, labeled with FlAsH and adoptively transferred into CD45.1 congenic mice mice (1-2 × 106 cells) via footpad. Naïve e450-labeled OTII and e670-labeled polyclonal CD4+ T cells were mixed 1:1 (0.25-0.5 × 106/ T cell type) and injected i.v. Popliteal lymph nodes were removed at 42 h post-transfer and analyzed by flow cytometry. Overlaid histograms show the ReAsh/DsRed, MHCII and FlAsH intensities of the T cells. Data are representative of two independent experiments with n=2 mice per group.

      In Fig 5b there is a missing condition. If they look at Ea-specific T cells for DC with without the Ova peptide do they see no transfer of PKH-26 to the OTII T cells? Also, the FMI of the FlAsH signal transferred to the T cells seems very high compared to other experiments. Can the author estimate the number of peptides transferred (this should be possible) and would each T cell need to be collecting antigens from multiple DC? Could the debris from dead DC also contribute to this if picked up by other DC or even directly by the T cells? Maybe this could be tested by transferring DC that are killed (perhaps by sonication) prior to inoculation?

      To address the reviewer’s question on the PKH-26 acquisition by T cells, Ea-T cells pick up PKH-26 from Ea+OVA double pulsed DCs, but not from the unpulsed or single OVA pulsed DCs. OTII T cells acquire PKH-26 from OVA-pulsed DCs, whereas Ea T cells don’t (as expected) and serve as an internal negative control for that condition. Regarding the reviewer’s comment on the high FlAsH signal intensity of T cells in Figure 5b, a plausible explanation can be that the T cells accumulate pMHCII through serial engagements with APCs. In fact, a comparison of the T cell FlAsH intensities 18 h and 36-48 h post-transfer demonstrate an increase (Author response image 3) and thus hints at a cumulative signal. As DCs are known to be short-lived after adoptive transfer, the debris of dying DCs along with its peptide content may indeed be passed onto macrophages, neighboring DCs and eventually back to T cells again (or for the first time, depending on the T:DC ratio that may not allow all T cells to contact with the transferred DCs within the limited time frame). We agree that the number and the quality of such contacts can be gauged using fluorescent peptides. However, we think peptides chemically conjugated to fluorochromes with optimized signal to noise profiles and with less oxidation prone nature would be more suitable for quantification purposes.

      Author response image 3.

      FlAsH signal acquisition by antigen specific T cells becomes more prominent at 36-48 h post-transfer. DsRed+ splenic DCs were double-pulsed with 5 μM OVACACA and 5 μM OVA-biotin and adoptively transferred into CD45.1 recipients (2 × 106 cells) via footpad. Naïve e450-labeled OTII (1 × 106 cells) and e670-labeled polyclonal T cells (1 × 106 cells) were injected i.v. Popliteal lymph nodes were analyzed by flow cytometry at 18 h or 48 h post-transfer. Overlaid histograms show the T cell levels of OVACACA (FlAsH). Data are representative of three independent experiments with n=3 mice per time point

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in weaknesses 1 & 2, more validation of how much of the FlAsH fluorescence is on agonist peptides and how much is non-specific would improve the interpretation of the data. Another option would be to preconjugate peptides but that might be a significant effort to repeat the work.

      We agree that mass spectrometry would be the gold standard technique to measure the percentage of tetracysteine tagged peptide is conjugated to FlAsH in DCs. However, due to the scope of such endevour this can only be addressed as a separate follow up study. As for the preconjugation, we have tried and unfortunately failed to get it to work (Reviewer Figure 1). Therefore, we have shifted our focus to generating in-house peptide probes that are chemically conjugated to stable and bright fluorophore derivates. With that, we aim to circumvent the problems that the two-step FlAsH labeling poses.

      Along those lines, do you have any way to quantify how many peptides you are detecting based on fluorescence? Being able to quantify the actual number of peptides would push the significance up.

      We think two step procedure and background would pose challenges to such quantification in this study. although it would provide tremendous insight on the antigen-specific T cell- APC interactions in vivo, we think it should be performed using peptides chemically conjugated to fluorochromes with optimized signal to noise profiles.

      In Figure 3D or 4 does the SA signal correlate with Flash signal on OT2 cells? Can you correlate Flash uptake with T cell activation, downstream of TCR, to validate peptide transfers?

      To answer the reviewer’s question about FlAsH and SA correlation, we have revised the Figure 3d to show the correlation between OTII uptake of FlAsH, Streptavidin and MHCII. We also thank the reviewer for the suggestion on correlating FlAsH uptake with T cell activation and/or downstream of TCR activation. We have used proliferation and CD44 expressions as proxies of activation (Fig 2, 6). Nevertheless, we agree that the early events that correspond to the initiation of T-DC synapse and FlAsH uptake would be valuable to demonstrate the temporal relationship between peptide transfer and activation. Therefore, we have addressed this in the revised discussion.

      Author response image 4.

      FlAsH signal acquisition by antigen specific T cells is correlates with the OVA-biotin (SA) and MHCII uptake. DsRed+ splenic DCs were double-pulsed with 5 μM OVACACA and 5 μM OVA-biotin and adoptively transferred into CD45.1 recipients (2 × 106 cells) via footpad. Naïve e450-labeled OTII (1 × 106 cells) and e670-labeled polyclonal T cells (1 × 106 cells) were injected i.v. Popliteal lymph nodes were analyzed by flow cytometry. Overlaid histograms show the T cell levels of OVACACA (FlAsH) at 48 h post-transfer. Data are representative of three independent experiments with n=3 mice.

      Minor:

      Figure 3F, 5D, and videos: Can you color-code polyclonal T cells a different color than magenta (possibly white or yellow), as they have the same look as the overlay regions of OT2-DC interactions (Blue+red = magenta).

      We apologize for the inconvenience about the color selection. We have had difficulty in assigning colors that are bright and distinct. Unfortunately, yellow and white have also been easily mixed up with the FlAsH signal inside red and blue cells respectively. We have now added yellow and white arrows to better point out the polyclonal vs. antigen specific cells in 3f and 5d.

    1. Author Response

      The following is the authors’ response to the previous reviews

      The revised manuscript is much improved - many unclear points are now better explained. However, in our opinion, some issues could still be significantly improved.

      1. Statistics: none of us are experts in statistics but several things remain questionable in our opinion and if it were our study, we would consult with an expert:

      a) while we understand the authors note about N-chasing and p-hacking, we wonder how the number of N's was premeditated before obtaining the results. Why in 4M an N of 3 is sufficient while in 3E the N is >20 (and not mentioned). At the very least, we think it would be wise to be cautious when stating something as not-significant when it is clear (as in 4M) that the likelihood of it actually being statistically significant is quite large.

      b) In most analyses, the data is not only normalized by actin or some other measure but also to the first (i.e left side on the graph) condition, resulting in identical data points that equal '1' (in Figure 4 alone - C; I; K; M; and O) - while this might be scientifically sound, it should be mentioned (the specific normalization) and also note that this technique shadows any real variance that exists in the original data in this condition. consider exploring techniques to overcome this issue.

      c) In 3C, - if we understand the experiment, you want to convince us that the DIFFERENCE between eB2-FC compared to FC is larger in the control compared to the experiment. We are not absolutely sure that the statistical tools employed here are sufficient - which is why we would consult an expert.

      A) We are aware that many studies do not consistently quantify such experiments. For example, there are essentially no published examples of the signalling timelines of EphB2 receptors as in Fig. 5. By striving to quantifying such biochemical effects, an unquantified experiment stands out, and so perhaps we were too strict by trying to quantify as many experiments as possible, resulting in low n’s for some of them. We acknowledge that additional experiments on EPHB1 protein stability may reach significance. We have adjusted our text on line 332-335 to point to this interesting trend, and slightly changed the conclusion to this section. Similarly, we commented on similar trends when describing Figs. 1E and 4G on lines 901 and 952.

      B) For the Western blot band intensity normalisation, we believe that our method is scientifically sound. Normally, when the replicate samples are loaded on one gel and blotted on the same membrane, the experimenter only needs to normalise the target band intensity to its cognate loading control band intensity for quantitation. However, we usually have a large number of samples from multiple experiments, carried out on different dates. For example, in Fig. 4B,C there are 7 biological replicates collected from 7 experiments and in Fig. 4D there are 10 protein samples. It is not possible for us to run all samples on the same gel. In addition, due to the combined effects of variance in transfer efficiency, the potency of antibodies, detection efficiency and the developing time for each blot, it is practically impossible to generate similar band intensity for each batch. Thus, we use normalisation of test bands to the loading control for individual experiments, and this analysis method is widely accepted by reputable journals with a focus on biochemical experiments (for example: PMID 37695914: Fig. 3 A,B,C; PMID 36282215: Fig. 3 B,C,D,E; PMID 33843588: Fig. 3 C,D,E,F,G,H). Since the value of the first sample on the plot is 1, which is a hypothetical value and does not meet the parametric test requirement, we performed one-sample t-test for statistics when other samples are compared with the first sample (PMID 35243233 Fig. 6 A,B,C,D; https://www.graphpad.com/quickcalcs/oneSampleT1/, “A one sample t-test compares the mean with a hypothetical value. In most cases, the hypothetical value comes from theory. For example, if you express your data as 'percent of control', you can test whether the average differs significantly from 100.”). Thus, we believe that our normalisation and statistical methods are both correct with a large number of precedents.

      C) This comment refers to the cell collapse experiment shown in Fig. 3C for which the data are plotted in Fig. 3D. We stand by the statistical method used. There are two groups of cells (CTRLCRISPR and MYCBP2 CRISPR) and two treatments for each cell group (Fc control and eB2), thus we should use two-way ANOVA. Since we compared the cell retraction effects of Fc and eB2 on the two groups of cells, Sidak post hoc comparison is the right method to avoid errors introduced by multiple comparisons. Here is an example of an eLife article that used the same statistical method for similar comparisons: PMID 37830910, Fig. 1 H,I. To make the comparison easier, we grouped the experiments by cell type (CTRLCRISPR and MYCBP2 CRISPR) as opposed to by treatment. Below, the old version is on the right, and the new version is on the left. The conclusion is that eB2 induces less cell collapse in cells depleted of MYCBP2, when compared to the control cells. However, eB2 is still able to collapse cells lacking MYCBP2.

      Author response image 1.

      Revisiting these data, we noticed an error introduced when CC compiled the data used to generate Fig. 3D. The data were acquired from nine biological replicates per condition. CC used a mix of two methods for cell collapse rate calculation: the first method involved the sum of collapsed cells and all cells from multiple regions of one coverslip (biological replicate). The second method involved computing a collapse rate in each region which then was used to calculate the average collapse rate for the entire coverslip (technical replicate). Given the small cell numbers due to sparse culture conditions, we believe that the first method is a more conservative approach. We hence re-plotted all replicate data using the first method. This resulted in slightly different % collapse and p values. These were changed accordingly in the text and plot and do not affect the conclusion of this experiment.

      2) thanks for the clarification that the interaction between the extracellular domain of EPHB2 and MYCBP2 might not occur directly - however, unless we missed this it was not clearly stated in the text. It is an important point and also a cool direction for the future - to find the elusive co-receptor that actually helps EPHB2 and MYCBP2 form a complex.

      We now also refer to this in the results section on line 215.

      “Since EPHB2 is a transmembrane protein and MYCBP2 is localised in the cytosol, these experiments suggest that the interaction between the extracellular domain of EPHB2 and MYCBP2 might be indirect and mediated by other unknown transmembrane proteins.”

      3) The Hela CRISPR cell line is better explained in the response letter but still not sufficiently explained in the text for a non-expert reader. If the authors want any reader to comprehend this, we would strongly recommend adding a scheme.

      We now include a schematic outlining the CRISPR cell generation as Fig. 3A and its description on line 926.

      Author response image 2.

      4) To clarify some of our previous (and persisting) concerns about Figure 3D/E - it is true that a reduction in 25% of cell size is dramatic. But (if we understand correctly) your claim is that a reduction in 22% (this is a guess, as the actual numbers are not supplies) is significantly less than 25%. Even if it is, statistically speaking, significant, what is the physiological relevance of this very slight effect? In this experiment, the N was quite large, and we wonder if the images in D are representative - it would be nice to label the data points in E to highlight which images you used.

      We now mention the average cell area contraction measurements in the legend to Fig. 3F on line 935. We also tracked down the individual cells shown in Fig. 3E and they are now labelled as data points in blue in Fig. 3F. HeLa cell collapse is a simplified model of EPHB2 function and we do not know whether the difference between the behaviour of CTRLCRISPR and MYCBP2 CRISPR cells is physiologically significant and thus we prefer not to speculate on this.

      5) Figure 3F and other stripe assays - In the end, it is your choice how to quantify. We believe that quantifying area of overlap is a more informative and objective measurement that might actually benefit your analyses. That said, if you do keep the quantification as it is now, you have to define the threshold of what you mean by "cell/s (or an axon in 7A, where it is even more complicated as are you eluding to primary, secondary, or even smaller branches) are RESIDING within the stripe". Is 1% overlap sufficient or do you need 10 or 50% overlap?

      We now added this statement to the methods on line 745: “A cell was considered to be on an ephrin-B2 stripe when more than 50% of its nucleus was located on that stripe”. For chick explant stripe assay, when measuring the length of an axon on a stripe, we only measured the main axons originated from the explants.

      For explant/stripe experiments in Fig. 7 AB, we now use the term “GFP-expressing neurite” rather than “branch”. This was already present in the results of the previous version, but the methods and legend needed to be brought up to date (lines 786 and 1008. We think that “branch” was a confusing term that was supposed to mean the same thing as “neurite” but came across as some indication of branching. We do not know whether the GFP+ neurites were primary or secondary extensions of explants, or in fact, whether some of them contained more than one axon. We also adjusted the method to reflect the fact that some stripes were used in conjunction with a single explant and added a reference to a previous study extensively using this method (Poliak et al., 2015) on line 778.

      6) We still don't get the link to the lysosomal degradation. Your data suggests that in your cells EPHB2 is primarily degraded by the lysosomal pathway and not proteasome. Any statement about MYCBP2 is not strongly supported by the data, in our opinion - Unless you develop some statistical measurement that shows that the effect of BafA1 is statistically different in MYCBP2 cells than in control cells. Currently, this is not the case and the link is therefore not warranted in our opinion.

      We generated a new version of Fig. 4K with average increase in EPHB2 levels in the presence of BafA1 and CoQ, compared to DMSO treated controls (see below). BafA1 and CoQ restored EPHB2 protein levels by 19% and 14% respectively in CtrlCRISPR cells, while the inhibitors restored EPHB2 protein levels by 40% and 35% respectively in MYCBP2 CRISPR cells.

      Author response image 3.

      For each of the 4 replicates, the increase in EPHB2 levels by BafA1 compared to DMSO is as follows:

      Author response table 1.

      These values are not significantly different between CtrlCRISPR cells versus MYCBP2 CRISPR cells (p= 0.08, student’s t test). Similarly for the CoQ experiment. We now temper our conclusion for this experiment: Although the difference in percentage increase between CTRLCRISPR cells and MYCBP2CRISPR cells is not significant, this trend raises the possibility that the loss of MYCBP2 promotes EPHB2 receptor degradation through the lysosomal pathway (line 319). We also adjusted the section title (line 306).

      7) While the C. elegans part is now MUCH better explained - we are not sure we understand the additional insight. The fact that vab-1 and glo4 double mutants are additive as are vab1 and fsn1, suggest they act in parallel (if the mutants are NULL, and not if they are hypomorphs, if one wants to be accurate) - how this relates to your story is unclear. The vab1/rpm1 double mutant is still uninformative and incomplete. rpm1 phenotype is so severe that nothing would make it more severe. We read the Jin paper that the authors directed to - nothing makes the rpm1 phenotype more severe. Yes, some DOWNSTREAM elements make the rpm1 phenotype LESS severe - this is not something you were testing, to the best of our knowledge. Rather, you wanted to see if rpm1 mutant resulted in stabilization of vab1 and thus suppression of vab1 phenotype - we are just not sure the system is amenable to test (actually reject) your hypothesis that Vab1 is degraded by rpm1. Also, assuming we are talking about NULLs, the fact that the rpm1 phenotype is WAY stronger than the vab1 mutant, suggests that rpm1 functions via multiple routes, adding even more complexity to the system. Given these results, despite the much improved clarity, we are still not sure that the worm data adds new insight, rather than potentially confusing the reader.

      We realise that the genetic interactions between vab-1 and the RPM-1/MYCBP2 signalling network are complicated. However, we insist on keeping the data for the sake of its availability for future studies and completeness. We also think it is important for readers and the community to see these data, even if the authors and reviewers are not entirely in agreement about the importance/interpretation of experimental outcomes. It is our hope that the community will examine the results and draw their own conclusions.

      A few points of clarification:

      The C. elegans experiments were designed to test genetically if the vertebrate interactions between EPHB2 and MYCBP2 and its signalling network are conserved. We studied two kinds of interactions: (1) between vab-1 and RPM-1/MYCBP2 downstream proteins (GLO-4 and FSN-1) and (2) between vab-1 and rpm-1. For these studies, we used null alleles for vab-1, glo-4 and fsn-1 which is now noted on lines 440, 453, 475 and 859. Our findings are consistent with the VAB-1 Ephrin receptor functioning in parallel to known RPM-1 binding proteins. This is further supported by new data: vab-1; fsn-1 double mutants showed enhanced incidence of axon overextension defects using a second transgenic background, zdIs5 (Pmec-4::GFP), to visualize axon termination (Fig. 8F).

      This second transgenic background also allowed us to generate new data to address your concerns about phenotypic saturation in rpm-1 mutants. To do this, we used the zdIs5 (Pmec4::GFP) genetic background, in which axon termination defects are not saturated in rpm-1 mutants (Fig. 8F) because they can be enhanced by other mutants such as cdc-42 and unc-33 (Fig. 7C, D, in Borgen et al. Development 144, 4658–4672 (2017), PMID 29084805). In this new background, we found that vab-1 loss of function fails to enhance the incidence of severe “hook” defects in rpm-1 mutants which is an indication that the two genes function in the same pathway. Importantly, prior studies in this background, also showed that mutants in the RPM-1 signalling network (e.g. fsn-1, glo-4 and ppm-2) do not enhance the incidence of severe “hook” defects as double mutants with rpm-1 compared to rpm-1 single mutants (Fig. 7B, ibid.).

      To reflect these ideas more clearly, we revised the Results section pertaining to C. elegans genetics (starting on line 418) and tempered our discussion (lines 517). Basically, this section now says that we studied genetic interactions between vab-1 and the RPM-1/MYCBP2 signalling network. From these experiments we conclude that: (1) The enhancement of overextension defects in vab-1; glo-4 and vab-1; fsn-1 double mutants compared to single mutants indicates that VAB-1/EPHR functions in parallel to known RPM-1 binding proteins to facilitate axon termination, and (2) Since the vab-1; rpm-1 double mutants do not display an increased frequency or severity of overextension defects compared to rpm-1 single mutants, VAB-1 /EPHR functions in the same genetic pathway as RPM-1/MYCBP2.

      The new genetic data included in this version were generated by Karla J. Opperman who is now included as a co-author.

      Further corrections:

      Author response image 4.

      Because of the errors associated with quantifications in Fig. 3D (see above), we reviewed other quantification methodologies and noticed another discrepancy that required a correction. In the hippocampal neuron growth cone collapse assay shown in the previous version of Fig. 7 D (left), the growth cones were classified into three groups: 1, fully collapsed; 2, hard to tell, but not fully collapsed; 3, fan-shape cones. Two different quantifications were performed as follows: (1), number of fully collapsed cones divided by the numbers of all growth cones; (2), number of fully collapsed cones divided by [number of fully collapsed cones + fan-shape cones]. CC erroneously used the second method to generate Fig. 7D.

      We think that the first method is more appropriate. Furthermore, since n=5 for the Fc and eB1-Fc conditions, but n=3 for the eB2-Fc condition, we decided to omit it. The final plot for figure 7D is the following:

      Author response image 5.

      Our conclusion still stands that exogenous FBD1 WT overexpression impaired the growth cone collapse mediated by EphB.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #2 (Public Review):

      Summary:

      This paper tests the idea that schooling can provide an energetic advantage over solitary swimming. The present study measures oxygen consumption over a wide range of speeds, to determine the differences in aerobic and anaerobic cost of swimming, providing a potentially valuable addition to the literature related to the advantages of group living.

      Response: Thank you for the positive comments.

      Strengths:

      The strength of this paper is related to providing direct measurements of the energetics (oxygen consumption) of fish while swimming in a group vs solitary. The energetic advantages of schooling has been claimed to be one of the major advantages of schooling and therefore a direct energetic assessment is a useful result.

      Response: Thank you for the positive comments.

      Weaknesses:

      1) Regarding the fish to water volume ratio, the arguments raised by the authors are valid. However, the ratio used is still quite high (as high as >2000 in solitary fish), much higher than that recommended by Svendsen et al (2006). Hence this point needs to be discussed in the ms (summarising the points raised in the authors' response)

      Response: Thank you for the comments. We have addressed this point in the previous comments. In short, our ratio is within the range of the published literature. We conducted the additional signal-to-noise analysis for quality assurance.

      2) Wall effects: Fish in a school may have been swimming closer to the wall. The fact that the convex hull volume of the fish school did not change as speed increased is not a demonstration that fish were not closer to the wall, nor is it a demonstration that wall effect were not present. Therefore the issue of potential wall effects is a weakness of this paper.

      Response: Thank you for the comments. We have addressed this point in the previous comments. We provided many other considerations in addition to the convex hull volume. In particular, our boundary layer is < 2.5mm, which was narrower than the width of the giant danio of ~10 mm.

      3) The authors stated "Because we took high-speed videos simultaneously with the respirometry measurements, we can state unequivocally that individual fish within the school did not swim closer to the walls than solitary fish over the testing period". This is however not quantified.

      Response: Thank you for the comments. We have addressed this point in the previous comments. We want to note that the statement in the response letter is to elaborate the discussion points, but not stated as data in the manuscript. The bottom line is very few studies used PIV to quantify the thickness of the boundary layer like what we did in our experiment.

      4) Statistical analysis. The authors have dealt satisfactorily with most of the comments.

      However :

      (a) the following comment has not been dealt with directly in the ms "One can see from the graphs that schooling MO2 tends to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish."

      (b) Different sizes were used for solitary and schooling fishes. The authors justify using larger fish as solitary to provide a better ratio of respirometer volume to fish volume in the tests on individual fish. However, mass scaling for tail beat frequency was not provided. Although (1) this is because of lack of data for this species and (2) using scaling exponent of distant species would introduce errors of unknown magnitude, this is still a weakness of the paper that needs to be acknowledged here and in the ms.

      Response: Thank you for the comments. We have addressed both points in the previous comments and provided comprehensive discussions. We also stated the caveats in the method section of the manuscript.

      Reviewer #3 (Public Review):

      Zhang and Lauder characterized both aerobic and anaerobic metabolic energy contributions in schools and solitary fishes in the Giant danio (Devario aequipinnatus) over a wide range of water velocities. By using a highly sophisticated respirometer system, the authors measure the aerobic metabolisms by oxygen uptake rate and the non-aerobic oxygen cost as excess post-exercise oxygen consumption (EPOC). With these data, the authors model the bioenergetic cost of schools and solitary fishes. The authors found that fish schools have a J-shaped metabolism-speed curve, with reduced total energy expenditure per tail beat compared to solitary fish. Fish in schools also recovered from exercise faster than solitary fish. Finally, the authors conclude that these energetic savings may underlie the prevalence of coordinated group locomotion in fish.

      The conclusions of this paper are mostly well supported by data.

      Response: Thank you for the positive comments.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      I have read carefully the revised version of the manuscript and would like to thank the authors for addressing all my comments/suggestions.

      I have no additional comments/suggestions. Now, I strongly believe that this manuscript deserves to be published in eLife.

      Response: Thank you for the positive comments.


      The following is the authors’ response to the original reviews.

      General responses

      Many thanks to the reviewers and editors for their very helpful comments on our manuscript. Below we respond (in blue text) to each of the reviewer comments, both the public ones and the more detailed individual comments in the second part of each review. In some cases, we consider these together where the same point is made in both sets of comments. We have made several changes to the manuscript in response to reviewer suggestions, and we respond in detail to the comments of reviewer #2 who feels that we have overstated the significance of our manuscript and suggests several relevant literature references. We prepared a table summarizing these references and why they differ substantially from the approach taken in our paper here.

      Overall, we would like to emphasize to both reviewers and readers of this response document that previous studies of fish schooling dynamics (or collective movement of vertebrates in general, see Commentary Zhang & Lauder 2023 J. Exp. Biol., doi:10.1242/jeb.245617) have not considered a wide speed range and thus the importance of measuring EPOC (excess post-exercise oxygen consumption) as a key component of energy use. Quantifying both aerobic and non-aerobic energy use allows us to calculate the total energy expenditure (TEE) which we show differs substantially and, importantly, non-linearly with speed between schools and measurements on solitary individuals. Comparison between school total energy use and individual total energy use are critical to understanding the dynamics of schooling behaviour in fishes.

      The scope of this study is the energetics of fish schools. By quantifying the TEE over a wide range of swimming speeds, we also show that the energetic performance curve is concave upward, and not linear, and how schooling behaviour modifies this non-linear relationship.

      In addition, one key implication of our results is that kinematic measurements of fish in schools (such as tail beat frequency) are not a reliable metric by which to estimate energy use. Since we recorded high-speed video simultaneously with energetic measurements, we are able to show that substantial energy savings occur by fish in schools with little to no change in tail beat frequency, and we discuss in the manuscript the various fluid dynamic mechanisms that allow this. Indeed, studies of bird flight show that when flying in a (presumed) energy-saving V-formation, wing beat frequency can actually increase compared to flying alone. We believe that this is a particularly important part of our findings: understanding energy use by fish schools must involve actual measurements of energy use and not indirect and sometimes unreliable kinematic measurements such as tail beat frequency or amplitude.

      Reviewer #1 (Public Review):

      Summary:

      In the presented manuscript the authors aim at quantifying the costs of locomotion in schooling versus solitary fish across a considerable range of speeds. Specifically, they quantify the possible reduction in the cost of locomotion in fish due to schooling behavior. The main novelty appears to be the direct measurement of absolute swimming costs and total energy expenditure, including the anaerobic costs at higher swimming speeds.

      In addition to metabolic parameters, the authors also recorded some basic kinematic parameters such as average distances or school elongation. They find both for solitary and schooling fish, similar optimal swimming speeds of around 1BL/s, and a significant reduction in costs of locomotion due to schooling at high speeds, in particular at ~5-8 BL/s.

      Given the lack of experimental data and the direct measurements across a wide range of speeds comparing solitary and schooling fish, this appears indeed like a potentially important contribution of interest to a broader audience beyond the specific field of fish physiology, in particular for researchers working broadly on collective (fish) behavior.

      Response: Thank you for seeing the potential implications of this study. We also believe that this paper has broader implications for collective behaviour in general, and outline some of our thinking on this topic in a recent Commentary article in the Journal of Experimental Biology: (Zhang & Lauder 2023 doi:10.1242/jeb.245617). Understanding the energetics of collective behaviours in the water, land, and air is a topic that has not received much attention despite the widespread view that moving as a collective saves energy.

      Strengths:

      The manuscript is for the most part well written, and the figures are of good quality. The experimental method and protocols are very thorough and of high quality. The results are quite compelling and interesting. What is particularly interesting, in light of previous literature on the topic, is that the authors conclude that based on their results, specific fixed relative positions or kinematic features (tail beat phase locking) do not seem to be required for energetic savings. They also provide a review of potential different mechanisms that could play a role in the energetic savings.

      Response: Thank you for seeing the nuances we bring to the existing literature and comment on the quality of the experimental method and protocols. Despite a relatively large literature on fish schooling based on previous biomechanical research, our studies suggest that direct measurement of energetic cost clearly demonstrates the energy savings that result from the sum of different fluid dynamic mechanisms depending on where fish are, and also emphasizes that simple metrics like fish tail beat frequency do not adequately reflect energy savings during collective motion.

      Weaknesses:

      A weakness is the actual lack of critical discussion of the different mechanisms as well as the discussion on the conjecture that relative positions and kinematic features do not matter. I found the overall discussion on this rather unsatisfactory, lacking some critical reflections as well as different relevant statements or explanations being scattered across the discussion section. Here I would suggest a revision of the discussion section.

      Response: The critical discussion of the different possible energy-saving mechanisms is indeed an important topic. We provided a discussion about the overall mechanism of ‘local interactions’ in the first paragraph of “Schooling Dynamics and energy conservation”. To clarify, our aim with Figure 1 is to introduce the current mechanisms proposed in the existing engineering/hydrodynamic literature that have studied a number of possible configurations both experimentally and computationally. Thank you for the suggestion of better organizing the discussion to critically highlight different mechanisms that would enable a dynamic schooling structure to still save energy and why the appendage movement frequency does not necessarily couple with the metabolic energy expenditure. Much of this literature uses computational fluid dynamic models or experiments on flapping foils as representative of fish. This exact issue is of great interest to us, and we are currently engaged in a number of other experiments that we hope will shed light on how fish moving in specific formations do or don’t save energy.

      Our aim in presenting Figure 1 at the start of the paper was to show that there are several ways that fish could save energy when moving in a group as shown by engineering analyses, but before investigating these various mechanisms in detail we first have to show that fish moving in groups actually do save energy with direct metabolic measurements. Hence, our paper treats the various mechanisms as inspiration to determine experimentally if, in fact, fish in schools save energy, and if so how much over a wide speed range. Our focus is to experimentally determine the performance curve that shows energy use as speed increases, for schools compared to individuals. Therefore, we have elected not to go into detail about these different hydrodynamic mechanisms in this paper, but rather to present them as a summary of current engineering literature views and then proceed to document energy savings (as stated in the second last paragraph of Introduction). We have an Commentary paper in the Journal of Experimental Biology that addresses this issue generally, and we are reluctant to duplicate much of that discussion here (Zhang & Lauder 2023 doi:10.1242/jeb.245617). We are working hard on this general issue as we agree that it is very interesting. We have revised the Introduction (second last paragraph of Introduction) and Discussion (first paragraph of Discussion) to better indicate our approach, but we have not added any significant discussion of the different hydrodynamic energy saving proposals as we believe that it outside the scope of this first paper and more suitable as part of follow-up studies.

      Also, there is a statement that Danio regularly move within the school and do not maintain inter-individual positions. However, there is no quantitative data shown supporting this statement, quantifying the time scales of neighbor switches. This should be addressed as core conclusions appear to rest on this statement and the authors have 3d tracks of the fish.

      Response: Thank you for pointing out this very important future research direction. Based on our observations and the hypothesized mechanisms for fish within the school to save energy (Fig. 1), we have been conducting follow-up experiments to decipher the multiple dynamic mechanisms that enable the fish within the school to save energy. Tracking the 3D position of each individual fish body in 3D within the fish school has proven difficult. We currently have 3D data on the nose position obtained simultaneously with the energetic measurements, but we do not have full 3D fish body positional data. Working with our collaborators, we are developing a 3-D tracking algorithm that will allow us to quantify how long fish spend in specific formations, and we currently have a new capability to record high-speed video of fish schooling moving in a flow tank for many hours (see our recent perspective by Ko et al., 2023 doi.org/10.1098/rsif.2023.0357). The new algorithms and the results will be published as separate studies and we think that these ongoing experiments are outside the scope of the current study with its focus on energetics. Nevertheless, the main point of Fig. 1 is to provide possible mechanisms to inspire future studies to dissect the detailed hydrodynamic mechanisms for energy saving, and the points raised by this comment are indeed extremely interesting to us and our ongoing experiments in this area. We provide a statement to clarify this point in the 1st paragraph of “Schooling dynamics and energy conservation” section.

      Further, there is a fundamental question on the comparison of schooling in a flow (like a stream or here flow channel) versus schooling in still water. While it is clear that from a pure physics point of view that the situation for individual fish is equivalent. As it is about maintaining a certain relative velocity to the fluid, I do think that it makes a huge qualitative difference from a biological point of view in the context of collective swimming. In a flow, individual fish have to align with the external flow to ensure that they remain stationary and do not fall back, which then leads to highly polarized schools. However, this high polarization is induced also for completely non-interacting fish. At high speeds, also the capability of individuals to control their relative position in the school is likely very restricted, simply by being forced to put most of their afford into maintaining a stationary position in the flow. This appears to me fundamentally different from schooling in still water, where the alignment (high polarization) has to come purely from social interactions. Here, relative positioning with respect to others is much more controlled by the movement decisions of individuals. Thus, I see clearly how this work is relevant for natural behavior in flows and that it provides some insights on the fundamental physiology, but I at least have some doubts about how far it extends actually to “voluntary” highly ordered schooling under still water conditions. Here, I would wish at least some more critical reflection and or explanation.

      Response: We agree completely with this comment that animal group orientations in still fluid can have different causes from their locomotion in a moving fluid. We very much agree with the reviewer that social interactions in still water, which typically involve low-speed locomotion and other behaviours such as searching for food by the group, can be important and could dictate fish movement patterns. In undertaking this project, we wanted to challenge fish to move at speed, and reasoned that if energy savings are important in schooling behaviour due to hydrodynamic mechanisms, we should see this when fish are moving forward against drag forces induced by fluid impacting the school. Drag forces scale as velocity squared, so we should see energy savings by the school, if any, as speed increases.

      We also quantified fish school swimming speeds in the field from the literature and presented a figure showing that in nature fish schools can and do move at considerable speeds. This figure is part of our overview on collective behaviour recently in J. Exp. Biol. (Zhang & Lauder 2023 doi:10.1242/jeb.245617). It is only by studying fish schools moving over a speed range that we can understand the performance curve relating energy use to swimming speed. Indeed, we wonder if fish moving in still water as a collective versus as solitary individuals would show energy savings at all. We now provided the justification for studying fish schooling in moving fluids in the second and third paragraph of the Introduction. When animals are challenged hydrodynamically (e.g. at higher speed), it introduces the need to save energy. Movement in still water lacks the need for fish to save energy. When fish do not need to save locomotor energy in still water, it is hard to justify why we would expect to observe energy saving and related physiological mechanisms in the first place. As the reviewer said, the ‘high polarization in still water has to come purely from social interactions’. Our study does not dispute this consideration, and indeed we agree with it! In our supplementary materials, we acknowledged the definitions for different scenarios of fish schooling can have different behavioural and ecological drivers. Using these definitions, we explicitly stated, in the introduction, that our study focuses on active and directional schooling behaviour to understand the possible hydrodynamic benefits of energy expenditure for collective movements of fish schools. By stating the scope of our study at the outset, we hope that this will keep the discussion focused on the energetics and kinematics of fish schools, without unnecessarily addressing other many possible reasons for fish schooling behaviours in the discussion such as anti-predator grouping, food searching, or reproduction as three examples.

      As this being said, we acknowledge (in the 2nd paragraph of the introduction) that fish schooling behaviour can have other drivers when the flow is not challenging. Also, there are robotic-&-animal interaction studies and computational fluid dynamic simulation studies (that we cited) that show individuals in fish schools interact hydrodynamically. Hydrodynamic interactions are not the same as behaviour interactions, but it does not mean individuals within the fish schooling in moving flow are not interacting and coordinating.

      Related to this, the reported increase in the elongation of the school at a higher speed could have also different explanations. The authors speculate briefly it could be related to the optimal structure of the school, but it could be simply inter-individual performance differences, with slower individuals simply falling back with respect to faster ones. Did the authors test for certain fish being predominantly at the front or back? Did they test for individual swimming performance before testing them in groups together? Again this should be at least critically reflected somewhere.

      Response: Thank you for raising this point. If the more streamlined schooling structure above 2 BL/s is due to the weaker individuals not catching up with the rest of the school, we would expect the weaker individuals to quit swimming tests well before 8 BL/s. However, we did not observe this phenomenon. Although we did not specifically test for the two questions the reviewer raises here, our results suggest that inter-individual variation in the swimming performance of giant Danio is not at the range of 2 to 8 BL/s (a 400% difference). While inter-individual differences certainly exist, we believe that they are small relative to the speeds tested as we did not see any particular individuals consistently unable to keep up with the school or certain individuals maintaining a position near the back of the school. As this being said, we provide additional interpretations for the elongated schooling structure at the end of the 2nd paragraph of the “schooling dynamics and energy conservation” section.

      Reviewer #1 (Recommendations For The Authors):

      Line 58: The authors write "How the fluid dynamics (...) enable energetic savings (...)". However, the paper focuses rather on the question of whether energetic savings exist and does not enlighten us on the dominant mechanisms. Although it gives a brief overview of all possible mechanisms, it remains speculative on the actual fluid dynamical and biomechanical processes. Thus, I suggest changing "How" to "Whether".

      Response: Great point! We changed “How” to “Whether”.

      Lines 129-140: In the discussion of the U-shaped aerobic rate, there is no direct comparison of the minimum cost values between the schooling and solitary conditions. Only the minimum costs during schooling are named/discussed. In addition to the data in the figure, I suggest explicitly comparing them as well for full transparency.

      Response: Thanks for raising this point. We did not belabor this point because there was no statistical significance. As requested, we added a statement to address this with statistics in the 1st paragraph of the Results section.

      Line 149: The authors note that the schooling fish have a higher turning frequency than solitary fish. Here, a brief discussion of potential explanations would be good, e.g. need for coordination with neighbors -> cost of schooling.

      Response: Thank you for the suggestion. In the original version of the manuscript, we discussed that the higher turning frequency could be related to higher postural costs for active stability adjustment at low speeds. As requested, we now added that high turn frequency can relate to the need for coordination with neighbours in the last paragraph of the “Aerobic metabolic rate–speed curve of fish schools” section. As indicated above, the suspected costs of coordination did not result in higher costs of schooling at the lower speed (< 2 BL s-1, where the turn frequency is higher).

      Line 151: The authors discuss the higher maximum metabolic rate of schooling fish as a higher aerobic performance and lower use of aerobic capacity. This may be confusing for non-experts in animal physiology and energetics of locomotion. I recommend providing somewhere in a paper an additional explanation to clarify it to non-experts. While lines 234-240 and further below potentially address this, I found this not very focused or accessible to non-experts. Here, I suggest the authors consider revisions to make it more comprehensible to a wider, interdisciplinary audience.

      Response: We agree with the reviewer that the difference between maximum oxygen uptake and maximum metabolic rate can be confusing. In fact, among animal physiologists, these two concepts are often muddled. One of the authors is working on an invited commentary from J. Exp. Biol. to clearly define these two concepts. We have made the language in the section “Schooling dynamics enhances aerobic performance and reduces non-aerobic energy use” more accessible to a general audience. In addition, the original version presented the relevant framework in the first and the second paragraphs of the Introduction when discussing aerobic and non-aerobic energy contribution. In brief, when vertebrates exhibit maximum oxygen uptake, they use aerobic and non-aerobic energy contributions that both contribute to their metabolic rate. Therefore, the maximum total metabolic rate is higher than the one estimated from only maximum oxygen uptake. We used the method presented in Fig. 3a to estimate the maximum metabolic rate for metabolic energy use (combining aerobic and non-aerobic energy use). In kinesiology, maximum oxygen uptake is used to evaluate the aerobic performance and energy use of human athletes is estimated by power meters or doubly labelled water.

      Line 211: The authors write that Danio regularly move within the school and do not maintain inter-individual positions. Given that this is an important observation, and the relative position and its changes are crucial to understanding the possible mechanisms for energetic savings in schools, I would expect some more quantitative support for this statement, in particular as the authors have access to 3d tracking data. For example introducing some simple metrics like average time intervals between swaps of nearest neighbors, possibly also resolved in directions (front+back versus right+left), should provide at least some rough quantification of the involved timescales, whether it is seconds, tens of seconds, or minutes.

      Response: As responded in the comment above, 3-D tracking of both body position and body deformation of multiple individuals in a school is not a trivial research challenge and we have ongoing research on this issue. We hope to have results on the 3D positions of fish in schools soon! For this manuscript, we believe that the data in Figure 4E which shows the turning frequency of fish in schools and solitary controls shows the general phenomenon of fish moving around (as fish turn to change positions within the school), but we agree that more could be done to address this point and we are indeed working on it now.

      Lines 212-217: There is a very strong statement that energetic savings by collective motion do not require fixed positional arrangements or specific kinematic features. While possibly one of the most interesting findings of the paper, I found that in its current state, it was not sufficiently/satisfactorily discussed. For example for the different mechanisms summarized, there will be clearly differences in their relevance based on relative distance and position. For example mechanisms 3 and 4 likely have significant contributions only at short distances. Here, the question is how relevant can they be if the average distance is 1 BL? Also, 1BL side by side is very much different from 1BL front to back, given the elongated body shape. For mechanisms 1 and 2, it appears relative positioning is quite important. Here, having maybe at least some information from the literature (if available) on the range of wall or push effects or the required precision in relative positioning for having a significant benefit would be very much desired. Also, do the authors suggest that a) these different effects overlap giving any position in the school a benefit, or b) that there are specific positions giving benefits due to different mechanisms and that fish "on purpose" switch only between these energetic "sweet" spots, I guess this what is towards the end referred to as Lighthill conjecture? Given the small group size I find a) rather unlikely, while b) actually also leads to a coordination problem if every fish is looking for a sweet spot. Overall, a related question is whether the authors observed a systematic change in leading individuals, which likely have no, or very small, hydrodynamic benefits.

      Response: Thank you for the excellent discussion on this point. As we responded above, we have softened the tone of the statement. In the original version, we were clear that the known mechanisms as summarized in Fig. 1 lead us to ‘expect’ that fish do not need to be in a fixed position to save energy.

      In general, current engineering/hydrodynamic studies suggest that any fish positioned within one body length (both upstream and downstream and side by side) will benefit from one or more of the hydrodynamic mechanisms that we expect will reduce energy costs, relative to a solitary individual. Our own studies using robotic systems suggest that a leading fish will experience an added mass “push” from a follower when the follower is located within roughly ½ body length behind the leader. We cited a Computational Fluid Dynamic (CFD) study about the relative distance among individuals for energy saving to be in effect. Please keep in mind that CFD simulation is a simplified model of the actual locomotion of fish and involves many assumptions and currently only resolves the time scale of seconds (see commentary of Zhang & Lauder 2023 doi:10.1242/jeb.245617 in J. Exp. Biol. for the current challenges of CFD simulation). To really understand the dynamic positions of fish within the school, we will need 3-D tracking of fish schools with tools that are currently being developed. Ideally, we would also have simultaneous energetic measurements, but of course, this is enormously challenging and it is not clear at this time how to accomplish this.

      We certainly agree that the relative positions of fish (vertically staggered or in-line swimming) do affect the specific hydrodynamic mechanisms being used. We cited the study that discussed this, but the relative positions of fish remain an active area of research. More studies will be out next few years to provide more insight into the effects of the relative positions of fish in energy saving. The Lighthill conjecture is observed in flapping foils and whether fish schools use the Lighthill conjecture for energy saving is an active area of research but still unclear. We also provided a citation about the implication of the Lighthill conjecture on fish schools. Hence, our original version stated ‘The exact energetic mechanisms….would benefit from more in-depth studies’. We agree with the reviewer that not all fish can benefit Lighthill conjecture (if fish schools use it) at any given time point, hence the fish might need to rotate in using the Lighthill conjecture. This is one more explanation for the dynamic positioning of fish in a school.

      Overall, in response to the question raised, we do not believe that fish are actively searching for “sweet spots” within the school, although this is only speculation on our part. We believe instead that fish, located in a diversity of positions within the school, get the hydrodynamic advantage of being in the group at that configuration.

      We believe that fish, once they group and maintain a grouping where individuals are all within around one body length distance from each other, will necessarily get hydrodynamic benefits. As a collective group, we believe that at any one time, several different hydrodynamic mechanisms are all acting simultaneously and result in reduced energetic costs (Fig. 1).

      Figure 4E: The y-axis is given in the units of 10-sec^-1 which is confusing is it 10 1/s or 1/(10s)? Why not use simply the unit of 1/s which is unambiguous?

      Response: Thank you for the suggestions. We counted the turning frequency over the course of 10 seconds. To reflect more accurately on what we did, we used the suggested unit of 1/(10s) to more correctly correspond to how we made the measurements and the duration of the measurement. We recognize that this is a bit non-standard but would like to keep these units if possible.

      Figure 4F: The unit in the school length is given in [mm], which suggests that the maximal measured school length is 4mm, this can't be true.

      Response: Thank you for pointing this out. The unit should be [cm], which we corrected.

      Reviewer #2 (Public Review):

      Summary:

      This paper tests the idea that schooling can provide an energetic advantage over solitary swimming. The present study measures oxygen consumption over a wide range of speeds, to determine the differences in aerobic and anaerobic cost of swimming, providing a potentially valuable addition to the literature related to the advantages of group living.

      Response: Thank you for acknowledging our contribution is a valuable addition to the literature on collective movement by animals.

      Strengths:

      The strength of this paper is related to providing direct measurements of the energetics (oxygen consumption) of fish while swimming in a group vs solitary. The energetic advantages of schooling have been claimed to be one of the major advantages of schooling and therefore a direct energetic assessment is a useful result.

      Response: Thank you for acknowledging our results are useful and provide direct measurements of energetics to prove a major advantage of schooling relative to solitary motion over a range of speeds.

      Weaknesses:

      The manuscript suffers from a number of weaknesses which are summarised below:

      1) The possibility that fish in a school show lower oxygen consumption may also be due to a calming effect. While the authors show that there is no difference at low speed, one cannot rule out that calming effects play a more important role at higher speed, i.e. in a more stressful situation.

      Response: Thank you for raising this creative point on “calming”. When vertebrates are moving at high speeds, their stress hormones (adrenaline, catecholamines & cortisol) increase. This phenomenon has been widely studied, and therefore, we do not believe that animals are ‘calm’ when moving at high speed and that somehow a “calming effect” explains our non-linear concave-upward energetic curves. “Calming” would have to have a rather strange non-linear effect over speed to explain our data, and act in contrast to known physiological responses involved in intense exercise (whether in fish or humans). It is certainly not true for humans that running at high speeds in a group causes a “calming effect” that explains changes in metabolic energy expenditure. We have added an explanation in the third paragraph in the section “Schooling dynamics enhances aerobic performance and reduces non-aerobic energy use”. Moreover, when animal locomotion has a high frequency of appendage movement (for both solitary individual and group movement), they are also not ‘calm’ from a behavioural point of view. Therefore, we respectfully disagree with the reviewer that the ‘calming effect’ is a major contributor to the energy saving of group movement at high speed. It is difficult to believe that giant danio swimming at 8 BL/s which is near or at their maximal sustainable locomotor limits are somehow “calm”. In addition, we demonstrated by direct energetic measurement that solitary individuals do not have a higher metabolic rate at the lower speed and thus directly show that there is very likely no cost of “uncalm” stress that would elevate the metabolic rate of solitary individuals. Furthermore, the current version of this manuscript compared the condition factor of the fish in the school and solitary individuals and found no difference (see Experimental Animal Section in the Methods). This also suggests that the measurement on the solitary fish is likely not confounded by any stress effects.

      Finally, and as discussed further below, since we have simultaneous high-speed videos of fish swimming as we measure oxygen consumption at all speeds, we are able to directly measure fish behaviour. Since we observed no alteration in tail beat kinematics between schools and individuals (a key result that we elaborate on below), it’s very hard to justify that a “calming” effect explains our results. Fish in schools swimming at speed (not in still water) appear to be just as “calm” as solitary individuals.

      2) The ratio of fish volume to water volume in the respirometer is much higher than that recommended by the methodological paper by Svendsen et al. (J Fish Biol 2016) Response: The ratio of respirometer volume to fish volume is an important issue that we thought about in detail before conducting these experiments. While Svendsen et al., (J. Fish Biol. 2016) recommend a respirometer volume-to-fish volume ratio of 500, we are not aware of any experimental study comparing volumes with oxygen measuring accuracy that gives this number as optimal. In addition, the Svendsen et al. paper does not consider that their recommendation might result in fish swimming near the walls of the flume (as a result of having relatively larger fish volume to flume volume) and hence able to alter their energetic expenditure by being near the wall. In our case, we needed to be able to study both a school (with higher animal volumes) and an individual (relatively lower volume) in the same exact experimental apparatus. Thus, we had to develop a system to accurately record oxygen consumption under both conditions.

      The ratio of our respirometer to individual volume for schools is 693, while the value for individual fish is 2200. Previous studies (Parker 1973, Abrahams & Colgan, 1985, Burgerhout et al., 2013) that used a swimming-tunnel respirometer (i.e., a sealed treadmill) to measure the energy cost of group locomotion used values that range between 1116 and 8894 which are large and could produce low-resolution measurements of oxygen consumption. Thus, we believe that we have an excellent ratio for our experiments on both schools and solitary individuals, while maintaining a large enough value that fish don’t experience wall effects (see more discussion on this below, as we experimentally quantified the flow pattern within our respirometer).

      The goal of the recommendation by Svendsen et al. is to achieve a satisfactory R2 (coefficient of determination) value for oxygen consumption data. However, Chabot et al., 2020 (DOI: 10.1111/jfb.14650) pointed out that only relying on R2 values is not always successful at excluding non-linear slopes. Much worse, only pursuing high R2 values has a risk of removing linear slopes with low R2 only because of a low signal-to-noise ratio and resulting in an overestimation of the low metabolic rate. Although we acknowledge the excellent efforts and recommendations provided by Svendsen et al., 2016, we perhaps should not treat the ratio of respirometer to organism volume of 500 as the gold standard for swim-tunnel respirometry. Svendsen et al., 2020 did not indicate how they reached the recommendation of using the ratio of respirometer to organism volume of 500. Moreover, Svendsen et al., 2020 stated that using an extended measuring period can help to resolve the low signal-to-noise ratio. Hence, the key consideration is to obtain a reliable signal-to-noise ratio which we will discuss below.

      To ensure we obtain reliable data quality, we installed a water mixing loop (Steffensen et al., 1984) and used the currently best available technology of oxygen probe (see method section of Integrated Biomechanics & Bioenergetic Assessment System) to improve the signal-to-noise ratio. The water mixing loop is not commonly used in swim-tunnel respirometer. Hence, if a previously published study used a respirometer-to-organism ratio up to 8894, our updated oxygen measuring system is completely adequate to produce reliable signal-to-noise ratios in our system with a respirometer-to-organism ratio of 2200 (individuals) and 693 (schools). In fact, our original version of the manuscript used a published method (Zhang et al., 2019, J. Exp. Biol. https://doi.org/10.1242/jeb.196568) to analyze the signal-to-noise ratio and provided the quantitative approach to determine the sampling window to reliably capture the signal (Fig. S5).

      3) Because the same swimming tunnel was used for schools and solitary fish, schooling fish may end up swimming closer to the wall (because of less volume per fish) than solitary fish. Distances to the wall of schooling fish are not given, and they could provide an advantage to schooling fish.

      Response: This is an issue that we considered carefully in designing these experiments. After considering the volume of the respirometer and the size of the fish (see the response above), we decided to use the same respirometer to avoid any other confounding factors when using different sizes of respirometers with potentially different internal flow patterns. In particular, different sizes of Brett-type swim-tunnel respirometers differ in the turning radius of water flow, which can produce different flow patterns in the swimming section. Please note that we quantified the flow pattern within the flow tank using particle image velocimetry (PIV) (so we have quantitative velocity profiles across the working section at all tested speeds), and modified the provided baffle system to improve the flow in the working section.

      Because we took high-speed videos simultaneously with the respirometry measurements, we can state unequivocally that individual fish within the school did not swim closer to the walls than solitary fish over the testing period (see below for the quantitative measurements of the boundary layer). Indeed, many previous respirometry studies do not obtain simultaneous video data and hence are unable to document fish locations when energetics is measured.

      In studying schooling energetics, we believe that it is important to control as many factors as possible when making comparisons between school energetics and solitary locomotion. We took great care as indicated in the Methods section to keep all experimental parameters the same (same light conditions, same flow tank, same O2 measuring locations with the internal flow loop, etc.) so that we could detect differences if present. Changing the flow tank respirometer apparatus between individual fish and the schools studied would have introduced an unacceptable alteration of experimental conditions and would be a clear violation of the best experimental practices.

      We have made every effort to be clear and transparent about the choice of experimental apparatus and explained at great length the experimental parameters and setup used, including the considerations about the wall effect in the extended Methods section and supplemental material provided.

      Our manuscript provides the measurement of the boundary layer (<2.5 mm at speeds > 2 BL s-1) in the methods section of the Integrated Biomechanics & Bioenergetic Assessment System. We also state that the boundary layer is much thinner than the body width of the giant danio (~10 mm) so that the fish cannot effectively hide near the wall. Due to our PIV calibration, we are able to quantify flow near the wall.

      In the manuscript, we also provide details about the wall effects and fish schools as follows from the manuscript: ”…the convex hull volume of the fish school did not change as speed increased, suggesting that the fish school was not flattening against the wall of the swim tunnel, a typical feature when fish schools are benefiting from wall effects. In nature, fish in the centre of the school effectively swim against a ‘wall’ of surrounding fish where they can benefit from hydrodynamic interactions with neighbours.”’ The notion that the lateral motion of surrounding slender bodies can be represented by a streamlined wall was also proposed by Newman et al., 1970 J. Fluid Mech. These considerations provide ample justification for the comparison of locomotor energetics by schools and solitary individuals.

      4) The statistical analysis has a number of problems. The values of MO2 of each school are the result of the oxygen consumption of each fish, and therefore the test is comparing 5 individuals (i.e. an individual is the statistical unit) vs 5 schools (a school made out of 8 fish is the statistical unit). Therefore the test is comparing two different statistical units. One can see from the graphs that schooling MO2 tends to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish. Other issues are related to data (for example Tail beat frequency) not being independent in schooling fish.

      Response: We cannot agree with the reviewer that fish schools and solitary individuals are different statistical units. Indeed, these are the two treatments in the statistical sense: a school versus the individual. This is why we invested extra effort to replicate all our experiments on multiple schools of different individuals and compare the data to multiple different solitary individuals. This is a standard statistical approach, whether one is comparing a tissue with multiple cells to an individual cell, or multiple locations to one specific location in an ecological study. Our analysis treats the collective movement of the fish school as a functional unit, just like the solitary individual is a functional unit. At the most fundamental level of oxygen uptake measurements, our analysis results from calculating the declining dissolved oxygen as a function of time (i.e. the slope of oxygen removal). Comparisons are made between the slope of oxygen removal by fish schools and the slope of oxygen removal by solitary individuals. This is the correct statistical comparison.

      The larger SD in individuals can be due to multiple biological reasons other than the technical reasons suggested here. Fundamentally, the different SD between fish schools and individuals can be the result of differences between solitary and collective movement and the different fluid dynamic interactions within the school could certainly cause differences in the amount of variation seen. Our interpretation of the ‘numerically’ smaller SD in fish schools than that of solitary individuals suggests that interesting hydrodynamic phenomena within fish schools remain to be discovered.

      Reviewer #2 (Recommendations For The Authors):

      I have reviewed a previous version of this paper. This new draft is somewhat improved but still presents a number of issues which I have outlined below.

      Response: Thanks for your efforts to improve our paper with reviews, but a number of your comments apply to the previous version of the paper, and we have made a number of revisions before submitting it to eLife. We explain below how this version of the manuscript addresses many of your comments from both the previous and current reviews. As readers can see from our responses below, this version of the manuscript version no longer uses only ‘two-way ANOVA’ as we have implemented an additional statistical model. (Please see the comments below for more detailed responses related to the statistical models).

      1) One of the main problems, and one of the reasons (see below) why many previous papers have measured TBF and not the oxygen consumption of a whole school, is that schooling also provides a calming effect (Nadler et al 2018) which is not easily differentiated from the hydrodynamic advantages (Abraham and Colgan 1985). This effect can reduce the MO2 while swimming and the EPOC when recovering. The present study does not fully take this potential issue into account and therefore its results are confounded by such effects. The authors state (line 401) that " the aerobic locomotion cost of solitary individuals showed no statistical difference from (in fact, being numerically lower) that of fish schools at a very low testing speed. The flow speed is similar to some areas of the aerated home aquarium for each individual fish. This suggests that the stress of solitary fish likely does not meaningfully contribute to the higher locomotor costs". While this is useful, the possibility that at higher speeds (i.e. a more stressful situation) solitary fish may experience more stress than fish in a school, cannot be ruled out.

      Response: Thank you for finding our results and data useful. We have addressed the comments on calming or stress effects in our response above. The key point is that either solitary or school fish are challenged (i.e. stressed) at a high speed where the sizable increases in stress hormones are well documented in the exercise physiology literature. We honestly just do not understand how a “calming” effect could possibly explain the upward concave energetic curves that we obtained, and how “calming” could explain the difference between schools and solitary individuals. Since we have simultaneous high-speed videos of fish swimming as we measure oxygen consumption at all speeds, we are able to directly observe fish behaviour. It is not exactly clear what a “calming effect” would look like kinematically or how one would measure this experimentally, but since we observed no alteration in tail beat kinematics between schools and individuals (a key result that we elaborate on below), it’s very hard to justify that a “calming” effect explains our results. Fish in schools appear to be just as “calm” as solitary individuals.

      If the reviewer's “calming effect” is a general issue, then birds flying in a V-formation should also experience a “calming effect”, but at least one study shows that birds in a V-formation experience higher wing beat frequencies.

      In addition, Nalder et al., 2018 (https://doi.org/10.1242/bio.031997) did not study any such “calming effect”. We assume the reviewer is referring to Nalder et al., 2016, which showed that shoaling reduced fish metabolic rates in a resting respirometer that has little-to-no water current that would motivate fish to swim (which is very different from the swim-tunnel respirometer we used). Moreover, the inter-loop system used by Nalder et al., 2016 has the risk of mixing the oxygen uptake of the fish shoal and solitary individuals. Hence, we believe that it is not appropriate to extend the results of Nalder et al., 2016 to infer and insist on a calming effect for fish schools that we studied which are actively and directionally swimming over a wide speed range up to and including high speeds. Especially since our data clearly show that ‘the aerobic locomotion cost of solitary individuals showed no statistical difference from (in fact, being numerically lower) that of fish schools at very low testing speeds’. More broadly, shoaling and schooling are very different in terms of polarization as well as the physiological and behavioural mechanisms used in locomotion. Shoaling behaviour by fish in still water is not the same as active directional schooling over a speed range. Our supplementary Table 1 provides a clear definition for a variety of grouping behaviours and makes the distinction between shoaling and schooling.

      Our detailed discussion about other literature mentioned by this reviewer can be seen in the comments below.

      2) The authors overstate the novelty of their work. Line 29: "Direct energetic measurements demonstrating the 30 energy-saving benefits of fluid-mediated group movements remain elusive" The idea that schooling may provide a reduction in the energetic costs of swimming dates back to the 70s, with pioneering experimental work showing a reduction in tail beat frequency in schooling fish vs solitary (by Zuyev, G. V. & Belyayev, V. V. (1970) and theoretical work by Weihs (1973). Work carried out in the past 20 years (Herskin and Steffensen 1998; Marras et al 2015; Bergerhout et al 2013; Hemelrijk et al 2014; Li et al 2021, Wiwchar et al 2017; Verma et al 2018; Ashraf et al 2019) based on a variety of approaches has supported the idea of a reduction in swimming costs in schooling vs solitary fish. In addition, group respirometry has actually been done in early and more recent studies testing the reduction in oxygen consumption as a result of schooling (Parker, 1973; Itazawa et al., 1978; Abrahams and Colgan 1985; Davis & Olla, 1992; Ross & Backman, 1992, Bergerhout et al 2013; Currier et al 2020). Specifically, Abrahams and Colgan (1985) and Bergerhout et al (2013) found that the oxygen consumption of fish swimming in a school was higher than when solitary, and Abrahams and Colgan (1985) made an attempt to deal with the confounding calming effect by pairing solitary fish up with a neighbor visible behind a barrier. These issues and how they were dealt with in the past (and in the present manuscript) are not addressed by the present manuscript. Currier et al (2020) found that the reduction of oxygen consumption was species-specific.

      Response: We cannot agree with this reviewer that we have overstated the novelty of our work, and, in fact, we make very specific comments on the new contributions of our paper relative to the large previous literature on schooling. We are well aware of the literature cited above and many of these papers have little or nothing to do with quantifying the energetics of schooling. In addition, many of these papers rely on simple kinematic measurements which are unrelated to direct energetic measurements of energy use. To elaborate on this, we present the ‘Table R’ below which evaluates and compares each of the papers this reviewer cites above. The key message (as we wrote in the manuscript) is that none of the previous studies measured non-aerobic cost (and thus do not calculate the total energy expenditure (TEE), which we show to be substantial. In addition, many of these studies do not compare schools to individuals, do not quantify both energetics and kinematics, and do not study a wide speed range. Only 33% of previous studies used direct measurements of aerobic metabolic rate to compare the locomotion costs of fish schools and solitary individuals (an experimental control). We want to highlight that most of the citations in the reviewer’s comments are not about the kinematics or hydrodynamics of fish schooling energetics, although they provide peripheral information on fish schooling in general. We also provide an overview of the literature on this topic in our paper in the Journal of Experimental Biology (Zhang & Lauder 2023 doi:10.1242/jeb.245617) and do not wish to duplicate that discussion here. We summarized and cited the relevant papers about the energetics of fish schooling in Table 1.

      Author response table 1.

      Papers cited by Reviewer #2, and a summary of their contributions and approach.

      References cited above:

      Zuyev, G., & Belyayev, V. V. (1970). An experimental study of the swimming of fish in groups as exemplified by the horsemackerel [Trachurus mediterraneus ponticus Aleev]. J Ichthyol, 10, 545-549.

      Weihs, D. (1973). Hydromechanics of fish schooling. Nature, 241(5387), 290-291.

      Herskin, J., & Steffensen, J. F. (1998). Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. Journal of Fish Biology, 53(2), 366-376.

      Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F., & Domenici, P. (2015). Fish swimming in schools save energy regardless of their spatial position. Behavioral ecology and sociobiology, 69, 219-226.

      Burgerhout, E., Tudorache, C., Brittijn, S. A., Palstra, A. P., Dirks, R. P., & van den Thillart, G. E. (2013). Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L. Journal of experimental marine biology and ecology, 448, 66-71.

      Hemelrijk, C. K., Reid, D. A. P., Hildenbrandt, H., & Padding, J. T. (2015). The increased efficiency of fish swimming in a school. Fish and Fisheries, 16(3), 511-521.

      Li, L., Nagy, M., Graving, J. M., Bak-Coleman, J., Xie, G., & Couzin, I. D. (2020). Vortex phase matching as a strategy for schooling in robots and in fish. Nature communications, 11(1), 5408.

      Wiwchar, L. D., Gilbert, M. J., Kasurak, A. V., & Tierney, K. B. (2018). Schooling improves critical swimming performance in zebrafish (Danio rerio). Canadian Journal of Fisheries and Aquatic Sciences, 75(4), 653-661.

      Verma, S., Novati, G., & Koumoutsakos, P. (2018). Efficient collective swimming by harnessing vortices through deep reinforcement learning. Proceedings of the National Academy of Sciences, 115(23), 5849-5854.

      Ashraf, I., Bradshaw, H., Ha, T. T., Halloy, J., Godoy-Diana, R., & Thiria, B. (2017). Simple phalanx pattern leads to energy saving in cohesive fish schooling. Proceedings of the National Academy of Sciences, 114(36), 9599-9604.

      Parker Jr, F. R. (1973). Reduced metabolic rates in fishes as a result of induced schooling. Transactions of the American Fisheries Society, 102(1), 125-131.

      Itazawa, Y., & Takeda, T. (1978). Gas exchange in the carp gills in normoxic and hypoxic conditions. Respiration physiology, 35(3), 263-269.

      Abrahams, M. V., & Colgan, P. W. (1985). Risk of predation, hydrodynamic efficiency and their influence on school structure. Environmental Biology of Fishes, 13, 195-202.

      Davis, M. W., & Olla, B. L. (1992). The role of visual cues in the facilitation of growth in a schooling fish. Environmental biology of fishes, 34, 421-424.

      Ross, R. M., Backman, T. W., & Limburg, K. E. (1992). Group-size-mediated metabolic rate reduction in American shad. Transactions of the American Fisheries Society, 121(3), 385-390.

      Currier, M., Rouse, J., & Coughlin, D. J. (2021). Group swimming behaviour and energetics in bluegill Lepomis macrochirus and rainbow trout Oncorhynchus mykiss. Journal of Fish Biology, 98(4), 1105-1111.

      Halsey, L. G., Wright, S., Racz, A., Metcalfe, J. D., & Killen, S. S. (2018). How does school size affect tail beat frequency in turbulent water?. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 218, 63-69.

      Johansen, J. L., Vaknin, R., Steffensen, J. F., & Domenici, P. (2010). Kinematics and energetic benefits of schooling in the labriform fish, striped surfperch Embiotoca lateralis. Marine Ecology Progress Series, 420, 221-229.

      3) In addition to the calming effect, measuring group oxygen consumption suffers from a number of problems as discussed in Herskin and Steffensen (1998) such as the fish volume to water volume ratio, which varies considerably when testing a school vs single individuals in the same tunnel and the problem of wall effect when using a small volume of water for accurate O2 measurements. Herskin and Steffensen (1998) circumvented these problems by measuring tailbeat frequencies of fish in a school and then calculating the MO2 of the corresponding tailbeat frequency in solitary fish in a swim tunnel. A similar approach was used by Johansen et al (2010), Marras et al (2015), Halsey et al (2018). However, It is not clear how these potential issues were dealt with here. Here, larger solitary D. aequipinnatus were used to increase the signal-to-noise ratio. However, using individuals of different sizes makes other variables not so directly comparable, including stress, energetics, and kinematics. (see comment 7 below).

      Response: We acknowledge the great efforts made by previous studies to understand the energetics of fish schooling. These studies, as detailed in the table and elaborated in the response above (see comment 2) are very different from our current study. Our study achieved a direct comparison of energetics (including both aerobic and non-aerobic cost) and kinematics between solitary individuals and fish schools that has never been done before. Our detailed response to the supposed “calming effect” is given above.

      As highlighted in the previous comments and opening statement, our current version has addressed the wall effect, tail beat frequency, and experimental and analytical efforts invested to directly compare the energetics between fish schools and solitary individuals. As readers can see in our comprehensive method section, achieving the direct comparison between solitary individuals and fish schools is not a trivial task. Now we want to elaborate on the role of kinematics as an indirect estimate of energetics. Our results here show that kinematic measurements of tail beat frequency are not reliable estimates of energetic cost, and the previous studies cited did not measure EPOC and those costs are substantial, especially as swimming speed increases. Fish in schools can save energy even when the tail beat frequency does not change (although school volume can change as we show). We elaborated (in great detail) on why kinematics does not always reflect on the energetics in the submitted version (see last paragraph of “Schooling dynamics and energy conservation” section). Somehow modeling what energy expenditure should be based only on tail kinematics is, in our view, a highly unreliable approach that has never been validated (e.g., fish use more than just tails for locomotion). Indeed, we believe that this is an inadequate substitute for direct energy measurements. We disagree that using slightly differently sized individuals is an issue since we recorded fish kinematics across all experiments and included the measurements of behaviour in our manuscript. Slightly altering the size of individual fish was done on purpose to provide a better ratio of respirometer volume to fish volume in the tests on individual fish, thus we regard this as a benefit of our approach and not a concern.

      Finally, in another study of the collective behaviour of flying birds (Usherwood, J. R., Stavrou, M., Lowe, J. C., Roskilly, K. and Wilson, A. M. (2011). Flying in a flock comes at a cost in pigeons. Nature 474, 494-497), the authors observed that wing beat frequency can increase during flight with other birds. Hence, again, we cannot regard movement frequency of appendages as an adequate substitute for direct energetic measurements.

      4) Svendsen et al (2016) provide guidelines for the ratio of fish volume to water volume in the respirometer. The ratio used here (2200) is much higher than that recommended. RFR values higher than 500 should be avoided in swim tunnel respirometry, according to Svendsen et al (2016).

      Response: Thank you for raising this point. Please see the detailed responses above to the same comment above. We believe that our experimental setup and ratios are very much in line with those recommended, and represent a significant improvement on previous studies which use large ratios.

      5) Lines 421-436: The same goes for wall effects. Presumably, using the same size swim tunnel, schooling fish were swimming much closer to the walls than solitary fish but this is not specifically quantified here in this paper. Lines 421-436 provide some information on the boundary layer (though wall effects are not just related by the boundary layer) and some qualitative assessment of school volume. However, no measurement of the distance between the fish and the wall is given.

      Response: Please see the detailed responses above to the same comment. Specifically, we used the particle image velocimetry (PIV) system to measure the boundary layer (<2.5 mm at speeds > 2 BL s-1) and stated the parameters in the methods section of the Integrated Biomechanics & Bioenergetic Assessment System. We also state that the boundary layer is much thinner than the body width of the giant danio (~10 mm) so that the fish cannot effectively hide near the wall. Due to our PIV calibration, we are able to quantify flow near the wall.

      Due to our video data obtained simultaneously with energetic measurements, we do not agree that fish were swimming closer to the wall in schools and also note that we took care to modify the typical respirometer to both ensure that flow across the cross-section did not provide any refuges and to quantify flow velocities in the chamber using particle image velocimetry. We do not believe that any previous experiments on schooling behaviour in fish have taken the same precautions.

      6) The statistical tests used have a number of problems. Two-way ANOVA was based on school vs solitary and swimming speed. However, there are repeated measures at each speed and this needs to be dealt with. The degrees of freedom of one-way ANOVA and T-tests are not provided. These tests took into account five groups of fish vs. five solitary fish. The values of MO2 of each school are the result of the oxygen consumption of each fish, and therefore the test is comparing 5 individuals (i.e. an individual is the statistical unit) vs 5 schools (a school made out of 8 fish is the statistical unit). Therefore the test is comparing two different statistical units. One can see from the graphs that schooling MO2 tend to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish. TBF, on the other hand, can be assigned to each fish even in a school, and therefore TBF of each fish could be compared by using a nested approach of schooling fish (nested within each school) vs solitary fish, but this is not the statistical procedure used in the present manuscript. The comparison between TBFs presumably is comparing 5 individuals vs all the fish in the schools (6x5=30 fish). However, the fish in the school are not independent measures.

      Response: We cannot agree with this criticism, which may be based on this reviewer having seen a previous version of the manuscript. We did not use two-way ANOVA in this version. This version of the manuscript reported the statistical value based on a General Linear Model (see statistical section of the method). We are concerned that this reviewer did not in fact read either the Methods section or the Results section. In addition, it is hard to accept that, from examination of the data shown in Figure 3, there is not a clear and large difference between schooling and solitary locomotion, regardless of the statistical test used.

      Meanwhile, the comments about the ‘repeated’ measures from one speed to the next are interesting, but we cannot agree. The ‘repeated’ measures are proper when one testing subject is assessed before and after treatment. Going from one speed to the next is not a treatment. Instead, the speed is a dependent and continuous variable. In our experimental design, the treatment is fish school, and the control is a solitary individual. Second, we never compared any of our dependent variables across different speeds within a school or within an individual. Instead, we compared schools and individuals at each speed. In this comparison, there are no ‘repeated’ measures. We agree with the reviewer that fish in the school are interacting (not independent). This is one more reason to support our approach of treating fish schools as a functional and statistical unit in our experiment design (more detailed responses are stated in the response to the comment above).

      7) The size of solitary and schooling individuals appears to be quite different (solitary fish range 74-88 cm, schooling fish range 47-65 cm). While scaling laws can correct for this in the MO2, was this corrected for TBF and for speed in BL/s? Using BL/s for speed does not completely compensate for the differences in size.

      Response: Our current version has provided justifications for not conducting scaling in the values of tail beat frequency. Our justification is “The mass scaling for tail beat frequency was not conducted because of the lack of data for D. aequipinnatus and its related species. Using the scaling exponent of distant species for mass scaling of tail beat frequency will introduce errors of unknown magnitude.”. Our current version also acknowledges the consideration about scaling as follows: “Fish of different size swimming at 1 BL s-1 will necessarily move at different Reynolds numbers, and hence the scaling of body size to swimming speed needs to be considered in future analyses of other species that differ in size”

      Reviewer #3 (Public Review):

      Summary:

      Zhang and Lauder characterized both aerobic and anaerobic metabolic energy contributions in schools and solitary fishes in the Giant danio (Devario aequipinnatus) over a wide range of water velocities. By using a highly sophisticated respirometer system, the authors measure the aerobic metabolisms by oxygen uptake rate and the non-aerobic oxygen cost as excess post-exercise oxygen consumption (EPOC). With these data, the authors model the bioenergetic cost of schools and solitary fishes. The authors found that fish schools have a J-shaped metabolism-speed curve, with reduced total energy expenditure per tail beat compared to solitary fish. Fish in schools also recovered from exercise faster than solitary fish. Finally, the authors conclude that these energetic savings may underlie the prevalence of coordinated group locomotion in fish.

      The conclusions of this paper are mostly well supported by data, but some aspects of methods and data acquisition need to be clarified and extended.

      Response: Thank you for seeing the value of our study. We provided clarification of the data acquisition system with a new panel of pictures included in the supplemental material to show our experimental system. We understand that our methods have more details and justifications than the typical method sections. First, the details are to promote the reproducibility of the experiments. The justifications are the responses to reviewer 2, who reviewed our previous manuscript version and also posted the same critiques after we provided the justifications for the construction of the system and the data acquisition.

      Strengths:

      This work aims to understand whether animals moving through fluids (water in this case) exhibit highly coordinated group movement to reduce the cost of locomotion. By calculating the aerobic and anaerobic metabolic rates of school and solitary fishes, the authors provide direct energetic measurements that demonstrate the energy-saving benefits of coordinated group locomotion in fishes. The results of this paper show that fish schools save anaerobic energy and reduce the recovery time after peak swimming performance, suggesting that fishes can apport more energy to other fitness-related activities whether they move collectively through water.

      Response: Thank you. We are excited to share our discoveries with the world.

      Weaknesses:

      Although the paper does have strengths in principle, the weakness of the paper is the method section. There is too much irrelevant information in the methods that sometimes is hard to follow for a researcher unfamiliar with the research topic. In addition, it was hard to imagine the experimental (respirometer) system used by the authors in the experiments; therefore, it would be beneficial for the article to include a diagram/scheme of that respiratory system.

      Response: We agree with the reviewer and hence added the pictures of the experimental system in the supplementary materials (Fig. S4). We think pictures are more realistic to present the system than schematics. We also provide a picture of the system during the process of making the energetic measurements. It is to show the care went to ensure fish are not affected by any external stimulation other than the water velocity. The careful experimental protocol is very critical to reveal the concave upward shaped curve of bony fish schools that was never reported before. Many details in the methods have been included in response to Reviewer 2.

      Reviewer #3 (Recommendations For The Authors):

      Overall, this is a very interesting, well-written, and nice article. However, many times the method section looks like a discussion. Furthermore, the authors need to check the use of the word "which" throughout the text. I got the feeling that it is overused/misused sometimes.

      Response: Thank you for the positive comments. The method is written in that way to address the concerns of Reviewer 2 who reviewed our previous versions. We corrected the overuse of ‘which’ throughout the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Transcriptional readthrough, intron retention, and transposon expression have been previously shown to be elevated in mammalian aging and senescence by multiple studies. The current manuscript claims that the increased intron retention and readthrough could completely explain the findings of elevated transposon expression seen in these conditions. To that end, they analyze multiple RNA-seq expression datasets of human aging, human senescence, and mouse aging, and establish a series of correlations between the overall expression of these three entities in all datasets.

      While the findings are useful, the strength of the evidence is incomplete, as the individual analyses unfortunately do not support the claims. Specifically, to establish this claim there is a burden of proof on the authors to analyze both intron-by-intron and gene-by-gene, using internal matched regions, and, in addition, thoroughly quantify the extent of transcription of completely intergenic transposons and show that they do not contribute to the increase in aging/senescence. Furthermore, the authors chose to analyze the datasets as unstranded, even though strand information is crucial to their claim, as both introns and readthrough are stranded, and if there is causality, than opposite strand transposons should show no preferential increase in aging/senescence. Finally, there are some unclear figures that do not seem to show what the authors claim. Overall, the study is not convincing.

      Major concerns: 1) Why were all datasets treated as unstanded? Strand information seems critical, and should not be discarded. Specifically, stranded information is crucial to increase the confidence in the causality claimed by the authors, since readthrough and intron retention are both strand specific, and therefore should influence only the same strand transposons and not the opposite-strand ones.

      This is an excellent suggestion. Since only one of our datasets was stranded, we did not run stranded analyses for the sake of consistency. We would like to provide two analyses here that consider strandedness:

      First, we find that within the set of all expressed transposons (passing minimal read filtering), 86% of intronic transposons match the strand of the intron (3147 out of 3613). In contrast, the number is 51% after permutation of the strands. Similarly, when we randomly select 1000 intronic transposons 45% match the strandedness of the intron (here we select from the set of all transposons). This is consistent with the idea that most transposons are only detectable because they are co-expressed on the sense strand of other features that are highly expressed.

      As for the readthrough data, 287 out of 360 transposons (79%) within readthrough regions matched the strand of the gene and its readthrough.

      Second, in the model we postulate, the majority of transposon transcription occurs as a co-transcriptional artifact. This applies equally to genic transposons (gene expression), intronic (intron retention) and gene proximal (readthrough or readin) transposons. Therefore, we performed the following analysis for the set of all transposons in the Fleischer et al. fibroblast dataset.

      When we invert the strand annotation for transposons, before counting and differential expression, we would expect the counts and log fold changes to be lower compared to using the “correct” annotation file.

      Indeed, we show that out of 6623 significantly changed transposons with age only 226 show any expression in the “inverted run” (-96%). (Any expression is defined as passing basic read filtering.)

      Out of the 226 transposons that can be detected in both runs most show lower counts (A) and age-related differential expression converging towards zero (B) in the inverted run (Fig. L1).

      Author response image 1.

      Transposons with inverted strandedness (“reverse”) show lower expression levels (log counts; A) and no differential expression with age (B) when compared to matched differentially expressed transposons (“actual”). For this analysis we selected all transposons showing significant differential expression with age in the actual dataset that also showed at least minimal expression in the strand-inverted analysis (n=226). Data from Fleischer et al. (2018). (A) The log (counts) are clipped because we only used transposons that passed minimal read filtering in this analysis. (B) The distribution of expression values in the actual dataset is bimodal and positive since some transposons are significantly up- or downregulated. This bimodal distribution is lost in the strand-inverted analysis.

      2) "Altogether this data suggests that intron retention contributes to the age-related increase in the expression of transposons" - this analysis doesn't demonstrate the claim. In order to prove this they need to show that transposons that are independent of introns are either negligible, or non-changing with age.

      We would like to emphasize that we never claimed that intron retention and readthrough can explain all of the age-related increases in transposon expression. In fact, our data is compatible with a multifactorial origin of transposons expression. Age- and senescence-related transposon expression can occur due to: 1/ intron retention, 2/ readthrough, 3/ loss of intergenic heterochromatin. Specifically, we do not try to refute 3.

      However, since most transposons are found in introns or downstream of genes, this suggests that intron retention and readthrough will be major, albeit non-exclusive, drivers of age-related changes in transposons expression. Even if the fold-change for intergenic transposons with aging or senescence were higher this would not account for the broadscale expression patterns seen in RNAseq data.

      To further illustrate this, we analyzed transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Indeed, we find that although intergenic transposons show similar log-fold changes to other transposon classes (Fig. L2A), their total contribution to read counts is negligible (Fig. L2B, Fig. Fig. S15). We have also now added a more nuanced explanation of this issue to the discussion.

      Author response image 2.

      We analyzed transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Independent of their location, transposons show similar differential expression with aging or cellular senescence (A). In contrast, the expression of transposons (log counts) is highly dependent on their location and the median log(count) value decreases in the order: genic > intronic > ds > us > intergenic.

      Author response image 3.

      Total counts are the sum of all counts from transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Counts were defined as cumulative counts across all samples.

      3) Additionally, the correct control regions should be intronic regions other than the transposon, which overall contributed to the read counts of the intron.

      4) Furthermore, analysis of read spanning intron and partly transposons should more directly show this contribution.

      Thank you for this comment. To rephrase this, if we understand correctly, the concern is that an increase in transposon expression could bias the analysis of intron retention since transposons often make up a substantial portion of an intron. We would like to address this concern with the following three points:

      First, if the concern is the correlation between log fold-change of transposons vs log fold-change of their containing introns, we do not think that this kind of data is biased. While transposons make up much of the intron, a single transposon on average only accounts for less than 10% of an intron.

      Second, to address this more directly, we show here that even introns that do not contain expressed transposons are increased in aging fibroblasts and after induction of cellular senescence (Fig. S8). This shows that intron retention is universal and most likely not heavily biased by the presence or absence of expressed transposons.

      Author response image 4.

      We split the set of introns that significantly change with cellular aging (A) or cell senescence (B) into introns that contain at least one transposon (has_t) and those that do not contain any transposons (has_no_t). Intron retention is increased in both groups. In this analysis we included all transposons that passed minimal read filtering (n=63782 in A and n=124173 in B). Median log-fold change indicated with a dashed red line for the group of introns without transposons.

      Third, we provide an argument based on the distribution of transposons within introns (Fig. L3).

      Author response image 5.

      The 5’ and 3’ splice sites show the highest sequence conservation between introns, whereas the majority of the intronic sequence does not. This is because these sites contain binding sites for splicing factors such as U1, U2 and SF1 (A). Transposons could affect splicing and we present a biologically plausible mechanism and two ancillary hypotheses here (B). If transposons affect the splicing (retention) of introns the most likely mechanism would be via impairment of splice site recognition because a transposon close to the site forms a secondary structure, binds an effector protein or provides inadequate sequences for pairing. Hypothesis 1: Transposons impair splicing because they are close to the splice site. Hypothesis 2: Transposons do not impair splicing because they are located away from the splice junction. Retained introns should show a similar depletion of transposons around the junction.

      Image adapted from: Ren, Pingping, et al. "Alternative splicing: a new cause and potential therapeutic target in autoimmune disease." Frontiers in Immunology 12 (2021): 713540.

      Consistent with hypothesis 2 (“transposons do not impair splicing”), we show that the distribution of transposons within introns is similar for the set of all transposons and all significant transposons within significantly overexpressed introns (Fig. S7. A and B is similar in the case of aged fibroblasts; D and E is similar in the case of cellular senescence). If transposon expression was causally linked to changes in intron retention, the most likely mechanism would be via an impairment of splicing. We would expect transposons to be located close to the splice junction, which is not what we observed. Instead, the data is more consistent with intron retention as a driver of transposon expression.

      Author response image 6.

      Transposons are evenly distributed within introns except for the region close to splice junctions (A-E). Transposons appear to be excluded from the splice junction-adjacent region both in all introns (A, D) and in significantly retained introns (B, E). In addition, transposon density of all introns and significantly retained introns is comparable (C, F). We included only introns containing at least one transposon in this analysis. A) Distribution of 2292769 transposons within 163498 introns among all annotated transposons. B) Distribution of 195190 transposons within 14100 introns significantly retained with age. C) Density (transposon/1kb of intron) of transposons in all introns (n=163498) compared to significantly retained introns (n=14100). D) as in (A) E) Distribution of 428130 transposons within 13205 introns significantly retained with induced senescence. F) Density (transposon/1kb of intron) of transposons in all introns (n=163498) compared to significantly retained introns (n=13205).

      5) "This contrasts with the almost completely even distribution of randomly permuted transposons." How was random permutation of transposons performed? Why is this contract not trivial, and why is this a good control?

      Permutation was performed using the bedtools shuffle function (Quinlan et al. 2010). We use the set of all annotated transposons and all reshuffled transposons as a control. It is interesting to observe that these two show a very similar distribution with transposons evenly spread out relative to genes. In contrast, expressed transposons are found to cluster downstream of genes. This gave rise to our initial working hypothesis that readthrough should affect transposon expression.

      6) Fig 4: the choice to analyze only the 10kb-20kb region downstream to TSE for readthrough regions has probably reduced the number of regions substantially (there are only 200 left) and to what extent this faithfully represent the overall trend is unclear at this point.

      This is addressed in Suppl. Fig. 7, we repeated the analysis for every 10kb region between 0 and 100kb, showing similar results.

      Furthermore, we show below in a new figure that the results are comparable when we measure readthrough in the 0 to 10kb region, while the sample size of readthrough regions is increased.

      Finally, it is commonly accepted to remove readthrough regions overlapping genes, which while reducing sample size, increases accuracy for readthrough determination (Rosa-Mercado et al. 2021). Without filtering readthrough regions can overlap neighboring genes which is reflected in an elevated ratio of Readthrough_counts/Genic_counts (Fig. S9).

      Author response image 7.

      A) Readthrough was determined in a region 0 to 10 kb downstream of genes for a subset of genes that were at least 10 kb away from the nearest neighboring gene (n=684 regions). The log2 ratio of readthrough to gene expression is plotted across five age groups (adolescent n=32, young n=31, middle-aged n=22, old n=37 and very old n=21). B) As in (A) but data is plotted on a per sample basis. C) Readthrough was determined in a region 0 to 10 kb downstream of genes for a subset of genes that were at least 10 kb away from the nearest neighboring gene (n=1045 regions). The log2 ratio of readthrough to gene expression is plotted for the groups comprising senescence (n=12) and the non-senescent group (n=6). D) As in (D) but data is plotted on a per sample basis and for additional control datasets (serum-starved, immortalized, intermediate passage and early passage). N=3 per group.

      7) Fig. 5B shows the opposite of the authors claims: in the control samples there are more transposon reads than in the KCl samples.

      Thank you for pointing this out. During preparation of the manuscript the labels of Fig. 5B were switched (however, the color matching between Fig. 5A-C is correct). We apologize for this mistake, which we have now corrected.

      8) "induced readthrough led to preferential expression of gene proximal transposons (i.e. those within 25 kb of genes), when compared with senescence or aging". A convincing analysis would show if there is indeed preferential proximity of induced transposons to TSEs. Since readthrough transcription decays as a function of distance from TSEs, the expression of transposons should show the same trends if indeed simply caused by readthrough. Also, these should be compared to the extent of transposon expression (not induction) in intergenic regions without any readthrough, in these conditions.

      This is a very good suggestion. We now provide two new supplementary figures analyzing the distance-dependence of transposon expression.

      In the first figure (Fig. S13) we show that readthrough decreases with distance (A, B) and we show that transposon counts are higher for transposons close to genes, following a similar pattern to readthrough. This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B).

      Author response image 8.

      Readthrough counts (rt_counts) decrease exponentially downstream of genes, both in the aging dataset (A) and in the cellular senescence dataset (B). Although noisier, the pattern for transposon counts (transp_cum_counts) is similar with higher counts closer to gene terminals, both in the aging dataset (C) and in the cellular senescence dataset (D). Readthrough counts are the cumulative counts across all genes and samples. Readthrough was determined in 10 kb bins and the values are assigned to the midpoint of the bin for easier plotting. Transposon counts are the cumulative counts across all samples for each transposon that did not overlap a neighboring gene. n=801 in (C) and n=3479 in (D).

      In the second figure (Fig. S14) we show that transposons found downstream of genes with high readthrough show a more pronounced log-fold change (differential expression) than transposons downstream of genes with low readthrough (defined based on log-fold change). This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B). Furthermore, the difference between high and low readthrough region transposons is diminished for transposons that are more than 10 kb downstream of genes, as would be expected given that readthrough decreases with distance.

      Author response image 9.

      Transposons found downstream of genes with high readthrough (hi_RT) show a more pronounced log-fold change (transp_logfc) than transposons downstream of genes with low readthrough (low_RT). This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B). Furthermore, the difference between high and low readthrough region transposons is diminished for transposons that are more than 10 kb downstream of genes (“Transp > 10 kb”). Transposons in high readthrough regions were defined as those in the top 20% of readthrough log-fold change. Readthrough was measured between 0 and 10 kb downstream from genes. n=2124 transposons in (A) and n=6061 transposons in (B) included in the analysis.

      Reviewer #2 (Public Review):

      In this manuscript, the authors examined the role of transcription readout and intron retention in increasing transcription of transposable elements during aging in mammals. It is assumed that most transposable elements have lost the regulatory elements necessary for transcription activation. Using available RNA-seq datasets, the authors showed that an increase in intron retention and readthrough transcription during aging contributes to an increase in the number of transcripts containing transposable elements.

      Previously, it was assumed that the activation of transposable elements during aging is a consequence of a gradual imbalance of transcriptional repression and a decrease in the functionality of heterochromatin (de repression of transcription in heterochromatin). Therefore, this is an interesting study with important novel conclusion. However, there are many questions about bioinformatics analysis and the results obtained.

      Major comments:

      1) In Introduction the authors indicated that only small fraction of LINE-1 and SINE elements are expressed from functional promoters and most of LINE-1 are co-expressed with neighboring transcriptional units. What about other classes of mobile elements (LTR mobile element and transposons)?

      We thank the reviewer for this comment. Historically, most repetitive elements, e.g. DNA elements and retrotransposon-like elements, have been considered inactive, having accrued mutations which prevent them from transposition. On the other hand, based on recent data it is indeed very possible that certain LTR elements become active with aging as suggested in several manuscripts (Liu et al. 2023, Autio et al. 2020). However, these elements are not well annotated and our final analysis (Fig. 6) relies on a well-defined distinction between active and inactive elements. (See also question 2 for further discussion.)

      Finally, we would like to point out some of the difficulties with defining expression and re-activation of LTR/ERV elements based on RNAseq data that have been highlighted for the Liu manuscript and are concordant with several of our results: https://pubpeer.com/publications/364E785636ADF94732A977604E0256

      Liu, Xiaoqian, et al. "Resurrection of endogenous retroviruses during aging reinforces senescence." Cell 186.2 (2023): 287-304.

      Autio A, Nevalainen T, Mishra BH, Jylhä M, Flinck H, Hurme M. Effect of ageing on the transcriptomic changes associated with expression at the HERV-K (HML-2) provirus at 1q22. Immun Ageing. 2020;17(1):11.

      2) Results: Why authors considered all classes of mobile elements together? It is likely that most of the LTR containing mobile elements and transposons contain active promoters that are repressed in heterochromatin or by KRAB-C2H2 proteins.

      We do not consider LTR containing elements because there is uncertainty regarding their overall expression levels and their expression with aging (Nevalainen et al. 2018). Furthermore, we believe that substantial activity of LTR elements in human genomes should have been detectable through patterns of insertional mutagenesis. Yet studies generally show low to negligible levels of LTR (ERV) mutagenesis. Here, for example, at a 200-fold lower rate than for LINEs (Lee et al. 2012).

      Importantly, our analysis in Fig. 6 relies on well-annotated elements like LINEs, which is why we do not include LTR or SINE elements that could be potentially expressed. However, for other analyses we did consider element families independently as can be seen in Table S1, for example.

      Nevalainen, Tapio, et al. "Aging-associated patterns in the expression of human endogenous retroviruses." PLoS One 13.12 (2018): e0207407.

      Lee, Eunjung, et al. "Landscape of somatic retrotransposition in human cancers." Science 337.6097 (2012): 967-971.

      3) Fig. 2. A schematic model of transposon expression is not presented clearly. What is the purpose of showing three identical spliced transcripts?

      This is indeed confusing. There are three spliced transcripts to schematically indicate that the majority of transcripts will be correctly spliced and that intron retention is rare (estimated at 4% of all reads in our dataset). We have clarified the figure now, please see below:

      Author response image 10.

      A schematic model of transposon expression. In our model, represented in this schematic, transcription (A) can give rise to mRNAs and pre-mRNAs that contain retained introns when co-transcriptional splicing is impaired. This is often seen during aging and senescence, and these can contain transposon sequences (B). In addition, transcription can give rise to mRNAs and pre-mRNAs that contain transposon sequences towards the 3’-end of the mRNA when co-transcriptional termination at the polyadenylation signal (PAS) is impaired (C, D) as seen with aging and senescence. Some of these RNAs may be successfully polyadenylated (as depicted here) whereas others will be subject to nonsense mediated decay. Image created with Biorender.

      4) The study analyzed the levels of RNA from cell cultures of human fibroblasts of different ages. The annotation to the dataset indicated that the cells were cultured and maintained. (The cells were cultured in high-glucose (4.5mg/ml) DMEM (Gibco) supplemented with 15% (vol/vol) fetal bovine serum (Gibco), 1X glutamax (Gibco), 1X non-essential amino acids (Gibco) and 1% (vol/vol) penicillin-streptomycin (Gibco). How correct that gene expression levels in cell cultures are the same as in body cells? In cell cultures, transcription is optimized for efficient division and is very different from that of cells in the body. In order to correlate a result on cells with an organism, there must be rigorous evidence that the transcriptomes match.

      We agree and have updated the discussion to reflect this shortcoming. While we do not have human tissue data, we would like to draw the reviewer’s attention to Fig. S3 where we presented some liver data for mice. We now provide an additional supplementary figure (in a style similar to Fig. S2) showing how readthrough, transposon expression and intron retention changes in 26 vs 5-month-old mice (Fig. S4). Indeed, intron, readthrough and transposons increase with age in mice, although this is more pronounced for transposons and readthrough.

      Author response image 11.

      Intron, readthrough and transposon elements are elevated in the liver of aging mice (26 vs 5-month-old, n=6 per group). Readthrough and transposon expression is especially elevated even when compered to genic transcripts. The percentage of upregulated transcripts is indicated above each violin plot and the median log10-fold change for genic transcripts is indicated with a dashed red line.

      Finally, just to elaborate, we used the aging fibroblast dataset by Fleischer et al. for three reasons:

      1) Yes, aging fibroblasts could be a model of human aging, with important caveats as you correctly point out,

      2) it is one of the largest such datasets allowing us to draw conclusions with higher statistical confidence and do things such as partial correlations

      3) it has been analyzed using similar techniques before (LaRocca, Cavalier and Wahl 2020) and this dataset is often used to make strong statements about transposons and aging such as transposon expression in this dataset being “consistent with growing evidence that [repetitive element] transcripts contribute directly to aging and disease”. Our goal was to put these statements into perspective and to provide a more nuanced interpretation.

      LaRocca, Thomas J., Alyssa N. Cavalier, and Devin Wahl. "Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models." Aging Cell 19.7 (2020): e13167.

      5) The results obtained for isolated cultures of fibroblasts are transferred to the whole organism, which has not been verified. The conclusions should be more accurate.

      We agree and have updated the discussion accordingly.

      6) The full pipeline with all the configuration files IS NOT available on github (pabisk/aging_transposons).

      Thank you for pointing this out, we have now uploaded the full pipeline and configuration files.

      7) Analysis of transcripts passing through repeating regions is a complex matter. There is always a high probability of incorrect mapping of multi-reads to the genome. Things worsen if unpaired short reads are used, as in the study (L=51). Therefore, the authors used the Expectation maximization algorithm to quantify transposon reads. Such an option is possible. But it is necessary to indicate how statistically reliable the calculated levels are. It would be nice to make a similar comparison of TE levels using only unique reads. The density of reads would drop, but in this case it would be possible to avoid the artifacts of the EM algorithm.

      We thank the reviewer for this suggestion. We show here that mapping only unique alignments (outFilterMultimapNmax=1 in STAR) leads to similar results.

      For the aging fibroblast dataset:

      Author response image 12.

      For the induced senescence dataset:

      Author response image 13.

    1. Why do we go through the struggle to be educated? Is it merely in order to pass some examinations and get a job? Or is it the function of education to prepare us while we are young to understand the whole process of life? having a job and earning one’s livelihood is necessary—but is that all? Are we being educated only for that? Surely, life is not merely a job, an occupation; life is wide and profound, it is a great mystery, a vast realm in which we function as human beings. If we merely prepare ourselves to earn a livelihood, we shall miss the whole point of life; and to understand life is much more important than merely to prepare for examinations and become very proficient in mathematics, physics, or what you will.

      I really enjoy this excerpt because it puts into a better perspective why we continuously learn. I have a firm belief that there is always more to learn, and I think that continuously growing and learning is genuinely good for us. I think this passage does an excellent job in showing us the joy in learning about something we love. I think that by learning about things we enjoy, even if it is something others may deem unimportant, like, learning about the story and complexity of your favorite video game, there is still something you are learning, and hopefully getting some sort of joy and gratification from, learning is not just about being able to preform in a job setting.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer No.1 (public)

      The authors present a study focused on addressing the key challenge in drug discovery, which is the optimization of absorption and affinity properties of small molecules through in silico methods. They propose active learning as a strategy for optimizing these properties and describe the development of two novel active learning batch selection methods. The methods are tested on various public datasets with different optimization goals and sizes, and new affinity datasets are curated to provide up-todate experimental information. The authors claim that their active learning methods outperform existing batch selection methods, potentially reducing the number of experiments required to achieve the same model performance. They also emphasize the general applicability of their methods, including compatibility with popular packages like DeepChem.

      Strengths:

      Relevance and Importance: The study addresses a significant challenge in the field of drug discovery, highlighting the importance of optimizing the absorption and affinity properties of small molecules through in silico methods. This topic is of great interest to researchers and pharmaceutical industries.

      Novelty: The development of two novel active learning batch selection methods is a commendable contribution. The study also adds value by curating new affinity datasets that provide chronological information on state-of-the-art experimental strategies.

      Comprehensive Evaluation: Testing the proposed methods on multiple public datasets with varying optimization goals and sizes enhances the credibility and generalizability of the findings. The focus on comparing the performance of the new methods against existing batch selection methods further strengthens the evaluation.

      Weaknesses:

      Lack of Technical Details: The feedback lacks specific technical details regarding the developed active learning batch selection methods. Information such as the underlying algorithms, implementation specifics, and key design choices should be provided to enable readers to understand and evaluate the methods thoroughly.

      Evaluation Metrics: The feedback does not mention the specific evaluation metrics used to assess the performance of the proposed methods. The authors should clarify the criteria employed to compare their methods against existing batch selection methods and demonstrate the statistical significance of the observed improvements.

      Reproducibility: While the authors claim that their methods can be used with any package, including DeepChem, no mention is made of providing the necessary code or resources to reproduce the experiments. Including code repositories or detailed instructions would enhance the reproducibility and practical utility of the study.

      Suggestion 1:

      Elaborate on the Methodology: Provide an in-depth explanation of the two active learning batch selection methods, including algorithmic details, implementation considerations, and any specific assumptions made. This will enable readers to better comprehend and evaluate the proposed techniques.

      Answer: We thank the reviewer for this suggestion. Following this comments we have extended the text in Methods (in Section: Batch selection via determinant maximization and Section: Approximation of the posterior distribution) and in Supporting Methods (Section: Toy example). We have also included the pseudo code for the Batch optimization method.

      Suggestion 2:

      Clarify Evaluation Metrics: Clearly specify the evaluation metrics employed in the study to measure the performance of the active learning methods. Additionally, conduct statistical tests to establish the significance of the improvements observed over existing batch selection methods.

      Answer: Following this comment we added to Table 1 details about the way we computed the cutoff times for the different methods. We also provide more details on the statistics we performed to determine the significance of these differences.

      Suggestion 3:

      Enhance Reproducibility: To facilitate the reproducibility of the study, consider sharing the code, data, and resources necessary for readers to replicate the experiments. This will allow researchers in the field to validate and build upon your work more effectively.

      Answer: This is something we already included with the original submission. The code is publicly available. In fact, we provide a phyton library, ALIEN (Active Learning in data Exploration) which is published on the Sanofi Github(https://github.com/ Sanofi-Public/Alien). We also provide details on the public data used and expect to provide the internal data as well. We included a small paragraph on code and data availability.

      Reviewer No.2 (public)

      Suggestion 1:

      The authors presented a well-written manuscript describing the comparison of activelearning methods with state-of-art methods for several datasets of pharmaceutical interest. This is a very important topic since active learning is similar to a cyclic drug design campaign such as testing compounds followed by designing new ones which could be used to further tests and a new design cycle and so on. The experimental design is comprehensive and adequate for proposed comparisons. However, I would expect to see a comparison regarding other regression metrics and considering the applicability domain of models which are two essential topics for the drug design modelers community.

      Answer: We want to thank the reviewer for these comments. We provide a detailed response to the specific comments below. 

      Reviewer No.1 (Recommendations For The Authors)

      Recommendation 1:

      The description provided regarding the data collection process and the benchmark datasets used in the study raises some concerns. The comment specifically addresses the use of both private (Sanofi-owned) and public datasets to benchmark the various batch selection methods. Lack of Transparency: The comment lacks transparency regarding the specific sources and origins of the private datasets. It would be crucial to disclose whether these datasets were obtained from external sources or if they were generated internally within Sanofi. Without this information, it becomes difficult to assess the potential biases or conflicts of interest associated with the data.

      Answer: We would like to thank the reviewer for this comment. As mentioned in the paper, the public github page contains links to all the public data and we expect also to the internal Sanofi data. We also now provide more information on the specific experiments that were internally done by Sanofi to collect that data.

      Potential Data Accessibility Issues: The utilization of private datasets, particularly those owned by Sanofi, may raise concerns about data accessibility. The lack of availability of these datasets to the wider scientific community may limit the ability of other researchers to replicate and validate the study’s findings. It is essential to ensure that the data used in research is openly accessible to foster transparency and encourage collaboration.

      Answer: Again, as stated above we expect to release the data collected internally on the github page.

      Limited Information on Dataset Properties: The comment briefly mentions that the benchmark datasets cover properties related to absorption, distribution, pharmacokinetic processes, and affinity of small drug molecules to target proteins. However, it does not provide any specific details about the properties included in the datasets or how they were curated. Providing more comprehensive information about the properties covered and the methods used for curation would enhance the transparency and reliability of the study.

      To address these concerns, it is crucial for the authors to provide more detailed information about the data sources, dataset composition, representativeness, and curation methods employed. Transparency and accessibility of data are fundamental principles in scientific research, and addressing these issues will strengthen the credibility and impact of the study.

      Answer: We agree with this comment and believe that it is important to be explicit about each of the datasets and to provide information on the new data. We note that we already discuss the details of each of the experiments in Methods and, of course, provide links to the original papers for the public data. We have now added text to Supporting Methods that describes the experiments in more details as well as providing literature references for the experimental protocols used. As noted above, we expect to provide our new internal data on the public git page. 

      Recommendation 2:

      Some comments on the modeling example Approximation of the posterior distribution. Lack of Methodological Transparency: The comment fails to provide any information regarding the specific method or approach used for approximating the posterior distribution. Without understanding the methodology employed, it is impossible to evaluate the quality or rigor of the approximation. This lack of transparency undermines the credibility of the study.

      Answer: We want to thank the reviewer for pointing this out. Based on this comment we added more information to Section: Approximation of the posterior distribution. Moreover, we now provide details on the posterior approximation in Section: Two approximations for computing the epistemic covariance.

      Questionable Assumptions: The comment does not mention any of the assumptions made during the approximation process. The validity of any approximation heavily depends on the underlying assumptions, and their omission suggests a lack of thorough analysis. Failing to acknowledge these assumptions leaves room for doubt regarding the accuracy and relevance of the approximation.

      Answer: We are not entirely sure which assumptions the reviewer is referring to here. The main assumption we can think of that we have used is the fact that getting within X% of the optimal model is a good enough approximation. We have specifically discussed this assumption and tested multiple values of X. While it would have been great to have X = 0 this is unrealistic for retrospective studies. For Active Learning the main question is how many experiments can be saved to obtain similar results and the assumptions we used are basically ’what is the definition of similar’. We now added this to Discussion.

      Inadequate Validation: There is no mention of any validation measures or techniques used to assess the accuracy and reliability of the approximated posterior distribution. Without proper validation, it is impossible to determine whether the approximation provides a reasonable representation of the true posterior. The absence of validation raises concerns about the potential biases or errors introduced by the approximation process.

      Answer: We sincerely appreciate your concern regarding the validation of the approximated posterior distribution. We acknowledge that our initial submission might not have clearly highlighted our validation strategy. It is, of course, very hard to determine the accuracy of the distribution our model learns since such distribution cannot be directly inferred using experiments (no ’ground truth’). Instead, we use an indirect method to determine the accuracy. Specifically, we conducted retrospective experiment using the learned distribution. In these experiments, we indirectly validated our approximation by measuring the error with the respective method. The results from these retrospective experiments provided evidence for the accuracy and reliability of our approximation in representing the true posterior distribution. We now emphasize this in Methods.

      Uncertainty Quantification: The comment does not discuss the quantification of uncertainty associated with the approximated posterior distribution. Properly characterizing the uncertainty is crucial in statistical inference and decision-making. Neglecting this aspect undermines the usefulness and applicability of the approximation results.

      Answer: Thank you for pointing out the importance of characterizing uncertainty in statistical inference and decision-making, a sentiment with which we wholeheartedly agree. In our work, we have indeed addressed the quantification of uncertainty associated with the approximated posterior distribution. Specifically, we utilized Monte Carlo Dropout (MC Dropout) as our method of choice. MC Dropout is a widely recognized and employed technique in the neural networks domain to approximate the posterior distribution, and it offers an efficient way to estimate model uncertainty without requiring any changes to the existing network architecture [1, 2]. In the revised version, we provide a more detailed discussion on the use of Monte Carlo Dropout in our methodology and its implications for characterizing uncertainty.

      Comparison with Gold Standard: There is no mention of comparing the approximated posterior distribution with a gold standard or benchmark. Failing to provide such a comparison leaves doubts about the performance and accuracy of the approximation method. A lack of benchmarking makes it difficult to ascertain the superiority or inferiority of the approximation technique employed.

      Answer: As noted above, it is impossible to find gold standard information for the uncertainly distribution. It is not even clear to us how such gold standard can be experimentally determined since its a function of a specific model and data. If the reviewer is aware of such gold standard we would be happy to test it. Instead, in our study, we opted to benchmark our results against state-of-the-art batch active learning methods, which also rely on uncertainty prediction (such uncertainty prediction is the heart of any active learning method as we discuss). Results clearly indicate that our method outperforms prior methods though we agree that this is only an indirect way to validate the uncertainty approximation.

      Reviewer No.2 (Recommendations For The Authors)

      Recommendation 1:

      The text is kind of messy: there are two results sections, for example. It seems that part of the text was duplicated. Please correct it.

      Answer: We want to thank the reviewer pointing this out. These were typos and we fixed them accordingly.

      Recommendation 2:

      Text in figures is very small and difficult to read. Please redraw the figures, increasing the font size: 10-12pt is ideal in comparison with the main text.

      Answer: We want to thank the reviewer for this comment and we have made the graphics larger.

      Recommendation 3: Please, include specific links to data availability instead of just stating it is available at the Sanofi-Public repository.

      Answer: We want to thank the reviewer for this comment and added the links and data to the Sanofi Github page listed in the paper.

      Recommendation 4:

      What are the descriptors used to train the models?

      Answer: We represented the molecules as molecular graphs using the MolGraphConvFeaturizer from the DeepChem library. We now explicitly mention this in Methods.

      Recommendation 5:

      Regarding the quality of the models, I strongly suggest two approaches instead of using only RMSE as metrics of models’ performance. I recommend using the most metrics as possible as reported by Gramatica (https://doi.org/10.1021/acs.jcim.6b00088). I also recommend somehow comparing the increment on the dataset diversity according to the employed descriptors (applicability domain) as a measurement to further applications on the unseen molecules.

      Answer: We want to thank the reviewer for this great suggestions. As suggested we added new comparison metrics to the Supplement.

      • Distribution plot for the range of the Y values Figure 8 • Clustering of the data sets represented as fingerprints Supplementary material Figure 5,6

      • Retrospective experiments with Spearman correlation coefficient. Supplementary material Figure: 2,3,4

      I suggest also a better characterization of datasets including the nature and range of the Y variable, the source of data in terms of experimentation, and chemical (structural and physicochemical) comparison of samples within each dataset.

      Answer: As noted above in response to a similar comment by Reviewer 1, we have added more detailed information about the different experiments we tested to Supporting Methods.

      References

      [1] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

      [2] N.D. Lawrence. Variational Inference in Probabilistic Models. University of Cambridge, 2001.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is a very well written and performed study describing a TOPBP1 separation of function mutation, resulting in defective MSCI maintenance but normal sex body formation. The phenotype differs from that of a previous TOPBP1 null allele, in which both MSCI and sex body formation were defective. Additional defects in CHK phosphorylation and SETX localization are also described.

      Strengths:

      The study is very rigorous, with a remarkably large number of MSCI marks assayed, phosphoproteomics (leading to the interesting SETX discovery) and 10X RNAseq, allowing the MSCI phenotype to be further deconvolved. The approaches in most cases are robust.

      Weaknesses:

      There aren't many; please find list below:

      1) The authors are committed to the idea that maintenance of MSCI is the major defect here. However, based on the data, an alternative would be that some cells achieve sex body formation and MSCI normally, while others do not. It would only take a small percentage of cells exhibiting MSCI failure to kill all the cells in the same germinal epithelium, so this could still explain the complete pachytene block. This isn't a major point...this phenotype is clearly different to the TOPBP1 KO, but a broader discussion of possibilities in the discussion would help. I raise this in the context of both the cytology and 10X analysis:

      a) The assessment that sex body formation is normal is based on cytology in Supp 8 and 9, but a more rigorous approach would be to assess condensation of the XY pair in stage-matched spread cells (maybe they have that data already) by measuring distances between the X and Y centromere, or looking at stage IV of the seminiferous cycle, where all cells should have oval sex bodies but sex body mutants have persistent elongated XY pairs (see work of Namekawa and Turner). The authors do actually mention that gH2AX spreading is defective in many cells....and if this is true, condensation to form a sex body would almost certainly not have taken place in those cells.

      We appreciate the reviewer’s comment and have performed the experiment suggested, counting the number of elongated sex bodies in all sex body-positive cells in seminiferous tubules stained with γH2AX and DAPI (as done by Turner in Hirota et al., 2018). The experiment did not show significant differences between Topbp1+/+ and Topbp1B5/B5 as shown in Author response image 1.

      Author response image 1.

      Topbp1B5/B5 displays normal condensation of the XY-pair. A) Immunostaining of XY condensation in Topbp1+/+ and Topbp1B5/B5 testes sections (γH2AX: green and DAPI: gray). B) Quantification of all sex body-positive cells per tubule (Topbp1+/+ number of cells counted = 781, number of tubules counted = 28, number of mice = 3; Topbp1B5/B5 number of cells counted = 967, number of tubules counted = 28, number of mice = 3). C) Quantification of elongated-sex body cells per tubule (Topbp1+/+ number of cells counted = 19 and 762 normal round/oval-sex bodies cells, number of tubules counted = 28, number of mice = 3; Topbp1B5/B5 number of cells counted = 45 and 922 normal round/oval-sex bodies cells, number of tubules counted = 28, number of mice = 3).

      b) Regarding the 10X data, the finding that expression of some XY genes is elevated and others are not is also consistent with a "partial" phenotype (some cells have normal XY bodies and MSCI, others fail in both). In Fig 6E, X expression looks to be elevated in B5 vs wt at all stages...if this were a maintenance issue, shouldn't it be equal to that in wt and then elevate later?

      We understand the point raised by the reviewer, however we do not favor the “partial” phenotype model because of the absence of any post-pachytene spermatocytes in the B5 mutant. If some cells had escaped the MSCI defect, we would expect to detect cells progressing further in meiosis. Because we cannot rule out completely the possibility of a subtle disruption in XY silencing initiation, we decided to better emphasize this point in the discussion (lines 391-394).

      In Figure 6E, the X-linked genes were normalized against chromosome 9-linked genes. The normalization against pre-leptotene was done for the results displayed on Figure 7, in which we demonstrate the maintenance issue. Furthermore, for the 10X analysis, while the same number of cells were loaded for wild-type and mutant, the composition of cells varied between these two samples. Despite the fact that very few “spermatocyte 3” cells were detected in the mutant, those cells displayed much higher X-linked gene expression than the wild-type spermatocyte 3 cells.

      2) How is the quantitation showing impaired localization of select markers (e.g. SETX) normalized? How do we know that the antibody staining simply didn't work as well on the mutant slides?

      The quantification showing impaired localization of the selected markers such as SETX was done as described by Sims, et al. 2022 and Adams, et al. 2018. In brief, the green signal was measured along (XY cores) or across (XY DNA loops) the X and Y chromosomes and normalized against the analogous signal on the autosomal chromosomes. The possibility that the antibody simply did not work as well on the mutant is unlikely since multiple biological replicates were performed and we reproducibly followed standard practices in the field for meiotic spreads staining, imaging, and quantification. We also note that our findings published in Sims et al, 2022 show that ATR inhibition strongly impairs SETX localization to the sex body, further substantiating our claim that signaling via ATR-TOPBP1 controls SETX.

      3) Is testis TOPBP1 protein expression reduced in the B5 mutant?

      TOPBP1 protein abundance in the B5 mutant is reduced in lysates from whole testis, measured via western blot. We did not detect a significant reduction in TOPBP1 signal intensity measured by immunofluorescence in pachytene spreads of the B5 mutant.

      4) 10X analysis: how were the genes on the y-axis in Supp 24 arranged? Is this by location on the X chromosome?

      These genes were sorted by location across the chromosome X.

      5) The final analyses in Fig 7: X-genes are subdivided based on their behavior (up, down, unchanged). What isn't clear to me is whether the authors have considered the fact that there are global changes in gene expression during meiosis (very low in lep , zyg and early pach, then ramps up hugely from mid pach). In other words, is this normalized to autosomal gene expression?

      For the final analysis in Fig7, the normalization was done by their expression at the pre-leptotene stage. Moreover, the analysis was made comparing X-linked gene behavior in Wild-type vs B5 mutant.

      6) Again regarding the 10X analysis, my prediction would be that not ALL X and Y gene would increase in pach if MSCI were ablated...we should remember that XY genes have been subject to MSCI for some 160 million years of evolution, and this will mean that many enhancers that originally drove their expression prior to the evolution of MSCI will now be lost. This has been our experience: many XY genes aren't elevated at pach even in mutants in which MSCI is totally defective. I'd urge the authors to consider this possibility when they use XY gene expression patterns to diagnose the severity or timing of the MSCI phenotype. This could be a discussion point.

      We greatly appreciate the reviewer’s suggestion and have added discussion about this point to lines 392400).

      Reviewer #2 (Public Review):

      Summary:

      This paper described the role of BRCT repeat 5 in TOPBP1, a DNA damage response protein, in the maintenance of meiotic sex chromosome inactivation (MSCI). By analyzing a Topbp1 mutant mouse with amino acid substitutions in BRCT repeat 5, the authors found reduced phosphorylation of a DNA/RNA helicase, Sentaxin, and decreased localization of the protein to the X-Y sex body in pachynema. Moreover, the authors also found decreased repression of several genes on the sex chromosomes in the male mice.

      Strengths:

      The works including phospho-proteomics and single-cell RNA sequencing with lots of data have been done with great care and most of the results are convincing.

      Weaknesses:

      One concern is that, although the Topbp1 mutant spermatocytes show very severe defects after the stage of late pachynema, the defect in the gene silencing in the sex body is relatively weak. It is a bit difficult to explain how such a weak mis regulation of the gene silencing in mice causes the complete loss of cells in the late stage of spermatogenesis.

      We appreciate the reviewer’s comment. We note that even subtle mis-regulation of XY gene silencing has been reported to lead to significant loss of cells in late stage of prophase I (Ichijima et al., 2011; Modzelewski et al., 2012). Moreover, it is possible that some cells with drastic changes in X-gene expression were excluded from the downstream analysis due to high levels of mitochondrial gene expression (cells that were likely dying due to apoptosis). The exclusion of cells with high levels of mitochondrial gene expression is a common practice in downstream analysis of sc-RNA sequencing data.

      Reviewer #3 (Public Review):

      The work presented by Ascencao and coworkers aims to deepen into the process of sex chromosome inactivation during meiosis (MSCI) as a critical factor in the regulation of meiosis progression in male mammals. For this purpose, they have generated a transgenic mouse model in which a specific domain of TOPBP1 protein has been mutated, hampering the binding of a number of protein partners and interfering with the regulatory cascade initiated by ATR. Through the use of immunolocalization of an impressive number of markers of MSCI, phosphoproteomics and single cell RNA sequencing (scRNAseq), the authors are able to show that despite a proper morphological formation of the sex body and the incorporation of most canonical MSCI makers, sex chromosome-liked genes are reactivated at some point during pachytene and this triggers meiosis progression breakdown, likely due to a defective phosphorylation of the helicase SETX.

      The manuscript presents a clear advance in the understanding of MSCI and meiosis progression with two main strengths. First, the generation of a mouse model with a very uncommon phenotype. Second, the use of a vast methodological approach. The results are well presented and illustrated. Nevertheless, the discussion could be still a bit tuned by the inclusion of some ideas, and perhaps speculations, that have not been considered.

      We appreciate the reviewer’s comment and have improved the discussion section addressing the points raised in the “recommendation For the Authors”.

      Reviewer #1 (Recommendations For The Authors):

      I don't have any additional points here

      Reviewer #2 (Recommendations For The Authors):

      The paper by Ascencao et al. describes a separation-in-function allele of TOPBP1 critical for DNA damage response (DDR) that confers a specific defect in XY sex chromosome inactivation during male mouse meiosis. The authors constructed a Topbp1 separation-of-function mouse by introducing amino acid substitutions in BRCT repeat 5 and found the mice with normal DDR response in mitosis and meiosis show male infertility. Topbp1(B5/B5) mice do not contain spermatocytes after diplonema, as a result, little spermatids/sperms. In the mice, most of the meiotic events in prophase I including chromosome synapsis and meiotic recombination as well as the formation of the sex body are normal. The detailed proteomic analysis revealed the reduced ATR-dependent phosphorylation of a DNA/RNA helicase, Sentaxin. And also single-cell RNA sequencing found that the expression of some of genes from sex chromosomes are not silenced well compared to the control. The works with lots of data have been done with great care and most of the results are convincing. One clear concern is that, although the authors nicely showed a defect in gene silencing in sex chromosomes in the Topbp1(B5/B5) mice, how a small defect in the gene silencing leads to the complete loss of diplotene spermatocytes remains unaddressed.

      Major points:

      Although the authors showed a change in the transcriptome in spermatocytes of Topbp1(B5/B5) male mice, the authors cannot explain the complete lack of spermatids in this mouse. Even the transcriptome seems not to provide a clue.

      1) Given that the TOPBP1-B5 protein cannot bind to both 53BP1 and BLM, it is interesting to check the localization of both proteins on meiotic chromosome spreads (in the case of 53BP1, the localization in MEFs with DNA damage).

      We appreciate the reviewer’s comment. We have tried to stain BLM in meiotic spreads using several different antibodies, however we were not successful getting specific signals for BLM. In the case of 53BP1, we monitored its localization, and it was not significantly different from Topbp1-/- meiotic spreads, please refer to Supplemental Figure 11. While we appreciate the reviewer’s suggestion of looking at the localization of 53BP1 in MEFs with DNA damage, we opted not to perform the experiment because we have shown that 53BP1 can still bind the BRCT 1 and 2 domains of TOPBP1 as previously described (Bigot et al., 2019; Cescutti et al., 2010; Liu et al., 2017). Additionally, both male and female 53BP1 KO mice are fertile (Ward et al., 2003), thus the partial disruption in binding to 53BP1 that we observed in TOPBP1 B5 mutant is likely not causing the infertility phenotype.

      2) A recent preprint by Fujiwara et al. (doi: https://doi.org/10.1101/2023.04.12.536672) showed the accumulation of R-loops in spermatocyte spreads in Senataxin knockout mice. The authors may check the R-loop on the sex body in Topbp1-B5 mice.

      We thank the reviewer for the suggestion. We have tried several protocols to stain R-loops (including the protocol used in the paper mentioned above) but were not successful.

      3) The authors need to check the protein level (and band shift) of Senataxin in the testis by western blotting analysis.

      We have tried several SETX antibodies, and none worked for western blot analysis.

      4) If possible, the authors can see any protein interaction between TOPBP1 and Senataxin.

      We appreciate the suggestion, and we will investigate this interaction in future work.

      5) The authors need to check the statistics in the paper.

      (1) It is better to show actual P-values in the case of "ns".

      P-values were added to the respective figure legends.

      (2) In focus counting such as Figures 3D, G, H, 4B, D, F, H, 5E, and F (and in Supplemental Figures), please indicate how many spreads were counted in each mouse. Moreover, the distribution of focus numbers and intensity of fluorescence are not parametric (not normal distribution). It is better to use a non-parametric method such as Mann-Whitney's U test.

      We appreciate the reviewer's comment and upon consulting with a Statistician at Cornell Statistical Consulting Unit (CSCU), we were advised to use a linear mixed effect model to take into account the variability in cells within each mouse when comparing mice between groups (Topbp1+/+ vs Topbp1B5/B5). We then reanalyzed all quantified meiotic spreads using this mixed effect model, and the p-value, number of mice, and number of cells counted for each group are displayed in the respective figure legends. Upon going through all the quantified meiotic spreads, we realized a minor error in one of the previous data points related to SETX staining in Topbp1+/+ and have fixed it. Using the previous quantification data and the new stats analysis the p-value for cores was 0.5598 and p-value for loops was 0.0273. Now using the correct values and the new stats analysis the p-value for cores is 0.5987 and p-value for loops is 0.0452. The correction did not change the conclusion of this data and is now displayed in the new Figure 5. We also realized a mistake in the ATR quantification when the spreadsheet was moved from excel to Graphpad. Using the previous quantification and the new stats analysis the p-value for cores was 0.2451 and p-value for loops was 0.8933. Now using the correct values and the new stats analysis the p-value for cores is 0.4068 and p-value for loops is 0.9396. The correction did not change the conclusion of this data and is now displayed in the new Figure 4. Moreover, we realized that we used n = 8 (n = number of mice) for MDC1 quantification and n = 2 for pCHK1_S345, instead of n =3 as shown in the preprint version of the manuscript. Corrected values were added to their respective figures and figure legends.

      (3) From Figures 6E, 7B, and 7C, the authors conclude the difference in the expression profile between wild type and Topbp1(B5) spermatocytes. It is better to show P-values for the comparison. Particularly, in Figure 7C, Xiap expression kinetics look similar between wild type and the mutant.

      We have added p-values to figures 6E and 7B and their respective figures or figure legends.<br /> In figure 7C, we now recognize that the Δ could have been misleading as we meant to compare Wild-type SP2 to Wild-type SP3 and Mutant SP2 to SP3; and not comparing Wild-type SP3 to Mutant SP3. Therefore, the Δ was excluded from Figure 7C. For the comparisons between expression levels of SP2 and SP3, it is challenging to calculate p-values for a single gene since these cells have started X-gene silencing and expression values are very low. Meaningful p-values for the comparisons between Wildtype SP3 to Mutant SP3 can be visualized in Figure 7B, where the comparison is based on number of genes instead of expression levels of each gene.

      Minor comments:

      1) Line 34: SPO11 is NOT a nuclease. Just delete it.

      It has been deleted (see line 34).

      2) Line 71, a protein: Is this protein ATR? Is so, please write it. If not, please give the name of the protein.

      In line 71 (now lines 79-80), we refer to TOPBP1-interacting proteins in general since many of these interactions happen through a phosphorylation in the TOPBP1’s interactor. This is the case for BLM, 53BP1, FANCJ, and RAD9. ATR interacts with TOPBP1 through TOPBP1’s AAD domain and this is not a phospho-mediated interaction. We restructured the sentence for clarity.

      3) In the Introduction, the authors often refer to a review by Cimprich and Cortez (2008) in various places. It is better to cite an original paper or the other an appropriate review.

      We have accepted the reviewer’s suggestion and added original papers when appropriate.

      4) Line 143-145: The authors generated eight charge reversal point mutations in the BRCT domain 5 of TOPBP1. If possible, it is helpful to mention the logic to generate these substitutions and also why BRCT domain 5, is not other domains.

      We generated eight charge reversal point mutations to abrogate all possible phospho-dependent interactions and avoid potential residual interactions. We have mutated other BRCT domains as well, which will be published separately.

      5) Line 174 (and Figure 2E): RPA should be either RPA2 or RPA32.

      Corrected (it is RPA2).

      6) Figure 5C-F: Please explain in more detail how the authors quantified the SETX signals. Why the two results are different?

      The quantification was done as described by Sims, et al. 2022, yielding separate data for XY cores and DNA loops. In brief, the green signal was measured along (XY cores) or across (XY DNA loops) the X and Y chromosomes. Signals were normalized by the signal in the autosomal chromosomes.

      Reviewer #3 (Recommendations For The Authors):

      I have no major criticisms, but I include a list of comments and suggestions (some of them conceptual, and disputable) that could help the authors to improve some parts of the manuscript.

      1) Line 52: I realize that the term protein "sequestration" (used in many instances along the manuscript) has been widespread in the literature related to MSCI in the last years. While this might be a cool way to describe the dynamics of proteins accumulating in the sex body, this reviewer considers this term is totally inappropriate. It is confusing and introduces at least to mistakes to the fact of protein accumulation in the sex body. First, it seems to indicate that once trapped in the sex body, proteins are incapable of leaving it, which might be completely wrong (histone replacement refutes this idea). Second, it is suggested that DDR proteins are attracted by the sex body and cannot remain associated to autosomes even if DNA repair has not been completed. This has also been demonstrated to be incorrect (see for example PDMI 19714216). Moreover, DDR proteins can associate de novo to chromosomes if needed, for instance upon DNA damage caused by chemicals or irradiation. Thus, I suggest that the use of "sequestration" should be evaluated more critically, evaluating the misleading ideas that are subjacent to this term. The use of protein "accumulation" is much more objective and descriptive of the real facts.

      We thank the reviewer’s suggestion and have addressed it in lines 52, 97 and 324.

      2) Line 88: Just as a deference to the original ideas, it would be nice to acknowledge that the inactivation of sex chromosomes and the formation of a sex body in mouse meiosis was described more than 50 years ago (PDMI 5833946; 4854664). Likewise, the ideas about the sequential achievement and reinforcement of MSCI during pachytene have been developed during the last 20 years, far before the recent reports cited in the manuscript. Citations to these "old fashion" works would be great.

      We appreciate the reviewer’s suggestion and have addressed it in line 86.

      3) Line 90. Please, take into consideration that such a strong effect on meiosis progression occurs mainly in some knockout mice models and that in many other models (including hybrid mice models from natural populations) autosomal regions can remain unsynapsed and accumulate DDR proteins without impairing meiosis. In other mammalian species, meiosis is even more permissive to these MSUC phenomena.

      We appreciate the reviewer’s suggestion and have addressed it at line 88.

      4) Line 211: The differences in the abundance of MLH1 and MLH3 are remarkable. If these two proteins are supposed to form a heterodimer leading to crossover formation, then the increase of only MLH1 might be related to a different process, not leading to crossover (even not class II ones).

      We agree with the reviewer’s comment and have included this point in the discussion (lines 491- 497).

      5) Line 217: I have some doubts about the results presented in Supplementary Figure 9. First, it is not clear to me how the represented cells counts were performed. Each spot is supposed to represent cell counts in a single individual, but how many cells were counted per individual? The proportion of cells could be a better indicator. Second, some B5/B5 individuals' counts were close to the ones displayed in the wild type. Did mutant animals show a high divergence compared to each other? It could be great to have each individual data displayed in a pie chart, and not only the aggregated data.

      We have now addressed this in the new Supplemental figure 9 legend. Each dot in the graph represents the sum of cells counted for each individual. We counted cells from 8 mice for each, Topbp1+/+ and Topbp1B5/B5.

      Here we summarize the total cells counted per individual:

      Author response table 1.

      6) Line 222: The data on 53BP1 deserve further attention. On the one side, from the analysis presented in Supplementary Figure 11, it seems that 53BP1 tends to show a lower intensity in Topbp1B5/B5 mice. Since only 2 mice were analyzed, while for most of the other proteins 3-8 animals were studied, I suggest increasing the number of animals analyzed for 53BP1 localization, to test if this slight difference turns significant. This is relevant since: 1) the association of 53BP1 protein in somatic cells was clearly affected, and 2) 53BP1 is one of the last MSCI markers incorporated to the sex body at mid-late pachytene. These results should be moved to the main text and not appear as supplementary data. On the other hand, if no differences were to be found in meiosis, compared to somatic cells, how do authors explain these differences? Would 53BP1 have another partner at the sex body apart from TOPBP1? Could TOPBP1 have other BRCT domains (apart from domain 5) able to bind 53BP1?

      We appreciate the reviewer’s suggestion; however, we had an issue with 53BP1 antibody. We analyzed 2 mice and needed to re-order the antibody. This antibody was backordered for almost one year, and when we finally received the order, the company had changed the clone for this antibody, and it no longer worked for meiotic spreads. In somatic cells, we see in HEK-293T a partial disruption in the binding to TOPBP1 B5 through IP-MS and IP-Western blot. The disruption is only partial due to the binding of 53BP1 to other domains in TOPBP1 such as BRCT 1 and 2 (Bigot et al., 2019; Cescutti et al., 2010; Liu et al., 2017). However, in assays in which we would expect a phenotypic response caused by impaired 53BP1, we did not see any effect, such as survival after IR (using the mice) and survival after phleomycin challenge (using Mefs). Moreover, 53BP1 KO mice, males and females, are fertile (Ward et al., 2003) so, the partial disruption in binding to 53BP1 that we observed in TOPBP1 B5 mutant is likely not causing the infertility phenotype.

      7) Line 250: I do not understand what is represented in Figure 5A. Why did the author mix two different experiments (differences in phosphoprotein abundance in B5/B5 compared to wild type and the interference of ATR with AZ20)?

      To account for the differences in cell population observed in the whole testis between Topbp1+/+ and Topbp1B5/B5, and to know exactly which phosphorylation changes were due to disruption in the ATR signaling and not pleiotropic effects, we combined two different phosphoproteomes: One phosphoproteome from the comparison between Topbp1+/+ and Topbp1B5/B5 and another one from the comparison between Vehicle or ATR inhibitor-treated mice. By utilizing this approach, we only consider hits that were disrupted in both analyses. A similar method was used by Sims et.al, 2022 (Sims et al., 2022).

      8) It is not clearly explained what is represented in Figure 6B. There is no explanation in the text or the figure legend. Do this represent the difference between scRNAseq in control and Topbp1B5/B5? If so, please, clarify.

      We thank the reviewer’s comment and have addressed it in the legend of Figure 6B.

      9) Line 342 and following. The authors describe a decrease of gene silencing. The use of two negative concepts is always confusing and results in the conversion to a positive one. I suggest considering the possibility of just talking about increase of gene expression, in order to make the message clearer.

      We appreciate the reviewer’s point here, but it is important to note that the phenomenon disrupted in our mutants is MSCI, which is by definition a gene silencing mechanism. This phenotype is not as simple as “increased gene expression”, it is the removal of a mechanism that is a key feature of prophase I. Thus, because we are focusing on the mechanism of MSCI, it is crucial to maintain this (albeit unusual) terminology.

      10) As for the classification of spermatocytes into 9 categories, I am curious about which spermatocytes are included in each of these categories. For instance, from cytology it seems that in Topbp1B5/B5 mice, spermatocytes are able to reach mid-late pachytene. However, in the spermatocyte categories established by scRNAseq they only reach class 3. Therefore, which are the populations included in the remaining 6 classes of spermatocytes? Do authors have any morphological correlation to these scRNAseq categories? Is it possible that in this mutant morphological advance of meiosis and gene expression profiles are uncoupled?

      The clustering of cells to a specific group is based on RNA expression, which does not always match cytological features. Moreover, during the analysis, cells with high expression of mitochondrial genes are excluded (these are dying cells that do not pass the quality control). Thus, while Topbp1B5/B5 reaches a mid-late-pachytene stage according to cytological analyses, in the single-cell RNA seq analysis we could only detect one pachytene stage. The other 6 remaining categories of spermatocytes can be classified according to their best-fit profile of gene expression. For that, we use the classification described by Chen et al., 2018 and Lau et al.,2020. Spermatocytes 3-5 = Pachytene, Spermatocytes 6-7 = Diplotene, Spermatocytes 8-9 = secondary spermatocytes (metaphase I/II). The gene markers used for this classification are displayed in Author response image 2.

      Author response image 2.

      Genes used as markers of spermatocytes captured in the scRNAseq analysis. Violin plots display the distribution of cells expressing Gm960 (Leptotene marker), Meiob (Leptotene/Zygotene marker), Psma8 (Pachytene marker), Pwill1 (Pachytene marker), Pou5f2 (Diplotene marker), and Ccna1 (Secondary Spermatocytes marker).

      11) Figure 6E shows that overexpression of X-linked genes is not a feature of spermatocytes but it is initiated in spermatogonia. This fact has not been properly stated in the text and perhaps not sufficiently highlighted.

      We noticed subtle changes during the spermatogonia stage and have addressed the reviewer’s comment in lines 317-322, however the downstream analyses related to a defect in X-gene silencing maintenance displayed in Figure 7 were done based on normalization of gene expression to its respective pre-leptotene stage.

      12) Supplementary Figure 24 shows that some X-linked genes are more expressed in Topbp1B5/B5 compared to control mice. In the figure it can be observed that many genes accumulate at the bottom of the graph. Does this have any correlation to the location of these genes along the X chromosome, for instance near or within the PAR? This could correlate with the defects in γH2AX accumulation at this region.

      These are the locations along the chromosome. Only the bottom 5 rows are within the PAR region, so this accumulation is not within the PAR region specifically. The bottom tenth of the genes in the heatmap correspond to roughly a 17 Mb region.

      13) The authors only analyzed the overexpression of genes located on the X chromosome. It would be interesting to show the behavior of Y-linked genes as well.

      The coverage of Y-linked genes was not very high and that is why we have not shown the results in the paper. However, the results for Y-linked genes were similar to the X-linked genes and can be visualized in Author response image 3.

      Author response image 3.

      Single cell RNAseq reveals that Topbp1B5/B5 spermatocytes initiate MSCI but fail to promote full silencing of Y chromosome-linked genes. Violin plot displaying the ratio of the average expression of Y chromosome genes by the average expression of chromosome 9 genes at different stages of spermatogenesis for Topbp1+/+ and Topbp1B5/B5 cells.

      14) Line 425: Authors indicate that it is not known if association of TOPBP1 and BLM, 53BP1 or other proteins is disrupted in Topbp1B5/B5 spermatocytes. Could these experiments be performed in the testis, as they were in somatic cells?

      The cellular composition in Topbp1+/+ and Topbp1B5/B5 testes is very different so it would not be a fair comparison. While we have tried to isolate pachytene cells to perform these experiments, we were successful only when using Topbp1+/+ but not Topbp1B5/B5, likely due to the extremely small size of the mutant testis.

      15) Line 455 and following. I find that the discussion about the role of SETX is not completely clear. It seems that a failure of SETX function could result in defective or no transcription, as a consequence of the impossibility to resolve RNA-DNA hybrid molecules. Therefore, should impairment of SETX lead to reduced or enhanced transcription? Please clarify. On the other hand, this defect in SETX function should affect the whole genome, and not only sex chromosomes. Do authors have any clues about this broad effect?

      We thank the reviewer’s comment and have expanded on discussion in lines 470-474. While we agree with the reviewer’s point that an impairment on SETX should affect the whole genome, however, during pachytene stage, SETX is mostly localized to the sex body. The Topbp1B5/B5 shows a specific defect in X and Y silencing maintenance during pachytene stage, thus we hypothesized that an impairment in SETX localization during pachytene should especially impair the X and Y chromosomes.

      16) As a general comment to the discussion section, I think authors could extend into some specific ideas or speculations. It is shocking that sex chromosome-linked genes are able to escape silencing without dismantling the complex (almost complete) MSCI response in the Topbp1 mutant (although perhaps this is not so surprising considering the high number of escapees reported in the inactivated X chromosome in female somatic cells).

      How to explain this paradox? One possibility (which would make a real breakthrough) is that the expression of sex chromosome-linked genes represents a regulated response to meiotic defects, and not just an unfortunate consequence of a defective MSCI. Thus, MSCI might be somehow irrelevant to prevent the execution of this sex chromosome-based program to stop meiosis progression when needed. The fact that this regulated activation was never proposed is perhaps due to the fact that most of the meiosis mutants characterized so far are unable to reach the stage at which MSCI is properly established, which is the most remarkable difference with the Topbp1 mutant studied here.

      Although naïve, the critical point for the activation of this sex chromosome-based program seems to depend simply on the transcription of Zfy1 and Zfy2 (encoding for transcription factors). The signaling cascades up and downstream these genes are the real mystery, awaiting further studies.

      We thank the very interesting point raised by the reviewer. Our interpretation of the data is that X and Y silencing being a dynamic process requires an initiation step and a maintenance step driven/controlled by the DDR machinery, and that Topbp1B5/B5 shows a grossly normal initiation of X and Y silencing but fails on maintain MSCI. Moreover, the expression of Zfy1 and Zfy2 have been previously demonstrated as enough to trigger cell death (Royo et al., 2010; Vernet et al., 2016), and Topbp1B5/B5 cells show increased expression of these genes. However, we do not exclude the very interesting possibility, raised by the reviewer, that the expression of XY-linked genes represents a regulated response to meiotic defects to stop meiosis progression, leading to the cell death observed in Topbp1B5/B5, which makes the Topbp1B5/B5 an unique model for these studies as most of the previous meiosis mutants are unable to reach the stage at which MSCI is properly established. We add discussion about this exciting point in lines 513-522.

      17) Scale bars are impossible to read in Figures 1I and J, and are missing in all the other image figures. Please, correct.

      We have addressed this in the new Figure 1. For figures displaying meiotic spreads, adding a scale bar is not a common practice in the field as these cells are swollen while being prepared.

      18) Line 828. Since Paula Cohen is an author of the manuscript, it seems weird to acknowledge herself in this section.

      Corrected.

      References

      Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, Broering TJ, Sroga Rios J, Thomas MA, Lin X, Price CM, Barski A, Andreassen PR, Namekawa SH. 2018. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genet 14. doi:10.1371/journal.pgen.1007233

      Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW, Pearl LH. 2019. Phosphorylation-mediated interactions with topbp1 couple 53bp1 and 9-1-1 to control the g1 DNA damage checkpoint. Elife 8:1–28.

      Cescutti R, Negrini S, Kohzaki M, Halazonetis TD. 2010. TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint. EMBO J 29:3723–3732.

      Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, Wang Q, Xie N, Hua R, Liu M, Sha J, Griswold MD, Li J, Tang F, Tong M-H. 2018. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 28:879–896.

      Hirota T, Blakeley P, Sangrithi MN, Mahadevaiah SK, Encheva V, Snijders AP, ElInati E, Ojarikre OA, de Rooij DG, Niakan KK, Turner JMA. 2018. SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Dev Cell 47:645-659.e6.

      Ichijima Y, Ichijima M, Lou Z, Nussenzweig A, Daniel Camerini-Otero R, Chen J, Andreassen PR, Namekawa SH. 2011. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes and Development 25:959–971.

      Lau X, Munusamy P, Ng MJ, Sangrithi M. 2020. Single-Cell RNA Sequencing of the Cynomolgus Macaque Testis Reveals Conserved Transcriptional Profiles during Mammalian Spermatogenesis. Dev Cell 54:548-566.e7.

      Liu Y, Cussiol JR, Dibitetto D, Sims JR, Twayana S, Weiss RS, Freire R, Marini F, Pellicioli A, Smolka MB. 2017. TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9. J Cell Biol 216:623–639.

      Modzelewski AJ, Holmes RJ, Hilz S, Grimson A, Cohen PE. 2012. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell 23:251–264. Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, De Rooij DG, Burgoyne PS, Turner JMA. 2010. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20:2117–2123.

      Sims JR, Faça VM, Pereira C, Ascenção C, Comstock W, Badar J, Arroyo-Martinez GA, Freire R, Cohen PE, Weiss RS, Smolka MB. 2022. Phosphoproteomics of ATR signaling in mouse testes. Elife 11. doi:10.7554/eLife.68648

      Vernet N, Mahadevaiah SK, de Rooij DG, Burgoyne PS, Ellis PJI. 2016. Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes. Hum Mol Genet 25:5300–5310.

      Ward IM, Minn K, van Deursen J, Chen J. 2003. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 23:2556–2563.

      Yeo AJ, Becherel OJ, Luff JE, Graham ME, Richard D, Lavin MF. 2015. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling. Cell Discovery 1. doi:10.1038/celldisc.2015.25

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Given knowledge of the amino acid sequence and of some version of the 3D structure of two monomers that are expected to form a complex, the authors investigate whether it is possible to accurately predict which residues will be in contact in the 3D structure of the expected complex. To this effect, they train a deep learning model that takes as inputs the geometric structures of the individual monomers, per-residue features (PSSMs) extracted from MSAs for each monomer, and rich representations of the amino acid sequences computed with the pre-trained protein language models ESM-1b, MSA Transformer, and ESM-IF. Predicting inter-protein contacts in complexes is an important problem. Multimer variants of AlphaFold, such as AlphaFold-Multimer, are the current state of the art for full protein complex structure prediction, and if the three-dimensional structure of a complex can be accurately predicted then the inter-protein contacts can also be accurately determined. By contrast, the method presented here seeks state-of-the-art performance among models that have been trained end-to-end for inter-protein contact prediction.

      Strengths:

      The paper is carefully written and the method is very well detailed. The model works both for homodimers and heterodimers. The ablation studies convincingly demonstrate that the chosen model architecture is appropriate for the task. Various comparisons suggest that PLMGraph-Inter performs substantially better, given the same input than DeepHomo, GLINTER, CDPred, DeepHomo2, and DRN-1D2D_Inter. As a byproduct of the analysis, a potentially useful heuristic criterion for acceptable contact prediction quality is found by the authors: namely, to have at least 50% precision in the prediction of the top 50 contacts.

      We thank the reviewer for recognizing the strengths of our work!

      Weaknesses:

      My biggest issue with this work is the evaluations made using bound monomer structures as inputs, coming from the very complexes to be predicted. Conformational changes in protein-protein association are the key element of the binding mechanism and are challenging to predict. While the GLINTER paper (Xie & Xu, 2022) is guilty of the same sin, the authors of CDPred (Guo et al., 2022) correctly only report test results obtained using predicted unbound tertiary structures as inputs to their model. Test results using experimental monomer structures in bound states can hide important limitations in the model, and thus say very little about the realistic use cases in which only the unbound structures (experimental or predicted) are available. I therefore strongly suggest reducing the importance given to the results obtained using bound structures and emphasizing instead those obtained using predicted monomer structures as inputs.

      We thank the reviewer for the suggestion! We evaluated PLMGraph-Inter with the predicted monomers and analyzed the result in details (see the “Impact of the monomeric structure quality on contact prediction” section and Figure 3). To mimic the real cases, we even deliberately reduced the performance of AF2 by using reduced MSAs (see the 2nd paragraph in the ““Impact of the monomeric structure quality on contact prediction” section). We leave some of the results in the supplementary of the current manuscript (Table S2). We will move these results to the main text to emphasize the performance of PLMGraph-Inter with the predicted monomers in the revision.

      In particular, the most relevant comparison with AlphaFold-Multimer (AFM) is given in Figure S2, not Figure 6. Unfortunately, it substantially shrinks the proportion of structures for which AFM fails while PLMGraph-Inter performs decently. Still, it would be interesting to investigate why this occurs. One possibility would be that the predicted monomer structures are of bad quality there, and PLMGraph-Inter may be able to rely on a signal from its language model features instead. Finally, AFM multimer confidence values ("iptm + ptm") should be provided, especially in the cases in which AFM struggles.

      We thank the reviewer for the suggestion! Yes! The performance of PLMGraph-Inter drops when the predicted monomers are used in the prediction. However, it is difficult to say which is a fairer comparison, Figure 6 or Figure S2, since AFM also searched monomer templates (see the third paragraph in 7. Supplementary Information : 7.1 Data in the AlphaFold-Multimer preprint: https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.full) in the prediction. When we checked our AFM runs, we found that 99% of the targets in our study (including all the targets in the four datasets: HomoPDB, HeteroPDB, DHTest and DB5.5) employed at least 20 templates in their predictions, and 87.8% of the targets employed the native templates. We will provide the AFM confidence values of the AFM predictions in the revision.

      Besides, in cases where any experimental structures - bound or unbound - are available and given to PLMGraph-Inter as inputs, they should also be provided to AlphaFold-Multimer (AFM) as templates. Withholding these from AFM only makes the comparison artificially unfair. Hence, a new test should be run using AFM templates, and a new version of Figure 6 should be produced. Additionally, AFM's mean precision, at least for top-50 contact prediction, should be reported so it can be compared with PLMGraph-Inter's.

      We thank the reviewers for the suggestion! We would like to notify that AFM also searched monomer templates (see the third paragraph in 7. Supplementary Information : 7.1 Data in the AlphaFold-Multimer preprint: https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.full) in the prediction. When we checked our AFM runs, we found that 99% of the targets in our study (including all the targets in the four datasets: HomoPDB, HeteroPDB, DHTest and DB5.5) employed at least 20 templates in their predictions, and 87.8% of the targets employed the native template.

      It's a shame that many of the structures used in the comparison with AFM are actually in the AFM v2 training set. If there are any outside the AFM v2 training set and, ideally, not sequence- or structure-homologous to anything in the AFM v2 training set, they should be discussed and reported on separately. In addition, why not test on structures from the "Benchmark 2" or "Recent-PDB-Multimers" datasets used in the AFM paper?

      We thank the reviewer for the suggestion! The biggest challenge to objectively evaluate AFM is that as far as we known, AFM does not release the PDB ids of its training set and the “Recent-PDB-Multimers” dataset. “Benchmark 2” only includes 17 heterodimer proteins, and the number can be further decreased after removing targets redundant to our training set. We think it is difficult to draw conclusions from such a small number of targets. In the revision, we will analyze the performance of AFM on targets released after the date cutoff of the AFM training set, but with which we cannot totally remove the redundancy between the training and the test sets of AFM.

      It is also worth noting that the AFM v2 weights have now been outdated for a while, and better v3 weights now exist, with a training cutoff of 2021-09-30.

      We thank the reviewer for reminding the new version of AFM. The only difference between AFM V3 and V2 is the cutoff date of the training set. Our test set would have more overlaps with the training set of AFM V3, which is one reason that we think AFM V2 is more appropriate to be used in the comparison.

      Another weakness in the evaluation framework: because PLMGraph-Inter uses structural inputs, it is not sufficient to make its test set non-redundant in sequence to its training set. It must also be non-redundant in structure. The Benchmark 2 dataset mentioned above is an example of a test set constructed by removing structures with homologous templates in the AF2 training set. Something similar should be done here.

      We agree with the reviewer that testing whether the model can keep its performance on targets with no templates (i.e. non-redundant in structure) is important. We will perform the analysis in the revision.

      Finally, the performance of DRN-1D2D for top-50 precision reported in Table 1 suggests to me that, in an ablation study, language model features alone would yield better performance than geometric features alone. So, I am puzzled why model "a" in the ablation is a "geometry-only" model and not a "LM-only" one.

      Using the protein geometric graph to integrate multiple protein language models is the main idea of PLMGraph-Inter. Comparing with our previous work (DRN-1D2D_Inter), we consider the building of the geometric graph as one major contribution of this work. To emphasize the efficacy of this geometric graph, we chose to use the “geometry-only” model as the base model. We will further clarity this in the revision.

      Reviewer #2 (Public Review):

      This work introduces PLMGraph-Inter, a new deep-learning approach for predicting inter-protein contacts, which is crucial for understanding protein-protein interactions. Despite advancements in this field, especially driven by AlphaFold, prediction accuracy and efficiency in terms of computational cost) still remains an area for improvement. PLMGraph-Inter utilizes invariant geometric graphs to integrate the features from multiple protein language models into the structural information of each subunit. When compared against other inter-protein contact prediction methods, PLMGraph-Inter shows better performance which indicates that utilizing both sequence embeddings and structural embeddings is important to achieve high-accuracy predictions with relatively smaller computational costs for the model training.

      The conclusions of this paper are mostly well supported by data, but test examples should be revisited with a more strict sequence identity cutoff to avoid any potential information leakage from the training data. The main figures should be improved to make them easier to understand.

      We thank the reviewer for recognizing the significance of our work! We will revise the manuscript carefully to address the reviewer’s concerns.

      1. The sequence identity cutoff to remove redundancies between training and test set was set to 40%, which is a bit high to remove test examples having homology to training examples. For example, CDPred uses a sequence identity cutoff of 30% to strictly remove redundancies between training and test set examples. To make their results more solid, the authors should have curated test examples with lower sequence identity cutoffs, or have provided the performance changes against sequence identities to the closest training examples.

      We thank the reviewer for the valuable suggestion! Using different thresholds to reduce the redundancy between the test set and the training set is a very good suggestion, and we will perform the analysis in the revision. In the current version of the manuscript, the 40% sequence identity is used as the cutoff for many previous studies used this cutoff (e.g. the Recent-PDB-Multimers used in AlphaFold-Multimer (see: 7.8 Datasets in the AlphaFold-Multimer paper); the work of DSCRIPT: https://www.cell.com/action/showPdf?pii=S2405-4712%2821%2900333-1 (see: the PPI dataset paragraph in the METHODS DETAILS section of the STAR METHODS)). One reason for using the relatively higher threshold for PPI studies is that PPIs are generally not as conserved as protein monomers.

      We performed a preliminary analysis using different thresholds to remove redundancy when preparing this provisional response letter:

      Author response table 1.

      Table1. The performance of PLMGraph-Inter on the HomoPDB and HeteroPDB test sets using native structures(AlphaFold2 predicted structures).

      Method:

      To remove redundancy, we clustered 11096 sequences from the training set and test sets (HomoPDB, HeteroPDB) using MMSeq2 with different sequence identity threshold (40%, 30%, 20%, 10%) (the lowest cutoff for CD-HIT is 40%, so we switched to MMSeq2). Each sequence is then uniquely labeled by the cluster (e.g. cluster 0, cluster 1, …) to which it belongs, from which each PPI can be marked with a pair of clusters (e.g. cluster 0-cluster 1). The PPIs belonging to the same cluster pair (note: cluster n - cluster m and cluster n-cluster m were considered as the same pair) were considered as redundant. For each PPI in the test set, if the pair cluster it belongs to contains the PPI belonging to the training set, we remove that PPI from the test set.

      We will perform more detailed analyses in the revised manuscript.

      1. Figures with head-to-head comparison scatter plots are hard to understand as scatter plots because too many different methods are abstracted into a single plot with multiple colors. It would be better to provide individual head-to-head scatter plots as supplementary figures, not in the main figure.

      We thank the reviewer for the suggestion! We will include the individual head-to-head scatter plots as supplementary figures in the revision.

      3) The authors claim that PLMGraph-Inter is complementary to AlphaFold-multimer as it shows better precision for the cases where AlphaFold-multimer fails. To strengthen the point, the qualities of predicted complex structures via protein-protein docking with predicted contacts as restraints should have been compared to those of AlphaFold-multimer structures.

      We thank the reviewer for the suggestion! We will add this comparison in the revision.

      4) It would be interesting to further analyze whether there is a difference in prediction performance depending on the depth of multiple sequence alignment or the type of complex (antigen-antibody, enzyme-substrates, single species PPI, multiple species PPI, etc).

      We thank the reviewer for the suggestion! We will perform such analysis in the revision.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Like the "preceding" co-submitted paper, this is again a very strong and interesting paper in which the authors address a question that is raised by the finding in their co-submitted paper - how does one factor induce two different fates. The authors provide an extremely satisfying answer - only one subset of the cells neighbors a source of signaling cells that trigger that subset to adopt a specific fate. The signal here is Delta and the read-out is Notch, whose intracellular domain, in conjunction with, presumably, SuH cooperates with Bsh to distinguish L4 from L5 fate (L5 is not neighbored by signalproviding cells). Like the back-to-back paper, the data is rigorous, well-presented and presents important conclusions. There's a wealth of data on the different functions of Notch (with and without Bsh). All very satisfying.

      Thanks!

      I have again one suggestion that the authors may want to consider discussing. I'm wondering whether the open chromatin that the author convincingly measure is the CAUSE or the CONSEQUENCE of Bsh being able to activate L4 target genes. What I mean by this is that currently the authors seem to be focused on a somewhat sequential model where Notch signaling opens chromatin and this then enables Bsh to activate a specific set of target genes. But isn't it equally possible that the combined activity of Bsh/Notch(intra)/SuH opens chromatin? That's not a semantic/minor difference, it's a fundamentally different mechanism, I would think. This mechanism also solves the conundrum of specificity - how does Notch know which genes to "open" up? It would seem more intuitive to me to think that it's working together with Bsh to open up chromatin, with chromatin accessibility than being a "mere" secondary consequence. If I'm not overlooking something fundamental here, there is actually also a way to distinguish between these models - test chromatin accessibility in a Bsh mutant. If the author's model is true, chromatin accessibility should be unchanged.

      I again finish by commending the authors for this terrific piece of work.

      Thanks! It is a crucial question whether Notch signaling regulates chromatin landscape independently of a primary HDTF. We will include this discussion in the text and pursue it in our next project.

      We think Notch signaling may regulate chromatin accessibility independently of a primary HDTF based on our observation: in larval ventral nerve cord, all premotor neurons are NotchON neurons while all postsensory neurons are NotchOFF neurons; NotchON neurons share similar functional properties, despite expressing distinct HDTFs, possibly due to the common chromatin landscape regulated by Notch signaling.

      Reviewer #2 (Public Review):

      Summary:

      In this work, the authors explore how Notch activity acts together with Bsh homeodomain transcription factors to establish L4 and L5 fates in the lamina of the visual system of Drosophila. They propose a model in which differential Notch activity generates different chromatin landscapes in presumptive L4 and L5, allowing the differential binding of the primary homeodomain TF Bsh (as described in the cosubmitted paper), which in turn activates downstream genes specific to either neuronal type. The requirement of Notch for L4 vs. L5 fate is well supported, and complete transformation from one cell type into the other is observed when altering Notch activity. However, the role of Notch in creating differential chromatin landscapes is not directly demonstrated. It is only based on correlation, but it remains a plausible and intriguing hypothesis.

      Thanks for the positive feedback!

      Strengths:

      The authors are successful in characterizing the role of Notch to distinguish between L4 and L5 cell fates. They show that the Notch pathway is active in L4 but not in L5. They identify L1, the neuron adjacent to L4 as expressing the Delta ligand, therefore being the potential source for Notch activation in L4. Moreover, the manuscript shows molecular and morphological/connectivity transformations from one cell type into the other when Notch activity is manipulated.

      Thanks!

      Using DamID, the authors characterize the chromatin landscape of L4 and L5 neurons. They show that Bsh occupies distinct loci in each cell type. This supports their model that Bsh acts as a primary selector gene in L4/L5 that activates different target genes in L4 vs L5 based on the differential availability of open chromatin loci.

      Thanks!

      Overall, the manuscript presents an interesting example of how Notch activity cooperates with TF expression to generate diverging cell fates. Together with the accompanying paper, it helps thoroughly describe how lamina cell types L4 and L5 are specified and provides an interesting hypothesis for the role of Notch and Bsh in increasing neuronal diversity in the lamina during evolution.

      Thanks for the positive feedback on both manuscripts.

      Weaknesses:

      Differential Notch activity in L4 and L5:

      ● The manuscript focuses its attention on describing Notch activity in L4 vs L5 neurons. However, from the data presented, it is very likely that the pool of progenitors (LPCs) is already subdivided into at least two types of progenitors that will rise to L4 and L5, respectively. Evidence to support this is the activity of E(spl)-mɣ-GFP and the Dl puncta observed in the LPC region. Discussion should naturally follow that Notch-induced differences in L4/L5 might preexist L1-expressed Dl that affect newborn L4/L5. Therefore, the differences between L4 and L5 fates might be established earlier than discussed in the paper. The authors should acknowledge this possibility and discuss it in their model.

      We agree. Historically, LPCs are thought to be homogenous; our data suggests otherwise. We now emphasize this in the Discussion as requested. We are also investigating this question using single-cell RNAseq on LPCs to look for molecular heterogeneities. Nevertheless, whether L4 is generated by E(spl)mɣ-GFP+ (NotchON) LPCs does not affect our conclusion that Notch signaling and the primary HDTF Bsh are integrated to specify L4 fate over L5.

      ● The authors claim that Notch activation is caused by L1-expressed Delta. However, they use an LPC driver to knock down Dl. Dl-KD should be performed exclusively in L1, and the fate of L4 should be assessed.

      Dl is transiently expressed in newborn L1 neurons. To knock down Dl in newborn L1, we need to express Dl-RNAi before the onset of Dl expression in newborn L1; the only known Gal4 line expressed that early is the LPC-Gal4, which is the one that we used.

      ● To test whether L4 neurons are derived from NotchON LPCs, I suggest performing MARCM clones in early pupa with an E(spl)-mɣ-GFP reporter.

      We agree! Whether L4 neurons are derived from NotchON LPCs is a great question. However, MARCM clones in early pupa with an E(spl)-mɣ-GFP reporter will not work because E(spl)-mɣ-GFP reporter is only expressed in LPCs but not lamina neurons. We now mention this in the Discussion.

      ● The expression of different Notch targets in LPCs and L4 neurons may be further explored. I suggest using different Notch-activity reporters (i.e., E(spl)-GFP reporters) to further characterize these. differences. What cause the switch in Notch target expression from LPCs to L4 neurons should be a topic of discussion.

      Thanks! It is a great question why Notch induces Espl-mɣ in LPCs but Hey in newborn neurons. However, it is not the question we are tackling in this paper and it will be a great direction to pursue in future. We will add this to our Discussion.

      Notch role in establishing L4 vs L5 fates:

      ● The authors describe that 27G05-Gal4 causes a partial Notch Gain of Function caused by its genomic location between Notch target genes. However, this is not further elaborated. The use of this driver is especially problematic when performing Notch KD, as many of the resulting neurons express Ap, and therefore have some features of L4 neurons. Therefore, Pdm3+/Ap+ cells should always be counted as intermediate L4/L5 fate (i.e., Fig3 E-J, Fig3-Sup2), irrespective of what the mechanistic explanation for Ap activation might be. It's not accurate to assume their L5 identity. In Fig4 intermediate-fate cells are correctly counted as such.

      We disagree that the use of 27G05-Gal4 is problematic when performing Notch-KD because our conclusion from Notch-KD is that Bsh without Notch signaling activates Pdm3 and specifies L5 fate. However, 27G05-Gal4 does not have any effect on Pdm3 expression. To make this clearer, we will quantify the percentage of Pdm3+ L5 neurons in Bsh+ lamina neurons for Notch-KD experiment. We are sorry this wasn't clearer.

      ● Lines 170-173: The temporal requirement for Notch activity in L5-to-L4 transformation is not clearly delineated. In Fig4-figure supplement 1D-E, it is not stated if the shift to 29{degree sign}C is performed as in Fig4-figure supplement 1A-C.

      Thank you for catching this. We will correct it in the text.

      ● Additionally, using the same approach, it would be interesting to explore the window of competence for Notch-induced L5-to-L4 transformation: at which point in L5 maturation can fate no longer be changed by Notch GoF?

      Our data show that Bsh with transient Notch signaling in newborn neurons specifies L4 fate while Bsh without Notch signaling in newborn neurons specifies L5 fate. Therefore, we think the window of fate competence is during newborn neurons.

      However, as suggested by the reviewer, we did the experiment (see figure below). We used Gal80 (Gal80 inhibits Gal4 activity at 18C) to temporarily control Bsh-Gal4 activity for expressing N-ICD (the active form of Notch) in L5 neurons. We found that tub-Gal80ts, Bsh-Gal4>UAS-N-ICD is unable to induce ectopic L4 neurons when we shift the temperature from 18C to 30C to inactivate Gal80 at 15 hours after pupal formation, which is close to the end of lamina neurogenesis. However, it is unknown how many hours it takes to inactivate Gal80 and activate Bsh-Gal4 and thus we decided not to include this data in our manuscript.

      Author response image 1.

      L4-to-L3 conversion in the absence of Bsh

      ● Although interesting, the L4-to-L3 conversion in the absence of Bsh is never shown to be dependent on Notch activity. Importantly, L3 NotchON status is assumed based on their position next to Dlexpressing L1, but it is not empirically tested. Perhaps screening Notch target reporter expression in the lamina, as suggested above, could inform this issue.

      Our data show the L4-to-L3 conversion in the absence of Bsh and in the presence of Notch activity while the L5-to-L1 conversion in the absence of Bsh and in the absence of Notch activity. Therefore, Notch activity is necessary for the L4-to-L3 conversion. Unfortunately, currently, we only have Hey as an available Notch target reporter in newborn neurons. To tackle this challenge in the future, we will profile the genome-binding targets of endogenous Notch in newborn neurons. This will identify novel genes as Notch signaling reporters in neurons for the field.

      ● Otherwise, the analysis of Bsh Loss of Function in L4 might be better suited to be included in the accompanying manuscript that specifically deals with the role of Bsh as a selector gene for L4 and L5.

      That is an interesting suggestion, but without knowing that Bsh + Notch = L4 identity the experiment would be hard to interpret. Note that we took advantage of Notch signaling to trace the cell fate in the absence of Bsh and found the L4-to-L3 conversion (see Figure 5G-K).

      Different chromatin landscape in L4 and L5 neurons

      ● A major concern is that, although L4 and L5 neurons are shown to present different chromatin landscapes (as expected for different neuronal types), it is not demonstrated that this is caused by Notch activity. The paper proves unambiguously that Notch activity, in concert with Bsh, causes the fate choice between L4 and L5. However, that this is caused by Notch creating a differential chromatin landscape is based only in correlation. (NotchON cells having a different profile than NotchOFF). Although the authors are careful not to claim that differential chromatin opening is caused directly by Notch, this is heavily suggested throughout the text and must be toned down.e.g.: Line 294: "With Notch signaling, L4 neurons generate distinct open chromatin landscape" and Line 298: "Our findings propose a model that the unique combination of HDTF and open chromatin landscape (e.g. by Notch signaling)" . These claims are not supported well enough, and alternative hypotheses should be provided in the discussion. An alternative hypothesis could be that LPCs are already specified towards L4 and L5 fates. In this context, different early Bsh targets in each cell type could play a pioneer role generating a differential chromatin landscape.

      We agree and appreciate the comment, it is well justified. We have toned down our comments and clearly state that this is a correlation that needs to be tested for a causal relationship. The reviewer posits: “An alternative hypothesis: different early Bsh targets in each cell type could play a pioneer role generating a differential chromatin landscape.” Yes, it is a crucial question whether Notch signaling regulates chromatin landscape independently of a primary HDTF (e.g., Bsh). We will include this discussion in the text and pursue it in our next project. We think Notch signaling may regulate chromatin accessibility independently of a primary HDTF based on our observation: in larval ventral nerve cord, all premotor neurons are NotchON neurons while all post-sensory neurons are NotchOFF neurons; NotchON neurons share similar functional properties, despite expressing distinct HDTFs, possibly due to the common chromatin landscape regulated by Notch signaling.

      ● The correlation between open chromatin and Bsh loci with Differentially Expressed genes is much higher for L4 than L5. It is not clear why this is the case, and should be discussed further by the authors.

      We agree and think in L5 neurons, the secondary HDTF Pdm3 also contributes to L5-specific gene transcription during the synaptogenesis window, in addition to Bsh. We will include this in the text.

    1. Author Response

      The following is the authors’ response to the latest reviews.

      A revised version of the manuscript models "slope-based" excitability changes in addition to "threshold-based" changes. This serves to address the above concern that as constructed here changes in excitability threshold are not distinguishable from changes in input. However, it remains unclear what the model would do should only a subset of neurons receive a given, fixed input. In that case, are excitability changes sufficient to induce drift? This remains an important question that is not addressed by the paper in its current form.

      Thank you for this important point. In the simulation of two memories (Fig. S6), we stimulated half of the neural population for each of the two memories. We therefore also showed that drift happens when only a subset of neuron was simulated.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Current experimental work reveals that brain areas implicated in episodic and spatial memory have a dynamic code, in which activity r imulated networks for epresenting familiar events/locations changes over time. This paper shows that such reconfiguration is consistent with underlying changes in the excitability of cells in the population, which ties these observations to a physiological mechanism.

      Delamare et al. use a recurrent network model to consider the hypothesis that slow fluctuations in intrinsic excitability, together with spontaneous reactivations of ensembles, may cause the structure of the ensemble to change, consistent with the phenomenon of representational drift. The paper focuses on three main findings from their model: (1) fluctuations in intrinsic excitability lead to drift, (2) this drift has a temporal structure, and (3) a readout neuron can track the drift and continue to decode the memory. This paper is relevant and timely, and the work addresses questions of both a potential mechanism (fluctuations in intrinsic excitability) and purpose (time-stamping memories) of drift.

      The model used in this study consists of a pool of 50 all-to-all recurrently connected excitatory neurons with weights changing according to a Hebbian rule. All neurons receive the same input during stimulation, as well as global inhibition. The population has heterogeneous excitability, and each neuron's excitability is constant over time apart from a transient increase on a single day. The neurons are divided into ensembles of 10 neurons each, and on each day, a different ensemble receives a transient increase in the excitability of each of its neurons, with each neuron experiencing the same amplitude of increase. Each day for four days, repetitions of a binary stimulus pulse are applied to every neuron.

      The modeling choices focus in on the parameter of interest-the excitability-and other details are generally kept as straightforward as possible. That said, I wonder if certain aspects may be overly simple. The extent of the work already performed, however, does serve the intended purpose, and so I think it would be sufficient for the authors to comment on these choices rather than to take more space in this paper to actually implement these choices. What might happen were more complex modeling choices made? What is the justification for the choices that are made in the present work?

      The two specific modeling choices I question are (1) the excitability dynamics and (2) the input stimulus. The ensemble-wide synchronous and constant-amplitude excitability increase, followed by a return to baseline, seems to be a very simplified picture of the dynamics of intrinsic excitability. At the very least, justification for this simplified picture would benefit the reader, and I would be interested in the authors' speculation about how a more complex and biologically realistic dynamics model might impact the drift in their network model. Similarly, the input stimulus being binary means that, on the singleneuron level, the only type of drift that can occur is a sort of drop-in/drop-out drift; this choice excludes the possibility of a neuron maintaining significant tuning to a stimulus but changing its preferred value. How would the use of a continuous input variable influence the results.

      (1) In our model, neurons tend to compete for allocation to the memory ensemble: neurons with higher excitability tend to be preferentially allocated and neurons with lower excitability do not respond to the stimulus. Because relative, but not absolute excitability biases this competition, we suggest that the exact distribution of excitability would not impact the results qualitatively. On the other hand, the results might vary if excitability was considered dependent on the activity of the neurons as previously reported experimentally (Cai 2016, Rachid 2016, Pignatelli 2019). An increase in excitability following neural activity might induce higher correlation among ensembles on consecutive days, decreasing the drift.

      (2) We thank the reviewer for this very good point. Indeed, two recent studies (Geva 2023 , Khatib 2023) have highlighted distinct mechanisms for a drift of the mean firing rate and the tuning curve. We extended the last part of the discussion to include this point: “Finally, we intended to model drift in the firing rates, as opposed to a drift in the turning curve of the neurons. Recent studies suggest that drifts in the mean firing rate and tuning curve arise from two different mechanisms [33, 34]. Experience drives a drift in neurons turning curve while the passage of time drives a drift in neurons firing rate. In this sense, our study is consistent with these findings by providing a possible mechanism for a drift in the mean firing rates of the neurons driven a dynamical excitability. Our work suggests that drift can depend on any experience having an impact on excitability dynamics such as exercise as previously shown experimentally [9, 35] but also neurogenesis [9, 31, 36], sleep [37] or increase in dopamine level [38]”

      Result (1): Fluctuations in intrinsic excitability induce drift

      The two choices highlighted above appear to lead to representations that never recruit the neurons in the population with the lowest baseline excitability (Figure 1b: it appears that only 10 neurons ever show high firing rates) and produce networks with very strong bidirectional coupling between this subset of neurons and weak coupling elsewhere (Figure 1d). This low recruitment rate need may not necessarily be problematic, but it stands out as a point that should at least be commented on. The fact that only 10 neurons (20% of the population) are ever recruited in a representation also raises the question of what would happen if the model were scaled up to include more neurons.

      This is a very good point. To test how the model depends on the network size, we plotted the drift index against the size of the ensemble. With this current implementation, we did not observe a significant correlation between the drift rate and size of the initial ensemble (Figure S2).

      Author response image 1.

      The rate of the drift does not depend on the size of the engram. Drift rate against the size of the original engram. Each dot shows one simulation (Methods). n = 100 simulations.

      Result (2): The observed drift has a temporal structure

      The authors then demonstrate that the drift has a temporal structure (i.e., that activity is informative about the day on which it occurs), with methods inspired by Rubin et al. (2015). Rubin et al. (2015) compare single-trial activity patterns on a given session with full-session activity patterns from each session. In contrast, Delamare et al. here compare full-session patterns with baseline excitability (E = 0) patterns. This point of difference should be motivated. What does a comparison to this baseline excitability activity pattern tell us? The ordinal decoder, which decodes the session order, gives very interesting results: that an intermediate amplitude E of excitability increase maximizes this decoder's performance. This point is also discussed well by the authors. As a potential point of further exploration, the use of baseline excitability patterns in the day decoder had me wondering how the ordinal decoder would perform with these baseline patterns.

      This is a good point. Here, we aimed at dissociating the role of excitability from the one of the recurrent currents. We introduced a time decoder that compares the pattern with baseline excitability (E = 0), in order to test whether the temporal information was encoded in the ensemble i.e. in the recurrent weights. By contrast, because the neural activity is by construction biased towards excitability, a time decoder performed on the full session would work in a trivial way.

      Result (3): A readout neuron can track drift

      The authors conclude their work by connecting a readout neuron to the population with plastic weights evolving via a Hebbian rule. They show that this neuron can track the drifting ensemble by adjusting its weights. These results are shown very neatly and effectively and corroborate existing work that they cite very clearly.

      Overall, this paper is well-organized, offers a straightforward model of dynamic intrinsic excitability, and provides relevant results with appropriate interpretations. The methods could benefit from more justification of certain modeling choices, and/or an exploration (either speculative or via implementation) of what would happen with more complex choices. This modeling work paves the way for further explorations of how intrinsic excitability fluctuations influence drifting representations.

      Reviewer #2 (Public Review):

      In this computational study, Delamare et al identify slow neuronal excitability as one mechanism underlying representational drift in recurrent neuronal networks and that the drift is informative about the temporal structure of the memory and when it has been formed. The manuscript is very well written and addresses a timely as well as important topic in current neuroscience namely the mechanisms that may underlie representational drift.

      The study is based on an all-to-all recurrent neuronal network with synapses following Hebbian plasticity rules. On the first day, a cue-related representation is formed in that network and on the next 3 days it is recalled spontaneously or due to a memory-related cue. One major observation is that representational drift emerges day-by-day based on intrinsic excitability with the most excitable cells showing highest probability to replace previously active members of the assembly. By using a daydecoder, the authors state that they can infer the order at which the reactivation of cell assemblies happened but only if the excitability state was not too high. By applying a read-out neuron, the authors observed that this cell can track the drifting ensemble which is based on changes of the synaptic weights across time. The only few questions which emerged and could be addressed either theoretically or in the discussion are as follows:

      1. Would the similar results be obtained if not all-to-all recurrent connections would have been molded but more realistic connectivity profiles such as estimated for CA1 and CA3?

      This is a very interesting point. We performed further simulations to show that the results are not dependent on the exact structure of the network. In particular, we show that all-to-all connectivity is not required to observe a drift of the ensemble. We found similar results when the recurrent weights matrix was made sparse (Fig. S4a-c, Methods). Similarly to all-to-all connectivity, we found that the ensemble is informative about its temporal history (Fig. S4d) and that an output neuron can decode the ensemble continuously (Fig. S4e).

      Author response image 2.

      Sparse recurrent connectivity shows similar drifting behavior as all-to-all connectivity. The same simulation protocol as Fig. 1 was used while the recurrent weights matrix was made 50% sparse (Methods). a) Firing rates of the neurons across time. The red traces correspond to neurons belonging to the first assembly, namely that have a firing rate higher than the active threshold after the first stimulation. The black bars show the stimulation and the dashed line shows the active threshold. b) Recurrent weights matrices after each of the four stimuli show the drifting assembly. c) Correlation of the patterns of activity between the first day and every other days. d) Student's test t-value of the ordinal time decoder, for the real (blue) and shuffled (orange) data and for different amplitudes of excitability E. e) Center of mass of the distribution of the output weights (Methods) across days. c-e) Data are shown as mean ± s.e.m. for n = 10 simulations.

      1. How does the number of excited cells that could potentially contribute to an engram influence the representational drift and the decoding quality?

      This is indeed a very good question. We did not observe a significant correlation between the drift rate and size of the initial ensemble (Fig. S2).

      Author response image 3.

      The rate of the drift does not depend on the size of the engram. Drift rate against the size of the original engram. Each dot shows one simulation (Methods). n = 100 simulations.

      1. How does the rate of the drift influence the quality of readout from the readout-out neuron?

      We thank the reviewer for this interesting question. We introduced a measure of the “read-out quality” and plotted this value against the rate of the drift. We found a small correlation between the two quantities. Indeed, the read-out quality decreases with the rate of the drift.

      Author response image 4.

      The quality of the read-out decreases with the rate of the drift. Read-out quality computed on the firing rate of the output neuron against the rate of the drift (Methods). Each dot shows one simulation. n = 100 simulations.

      Reviewer #3 (Public Review):

      The authors explore an important question concerning the underlying mechanism of representational drift, which despite intense recent interest remains obscure. The paper explores the intriguing hypothesis that drift may reflect changes in the intrinsic excitability of neurons. The authors set out to provide theoretical insight into this potential mechanism.

      They construct a rate model with all-to-all recurrent connectivity, in which recurrent synapses are governed by a standard Hebbian plasticity rule. This network receives a global input, constant across all neurons, which can be varied with time. Each neuron also is driven by an "intrinsic excitability" bias term, which does vary across cells. The authors study how activity in the network evolves as this intrinsic excitability term is changed.

      They find that after initial stimulation of the network, those neurons where the excitability term is set high become more strongly connected and are in turn more responsive to the input. Each day the subset of neurons with high intrinsic excitability is changed, and the network's recurrent synaptic connectivity and responsiveness gradually shift, such that the new high intrinsic excitability subset becomes both more strongly activated by the global input and also more strongly recurrently connected. These changes result in drift, reflected by a gradual decrease across time in the correlation of the neuronal population vector response to the stimulus.

      The authors are able to build a classifier that decodes the "day" (i.e. which subset of neurons had high intrinsic excitability) with perfect accuracy. This is despite the fact that the excitability bias during decoding is set to 0 for all neurons, and so the decoder is really detecting those neurons with strong recurrent connectivity, and in turn strong responses to the input. The authors show that it is also possible to decode the order in which different subsets of neurons were given high intrinsic excitability on previous "days". This second result depends on the extent by which intrinsic excitability was increased: if the increase in intrinsic excitability was either too high or too low, it was not possible to read out any information about past ordering of excitability changes.

      Finally, using another Hebbian learning rule, the authors show that an output neuron, whose activity is a weighted sum of the activity of all neurons in the network, is able to read out the activity of the network. What this means specifically, is that although the set of neurons most active in the network changes, the output neuron always maintains a higher firing rate than a neuron with randomly shuffled synaptic weights, because the output neuron continuously updates its weights to sample from the highly active population at any given moment. Thus, the output neuron can readout a stable memory despite drift.

      Strengths:

      The authors are clear in their description of the network they construct and in their results. They convincingly show that when they change their "intrinsic excitability term", upon stimulation, the Hebbian synapses in their network gradually evolve, and the combined synaptic connectivity and altered excitability result in drifting patterns of activity in response to an unchanging input (Fig. 1, Fig. 2a). Furthermore, their classification analyses (Fig. 2) show that information is preserved in the network, and their readout neuron successfully tracks the active cells (Fig. 3). Finally, the observation that only a specific range of excitability bias values permits decoding of the temporal structure of the history of intrinsic excitability (Fig. 2f and Figure S1) is interesting, and as the authors point out, not trivial.

      Weaknesses:

      1. The way the network is constructed, there is no formal difference between what the authors call "input", Δ(t), and what they call "intrinsic excitability" Ɛ_i(t) (see Equation 3). These are two separate terms that are summed (Eq. 3) to define the rate dynamics of the network. The authors could have switched the names of these terms: Δ(t) could have been considered a global "intrinsic excitability term" that varied with time and Ɛ_i(t) could have been the external input received by each neuron i in the network. In that case, the paper would have considered the consequence of "slow fluctuations of external input" rather than "slow fluctuations of intrinsic excitability", but the results would have been the same. The difference is therefore semantic. The consequence is that this paper is not necessarily about "intrinsic excitability", rather it considers how a Hebbian network responds to changes in excitatory drive, regardless of whether those drives are labeled "input" or "intrinsic excitability".

      This is a very good point. We performed further simulations to model “slope-based”, instead of “threshold-based”, changes in excitability (Fig. S5a, Methods). In this new definition of excitability, we changed the slope of the activation function, which is initially sampled from a random distribution. By introducing a varying excitability, we found very similar results than when excitability was varied as the threshold of the activation function (Fig. S5b-d). We also found similarly that the ensemble is informative about its temporal history (Fig. S5e) and that an output neuron can decode the ensemble continuously (Fig. S5f).

      Author response image 5.

      Change of excitability as a variable slope of the input-output function shows similar drifting behavior as considering a change in the threshold. The same simulation protocol as Fig. 1 was used while the excitability changes were modeled as a change in the activation function slope (Methods). a) Schema showing two different ways of defining excitability, as a threshold (top) or slope (bottom) of the activation function. Each line shows one neuron and darker lines correspond to neurons with increased excitability. b) Firing rates of the neurons across time. The red traces correspond to neurons belonging to the first assembly, namely that have a firing rate higher than the active threshold after the first stimulation. The black bars show the stimulation and the dashed line shows the active threshold. c) Recurrent weights matrices after each of the four stimuli show the drifting assembly. d) Correlation of the patterns of activity between the first day and every other days. e) Student's test t-value of the ordinal time decoder, for the real (blue) and shuffled (orange) data and for different amplitudes of excitability E. f) Center of mass of the distribution of the output weights (Methods) across days. d-f) Data are shown as mean ± s.e.m. for n = 10 simulations.

      1. Given how the learning rule that defines input to the readout neuron is constructed, it is trivial that this unit responds to the most active neurons in the network, more so than a neuron assigned random weights. What would happen if the network included more than one "memory"? Would it be possible to construct a readout neuron that could classify two distinct patterns? Along these lines, what if there were multiple, distinct stimuli used to drive this network, rather than the global input the authors employ here? Does the system, as constructed, have the capacity to provide two distinct patterns of activity in response to two distinct inputs?

      This is an interesting point. In order to model multiple memories, we introduced non-uniform feedforward inputs, defining different “contexts” (Methods). We adapted our model so that two contexts target two random sub-populations in the network. We also introduced a second output neuron to decode the second memory. The simulation protocol was adapted so that each of the two contexts are stimulated every day (Fig. S6a). We found that the network is able to store two ensembles that drift independently (Fig. S6 and S7a). We were also able to decode temporal information from the patterns of activity of both ensembles (Fig. S7b). Finally, both memories could be decoded independently using two output neurons (Fig. S7c and d).

      Author response image 6.

      Two distinct ensembles can be encoded and drift independently. a) and b) Firing rates of the neurons across time. The red traces in panel b) correspond to neurons belonging to the first assembly and the green traces to the second assembly on the first day. They correspond to neurons having a firing rate higher than the active threshold after the first stimulation of each assembly. The black bars show the stimulation and the dashed line shows the active threshold. c) Recurrent weights matrices after each of the eight stimuli showing the drifting of the first (top) and second (bottom) assembly.

      Author response image 7.

      The two ensembles are informative about their temporal history and can be decoded using two output neurons. a) Correlation of the patterns of activity between the first day and every other days, for the first assembly (red) and the second assembly (green). b) Student's test t-value of the ordinal time decoder, for the first (red, left) and second ensemble (green, right) for different amplitudes of excitability E. Shuffled data are shown in orange. c) Center of mass of the distribution of the output weights (Methods) across days for the first (w?ut , red) and second (W20L't , green) ensemble. a-c) Data are shown as mean ± s.e.m. for n = 10 simulations. d) Output neurons firing rate across time for the first ensemble (Yl, top) and the second ensemble (h, bottom). The red and green traces correspond to the real output. The dark blue, light blue and yellow traces correspond to the cases where the output weights were randomly shuffled for every time points after presentation of the first, second and third stimulus, respectively.

      Impact:

      Defining the potential role of changes in intrinsic excitability in drift is fundamental. Thus, this paper represents a potentially important contribution. Unfortunately, given the way the network employed here is constructed, it is difficult to tease apart the specific contribution of changing excitability from changing input. This limits the interpretability and applicability of the results.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript develops the authors' previous work on the structure of the YeeE protein by presenting a co-structure with YeeD and investigating the role of certain key cysteine residues, especially C17 of YeeD. To this reviewer an entirely plausible mechanism for YeeD/E co-ordinated transport of thiosufate through the membrane and cleavage to sulfide and sulfite which are released into the cytoplasm is proposed on the basis of functional studies. The work is clearly described, the crystallography stats look good.

      Thank you very much for your highly positive comments. We sincerely appreciate them.

      Major comment: The 'cysteine relay' followed by a key role for C17 of YeeD in releasing a sulfide looks very plausible and makes the work of more general interest. An aspect that is not addressed is that of energetics. Moving thiosulfate into the cytoplasm as sulfide and sulfite means apparently that two negative charges net are generated in the cytoplasm for each thiosulfate taken up. This seems too simplistic (protons released as the bound sulfite is released b hydrolysis) but if thiosulfate were to be moved the whole way across there would be a divalent anion uniport which would work against the membrane potential negative inside (ie the main component of the protonmotive force). There is no mention in the paper of any pmf dependence and presumably the structure of YeeE shows no evidence of putative proton pathways? Some discussion of this and any wider implications could enhance the paper. In some ways the proposed transport scheme has some resemblance to Mitchells's old group translocation proposal for transport.

      Thank you for highlighting the significance of the 'cysteine relay.' We also believe that this aspect is likely to interest a broad readership. Regarding protons, YeeE does not have apparent proton pathways inside, and we currently do not have data on its dependence on the pmf. Investigating pmf dependence falls beyond the scope of this study, hence we plan to explore this in future research. We appreciate you for pointing out that the YeeE-YeeD is a reminiscence of Mitchell’s original proposal of group translocation. This is a very intriguing point, and we have now included a discussion of this, along with a relevant citation, in the Discussion section (lines 356-357).

      Reviewer #1 (Significance (Required)):

      The subject of thiosulfate transport (movement) into bacteria is arguably of interest only to a narrow group of bacterial biochemists. However, the contents of this manuscript ought to be of wider interest because the YeeD/E system described is unusual in doing more that catalysing transport alone. Whether the authors' description in their title of 'sophisticated' is an appropriate adjective I am not sure. The term 'cofactor' applied to YeeD seems 'odd' to this reviewer. It is not a cofactor in the usual sense eg NADH.

      We appreciate your comments. We have modified the title and avoided the unsuitable word 'cofactor' to describe YeeD.

      reviewer's expertise: bactrial energetics but little knowledge of sulfur metabolism


      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      The publication "Structure and function of a YeeE-YeeD complex for sophisticated thiosulfate uptake" by Ikei et al. shows the protein-protein interaction of a thiosulfate transporter YeeE and a sulfur transferase YeeD, a TusA-family protein. The transporter YeeE has been structurally characterized previously, without showing its functional activity in a purified reconstituted system. This experiment complementing the previous publication is provided here, furthermore proving the functionality of the transporter. These experiments were further extended by the characterization of the cytoplasmic acceptor protein. This acceptor was proven to be YeeD, by structural characterization and biolayer interferometry. The binding kinetics between YeeD and YeeE were measured, quantifying the binding affinity between the two proteins. Furthermore, the surface residues of YeeD were specified by amino acid exchange mutants. Thus, the structure and essential residues were characterized protein. The interaction of sulfur transferase YeeD with the thiosulfate transporter YeeE is a novelty to the field. This illuminates the first time a specific function of YeeD in thiosulfate assimilation.

      We appreciate your positive review and for recognizing the significance of our work in uncovering the functions of the YeeE and YeeD complex. We have addressed the following major and minor comments, thereby improving our manuscript. We appreciate the your constructive feedback.

      Major comments:

      I see the following major problem: The YeeD protein preparations used in the experiments contained several different protein species. Mass spectrometry showed the existence of the monomeric reduced protein, a TusA sulfinate and a TusA thiosulfonate. There is obviously an oxidation of cysteine to cysteine sulfinate, possibly due to the presence of oxygen as shown in Fig. 2D and stated in the text. The formation of sulfinates has to be avoided. This can be achieved by the use of stronger reducing agents or by purification under strict exlusion of oxygen. The formation of sulfenic, sulfinic and sulfonic acid on cysteines by oxidation has been reviewed by Ezraty et al 2017 Nat Rev Microbiol.

      To answer these points, we have extensively several experiments and analyses, and modified the text. In the mass spectrometry analysis of purified StYeeD, three major peaks are observed (Fig. 2D), but they do not necessarily reflect actual relative abundances due to the nature of mass spectrometry analysis. Therefore, we also analyzed the purified StYeeD by non-reducing SDS-PAGE, which showed very few molecular species with S-S bonds, with over 90% existing as YeeD-SH (Fig. S2D). We considered this level of purity sufficient for conducting biochemical analyses. Furthermore, although a small amount of YeeD-SO2- was observed, this would be inactive and thus not impact the activity of StYeeD because a similar irreversible modification product, NEM-modified StYeeD(WT), was inactive (Fig. S2G).

      We have also provided non-reducing SDS-PAGE results for each mutant StYeeD in Fig. S2F. All StYeeD mutants except for L45A showed a similar pattern to StYeeD(WT). Conducting experiments under anaerobic conditions is quite challenging in our laboratory facility, so we have displayed non-reducing SDS-PAGE profiles of all proteins used in order to avoid misunderstanding. We have also tried the purification in the presence of DTT, a stronger reducing agent, but the fraction of YeeD-SO2- was not significantly changed.

      In the revised version, mass spectrometry analyses were reperformed using DTT-reduced YeeD, resulting in more precise data (Fig. 2D–H). Based on these results and your valuable comments, we have rewritten the paragraph entitled 'T____hiosulfate decomposition activity of YeeD and its catalytic center residue' to represent the reduction/oxidation forms accurately. We have also cited the Nat. Rev. Microbiol. review in the text (line 185).

      In their in vitro assays, the authors use exceptionally high thiosulfate concentrations of 300 mM. This is so far from any physiologically relevant concentrations that strong doubt is shed the validity of any conclusions transferred from the in vitro to the in vivo situation.

      In the revised version, the mass spectrometry analysis was reperformed with a thiosulfate concentration of 500 µM, which is the same concentration of thiosulfate used in the thiosulfate decomposition experiments. To clarify this, we have included the thiosulfate ion concentrations in the legend of Fig 2.

      L247 and Fig5: The proposed mechanism cannot be true. Binding of thiosulfate to a reduced TusA protein is not possible without release of electrons. Where do these electrons go? In the proposed scheme, the number of electrons before and after the reaction steps is not equal (Fig. 5). A release of the sulfur atom between the cysteine sulfur atom and the oxidized sulfur atom is impossible.

      Thank you for your insightful comments. We have revised Fig. 5B to represent a better model. However, elucidating the electron pathway falls outside the scope of this study, and we cannot offer a definitive explanation. We have addressed this limitation in the Discussion section and highlighted it as a topic for future research.

      Have the authors checked whether TusA dimers are formed via disulfide bridges? If so, thiosulfate could resolve these disulfides leading to reduced TusA and thiosulfonated TusA (YeeD-S-S-YeeD + S2O32- → YeeD-S-S-SO3- + YeeD-S-).

      It cannot be excluded that the YeeD-S-SO3- species is a result of removal of sulfite from the YeeD-S-S2O3- species (possibly by transfer to another YeeD molecule) resulting in YeeD-S-S- oxidized by molecular oxygen to YeeD-S-SO3-.

      Upon answering to this comment, we have re-examined the gel filtration result using gel filtration markers. We found that a fraction of YeeD exists as dimers in solution, as shown in Fig. S2C. By performing non-reducing SDS-PAGE, it was shown that these YeeD dimers were not due to intermolecular disulfide bond (Fig. S2D). Following your valuable suggestion, we have introduced the possibility that YeeD can function as a dimer into our model, as presented in a box in Fig. 5B.

      Sulfide may be formed by a reaction of YeeD-S- with S2O32- to YeeD-S-SO3- and S2- or reaction of YeeD-S-S- with S2O32- to YeeD-S-S2O3- and S2-. As there is the formation of sulfinic acid that prevents clear conclusions, I suggest repeating the experiments on thiosulfate decomposition under anaerobic conditions to clarify the reaction mechanism. Anoxic buffers and strong reducing agents may prevent chemical oxidation.

      As described above, based on the non-reducing SDS-PAGE results (Fig. S2D), we believe that the low presence of oxidized species does not significantly affect our analysis. Moreover, the mass spectrometry analysis after DTT treatment yielded more precise results (Fig. 2D–H). As noted above, conducting experiments under anaerobic conditions is challenging in our facility, so we kindly request your understanding and consideration of the revisions made in this manuscript.

      Minor comments:

      In response to the minor comments, we have revised the manuscript.

      L58 What is the nature of the binding of the thiosulfate ion during the transport via YeeE. Is it covalently bound? Please comment in the text.

      In our previous study (Tanaka et al., Sci. Adv., 2020), we proposed that thiosulfate ions were transported via hydrogen bonds. Responding to your comment, we have included the explanation in the text and cited Tanaka et al., 2020 (lines 66-67).

      L76-L77 Is there a publication on the functionality of the Corynebacterium YeeD-YeeE fusion? The term "cofactor" does not apply to YeeD, which is a 9-kDa protein.

      Since the function of Corynebacterium YeeD-YeeE has not been reported, we have changed the sentence to "In some bacteria, such as Gram-positive Corynebacterium species, YeeE and YeeD are encoded as one polypeptide." We have also avoided the word "cofactor" in the revised text (lines 89-91).

      L114 YeeD was probably accidentally lowercased here as Yeed

      We have corrected this error (line 134).

      L119 Please specify what the negative control consisted of.

      We have elaborated on the conditions (lines 140-141).

      L120-122 In Fig 2c, the mutations E19A, K21A, E26A, D31A, E32A and D38A are still shown, but an explanation or description of the results is missing. The reason for investigation of these mutations should be stated in the text.

      We have added the requested mutation information (line 146).

      L137 If thiosulfate was not added before the MALDI-TOF, where did the sulfonate S-SO3 originate from? Is this an artifact formed during the heterologous production or purification? Please comment on this possibility in the text.

      We think that the -S-SO3- form arose during purification (Fig. 2D). The -S-SO3- form disappeared upon reduction by DTT (Fig. 2F). It is possible to consider it as an intermediate state in the catalytic cycle of YeeD. We commented on this in the section entitled "Thiosulfate decomposition activity of YeeD and its catalytic center residue."

      L144 Please state in the text whether these experiments were performed under aerobic or anaerobic conditions. The sulfinic acid is likely a product of a spontaneous chemical reaction with molecular oxygen.

      Thank you for your feedback. We have now included information about the aerobic conditions in the main text (line 166-167) and added comments regarding the mass spectrometry results at the end of the paragraph (lines 191-201).

      L148 It should be stated in the text whether YeeD in Fig2G was reduced with DTT as in Fig 2F or non-reduced as in Fig. 2D before thiosulfate was added. Only the reduced YeeD can yield conclusive results on the loading with sulfur, as there is already a thiosulfonate bound to the protein after purification.

      Thank you for pointing this out. For mass spectrometry analysis, data were re-obtained, and DTT-treated sample was used for the thiosulfate condition in this revised version. Furthermore, we performed mass spectrometry analysis for the hydrogen peroxide condition using DTT-treated sample. Figures were replaced with revised ones (Fig. 2D–H). The text in the section "Thiosulfat____e decomposition activity of YeeD and its catalytic center residue" was appropriately re-written. Detailed sample preparation is also described in MATERIALS AND METHODS section.

      L154 The YeeD used for measurement of sulfide formation must be reduced before the experiments. It is not stated in the text if this is the case. Also, the release of sulfide requires electrons. It should be commented where these electrons originate from.

      The sample in the purification process contains β-ME until just before the final column (gel filtration). As shown in Fig. S2D, more than 90% of the purified product is in a reduced state after gel filtration. For mass spectrometry analysis, data were re-obtained using DTT-treated samples, and the figures were replaced with new ones (Fig. 2D–H). Binding and activity measurements were conducted in the presence of β-ME. To avoid the confusion of the readers, the buffer conditions were included in the legends of both Fig. 2 and Fig. 4, along with the details in the MATERIALS AND METHODS section. Regarding electron origin, since the electron route remains unknown at this stage, we have added the explanation as a sentence in the Discussion section (lines 370-372).

      L159-160 If the mutation of the non-conserved YeeD cysteine inhibits growth, can anything be said about its function?

      Regarding the non-conserved Cys in EcYeeD, we added some sentences in the Discussion section (lines 393-397)

      L214 Is it possible to provide the Kd and KD values for the mutant proteins?

      The ka, kd and KD values the interactions between YeeE and YeeD proteins have been provided in Table 2. To provide these values for all the YeeD derivatives, the data was re-analyzed, and therefore, the value of the WT YeeD is slightly different from the original manuscript.

      L229 Stating a need of YeeD for thiosulfate uptake by YeeE is somewhat misleading as thiosulfate was also imported into liposomes by YeeE alone. Maybe state that YeeD is a required component for growth when thiosulfate is imported via YeeE.

      We have addressed the incorrect wording (lines 317-318).

      Reviewer #2 (Significance (Required)):

      The work of Ikei and colleagues significantly advances our understanding of thiosulfate import in Escherichia coli (E. coli) and prokaryotes in general. Sulfur metabolism as a field is generally considered to be underexplored, with a notable lack of biochemical and structural information on membrane transporters responsible for the movement of both inorganic and organic sulfur compounds. The mechanisms involved in sulfur transport are also relatively poorly understood.

      The proteins of the TusA family in E. coli exhibit distinct functions, although the precise function has only been determined for the canonical and namesake protein TusA. The discovered genetic evidence and the interaction of YeeE and YeeD adds significantly to our understanding of sulfur transfer reactions.

      The novelty of this reaction is of particular interest to researchers studying prokaryotic physiology, especially the synthesis of sulfur-containing cofactors such as coenzyme A (CoA), biotin, lipoate, thiamine, and iron-sulfur (FeS) clusters, as well as the biosynthesis of cysteine and methionine. In addition, recent findings related to the TusA family protein YeeD elucidate a novel mechanism for sulfur mobilization and transfer that will be of interest to researchers involved in the regulation of sulfur metabolism, sulfur dissimilation, and ecological studies focused on sulfur utilization. Thus, a wide range of studies could be influenced by this review.

      Areas of expertise include dissimilatory sulfur oxidation, sulfur transfer reactions, and protein-protein interactions.

      Thank you again for emphasizing the importance of our work. We also believe this study significantly advances the understanding of thiosulfate import in prokaryotes, shedding light on the underexplored field of sulfur metabolism. This has implications for various areas of study.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript "Structure and function of a YeeE-YeeD complex for sophisticated thiosulfate uptake" by Ikei et al., reports the enzymatic characterization, transport capability and concerted function of YeeE and YeeD. Moreover, the authors report the crystal structures of two mutant variants of the complex.

      The present work fills an important gap in understanding thiosulfate uptake and the individual roles of the YeeE and YeeD proteins in this process. This Reviewer believes that the paper has the potential of becoming an important reference in the field. However, this Reviewer has two or three major comments, besides a couple of minor ones, that would like the authors to address.

      We appreciate your valuable comments. We have addressed both major and minor comments in our revisions, improving our manuscript.

      This Reviewer hypothesizes that some of the comments might derive from a poor understanding of the text, derived from the way the manuscript is written. So, this Reviewer urges the Authors to take these comments as positive feedback, and build on these to improve the manuscript (namely on English and grammar).

      We have diligently revised the manuscript, addressing your major concerns related to sulfide terminology and explanations in crystal structure analysis as below. These revisions have enhanced clarity, and a native English speaker has reviewed and refined our text for language and grammar.

      MAJOR CONCERNS

      1. There is no clue on the title and, more importantly, on the Abstract, to which microorganism the Authors are reporting this work. Only later one we are introduced to Spirochaeta thermophila, but this information should be front and center (at least in the Abstract);

      We recognize the importance of clearly indicating the microorganism in our work. In accordance with the comments, we have revised both the title and Abstract, ensuring that the species is clearly identified in the Abstract.

      Also, in the Abstract, the Authors only mention the 2.6 A resolution structure, leaving behind the 3.34 A one. This becomes very confusing, especially once one gets to the Results section (more comments below);

      We apologize for any confusion arising from the omission of the 3.34 A resolution structure in the Abstract. In the revised Abstract, we have included both the 2.60 A and 3.34 A resolution structures. As per your suggestion, we have also provided detailed information about the determination of these structures in the Results, minimizing potential confusion for readers (lines 217-233).

      The Authors mention in line 137 and Fig. 2D that a "sulfonate" moiety is formed at C17. However, cysteine sulfonation is an irreversible process, so how would the enzyme recover from this modification to allow turnover of the mechanism?;

      We apologize for the poorly written passage that led to confusion. This paragraph has been revised with the appropriate wording and a proper mention of the reduction and oxidation of the -SH group. We now use the appropriate terms, such as sulfinic acid (-S-O2-), sulfonic acid (-S-O3-), and perthiosulfonic acid (-S-SO3-) to describe the sulfur-related modification states. In contrast to sulfonic acid (-SO3-) formed by the oxidization of the cysteine residue that is an irreversible process, perthiosulfonic oxidization of cysteine residue (-S-SO3-) is a reversible process, as shown in (E. Doka et al., Sci Adv 6, eaax8358 (2020)). Therefore, the modified YeeD molecules should be able to recover to the original state.

      If the "sulfonylation" reported in line 137 and Fig. 2D is not a sulfonylation of the cysteine (because the peak disappears upon reduction with DDT as visible in Fig. 2F), but rather a sulfonylation of the cysteine-persulfide version of C17, this was already reported previously and should be referenced [PDB ID 5LO9, Brito et al. (2016) J Biol Chem 291: 24804-24818];

      Because there was a misleading statement, as replied above, we have rewritten this paragraph.

      The perthiosulfonic acid (-S-SO3-) in Fig.2D is different from this -S-S2O3- in Brito et al., (2016), but consistent with Fig. 2G. This point is included in the text and the suggested paper has been cited, as requested. (lines 191-193)

      Section "Crystal structure of the YeeE-YeeD complex" should be re-written. Not only it is confusing, but also undermines the tremendous amount of work done by the Authors. Please state clearle what was crystallized, how and why. Specify clearly the mutation introduced and complement Table 1 with this information;

      Thank you for these comments. The determination of the structures was certainly challenging. We have restructured the first part of the section entitled "Crystal structure of the YeeE-YeeD complex". We have included a comprehensive explanation of the crystallization process and the construction of YeeE-YeeD. Additionally, we have updated Table 1 to provide more detailed information on the two structures.

      Lines 403-407: are the crystallization conditions already cryo-protected or no cryo-protection was added before flash freezing? Please state clearly;

      In response to your feedback, we have added the missing information in MATERIALS AND METHODS section.

      Table 1:

      • Is the multiplicity of PDB ID 8K1R correct? Is it really 321?? If so, is there any radiation damage to the crystal? If not, how?? Fine-fine-slicing during data collection, big crystals with elliptical data collection?? Pleas elaborate;

      The multiplicity for PDB ID 8K1R is correct. We have provided detailed information on data collection in MATERIALS AND METHODS section.

      • There are water molecules in the structure so please report number of atoms and B-factors for waters ("Solvent"), and ligands (e.g., thiosulfate, or others, if any), separately;

      We have updated Table 1 to include the requested information.

      • Please provide validation statistics for the structures, namely, rotamer outliers, clashscore and MolProbity score.

      We have added the validation statistics to Table 1.

      MINOR CONCERNS

      1. Always reference paper and PDB ID for all structures. E.g., at line 181, only the paper is referenced;

      We have ensured that all structures are properly referenced with both the paper and the corresponding PDB ID (lines 246, 250).

      Remove "alpha" in line 199;

      We have removed the "alpha" (line 268).

      Add units to all concentrations. E.g., at lines 326 and 327, (w/V) and (V/V) are missing.

      We have incorporated concentration units, (w/v) or (v/v), for percentages in the appropriate locations.

      Reviewer #3 (Significance (Required)):

      The scientific rationale is robust and the experimental approach is adequate and provide support to the conclusion drawn. However, there are some questions this Reviewer would like to see clarified, namely on the data collection and processing of PDB ID 8K1R.

      We appreciate your feedback. These revisions enhance the clarity and accuracy of this manuscript.

    1. As grad students, postdocs, or early career academics, we may think that the papers we reference, the textbooks we read, or the articles we enjoy skimming are written by writers who are leaps and bounds above us in terms of skill.

      This is what I think about successful media influencers, you-tubers, streamers, etc. I thought there was never a real chance for the little guy when you have all these other people who get millions of views and likes but you have to think that they all started getting one like or one viewer, so there is always a chance for the new guy to be as big as these other people like pewdipie, jynxzi, the Kardashians, etc.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Issue 1: The relevance is somewhat unclear. High cysteine levels can be achieved in the laboratory, but, is this relevant in the life of C. elegans? Or is there physiological relevance in humans, e.g. a disease? The authors state "cells and animals fed excess cysteine and methionine", but is this more than a laboratory excess condition? SUOX nonfunctional conditions in humans don't appear to tie into this, since, in that context, the goal is to inactivate CDO or CTH to prevent sulfite production. The authors also mention cancer, but the link to cysteine levels is unclear. In that sense, then, the conditions studied here may not carry much physiological relevance.

      Response 1: We set out to answer a fundamental question: what pathways regulate the function of cysteine dioxygenase, a highly conserved enzyme in sulfur amino acid metabolism? In an unbiased genetic screen that sampled millions of EMS generated mutations across all ~20,000 C. elegans genes, we discovered loss of function/null mutations in egl-9 and rhy-1, two negative regulators of the hypoxia inducible transcription factor (hif-1). Genetic ablation of the egl-9 or rhy-1 loci are likely not relevant to the life of a C. elegans animal, i.e. this is not representative of a natural state. Yet, this extreme genetic intervention has taught us a new fundamental truth about the interaction between EGL-9/RHY-1, HIF-1, and the transcriptional activation of cdo1. Similarly, the high cysteine levels used in our assays may or may not be representative of a state in nature, we do not know (nor do we make any claims about the environmental relevance of our choice of cysteine concentrations). It seems very plausible that pathological states exist where cysteine concentrations may rise to comparable levels in our experimental system. More importantly, we have started with excess to physiology to elicit a clear response that we can study in the lab. Similar strategies established the cysteine-induction phenotype of CDO1 in mammalian systems. For instance, in Kwon and Stipanuk 2001, hepatocytes are cultured in media supplemented with 2mmol/L cysteine to promote a ~4-fold increase in CDO1 mRNA.

      Issue 2: The pathway is described as important for cysteine detoxification, which is described to act via H2S (Figure 6). Much of that pathway has already been previously established by the Roth, Miller, and Horvitz labs as critical for the H2S response. While the present manuscript adds some additional insight such as the additional role of RHY-1 downstream on HIF-1 in promoting toxicity, this study therefore mainly confirms the importance of a previously described signalling pathway, essentially adding a new downstream target rhy-1 -> cysl-1 -> egl-9 -> hif-1 -> sqrd-1/cdo-1. The impact of this finding is reduced by the fact that cdo-1 itself isn't actually required for survival in high cysteine, suggesting it is merely a maker of the activity of this previously described pathway.

      Response 2: We agree that the primary impact of our manuscript is the establishment of a novel intersection between the H2S-sensing pathway (largely worked out by Roth, Miller, and Horvitz) and our gene of interest, cysteine dioxygenase. We believe that the connection between these two pathways is exciting as it suggests a logical homeostatic circuit. High cysteine yields enzymatically produced H2S. This H2S may then act as a signal promoting HIF-1 activity (via RHY-1/CYSL-1/EGL-9). High HIF-1 activity increases cdo-1 transcription and activity promoting the degradation of the high-cysteine trigger. As pointed out by the reviewer, cdo-1(-) loss of function alone does not cause cysteine sensitivity at the concentrations tested. Given that cysl-1(-) and hif-1(-) mutants are exquisitely sensitive to high levels of cysteine, we propose that HIF-1 activates the transcription of additional genes that are required for high cysteine tolerance. However, our genetic data show that cdo-1 is more than simply a marker of HIF-1 transcription. Our genetic data in Table 1 demonstrate that HIF-1 activation (caused by egl-9(-)) is sufficient to cause severe sickness in a suox-1 hypomorphic mutant which cannot detoxify sulfites, a critical product of cysteine catabolism. This severe sickness can be reversed by inactivating hif-1, cth-2, or cdo-1. These data demonstrate a functional intersection between the established H2S-sensing pathway and cysteine catabolism governed by cdo-1.

      Reviewer #2 (Public Review):

      Issue 3: First, the authors show that the supplementation of exogenous cysteine activates cdo-1p::GFP. Rather than showing data for one dose, the author may consider presenting dose-dependency results and whether cysteine activation of cdo-1 also requires HIF-1 or CYSL-1, which would be important data given the focus and major novelty of the paper in cysteine homeostasis, not the cdo-1 regulatory gene pathway.

      Response 3: We agree with the reviewer and have performed the suggested dose-response curve for expression of Pcdo-1::GFP in wild-type C. elegans. We observe substantial activation of the Pcdo-1::GFP transcriptional reporter beginning at 100µM supplemental cysteine (Figure 3C). Higher doses of cysteine do not elicit a substantially stronger induction of the Pcdo-1::GFP reporter. Thus, we find that 100µM supplemental cysteine strikes the right balance between strongly inducing the Pcdo-1::GFP reporter while not inducing any toxicity or lethality in wild-type animals (Figure 3E).

      We further agree that testing for induction of the Pcdo-1::GFP reporter in a hif-1(-) or cysl-1(-) mutant background is a critical experiment. However, we have not been able to identify a cysteine concentration that induces Pcdo-1::GFP and is not 100% lethal for hif-1(-) or cysl-1(-) mutant C. elegans. The remarkable sensitivity of hif-1(-) or cysl-1(-) mutant C. elegans to supplemental cysteine demonstrates the critical role of these genes in promoting cysteine homeostasis. But because of this lethality, we could not assay the Pcdo1::GFP reporter in the hif-1(-) or cysl-1(-) mutant animals. But the lethality to excess cysteine demonstrates that this cysteine response is salient. To get at how cysteine might be interacting with the HIF-1-signaling pathway, we performed new additivity experiments by supplementing 100µM cysteine to wild type, egl-9(-), and rhy-1(-) mutant C. elegans expressing the Pcdo-1::GFP reporter. Surprisingly, we found that cysteine had no significant impact on Pcdo-1::GFP expression in an egl-9(-) mutant background but significantly increased the Pcdo-1::GFP expression in a rhy-1(-) background (Figure 3A,B). These data suggest that cysteine acts in a pathway with egl-9 and in parallel to rhy-1. These data have been incorporated into Figure 3A,B and are included in the Results section of the manuscript.

      Issue 4: While the genetic manipulation of cdo-1 regulators yields much more striking results, the effect size of exogenous cysteine is rather small. Does this reflect a lack of extensive condition optimization or robust buffering of exogenous/dietary cysteine? Would genetic manipulation to alter intracellular cysteine or its precursors yield similar or stronger effect sizes?

      Response 4: We agree that the induction of the Pcdo-1::GFP reporter by supplemental cysteine is not as dramatic as the induction caused by the egl-9 or rhy-1 null alleles. We believe our Response 3 and new Figure 3C demonstrate that this phenomenon is not due to lack of condition optimization, but likely reflects some biology. As pointed out by the reviewer, C. elegans likely buffers exogenous cysteine and this (perhaps) prevents the impressive Pcdo-1::GFP induction observed in the egl-9(-) and rhy-1(-) mutant animals. We have now mentioned this possible interpretation in the Results section. Furthermore, we like the idea of using genetic tricks to promote cysteine accumulation within C. elegans cells and tissues and will consider these approaches in future studies.

      Issue 5: Second, there remain several major questions regarding the interpretation of the cysteine homeostasis pathway. How much specificity is involved for the RHY-1/CYSL-1/EGL-9/HIF-1 pathway to control cysteine homeostasis? Is the pathway able to sense cysteine directly or indirectly through its metabolites or redox status in general? Given the very low and high physiological concentrations of intracellular cysteine and glutathione (GSH, a major reserve for cysteine), respectively, there is a surprising lack of mention and testing of GSH metabolism.

      Response 5: Future studies are required to determine the specificity of the RHY-1/CYSL-1/EGL-9/HIF-1 pathway for the control of cysteine homeostasis. Our proposed mechanism, that H2S activates the HIF-1 pathway is based largely on the work of the Horvitz lab (Ma et al. 2012). They demonstrate that H2S promotes a direct inhibitory interaction between CYSL-1 and EGL-9, leading to activation of HIF-1. These findings align nicely with our genetic and pharmacological data. However, our work does not provide direct evidence as to the cysteine-derived metabolite that activates HIF-1. We propose H2S as a likely candidate.

      We have added a note to the introduction regarding the role of GSH as a reservoir of excess cysteine and agree that future studies might find interesting links between CDO-1, GSH metabolism, and HIF-1.

      Issue 6: In addition, what are the major similarities and differences of cysteine homeostasis pathways between C. elegans and other systems (HIF dependency, transcription vs post-transcriptional control)? These questions could be better discussed and noted with novel findings of the current study that are likely C. elegans specific or broadly conserved.

      Response 6: We have included a new section in the Discussion highlighting the nature of mammalian CDO1 regulation. We propose the hypothesis that a homologous pathway to the C. elegans RHY-1/CYSL-1/EGL9/HIF-1 pathway might operate in mammalian cells to sense high cysteine and induce CDO1 transcription. Importantly, all proteins in the C. elegans pathway have homologous counterparts in mammals. However, this hypothesis remains to be tested in mammalian systems.

      Reviewer #3 (Public Review):

      Major weaknesses of the paper include:

      Issue 7: the over-reliance on genetic approaches.

      Response 7: This is a fair critique. Our expertise is genetics. Our philosophy, which the reviewers may not share, is that there is no such thing as too much genetics!

      Issue 8: the lack of novelty regarding prolyl hydroxylase-independent activities of EGL-9.

      Response 8: We believe the primary novelty of our work is establishing the intersection between the H2Ssensing HIF-1 pathway and cysteine catabolism governed by cysteine dioxygenase. Our demonstration that cdo-1 regulation operates largely independent of VHL-1 and EGL-9 prolyl hydroxylation is a mechanistic detail of this regulation and not the critical new finding. Although, we believe it does suggest where pathway analyses should be directed in the future. We also believe that our homeostatic feedback model for the regulation of HIF-1 (and cdo-1) by cysteine-derived H2S is new and exciting and provides insight into the logic of why HIF-1 might respond to H2S and promote the activity of cdo-1. Our work suggests that one reason for this intersection of hif-1 and cdo-1 is to sense and maintain cysteine homeostasis when cysteine is in excess.

      Issue 9: the lack of biochemical approaches to probe the underlying mechanism of the prolyl hydroxylaseindependent activity of EGL-9.

      Response 9: While not the primary focus of our current manuscript, we agree that this is an exciting area of future research. To uncover the prolyl hydroxylase-independent activity of EGL-9, we agree that a combination of approaches will be required including, biochemical, structure-function, and genetic.

      Major Issues We Feel the Authors Should Address:

      Issue 10: One particularly glaring concern is that the authors really do not know the extent to which the prolyl hydroxylase activity is (or is not) impacted by the H487A mutation in egl-9(rae276). If there is a fair amount of enzymatic activity left in this mutant, then it complicates interpretation. The paper would be strengthened if the authors could show that the egl-9(rae276) eliminates most if not all prolyl hydroxylase activity. In addition, the authors may want to consider doing RNAi for egl-9 in the egl-9(rae276) mutant as a control, as this would support the claim that whatever non-hydroxylase activity EGL-9 may have is indeed the causative agent for the elevation of CDO-1::GFP. Without such experiments, readers are left with the nagging concern that this allele is simply a hypomorph for the single biochemical activity of EGL-9 (i.e., the prolyl hydroxylase activity) rather than the more interesting, hypothesized scenario that EGL-9 has multiple biochemical activities, only one of which is the prolyl hydroxylase activity.

      Response 10: We have two lines of evidence that suggest the egl-9(rae276)-encoded H487A variant eliminates prolyl hydroxylase activity. First, Pan et al. 2007 (reference 57) demonstrate that when the equivalent histidine (H313) is mutated in human protein, that protein lacks detectible prolyl hydroxylase activity. Second, the phenotypic similarities caused by egl-9(rae276) and the vhl-1 null allele, ok161. Both alleles cause nearly identical activation of the Pcdo-1::GFP reporter transgene (Fig. 5C,D), and similarly impact the growth of the suox-1(gk738847) hypomorphic mutant (Table 1). This phenotypic overlap is highly relevant as the established role of VHL-1 is to recognize the hydroxyl mark conferred by the EGL-9 prolyl hydroxylase domain and promote the degradation of HIF-1. If EGL-9[H487A] had residual prolyl hydroxylase activity, we would expect the vhl-1(-) null mutant C. elegans to display more dramatic phenotypes than their egl-9(rae276) counterparts. This is not the case.

      Issue 11: The authors observed that EGL-9 can inhibit HIF-1 and the expression of the HIF-1 target cdo-1 through a combination of activities that are (1) dependent on its prolyl hydroxylase activity (and subsequent VHL-1 activity that acts on the resulting hydroxylated prolines on HIF-1), and (2) independent of that activity. This is not a novel finding, as the authors themselves carefully note in their Discussion section, as this odd phenomenon has been observed for many HIF-1 target genes in multiple publications. While this manuscript adds to the description of this phenomenon, it does not really probe the underlying mechanism or shed light on how EGL-9 has these dual activities. This limits the overall impact and novelty of the paper.

      Response 11: See response to Issues #8.

      Issue 12: Cysteine dioxygenases like CDO-1 operate in an oxygen-dependent manner to generate sulfites from cysteine. CDO-1 activity is dependent upon availability of molecular oxygen; this is an unexpected characteristic of a HIF-1 target, as its very activation is dependent on low molecular oxygen. Authors neither address this in the text nor experimentally, and it seems a glaring omission.

      Response 12: We agree this is an important point to raise within our manuscript. Although, despite its induction by HIF-1, there is no evidence that cdo-1 transcription is induced by hypoxia. In fact, in a genome wide transcriptomic study, cdo-1 was not found to be induced by hypoxia in C. elegans (Shen et al. 2005, reference 71).

      We have newly commented on the use of molecular oxygen as a substrate by both EGL-9 and CDO-1 in our Discussion section. The mammalian oxygen-sensing prolyl hydroxylase (EGLN1) has been demonstrated to have high a Km value for O2 (high µM range). This likely allows EGLN1 to be poised to respond to small decreases in cellular oxygen from normal oxygen tensions. Clearly, CDO-1 also requires oxygen as a substrate, however the Km of CDO-1 for O2 is likely to be much lower, preventing sensitivity of the cysteine catabolism to physiological decreases in O2 availability. Although, to our knowledge, the CDO1 Km value for O2 has not been experimentally determined. We have added a new Discussion section where we address the conundrum about low oxygen inducing HIF-1 but oxygen being needed by CDO-1/CDO1.

      Issue 13: The authors determined that the hypodermis is the site of the most prominent CDO-1::GFP expression, relevant to Figure 4. This claim would be strengthened if a negative control tissue, in the animal with the knockin allele, were shown. The hypodermal specific expression is a highlight of this paper, so it would make this article even stronger if they could further substantiate this claim.

      Response 13: Our claim that the hypodermis is the critical site of cdo-1 function is based on; i) our hands on experience looking at Pcdo-1::GFP, Pcdo-1::CDO-1::GFP, CDO-1::GFP (encoded by cdo-1(rae273)) and our reporting of these expression patterns in multiple figures throughout the manuscript and ii) the functional rescue of cdo-1(-) phenotypes by a cdo-1 rescue construct expressed by a hypodermal-specific promoter (col10). We agree that providing negative control tissues would modestly improve the manuscript. However, we do not think that adding these controls will substantially alter the conclusions of the paper. Importantly, we acknowledge this limitation of our work with the sentence, “However, we cannot exclude the possibility that CDO-1 also acts in other cells and tissues as well.”

      Minor issues to note:

      Issue 14: Mutants for hif-1 and cysl-1 are sensitive to exogenous cysteine levels, yet loss of CDO-1 expression is not sufficient to explain this phenomenon, suggesting other targets of HIF-1 are involved. Given the findings the authors (and others) have had showing a role for RHY-1 in sulfur amino acid metabolism, shouldn't the authors consider testing rhy-1 mutants for sensitivity to exogenous cysteine?

      Response 14: To test the hypothesis that rhy-1(-) C. elegans might be sensitive to supplemental cysteine, we cultured wild type and rhy-1(-) animals on 0, 100, and 1000µM supplemental cysteine. At 0 and 100µM supplemental cysteine, neither wild-type nor rhy-1(-) animals display any lethality suggesting rhy-1 is not required for survival in the face of excess cysteine (Fig. 3D,E). We also cultured these same strains on 1000µM supplemental cysteine, a concentration that is highly toxic to wild-type animals (100% lethality). rhy1(-) animals were resistant to 1000µM supplemental cysteine with a substantial fraction of the population surviving overnight exposure to this lethal dose of cysteine. Similarly, egl-9(-) mutant C. elegans were also resistant to 1000µM supplemental cysteine. We propose that loss of egl-9 or rhy-1 activates HIF-1-mediated transcription which is priming these mutants to cope with the lethal dose of cysteine. These data are now presented in Figure 3D-F and presented in the Results section.

      Issue 15: The cysteine exposure assay was performed by incubating nematodes overnight in liquid M9 media containing OP50 culture. The liquid culture approach adds two complications: (1) the worms are arguably starving or at least undernourished compared to animals grown on NGM plates, and (2) the worms are probably mildly hypoxic in the liquid cultures, which complicates the interpretation.

      Response 15: We agree that it is possible that animals growing overnight in liquid culture are undernourished and mildly hypoxic. However, we are confident in our data interpretation as all our experiments are appropriately controlled. Meaning, control and experimental groups were all grown under the same liquid culture conditions. Thus, these animals would all experience the same stressors that come with liquid culture. Importantly, we never make comparisons between groups that were grown under different culture conditions (i.e. solid media vs. liquid culture).

      Issue 16: An easily addressable concern is the wording of one of the main conclusions: that cdo-1 transcription is independent of the canonical prolyl hydroxylase function of EGL-9 and is instead dependent on one of EGL-9's non-canonical, non-characterized functions. There are several points in which the wording suggests that CDO-1 toxicity is independent of EGL-9. In their defense, the authors try to avoid this by saying, "EGL-9 PHD," to indicate that it is the prolyl hydroxylase function of EGL-9 that is not required for CDO-1 toxicity. However, this becomes confusing because much of the field uses PHD and EGL-9/EGLN as interchangeable protein names. The authors need to be clear about when they are describing the prolyl hydroxylase activity of EGL-9 rather than other (hypothesized) activities of EGL-9 that are independent of the prolyl hydroxylase activity.

      Response 16: We appreciate the reviewer alerting us to this practice within the field. To avoid confusion, we have removed the “PHD” abbreviation from our manuscript and explicitly referred to the “prolyl hydroxylase domain” where relevant.

      Issue 17: The authors state in the text, "the egl-9; suox-1 double mutants are extremely sick and slow growing." We appreciate that their "health" assay, based on the exhaustion of food from the plate, is qualitative. We also appreciate that it is a functional measure of many factors that contribute to how fast a population of worms can grow, reproduce, and consume that lawn of food. However, unless they do a lifespan assay and/or measure developmental timing and specifically determine that the double mutant animals themselves are developing and/or growing more slowly, we do not think it is appropriate to use the words "slow growing" to describe the population. As they point out, the rate of consumption of food on the plate in their health assay is determined by a multitude and indeed a confluence of factors; the growth rate is one specific one that is commonly measured and has an established meaning.

      Response 17: We see how the phrase ‘slow growing’ might imply a phenotype that we have not actually assessed with this assay. Therefore, we have removed all claims about “slow growth” of the strains presented in Table 1 and have highlighted the assay more overtly in the results section. For example; “While egl-9(-) and suox-1(gk738847) single mutant animals are healthy under standard culture conditions, the egl-9(-); suox1(gk738847) double mutant animals are extremely sick and require significantly more days to exhaust their E. coli food source under standard culture conditions (Table 1).”

      Reviewer #1 (Recommendations For The Authors):

      Issue 18: Relevance could be addressed further in the text.

      Response 18: We have added additional context for our work in the Discussion section. Please see our response to Issues #5, 6, 12, and 24.

      Issue 19: Better appreciation and integration of the manuscript's findings with published studies would be appropriate.

      Response 19: We have added additional context for our work in the Discussion section. Please see our response to Issues #5, 6, 12, and 24.

      Issue 20: It might be perhaps relevant to test whether cdo-1 is relevant for hypoxia resistance since it appears to be a key target for hif-1.

      Response 20: We agree that this is an interesting future direction, however given that cdo-1 mRNA is not induced by hypoxia (Shen et al. 2005) we have not prioritized these experiments for the current manuscript.

      Issue 21: "egl-9 inhibits cdo-1 transcription in a prolyl-hydroxylase and VHL-1-independent manner" should be tempered. vhl-1 mutants and egl-9 hydroxylase point mutant still have significant induction of the reporter.

      Response 21: Thank you for identifying this oversight. We have modified the Figure 5 legend title to read, “egl9 inhibits cdo-1 transcription in a largely prolyl-hydroxylase and VHL-1-independent manner.”

      Issue 22: Please use line numbers in the future for easier tracking of comments.

      Response 22: We shall.

      Issue 23: Abstract and elsewhere, "high cysteine activates...", should be rephrased to "high levels of cysteine".

      Response 23: We have made this change throughout the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      Issue 24: The authors discuss CDO1 in the context of tumorigenesis, as well as the potential regulation between cysteine and the hypoxia response pathway. Thus, I was surprised that there was no mention of the foundational Bill Kaelin paper (Briggs et al 2016) showing how the accumulation of cysteine is related to tumorigenesis, and that cysteine is a direct activator of EglN1. Puzzling that CDO1 is a tumor suppressor: you lose it, cysteine can accumulate and activate EglN1, causing HIF1 turnover. How do the authors reconcile their results with this paper? I was also surprised that there was no mention in the Discussion of the role of hydrogen sulfide, cysteine metabolism, and CTH and CBS in oxygen sensation in the carotid body given the role they play there. Seems important to discuss this issue.

      Response 24: We have added new sections to our Discussion that consider the relationship between our work and Briggs et al. 2016 as well as mentioned the role of CTH and H2S in the mammalian carotid body.

      Issue 25: The abstract has a variety of contradictory statements. For example, the authors state that "HIF-1mediated induction of cdo-1 functions largely independent of EGL-9," but then go on to conclude in the final sentence that cysteine stimulates H2S production, which then activates EGL-9 signaling, which then increases HIF-1-mediated transcription of cdo-1. A quick reading of the abstract leaves the reader uncertain whether EGL-9 is or is not involved in this regulation of cdo-1 expression. In addition, the conclusion sentence implies that activation of the EGL-9 pathway increases HIF-1-mediated transcription, yet it is well established that EGL-9 is an inhibitor of HIF-1. The abstract fails to deliver a clear summary of the paper's conclusions. Perhaps consider this alternative (changes in capital letters):

      The amino acid cysteine is critical for many aspects of life, yet excess cysteine is toxic. Therefore, animals require pathways to maintain cysteine homeostasis. In mammals, high cysteine activates cysteine dioxygenase, a key enzyme in cysteine catabolism. The mechanism by which cysteine dioxygenase is regulated remains largely unknown. We discovered that C. elegans cysteine dioxygenase (cdo-1) is transcriptionally activated by high cysteine and the hypoxia inducible transcription factor (hif-1). hif-1- dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is sufficient to drive sulfur amino acid metabolism. EGL-9 and HIF-1 are core members of the cellular hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 IS largely independent of EGL-9 prolyl hydroxylASE ACTIVITY and the von Hippel-Lindau E3 ubiquitin ligase. We propose that the REGULATION OF cdo-1 BY HIF-1 reveals a negative feedback loop for maintaining cysteine homeostasis. High cysteine stimulates the production of an H2S signal. H2S then ACTS THROUGH the rhy-1/cysl-1/egl-9 signaling pathway DISTINCTLY FROM THEIR ROLE IN HYPOXIA RESPONSE TO INCREASE HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.

      Response 25: We agree that the abstract could be clearer. We believe this concern stems from the fact that we did not discuss our initial screen in the abstract. Thus, we failed to establish a role for egl-9 in the regulation of cdo-1. To remedy this, we have modified the abstract as suggested by the reviewer and added additional context. We believe that these changes improve the clarity of the Abstract substantially.

      Issue 26: An easily addressable concern involves the "dark" microscopy controls showing lack of fluorescence from a nematode. In these dark negative control micrographs, the authors should draw dotted outlines around where the worms are or include a brightfield image next to the fluorescence image. On a computer screen, it is in fact possible to make out the worms. Yet, when printed out, the reader must assume there are worms in the dark images. Additionally, we realize that adjusting fluorescence so that wild-type CDO-1 expression can be seen will result in oversaturation of the egl-9 and rhy-1; cdo-1 doubles; however, this would be a useful figure to add into the supplement to both provide a normal reference of CDO-1 low-level expression and a demonstration of just how bright it is in the mutant backgrounds. It would also be useful for you to please report your exposure settings for purposes of reproducibility.

      Response 26: As suggested, we have added dotted lines around the location of the C. elegans animals in all images where GFP expression is low or basal. We have also reported the exposure times for each image in the appropriate figure legends.

      Issue 27: This title is quite generic and doesn't even mention the main players (CDO-1 and sulfite metabolism).

      Response 27: We have updated our title to call attention to cysteine dioxygenase. The improved title is: “Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans”

      Issue 28: The authors mention two disorders in which CDO-1 plays a pathogenic role: MoCD and ISOD. We recommend switching the order in which the authors mention these, as the remainder of the paragraph is about MoCD. Also, they should write out the number "2" in the first sentence of that paragraph.

      Response 28: We have made the suggested changes.

      Issue 29: The authors state in the main text, "...to ubiquitinate HIF-1, targeting it for degradation by the proteosome." Here, they should refer to the pathway in Figure 5a.

      Response 29: We have made the suggested change.

      Issue 30: The authors state in the main text, "Elements of the HIF-1 pathway have emerged..." which is vague and confusingly worded. Change to, "Members of the HIF-1 pathway and its targets have emerged from C. elegans genetic studies."

      Response 30: We have made the suggested change.

      Issue 31: Clarify in the figure legends that supplemental cysteine did not affect the mortality of worms that were imaged.

      Response 31: We have added this note to Figure 3A and Figure S3A.

      Issue 32: Figure 1b. "the cdo-1 promoter is shown..." Add: "as a straight line" to the end of this phrase.

      Response 32: We have made the suggested change.

      Issue 33: The authors should consider changing the red text in Figure 1 to magenta, which tends to be more readable for people who have limited color vision.

      Response 33: We have adjusted the colors in Figure 1 as suggested.

      Issue 34: Figure 2, legend title. Consider changing "hif-1" to "HIF-1," as well as rhy-1, cysl-1, and egl-9. In this case, they are talking about proteins, not mutants or genes. This will make the paper easier to follow for readers who lack a C. elegans background.

      Response 34: We have made the suggested change.

      Issue 35: Figure 5, caption text. "...indicates weak similarity." Add, "amongst species compared."

      Response 35: We have made the suggested change.

      Issue 36: It is starting to become a standard for showing the datapoints in bar graphs. Although this is done in many graphs in the paper, it should also be done for Figure S1 and Figure 4C.

      Response 36: We have made the suggested change.

      Issue 37: An extensive ChIP-seq and RNA-seq analysis of C. elegans HIF-1 was recently published (Vora et al, 2022), which the authors should reference in support of the regulation of CDO-1 transcription by HIF-1 in their description of published expression studies of the pathway (Results section, page 4). Indeed, Vora et al were key generators of the ChIP-seq data cited in Warnhoff et al but not included as authors in the ModERN/ModENCODE publication: their contributions were published separately in Vora et al and should be acknowledged equivalently.

      Response 37: We appreciate the reviewer pointing this detail out and we have added the correct citation as indicated.

    1. Let's face it: most of us were taught in classrooms where styles of teachings reflected the hotion of a single norm of thought and experience, which we were encouraged to believe was universal. This has been just as true for nonwhite teachers as for white teachers. Most of us learned to teach emulating this model.

      This statement accept a common educational way, which is the education style have been think as a single norm of thought. From past to now. this style have been exist for a long time, and people may potentially think that education should be that kind of style. This would lead people feel concerns about possible limitations and lack of diversity in educational practice. Also, it implies that we should apply a way with more diversities.

  4. docdrop.org docdrop.org
    1. We know that disproportionate numbers of poor children are far more likely to be identified as less academically adept or even as having special needs. The early tracking and labeling of children reared in poverty is cumulative and devastating. It not only hampers students' self-esteem and cripples their own expectations of themselves but also, as Rist (1970/2000) discovered, becomes a self-fulfilling prophecy for what too often becomes a trajectory of underachievement.

      I think this statement shows how bad the potential discrimination is. Just like what the author mentions, people may potentially think that poor children are not good at study. This would cause the children to hate studying in some degree and they would have low expectations of them. Therefore, it shows that correcting people's thinking is very important to achieve education equality. At the same time. the statement shows that the economic inequality is a worse problem need to be solved from side.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Some suggestions:

      1) It's obviously concerning that your GWAS results are not at all robust to the approach used (Fig S3). Did you try something non-parametric, like a Kruskal-Wallis test?

      We used both GWAS and crosses (F2) to validate the presence of the QTL. So ,evidence is not only brought by GWAS. We did not use non parametric tests as we will have difficulty to account for population structure/relatedness with such approaches. Our GWAS approach is certainly a little underpowered associated with the number of individuals we used and certainly the polygenic nature of the root growth traits. But F2 crosses allow us to put more evidence weight on some region we identified with GWAS.

      2) You don't explain what you do with heterozygotes, nor discuss the level of inbreeding in general.

      We are dealing with inbred lines, but indeed there are not completely fixed inbred lines. For the remaining heterozygotes, they were randomly fixed in one or the other alleles. The median heterozygosity value was low at 5.6%. We clarified this point in the material and methods.

      3) The finding that over 30% of RNA-seq reads don't seem to have an annotated home should give you pause. Do they map anywhere? At least discuss what is going on. Also, note that you likely have enormous errors in SNP-calling due to cryptic structural variation - think about what this might do?

      We agree with reviewer #1. We added a few sentences in the result section to clarify this point: “When further analyzed, 15.15% of the unmapped reads (with no correspondence to predicted CDS) were found not to match the reference genome. These might correspond either to unsequenced regions or to genotype-specific genomic regions that are not present in the reference line. The remaining unmapped reads corresponded to either rRNA and tRNA genes (40.28% of the unmapped reads) or to non-annotated genes or non-coding RNAs (44.57% of the unmapped reads).” As we used the same reference genome for mapping the RNAseq reads, some genes might not being present in our analysis for the two lines we studied.

      4) Did you consider moving PgGRXC9 into Arabidopsis?

      This is a great suggestion. In fact, we plan to explore more how some GRXs regulate root growth and how this is conserved in plants in a follow up project. This is however beyond the scope of this manuscript.

      Minor suggestions:

      1) Why not calculate H^2 simply as line variance divided by total?

      Heritability estimated on single individuals in population, approaches generally used for human and animal breeding led directly to line variance divided by total phenotypic variance.

      But in plant breeding (or plant science), we generally work on replicated genotypes in different blocks/experimental repetition. So we estimate the heritability of the mean phenotype of genotypes. There is ample literature (Nyquist, 1991; Holland et al. 2003; for a very nice and smartly written explanation, on the introduction of this PhD: http://opus.uni-hohenheim.de/volltexte/2020/1720/pdf/20200221_PhD_Thesis_Publikationsversion.pdf). Calculation of heritability (of the mean phenotype) should take into account for the calculation of the phenotypic variance (denominator) the number of replicate genotypes (we do not have a single plant, but several clones when using inbred lines: n). The meaning of the formula is that the error in the model is inflated because we have n replicate plants per genotype. And so to estimate the heritability of the average genotype, we have to take into account this inflated variance in the errors.

      2) While the paper overall is well-written, the captions need further proof-reading.

      We corrected all the captions.

      Reviewer #2 (Recommendations For The Authors):

      Major suggestions:

      1) The experimental support for the mutant phenotype of roxy19 needs to be further substantiated. Current methods available for CRISPR mutagenesis make it relatively easy to generate additional alleles. Alternatively, the authors could complement the mutant with a wild-type copy of the gene. These approaches represent the standard of the field and should be used here as well.

      We agree with rev #2. We added some sentences in the discussion to stress out the limitations of our study to link the QTL to PgGRXC9.

      As stated above we’d like to explore more how some GRXs regulate root growth and how this is conserved in plants. We plan to generate new single and multiple mutants in ROXY19 and its closest homologues (using CRISPR). This is, however, beyond this manuscript.

      2) The authors may want to state more clearly what the hypothesis is for how redox levels might contribute to root length differences and more clearly state what the limits of their current study are.

      We modified the discussion to try to clearly indicate the limitations of our study.

      3) Differences in root growth can be the consequence of a number of different parameters that contribute to root elongation and the authors need to more clearly define which of these are likely affected in their different genotypes.

      We agree with Reviewer #2. However, as stated before, we plan to further explore the molecular and cellular mechanisms responsible for the phenotype we observe in Arabidopsis. This will need extra work and is beyond the scope of this manuscript.

      4) Page 13, first paragraph. The authors provide an overly strong statement that suggests they have determined the molecular basis for the difference in PgGRXC9: " Altogether, our results suggest that PgGRXC9 is a positive regulator of root growth and that a polymorphism in the promoter region of PgGRXC9 associated with changes in its expression level appeared responsible for a quantitative difference in root growth between the two lines."

      While their results suggest the PgGRXC9 locus is associated with root growth variation, they have not directly tested the effect of the polymorphisms in the promoter on gene expression and this statement needs to be weakened.

      We changed the text to: “Altogether, our results suggest that PgGRXC9 is a positive regulator of root growth and that a polymorphism in the promoter region of PgGRXC9 might led to changes in its expression level and ultimately to a quantitative difference in root growth between the two lines. However, the effect of the polymorphisms in the promoter on gene expression need to be tested to validate this hypothesis.”

      We also changed the title of the manuscript to better reflect our results.

      Minor suggestions:

      1) Page 4: "FTSW below 0.3 was considered a stressful condition." It was not specified how this threshold was determined.

      This value corresponds to the measured FTSW value at which pearl millet genotypes subjected to a dry down generally start to reduce their transpiration rate (see Fig. 1 of Kholová et al, 2010; https://doi.org/10.1093/jxb/erp314). At FTSW values above 0.3, transpiration is not affected. At FTSW values around 0.3, the water supply from pearl millet roots cannot fully support transpiration. The plant enters a drought stress responsive phase and progressively closes its stomata to reduce water losses and decrease plant productive functions to match water supply. We have clarified this in the manuscript.

      2) Page 6: Figure 1; footnote: at the end of the description of panel A, a comma is missing between "red" and "blue."

      Thanks for pointing that out. This was corrected.

      3) The root growth data determined by X-ray imaging is not significant (Fig S4B), yet the authors describe the result in the main text without qualification. The authors should clarify this in the text.

      We added some text to clarify this.

      4) Page 9: Figure 2C; It would be better to enlarge these images and annotate them to indicate what specific anatomical features have been measured. Currently, only an expert in the field would be able to interpret these images.

      While we understand the point made by Reviewer #2, Fig2C was meant to illustrate differences in the root tip of the two lines.

      5) Page 9: Figures 2D and E; the number of biological samples measured is not indicated (what is "n"?).

      Thanks again for pointing this out. This was added to the figure legend.

      6) Page 14: Figure 4B; scale bar needs to be included.

      Scale bars were added to the pictures.

      7) Page 14: Figure 4; I recommend adding confocal images or DIC of cleared root apex tissues to easily compare the RAM size and cell lengths in both WT and roxy19 mutant.

      Once again, we plan to have a follow up study on the molecular and cellular mechanisms of action of ROXY19 and its closest homologues on root development. We believe a thorough analysis of differences in phenotype could be illustrated in a future manuscript.

      8) Page 18: main text; "we propose that redox regulation in the root meristem is responsible for a root growth QTL in pearl millet." This statement is ambiguous in the description of the mechanism. The authors do not clarify if the role they propose for PgGRXC9 is in the meristematic or elongation zone. Likely the authors are not able to know precisely where the gene is acting at this point, and so the presented hypothesis needs to more clearly state what limitations there are in assigning a mode of action for the PgGRXC9 and ROXY19 genes in root growth.

      We rewrote this paragraph to clarify the current gap in our understanding of the putative PgGRXC9 function.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The study is an important advancement to the consideration of antimalarial drug resistance: the authors make use of both modelling results and supporting empirical evidence to demonstrate the role of malaria strain diversity in explaining biogeographic patterns of drug resistance. The theoretical methods and the corresponding results are convincing, with the novel model presented moving beyond existing models to incorporate malaria strain diversity and antigen-specific immunity. This work is likely to be interesting to malaria researchers and others working with antigenically diverse infectious diseases.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The paper is an attempt to explain a geographic paradox between infection prevalence and antimalarial resistance emergence. The authors developed a compartmental model that importantly contains antigenic strain diversity and in turn antigen-specific immunity. They find a negative correlation between parasite prevalence and the frequency of resistance emergence and validate this result using empirical data on chloroquine-resistance. Overall, the authors conclude that strain diversity is a key player in explaining observed patterns of resistance evolution across different geographic regions.

      The authors pose and address the following specific questions:

      1. Does strain diversity modulate the equilibrium resistance frequency given different transmission intensities?

      2. Does strain diversity modulate the equilibrium resistance frequency and its changes following drug withdrawal?

      3. Does the model explain biogeographic patterns of drug resistance evolution?

      Strengths:

      The model built by the authors is novel. As emphasized in the manuscript, many factors (e.g., drug usage, vectorial capacity, population immunity) have been explored in models attempting to explain resistance emergence, but strain diversity (and strain-specific immunity) has not been explicitly included and thus explored. This is an interesting oversight in previous models, given the vast antigenic diversity of Plasmodium falciparum (the most common human malaria parasite) and its potential to "drive key differences in epidemiological features".

      The model also accounts for multiple infections, which is a key feature of malarial infections, with individuals often infected with either multiple Plasmodium species or multiple strains of the same species. Accounting for multiple infections is critical when considering resistance emergence, as with multiple infections there is within-host competition which will mediate the fitness of resistant genotypes. Overall, the model is an interesting combination of a classic epidemiological model (e.g., SIR) and a population genetics model.

      In terms of major model innovations, the model also directly links selection pressure via drug administration with local transmission dynamics. This is accomplished by the interaction between strain-specific immunity, generalized immunity, and host immune response.

      R: We thank the reviewer for his/her appreciation of the work.

      Weaknesses:

      In several places, the explanation of the results (i.e., why are we seeing this result?) is underdeveloped. For example, under the section "Response to drug policy change", it is stated that (according to the model) low diversity scenarios show the least decline in resistant genotype frequency after drug withdrawal; however, this result emerges mechanistically. Without an explicit connection to the workings of the model, it can be difficult to gauge whether the result(s) seen are specific to the model itself or likely to be more generalizable.

      R: We acknowledge that the explanation of certain results needs to be improved. We have now added the explanation of why low diversity scenarios show the least decline in resistance frequency after drug withdrawal: “Two processes are responsible for the observed trend: first, resistant genotypes have a much higher fitness advantage in low diversity regions even with reduced drug usage because infected hosts are still highly symptomatic; second, due to low transmission potential in low diversity scenarios (i.e., longer generation intervals between transmissions), the rate of change in parasite populations is slower.” (L243-247). We also compared the drug withdrawal response to that of the generalized-immunity-only model (L268-271). The medium transmission region has the fastest reduction in resistance frequency, followed by the high and low transmission regions, which differs from the full model that incorporates strain-specific diversity.

      In addition, to provide the context of different biogeographic transmission zones, we now include a new figure (now Fig. 3) that presents the parameter space of transmission potential and strain diversity of different continents, which demonstrates that PNG and South America have less strain diversity than expected by transmission potential (L179-184 and L198-202). Therefore, these two regions have low disease prevalence and high resistance frequency.

      The authors emphasize several model limitations, including the specification of resistance by a single locus (thus not addressing the importance of recombination should resistance be specified by more than one locus); the assumption that parasites are independently and randomly distributed among hosts (contrary to empirical evidence); and the assumption of a random association between the resistant genotype and antigenic diversity. However, each of these limitations is addressed in the discussion.

      R: As pointed out by the referee, our model presents several limitations that have all been addressed in the discussion and considered for future extensions.

      Did the authors achieve their goals? Did the results support their conclusion?

      Returning to the questions posed by the authors:

      1. Does strain diversity modulate the equilibrium resistance frequency given different transmission intensities? Yes. The authors demonstrate a negative relationship between prevalence/strain diversity and resistance frequency (Figure 2).

      2. Does strain diversity modulate the equilibrium resistance frequency and its changes following drug withdrawal? Yes. The authors find that, under resistance invasion and some level of drug treatment, resistance frequency decreased with the number of strains (Figure 4). The authors also find that lower strain diversity results in a slower decline in resistant genotypes after drug withdrawal and higher equilibrium resistance frequency (Figure 6).

      3. Does the model explain biogeographic patterns of drug resistance evolution? Yes. The authors find that their full model (which includes strain-specific immunity) produces the empirically observed negative relationship between resistance and prevalence/strain diversity, while a model only incorporating generalised immunity does not (Figure 8).

      Utility of work to others and relevance within and beyond the field?

      This work is important because antimalarial drug resistance has been an ongoing issue of concern for much of the 20th century and now 21st century. Further, this resistance emergence is not equitably distributed across biogeographic regions, with South America and Southeast Asia experiencing much of the burden of this resistance emergence. Not only can widespread resistant strains be traced back to these two relatively low-transmission regions, but these strains remain at high frequency even after drug treatment ceases.

      Reviewer #2 (Public Review):

      Summary:

      The evolution of resistance to antimalarial drugs follows a seemingly counterintuitive pattern, in which resistant strains typically originate in regions where malaria prevalence is relatively low. Previous investigations have suggested that frequent exposures in high-prevalence regions produce high levels of partial immunity in the host population, leading to subclinical infections that go untreated. These subclinical infections serve as refuges for sensitive strains, maintaining them in the population. Prior investigations have supported this hypothesis; however, many of them excluded important dynamics, and the results cannot be generalized. The authors have taken a novel approach using a deterministic model that includes both general and adaptive immunity. They find that high levels of population immunity produce refuges, maintaining the sensitive strains and allowing them to outcompete resistant strains. While general population immunity contributed, adaptive immunity is key to reproducing empirical patterns. These results are robust across a range of fitness costs, treatment rates, and resistance efficacies. They demonstrate that future investigations cannot overlook adaptive immunity and antigenic diversity.

      R: We thank the reviewer for his/her appreciation of the work.

      Strengths:

      Overall, this is a very nice paper that makes a significant contribution to the field. It is well-framed within the body of literature and achieves its goal of providing a generalizable, unifying explanation for otherwise disparate investigations. As such, this work will likely serve as a foundation for future investigations. The approach is elegant and rigorous, with results that are supported across a broad range of parameters.

      Weaknesses:

      Although the title states that the authors describe resistance invasion, they do not support or even explore this claim. As they state in the discussion (line 351), this work predicts the equilibrium state and doesn't address temporal patterns. While refuges in partially immune hosts may maintain resistance in a population, they do not account for the patterns of resistance spread, such as the rapid spread of chloroquine resistance in Africa once it was introduced from Asia.

      R: We do agree that resistance invasion is not the focus of our manuscript. Rather we mainly investigate the maintenance and decline after drug withdrawal. Therefore, we changed the title to “Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of anti-malarial drug resistance” (L1-4).

      We did, however, present a fast initial invasion phase for the introduction of resistant genotypes regardless of transmission scenarios in Fig. 5 (now Fig. 6). Even though the focus of the manuscript is to investigate long term persistence of resistant genotypes, we did emphasize that the initial invasion phase and how that changes the host immunity profile are key to the coexistence of resistant and wild-type genotypes (L228-239).

      As the authors state in the discussion, the evolution of compensatory mutations that negate the cost of resistance is possible, and in vitro experiments have found evidence of such. It appears that their results are dependent on there being a cost, but the lower range of the cost parameter space was not explored.

      R: It is true that compensatory mutations might mitigate the negative fitness consequences. We didn’t add a no-cost scenario because in general if there is no cost but only benefit (survival through drug usage), then resistant haplotypes will likely be fixed in the population. This is contingent on the assumption that these compensatory mutations are in perfect linkage with resistant alleles, which is unlikely in high-transmission scenarios. Our model does not incorporate recombination, but earlier models (Dye & Williams 1997, Hastings & D’Alessandro 2000) have demonstrated that recombination will delay the fixation of resistant alleles in high-transmission.

      As suggested, we ran our model with costs equal 0 and 0.01 (Fig. 2C and L189-191). We found that resistant alleles almost always fix except for when diversity is extremely high, treatment/resistance efficacy is low. In these cases, additional benefits brought by more transmission from resistant alleles do not bring many benefits (as lower GI classes have a very small number of hosts). This finding does not contradict a wider range of coexistence between wild-type and resistant alleles when the cost is higher. We therefore added these scenarios to our updated results.

      Author response image 1.

      The use of a deterministic, compartmental model may be a structural weakness. This means that selection alone guides the fixation of new mutations on a semi-homogenous adaptive landscape. In reality, there are two severe bottlenecks in the transmission cycle of Plasmodium spp., introducing a substantial force of stochasticity via genetic drift. The well-mixed nature of this type of model is also likely to have affected the results. In reality, within-host selection is highly heterogeneous, strains are not found with equal frequency either in the population or within hosts, and there will be some linkage between the strain and a resistance mutation, at least at first. Of course, there is no recourse for that at this stage, but it is something that should be considered in future investigations.

      R: We thank the reviewer for their insightful comments on the constraints of the deterministic modeling approach. We’ve added these points to discussion in the paragraph discussing the second limitation of the model (L359-364).

      The authors mention the observation that patterns of resistance in high-prevalence Papua New Guinea seem to be more similar to Southeast Asia, perhaps because of the low strain diversity in Papua New Guinea. However, they do not investigate that parameter space here. If they did and were able to replicate that observation, not only would that strengthen this work, it could profoundly shape research to come.

      R: We appreciate the suggestion to investigate the parameter space of Papua New Guinea. We now include a new figure (now Fig. 3) that presents the parameter space of transmission potential and strain diversity of different continents, which demonstrates that PNG and South America have less strain diversity than expected by transmission potential (L179-184 and L198-202). This translates to low infectivity for most mosquito bites, and most infections only occur in hosts with lower generalized immunity. Therefore resistant genotypes will help ensure disease transmission in these symptomatic hosts and be strongly selected to be maintained.

      Reviewer #1 (Recommendations For The Authors):

      1. I found lines 41-49 difficult to follow. Please rephrase (particularly punctuation) for clarity.

      R: We have edited the lines to improve the writing (L41-50)):

      “Various relationships between transmission intensity and stable frequencies of resistance were discovered, each of which has some empirical support: 1) transmission intensity does not influence the fate of resistant genotypes [Models: Koella and Antia (2003); Masserey et al. (2022); Empirical: Diallo et al. (2007); Shah et al. (2011, 2015)]; 2) resistance first increases in frequency and slowly decreases with increasing transmission rates [Models: Klein et al. (2008, 2012)]; and 3) Valley phenomenon: resistance can be fixed at both high and low end of transmission intensity [Model: Artzy-Randrup et al. (2010); Empirical: Talisuna et al. (2002)]. Other stochastic models predict that it is harder for resistance to spread in high transmission regions, but patterns are not systematically inspected across the parameter ranges [Model: Whitlock et al. (2021); Model and examples in Ariey and Robert (2003)].”

      1. Line 65: There should be a space after "recombination" and before the citation.

      R: Thank you for catching the error. We’ve added the space (L64).

      1. I'm interested in the dependency of the results on the assumption that there is a cost to resistance via lowered transmissibility (lines 142-145). I appreciate that variation in the cost(s) of resistance in single and mixed infections is explored; however, from what I can tell the case of zero cost is not explored.

      R: As suggested, we have now added the no-cost scenario. Please see the response to the Reviewer2 weaknesses paragraph 2.

      1. I felt the commentary/explanation of the response to drug policy change was a bit underdeveloped. I would have liked a walk-through of why in your model low diversity scenarios show the slowest decline in resistant genotypes after switching to different drugs.

      R: We acknowledge that the explanation of the response to drug policy change needs to be improved. We have now added the explanation of why we observe low diversity scenarios show the least decline in resistance frequency after drug withdrawal: “Two processes are responsible for the seen trend: first, resistant genotypes have a much higher fitness advantage in low diversity regions even with reduced drug usage because infected hosts are still highly symptomatic; second, due to low transmission potential in low diversity scenarios (i.e., longer generation intervals between transmissions), the rate of change in parasite populations is slower.” (L243-247). We also compared the drug withdrawal response to that of the generalized-immunity-only model. The medium transmission region has the fastest reduction in resistance frequency, followed by the high and low transmission regions, which differs from the full model that incorporates strain-specific diversity.

      1. Line 352: persistent drug usage?

      R: Yes, we meant persistent drug usage. We’ve clarified the writing (L389-391).

      1. The organisation of the manuscript would benefit from structuring around the focal questions so that the reader can easily find the answers to the focal questions within the results and discussion sections.

      R: This is a great suggestion. We modified the subheadings of results to provide answers to focal questions (L151, L179, L203-204, and L240).

      1. Line 353: Please remove either "shown" or "demonstrated".

      R: Thank you for catching the grammatical error, we’ve retained “shown” only for the sentence (L391-392).

      Reviewer #2 (Recommendations For The Authors):

      Overall, this was very nice work and a pleasure to read.

      Major:

      1. Please provide a much more thorough explanation of how resistance invasions are modeled. It is not clear from the text and could not be replicated.

      R: We have now added a section “drug treatment and resistance invasion” in Methods and Materials to explain how resistance invasions are modeled (L488-496):

      “Given each parameter set, we ran the ODE model six times until equilibrium with the following genotypic compositions: 1) wild-type only scenario with no drug treatment; 2) wild-type only scenario with 63.2% drug treatment (0.05 daily treatment rate); 3) wild-type only scenario with 98.2% drug treatment (0.2 daily treatment rate); 4) resistant-only scenario with no drug treatment; 5) resistance invasion with 63.2% drug treatment; 6) resistance invasion with 98.2% drug treatment. Runs 1-4 start with all hosts in G0,U compartment and ten parasites. Runs 5 and 6 (resistance invasion) start from the equilibrium state of 2 and 3, with ten resistant parasites introduced. We then followed the ODE dynamics till the next equilibrium.”

      1. Please make your raw data, code, and replicable examples that produce the figures in the manuscript available.

      R: We have added the data availability session, which provides the GitHub site with all the code for the model, data processing, and figures: All the ODE codes, numerically-simulated data, empirical data, and analyzing scripts are publicly available at https://github.itap.purdue.edu/HeLab/MalariaResistance.

      1. Regarding the limitations described in the paragraph about the model in the public response, these results would be strengthened if there were separate compartments for strains which could be further divided into sensitive and resistant. Could you explore this for at least a subset of the parameter space?

      R: In our model, sensitive and resistant pathogens are always modeled as separate compartments (Fig. S1B and Appendix 1). In Results/Model structure, L135-136, we stated the setup:

      “The population sizes of resistant (PR) or sensitive (wild-type; PW) parasites are tracked separately in host compartments of different G and drug status.”

      1. To what extent do these results rely on a cost to resistance? Were lower costs explored? This would be worth demonstrating. If this cannot be maintained without cost, do you think this is because there is no linkage between strain and resistance?

      R: As suggested, we have now added the no-cost scenario (Fig. 2C and L189-191). Please see the response to the Reviewer1 weaknesses paragraph 2. In sum, under a no-cost scenario, if treatment rate is low, then wild-type alleles will still be maintained in high transmission scenarios; when treatment rate is high, resistant alleles will always be fixed.

      Minor:

      1. "Plasmodium" should be italicized throughout. Ironically, italics aren't permitted in this form.

      R: We did italicize “Plasmodium” or “P. falciparum” throughout the text. If the reviewer is referring to “falciparum malaria”, the convention is not to italicize falciparum in this case.

      1. Fig 1A: the image is reversed for the non-infected host with prior exposure to strain A. Additionally, the difference between colors for WT and resistant is not visible in monochrome.

      R: Thank you for pointing out the problem of color choice in monochrome. We have modified the figure. The image in Fig 1A is not reversed for non-infected hosts with prior exposure to strain A. We now spell out “S” to be “specific immunity”, and explain it better in the figure legend.

      1. Fig 2B: add "compare to the pattern of prevalence shown in Fig 2A" or something similar to make the comparison immediately clear.

      R: We thank the reviewer’s suggestion. We’ve added a sentence to contrast Fig 2A and B in the Figure legend: “A comparison between the prevalence pattern in (A) and resistance frequency in (B) reveals that high prevalence regions usually correspond to low resistance frequency at the end of resistance invasion dynamics.”

      1. Figs 2B & C: Please thoroughly explain how you produced this data in the methods section and briefly describe it in the results sections.

      R: We agree that the modeling strategies need to be explained better. Since we explained the rationale for the parameter ranges and the prevalence patterns we observe in the results section “Appropriate pairing of strain diversity and vectorial capacity” (now “Impact of strain diversity and transmission potential on disease prevalence”), we added sentences in this section to explain how we run models until equilibrium for wild-only infections with or without drug treatment (L152-178). Then in the following section “Drug-resistance and disease prevalence” section, we explain how we obtained the resistance invasion data:

      “To investigate resistance invasion, we introduce ten resistant infections to the equilibrium states of drug treatment with wild-type only infections, and follow the ODE dynamics till the next equilibrium” (L180-181).

      1. Fig 3: The axis labels are not particularly clear. For the Y axis, please state in the label what it is the frequency of (either the mutation or the phenotype). In the X axis, it is better to spell that out in words, like "P. falciparum prevalence in children".

      R: Thank you for pointing this out. We’ve modified the axes labels of Fig. 3 (now Fig. 4): X-axis: “P. falciparum prevalence in children aged 2-10”; Y-axis: “Frequency of resistant genotypes (pfcrt 76T)”.

      1. Fig 4 and the rest of the figures of this nature: Showing an equilibrium-state timestep before treatment was introduced would improve the readers' understanding of the dynamics.

      R: We agree that the equilibrium state before treatment is important. In fact, we have those states in our figure 4 (now figure 5): the left panel- “Daily treatment rate 0” indicates the equilibrium-state timestep before treatment. We clarified this point in the caption.

      1. Fig 5 is very compelling, but the relationships in Fig 5 would be clearer if the Y axes were not all different. Consider using the same scale for the hosts, and the same scale for resistant parasites (both conditions) and WT parasites, 113 strains. It may be clearer to reference them if they are given as A-F instead of three figures each for A and B.

      R: We agree with the suggested changes and have modified figure 5 (now Fig. 6): we used one Y-axis scale for the hosts, and one Y-axis scale for the parasites. The wild-type one is very low for the low diversity scenario, thus we included one inset plot for that case.

      1. Fig 5 caption: High immune protection doesn't select against resistance. The higher relative fitness of the sensitive strain selects against resistance in a high-immunity environment.

      R: Thank you for pointing this out. Here we meant that a reduction in resistant population after the initial overshoot occurs in both diversity levels. We are not comparing resistant strains to sensitive ones. We’ve modified the sentence to: “The higher specific immunity reduces the infectivity of new strains, leading to a reduction of the resistant parasite population regardless of the diversity level”.

      1. Line 242: "keep" should be plural.

      R: We’ve corrected “keep” to “keeps” (L267).

      1. Line 360 and elsewhere: The strength of the results is somewhat overstated at times. This absolutely supports the importance of strain-specific immunity, but these results do not explain patterns of the origin of resistance and there are a number of factors that are not incorporated (a necessary evil of modeling to be sure).

      R: Thank you for pointing this out. We’ve modified discussion to remove the overstated strength of results:

      1) Original: “The inclusion of strain diversity in the model provides a new mechanistic explanation as to why Southeast Asia has been the original source of resistance to certain antimalarial drugs, including chloroquine.”

      Modified: “The inclusion of strain diversity in the model provides a new mechanistic explanation as to why Southeast Asia has persisting resistance to certain antimalarial drugs, including chloroquine, despite a lower transmission intensity than Africa. “ (L328-330)

      2) In sum, we show that strain diversity and associated strain-specific host immunity, dynamically tracked through the macroparasitic structure, can explainpredict the complex relationship between transmission intensity and drug-resistance frequencies.

      1. The color palettes are not discernible in grayscale, especially the orange/blue/gray in Fig 2. The heatmaps appear to be in turbo, the only viridis palette that isn't grayscale-friendly. Just something to keep in mind for the accessibility of individuals with achromatopsia and most people who print out papers.

      R: Thank you for the visualization suggestions. We updated all the figures with the “viridis:magma” palette. As for the orange/blue/gray scale used in Fig 2C, it is difficult to pick nine colors that are discernable in brightness in grayscale. Currently, the four colors correspond to clonal genotype cost (i.e. green, red, grey, and blue), and the three-level brightness maps to mixed genotype cost.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      1. The most important concern that I have refers to the FDTD simulations to characterize the ZMW, as shown in Appendix 2, Figure 4. So far, the explanations given in the caption of Figure 4 are confusing and misleading: the authors should provide more detailed explanations on how the simulations were performed and the actual definition of the parameters used. In particular:

      a. lines 1330-1332: it is not clear to me how the fluorescence lifetime can be calculated from the detected signal S (z), and why they are horizontal, i.e., no z dependence? Which lifetimes are the authors referring to?

      b. lines 1333-1335: Where do these values come from? And how do they relate to panels D & E? From what I can see in these panels the lifetimes are highly dependent on z and show the expected reduction of lifetime inside the nanostructures.

      c. lines 1336-1337: Why the quantum yield of the dyes outside the ZMW differs from those reported in the literature? In particular the changes of quantum yield and lifetime for Alexa 488 are very large (also mentioned in the corresponding part of Materials & Methods but not explained in any detail).

      We thank the Reviewer for his detailed questions on the FDTD simulations. We have now added the missing equation related to the computation of signal-averaged fluorescence lifetimes from the FDTD simulations. Specifically to the three points raised:

      a) The fluorescence lifetime is indeed not calculated from the detected signal S(z), but from the radiative and non-radiative rates in the presence of the ZMW as given in eq. 9-10. However, we use the detected signal S(z) to compute the average fluorescence lifetime over the whole z-profile of the simulation box, which we relate to the experimentally measured fluorescence lifetimes as given in Appendix 7, Figure 1. We have now added the equation to compute the signal-weighted fluorescence lifetimes, which we denote as <𝜏>S , in eq. 13 in the methods. To clarify this point, we have added the symbol <𝜏>S to the plots in Appendix 2, Figure 4 D-E and Appendix 7, Figure 1 C-D.

      b) The estimated lifetimes were obtained as the signal-weighted average over the lifetime profiles, (<𝜏>S) as given in the new eq. 13. All plotted quantities, i.e., the detection efficiency η, quantum yield ϕ, detected signal S(z), and fluorescence lifetime, are computed from the radiative and loss rates obtained from the FDTD simulation according to eqs. 8-11. To make this clearer, we have now added the new Appendix 2 – Figure 5 which shows the z-profiles of the quantities (radiative and loss rates) used to derive the experimental observables.

      c) There are multiple reasons for the differences of the quantum yields of the two analytes used in this study compared to the literature values. For cyanine dyes such as Alexa647, it is well known that steric restriction (as e.g. caused by conjugation to a biomolecule) can lead to an increase of the quantum yield and fluorescence lifetime. We observe a minor increase of the fluorescence lifetime for Alexa647 from the literature value of 1.17 ns to a value of 1.37 ns when attached to Kap95, which is indicative of this effect. In the submitted manuscript, this was discussed in the methods in lines 936-938 (lines 938-945 in the revised manuscript). For the dye Alexa488, which is used to label the BSA protein, this effect is absent. Instead, we observe (as the Reviewer correctly notes) a quite drastic reduction of the fluorescence lifetime compared to the unconjugated dye from 4 ns to 2.3 ns. In cases where a single cysteine is labeled on a protein, such a drastic reduction of the quantum yield usually indicates the presence of a quenching moiety in proximity of the labeling site, such as tryptophane, which acts via the photo-induced electron transfer mechanism. Indeed, BSA contains two tryptophanes that could be responsible for the low quantum yield of the conjugated dyes. The situation is complicated by the fact that BSA contains 35 cysteines that can potentially be labeled (although 34 are involved in disulfide bridges). The labeled BSA was obtained commercially and the manufacturer lists the degree of labeling as ~6 dye molecules per protein, with a relative quantum yield of 0.2 compared to the standard fluorescein. This corresponds to an absolute quantum yield of ~0.16, which is low compared to the literature value for Alexa488 of ~0.8.

      Based on the measured fluorescence lifetime, we estimate a quantum yield of 0.46, which is higher than the photometrically obtained value of 0.16 reported by the manufacturer. Fully quenched, nonfluorescent dyes will not contribute to the lifetime measurement but are detected in the photometric quantum yield estimates. The difference between the lifetime and photometric based quantum yield estimates thus suggest that part of the fluorophores are almost fully quenched. While it is unknown where the dyes are attached to the protein, the low quantum yield could be indicative of dye-dye interactions via pi-pi stacking, which can often lead to non-fluorescent dimers. This is supported by the fact that the manufacturer reports color differences between batches of labeled protein, which indicate spectral shifts of the absorption spectrum when dye-dye adducts are formed by π-π stacking. We have now added a short discussion of this effect in lines 938-941. We note that the conclusions drawn on the quenching effect of the metal nanostructure remain valid despite the drastic reduction of the quantum yield for Alexa488, which leads to a further quantum yield reduction of the partly quenched reference state.

      2) A second important concern refers to Figure 3: Why is there so much variability on the burst intensities reported on panels C, D? They should correspond to single molecule translocation events and thus all having comparable intensity values. In particular, the data shown for BSA in panel D is highly puzzling, since it not only reflects a reduced number of bursts (which is the main finding) but also very low intensity values, suggesting a high degree of quenching of the fluorophore being proximal to the metal on the exit side of the pore. In fact, the count rates for BSA on the uncoated pore range form 50-100kcounts/s, while on the coated pores thy barely reach 30 kcounts/s, a clear indication of quenching. Importantly, and in direct relation to this, could the authors exclude the possibility that the low event rates measured on BSA are largely due to quenching of the dye by getting entangled in the Nsp mesh just underneath the pore but in close contact to the metal?

      The Reviewer raises a valid concern, but further analysis shows that this is unproblematic. Notably, the burst intensities are in fact not reduced, in contrast to the visual impression obtained from the time traces shown in the figure. The time trace of the BSA intensity is visually dominated by high-intensity bursts which mask the low-intensity bursts in the plot. In contrast, in Figure 3 the reduced number of BSA events results in a sparser distribution of the intensity spikes, which allows low-intensity events to be seen. Different to the visual inspection, the spike-detection algorithm does not exhibit any bias in terms of the duration or the number of photons of the detected events between the different conditions for both BSA and Kap95, as shown in the new Appendix 7 – Figure 1. Using FCS analysis it can be tested whether the event duration varies between the different conditions shown in Figure 3 C-D. This did not show a significant difference in the estimated diffusion time for BSA (Appendix 7 – Figure 1 C,D). Contrary to the suggestion of the Reviewer, we also do not observe any indication of quenching by the metal between uncoated and Nsp1-coated pores for BSA. Such quenching should result in differences of the fluorescence lifetimes, which however is not evident in our experimental data (Appendix 7 – Figure 1 F).

      3) Line 91: I suggest the authors remove the word "multiplexed" detection since it is misleading. Essentially the authors report on a two-color excitation/detection scheme which is far from being really multiplexing.

      We have changed the word to “simultaneous” now and hope this avoids further confusion.

      4) Line 121: why are the ZMW fabricated with palladium? Aluminum is the gold-standard to reduce light transmissivity. An explanation for the choice of this material would be appreciated by the community.

      In a previous study (Klughammer and Dekker, Nanotechnology, 2021), we established that palladium can have distinct advantages compared to other ZMW metals such as aluminum and gold, most prominently, an increased chemical stability and reduced photoluminescence. For this study, we chose palladium over aluminum as it allowed the use of simple thiol chemistry for surface modification. In the beginning of the project, we experimented with aluminum pores as well. We consistently found that the pores got closed after measuring their ionic conductance in chlorine-containing solutions such as KCl or PBS. This problem was avoided by choosing palladium.

      5) Lines 281-282: This statement is somewhat misleading, since it reads such that the molecules stay longer inside the pore. However, if I understand correctly, these results suggest that Kap95 stays closer to the metal on the exit side. This is because measurements are being performed on the exit side of the pore as the excitation field inside the pore is quite negligible.

      We thank the Reviewer for this comment and have clarified the text in lines 290-292 as suggested to: “(…) this indicates that, on the exit side, Kap95 diffuses closer to the pore walls compared to BSA due to interactions with the Nsp1 mesh”

      6) Lines 319-320: Although the MD simulations agree with the statement being written here, the variability could be also due to the fact that the proteins could interact in a rather heterogenous manner with the Nsp mesh on the exit side of the pore, transiently trapping molecules that then would stay longer and/or closer to the metal altering the emission rate of the fluorophores. Could the authors comment on this?

      The variation mentioned in the text refers to a pore-to-pore variation and thus needs to be due to a structural difference between individual pores. This effect would also need to be stable for the full course of an experiment, typically hours. We did not find any structural changes in the fluorescence lifetimes measured on individual pores such as suggested by the Reviewer. We think that the suggested mechanism would show up as distinct clusters in Appendix 7 – Figure 1 E,F where we found no trace of such a change to happen. If we understand correctly, the Reviewer suggests a mechanism, not based on changes in the Nup layer density, that would lead to a varying amount of trapping of proteins close to the surface. Such a behavior should show up in the diffusion time of each pore ( Appendix 7 – figure 1 C,D), where we however find no trace of such an effect.

      7) Lines 493-498: These claims are actually not supported by the experimental data shown in this contribution: a) No direct comparison in terms of signal-to-noise ratio between fluorescence-based and conductance-based readouts has been provided in the ms. b) I would change the word multiplexed by simultaneous since it is highly misleading. c) The results shown are performed sequentially and thus low throughput. d) Finally, the use of unlabeled components is dubious since the detection schemes relies on fluorescence and thus requiring labeling.

      We thank the Reviewer for pointing this out.

      a) We have now added a section in appendix 3 that discusses the signal-to-noise ratios. In brief, there are three observations that led us to conclude that ZMWs provide beneficial capabilities to resolve individual events from the background:

      1. The signal-to-background ratio was determined to be 67±53 for our ZMW data of Kap95 which is an order of magnitude higher compared to the ~5.6 value for a conductance-based readout.

      2. The detection efficiency for ZMWs is independent of the Kap95 occupancy within the pore. This is different from conductance based approaches that have reduced capability to resolve individual Kap95 translocations at high concentrations.

      3. The fraction of detected translocations is much higher for ZMWs than for conductance-based data (where lots of translocations occur undetected) and matches closer to the theoretical predictions.

      b) We have changed the wording accordingly.

      c) We agree with the Reviewer that our method is still low throughput. However, the throughput is markedly increased compared to previous conductance-based nanopore measurements. This is because we can test many (here up to 8, but potentially many more) pores per chip in one experiment, whereas conductance-based readouts are limited to a single pore. We have now changed the wording to “increased throughput” in line 507 to avoid confusion.

      d) We agree that only labeled components can be studied directly with our methods. However, the effect of unlabeled analytes can be assessed indirectly without any perturbation of the detection scheme due to the specificity of the fluorescent labeling. This is distinct from previous nanopore approaches using a conductance-based readout that lack specificity. In our study, we have for example used this advantage of our approach to access event rates at high concentrations (1000nM Kap95, 500nM BSA) and large pore diameters by reducing the fraction of labeled analyte in the sample. Finally, the dependence of the BSA leakage rate as a function of the concentration of Kap95 (Figure 6) relies on a specific readout of BSA events in the presence of large amounts of Kap95, which would be impossible in conductance-based experiments.

      8) Line 769: specify the NA of the objective. Using a very long working distance would also affect the detection efficiency. Have the authors considered the NA of the objective on the simulations of the detection efficiency? This information should be included and it is important as the authors are detecting single molecule events.

      We used an NA of 1.1 for the simulation of the Gaussian excitation field in the FDTD simulations, corresponding to the NA of the objective lens used in the experiments and as specified in the methods. The Reviewer is correct that the NA also affects the absolute detection efficiency of the fluorescence signal due to the finite opening angle of the collection cone of ~56˚. In our evaluation of the simulations, we have neglected this effect for simplicity, because the finite collection efficiency of the objective lens represents only an additional constant factor that does not depend on the parameters of the simulated system, such as the pore diameter. Instead, we focused solely the effect of the ZMW and defined the detection efficiency purely based on the fraction of the signal that is emitted towards the detection side and can potentially be detected in the experiment, which also provides the benefit that the discussed numbers are independent of the experimental setup used.

      To clarify this, we have now made this clearer in the method text on lines 917-920.

      9) Line 831: I guess that 1160ps is a mistake, right?

      This is not a mistake. We performed a tail fit of the fluorescence decay curves, meaning that the initial rise of the decay was excluded from the fit. The initial part of the fluorescence decay is dominated by the instrument response function (IRF) of the system, with an approximate width of ~500 ps. To minimize the influence of the IRF on the tail fit, we excluded the first ~1 ns of the fluorescence decay.

      10) Lines 913-917: Why are the quantum yield of Alexa 488 and lifetime so much reduced as compared to the published values in literature?

      See answer to point 1. We have added a short discussion at lines 938-941 where we speculate that the reduced quantum yield is most likely caused by dye-dye interactions due to the high degree of labeling of ~6 dyes per protein.

      11) Lines 1503-1509: The predicted lifetimes with the Nsp-1 coating have not been shown in Appendix 2 - Figure 4. How have they been estimated?

      We have not performed predictions of fluorescence lifetimes in the presence of an Nsp1 coating. Predictions of the fluorescence lifetime in the absence of the Nsp1 coating were obtained by assuming a uniform occupancy of the molecules over the simulation box. A prediction of the fluorescence lifetimes in the presence of the Nsp1 coating would require a precise knowledge of the spatial distribution of analytes, which depends, among other factors, on the extension of the Nsp1 brushes and the interaction strengths with the FG repeats. While simulations provide some insights on this, we consider a quantitative comparison of predicted and measured fluorescence lifetimes in the presence of the Nsp1 coating beyond the scope of the present study.

      12) Lines 1534-1539: I disagree with this comment, since the measurements reported here have been performed outside the nano-holes, and thus the argument of Kap95 translocating along the edges of the pore and being responsible for the reduced lifetime does not make sense to me.

      In accordance with our answer to point 5 above, we have now changed the interpretation to the proximity of Kap95 to the metal surface on the exit side, rather than speculating on the path that the protein takes through the pore (lines 1662-1664), as follows:

      “This indicates that, in the presence of Nsp1, Kap95 molecules diffuse closer to or spend more time in proximity of the metal nanoaperture on the exit side.”

      Reviewer #2:

      (Numbers indicate the line number.)

      48: should cite more recent work: Timney et al. 2016 Popken et al 2015

      59: should cite Zilman et al 2007, Zilman et al 2010

      62: should cite Zilman et al 2010

      We thank the Reviewer for the suggestions and have added them to the manuscript now.

      65: one should be careful in making statements that the "slow" phase is immobile, as it likely rapidly exchanging NTRs with the "fast" phase.

      We have removed this description and replaced it by “This 'slow phase' exhibits a reduced mobility due to the high affinity of NTRs to the FG-Nup mesh.” to avoid misunderstanding.

      67: Schleicher 2014 does not provide evidence of dedicated channels

      We agree with the Reviewer and therefore moved the reference to an earlier position in the sentence.

      74-75: must cite work by Lusk & Lin et al on origami nanochannels

      We thank the Reviewer for this suggestion. We have now added a reference to the nanotraps of Shen et al. 2021, JACS, in line 75. In addition, we now also refer to Shen et al. 2023, NSMB, in the discussion where viral transport is discussed.

      77: Probably Jovanovic- Talisman (2009)?

      We thank the Reviewer for pointing out this typo.

      93; should cite Auger&Montel et al, PRL 2014

      We thank the Reviewer for pointing out this reference. To give proper credit to previous ZMW, we have now incorporated a sentence in lines 100-102 citing this reference.

      111-112: there appears to be some internal inconsistency between this interpretation and the BSA transport mostly taking place through the "central hole" (as seems to be implied by Equation (3). Probably it should be specified explicitly that the "central hole" in large channels is a "void".

      We thank the Reviewer for this suggestion and have added a clarifying sentence.

      115-177: This competition was studied in Jovanovic-Talisman 2009 and theoretically analysed in Zilman et al Plos Comp Biol 2010. The differences in the results and the interpretation should be discussed.

      We agree, therefore it is discussed in the discussion section (around line 594) and now added the reference to Zilman et al.

      Figure 2 Caption: "A constant flow..." - is it clear that is flow does not generate hydrodynamic flow through the pore?

      The Reviewer raises an important point. Indeed, the pressure difference over the membrane generates a hydrodynamic flow through the pore that leads to a reduction of the event rate compared to when no pressure is applied. However, as all experiments were performed under identical pressures, one can expect a proportional reduction of the absolute event rates due to the hydrodynamic flow against the concentration gradient. In other words, this will not affect the conclusions drawn on the selectivity, as it is defined as a ratio of event rates.

      We have now added additional data on the influence of the hydrodynamic flow on the translocation rate in Appendix 3 – Figure 2, where we have measured the signal of free fluorophores at high concentration on the exit side of the pore as a function of the applied pressure. The data show a linear dependence of the signal reduction on the applied pressure. At the pressure values used for the experiments of 50 mbar, we see a ~5% reduction compared to the absence of pressure, implying that the reported absolute event rates are underestimated only by ~5%. Additionally we have added such data for Kap95 translocations that shows a similar effect (however less consistent). Measuring the event rate at zero flow is difficult, since this leads to an accumulation of fluorophores on the detection side.

      Figure 3: it would help to add how long is each translocation, and what is the lower detection limit. A short explanation of why the method detects actual translocations would be good

      With our method, unfortunately, we can not assess the duration of a translocation event since we only see the particle as it exists the pore. Instead, the measured event duration is determined by the time it takes for the particle to diffuse out of the laser focus. This is confirmed by FCS analysis of translocation events that show the same order of magnitude of diffusion times as for free diffusion (Appendix 7 – Figure 1 C,D) in contrast to a massively reduced diffusion time within a nanopore. In Figure 2D we show the detection efficiency at different locations around the ZMW as obtained from FDTD simulations and discuss the light blocking. This clearly shows that the big majority of the fluorescence signal comes from the laser illuminated side and therefore only particles that translocated through the ZMW are detected as presented between lines 170-190. In Yang et al. 2023, bioRxiv (https://doi.org/10.1101/2023.06.26.546504) a more detailed discussion about the optical properties of Pd nanopores is given.

      This point also explains why we see actual translocations: since the light is blocked by the ZMW, fluorophores can only be detected after they have translocated. On parts of the membrane without pores and upstream the amount of spikes found in a timetrace was found to be negligibly small. Additionally, if a significant part of the signal would be contributed by leaking fluorescence from the dark top side, there should no difference in BSA event rate found between small open and Nsp1 pores which we did not observe.

      With respect to the lower detection limit for events: In the burst search algorithm we require a false positive level rate of lower than 1 event in 100. Additionally, as described in Klughammer and Dekker, Nanotechnology (2021), we apply an empirical filtering to remove low signal to noise ratio events that contain less than 5 detected photons per event or a too low event rate. From the event detection algorithm there is no lower limit set on the duration of an event. Such a limit is then set by the instrument and the maximum frequency it which it can detect photons. This time is below 1μs. Practically we don’t find events shorter than 10μs as can be seen in the distribution of events where also the detection limits can be estimated (Appendix 7 – figure 1 A and B.)

      Equation (1): this is true only for passive diffusion without interactions (see eg Hoogenboom et al Physics Reports 2021 for review). Using it for pores with interactions would predict, for instance, that the inhibition of the BSA translocation comes from the decrease in D which is not correct.

      We agree with the Reviewer that this equation would not reproduce the measured data in a numerically correct way. We included it to justify why we subsequently fit a quadratic function to the data. As we write in line 260 we only used the quadratic equation “as a guide to the eye and for numerical comparison” and specifically don’t claim that this fully describes the translocation process. In this quadratic function, we introduced a scaling factor α that can be fitted to the data and thus incorporates deviations from the model. In appendix 5 we added a more elaborate way to fit the data including a confinement-based reduction of the diffusion coefficient (although not incorporating interactions). Given the variations of the measured translocation rates, the data is equally well described by both the simple and the more complex model function.

      Equation (1): This is not entirely exact, because the concentration at the entrance to the pore is lower than the bulk concentration, which might introduce corrections

      We agree with the Reviewer and have added that the concentration difference Δc is measured at the pore entrance and exit, and this may be lower than the bulk concentration. As described in our reaction to the Reviewer’s previous comment, equation (1) only serves as a justification to use the quadratic dependence and any deviations in Δc are absorbed into the prefactor α in equation (2).

      Equation (3): I don't understand how this is consistent with the further discussion of BSA translocation. Clearly BSA can translocate through the pore even if the crossection is covered by the FG nups (through the "voids" presumably?).

      The Reviewer raises an important point here. Equation 3 can only be used for a pore radius r > rprot + b. b was determined to be 11.5 nm and rprot is 3.4 nm for BSA, thus it needs to be that r > 15 nm. We would like to stress, however, that b does not directly give a height of a rigid Nsp1 ring but is related to the configuration of the Nsp1 inside the pore. Equation (3) (and equation (2)) were chosen because even these simple equations could fit the experimentally measured translocation rates well, and not because they would accurately model the setup in the pore. As we found from the simulations, the BSA translocations at low pore diameters presumably happen through transient openings of the mesh. The dynamics leading to the stochastic opening of voids on average leads to the observed translocation rate.

      296-297: is it also consistent with the simulations?

      We compare the experimentally and simulated b values in lines 387-388 and obtained b=9.9 ± 0.1 nm from the simulations (as obtained from fitting the translocation rates and not from measuring the extension of the Nsp1 molecules) and 11.5 ± 0.4 nm from the experiments – which we find in good agreement.

      331: has it been established that the FG nups equilibrate on the microsecond scale?

      As an example, we have analyzed the simulation trajectory of the most dense nanopore (diameter = 40 nm, grafting = 1/200 nm2). In Author response image 1 we show for each of the Nsp1-proteins how the radius of gyration (Rg) changes in time over the full trajectory (2 μs + 5 μs). As expected, the Rg values reached the average equilibrium values very well within 2 μs simulation time, showing that the FG-Nups indeed equilibrate on the (sub)microsecond scale.

      Author response image 1.

      334-347: the details of the method should be explained explicitly in the supplementary (how exactly voids distributions are estimated and the PMF are calculated etc)

      The void analysis was performed with the software obtained from the paper of Winogradoff et al. In our Methods we provide an overview of how this software calculates the void probability maps and how these are converted into PMFs. For a more detailed description of how exactly the analysis algorithm is implemented in the software, we refer the reader to the original work. The analysis codes with the input files that were used in this manuscript have been made public ( https://doi.org/10.4121/22059227.v1 ) along with the manuscript.

      Equation (4) is only an approximation (which works fine for high barriers but not the low ones). Please provide citations/derivation.

      To our knowledge, the Arrhenius relation is a valid approximation for our nanopore simulations. We are unaware of the fact that it should not work for low barriers and cannot find mention of this in the literature. It would be helpful if the Reviewer can point us to relevant literature.

      Figure 4: how was transport rate for Kaps calculated?

      As mentioned in lines 388-391, we assumed that the Kap95 translocation rate through Nsp1-coated pores is equal to that for open pores, as we did not observe any significant hindrance of Kap95 translocation by the Nsp1 mesh in the experiment (Figure 4 A,C).

      378: It's a bit strange to present the selectivity ratio as prediction of the model when only BSA translocation rate was simulated (indirectly).

      We agree with the Reviewer that ideally we should also simulate the Kap95 translocation rate to obtain an accurate selectivity measure of the simulated nanopores. However, as the experiments showed very similar Kap95 translocation rates for open pores and Nsp1-coated pores, we believe it is reasonable to take the Kap95 rates for open and Nsp1-pores to be equal.

      Figure 5C and lines 397: I am a bit confused how is this consistent with Figure 4D?

      Figure 5C and figure 4D both display the same experimental data, where 4D only focuses on a low diameter regime. In relation to line 397 (now 407), the Nsp1 mesh within the 60-nm pore dynamically switches between closed configurations and configurations with an open channel. When taking the temporal average of these configurations, we find that the translocation rate is higher than for a closed pore but lower than for a fully open pore. The stochastic opening and closing of the Nup mesh results in the continuous increase of the translocation rates with increasing diameter, which is in contrast to a step-wise increase that would be expected from an instantaneous collapse of the Nsp1 mesh at a certain pore diameter.

      428-439: Please discuss the differences from Jovanovic-Talisman 2009.

      How our results for a Kap95 induced change of the BSA translocation rate are related to previous literature is discussed extensively in the lines 598-620.

      440: How many Kaps are in the pore at different concentrations?

      This is a very interesting question that we were, unfortunately, not able to answer within the scope of this project. With our fluorescent based methods we could not determine this number because the excitation light does not reach well into the nanopore.

      In our previous work on Nsp1-coated SiN nanopores using conductance measurements, we quantified the drop in conductance at increasing concentrations of Kap95 (Fragasso et al., 2023, NanoResearch, http://dx.doi.org/10.1007/s12274-022-4647-1). From this, we estimated that on average ~20 Kap95 molecules are present in a pore with a diameter of 55 nm at a bulk concentration of 2 µM. In these experiments, however, the height of the pore was only ~20 nm, which is much lower compared to 100 nm long channel used here, and the grafting density of 1 per 21 nm2 was high compared to the grafting density here of 1 per 300 nm2. Assuming that the Kap95 occupancy scales linearly with the number of binding sites (FG repeats) in the vicinity of the pore, and hence the amount of Nsp1 molecules bound to the pore, we would expect approximately ~7 Kap95 molecules in a pore of similar diameter under saturating (> 1 µM) concentrations.

      On the other hand, the simulations showed that the density of Nsp1 within the pore is equal to the density within the 20-nm thick SiN pores (line 380). For the longer channel and lower grafting density used here, Nsp1 was also more constrained to the pore compared to thinner pores used in previous studies (Fragasso et al., 2023, NanoResearch), where the grafted protein spilled out from the nanopores. Thus assuming that the Kap95 occupancy depends on the protein density in the pore volume rather than the total protein amount grafted to the pore walls, we would estimate a number of 100 Kap95 molecules per pore.

      These varying numbers already show that we cannot accurately provide an estimate of the Kap95 occupancy within the pore from our data due to limitations of the ZMW approach.

      445: how is this related to the BSA translocation increase?

      For the calculation of the selectivity ratio, we assumed the normalized Kap95 translocation rate to be independent of the Kap95 concentration. Hence, the observed trends of the selectivity ratios at different concentrations of Kap95, as shown in Figure 6 D, are solely due to a change in the BSA translocation rate at different concentrations of Kap95, as given in Figure 6 B,C.

      462-481: it's a bit confusing how this interfaces with the "void" analysis ( see my previous comments)

      We agree that the phenomenological descriptions in terms of transient openings (small, dynamic voids) that for larger pores become a constantly opened channel (a single large, static void) might cause some confusion to the reader. In the last part of the results, we aimed to relate the loss of the BSA rate to a change of the Nsp1 mesh. We acknowledge that the model of a rim of Nsp1 and an open center described in Figure 5F is highly simplifying . We now explain this in the revised paper at lines 483-486 by referring to an effective layer thickness which holds true under the simplifying assumption of a central transport channel.

      Figure 6D: I think the illustration of the effect of kaps on the brush is somewhat misleading: at low pore diameters, it is possible that the opposite happens: the kaps concentrate the polymers towards the center of the pore. It should be also made clear that there are no kaps in simulations (if I understand correctly?)

      Indeed, at small pore diameters we think it would be possible to observe what the Reviewer describes. The illustration should only indicate what we think is happening for large pore diameters where we observed the opening of a central channel. To avoid confusion, we now shifted the sketches to panel G where the effective layer thickness is discussed.

      Indeed, as stated in lines 331-340 no Kap95 or BSA molecules were present in the simulations. We have now clarified this point in lines 872-876.

      518: Please provide more explanation on the role of hydrodynamics pressure.

      We have now performed additional experiments and quantified the effect of the pressure to be a ~5% reduction of the event rates, as described in the answer to a previous question above.  

      Reviewer #3 (Recommendations For The Authors):

      No experiments have been performed with the Ran-Mix regeneration system. It would be beneficial to add Ran-Mix to the trans compartment and see how this would affect Kap95 translocation events frequency and passive cargo diffusion. As the authors note in their outlook, this setup offers an advantage in using Ran-Mix and thus could also be considered here or in a future follow-up study.

      We thank the Reviewer for this suggestion. We think, however, that it is beyond the scope of this paper and an interesting subject for a follow-up study.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We sincerely thank the reviewers for their in-depth consideration of our manuscript and their helpful reviews. Their efforts have made the paper much better. We have responded to each point. The previously provided public responses have been updated they are included after the private response for convenience.

      Reviewer #1 (Recommendations For The Authors):

      1. In general, the manuscript will benefit from copy editing and proof reading. Some obvious edits;

      2. Page 6 line 140. Do the authors mean Cholera toxin B?

      Response: We corrected this error and went through the entire paper carefully correcting for grammar and increased clarity.

      • Page 8 line 173. Methylbetacyclodextrin is misspelled.

      Response: Yes, corrected.

      • Figure 4c is missing representative traces for electrophysiology data.

      • Figure 4. Please check labeling ordering in figure legend as it does not match the panels in the figure.

      Thank you for the correction and we apologize for the confusion in figure 4. We uploaded an incomplete figure legend, and the old panel ‘e’ was not from an experiment that was still in the figure. It was removed and the figure legends are now corrected.

      • Please mention the statistical analysis used in all figure legends.

      Response: Thank you for pointing out this omission, statistics have been added.

      • Although the schematics in each figure helps guide readers, they are very inconsistent and sometimes confusing. For example, in Figure 5 the gating model is far-reaching without conclusive evidence, whereas in Figure 6 it is over simplified and unclear what the image is truly representing (granted that the downstream signaling mechanism and channel is not known).

      Response: Figure 5d is the summary figure for the entire paper. We have made this clearer in the figure legend and we deleted the title above the figure that gave the appearance that the panel relates to swell only. It is the proposed model based on what we show in the paper and what is known about the activation mechanism of TREK-1.

      Figure 6 is supposed to be simple. It is to help the reader understand that when PA is low mechanical sensitivity is high. Without the graphic, previous reviewers got confused about threshold going down and mechanosensitivity going up and how the levels of PA relate. Low PA= high sensitivity. We’ve added a downstream effector to the right side of the panel to avoid any biased to a putative downstream channel effector. The purpose of the experiment is to show PLD has a mechanosensitive phenotype in vivo.

      Reviewer #2 (Recommendations For The Authors):

      This manuscript outlines some really interesting findings demonstrating a mechanism by which mechanically driven alterations in molecular distributions can influence a) the activity of the PLD2 molecule and subsequently b) the activation of TREK-1 when mechanical inputs are applied to a cell or cell membrane.

      The results presented here suggest that this redistribution of molecules represents a modulatory mechanism that alters either the amplitude or the sensitivity of TREK-1 mediated currents evoked by membrane stretch. While the authors do present values for the pressure required to activate 50% of channels (P50), the data presented provides incomplete evidence to conclude a shift in threshold of the currents, given that many of the current traces provided in the supplemental material do not saturate within the stimulus range, thus limiting the application of a Boltzmann fit to determine the P50. I suggest adding additional context to enable readers to better assess the limitations of this use of the Boltzmann fit to generate a P50, or alternately repeating the experiments to apply stimuli up to lytic pressures to saturate the mechanically evoked currents, enabling use of the Boltzmann function to fit the data.

      Response: We thank the reviewer for pointing this out. We agree the currents did not reach saturation. Hence the term P50 could be misleading, so we have removed it from the paper. We now say “half maximal” current measured from non-saturating pressures of 0-60 mmHg. We also deleted the xPLD data in supplemental figure 3C since there is insufficient current to realistically estimate a half maximal response.

      In my opinion, the conclusions presented in this manuscript would be strengthened by an assessment of the amount of TREK-1 in the plasma membrane pre and post application of shear. While the authors do present imaging data in the supplementary materials, these data are insufficiently precise to comment on expression levels in the membrane. To strengthen this conclusion the authors could conduct cell surface biotinylation assays, as a more sensitive and quantitative measure of membrane localisation of the proteins of interest.

      1. Response: as mentioned previously, we do not have an antibody to the extracellular domain. Nonetheless to better address this concern we directly compared the levels of TREK-1, PIP2, and GM1; in xPLD2, mPLD2, enPLD2 with and without shear. The results are in supplemental figure 2. PLD2 is known to increase endocytosis1 and xPLD2 is known to block both agonist induced and constitutive endocytosis of µ-opioid receptor2. The receptor is trapped on the surface. This is true of many proteins including Rho3, ARF4, and ACE21 among others. In agreement with this mechanism, in Figure S2C,G we show that TREK increases with xPLD and the localization can clearly be seen at the plasma membrane just like in all of the other publications with xPLD overexpression. xPLD2 would be expected to inhibit the basal current but we presume the increased expression likely has compensated and there is sufficient PA and PG from other sources to allow for the basal current. It is in this state that we then conduct our ephys and monitor with a millisecond time resolution and see no activation. We are deriving conclusion from a very clear response—Figure 1b shows almost no current, even at 1-10 ms after applying pressure. There is little pressure current when we know the channel is present and capable of conducting ion (Figure 1d red bar). After shear there is a strong decrease in TREK-1 currents on the membrane in the presence of xPLD2. But it is not less than TREK-1 expression with mPLD2. And since mouse PLD2 has the highest basal current and pressure activation current. The amount of TREK-1 present is sufficient to conduct large current. To have almost no detective current would require at least a 10 fold reduction compared to mPLD2 levels before we would lack the sensitivity to see a channel open. Lasty endocytosis typically in on the order of seconds to minutes, no milliseconds.

      2. We have shown an addition 2 independent ways that TREK-1 is on the membrane during our stretch experiments. Figure 1d shows the current immediately prior to applying pressure for wt TREK-1. When catalytically dead PLD is present (xPLD2) there is almost normal basal current. The channel is clearly present. And then in figure 1a we show within a millisecond there is no pressure current. As a control we added a functionally dead TREK-1 truncation (xTREK). Compared to xPLD2 there is clearly normal basal current. If this is not strong evidence the channel was available on the surface for mechanical activation please help us understand why. And if you think within 2.1 ms 100% of the channel is gone by endocytosis please provide some evidence that this is possible so we can reconsider.

      3. We have TIRF super resolution imaging with ~20 nm x-y resolution and ~ 100nm z resolution and Figure 2b clearly shows the channel on the membrane. When we apply pressure in 1b, the channel is present.

      4. Lastly, In our previous studies we showed activation of PLD2 by anesthetics was responsible for all of TREK-1’s anesthetic sensitivity and this was through PLD2 binding to the C-terminus of TREK-15. We showed this was the case by transferring anesthetic sensitivity to an anesthetic insensitive homolog TRAAK. This established conclusively the basic premise of our mechanism. Here we show the same C-terminal region and PLD2 are responsible for the mechanical current observed by TREK-1. TRAAK is already mechanosensitive so the same chimera will not work for our purposes here. But anesthetic activation and mechanical activation are dramatically different stimuli, and the fact that the role of PLD is robustly observed in both should be considered.

      The authors discuss that the endogenous levels of TREK-1 and PLD2 are "well correlated: in C2C12 cells, that TREK-1 displayed little pair correlation with GM1 and that a "small amount of TREK-1 trafficked to PIP2". As such, these data suggest that the data outlined for HEK293T cells may be hampered by artefacts arising from overexpression. Can TREK-1 currents be activated by membrane stretch in these cells C2C12 cells and are they negatively impacted by the presence of xPLD2? Answering this question would provide more insight into the proposed mechanism of action of PLD2 outlined by the authors in this manuscript. If no differences are noted, the model would be called into question. It could be that there are additional cell-specific factors that further regulate this process.

      Response: The low pair correlation of TREK-1 and GM1 in C2C12 cells was due to insufficient levels of cholesterol in the cell membrane to allow for robust domain formation. In Figure 4b we loaded C2C12 cells with cholesterol using the endogenous cholesterol transport protein apoE and serum (an endogenous source of cholesterol). As can be seen in Fig. 4b, the pair correlation dramatically increased (purple line). This was also true in neuronal cells (N2a) (Fig 4d, purple bar). And shear (3 dynes/cm2) caused the TREK-1 that was in the GM1 domains to leave (red bar) reversing the effect of high cholesterol. This demonstrates our proposed mechanism is working as we expect with endogenously expressed proteins.

      There are many channels in C2C12 cells, it would be difficult to isolate TREK-1 currents, which is why we replicated the entire system (ephys and dSTORM) in HEK cells. Note, in figure 4c we also show that adding cholesterol inhibits TREK-1 whole cell currents in HEK293cells.

      As mentioned in the public review, the behavioural experiments in D. melanogaster can not solely be attributed to a change in threshold. While there may be a change in the threshold to drive a different behaviour, the writing is insufficiently precise to make clear that conclusions cannot be drawn from these experiments regarding the functional underpinnings of this outcome. Are there changes in resting membrane potential in the mutant flys? Alterations in Nav activity? Without controlling for these alternate explanations it is difficult to see what this last piece of data adds to the manuscript, particularly given the lack of TREK-1 in this organism. At the very least, some editing of the text to more clearly indicate that these data can only be used to draw conclusions on the change in threshold for driving the behaviour not the change in threshold of the actual mechanotransduction event (i.e. conversion of the mechanical stimulus into an electrochemical signal).

      Response: We agree; features other than PLDs direct mechanosensitivity are likely contributing. This was shown in figure 6g left side. We have an arrow going to ion channel and to other downstream effectors. We’ve added the putative alteration to downstream effectors to the right side of the panel. This should make it clear that we no more speculate the involvement of a channel than any of the other many potential downstream effectors. As mentioned above, the figure helps the reader coordinate low PA with increased mechanosensitivity. Without the graphic reviewers got confused that PA increased the threshold which corresponds to a decreased sensitivity to pain. Nonetheless we removed our conclusion about fly thresholds from the abstract and made clearer in the main text the lack of mechanism downstream of PLD in flies including endocytosis. Supplemental Figure S2H also helps emphasize this. .

      Nav channels are interesting, and since PLD contribute to endocytosis and Nav channels are also regulated by endocytosis there is likely a PLD specific effect using Nav channels. There are many ways PA likely regulates mechanosensitive thresholds, but we feel Nav is beyond the scope of our paper. Someone else will need to do those studies. We have amended a paragraph in the conclusion which clearly states we do not know the specific mechanism at work here with the suggestions for future research to discover the role of lipid and lipid-modifying enzymes in mechanosensitive neurons.

      There may be fundamental flaws in how the statistics have been conducted. The methods section indicates that all statistical testing was performed with a Student's t-test. A visual scan of many of the data sets in the figures suggests that they are not normally distributed, thus a parametric test such as a Student's t-test is not valid. The authors should assess if each data set is normally distributed, and if not, a non-parametric statistical test should be applied. I recommend assessing the robustness of the statistical analyses and adjusting as necessary.

      Response: We thank the reviewer for pointing this out, indeed there is some asymmetry in Figure 6C-d. The p values with Mann Whitney were slightly improved p=0.016 and p=0.0022 for 6c and 6d respectively. For reference, the students t-test had slightly worse statistics p=0.040 and p=0.0023. The score remained the same 1 and 2 stars respectively.

      The references provided for the statement regarding cascade activation of the TRPs are incredibly out of date. While it is clear that TRPV4 can be activated by a second messenger cascade downstream of osmotic swelling of cells, TRPV4 has also been shown to be activated by mechanical inputs at the cell-substrate interface, even when the second messenger cascade is inhibited. Recommend updating the references to reflect more current understanding of channel activation.

      Response: We thank the reviewer for pointing this out. We have updated the references and changed the comment to “can be” instead of “are”. The reference is more general to multiple ion channel types including KCNQ4. This should avoid any perceived conflict with the cellsubstrate interface mechanism which we very much agree is a correct mechanism for TRP channels.

      Minor comments re text editing etc:

      The central messages of the manuscript would benefit from extensive work to increase the precision of the writing of the manuscript and the presentation of data in the figures, such textual changes alone would help address a number of the concerns outlined in this review, by clarifying some ambiguities. There are numerous errors throughout, ranging from grammatical issues, ambiguities with definitions, lack of scale bars in images, lack of labels on graph axes, lack of clarity due to the mode of presentation of sample numbers (it would be far more precise to indicate specific numbers for each sample rather than a range, which is ambiguous and confusing), unnecessary and repeat information in the methods section. Below are some examples but this list is not exhaustive.

      Response: Thank you, reviewer # 1 also had many of these concerns. We have gone through the entire paper and improved the precision of the writing of the manuscript. We have also added the missing error bar to Figure 6. And axis labels have been added to the inset images. The redundancy in cell culture methods has been removed. Where a range is small and there are lots of values, the exact number of ‘n’ are graphically displayed in the dot plot for each condition.

      Text:

      I recommend considering how to discuss the various aspects of channel activation. A convention in the field is to use mechanical activation or mechanical gating to describe that process where the mechanical stimulus is directly coupled to the channel gating mechanism. This would be the case for the activation of TREK-1 by membrane stretch alone. The increase in activation by PLD2 activity then reflects a modulation of the mechanical activation of the channel, because the relevant gating stimulus is PA, rather than force/stretch. The sum of these events could be described as shear-evoked or mechanically-evoked, TREK-1 mediated currents (thus making it clear that the mechanical stimulus initiates the relevant cascade, but the gating stimulus may be other than direct mechanical input.) Given the interesting and compelling data offered in this manuscript regarding the sensitisation of TREK-1 dependent mechanicallyevoked currents by PLD2, an increase in the precision of the language would help convey the central message of this work.

      Response; We agree there needs to be convention. We have taken the suggestion of mechanically evoked and we suggest the following definitions:

      1. Mechanical activation of PLD2: direct force on the lipids releasing PLD2 from nonactivating lipids.

      2. Mechanical activation/gating of TREK1: direct force from lipids from either tension or hydrophobic mismatch that opens the channel.

      3. Mechanically evoked: a mechanical event that leads to a downstream effect. The effect is mechanically “evoked”.

      4. Spatial patterning/biochemistry: nanoscopic changes in the association of a protein with a nanoscopic lipid cluster or compartment.

      An example of where discussion of mechanical activation is ambiguous in the text is found at line 109: "channel could be mechanically activated by a movement from GM1 to PIP2 lipids." In this case, the sentence could be suggesting that the movement between lipids provides the mechanical input that activates the channel, which is not what the data suggest.

      Response: Were possible we have replaced “movement” with “spatial patterning” and “association” and “dissociation” from specific lipid compartment. This better reflects the data we have in this paper. However, we do think that a movement mechanically activates the channel, GM1 lipids are thick and PIP2 lipids are thin, so movement between the lipids could activate the channel through direct lipid interaction. We will address this aspect in a future paper.

      Inconsistencies with usage:

      • TREK1 versus TREK-1

      Response: corrected to TREK-1

      • mPLD2 versus PLD2

      Response: where PLD2 represents mouse this has been corrected.

      • K758R versus xPLD2

      Response: we replaced K758R in the methods with xPLD2.

      • HEK293T versus HEK293t Response: we have changed all instances to read HEK293T.

      • Drosophila melanogaster and D. melanogaster used inconsistently and in many places incorrectly

      Response: we have read all to read the common name Drosophila.

      Line 173: misspelled methylbetacyclodextrin

      Response corrected

      Line 174: degree symbol missing

      Response corrected

      Line 287: "the decrease in cholesterol likely evolved to further decrease the palmate order in the palmitate binding site"... no evidence, no support for this statement, falsely attributes intention to evolutionary processes .

      Response: we have removed the reference to evolution at the request of the reviewer, it is not necessary. But we do wish to note that to our knowledge, all biological function is scientifically attributed to evolution. The fact that cholesterol decreases in response to shear is evidence alone that the cell evolved to do it.

      Line 307: grammatical error

      Response: the redundant Lipid removed.

      Line 319: overinterpreted - how is the mechanosensitivy of GPCRs explained by this translocation?

      Response: all G-alpha subunits of the GPCR complex are palmitoylated. We showed PLD (which has the same lipidation) is mechanically activated. If the palmitate site is disrupted for PLD2, then it is likely disrupted for every G-alpha subunit as well.

      Line 582: what is the wild type referred to here?

      Response: human full length with a GFP tag.

      Methods:

      • Sincere apologies if I missed something but I do not recall seeing any experiments using purified TREK-1 or flux assays. These details should be removed from the methods section

      Response: Removed.

      • There is significant duplication of detail across the methods (three separate instances of electrophysiology details) these could definitely be consolidated.

      Response: Duplicates removed.

      Figures:

      • Figure 2- b box doesn't correspond to inset. Bottom panel should provide overview image for the cell that was assessed with shear. In bottom panel, circle outlines an empty space.

      Response: We have widened the box slightly to correspond so the non shear box corresponds to the middle panel. We have also added the picture for the whole cell to Fig S2g and outlined the zoom shown in the bottom panel of Fig 2b as requested. The figure is of the top of a cell. We also added the whole cell image of a second sheared cell.

      Author response image 1.

      • Figure 3 b+c: inset graph lacking axis labels

      Response; the inset y axis is the same as the main axis. We added “pair corr. (5nM)” and a description in the figure legend to make this clearer. The purpose of the inset is to show statistical significance at a single point. The contrast has been maximized but without zooming in points can be difficult to see.

      • Figure 5: replicate numbers missing and individual data points lacking in panels b + c, no labels of curve in b + c, insets, unclear what (5 nm) refers to in insets.

      Response: Thank you for pointing out these errors. The N values have been added. Similar to figure 3, the inset is a bar graph of the pair correlation data at 5 nm. A better explanation of the data has been added to the figure legend.

      • Figure 6: no scale bar, no clear membrane localization evident from images presented, panel g offers virtually nothing in terms of insight

      Response: We have added scale bars to figure 6b. Figure 6g is intentionally simplistic, we found that correlating decreased threshold with increased pain was confusing. A previous reviewer claimed our data was inconsistent. The graphic avoids this confusion. We also added negative effects of low PA on downstream effects to the right panel. This helps graphically show we don’t know the downstream effects.

      Reviewer #3 (Recommendations For The Authors):

      Minor suggestions:

      1. line 162, change 'heat' to 'temperature'.

      Response: changed.

      1. in figure 1, it would be helpful to keep the unit for current density consistent among different panels. 1e is a bit confusing: isn't the point of Figure 1 that most of TREK1 activation is not caused by direct force-sensing?

      Response: Yes, the point of figure 1 is to show that in a biological membrane over expressed TREK-1 is a downstream effector of PLD2 mechanosensation which is indirect. We agree the figure legend in the previous version of the paper is very confusing.

      There is almost no PLD2 independent current in our over expressed system, which is represented by no ions in the conduction pathway of the channel despite there being tension on the membrane.

      Purified TREK-1 is only mechanosensitive in a few select lipids, primarily crude Soy PC. It was always assumed that HEK293 and Cos cells had the correct lipids since over expressed TREK-1 responded to mechanical force in these lipids. But that does not appear to be correct, or at least only a small amount of TREK-1 is in the mechanosensitive lipids. Figure 1e graphically shows this. The arrows indicate tension, but the channel isn’t open with xPLD2 present. We added a few sentences to the discussion to further clarify.

      Panels c has different units because the area of the tip was measured whereas in d the resistance of the tip was measured. They are different ways for normalizing for small differences in tip size.

      1. line 178, ~45 of what?

      Response: Cells were fixed for ~30 sec.

      1. line 219 should be Figure 4f?

      Response: thank you, yes Figure 4f.

      Previous public reviews with minor updates.

      Reviewer #1 (Public Review):

      Force sensing and gating mechanisms of the mechanically activated ion channels is an area of broad interest in the field of mechanotransduction. These channels perform important biological functions by converting mechanical force into electrical signals. To understand their underlying physiological processes, it is important to determine gating mechanisms, especially those mediated by lipids. The authors in this manuscript describe a mechanism for mechanically induced activation of TREK-1 (TWIK-related K+ channel. They propose that force induced disruption of ganglioside (GM1) and cholesterol causes relocation of TREK-1 associated with phospholipase D2 (PLD2) to 4,5-bisphosphate (PIP2) clusters, where PLD2 catalytic activity produces phosphatidic acid that can activate the channel. To test their hypothesis, they use dSTORM to measure TREK-1 and PLD2 colocalization with either GM1 or PIP2. They find that shear stress decreases TREK-1/PLD2 colocalization with GM1 and relocates to cluster with PIP2. These movements are affected by TREK-1 C-terminal or PLD2 mutations suggesting that the interaction is important for channel re-location. The authors then draw a correlation to cholesterol suggesting that TREK-1 movement is cholesterol dependent. It is important to note that this is not the only method of channel activation and that one not involving PLD2 also exists. Overall, the authors conclude that force is sensed by ordered lipids and PLD2 associates with TREK-1 to selectively gate the channel. Although the proposed mechanism is solid, some concerns remain.

      1) Most conclusions in the paper heavily depend on the dSTORM data. But the images provided lack resolution. This makes it difficult for the readers to assess the representative images.

      Response: The images were provided are at 300 dpi. Perhaps the reviewer is referring to contrast in Figure 2? We are happy to increase the contrast or resolution.

      As a side note, we feel the main conclusion of the paper, mechanical activation of TREK-1 through PLD2, depended primarily on the electrophysiology in Figure 1b-c, not the dSTORM. But both complement each other.

      2) The experiments in Figure 6 are a bit puzzling. The entire premise of the paper is to establish gating mechanism of TREK-1 mediated by PLD2; however, the motivation behind using flies, which do not express TREK-1 is puzzling.

      Response: The fly experiment shows that PLD mechanosensitivity is more evolutionarily conserved than TREK-1 mechanosensitivity. We have added this observation to the paper.

      -Figure 6B, the image is too blown out and looks over saturated. Unclear whether the resolution in subcellular localization is obvious or not.

      Response: Figure 6B is a confocal image, it is not dSTORM. There is no dSTORM in Figure 6. We have added the error bars to make this more obvious. For reference, only a few cells would fit in the field of view with dSTORM.

      -Figure 6C-D, the differences in activity threshold is 1 or less than 1g. Is this physiologically relevant? How does this compare to other conditions in flies that can affect mechanosensitivity, for example?

      Response: Yes, 1g is physiologically relevant. It is almost the force needed to wake a fly from sleep (1.2-3.2g). See ref 33. Murphy Nature Pro. 2017.

      3) 70mOsm is a high degree of osmotic stress. How confident are the authors that a cell health is maintained under this condition and b. this does indeed induce membrane stretch? For example, does this stimulation activate TREK-1?

      Response: Yes, osmotic swell activates TREK1. This was shown in ref 19 (Patel et al 1998). We agree the 70 mOsm is a high degree of stress. This needs to be stated better in the paper.

      Reviewer #2 (Public Review):

      This manuscript by Petersen and colleagues investigates the mechanistic underpinnings of activation of the ion channel TREK-1 by mechanical inputs (fluid shear or membrane stretch) applied to cells. Using a combination of super-resolution microticopy, pair correlation analysis and electrophysiology, the authors show that the application of shear to a cell can lead to changes in the distribution of TREK-1 and the enzyme PhospholipaseD2 (PLD2), relative to lipid domains defined by either GM1 or PIP2. The activation of TREK-1 by mechanical stimuli was shown to be sensi>zed by the presence of PLD2, but not a catalytically dead xPLD2 mutant. In addition, the activity of PLD2 is increased when the molecule is more associated with PIP2, rather than GM1 defined lipid domains. The presented data do not exclude direct mechanical activation of TREK-1, rather suggest a modulation of TREK-1 activity, increasing sensitivity to mechanical inputs, through an inherent mechanosensitivity of PLD2 activity. The authors additionally claim that PLD2 can regulate transduction thresholds in vivo using Drosophila melanogaster behavioural assays. However, this section of the manuscript overstates the experimental findings, given that it is unclear how the disruption of PLD2 is leading to behavioural changes, given the lack of a TREK-1 homologue in this organism and the lack of supporting data on molecular function in the relevant cells.

      Response: We agree, the downstream effectors of PLD2 mechanosensitivity are not known in the fly. Other anionic lipids have been shown to mediate pain see ref 46 and 47. We do not wish to make any claim beyond PLD2 being an in vivo contributor to a fly’s response to mechanical force. We have removed the speculative conclusions about fly thresholds from the abstract.

      That said we do believe we have established a molecular function at the cellular level. We showed PLD is robustly mechanically activated in a cultured fly cell line (BG2-c2) Figure 6a of the manuscript. And our previous publication established mechanosensation of PLD (Petersen et. al. Nature Com 2016) through mechanical disruption of the lipids. At a minimum, the experiments show PLDs mechanosensitivity is evolutionarily better conserved across species than TREK1.

      This work will be of interest to the growing community of scientists investigating the myriad mechanisms that can tune mechanical sensitivity of cells, providing valuable insight into the role of functional PLD2 in sensi>zing TREK-1 activation in response to mechanical inputs, in some cellular systems.

      The authors convincingly demonstrate that, post application of shear, an alteration in the distribution of TREK-1 and mPLD2 (in HEK293T cells) from being correlated with GM1 defined domains (no shear) to increased correlation with PIP2 defined membrane domains (post shear). These data were generated using super-resolution microticopy to visualise, at sub diffraction resolution, the localisation of labelled protein, compared to labelled lipids. The use of super-resolution imaging enabled the authors to visualise changes in cluster association that would not have been achievable with diffraction limited microticopy. However, the conclusion that this change in association reflects TREK-1 leaving one cluster and moving to another overinterprets these data, as the data were generated from sta>c measurements of fixed cells, rather than dynamic measurements capturing molecular movements.

      When assessing molecular distribution of endogenous TREK-1 and PLD2, these molecules are described as "well correlated: in C2C12 cells" however it is challenging to assess what "well correlated" means, precisely in this context. This limitation is compounded by the conclusion that TREK-1 displayed little pair correlation with GM1 and the authors describe a "small amount of TREK-1 trafficked to PIP2". As such, these data may suggest that the findings outlined for HEK293T cells may be influenced by artefacts arising from overexpression.

      The changes in TREK-1 sensitivity to mechanical activation could also reflect changes in the amount of TREK-1 in the plasma membrane. The authors suggest that the presence of a leak currently accounts for the presence of TREK-1 in the plasma membrane, however they do not account for whether there are significant changes in the membrane localisation of the channel in the presence of mPLD2 versus xPLD2. The supplementary data provide some images of fluorescently labelled TREK-1 in cells, and the authors state that truncating the c-terminus has no effect on expression at the plasma membrane, however these data provide inadequate support for this conclusion. In addition, the data reporting the P50 should be noted with caution, given the lack of saturation of the current in response to the stimulus range.

      Response: We thank the reviewer for his/her concern about expression levels. We did test TREK-1 expression. mPLD decreases TREK-1 expression ~two-fold (see Author response image 2 below). We did not include the mPLD data since TREK-1 was mechanically activated with mPLD. For expression to account for the loss of TREK-1 stretch current (Figure 1b), xPLD would need to block surface expression of TREK-1 prior to stretch. The opposite was true, xPLD2 increased TREK-1 expression (see Figure S2c). Furthermore, we tested the leak current of TREK-1 at 0 mV and 0 mmHg of stretch. Basal leak current was no different with xPLD2 compared to endogenous PLD (Figure 1d; red vs grey bars respectively) suggesting TREK-1 is in the membrane and active when xPLD2 is present. If anything, the magnitude of the effect with xPLD would be larger if the expression levels were equal.

      Author response image 2.

      TREK expression at the plasma membrane. TREK-1 Fluorescence was measured by GFP at points along the plasma membrane. Over expression of mouse PLD2 (mPLD) decrease the amount of full-length TREK-1 (FL TREK) on the surface more than 2-fold compared to endogenously expressed PLD (enPLD) or truncated TREK (TREKtrunc) which is missing the PLD binding site in the C-terminus. Over expression of mPLD had no effect on TREKtrunc.

      Finally, by manipulating PLD2 in D. melanogaster, the authors show changes in behaviour when larvae are exposed to either mechanical or electrical inputs. The depletion of PLD2 is concluded to lead to a reduction in activation thresholds and to suggest an in vivo role for PA lipid signaling in setting thresholds for both mechanosensitivity and pain. However, while the data provided demonstrate convincing changes in behaviour and these changes could be explained by changes in transduction thresholds, these data only provide weak support for this specific conclusion. As the authors note, there is no TREK-1 in D. melanogaster, as such the reported findings could be accounted for by other explanations, not least including potential alterations in the activation threshold of Nav channels required for action potential generation. To conclude that the outcomes were in fact mediated by changes in mechanotransduction, the authors would need to demonstrate changes in receptor potential generation, rather than deriving conclusions from changes in behaviour that could arise from alterations in resting membrane potential, receptor potential generation or the activity of the voltage gated channels required for action potential generation.

      Response: We are willing to restrict the conclusion about the fly behavior as the reviewers see fit. We have shown PLD is mechanosensitivity in a fly cell line, and when we knock out PLD from a fly, the animal exhibits a mechanosensation phenotype. We tried to make it clear in the figure and in the text that we have no evidence of a particular mechanism downstream of PLD mechanosensation.

      This work provides further evidence of the astounding flexibility of mechanical sensing in cells. By outlining how mechanical activation of TREK-1 can be sensitised by mechanical regulation of PLD2 activity, the authors highlight a mechanism by which TREK-1 sensitivity could be regulated under distinct physiological conditions.

      Reviewer #3 (Public Review):

      The manuscript "Mechanical activation of TWIK-related potassium channel by nanoscopic movement and second messenger signaling" presents a new mechanism for the activation of TREK-1 channel. The mechanism suggests that TREK1 is activated by phosphatidic acids that are produced via a mechanosensitive motion of PLD2 to PIP2-enriched domains. Overall, I found the topic interesting, but several typos and unclarities reduced the readability of the manuscript. Additionally, I have several major concerns on the interpretation of the results. Therefore, the proposed mechanism is not fully supported by the presented data. Lastly, the mechanism is based on several previous studies from the Hansen lab, however, the novelty of the current manuscript is not clearly stated. For example, in the 2nd result section, the authors stated, "fluid shear causes PLD2 to move from cholesterol dependent GM1 clusters to PIP2 clusters and this activated the enzyme". However, this is also presented as a new finding in section 3 "Mechanism of PLD2 activation by shear."

      For PLD2 dependent TREK-1 activation. Overall, I found the results compelling. However, two key results are missing.

      1. Does HEK cells have endogenous PLD2? If so, it's hard to claim that the authors can measure PLD2-independent TREK1 activation.

      Response: yes, there is endogenous PLD (enPLD). We calculated the relative expression of xPLD2 vs enPLD. xPLD2 is >10x more abundant (Fig. S3d of Pavel et al PNAS 2020, ref 14 of the current manuscript). Hence, as with anesthetic sensitivity, we expect the xPLD to out compete the endogenous PLD, which is what we see. We added the following sentence and reference : “The xPLD2 expression is >10x the endogenous PLD2 (enPLD2) and out computes the TREK-1 binding site for PLD25.”

      1. Does the plasma membrane trafficking of TREK1 remain the same under different conditions (PLD2 overexpression, truncation)? From Figure S2, the truncated TREK1 seem to have very poor trafficking. The change of trafficking could significantly contribute to the interpretation of the data in Figure 1.

      Response: If the PLD2 binding site is removed (TREK-1trunc), yes, the trafficking to the plasma membrane is unaffected by the expression of xPLD and mPLD (Author response image 2 above). For full length TREK1 (FL-TREK-1), co-expression of mPLD decreases TREK expression (Author response image 2) and coexpression with xPLD increases TREK expression (Figure S2f). This is exactly opposite of what one would expect if surface expression accounted for the change in pressure currents. Hence, we conclude surface expression does not account for loss of TREK-1 mechanosensitivity with xPLD2. A few sentences was added to the discussion. We also performed dSTORM on the TREKtruncated using EGFP. TREK-truncated goes to PIP2 (see figure 2 of 6)

      Author response image 3.

      To better compare the levels of TREK-1 before and after shear, we added a supplemental figure S2f where the protein was compared simultaneously in all conditions. 15 min of shear significantly decreased TREK-1 except with mPLD2 where the levels before shear were already lowest of all the expression levels tested.

      For shear-induced movement of TREK1 between nanodomains. The section is convincing, however I'm not an expert on super-resolution imaging. Also, it would be helpful to clarify whether the shear stress was maintained during fixation. If not, what is the >me gap between reduced shear and the fixed state. lastly, it's unclear why shear flow changes the level of TREK1 and PIP2.

      Response: Shear was maintained during the fixing. xPLD2 blocks endocytosis, presumably endocytosis and or release of other lipid modifying enzymes affect the system. The change in TREK-1 levels appears to be directly through an interaction with PLD as TREK trunc is not affected by over expression of xPLD or mPLD.

      For the mechanism of PLD2 activation by shear. I found this section not convincing. Therefore, the question of how does PLD2 sense mechanical force on the membrane is not fully addressed. Par>cularly, it's hard to imagine an acute 25% decrease cholesterol level by shear - where did the cholesterol go? Details on the measurements of free cholesterol level is unclear and additional/alternative experiments are needed to prove the reduction in cholesterol by shear.

      Response: The question “how does PLD2 sense mechanical force on the membrane” we addressed and published in Nature Comm. In 2016. The title of that paper is “Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D” see ref 13 Petersen et. al. PLD is a soluble protein associated to the membrane through palmitoylation. There is no transmembrane domain, which narrows the possible mechanism of its mechanosensation to disruption.

      The Nature Comm. reviewer identified as “an expert in PLD signaling” wrote the following of our data and the proposed mechanism:

      “This is a provocative report that identi0ies several unique properties of phospholipase D2 (PLD2). It explains in a novel way some long established observations including that the enzyme is largely regulated by substrate presentation which 0its nicely with the authors model of segregation of the two lipid raft domains (cholesterol ordered vs PIP2 containing). Although PLD has previously been reported to be involved in mechanosensory transduction processes (as cited by the authors) this is the 0irst such report associating the enzyme with this type of signaling... It presents a novel model that is internally consistent with previous literature as well as the data shown in this manuscript. It suggests a new role for PLD2 as a force transduction tied to the physical structure of lipid rafts and uses parallel methods of disrup0on to test the predic0ons of their model.”

      Regarding cholesterol. We use a fluorescent cholesterol oxidase assay which we described in the methods. This is an appropriate assay for determining cholesterol levels in a cell which we use routinely. We have published in multiple journals using this method, see references 28, 30, 31. Working out the metabolic fate of cholesterol after sheer is indeed interesting but well beyond the scope of this paper. Furthermore, we indirectly confirmed our finding using dSTORM cluster analysis (Figure 3d-e). The cluster analysis shows a decrease in GM1 cluster size consistent with our previous experiments where we chemically depleted cholesterol and saw a similar decrease in cluster size (see ref 13). All the data are internally consistent, and the cholesterol assay is properly done. We see no reason to reject the data.

      Importantly, there is no direct evidence for "shear thinning" of the membrane and the authors should avoid claiming shear thinning in the abstract and summary of the manuscript.

      Response: We previously established a kinetic model for PLD2 activation see ref 13 (Petersen et al Nature Comm 2016). In that publication we discussed both entropy and heat as mechanisms of disruption. Here we controlled for heat which narrowed that model to entropy (i.e., shear thinning) (see Figure 3c). We provide an overall justification below. But this is a small refinement of our previous paper, and we prefer not to complicate the current paper. We believe the proper rheological term is shear thinning. The following justification, which is largely adapted from ref 13, could be added to the supplement if the reviewer wishes.

      Justification: To establish shear thinning in a biological membrane, we initially used a soluble enzyme that has no transmembrane domain, phospholipase D2 (PLD2). PLD2 is a soluble enzyme and associated with the membrane by palmitate, a saturated 16 carbon lipid attached to the enzyme. In the absence of a transmembrane domain, mechanisms of mechanosensation involving hydrophobic mismatch, tension, midplane bending, and curvature can largely be excluded. Rather the mechanism appears to be a change in fluidity (i.e., kinetic in nature). GM1 domains are ordered, and the palmate forms van der Waals bonds with the GM1 lipids. The bonds must be broken for PLD to no longer associate with GM1 lipids. We established this in our 2016 paper, ref 13. In that paper we called it a kinetic effect, however we did not experimentally distinguish enthalpy (heat) vs. entropy (order). Heat is Newtonian and entropy (i.e., shear thinning) is non-Newtonian. In the current study we paid closer attention to the heat and ruled it out (see Figure 3c and methods). We could propose a mechanism based on kinetic disruption, but we know the disruption is not due to melting of the lipids (enthalpy), which leaves shear thinning (entropy) as the plausible mechanism.

      The authors should also be aware that hypotonic shock is a very dirty assay for stretching the cell membrane. Ouen, there is only a transient increase in membrane tension, accompanied by many biochemical changes in the cells (including acidification, changes of concentration etc). Therefore, I would not consider this as definitive proof that PLD2 can be activated by stretching membrane.

      Response: Comment noted. We trust the reviewer is correct. In 1998 osmotic shock was used to activate the channel. We only intended to show that the system is consistent with previous electrophysiologic experiments.

      References cited:

      1 Du G, Huang P, Liang BT, Frohman MA. Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol Biol Cell 2004;15:1024–30. htps://doi.org/10.1091/mbc.E03-09-0673.

      2 Koch T, Wu DF, Yang LQ, Brandenburg LO, Höllt V. Role of phospholipase D2 in the agonist-induced and constistutive endocytosis of G-protein coupled receptors. J Neurochem 2006;97:365–72. htps://doi.org/10.1111/j.1471-4159.2006.03736.x.

      3 Wheeler DS, Underhill SM, Stolz DB, Murdoch GH, Thiels E, Romero G, et al. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine. Proc Natl Acad Sci U S A 2015;112:E7138–47. htps://doi.org/10.1073/pnas.1511670112.

      4 Rankovic M, Jacob L, Rankovic V, Brandenburg L-OO, Schröder H, Höllt V, et al. ADP-ribosylation factor 6 regulates mu-opioid receptor trafficking and signaling via activation of phospholipase D2. Cell Signal 2009;21:1784–93. htps://doi.org/10.1016/j.cellsig.2009.07.014.

      5 Pavel MA, Petersen EN, Wang H, Lerner RA, Hansen SB. Studies on the mechanism of general anesthesia. Proc Natl Acad Sci U S A 2020;117:13757–66. htps://doi.org/10.1073/pnas.2004259117.

      6 Call IM, Bois JL, Hansen SB. Super-resolution imaging of potassium channels with genetically encoded EGFP. BioRxiv 2023. htps://doi.org/10.1101/2023.10.13.561998.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The present work establishes 14-3-3 proteins as binding partners of spastin and suggests that this binding is positively regulated by phosphorylation of spastin. The authors show evidence that 14-3-3 >- spastin binding prevents spastin ubiquitination and final proteasomal degradation, thus increasing the availability of spastin. The authors measured microtubule severing activity in cell lines and axon regeneration and outgrowth as a prompt to spastin activity. By using drugs and peptides that separately inhibit 14-3-3 binding or spastin activity, they show that both proteins are necessary for axon regeneration in cell culture and in vivo models in rats.

      The following is an account of the major strengths and weaknesses of the methods and results.

      Major strengths

      -The authors performed pulldown assays on spinal cord lysates using GST-spastin, then analyzed pulldowns via mass spectrometry and found 3 peptides common to various forms of 14-3-3 proteins. In co-expression experiments in cell lines, recombinant spastin co-precipitated with all 6 forms of 14-3-3 tested.

      -By protein truncation experiments they found that the Microtubule Binding Domain of spastin contained the binding capability to 14-3-3. This domain contained a putative phosphorylation site, and substitutions that cannot be phosphorylated cannot bind to spastin.

      -spastin overexpression increased neurite growth and branching, and so did the phospho null spastin. On the other hand, the phospho mimetic prevents all kinds of neurite development.

      -Overexpression of GFP-spastin shows a turn-over of about 12 hours when protein synthesis is inhibited by cycloheximide. When 14-3-3 is co-overexpressed, GFP-spastin does not show a decrease by 12 hours. When S233A is expressed, a turn-over of 9 hours is observed, indicating that the ability to be phosphorylated increases the stability of the protein.

      -In support of that notion, the phospho-mimetic S233D makes it more stable, lasting as much as the over-expression of 14-3-3.

      -Authors show that spastin can be ubiquitinated, and that in the presence of ubiquitin, spastin-MT severing activity is inhibited.

      -By combining FCA with Spastazoline, the authors claim that FCA increased regeneration is due to increased spastin Activity in various models of neurite outgrowth and regeneration in cell culture and in vivo, the authors show impressive results on the positive effect of FCA in regeneration, and that this is abolished when spastin is inhibited.

      Major weaknesses

      -However convincing the pull-downs of the expressed proteins, the evidence would be stronger if a co-immunoprecipitation of the endogenous proteins were included.

      We thank the reviewer for their succinct summary of the main results and strengths of our study. We acknowledge the reviewers' valuable suggestions and agree that performing endogenous co-immunoprecipitation (co-IP) experiments in neurons is crucial for supporting our conclusions. To address this question, cortical neurons were cultured in vitro for endogenous IP experiment. The cortical neurons were cultured using a neurobasal medium supplemented with 2% B27, and using cytarabine to inhibit the proliferation of glial cells. The proteins were then extracted and subjected to the immunoprecipitation experiments using antibodies against spastin. The results, as shown in Fig.1C in the revised manuscript, clearly demonstrate that 14-3-3 protein indeed interacts with spastin within neurons.

      -To better establish the impact of spastin phosphorylation in the interaction, there is no indication that the phosphomimetic (S233D) can better bind spastin, and this result is contradicting to the conclusion of the authors that spastin-14-3-3 interaction is necessary for (or increases) spastin function.

      Thank you for your valuable and constructive comments. We agree with your consideration. To reinforce the importance of phosphorylated spastin in this binding model, we conducted additional experiments by transfecting S233D into 293T cells and performed immunoprecipitation experiments (Fig.2H). The results clearly demonstrate that spastin (S233D) exhibits enhanced binding to spastin, indicating that phosphorylation at the S233 site is critical for this interaction. Additionally, we observed that spastin (S233D) maintains its binding to 14-3-3 even in the presence of staurosporine. This data further supports and strengthens our conclusions.

      -To fully support the authors' suggestion that 14-3-3 and spastin work in the same pathway to promote regeneration, I believe that some key observations are missing.

      1-There is no evidence showing that 14-3-3 overexpression increases the total levels of spastin, not only its turnover.

      Thank you for your consideration and valuable input. We have previously demonstrated that overexpression of 14-3-3 leads to an increase in the protein levels of spastin in the absence of CHX (Fig.3E&F). Furthermore, we also observed an upregulated protein levels of spastin S233D compared to the wild-type (Fig.3G). We have now included these results in the revised manuscript.

      2- There is no indication that increasing the ubiquitination of spastin decreases its levels. To suggest that proteasomal activity is affecting the levels of a protein, one would expect that proteasomal inhibition (with bortezomib or epoxomycin), would increase its levels.

      Thanks for your concern. We believe that this evidence is critical. Indeed, another study by our team is working to elucidate the ubiquitination degradation pathway of spastin. In addition, a previous study has shown that phosphorylation of the S233 site of spastin can affect its protein stability (Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation, doi:10.26508/lsa.202000799.). To better support our conclusions, we have supplemented the results in Fig.3L&M. The results showed that the proteasome inhibitor MG132 could significantly increase the protein level of spastin, whereas CHX could significantly decrease the protein level of spastin, and the degradation of spastin is significantly hindered in the presence of both CHX and MG132. This experiment also further showed that ubiquitination of spastin reduced its protein level.

      3- Authors show that S233D increases MT severing activity, and explain that it is related to increased binding to 14-3-3. An alternative explanation is that phosphorylation at S233 by itself could increase MT severing activity. The authors could test if purified spastin S233D alone could have more potent enzymatic activity.)

      We appreciate the reviewer’s consideration. After investigating the interaction between 14-3-3 and spastin, we first aimed to determine whether the S233 phosphorylation mutation of spastin influenced its microtubule-severing activity. We found that overexpression of both S233A and S233D mutants resulted in significant microtubule severing (as indicated by a significant decrease in microtubule fluorescence intensity) (Fig.S2). Furthermore, it is noteworthy that S233 is located outside the microtubule-binding domain (MTBD, 270-328 amino acids) and the AAA region (microtubule-severing region, 342-599 amino acids) of spastin. Based on our initial observations, we believe that the phosphorylation of the S233 residue in spastin does not impact its microtubule-severing function. Additionally, under the same experimental conditions, we observed that the green fluorescence intensity of GFP-spastin S233D was significantly higher than that of GFP-spastin S233A. Based on these phenomena, we speculated that phosphorylation of the S233 residue of spastin might affect its protein stability, leading us to conduct further experiments. Furthermore, we fully acknowledge the reviewer's concern; however, due to technical limitations, we were unable to perform an in vitro assay to test the microtubule-severing activity of spastin. We have provided an explanation for this consideration in the revised version.

      -Finally, I consider that there are simpler explanations for the combined effect of FC-A and spastazoline. FC-A mechanism of action can be very broad, since it will increase the binding of all 14-3-3 proteins with presumably all their substrates, hence the pathways affected can rise to the hundreds. The fact that spastazoline abolishes FC-A effect, may not be because of their direct interaction, but because spastin is a necessary component of the execution of the regeneration machinery further downstream, in line with the fact that spastizoline alone prevented outgrowth and regeneration, and in agreement with previous work showing that normal spastin activity is necessary for regeneration.

      We appreciate the considerations raised by the reviewer. It is evident that spastin is not the exclusive substrate protein for 14-3-3, and it is challenging to demonstrate that 14-3-3 promotes nerve regeneration and recovery of spinal cord injury directly through spastin in vivo. However, we have identified the importance of 14-3-3 and spastin in the process of nerve regeneration. Importantly, we have conducted supplementary experiments to support the stabalization of spastin by FC-A treatment within neurons (Fig.4M), as well as the repair process of spinal cord injury in vivo (Fig.5D). The results showed that FC-A treatment in cortical neurons could enhance the stability of spastin protein levels, and we also demonstrated a consistent trend of upregulated protein levels of spastin and 14-3-3 following spinal cord injury. Moreover, the protein levels were significantly elevated in the the FC-A group of mice. These results also support that 14-3-3 enhances spastin protein stability to promote spinal cord injury repair. The manuscript was revised accordingly.

      Reviewer #2 (Public Review):

      Summary:

      The idea of harnessing small molecules that may affect protein-protein interactions to promote axon regeneration is interesting and worthy of study. In this manuscript, Liu et al. explore a 14-3-3-spastin complex and its role in axon regeneration.

      Strengths:

      Some of the effects of FC-A on locomotor recovery after spinal cord contusion look interesting.

      Weaknesses:

      The manuscript falls short of establishing that a 14-3-3-spastin complex is important for any FC-A-dependent effects and there are several issues with data quality that make it difficult to interpret the results. Importantly, the effects of the spastin inhibitor have a major impact on neurite outgrowth suggesting that cells simply cannot grow in the presence of the inhibitor and raising serious questions about any selectivity for FC-A - dependent growth. Aspects of the histology following spinal cord injury were not convincing.

      We sincerely appreciate the reviewer for evaluating our manuscript. Given the multitude of substrates that interact with 14-3-3, and considering spastin's indispensable role in neuroregeneration, it is indeed challenging to experimentally establish that FC-A's neuroregenerative effect is directly mediated through spastin in vivo. Therefore, we have provided additional crucial evidence regarding the changes in spastin protein levels following spinal cord injury, as well as the application of FC-A after spinal cord injury. Furthermore, we have made relevant adjustments to the uploaded images to enhance the resolution of the presented figures, as detailed in the subsequent response.

      Reviewer #3 (Public Review):

      Summary: The current manuscript c laims that 14-3-3 interacts with spastin and that the 14-3-3/spastin interaction is important to regulate axon regeneration after spinal cord injury.

      Strengths:

      In its present form, this reviewer identified no clear strengths for this manuscript.

      Weaknesses:

      In general, most of the figures lack sufficient quality to allow analyses and support the author's claims (detailed below). The legends also fail to provide enough information on the figures which makes it hard to interpret some of them. Most of the quantifications were done based on pseudo-replication. The number of independent experiments (that should be defined as n) is not shown. The overall quality of the written text is also low and typos are too many to list. The original nature of the spinal cord injury-related experiments is unclear as the role of 14-3-3 (and spastin) in axon regeneration has been extensively explored in the past.

      We sincerely appreciate the careful consideration and rigorous evaluation provided by the reviewer. In the revised version, we have made effort to present high-resolution figures and provide more detailed figure legends. Furthermore, we have made relevant adjustments to the statistical methods in accordance with the reviewer's suggestions. The manuscript has also undergone a thorough review and correction process to eliminate any writing-related errors. Please refer to the following response.

      To the best of our knowledge, there has been no clear reports on the efficacy of 14-3-3 in the repair of spinal cord injury. Kaplan A et al. (doi: 10.1016/j.neuron.2017.02.018) reported a reduction in die-back of the corticospinal tract following spinal cord injury using FC-A as a filler in situ in the lesion site. However, the specific effects of FC-A on spinal cord injury, such as motor function and neural reactivity, as well as the expression characteristic of 14-3-3 after spinal cord injury, have not been extensively elucidated. Additionally, prior research on spastin's role in axon regeneration primarily focused on the effects in Drosophila, and its regenerative effects in the central nervous system of adult mammals after injury have not been reported. Therefore, our study provides crucial insights into the importance of 14-3-3 and spastin in the process of spinal cord injury repair in mammals.

      Reviewer #1 (Recommendations For The Authors):

      There are many spelling and grammar errors, please revise. Examples:

      -approach revealed14-3-3

      -We have detected different many 14-3-3 peptides

      -Line 1057 (D) 14-3-3 agnoist FC-A

      -There is a discrepancy between panel names and figure legend in Figure 4.

      -There is another discrepancy between the color coding of treatments in Figure 7. All panels show "injury" in red and FC-A in orange, but in panel E, these are swapped. This is confusing to readers.

      Thank you for the thorough and rigorous review. We have re-colored the relevant chart. The manuscript has also undergone a thorough review to eliminate any writing-related errors.

      Most images from confocal microscopy are blurred or low resolution. They should be sharper for the type of microscopy used.

      We have adjusted and re-uploaded the images with higher resolution. Additionally, we have enlarged the relevant images.

      The list of all peptides retrieved in the Mass-Spec analyses of the GST-spastin pulldown must be publicly available, according to eLife rules.

      Thank you for your suggestion. We have now uploaded the mass spectrometry data.

      To determine where the 14-3-3/spastin protein142 complex functions in neurons, we double stained hippocampal neurons with spastin143 and 14-3-3 antibody, and found that 14-3-3 was colocalized with spastin in the entire144 cell compartment (Figure 1C).

      Colocalization by confocal fluorescence microscopy is not evidence for protein complexes.

      While co-localization experiments may not directly demonstrate protein-protein interactions, they can still provide valuable insights into the cellular localization of the proteins and suggest potential interactions between them. Therefore, we adjusted the statement.

      Fig1F- Co-immunoprecipitation assay results confirmed that all 14-3-3 isoforms could form direct complexes with spastin.

      CoIP in cells overexpressing the proteins is not evidence that it is direct. That they can interact directly with each other can be extracted from the evidence in vitro with purified proteins.

      We agree with this and we have changed our statement accordingly.

      For a broad audience to have a better understanding, the authors have to explain their a.a. subtitucions of Serine233, one being mimicking phosphorylation (S233D) and the other rendering the protein not being able to be phosphorylated in that position (S233A).

      We appreciate the suggestion. We have provided a more detailed explanation in revised manuscript.

      The panel of neuronas in Fig2G is mislabeled, because it is twice spastin S233A, instead of S233D.

      We apologize for this mistake and we have corrected it in the panel.

      FCA may increase the interaction of 14-3-3 with any of its substrates, including spastin. One would appreciate evidence that FCA increases the MT-severing activity of spastin, as assumed by authors

      We appreciate the reviewer’s suggestion. In this study, we overexpressed spastin to investigate its microtubule severing activity. It is important to note that overexpressing spastin significantly exceeds the normal physiological concentration of the protein. Using excessive amounts of FC-A to enhance the interaction between 14-3-3 and spastin in cells can lead to cell toxicity. Therefore, we chose to overexpress 14-3-3 instead of employing excessive FC-A.

      In Fig2F, the interaction of 14-3-3 with Spas-S233D would have been very informative.

      Thank you for the constructive suggestions from the reviewer. We have supplemented the corresponding co-immunoprecipitation experiments (Fig.).

      The functional effect of S233A and S233D does not correlate with a function of 14-3-3 in neurite outgrowth. This is because S233A does not interact with 14-3-3, however, it is as good as WT spastin... meaning that binding of 14-3-3 with spastin is not necessary...

      We appreciate the reviewer's consideration. The observed phenomenon of spastin WT and S233A promoting axon growth do not align with the physiological state within neurons. This may mask the true effects of S233A or S233D on neuronal axon growth. It is documented that the proper dosage of spastin is essential for neuronal growth and regeneration, as excessive or insufficient amounts can hinder axon growth. Excessive spastin levels can disrupt the overall cellular MTs. Therefore, spastin were moderately expressed by adjusting the transfection dosage and duration. Nevertheless, we were unable to precisely control the expression levels of spastin for both WT and S233A, also resulting in an overexpression state compared to the physiological state. As a result, the crucial role of spastin S233 in neural growth under physiological conditions may be masked. We have addressed this issue in the revised version of our manuscript.

      In panels 3C and D it is not clear if it does contain 14-3-3.... it seems it does not... but clarify.

      We apologize for any confusion. Since there is endogenous 14-3-3 present in the cells, we utilized spastin S233A and S233D to mimic the binding pattern with 14-3-3 according to the established interaction model. This information has been clarified in the original manuscript.

      Line 217 should indicate Figure 3, not Figure 5

      We have made the corresponding corrections.

      In F3G, it is intriguing that the input blot shows a decrease in Ubiquitin proteins when there is expression of flag ubiquitin...

      We apologize for the error in our presentation. In the control group, we actually overexpressed Flag-ubiquitin and GFP instead of Flag and GFP-spastin. Additionally, to further elucidate the impact of different phosphorylation states on spastin ubiquitination and degradation, we have conducted additional ubiquitination experiments (Fig.3N), which are now included in the revised version of our manuscript.

      S233 mutations seem to affect the effective turnover of spastin, but does not seem to change the levels of the spastin protein...hence, the conclusion that 14-3-3 protects from degradation is overstated.

      We thank the reviewers for the careful review and we have revised the statement accordingly.

      The mode of action of R18 FCA should be introduced earlier in the text.

      Thank you for the reviewer's correction. We have provided a corresponding description of the effects of FC-A and R18 on the interaction between 14-3-3 and spastin in the ubiquitination experiments section of the manuscript.

      Line 296 reads: Our results revealed that levels of 14-3-3 protein remained high even at 30 DPI, indicating that 14-3-3 plays an important role in the recovery of spinal cord injury.

      This is overstated since it can well be that an upregulated protein is inhibitory. We thank the reviewers for their consideration and we have made adjustments accordingly.

      It is not clear if 14-3-3 prevents ubiquitination of spastin, then its levels should be higher... it is noteworthy that they did not measure its levels in nerve tissue after injury. For example, in experiments shown in Figure 5A, it would have been very useful the observation of the levels of spastin.

      We appreciate the reviewer's consideration. We have now included the assessment of spastin protein levels following spinal cord injury. Additionally, we have collected the injured spinal cord lysates in mice treated with FC-A for western blot analysis. The results revealed that the expression trend of 14-3-3 protein is largely consistent with spastin after spinal cord injury. Furthermore, the treatment with FC-A was found to enhance the expression of spastin after spinal cord injury (Fig. 5C&D)."

      Panel 5G reads "nerve regeneration across the lesion site", but it actually measured NF levels, according to the legend.

      Thanks to the reviewers for the critical review. We have revised the chart accordingly.

      361 "BMS" should be explained in the results section for a better understanding of the results by non-experts.

      Thank you to the reviewers for their suggestions. We have explained this in the results section accordingly.

      Reviewer #2 (Recommendations For The Authors):

      1. The results of the mass spec and co-IP in Figure 1 are unclear.

      a) Are all of the peptides in Fig. 1A from 14-3-3 and were there only 3 14-3-3 peptides that were identified?

      The mass spectrum results did identify only three 14-3-3 peptides, and these three peptides were highly conserved across all isoforms.

      b) The blot in panel B needs to show the input band for spastin and 14-3-3 from the same gel and not spliced so that the level of enrichment can be evaluated in the co-IP.

      Thanks to the reviewer's comments, we have presented the whole gel (Fig.1B)

      c) Further, does an IP for 14-3-3 co-precipitate spastin?

      Thank you for your concern. We appreciate your feedback. Our 14-3-3 antibody is capable of Western blot experiments and recognizes all subtypes (Pan 14-3-3, Cell Signaling Technology, Cat #8312). Unfortunately, it is not suitable for immunoprecipitation (IP) experiments. Therefore, we have employed additional approaches, namely immunoprecipitation and pull-down assays, to further investigate the interaction between 14-3-3 and spastin.

      1. It is difficult to say anything about 14-3-3 - spastin co-localization in hippocampal neurons (1c) since 14-3-3 labels the entire hippocampal neuron so any protein will co-localize.

      We appreciate the comments. The co-localization experiments have provided evidence of the relative expression of both 14-3-3 and spastin in neurons, suggesting their potential interaction within neuronal cells. We have made the necessary revisions to accurately describe the results of the co-localization experiments in the manuscript.

      To further investigate the interaction between 14-3-3 and spastin within neurons, we have conducted additional co-immunoprecipitation (Co-IP) experiments using cortical neuron lysates (Fig.1C).

      1. The molecular weight of 14-3-3 is 25-28 kDa but the band in panel 1B and in subsequent figures it is below 15 kDa. Fig. 1F - the spastin band also seems to be low compared to predicted molecular weight and other W. Blot reports in the literature so some indication of how the antibody was validated would be important.

      Apologies for the mistakes. We have carefully re-evaluated the western blot images (See Author response image 1). We have confirmed that the molecular weight of the 14-3-3 protein is approximately 33 kDa. In the case of spastin, its molecular weight is around 55-70 kDa. Additionally, the GFP-spastin fusion protein has an estimated molecular weight of approximately 90 kDa. We have conducted a thorough verification and made appropriate adjustments to the molecular weight labels in all western blot images.

      Author response image 1.

      1. Fig 1G is a co-immunoprecipitation and it is not clear what the authors mean by "direct complexes" as claimed in line 150 of the results since this does not show direct binding between 14-3-3 and spastin. None of the assays in Fig. 1 assess "direct" binding between the two proteins and the authors should be clear in their interpretation.

      We agree with the reviewer's comments and have removed the word "direct" from the text.

      1. Fig. 1D - there is no validation that staurosporine (protein kinase inhibitor, not protein kinase as per typo in Line 167) affects the phosphorylation levels of spastin.

      Thank you for your valuable comments. In our group, we have conducted another study that has confirmed the involvement of CAMKII in mediating spastin phosphorylation. Furthermore, we have found that the addition of staurosporine significantly reduces the phosphorylation levels of spastin (unpublished results). In response to the reviewer's comment, we are pleased to provide western blot experiments demonstrating the effect of staurosporine on reducing spastin phosphorylation. The phosphorylation levels of spastin were assessed using a Pan Phospho antibody (Fig.2D).

      1. Fig. 2F - it would be important to test if spastin S233D interacts more robustly with 14-3-3 and if this is insensitive to staurosporine.

      Thank you for your comments. The suggestion provided by the reviewer is highly significant for supporting our conclusion that "phosphorylation of spastin is a prerequisite for its interaction with 14-3-3." Therefore, we have conducted additional immunoprecipitation experiments to further supplement our findings (Fig.2H). The experimental results demonstrate that the binding affinity between spastin S233D and 14-3-3 is stronger compared to spastin WT.

      1. Line 179 "Next, we transfected Ser233 mutation of spastin (spastin S233A or spastin S233D) with flag tagged 14-3-3 and generated Pearson's correlation coefficients. Results revealed that spastin 181 S233D was markedly colocalized with 14-3-3, with minimal colocalization with spastin S233A (Figure 2A-B)." Assuming the authors are referring to supplemental Figure 2, the 14-3-3 covers the entire cell thus I think measures of co-localization are uninterpretable.

      We agree with the reviewer's comment. We realize that 14-3-3θ exhibits a ubiquitous cellular distribution, which renders the measurement of its co-localization coefficients inconclusive. Therefore, we have decided to remove Supplementary Figure 2 from the manuscript.

      1. Line 189 "Consistent with earlier results, spastin promoted neurite outgrowth, as evidenced by both the length and total branches of neurite." - It is unclear what earlier results the authors are referring to. The authors should clarify how they determined the "moderate" expression level.

      We thank the review’s suggestions. The "earlier results" mentioned here refers to previously published articles, we now have added relevant references. Existing literature indicates that an appropriate dosage of spastin is necessary for neuronal growth and regeneration. However, both excessive and insufficient amounts of spastin are detrimental to axonal growth. Excessive spastin disrupts the overall microtubule network within cells. We controlled plasmid transfection dosage and transfection durations to achieve moderate expression. We have provided an explanation of these details in the revised version.

      1. The effects of WT spastin and spastin S233A were similar in spite of the fact that S233A does not bind to 14-3-3, which is inconsistent with the author's model that spastin-14-3-3 binding promotes growth. Line 191 - the authors mention that spastin S233D was toxic but I do not see any cell death measurements. I assume the bottom right panel in Fig. 2G labelled as spastin S233A is mislabeled and should be S233D.

      In response to comment 8, the transfection of both wild-type (WT) spastin and S233A mutant failed to precisely control the expression levels around the physiological concentration. Consequently, we observed an overexpression of spastin in both cases, which obscured the critical role of S233 phosphorylation in neurite outgrowth. We have addressed this issue in the revised version of the manuscript.

      1. Fig. 3. Does spastin(S233D) bind constitutively to 14-3-3? Why is spastin S233A not less stable than WT spastin based on the author's model?

      We propose that 14-3-3 is more likely to interact with spastin S233D in a non-constitutive manner. The instability of the S233A protein is attributed to the disruption of its ubiquitination degradation process due to the absence of 14-3-3 binding.

      1. The ubiquitin blot in Fig. 3G is not convincing and not quantified.

      We acknowledge the mislabeling in our figures. In the control group, Flag-Ubiquitin was also overexpressed, and we transfected GFP as a control instead of GFP-spastin. To further enhance the reliability, we conducted additional ubiquitination experiments (Fig.3N), which revealed a significant increase in spastin (S233A) ubiquitination levels compared to the WT group, consistent with previous research findings (Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation, doi:10.26508/lsa.202000799). Additionally, we observed that the addition of R18 could partially enhance spastin ubiquitination levels, as quantitatively illustrated in the figure (Fig.3O). This result further underscores the inhibitory role of 14-3-3 in the ubiquitination degradation pathway of spastin.

      1. I do not understand how the glutamate injury fits with the narrative (Fig. 4C).

      Excessive glutamate exposure can induce severe intracellular oxidative stress reactions, leading to the disruption of physiological processes such as mitochondrial energy production. This, in turn, results in the swelling and lysis of neuronal processes, a phenomenon known as neuronal necrosis. During this state, neurite maintenance is obstructed, and neurites exhibit swelling and breakage (Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995 Oct;15(4):961-73). We have provided a more comprehensive explanation of this phenomenon in the revised version of our manuscript.

      1. Some commentary about the selectivity of spastazoline to inhibit spastin should be included - it would be helpful if the authors could explain that this is a spastin inhibitor in the manuscript. FC-A still seems to promote growth in the presence of spastazoline suggesting that the FC-A effects are not dependent on spastin (Fig. 4E). The statistical analysis section of the materials and methods indicates that multiple groups were analyzed by one-way ANOVA. This seems unusual since the controls for cellular transfection are different than for small molecules (FC-A) and for peptides such as R18. As such, there is no vehicle control for the FC-A condition and it is difficult to assess the FC-A vs Spastazoline vs FA-A + Spastoazoline. The authors should clarify (Fig. 4E-J)

      Thank you for the reviewer’s suggestions. In the revised version, we have provided a more detailed explanation of the specific inhibition of spastin's severing function by spastazoline.

      We observed that FC-A, in combination with spastazoline, still exhibited a certain degree of promotion in neurite growth compared to the injury group under the glutamate circumstances. Evidently, spastin is not the exclusive substrate for 14-3-3, and FC-A might delay cellular oxidative stress reactions by facilitating the interaction of 14-3-3 with other substrates, such as the FOXO transcription factors as mentioned in the introduction. Nevertheless, our results still demonstrate that the addition of spastazoline significantly diminishes the promoting effect of FC-A on neurite growth, indicating that FC-A affects neuronal growth by impacting spastin.

      Furthermore, in the drug-treated groups, we overexpressed GFP to trace the morphology of neurons. Culture media were exchanged following transfection, and during media exchange, drugs were added. And an equivalent amount of DMSO or ethanol were added as controls to rule out the influence of solvents on neurons.

      1. There is a good possibility that spastin is required for all axon regeneration and that there is no selectivity for the FC-A pathway and this is a major issue with the interpretation of the manuscript (Fig 4K-L).

      We acknowledge this point. Clearly, spastin is not the exclusive substrate for 14-3-3, and our experimental evidence does not establish that 14-3-3 solely promotes neuronal regeneration through spastin. Nevertheless, we have identified the significance of 14-3-3 and spastin in the process of neural regeneration. Furthermore, we conducted complementary experiments to support the stability of spastin by FC-A treatment both in vitro and in vivo. We found an enhanced protein expression in cortical neurons after FC-A treatment (Fig.4M). Also, the results indicate a consistent elevation trend in the protein levels of spastin and 14-3-3 following spinal cord injury (Fig.5C&H). Moreover, in the FC-A group of mice, there was a significant increase in spastin protein levels (Fig.5D&I). These results also support that 14-3-3 promotes spinal cord injury repair by enhancing spastin protein stability.

      1. Fig. 5C- it is unclear where the photomicrographs were taken relative to the lesion.

      We obtained tissue sections from the lesion core and the above segments for histological analysis. Given the scarcity of neural compartment at the injury center, we select tissue slices as close as possible to lesion core to illustrate the relationship between 14-3-3 and the injured neurons. We have provided an explanation of this in the revised version of the manuscript.

      1. The authors need to provide some evidence that the FC-A and spastazoline compounds are accessing the CNS following IP injection.

      We thank the review’s suggestion. Although direct visualization evidence of FC-A and spastazoline entering the CNS is challenging to obtain, several indicators suggest drug penetration into spinal cord tissue. Firstly, behavioral and electrophysiological experiments in vivo demonstrate that drug injections indeed affect the neural activity of mice. Secondly, following spinal cord injury, the blood-spinal cord barrier was disrupted at the injury site, combined with the fact that both FC-A (molecular weight: 680.82 Da) and spastazoline (molecular weight: 382.51 Da) are small molecule drugs, these increases the likelihood of these small molecules entering the injured spinal cord tissue. Furthermore, our microtubule staining results indicated that FC-A and spastazoline did influence the acetylation ratio of microtubules. These findings support the drug penetration into spinal cord tissue.

      1. Some quantification of Fig. 5D would be important to support the contention that the lesion site is impacted by FC-A treatment.

      Thank you for the suggestion. We have included quantitative analysis for Figure 5D (Figure) as recommended.

      1. The NF and 5-HT staining in Fig. 5D and in Fig. 7A and B does not clearly define fibers and is not convincing.

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69).

      Our results showed that in the spinal cord injury group, there was strongly decreased NF-positive stainning (with a slight increase in 5-HT). In contrast, the FC-A treatment group exhibited a significant higher abundance of NF-positive signals (or an increased 5-HT signal) in the lesion site, which also suggests the reparative effect of FC-A on nerves. We also intend to refine our immunohistochemical methods in future experiments.

      Minor Comments: 1. Line 80 -84. To my knowledge the only manuscripts examining the effects of spastin in axon regeneration models includes the analysis in drosophila (i.e. ref 15 and 16) and a study in sciatic nerve that reported an index of functional recovery but did not perform any histology to assess axon regeneration phenotypes. The literature should be more accurately reflected in the introduction.

      We appreciate the suggestions from the reviewer. In the revised version, we have provided further clarification on the novelty of spastin in the spinal cord injury repair process.

      1. Line 73: The meaning of the following statement needs to be clarified: "spastin has two major isoforms, namely M1 and M87, coded form different initial sites."

      We have provided additional elaboration for this statement in the revised version.

      1. Line 216: Results indicated that GFP-spastin could be ubiquitinated, while inhibiting the 217 binding of 14-3-3/spastin promoted spastin ubiquitination (Figure 5G)." - Should be Fig 3G

      Sorry about the mistake. We have made the corresponding changes in the revised version.

      1. Line 255: "Briefly, we established a neural injury model as previously described(31)" - the basics of the injury model need to be described in this manuscript.

      In the revised version, we have provided further elaboration on the glutamate-induced neuronal injury model.

      Reviewer #3 (Recommendations For The Authors):

      Figure 1: A- Both legend and text fail to provide detail on this specific panel.

      We have provided a more detailed and comprehensive description of the legend and results in this section.

      B- Is the contribution of non-neuronal cells for co-IPs relevant? Co-IP with isolated neuronal extracts (instead of spinal cord tissue) should be performed.

      We thank the review’s suggestion. To further elucidate their interaction within neurons, cortical neurons were cultured (Cultured in Neurobasal medium supplemented with 2%B27 and cytarabine was used to inhibit glial cell growth) and cells were lysed for co-IP experiments (Fig.1C), and the results demonstrated the interaction between 14-3-3 and spastin within neurons.

      C- Both spastin and 14-3-3 appear to label the entire neuron with similar intensities throughout the entire cell which is rather unusual. Conditions of immunofluorescence should be improved and z-projections should be provided to support co-localization.

      Thanks for the comment. Our dual-labeling experiments indicated that 14-3-3 exhibits a characteristic pattern of whole-cell distribution. Therefore, this result cannot confirm the interaction between 14-3-3 and spastin within neurons, but it does provide evidence regarding the intracellular distribution patterns of 14-3-3 and spastin. Consequently, we supplemented neuronal endogenous co-IP experiments to further demonstrate the direct interaction between 14-3-3 and spastin within neurons, and we have modified the wording in the revised version accordingly.

      D- xx and yy axis information is either lacking or incomplete.

      We have made the corrections to the figures.

      E- It would be useful to show the conservation between the different 14-3-3 isoforms.

      We appreciate the suggestions. We have included a conservation analysis of 14-3-3 to assist readers in better understanding these results (Fig.1F).

      Figure 2:

      D- The experiment using a general protein kinase inhibitor does not allow concluding that the specific phosphorylation of spastin is sufficient for binding to 14-3-3. An alternative phosphorylated protein might be involved in the process.

      We appreciate the reviewer's consideration. We believe this serves as a prerequisite condition to demonstrate that "14-3-3 binding to spastin requires spastin phosphorylation." In fact, another project in our group has confirmed that CAMK II can mediate spastin phosphorylation, and the addition of staurosporine significantly reduces spastin phosphorylation levels (unpublished results). Here, we provide the western blot experiment showing the decrease in spastin phosphorylation under staurosporine treatment, with phosphorylation levels detected using the Pan Phospho antibody (Fig.2D).

      H and I- Pseudo-replication. Only independent experiments should be plotted and not data on multiple cells obtained in the same experiment. Please indicate the number of independent experiments.

      We appreciate the reviewer's correction. We now have included the mean value of three independent experiments and we have made relevant revisions to the statistical charts.

      Figure 3:

      The rationale for the hypothesis that spastin S233D transfection might upregulate the expression of spastin relative to WT and spastin S233A is unclear.

      We appreciate the reviewer's consideration. We have supplemented the relevant results, as depicted in the Fig.3G, which demonstrates that 14-3-3 can enhance the protein levels of spastin, and phosphorylated spastin (S233D) exhibits a significantly increased protein level compared to wild-type spastin. These findings indicate that 14-3-3 not only inhibits the degradation of spastin but also increases its protein levels.

      I- pseudo-replication. Please plot and do statistical analysis of independent experiments.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      Figure 4: E-J: I- pseudo-replication. Please plot and do statistical analysis of independent experiments.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      Figure 5:

      B- Please show individual data points.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      D- Longitudinal images of spinal cords where spastazoline was used cannot correspond to contusion as there is a very sharp discontinuity between the rostral and caudal spinal cord tissue. A full transection seems to have occurred. Alternatively, technical problems with tissue collection/preservation might have occurred.

      Thank you for the reviewer's consideration. The sharp discontinuity observed in the spastazoline group is not due to modeling issues but rather a result of the drug's effects on the injury site. This is primarily because spastin plays a crucial role not only in neuronal development but also in mitosis. Since the highly active proliferation of stromal cells at the injury site, . spastazoline may inhibit the proliferation of injury site-related stormal cells, thereby impeding the wound healing process following spinal cord injury, resulting in the observed discontinuous injury gap. We have made the corresponding revision accordingly.

      E- Images do not have the quality to allow analysis. 5HT staining should not be considered as a clear axonal labeling is not seen. This is also the case for neurofilament staining.

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69).

      Our results showed that in the spinal cord injury group, there was strongly decreased NF-positive stainning (with a slight increase in 5-HT). In contrast, our FC-A treatment group exhibited a significant higher abundance of NF-positive signals (or an increased 5-HT signal) in the lesion site, which also suggests the reparative effect of FC-A on nerves. We also intend to refine our immunohistochemical methods in future experiments.

      F- Images do not allow analysis. Higher magnifications are needed.

      Thank you for the reviewer's consideration. We have now included higher-magnification images (Fig.5M) to address this concern.

      Figure 7:

      Same issues as in Figure 5.

      A- Images do not have the quality to allow analysis. 5HT staining should not be considered as a clear axonal labeling is not seen.

      B- Images do not have the quality to allow analysis. Neurofilament staining should not be considered as clear axonal labeling is not seen. MBP staining does not have a pattern consistent with myelin staining

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69). In this study, sagittal slices were used. MBP covers the axonal surface, indicating its co-localization with the axons. However, as we did not present intact nerve fibers, so we were unable to show the typical myelin staining of MBP.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Watanuki et al used metabolomic tracing strategies of U-13C6-labeled glucose and 13C-MFA to quantitatively identify the metabolic programs of HSCs during steady-state, cell-cycling, and OXPHOS inhibition. They found that 5-FU administration in mice increased anaerobic glycolytic flux and decreased ATP concentration in HSCs, suggesting that HSC differentiation and cell cycle progression are closely related to intracellular metabolism and can be monitored by measuring ATP concentration. Using the GO-ATeam2 system to analyze ATP levels in single hematopoietic cells, they found that PFKFB3 can accelerate glycolytic ATP production during HSC cell cycling by activating the rate-limiting enzyme PFK of glycolysis. Additionally, by using Pfkfb3 knockout or overexpressing strategies and conducting experiments with cytokine stimulation or transplantation stress, they found that PFKFB3 governs cell cycle progression and promotes the production of differentiated cells from HSCs in proliferative environments by activating glycolysis. Overall, in their study, Watanuki et al combined metabolomic tracing to quantitatively identify metabolic programs of HSCs and found that PFKFB3 confers glycolytic dependence onto HSCs to help coordinate their response to stress. Even so, several important questions need to be addressed as below:

      We sincerely appreciate the constructive feedback from the reviewer. Additional experiments and textual improvements have been made to the manuscript based on your valuable suggestions. In particular, the major revisions are as follows: First, we investigated the extent to which other metabolites, not limited to the glycolytic system, affect metabolism in HSCs after 5-FU treatment. Second, the extent to which PFKFB3 contributes to the expansion of the HSPC pool in the bone marrow was adjusted to make the description more accurate based on the data. Finally, we overexpressed PFKFB3 in HSCs derived from GO-ATeam2 mice and confirmed that PRMT1 inhibition did not reduce the ATP concentration. We believe that the reviewer's valuable comments have further deepened our knowledge of the significance of glycolytic activation by PFKFB3 that we have demonstrated. Our response to the "Recommendations for Authors" is listed first, followed by our responses to all "Public Review" comments as follows:

      (Recommendations For The Authors):

      1. The methods used in key experiments should be described in more detail. For example, in the section on ‘Conversion of GO-ATeam2 fluorescence to ATP concentration’, the knock-in strategy for GO-ATeam2 should be described, as well as U-13C6 -glucose tracer assays.

      As per your recommendation, we have described the key experimental method in more detail in the revised manuscript: the GO-ATeam2 knock-in method was reported by Yamamoto et al. 1. Briefly, they used a CAG promoter-based knock-in strategy targeting the Rosa26 locus to generate GO-ATeam2 knock-in mice. A description of the method has been added to Methods and the reference has been added to the citation.

      For the U-13C6-glucose tracer analysis, the following points were added to describe the details of the analysis: First, a note was added that the number of cells used for the in vitro tracer analysis was the number of cells used for each sample. Second, we added the solution from which the cells were collected by sorting. We added that the incubation was performed under 1% O2 and 5% CO2.

      1. Confusing image label of Supplemental Figure 1H should be corrected in line 253.

      We have corrected the incorrect figure caption on line 217 in the revised manuscript to "Supplemental Figure 1N" as you suggested.

      1. The percentage of the indicated cell population should also be shown in Figure S1B.

      As you indicated, we have included the percentages for each population in Supplemental Figure 1B.

      Author response image 1.

      1. Please pay attention to the small size of the marks in the graph, such as in Figure S1F and so on.

      As you indicated, we have corrected the very small text contained in Figure S1F. Similar corrections have been made to Figures S1B and S5A.

      1. Please pay attention to the label of line in Figure S6A-D.

      Thank you very much for the advice. We have added line labels to the graph in the original Figures S6A–D.

      (Specific comments)

      1. Based on previous reports, the authors expanded the LSK gate to include as many HSCs as possible (Supplemental Figure 1B). However, while they showed the gating strategy on Day 6 after 5-FU treatment, results from other time-points should also be displayed to ensure the strict selection of time-points.

      Thank you for pointing this out. First, we did not enlarge the Sca-1 gating in this study. We apologize for any confusion caused by the incomplete description. The gating of c-Kit is based on that shown by Umemoto et al (Figure EV1A) 2, who used 250 mg/kg 5-FU, so their c-Kit reduction is more pronounced than ours.

      We followed this study and compared c-Kit expression in Lin-Sca-1+CD150+CD48-EPCR+ gates to BMMNCs on day 6 after 5-FU administration (150 mg/kg). The results are shown below.

      Author response image 2.

      >

      Since the MFI of c-Kit was downregulated, we used gating that extended the c-Kit gate to lower-expression regions on day 6 after 5-FU administration (revised Figure S1C). At other time points, LSK gating was the same as in the PBS-treated group, as noted in the Methods.

      1. In Figure 1, the authors examined the metabolite changes on Day 6 after 5-FU treatment. However, it is important to consider whether there are any dynamic adjustments to metabolism during the early and late stages of 5-FU treatment in HSCs compared to PBS treatment, in order to coordinate cell homeostasis despite no significant changes in cell cycle progression at other time-points.

      Thank you for pointing this out. Below are the results of the GO-ATeam2 analysis during the very early phase (day 3) and late phase (day 15) after 5-FU administration (revised Figures S7A–H).

      Author response image 3.

      In the very early phase, such as day 3 after 5-FU administration, cell cycle progression had not started (Figure S1C) and was not preceded by metabolic changes. Meanwhile, in the late phase, such as day 15 after 5-FU administration, the cell cycle and metabolism returned to a steady state. In summary, the timing of the metabolic changes coincided with that of cell cycle progression. This point is essential for discussing the cell cycle-dependent metabolic system of HSCs and has been newly included in the Results (page 11, lines 321-323).

      1. As is well known, ATP can be produced through various pathways, including glycolysis, the TCA cycle, the PPP, NAS, lipid metabolism, amino acid metabolism and so on. Therefore, it is important to investigate whether treatment with 5-FU or oligomycin affects these other metabolic pathways in HSCs.

      As the reviewer pointed out, ATP production by systems other than the glycolytic system of HSCs is also essential. In this revised manuscript, we examined the effects of the FAO inhibitor (Etomoxir, 100 µM) and the glutaminolysis inhibitor 6-diazo-5-oxo-L-norleucine (DON, 2mM) alone or in combination on the ATP concentration of HSCs after PBS or 5-FU treatment. As shown below, there was no apparent decrease in ATP concentration (revised Figures S7J–M).

      Author response image 4.

      Fatty acid β-oxidation activity was also measured in 5-FU-treated HSCs using the fluorescent probe FAOBlue and was unchanged compared to PBS-treated HSCs (revised Figure S7N).

      Author response image 5.

      Notably, the addition of 100 µM etomoxir plus glucose and Pfkfb3 inhibitors resulted in a rapid decrease in ATP concentration in HSCs (revised Figures S7O–P). This indicates that etomoxir partially mimics the effect of oligomycin, suggesting that at a steady state, OXPHOS is driven by FAO, but can be compensated by the acceleration of the glycolytic system by Pfkfb3. Meanwhile, the exposure of HSCs to Pfkfb3 inhibitors in addition to 2 mM DON, which is an extremely high dose considering that the Ki value of DON for glutaminase is 6 µM, did not reduce ATP (revised Figures S7O–P). This suggests that ATP production from glutaminolysis is limited in HSCs at a steady state.

      Author response image 6.

      These points suggest that OXPHOS is driven by fatty acids at a steady state, but unlike the glycolytic system, FAO is not further activated by HSCs after 5-FU treatment. The results of these analyses and related descriptions are included in the revised manuscript (page 11, lines 332-344).

      1. In part 2, they showed that oligomycin treatment of HSCs exhibited activation of the glycolytic system, but what about the changes in ATP concentration under oligomycin treatment? Are other metabolic systems affected by oligomycin treatment?

      Thank you for your thoughtful comments. The relevant results we have obtained so far with the GO-ATeam2 system are as follows: First, OXPHOS inhibition in the absence of glucose significantly decreases the ATP concentration of HSCs (Figure 4C). Meanwhile, OXPHOS inhibition in the presence of glucose maintains the ATP concentration of HSCs (Figure 5B). Since it is difficult to imagine a completely glucose-free environment in vivo, it is thought that ATP concentration is maintained by the acceleration of the glycolytic system even under hypoxic or other conditions that inhibit OXPHOS.

      Meanwhile, glucose tracer analysis shows that OXPHOS inhibition suppresses nucleic acid synthesis (NAS) except for the activation of the glycolytic system (Figures 2C–F). This is because phosphate groups derived from ATP are transferred to nucleotide mono-/di-phosphate in NAS, but OXPHOS, the main source of ATP production, is impaired, along with the enzyme conjugated with OXPHOS in the process of NAS (dihydroorotate dehydrogenase, DHODH). We have added a new paragraph in the Discussion section (page 17, lines 511-515) to provide more insight to the reader by summarizing and discussing these points.

      1. In Figure 5M, it would be helpful to include a control group that was not treated with 2-DG. Additionally, if Figure 5L is used as the control, it is unclear why the level of ATP does not show significant downregulation after 2-DG treatment. Similarly, in Figure 5O, a control group with no glucose addition should be included.

      Thank you for your advice. The experiments corresponding to the control groups in Figures 5M and O were in Figures 5L and N, respectively, but we have combined them into one graph (revised Figures 5L–M). The results more clearly show that PFKFB3 overexpression enhances sensitivity to 2-DG, but also enhances glycolytic activation upon oligomycin administration.

      Author response image 7.

      1. In this study, their findings suggest that PFKFB3 is required for glycolysis of HSCs under stress, including transplantation. In Figure 7B, the results showed that donor-derived chimerism in PB cells decreased relative to that in the WT control group during the early phase (1 month post-transplant) but recovered thereafter. Although the transplantation cell number is equal in two groups of donor cells, it is unclear why the donor-derived cell count decreased in the 2-week post-transplantation period and recovered thereafter in the Pfkgb3 KO group. Therefore, they should provide an explanation for this. Additionally, they only detected the percentage of donor-derived cells in PB but not from BM, which makes it difficult to support the argument for Increasing the HSPC pool.

      As pointed out by the reviewer, it is interesting to note that the decrease in peripheral blood chimerism in the PFKFB3 knockout is limited to immediately after transplantation and then catches up with the control group (Figure 7B). We attribute this to the fact that HSPC proliferation is delayed immediately after transplantation in PFKFB3 deficiency, but after a certain time, PB cells produced by the delayed proliferating HSPCs are supplied. In support of this, the PFKFB3 knockout HSPCs did not exhibit increased cell death after transplantation (Figure 7K), while a delayed cell cycle was observed (Figures 7G–J). A description of this point has been added to the Discussion (page 19, lines 573-579).

      In addition, the knockout efficiency in bone marrow cells could not be verified because the number of cells required for KO efficiency analysis was not available. Therefore, we have added a statement on this point and have toned down our overall claim regarding the extent to which PFKFB3 is involved in the expansion of the HSPC pool (page 15, lines 474-476).

      1. In Figure 7E, they collected the BM reconstructed with Pfkfb3- or Rosa-KO HSPCs two months after transplantation, and then tested their resistance to 5-FU. However, the short duration of the reconstruction period makes it difficult to draw conclusions about the effects on steady-state blood cell production.

      We agree that we cannot conclude from this experiment alone that PFKFB3 is completely unnecessary in steady state because, as you pointed out, the observation period of the experiment in Figure 7E is not long. We have toned down the claim by stating that PFKFB3 is only less necessary in steady-state HSCs compared to proliferative HSCs (page 15, lines 460-461).

      1. PFK is allosterically activated by PFKFB, and other members of the PFKFB family could also participate in the glycolytic program. Therefore, they should investigate their function in contributing to glycolytic plasticity in HSCs during proliferation. Additionally, they should also analyze the protein expression and modification levels of other members. Although PFKFB3 is the most favorable for PFK activation, the role of other members should also be explored in HSC cell cycling to provide sufficient reasoning for choosing PFKFB3.

      To further justify why we chose PFKFB3 among the PFKFB family members, we reviewed our data and the publicly available Gene Expression Commons (GEXC) 3. PFKFB3 is the most highly expressed member of the PFKFB family in HSCs (revised Figure 4F), and its expression increases with proliferation (Author response image 9). In addition to this, we have also cited the literature 4 indicating that AZ PFKFB3 26 is a Pfkfb3-specific inhibitor that we used in this paper, and added a note to this point (that it is specific) (page 11, lines 327-329). Through these revisions, we sought to strengthen the rationale for Pfkfb3 as the primary target of the analysis.

      Author response image 8.

      Author response image 9.

      1. In this study, the authors identified PRMT1 as the upstream regulator of PFKFB3 that is involved in the glycolysis activation of HSCs. However, PRMT1 is also known to participate in various transcriptional activations. Thus, it is important to determine whether PRMT1 affects glycolysis through transcriptional regulation or through its direct regulation of PFKFB3? Additionally, the authors should investigate whether PRMT1i inhibits ATP production in normal HSCs. Moreover, could we combine Figure 6I and 6J for analysis. Finally, the authors could conduct additional rescue experiments to demonstrate that the effect of PRMT1 inhibitors on ATP production can be rescued by overexpression of PFKFB3.

      Although PRMT1 inhibition reduced m-PFKFB3 levels in HSCs, 5-FU treatment also reduced or did not alter Pfkfb3 transcript levels (Figures 6B, G) and the expression of genes such as Hoxa7/9/10, Itga2b, and Nqo1, which are representative transcriptional targets of PRMT1, in proliferating HSCs after 5-FU treatment (revised Figure S9).

      Author response image 10.

      These results suggest that PRMT1 promotes PFKFB3 methylation, which increases independently of transcription in HSCs after 5-FU treatment.

      A summary analysis of the original Figures 6I and 6J is shown below (revised Figure 6I).

      Author response image 11.

      Finally, we tested whether the inhibition of the glycolytic system and the decrease in ATP concentration due to PRMT1 inhibition could be rescued by the retroviral overexpression of PFKFB3. We found that PFKFB3 overexpression did not decrease the ATP concentration in HSCs due to PRMT1 inhibition (revised Figure 6J). Therefore, PFKFB3 overexpression mitigated the decrease in ATP concentration caused by PRMT1 inhibition. These data and related statements have been added to the revised manuscript (page 14, lines 427-428).

      Author response image 12.

      Reviewer #2:

      In the manuscript Watanuki et al. want to define the metabolic profile of HSCs in stress/proliferative (myelosuppression with 5-FU), and mitochondrial inhibition and homeostatic conditions. Their conclusions are that during proliferation HSCs rely more on glycolysis (as other cell types) while HSCs in homeostatic conditions are mostly dependent on mitochondrial metabolism. Mitochondrial inhibition is used to demonstrate that blocking mitochondrial metabolism results in similar features of proliferative conditions.

      The authors used state-of-the-art technologies that allow metabolic readout in a limited number of cells like rare HSCs. These applications could be of help in the field since one of the major issues in studying HSCs metabolism is the limited sensitivity of the“"standard”" assays, which make them not suitable for HSC studies.

      However, the observations do not fully support the claims. There are no direct evidence/experiments tackling cell cycle state and metabolism in HSCs. Often the observations for their claims are indirect, while key points on cell cycle state-metabolism, OCR analysis should be addressed directly.

      We sincerely appreciate the reviewer's constructive comments. Thank you for highlighting the importance of the highly sensitive metabolic assay developed in this study and the findings based on it. Meanwhile, the reviewer's comments have made us aware of areas where we can further improve this manuscript. In particular, in the revised manuscript, we have performed further studies to demonstrate the link between the cell cycle and metabolic state. Specifically, we further subdivided HSCs by the uptake of in vivo-administered 2-NBDG and performed cell cycle analysis. Next, HSCs after PBS or 5-FU treatment were analyzed by a Mito Stress test using the Seahorse flux analyzer, including ECAR and OCR, and a more direct relationship between the cell cycle state and the metabolic system was found. We believe that the reviewer's valuable suggestions have helped us clarify more directly the importance of the metabolic state of HSCs in response to cell cycle and stress that we wanted to show and emphasize the usefulness of the GO-ATeam2 system. Our response to "Recommendations For The Authors" is listed first, followed by our responses to all comments in "Public Review" as follows:

      (Recommendations For The Authors):

      In general, I believe it would be important:

      1. to directly associate cell cycle state with metabolic state. For example, by sorting HSC (+/- 5FU) based on their cell cycle state (exploiting the mouse model presented in the manuscript or by defining G0/G1/G2-S-M via Pyronin/Hoechst staining which allow to sort live cells) and follow the fate of radiolabeled glucose.

      Thank you for raising these crucial points. Unfortunately, it was difficult to perform the glucose tracer analysis by preparing HSCs with different cell cycle states as you suggested due to the amount of work involved. In particular, in the 5-FU group, more than 60 mice per group were originally required for an experiment, and further cell cycle-based purification would require many times that number of mice, which we felt was unrealistic under current technical standards. As an alternative, we administered 2-NBDG to mice and fractionated HSCs at the 2-NBDG fluorescence level for cell cycle analysis. The results are shown below (revised Figure S1M). Notably, even in the PBS-treated group, HSCs with high 2-NBDG uptake were more proliferative than those with low 2-NBDG uptake and are comparable to HSCs after 5-FU treatment, although the overall population of HSCs exiting the G0 phase and entering the G1 phase increased after 5-FU treatment. In both PBS/5-FU-treated groups, these large differences in cell cycle glucose utilization suggest a direct link between HSC proliferation and glycolysis activation. If a more sensitive type of glucose tracer analysis becomes available in the future, it may be possible to directly address the reviewer's comments. We see this as a topic for the future. The descriptions of the above findings and perspectives have been added to the Results and Discussion section (page 7, lines 208-214, page 20, lines 607-610).

      Author response image 13.

      1. Use other radio labeled substrates (fatty acid, glutamate)

      Thank you very much for your suggestion. While this is an essential point for future studies, we believe it is not the primary focus of the paper. We are planning another research project on tracer analysis using labeled fatty acids and glutamates, which we will report on in the near future. We have clearly stated in the Abstract and Introduction of the revised manuscript, that the focus of this study is on changes in glucose metabolism when HSCs are stressed (page 3, line 75 and 87, page 5, lines 135).

      Instead, we added the following analyses of metabolic changes in fatty acids and glutamate using the GO-ATeam2 system. HSCs derived from GO-ATeam2 mice treated with PBS or 5-FU were used to measure changes in ATP concentrations after exposure to the fatty acid beta-oxidation (FAO) inhibitor etomoxir and the glutaminolysis inhibitor 6-diazo-5-oxo-L-norleucine (DON). Etomoxir was used at 100 µM, a concentration that inhibits FAO without inhibiting mitochondrial electron transfer complex I, as previously reported 5. DON was used at 2 mM, a concentration that sufficiently inhibits the enzyme as the Ki for glutaminase is 6 µM. In this experiment, etomoxir alone, DON alone, or etomoxir and DON in combination did not decrease the ATP concentration of HSCs in the PBS and 5-FU groups (revised Figures S7J–M), suggesting that FAO and glutaminolysis were not essential for ATP production in HSCs in the short term. Thus, according to the analysis using the GO-Ateam2 system, HSCs exposed to acute stresses change the efficiency of glucose utilization (accelerated glycolytic ATP production) rather than other energy sources. Since there are reports that FAO and glutaminolysis are required for HSC maintenance in the long term 5,6, compensatory pathways may be able to maintain ATP levels in the short term. A description of these points has been added to the Discussion (page 11, lines 332-344).

      Author response image 14.

      1. Include OCR analyses.

      In addition to the ECAR data of the Mito Stress test (original Figures 2G–H), OCR data were added to the revised manuscript (revised Figures 2H, S3D). Compared to c-Kit+ myeloid progenitors (LKS- cells), HSC showed a similar increase in ECAR, while the decrease in OCR was relatively limited. A possible explanation for this is that glycolytic and mitochondrial metabolism are coupled in c-Kit+ myeloid progenitors, whereas they are decoupled in HSCs. This is also suggested by the glucose plus oligomycin experiment in Figures 5B, C, and S6A–D (orange lines). In summary, in HSCs, glycolytic and mitochondrial ATP production are decoupled and can maintain ATP levels by glycolytic ATP production alone, whereas in progenitors including GMPs, the two ATP production systems are constantly coupled, and glycolysis alone cannot maintain ATP concentration. We have added descriptions of these points in the Results and Discussion section (page 8, lines 240-243, page 18, lines 558-561).

      Author response image 15.

      Next, a Mito Stress test was performed using HSCs derived from PBS- or 5-FU-treated mice in the presence or absence of oligomycin (revised Figures 1G–H, S3A–B). Without oligomycin treatment, ECAR in 5-FU-treated HSCs was higher than in PBS-treated HSCs, and OCR was unchanged. Oligomycin treatment increased ECAR in both PBS- and 5-FU-treated HSCs, whereas OCR was unchanged in PBS-treated HSCs, but significantly decreased in 5-FU-treated HSCs. Changes in ECAR in response to oligomycin differed between HSC proliferation or differentiation: ECAR increased in 5-FU-treated HSCs but not in LKS- progenitors (original Figures 2G–H). This suggests a metabolic feature of HSCs in which the coupling of OXPHOS with glycolysis seen in LKS- cells is not essential in HSCs even after cell cycle entry. The results and discussion of this experiment have been added to page 7, lines 194-201 and page 18, lines 558-561).

      Author response image 16.

      1. Correlate proliferation-mitochondrial inhibition-metabolic state

      We agree that it is important to clarify this point. First, OXPHOS inhibition and proliferation similarly accelerate glycolytic ATP production with PFKFB3 (Figures 4G, I, and 5F–I). Meanwhile, oligomycin treatment rapidly decreases ATP in HSCs with or without 5-FU administration (Figure 4C). These results suggest that OXPHOS is a major source of ATP production both at a steady state and during proliferation, even though the analysis medium is pre-saturated with hypoxia similar to that in vivo. This has been added to the Discussion section (page 17, lines 520-523).

      1. Tune down the claim on HSCs in homeostatic conditions since from the data it seems that HSCs rely more on anaerobic glycolysis.

      Thanks for the advice. The original Figures S2C, D, F, and G show that HSC is dependent on the anaerobic glycolytic system even at a steady state, so we have toned down our claims (page 7, lines 192-194).

      1. For proliferative HSCs mitochondrial are key. When you block mitochondria with oligomycin there's the biggest drop in ATP.

      In the revised manuscript, we have tried to highlight the key findings that you have pointed out. First, we mentioned in the Discussion (page 17, lines 523-525) that previous studies suggested the importance of mitochondria in proliferating HSCs. Meanwhile, the GO-ATeam2 and glucose tracer analyses in this study newly revealed that the glycolytic system activated by PFKFB3 is activated during the proliferative phase, as shown in Figure 4C. We also confirmed that mitochondrial ATP production is vital in proliferating HSCs, and we hope to clarify the balance between ATP-producing pathways and nutrient sources in future studies.

      1. To better clarify this point authors, authors should do experiments in hypoxic conditions and compare it to oligomycin treatment and showing that mito-inhibition acts differently on HSCs (considering that all these drugs are toxic for mitochondria and induce rapidly stress responses ex: mitophagy).

      We apologize for any confusion caused by not clearly describing the experimental conditions. As pointed out by the reviewer, we also recognize the importance of experiments in a hypoxic environment. All GO-ATeam2 analyses were performed in a medium saturated sufficiently under hypoxic conditions and analyzed within minutes, so we believe that the medium did not become oxygenated (page S5-S6, lines 160-163 in the Methods). Despite being conducted under such hypoxic conditions, the substantial decrease in ATP after oligomycin treatment is intriguing (original Figures 4C, 5B, 5C). The p50 value of mitochondria (the partial pressure of oxygen at which respiration is half maximal) is 0.1 kPa, which is less than 0.1% of the oxygen concentration at atmospheric pressure 7. Thus, biochemically, it is consistent that OXPHOS can maintain sufficient activity even in a hypoxic environment like the bone marrow. We are currently embarking on a study to determine ATP concentration in physiological hypoxic conditions using in vivo imaging within the bone marrow, which we hope to report in a separate project. We have discussed these points, technical limitations, and perspectives in the Discussion section (page 20, lines 610-612).

      • In Figure 1 C, D, E and F, the comparison should be done as unpaired t test and the control group should not be 1 as the cells comes from different individuals.

      Thank you very much for pointing this out. We have reanalyzed and revised the figures (revised Figures 1C–F)

      Author response image 17.

      • In Figure S2A, the post-sorting bar of 6PG, R5P and S7P are missing.

      Metabolites below the detection threshold (post-sorting samples of 6PG, R5P, and S7P) are now indicated as N.D. (not detected) (revised Figure S2A).

      Author response image 18.

      • In the 2NBDG experiments, authors should add the appropriate controls, since it has been shown that 2NBDG cellular uptake do not correctly reflect glucose uptake (Sinclair LV, Immunometabolism 2020) (a cell type dependent variations) thus inhibitors of glucose transporters should be added as controls (cytochalasin B; 4,6-O-ethylidene-a-D-glucose) it would be quite challenging to test it in vivo but it would be sufficient to show that in vitro in the different HSPCs analyzed.

      We appreciate the essential technical point raised by the reviewer. In the revised manuscript, we performed a 2-NBDG assay with cytochalasin B and phloretin as negative controls. After PBS treatment, 2-NBDG uptake was higher in 5-FU-treated HSCs compared to untreated HSCs. This increase was inhibited by both cytochalasin B and phloretin. In PBS-treated HSCs, cytochalasin B did not downregulate 2-NBDG uptake, whereas phloretin did. Although cytochalasin B inhibits glucose transporters (GLUTs), it is also an inhibitor of actin polymerization. Therefore, its inhibitory effect on GLUTs may be weaker than that of phloretin. We have revised the figure (revised Figure S1L) and added the corresponding description (page 7, lines 207-208).

      Author response image 19.

      • S5C: authors should show the cell number for each population. If there's a decreased in % in Lin- that will be reflected in all HSPCs. Comparing the proportion of the cells doesn't show the real impact on HSPCs.

      Thank you for your insightful point. In the revision, we compared the numbers, not percentages, of HSPCs and found no difference in the number of cells in the major HSPC fractions in Lin-. The figure has been revised (revised Figure S6C) and the corresponding description has been added (page 10, lines 296-299).

      Author response image 20.

      Minor:

      1. In S1 F-G is not indicated in which day post 5FU injection is done the analysis. I assume on day 6 but it should be indicated in the figure legend and/or text.

      Thank you for pointing this out. As you assumed, the analysis was performed on day 6. The description has been added to the legend of the revised Figure S1G.

      1. S1K is not described in the text. What are proliferative and quiescence-maintaining conditions? The analyses are done by flow using LKS SLAM markers after culture? How long was the culture?

      Thank you for your comments. First, the figure citation on line 250 was incorrect and has been corrected to Figure S1N. Regarding the proliferative and quiescence-maintaining conditions, we have previously reported on these 8. In brief, these are culture conditions that maintain HSC activity at a high level while allowing for the proliferation or maintenance of HSCs in quiescence, achieved by culturing under fatty acid-rich, hypoxic conditions with either high or low cytokine concentrations. Analysis was performed after one week of culture, with the HSC number determined by flow cytometry based on the LSK-SLAM marker. While these are mentioned in the Methods section, we have added a description in the main text to highlight these points for the reader (page 7, lines 214-217).

      1. In Figure 5G, why does the blue line (PFKFB3 inhibitor) go up in the end of the real-time monitoring? Does it mean that other compensatory pathway is turned on?

      As you have pointed out, we cannot rule out the possibility that other unknown compensatory ATP production pathways were activated. We have added a note in the Discussion section to address this (page 18, lines 555-556).

      1. In Figure S6H&J, the reduction is marginal. Does it mean that PKM2 is not important for ATP production in HSCs?

      The activity of the inhibitor is essential in the GO-ATeam2 analysis. The commercially available PKM2 inhibitors have a higher IC50 value (IC50 = 2.95 μM in this case). Nevertheless, the effect of reducing the ATP concentration was observed in progenitor cells, but not in HSCs. The report by Wang et al. 9 on the analysis using a PKM2-deficient model suggests a stronger effect on progenitor cells than on HSCs. Our results are similar to those of the previous report.

      (Specific comments)

      Specifically, there are several major points that rise concerns about the claims:

      1. The gating strategy to select HSCs with enlarged Sca1 gating is not convincing. I understand the rationale to have a sufficient number of cells to analyze, however this gating strategy should be applied also in the control group. From the FACS plot seems that there are more HSCs upon 5FU treatment (Figure S1b). How that is possible? Is it because of the 20% more of cycling cells at day 6? To prove that this gating strategy still represents a pure HSC population, authors should compare the blood reconstitution capability of this population with a "standard" gated population. If the starting population is highly heterogeneous then the metabolic readout could simply reflect cell heterogeneity.

      Thank you for pointing this out. First, we did not enlarge the Sca-1 gating in this study. We apologize for any confusion caused by the incomplete description. The gating of c-Kit is based on that shown by Umemoto et al (Figure EV1A) 2, who used 250 mg/kg 5-FU, so their c-Kit reduction is more pronounced than ours.

      We followed this study and compared c-Kit expression in the Lin-Sca-1+CD150+CD48-EPCR+ gates to BMMNCs on day 6 after 5-FU administration (150 mg/kg). The results are shown below.

      Author response image 21.

      Since the MFI of c-Kit was downregulated, we used gating that extended the c-Kit gate to lower expression regions on day 6 after 5-FU administration (revised Figure S1C).

      At other time points, LSK gating was the same as in the PBS-treated group, as noted in the Methods.

      The reason why the number of HSCs appears to be higher in the 5-FU group is because most of the differentiated blood cells were lost due to 5-FU administration and the same number of cells as in the PBS group were analyzed by FACS, resulting in a relatively higher number of HSCs. The legend of Figure S1 shows that the number of HSCs in both the PBS and 5-FU groups appeared to increase because the same number of BMMNCs was obtained at the time of analysis (page S22, lines 596-598).

      Regarding cellular heterogeneity, from a metabolic point of view, the heterogeneity in HSCs is rather reduced by 5-FU administration. As shown in Figure S3A–C, this is simulated under stress conditions, such as after 5-FU administration or during OXPHOS inhibition, where the flux variability in each enzymatic reaction is significantly reduced. GO-ATeam2 analysis after 5-FU treatment showed no increase in cell population variability. After 2-DG treatment, ATP concentrations in HSCs were widely distributed from 0 mM to 0.8 mM in the PBS group, while more than 80% of those in the 5-FU group were less than 0.4 mM (Figures 4B, D). HSCs may have a certain metabolic diversity at a steady state, but under stress conditions, they may switch to a more specialized metabolism with less cellular heterogeneity in order to adapt.

      1. S2 does not show major differences before and after sorting. However, a key metabolite like Lactate is decreased, which is also one of the most present. Wouldn't that mean that HSCs once they move out from the hypoxic niche, they decrease lactate production? Do they decrease anaerobic glycolysis? How can quiescent HSC mostly rely on OXPHOS being located in hypoxic niche?

      2. Since HSCs in the niche are located in hypoxic regions of the bone marrow, would that not mimic OxPhos inhibition (oligomycin)? Would that not mean that HSCs in the niche are more glycolytic (anaerobic glycolysis)?

      3. In Figure 5B, the orange line (Glucose+OXPHOS inhibition) remains stable, which means HSCs prefer to use glycolysis when OXPHOS is inhibited. Which metabolic pathway would HSCs use under hypoxic conditions? As HSCs resides in hypoxic niche, does it mean that these steady-state HSCs prefer to use glycolysis for ATP production? As mentioned before, mitochondrial inhibition can be comparable at the in vivo condition of the niche, where low pO2 will "inhibit" mitochondria metabolism.

      Thank you for the first half of comment 2 on the technical features of our approach. First, as you have pointed out, there is minimal variation and stable detection of many metabolites before and after sorting (Figure S2A), suggesting that isolation from the hypoxic niche and sorting stress do not significantly alter metabolite detection performance. This is consistent with a previous report by Jun et al. 10. Meanwhile, lactate levels decreased by sorting. Therefore, if the activity of anaerobic glycolysis was suppressed in stressed HSCs, it may be difficult to detect these metabolic changes with our tracer analysis. However, in this study, several glycolytic metabolites, including an increase in lactate, were detected in HSCs from 5-FU-treated mice compared with HSCs from PBS-treated mice that were similarly sorted and prepared, suggesting an increase in glycolytic activity. In other words, we may have been fortunate to detect the stress-induced activation of the glycolytic system beyond the characteristic of our analysis system that lactate levels tend to appear lower than they are. Given that damage to the bone marrow hematopoiesis tends to alleviate the low-oxygen status of the niche 11, we postulate that this upregulated aerobic glycolysis arises intrinsically in HSCs rather than from external conditions.

      The second half of comment 2, and comments 7 and 10, are essential and overlapping comments and will be answered together. Although genetic analyses have shown that HSCs produce ATP by anaerobic glycolysis in low-oxygen environments 9,12, our GO-ATeam2 analysis in this study confirmed that HSCs also generate ATP via mitochondria. This is also supported by Ansó's prior findings where the knockout of the Rieske iron–sulfur protein (RISP), a constituent of the mitochondrial electron transport chain, impairs adult HSC quiescence and bone marrow repopulation 13. Bone marrow is a physiologically hypoxic environment (9.9–32.0 mmHg 11). However, the p50 value of mitochondria (the partial pressure of oxygen at which respiration is half maximal) is below 0.1% oxygen concentration at atmospheric pressure (less than 1 mmHg) 7. This suggests that OXPHOS can retain sufficient activity even under physiologically hypoxic conditions. We are currently initiating efforts to discern ATP concentrations in vivo within the bone marrow under physiological hypoxia. This will be reported in a separate project in the future. Admittedly, when we began this research, we did not anticipate the significant mitochondrial reliance of HSCs. As we previously reported, the metabolic uncoupling of glycolysis and mitochondria 12 may enable HSCs to activate only glycolysis, and not mitochondria, under stress conditions such as post-5-FU administration, suggesting a unique metabolic trait of HSCs. We have included these technical limitations and perspectives in the Discussion section (page 17, lines 520-523).

      1. The authors performed challenging experiments to track radiolabeled glucose, which are quite remarkable. However, the data do not fully support the conclusions. Mitochondrial metabolism in HSCs can be supported by fatty acid and glutamate, thus authors should track the fate of other energy sources to fully discriminate the glycolysis vs mito-metabolism dependency. From the data on S2 and Fig1 1C-F, the authors can conclude that upon 5FU treatment HSCs increase glycolytic rate.

      2. FIG.2B-C: Increase of Glycolysis upon oligomycin treatment is common in many different cell types. As explained before, other radiolabeled substrates should be used to understand the real effect on mitochondria metabolism.

      Thank you for your suggestion. While this is essential for future studies, we believe it is not the primary focus of the paper. We are planning another research project on tracer analysis using labeled fatty acids and glutamates, which we will report on in the near future. We have clearly stated in the Abstract and Introduction of the revised manuscript that the focus of this study is on changes in glucose metabolism when HSCs are stressed (page 3, line 75 and 87, page 5, lines 135).

      Instead, we have added the following analyses of metabolic changes in fatty acids and glutamate using the GO-ATeam2 system: HSCs derived from GO-ATeam2 mice treated with PBS or 5-FU were used to measure changes in ATP concentrations after exposure to the fatty acid beta-oxidation (FAO) inhibitor etomoxir and the glutaminolysis inhibitor 6-diazo-5-oxo-L-norleucine (DON). Etomoxir was used at 100 µM, a concentration that inhibits FAO without inhibiting mitochondrial electron transfer complex I, as previously reported 5. DON was used at 2 mM, a concentration that sufficiently inhibits the enzyme as the Ki for glutaminase is 6 µM. In this experiment, etomoxir alone, DON alone, or etomoxir and DON in combination did not decrease the ATP concentration of HSCs in the PBS and 5-FU groups (revised Figures S7J–M), suggesting that FAO and glutaminolysis were not essential for ATP production in HSCs in the short term. Thus, according to the analysis using the GO-Ateam2 system, HSCs exposed to acute stresses change the efficiency of glucose utilization (accelerated glycolytic ATP production) rather than other energy sources. Since there are reports that FAO and glutaminolysis are required for HSC maintenance in the long term 5,6, compensatory pathways may be able to maintain ATP levels in the short term. A description of these points has been added to the Discussion (page 17, lines 525-527).

      Author response image 22.

      Fatty acid β-oxidation activity was also measured in 5-FU-treated HSCs using the fluorescent probe FAOBlue and was unchanged compared to PBS-treated HSCs (revised Figure S7N).

      Author response image 23.

      Notably, the addition of 100 µM etomoxir plus glucose and Pfkfb3 inhibitors resulted in a rapid decrease in ATP concentration in HSCs (revised Figures S7O–P). This indicates that etomoxir partially mimics the effect of oligomycin, suggesting that at a steady state, OXPHOS is driven by FAO, but can be compensated by the acceleration of the glycolytic system by Pfkfb3. Meanwhile, the exposure of HSCs to Pfkfb3 inhibitors in addition to 2 mM DON did not reduce ATP (revised Figures S7O–P). This suggests that ATP production from glutaminolysis is limited in HSCs at a steady state.

      Author response image 24.

      These points suggest that OXPHOS is driven by fatty acids at a steady state, but unlike the glycolytic system, FAO is not further activated by HSCs after 5-FU treatment. The results of these analyses and related descriptions are included in the revised manuscript (page 11, lines 332-344).

      1. In Figure S1, 5-FU leads to the induction of cycling HSCs and in figure 1, 5-FU results in higher activation of glycolysis. Would it be possible to correlate these two phenotypes together? For example, by sorting NBDG+ cells and checking the cell cycle status of these cells?

      We appreciate the reviewer’s insightful comments. We administered 2-NBDG to mice and fractionated HSCs at the 2-NBDG fluorescence level for cell cycle analysis. The results are shown below (revised Figure S1M). Notably, even in the PBS-treated group, HSCs with high 2-NBDG uptake were more proliferative than HSCs with low 2-NBDG uptake and were comparable to HSCs after 5-FU treatment, although the overall population of HSCs that exited the G0 phase and entered the G1 phase increased after 5-FU treatment. In both PBS/5-FU-treated groups, these profound differences in cell cycle glucose utilization suggest a direct link between HSC proliferation and glycolysis activation. Descriptions of the above findings and perspectives have been added to the Results and Discussion section (page 7, lines 208-214, page 20, lines 607-610).

      Author response image 25.

      1. Why are only ECAR measurements (and not OCR measurements) shown? In Fig.2G, why are HSCs compared with cKit+ myeloid progenitors, and not with MPP1? The ECAR increased observed in HSC upon oligomycin treatment is shared with many other types of cells. However, cKit+ cells have a weird behavior. Upon oligo treatment cKit+ cells decrease ECAR, which is quite unusual. The data of both HSCs and cKit+ cells could be clarified by adding OCR curves. Moreover, it is recommended to run glycolysis stress test profile to assess the dependency to glycolysis (Glucose, Oligomycin, 2DG).

      In addition to the ECAR data of the Mito Stress test (original Figures 2G–H), OCR data were added in the revised manuscript (revised Figures 2H, S3D). Compared to c-Kit+ myeloid progenitors (LKS- cells), HSC exhibited a similar increase in ECAR, while the decrease in OCR was relatively limited. This may be because glycolytic and mitochondrial metabolism are coupled in c-Kit+ myeloid progenitors, whereas they are decoupled in HSCs. This is also suggested by the glucose plus oligomycin experiment in Figures 5B, C, and S6A–D (orange lines). In summary, in HSCs, glycolytic and mitochondrial ATP production are decoupled and can maintain ATP levels by glycolytic ATP production alone, whereas in progenitors including GMPs, the two ATP production systems are constantly coupled, and glycolysis alone cannot maintain the ATP concentration. While we could not conduct a glycolysis stress test, we believe that Pfkfb3-dependent glycolytic activation, which is evident in the oligomycin+glucose+Pfkfb3i experiment, is only apparent in HSCs when subjected to glucose+oligomycin treatment (original Figures 5F–I). We have added descriptions of these points in the Results and Discussion section (page 8, lines 240-243, page 18, lines 558-561).

      Author response image 26.

      FIG.3 A-C. As mentioned previously, the flux analyses should be integrated with data using other energy sources. If cycling HSCs are less dependent to OXPHOS, what happen if you inhibit OXHPHOS in 5-FU condition? Since the authors are linking OXPHOS inhibition and upregulation of Glycolysis to increase proliferation, do HSCs proliferate more when treated with oligomycin?

      First, please see our response to comments 3 and 5 regarding the first part of this comment about the flux analysis of other energy sources. According to the analysis using the GO-Ateam2 system, stressed HSCs change the efficiency of glucose utilization (accelerated glycolytic ATP production) rather than other energy sources. The change in ATP concentration after OXPHOS inhibition for 5-FU-treated HSCs is shown in Figures 4C and E, suggesting that the activity of OXPHOS itself does not increase. HSCs after oligomycin treatment and HSCs after 5-FU treatment are similar in that they activate glycolytic ATP production. However, inhibition of OXPHOS did not induce the proliferation of HSCs (original Figure S1K). This suggests that proliferation activates glycolysis and not that activation of the glycolytic system induces proliferation. This similarity and dissimilarity of glycolytic activation upon proliferation and OXPHOS inhibition is discussed in the Discussion section (page 16-17, lines 505-515).

      1. FIG.4 shows that in vivo administration of radiolabeled glucose especially marks metabolites of TCA cycle and Glycolysis. The authors interpret enhanced anaerobic glycolysis, but I am not sure this is correct; if more glycolysis products go in the TCA cycle, it might mean that HSC start engaging mitochondrial metabolism. What do the authors think about that?

      Thank you for pointing this out. We believe that the data are due to two differences in the experimental features between in vivo (Figure S5) and in vitro (Figures 1 and S2) tracer analysis. The first difference is that in in vivo tracer analysis, unlike in vitro, all cells can metabolize U-13C6-glucose. Another difference is that after glucose labeling in vivo, it takes approximately 120–180 minutes to purify HSCs to extract metabolites, and processing on ice may result in a gradual progression of metabolic reactions within HSCs. As a result, in vivo tracer analysis may detect an increased influx of labeled carbon derived from U-13C6-glucose into the TCA cycle over an extended period. However, it is difficult to interpret whether this influx of labeled carbon is derived from the direct influx of glycolysis or the re-uptake by HSCs of metabolites that have been metabolized to other metabolites in other cells. Meanwhile, as shown in Figure 4C using the GO-ATeam2 system, ATP production from mitochondria is not upregulated by 5-FU treatment. This suggests that even if the direct influx from glycolysis into the TCA cycle is increased, the rate of ATP production does not exceed that of glycolysis. Despite these technical caveats in interpretation, the results of in vivo and in vitro tracer analyses are considered essential. In particular, we consider the increased labeling of metabolites involved in glycolysis and nucleotide synthesis to be crucial. We have added a discussion of these points, including experimental limitations (page 17-18, lines 530-545).

      1. FIG.4: the experimental design is not clear. Are BMNNCs stained and then put in culture? Is it 6-day culture or BMNNCs are purified at day 6 post 5FU? FIG-4B-C The difference between PBS vs 5FU conditions are the most significant; however, the effect of oligomycin in both conditions is the most dramatic one. From this readout, it seems that HSCs are more dependent on mitochondria for energy production both upon 5FU treatment and in PBS conditions.

      We apologize for the incomplete description of the experimental details. The experiment involved dispensing freshly stained BMMNC with surface antigens into the medium and immediately subjecting them to flow cytometry analysis. For post-5-FU treatment HSCs, mice were administered with 5-FU (day 1), and freshly obtained BMMNCs were analyzed on day 6. The analysis of HSCs and progenitors was performed by gating each fraction within the BMMNC (original Figure S5A). We have added these details to ensure that readers can grasp these aspects more clearly (page S5, lines 155-158).

      As pointed out by the reviewer, we understand that HSCs produce more ATP through OXPHOS. However, ATP production by glycolysis, although limited, is observed under steady-state conditions (post-PBS treatment HSC), and its reliance increases during the proliferation phase (post-5-FU treatment HSC) (original Figures 4B, D). Until now, discussions on energy production in HSCs have focused on either glycolysis or mitochondrial functions. However, with the GO-ATeam2 system, it has become possible for the first time to compare their contributions to ATP production and evaluate compensatory pathways. As a result, it became evident that while OXPHOS is the main source of ATP production, the reliance on glycolysis plastically increases in response to stress. This has led to a better understanding of HSC metabolism. These points are included in the Discussion as well (page 16, lines 479-488).

      1. FIG.6H should be extended with cell cycle analyses. There are no differences between 5FU and ctrl groups. If 5FU induces HSCs cycling and increases glycolysis I would expect higher 2-NBDG uptake in the 5FU group. How do the authors explain this?

      Thank you for your comments. In the original Figure 6H, we found that 2-NBDG uptake correlated with mPFKFB3 levels in both the 5-FU and PBS groups. mPfkfb3 levels remained low in the few HSCs with low 2-NBDG uptake in the 5-FU group.

      In the revised manuscript, to directly relate glucose utilization to the cell cycle, we administered 2-NBDG to mice and fractionated HSCs at the 2-NBDG fluorescence level for cell cycle analysis. The results are shown below (revised Figure S1M). Notably, even in the PBS-treated group, HSCs with high 2-NBDG uptake were more proliferative than those with low 2-NBDG uptake and are comparable to HSCs after 5-FU treatment, although the overall population of HSCs that exited the G0 phase and entered the G1 phase increased after 5-FU treatment. The large differences in glucose utilization per cell cycle observed in both PBS/5-FU-treated groups suggest a direct link between HSC proliferation and glycolysis activation. Descriptions of the above findings have been added to the Results and Discussion ((page 7, lines 208-214, page 20, lines 607-610).

      Author response image 27.

      1. In S7 the experimental design is not clear. What are quiescent vs proliferative conditions? What does it mean "cell number of HSC-derived colony"? Is it a CFU assay? Then you should show colony numbers. When HSCs proliferate, they need more energy thus inhibition of metabolism will impact proliferation. What happens if you inhibit mitochondrial metabolism with oligomycin?

      Regarding the proliferative and quiescence-maintaining conditions, we have previously reported on these 8. In brief, these are culture conditions that maintain HSC activity at a high level while allowing for the proliferation or maintenance of HSCs in quiescence, achieved by culturing under fatty acid-rich, hypoxic conditions with either high or low cytokine concentrations. Analysis was performed after one week of culture, with the HSC number determined by flow cytometry based on the LSK-SLAM marker. While these are mentioned in the Methods section, we have added a description in the main text to highlight these points for the reader (page 7, lines 214-217).

      In vitro experiments with the oligomycin treatment of HSCs showed that OXPHOS inhibition activates the glycolytic system, but does not induce HSC proliferation (original Figure S1K). This suggests that proliferation activates glycolysis and not that activation of the glycolytic system induces proliferation. This similarity and dissimilarity of glycolytic activation upon proliferation and OXPHOS inhibition is discussed in the Discussion (page 16-17, lines 505-515).

      1. In FIG 7 since homing of HSCs is influenced by the cell cycle state, should be important to show if in the genetic model for PFKFB3 in HSCs there's a difference in homing efficiency.

      In response to the reviewer's comments, we knocked out PFKFB3 in HSPCs derived from Ubc-GFP mice, transplanted 200,000 HSPCs into recipients (C57BL/6 mice) post-8.5Gy irradiation, and harvested the bone marrow of recipients after 16 h to compare homing efficiency (revised Figure S10H). Even with the knockout of PFKFB3, no significant difference in homing efficiency was detected compared to the control group (Rosa knockout group). These results suggest that the short-term reduction in chimerism due to PFKFB3 knockout is not due to decreased homing efficiency or cell death by apoptosis (Figure 7K) but a transient delay in cell cycle progression. We have added descriptions regarding these findings in the Results and Discussion sections (page 15, lines 470-471, page 19, lines 576-578).

      Author response image 28.

      1. Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Rep. 2019;28(11):2923-2938 e2928.

      2. Umemoto T, Johansson A, Ahmad SAI, et al. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J. 2022:e109463.

      3. Seita J, Sahoo D, Rossi DJ, et al. Gene Expression Commons: an open platform for absolute gene expression profiling. PLoS One. 2012;7(7):e40321.

      4. Boyd S, Brookfield JL, Critchlow SE, et al. Structure-Based Design of Potent and Selective Inhibitors of the Metabolic Kinase PFKFB3. J Med Chem. 2015;58(8):3611-3625.

      5. Ito K, Carracedo A, Weiss D, et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18(9):1350-1358.

      6. Oburoglu L, Tardito S, Fritz V, et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell. 2014;15(2):169-184.

      7. Gnaiger E, Mendez G, Hand SC. High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci U S A. 2000;97(20):11080-11085.

      8. Kobayashi H, Morikawa T, Okinaga A, et al. Environmental Optimization Enables Maintenance of Quiescent Hematopoietic Stem Cells Ex Vivo. Cell Rep. 2019;28(1):145-158 e149.

      9. Wang YH, Israelsen WJ, Lee D, et al. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 2014;158(6):1309-1323.

      10. Jun S, Mahesula S, Mathews TP, et al. The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab. 2021;33(9):1777-1792 e1778.

      11. Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269-273.

      12. Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12(1):49-61.

      13. Anso E, Weinberg SE, Diebold LP, et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol. 2017;19(6):614-625.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper reports valuable results regarding the potential role and time course of the prefrontal cortex in conscious perception. Although the sample size is small, the results are clear and convincing, and strengths include the use of several complementary analysis methods. The behavioral test includes subject report so the results do not allow for distinguishing between theories of consciousness; nevertheless, results do advance our understanding of the contribution of prefrontal cortex to conscious perception. We appreciate very much for editor and reviewers encouraged review opinion. Particularly, we thank three reviewers very much for their professional and constructive comments that help us to improve the manuscript substantially.

      Public Reviews:

      Reviewer #1 (Public Review):

      This is a clear and rigorous study of intracranial EEG signals in the prefrontal cortex during a visual awareness task. The results are convincing and worthwhile, and strengths include the use of several complementary analysis methods and clear results. The only methodological weakness is the relatively small sample size of only 6 participants compared to other studies in the field. Interpretation weaknesses that can easily be addressed are claims that their task removes the confound of report (it does not), and claims of primacy in showing early prefrontal cortical involvement in visual perception using intracranial EEG (several studies already have shown this). Also the shorter reaction times for perceived vs not perceived stimuli (confident vs not confident responses) has been described many times previously and is not a new result.

      We appreciate very much for the reviewer’s encouraged opinion. We are going to address reviewer’s specific questions and comments point-by-point in following.

      ‘The only methodological weakness is the relatively small sample size of only 6 participants compared to other studies in the field.’

      We agree that the sample size is relatively small in the present study. To compensate such shortcoming, we rigorously verified each result at both individual and population levels, resembling the data analysis method in non-human primate study.

      Interpretation weaknesses that can easily be addressed are claims that their task removes the confound of report (it does not),

      Thank you very much for your comment. We agree that our task does not remove the confound of report entirely. However, we believe that our task minimizes the motor confounds by dissociating the emergence of awareness from motor in time and balanced direction of motor between aware and unaware conditions. We have modified the text according to reviewer’s comment in the revised manuscript as following: “This task removes the confound of motor-related activity”.

      ..and claims of primacy in showing early prefrontal cortical involvement in visual perception using intracranial EEG (several studies already have shown this).

      We agree that several iEEG studies, including ERP and HFA, have shown the early involvement of prefrontal cortical in visual perception. However, in these studies, the differential activity between conscious and unconscious conditions was not investigated, thus, the activity in prefrontal cortex might be correlated with unconscious processing, rather than conscious processing. In present study, we compared the neural activity in PFC between conscious and unconscious trials, and found the correlation between PFC activity and conscious perception. Although one iEEG study(Gaillard et al., 2009) reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early awareness related activity in our study. Also, due to the limited number of electrodes in the previous study (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), it was restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered multiple areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV, which sheds new light on understanding of the role of PFC in conscious perception.

      We have added this discussion in the MS (lines 522-536);

      Also the shorter reaction times for perceived vs not perceived stimuli (confident vs not confident responses) has been described many times previously and is not a new result. Thank you very much for your comment. We agree that the reaction time is strongly modulated by the confident level, which has been described previously (Broggin, Savazzi, & Marzi, 2012; Marzi, Mancini, Metitieri, & Savazzi, 2006). However, in previous studies, the confident levels were usually induced by presenting stimulus with different physical property, such as spatial frequency, eccentricity and contrast. It is well known that the more salient stimuli will induce the faster process of visual information and speed up the process of visuomotor transformation, eventually shorten the reaction time (Corbetta & Shulman, 2002; Posner & Petersen, 1990). Therefore, the dependence of visual processing on the salience of visual stimulus confounds with the effect of visual awareness on the reaction time, which is hard to attribute the shorter reaction time in more salient condition purely to visual awareness. In contrast, we create a condition (near perceptual threshold) in the present study, in which the saliency (contrast) of visual stimulus is very similar in both aware and unaware conditions in order to eliminate the influence of stimulus saliency in reaction time. We think that the difference in reaction time in our study is mainly due to the modulation of awareness state, which was not reported previously.

      We have added the discussion in the MS (lines 497-507).

      Reviewer #1 (Recommendations For The Authors):

      Specific comments follow:

      Abstract: "we designed a visual awareness task that can minimize report-related confounding" and in the Introduction lines 112-115: "Such a paradigm can effectively dissociate awareness-related activity from report-related activity in terms of time... and report behavior"; Discussion lines 481-483 "even after eliminating the influence of the confounding variables related to subjective reports such as motion preparation" and other similar statements in the manuscript should be removed. The task involves report using eye movements with every single stimulus. The fact that there is report for both perceived and not perceived stimuli, that the direction of report is not determined until the time of report, and that there is delay between stimulus and report, does not remove the report-related post-perceptual processing that will inevitably occur in a task where overt report is required for every single trial. For example, brain activity related to planning to report perception will only occur after perceived trials, regardless of the direction of eye movement later decided upon. This preparation to respond is different for perceived and not perceived stimuli, but is not part of the perception itself. In this way the current task is not at all unique and does not substantially differ from many other report-based tasks used previously.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness. To do so, it is crucial to determine the subjective awareness state as correct as possible. Considering the disadvantage of non-report paradigms in determining the subjective awareness state (Tsuchiya et al. TiCS, 2015; Mashour et al, Neuron, 2020), we employed a balanced report paradigm. It has been argued (Merten & Nieder, PNAS, 2011) that, in the balanced report paradigms, subjects could not prepare any motor response during the delay period because only the appearance of a rule cue (change color of fixation point at the end of delay period) informed subjects about the appropriate motor action. In this case, the post-perceptual processing during delay period might reflect the non-motor cognitive activity. Alternatively, as being mentioned by reviewer, the post-perceptual processing might relate to planning to report perception, which is different for perceived and not perceived stimuli. Therefore, up to date, the understanding of the post-perceptual processing remains controversial. According to reviewer’s comment, we have modified the description of our task as following: “we designed a visual awareness task that can minimize report-related motor confounding”. Also, have changed “report-related” to “motorrelated” in the text of manuscript.

      Figures 3, 4 changes in posterior middle frontal gyri suggest early frontal eye field involvement in perception. This should be interpreted in the context of many previous studies showing FEF involvement in signal detection. The authors claim that "earlier visual awareness related activities in the prefrontal cortex were not found in previous iEEG studies, especially in the HG band" on lines 501-502 of the Discussion. This statement is not true and should be removed. The following statement in the Discussion on lines 563-564 should be removed for the same reasons: "our study detected 'ignition' in the human PFC for the first time." Authors should review and cite the following studies as precedent among others:

      Blanke O, Morand S, Thut G, Michel CM, Spinelli L, Landis T, Seeck M (1999) Visual activity in the human frontal eye field. Neuroreport 10 (5):925-930. doi:10.1097/00001756-19990406000006

      Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans. A framework for defining "early" visual processing. Exp Brain Res 142 (1):139-150. doi:10.1007/s00221-001-0906-7

      Gaillard R, Dehaene S, Adam C, Clemenceau S, Hasboun D, Baulac M, Cohen L, Naccache L (2009) Converging intracranial markers of conscious access. Plos Biology 7 (3):e61

      Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207-1210

      Herman WX, Smith RE, Kronemer SI, Watsky RE, Chen WC, Gober LM, Touloumes GJ, Khosla M, Raja A, Horien CL, Morse EC, Botta KL, Hirsch LJ, Alkawadri R, Gerrard JL, Spencer DD, Blumenfeld H (2019) A Switch and Wave of Neuronal Activity in the Cerebral Cortex During the First Second of Conscious Perception. Cereb Cortex 29 (2):461-474.

      Khalaf A, Kronemer SI, Christison-Lagay K, Kwon H, Li J, Wu K, Blumenfeld H (2022) Early neural activity changes associated with stimulus detection during visual conscious perception. Cereb Cortex. doi:10.1093/cercor/bhac140

      Kwon H, Kronemer SI, Christison-Lagay KL, Khalaf A, Li J, Ding JZ, Freedman NC, Blumenfeld H (2021) Early cortical signals in visual stimulus detection. Neuroimage 244:118608.

      We agree that several iEEG studies, including ERP and HFA, have shown the early involvement of prefrontal cortical in visual perception. However, in these studies, the differential activity between conscious and unconscious conditions was not investigated, thus, the activity in prefrontal cortex might be correlated with unconscious processing, rather than conscious processing. In present study, we compared the neural activity in PFC between conscious and unconscious trials, and found the correlation between PFC activity and conscious perception. Although one iEEG study reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early awareness related activity in our study. Also, due to the limited number of electrodes in the previous study (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), it was restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered multiple areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV, which sheds new light on understanding of the role of PFC in conscious perception.

      We have added this discussion in the MS (lines 522-533);

      Minor weakness that should be mentioned in the Discussion: The intervals for the FP (fixation period) and Delay period were both fixed at 600 ms instead of randomly jittered, so that subjects likely had anticipatory activity predictably occurring with each grating and cue stimulus.

      Thank you very much for your comment. We agree that subjects might have anticipatory activity during experiment. Actually, the goal for us to design the task in this way is to try to balance the effect of attention and anticipation between aware and unaware conditions. We have added this discussion in the MS (lines 467-469);

      The faster reaction times for perceived/confident responses vs not perceived/unconfident responses has been reported many times previously in the literature and should be acknowledged rather than being claimed as a novel finding. Authors should modify p. 163 lines 160-162, first sentence of the Discussion lines 445-446 "reaction time.. shorter" claiming this was a novel finding; same for lines 464-467. Please see the following among others:

      Broggin E, Savazzi S, Marzi CA (2012) Similar effects of visual perception and imagery on simple reaction time. Q J Exp Psychol (Hove) 65 (1):151-164. doi:10.1080/17470218.2011.594896

      Chelazzi L, Marzi CA, Panozzo G, Pasqualini N, Tassinari G, Tomazzoli L (1988) Hemiretinal differences in speed of light detection in esotropic amblyopes. Vision Res 28 (1):95-104 Marzi CA, Mancini F, Metitieri T, Savazzi S (2006) Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia 44 (8):1489-1495. doi:10.1016/j.neuropsychologia.2005.11.012

      Posner MI (1994) Attention: the mechanisms of consciousness. Proceedings of the National Academy of Sciences of the United States of America 91 (16):7398-7403

      Sternberg S (1969) Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 57 (4):421-457

      Thanks. We have cited some of these papers in the revised manuscript due to the restricted number of citations.

      Methods lines 658-659: "results under LU and HA conditions were classified as the control group and were only used to verify and check the results during calculation." However the authors show these results in the figures and they are interesting. HA stimuli show earlier responses than NA stimuli. This is a valuable result which should be discussed and interpreted in light of the other findings.

      We thank very much for reviewer’s comment. We have made discussion accordingly in the revised MS (lines 535-536).

      General comment on figures: Many of the figure elements are tiny and the text labels and details can't be seen at all, especially single trial color plots, and the brain insets showing recording sites.

      We have modified the figures accordingly.

      Other minor comments: Typo: Figure 2 legend, line 169 "The contrast level resulted in an awareness percentage greater than 25%..." is missing a word and should say instead something like "The contrast level that resulted in an awareness percentage greater than 25%..."

      Thanks. We have corrected the typo accordingly.

      Figure 2 Table description in text line 190 says "proportions of recording sites" but the Table only shows number of recording sites and number of subjects, not "proportions." This should be corrected in the text.

      Thanks. We have corrected the error.

      Figure 3, and other figures, should always label the left and right hemispheres to avoid ambiguity.

      Thanks. We have made correction accordingly. In caption of Figure 2D (line 189), we modified the sentence as ‘In all brain images, right side of the image represents the right side of the brain’.

      Methods line 666. The saccadic latency calculations paragraph should have a separate heading before it, to separate it from the Behavioral data analysis section.

      Thanks. It has been corrected in line 725.

      Reviewer #2 (Public Review):

      The authors attempt to address a long-standing controversy in the study of the neural correlates of visual awareness, namely whether neurons in prefrontal cortex are necessarily involved in conscious perception. Several leading theories of consciousness propose a necessary role for (at least some sub-regions of) PFC in basic perceptual awareness (e.g., global neuronal workspace theory, higher order theories), while several other leading theories posit that much of the previously reported PFC contributions to perceptual awareness may have been confounded by task-based cognition that co-varied between the aware and unaware reports (e.g., recurrent processing theory, integrated information theory). By employing intracranial EEG in human patients and a threshold detection task on low-contrast visual stimuli, the authors assessed the timing and location of neural populations in PFC that are differentially activated by stimuli that are consciously perceived vs. not perceived. Overall, the reported results support the view that certain regions of PFC do contribute to visual awareness, but at time-points earlier than traditionally predicted by GNWT and HOTs.

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      Major strengths of this paper include the straightforward visual threshold detection task including the careful calibration of the stimuli and the separate set of healthy control subjects used for validation of the behavioral and eye tracking results, the high quality of the neural data in six epilepsy patients, the clear patterns of differential high gamma activity and temporal generalization of decoding for seen versus unseen stimuli, and the authors' interpretation of these results within the larger research literature on this topic. This study appears to have been carefully conducted, the data were analyzed appropriately, and the overall conclusions seem warranted given the main patterns of results.

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      Weaknesses include the saccadic reaction time results and the potential flaws in the design of the reporting task. This is not a "no report" paradigm, rather, it's a paradigm aimed at balancing the post-perceptual cognitive and motor requirements between the seen and unseen trials. On each trial, subjects/patients either perceived the stimulus or not, and had to briefly maintain this "yes/no" judgment until a fixation cross changed color, and the color change indicated how to respond (saccade to the left or right). Differences in saccadic RTs (measured from the time of the fixation color change to moving the eyes to the left or right response square) were evident between the seen and unseen trials (faster for seen). If the authors' design achieved what they claim on page 3, "the report behaviors were matched between the two awareness states ", then shouldn't we expect no differences in saccadic RTs between the aware and unaware conditions? The fact that there were such differences may indicate differences in post-perceptual cognition during the time between the stimulus and the response cue. Alternatively, the RT difference could reflect task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory). This saccadic RT result should be better explained in the context of the goals of this particular reporting-task.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness. To do so, it is crucial to determine the subjective awareness state as correct as possible. Considering the disadvantage of non-report paradigms in determining the subjective awareness state (Tsuchiya et al, TiCS, 2015; Mashour et al, Neuron, 2020), we employed a balanced report paradigm. It has been argued (Merten & Nieder, PNAS, 2011) that, in the balanced report paradigms, subjects could not prepare any motor response during the delay period because only after the appearance of a rule cue (change color of fixation point at the end of delay period) subjects were informed about the appropriate motor action. In this case, the post-perceptual processing during delay period might reflect the non-motor cognitive activity, such as working memory (Mashour et al. Neuron, 2020). Alternatively, as being mentioned by reviewer, the postperceptual processing might relate to planning to report perception, which is different for perceived and not perceived stimuli (Aru et al. Neurosci Biobehav Rev, 2012 ). Therefore, up to date, the understanding of the post-perceptual processing remains controversial. Considering reviewer’s comment together with other opinions, we have modified the description of our task as following: “we designed a visual awareness task that can minimize report-related motor confounding”. Also, we have changed “report-related” to “motor-related” in the rest of manuscript.

      Regarding the question whether the saccadic RT in our balanced response paradigm should be expected to be similar between aware and unaware condition, we think that the RT should be similar in case if the delay period is long enough for the decision of “no” to be completed. In fact, in a previous study (Merten & Nieder, PNAS, 2011), the neuronal encoding of “no” decision didn’t appear until 2s after the stimulus cue onset. However, in our task, the delay period lasted only 600 ms that was long enough to form the “yes” decision, but was not enough to form the “no” decision. It might be the reason that our data show shorter RT in aware condition than in unaware condition.

      We totally agree reviewer’s comment about the alternative interpretation for RT difference between aware and unaware condition in our study, i.e., reflecting task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory). We have made additional discussion about these questions in the revised manuscript (lines 492496).

      Nevertheless, the current results do help advance our understanding of the contribution of PFC to visual awareness. These results, when situated within the larger context of the rapidly developing literature on this topic (using "no report" paradigms), e.g., the recent studies by Vishne et al. (2023) Cell Reports and the Cogitate consortium (2023) bioRxiv, provide converging evidence that some sub-regions of PFC contribute to visual awareness, but at latencies earlier than originally predicted by proponents of, especially, global neuronal workspace theory.

      We appreciate very much for the reviewer’s encouraged opinion.

      Reviewer #2 (Recommendations For The Authors):

      Abstract: "the spatiotemporal overlap between the awareness-related activity and the interregional connectivity in PFC suggested that conscious access and phenomenal awareness may be closely coupled." I strongly suggest revising this sentence. The current results cannot be used to make such a broad claim about p-consciousness vs. a-consciousness. This study used a balanced trial-by-trial report paradigm, which can only measure conscious access.

      We thank reviewer for this comment. We have withdrawn this sentence from the revised manuscript.

      Task design: A very similar task was used previously by Schröder et al. (2021) J Neurosci. See specifically, their Figure 1, and Figure 4B-C. Using almost the exact same "matching task", the authors of this previous study show that they get a P3b for both the perceived and not-perceived conditions, confirming that post-perceptual cognition/report confounds were not eliminated, but instead were present in (and balanced between) both the perceived/not-perceived trials due to the delayed matching aspect of the design. This previous paper should be cited and the P3b result should be considered when assessing whether cognition/report confounds were addressed in the current study.

      Thank you very much for your reminding about the study of Schröder et al. We are sorry for not citing this closely related study in our previous manuscript. Schröder et al. found while P3b showed significant difference between perceived and not-perceived trials in direct report task, the P3b was presented in both perceived/not-perceived trials and not significantly different in the matched task. Based on these findings, Schröder et al. argued that P3b represented the task specific post-perceptual cognition/report rather than the emergence of awareness per se. Considering the similarity of tasks between Schröder et al. and ours, we agree that our task is not able to totally eliminate the confound of post-perceptual cognition/report related activity with awareness related activity. Nevertheless, our task is able to minimize the confound of motorrelated activity with the emergence of awareness by separating them in time and balancing the direction of responsive movements. Therefore, we modified the term of “report-related” to “motor-related” in the text of revised manuscript.

      On page 2, lines 71-75, the authors' review of the Frassle et al. (2014) experiment should be revised for accuracy. In this study, all PFC activity did not disappear as the authors claim. Also, the main contrast in the Frassle et al. study was rivalry vs. replay. However, in both of these conditions, visual awareness was changing with the main difference being whether there was sensory conflict between the two eyes or not. Such a contrast would presumably subtract out the common activity patterns related to visual awareness changes, while isolating rivalry (and the resulting neural competition) vs. non-rivalry (and the lack of such competition) which is not broadly relevant for the goal of measuring neural correlates of visual awareness which are present in both sides of the contrast (rivalry and replay).

      Thank you very much for your suggestion. We agree that and revised in the MS (lines 71-76).

      ‘For instance, a functional magnetic resonance imaging (fMRI) study employing human binocular rivalry paradigms found that when subjects need to manually report the changing of their awareness between conflict visual stimuli, the frontal, parietal, and occipital lobes all exhibited awareness-related activity. However, when report was not required, awareness-related activation was largely diminished in the frontal lobe but remained in the occipital and parietal lobes’

      On page 2, lines 76-78, the authors write, "no-report paradigm may overestimate unconscious processing because it cannot directly measure the awareness state". This should be reworded for clarity, as report paradigms also do not "directly measure the awareness state". All measures of awareness are indirect, either via subjects verbal or manual reports, or via behaviors or other physiological measures like OKN, pupillometry, etc. It's also not clear as written why no-report paradigms might overestimate unconscious processing.

      Thank you very much for your suggestion. We agreed and modified the description. In lines 76-80:

      ‘Nevertheless, the no-report paradigm may overestimate the neural correlates of awareness by including unconscious processing, because it infers the awareness state through other relevant physiological indicators, such as optokinetic nystagmus and pupil size(Tsuchiya, Wilke, Frassle, & Lamme, 2015). In the absence of subjective reports, it remains controversial regarding whether the presented stimuli are truly seen or not.’

      However, the no-report paradigm may overestimate the neural correlates of awareness, because it infers the awareness state through other relevant physiological indicators, such as optokinetic nystagmus and pupil size(Tsuchiya et al., 2015) , in the absence of subjective reports and it remains controversial that whether the stimuli presented in such paradigm are truly seen as opposed to being merely potentially visible but unattended.

      On page 5, line 155, there is a typo. This should be Figure 2C, not 2B.

      Thanks. We have modified the description.

      On page 5, lines 160-162, the authors state, "The results showed that the saccadic reaction time in the aware trials was systematically shorter than that in the unaware trials. Such results demonstrate that visual awareness significantly affects the speed of information processing in the brain." I don't understand this. If subjects can never make a saccade until the fixation cross changes color, both for Y and N decisions, why would a difference in saccadic reaction times indicate anything about visual awareness affecting the speed of information processing in the brain? Doesn't this just show that the Red/Green x Left/Right response contingencies were easier to remember and execute for the Yes-I-did-see-it decisions compared to the No-I-didn't-see-it decisions?

      We agree and have made additional discussion about these questions in the revised manuscript (lines 492-496).

      ‘An alternative interpretation for RT difference between aware and unaware condition in our study is that the difference in task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory).’

      In Figure 3B (and several other figures) due to the chosen view and particular brain visualization used, many readers will not know whether the front of brain is up and back of brain down or vise versa (there are no obvious landmarks like the cerebellum, temporal sulcus, etc.). I suggest specifying this in the caption or better yet on the figure itself.

      Thanks. We have added these descriptions in the caption of Figure 2D.

      Line 189 ‘In all brain images, right and up sides of each image represent the right and up sides of the brain’.

      In Figure 3B, the color scale may confuse some readers. When I first inspected this figure, I immediately thought the red meant positive voltage or activation, while the blue meant negative voltage or deactivation. Only later, I realized that any color here is meaningful. Not sure if an adjustment of the color scale might help, or perhaps not normalizing (and not taking absolute values of the voltage diffs, but maintaining the +/- diffs)?

      Thanks for reviewer’s comment. We are sorry for not clearly describing the reason why we normalized the activity in absolute value and chose the color scale from 0 to 20. The major reason is that it is not clearly understood so far regarding the biological characteristics of LFP polarity (Einevoll et al, Nat Rev Neurosci, 2013). To simplify such complex issue, we consider the change in magnitude of LFP during delay period in our task represents awareness related activity, regardless its actual value being positive or negative. Therefore, we first calculated the absolute value of activity difference between aware and unaware trials in individual recording site, then used Shepard's method (see Method for detailed information) to calculate the activity in each vertex and projected on the surface of brain template as shown in Fig. 3B.

      We have added the description in the MS (lines 794-800).

      We have tried to adjust the color scale from -20 to 20 according to reviewer’s suggestion. However, the topographic heatmap showed less distinguishable between brain regions with different strength of awareness related activity. Thus, we would like to keep the way as we used to analyze and present these results.

      Figure 3B: Why choose seemingly arbitrary time points in this figure? What's the significance of 247 and 314 and 381ms (why not show 200, 250, 300, etc.)? Also, are these single time-points or averages within a broader time window around this time-point, e.g., 225-275ms for the 250ms plot?

      Thank reviewer for this helpful comment. We are sorry for not clearly describing why we chose the 8 time points to demonstrate the spatiotemporal characteristics of awareness related activity in Fig. 3B. To identify the awareness related activity, we analyzed the activity difference between aware and unaware trials during delay period (180-650 ms after visual stimulus onset). The whole dynamic process has been presented in SI with a video (video S1). Here, we just sampled the activity at 8 time points (180 ms, 247 ms, 314 ms, etc.) that equally divided the 430 ms delay period.

      We have added the description in the MS (lines 213-215).

      Figure 3D: It's not clear how this figure panel is related to the data shown in Fig3A. In Fig3A, the positive amplitude diffs all end at around 400ms, but in Fig3D, these diffs extend out to 600+ms. I suggest adding clarity about the conversion being used here.

      Thanks for reviewer’s comment. We are sorry for not clearly describing the way to analyze the population activity (Fig. 3D) in the previous version of manuscript. Since it is not clearly understood so far regarding the biological characteristics of LFP polarity, to simplify such complex issue, we consider the change in magnitude of LFP during delay period in our task is awareness related activity, regardless its actual value being positive or negative. Therefore, while analyzing the awareness related population activity, we first calculate the absolute value of activity difference between aware and unaware trials in individual recording site, then pool the data of 43 recording sites together and calculate the mean and standard error of mean (SEM)(Fig. 3D). As you can see in Fig. 3A, the activity difference between aware (red) and unaware (blue) trials lasts until/after the end of delay period. Thus, the awareness related population activity in Fig 3D extends out to 600 ms.

      We have added the description in the MS (lines 769-777).

      Figure 6D could be improved by making the time labels much bigger, perhaps putting them on the time axis on the bottom rather than in tiny text above each brain.

      Thanks for reviewer’s comment. We have modified it accordingly.

      Page 18, line 480: "our results show that the prefrontal cortex still displays visual awareness-related activities even after eliminating the influence of the confounding variables related to subjective reports such as motion preparation" This is too strong of a statement. It's not at all clear whether confounding variables related to subjective reports (especially the cognition needed to hold in mind the Y/N decision about seeing the stimulus prior to the response cue) were eliminated with the design used here. In other places of the manuscript, the authors use "minimized" which is more accurate.

      Thanks for reviewer’s comment. We have modified it accordingly.

      Page 19, section starting on line 508: The authors should consider citing the study by Vishne et al. (2023), which was just accepted for publication recently, but has been posted on bioRxiv for almost a year now: https://www.biorxiv.org/content/10.1101/2022.08.02.502469v1 . And on page 20, line 563, the authors claim that to the best of their knowledge, they were the first to detect "ignition" in PFC in human subjects. Consider revising this statement, now that you know about the Vishne et al. paper.

      We agree.

      Thanks for your reminding about these papers. We have cited this study and made discussion in the revised manuscript (line 522-533). We agree that several iEEG studies have shown the early involvement of PFC in visual perception (Vishne et al. 2023; Khalaf et al. 2023; Kwon et al. 2021). However, in these studies, authors did not compare the neural activity between conscious and unconscious conditions, leaving the possibility that the ERP and HFA were correlated with the unconscious information processing rather than awareness-specific processing. In the present study, we compared the neural activity in PFC between conscious and unconscious trials, and found that the activity of PFC specifically correlated with conscious perception. As we mentioned in the previous version of manuscript, there is one iEEG study (Gaillard et al. 2009) that reported awareness-specific activity in PFC. However, the awareness related activity started more than 300 ms after the onset of visual stimuli, which was about 100 ms longer than the early awareness related activity in our study. Nevertheless, according to reviewer’s comment, we modified our argument as following in lines 621-623:

      ‘However, as discussed above, in contrast with previous studies, our study detected earlier awareness-specific ‘ignition’ in the human PFC, while minimizing the motor-related confounding.’

      Experimental task section of Methods: Were any strategies for learning the response cue matching task suggested to patients/subjects, and/or did any patients/subjects report which strategy they ended up using? For example, if I were a subject in this experiment, I would remember and mentally rehearse the rules: "YES+GREEN = RIGHT" and "YES+RED = LEFT". For trials in which I didn't see anything, I wouldn't need to hold 2 more rules in mind, as they can be inferred from the inverse of the YES rules (and it's much harder to hold 4 things in mind than 2). This extra inference needed to get to the NO+GREEN = LEFT and NO+RED = RIGHT rules would likely cause me to respond slightly slower to the NO trials compared to the YES trials, leading to saccadic RT effects in the same direction the authors found. More information about the task training and strategies used by patients/subjects would be helpful.

      We agree and discussed this in lines 492-496.

      Reviewer #3 (Public Review):

      The authors report a study in which they use intracranial recordings to dissociate subjectively aware and subjectively unaware stimuli, focusing mainly on prefrontal cortex. Although this paper reports some interesting findings (the videos are very nice and informative!) the interpretation of the data is unfortunately problematic for several reasons. I will detail my main comments below. If the authors address these comments well, I believe the paper may provide an interesting contribution to further specifying the neural mechanisms important for conscious access (in line with Gaillard et al., Plos Biology 2009).

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      The main problem with the interpretation of the data is that the authors have NOT used a so called "no-report paradigm". The idea of no report paradigms is that subjects passively view a certain stimulus without the instruction to "do something with it", e.g., detect the stimulus, immediately or later in time. Because of the confusion of this term, specifically being related to the "act of reporting", some have argued we should use the term no-cognition paradigm instead (Block, TiCS, 2019, see also Pitts et al., Phil Trans B 2018). The crucial aspect is that, in these types of paradigms, the critical stimulus should be task-irrelevant and thus not be associated with any task (immediately or later). Because in this experiment subjects were instructed to detect the gratings when cued 600 ms later in time, the stimuli are task relevant, they have to be reported about later and therefore trigger all kinds of (known and potentially unknown) cognitive processes at the moment the stimuli are detected in real-time (so stimulus-locked). You could argue that the setup of this delayed response task excludes some very specific report related processes (e.g., the preparation of an eye-movement), which is good, however this is usually not considered the main issue. For example when comparing masked versus unmasked stimuli (Gaillard et al., 2009 Plos Biology), these conditions usually also both contain responses but these response related processes are "averaged out" in the specific contrasts (unmasked > masked). In this paper, RT differences between conditions (that are present in this dataset) are taken care of by using this delayed response in this paper, which is a nice feature for that and is not the case for the above example set-up.

      Given the task instructions, and this being merely a delayed-response task, it is to be expected that prefrontal cortex shows stronger activity for subjectively aware versus subjectively unaware stimuli. Unfortunately, given the nature of this task, the novelty of the findings is severely reduced. The authors cannot claim that prefrontal cortex is associated with "visual awareness", or what people have called phenomenal consciousness (this is the goal of using no-cognition paradigms). The only conclusion that can be drawn is that prefrontal cortex activity is associated with accessing sensory input: and hence conscious access. This less novel observation has been shown many times before and there is also little disagreement about this issue between different theories of consciousness (e.g., global workspace theory and local recurrency theories both agree on this).

      We totally agree that the no-report/no-cognition paradigms contain less cognition within the post-perceptual processing than the report paradigms. We designed the balanced response task in order to minimize the motor related component from post-perceptual processing, even though this task does not eliminate the entire cognition from post-perceptual processing. Regarding reviewer’s comment that our task is not able to assess the involvement of PFC in the emergence of awareness, we have different opinion. As we mentioned in the manuscript, the findings of early awareness related activity (~200 ms) in PFC, which resemble the VAN activity in EEG studies, indicate the association of PFC with the emergence of visual awareness (phenomenal consciousness).

      The best solution at this point seems to rewrite the paper entirely in light of this. My advice would be to state in the introduction that the authors investigate conscious access using iEEG and then not refer too much to no-cognition paradigm or maybe highlight some different strategies about using task-irrelevant stimuli (see Canales-Johnson et al., Plos Biology 2023; Hesse et al., eLife 2020; Hatamimajoumerd et al Curr Bio 2022; Alilovic et al., Plos Biology 2023; Pitts et al., Frontiers 2014; Dwarakanth et al., Neuron 2023 and more). Obviously, the authors should then also not claim that their results solve debates about theories regarding visual awareness (in the "no-cognition" sense, or phenomenal consciousness), for example in relation to the debate about the "front or the back of the brain", because the data do not inform that discussion. Basically, the authors can just discuss their results in detail (related to timing, frequency, synchronization etc) and relate the different signatures that they have observed to conscious access.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness (i.e., phenomenal consciousness). Interestingly, we found the early awareness related activity (~200 ms after visual stimulus onset), including ERP, high gamma activity and phase synchronization, in PFC, which indicate the association of PFC with the emergence of visual awareness. Therefore, we would like to keep the basic context of manuscript and make revision according to reviewers’ comments.

      On the other hand, we totally agree reviewer’s argument that the report paradigm is more suitable to study the access consciousness. Indeed, we have found that the awareness related activity in PFC could be separated into two subgroups, i.e., early activity with shorter latency (~200 ms after stimulus onset) and late activity with longer latency (> 350 ms after stimulus onset). In addition, the early activity was declined to the baseline level within ~200 ms during delay period, whereas the late activity lasted throughout the delay period and reached to the next stage of task (change color of the fixation point). Moreover, the early activity occurs primarily within the contralateral PFC of the visual stimulus, whereas the late activity occurs within both contralateral and ipsilateral PFC. While the early awareness related activity resembles the VAN activity in EEG studies (associating with p-consciousness), the late awareness related activity resembles the P3b activity (associating with a-consciousness). We are going to report these results in a separated paper soon.

      I think the authors have to discuss the Gaillard et al PLOS Biology 2009 paper in much more detail. Gaillard et al also report a study related to conscious access contrasting unmasked and masked stimuli using iEEG. In this paper they also report ERP, time frequency and phase synchronization results (and even Granger causality). Because of the similarities in approach, I think it would be important to directly compare the results presented in that paper with results presented here and highlight the commonalities and discrepancies in the Discussion.

      Thanks for reviewer’s comment. We have made additional analysis and detailed discussion accordingly. In addition, we also extended discussion with other relevant studies in the revised manuscript.

      In lines 528-549,

      ‘Although one iEEG study reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early activity in our study. Also, due to the limited number of electrodes in PFC (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), their experiments were restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered more areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV. These awareness-related activity in PFC occurred even earlier (~150 ms after stimulus onset) for the salient stimulus trials (Fig. 3A\D and Fig. 4A\D, HA condition).

      However, the proportions are much smaller than that reported by Gaillard et al, which peaked at ~60%. We think that one possibility for the difference may be due to the more sampled PFC subregions in present study and the uneven distribution of awareness-related activity in PFC. Meanwhile, we noticed that the peri-insula regions and middle frontal gyrus (MFG), which were similar with the regions reported by Gaillard et al, seemed to show more fraction of awarenessrelated sites than other subregions during the delay period (0-650 ms after stimulus onset). To test such possibility and make comparison with the study of Gaillard et al. we calculated the proportion of awareness-related site in peri-insula and MFG regions. We found although the proportion of awareness-related site was larger in peri-insula and MFG than in other subregions, it was much lower than the report of Gaillard et al. One alternative possibility for the difference between these two studies might be due to the more complex task in Gaillard et al. Nevertheless, we think these new results would contribute to our understanding of the neural mechanism underlying conscious perception, especially for the role of PFC.’ In lines 601-603:

      ‘The only human iEEG study reported that the phase synchronization of the beta band in the aware condition also occurred relatively late (> 300 ms) and mainly confined to posterior zones but not PFC.’

      As for the Granger Causality analysis between PFC and occipital lobe, while the aim of this study focused mainly on PFC and there were few recoding sites in occipital lobe, we would like to do this analysis in later studies after we collect more data.

      In the Gaillard paper they report a figure plotting the percentage of significant frontal electrodes across time (figure 4A) in which it can be seen that significant electrodes emerge after approximately 250 ms in PFC as well. It would be great if the authors could make a similar figure to compare results. In the current paper there are much more frontal electrode contacts than in the Gaillard paper, so that is interesting in itself.

      Thanks reviewer for this constructive comment. We made similar analysis as Gaillard et al. and plotted the results in the figure bellow. As you can see, the awareness related sites started to emerge about 200 ms after visual stimulus onset according to both ERP and HG activity. The proportion of awareness related sites reached peak at ~14% (8% for HG) in 300-400ms. However, the proportions are much smaller than that reported by Gaillard et al, which peaked at ~60%. We think that one possibility for the difference may be due to the more sampled PFC subregions in present study and the uneven distribution of awareness-related activity in PFC. Meanwhile, we noticed that the peri-insula regions and middle frontal gyrus (MFG), which were similar with the regions reported by Gaillard et al, seemed to show more fraction of awareness-related sites than other subregions during the delay period (0-650 ms after stimulus onset). To test such possibility and make comparison with the study of Gaillard et al. we calculated the proportion of awareness-related site in peri-insula and MFG regions. We found although the proportion of awareness-related site was larger in peri-insula and MFG than in other subregions, it was much lower than the report of Gaillard et al. One alternative possibility for the difference between these two studies might be due to the more complex task in Gaillard et al.

      We have added this figure and discussion to the revised manuscript as a new result (Figure 4E & S2 and lines 537-549).

      Author response image 1.

      Percentage of awareness-related sites in ERP and HG analysis. n, number of recording sites in PFC.

      Author response image 2.

      Percentage of awareness-related sites in ERP and HG analysis at parsopercularis and middle frontal gyrus (MFG). n, number of recording sites.

      In my opinion, some of the most interesting results are not highlighted: the findings that subjectively unaware stimuli show increased activations in the prefrontal cortex as compared to stimulus absent trials (e.g., Figure 4D). Previous work has shown PFC activations to masked stimuli (e.g., van Gaal et al., J Neuroscience 2008, 2010; Lau and Passigngham J Neurosci 2007) as well as PFC activations to subjectively unaware stimuli (e.g., King, Pescetelli, and Dehaene, Neuron 2016) and this is a very nice illustration of that with methods having more detailed spatial precision. Although potentially interesting, I wonder about the objective detection performance of the stimuli in this task. So please report objective detection performance for the patients and the healthy subjects, using signal detection theoretic d'. This gives the reader an idea of how good subjects were in detecting the presence/absence of the gratings. Likely, this reveals far above chance detection performance and in that case I would interpret these findings as "PFC activation to stimuli indicated as subjectively unaware" and not unconscious stimuli. See Stein et al., Plos Biology 2021 for a direct comparison of subjectively and objectively unaware stimuli.

      We gratefully appreciate for reviewer’s helpful and valuable comments. We do notice that the activity of PFC in subjectively unawareness condition (stimulus contrast near perceptual threshold) is significantly higher than stimulus absent condition. Such results, by using sEEG recordings with much higher spatial resolution than brain imaging and scalp EEG, support findings of previous studies (citations). Considering the question of neural correlation of unawareness processing is a hot and interesting topic, after carefully considering, we would like to report these results in a separate paper, rather than add these results in the current manuscript in order to avoid the distraction.

      According to reviewer’s comment about the objective detection performance of the stimuli in our task, we analyzed the signal detection theoretic d’. The values of d’ in patients and healthy subjects are similar (1.81±0.27 in patients and 2.12±0.37 in healthy subjects). Such results indicate that the objective detection performance of subjects in our task is well above the chance level. Since our task merely measures the subjective awareness, we agree reviewer’s comment about the interpretation of our results as “PFC activation to stimuli indicated the subjective unawareness rather than objective unawareness”. We will emphasize this point in our next paper.

      We have added the d prime in the MS (lines149-150).

      In Figure 7 of the paper the authors want to make the case that the contrast does not differ between subjectively aware stimuli and subjectively unaware stimuli. However so far they've done the majority of their analyses across subjects, and for this analysis the authors only performed within-subject tests, which is not a fair comparison imo. Because several P values are very close to significance I anticipate that a test across subjects will clearly show that the contrast level of the subjectively aware stimuli is higher than of the subjectively unaware stimuli, at the group level. A solution to this would be to sub-select trials from one condition (NA) to match the contrast of the other condition (NU), and thereby create two conditions that are matched in contrast levels of the stimuli included. Then do all the analyses on the matched conditions.

      Thank reviewer for the helpful comment. Regarding reviewer’s comment “However so far they've done the majority of their analyses across subjects, and for this analysis the authors only performed within-subject tests, which is not a fair comparison imo”, if we understand correctly, reviewer considered that it was fair if the analysis of neural activity in PFC was done across subjects but the stimulus contrast analysis between NA and NU was done individually. Actually, it is not the case. In neural activity analysis, the significant awareness-related sites were identified firstly in each individual subject (Fig. 3A and Fig 4A, and Methods), same as the analysis of stimulus contrast (see Methods). Only in the neural population activity analysis, the activity of awareness-related sites was pooled together and made further analysis.

      To further evidence the awareness related activity in PFC is not highly correlated with stimulus contrast, we compared the activity difference between two different stimulus contrast conditions, i.e., stimulus contrast difference between high-contrast aware (HA) and NA conditions (large difference, ~14%), and between NA and NU conditions (slight difference, ~0.2%). The working hypothesis is that, if PFC activity is closely correlated with the contrast of stimulus contrast, we expect to see the activity difference between HA and NA conditions is much larger than that between NA and NU conditions. To test this hypothesis, we analyzed data of two patients in which the previous analysis showed significant or near significant difference of stimulus contrast between NA and NU conditions (Author response image 1, below, patient #2 and 1). The results (Author response image 1) show that the averaged activity difference (0-650 ms after visual stimulus onset) between HA and NA was similar as the averaged activity difference between NA and NU trials, even though the stimulus contrast difference was much larger between HA and NA conditions than between NA and NU conditions. Such results indicate that the awareness-related activity in PFC cannot be solely explained by the contrast difference between NA and NU conditions. Based on these results, we think that it is not necessary to perform the analysis as reviewer’s comment “A solution to this would be to sub-select trials from one condition (NA) to match the contrast of the other condition (NU), and thereby create two conditions that are matched in contrast levels of the stimuli included. Then do all the analyses on the matched conditions”. Another reason that impedes us to do this analysis is due to the limited trial numbers in our dataset.

      Author response image 3.

      Relationship between stimulus contract and PFC activity. X axis represents the stimulus contrast difference between two paired conditions, i.e., aware versus unaware in near perceptual threshold conditions (NA – NU, red dots); aware in high contrast condition versus aware in near perceptual threshold condition (HA – NA, blue dots). Y axis represents the activity difference between paired stimulus conditions. The results show that activity difference is similar between two paired conditions regardless the remarkable contrast difference between two paired conditions. Such results indicate that the greater activity in NA trials than in NU trials (Fig. xx-xx) could not be interpreted by the slight difference in stimulus contrast between NA and NU trials.

      Related, Figure 7B is confusing and the results are puzzling. Why is there such a strong below chance decoding on the diagonal? (also even before stimulus onset) Please clarify the goal and approach of this analysis and also discuss/explain better what they mean.

      We have withdrawn Figure7B for the confusing decoding results on the diagonal.

      I was somewhat surprised by several statements in the paper and it felt that the authors may not be aware of several intricacies in the field of consciousness. For example, a statement like the following "Consciousness, as a high-level cognitive function of the brain, should have some similar effects as other cognitive functions on behavior (for example, saccadic reaction time). With this question in mind, we carefully searched the literature about the relationship between consciousness and behavior; surprisingly, we failed to find any relevant literature." This is rather problematic for at least two reasons. First, not everyone would agree that consciousness is a highlevel cognitive function and second there are many papers arguing for a certain relationship between consciousness and behavior (Dehaene and Naccache, 2001 Cognition; van Gaal et al., 2012, Frontiers in Neuroscience; Block 1995, BBS; Lamme, Frontiers in Psychology, 2020; Seth, 2008 and many more). Further, the explanation for the reaction time differences in this specific case is likely related to the fact that subjects' confidence in that decision is much higher in the aware trials than in the unaware trials, hence the speeded response for the first. This is a phenomenon that is often observed if one explores the "confidence literature". Although the authors have not measured confidence I would not make too much out of this RT difference.

      We agree that and modified accordingly in lines 492-507.

      ‘An alternative interpretation for RT difference between aware and unaware condition in our study, i.e., reflecting task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory).

      Another possibility is that the reaction time is strongly modulated by the confident level, which has been described in previous studies(Broggin et al., 2012; Marzi et al., 2006). However, in previous studies, the confident levels were usually induced by presenting stimulus with different physical property, such as spatial frequency, eccentricity and contrast. However, the dependence of visual process on the salience of visual stimulus confounds with the effect of visual awareness on the reaction time of responsive movements, which is hard to attribute the shorter reaction time in more salient condition purely to visual awareness. In contrast, we create a condition (near aware threshold) in the present study, in which the saliency (contrast) of visual stimulus is very similar in both aware and unaware conditions in order to eliminate the influence of stimulus saliency in reaction time. We think that the difference in reaction time in our study is mainly due to the modulation of awareness state, which was not reported previously.’

      I would be interested in a lateralized analysis, in which the authors compare the PFC responses and connectivity profiles using PLV as a factor of stimulus location (thus comparing electrodes contralateral to the presented stimulus and electrodes ipsilateral to the presented stimulus). If possible this may give interesting insights in the mechanism of global ignition (global broadcasting), supposing that for contralateral electrodes information does not have to cross from one hemisphere to another, whereas for ipsilateral electrodes that is the case (which may take time). Gaillard et al refer to this issue as well in their paper, and this issue is sometimes discussed regarding to Global workspace theory. This would add novelty to the findings of the paper in my opinion.

      We gratefully appreciate reviewer’s helpful and available suggestions. We have made the analysis accordingly. We find that the awareness-related ERP activation in PFC occurs earlier only in the contralateral PFC with latency about 200 ms and then occurs in both contralateral and ipsilateral PFC about 100 ms later. In addition, the magnitude of awareness-related activity is stronger in the contralateral PFC than in ipsilateral PFC during the early phase (200-400 ms), then the activity becomes similar between contralateral and ipsilateral PFC. Moreover, the awareness related HG activity only appears in the contralateral PFC. Such results show the spatiotemporal characteristics of visual awareness related activity between two hemispheres. We are going to report these results in a separate paper soon.

      Reviewer #3 (Recommendations For The Authors):

      Some of the font sizes in the figures are too small.

      We have modified accordingly.

      To me, the abbreviations are confusing, (NA/NU etc). I would try to come up with easier ones or just not use abbreviations.

      We have modified accordingly and try to avoid to use the abbreviations.

      The data/scripts availability statement states "available upon reasonable request". I would suggest that the authors make the data openly available when possible, and I believe eLife requires that as well.

      Thanks for reviewer’s suggestions. Due to several ongoing studies based on this dataset, we would like to open our data after complete these studies if there is no restriction from national policy.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Goetz et al. takes a new perspective on sensory information processing in cells. In contrast to previous studies, which have used population data to build a response distribution and which estimate sensory information at about 1 bit, this work defines sensory information at the single cell level. To do so, the authors take two approaches. First, they estimate single cells' response distributions to various input levels from time-series data directly. Second, they infer these single-cell response distributions from the population data by assuming a biochemical model and extracting the cells' parameters with a maximum-entropy approach. In either case, they find, for two experimental examples, that single-cell sensory information is much higher than 1 bit, and that the reduction to 1 bit at the population level is due to the fact that cells' response functions are so different from each other. Finally, the authors identify examples of measurable cell properties that do or do not correlate with single-cell sensory information.

      The work brings an important and distinct new insight to a research direction that generated strong interest about a decade ago: measuring sensory information in cells and understanding why it is so low. The manuscript is clear, the results are compelling, and the conclusions are well supported by the findings. Several contributions should be of interest to the quantitative biology community (e.g., the demonstration that single cells' sensory information is considerably larger than previously implied, and the approach of inferring single-cell data from population data with the help of a model and a maximum-entropy assumption).

      We thank the reviewer for the excellent summary of our research.

      Reviewer #2 (Public Review):

      In this paper the authors present an existing information theoretic framework to assess the ability of single cells to encode external signals sensed through membrane receptors.

      The main point is to distinguish actual noise in the signaling pathway from cell-cell variability, which could be due to differences in their phenotypic state, and to formalize this difference using information theory.

      After correcting for this cellular variability, the authors find that cells may encode more information than one would estimate from ignoring it, which is expected. The authors show this using simple models of different complexities, and also by analyzing an imaging dataset of the IGF/FoxO pathway.

      The implications of the work are limited because the analysed data is not rich enough to draw clear conclusions. Specifically,

      • the authors do not distinguish what could be methodological noise inherent to microscopy techniques (segmentation etc), and actual intrinsic cell state. It's not clear that cell-cell variability in the analyzed dataset is not just a constant offset or normalization factor. Other authors (e.g. Gregor et al Cell 130, 153-164) have re-centered and re-normalized their data before further analysis, which is more or less equivalent to the idea of the conditional information in the sense that it aims to correct for this experimental noise.

      We thank the reviewer for the comment. However, we do not believe our analysis is a consequence of normalization artifacts. Prior to modeling the single cell data, we removed well-dependent background fluorescence. This should take care of technical variation related to overall offsets in the data. We agree with the reviewer that background subtraction may not fully account for technical variability. For example, some of the cell-to-cell variability may potentially be ascribed to issues such as incorrect segmentation. Unfortunately, however, attempting to remove this technical variability through cell-specific normalization as suggested by the reviewer1 will diminish to a very large extent the true biological effects related to extensivity (cell size, total protein abundance). We note that these effects are a direct function of cell state-variables (see for example Cohen-Saidon et al.2 who use cell-state specific normalization to improve signaling fidelity). Therefore, an increase in mutual information after normalization does not only reflect removal of technical noise but also accounts for effect of cell state variables.

      Nonetheless, as the reviewer suggested, we performed a cell-specific normalization wherein the mean nuclear FoxO levels in each cell (in the absence of IGF) were normalized to one. Then, for each ligand concentration, we collated FoxO response across all cells and computed the channel capacity corresponding to cell-state agnostic mutual information ICSA. As expected, ICSA increases from ∼0.9 bits to ∼1.3 bits when cell-specific normalization was performed (Author response image 1). However, this value is significantly lower than the average ∼1.95 of cell-state specific mutual information ⟨ICee⟩. Finally, we note that the cell specific normalization does not change the calculations of channel capacity at the single cell level as these calculations do not depend on linear transformations of the data (centering and normalization). Therefore, we do not think that our analysis of experimental data suffers from artifacts related to microscopy.

      Author response image 1.

      Author response image 1. Left: nuclear FoxO response averaged over all cells in the population across different ligand concentration. Right: nuclear FoxO response was first normalized at the single cell level and then averaged over all cells in the population across different ligand concentrations.

      • in the experiment, each condition is shown only once and sequentially. This means that the reproducibility of the response upon repeated exposures in a single cell was not tested, casting doubt on the estimate of the response fidelity (estimated as the variance over time in a single response).

      The reviewer raises an excellent question about persistence of cell states. To verify that cell states are indeed conserved at the time scale of the experiment, we reanalyzed data generated by Gross et al.3 wherein cells were perturbed with IGF (37.5 pM), followed by a washout which allowed the cells to reach pre-stimulation nuclear FoxO levels, followed by a re-perturbation with the same amount of IGF. Nuclear FoxO response was measured at the single cell level after 90 minutes with IGF exposure both these times. Since the response x to the same input u was measured twice in the same cell (x1 and x2), we could evaluate the intrinsic variability in response at the single cell level. We then compared this intrinsic variability to the extrinsic cell-state dependent variability in the population.

      To do so, we computed for each cell δ=x1-x2 the difference between the two responses. reviewer Figure 2 show the histogram p(δ) as computed from the data (pink) and the same computed from the model that was trained on the single cell data (blue). We also computed p(δ0) which represented the difference between responses of two different cells both from the data and from the model.

      As we see in Author response image 2, the distribution p(δ) is significantly narrower than p(δ0) suggesting that intracellular variability is significantly smaller than across-population variability and that cells’ response to the same stimuli are quite conserved, especially when compared to responses in randomly picked pairs of cells. This shows that cell states and the corresponding response to extracellular perturbations are conserved, at least at the time scale of the experiment. Therefore, our estimates of cell-to-cell variability signaling fidelity are stable and reliable. We have now incorporated this discussion in the manuscript (lines 275-281).

      Author response image 2.

      Author response image 2. Left: Cells were treated with 37.5 pM of IGF for 90 minutes, washed out for 120 minutes and again treated with 37.5 pM of IGF. Nuclear FoxO was measured during the treatment and the washout. The distributions on the left show the difference in FoxO levels in single cells after the two 90 minutes IGF stimulations (pink: data, blue: model). Right: Distribution of difference in FoxO levels in two randomly picked cells after 90 minutes of exposure to 37.5 pM IGF.

      • another dataset on the EGF/EGFR pathway is analyzed, but no conclusion can be drawn from it because single-cell information cannot be directly estimated from it. The authors instead use a maximum-entropy Ansatz, which cannot be validated for lack of data.

      We thank the reviewer for this comment. We agree with the reviewer that we have not verified our predictions for the EGF/EGFR pathway. That study was meant to show the potential generality of our analysis. We look forward to validating our predictions for the EGF/EGFR pathway in future studies.

      Reviewer #3 (Public Review):

      Goetz, Akl and Dixit investigated the heterogeneity in the fidelity of sensing the environment by individual cells in a population using computational modeling and analysis of experimental data for two important and well-studied mammalian signaling pathways: (insulin-like growth factor) IGF/FoxO and (epidermal growth factor) EFG/EFGR mammalian pathways. They quantified this heterogeneity using the conditional mutual information between the input (eg. level of IGF) and output (eg. level of FoxO in the nucleus), conditioned on the "state" variables which characterize the signaling pathway (such as abundances of key proteins, reaction rates, etc.) First, using a toy stochastic model of a receptor-ligand system - which constitutes the first step of both signaling pathways - they constructed the population average of the mutual information conditioned on the number of receptors and maximized over the input distribution and showed that it is always greater than or equal to the usual or "cell state agnostic" channel capacity. They constructed the probability distribution of cell state dependent mutual information for the two pathways, demonstrating agreement with experimental data in the case of the IGF/FoxO pathway using previously published data. Finally, for the IGF/FoxO pathway, they found the joint distribution of the cell state dependent mutual information and two experimentally accessible state variables: the response range of FoxO and total nuclear FoxO level prior to IGF stimulation. In both cases, the data approximately follow the contour lines of the joint distribution. Interestingly, high nuclear FoxO levels, and therefore lower associated noise in the number of output readout molecules, is not correlated with higher cell state dependent mutual information, as one might expect. This paper contributes to the vibrant body of work on information theoretic characterization of biochemical signaling pathways, using the distribution of cell state dependent mutual information as a metric to highlight the importance of heterogeneity in cell populations. The authors suggest that this metric can be used to infer "bottlenecks" in information transfer in signaling networks, where certain cell state variables have a lower joint distribution with the cell state dependent mutual information.

      The utility of a metric based on the conditional mutual information to quantify fidelity of sensing and its heterogeneity (distribution) in a cell population is supported in the comparison with data. Some aspects of the analysis and claims in the main body of the paper and SI need to be clarified and extended.

      1. The authors use their previously published (Ref. 32) maximum-entropy based method to extract the probability distribution of cell state variables, which is needed to construct their main result, namely p_CeeMI (I). The salient features of their method, and how it compares with other similar methods of parameter inference should be summarized in the section with this title. In SI 3.3, the Lagrangian, L, and Rm should be defined.

      We thank the reviewer for the comment and apologize for the omission. We have now rewritten the manuscript to include references to previous reviews of works that infer probability distributions4 of cell state variables (lines 156-168). Notably, as we argued in our previous work5, no current method can efficiently estimate the joint distribution over parameters that is consistent with measured single cell data and models of signaling networks. Therefore, we could not use multiple approaches to infer parameter distributions. We have now expanded our discussion of the method in the supplementary information sections.

      1. Throughout the text, the authors refer to "low" and "high" values of the channel capacity. For example, a value of 1-1.5 bits is claimed to be "low". The authors need to clarify the context in which this value is low: In some physically realistic cases, the signaling network may need to simply distinguish between the present or absence of a ligand, in which case this value would not be low.

      We agree with the reviewer that small values of channel capacities might be sufficient for cells to carry out some tasks, in which case a low channel capacity does not necessarily indicate a network not performing its task. Indeed, how much information is needed for a specific task is a related but distinct question from how much information is provided though a signaling network. Both questions are essential to understand a cell's signaling behavior, with the former being far less easy to answer in a way which is generalizable. In contrast, the latter can be quantitatively answered using the analysis presented in our manuscript.

      1. Related to (2), the authors should comment on why in Fig. 3A, I_Cee=3. Importantly, where does the fact that the network is able to distinguish between 23 ligand levels come from? Is this related to the choice (and binning) of the input ligand distribution (described in the SI)?

      We thank the reviewer for the comment. The network can distinguish between all inputs used in the in silico experiment precisely because the noise at the cellular level is small enough that there is negligible overlap between single cell response distributions. Indeed, the mutual information will not increase with the number of equally spaced inputs in a sub-linear manner, especially when the input number is very high.

      1. The authors should justify the choice of the gamma distribution in a number of cases (eg. distribution of ligand, distribution cell state parameters, such as number of receptors, receptor degradation rate, etc.).

      We thank the reviewer for the comment. We note that previous works in protein abundances and gene expression levels (e.g. see6) have reported distributions with positive skews that can be fit well with gamma distributions or log-normal distributions. Moreover, many stochastic models of protein abundance levels and signaling networks are also known to result in abundances that are distributed according to a negative binomial distribution, the discrete counterpart of gamma distribution. Therefore, we chose Gamma distributions in our study. We have now clarified this point in the Supplementary Information. At the same time, gamma distribution only serves as a regularization for the finite data and in principle, our analysis and conclusion do not depend on choice of gamma distribution for abundances of proteins, ligands, and cell parameters.

      1. Referring to SI Section 2, it is stated that the probability of the response (receptor binding occupancy) conditioned on the input ligand concentration and number of receptors is a Poisson distribution. Indeed this is nicely demonstrated in Fig. S2. Therefore it is the coefficient of variation (std/mean) that decreases with increasing R0, not the noise (which is strictly the standard deviation) as stated in the paper.

      We thank the reviewer of the comment. We have now corrected our text.

      1. In addition to explicitly stating what the input (IGF level) and the output (nuclear GFP-tagged FoxO level) are, it would be helpful if it is also stated what is the vector of state variables, theta, corresponding to the schematic diagram in Fig. 2C.

      We thank the reviewer of the comment. We have now corrected our text in the supplementary material as well as the main text (Figure 2 caption).

      1. Related to Fig. 2C, the statement in the caption: "Phosphorylated Akt leads to phosphorylation of FoxO which effectively shuttles it out of the nucleus." needs clarification: From the figure, it appears that pFoxO does not cross the nuclear membrane, in which case it would be less confusing to say that phosphorylation prevents reentry of FoxO into the nucleus.

      We thank the reviewer of the comment. We have now corrected our text (Figure 2 caption).

      1. The explanations for Fig. 2D, E and insets are sparse and therefore not clear. The authors should expand on what is meant by model and experimental I(theta). What is CC input dose? Also in Fig. 2E, the overlap between the blue and pink histograms means that the value of the blue histogram for the final bin - and therefore agreement or lack thereof with the experimental result - is not visible. Also, the significance of the values 3.25 bits and 3 bits in these plots should be discussed in connection with the input distributions.

      We thank the reviewer of the comment. We have now corrected our text (Figure 2 caption and lines 249-251).

      1. While the joint distribution of the cell state dependent mutual information and various biochemical parameters is given in Fig. S7, there is no explanation of what these results mean, either in the SI or main text. Related to this, while a central claim of the work is that establishing this joint distribution will allow determination of cell state variables that differentiate between high and low fidelity sensing, this claim would be stronger with more discussion of Figs. 3 and S7. The related central claim that cell state dependent mutual information leads to higher fidelity sensing at the population level would be made stronger if it can be demonstrated that in the limit of rapidly varying cell state variables, the I_CSA is retrieved.

      We thank the reviewer for this excellent comment. We have now added more discussion about interpreting the correlation between cell state variables and cell-state specific mutual information (lines 294-306). We also appreciate the suggestion about a toy model calculation to show that dynamics of cell state variables affects cell state specific mutual information. We have now performed a simple calculation to show how dynamics of cell state variables affects cells’ sensing ability (lines 325-363). Specifically, we constructed a model of a receptor binding to the ligand wherein the receptor levels themselves changed over time through a slow process of gene expression (Author response image 3, main text Figure 4). In this model, the timescales of fluctuations of ligand-free receptors on the cell surface can be tuned by speeding up/slowing down the degradation rate of the corresponding mRNA while keeping the total amount of steady state mRNA constant. As shown in Author response image 3, the dependence of cell-specific mutual information on cell state variable diminishes when the time scale of change of cell state variables is fast.

      Author response image 3.

      Author response image 3. Cell state dynamics governs cell state conditioned mutual information. A. In a simple stochastic model, receptor mRNA is produced at a constant rate from the DNA and the translated into ligand-free receptors. The number of ligand-bound receptors after a short exposure to ligands is considered the output. B. A schematic showing dynamics of receptor numbers when mRNA dynamics are slower compared to signaling time scales. C. Conditioning on receptor numbers leads to differing abilities in sensing the environment when the time scale of mRNA dynamics τ is slow. In contrast, when the mRNA dynamics are fast (large τ-1), conditioning on cell state variables does not lead to difference in sensing abilities.

      Reviewer #1 (Recommendations For The Authors):

      My major concerns are mainly conceptual, as described below. With proper attention to these concerns, I feel that this manuscript could be a good candidate for the eLife community.

      Major concerns:

      1. The manuscript convincingly demonstrates that cells good sensors after all, and that heterogeneity makes their input-output functions different from each other. This raises the question of what happens downstream of sensing. For single-celled organisms, where it may be natural to define behavioral consequences at the single-cell level, it may very well be relevant that single-cell information is high, even if cells respond differently to the environment. But for cells in multicellular organisms, like those studied here, I imagine that most behavioral consequences of sensing occur at the multicellular level. Thus, many cells' responses are combined into a larger response. Because their responses are different, their high-information individual responses may combine into a low-information collective response. In fact, one could argue that a decent indicator of the fidelity of this collective response is indeed the population-level information measure estimated in previous works. Thus, a fundamental question that the authors must address is: what is the ultimate utility of reliable, but heterogeneous, responses for a multicellular system? This question has an important bearing for the relevance of their findings.

      We thank the reviewer for this thought-provoking comment. We agree that the fidelity with which cells sense their environment, especially those in multicellular organisms, may not always need to be very high. We speculate that when the biological function of a collection of cells can be expressed as an average over the response of individual cells; high-information but heterogeneous cells can be considered equivalent to low-information homogeneous cells. An example of such a function is population differentiation to maintain relative proportions of different cell types in a tissue or producing a certain amount of extracellular enzyme.

      In contrast, we believe that when the biological function involves collective action, spatial patterning, or temporal memory, the difference between reliable but heterogeneous population and unreliable homogeneous population will become significant. We plan to explore this topic in future studies.

      1. The authors demonstrate that the agreement is good between their inference approach and the direct estimation of response distributions from single-cell time series data. In fact, the agreement is so good that it raises the question of why one would need the inference approach at all. Is it because single-cell time series data is not always available? Is that why the authors used it for one example and not the other? The validation is an asset, but I imagine that the inference approach is complicated and may make assumptions that are not always true. Thus, its utility and appropriate use must be clarified.

      We thank the reviewer for the comment. As the reviewer correctly pointed out, live cell imaging data is not always available and has limited scope. Specifically, optical resolution limits measurements of multiple targets. Moreover, typical live cell measurements measure total abundance or localization and not post-translational modification (phosphorylation, methylation, etc.) which are crucial to signaling dynamics. The most readily available single cell data such those measured using single cell RNA sequencing, immunofluorescence, or flow cytometry are necessarily snapshots. Therefore, computational models that can connect underlying signaling networks to snapshot data become essential when imputing single cell trajectories. In addition, the modeling also allows us to identify network parameters that correlate most strongly with cellular heterogeneity. We have now clarified this point in the manuscript (lines 366-380).

      Minor comments:

      1. I would point out that the maximum values in the single-cell mutual information distributions (Fig 2D and E) correspond to log2 of the number of inputs levels, corresponding to perfect distinguishability of each of the equally-weighted input states. It is clear that many of the mutual information values cluster toward this maximum, and it would help readers to point out why.

      We thank the reviewer for the comment. We have now included a discussion about the skew in the distribution in the text (lines 251-260).

      1. Line 216 references Fig 2C for the EGF/EGFR pathway, but Fig 2C shows the FoxO pathway. In fact, I did not see a schematic of the EGF/EGFR pathway. It may be helpful to include one, and for completeness perhaps also one for the toy model, and organize the figures accordingly.

      We thank the reviewer for the comment. We did not include three separate schematics because the schematics of the EGF/EGFR model and the toy model are subsets of the schematic of the IGF/FoxO model. We have now clarified this point in the manuscript (Figure 2 caption).

      Reviewer #2 (Recommendations For The Authors):

      • the simple model of Fig. 2A would gain from a small cartoon explaining the model and its parameters.

      We thank the reviewer for the comment. We did not include a schematic for the toy model as it is a subset of the schematic of the IGF/FoxO model. The schematic of the toy model is included in the supplementary information.

      • L should be called u, and B should be called x, to be consistent with the rest of the notations in the paper.

      We have decided to keep the notation originally presented in the manuscript.

      • legend of 2E and D should be clarified. "CC input dose" is cryptic. The x axis is the input dose, the y axis is its distribution at the argmax of I. CC is the max of I, not its argmax. Likewise "I" in the legend for the colors should not be used to describe the insets, which are input distributions.

      We have now changed this in the manuscript.

      • the data analysis of the IGF/FoxO pathway should be explained in the main text, not the SI. Otherwise it's impossible to understand how one arrives at, or how to intepret, figure 2E, which is central to the paper. For instance the fact that p(x|u,theta) is assumed to be Gaussian, and how the variance and mean are estimated from the actual data is very important to understand the significance of the results.

      While we have added more details in the manuscript in various places, for the sake of brevity and clarity, we have decided to keep the details of the calculations in the supplementary materials.

      • there's no Method's section. Most of the paper's theoretical work is hidden in the SI, while it should be described in the methods.

      We thank the review of the comment. However, we believe that adding a methods section will break the narrative of the paper. The methods are described in detail in the supplementary materials with sufficient detail to reproduce our results. Additionally, we also provide a link to the github page that has all scripts related to the manuscript.

      PS: please submit a PDF of the SI for review, so that people can read it on any platform (as opposed to a word document, especially with equations)

      We have now done this.

      Reviewer #3 (Recommendations For The Authors):

      1. Subplots in Fig. 1, inset in Fig. 3 are not legible due to small font.

      We have now increased the font.

      1. Mean absolute error in Fig. S5 and relative error in related text should be clarified.

      We have now clarified this in the manuscript.

      1. Acronyms (MACO, MERIDIAN) should be defined.

      We have now made these changes.

      References

      1. Gregor T, Tank DW, Wieschaus EF, Bialek W. Probing the limits to positional information. Cell. 2007;130(1):153-64. doi: 10.1016/j.cell.2007.05.025. PubMed PMID: WOS:000248587000018.

      2. Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U. Dynamics and Variability of ERK2 Response to EGF in Individual Living Cells. Mol Cell. 2009;36(5):885-93. doi: 10.1016/j.molcel.2009.11.025. PubMed PMID: WOS:000272965400020.

      3. Gross SM, Dane MA, Bucher E, Heiser LM. Individual Cells Can Resolve Variations in Stimulus Intensity along the IGF-PI3K-AKT Signaling Axis. Cell Syst. 2019;9(6):580-8 e4.

      4. Loos C H, J. Mathematical modeling of variability in intracellular signaling. Current Opinion in Systems Biology. 2019;16:17-24.

      5. Dixit PD, Lyashenko E, Niepel M, Vitkup D. Maximum Entropy Framework for Predictive Inference of Cell Population Heterogeneity and Responses in Signaling Networks. Cell Syst. 2020;10(2):204-12 e8.

      6. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329(5991):533-8. doi: 10.1126/science.1188308. PubMed PMID: 20671182; PMCID: PMC2922915.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to review.

      We thank the editors and reviewers for their time in assessing our manuscript. We changed the title to remove the word “all” because we realized that was hyperbolic. Corrections in response to review are in blue text throughout the manuscript document (other minor corrections are not highlighted).

      eLife assessment

      This study presents valuable insights into the evolution of the gasdermin family, making a strong case that a GSDMA-like gasdermin was already present in early land vertebrates and was activated by caspase-1 cleavage. Convincing biochemical evidence is provided that extant avian, reptile, and amphibian GSDMA proteins can still be activated by caspase-1 and upon cleavage induce pyroptosis-like cell death - at least in human cell lines. The caspase-1 cleavage site is only lost in mammals, which use the more recently evolved GSDMD as a caspase-1 cleavable pyroptosis inducer. The presented work will be of considerable interest to scientists working on the evolution of cell death pathways, or on cell death regulation in non-mammalian vertebrates.

      We thank the editor for their time in evaluating our manuscript. We agree with the eLife assessment and with the comments of the reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors start out by doing a time-calibrated gene/species tree analysis of the animal gasdermin family, resulting in a dendrogram showing the relationship of the individual gasdermin subfamilies and suggesting a series of gene duplication events (and gene losses) that lead to the gasdermin distribution in extant species. They observe that the GSDMA proteins from birds, reptiles, and amphibians do not form a clade with the mammalian GSDMAs and notice that the non-mammalian GSDMA proteins share a conserved caspase-1 cleavage motif at the predicted activation site. The authors provide several series of experiments showing that the non-mammalian GSDMA proteins can indeed be activated by caspase-1 and that this activation leads to cell death (in human cells). They also investigate the role of the caspase-1 recognition tetrapeptide for cleavage by caspase-1 and for the pathogen-derived protease SpeB.

      We thank the reviewer for their time in evaluating our manuscript.

      Strengths:

      The evolutionary analysis performed in this manuscript appears to use a broader data basis than what has been used in other published work. An interesting result of this analysis is the suggestion that GSDMA is evolutionarily older than the main mammalian pyroptotic GSDMD, and that birds, reptiles, and amphibians lack GSDMD but use GSDMA for the same purpose. The consequence that bird GSDMA should be activated by an inflammatory caspase (=caspase1) is convincingly supported by the experiments provided in the manuscript.

      We thank the reviewer for their assessment of the manuscript.

      Weaknesses:

      1. As a non-expert in phylogenetic tree reconstruction, I find the tree resulting from the authors' analysis surprising (in particular the polyphyly of GSDMA) and at odds with several other published trees of this family. The differences might be due to differences in the data being used or due to the tree construction method, but no explanation for this discrepancy is provided.

      We agree, and we have modified the text to add more context to explain why our analysis generated a different topology: “In comparison to previously published studies, we used different methods to construct our gasdermin phylogenetic tree, with the result that our tree has a different topology. The topology of our tree is likely to be affected by our increased sampling of gasdermin sequences; we included 1,256 gasdermin sequences in comparison to 300 or 97 sequences used in prior studies. Prior studies used maximum likelihood tree building techniques, whereas we used a more computationally intensive Bayesian method using BEAST with strict molecular clocks that allows us to provide divergence time estimates, which we calibrated using mammal fossil estimated ages. We think that this substantially increased sampling paired with time calibration allow us to produce a more accurate phylogeny of the gasdermin protein family.”

      To explain and further support our method in a more technical manner, in our phylogenetic tree, non-mammal GSDMAs are paralogous to mammals GSDMAs whereas others have found that non-mammal GSDMAs are orthologous to mammal GSDMAs. We obtained moderate support for the non-mammal GSDMA placement with Bayesian posterior 0.42 and with maximum likelihood bootstrap support of 0.96. Angosto-Bazarra et al. has for their placement a Bayesian posterior of 0.66 and maximum likelihood bootstrap support of 0.98. These are good results, but they arise from significantly fewer sequences than are included in our tree. However, in Fig S2 of Angosto-Bazarra et al. the support drops to 0.08. That the posteriors in both are not 1 indicate the presence of phylogenetic conflicts (i.e., a significant fraction of alternative trees), which means that the tree of our study or Angosto-Bazarra could be incorrect. That said, our tree is supported by biological support, and our dataset is substantially larger. To better characterize this node, further sampling with even more species would be required. We exhausted the current available sequences at the time our tree was generated.

      Differences between our study and previous studies:

      Author response table 1.

      1. While the cleavability of bird/reptile GSDMA by caspase-1 is well-supported by several experiments, the role of this cleavage for pyroptotic cell killing is addressed more superficially. One cell viability assay upon overexpression of GSDMA-NTD in human HEK293 cells is shown and one micrograph shows pyroptotic morphology upon expression in HeLa cells. It is not clear why these experiments were limited to human cells…

      We did include one more experiment in human cells which is Figure 4B, in which we express full length chicken GSDMA with dimerizable caspase-1, and show that LDH release requires the cleavage site aspartate, D244. That said, we agree that our use of only human cell lines is a weakness of the paper. We thought that the best way to definitively show the interaction of caspase-1 and GSDMA was to perform experiments in chicken macrophages. Therefore, we generated a custom-raised anti-chicken-GSDMA antibody. Unfortunately, the quality of the antibody was insufficient to detect endogenous GSDMA in chicken bone marrow-derived macrophages. Off target binding prevented the observation of chicken GSDMA bands. We added a section to the discussion acknowledge the need for further studies: “In future studies, the association of bird/amphibian/reptile GSDMA and caspase-1 should be confirmed in native cells from each of these animals.”

      …and why two different cell types were used for the two complementary results.

      In the paper we used 293T cells and HeLa cells as generic cell types that have distinct benefits. In general, we used 293T/17 cells for experiments where high transfection efficiency was most critical, as it is simple to achieve 90% or higher transfection efficiency in this line. However, 293T/17s have poor spreading in culture and thus are not as useful for morphologic studies. 293T/17 cells do display pyroptotic ballooning upon gasdermin activation, however, the images are less pronounced in comparison to other cell types that have more distinct morphology. Therefore, we used HeLa cells for the microscopy experiments because they are more adherent and larger than 293T/17s which make for easier visualization of pyroptotic ballooning. We have added the following statement to the text to make our rationale for the use of different cell line more apparent: “In these experiments, 293T/17s were used for their high transfection efficiency, and HeLas were used for microscopy studies for their larger size and improved adherence.”

      1. The introduction mentions as a motivation for this work our lack of knowledge of how human GSDMA is activated. This is indeed an interesting and pressing question, but it is not really addressed in the manuscript. This is particularly true when believing the authors' dendrogram results that the bird and mammalian GSDMA families do not form a clade.

      As a consequence, the significance of this finding is mostly limited to birds and reptiles.

      Our aspirations were to discover hidden facets of mammal GSDMA by using a molecular evolutionary analysis. bird/amphibian/reptile GSDMA. Although we did not learn the identity of a host protease that activates mammalian GSDMA, we serendipitously discovered the evolutionary history of the association of caspase-1 with the gasdermin family. We think this manuscript provides an important and interesting advance in the field to reveal the process of evolution at work in the gasdermin family, and that the association of caspase-1 with a gasdermin to cause pyroptosis is an unbroken pairing throughout evolution. It is surprising to us that the specific gasdermin partner has changed over time.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigated the molecular evolution of members of the gasdermin (GSDM) family. By adding the evolutionary time axis of animals, they created a new molecular phylogenetic tree different from previous ones. The analyzed result verified that non-mammalian GSDMAs and mammalian GSDMAs have diverged into completely different and separate clades. Furthermore, by biochemical analyses, the authors demonstrated non-mammalian GSDMA proteins are cleaved by the host-encoded caspase-1. They also showed mammalian GSDMAs have lost the cleavage site recognized by caspase-1. Instead, the authors proposed that the newly appeared GSDMD is now cleaved by caspase-1.

      We thank the reviewer for their time in evaluating our manuscript.

      Through this study, we have been able to understand the changes in the molecular evolution of GSDMs, and by presenting the cleavage of GSDMAs through biochemical experiments, we have become able to grasp the comprehensive picture of this family of molecules. However, there are some parts where explanations are insufficient, so supplementary explanations and experiments seem to be necessary.

      Strengths:

      It has a strong impact in advancing ideas into the study of pyroptotic cell death and even inflammatory responses involving caspase-1.

      We thank the reviewer for the critical consideration of the phylogeny presented.

      Weaknesses:

      Based on the position of mammalian GSDMA shown in the molecular phylogenetic tree (Figure 1), it may be difficult to completely agree with the authors' explanation of the evolution of GSDMA.

      1. Focusing on mammalian GSDMA, this group, and mammalian GSDMD diverged into two clades, and before that, GSDMA/D groups and mammalian GSDMC separated into two, more before that, GSDMB, and further before that, non-mammalian GSDMA, when we checked Figure 1. In the molecular phylogenetic tree, it is impossible that GSDMA appears during evolution again. Mammalian GSDMAs are clearly paralogous molecules to non-mammalian GSDMAs in the figure. If they are bona fide orthologous, the mammalian GSDMA group should show a sub-clade in the non-mammalian GSDMA clade. It is better to describe the plausibility of the divergence in the molecular evolution of mammalian GSDMA in the Discussion section.

      We appreciate the reviewer’s careful consideration of our phylogeny. We agree that we did not make this clear enough in the discussion. Indeed, this is a confusing point, and is a critical concept in the paper. This is among our most important findings, so we have added a line addressing this finding to the abstract. We think about these concepts starting from the oldest common ancestor of a group, and then think about how genes duplicate over time. To the discussion we now begin with the following:

      We discovered that GSDMA in amphibians birds and reptiles are paralogs to mammal GSDMA. Surprisingly, the GSDMA genes in both the amphibians/reptiles/birds and mammal groups appear in the exact same locus. Therefore, this GSDMA gene was present in the common ancestor of all these animals. In mammals, this GSDMA duplicated to form GSDMB and GSDMC. Finally, a new gene duplicate, GSDMD, arose in a different chromosomal location. Then this GSDMD gene became a superior target for caspase-1 after developing the exosite. Once GSDMD had evolved, we speculate that the mammalian GSDMA became a pseudogene that was available to evolve a new function. This new function included a new promoter to express mammalian GSDMA primarily in the skin, and perhaps acquisition of a new host protease that has yet to be discovered.

      In further support of the topology of our Bayesian tree in Figure 1, we also performed a maximum likelihood analysis, which also placed the GSDMA genes into similarly distinct clades (Figure 1-S3). Finally, we have biological evidence to support this reasoning, where caspase-1 cleaves non-mammal GSDMAs and also mammal GSDMD (and no longer can cleave mammal GSDMA).

      1. Regarding (1), it is recommended that the authors reconsider the validity of estimates of divergence dates by focusing on mammalian species divergence. Because the validity of this estimation requires a recheck of the molecular phylogenetic tree, including alignment.

      Our reconstructed evolution of gasdermins is consistent with the mammal tree of life. We constrained Bayesian estimation of divergences using soft calibrations from mammal fossil estimated ages. We have included the fossil calibration of mammalian gasdermins to the results section and to our methods.

      1. If GSDMB and/or GSDMC between non-mammalian GSDMA and mammalian GSDMD as shown in the molecular phylogenetic tree would be cleaved by caspase-1, the story of this study becomes clearer. The authors should try that possibility.

      It is known that mammal GSDMB and GSDMC cannot be activated by caspase-1. We propose that GSDMA was cleaved by caspase-1 only in extinct mammals that had not yet associated GSDMD with caspase-1. Such an extinct mammal could have encoded a GSDMA cleaved by caspase-1, a GSDMB cleaved by granzyme A, and GDSMC cleaved by caspase-8. Later, the GSDMA gene was again duplicated to form GSDMD. After GSDMD was targeted by caspase-1, then GSDMA was free to gain its current function in barrier tissues.

      Reviewer #1 (Recommendations For The Authors):

      As a non-expert on phylogenetic tree construction, I found the "time-calibrated maximum clade credibility coalescent tree" hard to digest. I would have liked to see an explanation of how this method is different from what has been used before and why the authors consider it to be better. This is particularly important when considering that the resulting tree shown in Figure 1 is quite different from other published trees of the same family (e.g. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742441 where the GSDMA family appears monophyletic).

      Please see response to Reviewer 1 weaknesses above. Also, we have moved the text “time-calibrated maximum clade credibility coalescent tree” to the figure legend.

      In the bioinformatical analysis of the conserved caspase-1 cleavage motif in bird GSDMA sequences, I would recommend also addressing the residue behind the cleavage site Asp, as this position has an unusually high conservation (mostly Gly) in bird GSDMA.

      This is a great observation. We suspect that this may reflect a need for flexibility in the secondary structure to allow the cleavage site to enter the enzymatic pocket of the caspase. This residue is also similarly enriched in mammal GSDMD, which is also cleaved by caspase-1. We also note high conservation of a P2' proline residue in birds with the FASD tetrapeptide, which could also be important for displaying the tetrapeptide to the caspase.

      This comment prompted us to search the literature for evidence of these residues in caspase-1 substrate preference studies. Remarkably, a P1' glycine and P2` proline are among the most enriched residues in human caspase-1 targets. This supports our hypothesis that caspase-1 cleaves GSDMA in non-mammals. We added the following to the results section: “Additionally, the P1' residue in amphibian, bird and reptile GSDMA was often a glycine, and the P2' residue was often a proline, especially in birds with FASD/FVSD tetrapeptides (Fig. 2B). A small P1' residue is preferred by all caspases. By using a peptide library, glycine has been determined to be the optimal P1' residue for caspase-1 and caspase-4. Further, in a review of the natural substrates of caspase-1, glycine was the second most common P1' residue, and proline was the most common P2' residue. These preferences were not observed for caspase-9.”

      Finally, I would like the authors to at least explain why the cell viability assays were done in 293T cells while the micrographs were done in HeLa cells. Why not show both experiments for both cell types?

      In the paper we used 293T cells and HeLa cells as generic cell types that have distinct benefits. In general, we used 293T/17 cells for experiments where high transfection efficiency was most critical, as it is simple to achieve 90% or higher transfection efficiency in this line. However, 293T cells have poor spreading in culture and thus are not as useful for morphologic studies. 293T/17 cells do display pyroptotic ballooning upon gasdermin activation, however, the images are less pronounced in comparison to other cell types that have more distinct morphology. Therefore, we used HeLa cells for the microscopy experiments because they are more adherent and larger than 293T/17s which make for easier visualization of pyroptotic ballooning. We have added the following statement to the text to make our rationale for the use of different cell line more apparent: “In these experiments, 293T/17s were used for their high transfection efficiency, and HeLas were used for microscopy studies for their larger size and improved adherence.”

      There are a number of minor points related to language and presentation:

      • the expressions "pathogens contaminate the cytosol", "mammals can encode..", "an outsized effect" are unusual and might be rephrased.

      We changed these to:

      “manipulate the host cell, sometimes contaminating the cytosol with pathogen associated molecular patterns, or disrupting aspects of normal cell physiology”,

      “Only mammals encode GSDMC and GSDMD alongside the other four gasdermins.”,

      and

      “greater effect”

      • in line 87 the abbreviation "GSDMEc" is first used without explanation (of the "c").

      This is an important distinction, as GSDMEc proteins were only recently uncovered. To remedy this, we have added the following text following line 87: “This gasdermin was recently identified as an ortholog of GSDMA.

      It was called GSDMEc, following the nomenclature of other duplications of GSDME in bony fish that have been named GSDMEa and GSDMEb.”

      • line 89 grammar problem.

      Corrected

      • line 186ff the sentence "We believe..." does not appear to make sense.

      We revised the text to make this clear, changing the text to now read “We hypothesized that activating pyroptosis using separate gasdermins for caspase-1 and caspase-3 is a useful adaptation and allows for fine-tuning of these separate pathways. In mammals, this separation depends on the activation of GSDMD by caspase-1 and the activation of GSDME by caspase-3.”

      • many figures use pictures rather than text to represent species groups. These pictures are not always intuitive. As an example, in Figure 6 the 'snake' represents amphibians. After reading the text, I understand that these should probably be the caecilian amphibians, but not every reader might know what these critters look like. In Figure 7, I have no idea what the black blob (2nd image from top) is supposed to be.

      In crafting the manuscript, we found the use of text to denote the various species to be cumbersome. The species silhouettes are a standard graphical depiction used in evolutionary biology, which we think aids readability to the figures. For example, in a paper cited in our manuscript, these same silhouettes were used to depict the evolution of GSDMs (https://doi.org/10.3389/fcell.2022.952015 Figure 1A, Figure 3D, Figure 4G). However, we agree that many readers will not know that caecilians are legless amphibians that resemble snakes in their body morphology, but are not close to snakes by phylogeny. We think it is important to use an image of a caecilian amphibian because the more iconic amphibians (frogs, salamanders) do not encode GSDMA. To increase clarity, we have mentioned the morphology of caecilians in the legend of Figure 2, Figure 6, and Figure 7 when caecilican amphibians are first introduced.

      In Figure 2: “Note, that caecilians morphologically are similar to snakes in their lack of legs and elongated body, however, this is an example of convergent evolution as caecilians are amphibians and are thus more closely related to frogs and salamanders than snakes.”

      In Figure 6: “M. unicolor is an amphibian despite sharing morphological similarity to a snake.”

      In Figure 7: “In caecilian amphibians, which are morphologically similar to snakes, birds, and reptiles, GSDMA is cleaved by caspase-1.”

      The black blob is the mollusk Lingula anatina, which unfortunately has an indistinct silhouette. To clarify this, we have added text to label the images in Figure 7.

      Reviewer #2 (Recommendations For The Authors):

      1. Line 214, in "(Fig. 3-S2) Human and mouse ..", it is necessary to type a period.

      2. Line 238, in the subtitle, GSMA should be amended to GSDMA.

      These have both been corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, Butkovic et al. perform a genome-wide association (GWA) study on Arabidopsis thaliana inoculated with the natural pathogen turnip mosaic virus (TuMV) in laboratory conditions, with the aim to identify genetic associations with virus infection-related parameters. For this purpose, they use a large panel of A. thaliana inbred lines and two strains of TuMV, one naïve and one pre-adapted through experimental evolution. A strong association is found between a region in chromosome 2 (1.5 Mb) and the risk of systemic necrosis upon viral infection, although the causative gene remains to be pinpointed.

      This project is a remarkable tour de force, but the conclusions that can be reached from the results obtained are unfortunately underwhelming. Some aspects of the work could be clarified, and presentation modified, to help the reader.

      (Recommendations For The Authors):

      • It is important to note that viral accumulation and symptom development do not necessarily correlate, and that only the former is a proxy for "virus performance". These concepts need to be clear throughout the text, so as not to mislead the reader.

      This has been explained better in line 118-120, “Virus performance has been removed.

      • Sadly, only indirect measures of the viral infection (symptoms) are used, and not viral accumulation. It is important to note that viral accumulation and symptom development do not necessarily correlate and that only the former is a proxy for "virus performance". These concepts need to be clear throughout the text, so as not to mislead the reader. The mention of "virus performance" in line 143 is therefore not appropriate, nor is the reference to viral replication and movement in the Discussion section.

      "Virus performance" was removed. Also, the reference to viral replication and movement in the Discussion section has been removed.

      Now we mention: “We did not measure viral accumulation, but note this is significantly correlated with intensity of symptoms within the Col-0 line (Corrêa et al. 2020), although it is not clear if this correlation occurs in all lines.”

      • Since symptoms are at the center of the screen, images representing the different scores in the arbitrary scales should ideally be shown.

      Different Arabidopsis lines would look different and this could mislead a reader not familiar with the lines. In order to make a representation of our criteria to stablish the symptoms, we believe that a schematic representation is clearer to interpret. Here are some pictures of different lines showing variating symptoms:

      Author response image 1.

      • Statistical analyses could be added to the figures, to ease interpretation of the data presented.

      Statistical analysis can be found in methods. We prefer to keep the figure legend as short as possible.

      • The authors could include a table with the summary of the phenotypes measured in the panel of screened lines (mean values, range across the panel, heritability, etc.).

      These data are plotted in Fig. 1. We believe that repeating this information in tabular form would not contribute to the main message of the work. Phenotype data and the code to reproduce figure 1 are available at GitHub (as stated in Data Availability), anyone interested can freely explore the phenotypes of the screened lines.

      • The definition of the association peak found in chromosome 2 could be explained further: is the whole region (1.5 Mb) in linkage disequilibrium? How many genes are found within this interval, and how were the five strong candidates the authors mention in line 161 selected? It is also not clear which are these 5 candidates, apart from AT2G14080 and DRP3B - and among those in Table 1 (which, by the way, is cited only in the Discussion and not in the Results section)? Why were AT2G14080 and DRP3B in particular chosen?

      We have replaced Table 1 with an updated Table S1 listing all genes found within the range of significant SNPs for each peak. We now highlight a subset of these genes as candidate genes if they have functions related to disease resistance or defence, and mentioned them explicitly in the text (lines 173-179. We have explicitly described how this table was constructed in the methods (lines 525-538).

      • Concerning the validation of the association found in chromosome 2 (line 169 and onward): the two approaches followed cannot be considered independent validations; wouldn't using independent accessions, or an independent population (generated by the cross between two parental lines, showing contrasting phenotypes, for example) have been more convincing?

      We aim to compare the hypothesis that the association is due to a causal locus to the null hypothesis that the observed association is a fluke due to, for example, the small number of lines showing necrosis. If this null hypothesis is true then we would not expect to see the association if we run the experiment again using the same lines. An alternative hypothesis is that the genotype at the QTL and disease phenotypes are not directly causally linked, but are both correlated with some other factor, such as another QTL, or maternal effects. We agree that an independent sample would be required to exclude the latter hypothesis, but argue that the former is the more pertinent. We have edited the text to be explicit about the hypothesis we are testing, and altered the language to shift the focus from ‘validation’ to ‘confirming the robustness’ of the association (line 182).

      • Regarding the identification of the transposon element in the genomic region of AT2G14080: is the complementation of the knock-out mutant with the two alleles (presence/absence of the transposon) possible to confirm its potential role in the observed phenotype?

      This could be feasible but we cannot do it as none of the researchers can continue this project.

      • On the comparison between naïve and evolved viral strains: is the evolved TuMV more virulent in those accessions closer to Col-0?

      This is not something we have looked at but would certainly be an interesting follow-up investigation.

      • The Copia-element polymorphism is identified in an intron; the potential functional consequences of this insertion could be discussed. In the example the authors provide, the transposable element is inserted into the protein-coding sequence instead.

      We now state explicitly that such insertions are expected to influence expression; beyond that we can only speculate. We have removed the reference to the insertion in the coding sequence.

      • The authors state in line 398 that "susceptibility is unquestionably deleterious" - is this really the case? Are the authors considering susceptibility as the capacity to be infected, or to develop symptoms? Viral infections in nature are frequently asymptomatic, and plant viruses can confer tolerance to other stresses.

      We have tone down the expression and clarify our wording: “Given that potyvirus outbreaks are common in nature (Pagán et al., 2010) and susceptibility to symptomatic infection can be deleterious”

      Additional minor comments:

      • In Table 1, Wu et al., 2018 should refer to DRP2A and 2B, not 3B.

      We have removed Table 1 altogether.

      • Line 126: a 23% increase in symptom severity is mentioned, but how is this calculated, considering that severity is measured in four different categories?

      This is the change in mean severity of symptoms between the two categories.

      • Figure 1F: "...symptoms"

      Fixed.

      • Line 179: "...suggesting an antiviral role..."

      Changed.

      • Lines 288-300: This paragraph does not fit into the narrative and could be omitted.

      It has been removed and some of the info moved to the last paragraph of the Intro, when the two TuMV variants were presented.

      • Lines 335-337: The rationale here is unclear since DRP2B will also be in the background - wouldn't DRPB2B and 3B be functionally redundant in the viral infection?

      Our results suggest that DRPB3B is redundant with DRPB2B for the ancestral virus but not for the evolved viral strain. We speculate that the evolved viral isolate may have acquired the capacity to recruit DRPB3B for its replication and hence it produces less symptoms when the plant protein is missing.

      We have spotted a mistake that may have add to the confusion. Originally the text said “In contrast, loss of function of DRP3B decreased symptoms relative to those in Col-0 in response to the ancestral, but not the evolved virus”. The correct statement is “In contrast, loss of function of DRP3B decreased symptoms relative to those in Col-0 in response to the evolved, but not the ancestral virus.”  

      Reviewer #2 (Public Review):

      The manuscript presents a valuable investigation of genetic associations related to plant resistance against the turnip mosaic virus (TuMV) using Arabidopsis thaliana as a model. The study infects over 1,000 A. thaliana inbred lines with both ancestral and evolved TuMV and assesses four disease-related traits: infectivity, disease progress, symptom severity, and necrosis. The findings reveal that plants infected with the evolved TuMV strain generally exhibited more severe disease symptoms than those infected with the ancestral strain. However, there was considerable variation among plant lines, highlighting the complexity of plant-virus interactions.

      A major genetic locus on chromosome 2 was identified, strongly associated with symptom severity and necrosis. This region contained several candidate genes involved in plant defense against viruses. The study also identified additional genetic loci associated with necrosis, some common to both viral isolates and others specific to individual isolates. Structural variations, including transposable element insertions, were observed in the genomic region linked to disease traits.

      Surprisingly, the minor allele associated with increased disease symptoms was geographically widespread among the studied plant lines, contrary to typical expectations of natural selection limiting the spread of deleterious alleles. Overall, this research provides valuable insights into the genetic basis of plant responses to TuMV, highlighting the complexity of these interactions and suggesting potential avenues for improving crop resilience against viral infections.

      Overall, the manuscript is well-written, and the data are generally high-quality. The study is generally well-executed and contributes to our understanding of plant-virus interactions. I suggest that the authors consider the following points in future versions of this manuscript:

      1. Major allele and minor allele definition: When these two concepts are mentioned in the figure, there is no clear definition of the two words in the text. Especially for major alleles, there is no clear definition in the whole text. It is recommended that the author further elaborate on these two concepts so that readers can more easily understand the text and figures.

      We agree that the distinction between major/minor alleles and major/minor associations in our previous manuscript may have been confusing. In the current manuscript we now define the minor allele at a locus as the less-common allele in the population (line 167). We have removed references to major/minor associations, and instead refer to strong/weak associations.

      1. Possible confusion caused by three words (Major focus / Major association and major allele): Because there is no explanation of the major allele in the text, it may cause readers to be confused with these two places in the text when trying to interpret the meaning of major allele: major locus (line 149)/ the major association with disease phenotypes (line 183).

      See our response to the previous comment.

      1. Discussion: The authors could provide a more detailed discussion of how the research findings might inform crop protection strategies or breeding programs.

      We would prefer to restrain speculating about future applications in breeding programs.

      (Recommendations For The Authors):

      1. Stacked bar chart for the Fig 1F. It is recommended that the author use the form of a stacked bar chart to display the results of Fig 1F. On the one hand, it can fit in with the format of Fig 1D/E/G, on the other hand, it can also display the content more clearly.

      We think the results are easier to interpret without the stacked bar chart.

      1. Language Clarity: While there are no apparent spelling errors, some sentences could be rewritten for greater clarity, especially when explaining the results in Figure 1 and Figure 2.

      We have reviewed these sections and attempted to improve clarity where that seemed appropriate.

      There are some possibilities to explore in the future. For example: clarity of mechanisms for the future. While the study identifies genetic associations, it lacks an in-depth exploration of the underlying molecular mechanisms. Elaborating on the mechanistic aspects would enhance the scientific rigor and practical applicability of the findings.

      Yes, digging into the molecular mechanisms is an ongoing task and will be published elsewhere. It was out of the scope of this already dense manuscript.  

      Reviewer #3 (Public Review):

      Summary of Work

      This paper conducts the largest GWAS study of A. thaliana in response to a viral infection. The paper identifies a 1.5 MB region in the chromosome associated with disease, including SNPs, structural variation, and transposon insertions. Studies further validate the association experimentally with a separate experimental infection procedure with several lines and specific T-DNA mutants. Finally, the paper presents a geographic analysis of the minor disease allele and the major association. The major take-home message of the paper is that structural variants and not only SNPs are important changes associated with disease susceptibility. The manuscript also makes a strong case for negative frequency-dependent selection maintaining a disease susceptibility locus at low frequency.

      Strengths and Weaknesses

      A major strength of this manuscript is the large sample sizes, careful experimental design, and rigor in the follow-up experiments. For instance, mentioning non-infected controls and using methods to determine if geographic locus associations were due to chance. The strong result of a GWAS-detected locus is impressive given the complex interaction between plant genotypes and strains noted in the results. In addition to the follow-up experiments, the geographic analysis added important context and broadened the scope of the study beyond typical lab-based GWAS studies. I find very few weaknesses in this manuscript.

      Support of Conclusions

      The support for the conclusions is exceptional. This is due to the massive amount of evidence for each statement and also due to the careful consideration of alternative explanations for the data.

      Significance of Work

      This manuscript will be of great significance in plant disease research, both for its findings and its experimental approach. The study has very important implications for genetic associations with disease beyond plants.

      (Recommendations For The Authors):

      Line 41 - Rephrase, not clear "being the magnitude and sign of the difference dependent on the degree of adaptation of the viral isolate to A. thaliana."

      Now it reads: “When inoculated with TuMV, loss-of-function mutant plants of this gene exhibited different symptoms than wild-type plants, where the scale of the difference and the direction of change between the symptomatology of mutant and wild-type plants depends on the degree of adaptation of the viral isolate to A. thaliana.”

      Line 236 - typo should read: "and 21-fold"

      Changed.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      REVIEWER #1:

      The authors identify ZMYND8 as a bromodomain protein: is there evidence the actions described in this paper involve interaction of ZMYND8 with acetylated lysines? Does this mechanism play a role in ZMYND8's transcriptional regulatory activities?

      ZMYND8 is recruited to chromatin via its Bromo, PHD, and PWWP domains which recognize H3K4me1 and/or H3K14ac marks. Methyl marks on H3K4 are regulated by several lysine methyltransferases (e.g., MLL family and SETD1A/B) and demethylases (e.g., KDM5A-D) while H3K14ac is regulated by GCN5/PCAF, p300/CBP and/or Myst3. ZMYND8 also recruits histone deacetylases to chromatin including members of the highly conserved Nucleosome Remodeling and Deacetylase (NuRD) complex, HDAC1 and HDAC2. NuRD primarily deacetylates H3K27ac marks, however it is possible other acetyl moieties are affected by this complex.

      Using ChIP-seq, we now show that Zmynd8-cKO cardiomyocytes retain H3K27ac marks at misexpressed genes. Interestingly, while some of these genes have altered H3K27ac at their promoters (and therefore have full-length misexpressed transcripts; i.e., Casq1, Cdh16) other genes (e.g., Lamb3, Chst3) show changes in H3K27ac in the middle of the gene and this tracks with gene expression changes. We interpret this unusual transcript and H3K27ac pattern as evidence of potential ZMYND8-regulated intragenic enhancer elements. We include the following in our resubmission:

      1. Figure 5 which shows changes in H3K27ac levels at different genes, showing examples of genome browser tracks at the following genes Casq1, Cdh16, Camk1g, and Chst3.
      2. Supplemental Figure S5 showing H3K27ac and H3K27me3 marks at the cardiac myosin locus (i.e., Myh6 and Myh7) and surrounding genes in control and Zmynd8-cKO * We also show retention of H3K27ac at the Zmynd8 gene in Zmynd8-cKO cardiomyocytes, again supporting an autoregulatory mechanism of Zmynd8 *expression.
      3. An additional section in Results titled “H3K27 acetylation marks are retained at specific loci in Zmynd8-cKO cardiomyocytes”
      4. New “ChIP-seq and Analysis” section in Materials and Methods
      5. An updated model in Figure 6 that includes ZMYND8’s activities in modulating H3K27ac levels This first analysis on H3K27ac and H3K27me3 deposition in Zmynd8-cKO cardiomyocytes is not comprehensive and genome-wide analysis on these datasets will ultimately be performed in combination with additional datasets including ZMYND8 ChIP-seq from isolated cardiomyocytes. However, given the pertinence to ZMYND8’s transcriptional activities and in response to this reviewer’s critique, we include this pertinent H3K27ac and H3K27me3 ChIP-seq data.

      Given the newness of this model and multiple isoform issues, the authors should show the entire gel for the westerns in SFigure 1C.

      We now show the entire blots for all western blots in Supplementary Figure 1.

      Nuclear staining is in SFigure 1E (typo in text): most of the staining in the control is non-myocyte and non-nuclear, making the statement about IHC showing depletion less convincing for Nkx lines.

      We have fixed the typo in the text on page 5 line 128 and now correctly refer to this figure as Supplemental Figure S2. To better visualize nuclear ZMYND8 staining in this figure, we now show an adjusted image with increased contrast and brightness settings on both control and Zmynd8-cKO images and added arrowheads to indicate nuclei in the isolated cardiomyocytes. We also note that the flox sites only span the nuclear localization sequence for the protein so cytoplasmic ZMYND8 may still be present in Zmynd8-cKO cells.

      Regarding perinuclear ZMYND8 staining: am I accurate in observing the perinuclear staining is still present in the KO? What do the authors make of this?

      We do not observe perinuclear staining of ZMYND8 in KO cells. In Figure 1C, we believe the reviewer is observing potential staining in the cytoplasm, not perinuclear staining of ZMYND8 that we see in the control Myh6-CreTg/0 cardiomyocytes. We have added yellow arrowheads in Figure 1C to delineate perinuclear ZMYND8 staining we describe in the text.

      What is the protein amount in the Zmynd8fl/+ mice? Do the hearts upregulate the protein to compensate?

      We have added a gel in Supplemental Figure 1 that now shows protein isolated from Myh6-CreTg/0; Zmynd8fl/+ hearts and Myh6-CreTg/0 controls (Supplemental Figure 1C, right gel). It does not appear that Myh6-CreTg/0; Zmynd8fl/+ cardiomyocytes upregulate ZMYND8 to compensate for loss of one allele, as determined by Western blotting. However, our analysis shows differing ratios of the detected bands between conditional heterozygous mice, underscoring the need to further study the different ZMYND8 species present in cardiomyocytes. We state this in the results section (page 5, lines 123-124).

      Do the individual cardiomyocytes hypertrophy in the Zymnd8 cKO mice? Do they proliferate?

      Our analysis of cardiomyocyte morphology does reveal hypertrophy. The results we report include a new observation of variation in cell shape and are likely at least as sensitive as WGA staining which we find to be confounded by sectioning artifacts, cell identity, and position of the sections in the heart. We do not observe changes in H3S10ph staining between wild type and knockout hearts (data not shown) however we acknowledge further analysis of this may be warranted via other cell proliferation markers.

      Regarding this statement: "These results show that ZMYND8 is necessary to prevent the onset of contractile dysfunction that leads to heart failure and death." I think what the authors showed is that loss of ZMYND8 causes contractile dysfunction, heart failure and death.

      We acknowledge the difference in these statements and have now changed the text on page 7, lines 160-162 to “…these results show that loss of ZMYND8 from cardiomyocytes leads to contractile dysfunction, heart failure, and death.”

      The switch like up regulation of skeletal muscle genes is an interesting observation. Do the authors have any evidence how this works? Other studies with EZH2 are mentioned, and if ZYMND8 is in fact acting as a bromodomain, the mechanism might involve regulation of enhancer methylation/acetylation at K27. This is testable, certainly at the target genes the investigators have identified (Casq1 and Tnni2), by ChIP-PCR.

      As described above, we now include ChIP-seq data of H3K27ac and H3K27me3 marks in control and Zmynd8-cKO cardiomyocytes. As the reviewer suggests, there is retention of H3K27Ac marks in cKO cardiomyocytes, suggesting that ZMYND8 is necessary to recruit histone deacetylases to specific loci to remove acetyl moieties from H3K27. Regarding specific skeletal muscle genes, we do find a difference in histone acetylation at the promoter of the Casq1 gene and show this in Figure 5.

      The model in Figure 4C makes sense, but the authors do not present any data to support this molecular mechanism. If the authors ChIP for localization of TFs in KO vs control and/or examine histone marks, they could build support for this model, particularly since they have already identified target genes.

      We have now updated our model in Figure 6 to include ZMYND8’s role in modulating H3K27ac levels at target loci, leading to upregulation of mRNA transcripts. We add consideration of the implications of this in the Discussion.

      Reviewer #1 (Significance (Required)):

      The authors identify ZMYND8 as a bromodomain protein: is there evidence the actions described in this paper involve interaction of ZMYND8 with acetylated lysines? Does this mechanism play a role in ZMYND8's transcriptional regulatory activities? We include new data to demonstrate this. Please see above.

      REVIEWER #2:

      The study is reporting the role of ZMYND8 chromatin factor in the mouse heart. Mutations have been previously identified in genetic studies of atrioventricular septal defects and syndromic congenital cardiac abnormalities. Therefore the authors perform cardiomyocyte specific knockout of exon 4 (with the nuclear localisation signal) using Myh6 and Nkx2.5 cre. Full length protein seems to be removed from the nucleus. The knockout doesn't seem to affect embryonic development, but leads to hypertrophy and premature death. The authors perform transcriptome analysis and find 55 upregulated and 4 downregulated genes that are mainly related to contraction and ion transport. especially they find skeletal muscle proteins including fast-twitch troponin I upregulated. Tnni2 seems to be integrated into the sarcomeres, albeit the antibody staining is not in the expected location (see below). Shape of cardiomyocytes was apparently different, although this is seemingly not related to Tnni2 expression.

      Specific points: - ZMYND8 has been previously linked to atrioventricular septal defects, but the authors do not explore if this is the case also in their model; could the authors please expand

      We have not seen obvious septal defects in any Zmynd8-cKO mice. We now state this explicitly in the Results section on page 7, lines 159-160 and discuss this discrepancy from the observations in humans in our Discussion on page 12. The human study analyzing families carrying Zmynd8 mutations reported a variety of heart malformations in 7 of the 11 individuals. The septal defects observed in these individuals were not consistent and may be incidental to the molecular function of ZMYND8 within cardiomyocytes. One possibility is that these malformations are caused by stress during development, with Zmynd8 mutations sensitizing the heart to these defects. We acknowledge in the discussion that further analyses of septal defects in this knockout model could be useful in the future with more stringent stereoscopic techniques.

      • the initial section is difficult to follow. Especially, the authors seem surprised regarding the size of the bands. They should make clear what the expected band size should be after removal of exon 4 and if this doesn't fit, explore the reasons experimentally if possible.

      Rigorous analyses of the different Zmynd8 isoforms in cardiomyocytes will be a focus of future work as this may explain the mosaicism seen in cKO cardiomyocytes and the discrepancy between TNNI2 expression and cell shape (see below). We have reorganized the section and discuss potential explanations for our observed band sizes.

      • the authors explore the shape of the cardiomyocytes and find cells that are shorter and thicker. It would be meaningful to include other metrics including, sarcomere length, contractility measurements and calcium transients (especially in light of the change ion transporters).

      We agree that an investigation of the effects of the mutation and the skeletal muscle proteins on cellular contractility could be very interesting. Here we have contented ourselves with evaluating the effects at a physiological level through assessment of cardiac function.

      • it is unclear why Tnni2 stains for the M-band (where in fact should be no actin and troponin) and not a typical double band with the H zone excluded (see here for good staining example: https://www.biorxiv.org/content/10.1101/2020.09.09.288977v1.full.pdf). also the staining looks very fuzzy. can the authors provide evidence that the antibody is staining troponin I in skeletal muscle at the correct localisation to demonstrate the specificity of the antibody?

      We thank the reviewer for raising this point and do agree that there are instances where we observe TNNI2 staining colocalizing with MYOM1 staining. After closer examination of our images, we believe we do also see TNNI2 staining between M-lines and attribute this discrepancy to our antibody staining and/or biological differences between cells however, further analysis with better microscopy and immunostaining techniques is warranted. We have added an additional image to Figure 4A and have modified this results section on page 9, lines 217-222.

      • it is interesting why Tnni2 is detectable only in a subfraction of cells, but this remains unexplored. Could this e.g. be right vs left ventricular cardiomyocytes? or is this related to the remaining isoforms of ZMYND8? The authors should try to identify the source of this variability

      We agree that the TNNI2 mosaicism is an interesting phenotype and thank the reviewer for possible explanations. We favor the model of mosaicism being an effect of compensatory mechanisms by other ZMYND8 isoforms and discuss this in the discussion on page 8, line 228-229. This will be a focus of future work.

      • if Tnni2 is unrelated to the changes in hypertrophic phenotype of the cardiomyocytes, then the authors should aim to identify if one of the other differentially regulated proteins might be related (e.g. ion transporter). The experiments above might help to identify this

      We agree that identifying the causal agents of hypertrophy in this model would be interesting. It is however possible that we are simply seeing the expected effect of reduced contractility leading to hypertrophic compensation. Sorting this out will require additional mutant analyses and/or siRNA experiments all of which come with their own caveats and are outside of the scope of this initial analysis. Our aim for this manuscript was to report on the effects of ZMYND8 removal from cardiomyocytes. Additionally, it is certainly possible that phenotypes we report in this article are independent of the gene expression changes we have detected in the mutant and could be caused by other roles for ZMYND8 such as the DNA damage response. We include this possibility in our discussion.

      Reviewer #2 (Significance (Required)):

      Overall the manuscript is interesting in principle - it documents the role of a disease linked protein that hasn't been explored in the heart in detail, however at this point it seems premature and doesn't follow through on a solid detailed analysis.

      The change in transcription profiles and especially the upregulation of skeletal muscle isoforms is intriguing, but should be further explored. There seems a lack of hypothesis and instead the authors analyse Tnni2 and cell shape, but while the cell shape is different they don't find a correlation with Tnni2. so if the authors suggest that cell shape is important (as indeed might be), how is this regulated?

      Our goal for this initial paper is to describe the physiological and molecular phenotypes of the Zmynd8-cKO mouse model. It would be interesting to pursue a study directed at this question, perhaps of cell sorted "fat" and "thin" myocytes, but that would be beyond the scope of this report.

      The study could be of interest to cardiovascular researchers, but needs to be expanded on the points above.

      My expertise is in cardiovascular research

      REVIEWER #3:

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate). Please place your comments about significance in section 2.

      The authors found that Zmynd8-cKO mice develop dilated hearts, decreased cardiac function, and illegitimate expression of skeletal muscle genes. They concluded that ZMYND8 is necessary to maintain appropriate cardiomyocyte gene expression and cardiac function.

      Major comments:

      • Are the claims and the conclusions supported by the data or do they require additional experiments or analyses to support them? The claim that "Zmynd8 is dispensable for cardiac development" is not supported by the lethality of Zmynd8 D/D mice.

      We interpret our observation that viable Nkx2.5-CreTg/0; Zmynd8fl/fl mice are born and grow to adulthood as evidence that Zmynd8 is not necessary for establishment of the cardiac lineage. However, we do agree that labeling Zmynd8 as dispensable is not supported by the experiments using Zmynd8D/D mice. We hypothesize that the lethality of the Zmynd8D/D mice is due to early embryonic events since empty egg sacs were observed at E8.0, however we do agree that ZMYND8’s role in cardiac development cannot be assessed using this line. We state that empty yolk sacs are found in mother uteri 8 days after mating on page 4, lines 94-96.

      • Please request additional experiments only if they are essential for the conclusions. Alternatively, ask the authors to qualify their claims as preliminary or speculative, or to remove them altogether. The claim should be changed into "function of Zmynd8 in cardiac development can not be fully assessed in Zmynd8 D/D mice".

      We agree that the lethality of Zmynd8D/D * mice prevents any analysis of early embryonic roles for the establishment of the cardiac lineage. This is additionally confounded by the fact that other partial-length isoforms of Zmynd8* may still be present in our knockout model. We have modified our interpretation and have further discussed the potential role of ZMYND8 in early cardiac development on page 4, line 96.

      • If you have constructive further reaching suggestions that could significantly improve the study but would open new lines of investigations, please label them as "OPTIONAL". OPTIONAL: What about the phenotype of Nkx2-5 Cre mediated knockout of Zmynd8? Is it more severe than Myh6 Cre mediated knockout? At more earlier embryonic stage when cardiomyocytes are differentiated, are the skeletal muscle developmental genes ectopically upregulated in heart tube?

      This is an interesting observation and deserves further investigation. Our initial analysis of Nkx2.5-CreTg/0; Zmynd8fl/fl mice reveals that these mice do not die earlier than Myh6-CreTg/0; Zmynd8fl/fl mice or have a more severe phenotype. In fact, mice with Nkx2.5-Cre mediated cKO mice live longer than Myh6-Cre mediated cKO mice. We show that these mice do have ZMYND8 depleted from their cardiomyocyte nuclei and ectopically express TNNI2.

      This discrepancy in phenotype has been observed recently in mice lacking Kdm8 (Ahmed et al, 2023) and has been attributed to a lower efficiency of the Nkx2.5-Cre recombinase compared to Myh6-driven Cre.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated time investment for substantial experiments. Yes.

      • Are the data and the methods presented in such a way that they can be reproduced? Yes.

      • Are the experiments adequately replicated and statistical analysis adequate? Yes.

      Minor comments:

      • Specific experimental issues that are easily addressable. Have the female Zmynd8-cKO mice always died before their male siblings been pregnant with heart overload?

      All lifespan data are of non-pregnant females. All mice (i.e., both males and females) used in these analyses were not used for mating. We now explicitly say this in the mouse husbandry section of our Materials and Methods section.

      • Are prior studies referenced appropriately?

      This paper "De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations" should be referenced.

      Thank you. We have referenced this paper (Dias et al. 2022) on page 3, line 61 as well as in the Discussion on page 9, line 211.

      • Are the text and figures clear and accurate? Description of "cardiomegaly, preventing a compact myocardium phenotype, heart enlargement and thinning of the ventricular" should be more accurate and professional. We have changed the following in the text:

      Page 6, line 150 “preventing a compact myocardium phenotype” to “during later stages of cardiac development” on

      Page 6, line 153 “heart enlargement” to “The heart weight of Zmynd8-cKO mice”

      Page 7, line 158 “thinning of the ventricular” to “dilated cardiomyopathy”

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions? GSEA analysis of RNA-seq can be used to show the enrichment of cardiac and skeletal genes.

      Because GSEA analysis requires at least three replicates per group to have the appropriate statistical power, we opted to show Gene Ontology analysis using DAVID software.

      Reviewer #3 (Significance (Required)):

      • General assessment: provide a summary of the strengths and limitations of the study. What are the strongest and most important aspects? What aspects of the study should be improved or could be developed? This study show that Zmynd8-cKO mice develop dilated hearts, decreased cardiac function, and illegitimate expression of skeletal muscle genes. However, the genes regulated by Zmynd8 during early developmental stage have not been identified and the functional mechanism of Zmynd8 during heart development remains unclear.

      • Advance: compare the study to the closest related results in the literature or highlight results reported for the first time to your knowledge; does the study extend the knowledge in the field and in which way? Describe the nature of the advance and the resulting insights (for example: conceptual, technical, clinical, mechanistic, functional,...). Genetic mutations of Zmynd8 have been identified in congenital heart diseases with cardiac structural defects. And this study further shows that dysfunction/weaker mutations of Zmynd8 as a reason for dilated cardiomyopathy with decreased function.

      • Audience: describe the type of audience ("specialized", "broad", "basic research", "translational/clinical", etc...) that will be interested or influenced by this research; how will this research be used by others; will it be of interest beyond the specific field? This study shows that dysfunction of Zmynd8 as a reason for dilated cardiomyopathy with decreased function. Researchers of "basic research" and "clinical" may be interested in this study.

      • Please define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. heart development, dilated cardiomyopathy, epigenetics

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors report a novel and simple method to analyze the heterogeneity of various organelles. After imaging a large set of fluorescent-marker-labeled organelles, cluster analysis is adapted for illuminating the dynamics of organelles. Through this novel method, the authors are able to report organelle contact, which previously can only be observed by super-resolution imaging. This is method could significantly accelerate future discoveries at the cellular level. The manuscript is well written and has the potential be published in high-ranking journals, after a minor revision.

      To further demonstrate the unique power of this new method, the authors should test cells under known stimulation altering the dynamics of organelles. For instance, wortmannin can blocks the conversion from early endosomes to late endosomes. By doing that, the potential of this new method will be endorsed.

      Response:

      We thank Reviewer #1 for the positive comments. We will add an experiment using wortmannin to block the process of endocytosis at a specific stage, as part of the experiments analyzing the process of endocytosis.

      **Minor issue:** The authors should include more details about how to avoid signal crosstalk between adjacent fluorescent channels.

      Response:

      In the Methods section, we have added the following sentences to Lines 398-405.

      “In order to avoid signal crosstalk between adjacent fluorescence channels, eight fluorophores with distinct spectral distances were selected, and the samples were irradiated sequentially with lasers in the order from the longest wavelength, i.e., fluorescence from 646 to 731 nm was excited by a 640 nm laser, fluorescence from 569 to 634 nm was excited by a 561 nm laser, fluorescence from 494 to 554 nm was excited by a 488 nm laser, and fluorescence from 411 to 481 nm was excited by a 405 nm laser, as shown in Extended Data Fig. 1b.”

      Reviewer #1 (Significance (Required)):

      The comprehensive monitoring of organelle dynamics through the integration of multi-dimensional parameters can proficiently evaluate the condition and prognosticate the destiny of living cells in response to external stimulations. This new multi-dimensional assay reported in this manuscript represents a huge step towards this goal. Since this new method is simple and powerful, cell biologists will quickly start to use this new method for the study of subcellular dynamics.

      My lab is also developing a similar approach for organelles based on super-resolution imaging. I would like to congratulate the authors for this beautiful work.

      Response:

      We thank Reviewer #1 for the positive comment.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript reports a multi-parametric particle-based method for analysis of organelles. The method aims to resolve heterogeneous populations of organelles involved in various cellular processes. They propose to isolate organelles labelled with multiple markers, after homogenization and sonification of the cells, and analyse the resulting particles by fluorescence microscopy using spectral imaging. Afterwards, the authors visualize and analyse the obtained data with dimension reduction techniques.

      Even though an interesting approach, the method and presented applications needs major improvisations before it can prove to be impactful for the field

      I note some possible improvement points below:

      • Initially, I think the current set of cell lines and labels should be extended also to include a wider set. The current limited set raises the question if the method authors report is also applicable to other cell lines, or if it only feasible with overexpressed markers. Including different cell lines with different labels would make the study more convincing and comprehensive.

      Response:

      We thank Reviewer #2 for this constructive comment. Regarding cell types, we will conduct experiments with HEK293T cells in addition to HeLa cells, labeling at least five different types of typical organelles. In our method, as shown in Figure 1a and 5a, we have already used not only overexpressed markers but also fluorescently labeled ligands (EGF-Alexa, transferrin-Alexa) and antibodies against endogenous proteins (anti-PMP70, anti-LAMP1), as well as direct labeling of cell membrane proteins (Alexa-NHS). Therefore, there are no significant limitations with respect to organelle labeling methods.

      • It is surprising that the authors explicitly list already the limitations of fluorescence microscopy and super-resolution microscopy in the second paragraph of their introduction, however present a method fully dependent on fluorescence labelling and imaging methods. Actually their approach takes away the spatial information of FM approaches, and further makes the approach prone to the limitations they state.

      They are also not fully fair about the limitation they state for Electron microscopy, as newly developed approaches (e.g. doi:10.1093/micmic/ozad067.1091;  doi:10.1126/science.aay3134) widely extend the limited field of view and sampling capacity of EM. I recommend the authors to state the potential advantage/superiority of the reported method rather than stating the unclear limitations of the existing powerful methods.

      Response:

      Regarding fluorescence microscopy, it appears that our description was inadequate and misled the reviewers. There is no problem with fluorescence microscopy itself. What we intended to convey was that “when attempting to detect individual organelles ‘in cells’, there are limitations in the resolution of fluorescence microscopy because organelles are densely packed”. We have added this to the text on Line 49. Also, we thank Reviewer #2 for informing us about the high-speed 3D electron microscopy. We have cited the indicated papers in the text at Lines 54-55 and mention that “except for the recently developed high-throughput electron microscopy”.

      • Most organelle markers the isolation of organelles are based on are overexpressed in the cells: endoplasmic reticulum (ER, mTagBFP2 (BFP)-SEC61B), mitochondria (GFP-OMP25 and SNAP-OMP25), and the Golgi (Venus-GS27). This raises significant questions about the native state relevance of the reported results, and how well they represent the endogenous processes.

      Response:

      We will add experiments analyzing the behavior of both endogenous and exogenous markers for the same organelles, for example, anti-LAMP1 antibody and VAMP7-GFP for lysosomes, and anti-PMP70 antibody and PEX16-GFP for peroxisomes.

      • For the application on endosomes, can the authors state what is the new information enabled by their method? They study the very trafficking of EGF and Transferrin, 2 widely used endosomal cargoes with very well characterized trafficking steps, and show they are trafficked through Rab5/7 and Rab11 positive endosomes, respectively. This recapitulates the existing information, however falls short in delivering new insight. The authors can use these cargoes for proof-of-concept, but I would recommend to extend their study with less exploited cargoes to represent the potential of the reported method to deliver new information.

      Response:

      We thank Reviewer #2 for the positive suggestion about the potential of our method to provide new information. However, to demonstrate new biological insights, it would take a lot of time and delay the provision of our methodology, so we would like to submit this manuscript as a Methods paper with the proof-of-concept data.

      Reviewer #2 (Significance (Required)):

      The significance of biochemical and cellular processes being spatially regulated cellular organelles, and the roles of specific organelles in diseases from cancer to neurodegeneration are continuously being discovered and appreciated. Therefore development of methods reporting on the structure and function of organelles is important to accelerate these studies. In the reported method, however, the ultrastructure (as in Fib 1b) and the spatial information of the cellular organelles are inherently lost. The method falls in between a biochemical and a microscopic approach, however the advantages are not clearly portrayed. I recommend the authors to carefully and explicitly state where their method would be the method of choice rather than a biochemistry, mass spectroscopy, or microscopy approach. The authors should critically consider such an experiment as a proof-of-concept case.

      Response:

      We thank Reviewer #2 for the valuable suggestion. We added the following to the Discussion (Lines 267-277).

      “A further potential application of our method would be to measure how the levels of key molecules in an organelle change during its differentiation or maturation. For example, the levels of PI4P and syntaxin 17 change during autophagosome maturation (Shinoda et al. eLife Preprint Review doi.org/10.7554/eLife.92189.1), which can be better demonstrated by this method using multiple markers for each stage of autophagosome formation and maturation, PI4P, and syntaxin17 because autophagosomes at different stages coexist in cells. In such cases, our single-particle analysis method, which examines the state of individual autophagosomes, would be more appropriate than biochemical methods that examine averages. In addition, it is difficult to quantitatively analyze many organelle structures in cells using fluorescence microscopy. Our particle-based analysis method can overcome this problem.”

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      **Comments, suggestions, and questions**

      • I would like to start with a positive suggestion. The authors completely miss out on the opportunity to promote their approach by not relying on any type of fixation. In most multiplexing experiments, the first major challenge is to find antibodies that work well for imaging. The second challenge is then to find antibodies that work well under the same fixation conditions. The authors present a multiplexing approach that is completely independent of fixation. I suggest discussing this in the manuscript and promoting the approach in that regard.

      Response:

      We thank Reviewer #3 for pointing out the advantages of our method. We have added “Our method that is independent of fixation is advantageous for the optimization of the staining condition (Lines 298-299).

      • I am wondering what defines the ‘resolution’ of this approach. I assume it is a combination of the sonication time -the longer the cell is sonicated, the smaller the fragments are - and the density of particles on the coverslip. What are the limits here? How does this affect the UMAP analysis? I would encourage the authors to discuss this in the manuscript.

      Response:

      The particle density on a coverslip can be easily reduced by simply diluting the particles in a buffer solution. Therefore, there is no density limit, which is an advantage of a cell-free system. To improve the resolution within a single organelle, for example, to separate distinct subdomains, as the reviewer mentioned, we can prolong the sonication time to make the particles smaller. However, since this will reduce the signal-to-background ratio and destroy organelle contacts, we used the sonication conditions as mild as possible. To investigate organelle subdomains and fragile contacts, the sonication conditions need to be optimized carefully, which should affect the UMAP analysis, but we think that these will be future work.

      We do not think that prolonged sonication will affect the UMAP analysis because relative fluorescent signals of each particle would not change. However, as mentioned above, too strong sonication would worsen the signal-to-noise ratio, resulting in poor clustering.

      We have added the above discussion to the Discussion (Lines 288-293).

      “Also, to improve the resolution within a single organelle, for example, to separate distinct subdomains, we can prolong the sonication time to make the particles smaller. However, since this will reduce the signal-to-background ratio and may destroy organelle contacts, we used the sonication conditions as mild as possible. To investigate organelle subdomains and fragile contacts, the sonication conditions need to be optimized carefully.”

      • The only real control the authors present are the correlative light and electron microscopy (CLEM) three images in Figure 1b, which seems very minimalistic for a very central and essential control experiment. How many of these control images did the authors take? Is there possibly a second method for a control experiment to link the fluorescence readout to an organelle fragment (e.g., purification or pulldown)?

      Response:

      Since all the markers we used are well-established, we believe that there is no concern about the fluorescence readouts to the organelle fragments. We have cited the following papers in Lines 84-85.

      SEC61B: Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 65, 271–303 (1996).

      OMP25: Horie, C., Suzuki, H., Sakaguchi, M. & Mihara, K. Characterization of signal that directs C-tail-anchored proteins to mammalian mitochondrial outer membrane. Mol Biol Cell 13, 1615–1625 (2002).

      GS27: Hay, J. C. et al. Localization, Dynamics, and Protein Interactions Reveal Distinct Roles for ER and Golgi SNAREs. J Cell Biol 141, 1489–1502 (1998).

      Fusella, A., Micaroni, M., Di Giandomenico, D., Mironov, A. A. & Beznoussenko, G. V. Segregation of the Qb-SNAREs GS27 and GS28 into Golgi Vesicles Regulates Intra-Golgi Transport. Traffic 14, 568–584 (2013).

      Although it is relatively easy to identify mitochondria-derived particles by EM based on their size and the presence of cristae-like structures (indeed we see many examples), it is more challenging for other organelles (because they appear simple vesicles). This is why we showed only mitochondria in Fig. 1b. Furthermore, the main purpose of this EM image is to show membrane contacts between the ER and mitochondria (related to Fig. 3).

      • Line 37-41: Could the authors please strengthen these statements with an appropriate citation (e.g., a review)?

      Response:

      We have cited the textbook Molecular Biology of THE CELL (the 6th edition, Chapter 12 and Chapter 13) in Lines 37 and 41.

      Response:

      We thank Reviewer #3 for notifying us of these important studies. We have rewritten the sentence on Lines 51-52 to read “Although multicolor imaging has been attempted with super-resolution microscopy (references of the indicated papers), it only partially solves the issue of resolution.”

      • The authors use spectral unmixing to overcome the limit of spectral multiplexing. While this has been demonstrated to work well for less than ten targets, it does not scale to multiplexing experiments with more than ten target species. I suggest that the authors discuss in the discussion part of the manuscript the potential of DNA-based multiplexed imaging, such as CODEX or DNA-PAINT, in combination with the presented approach.

      Response:

      In the Discussion (Lines 295-298), we have added the sentence “Current fluorescent particle detection uses spectral multiplexing, but this method has only been able to detect up to eight colors. Methods such as CODEX or DNA-PAINT with wide-field type illumination could significantly increase the number of targets”.

      Response:

      We thank Reviewer #3 for informing us. We have cited it in Line 72.

      • By using spectral unmixing for multiplexing, this method is limited to confocal due to spectral detection needs and therefore limited in throughput. It would be beneficial if it could work with wide-field type illumination. This could substantially increase the throughput, which is another reason why I think it would be important to discuss sequential multiplexing.

      Response:

      We agree with the Reviewer’s comment. We have added the discussion to Lines 295-298 as described in our response to Reviewer #3, Comment (6).

      • To image contact sites, the authors use split GFP. There have been discussions that split GFP might, in some cases, facilitate the process that is supposed to be measured, in this case, the formation of contact sites. I suggest using at transient version of split GFP, called split fast, for follow-up experiments in the authors’ next papers (https://www.nature.com/articles/s41467-019-10855-0).

      Response:

      We thank Reviewer #3 for providing this information. We will do it as suggested in the next paper.

      • Line 27 & 253: Please drop the term ‘intuitive’ or explain better what you mean by intuitive. For me, UMAP is certainly a very useful tool, but it is not at all what I would describe as intuitive.

      Response:

      We have deleted ‘intuitive’ in all seven places and rewritten them (Lines 27, 43, 58, 72, 180, 231, and 253).

      • Lastly, I want to mention that the authors state they used ChatGPT, DeepL, and DeepL Write for translation from Japanese to English. I appreciate their honesty.

      Response:

      We thank Reviewer #3 for the comment.

      Reviewer #3 (Significance (Required)):

      In the manuscript titled “Organelle Landscape Analysis Using a Multi-parametric-Based Method,” Kurikawa et al.present a method for multi-parametric, particle-based analysis of cellular organelles. After lysing cells, the fractions of the organelles are partially labeled with fluorescently tagged antibodies, while others are already tagged with fluorescent proteins, using six to eight spectrally different fluorescent dyes/proteins. These fractions are subsequently immobilized on a poly-L-lysine-coated coverslip. The authors use spectral unmixing to distinguish these markers. The6-8 multiplexed imaging data is then presented in two-dimensional UMAP space. The authors then use this approach to visualize seven major organelles, transitional sites of endocytic organelles, and contact sites between the endoplasmic reticulum and mitochondria using split GFP.

      The authors present, in my opinion, a conceptually new and interesting approach by combining spectral unmixing for imaging up to eight targets, with organelle fragment imaging, and presenting multidimensional data in two-dimensional Uniform Manifold Approximation and Projection (UMAP) space in this manuscript. They further validated this approach by linking the results of the experiments to results established or at least reported in the literature.

      In general, the manuscript is, in my opinion, a good fit for publication as it presents a conceptionally new approach and an interesting example of applying the UMAP approach, which might be of interest to a broader readership. Therefore, after an appropriate response to my comments, suggestions, and questions (see below), I would recommend this manuscript for publication.

      Response:

      We thank Reviewer #3 for the positive comment.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1. Experiments regarding the inducible expression of MukBEF: The authors should provide western blots or rt-qPCR for MukBEF expression at 40 min and 2H.

      We provide now a western blot of MukB in non-induced and induced conditions as Figure 1-figure supplement 1D.

      1. Experiments with RiTer and LiTer constructs:<br /> a. Authors compare the mukB deletion against wild type (Fig. 2C). It would be additionally informative if these comparisons are made for matP deletion and wild type as well. This will strengthen the conclusion that long-range interactions in ter do increase in the absence of matP.

      We agree that the matP mutant may help the reader to compare the effect of the translocation in different backgrounds and have added it to the figure. This strengthens the conclusion that longrange interactions in ter do increase in the absence of matP in a rearranged chromosome, as observed in the WT configuration (Lioy et al., 2018).

      b. Additionally, in Fig. 2C, it appears that there is some decrease in long-range interactions in the absence of mukB in ter1 (Riter). Is this a significant change?

      The change observed is not significant. The results shown in Fig. 2C have been obtained using a 3C approach, which generated slightly more variability than Hi-C. Furthermore, we measured the range of contacts for the segment corresponding to Ter1 in RiTer (matS12-matS28), in different genetic contexts and different configurations. The results show that this level of variation is not significant (see graph below reporting two independent experiments).

      Author response image 1.

      Range of interactions measured on the interval matS12-matS18 in different genetic contexts and different configurations (MG1655 WT(1 and 2), ∆mukB, RiTer, RiTer ∆mukB).

      1. Experiments with various matS organizations: These experiments are interesting and an important part of the paper. However, it is rather hard to visualize the chromosome conformations in the strains after transposition. To aid the reader (particularly with panel E), authors can provide schematics of the chromosome conformations and anticipated/ observed chromosomal interactions. Circular interaction plots would be useful here.

      We thank the reviewer for this interesting remark; we have tried in the past to represent these interactions using a circular representation (see for example the web site of Ivan Junier; https://treetimc.github.io/circhic/index.html). However, this representation is not trivial to apprehend for nonspecialists, especially in strains with a rearranged chromosome configuration. Nonetheless, we have added graphical circular representations of the chromosome configurations to help the reader.

      1. ChIP experiments:<br /> a. This section of the manuscript needs to be further strengthened. It is not clear whether the ChIP signal observed is significant (for example at T10 or T20 min, the peak value does not appear to go above 1.1 fold. Can the authors be sure that this small increase is not simply a consequence of increase in copy number of the loci around the origin, as replication has initiated?

      The basal value of the ChIP on the non-replicated sequences (between 0-3.5 Mb for 10 minutes and 0-3 Mb for 20 minutes) is 0.8 and 0.7, respectively, whereas the mean value of the replicated sequence is 1.6 and 1.45. So the enrichment observed for these two points is about 2-fold, not 1.1 and it is 4 fold for t40min. These values were obtained by dividing the number of normalized reads in the ChIP (the number of reads at each position divided by the total number of reads) by the normalized reads of the input. Therefore, the increase in copy number is considered in the calculation. Furthermore, we added a supplementary figure (Figure Sup9) in which we performed a ChIP without tags on synchronized cells, and in this case, we did not observe any enrichment triggered by replication.

      b. Authors make a conclusion that MukB loads behind the replication fork. However, the time resolution of the presented experiments is not sufficient to be certain of this. Authors would need to perform more time-resolved experiments for the same.

      Reviewer 1 is correct; we attempted to discriminate whether the observed enrichment is (i) associated with the replication fork since we observed a decrease in the center of the enrichment at oriC as the maximum enrichment moves away with the replication fork after 20 and 40 minutes, or (ii) associated with the newly replicated sequence. To investigate this, we attempted to induce a single round of replication by shifting the cells back to 40°C after 10 minutes at 30°C. Unfortunately, replication initiation is not immediately halted by shifting the cells to 40°C, and we were unable to induce a single round of replication. To clarify our conclusions, we modified our manuscript to

      “Altogether, these findings indicate that MukBEF is loaded into regions newly replicated either at the replication fork or even further behind it, except in the Ter region from which it would be excluded.”

      c. Authors conclude that in the LiTer7 strain, MukB signal is absent from Ter2. However, when compared with the ChIP profiles by eye across panels in A and B, this does not seem to be significant. In the same results sections, authors state that there is a 3-fold increase in MukB signal in other regions. The corresponding graph does not show the same.

      Rather than relying solely on the enrichment levels, which can be challenging to compare across different strains due to slight variations in replication levels, we believe there is a clear disruption in this profile that corresponds to the Ter2 sequence. Furthermore, this discontinuity in enrichment relative to the replication profile is also observable in the WT configuration. At T40min, MukB ChIPseq signals halt at the Ter boundary, even though Ter is actively undergoing replication, as evidenced by observations in the input data.

      Regarding the fold increase of MukB, Reviewer 1 is correct; we overestimated this enrichment in the text and have now corrected it.

      d. Authors should provide western blot of MukB-Flag.

      We have added Supplementary Figure 1 D, which contains a Western blot of MukB-Flag.

      1. The bioinformatic analysis of matS site distribution is interesting, but this is not followed upon. The figure (Fig 5) is better suited in the supplement and used only as a discussion point.

      We acknowledge the reviewer's point, but we used this section to attempt to extend our findings to other bacteria and emphasize the observation that even though a few matS sites are necessary to inhibit MukBEF, the Ter domains are large and centered on dif even in other bacteria.

      1. The discussion section is lacking many references and key papers have not been cited (paragraph 1 of discussion for example has no references).

      The possibility that SMC-ScpAB and MukBEF can act independent of replication has been suggested previously, but are not cited or discussed. Similarly, there is some evidence for SMC-ScpAB association with newly replicated DNA (PMID 21923769).

      We have added references to the suggested paragraph and highlighted the fact that MukBEF's activity independent of replication was already known. However, we believe that the situation is less clear for SMC-ScpAB in B. subtilis or C. crescentus. In a similar manner, we found no clear evidence that SMCScpAB is associated with newly replicated DNA in the referenced studies.

      To clarify and enrich the discussion section, we have added a paragraph that provides perspective on the loading mechanisms of SMC-ScpAB and MukBEF.

      1. There are minor typographical errors that should be corrected. Some are highlighted here:

      a. Abstract: L5: "preferentially 'on' instead of 'in'"

      b. Introduction: Para 1 L8: "features that determine"

      c. Introduction: Para 2 L1: please check the phrasing of this line

      d. Results section 2: L1: Ter "MD" needs to be explained

      e. Page 8: Para 2: L6: "shows that 'a'"

      g. Page 13: Para 2: "MukBEF activity...". This sentence needs to be fixed.

      i. Figure 4: "input" instead of "imput"

      We thank Reviewer 1 for pointing out all these grammatical or spelling mistakes. We have corrected them all.

      f. Page 12: Para 2: "Xer" instead of "XDS"? *We added a reference to clarify the term.

      h. Methods: ChIP analysis: Authors state "MatP peaks", however, reported data is for MukB

      This description pertains to the matP peak detection shown in Supplementary Figure 3. We have incorporated this clarification into the text.

      j. Supplementary figure legends need to be provided (currently main figure legends appear to be pasted twice)

      Supplementary figure legends are provided at the end of the manuscript, and we have edited the manuscript to remove one copy of the figure legends.

      k. Authors should ensure sequencing data are deposited in an appropriate online repository and an accession number is provided.

      We waited for the appropriate timing in the editing process to upload our data, which we have now done. Additionally, we have added a data availability section to the manuscript, including sequence references on the NCBI.

      Reviewer #2 (Recommendations For The Authors):

      The authors largely avoid speculation on what might be the physiological relevance of the exclusion of MukBEF (and Smc-ScpAB) from the replication termination region (and the coordination with DNA replication). At this stage it would be helpful to present possible scenarios even if not yet supported by data. The authors should for example consider the following scenario: loop extrusion of a dif site in a chromosome dimer followed by dimer resolution by dif recombination leads to two chromosomes that are linked together by MukBEF (equivalent to cohesin holding sister chromatids together in eukaryotes but without a separase). This configuration (while rare) will hamper chromosome segregation. Is MatP particularly important under conditions of elevated levels of chromosome dimers? Could this even be experimentally tested? Other scenarios might also be entertained.

      Even though we prefer to avoid speculations, we agree that we may attempt to propose some hypotheses to the reader. To do so, we have added a few sentences at the end of our discussion. “We may speculate, based on in vitro observations (Kumar et al., 2022), that MukBEF could interfere with TopIV activity and delay potential chromosome decatenation. Another possibility is that chromosome dimers resolved at the dif site may become trapped in loops formed by MukBEF, thus delaying segregation. But none of these possible scenarios are supported by data yet, and a major challenge for the future is to determine whether and how MukBEF may interfere with one or both of these processes.”

      The manuscript text is well written. However, the labeling of strains in figures and text is sometimes inconsistent which can be confusing (LiTer Liter liter; e.g Riter Fig 2C). For consistency, always denote the number of matS sites in LiTer strains and also in the RiTer strain. The scheme denoting LiTer and RiTer strains should indicate the orientation of DNA segments so it is clear that the engineering does not involve inversion (correct?). Similarly: Use uniform labelling for time points: see T40mn vs 40mn vs T2H vs 2H

      We have reviewed the manuscript to standardize our labeling. Additionally, we have included a schema in Figure 2, indicating the matS numbers at the Ter border to emphasize that the transposition events do not involve inversion.

      matS sites do not have identical sequences and bind different levels of MatP (suppl fig 3). Does this possibly affect the interpretation of some of the findings (when altering few or only a single matS site). Maybe a comment on this possibility can be added.

      We agree with the referee; we do not want to conclude too strongly about the impact of matS density, so we have added this sentence at the end of the section titled 'matS Determinants to Prevent MukBEF Activity':

      “Altogether, assuming that differences in the matS sequences do not modify MatP's ability to bind to the chromosome and affect its capacity to inhibit MukBEF, these results suggested that the density of matS sites in a small chromosomal region has a greater impact than dispersion of the same number of matS sites over a larger segment”

      Figure 5: show selected examples of matS site distribution in addition to the averaged distribution (as in supplemental figure)?

      Figure 5 shows the median of the matS distribution based on the matS positions of 16 species as displayed in the supplementary figure. We believe that this figure is interesting as it represents the overall matS distribution across the Enterobacterales, Pasteurellales, and Vibrionales.

      How do authors define 'background levels' (page 9)in their ChIP-Seq experiments? Please add a definition or reword.

      We agree that the term 'background level' here could be confusing, so we have modified it to 'basal level' to refer to the non-replicating sequence. The background level can be observed in Supplementary Figure 9 in the ChIP without tags, and, on average, the background level is 1 throughout the entire chromosome in these control experiments.

      This reviewer would naively expect the normalized ChIP-Seq signals to revolve around a ratio of 1 (Fig. 4)? They do in one panel (Figure 4B) but not in the others (Figure 4A). Please provide an explanation.

      We thank the referee for this pertinent observation. An error was made during the smoothing of the data in Figure 4A, which resulted in an underestimation of the input values. This mistake does not alter the profile of the ChIP (it's a division by a constant) and our conclusions. We provide a revised version of the figure.

      Inconsistent axis labelling: e.g Figure 4

      Enterobacterals should be Enterobacterales (?)

      KB should be kb

      MB should be Mb

      Imput should be Input

      FlaG should be Flag

      We have made the suggested modifications to the text.

      'These results unveiled that fluorescent MukBEF foci previously observed associated with the Ori region were probably not bound to DNA' Isn't the alternative scenario that MukBEF bound to distant DNA segments colocalize an equally likely scenario? Please rephrase.

      Since we lack evidence regarding what triggers the formation of a unique MukB focus associated with the origin and what this focus could represent, we have removed this sentence.

      Reviewer #3 (Recommendations For The Authors):

      The text is well-written and easy to follow, but I would suggest several improvements to make things clearer:

      1. Many plots are missing labels or legends. (I) All contact plots such as Fig. 1C should have a color legend. It is not clear how large the signal is and whether the plots are on the same scale. (II)<br /> Ratiometric contact plots such as in Fig. 1D should indicate what values are shown. Is this a log ratio?

      As indicated in the materials and methods section, the ratio presented on this manuscript was calculated for each point on the map by dividing the number of contacts in one condition by the number of contacts in the other condition. The Log2 of the ratio was then plotted using a Gaussian filter.

      1. Genotypes and strain names are often inconsistent. Sometimes ΔmukB, ΔmatP, ΔmatS is used, other times it is just mukB, matP, matS; There are various permutations of LiTer, Liter, liter etc.

      These inconsistencies have been corrected.

      1. The time notation is unconventional. I recommend using 0 min, 40 min, 120 min etc. instead of T0, T40mn, T2H.

      As requested, we have standardized and used conventional annotations.

      1. A supplemental strain table listing detailed genotypes would be helpful.

      A strain table has been added, along with a second table recapitulating the positions of matS in the different strains.

      1. Fig. 1A: Move the IPTG labels to the top? It took me a while to spot them.

      We have moved the labels to the top of the figure and increased the font size to make them more visible.

      1. Fig 1C: Have these plots been contrast adjusted? If so, this should be indicated. The background looks very white and the transitions from diagonal to background look quite sharp.

      No, these matrices haven't been contrast-adjusted. They were created in MATLAB, then exported as TIFF files and directly incorporated into the figure. Nevertheless, we noticed that the color code of the matrix in Figure 3 was different and subsequently adjusted it to achieve uniformity across all matrices.

      7, Fig 1C: What is the region around 3 Mb and 4 Mb? It looks like the contacts there are somewhat MukBEF-independent.

      The referee is right. In the presence of the plasmid pPSV38 (carrying the MukBEF operon or not), we repeatedly observed an increase of long range contacts around 3 Mb. The origin of these contacts is unknown.

      1. Fig 1D: Have the log ratios been clipped at -1 and 1 or was some smoothing filter applied? I would expect the division of small and noisy numbers in the background region to produce many extreme values. This does not appear to be the case.

      The referee is right, dividing two matrices generates a ratio with extreme values. To avoid this, the Log2 of the ratio is plotted with a Gaussian filter, as described before (Lioy et al., 2018).

      1. Fig 1E: I recommend including a wild-type reference trace as a point of reference.

      We have added the WT profile to the figure.

      1. Fig 2: I feel the side-by-side cartoon from Supplemental Fig. 2A could be included in the main figure to make things easier to grasp.

      We added a schematic representation of the chromosome configuration on top of the matrices to aid understanding.

      1. Fig. 2C: One could put both plots on the same y-axis scale to make them comparable.

      We have modified the axes as required.

      1. Fig. 3C: The LiTer4 ratio plot has two blue bands in the 3-4.5 Mb region. I was wondering what they might be. These long-range contacts seem to be transposition-dependent and suppressed by MatP, is that correct?

      The referee is right. This indicates that in the absence of MatP, one part of the Ter was able to interact with a distal region of the chromosome, albeit with a low frequency. The origin is not yet known.

      1. Fig. 3E: It is hard to understand what is a strain label and what is the analyzed region of interest. The plot heading and figure legend say Ter2 (but then, there are different Ter2 variants), some labels say Ter, others say Ter2, sometimes it doesn't say anything, some labels say ΔmatS or ΔmatP, others say matS or matP, and so on.

      We have unified our notation and add more description on the legend to clarify this figure :

      “Ter” corresponds to the range of contacts over the entire Ter region, in the WT strain (WT Ter) or in the ΔmatP strain (ΔmatP Ter). The column WT matSX-Y corresponds to the range of contacts between the designated matS sites in the WT configuration. This portion of the Ter can be compared with the same Ter segment in the transposed strain (Ter2). Additionally, the matS20-28 segment corresponds to Ter2 in LiTer9, just as matS22-28 corresponds to Ter2 in LiTer7, and matS25-28 to Ter2 in LiTer4. The range of contacts of this segment was also measured in a ΔmatP or ΔmatS background.”

      1. Fig. 4 and p.9: "Normalized ChIP-seq experiments were performed by normalizing the quantity of immuno-precipitated fragments to the input of MukB-Flag and then divide by the normalized ChIP signals at t0 to measure the enrichment trigger by replication."

      This statement and the ChIP plots in Fig. 4A are somewhat puzzling. If the data were divided by the ChIP signal at t0, as stated in the text, then I would expect the first plot (t0) to be a flat line at value 1. This is not the case. I assume that normalized ChIP is shown without the division by t0, as stated in the figure legend.

      The referee is right. This sentence has been corrected, and as described in the Methods section, Figure 4 shows the ChIP normalized by the input.

      If that's true and the numbers were obtained by dividing read-count adjusted immunoprecipitate by read-count adjusted input, then I would expect an average value of 1. This is also not the case. Why are the numbers so low? I think this needs some more details on how the data was prepared.

      The referee is right; we thank him for this remark. Our data are processed using the following method: the value of each read is divided by the total number of reads. A sliding window of 50 kb is applied to these normalized values to smooth the data. Then, the resulting signal from the ChIP is divided by the resulting signal from the input. This is what is shown in Figure 4. Unfortunately, for some of our results, the sliding window was not correctly applied to the input data. This did not alter the ChIP profile but did affect the absolute values. We have resolved this issue and corrected the figure.

      Another potential issue is that it's not clear what the background signal is and whether it is evenly distributed. The effect size is rather small. Negative controls (untagged MukB for each timepoint) would help to estimate the background distribution, and calibrator DNA could be used to estimate the signal-to-background ratio. There is the danger that the apparent enrichment of replicated DNA is due to increased "stickiness" rather than increased MukBEF binding. If any controls are available, I would strongly suggest to show them.

      To address this remark, a ChIP experiment with a non-tagged strain under comparable synchronization conditions has been performed. The results are presented as Supplementary Figure 9; they reveal that the enrichment shown in Figure 4 is not attributed to nonspecific antibody binding or 'stickiness’.

      1. Fig. 4A, B: The y-axes on the right are unlabeled and the figure legends mention immunoblot analysis, which is not shown.

      We labeled the y-axes as 'anti-Flag ChIP/input' and made corrections to the figure legend.

      1. Fig. 4B: This figure shows a dip in enrichment at the Ter2 region of LiTer7, which supports the authors' case. Having a side-by-side comparison with WT at 60 min would be good, as this time point is not shown in Fig. 4A.

      Cell synchronization can be somewhat challenging, and we have observed that the timing of replication restart can vary depending on the genetic background of the cells. This delay is evident in the case of LiTer7. To address this, we compared LiTer7 after 60 minutes to the wild type strain (WT) after 40 minutes of replication. Even though the duration of replication is 20 minutes longer in LiTer7, the replication profiles of these two strains under these two different conditions (40 minutes and 60 minutes) are comparable and provide a better representation of similar replication progression.

      1. Fig. 4C: Highlighting the position of the replication origin would help to interpret the data.

      We highlight oriC position with a red dash line

      1. Fig. 4C: One could include a range-of-contact plot that compares the three conditions (similar to Fig. 1E).

      We have added this quantification to Supplemental Figure 8

      1. Supplemental Fig. 2A: In the LiTer15 cartoon, the flanking attachment sites do not line up. Is this correct? I would also recommend indicating the direction of the Ter1 and Ter2 regions before and after recombination.

      In this configuration, attB and attR, as well as attL and attB', should be aligned but the remaining attR attL may not. We have corrected this misalignment. To clarify the question of sequence orientation, we have included in the figure legend that all transposed sequences maintain their original orientation.

      1. Supplemental Fig. 3: One could show where the deleted matS sites are.

      We added red asterisks to the ChIP representation to highlight the positions of the missing matS.

      1. Supplemental Fig. 3B: The plot legend is inconsistent with panel A (What is "WT2")?

      We have corrected it.

      1. Supplemental Fig. 3C: The E-value notation is unusual. Is this 8.9 x 10^-61?

      The value is 8.9 x 10-61; we modified the annotation.

      23) Abstract: "While different features for the activity of the bacterial canonical SMC complex, SmcScpAB, have been described in different bacteria, not much is known about the way chromosomes in enterobacteria interact with their SMC complex, MukBEF."

      Could this be more specific? What features are addressed in this manuscript that have been described for Smc-ScpAB but not MukBEF? Alternatively, one could summarize what MukBEF does to capture the interest of readers unfamiliar with the topic.

      We modified these first sentences.

      1. p.5 "was cloned onto a medium-copy number plasmid under control of a lacI promoter" Is "lacI promoter" correct? My understanding is that the promoter of the lacI gene is constitutive, whereas the promoter of the downstream lac operon is regulated by LacI. I would recommend providing an annotated plasmid sequence in supplemental material to make things clearer.

      We modified it and replaced “ lacI promoter” with the correct annotation, pLac.

      1. p. 5 heading "MukBEF activity does not initiate at a single locus" and p. 6 "Altogether, the results indicate that the increase in contact does not originate from a specific position on the chromosome but rather appears from numerous sites". Although this conclusion is supported by the follow-up experiments, I felt it is perhaps a bit too strong at this point in the text. Perhaps MukBEF loads slowly at a single site, but then moves away quickly? Would that not also lead to a flat increase in the contact plots? One could consider softening these statements (at least in the section header), and then be more confident later on.

      We used 'indicate' and 'suggesting' at the end of this results section, and we feel that we have not overreached in our conclusions at this point. While it's true that we can consider other hypotheses, we believe that, at this stage, our suggestion that MukBEF is loaded over the entire chromosome is the simplest and more likely explanation.

      1. p.7: "[these results] also reveal that MukBEF does not translocate from the Ori region to the terminus of the chromosome as observed with Smc-ScpAB in different bacteria."

      This isn't strictly true for single molecules, is it? Some molecules might translocate from Ori to Ter. Perhaps clarify that this is about the bulk flux of MukBEF?

      At this point, our conclusion that MukBEF does not travel from the ori to Ter is global and refers to the results described in this section. However, the referee is correct in pointing out that we cannot exclude the possibility that in a WT configuration (without a Ter in the middle of the right replicore), a specific MukBEF complex can be loaded near Ori and travel all along the chromosome until the Ter. To clarify our statement, we have revised it to 'reveal that MukBEF does not globally translocate from the Ori region to the terminus of the chromosome.' This change is intended to highlight the fact that we are drawing a general conclusion about the behavior of MukBEF and to facilitate its comparison with Smc-ScpAB in B. subtilis.

      1. p. 10: The section title "Long-range contacts correlate with MukBEF binding" and the concluding sentence "Altogether, these results indicate that MukBEF promotes long-range DNA contacts independently of the replication process even though it binds preferentially in newly replicated regions" seem to contradict each other. I would rephrase the title as "MukBEF promotes long-range contacts in the absence of replication" or similar.

      We agree with this suggestion and have used the proposed title.

      1. p. 13: I recommend reserving the name "condensin" for the eukaryotic condensin complex and using "MukBEF" throughout.

      We used MukBEF throughout.

    1. Author Response

      We appreciate your comments and also thanks to the reviewers for providing valuable feedback and recommendations. For most of the recommendations, we will respond in the revised version, which will provide more information for readers to understand and apply the study. For some of the recommendations, we can give quick responses as follows:

      Reviewer #2 (Public Review):

      The differences between passive and active immunolabeling, as well as photobleaching data, should be addressed for a comprehensive understanding.

      In passive immunolabeling, antibodies penetrate and achieve their targets merely via diffusion, without any additional force. In contrast, active immunolabeling utilizes an external force, such as pressure, electrophoresis, etc., to facilitate antibody penetration and therefore significantly speed up the staining process (i.e., one day vs. 2 months for a whole mouse brain). In our study, the samples we were dealing with were centimeter-sized; therefore, we employed only active electrophoretic immunolabeling (details provided in Materials and Methods). However, for laboratories that do not possess adequate devices or handle small specimens, they can employ passive immunolabeling instead. As for the photobleaching data, we will provide it in the revised version.

      The compatibility of MOCAT with genetically encoded fluorescent proteins remains unclear and warrants further investigation.

      We agree with the possibility that the encoded fluorescent proteins will be affected. Since there is evidence that fluorescence can be quenched by xylene and alcohol, which are two organic solvents used in paraffin processing, we think boost immunolabeling is necessary for observing genetically encoded fluorescent proteins. We also pointed out this limitation in the Discussion:

      “Fourth, endogenous fluorescence—such as GFP, YFP, and tdTomato—may be quenched during paraffin processing and thus need to be visualized by means of additional immunolabeling.”

      However, the extent to which endogenous fluorescence will be quenched during the paraffin processing and MOCAT procedure, and how much boost labeling can rescue, is worth investigating for broadening the application of MOCAT. We will provide it in the revised version.

      The composition of NFC1 and NFC2 solutions for refractive index matching should be provided.

      Since NFC1 and NFC2 are commercial products from Nebulem (Taiwan), the composition is non-disclosable. However, the refractive index of NFC1 and NFC2 is 1.47 and 1.52, respectively.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      We thank the referee for the positive review.

      Reviewer #2 (Public review):

      We thank the referee for his/her constructive comments

      1. The weakness of this work is the lack of clarification on the function of eIF2A in general. The novelty of this study was limited.

      We believe our study is valuable in providing strong evidence that eIF2A does not functionally substitute for eIF2 in tRNAi recruitment even when eIF2 function is impaired, and in showing that it does not contribute to translational control by uORFs or IRESs, thus ruling out the most likely possibilities for its function in yeast based on studies of the mammalian factor. We agree that the function of yeast eIF2A remains to be identified; however, we think this should be regarded as a limitation rather than a weakness in experimental design or data obtained in the current study.

      1. Related to this, it would be worth investigating common features in mRNAs selectively regulated (surveyed in Figure 3A).

      We did not embark on this because only 17 of the 32 transcripts showing TE reductions in Fig. 3A showed a pattern of TE changes consistent with a conditional requirement for eIF2A under conditions of reduced eIF2 function, exhibiting greater TE decreases when both eIF2 function was impaired by phosphorylation and eIF2A was eliminated from cells. Moreover, we could validate this conditional eIF2A dependence by LUC reporter for only a single mRNA, HKR1.

      Also, it would be worth analyzing the effect of eIF2A deletion on elongation (ribosome occupancy on each codon and/or global ribosome footprint distribution along CDS) and termination/recycling (footprint reads on stop codon and on 3′ UTR).

      We have analyzed the effects of deleting eIF2A on ribosome pausing at individual codons by calculating tri-peptide pause scores from our ribosome profiling data. The results shown in new Fig. 7 reveal that eIF2A plays no discernible role in stimulating the rate of decoding of any three-codon combinations.

      1. Regarding Figure 3D, the reporters were designed to include promoter and 5′ UTR of the target genes. Thus, it should be worth noting that reporter design was based on the assumption that eIF2A-dependency in translation regulation was not dependent on 3′ UTR or CDS region. The reason why the effects on ribosome profiling-supported mRNAs could not be recapitulated in reporter assay may originate from this design. This should be also discussed.

      We agree and included this stipulation in the DISCUSSION, while at the same time noting that the native mRNAs were examined in the orthogonal assay of polysome distributions.

      1. Related to the point above, the authors claimed that eIF2A affects "possibly only one" (HKR1) mRNA. However, this was due to the reporter assay which is technically variable and could not allow some of the constructs to pass the authors' threshold. Alternative wording for this point should be considered.

      We agree and revised text in the DISCUSSION to read: “A possible limitation of our LUC reporter analysis in Fig. 3D was the lack of 3’UTR sequences of the cognate transcripts, which might be required to observe eIF2A dependence. Given that native mRNAs were examined in the orthogonal assay of polysome profiling in Fig. 3E, the positive results obtained there for SAG1 and SVL3 in addition to HKR1 should be given greater weight. Nevertheless, our findings indicate a very limited role of yeast eIF2A in providing a back-up mechanism for Met-tRNAi recruitment when eIF2 function is diminished by phosphorylation of its α-subunit.”

      1. For Figure 3D, it would be worth considering testing the #-marked genes (in Figure 3C) in this set up.

      Actually, we did test 10 of the 17 mRNAs marked with “#”s in the reporter assays of Fig. 3C, which had been noted in the Fig. 3C legend.

      1. In box plots, the authors should provide the statistical tests, at least where the authors explained in the main text.

      At the first occurrence of a notched box plot (Fig. 2D), we explained in the main text that in all such plots, when the notches of different boxes do not overlap, their median values differ significantly with a 95% confidence level. In cases where overlaps between notches is difficult to assess by eye, we added the results of Mann-Whitney U tests with the p values indicated by asterisks, as explained in the legends. We added results of additional Mann-Whitney U tests to such box plots in Figs. 3B, 6A-C, and 6-supp. 1E & G and mentioned this in the corresponding legends.

      Reviewer #2 (Recommendations For The Authors):

      The first section of "Yeast eIF2A does not play a prominent role as a functional substitute for eIF2 in the presence or absence of amino acid starvation" can be subdivided into a couple of sections for better readability.

      Done.

      Although the authors have used SM to induce ISR in yeasts previously, the validation of eIF2alpha phosphorylation in Western blot would be helpful for readers. Also, it should be worth testing whether eIF2alpha phosphorylation was properly induced in eIF2A KO cells.

      The translational induction of GCN4 mRNA, which we have documented in WT and eIF2A∆ cells, provides a quantitative read-out of eIF2 functional attenuation superior to determining the proportion of eIF2α that is phosphorylated.

      For Figure 2B, the Venn diagram that shows the overlap between TE-changes genes in WT_SM/WT and those in eIF2A∆_SM/eIF2A∆ would be helpful (although a list was provided by the source data).

      The Venn diagram has been provided in a new figure, Figure 2-figure supplement 1B.

      For Figures 1C and 5A-B, the depiction of the positions of uORFs within the orange gene region would be helpful for readers.

      Done.

      For Figure 4A-C, the depiction of the IRES regions (if known) within the orange gene region would be helpful for readers.

      Done for the URE2 IRES, whose location is known.

      For Figures 1C, 4A-C, and 5A-B, the y-axis should have a label/scale.

      Added.

      For Figure 3C, the definition of #-marked genes should be concretely described (e.g., value range) in the legend.

      Added.

      For Figure 3D-E, the statistical test has been only shown in a couple of data. A full depiction of the statistical results for all the data sets may be helpful for readers.

      We explained that when notches in box plots do not overlap, their medians differ with 95% confidence. In cases where overlaps were difficult to discern, we added p values from Mann-Whitney U tests to the relevant box plots.

      For Figure 3E, it would be helpful if the authors could show the UV spectrum of the sucrose density gradient to show the regions isolated for the experiments.

      Added for a representative replicate gradient in the new figure, Figure 3-figure supplement 1.

      Reviewer #3 (Public Review):

      We thank the referee for his/her positive assessment of our study.

      Weaknesses:

      While no role of eIF2A in translation initiation is apparent, the authors do not determine what function eIF2A does play in yeast. Whether it plays a role in regulating translation in a different stress response is not determined.

      We agree that there are many additional possibilities to consider for functions of eIF2A in translation initiation, including different stress situations or mutant backgrounds; however, we regard this as a limitation rather than a weakness in the experimental design and data obtained in the current study in which we examined the most likely possibilities for eIF2A function in yeast based on studies of the mammalian factor.

      Reviewer #3 (Recommendations For The Authors):

      Curiously, the authors indicate that they could not replicate published results for eIF2A's repressor function for URE2, PAB1, or GIC1 translation. This is a little concerning and one wonders if the yeast strain used in the previous study is different in some way from the authors' strain. Did the authors obtain that strain to test it in their assays?

      The same WT and eIF2A∆ strains have been analyzed here and in the two cited studies on yeast IRESs.

      The authors do discuss the fact that eIF2A may function to regulate translation in response to different stresses. It would have been a strength to test an alternative stress in the current study. However, I also appreciate that this could be the subject of a future study.

      Agreed.

      One minor question I have is whether the yeast strains used possess L-A dsRNA virus? While it may not be that this virus would necessarily mask a role of eIF2A-dependent translation, do the authors have any specific thoughts on this? Would different results be obtained if cured strains were used?

      According to Ravoityte et al. (doi: 10.3390/jof8040381), the S. cerevisiae strain we employed, BY4741, harbors L-A-1 dsRNA; however, we have not explored whether curing the virus would alter the consequences of eliminating eIF2A.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements We appreciate the insightful reviewer comments. Both reviewers alluded to the logical lack of connection between two themes in the original paper. Specifically, we showed that N-cad differentially regulates migration in different environments, and that leader and follower cells differ phenotypically, but did not connect the two themes. In this revised version, we've performed additional experiments and undertaken a comprehensive reorganization of both the manuscript and figures. The major changes are outlined below:

      2. Figure 4 A-C has been moved to Figure 6 F-H.

      3. Figure 5 has been moved to Figure S3 F-H.
      4. Figure 6 F has been moved to Figure 7 A.
      5. Figure 6 G-H have been moved to Figure 7 D-E.
      6. Figure 6 I-J have been moved to Figure S5 A-B.
      7. Figure 7 C-F have been moved to Figure S5 C-F.
      8. Added transcriptome profiling of control and N-cad-depleted cells and of leader and follower cells (Figures 6 E, S1 H and S4 C-D, Tables S2 and S3). We have incorporated additional figures (Figure 4 and 5 in the revised manuscript) to support the idea that the amount of N-cad at the cell surface is regulated by endocytic recycling, thereby stimulating glioma migration in the different local environments. Furthermore, our new findings showed that YAP1/TAZ regulates the surface level of N-cad during glioma migration (Figure 8). We trust that these additions contribute to the clarity and robust justification of our paper.

      Similar to other types of tumors, our findings revealed that pediatric high-grade gliomas migrate collectively, possibly contributing to a more aggressive invasion than single cells. In this study, we found that N-cad mediates this collective glioma migration. Interestingly, within these migrating groups, leader and follower cells dynamically interchange positions during migration, accompanied by changes their phenotypic characteristics. This suggests that differences in phenotypes, including N-cad recycling, proliferation and YAP activation, may be predominantly regulated by cell-extrinsic factors rather than being predetermined by genetic or epigenetic factors. Moreover, our new RNA-sequencing results indicate minimal difference between leader and follower cells, except for the upregulation of YAP response and wound healing migration genes in leader cells. Although genomic alterations still possibly encode the leader-follower exchange, our findings strongly suggest that the activation of YAP1 and glioma migration are regulated by the cellular context, specifically where cells are located within the group.

      Contrary to our initial findings suggesting a positive feedback loop between N-cad endocytosis and nuclear YAP1, our revised data indicates that nuclear YAP appears to be independent of N-cad. We observed that homotypic interactions with N-cad present in the surrounding environment, such as neurons (Figure 6 C-D) or N-cad extracellular domain-coated surface (Figure 7 B-C), did not affect nuclear YAP1. However, YAP1/TAZ depletion decreased N-cad expression and altered its localization at the surface (Figure 8). This leads us to propose a revised model where nuclear YAP1 stimulates surface N-cad, thereby facilitating the distinct modes of migration on ECM and neurons (Figure 8 I).

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Kim and colleagues describe the role of N-Cadherin during pediatric glioma migration. They compare cell lines that have similar transcripts but different levels of N-Cadherin protein and find that N-Cadherin levels influence the route of migration - whether it be on ECM or other tissues. They also describe molecular feedback between N-Cadherin and YAP in leader vs follow cells of their systems. The data are clear, well presented, and convincing; and the conclusions described by the manuscript are mostly justified. My major criticism of the manuscript is that the line of questioning undertaken does not appear well justified. At many points, I was left asking "but why are they doing this?" and I could not understand the rationale for some of the experiments that were performed (even if they were performed well). The manuscript opens by validly describing how gliomas are highly invasive, poorly understood and that N-Cadherin was highly expressed in comparison to other adhesion proteins. This opened the path for the questions and experiments performed that contributed to Figures 1-3, which I thought were interesting. From there on, I found the logic of the story unclear and poorly justified. For example, I do not know why leader and follower cells were justified - when it had nothing to do with N-Cadherin which was the focus of the work prior. And then, having rightly concluded in Figure 4 that the data suggested that leader and follower cells dynamically exchange positions rather than being pre-determined, they went onto further figures focusing on differences between leader and follower cells, which left my quite confused. I am likewise confused by the model proposed in that, they authors describe that the difference between leader and follower cells contributes to a nuclear YAP/N-Cad endocytosis feedback loop that feeds into the speed of migration. Yet, the authors describe earlier that leader and follower cells frequently exchange positions, with no evidence that they are pre-determined. How do the authors square these seemingly conflicting points? And further, what is the relevance of this to understanding the differing modes of migration (on ECM or other tissues)? On this issue, I suggest authors re-consider whether the order of figures or logic of the story is appropriate (perhaps consider moving some figures to supplement?), and to clearly justify in the text the elements that are being addressed. Overall, I think the messaging, logic and justification could be use significant improvement; the experiments however are well performed, and the figures are very clear and nicely presented, and I don't have any qualms about them.

      We appreciate your insightful comments, recognizing the need for logical and justifiable improvements in certain sections of our previous manuscript. Please see Section 1, General Statements, for an explanation of changes made.

      Minor Comments

      1. Not required, but the authors may wish to consider putting t=0 pictures of the experiments in the supplement as supportive evidence for the circles of the initial seeding location they show in Fig 1.

      We provide the t=0 images in Figure S1 N and O.

      1. I assume the title of the second results section should say "migration speed" rather than "speed migration"

      The new title of the second results section is “N-cad stimulates and inhibits migration through intercellular homotypic interaction”.

      1. Fig. 4D - Are both example cell pictures leaders? If so, I'm not sure why two have been provided; I'm guessing the bottom set are supposed to be follower cells. If so, please label as appropriate. (And if not, a representative set of pictures from a follower cell should be provided).

      We have enhanced the clarity of the labels. We provide representative high magnification images of leader and follower cells. The updated figure can be found in Figure 5 A.

      1. Figure 5 Legend - the title of this figure is too definitive, and exaggerates further than the main text does, which was correct in saying that the experiments only suggest that N-Cadherin endocytosis might regulate the localisation of b-catenin and p120-catenin. Probably I would go further and say that there is no experimental evidence provided that even suggests that in the first place, and that this is a hypothesis that remains to be tested. The authors should inhibit endocytosis specifically (rather than just depleting N-Cad) and see the effect, to justify their conclusion.

      We appreciated your points and concerns. Following your earlier suggestion, we have moved the figure to the supplementary section (Figure S3 F-H). Moreover, we have addressed the reciprocal regulation of N-cad and catenins by knocking down p120-, β- or α-catenin. Our new findings showed that p120-, β- or α-catenin depletion decrease the amount of N-cad at the cell surface, not steady-state protein level, resulting in decreased migration on astrocytes but increased migration on ECM (see Figure 4). These findings support the idea that catenins play a role in glioma migration according to the environment by altering surface N-cad level. With that, we updated the figure title to “Catenins regulate N-cad surface levels to stimulate or inhibit migration.”

      Reviewer #1 (Significance (Required)):

      The manuscript provides a characterised of invasive glioma migration that was previously lacking. It also provides interesting observations related to the role of N-Cadherin for different modes of migration (on ECM or on tissues) that will be of interest for further exploration. It makes a good advance in terms of addressing a highly invasive cell type that has poor prognosis. I anticipate that now this initial characterisation has been performed, authors and others will be interested in gaining a deeper understanding as to how these two modes of migration are controlled, how there might be interplay between them and how such findings contribute to its highly invasive nature. I have expertise in collective cell migration and directed cell migration.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary In the submitted manuscript, Kim et al. describe various aspects of N-cadherin function in the collective migration of PBT-05 cells, a pediatric high-grade glioma line, on laminin, 3D-matrigel, neurons or astrocytes. N-cadherin promotes the collective migration on neurons or astrocytes, whereas it suppresses the migration on laminin or 3D-matrigel. The authors also show that N-cadherin is actively internalized and recycled in the leader, but not follower, cells of the collective, which induce the nuclear accumulation of YAP/TAZ proteins. YAP/TAZ proteins are shown to regulate the collective migration.

      Thank you for the comments. Please see Section 1, General Statements, for a summary of changes made. Please also note that our new experiments failed to show that N-cad levels or traffic regulate YAP/TAZ nuclear accumulation. Rather, YAP/TAZ are regulated by cell density independent of N-cad, and YAP/TAZ regulate N-cad protein levels and traffic independent of changes in N-cad RNA levels

      Major comments

      1. In Fig. 1G, N-cadherin knockdown seems to affect the distribution of astrocytes. The authors should stain a marker for astrocytes, instead of actin, and the red alone images should be provided.

      Astrocytes were cultured for 4 days to generate 3D scaffolds before adding the glioma spheroid, essentially as described (Gritsenko et al., Histochem Cell Biol, 2017). Co-cultures were stained for human-specific vimentin (glioma) or actin (glioma and astrocytes) (see Figure 1 G and separate channels in new Figure S1 P). There do not appear to be major changes in astrocyte organization outside the migration front, but we lack a way to stain for astrocytes specifically and cannot visualize astrocytes under the glioma cells. It remains possible that astrocytes may be affected differently by contact with control and N-cad-deficient glioma cells. However, we added a new experiment, assaying migration on decellularized astrocyte ECM. While N-cad stimulated migration on astrocytes it inhibited migration on astrocyte ECM (Figures 1 I and J and S1 Q). Thus N-cad stimulates glioma migration on astrocyte cells and not their ECM.

      1. The colocalization between N-cadherin and Rab11 may not be high in Figs. 4F and S2B. It is unclear whether the majority of the internalized N-cadherin is recycled to the plasma membrane. In Fig. S2B, the internalized N-cadherin may be located mainly at the early endosomes before transported to the recycling endosomes (Is it 20 min after the N-cadherin antibody internalization?). First, the authors should analyze the colocalization between the N-cadherin and Rab11 at 30-40 min after the internalization. If the colocalization with Rab11 would be still low at that time point, some of the internalized N-cadherin might be degraded in the lysosomes. To test this possibility, the authors should analyze the colocalization between N-cadherin and LAMP1 under the treatment with a lysosome inhibitor.

      At steady state, N-cad co-localized better with Rab5 than with Rab11 or LAMP1 (Figure 5 C-D). In kinetics experiments, N-cad antibodies were internalized for 40 min. They colocalized better with Rab5 or EEA1 than with Rab11 or LAMP1. When we allowed recycling for an additional 20 min, the surface level of N-cad antibodies partially recovered in leader cells more than follower cells (see Figures 5 G and S3 D). We tested whether treatment with lysosomal inhibitors would increase co-localization of N-cad with Rab11 in recycling endosomes. Surprisingly, however, Chloroquine or Bafilomycin A1 decreased the amount of internalized N-cad antibody in leader and follower cells, and long-term treatment did not increase total N-cad levels. Therefore, the fate of internalized N-cad in follower cells remains unclear.

      1. When N-cadherin is depleted, dissociated single cells are increased, but these cells are not well characterized. A high magnification image of the dissociated single cells is required. In addition, the migration speed of the dissociated single cells should be measured.

      We didn’t quantify single cell migration because only a minority of cells separate from the collective even when N-cad is depleted. Therefore, we quantified migration directionality and speed for cells at or near the front of collective migration (Figure 2 D-I). We have updated the image of single cells, providing representative high-magnification images in Figure S1 N and O.

      1. In Fig. S2D, treatment with Pitstop-2 alone or Dyngo-4a alone is required. Dynamin is also involved in clathrin-independent endocytosis and N-cadherin is reported to be internalized via caveolin-1-mediated endocytosis as well as clathrin-mediated during neuronal migration. It would be better to clarify which type of endocytosis occurs in the leader cells.

      We have removed results showing inhibition of cell migration and N-cad endocytosis by Pitstop-2 and Dyngo-4a from the paper. Treatment with either chemical alone had much less effect on internalization or migration than adding both together (see figure below). This is hard to explain. Pitstop-2 should inhibit clathrin-coated pit formation and Dyngo-4a should inhibit clathrin and caveolin-mediated endocytosis. Caveolin-1 and 2 transcripts were not detected in our cells (Table S2). There may be some other form of clathin-independent endocytosis. Interpretation is also challenging since these inhibitors will inhibit endocytosis of many receptors, not just N-cad. Accordingly, we have removed these results in the revised manuscript.

      1. In Fig. 2, N-cadherin depletion disturbs the migration directionality. Is this a result from disruption of cell polarity? To test this, the position of centrosome or Golgi or lamellipodia in the leader cells should be analyzed. (OPTIONAL)

      We elected not to perform this analysis.

      1. I cannot understand the significance of Fig. 5F and 5G. If the authors would speculate that alpha- and beta-Catenins may transduce the intracellular signaling from the internalized N-cadherin, the authors should perform the knockdown experiments of the Catenins and analyze whether it may affect the nuclear accumulation of YAP/TAZ. (OPTIONAL)

      We agree. In the initial manuscript, we showed that N-cad depletion altered the localization of p120-, β-, and α-catenin (previously shown in Figure 5 F-G). For better clarity and logic, these figures have been moved to Figure S2 H in the revised manuscript. Additionally, to test whether catenins regulate N-cad and YAP1, we depleted p120-, β-, or α-catenin using shRNA. We found that downregulation of p120-, β-, or α-catenin decreased N-cad surface levels, consequently slowing migration on astrocytes and stimulating migration on laminin (Figure 4). In other words, depleting catenins altered migration in parallel with the changes in N-cad surface level. Catenin depletion also increased single-cell dissociation, reduced the crowding of leader and follower cells, and increased nuclear YAP1 (see figure below). These findings suggest that the main role of p120-, β-, or α-catenin is to regulate surface N-cad. Since this result does not support a role for catenins transducing an N-cad signal to YAP1, we have not included it in the paper.

      Minor comments

      1. The quantitative data is required in Fig. 5E.

      Quantitative data from three independent experiment are now presented in Figure S2 G.

      1. Vinculin is associated with the cadherin-catenin complex and it may not be a good loading control (Fig. 3C and 3L).

      The Western blot data has been updated and is now presented in new Figure 3 B and 3 F, with β-tubulin as a loading control.

      **Referees cross-commenting**

      I totally agree with the other Reviewers' comments and evaluation. As the reviewer-1 pointed out, I also think the experiments are well performed, but it would lack logic at least in part (see my comment-6). In addition, as the reviewer-3 pointed out, the linking mechanism of N-cadherin homophilic interaction with YAP/TAZ signaling is important to improve this manuscript

      We hope the revisions have improved the logical flow. We have also added new results showing that YAP/TAZ regulate N-cad protein levels and localization but not N-cad RNA. N-cad is not needed for cell density-dependent regulation of YAP1 localization. The model is shown in Figure 8 I.

      Reviewer #2 (Significance (Required)):

      Strength N-cadherin has multiple function in cancer and neuronal migration, and both positive and negative effects of N-cadherin on cancer cell migration have been reported. In this regard, different behaviors of N-cadherin in the leader and follower cells of the collective are interesting and may explain the controversial previous results.

      Limitation This study reveals various aspects of N-cadherin function in the collective migration of the glioma cell line, but it is unclear whether these findings are applied to pediatric high-grade gliomas in vivo.

      Thus, this study is a potentially important and informative to cell biologists and researchers in cancer biology, although this reviewer also found several weak points that should be improved.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors explore the role of N-cadherin in the migratory/infiltrative behavior of human pediatric brain tumor cells, in light of their surrounding microenvironment. Their in-depth phenotype analysis allows to document the behavior of migrating cells and revisit the concept of leading/follower migratory cells (somehow more commonly applied to endothelial cells). They suspected that the YAP/TAZ pathway might modulate N-cadherin endocytosis and vice versa, using imagery-based cell tracking.

      Major comments

      1. To control for co-culture models, migration should be evaluated on decellularized matrices from astrocyte and neuron cultures.

      We thank for your suggestion. We tested glioma migration on astrocyte-derived decellularized matrices. The mouse astrocytes we used are known to produce various extracellular matrices with a composition similar to Matrigel, except for laminin α5. (Gritsenko et al., J Cell Sci, 2018). N-cad shRNA cells migrated faster on decellularized ECM than control (Figure 1 I-J and S1 Q). This result agrees with N-cad depletion increasing migration on ECM but is opposite to migration on astrocytes.

      1. N-cadherin was stably knocked down with shRNA, which raises the question of adaptative/compensatory mechanisms. First, one could ask what happen in knockout conditions. Similarly, transient siRNA-mediated silencing might help to strengthen the findings. Second, is there any impact of Ncad knock down on alternate adhesive receptors (either cell-cell or cell-ECM). This should be verified with bulk RNAseq.

      Transient knockdown with N-cad siRNA also increased migration on laminin-coated surface (Figure S1 L-M). Unfortunately, N-cad depletion with siRNA was short-lived, precluding its use for long-term assays, like coculture with neurons or astrocytes. To test whether there is any impact of N-cad knockdown on alternative adhesion receptors, we performed RNA-Seq (Figure S1 H, Table S2). We found N-cad depletion did not alter expression of other cell-cell and cell-ECM adhesive receptors except CDH3 (2.8-fold increase compared with 7-fold decrease in CDH2). Integrin expression was unchanged.

      1. It would be interesting to evaluate the impact of N-cadherin/N-cadherin homotypic interactions on YAP/TAZ signaling, using for instance N-cad-coated surface.

      We observed that the homotypic interaction of N-cad with surrounding neurons and astrocytes did not hinder the accumulation of nuclear YAP1 in leader cells (Figure 6 C-D). To further support the idea that N-cad does not directly regulate YAP1 signaling, we have now measured YAP1 localization in cells migrating over N-cad ECD. The new data confirms that N-cad does not directly regulate YAP1 localization (Figure 7 B-C).

      1. along this line, the impact of mechanical cues (stiffness, 2D vs 3D) is not explored.

      We appreciate your suggestion. It is possible that different mechanical and cytoskeletal cues between leader and follower cells affect YAP1 signaling. In this study, we would like to focus more on the role of N-cad-mediated cell adhesions in YAP signaling.

      Minor comments

      1. Levels of N-cadherin expression in normal Astro and Neurons to compare with pediatric brain cancer cells (S1C)

      A new western blot analysis to show N-cad levels in DMG, PHGG and mouse cerebellar neurons and astrocytes has been added to Figure S1 F.

      1. Low versus high density culture conditions should be controlled and its further impact on the YAP/Ncad endocytosis route should be supported experimentally, or to be omitted from their proposed model.

      We previously used different size of micropattern discs to control low or high cell density. Smaller cell clusters, with more edge cells and hence fewer cell-cell interactions, had higher nuclear YAP1 (Figure 7 D-E). We have repeated this experiment, including N-cad ECD antibodies to measure N-cad endocytosis. Smaller cell clusters had higher N-cad antibody internalization (Figure 7 F). Together with our evidence that leader cells have higher YAP1 and more N-cad internalization than followers, and that YAP/TAZ knockdown inhibits N-cad internalization, these results high YAP/TAZ in leader cells regulates N-cad internalization.

      Reviewer #3 (Significance (Required)):

      This paper presents robust image analysis of human pediatric brain tumor migration in the context of the different microenvironment that they might encounter (matrices, neurons, astrocytes). This study brings new concepts on the way N-cadherin might contribute to tumor cell migratory behavior based on the nature of the interactions in which N-cadherin is involved. As a limitation, it remains unclear the mechanism by which N-cadherin endocytosis is driven.

      We now discuss the limitations of the study as follows:

      “The mechanisms by which YAP1 regulates N-cad levels and trafficking remain to be explored. YAP1 is widely expressed in human brain tumors and strongly associated poor survival. Leader cells expressed higher levels of YAP1-response and wound-healing gene transcripts, but transcript levels of N-cad and proteins known to regulate cadherin traffic, such as p120-catenin, Rab5/11 and Rac1, were similar. Therefore, N-cad is likely regulated at the level of protein synthesis or turnover. More endosomal N-cad recycled to the surface of leader than follower cells, implying that follower cells might divert more N-cad for lysosomal degradation, but our attempts to interfere with N-cad endocytosis or degradation specifically were unsuccessful. Further understanding of the mechanism and function of N-cad recycling for glioma cell migration will require cargo-specific ways to selectively regulate endocytosis and recycling”.

    1. but no more so than thevoices of individu

      The authors describe teachers and texts as "the authoritative voice" in the classroom. This is an important power dynamic to be aware of. We may wholeheartedly believe that these voices are no more important than "the voices of individuals", but students are likely going to come to class with assumptions about our power. They may try to conform with the teacher's beliefs in an attempt to be "correct". This is why I think we need to address this power dynamic explicitly and remind students that we're not here to tell them what they need to believe and learn.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We thank the two reviewers for their constructive criticism, which helped to significantly improve our manuscript.

      During the revision process, we had to realize that the localization pattern reported for H. neptunium LmdCN-mCherry was an artifact caused by bleed-through of the BacA-YFP signal in the mCherry channel. More detailed studies showed that the fusion protein was detectable by Western blot analysis but, for unknown reasons, did not produce any fluorescence signal. Therefore, we have now removed the localization data shown in previous Figure 8B,C and Figure 8—figure supplement 1.

      To provide more evidence for a functional interaction between BacA and LmdC in H. neptunium, we have now established an inducible CRISPR interference system for this species and used it successfully to deplete LmdC (new Figure 9A-F). The loss of LmdC causes morphological defects very similar to those observed for the ΔbacA(D) mutant. In line with the physical interaction of BacA with the cytoplasmic region of LmdC observed in vitro, these findings support the hypothesis that the two proteins act in the same pathway. Consistent with the results obtained in H. neptunium, the absence of BacA leads to the delocalization of LmdC in R. rubrum. Moreover, we now provide in vivo evidence for a critical role of the cytoplasmic region of LmdC in the interaction of this protein with BacA in R. rubrum cells (new Figure 11). Together, these new findings strongly support the model that BacA and LmdC form a conserved morphogenetic module involved in the establishment of complex cell shapes in bacteria.

      Please see below for a more detailed explanation of our new results and for our response to the issues raised in the first round of review.

      Reviewer #1 (Public Review)

      In their study, Osorio-Valeriano and colleagues seek to understand how bacterial-specific polymerizing proteins called bactofilins contribute to morphogenesis. They do this primarily in the stalked budding bacterium Hyphomonas neptunium, with supporting work in a spiral-shaped bacterium, Rhodospirillum rubrum. Overall the study incorporates bacterial genetics and physiology, imaging, and biochemistry to explore the function of bactofilins and cell wall hydrolases that are frequently encoded together within an operon. They demonstrate an important, but not essential, function for BacA in morphogenesis of H. neptunium. Using biochemistry and imaging, they show that BacA can polymerize and that its localization in cells is dynamic and cell-cycle regulated. The authors then focus on lmdC, which encodes a putative M23 endopeptidase upstream of bacA in H. neptunium, and find that is essential for viability. The purified LmdC C-terminal domain could cleave E. coli peptidoglycan in vitro suggesting that it is a DD-endopeptidase. LmdC interacts directly with BacA in vitro and co-localizes with BacA in cells. To expand their observations, the authors then explore a related endopeptidase/ bactofilin pair in R. rubrum; those observations support a function for LmdC and BacA in R. rubrum morphogenesis as well.

      An overall strength of this study is the breadth and completeness of approaches used to assess bactofilin and endopeptidase function in cells and in vitro. The authors establish a clear function for BacA in morphogenesis in two bacterial systems, and demonstrate a physical relationship between BacA and the cell wall hydrolase LmdC that may be broadly conserved. The eventual model the authors favor for BacA regulation of morphogenesis in H. neptunium is that it serves as a diffusion barrier and limits movement of morphogenetic machinery like the elongasome into the elongating stalk and/or bud. However, there is no data presented here to address that model and the role of LmdC in H. neptunium morphogenesis remains unclear.

      We hypothesize that BacA establishes a barrier that prevents the movement of elongasome complexes into the stalk, either directly by sterical hindrance and/or indirectly by promoting the formation of an annular region of high positive inner cell curvature that cannot be passed by the elongasome. To test this model, we have now analyzed the localization dynamics of RodZ, a core structural component of the elongasome complex, in wild-type and ΔbacAD cells. We found that wild-type cells show dynamic YFP-RodZ foci whose movement is limited to the mother cell and the nascent bud, with no signal ob-served in the stalk. In ΔbacAD cells, by contrast, the fusion protein is consistently detected in all regions of the cell, including nascent stalks (new Figure 5). These results support the idea that BacA is required to confine the elongasome to the mother cell and bud regions and, thus, set the limits of the different growth zones in H. neptunium. We also attempted to follow the localization dynamics of other elongasome components, such as PBP2, MreC and MreD, but none of the corresponding fluorescent protein fusions was functional.

      In the past, we tried intensively to generate conditional mutants of lmdC, but all attempts to place the expression of this gene under the control of the copper- or zinc-inducible promoters available for H. neptunium were unsuccessful. To clarify the role of LmdC in H. neptunium morphogenesis, we have now established an inducible CRISPR interference system for this species and managed to block the ex-pression of lmdC using an sgRNA directed against the 5' region of its non-coding strand. We observed that cells lacking LmdC show a phenotype very similar to that of the ΔbacA mutant. Together with the finding that the N-terminal cytoplasmic region of LmdC physically interacts with BacA, this result strongly supports the hypothesis that BacA and LmdC act in the same pathway, forming a complex that ensures proper morphogenesis in H. neptunium (new Figure 9).

      The data presented illuminate aspects of bacterial morphogenesis and the physical and functional relationship between polymerizing proteins and cell wall enzymes in bacteria, a recurring theme in bacterial cell biology with a variety of underlying mechanisms. Bactofilins in particular are relatively recently discovered and any new insights into their functions and mechanisms of action are valuable. The findings presented here are likely to interest those studying bacterial morphogenesis, peptido-glycan, and cytoskeletal function.

      Reviewer #2 (Public Review):

      This is an excellent study. It starts with the identification of two bactofilins in H. neptunium, a demonstration of their important role for the determination of cell shape and discovery of an associated endopeptidase to provide a convincing model for how these two classes of proteins interact to control cell shape. This model is backed up by a quantitative characterisation of their properties using high-resolution imaging and image analysis methods.

      Overall, all evidence is very convincing and I do not have many recommendations on how to improve the manuscript.

      In my opinion, there are only two issues that I have with the paper:

      1. The single particle dynamics of BacA is presented as analysed and I would like to give some suggestions how to maybe extract even more information from the already acquired data:

      1.1. Presentation: Figure 5A is only showing projections of single particle time-lapse movies. To convince the reader that it was indeed possible to detect single molecules it would be helpful if the authors present individual snapshots and intensity traces. In case of single molecules these will show step wise bleaching.

      We have now added a supplementary video that shows both time series and intensity traces of individual BacA-YFP molecules (Figure 6—Video 1). It verifies the step-wise bleaching of the particles observed and thus shows that we observe the mobility of single molecules. Moreover, we have now included a supplementary figure that shows all trajectories identified within representative cells. This visualization provides a more comprehensive view of our data and further supports the notion that our analysis is based on the detection of single molecules.

      1.2. Analysis: Figure 5B and Supplement Figure 1 are showing the single particle tracking results, revealing that there are two populations of BacA-YFP in the cell. However, this data does not show if individual BacA particles transition between these two populations or not. A more detailed analysis of the existing data, where one can try to identify confinement events in single particle trajectories could be very revealing and help to understand the behaviour of BacA in more detail.

      We agree that an analysis of the single-molecule traces for transitions between the mobile and static states would help to achieve a more detailed understanding of the polymerization behavior of BacA. We believe that the dynamic formation, reorganization and disappearance of BacA-YFP foci observed by time-lapse analysis (Figure 4) indicates that BacA undergoes reversible polymerization in vivo. A deeper investigation of this aspect is beyond the scope of the present study and will be performed at a later point.

      1. The title of Fig. 3 says that BacA and BacD copolymerise, however, the data presented to confirm this conclusion is actually rather weak. First, the Alphafold prediction does not show the co-polymer, and second, the in vitro polymerisation experiments were only done with BacA in the absence of BacD. Accordingly, the only evidence that supports this is their colocalization in fluorescence microscopy. I suggest either weakening the statement or changing the title adds more evidence.

      To support the idea that BacA and BacD interact with each other, we have now added images of cells producing BacA-YFP or BacD-CFP individually (new Figure 3—figure supplement 1B,C). The results obtained show that Bac-YFP alone still forms filamentous structures, whereas BacD-CFP condenses into tight foci in the absence of its paralog. However, when produced together with BacA-YFP, the two proteins colocalize into filamentous structures, supporting the notion that they interact with each other. However, we agree that it is unclear whether BacA and BacD copolymerize into mixed protofilaments or whether they form distinct protofilaments that then interact laterally to form larger bundles. We have therefore replaced the term “co-polymerize” with “assemble” in the heading of this section.

      Finally, did the authors think about biochemical experiments to study the interaction between the cytoplasmic part of LmdC and the bactofilins? These could further support their model.

      We show the interaction between the cytoplasmic region of H. neptunium LmdC and BacA in Figure 9G,H (previously Figure 8D,E). For technical reasons, it was not possible to synthesize a peptide com-prising the corresponding region of R. rubrum LmdC, so that our in vitro analysis is limited to the H. neptunium proteins.

      To further support the notion that BacA interacts with the cytoplasmic region of LmdC, we have now analyzed the localization behavior of two LmdC variants with amino acid exchanges in the conserved cytoplasmic β-hairpin motif (new Figure 11). Both variants no longer colocalize with BacA and are no longer enriched at the inner cell curve. Interestingly, these exchanges also affect the enrichment of BacA at the inner cell curvature, suggesting that BacA needs to interact with LmdC for proper localization. It is tempting to speculate that BacA polymers have a preferred intrinsic curvature and that the activity of the BacA-LmdC complexes adjusts cell curvature in a manner that facilitates their association with the inner curve.

      Reviewer #1 (Recommendations for The Authors):

      We have the following specific recommendations for the improvement of the manuscript:

      1. Several places would benefit from additional quantitation of data:

      a. Figure 1 and supplements: can cell shape be quantified in a more specific way? (e.g. principle component analysis of shape as in https://onlinelibrary.wiley.com/doi/10.1111/mmi.13218). It looks as if BacD production may partially rescue the bacA shape phenotype?

      We have made considerable efforts to establish methods to quantify morphological changes and protein localization patterns in Hyphomonas neptunium. Since standard software packages, such as Oufti or MicrobeJ, are not able to reliably detect stalks and, thus, typically identify buds as separate cells, we have developed our own analysis software (BacStalk; Hartmann et al, 2020, Mol Microbiol), that is optimized for the detection of thin cellular extensions. However, while this software works very well with wild-type cells, it also fails to recognize amorphous cells with multiple, ill-defined extensions. Given these problems in cell segmentation, it is currently not possible to use principle component analysis to obtain a robust measure of the morphological defects of bactofilin mutants in H. neptunium.

      b. Figures 2-S2b, 7D and 9-S1b - can the area under the peaks be quantified and compared across strains? Visual examination of the spectra makes it difficult to discern differences.

      A direct comparison of the peak areas between strains is not possible, because the absolute values depend on the amount of peptidoglycan used in the muropeptide analyses. It is very difficult to precisely quantify peptidoglycan, which makes it challenging to use equal amounts of material from different strains in the reactions. However, the relative proportion of different muropeptide species, as provided in Figure 2—Dataset 1, faithfully reflects the composition of peptidoglycan and can easily compared between strains.

      c. Figure 9E,F, 9-S4d - BacA and LmdC localization in R. rubrum is very difficult to assess. It does not look linear/filamentous in most cells and is difficult to tell if it is associated with the inner curvature. Can you quantify the position of the signal along the short axis of the cell to better demonstrate that?

      We agree that a better quantification of the distribution of protein along the cell envelope of R. rubrum is required to support the conclusions drawn. To address this issue, we have now used line scans to measure the fluorescence intensities along the inner and outer curve of cells (n=200 per strain) and visualized the data in the form of demographs. The results clearly show an enrichment of BacA and LmdC at the inner curve in wild-type cells and a disruption of this pattern in various mutant backgrounds (new Figures 10F,G,J and 11D,E).

      1. Figure 2-S2A. Does ∆bacD grow better than wild-type? It would also be useful to add growth curves of the bacA complemented strains.

      In the case of H. neptunium growth curves are often misleading, because cells start to aggregate at the late exponential phase due to abundant EPS formation. The degree of cell aggregation also depends on the morphology of cells, because EPS production is limited to the mother cell body, which makes it challenging to compare morphologically distinct mutant strains. We have now performed growth assays for all H. neptunium deletion and complementation strains used in the study and limited the analysis of doubling times to the early and mid-exponential phase, in which cells do not yet form visible aggregates. The results obtained are now included in the new Figure 1F and Figure 1—figure supplement 2D. They show that the doubling times of the different bactofilin mutants are close to that of the wild-type strain.

      1. Figure 4BC: From the demographs provided, BacA and BacD appear to have different localization dynamics. BacD seems to stay at the base of the stalk, nearest the mother cell, whereas BacA migrates towards to bud? Also, "length" is misspelt in the panels.

      During the transition to bud formation, we indeed observe that the localization patterns of BacA and BacD are in many cases not fully superimposable, with BacD lagging behind BacA and forming transient additional clusters in the vicinity of the stalk base. Examples are now shown in Figure 4—figure supplement 4). This effect explains the distinct patterns in the demographs. We have now modified the text accordingly. We have also corrected the spelling of “length” in the figure.

      1. Can BacD polymerize on its own? It colocalizes with BacA in E. coli but that does not necessarily mean it co-polymerizes.

      Please see our response to a similar issue (point 2) raised by Reviewer #1.

      1. Lines 263-266. You use E. coli PG as a substrate for LmdC in vitro because "peptidoglycan from H. neptunium shows only a low degree of cross-linkage and hardly any pentapeptides." Does this not have relevance to the physiological significance of the observed activity? Or do you presume that LmdC activity (and/or that of other endopeptidases) is very high in H. neptunium so it is difficult to detect additional activity using HnPG as a substrate? It would be useful to clarify this logic in the text.

      DD-crosslinks are formed by all major peptidoglycan biosynthetic complexes, including the elongasome and the divisome, so that their general relevance to cell growth in H. neptunium is beyond doubt. The low degree of crosslinkage observed suggests that H. neptunium contains high endopeptidase activity, which cleaves crosslinks after their formation by DD-transpeptidases. We have now added the explanation “likely due to a high level of autolytic activity” to make this point clearer. Whether LmdC makes a major contribution to the low level of crosslinkage remains to be determined. However, our data suggest that it mostly acts in complex with BacA, so that it may only cleave peptidoglycan locally and not have a global effect global on cell wall composition. It would not possible to detect the DD-endopeptidase activity of LmdC using H. neptunium peptidoglycan as a substrate, because it has a low content of DD-linked peptide chains. To facilitate the in vitro activity assay, we therefore used highly crosslinked peptidoglycan from a mutant E. coli strain.

      1. Lines 268-269: Is there some explanation for why monomers do not increase on LmdC treatment? Here quantitation of peaks before and after treatment would allow the reader to more precisely interpret these data.

      The absolute peak sizes are not comparable, because there is some variation in the amount of peptido-glycan included in the assays (see also our comments on point 1b raised by Reviewer #1) and the integrated peak areas (which correspond to the amounts of muropeptide species produced) depend on both the height and the width of the peaks, which vary to some degree in different HPLC runs. The relevant measure to compare the muropeptide profiles is therefore the relative content of different muropeptide species in the different conditions. For clarification, we have now added the following sentence to the legend of Figure 8D: “A quantification of the relative abundance of different muropeptide species in each condition, based on a comparison of the relative integrated peak areas, is provided in Figure 8—Dataset 1.” The control reaction lacking LmdC only contains peptidoglycan diluted in buffer and thus provides insight into muropeptide composition of untreated peptidoglycan.

      1. Lines 280-283: It would be interesting to know if the transmembrane domain of LmdC is required for its localization since it is dispensable for binding BacA and since LmdC still localizes to foci without BacA.

      Given that it is currently not possible to localize LmdC in H. neptunium, we were not able to perform this analysis.

      1. Line 296: it is also possible that LmdC localizes with another protein and does not independently assemble into larger complexes.

      Since the localization pattern reported for LmdC in the ΔbacAD background is no longer valid, we have not discussed this aspect in the revised version of our manuscript. However, in general, we do not exclude the possibility that LmdC could interact with other peptidoglycan biosynthetic proteins.

      1. Line 304-306 and Fig 9: Is the domain organization of RrLmdC the same as for HnLmdC? It would be useful to include its domain organization as well. Also, please add amino acid numbering to Figure 9B.

      We have now added a schematic showing the domain organization of LmdC from R. rubrum (new Figure 10B). The protein is highly similar to its homolog from H. neptunium.

      1. Line 340-341: "In both cases, they functionally interact with LmdC-type DD-endopeptidases to promote local changes in the pattern of peptidoglycan biosynthesis." This conclusion is not experimentally supported. Since LmdC is essential and you could not make a depletion strain in H. neptunium, it was not shown that the interaction with LmdC is how BacA promotes changes in PG patterning. HADA/FDAA labeling was not performed in R. rubrum, and no global changes in PG chemistry were observed in bacA or lmdC mutants, so you cannot claim BacA or LmdC influences PG patterning there, either. Either soften this statement to a hypothesis or otherwise rephrase.

      To further corroborate a functional interaction between BacA and LmdC, we have now established an inducible CRISPRi system to deplete LmdC from H. neptunium cells (see also our comments on the public review of Reviewer #1). We observe that the loss of LmdC leads to a phenotype very similar to that observed for the ΔbacA(D) mutant, supporting the idea that BacA and LmdC act in the same path-way. We have now also performed localization studies of the elongasome component RodZ in H. nep-tunium, which demonstrate that the spatial distribution of elongasome complexes is affected in the absence of the bactofilin cytoskeleton in H. neptunium. Combined with the observation that LmdC is a catalytically active DD-endopeptidase and its absence leads to morphological defects, these results indicate that BacA, together with LmdC, induces local changes in pattern of peptidoglycan biosynthesis, both by affecting elongasome movement and, likely, by reducing peptidoglycan crosslinking in the cell envelope regions it occupies.

      1. Figure 9-S4: there is no panel C (change D to C).

      Corrected.

      1. Lines 344-355: No data is presented here to support the barrier model of bactofilin function. In addition, it is unclear why cells would take on amorphous shapes instead of extended rod shapes/filaments if elongasome function was not constrained on the longitudinal axis. It would be helpful to have more discussion of the potential mechanisms of LmdC function in H. neptunium in this section of the discussion since that is the emphasis of the results section.

      To support the barrier model, we have now compared the localization dynamics of the elongasome component RodZ in wild-type and ΔbacAD cells. The results show that RodZ is excluded from the stalk in the wild-type background, whereas it readily enters the stalk in the mutant cells, leading to the expansion of stalks into large, amorphous extensions. Consistent with these findings, HADA labeling is not observed within the stalks in wild-type cells, whereas it is readily observed in the enlarged stalk structures (pseudohyphae) formed in the mutant cells.

      The current model of MreB movement suggests that MreB filaments have an intrinsic curvature and thus preferentially align along regions of similar curvature, which is along the circumference of the cell in rod-shaped geometries. However, previous work has shown that MreB starts to move along randomly oriented trajectories as soon as cells lose their rod-shaped morphology and adopt more spherical shapes (Hussain et al, 2018, eLife). In line with these findings, our current and our previous work (Cserti et al, 2017, Mol Microbiol) indicate that the expansion of the ovoid H. neptunium mother cell prior to the onset of stalk biosynthesis as well as bud formation are mediated by the elongasome complex. Thus, the elongasome can clearly also give rise to shapes other than rods. Interestingly, however, the H. neptunium elongasome also appears to drive the formation of the rod-shaped stalk, possibly by moving around the circumference of the stalk base. Thus, species- or growth phase-dependent regulatory mechanisms or, potentially, differences in the spatial arrangement of the glycan strands within the peptido-glycan layer may result in different modes of elongasome movement and, thus, modulate the morphogenetic activity of elongasome complexes.

      1. Lines 395-397: It is also possible that LmdC positioning is dependent on cell morphology, rather than directly on BacA, since morphology is so distorted in bacA mutant cells.

      We provide several lines of evidence showing that LmdC and BacA functionally and physically interact (see above), making it highly unlikely that the two proteins are not associated with each other. How-ever, our previous (Figure 10I,J) and new (Figure 11) results suggest that the physical interaction with LmdC and/or or the cell shape-modulating activity of the complex are required for the proper localization of BacA at the inner curve of the cell. This finding may indicate the existence of a self-reinforcing cycle, in which the morphological changes induced by BacA-LmdC assemblies stimulate the recruitment of additional assemblies to their site of action.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      This article by Zhai et al, investigates sterol transport in bacteria. Synthesis of sterols is rare in bacteria but occurs in some, such as M capsulatus where the sterols are found primarily in the outer membrane. In a previous paper the authors discovered an operon consisting of five genes, with two of these genes encoding demethylases involved in sterol demethylation. In this manuscript, the authors set out to investigate the functions of the other three genes in the operon. Interestingly, through a bioinformatic analysis, they show that they are an inner membrane transporter of the RND family, a periplasmic binding protein, and an outer membrane-associated protein, all potentially involved with lipid transport, so providing a means of transporting the lipids to the outer membrane. These proteins are then extensively investigated through lipid pulldowns, binding analysis on all three, and X-ray crystallography and docking of the latter two.

      Strengths

      The lipid pulldowns and associated MST binding analysis are convincing, clearly showing that sterols are able to bind to these proteins. The structures of BstB and BstC are high resolution with excellent maps that allow docking studies to be carried out. These structures are distinct from sterol-binding proteins in eukaryotes.

      We thank the reviewer for their favorable impression of this work.

      Weaknesses

      While the docking and molecular dynamics studies are consistent with the binding of sterols to BstB and BstC, this is not backed up particularly well. The MST results of mutants in the binding pocket of BstB have relatively little effect, and while I agree with the authors this may be because of the extensive hydrophobic interactions that the ligand makes with the protein, it is difficult to make any firm conclusions about binding.

      We agree with the reviewer that at this point, there is no experimental evidence to define the sterol binding site in BstB. While in the manuscript we allude to the extensive hydrophobic interactions as being especially stabilizing and difficult to eliminate with one or two mutations, we are now also aware that hydrogen-bonding interactions with the polar head of the sterols are quite important (see data on BstC, where disruption of that interaction significantly reduces the equilibrium affinity for sterols). Our MD simulations show that at least 3 protein amino acids can participate in H-bonding with the sterols. Moreover, recent work from our lab show that even ligand site waters can extend an H-bonding network around the polar head of the lipid (Zhai et al., ChemBioChem 2023, 24, e202300156), thereby enabling H-bonding with amino acids that are further away from the ligand site. It is therefore difficult to predict which mutations will sufficiently destabilize the binding. While this question is one we will tackle in future studies focused on obtaining high-resolution substrate-bound structures of BstB or homologs, the findings reported here are still relevant and timely, and we posit will spur the discovery of functional homologs, including some in organisms that are more tractable.

      The authors also discuss the possibility of a secondary binding site in BstB based on a slight cavity in domain B next to a flexible loop. This is not backed up in any way and seems unlikely.

      The reviewer is correct in that the evidence for this second binding site weak. While the crystallographic structure shows a highly hydrophobic region and the binding studies suggests cooperativity exists in the binding of the 4methylsterol substrate, the docking studies do not strongly support binding at that site. As such, we have clarified in the manuscript that a second hydrophobic cavity is observed, but that its role in ligand interaction remains unexplored.

      Reviewer #2 (Public Review):

      Summary:

      In eukaryotes, sterols are crucial for signaling and regulating membrane fluidity, however, the mechanism governing cholesterol production and transport across the cell membrane in bacteria remains enigmatic. The manuscript by Zhai et al. sheds light on this topic by uncovering three potential cholesterol transport proteins. Through comprehensive bioinformatics analysis, the authors identified three genes bstA, bstB, and bstC encoding proteins which share homology with transporters, periplasmic binding proteins, and periplasmic components superfamily, respectively. Furthermore, the authors confirmed the specific interaction between these three proteins and C-4 methylated sterols and determined the structures of BstB and BstC. Combining these structural insights with molecular dynamics simulation, they postulated several plausible substrate binding sites within each protein.

      Strengths:

      The authors have identified 3 proteins that seem likely to be involved in sterol transport between the inner and outer membrane. The structures are of high quality, and the sterol binding experiments support a role for these proteins in sterol transport.

      We thank the reviewer for this positive view of our work.

      Weaknesses:

      While the author's model is very plausible, direct evidence for a role of BstABC in transport, or that the 3 proteins function together in a single pathway, is limited.

      The reviewer is correct that we were unable to demonstrate that the three proteins work together to transport 4methylsterols. This is not for lack of trying. We first attempted gene deletion studies, and as mentioned in the manuscript (with more details now provided in the experimental section), this appeared to be lethal. We then attempted in vitro exchange experiments, in which the proteins would be used to transfer sterols from sterol-loaded “heavy” liposomes to a sterol-free “light” liposomes – such exchange assays are frequently performed with eukaryotic sterol transporters (see Chung et al., Science 2015, https://doi.org/10.1126/science.aab1370). These assays were not successful because 1) sterols incorporated poorly into liposomes made with E. coli polar lipids and yielded leaky liposomes; 2) use of liposomes prepared with the TLE of M. capsulatus proved more stable, but no appreciable exchange was observed; we reasoned that this might be due to the absence of an energy source for BstA, the RND component for which we have expressed and purified only the soluble periplasmic domain. Given the technical difficulty of these in vitro transport experiments, we will continue to pursue in vivo demonstration of function as new homologs are identified.

      Reviewer #3 (Public Review):

      Summary:

      The work in this manuscript builds on prior efforts by this team to understand how sterols are biosynthesized and utilized in bacteria. The study reports a new function for three genes encoded near sterol biosynthesis enzymes, suggesting the resulting proteins function as a sterol transport system. Biochemical and structural characterization of the two soluble components of the pathway establishes that both proteins can bind sterols, with a preference for 4methylated derivatives. High-resolution x-ray structures of the apoproteins reveal hydrophobic cavities of the appropriate size to accommodate these substrates. Docking and molecular dynamics simulations confirm this observation and provide specific insights into residues involved in substrate binding.

      Strengths:

      The manuscript is comprehensive and well-written. The annotation of a new function in a set of proteins related to bacterial sterol usage is exciting and likely to enable further study of this phenomenon - which is currently not well understood. The work also has implications for improving our understanding of lipid usage in general among bacterial organisms.

      We thank the reviewer for this synopsis of our work.

      Weaknesses:

      The authors might consider moving some of the bioinformatics figures to the main text, given how much space is devoted to this topic in the results section.

      We have taken this advice and moved Figure S1 to the main manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1. In the analysis of the MST data, the authors quote Hill coefficients. How reliable are these numbers? For BstB, for instance, it seems unlikely that more than one molecule would bind. Can the analysis be done without needing to include Hill coefficients?

      We used fits that did and did not invoke cooperativity – see below. We are certain that both BstA and BstB are better fit with cooperativity invoked.

      Author response image 1.

      1. In looking at the maps associated with the structures, which were included in the review package, I see that two citric acid molecules fit beautifully into the density where currently PEG has been modelled. This needs to be fixed and some comments may be appropriate in the manuscript.

      We thank the reviewer for calling our attention to this. Citric acid has now been added to the model, and we reason that these are present in the structure because citric acid was used in the crystallization condition. The revised model is now present in the PDB.

      1. It is not necessary to show the two molecules in the asymmetric unit in Figure 4 given that it is not a dimer. This doesn't add anything to the manuscript.

      We now show a single molecule of BstC in Figure 4 (now Figure 5).

      1. I wouldn't consider the loops shown in Figure S4 as disordered. They have slightly higher B-values but are not completely mobile.

      We did not refer to these loops as disordered. In the text, we say they “exhibit poor electron densities, suggesting conformational sampling of more than one state (Fig. S4A).”

      Reviewer #2 (Recommendations For The Authors):

      pg 7, "hinting at an astounding distinction": I might suggest a word other than astounding that conveys how statistically unlikely, unusual, etc. this result is.

      Thank you – we have removed “astounding”.

      pg 7, paragraph 2: Here the authors show that in the SSN analysis, BstB proteins cluster separately and suggest this implies a distinction in function. However, they also show that PhnD homologs do not cluster separately (distributed across multiple clusters), yet presumably have similar functions. I am not familiar with SSN, but it seems to me that the second statement about PhnD implies that the first statement about BstB might not be valid, i.e., if PhnD doesn't cluster based on function, on what basis can we conclude that BstB does? On what basis does clustering occur in the SSN analysis? Might it be driven by things other than function? This comment also concerns the final paragraph of this section.

      The reviewer is correct in that PhnD homologs occupy separate clusters of the SSN. Many of these homologs were crystallized with phosphate-like compounds, but it is possible that they have non-overlapping substrate scopes and are therefore functionally distinct. As for the basis of clustering, the SSN is fully sequence-based. What has been observed is that proteins with highly similar sequences can have similar functions – but this is not always true.

      pg 8, paragraph 1: The authors suggest that BstABC may be essential. This is probably not a critical claim and it might be simplest to just remove it, but if it is mentioned, the authors should probably explain what was attempted that failed, so a reader can assess the strength of the evidence supporting essentiality. For example, I don't see anything in the methods about genetic manipulations of M. capsulatus, so currently, this falls within the realm of "Data not shown".

      We have provided additional information about the experimental techniques used to do this. This statement was included so that it is understood that the reason for the experimental failure is unlikely to be technical in nature, as we have successfully deleted some sterol related genes while others remain intractable.

      Fig. 2A: It is unclear to me what is being plotted here, perhaps more experimental detail is required in the form of labels and/or legend. Is this a quantification of each sterol in each fraction separated by GC? There are essentially no methods provided for the GC-MS experiments. A reference is provided, but I think providing detailed methods for these specific experiments will provide a higher degree of scientific rigor. I am not sure what is standard for GCMS, but perhaps showing spectra in the supplement that establish the identity of the bound molecules as species I and II would be appropriate?

      Additional experimental details have been provided and the figure legend changed to be more clear. Moreover, we now clearly state that the chromatograms shown were used to identify lipids due to retention times for spectra that were previously published in Wei et al., 2016.

      pg 10-11, comparison with PhnD structure: Perhaps it is worth mentioning a 3rd possible explanation for the relative opening/closing of the cleft is simply crystal packing? I don't think it necessarily has to imply anything about a difference in function. Also, the focus seems to be on this pairwise comparison, but perhaps more insights could be gleaned from an analysis that included a wider range of homologs, especially if any are thought to bind hydrophobic substrates.

      This could be true, and we have included a statement to that effect. We are unaware of homologs shown to bind to large, hydrophobic molecules.

      I think that BstB is shown upside-down in sup movies relative to other figures. If it isn't changed, perhaps adding some labels would help orient the reader.

      We have rotated the movies to be more consistent with the figures.

      Fig. S7: No units are indicated for Kds (uM?).

      Thank you – this has been fixed.

      pg 11, paragraph 2. "adjacent to three residues: Glu118, Tyr120 and Asn192": The residue number used in the text doesn't seem to match the numbering in the PDB file. I think these residues correspond to Glu98, Tyr100, and Asn172 in the PDB file.

      We regret this error. The correct numbering for both structures is now present in the deposited PDB files (7T1M for BstB and 7T1S for BstC).

      pg 12, final paragraph: The authors present binding data for BstB variants with mutations in the putative sterol binding pocket identified in the structural and MD analyses. However, these mutants had no effect on binding. The authors rationalize this in terms of the size of the interface and hydrophobic nature (which indeed, may be correct and is very plausible), and it is worth noting that many of their mutations are to Ala and would largely preserve the hydrophobic nature of the cleft. However, these mutants raise questions about where sterols actually bind. No experimental evidence is presented that substrates bind in the cleft, it is only hypothesized based on structural homology, MD simulations, etc. These mutations formally provide evidence against the hypothesis being tested; I think that has to be discussed a bit more directly, alongside the caveats the authors already discuss about hydrophobicity, etc.

      This is a valid point by the reviewer, and it is one we have attempted to address with our statement in the manuscript and in our response to reviewer 1. We have modified the relevant text to more clearly state that there is as of yet no experimental evidence for the binding of sterols to the cavity identified via molecular docking.

      pg 13: Presumably this is not the full-length lipoprotein, but has been truncated/mutated in some way? Some statement of roughly what was purified/crystallized should be stated.

      The SI methods on protein purification states that the genes of BstB and BstC without their respective signal peptides were obtained.

      pg 13, last paragraph "TN1 exhibits hybrid hydrophobicity, with the sides horizontal to cavities being hydrophobic while the vertical sides are more hydrophilic". I don't really follow the horizontal vs vertical sides. Perhaps this could be described in a different way.

      Noted and changed to “TN1 is closer to the N-terminal face of the structure, while CA1 and CA2 are proximal to the C-terminal face and form two open hydrophobic pockets; TN1 exhibits a mixture of hydrophobic and hydrophilic amino acids (Fig. 4B and Fig. S9B, Table S4).”

      pg 15-16, "Comparison to eukaryotic sterol transporters": Perhaps this would be better suited for the discussion section? Could also be streamlined; it is mostly discussing and comparing eukaryotic sterol binding domains to each other, not to BstABC.

      Given that BstB and BstC are the first identified proteins (and putative transporters) for bacterial sterol engagement, we thought a careful description of the existing sterol transporters (which are all eukaryotic) was warranted.

      Reviewer #3 (Recommendations For The Authors):

      I have just two minor suggestions for the authors if they wish to comment on or address them.

      1. Do the three proteins (BstA/B/C) form any sort of complex? Perhaps this property was not assessed - but it seemed possible that the B and C components might constitute a shuttle for the membrane-bound transporter?

      This is an important observation – the unliganded version of these proteins show no appreciable affinity for each other. However, BstB (which would be expected to engage both with BstA and BstC) belongs to a family of proteins known to undergo significant conformational change upon substrate binding. It is possible that with substrate present, complexes are formed – we have yet to investigate this.

      1. In Figure S1, panel C - it appears that the label for the BstC cluster may have migrated away from the intended location. In this figure, it might also be useful to indicate in the caption the meaning of the red coloring of the nodes?

      The label is now fixed – thank you for drawing our attention to this.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      Ngoune et al. present compelling evidence that Slender cells are challenged to infect tsetse flies. They explore the experimental context of a recent important paper in the field, Schuster et al., that presents evidence suggesting the proliferative Slender bloodstream T. brucei can infect juvenile tsetse flies. Schuster et al. were disruptive to the widely accepted paradigm that the Stumpy bloodstream-form is solely responsible for tsetse infection and T. brucei transmission potential. Evidence presented here shows that in all cases, Stumpy form parasites are exponentially more capable of infecting tsetse flies. They further show that Slender cells do not infect mature flies.

      However, they raise questions of immature tsetse immunological potential and field transmission potential that their experiments do not address. Specifically, they do not show that teneral tsetse flies are immunocompromised, that tsetse flies must be immunocompromised for Slender infection nor that younger teneral tsetse infection is not pertinent to field transmission.

      Strengths:

      Experimental Design is precise and elegant, outcomes are convincing. Discussion is compelling and important to the field. This is a timely piece that adds important data to a critical discussion of host: parasite interactions, of relevance to all parasite transmission.

      Thank you

      Weaknesses:

      As above, the authors dispute the biological relevance of teneral tsetse infection in the wild, without offering evidence to the contrary. Statements need to be softened for claims regarding immunological competence or relevance to field transmission.

      We have modified the revised version to soften these claims (l.156 and l.159). Please, note that the limited immunocompetence of teneral flies has been extensively studied by the labs of S. Aksoy at Yale and M. Lehane at Liverpool. In the discussion, we provide key references from these two labs 18-21. Our comment on the relevance to field transmission is simply based on field observations of the fly biology.

      Reviewer #2:

      Summary:

      Contrary to findings recently reported by Schuster S et al., this short paper shows evidence that the stumpy form of T. brucei is probably the most pre-adapted form to progress with the life cycle of this parasite in the tsetse vector.

      Strengths:

      One of the most important pieces of experimental evidence is that they conduct all fly infection experiments in the absence of metabolites like GlcNAc or S-glutathione; by doing so, the infection rates in flies infected with slender trypanosomes seem very low or non-existent. This, on its own, is a piece of important experimental evidence that the Schuster S et al findings may need to be revisited.

      Thank you

      Weaknesses:

      I consider that the authors should have included their own experiments demonstrating that the addition of these chemicals enhances the infection rates in flies receiving bloodmeals containing slender trypanosomes.

      The main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies, not to reproduce the results obtained by Schuster et al.. We think that the suggested experiment is not necessary as L-Glutathion is well-known to enhance infection rates by reducing the fly immune response efficiency (Ref 24). Most of the experimental infections with procyclic or ST forms (even at low densities) published by our lab and others, especially for studying parasite stages in the salivary glands, were actually performed by complementing the infective meal with L-Glutathion for this reason.

      Reviewer #3:

      The dogma in the Trypanosome field is that transmission by Tsetse flies is ensured by stumpy forms. This has been recently challenged by the Engstler lab (Schuster et al.), which showed that slender forms can also be transmitted by teneral flies. In this work, the authors aimed to test whether transmission by slender forms is possible and frequent.

      For this, the authors repeated Tsetse transmission experiments but with some key critical differences relative to Schuster et al. First, they infected teneral and adult flies. Second, their infective meals lacked two components (N-acetylglucosamine and glutathione), which could have boosted the infection rates in the Schuster et al. work. In these conditions, the authors observed that most stumpy form infections with teneral and adult flies were successful while only 1 out of 24 slender-form infections was successful. Adult flies showed a lower infection rate, which is probably because their immune system is more developed.

      Given that in Tsetse-infested areas most transmission is likely ensured by adult flies, the authors conclude that the parasite stage that will have a significant epidemiologic impact on transmission is the stumpy form.

      Strengths:

      • This work tackles an important question in the field.

      • The Rotureau laboratory has well-known expertise in Tsetse fly transmission experiments.

      • Experimental setup is robust and data is solid.

      • The paper is concise and clearly written.

      Thank you

      Weaknesses:

      • The reason(s) for why this work has lower infection rates with slender forms than Schuster et al. remain unknown. The authors suggested it could be because of the absence of N-acetylglucosamine and/or glutathione, but this was not formally tested. Could another source of variation be the clone of EATRO1125 AnTat1.1 (Paris versus Munich origin)? To reduce the workload, such additional experiments could be done with just one dose of parasites.

      Differences between the strain clones, the cell culture conditions and/or the fly colony maintenance conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

      • The characterization of what is slender and stumpy is critical. The authors used PAD1 protein expression as the sole reporter. While this is a robust assay to confirm stumpy, an analysis of the cell cycle would have been helpful to confirm that slender forms have not initiated differentiation (Larcombe S et al. 2023, preprint).

      In this study, ST are indeed defined by their general morphology and by the expression of PAD1 proteins at the cell membrane as assessed by IFA. This is the simplest and most accurate ST proxy accessible by IFA. We do not think that monitoring in more details the cell cycle would provide key information here. If some SL forms had initiated differentiation in our experiments, then, the low infection rates observed with SL would have reinforced the fact that mostly mature PAD1+ ST are infectious for flies .

      • Statistical analysis is missing. Is the difference between adult and teneral infections statistically significant?

      An ANOVA statistical analysis was performed and a dedicated section was added to the revised version.

      For all conditions, MG infection rate comparisons between adult and teneral flies were statistically significant.

      Recommenda8ons for the authors:

      Reviewer #1:

      While some perceived outcomes pertaining to immunological competence and transmission relevance of teneral flies are overstated, the overall tone of the paper is inappropriately apologe7c. The authors obviously don't want to offend their colleagues but the current wri7ng style obscures meaning, making the paper a bit 'flowery' and difficult to read.

      Ngoune et al. have important outcomes that need to be stated more directly.

      Words such as 'unequivocally' are not appropriate to Schuster et al's outcomes. As your study shows, their findings are experimentally based, with inherent caveats, and are therefore sugges7ve, not demonstrated or proven.

      The word 'unequivocally' has been removed from the revision.

      Reviewer #3:

      The Engstler lab cul7vates AntTaT1.1 in methylcellulose (Munich clone, if I am not mistaken). The Rotureau lab uses the Paris AntTaT1.1 clone and uses no methylcellulose. Given that methylcellulose helps stumpy forma7on, it seems important to show that the results of this paper are reproducible with the Munich clone grown in the presence of methylcellulose.

      Differences between the strain clones and culture conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary of the reviewers’ discussion:

      • The development of MSI-1 as a post-transcriptional regulator of gene expression in Escherichia coli represents a valuable addition to the synthetic biology toolkit. MSI-1 has advantages over transcriptional regulators because it has the potential to target single genes in operons. Allosteric control of MSI-1 by oleic acid increases its versatility.

      Authors’ response: We thank the reviewers and editor for this evaluation.

      • We recommend that authors add experiments to test the mechanism of regulation by MSI-1 or soften their claims about translational regulation. We also recommend that the authors expand their discussion of other natural and synthetic regulatory systems that target translation.

      Authors’ response: In this revision, we have added new experimental results from RT-qPCR, bulk fluorometry, and flow cytometry assays to further support our conclusions. We have also enlarged the Introduction and Discussion.

      • Adding an experiment to quantify the effect of oleic acid with the most strongly regulated reporter construct (i.e., flow cytometry with redesign-3) would substantially increase the impact of the work.

      Authors’ response: We have done this experimental quantification (see the new Fig. 5d).

      Reviewer #1 (Public Review):

      The authors develop reporter constructs in E. coli where gene expression, presumably translation, is repressed by MSI-1. This is a potentially useful tool for synthetic biologists, with the advantage over transcriptional regulation that one gene in an operon could be targeted. That being said, an important caveat of translational regulation that is not addressed in the manuscript is the potential for downstream effects on RNA stability and/or transcription termination. The authors' MSI-1-regulated reporter constructs could also be useful for mechanistic studies of MSI-1.

      Authors’ response: We thank the reviewer for such appreciation of our work. Regarding the potential effects on RNA stability or transcription termination, we would like to highlight our results with the sfGFP-mScarlet bicistron (Fig. 6c), showing the specific regulation of sfGFP by MSI-1* and not of mScarlet. Anyway, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2).

      The author's initial construct design led to only weak regulation by MSI-1, presumably because the MSI-1 binding sites were not suitably positioned to repress translation initiation. A more rationally designed construct led to considerably greater repression. One weakness of the paper is that the authors did not use their redesigned construct that is more strongly repressed to demonstrate allosteric regulation by oleic acid using a comparable assay (e.g., flow cytometry) to that used in other experiments. The potential for allosteric regulation is a major strength of the MSI-1 system, so this is a significant gap. Similarly, the authors use the weakly regulated constructs to assess the effect of MSI-1 binding site mutations and for their mathematical modeling; these experiments would be better suited to the more strongly regulated construct.

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system (see the new Fig. 5d). Regarding the kinetic study, we focused on the reporter system with just one recognition motif for simplicity. A reporter system with two recognition motifs, thereby recruiting two different proteins, increases the complexity to distill the effect of point mutations.

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 5. Panels c-f look at colonies on plates, with numbers from these data being difficult to compare with either the bulk fluorescence or single-cell fluorescence values shown in other figures. Supplementary Figure 8 shows data for single cells; these data would be more appropriate in Figure 5, with the plate-based data moving to the supplement. Moreover, measuring the effect of oleic acid on the redesign-3 reporter using flow cytometry would assess the impact of oleic acid on the most strongly regulated reporter; this would be the most impactful analysis.

      Authors’ response: We have redone Fig. 5 to include flow cytometry data (also for the system implemented with the redesign-3 reporter).

      1. Paragraph starting line 438. The authors should briefly discuss the potential for translational repression leading to reduced RNA stability, and in the case of rapid repression that impacts transcription-coupled translation, its impact on Rho-dependent transcription termination. These factors could alter the expression of neighboring genes.

      Authors’ response: As we have shown with the RT-qPCR experiment, the mRNA level of the target gene does not change in response to protein binding. We agree that mRNA stability could potentially be changed by using other RNA-targeting proteins. But in our view, a reduction of RNA stability is not a regulation of translation. We have added the following sentence in the Discussion: “The additional use of RNA-binding proteins able to alter mRNA stability might lead to the implementation of more complex circuits at the posttranscriptional level.”

      1. Figure 1. It would be informative to include a control where cells have an empty plasmid rather than a plasmid expressing MSI-1, to address leakiness of MSI-1 expression.

      Authors’ response: We have constructed a void plasmid as suggested and performed new bulk fluorometry assays. The new Fig. S8 shows the tight control of MSI-1* expression with the PLlac promoter. No apparent leakage is observed.

      1. Line 132. Where were the two sequences positioned with respect to each other than the start codon? It would be helpful to show the sequence in Figure 1.

      Authors’ response: The precise sequence is shown in the inset of Fig. 1b. The motif is placed just after the start codon.

      1. Line 135. The authors envisioned repression mechanism isn't clear from the text, specifically the meaning of "block the progression" and "initial phase". As far as I know, there is no precedent for RNA-binding proteins repressing translation in bacteria by preventing translation elongation. Presumably, repression in the context described here would be due to MSI-1 binding over the ribosome-binding site, although the predicted hairpin may also occlude binding of initiating 30S ribosomes in the absence of MSI-1 binding.

      Authors’ response: It is difficult to know the exact mode of action. In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.”

      1. Figure 1e is overly complicated and hence is difficult to interpret. The key result is that mScarlet expression is unchanged as a function of lactose concentration. It is sufficient to show the inset graph as a supplementary figure panel and to conclude that regulation of sfGFP is at a post-transcriptional level. Similarly, the inset in Figure 4b is unnecessary.

      Authors’ response: The inset of Fig. 1e shows that the growth rate of the cells is almost constant when lactose varies. A change in growth rate will affect protein expression. The use of a two-reporter system, one regulated translationally and the other not, is instrumental to extract from fluorescence data estimates of transcription and translation rates. Of course, showing that mScarlet expression is almost constant when lactose varies would be sufficient, but we believe that performing a fine treatment of the data helps to better understand the regulatory system from a mathematical and mechanistic point of view. Therefore, despite increasing the complexity of the figure, we prefer to keep the representation of the Crick spaces (following Alon’s terminology, see our ref. 32). We have tried to carefully explain Fig. 1e in the text.

      1. Figure 1f and Figure 4c would be easier to interpret as two-dimensional plots.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      1. I don't think Figure 2e is relevant. The key result is shown in Figure 2f, i.e., the effect of mutations on regulation by MSI-1.

      Authors’ response: We agree with the reviewer that the key result is shown in panel f. However, we prefer to keep panel e in Fig. 2 because, even if negative, this result may incite further research. In addition, we avoid the rearrangement of the whole figure.

      1. Lines 311-313. Without additional evidence that the mutants are toxic, I suggest removing this text.

      Authors’ response: As suggested, we have removed that claim.

      Reviewer #2 (Public Review):

      Summary:

      Dolcemascolo and colleagues describe the use of the mammalian RNA-binding protein Musashi-1 (MSI-1) to implement translational regulation systems in E. coli. They perform detailed in vitro studies of MSI-1 and its binding to different RNA sequences. They provide compelling evidence of the effectiveness of the regulatory system in multiple circuits using different mRNA sequence motifs. They harness allosteric inhibition of MSI-1 by omega-9 monounsaturated fatty acids to demonstrate a fatty-acid-responsive circuit in E. coli.

      Strengths:

      The experimental results are compelling and the characterization of the binding between MSI-1 and different RNA sequences is thorough and performed via multiple complementary techniques. Several new useful circuit components are demonstrated.

      Authors’ response: We thank the reviewer for such appreciation of our work.

      Weaknesses:

      MSI-1 provides 8.6-fold downregulation of sfGFP with an optimized mRNA sequence. In some applications, a larger degree of repression may be required.

      Authors’ response: We agree with the reviewer in this point. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.”

      Reviewer #2 (Recommendations For The Authors):

      Overall, I think this paper is very well done and quite thorough. I only have minor suggestions:

      • For Figures 1f and 4c, it is quite hard to interpret the fraction of cells above the threshold with the 3d perspective. It would be clearer to use a more standard 2d plot where the histograms are offset along the y-axis and the threshold is indicated by a vertical line.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      • For Figure 4b, the highlighting of different sequence regions in red3 appears to be offset by one base (e.g. AAU is highlighted rather than AUG).

      Authors’ response: This has been corrected.

      • For line 504, it seems that MSI-1 is used for two different proteins. A different name should be assigned to this 200-residue protein to avoid confusion with the other MSI-1.

      Authors’ response: We now use the term MSI-1h* for the human version of the protein.

      • The note (Page S12) that A_0 + A_R = alpha/delta only applies in steady-state conditions, which should be stated.

      Authors’ response: We have specified that.

      • It seems that some authors work for the companies that sell some of the instruments/consumables used for the assays, specifically switchSENSE and LigandTracer. This may be something that should be declared under Competing Interests for the paper.

      Authors’ response: We are sorry for having missed this point. We have included a Competing Interests section to state that “RAHR and WFV work for Dynamic Biosensors. GPR and JB work for Ridgeview Instruments”.

      Reviewer #3 (Public Review):

      Summary:

      In this work, the authors co-opt the RRM-binding protein Musashi-1 to act as a translational repressor. The novelty of the work is in the adoption of the allosteric RRM protein Musashi-1 into a translational reporter and the demonstration that RRM proteins, which are ubiquitous in eukaryotic systems, but rare in prokaryotic ones, may act effectively as post-translational regulators in E. coli. The extent of repression achieved by the best design presented in this work is not substantially improved compared to other synthetic regulatory schemes developed for E. coli, even those that similarly regulate translation (eg. native PP7 repression is approximately 10-fold, Lim et al. J. Biol. Chem. 2001 276:22507-22513). Furthermore, the mechanism of regulation is not established due to missing key experiments. The work would be of broader interest if the allosteric properties of Musashi-1 were more effective in the context of regulation. Unfortunately, the authors do not demonstrate that fatty acids can completely de-repress expression in the experimental system used for most of their assays, nor do they use this ability in their provided application (NIMPLY gate).

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system, showing substantial de-repression of the system with the biochemical compound. We have redone Fig. 5 and modified the Results section accordingly. Aligned with the reviewers and editor, we believe that this new result helps to improve our manuscript.

      Strengths:

      The first major achievement of this work is the demonstration that a eukaryotic RRM protein may be used to posttranscriptionally regulate expression in bacteria. In my limited literature search, this appears to be the first engineering attempt to design an RBP to directly regulate translation in E. coli, although engineered control of translation via other approaches including alterations to RNA structure or via trans-acting sRNAs have been previously described (for review see Vigar and Wieden Biochim Biophys. Acta Gen. Subj. 2017, 1861:3060-3069). Additionally, several viral systems (e.g. MS2 and PP7) have been directly co-opted to work in a similar fashion in the past (utilized recently in Nguyen et al. ACS Synthetic Biol 2022, 11:1710-1718).

      Authors’ response: We thank the reviewer for such appreciation of our work.

      The second achievement of this work is the demonstration that the allosteric regulation of Musashi-1 binding can be utilized to modulate the regulatory activity. However, the liquid culture demonstration (Suppl. Fig 8) shows that this is not a very effective switch, with de-repressed reporter activity showing substantial change but not approaching un-repressed activity. This effect is stronger when colonies are grown on a solid medium (Fig. 5).

      Authors’ response: As we have previously indicated, the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system in liquid culture showed substantial de-repression with the biochemical compound. It is now stated in the text the following: “Nevertheless, the system implemented with the redesign-3 reporter displayed a better dynamic behavior in response to lactose and oleic acid. In particular, the percentage of cells in the ON state increased from 0 (with 1 mM lactose) to 71% upon addition of 20 mM oleic acid (Fig. 5d).” This new result helps to improve our manuscript.

      Weaknesses:

      In this work, the authors codon optimize the mouse Musashi-1 coding sequence for expression in E. coli and demonstrate using an sfGFP reporter that an engineered Musashi-1 binding site near the translational start site is sufficient to enable a modest reduction in reporter gene expression. The authors postulate that the reduction in expression due to inhibition of ribosome translocation along the transcript (lines 134/135), as an expression of a control transcript (mScarlet) driven by the same promoter (Plac) but without the Musashi-1 recognition site does not demonstrate the same repression. However, the situation could be more complex. Other possibilities include inhibition of translation initiation rather than elongation, as well as accelerated mRNA decay of transcripts that are not actively translated. The authors do not present any measurements of sfGFP mRNA levels.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In addition, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      In subsequent sections of the work, the authors create a series of point mutations to assess RNA-protein binding and assess these via both a sfGFP reporter and in vitro binding assays (switchSENSE). Ultimately, it is difficult to fully rationalize and interpret the behavior of these mutants in the context provided. The authors do identify a relationship between equilibrium constant (1/KD) and fold-repression. However, it is not clear from the narrative why this relationship should exist. Fold-repression is one measure of regulator efficacy, but it is an indirect measure determined from unrepressed and repressed expression. It is not clear why unrepressed expression (in the absence of the protein) is expected to be a function of the equilibrium constant.

      Authors’ response: A mathematical derivation from mass action kinetics on why the fold change scales with 1/KD is provided in Note S2. It is the ratio between the unrepressed and repressed expression (i.e., fold change) what scales with 1/KD, but not the expression of a particular state. This kind of relationship has been previously established in the case of transcription regulation [see e.g. Garcia & Phillips, PNAS (2011), our ref. 39]. Our mathematical modeling results expand previous work by providing a single picture from which to analyze transcription and translation regulation.

      Subsequent rational redesign of the Musashi-1 binding sequence to produce three alternative designs shows that fold-repression may be improved to approximately 8.6-fold. However, the rationalization of why the best design (red3) achieves this increase based on either the extensive modelling or in vitro measured binding constants is not well articulated. Furthermore, this extent of regulation is approximately that which can be achieved from the PP7 system with its native components (Lim et al. J. Biol. Chem. 2001 276:22507-22513).

      Authors’ response: In the case of translation control, the regulation is more challenging because the target is quickly degraded, especially in bacteria (in contrast to transcription control, where the target is stable). This is acknowledged in the manuscript. Even though, it is possible to engineer synthetic circuits with sRNAs or RNA-binding proteins with sufficient dynamic range. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.” Regarding the articulation of the results for the mutants and mathematical model, see our responses in the following questions.

      The application provided for this regulator (NIMPLY gate), is not an inherently novel regulatory paradigm, and it does not capitalize on the allosteric properties of Musashi-1, but rather treats Musashi-1 as a non-allosteric component of a regulatory circuit.

      Authors’ response: The NIMPLY gate refers to lactose and aTC as inputs. Considering oleic acid as an additional input will lead to a more complex logic. In the last Results section, we wanted to show that the post-transcriptional mechanism engineered with Musashi-1 can be useful specifically regulate a gene within an operon, to implement combinatorial regulation (i.e., coupling transcription and translation control), and to reduce protein expression noise. To these ends, the allosteric ability of the Musashi-1 was not so determinant. In this regard, it would be true that such fine regulatory effects might be achieved as well with non-allosteric RNA-binding proteins, such as MS2CP or PP7CP.

      Reviewer #3 (Recommendations For The Authors):

      1. In the introduction the authors should adequately address the native bacterial mechanisms that allow posttranscriptional regulation in bacteria as well as better discuss previous examples of translational repressors.

      Authors’ response: We have added the following paragraph in the Introduction: “Even though bacteria do not appear to exploit proteins to regulate translation in a gene-specific manner, it is worth noting that some bacteriophages do follow this mechanism to modulate their infection cycle. These are the cases, e.g., of the coat proteins of the phages MS2 (infecting Escherichia coli) or PP7 (infecting Pseudomonas aeruginosa), which regulate the expression of the cognate phage replicases through protein-RNA interactions [18]. However, one limitation for synthetic biology developments is that such phage proteins are not allosteric. At the post-transcriptional level, bacteria mostly rely on a large palette of cis- and trans-acting non-coding RNAs to either activate or repress protein expression, resulting in the regulation of translation initiation, mRNA stability, or transcription termination, and even allowing sensing small molecules [1,15]. Thus, there should be efforts to replicate this functional versatility with proteins in bacteria.”

      1. Given the location of the Musashi-1 binding site in the sfGFP reporter, it may be blocking translation initiation, rather than blocking the progression of the ribosome once attached (line 134/135). The schematic in Fig 1a. is also not overly clear in describing the differences in mechanisms between eukaryotic and prokaryotic systems described in the text.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

      1. The authors did not directly examine mRNA levels of their reporter to establish translational regulation. In many cases, inhibition of translation is accompanied by an increased degradation rate in bacterial systems. The authors do not seem to recognize this as a possible amplifier in their system, relying exclusively on normalization via another transcript produced from the same promoter (mScarlet).

      Authors’ response: For this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      1. The results presented for mutations 1-5 are not consistent with the author's models for what is occurring. In particular, mutant 1 displays a reduction in reporter production in the absence of Musashi-1, but the production in the presence does not change from the unaltered sequence. The claim that mutation 1 (in the UAG binding site) results in less binding and ultimately in less regulation is not substantiated since this loss of regulation is due to a reduction in unrepressed expression rather than an increase in expression when Musashi-1 is present.

      Authors’ response: We respectfully disagree with this appreciation. In the case of mutant 1, if the Musashi protein recognized the target mRNA with the same affinity as in the original scenario, the red bar would be much lower. Because the Musashi protein hardly recognizes the mutant-1 mRNA, the blue and red bars are quite similar. To clarify this point, we have added the following text in the manuscript: “Despite that mutation substantially reduced sfGFP expression in absence of MSI-1*, the presumed repressed state upon addition of lactose did not change much, suggesting the difficulty of the protein for targeting the mutated mRNA.”

      1. Given point 5 above, it is not clear to me why one would expect the 1/KD to be predictive fold-repression in the presence and absence of the repressor. I would rather see the relationship described as predictive in Fig. 2f (fold change vs. 1/KD) rather than the non-linear relationship. It is difficult to qualitatively evaluate the fit quality with the way the data are currently presented.

      Authors’ response: Note S2 provides a mathematical derivation from mass action kinetics on why the fold change scales with 1/KD. The R2 value that we provide for the fitting corresponds to the linear regression between fold and 1/KD, as specified in the figure legend. However, we think that the representation of fold vs. KD in log scale is more illustrative in this case.

      1. It is not clear what conclusion is determined from the computational modeling, or how this work contributes to the narrative presented. It does not seem like what is learned from these experiments is utilized for novel designs. Furthermore, several of the assumptions within the model may be problematic including the high rate of "elongation leakage" described and the lack of justification for RNA degradation rates utilized.

      Authors’ response: The mathematical modeling was performed to rationalize our experimental data. Our idea was more to recapitulate the observed dynamics than to guide the design of new systems. Our model might be exploited to this end in further research, as the reviewer suggests. Besides, elongation leakage is a concept that applies to both transcription and translation regulation systems, and it is not more than the ability of the RNA polymerase or ribosome to elongate even if there is a protein bound to the nucleic acid. This parameter can be set to 0 in the model if appropriate. Moreover, we cite the paper by Bernstein et al., PNAS (2002), our ref. 38, to justify that in E. coli the average mRNA half-life is about 5 min (i.e., degradation rate of 0.14 min-1).

      1. The data presented in Figure 4 are not presented in a consistent way. While it would be somewhat redundant, including the 0 and 1 mM lactose data for red3 in Figure 4a would be helpful for comparison purposes.

      Authors’ response: We have added the requested bar plot in Fig. 4a.

      1. The presence of additional Musashi-1 sites upstream of the start codon in red3, and their impact on impact on the fold-repression may support an inhibition of the translation initiation model rather than an inhibition of elongation.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We would like to thank the reviewers for their feedback. Below we address their comments and have indicated the associated changes in our point-by-point response (blue: answers, red: changes in manuscript).

      Reviewer #1:

      Overall, the hypotheses and results are clearly presented and supported by high quality figures. The study is presented in a didactic way, making it easy for a broad audience to understand the significance of the results. The study does present some weaknesses that could easily be addressed by the authors.

      We thank the reviewer for appreciating our work and providing useful suggestions for improvement.

      1) First, there are some anatomical inaccuracies: line 129 and fig1C, the authors omit m.dial septum projections to area CA1 (in addition to the entorhinal cortex). Moreover, in addition to CA1, CA3 also provides monosynaptic feedback projections to the medial septum CA3. Finally, an indirect projection from CA1/3 excitatory neurons to the lateral septum, which in turn sends inhibitory projections to the medial septum could be included or mentioned by the authors. This could be of particular relevance to support claims related to effects of neurostimulations, whereby minutious implementation of anatomical data could be key.

      If not updating their model, the authors could add this point to their limitation section, where they already do a good job of mentioning some limitations of using the EC as a sole oscillatory input to CA1.

      We acknowledge that our current model strongly simplifies the interconnections between the medial septum and the hippocampal formation, but including more anatomical details is beyond the scope of this manuscript and would be a topic for future work. Nevertheless, we followed the reviewer’s advice to stress this point in our manuscript. First, we moved a paragraph that was initially in the “methods” section to the “results” section (L.141-150 of the revised manuscript):

      “Biologically, GABAergic neurons from the medial septum project to the EC, CA3, and CA1 fields of the hippocampus (Toth et al., 1993; Hajós et al., 2004; Manseau et al., 2008; Hangya et al., 2009; Unal et al., 2015; Müller and Remy, 2018). Although the respective roles of these different projections are not fully understood, previous computational studies have suggested that the direct projection from the medial septum to CA1 is not essential for the production of theta in CA1 microcircuits (Mysin et al., 2019). Since our modeling of the medial septum is only used to generate a dynamic theta rhythm, we opted for a simplified representation where the medial septum projects only to the EC, which in turn drives the different fields of the hippocampus. In our model, Kuramoto oscillators are therefore connected to the EC neurons and they receive projections from CA1 neurons (see methods for more details).”

      Second, we expanded the corresponding paragraph in the limitation section to discuss this point further (L.398-415 of the revised manuscript):

      “We decided to model septal pacemaker neurons projecting to the EC as the main source of hippocampal theta as reported in multiple experimental studies (Buzsáki, 2002; Buzsáki et al., 2003; Hangya et al., 2009). However, experimental findings and previous models have also proposed that direct septal inputs are not essential for theta generation (Wang, 2002; Colgin et al., 2013; Mysin et al., 2019), but play an important role in phase synchronization of hippocampal neurons. Furthermore, the model does not account for the connections between the lateral and medial septum and the hippocampus (Takeuchi et al., 2021). These connections include the inhibitory projections from the lateral to the medial septum and the monosynaptic projections from the hippocampal CA3 field to the lateral septum. An experimental study has highlighted the importance of the lateral septum in regulating the hippocampal theta rhythm (Bender et al., 2015), an area that has not been included in the model. Specifically, theta-rhythmic optogenetic stimulation of the axonal projections from the lateral septum to the hippocampus was shown to entrain theta oscillations and lead to behavioral changes during exploration in transgenic mice. To account for these discrepancies, our model could be extended by considering more realistic connectivity patterns between the medial / lateral septum and the hippocampal formation, including glutamatergic, cholinergic, and GABAergic reciprocal connections (Müller and Remy, 2018), or by considering multiple sets of oscillators each representing one theta generator.”

      1. The authors test conditions of low theta inputs, which they liken to pathological states (line 112). It is not clear what pathology the authors are referring to, especially since a large amount of 'oscillopathies' in the septohippocampal system are associated with decreased gamma/PAC, but not theta oscillations (e.g. Alzheimer's disease conditions).

      In the manuscript, we referred to “oscillopathies” in a broad sense way as we did not want to overstate the biological implications of the model or the way we modeled pathological states. To our knowledge, several studies have yielded inconsistent results regarding the specific changes in theta or gamma power in Alzheimer’s disease, and the most convincing alteration seems to be the theta-gamma phase-amplitude coupling (PAC) (for review see e.g., Kitchigina, V. F. Alterations of Coherent Theta and Gamma Network Oscillations as an Early Biomarker of Temporal Lobe Epilepsy and Alzheimer’s Disease. Front Integr Neurosci 12, 36 (2018)), as also mentioned by the reviewer.

      In this study, the most straightforward way to reduce theta-gamma PAC was to reduce the amplitude of the oscillators’ gain, which affected theta power, gamma power, and theta-gamma PAC (Figure 5 of the revised manuscript). Affecting their synchronization level (i.e., the order parameter) did not affect any of these variables (Figure 5 – Figure Supplement 4).

      In order to alter theta-gamma PAC without affecting theta or gamma power, we believe that more complex changes should be performed in the model, likely at the level of individual neurons in the hippocampal formation. For example, cholinergic deprivation has been previously used in a multi-compartment model of the hippocampal CA3 to mimic Alzheimer’s disease and to draw functional implications on the slowing of theta oscillations and the storage of new information (Menschik, E. D. & Finkel, L. H. Neuromodulatory control of hippocampal function: towards a model of Alzheimer’s disease. Artif Intell Med 13, 99–121 (1998)).

      This has now been added to the limitations section (L.458-465 of the revised manuscript):

      “Finally, we likened conditions of low theta input to pathological states characteristic of oscillopathies such as Alzheimer’s disease, as these conditions disrupted all aspects of theta-gamma oscillations in our model: theta power, gamma power, and theta-gamma PAC (Figure 5). However, it should be noted that changes in theta or gamma power in these pathologies are often unclear, and that the most consistent alteration that has been reported in Alzheimer’s disease is a reduction of theta-gamma PAC (for review, see Kitchigina, 2018). Future work should explore the effects of cellular alterations intrinsic to the hippocampal formation and their impact on theta-gamma oscillations.”

      1. While relevant for the clinical field, there is overall a missed opportunity to explain many experimental accounts with this novel model. Although to this day, clinical use of DBS is mostly restricted to electrical (and thus cell-type agnostic) stimulation, recent studies focusing on mechanisms of neurostimulations have manipulated specific subtypes in the medial septum and observed effects on hippocampal oscillations (e.g. see Muller & Remy, 2017 for review). Focusing stimulations in CA1 is of course relevant for clinical studies but testing mechanistic hypotheses by focusing stimulation on specific cell types could be highly informative. For instance, could the author reproduce recent optogenetic studies (e.g. Bender et al. 2015 for stimulation of fornix fibers; Etter et al., 2019 & Zutshi et al. 2018 for stimulation of septal inhibitory neurons)? Cell specific manipulations should at least be discussed by the authors.

      We acknowledge the importance of cell-type-specific manipulation in the septo-hippocampal circuitry. However, our model was designed to study neurostimulation protocols that affect the hippocampal formation, not the medial septum, which is why only the hippocampal formation is composed of biophysically realistic (i.e., conductance-based) neuronal models. To replicate the various studies mentioned by the reviewer (which are all very relevant), we would need to implement a biophysical model of the medial septum, which would be an entirely new project.

      Nevertheless, we can use the existing model to replicate optogenetic studies that induced gamma oscillations in excitatory-inhibitory circuits, using either ramped photostimulation targeting excitatory neurons (Adesnik et al., 2010; Akam et al., 2012; Lu et al., 2015), or pulsed stimulation driving inhibitory cells in the gamma range (Cardin et al., 2009; Iaccarino et al., 2016). In fact, such approaches have been demonstrated not just in the hippocampus but also in the neocortex, and represent a hallmark of local excitatory-inhibitory circuits. To account for these experimental results and replicate them, we have added 4 new figures (Figure 2 and its 3 figure supplements) and an extensive section in the results part (L.151-217 of the revised manuscript):

      “From a conceptual point of view, our model is thus composed of excitatory-inhibitory (E-I) circuits connected in series, with a feedback loop going through a population of coupled phase oscillators. In the next sections, we first describe the generation of gamma oscillations by individual E-I circuits (Figure 2), and illustrate their behavior when driven by an oscillatory input such as theta oscillations (Figure 3). We then present a thorough characterization of the effects of theta input and stimulation amplitude on theta-nested gamma oscillations (Figure 4 and Figure 5). Finally, we present some results on the effects of neurostimulation protocols for restoring theta-nested gamma oscillations in pathological states (Figure 6 and Figure 7).

      Generation of gamma oscillations by E-I circuits

      It is well-established that a network of interconnected pyramidal neurons and interneurons can give rise to oscillations in the gamma range, a mechanism termed pyramidal-interneuronal network gamma (PING) (Traub et al., 2004; Onslow et al., 2014; Segneri et al., 2020;). This mechanism has been observed in several optogenetic studies with gradually increasing light intensity (i.e., under a ramp input) affecting multiple different circuits, such as layer 2-3 pyramidal neurons of the mouse somatosensory cortex (Adesnik et al., 2010), the CA3 field of the hippocampus in rat in vitro slices (Akam et al., 2012), and in the non-human primate motor cortex (Lu et al., 2015). In all cases, gamma oscillations emerged above a certain threshold in terms of photostimulation intensity, and the frequency of these oscillations was either stable or slightly increased when increasing the intensity further. We sought to replicate these findings with our elementary E-I circuits composed of single-compartment conductance-based neurons driven by a ramping input current (Figure 2 and Figure S2). As an example, all the results in this section will be shown for an E-I circuit that has similar connectivity parameters as the CA1 field of the hippocampus in our complete model (see section “Hippocampal formation: inputs and connectivity” in the methods).

      For low input currents provided to both neuronal populations, only the highly-excitable interneurons were activated (Figure 2A). For a sufficiently high input current (i.e., a strong input that could overcome the inhibition from the fast-spiking interneurons), the pyramidal neurons started spiking as well. As the amplitude of the input increased, the activity of the both neuronal populations became synchronized in the gamma range, asymptotically reaching a frequency of about 60 Hz (Figure 2A bottom panel). Decoupling the populations led to the abolition of gamma oscillations (Figure 2B), as neuronal activity was determined solely by the intrinsic properties of each cell. Interestingly, when the ramp input was provided solely to the excitatory population, we observed that the activity of the pyramidal neurons preceded the activity of the inhibitory neurons, while still preserving the emergence of gamma oscillations (Figure S2 A). As expected, decoupling the populations also abolished gamma oscillations, with the excitatory neurons spiking a frequency determined by their intrinsic properties and the inhibitory population remaining silent (Figure S2B).

      To further characterize the intrinsic properties of individual inhibitory and excitatory neurons, we derived their input-frequency (I-F) curves, which represent the firing rate of individual neurons in response to a tonic input (Figure S3A). We observed that for certain input amplitudes, the firing rates of both types of neurons was within the gamma range. Interestingly, in the absence of noise, each population could generate by itself gamma oscillations that were purely driven by the input and determined by the intrinsic properties of the neurons (Figure S3B). Adding stochastic Gaussian noise in the membrane potential disrupted these artificial oscillations in decoupled populations (Figure S3C). All subsequent simulations were run with similar noise levels to prevent the emergence of artificial gamma oscillations.

      Another potent way to induce gamma oscillations is to drive fast-spiking inhibitory neurons using pulsed optogenetic stimulation at gamma frequencies, a strategy that has been used both in the neocortex (Cardin et al., 2009) and hippocampal CA1 (Iaccarino et al., 2016). In particular, Cardin and colleagues systematically investigated the effect of driving either excitatory or fast-spiking inhibitory neocortical neurons at frequencies between 10 and 200 Hz (Cardin et al., 2009). They showed that fast-spiking interneurons are preferentially entrained around 40-50 Hz, while excitatory neurons respond better to lower frequencies. To verify the behavior of our model against these experimental data, we simulated pulsed optogenetic stimulation as an intracellular current provided to our reduced model of a single E-I circuit. Stimulation was applied at frequencies between 10 and 200 Hz to excitatory cells only, to inhibitory cells only, or to both at the same time (Figure S4). The population firing rates were used as a proxy for the local field potentials (LFP), and we computed the relative power in a 10-Hz band centered around the stimulation frequency, similarly to the method proposed in (Cardin et al., 2009). When presented with continuous stimulation across a range of frequencies in the gamma range, interneurons showed the greatest degree of gamma power modulation (Figure S4). Furthermore, when the stimulation was delivered to the excitatory population, the relative power around the stimulation frequency dropped significantly in frequencies above 10 Hz, similar to the reported experimental data (Cardin et al., 2009). The main difference between our simulation results and these experimental data is the specific frequencies at which fast-spiking interneurons showed resonance, which was slow gamma around 40 Hz in the mouse barrel cortex and fast gamma around 90 Hz in our model. This could be attributed to several factors, such as differences in the cellular properties between cortical and hippocampal fast-spiking interneurons, or the differences between the size of the populations and their relevant connectivity in the cortex and the hippocampus.”

      Author response image 1.

      Figure 2. Emergence of gamma oscillations in coupled excitatory-inhibitory populations under ramping input to both populations. A. Two coupled populations of excitatory pyramidal neurons (NE = 1000) and inhibitory interneurons (NI = 100) are driven by a ramping current input (0 nA to 1 nA) for 5 s. As the input becomes stronger, oscillations start to emerge (shaded green area), driven by the interactions between excitatory and inhibitory populations. The green inset shows the raster plot (neuronal spikes across time) of the two populations during the green shaded period (red for inhibitory; blue for excitatory). When the input becomes sufficiently strong (shaded magenta area), the populations become highly synchronized and produce oscillations in the gamma range (at approximately 50 Hz). The spectrogram (bottom panel) shows the power of the instantaneous firing rate of the pyramidal population as a function of time and frequency. It reveals the presence of gamma oscillations that emerge around 2s and increase in frequency until 4 s, when they settle at approximately 60 Hz. B. Similar depiction as in panel A. with the pyramidal-interneuronal populations decoupled. The absence of coupling leads to the abolition of gamma oscillations, each cell spiking activity being driven by its own inputs and intrinsic properties.

      Author response image 2.

      Figure S2 (Figure 2 – Figure Supplement 1). Emergence of gamma oscillations in coupled excitatoryinhibitory populations under ramping input to the excitatory population. Similar representation as in Figure 2, but with the input provided only to the excitatory population. All conclusions remain the same. In addition, the inhibitory population does not show any spiking activity in the decoupled case.

      Author response image 3.

      Figure S3 (Figure 2 – Figure Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective I-F curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      Author response image 4.

      Figure S3 (Figure 2 – Figure Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective I-F curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      Beyond these weaknesses, this study has a strong utility for researchers wanting to explore hypotheses in the field of neurostimulations. In particular, I see value in such models for exploring more intricate, phase specific effects of continuous, as well as close loop stimulations which are on the rise in systems neuroscience.

      We thank the reviewer for this appreciation of our work and its future perspectives.

      Recommendations For The Authors:

      Line 144, the authors mention that their MI values are erroneous in absence of additive noise - could this be due to the non-sinusoidal nature of the phase signal recorded, and be fixed by upscaling model size?

      We thank the reviewer for this question and suggestion. The main reason behind the errors in the computation of the MI lies in the complete absence of oscillations at specific frequencies. Filtered signals within specific bands produced a power of 0 (or extremely low values), as seen in the power spectral densities. In such cases, the phase signal was not mathematically defined, but the toolbox we used to compute it still returned a numerical result that was inaccurate (for more details on the computation of the MI see Tort et al., 2010). To mitigate this numerical artefact, we decided to add uniform noise in the computed firing rates. This strategy is illustrated on Figure S6 (Figure 3 – Figure Supplement 2), which we have copied below for reference. Alternative approaches could probably have been used, such as increasing the noise in the membrane potential so that neurons would start spiking with firing rates that show more realistic power spectra, even in the absence of external inputs.

      Author response image 5.

      Figure S6 (Figure 3 – Figure Supplement 2). Quantification of PAC with and without noise. A. Quantifying PAC in the absence of noise produced inaccurate identification of the coupled frequency bands, due to the complete absence of oscillations at some frequencies. All analyses are based on the CA1 firing rates (top traces) during a representative simulation. Power spectral densities of these firing rates (left) indicate that some frequencies have a power of 0. PAC of the excitatory population was assessed using two graphical representations, the polar plot (middle) and comodulogram (right), and quantified using the MI. The comodulogram was calculated by computing the MI across 80% overlapping 1-Hz frequency bands in the theta range and across 90% overlapping 10-Hz frequency bands in the gamma range and subsequently plotted as a heat map. In the absence of noise, a slow theta frequency centered around 5 Hz is found to modulate a broad range of gamma frequencies between 40 and 100 Hz. The value indicated on the comodulogram indicates the average MI in the 3-9 Hz theta range and 40-80 Hz gamma range. As in Figure 2, the polar plot represents the amplitude of gamma oscillations (averaged across all theta cycles) at each phase of theta (theta range: 3-9 Hz, phase indicated as angular coordinate) and for different gamma frequencies (radial coordinate, binned in 1-Hz ranges). B. Adding uniform noise to the firing rate (with an amplitude ranging between 15 and 25% of the maximum firing rate) improved the identification of the coupled frequency bands. In this case, the slower theta frequency centered around 5 Hz modulates a gamma band located between 45 and 75 Hz.

      Reviewer #2:

      The main strength of this model is its use of a fairly physiologically detailed model of the hippocampus. The cells are single-compartment models but do include multiple ion channels and are spatially arranged in accordance with the hippocampal structure. This allows the understanding of how ion channels (possibly modifiable by pharmacological agents) interact with system-level oscillations and neurostimulation. The model also includes all the main hippocampal subfields. The other strength is its attention to an important topic, which may be relevant for dementia treatment or prevention, which few modeling studies have addressed. The work has several weaknesses.

      We thank the reviewer for appreciating our detailed description of the hippocampal formation and the focus on neurostimulation applications that aim at treating oscillopathies, especially dementia.

      1. First, while investigations of hippocampal neurostimulation are important there are few experimental studies from which one could judge the validity of the model findings. All its findings are therefore predictions. It would be much more convincing to first show the model is able to reproduce some measured empirical neurostimulation effect before proceeding to make predictions.

      We acknowledge that the results presented in Figures 4-7 of the revised manuscript cannot be compared to existing experimental data, and are therefore purely predictive. Future experimental work is needed to verify these predictions.

      Yet, we would also like to stress that the motivation behind this project was the inadequacy of previous models of theta-nested gamma oscillations (Onslow et al., 2014; Aussel et al., 2018; Segneri et al., 2020) to account for the mechanism of theta phase reset that occurs during electrical stimulation of the fornix or perforant path (Williams and Givens, 2003). Since we could not use these previous models to study the effects of neurostimulation on theta-nested gamma oscillations, we had to modify them to account for a dynamical theta input, which is the main methodological novelty that is reported in our manuscript (Figures 1 and 3 of the revised manuscript).

      Despite the scarcity of experimental studies that could confirm the full model, we sought to replicate a few experimental findings that employed optogenetic stimulation to induce gamma oscillations in individual excitatory-inhibitory circuits. Although not specific to the hippocampus, these studies have shown that gamma oscillations can be induced using either ramped photostimulation targeting excitatory neurons (Adesnik et al., 2010; Akam et al., 2012; Lu et al., 2015), or pulsed stimulation driving inhibitory cells in the gamma range (Cardin et al., 2009; Iaccarino et al., 2016). To account for these experimental results and replicate them, we have added 4 new figures (Figure 2 and its 3 figure supplements) and an extensive section in the results part (L.141-217 of the revised manuscript). The added section and related figures are indicated in our response to reviewer 1, comment 3 (p 2-7).

      2.1. Second, the model is very specific. Or if its behavior is to be considered general it has not been explained why.

      Although the spatial organization and cellular details of the model are indeed very specific, its general behavior, i.e., the production of theta-nested gamma oscillations and theta phase reset, are common to any excitatory-inhibitory circuit interconnected with Kuramoto oscillators. To illustrate this point, we have generalized our approach to the neural mass model developed by Onslow and colleagues (Onslow ACE, Jones MW, Bogacz R. A Canonical Circuit for Generating Phase-Amplitude Coupling. PLoS ONE. 2014 Aug; 9(8):e102591). These results are represented in a new supplementary figure (Figure3 – Figure Supplement 4), and briefly described in a new paragraph of the results section (L.262-268 of the revised manuscript):

      “Importantly, our approach is generalizable and can be applied to other models producing theta-nested gamma oscillations. For instance, we adapted the neural mass model by Onslow and colleagues (Onslow et al., 2014), replaced the fixed theta input by a set of Kuramoto oscillators, and demonstrated that it could also generate theta phase reset in response to single-pulse stimulation (Figure S8). These results illustrate that the general behavior of our model is not specific to the tuning of individual parameters in the conductancebased neurons, but follows general rules that are captured by the level of abstraction of the Kuramoto formalism.”

      Author response image 6.

      Figure S8 (Figure 3 – Figure Supplement 4). A neural mass model of coupled excitatory and inhibitory neurons driven by Kuramoto oscillators generates theta-nested gamma oscillations and theta phase reset. A. Two coupled neural masses (one excitatory and one inhibitory) driven by Kuramoto oscillators, which represent a dynamical oscillatory drive in the theta range, were used to implement a neural mass equivalent to our conductance-based model represented in Figure 1. Neural masses were modeled using the WilsonCowan formalism, with parameters adapted from Onslow et al. (2014) (𝑊𝐸𝐸 = 4.8, 𝑊𝐸𝐼 = 𝑊𝐼𝐸 = 4, 𝑊𝐼𝐼 = 0). B. The normalized population firing rates exhibit theta-nested gamma oscillations (middle and bottom panels) in response to the dynamic theta rhythm (top panel). A stimulation pulse delivered at the descending phase of the rhythm to both populations (marked by the inverted red triangle) produces a robust theta phase reset, similarly to Figure 3A.

      This simplified model is described in more details in the methods (L.694-710 of the revised manuscript). Additionally, the generation of gamma oscillations by individual excitatory-inhibitory circuits is now described in details in the added section “Generation of gamma oscillations by E-I circuits” (L.159-217 of the revised manuscript), which has already been discussed in our response to reviewer 1, comment 3 (p 2-7).

      2.2. For example, the model shows bistability between quiescence and TNGO, however what aspect of the model underlies this, be it some particular network structure or particular ion channel, for example, is not addressed.

      We thank the reviewer for mentioning this point, which we have now addressed. The “bistable” behavior that we reported occurs for values of the theta input that are just below the threshold to induce selfsustained theta-gamma oscillations (Figure 5 of the revised manuscript, point B). Moreover, the presence of the Calcium-Activated-Nonspecific (CAN) cationic channel, which is expressed by pyramidal neurons in the entorhinal cortex, CA3, and CA1 fields of the hippocampus, is necessary for this behavior to occur. Indeed, abolishing CAN channels in all areas of the model suppresses this behavior. We have now addressed this point in a new supplementary figure (Figure 5 – Figure Supplement 4) and a short description in the text (L.287-303 of the revised manuscript).

      “In the presence of dynamic theta input, the effects of single-pulse stimulation depended both on theta input amplitude and stimulation amplitude, highlighting different regimes of network activity (Figure 5 and Figure S9, Figure S10, Figure S11). For low theta input, theta-nested gamma oscillations were initially absent and could not be induced by stimulation (Figure 5A). At most, the stimulation could only elicit a few bursts of spiking activity that faded away after approximately 250 ms, similar to the rebound of activity seen in the absence of theta drive. For increasing theta input, the network switched to an intermediate regime: upon initialization at a state with no spiking activity, it could be kicked to a state with self-sustained theta-nested gamma oscillations by a single stimulation pulse of sufficiently high amplitude (Figure 5B). This regime existed for a range of septal theta inputs located just below the threshold to induce self-sustained theta-gamma oscillations without additional stimulation, as characterized by the post-stimulation theta power, gamma power, and theta-gamma PAC (Figure 5D). Removing CAN currents from all areas of the model abolished this behavior (Figure S12), which is interesting given the role of this current in the multistability of EC neurons (Egorov et al., 2002; Fransen et al., 2006) and in the intrinsic ability of the hippocampus to generate thetanested gamma oscillations (Giovannini et al., 2017). For the highest theta input, the network became able to spontaneously generate theta-nested gamma oscillations, even when initialized at a state with no spiking activity and without additional neurostimulation (Figure 5C).”

      Author response image 7.

      Figure S12 (Figure 5 – Figure Supplement 4). CAN currents are necessary for the production of selfsustained theta-gamma oscillations in response to single-pulse stimulation. A. Same as Figure 5B. B. Similar simulation as panel A., but without the presence of CAN currents in the EC, CA3 and CA1 fields of the hippocampus. Removing CAN currents from the model abolishes self-sustained theta-nested gamma oscillations in response to a single stimulation pulse (for the parameters represented in Figure 5, point B).

      Furthermore, we realized that the terminology “bistable” may not be justified as we could not perform a systematic bifurcation analysis, which is typically carried out in simpler neural mass models (e.g., Onslow et al., 2014; Segneri et al., 2020). Therefore, we decided to rephrase the sentences about “bistability” to keep a more general terminology. The following sentences were revised:

      L.20-23: “We showed that, for theta inputs just below the threshold to induce self-sustained theta-nested gamma oscillations, a single stimulation pulse could switch the network behavior from non-oscillatory to a state producing sustained oscillations.”

      L.305-309: “Based on the above analyses, we considered two pathological states: one with a moderate theta input (i.e., moderately weak projections from the medial septum to the EC) that allowed the initiation of selfsustained oscillations by single stimulation pulses (Figure 5, point B), and one with a weaker theta input characterized by the complete absence of self-sustained oscillations even following transient stimulation (Figure 5, point A).”

      L.316-317: “In the case of a moderate theta input and in the presence of phase reset, delivering a pulse at either the peak or trough of theta could induce theta-nested gamma oscillations (Figure 6A and 6C).”

      L.353-357: “A very interesting finding concerns the behavior of the model in response to single-pulse stimulation for certain values of the theta amplitude (Figure5). For low theta amplitudes, a single stimulation pulse was capable of switching the network behavior from a state with no spiking activity to one with prominent theta-nested gamma oscillations. Whether such an effect can be induced in vivo in the context of memory processes remains an open question.”

      2.3. Similarly for the various phase reset behaviors that are found.

      We would like to clarify the fact that the observed phase reset curves (reported in Figure 3D) are a direct consequence of the choice of an appropriate phase response function for the Kuramoto oscillators representing the medial septum. This choice is inspired by experimentally measured phase response curves from CA3 neurons. These aspects are described briefly in the introduction and in more details in the methods, as indicated below:

      L.101: “This new hybrid dynamical model could generate both theta-nested gamma oscillations and theta phase reset, following a particular phase response curve (PRC) inspired by experimental literature (Lengyel et al., 2005; Akam et al., 2012; Torben-Nielsen et al., 2010).”

      L.528-537: “Hereafter, we call the term 𝑍(𝜃) the phase response function, to distinguish it from the PRC obtained from experimental data or simulations (see section below "Data Analysis", "Phase Response Curve"). Briefly, the PRC of an oscillatory system indicates the phase delay or advancement that follows a single pulse, as a function of the phase at which this input is delivered. The phase response function 𝑍(𝜃) was chosen to mimic as well as possible experimental PRCs reported in the literature (Lengyel et al., 2005; Kwag and Paulsen, 2009; Akam et al., 2012). These PRCs appear biphasic and show a phase advancement (respectively delay) for stimuli delivered in the ascending (respectively descending) slope of theta. To accurately model this behavior, we used the following equation for the phase response function, where 𝜃𝑝𝑒𝑎𝑘 represents the phase at which the theta rhythm reaches its maximum and the parameter 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 controls the desired phase offset from the peak:

      Author response image 8.

      On the figure below, we illustrate the phase response curves of CA3 neurons measured by Lengyel et al., 2005 (panel A.), and compare it with our simulated phase response curves (panel B.). Note that the conventions for phase advance and phase delay are reversed between the two panels.

      Finally, we would like to acknowledge that the model “is not derived from experimental phase response curves of septal neurons of which there is no direct measurement”, as mentioned by the reviewer in their comment 4 below. Despite the lack of experimental data specific to medial septum neurons, we argue that this phase response function is the only one that mathematically supports the generation of self-sustained theta-nested gamma oscillations in our current model. This statement is illustrated by Figure S7 (Figure 3 – Figure Supplement 3) and is mentioned in the results (L.249-261 of the revised manuscript):

      We modeled this behavior by a specific term (which we called the phase response function) in the general equation of the Kuramoto oscillators (see methods, Equation 1). Importantly, introducing a phase offset in the phase response function disrupted theta-nested gamma oscillations (Figure S7), which suggests that the septohippocampal circuitry must be critically tuned to be able to generate such oscillations. The strength of phase reset could also be adjusted by a gain that was manually tuned. In the presence of the physiological phase response function and of a sufficiently high reset gain, a single stimulation pulse delivered to all excitatory and inhibitory CA1 neurons could reset the phase of theta to a value close to its peaks (Figure 3A). We computed the PRC of our simulated data for different stimulation amplitudes and validated that our neuronal network behaved according to the phase response function set in our Kuramoto oscillators (Figure 3D). It should be noted that including this phase reset mechanism affected the generated theta rhythm even in the absence of stimulation, extending the duration of the theta peak and thereby slowing down the frequency of the generated theta rhythm.

      Author response image 9.

      Figure S7 (Figure 3 – Figure Supplement 3). Network behavior generated by Kuramoto oscillators with nonphysiological phase response functions. Each panel is similar to Figure 3A, but with a different offset added to the phase response function of the Kuramoto oscillators (see methods, Equation 4). The center frequency was set to 6 Hz in all of these simulations. Overall, theta oscillations in these cases are less sinusoidal and show more abrupt phase changes than in the physiological case. A. A phase offset of −𝜋∕2 leads to an overall theta oscillation of 4 Hz, with a second peak following the main theta peak. B. A phase offset of +𝜋∕2 reduces the peak of theta, resetting the rhythm to the middle of the ascending phase. C. A phase offset of 𝜋 or -𝜋 leads to the CA1 output resetting the theta rhythm to the trough of theta.

      2.4. We may wonder whether a different hippocampal model of TNGO, of which there are many published (for example [1-6]) would show the same effect under neurostimulation. This seems very unlikely […]

      [1] Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends in neurosciences. 2015 Nov 1;38(11):725-40.

      [2] Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences. 2007 Aug 14;104(33):13490-5.

      [3] Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. Journal of Neuroscience. 2011 Aug 10;31(32):11733-43.

      [4] Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase-amplitude coupling in a hippocampal CA1 microcircuit. PLOS Computational Biology. 2023 Mar 23;19(3):e1010942.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

      The highlighted publications, while very important in their findings regarding theta-gamma phase-amplitude coupling, focused on specific subfields of the hippocampus. In our work, we aimed to develop a model that includes the different anatomical divisions of the hippocampal formation, while still exhibiting theta-nested gamma oscillations, which is why we decided to expand the model by Aussel et al. (2018). Exploring the behavior of all these different hippocampal models under neurostimulation is beyond the scope of the current manuscript.

      Nevertheless, we have added a new figure (Figure 3 – Figure Supplement 4) showing an adaptation of our modeling approach to a generic neural mass model of theta-nested gamma oscillations (Onslow et al., 2014), which illustrates the generalizability of our findings and is described in details in our response to comment 2.1. Moreover, we have further addressed the comments of the reviewers regarding bistability and phase response curves in our responses to comments 2.2 and 2.3.

      Furthermore, we have added references to all 6 of these publications in the revised version of the manuscript:

      L.43-50: Moreover, the modulation of gamma oscillations by the phase of theta oscillations in hippocampal circuits, a phenomenon termed theta-gamma phase-amplitude coupling (PAC), correlates with the efficacy of memory encoding and retrieval (Jensen and Colgin, 2007; Tort et al., 2009; Canolty and Knight, 2010; Axmacher et al., 2010; Fell and Axmacher, 2011; Lisman and Jensen, 2013; Lega et al., 2016). Experimental and computational work on the coupling between oscillatory rhythms has indicated that it originates from different neural architectures and correlates with a range of behavioral and cognitive functions, enabling the long-range synchronization of cortical areas and facilitating multi-item encoding in the context of memory (Hyafil et al., 2015)."

      L.415-426: “In terms of neuronal cell types, we also made an important simplification by considering only basket cells as the main class of inhibitory interneuron in the whole hippocampal formation. However, it should be noted that many other types of interneurons exist in the hippocampus and have been modeled in various works with higher computational complexity (e.g., Bezaire et al., 2016; Chatzikalymniou et al., 2021). Among these various interneurons, oriens-lacunosum moleculare (OLM) neurons in the CA1 field have been shown to play a crucial role in synchronizing the activity of pyramidal neurons at gamma frequencies (Tort et al., 2007), and in generating theta-gamma PAC (e.g., Neymotin et al., 2011; Ponzi et al., 2023). Additionally, these cells may contribute to the formation of specific phase relationships within CA1 neuronal populations, through the integration between inputs from the medial septum, the EC, and CA3 (Mysin et al., 2019). Future work is needed to include more diverse cell types and detailed morphologies modeled through multiple compartments.”

      2.5. […] and indeed the quiescent state itself shown by this model seems quite artificial.

      We would like to clarify the fact that the “quiescent state” mentioned by the reviewer is a simply a state where the theta input is too low to induce theta-nested gamma oscillations. In this regime, neurons are active only due to the noise term in the membrane potential, which was adjusted based on Figure S3 (Figure 2 – Figure Supplement 2, shown below), at the minimal level needed to disrupt artificial synchronization in decoupled populations. For an input of 0 nA, we acknowledge that this network is indeed fully quiescent (i.e., does not show any spiking activity). However, as soon as the input increases, spontaneous spiking activity starts to appear with an average firing rate that depends on the input amplitude and is characterized by the input-frequency curves (panel A.). Please note that adding more noise could eliminate the observed quiescence in the absence of any input, but that it would not affect qualitatively the reported results.

      Author response image 10.

      Figure S3 (Figure 2 – Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective IF curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      2.6. Some indication that particular ion channels, CAN and M are relevant is briefly provided and the work would be much improved by examining this aspect in more detail.

      We thank the reviewer for acknowledging the importance of these ion channels. We have now added a new supplementary figure (Figure 5 – Figure Supplement 4), which is described in more details in our response to comment 2.2 and illustrates the role of the CAN current in the generation of theta-nested gamma oscillations following a single stimulation pulse. Moreover, we would like to stress that the impact of CAN currents in the ability of the hippocampus to generate theta-nested gamma oscillations intrinsically, i.e., in the absence of persistent external input, has already been investigated in details by a previous computational study cited in our manuscript (Giovannini F, Knauer B, Yoshida M, Buhry L. The CAN-In network: A biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus. Hippocampus. 2017 Apr;809 27(4):450–463).

      2.7. In summary, the work would benefit from an intuitive analysis of the basic model ingredients underlying its neurostimulation response properties.

      We thank the reviewer for this suggestion. By addressing the reviewer’s previous comments (reviewer 2, comments 2.1 and 2.2), which overlap partly with the first reviewer (reviewer 1, comment 3), we believe we have improved the manuscript and have provided key information related to the way the model responds to neurostimulation.

      3..) Third, while the model is fairly realistic, considerable important factors are not included and in fact, there are much more detailed hippocampal models out there (for example [5,6]). In particular, it includes only excitatory cells and a single type of inhibitory cell. This is particularly important since there are many models and experimental studies where specific cell types, for example, OLM and VIP cells, are strongly implicated in TNGO.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

      We thank the reviewer for pointing out these interesting avenues for future studies. As indicated in previous responses (reviewer 1, comment 1; reviewer 2, comment 2.4), we have added several paragraphs to discuss these limitations, the rationale behind our simplifications, and potential improvements. In particular, we have added the following paragraphs to discuss our simplifications in terms of connectivity and cell types:

      Anatomical connectivity:

      L.141-150: “Biologically, GABAergic neurons from the medial septum project to the EC, CA3, and CA1 fields of the hippocampus (Toth et al., 1993; Hajós et al., 2004; Manseau et al., 2008; Hangya et al., 2009; Unal et al., 2015; Müller and Remy, 2018). Although the respective roles of these different projections are not fully understood, previous computational studies have suggested that the direct projection from the medial septum to CA1 is not essential for the production of theta in CA1 microcircuits (Mysin et al., 2019). Since our modeling of the medial septum is only used to generate a dynamic theta rhythm, we opted for a simplified representation where the medial septum projects only to the EC, which in turn drives the different subfields of the hippocampus. In our model, Kuramoto oscillators are therefore connected to the EC neurons and they receive projections from CA1 neurons (see methods for more details).”

      Cell types:

      L.415-426: “In terms of neuronal cell types, we also made an important simplification by considering only basket cells as the main class of inhibitory interneuron in the whole hippocampal formation. However, it should be noted that many other types of interneurons exist in the hippocampus and have been modeled in various works with higher computational complexity (e.g., Bezaire et al., 2016; Chatzikalymniou et al., 2021). Among these various interneurons, oriens-lacunosum moleculare (OLM) neurons in the CA1 field have been shown to play a crucial role in synchronizing the activity of pyramidal neurons at gamma frequencies (Tort et al., 2007), and in generating theta-gamma PAC (e.g., Neymotin et al., 2011; Ponzi et al., 2023). Additionally, these cells may contribute to the formation of specific phase relationships within CA1 neuronal populations, through the integration between inputs from the medial septum, the EC, and CA3 (Mysin et al., 2019). Future work is needed to include more diverse cell types and detailed morphologies modeled through multiple compartments.”

      3.2. Other missing ingredients one may think might have a strong impact on model response to neurostimulation (in particular stimulation trains) include the well-known short-term plasticity between different hippocampal cell types and active dendritic properties.

      We agree with the reviewer that plasticity mechanisms are important to include in future work, which we had already mentioned in the limitations section of the manuscript:

      L.436-443: “Importantly, we did not consider learning through synaptic plasticity, even though such mechanisms could drastically modify synaptic conduction for the whole network (Borges et al., 2017). Even more interestingly, the inclusion of spike-timing-dependent plasticity would enable the investigation of stimulation protocols aimed at promoting LTP, such as theta-burst stimulation (Larson et al., 2015). This aspect would be of uttermost importance to make a link with memory encoding and retrieval processes (Axmacher et al., 2006; Tsanov et al., 2009; Jutras et al., 2013) and with neurostimulation studies for memory improvement (Titiz et al., 2017; Solomon et al., 2021).”

      1. Fourth the MS model seems somewhat unsupported. It is modeled as a set of coupled oscillators that synchronize. However, there is also a phase reset mechanism included. This mechanism is important because it underlies several of the phase reset behaviors shown by the full model. However, it is not derived from experimental phase response curves of septal neurons of which there is no direct measurement. The work would benefit from the use of a more biologically validated MS model.

      We would like to confirm that the phase reset mechanism is indeed at the core of using Kuramoto oscillators to model a particular system. For more details about our choice of a phase response function and the obtained results in terms of phase response curves, we refer the reader to our response to comment 2.3.

      Generally speaking, we chose to use Kuramoto oscillators as it is the simplest model that can provide an oscillatory input to another system while including a phase reset mechanism. This set of oscillators was used to replace the fixed sinusoidal wave that represented theta inputs in previous models (Onslow et al., 2014; Aussel et al., 2018; Segneri et al., 2020). Kuramoto oscillators are a well-established model of synchronization in various fields of physics. They have also been used in neuroscience to model the phase reset of collective rhythms (Levnajić et al. 2010), and the effects of DBS on the basal ganglia network in Parkinson’s disease (Tass et al. 2003, Ebert et al. 2014, Weerasinghe et al. 2019).

      More detailed models of the medial septum exist in the literature (e.g., Wang et al. 2002, Hajós et al. 2004) and model the GABAergic effects of the septal projections onto the hippocampal formation. However, it is not trivial to infer the connectivity parameters and the degree of innervation between the hippocampus and the medial septum. Furthermore, the claims made in our study do not necessarily depend on the nature of the projections between the two areas. Therefore, we decided to represent the medial septum in a conceptual way and focus mostly on the effects of these projections rather than replicating them in detail.

      Aussel, Amélie, Laure Buhry, Louise Tyvaert, and Radu Ranta. “A Detailed Anatomical and Mathematical Model of the Hippocampal Formation for the Generation of Sharp-Wave Ripples and Theta-Nested Gamma Oscillations.” Journal of Computational Neuroscience 45, no. 3 (December 2018): 207–21. https://doi.org/10.1007/s10827-018-0704-x.

      Ebert, Martin, Christian Hauptmann, and Peter A. Tass. “Coordinated Reset Stimulation in a Large-Scale Model of the STN-GPe Circuit.” Frontiers in Computational Neuroscience 8 (2014): 154. https://doi.org/10.3389/fncom.2014.00154.

      Hajós, M., W.E. Hoffmann, G. Orbán, T. Kiss, and P. Érdi. “Modulation of Septo-Hippocampal θ Activity by GABAA Receptors: An Experimental and Computational Approach.” Neuroscience 126, no. 3 (January 2004): 599–610. https://doi.org/10.1016/j.neuroscience.2004.03.043.

      Levnajić, Zoran, and Arkady Pikovsky. “Phase Resetting of Collective Rhythm in Ensembles of Oscillators.” Physical Review E 82, no. 5 (November 3, 2010): 056202. https://doi.org/10.1103/PhysRevE.82.056202.

      Onslow, Angela C. E., Matthew W. Jones, and Rafal Bogacz. “A Canonical Circuit for Generating PhaseAmplitude Coupling.” Edited by Adriano B. L. Tort. PLoS ONE 9, no. 8 (August 19, 2014): e102591. https://doi.org/10.1371/journal.pone.0102591.

      Segneri, Marco, Hongjie Bi, Simona Olmi, and Alessandro Torcini. “Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models.” Frontiers in Computational Neuroscience 14 (2020). https://doi.org/10.3389/fncom.2020.00047. T ass, Peter A. “A Model of Desynchronizing Deep Brain Stimulation with a Demand-Controlled Coordinated Reset of Neural Subpopulations.” Biological Cybernetics 89, no. 2 (August 1, 2003): 81–88. https://doi.org/10.1007/s00422-003-0425-7.

      Wang, Xiao-Jing. “Pacemaker Neurons for the Theta Rhythm and Their Synchronization in the Septohippocampal Reciprocal Loop.” Journal of Neurophysiology 87, no. 2 (February 1, 2002): 889–900. https://doi.org/10.1152/jn.00135.2001.

      Weerasinghe, Gihan, Benoit Duchet, Hayriye Cagnan, Peter Brown, Christian Bick, and Rafal Bogacz. “Predicting the Effects of Deep Brain Stimulation Using a Reduced Coupled Oscillator Model.” PLoS Computational Biology 15, no. 8 (August 8, 2019): e1006575. https://doi.org/10.1371/journal.pcbi.1006575.

    2. Reviewer #2 (Public Review):

      Theta-nested gamma oscillations (TNGO) play an important role in hippocampal memory and cognitive processes and are disrupted in pathology. Deep brain stimulation has been shown to affect memory encoding. To investigate the effect of pulsed CA1 neurostimulation on hippocampal TNGO the authors coupled a physiologically realistic model of the hippocampus comprising EC, DG, CA1, and CA3 subfields with an abstract theta oscillator model of the medial septum (MS). Pathology was modeled as weakened theta input from the MS to EC simulating MS neurodegeneration known to occur in Alzheimer's disease. The authors show that if the input from the MS to EC is strong (the healthy state) the model autonomously generates TNGO in all hippocampal subfields while a single neurostimulation pulse has the effect of resetting the TNGO phase. When the MS input strength is weaker the network is quiescent but the authors find that a single CA1 neurostimulation pulse can switch it into the persistent TNGO state, provided the neurostimulation pulse is applied at the peak of the EC theta. If the MS theta oscillator model is supplemented by an additional phase-reset mechanism a single CA1 neurostimulation pulse applied at the trough of EC theta also produces the same effect. If the MS input to EC is weaker still, only a short burst of TNGO is generated by a single neurostimulation pulse. The authors investigate the physiological origin of this burst and find it results from an interplay of CAN and M currents in the CA1 excitatory cells. In this case, the authors find that TNGO can only be rescued by a theta frequency train of CA1 pulses applied at the peak of the EC theta or again at either the peak or trough if the MS oscillator model is supplemented by the phase-reset mechanism.

      The main strength of this model is its use of a fairly physiologically detailed model of the hippocampus. The cells are single-compartment models but do include multiple ion channels and are spatially arranged in accordance with the hippocampal structure. This allows the understanding of how ion channels (possibly modifiable by pharmacological agents) interact with system-level oscillations and neurostimulation. The model also includes all the main hippocampal subfields. The other strength is its attention to an important topic, which may be relevant for dementia treatment or prevention, which few modeling studies have addressed.

      The work has several weaknesses. First, while investigations of hippocampal neurostimulation are important there are few experimental studies from which one could judge the validity of the model findings. All its findings are therefore predictions. It would be much more convincing to first show the model is able to reproduce some measured empirical neurostimulation effect before proceeding to make predictions. Second, the model is very specific. Or if its behavior is to be considered general it has not been explained why. For example, the model shows bistability between quiescence and TNGO, however what aspect of the model underlies this, be it some particular network structure or particular ion channel, for example, is not addressed. Similarly for the various phase reset behaviors that are found. We may wonder whether a different hippocampal model of TNGO, of which there are many published (for example [1-6]) would show the same effect under neurostimulation. This seems very unlikely and indeed the quiescent state itself shown by this model seems quite artificial. Some indication that particular ion channels, CAN and M are relevant is briefly provided and the work would be much improved by examining this aspect in more detail. In summary, the work would benefit from an intuitive analysis of the basic model ingredients underlying its neurostimulation response properties. Third, while the model is fairly realistic, considerable important factors are not included and in fact, there are much more detailed hippocampal models out there (for example [5,6]). In particular, it includes only excitatory cells and a single type of inhibitory cell. This is particularly important since there are many models and experimental studies where specific cell types, for example, OLM and VIP cells, are strongly implicated in TNGO. Other missing ingredients one may think might have a strong impact on model response to neurostimulation (in particular stimulation trains) include the well-known short-term plasticity between different hippocampal cell types and active dendritic properties. Fourth the MS model seems somewhat unsupported. It is modeled as a set of coupled oscillators that synchronize. However, there is also a phase reset mechanism included. This mechanism is important because it underlies several of the phase reset behaviors shown by the full model. However, it is not derived from experimental phase response curves of septal neurons of which there is no direct measurement. The work would benefit from the use of a more biologically validated MS model.

      [1] Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends in neurosciences. 2015 Nov 1;38(11):725-40.

      [2] Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences. 2007 Aug 14;104(33):13490-5.

      [3] Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. Journal of Neuroscience. 2011 Aug 10;31(32):11733-43.

      [4] Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase-amplitude coupling in a hippocampal CA1 microcircuit. PLOS Computational Biology. 2023 Mar 23;19(3):e1010942.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript by Wagstyl et al. describes an extensive analysis of gene expression in the human cerebral cortex and the association with a large variety of maps capturing many of its microscopic and macroscopic properties. The core methodological contribution is the computation of continuous maps of gene expression for >20k genes, which are being shared with the community. The manuscript is a demonstration of several ways in which these maps can be used to relate gene expression with histological features of the human cortex, cytoarchitecture, folding, function, development and disease risk. The main scientific contribution is to provide data and tools to help substantiate the idea of the genetic regulation of multi-scale aspects of the organisation of the human brain. The manuscript is dense, but clearly written and beautifully illustrated.

      Main comments

      The starting point for the manuscript is the construction of continuous maps of gene expression for most human genes. These maps are based on the microarray data from 6 left human brain hemispheres made available by the Allen Brain Institute. By technological necessity, the microarray data is very sparse: only 1304 samples to map all the cortex after all subjects were combined (a single individual's hemisphere has ~400 samples). Sampling is also inhomogeneous due to the coronal slicing of the tissue. To obtain continuous maps on a mesh, the authors filled the gaps using nearest-neighbour interpolation followed by strong smoothing. This may have two potentially important consequences that the authors may want to discuss further: (a) the intrinsic geometry of the mesh used for smoothing will introduce structure in the expression map, and (b) strong smoothing will produce substantial, spatially heterogeneous, autocorrelations in the signal, which are known to lead to a significant increase in the false positive rate (FPR) in the spin tests they used.

      Many thanks to the reviewer for their considered feedback. We have addressed these primary concerns into point-by-point responses below. The key conclusions from our new analyses are: (i) while the intrinsic geometry of the mesh had not originally been accounted for in sufficient detail, the findings presented in this manuscript paper are not driven by mesh-induced structure, (ii) that the spin test null models used in this manuscript [(including a modified version introduced in response to (i)] are currently the most appropriate way to mitigate against inflated false positive rates when making statistical inferences on smooth, surface-based data.

      a. Structured smoothing

      A brain surface has intrinsic curvature (Gaussian curvature, which cannot be flattened away without tearing). The size of the neighbourhood around each surface vertex will be determined by this curvature. During surface smoothing, this will make that the weight of each vertex will be also modulated by the local curvature, i.e., by large geometric structures such as poles, fissures and folds. The article by Ciantar et al (2022, https://doi.org/10.1007/s00429-022-02536-4) provides a clear illustration of this effect: even the mapping of a volume of pure noise into a brain mesh will produce a pattern over the surface strikingly similar to that obtained by mapping resting state functional data or functional data related to a motor task.

      Comment 1

      It may be important to make the readers aware of this possible limitation, which is in large part a consequence of the sparsity of the microarray sampling and the necessity to map that to a mesh. This may confound the assessments of reproducibility (results, p4). Reproducibility was assessed by comparing pairs of subgroups split from the total 6. But if the mesh is introducing structure into the data, and if the same mesh was used for both groups, then what's being reproduced could be a combination of signal from the expression data and signal induced by the mesh structure.

      Response 1

      The reviewer raises an important question regarding the potential for interpolation and smoothing on a cortical mesh to induce a common/correlated signal due to the intrinsic mesh structure. We have now generated a new null model to test this idea which indicates that intrinsic mesh structure is not inflating reproducibility in interpolated expression maps. This new null model spins the original samples prior to interpolation, smoothing and comparison between triplet splits of the six donors, with independent spins shared across the triplet. For computational tractability we took one pair of triplets and regenerated the dataset for each triplet using 10 independent spins. We used these to estimate gene-gene null reproducibility for 90 independent pairwise combinations of these 10 spins. Across these 90 permutations, the average median gene-gene correlation was R=0.03, whereas in the unspun triplet comparisons this was R=0.36. These results indicate that the primary source of the gene-level triplet reproducibility is the underlying shared gene expression pattern rather than interpolation-induced structure.

      In Methods 2a: "An additional null dataset was generated to test whether intrinsic geometry of the cortical mesh and its impact on interpolation for benchmarking analyses of DEMs and gradients (Fig S1d, Fig S2d, Fig S3c). In these analyses, the original samples were rotated on the spherical surface prior to subsequent interpolation, smoothing and gradient calculation. Due to computational constraints the full dataset was recreated only for 10 independent spins. These are referred to as the “spun+interpolated null”.

      Author response image 1.

      Figure S1d, Gene predictability was higher across all triplet-triplet pairs than when compared to spun+interpolated null.

      Comment 2

      It's also possible that mesh-induced structure is responsible in part for the "signal boost" observed when comparing raw expression data and interpolated data (fig S1a). How do you explain the signal boost of the smooth data compared with the raw data otherwise?

      Response 2

      We thank the reviewer for highlighting this issue of mesh-induced structure. We first sought to quantify the impact of mesh-induced structure through the new null model, in which the data are spun prior to interpolation. New figure S1d, S2d and S3c all show that the main findings are not driven by interpolation over a common mesh structure, but rather originate in the underlying expression data.

      Specifically, for the original Figure S1a, the reviewer highlights a limitation that we compared intersubject predictability of raw-sample to raw-sample and interpolated-to-interpolated. In this original formulation improved prediction scores for interpolated-to-interpolated (the “signal boost”) could be driven by mesh-induced structure being applied to both the input and predicted maps. We have updated this so that we are now comparing raw-to-raw and interpolated-to-raw, i.e. whether interpolated values are better estimations of the measured expression values. The new Fig S1a&b (see below) shows a signal boost in gene-level and vertex level prediction scores (delta R = +0.05) and we attribute this to the minimisation of location and measurement noise in the raw data, improving the intersubject predictability of expression levels.

      In Methods 2b: "To assess the effect of data interpolation in DEM generation we compared gene-level and vertex-level reproducibility of DEMs against a “ground truth” estimate of these reproducibility metrics based on uninterpolated expression data. To achieve a strict comparison of gene expression values between different individuals at identical spatial locations we focused these analyses on the subset of AHBA samples where a sample from one subject was within 3 mm geodesic distance of another. This resulted in 1097 instances (spatial locations) with measures of raw gene expression of one donor, and predicted values from the second donor’s un-interpolated AHBA expression data and interpolated DEM. We computed gene-level and vertex-level reproducibility of expression using the paired donor data at each of these sample points for both DEM and uninterpolated AHBA expression values. By comparing DEM reproducibility estimates with those for uninterpolated AHBA expression data, we were able to quantify the combined effect of interpolation and smoothing steps in DEM generation. We used gene-level reproducibility values from DEMs and uninterpolated AHBA expression data to compute a gene-level difference in reproducibility, and we then visualized the distribution of these difference values across genes (Fig S1a). We used gene-rank correlation to compare vertex-level reproducibility values between DEMs and uninterpolated AHBA expression data (Fig S1b)."

      Author response image 2.

      Figure S1. Reproducibility of Dense Expression Maps (DEMs) interpolated from spatially sparse postmortem measures of cortical gene expression. a, Signal boost in the interpolated DEM dataset vs. spatially sparse expression data. Restricting to samples taken from approximately the same cortical location in pairs of individuals (within 3mm geodesic distance), there was an overall improvement in intersubject spatial predictability in the interpolated maps. Furthermore, genes with lower predictability in the interpolated maps were less predictable in the raw dataset, suggesting these regions exhibit higher underlying biological variability rather than methodologically introduced bias. b, Similarly at the paired sample locations, gene-rank predictability was generally improved in DEMs vs. sparse expression data (median change in R from sparse samples to interpolated for each pair of subjects, +0.5).

      1. How do you explain that despite the difference in absolute value the combined expression maps of genes with and without cortical expression look similar? (fig S1e: in both cases there's high values in the dorsal part of the central sulcus, in the occipital pole, in the temporal pole, and low values in the precuneus and close to the angular gyrus). Could this also reflect mesh-smoothing-induced structure?

      Response 3

      As with comment 1, this is an interesting perspective that we had not fully considered. We would first like to clarify that non-cortical expression is defined from the independent datasets including the “cortex” tissue class of the human protein atlas and genes identified as markers for cortical layers or cortical cells in previous studies. This is still likely an underestimate of true cortically expressed genes as some of these “non-cortical genes” had high intersubject reproducibility scores. Nevertheless we think it appropriate to use a measure of brain expression independent of anything included in other analyses for this paper. These considerations are part of the reason we provide all gene maps with accompanying uncertainty scores for user discretion rather than simply filtering them out.

      In terms of the spatially consistent pattern of the gene ranks of Fig S1f, this consistent spatial pattern mirrors Transcriptomic Distinctiveness (r=0.52 for non-cortical genes, r=0.75 for cortical genes), so we think that as the differences in expression signatures become more extreme, the relative ranks of genes in that region are more reproducible/easier to predict.

      To assess whether mesh-smoothing-induced structure is playing a role, we carried out an additional the new null model introduced in response to comment 1, and asked if the per-vertex gene rank reproducibility of independently spun subgroup triplets showed a similar structure to that in our original analyses. Across the 90 permutations, the median correlation between vertex reproducibility and TD was R=0.10. We also recalculated the TD maps for the 10 spun datasets and the mean correlation with the original TD did not significantly differ from zero (mean R = 0.01, p=0.2, nspins =10). These results indicate that folding morphology is not the major driver of local or large scale patterning in the dataset. We have included this as a new Figure S3c.

      We have updated the text as follows:

      In Methods 3a: "Third, to assess whether the covariance in spatial patterning across genes could be a result of mesh-associated structure introduced through interpolation and smoothing, TD maps were recomputed for the spun+interpolated null datasets and compared to the original TD map (Fig S3c)."

      In Results: "The TD map observed from the full DEMs library was highly stable between all disjoint triplets of donors (Methods, Fig S3a, median cross-vertex correlation in TD scores between triplets r=0.77) and across library subsets at all deciles of DEM reproducibility (Methods, Fig S3b, cross-vertex correlation in TD scores r>0.8 for the 3rd-10th deciles), but was not recapitulated in spun null datasets (Fig S3c)."

      Author response image 3.

      Figure S3c, Correlations between TD and TD maps regenerated on datasets spun using two independent nulls, one where the rotation is applied prior to interpolation and smoothing (spun+interpolated) and one where it is applied to the already-created DEMs. In each null, the same rotation matrix is applied to all genes.

      Comment 4

      Could you provide more information about the way in which the nearest-neighbours were identified (results p4). Were they nearest in Euclidean space? Geodesic? If geodesic, geodesic over the native brain surface? over the spherically deformed brain? (Methods cite Moresi & Mather's Stripy toolbox, which seems to be meant to be used on spheres). If the distance was geodesic over the sphere, could the distortions introduced by mapping (due to brain anatomy) influence the geometry of the expression maps?

      Response 4

      We have clarified in the Methods that the mapping is to nearest neighbors on the spherically-inflated surface.

      The new null model we have introduced in response to comments 1 & 3 preserves any mesh-induced structure alongside any smoothing-induced spatial autocorrelations, and the additional analyses above indicate that main results are not induced by systematic mesh-related interpolation signal. In response to an additional suggestion from the reviewer (Comment 13), we also assessed whether local distortions due to the mesh could be creating apparent border effects in the data, for instance at the V1-V2 boundary. At the V1-V2 border, which coincides anatomically with the calcarine sulcus, we computed the 10 genes with the highest expression gradient along this boundary in the actual dataset and the spun-interpolated null. The median test expression gradients along this border was higher than in any of the spun datasets, indicating that these boundary effects are not explained by the interpolation and cortical geometry effects on the data (new Fig S2d). The text has been updated as follows:

      In Methods 1: "For cortical vertices with no directly sampled expression, expression values were interpolated from their nearest sampled neighbor vertex on the spherical surface (Moresi and Mather, 2019) (Fig 1b)."

      In Methods 2: "We used the spun+interpolated null to test whether high gene gradients could be driven by non-uniform interpolation across cortical folds. We quantified the average gradient for all genes along the V1-V2 border in the atlas, as well as for 10 iterations of the atlas where the samples were spun prior to interpolation. We computed the median gradient magnitude for the 20 top-ranked genes for each (Fig S2d)."

      Author response image 4.

      Figure S2d Mean of gradient magnitudes for 20 genes with largest gradients along V1-V2 border, compared to values along the same boundary on the spun+interpolated null atlas. Gradients were higher in the actual dataset than in all spun version indicating this high gradient feature is not primarily due to the effects of calcarine sulcus morphology on interpolation

      Comment 5

      Could you provide more information about the smoothing algorithm? Volumetric, geodesic over the native mesh, geodesic over the sphere, averaging of values in neighbouring vertices, cotangent-weighted laplacian smoothing, something else?

      Response 5

      We are using surface-based geodesic over the white surface smoothing described in Glasser et al., 2013 and used in the HCP workbench toolbox (https://www.humanconnectome.org/software/connectome-workbench). We have updated the methods to clarify this.

      In Methods 1: "Surface expression maps were smoothed using the Connectome Workbench toolbox (Glasser et al. 2013) with a 20mm full-width at half maximum Gaussian kernel , selected to be consistent with this sampling density (Fig 1c)."

      Comment 6

      Could you provide more information about the method used for computing the gradient of the expression maps (p6)? The gradient and the laplacian operator are related (the laplacian is the divergence of the gradient), which could also be responsible in part for the relationships observed between expression transitions and brain geometry.

      Response 6

      We are using Connectome Workbench’s metric gradient command for this Glasser et al., 2013 and used in the HCP workbench pipeline. The source code for gradient calculation can be found here: https://github.com/Washington-University/workbench/blob/131e84f7b885d82af76e be21adf2fa97795e2484/src/Algorithms/AlgorithmMetricGradient.cxx

      In Methods 2: >For each of the resulting 20,781 gene-level expression maps, the orientation and magnitude of gene expression change at each vertex (i.e. the gradient) was calculated for folded, inflated, spherical and flattened mesh representations of the cortical sheet using Connectome Workbench’s metric gradient command (Glasser et al. 2013).

      b. Potentially inflated FPR for spin tests on autocorrelated data."

      Spin tests are extensively used in this work and it would be useful to make the readers aware of their limitations, which may confound some of the results presented. Spin tests aim at establishing if two brain maps are similar by comparing a measure of their similarity over a spherical deformation of the brains against a distribution of similarities obtained by randomly spinning one of the spheres. It is not clear which specific variety of spin test was used, but the original spin test has well known limitations, such as the violation of the assumption of spatial stationarity of the covariance structure (not all positions of the spinning sphere are equivalent, some are contracted, some are expanded), or the treatment of the medial wall (a big hole with no data is introduced when hemispheres are isolated).

      Another important limitation results from the comparison of maps showing autocorrelation. This problem has been extensively described by Markello & Misic (2021). The strong smoothing used to make a continuous map out of just ~1300 samples introduces large, geometry dependent autocorrelations. Indeed, the expression maps presented in the manuscript look similar to those with the highest degree of autocorrelation studied by Markello & Misic (alpha=3). In this case, naive permutations should lead to a false positive rate ~46% when comparing pairs of random maps, and even most sophisticated methods have FPR>10%.

      Comment 7 There's currently several researchers working on testing spatial similarity, and the readers would benefit from being made aware of the problem of the spin test and potential solutions. There's also packages providing alternative implementations of spin tests, such as BrainSMASH and BrainSpace, which could be mentioned.

      Response 7

      We thank the reviewer for raising the issue of null models. First, with reference to the false positive rate of 46% when maps exhibit spatial autocorrelation, we absolutely agree that this is an issue that must be accounted for and we address this using the spin test. We acknowledge there has been other work on nulls such as BrainSMASH and BrainSpace. Nevertheless in the Markello and Misic paper to which the reviewer refers, the BrainSmash null models perform worse with smoother maps (with false positive rates approaching 30% in panel e below), whereas the spin test maintains false positives rates below 10%.

      Author response image 5.

      We have added a brief description of the challenge and our use of the spin test.

      In Methods 2a: "Cortical maps exhibit spatial autocorrelation that can inflate the False Positive Rate, for which a number of methods have been proposed(Alexander-Bloch et al. 2018; Burt et al. 2020; Vos de Wael et al. 2020). At higher degrees of spatial smoothness, this high False Positive Rate is most effectively mitigated using the spin test(Alexander-Bloch et al. 2018; Markello and Misic 2021; Vos de Wael et al. 2020). In the following analyses when generating a test statistic comparing two spatial maps, to generate a null distribution, we computed 1000 independent spins of the cortical surface using https://netneurotools.readthedocs.io, and applied it to the first map whilst keeping the second map unchanged. The test statistic was then recomputed 1000 times to generate a null distribution for values one might observe by chance if the maps shared no common organizational features. This is referred to throughout as the “spin test” and the derived p-values as pspin."

      Comment 8

      Could it be possible to measure the degree of spatial autocorrelation?

      Response 8

      We agree this could be a useful metric to generate for spatial cortical maps. However, there are multiple potential metrics to choose from and each of the DEMs would have their own value. To address this properly would require the creation of a set of validated tools and it is not clear how we could summarize this variety of potential metrics for 20k genes. Moreover, as discussed above the spin method is an adequate null across a range of spatial autocorrelation degrees, thus while we agree that in general estimation of spatial smoothness could be a useful imaging metric to report, we consider that it is beyond the scope of the current manuscript.

      Comment 9

      Could you clarify which version of the spin test was used? Does the implementation come from a package or was it coded from scratch?

      Response 9

      As Markello & Misic note, at the vertex level, the various implementations of the spin test become roughly equivalent to the ‘original’ Alexander-Bloch et al., implementation. We used took the code for the ‘original’ version implemented in python here: https://netneurotools.readthedocs.io/en/latest/_modules/netneurotools/stats.html# gen_spinsamples.

      This has been updated in the methods (see Response 7).

      Comment 10

      Cortex and non-cortex vertex-level gene rank predictability maps (fig S1e) are strikingly similar. Would the spin test come up statistically significant? What would be the meaning of that, if the cortical map of genes not expressed in the cortex appeared to be statistically significantly similar to that of genes expressed in the cortex?

      Response 10

      Please see response to comment 3, which also addresses this observation.

      Reviewer #2 (Public Review):

      The authors convert the AHBA dataset into a dense cortical map and conduct an impressively large number of analyses demonstrating the value of having such data.

      I only have comments on the methodology.

      Comment 1

      First, the authors create dense maps by simply using nearest neighbour interpolation followed by smoothing. Since one of the main points of the paper is the use of a dense map, I find it quite light in assessing the validity of this dense map. The reproducibility values they calculate by taking subsets of subjects are hugely under-powered, given that there are only 6 brains, and they don't inform on local, vertex-wise uncertainties). I wonder if the authors would consider using Gaussian process interpolation. It is really tailored to this kind of problem and can give local estimates of uncertainty in the interpolated values. For hyperparameter tuning, they could use leave-one-brain-out for that.

      I know it is a lot to ask to change the base method, as that means re-doing all the analyses. But I think it would strengthen the paper if the authors put as much effort in the dense mapping as they did in their downstream analyses of the data.

      Response 1

      We thank the reviewer for the suggestion to explore Gaussian process interpolation. We have implemented this for our dataset and attempted to compare this with our original method with the 3 following tests: i) intertriplet reproducibility of individual gene maps, ii) microscale validations: area markers, iii) macroscale validations: bio patterns.

      Overall, compared to our original nearest-neighbor interpolation method, GP regression (i) did not substantially improve gene-level reproducibility of expression maps (median correlation increase of R=0.07 which was greater for genes without documented protein expression in cortex): ii) substantially worsened performance in predicting areal marker genes and iii) showed similar but slightly worse performance at predicting macroscale patterns from Figure 1.

      Given the significantly poorer performance on one of our key tests (ii) we have opted not to replace our original database, but we do now include code for the alternative GP regression methodology in the github repository so others can reproduce/further develop these methods.

      Author response image 6.

      ii) Genes ranked by mean expression gradient from current DEMs (left) and Gaussian process-derived interpolation maps (right). Established Human and macaque markers are consistently higher-ranked in DEM maps. iii) Figure 1 Interpolated vs GP regression

      Author response table 1.

      Comment 2

      It is nice that the authors share some code and a notebook, but I think it is rather light. It would be good if the code was better documented, and if the user could have access to the non-smoothed data, in case they was to produce their own dense maps. I was only wondering why the authors didn't share the code that reproduces the many analyses/results in the paper.

      Response 2

      We thank the reviewer for this suggestion. In response we have updated the shared github repository (https://github.com/kwagstyl/magicc). This now includes code and notebooks to reproduce the main analyses and figures.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      Comment 11

      p4 mentions Fig S1h, but the supp figures only goes from S1a to S1g

      Response 11

      We thank the reviewer for capturing this error. It was in fact referring to what is now Fig S1h and has been updated.

      Comment 12

      It would be important that the authors share all the code used to produce the results in the paper in addition to the maps. The core methodological contribution of the work is a series of continuous maps of gene expression, which could become an important tool for annotation in neuroimaging research. Many arbitrary (reasonable) decisions were made, it would be important to enable users to evaluate their influence on the results.

      Response 12

      We thank both reviewers for this suggestion. We have updated the github to be able to reproduce the dense maps and key figures with our methods.

      Comment 13

      p5: Could the sharp border reflect the effect of the geometry of the calcarine sulcus on map smoothing? More generally, could there be an effect of folds on TD?

      Response 13

      Please see our response to Reviewer 1, Comment 1 above, where we introduce the new null models now analyzed to test for effects of mesh geometry on our findings. These new null models - where original source data were spun prior to interpolation suggest that neither the sharp V1/2 border or the TD map are effects of mesh geometry. Specifically: (i) , the magnitudes of gradients along the V1/2 boundary from null models were notably smaller than those in our original analyses (see new figure S2d), and (ii) TD maps computed from the new null models showed no correlation with TD maps from ur original analyses (new Figure S3c, mean R = 0.01, p=0.2, nspins =10).

      Comment 14

      p5: Similar for the matching with the areas in Glasser's parcellation: the definition of these areas involves alignment through folds (based on freesurfer 'sulc' map, see Glasser et al 2016). If folds influence the geometry of TDs, could that influence the match?

      Response 14

      We note that Fig S3c provided evidence that folding was not the primary driver of the TD patterning. However, it is true that Glasser et al. use both neuroanatomy (folding, thickness and myelin) and fMRI-derived maps to delineate their cortical areas. As such Figure 2 f & g aren’t fully independent assessments. Nevertheless the reason that these features are used is that many of the sulci in question have been shown to reliably delineate cytoarchitectonic boundaries (Fischl et al., 2008).

      In Results: "A similar alignment was seen when comparing gradients of transcriptional change with the spatial orientation of putative cortical areas defined by multimodal functional and structural in vivo neuroimaging(Glasser et al., 2016) (expression change running perpendicular to area long-axis, pspin<0.01, Fig 2g, Methods)."

      Comment 15

      p6: TD peaks are said to overlap with functionally-specialised regions. A comment on why audition is not there, nor language, but ba 9-46d is? Would that suggest a lesser genetic regulation of those functions?

      Response 15

      The reviewer raises a valid point and this was a result that we were also surprised by. The finding that the auditory cortex is not as microstructurally distinctive as, say V1, is consistent with other studies applying dimensionality-reduction techniques to multimodal microstructural receptor data (e.g. Zilles et al., 2017, Goulas et al., 2020). These studies found that the auditory microstructure is not as extreme as either visual and somatomotor areas. From a methodological view point, the primary auditory cortex is significantly smaller than both visual and somatomotor areas, and therefore is captured by fewer independent samples, which could reduce the detail in which its structure is being mapped in our dataset.

      For the frontal areas, we would note that i) the frontal peak is the smallest of all peaks found and was more strongly characterised by low z-score genes than high z-score. ii) the anatomical areas in the frontal cortex are much more highly variable with respect to folding morphology (e.g. Rajkowska 1995). The anatomical label of ba9-46d (and indeed all other labels) were automatically generated as localisers rather than strict area labels. We have clarified this in the text as follows:

      In Methods 3a: "Automated labels to localize TD peaks were generated based on their intersection with a reference multimodal neuroimaging parcellation of the human cortex(Glasser et al., 2016). Each TD was given the label of the multimodal parcel that showed greatest overlap (Fig 2b)."

      Comment 16.

      p7: The proposition that "there is a tendency for cortical sulci to run perpendicular to the direction of fastest transcriptional change", could also be "there is a tendency for the direction of fastest transcriptional change to run perpendicular to cortical sulci"? More pragmatically, this result from the geometry of transcriptional maps being influenced by sulcal geometry in their construction.

      Response 16

      Please see our response to Reviewer 1, Comment 1 above, where we introduce the new null models now analyzed to test for effects of mesh geometry on our findings. These models indicate that the topography of interpolated gene expression maps do not reflect influences of sulcal geometry on their construction.

      Comment 17

      p7: TD transitions are indicated to precede folding. This is based on a consideration of folding development based on the article by Chi et al 1977, which is quite an old reference. In that paper, the authors estimated the tempo of human folding development based on the inspection of photographs, which may not be sufficient for detecting the first changes in curvature leading to folds. The work of the Developing Human Connectome consortium may provide a more recent indication for timing. In their data, by PCW 21 there's already central sulcus, pre-central, post-central, intra-parietal, superior temporal, superior frontal which can be detected by computing the mean curvature of the pial surface (I can only provide a tweet for reference: https://twitter.com/R3RT0/status/1617119196617261056). Even by PCW 9-13 the callosal sulcus, sylvian fissure, parieto-occipital fissure, olfactory sulcus, cingulate sulcus and calcarine fissure have been reported to be present (Kostovic & Vasung 2009).

      Response 17

      Our field lacks the data necessary to provide a comprehensive empirical test for the temporal ordering of regional transcriptional profiles and emergence of folding. Our results show that transcriptional identities of V1 and TGd are - at least - present at the very earliest stages of sulcation in these regions. In response to the reviewers comment we have updated with a similar fetal mapping project which similarly shows evidence of the folds between weeks 17-21 and made the language around directionality more cautious.

      In Results: "The observed distribution of these angles across vertices was significantly skewed relative to a null based on random alignment between angles (pspin<0.01, Fig 2f, Methods) - indicating that there is indeed a tendency for cortical sulci and the direction of fastest transcriptional change to run perpendicular to each other (pspin<0.01, Fig 2f).

      As a preliminary probe for causality, we examined the developmental ordering of regional folding and regional transcriptional identity. Mapping the expression of high-ranking TD genes in fetal cortical laser dissection microarray data(Miller et al., 2014) from 21 PCW (Post Conception Weeks) (Methods) showed that the localized transcriptional identity of V1 and TGd regions in adulthood is apparent during the fetal periods when folding topology begins to emerge (Chi et al. 1977; Xu et al. 2022) (Fig " S2d).

      In Discussion: "By establishing that some of these cortical zones are evident at the time of cortical folding, we lend support to a “protomap”(Rakic 1988; O'Leary 1989; O'Leary et al. 2007; Rakic et al. 2009) like model where the placement of some cortical folds is set-up by rapid tangential changes in cyto-laminar composition of the developing cortex(Ronan et al., 2014; Toro and Burnod, 2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of the measured genetic-folding alignment might also be induced by mechanical distortion of the tissue during folding(Llinares-Benadero and Borrell 2019; Heuer and Toro 2019). However, no data currently exist to conclusively assess the directionality of this gene-folding relationship."

      Comment 18

      p7: In my supplemental figures (obtained from biorxiv, because I didn't find them among the files submitted to eLife) there's no S2j (only S2a-S2i).

      Response 18

      We apologize, this figure refers to S3k (formerly S3j), rather than S2j. We have updated the main text.

      Comment 19 p7: It is not clear from the methods (section 3b) how the adult and fetal brains were compared. Maybe using MSM (Robinson et al 2014)?

      Response 19

      We have now clarified this in Methods text as reproduced below.

      In Methods 3b: "We averaged scaled regional gene expression values between donors per gene, and filtered for genes in the fetal LDM dataset that were also represented in the adult DEM dataset - yielding a single final 20,476*235 gene-by-sample matrix of expression values for the human cortex at 21 PCW. Each TD peak region was then paired with the closest matching cortical label within the fetal regions. This matrix was then used to test if each TD expression signature discovered in the adult DEM dataset (Fig 2, Table 3) was already present in similar cortical regions at 21 PCW."

      Comment 20

      p7: WGCNA is used prominently, could you provide a brief introduction to its objectives? The gene coexpression networks are produced after adjusting the weight of the network edges to follow a scale-free topology, which is meant to reflect the nature of protein-protein interactions. Soft thresholding increases contrast, but doesn't this decrease a potential role of infinitesimal regulatory signals?

      Response 20

      We agree with the reviewer that the introduction to WGCNA needed additional details and have amended the Results (see below). One limitation of WGCNA-derived associations is that it will downweigh the role of smaller relationships including potentially important regulatory signals. WGCNA methods have been titrated to capture strong relationships. This is an inherent limitation of all co-expression driven methods which lead to an incomplete characterisation of the molecular biology. Nevertheless we feel these stronger relationships are still worth capturing and interrogating. We have updated the text to introduce WGCNA and acknowledge this potential weakness in the approach.

      In Results: "Briefly, WGCNA constructs a constructs a connectivity matrix by quantifying pairwise co-expression between genes, raising the correlations to a power (here 6) to emphasize strong correlations while penalizing weaker ones, and creating a Topological Overlap Matrix (TOM) to capture both pairwise similarities expression and connectivity. Modules of highly interconnected genes are identified through hierarchical clustering. The resultant WGCNA modules enable topographic and genetic integration because they each exist as both (i) a single expression map (eigenmap) for spatial comparison with neuroimaging data (Fig 3a,b, Methods) and, (ii) a unique gene set for enrichment analysis against marker genes systematically capturing multiple scales of cortical organization, namely: cortical layers, cell types, cell compartments, protein-protein interactions (PPI) and GO terms (Methods, Table S2 and S4)."

      Comment 21

      WGCNA modules look even more smooth than the gene expression maps. Are these maps comparable to low frequency eigenvectors? Autocorrelation in that case should be very strong?

      Response 21

      These modules are smooth as they are indeed eigenvectors which likely smooth out some of the more detailed but less common features seen in individual gene maps. These do exhibit high degrees of autocorrelation, nevertheless we are applying the spin test which is currently the appropriate null model for spatially autocorrelated cortical maps (Response 7).

      Comment 22

      If the WGCNA modules provide an orthogonal basis for surface data, is it completely unexpected that some of them will correlate with low-frequency patterns? What would happen if random low frequency patterns were generated? Would they also show correlations with some of the 16 WGCNA modules?

      Response 22

      We agree with the reviewer that if we used a generative model like BrainSMASH, we would likely see similar low frequency patterns. However, the inserted figure in Response 7 from Makello & Misic provide evidence that is not as conservative a null as the spin test when data exhibit high spatial autocorrelation. The spatial enrichment tests carried out on the WGCNA modules are all carried out using the spin test.

      Comment 23

      In part (a) I commented on the possibility that brain anatomy may introduce artifactual structure into the data that's being mapped. But what if the relationship between brain geometry and brain organisation were deeper than just the introduction of artefacts? The work of Lefebre et al (2014, https://doi.org/10.1109/ICPR.2014.107; 2018, https://doi.org/10.3389/fnins.2018.00354) shows that clustering based on the 3 lowest frequency eigenvectors of the Laplacian of a brain hemisphere mesh produce an almost perfect parcellation into lobes, with remarkable coincidences between parcel boundaries and primary folds and fissures. The work of Pang et al (https://doi.org/10.1101/2022.10.04.510897) suggests that the geometry of the brain plays a critical role in constraining its dynamics: they analyse >10k task-evoked brain maps and show that the eigenvectors of the brain laplacian parsimoniously explain the activity patterns. Could brain anatomy have a downward effect on brain organisation?

      Response 23

      The reviewer raises a fascinating extension of our work identifying spatial modes of gene expression. We agree that these are low frequency in nature, but would first like to note that the newly introduced null model indicates that the overlaps with salient neuroanatomical features are inherent in the expression data and not purely driven by anatomy in a methodological sense.

      Nevertheless we absolutely agree there is likely to be a complex multidirectional interplay between genetic expression patterns through development, developing morphology and the “final” adult topography of expression, neuroanatomical and functional patterns.

      We think that the current manuscript currently contains a lot of in depth analyses of these expression data, but agree that a more extensive modeling analysis of how expression might pattern or explain functional activation would be a fascinating follow on, especially in light of these studies from Pang and Lefebre. Nevertheless we think that this must be left for a future modeling paper integrating these modes of microscale, macroscale and functional anatomy.

      In Discussion: "Indeed, future work might find direct links between these module eigenvectors and similar low-frequency eigenvectors of cortical geometry have been used as basis functions to segment the cortex (Lefèvre et al. 2018) and explain complex functional activation patterns(Pang et al. 2023)."

      Comment 24

      On p11: ASD related to rare, deleterious mutations of strong effect is often associated with intellectual disability (where the social interaction component of ASD is more challenging to assess). Was there some indication of a relationship with that type of cognitive phenotype?

      Response 24

      Across the two ABIDE cohorts, the total number of those with ASD and IQ <70, which is the clinical threshold for intellectual disability was n=10, which unfortunately did not allow us to conduct a meaningful test of whether ID impacts the relationship between imaging changes in ASD and the expression maps of genes implicated in ASD by rare variants.

      Comment 25

      Could you clarify if the 6 donors were aligned using the folding-based method in freesurfer?

      Response 25

      The 6 donors were aligned using MSMsulc (Robinson et al., 2014), which is a folding based method from the HCP group. This is now clarified in the methods.

      In Methods 1: "Cortical surfaces were reconstructed for each AHBA donor MRI using FreeSurfer(Fischl, 2012), and coregistered between donors using surface matching of individuals’ folding morphology (MSMSulc) (Robinson et al., 2018)."

      Comment 26

      The authors make available a rich resource and a series of tools to facilitate their use. They have paid attention to encode their data in standard formats, and their code was made in Python using freely accessible packages instead of proprietary alternatives such as matlab. All this should greatly facilitate the adoption of the approach. I think it would be important to state more explicitly the conceptual assumptions that the methodology brings. In the same way that a GWAS approach relies on a Mendelian idea that individual alleles encode for phenotypes, what is the idea about the organisation of the brain implied by the orthogonal gene expression modules? Is it that phenotypes - micro and macro - are encoded by linear combinations of a reduced number of gene expression patterns? What would be the role of the environment? The role of non-genic regulatory regions? Some modalities of functional organisation do not seem to be encoded by the expression of any module. Is it just for lack of data or should this be seen as the sign for a different organisational principle? Likewise, what about the aspects of disorders that are not captured by expression modules? Would that hint, for example, to stronger environmental effects? What about linear combinations of modules? Nonlinear? Overall, the authors adopt implicitly, en passant, a gene-centric conceptual standpoint, which would benefit from being more clearly identified and articulated. There are citations to Rakic's protomap idea (I would also cite the original 1988 paper, and O'Leary's 1989 "protocortex" paper stressing the role of plasticity), which proposes that a basic version of brain cytoarchitecture is genetically determined and transposed from the proliferative ventricular zone regions to the cortical plate through radial migration. In p13 the authors indicate that their results support Rakic's protomap. Additionally, in p7 the authors suggest that their results support a causal arrow going from gene expression to sulcal anatomy. The reviews by O'leary et al (2007), Ronan & Fletcher (2014, already cited), Llinares-Benadero & Borrell (2019) could be considered, which also advocate for a similar perspective. For nuances on the idea that molecular signals provide positional information for brain development, the article by Sharpe (2019, DOI: 10.1242/dev.185967) is interesting. For nuances on the gene-centric approach of the paper the articles by Rockmann (2012, DOI: 10.1111/j.1558-5646.2011.01486.x) but also from the ENCODE consortium showing the importance of non-genic regions of the genome ("Perspectives on ENCODE" 2020 DOI: 10.1038/s41586-021-04213-8) could be considered. I wouldn't ask to cite ideas from the extended evolutionary synthesis about different inheritance systems (as reviewed by Jablonka & Lamb, DOI: 10.1017/9781108685412) or the idea of inherency (Newman 2017, DOI: 10.1007/978-3-319-33038-9_78-1), but the authors may find them interesting. Same goes for our own work on mechanical morphogenesis which expands on the idea of a downward causality (Heuer and Toro 2019, DOI: 10.1016/j.plrev.2019.01.012)

      Response 26

      We thank the reviewer for recommending these papers, which we enjoyed reading and have deepened our thinking on the topic. In addition to toning down some of the language with respect to causality that our data cannot directly address, we have included additional discussion and references as follows:

      In Discussion: "By establishing that some of these cortical zones are evident at the time of cortical folding, we lend support to a “protomap”(Rakic 1988; O'Leary 1989; O'Leary et al. 2007; Rakic et al. 2009) like model where the placement of some cortical folds is set-up by rapid tangential changes in cyto-laminar composition of the developing cortex(Ronan et al., 2014; Toro and Burnod, 2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of the measured genetic-folding alignment might also be induced by mechanical distortion of the tissue during folding(Llinares-Benadero and Borrell 2019; Heuer and Toro 2019). However, no data currently exist to conclusively assess the directionality of this gene-folding relationship.

      Overall, the manuscript is very interesting and a great contribution. The amount of work involved is impressive, and the presentation of the results very clear. My comments indicate some aspects that could be made more clear, for example, providing additional methodological information in the supplemental material. Also, making aware the readers and future users of MAGICC of the methodological and conceptual challenges that remain to be addressed in the future for this field of research.

      Reviewer #2 (Recommendations For The Authors):

      Comment 1

      The supplementary figures seem to be missing from the eLife submission (although I was able to find them on europepmc)

      Response 1

      We apologize that these were not included in the documents sent to reviewers. The up-to-date supplementary figures are included in this resubmission and again on biorxiv.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study combines genetically barcoded rabies viruses with spatial transcriptomics in vivo in the mouse brain to decode connectivity of neural circuits. The data generated by the combination of these approaches in this new way is mostly convincing as the authors provide validation and proof-of-concept that the approach can be successful. While this new combination of established techniques has promise for elucidating brain connectivity, there are still some nuances and caveats to the interpretations of the results that are lacking especially with regards to noting unexpected barcodes either due to unexpected/novel connections or unexpected rabies spread.

      In this revised manuscript, we added a new control experiment and additional analyses to address two main questions from the reviewers: (1) How the threshold of glycoprotein transcript counts used to identify source cells was determined, and (2) whether the limited long-range labeling was expected in the trans-synaptic experiment. The new experiments and analyses validated the distribution of source cells and presynaptic cells observed in the original barcoded transsynaptic tracing experiment and validated the choice of the threshold of glycoprotein transcripts. As the reviewers suggested, we also included additional discussion on how future experiments can improve upon this study, including strategies to improve source cell survival and minimizing viral infection caused by leaky expression of TVA. We also provided additional clarification on the analyses for both the retrograde labeling experiment and the trans-synaptic tracing experiment. We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. Detailed changes to address specific comments by reviewers are included below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this preprint, Zhang et al. describe a new tool for mapping the connectivity of mouse neurons. Essentially, the tool leverages the known peculiar infection capabilities of Rabies virus: once injected into a specific site in the brain, this virus has the capability to "walk upstream" the neural circuits, both within cells and across cells: on one hand, the virus can enter from a nerve terminal and infect retrogradely the cell body of the same cell (retrograde transport). On the other hand, the virus can also spread to the presynaptic partners of the initial target cells, via retrograde viral transmission.

      Similarly to previously published approaches with other viruses, the authors engineer a complex library of viral variants, each carrying a unique sequence ('barcode'), so they can uniquely label and distinguish independent infection events and their specific presynaptic connections, and show that it is possible to read these barcodes in-situ, producing spatial connectivity maps. They also show that it is possible to read these barcodes together with endogenous mRNAs, and that this allows spatial mapping of cell types together with anatomical connectivity.

      The main novelty of this work lies in the combined use of rabies virus for retrograde labeling together with barcoding and in-situ readout. Previous studies had used rabies virus for retrograde labeling, albeit with low multiplexing capabilities, so only a handful of circuits could be traced at the same time. Other studies had instead used barcoded viral libraries for connectivity mapping, but mostly focused on the use of different viruses for labeling individual projections (anterograde tracing) and never used a retrograde-infective virus.

      The authors creatively merge these two bits of technology into a powerful genetic tool, and extensively and convincingly validate its performance against known anatomical knowledge. The authors also do a very good job at highlighting and discussing potential points of failure in the methods.

      We thank the reviewer for the enthusiastic comments.

      Unresolved questions, which more broadly affect also other viral-labeling methods, are for example how to deal with uneven tropism (ie. if the virus is unable or inefficient in infecting some specific parts of the brain), or how to prevent the cytotoxicity induced by the high levels of viral replication and expression, which will tend to produce "no source networks", neural circuits whose initial cell can't be identified because it's dead. This last point is particularly relevant for in-situ based approaches: while high expression levels are desirable for the particular barcode detection chemistry the authors chose to use (gap-filling), they are also potentially detrimental for cell survival, and risk producing extensive cell death (which indeed the authors single out as a detectable pitfall in their analysis). This is likely to be one of the major optimisation challenges for future implementations of these types of barcoding approaches.

      As the reviewer suggested, we included additional discussion about tropism and cytotoxicity in the revised Discussion. Our sensitivity for barcode detection is sufficient, since we estimated (based on manual proofreading) that most barcoded neurons had more than ten counts of a barcode in the trans-synaptic tracing experiment. The high sensitivity may potentially allow us to adapt next-generation rabies virus with low replication, such as the third generation ΔL rabies virus (Jin et al, 2022, biorxiv) in future optimizations.

      Overall the paper is well balanced, the data are well presented and the conclusions are strongly supported by the data. Impact-wise, the method is definitely going to be useful for the neurobiology research community.

      We thank the reviewer for her/his enthusiasm.

      Reviewer #2 (Public Review):

      Although the trans-synaptic tracing method mediated by the rabies virus (RV) has been widely utilized to infer input connectivity across the brain to a genetically defined population in mice, the analysis of labeled pre-synaptic neurons in terms of cell-type has been primarily reliant on classical low-throughput histochemical techniques. In this study, the authors made a significant advance toward high-throughput transcriptomic (TC) cell typing by both dissociated single-cell RNAseq and the spatial TC method known as BARseq to decode a vast array of molecularly labeled ("barcoded") RV vector library. First, they demonstrated that a barcoded-RV vector can be employed as a simple retrograde tracer akin to AAVretro. Second, they provided a theoretical classification of neural networks at the single-cell resolution that can be attained through barcoded-RV and concluded that the identification of the vast majority (ideally 100%) of starter cells (the origin of RV-based trans-synaptic tracing) is essential for the inference of single-cell resolution neural connectivity. Taking this into consideration, the authors opted for the BARseq-based spatial TC that could, in principle, capture all the starter cells. Finally, they demonstrated the proof-of-concept in the somatosensory cortex, including infrared connectivity from 381 putative pre-synaptic partners to 31 uniquely barcoded-starter cells, as well as many insightful estimations of input convergence at the cell-type resolution in vivo. While the manuscript encompasses significant technical and theoretical advances, it may be challenging for the general readers of eLife to comprehend. The following comments are offered to enhance the manuscript's clarity and readability.

      We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. We separated out the theoretical discussion about barcode sharing networks as a separate subsection, explicitly stated the rationale of how different barcode sharing networks are distinguished in the in situ trans-synaptic tracing experiment, and added additional discussion on future optimizations. Detailed descriptions are provided below.

      Major points:

      1. I find it difficult to comprehend the rationale behind labeling inhibitory neurons in the VISp through long-distance retrograde labeling from the VISal or Thalamus (Fig. 2F, I and Fig. S3) since long-distance projectors in the cortex are nearly 100% excitatory neurons. It is also unclear why such a large number of inhibitory neurons was labeled at a long distance through RV vector injections into the RSP/SC or VISal (Fig. 3K). Furthermore, a significant number of inhibitory starter cells in the somatosensory cortex was generated based on their projection to the striatum (Fig. 5H), which is unexpected given our current understanding of the cortico-striatum projections.

      The labeling of inhibitory neurons can be explained by several factors in the three different experiments.

      (1) In the scRNAseq-based retrograde labeling experiment (Fig. 2 and Fig. S3), the injection site VISal is adjacent to VISp. Because we dissected VISp for single-cell RNAseq, we may find labeled inhibitory neurons at the VISp border that extend short axons into VISal. We explained this in the revised Results.

      (2) In the in situ sequencing-based retrograde labeling experiment (Fig. 3,4), the proximity between the two injection sites VISal and RSP/SC, and the sequenced areas (which included not only VISp but also RSP) could also contribute to labeling through local axons of inhibitory neurons. Furthermore, because we also sequenced midbrain regions, inhibitory neurons in the superior colliculus could pick up the barcodes through local axons. We included an explanation of this in the revised Results.

      (3) In the trans-synaptic tracing experiment, we speculate that low level leaky expression from the TREtight promoter led to non-Cre-dependent expression in many neurons. To test this hypothesis, we first performed a control injection in which we saw that the fluorescent protein expression were indeed restricted to layer 5, as expected from corticostriatal labeling. Based on the labeling pattern, we estimated that about 12 copies of the glycoprotein transcript per cell would likely be needed to achieve fluorescent protein expression. Since many source cells in our experiment were below this threshold, these results support the hypothesis that the majority of source cells with low level expression of the glycoprotein were likely Cre-independent. Because these cells could still contribute to barcode sharing networks, we could not exclude them as in a conventional bulk trans-synaptic tracing experiment. In future experiments, we can potentially reduce this population by improving the helper AAV viruses used to express TVA and the glycoprotein. We included this explanation in Results and more detailed analysis in Supplementary Note 2, and discussed potential future optimizations in the Discussion. This new analysis in Supplementary Note 2 is also related to the Reviewer’s question regarding the threshold used for determining source cells (see below).

      1. It is unclear as to why the authors did not perform an analysis of the barcodes in Fig. 2. Given that the primary objective of this manuscript is to evaluate the effectiveness of multiplexing barcoded technology in RV vectors, I would strongly recommend that the authors provide a detailed description of the barcode data here, including any technical difficulties or limitations encountered, which will be of great value in the future design of RV-barcode technologies. In case the barcode data are not included in Fig. 2, I would suggest that the authors consider excluding Fig. 2 and Fig. S1-S3 in their entirety from the manuscript to enhance its readability for general readers.

      In the single-cell RNAseq-based retrograde tracing, all barcodes recovered matched to known barcodes in the corresponding library. We included a short description of these results in the revised manuscript.

      1. Regarding the trans-synaptic tracing utilizing a barcoded RV vector in conjunction with BARseq decoding (Fig. 5), which is the core of this manuscript, I have a few specific questions/comments. First, the rationale behind defining cells with only two rolonies counts of rabies glycoprotein (RG) as starter cells is unclear. Why did the authors not analyze the sample based on the colocalization of GFP (from the AAV) and mCherry (from the RV) proteins, which is a conventional method to define starter cells? If this approach is technically difficult, the authors could provide an independent histochemical assessment of the detection stringency of GFP positive cells based on two or more colonies of RG.

      In situ sequencing does not preserve fluorescent protein signals, so we used transcript counts to determine which cells expressed the glycoprotein. We have added new analyses in the Results and in Supplementary Note 2 to determine the transcript counts that were equivalent to cells that had detectable BFP expression. We found that BFP expression is equivalent to ~12 counts of the glycoprotein transcript per cell, which is much higher than the threshold we used. However, we could not solely rely on this estimate to define the source cells, because cells that had lower expression of the glycoprotein (possibly from leaky Cre-independent expression) may still pass the barcodes to presynaptic cells. This can lead to an underestimation of double-labeled and connected-source networks and an overestimation of single-source networks and can obscure synaptic connectivity at the cellular resolution. We thus used a very conservative threshold of two transcripts in the analysis. This conservative threshold will likely overestimate the number of source cells that shared barcodes and underestimate the number of single-source networks. Since this is a first study of barcoded transsynaptic tracing in vivo, we chose to err on the conservative side to make sure that the subsequent analysis has single-cell resolution. Future characterization and optimization may lead to a better threshold to fully utilize data.

      Second, it is difficult to interpret the proportion of the 2,914 barcoded cells that were linked to barcoded starter cells (single-source, double-labeled, or connected-source) and those that remained orphan (no-source or lost-source). A simple table or bar graph representation would be helpful. The abundance of the no-source network (resulting from Cre-independent initial infection of the RV vector) can be estimated in independent negative control experiments that omit either Cre injection or AAV-RG injection. The latter, if combined with BARseq decoding, can provide an experimental prediction of the frequency of double-labeled events since connected-source networks are not labeled in the absence of RG.

      We have added Table 2, which breaks down the 2,914 barcoded cells based on whether they are presynaptic or source cells, and which type of network they belong to. We agree with the reviewer that the additional Cre- or RG- control experiments in parallel would allow an independent estimate of the double labeled networks and the no-source networks. We have included added a discussion of possible controls to further optimize the trans-synaptic tracing approach in future studies in the Discussion.

      Third, I would appreciate more quantitative data on the putative single-source network (Fig. 5I and S6) in terms of the distribution of pre- and post-synaptic TC cell types. The majority of labeling appeared to occur locally, with only two thalamic neurons observed in sample 25311842 (Fig. S6). How many instances of long-distance labeling (for example, > 500 microns away from the injection site) were observed in total? Is this low efficiency of long-distance labeling expected based on the utilized combinations of AAVs and RV vectors? A simple independent RV tracing solely detecting mCherry would be useful for evaluating the labeling efficiency of the method. I have experienced similar "less jump" RV tracing when RV particles were prepared in a single step, as this study did, rather than multiple rounds of amplification in traditional protocols, such as Osakada F et al Nat Protocol 2013.

      We imaged an animal that was injected in parallel to assess labeling (now included in Supplementary Note 2 and Supp. Fig. S5). The labeling pattern in the newly imaged animal was largely consistent with the results from the barcoded experiment: most labeled neurons were seen in the vicinity of the injection site, and sparser labeling was seen in other cortical areas and the thalamus. We further found that most neurons that were labeled in the thalamus were about 1 mm posterior to the center of the injection site, and thus would not have been sequenced in the in situ sequencing experiment (in which we sequenced about 640 µm of tissue spanning the injection site).

      In addition, we found that the bulk of the cells that expressed mCherry from the rabies virus only partially overlapped with the area that contained cells co-expressing BFP with the rabies glycoprotein. Moreover, very few cells co-expressed mCherry and BFP, which would be considered source cells in a conventional mono-synaptic tracing experiment. The small numbers of source cells likely also contributed to the sparseness of long-range labeling in the barcoded experiment.

      These interpretations and comparisons to the barcoded experiment are now included in Supplementary Note 2.

      Reviewer #3 (Public Review):

      The manuscript by Zhang and colleagues attempts to combine genetically barcoded rabies viruses with spatial transcriptomics in order to genetically identify connected pairs. The major shortcoming with the application of a barcoded rabies virus, as reported by 2 groups prior, is that with the high dropout rate inherent in single cell procedures, it is difficult to definitively identify connected pairs. By combining the two methods, they are able to establish a platform for doing that, and provide insight into connectivity, as well as pros and cons of their method, which is well thought out and balanced.

      Overall the manuscript is well-done, but I have a few minor considerations about tone and accuracy of statements, as well as some limitations in how experiments were done. First, the idea of using rabies to obtain broader tropism than AAVs isn't really accurate - each virus has its own set of tropisms, and it isn't clear that rabies is broader (or can be made to be broader).

      As the reviewer suggested, we toned down this claim and stated that rabies virus has different tropism to complement AAV.

      Second, rabies does not label all neurons that project to a target site - it labels some fraction of them.

      We meant to say that retrograde labeling is not restricted to labeling neurons from a certain brain region. We have clarified in the text.

      Third, the high rate of rabies virus mutation should be considered - if it is, or is not a problem in detecting barcodes with high fidelity, this should be noted.

      Our analysis showed that sequencing 15 bases was sufficient to tolerate a small number of mismatches in the barcode sequences and could distinguish real barcodes from random sequences (Fig. 4A). Thus, we can tolerate mutations in the barcode sequence. We have clarified this in the text.

      Fourth, there are a number of implicit assumptions in this manuscript, not all of which are equally backed up by data. For example, it is not clear that all rabies virus transmission is synaptic specific; in fact, quite a few studies argue that it is not (e.g., detection of rabies transcripts in glial cells). Thus, arguments about lost-source networks and the idea that if a cell is lost from the network, that will stop synaptic transmission, is not clear. There is also the very real propensity that, the sicker a starter cell gets, the more non-specific spread of virus (e.g., via necrosis) occurs.

      We agree with the reviewer that how strictly virus transmission is restricted to synapses remains a hotly debated question in the field, and this question is relevant not only to techniques based on barcoded rabies tracing, but to all trans-synaptic tracing experiments. A barcoding-based approach can generate single-cell data that enable direct comparison to other data modalities that measure synaptic connectivity, such as multi-patch and EM. These future experiments may provide additional insights into the questions that the reviewer raised. We have included additional discussion about how non-synaptic transmission of barcodes because of the necrosis of source cells may affect the analysis in the Discussion.

      Regarding the scenario in which the source cell dies, we agree with the reviewer and have clarified in the revised manuscript.

      Fifth, in the experiments performed in Figure 5, the authors used a FLEx-TVA expressed via a retrograde Cre, and followed this by injection of their rabies virus library. The issue here is that there will be many (potentially thousands) of local infection events near the injection site that TVA-mediated but are Cre-dependent (=off-target expression of TVA in the absence of Cre). This is a major confound in interpreting the labeling of these cells. They may express very low levels of TVA, but still have infection be mediated by TVA. The authors did not clearly explore how expression of TVA related to rabies virus infection of cells near the rabies injection site. A modified version of TVA, such as 66T, should have been used to mitigate this issue. Otherwise, it is impossible to determine connectivity locally. The authors do not go to great lengths to interpret the findings of these observations, so I am not sure this is a critical issue, but it should be pointed out by the authors as a caveat to their dataset.

      We agree with the reviewer that this type of infection could potentially be a major contributor to no-source networks, which were abundant in our experiment. Because small no-source networks were excluded from our analyses, and large no-source networks were only included for barcodes with low frequency (i.e., it would be nearly impossible statistically to generate such large no-source networks from independent infections), we believe that the effect of independent infections on our analyses were minimized. We have added a control experiment in Fig S5 and Supplementary Note 2, which further supported the hypothesis that there were many independent infections. We also included additional discussion about how this can be assessed and optimized in future studies in the Discussion.

      Sixth, the authors are making estimates of rabies spread by comparison to a set of experiments that was performed quite differently. In the two studies cited (Liu et al., done the standard way, and Wertz et al., tracing from a single cell), the authors were likely infecting with a rabies virus using a high multiplicity of infection, which likely yields higher rates of viral expression in these starter cells and higher levels of input labeling. However, in these experiments, the authors need to infect with a low MOI, and explicitly exclude cells with >1 barcode. Having only a single virion trigger infection of starter cells will likely reduce the #s of inputs relative to starter neurons. Thus, the stringent criteria for excluding small networks may not be entirely warranted. If the authors wish to only explore larger networks, this caveat should be explicitly noted.

      In the trans-synaptic labeling experiment, we actually used high rabies titer (200 nL, 7.6e10 iu/mL) that was comparable to conventional rabies tracing experiments. We did not exclude cells with multiple barcodes (as opposed to barcodes in multiple source cells), because we could resolve multiple barcodes in the same cell and indeed found many cells with multiple barcodes. We have clarified this in the text.

      Overall, if the caveats above are noted and more nuance is added to some of the interpretation and discussion of results, this would greatly help the manuscript, as readers will be looking to the authors as the authority on how to use this technology.

      In addition to addressing the specific concerns of the reviewer as described above, we modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers and expanded the discussion on future optimizations.

      Reviewer #1 (Recommendations For The Authors):

      The scientific problem is clearly stated and well laid out, the data are clearly presented, and the experiments well justified and nicely discussed. It was overall a very enjoyable read. The figures are generally nice and clear, however, I find the legends excessively concise. A bit too often, they just sort of introduce the title of the panel rather than a proper explanation of what it is depicted. A clear case is for example visible in Fig 2, where the description of the panels is minimal, but this is a general trend of the manuscript. This makes the figures a bit hard to follow as self-contained entities, without having to continuously go back to the main text. I think this could be improved with longer and more helpful descriptions.

      We have revised all figure legends to make them more descriptive.

      Other minor things:

      In the cDNA synthesis step for in-situ sequencing, I believe the authors might have forgotten one detail: the addition of aminoallyl dUTP to the RT reaction. If I recall correctly this is done in BARseq. The fact that the authors crosslink with BS-PEG on day 2, makes me suspect they spike in these nucleotides during the RT but this is not specified in the relevant step. Perhaps this is a mistake that needs correction.

      The RT primers we used have an amine group at 5’, which directly allows crosslinking. Thus, we did not need to spike in aminoallyl dUTP in the RT reaction. We have clarified this in the Methods.

      Reviewer #2 (Recommendations For The Authors):

      Throughout the manuscript, there are frequent references to the "Methods" section for important details. However, it can be challenging to determine which specific section of the Methods the authors are referring to, and in some cases, a thorough examination of the entire Methods section fails to locate the exact information needed to support the authors' claims. Below are a few specific examples of this issue. The authors are encouraged to be more precise in their references to the Methods section.

      In the revised manuscript, we numbered each subsection of Methods and updated pointers and associated hyperlinks in the main text to the subsection numbers.

      • On page 7, line 14, it is unclear how the authors compared the cell marker gene expression with the marker gene expression in the reference cell type.

      We have clarified in the revised manuscript.

      • On page 7, line 33, the authors note that some barcodes may have been missed during the sequencing of the rabies virus libraries, but the Methods section lacked a convincing explanation on this issue (see my point 2 above).

      We included a separate subsection on the sequencing of rabies libraries and the analysis of the sequencing depth in the Methods. In this new subsection, we further clarified our reasoning for identifying the lack of sequencing depth as a reason for missing barcodes, especially in comparison to sequencing depth required for establishing exact molecule counts used in established MAPseq and BARseq techniques with Sindbis libraries.

      • On page 9, line 44, the authors state that they considered a barcode to be associated with a cell if they found at least six molecules of that barcode in a cell, as detailed in the Methods section. However, the rationale behind this level of stringency is not provided in the Methods.

      We initially chose this threshold based on visual inspection of the sequencing images of the barcoded cells. Because the labeled cell types were consistent with our expectations (Fig. 4E-G), we did not further optimize the threshold for detecting retrogradely labeled barcoded cells.

      • I have noticed that some important explanations of figure panels are missing in the legends, making it challenging to understand the figures. Below are typical examples of this issue.

      In addition to the examples that the reviewer mentioned below, we also revised many other figure panels to make them clear to the readers.

      • In Fig. 2, "RV into SC" in panel C does not make sense, as RV was injected into the thalamus. There is no explanation of the images in this panel C.

      We have corrected the typo in the revision.

      • In Fig. 3, information on the endogenous gene panel for cell type classification (Table S3) could be mentioned in the legend or corresponding text.

      We now cite Table S3 both in Fig 3 legend and in the main text. We also included a list of the 104 cell type marker genes we used in Table S3.

      • In panel J, it is unclear why the total number of BC cells is 2,752, and not 4,130 as mentioned in the text.

      This is a typo. We have corrected this in the revision. The correct number (3,746) refers to the number of cells that did not belong to either of the two categories at the bottom of the panel, and not the total number of neurons. To make this clear, we now also include the total number of barcoded cells at the top of the panel.

      • In Fig. 4, the definitions of "+" and "−" symbols in panels K and L are unclear. Also, it seems that the second left column of panel K should read "T −."

      We corrected the typo in K, further clarified the “Area” labels, and changed the “S” label in 4K to “−”. This change does not change the original meaning of the figure: when considering the variance explained in L4/5 IT neurons, considering the subclass compositional profile is equivalent to not using the compositional profiles of cell types, because L4/5 IT neurons all belong to the same subclass (L4/5 IT subclass). Although operationally we simply considered subclass-level compositional profiles when calculating the variance explained, we think that changing this to “−” is clearer for the readers.

      • In Fig. 5, panel E is uninterpretable.

      We revised the main text and the figure to clarify how we manually proofread cells to determine the QC thresholds for barcoded cells. These plots showed a summary of the proofreading. We also revised the figures to indicate that they showed the fraction of barcoded cells that were considered real after proofreading. In the revised version, we moved these plots to Fig. S5.

      • In Fig. S1, I do not understand the identity of the six samples on the X-axis of panel A (given that only two animals were described in the main text) and what panel B shows, including the definition of map_cluster_conf and map_cluster_corr.

      In the revised Fig. S1, we made it more explicit that the six animals include both animals used for retrograde tracing (2 animals) and those used for trans-synaptic tracing (4 animals). We updated the y axis labels to be more readable and cited the relevant Methods section for definitions.

      • In Fig. S2, please provide the definitions of blue and red dots and values in panel A, as well as the color codes and size of the circles in panel B. My overall impression from panel B is that there is no significant difference between RV-infected and non-infected cells. The authors should provide more quantitative and statistical support for the claim that "RV-infected cells had higher expression of immune response-related genes."

      We toned down the statement to “Consistent with previous studies […], some immune response related genes were up-regulated in virus-infected cells compared to non-infected cells.” Because the main point of the single-cell RNAseq analysis was that rabies did not affect the ability to distinguish transcriptomic types, the change in immune response-related genes was not essential to the main conclusions. We clarified the red and blue dots in panel A and changed panel B to show the top up-regulated immune response-related genes in the revised manuscript.

      • In Fig. S3, the definitions of the color code and circle size are missing.

      We have added the legends in Fig. S3.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We appreciate the reviewers for their insightful feedback, which has substantially improved our manuscript. Following the suggestions of the reviewers, we have undertaken the following major revisions:

      a. Concerning data transformation, we have adjusted the methodology in Figures 2 and 3. Instead of normalizing c-Fos density to the whole brain c-Fos density as initially described, we now normalize to the c-Fos density of the corresponding brain region in the control group. b. We have substituted the PCA approach with hierarchical clustering in Figures 2 and 3.

      c. In the discussion section, we added a subsection on study limitations, focusing on the variations in drug administration routes and anesthesia depth.

      Enclosed are our detailed responses to each of the reviewer's comments.

      Reviewer #1:

      1a. The addition of the EEG/EMG is useful, however, this information is not discussed. For instance, there are differences in EEG/EMG between the two groups (only Ket significantly increased delta/theta power, and only ISO decreased EMG power). These results should be discussed as well as the limitation of not having physiological measures of anesthesia to control for the anesthesia depth.

      1b. The possibility that the differences in fos observed may be due to the doses used should be discussed.

      1c. The possibility that the differences in fos observed may be due kinetic of anesthetic used should be discussed.

      Thank you for your suggestions. We have now discussed EEG/EMG result, limitation of not having physiological measures of anesthesia to control for the anesthesia depth, The possibility that the differences in fos observed may be due to the doses, The possibility that the differences in Fos observed may be due kinetic of anesthetic in the revised manuscript (Lines 308-331, also shown below).

      Lines 308-331: "...Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Supplementary Figure 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression. Although the difference in EEG power between the ISO group and the home cage control was not significant, the increase in EEG power observed in the ISO group was similar to that of KET (0.47 ± 0.07 vs 0.59 ± 0.10), suggesting that both agents may induce loss of consciousness in mice. Regarding EMG power, ISO showed a significant decrease in EMG power compared to its control group. In contrast, the KET group showed a lesser reduction in EMG power (ISO: -1.815± 0.10; KET: -0.96 ± 0.21), which may partly explain the higher overall c-Fos expression levels in the KET group. This is consistent with previous studies where ketamine doses up to 150 mg/kg increase delta power while eliciting a wakefulness-like pattern of c-Fos expression across the brain [1]. Furthermore, the observed differences in c-Fos expression may arise in part from the dosages, routes of administration, and their distinct pharmacokinetic profiles. This variation is compounded by the lack of detailed physiological monitoring, such as blood pressure, heart rate, and respiration, affecting our ability to precisely assess anesthesia depth. Future studies incorporating comprehensive physiological monitoring and controlled dosing regimens are essential to further elucidate these relationships and refine our understanding of the effects of anesthetics on brain activity"

      1. Lu J, Nelson LE, Franks N, Maze M, Chamberlin NL, Saper CB: Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 2008, 508(4):648-662.

      2b. I am confused because Fig 2C seems to show significant decrease in %fos in the hypothalamus, midbrain and cerebellum after KET, while the author responded that " in our analysis, we did not detect regions with significant downregulation when comparing anesthetized mice with controls." Moreover the new figure in the rebuttal in response to reviewer 2 suggests that Ket increases Fos in almost every single region (green vs blue) which is not the conclusion of the paper.

      Your concern regarding the apparent discrepancy is well-founded. The inconsistency arose due to an inappropriate data transformation, which affected the interpretation. We have now rectified this by adjusting the data transformation in Figures 2 and 3. Specifically, we have recalculated the log relative c-Fos density values relative to the control group for each brain region. This revision has resolved the issue, confirming that our analysis did not detect any regions with significant downregulation in the anesthetized mice compared to controls. We have also updated the results, discussion, and methods sections of Figures 2 and 3 to accurately reflect these changes and ensure consistency with our findings.

      Author response image 1.

      Figure 2. Whole-brain distributions of c-Fos+ cells induced by ISO and KET. (A) Hierarchical clustering was performed on the log relative c-Fos density data for ISO and KET using the complete linkage method based on the Euclidean distance matrix, with clusters identified by a dendrogram cut-off ratio of 0.5. Numerical labels correspond to distinct clusters within the dendrogram. (B) Silhouette values plotted against the ratio of tree height for ISO and KET, indicating relatively higher Silhouette values at 0.5 (dashed line), which is associated with optimal clustering. (C) The number of clusters identified in each treatment condition at different ratios of the dendrogram tree height, with a cut-off level of 0.5 corresponding to 4 clusters for both ISO and KET (indicated by the dashed line). (D) The bar graph depicts Z scores for clusters in ISO and KET conditions, represented with mean values and standard errors. One-way ANOVA with Tukey's post hoc multiple comparisons. ns: no significance; ***P < 0.001. (E) Z-scored log relative density of c-Fos expression in the clustered brain regions. The order and abbreviations of the brain regions and the numerical labels correspond to those in Figure 2A. The red box denotes the cluster with the highest mean Z score in comparison to other clusters. CTX: cortex; TH: thalamus; HY: hypothalamus; MB: midbrain; HB: hindbrain.

      Author response image 2.

      Figure 3. Similarities and differences in ISO and KET activated c-Fos brain areas. (A) Hierarchical clustering was performed on the log-transformed relative c-Fos density data for ISO and KET using the complete linkage method based on the Euclidean distance matrix, with clusters identified by a dendrogram cut-off ratio of 0.5. (B) Silhouette values are plotted against the ratio of tree height from the hierarchical clustered dendrogram in Figure 3A. (C) The relationship between the number of clusters and the tree height ratio of the dendrogram for ISO and KET, with a cut-off ratio of 0.5 resulting in 3 clusters for ISO and 5 for KET (indicated by the dashed line). (D) The bar graph depicts Z scores for clusters in ISO and KET conditions, represented with mean values and standard errors. One-way ANOVA with Tukey's post hoc multiple comparisons. ns: no significance; ***P < 0.001. (E) Z-scored log relative density of c-Fos expression within the identified brain region clusters. The arrangement, abbreviations of the brain regions, and the numerical labels are in accordance with Figure 3A. The red boxes highlight brain regions that rank within the top 10 percent of Z score values. The white boxes denote brain regions with an Z score less than -2.

      1. There are still critical misinterpretations of the PCA analysis. For instance, it is mentioned that " KET is associated with the activation of cortical regions (as evidenced by positive PC1 coefficients in MOB, AON, MO, ACA, and ORB) and the inhibition of subcortical areas (indicated by negative coefficients) " as well as " KET displays cortical activation and subcortical inhibition, whereas ISO shows a contrasting preference, activating the cerebral nucleus (CNU) and the hypothalamus while inhibiting cortical areas. To reduce inter-individual variability." These interpretations are in complete contradiction with the answer 2b above that there was no region that had decreased Fos by either anesthetic.

      Thank you for bringing this to our attention. In response to your concerns, we have made significant revisions to our data analysis. We have updated our input data to incorporate log-transformed relative c-Fos density values, normalized against the control group for each brain region, as illustrated in Figures 2 and 3. Instead of PCA, we have applied this updated data to hierarchical clustering analysis. The results of these analyses are consistent with our original observation that neither anesthetic led to a decrease in Fos expression in any region.

      1. I still do not understand the rationale for the use of that metric. The use of a % of total Fos makes the data for each region dependent on the data of the other regions which wrongly leads to the conclusion that some regions are inhibited while they are not when looking at the raw data. Moreover, the interdependence of the variable (relative density) may affect the covariance structure which the PCA relies upon. Why not using the PCA on the logarithm of the raw data or on a relative density compared to the control group on a region-per-region basis instead of the whole brain?

      Thank you for your insightful suggestion. Following your advice, we have revised our approach and now utilize the logarithm of the relative density compared to the control group on a region-by-region basis. We attempted PCA analyses using the logarithm of the raw data, the logarithm of the Z-score, and the logarithm of the relative density compared to control, but none yielded distinct clusters.

      Author response image 3.

      As a result, we employed hierarchical cluster analysis. We then examined the Z-scores of the log-transformed relative c-Fos densities (Figures 2E and 3E) to assess expression levels across clusters. Our analysis revealed that neither ISO nor KET treatments led to a significant suppression of c-Fos expression in the 53 brain regions examined. In the ISO group alone, there were 10 regions that demonstrated relative suppression (Z-score < -2, indicated by white boxes) as shown in Figure 3.

      Fig. 2B: it's unclear to me why the regions are connected by a line. Such representation is normally used for time series/within-subject series. What is the rationale for the order of the regions and the use of the line? The line connecting randomly organized regions is meaningless and confusing.

      Thank you for your suggestion. We have discontinued the use of PCA calculations and have removed this figure.

      Fig 6A. The correlation matrices are difficult to interpret because of the low resolution and arbitrary order of brain regions. I recommend using hierarchical clustering and/or a combination of hierarchical clustering and anatomical organization (e.g. PMID: 31937658). While it is difficult to add the name of the regions on the graph I recommend providing supplementary figures with large high-resolution figures with the name of each brain region so the reader can actually identify the correlation between specific brain regions and the whole brain, Rationale for Metric Choice: Note that I do not dispute the choice of the log which is appropriate, it is the choice of using the relative density that I am questioning.

      Thank you for your constructive feedback. In line with your suggestion, we have implemented hierarchical clustering combined with anatomical organization as per the referenced literature. Additionally, we have updated the vector diagrams in Figure 6A to present them with greater clarity.

      Furthermore, we have revised our network modular division method based on cited literature recommendations. We used hierarchical clustering with correlation coefficients to segment the network into modules, illustrated in Figure 6—figure supplement 1. Due to the singular module structure of the KET network and the sparsity of intermodular connections in the home cage and saline networks, the assessment of network hub nodes did not employ within-module degree Z-score and participation coefficients, as these measures predominantly underscore the importance of connections within and between modules. Instead, we used degree, betweenness centrality, and eigenvector centrality to detect the hub nodes, as detailed in Figure 6—figure supplement 2. With this new approach, the hub node for the KET condition changed from SS to TeA. Corresponding updates have been made to the results section for Figure 6, as well as to the related discussions and the abstract of our paper.

      Author response image 4.

      Figure 6. Generation of anesthetics-induced networks and identification of hub regions. (A) Heatmaps display the correlations of log c-Fos densities within brain regions (CTX, CNU, TH, HY, MB, and HB) for various states (home cage, ISO, saline, KET). Correlations are color-coded according to Pearson's coefficients. The brain regions within each anatomical category are organized by hierarchical clustering of their correlation coefficients. (B) Network diagrams illustrate significant positive correlations (P < 0.05) between regions, with Pearson’s r exceeding 0.82. Edge thickness indicates correlation magnitude, and node size reflects the number of connections (degree). Node color denotes betweenness centrality, with a spectrum ranging from dark blue (lowest) to dark red (highest). The networks are organized into modules consistent with the clustering depicted in Supplementary Figure 8. Figure 6—figure supplement 1

      Author response image 5.

      Figure 6—figure supplement 1. Hierarchical clustering of brain regions under various conditions: home cage, ISO, saline, and KET. (A) Heatmaps show the relative distances among brain regions assessed in naive mice. Modules were identified by sectioning each dendrogram at a 0.7 threshold. (B) Silhouette scores plotted against the dendrogram tree height ratio for each condition, with optimal cluster definition indicated by a dashed line at a 0.7 ratio. (C) The number of clusters formed at different cutoff levels. At a ratio of 0.7, ISO and saline treatments result in three clusters, whereas home cage and KET conditions yield two clusters. (D) The mean Pearson's correlation coefficient (r) was computed from interregional correlations displayed in Figure 6A. Data were analyzed using one-way ANOVA with Tukey’s post hoc test, ***P < 0.001.

      Author response image 6.

      Figure 6—figure supplement 2. Hub region characterization across different conditions: home cage (A), ISO (B), saline (C), and KET (D) treatments. Brain regions are sorted by degree, betweenness centrality, and eigenvector centrality, with each metric presented in separate bar graphs. Bars to the left of the dashed line indicate the top 20% of regions by rank, highlighting the most central nodes within the network. Red bars signify regions that consistently appear within the top rankings for both degree and betweenness centrality across the metrics.

      1. I am still having difficulties understanding Fig. 3.

      Panel A: The lack of identification for the dots in panel A makes it impossible to understand which regions are relevant.

      Panel B: what is the metric that the up/down arrow summarizes? Fos density? Relative density? PC1/2?

      Panel C: it's unclear to me why the regions are connected by a line. Such representation is normally used for time series/within-subject series. What is the rationale for the order of the regions?

      Thank you for your patience and for reiterating your concerns regarding Figure 3.

      a. In Panel A, we have substituted the original content with a display of hierarchical clustering results, which now clearly marks each brain region. This change aids readers in identifying regions with similar expression patterns and facilitates a more intuitive understanding of the data.

      a. Acknowledging that our analysis did not reveal any significantly inhibited brain regions, we have decided to remove the previous version of Panel B from the figure.

      b. We have discontinued the use of PCA calculations and have removed this figure to avoid any confusion it may have caused. Our revised analysis focuses on hierarchical clustering, which are presented in the updated figures.

      Reviewer #2:

      1. Aside from issues with their data transformation (see below), (a) I think they have some interesting Fos counts data in Figures 4B and 5B that indicate shared and distinct activation patterns after KET vs. ISO based anesthesia. These data are far closer to the raw data than PC analyses and need to be described and analyzed in the first figures long before figures with the more abstracted PC analyses. In other words, you need to show the concrete raw data before describing the highly transformed and abstracted PC analyses. (b) This gets to the main point that when selecting brain areas for follow up analyses, these should be chosen based on the concrete Fos counts data, not the highly transformed and abstracted PC analyses.

      Thank you for your suggestions.

      a. We have added the original c-Fos cell density distribution maps for Figures 2, 3, 4, and 5 in Supplementary Figures 2 and 3 (also shown below). To maintain consistency across the document, we have updated both the y-axis label and the corresponding data in Figures 4B and 5B from 'c-Fos cell count' to 'c-Fos density'.

      b. The analyses in Figures 2 and 3 include all brain regions. Figures 4 and 5 present the brain regions with significant differences as shown in Figure 3—figure supplement 1.

      Author response image 7.

      Figure 2—figure supplement 1. The c-Fos density in 53 brain areas for different conditions. (home cage, n = 6; ISO, n = 6 mice; saline, n = 8; KET, n = 6). Each point represents the c-Fos density in a specific brain region, denoted on the y-axis with both abbreviations and full names. Data are shown as mean ± SEM. Brain regions are categorized into 12 brain structures, as indicated on the right side of the graph.

      Author response image 8.

      Figure 3—figure supplement 1. c-Fos density visualization across 201 distinct brain regions under various conditions. The graph depicts the c-Fos density levels for each condition, with data presented as mean and standard error. Brain regions with statistically significant differences are featured in Figures 4 and 5. Brain regions are organized into major anatomical subdivisions, as indicated on the left side of the graph.

      1. Now, the choice of data transformation for Fos counts is the most significant problem. First, the authors show in the response letter that not using this transformation (region density/brain density) leads to no clustering. However, they also showed the region-densities without transformation (which we appreciate) and it looks like overall Fos levels in the control group Home (ISO) are a magnitude (~10-fold) higher than those in the control group Saline (KET) across all regions shown. This large difference seems unlikely to be due to a biologically driven effect and seems more likely to be due to a technical issue, such as differences in staining or imaging between experiments. Was the Homecage-ISO experiment or at least the Fos labeling and imaging performed at the same time as for the Saline-Ketamine experiment? Please state the answer to this question in the Results section one way or the other.

      a. “Home (ISO) are a magnitude (~10-fold) higher than those in the control group saline (KET) across all regions shown.” We believe you might be indicating that compared to the home cage group (gray), the saline group (blue) shows a 10-fold higher expression (Supplementary Figure 2/3). Indeed, we observed that the total number of c-Fos cells in the home cage group is significantly lower than in the saline group. This difference may be due to reduced sleep during the light-on period (ZT 6- ZT 7.5) in the saline mice or the pain and stress response caused by intraperitoneal injection of saline. We have explained this discrepancy in the discussion section.Line 308-317(also see below)

      “…Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Figure 1—figure supplement 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression…”

      b. Drug administration and tissue collection for both Homecage-ISO and Saline-Ketamine groups were consistently scheduled at 13:00 and 14:30, respectively. Four mice were administered drugs and had tissues collected each day, with two from the experimental group and two from the control group, to ensure consistent sampling. The 4% PFA fixation time, sucrose dehydration time, primary and secondary antibody concentrations and incubation times, staining, and imaging parameters and equipment (exposure time for VS120 imaging was fixed at 100ms) were all conducted according to a unified protocol.

      We have included the following statement in the results section: Line 81-83, “Sample collection for all mice was uniformly conducted at 14:30 (ZT7.5), and the c-Fos labeling and imaging were performed using consistent parameters throughout all experiments. ”

      1. Second, they need to deal with this large difference in overall staining or imaging for these two (Home/ISO and Saline/KET) experiments more directly; their current normalization choice does not really account for the large overall differences in mean values and variability in Fos counts (e.g. due to labeling and imaging differences).

      3a. I think one option (not perfect but I think better than the current normalization choice) could be z-scoring each treatment to its respective control. They can analyze these z-scored data first, and then in later figures show PC analyses of these data and assess whether the two treatments separate on PC1/2. And if they don't separate, then they don't separate, and you have to go with these results.

      3b. Alternatively, they need to figure out the overall intensity distributions from the different runs (if that the main reason of markedly different counts) and adjust their thresholds for Fos-positive cell detection based on this. I would expect that the saline and HC groups should have similar levels of activation, so they could use these as the 'control' group to determine a Fos-positive intensity threshold that gets applied to the corresponding 'treatment' group.

      3c. If neither 3a nor 3b is an option then they need to show the outcomes of their analysis when using the untransformed data in the main figures (the untransformed data plots in their responses to reviewer are currently not in the main or supplementary figs) and discuss these as well.

      a. Thank you very much for your valuable suggestion. We conducted PCA analysis on the ISO and KET data after Z-scoring them with their respective control groups and did not find any significant separation.

      Author response image 9.

      As mentioned in our response to reviewer #1, we have reprocessed the raw data. Firstly, we divided the ISO and KET data by their respective control brain regions and then performed a logarithmic transformation to obtain the log relative c-Fos density. The purpose of this is to eliminate the impact of baseline differences and reduce variability. We then performed hierarchical clustering, and finally, we Z-scored the log relative c-Fos density data. The aim is to facilitate comparison of ISO and KET on the same data dimension (Figure 2 and 3).

      b. We appreciate your concerns regarding the detection thresholds for Fos-positive cells. The enclosed images, extracted from supplementary figures for Figures 4 and 5, demonstrate notable differences in c-Fos expression between saline and home cage groups in specific brain regions. These regions exhibit a discernible difference in staining intensity, with the saline group showing enhanced c-Fos expression in the PVH and PVT regions compared to the home cage group. An examination of supplementary figures for Figures 4 and 5 shows that c-Fos expression in the home cage group is consistently lower than in the saline group. This comparative analysis confirms that the discrepancies in c-Fos levels are not due to varying detection thresholds.

      Author response image 10.

      b. We have added the corresponding original data graphs to Supplementary Figures 2 and 3, and discussed the potential reasons for the significant differences between these groups in the discussion section (also shown below).

      Lines 308-317: "...Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Figure 3—figure supplement 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression.…”

    1. Reviewer #2 (Public Review):

      This paper seeks to determine whether the human visual system's sensitivity to causal interactions is tuned to specific parameters of a causal launching event, using visual adaptation methods. The three parameters the authors investigate in this paper are the direction of motion in the event, the speed of the objects in the event, and the surface features or identity of the objects in the event (in particular, having two objects of different colors).

      The key method, visual adaptation to causal launching, has now been demonstrated by at least three separate groups and seems to be a robust phenomenon. Adaptation is a strong indicator of a visual process that is tuned to a specific feature of the environment, in this case launching interactions. Whereas other studies have focused on retinotopically-specific adaptation (i.e., whether the adaptation effect is restricted to the same test location on the retina as the adaptation stream was presented to), this one focuses on feature-specificity.

      The first experiment replicates the adaptation effect for launching events as well as the lack of adaptation event for a minimally different non-causal 'slip' event. However, it also finds that the adaptation effect does not work for launching events that do not have a direction of motion more than 30 degrees from the direction of the test event. The interpretation is that the system that is being adapted is sensitive to the direction of this event, which is an interesting and somewhat puzzling result given the methods used in previous studies, which have used random directions of motion for both adaptation and test events.

      The obvious interpretation would be that past studies have simply adapted to launching in every direction, but that in itself says something about the nature of this direction-specificity: it is not working through opposed detectors. For example, in something like the waterfall illusion adaptation effect, where extended exposure to downward motion leads to illusory upward motion on neutral-motion stimuli, the effect simply doesn't work if motion in two opposed directions is shown (i.e., you don't see illusory motion in both directions, you just see nothing). The fact that adaptation to launching in multiple directions doesn't seem to cancel out the adaptation effect in past work raises interesting questions about how directionality is being coded in the underlying process. In addition, one limitation of the current method is that it's not clear whether the motion-direction-specificity is also itself retinotopically-specific, that is, if one retinotopic location were adapted to launching in one direction and a different retinotopic location adapted to launching in the opposite direction, would each test location show the adaptation effect only for events in the direction presented at that location?

      The second experiment tests whether the adaptation effect is similarly sensitive to differences in speed. The short answer is no; adaptation events at one speed affect test events at another. Furthermore, this is not surprising given that Kominsky & Scholl (2020) showed adaptation transfer between events with differences in speeds of the individual objects in the event (whereas all events in this experiment used symmetrical speeds). This experiment is still novel and it establishes that the speed-insensitivity of these adaptation effects is fairly general, but I would certainly have been surprised if it had turned out any other way.

      The third experiment tests color (as a marker of object identity), and pits it against motion direction. The results demonstrate that adaptation to red-launching-green generates an adaptation effect for green-launching-red, provided they are moving in roughly the same direction, which provides a nice internal replication of Experiment 1 in addition to showing that the adaptation effect is not sensitive to object identity. This result forms an interesting contrast with the infant causal perception literature. Multiple papers (starting with Leslie & Keeble, 1987) have found that 6-8-month-old infants are sensitive to reversals in causal roles exactly like the ones used in this experiment. The success of adaptation transfer suggests, very clearly, that this sensitivity is not based only on perceptual processing, or at least not on the same processing that we access with this adaptation procedure. It implies that infants may be going beyond the underlying perceptual processes and inferring genuine causal content. This is also not the first time the adaptation paradigm has diverged from infant findings: Kominsky & Scholl (2020) found a divergence with the object speed differences as well, as infants categorize these events based on whether the speed ratio (agent:patient) is physically plausible (Kominsky et al., 2017), while the adaptation effect transfers from physically implausible events to physically plausible ones. This only goes to show that these adaptation effects don't exhaustively capture the mechanisms of early-emerging causal event representation.

      One overarching point about the analyses to take into consideration: The authors use a Bayesian psychometric curve-fitting approach to estimate a point of subjective equality (PSE) in different blocks for each individual participant based on a model with strong priors about the shape of the function and its asymptotic endpoints, and this PSE is the primary DV across all of the studies. As discussed in Kominsky & Scholl (2020), this approach has certain limitations, notably that it can generate nonsensical PSEs when confronted with relatively extreme response patterns. The authors mentioned that this happened once in Experiment 3 and that a participant had to be replaced. An alternate approach is simply to measure the proportion of 'pass' reports overall to determine if there is an adaptation effect. I don't think this alternate analysis strategy would greatly change the results of this particular experiment, but it is robust against this kind of self-selection for effects that fit in the bounds specified by the model, and may therefore be worth including in a supplemental section or as part of the repository to better capture the individual variability in this effect.

      In general, this paper adds further evidence for something like a 'launching' detector in the visual system, but beyond that, it specifies some interesting questions for future work about how exactly such a detector might function.

      Kominsky, J. F., & Scholl, B. J. (2020). Retinotopic adaptation reveals distinct categories of causal perception. Cognition, 203, 104339. https://doi.org/10.1016/j.cognition.2020.104339

      Kominsky, J. F., Strickland, B., Wertz, A. E., Elsner, C., Wynn, K., & Keil, F. C. (2017). Categories and Constraints in Causal Perception. Psychological Science, 28(11), 1649-1662. https://doi.org/10.1177/0956797617719930

      Leslie, A. M., & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25(3), 265-288. https://doi.org/10.1016/S0010-0277(87)80006-9

    1. Reviewer #2 (Public Review):

      Summary:

      A dominant hypothesis concerning the origin of life is that, before the appearance of the first enzymes, RNA replicated non-enzymatically by templating. However, this replication was probably not very efficient, due to the propensity of single strands to bind to each other, thus inhibiting template replication. This phenomenon, known as product inhibition, has been shown to lead to parabolic growth instead of exponential growth. Previous works have shown that this situation limits competition between alternative replicators and therefore promotes RNA population diversity. The present work examines this scenario in a model of RNA replication, taking into account finite population size, mutations, and differences in GC content. The main results are (1) confirmation that parabolic growth promotes diversity, but that when the population size is small enough, sequences least efficient at replicating may nevertheless go extinct; (2) the observation that fitness is not only controlled by the replicability of sequences, but also by their GC content ; (3) the observation that parabolic growth attenuates the impact of mutations and, in particular, that the error threshold to which exponentially growing sequences are subject can be exceeded, enabling sequence identity to be maintained at higher mutation rates.

      Strengths:

      The analyses are sound and the observations are intriguing. Indeed, it has been noted previously that parabolic growth promotes coexistence, its role in mitigating the error threshold catastrophe - which is often presented as a major obstacle to our understanding of the origin of life - had not been examined before.

      Weaknesses:

      Although all the conclusions are interesting, most are not very surprising for people familiar with the literature. As the authors point out, parabolic growth is well known to promote diversity (Szathmary-Gladkih 89) and it has also been noted previously that a form of Darwinian selection can be found at small population sizes (Davis 2000). Given that under parabolic growth, no sequence is ever excluded for infinite populations, it is also not surprising to find that mutations have a less dramatic exclusionary impact.

      A general weakness is the presentation of models and parameters, whose choices often appear arbitrary. Modeling choices that would deserve to be further discussed include the association of the monomers with the strands and the ensuing polymerization, which are combined into a single association/polymerization reaction (see also below), or the choice to restrict to oligomers of length L = 10. Other models, similar to the one employed here, have been proposed that do not make these assumptions, e.g. Rosenberger et al. Self-Assembly of Informational Polymers by Templated Ligation, PRX 2021. To understand how such assumptions affect the results, it would be helpful to present the model from the perspective of existing models.

      The values of the (many) parameters, often very specific, also very often lack justifications. For example, why is the "predefined error factor" ε = 0.2 and not lower or higher? How would that affect the results? Similarly, in equation (11), where does the factor 0.8 come from? Why is the kinetic constant for duplex decay reaction 1.15e10−8? Are those values related to experiments, or are they chosen because specific behaviors can happen only then?

      The choice of the model and parameters potentially impact the two main results, the attenuation of the error threshold and the role of GC content:

      Regarding the error threshold, it is also noted (lines 379-385) that it disappears when back mutations are taken into account. This suggests that overcoming the error threshold might not be as difficult as suggested, and can be achieved in several ways, which calls into question the importance of the particular role of parabolic growth. Besides, when the concentration of replicators is low, product inhibition may be negligible, such that a "parabolic replicator" is effectively growing exponentially and an error catastrophe may occur. Do the authors think that this consideration could affect their conclusion? Can simulations be performed?

      Regarding the role of the GC content, GC-rich oligomers are found to perform the worst but no rationale is provided. One may assume that it happens because GC-rich sequences are comparatively longer to release the product. However, it is also conceivable that higher GC content may help in the polymerization of the monomers as the monomers attach longer on the template (as described in Eq.(9)). This is an instance where the choice to pull into a single step the association and polymerization reactions are pulled into a single step independent of GC content may be critical. It would be important to show that the result arises from the actual physics and not from this modeling choice.

      Some more specific points that would deserve to be addressed:

      - Line 53: it is said that p "reflects how easily the template-reaction product complex dissociates". This statement is not correct. A reaction order p<1 reflects product inhibition, the propensity of templates to bind to each other, not slow product release. Product release can be limiting, yet a reaction order of 1 can be achieved if substrate concentrations are sufficiently high relative to oligomer concentrations (von Kiedrowski et al., 1991).

      - Population size is a key parameter, and a comparison is made between small (10^3) and large (10^5) populations, but without explaining what determines the scale (small/large relative to what?).

      - In the same vein, we might expect size not to be the only important parameter, but also concentration.

      - Lines 543-546: if understanding correctly, the quantitative result is that the error threshold rises from 0.1 in the exponential case to 0.196 in the parabolic. Are the authors suggesting that a factor of 2 is a significant difference?

      - Figure 3C: this figure shows no statistically significant effect?

      - line 542: "phase transition-like species extension (Figure 4B)": such a clear threshold is not apparent.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      1. The name of the new method "inter-haplotype distance" is more confusing than helpful, as the haplotype information is not critical for implementing this method. First, the mutation spectrum is aggregated genome-wide regardless of the haplotypes where the mutations are found. Second, the only critical haplotype information is that at the focal site (i.e., the locus that is tested for association): individuals are aggregated together when they belong to the same "haplotype group" at the focal site. However, for the classification step, haplotype information is not really necessary: individuals can be grouped based on their genotypes at the given locus (e.g., AA vs AB). As the authors mentioned, this method can be potentially applied to other mutation datasets, where haplotype information may well be unavailable. I hope the authors can reconsider the name and remove the term "haplotype" (perhaps something like "inter-genotype distance"?) to avoid giving the wrong impression that haplotype information is critical for applying this method.

      We appreciate the reviewer's concern about the name of our method. The reviewer is correct that haplotype information is not critical for our method to work, and as a result we've decided to simply rename the approach to "aggregate mutation spectrum distance" (abbreviated AMSD). For simplicity, we refer to the method as IHD throughout our responses to reviewers, but the revised manuscript now refers to AMSD.

      1. The biggest advantage of the IHD method over QTL mapping is alleviation of the multiple testing burden, as one comparison tests for any changes in the mutation spectrum, including simultaneous, small changes in the relative abundance of multiple mutation types. Based on this, the authors claim that IHD is more powerful to detect a mutator allele that affects multiple mutation types. Although logically plausible, it is unclear under what quantitative conditions IHD can actually have greater power over QTL. It will be helpful to support this claim by providing some simulation results.

      This comment prompted us to do a more detailed comparison of IHD vs. QTL power under conditions that are more similar to those observed in the BXD cohort. While preparing the original manuscript, we assumed that IHD might have greater power than QTL mapping in a population like the BXDs because some recombinant inbred lines have accumulated many more germline mutations than others (see Figure 1 in Sasani et al. 2022, Nature). In a quantitative trait locus scan (say, for the fraction of C>A mutations in each line) each BXD's mutation data would be weighted equally, even if a variable number of mutations was used to generate the phenotype point estimate in each line.

      To address this, we performed a new series of simulations in which the average number of mutations per haplotype was allowed to vary. At the low end, some BXDs accumulated as few as 100 total germline mutations, while others have accumulated as many as 2,000. Thus, instead of simulating a mean number of mutations on each simulated haplotype, we allowed the mean number of mutations per haplotype to vary from N to 20N. By simulating a variable count of mutations on each haplotype, we could more easily test the benefits of comparing aggregate, rather than individual, mutation spectra between BXDs.

      In these updated simulations, we find that IHD routinely outperforms QTL mapping under a range of parameter choices (see Author Response image 1). Since IHD aggregates the mutation spectra of all haplotypes with either B or D alleles at each locus in the genome, the method is much less sensitive to individual haplotypes with low mutation counts. We include a mention of these updated simulations on lines 135-138 and describe the updated simulations in greater detail in the Materials and Methods (lines 705-715).

      Author response image 1.

      Power of IHD and QTL mapping on simulated haplotypes with variable counts of mutations. We simulated germline mutations on the specified number of haplotypes (as described in the manuscript) but allowed the total number of mutations per haplotype to vary by a factor of 20.

      1. The flip side of this advantage of IHD is that, when a significant association is detected, it is not immediately clear which mutation type is driving the signal. Related to this, it is unclear how the authors reached the point that "...the C>A mutator phenotype associated with the locus on chromosome 6", when they only detected significant IHD signal at rs46276051 (on Chr6), when conditioning on D genotypes at the rs27509845 (on Chr4) and no significant signal for any 1-mer mutation type by traditional mapping. The authors need to explain how they deduced that C>A mutation is the major source of the signal. In addition, beyond C>A mutations, can mutation types other than C>A contribute to the IHD signal at rs46276051? More generally, I hope the authors can provide some guidelines on how to narrow a significant IHD signal to specific candidate mutation type(s) affected, which will make the method more useful to other researchers.

      We thank the reviewer for pointing out this gap in our logic. We omitted specific instructions for narrowing down an IHD signal to specific mutation type(s) for a few reasons. First, this can be addressed using mutational signature analysis methods that are in widespread use. For example, upon identifying one or more candidate mutator loci, we can enter the mutation spectra of samples with each possible mutator genotype into a program (e.g., SigProfilerExtractor) to determine which combinations of mutation types occur proportionally more often in the genomes that harbor mutators (see Figure 3c in our manuscript). A second approach for narrowing down an IHD signal, highlighted in Figure 3a (and now described in the text of the Results section at lines 256-261), is to simply test which mutation type proportion(s) differ significantly between groups of samples with and without a candidate mutator (for example, with a Chi-square test of independence for each mutation type).

      Although this second approach incurs a multiple testing burden, the burden is offset somewhat by using IHD to identify mutator loci, rather than performing association tests for every possible mutation type to begin with. Although Figure 3a only shows the significant difference in C>A fraction among BXDs with different mutator locus genotypes, Figure 3-figure supplement 1 shows the complete set of 1-mer spectrum comparisons. It is possible that this second approach would not prove very useful in the case of a mutator with a “flat” signature (i.e., a mutator that slightly perturbs the rates of many different mutation types), but in our case it clearly shows which mutation type is affected.

      1. To account for differential relatedness between the inbred lines, the authors regressed the cosine distance between the two aggregate mutation spectra on the genome-wide genetic similarity and took the residual as the adjusted test metric. What is the value of the slope from this regression? If significantly non-zero, this would support a polygenic architecture of the mutation spectrum phenotype, which could be interesting. If not, is this adjustment really necessary? In addition, is the intercept assumed to be zero for this regression, and does such an assumption matter? I would appreciate seeing a supplemental figure on this regression.

      The reviewer raises a good question. We find that the slope of the "distance vs. genetic similarity" regression is significantly non-zero, though the slope estimate itself is small. A plot of cosine distance vs. genome-wide genetic similarity (using all BXDs) is shown below in Author response image 2:

      Author response image 2.

      Relationship between cosine distance and genetic similarity in the BXDs. As described in the Materials and Methods, we computed two values at each marker in the BXDs: 1) the cosine distance between the aggregate mutation spectra of BXDs with either B or D genotypes at the marker, and 2) the correlation between genome-wide D allele frequencies in BXDs with either B or D genotypes at the marker. We then regressed these two values across all genome-wide markers.

      This result indicates that if two groups of BXDs (one with D genotypes and one with B genotypes at a given locus) are more genetically similar, their mutation spectra are also more similar. Since the regression slope estimate is significantly non-zero (p < 2.2e-16), we believe that it's still worth using residuals as opposed to raw cosine distance values. This result also suggests that there may be a polygenic effect on the mutation spectrum in the BXDs.

      We have also generated a plot showing the cosine distance between the mutation spectra of every possible pair of BXDs, regressed against the genetic similarity between each of those pairs (Author Response image 3). Here, the potential polygenic effects on mutation spectra similarity are perhaps more obvious.

      Author response image 3.

      Pairwise cosine distance between BXD mutation spectra as a function of genetic similarity. We computed two values for every possible pair of n = 117 BXDs: 1) the cosine distance between the samples' individual 1-mer mutation spectra and 2) the correlation coefficient between the samples' genome-wide counts of D alleles.

      Private Comments

      1. It will also be useful to see how the power of IHD and QTL mapping depend on the allele frequency of the mutator allele and the sample size, as mutator alleles are likely rare or semi-rare in natural populations (such as the human de novo mutation dataset that the authors mentioned).

      This is another good suggestion. In general, we'd expect the power of both IHD and QTL mapping to decrease as a function of mutator allele frequency. At the same time, we note that the power of these scans should mostly depend on the absolute number of carriers of the mutator allele and less on its frequency. In the BXD mouse study design, we observe high frequency mutators but also a relatively small sample size of just over 100 individuals. In natural human populations, mutator frequencies might be orders of magnitude smaller, but sample sizes may be orders of magnitude larger, especially as new cohorts of human genomes are routinely being sequenced. So, we expect to have similar power to detect a mutator segregating at, say, 0.5% frequency in a cohort of 20,000 individuals, as we would to detect a mutator segregating at 50% frequency in a dataset of 200 individuals.

      To more formally address the reviewer's concern, we performed a series of simulations in which we simulated a population of 100 haplotypes. We assigned the same average number of mutations to each haplotype but allowed the allele frequency of the mutator allele to vary between 0.1, 0.25, and 0.5. The results of these simulations are shown in Author response image 4 and reveal that AMSD tends to have greater power than QTL mapping at lower mutator allele frequencies. We now mention these simulations in the text at lines 135-138 and include the simulation results in Figure 1-figure supplement 4.

      Author response image 4.

      Power of AMSD and QTL mapping on simulated haplotypes with variable marker allele frequencies. We simulated germline mutations on the specified number of haplotypes (as described in the manuscript), but simulated genotypes at the mutator allele such that "A" alleles were at the specified allele frequency.

      1. In the Methods section of "testing for epistasis between the two mutator loci", it will be helpful to explicitly lay out the model and assumptions in mathematical formulae, in addition to the R scripts. For example, are the two loci considered independent when their effects on mutation rate is multiplicative or additive? Given the R scripts provided, it seems that the two loci are assumed to have multiplicative effects on the mutation rate, and that the mutation count follows a Poisson distribution with mean being the mutation rate times ADJ_AGE (i.e., the mutation opportunity times the number of generations of an inbred line). However, this is not easily understandable for readers who are not familiar with R language. In addition, I hope the authors can be more specific when discussing the epistatic interaction between the two loci by explicitly saying "synergistic effects beyond multiplicative effects on the C>A mutation rate".

      The reviewer raises a good point about the clarity of our descriptions of tests for epistasis. We have now added a more detailed description of these tests in the section of the Materials and Methods beginning at line 875. We have also added a statement to the text at lines 289-291: “the combined effects of D genotypes at both loci exceed the sum of marginal effects of D genotypes at either locus alone.” We hope that this will help clarify the results of our tests for statistical epistasis.

      Reviewer 2 (Public Review):

      1. The main limitation of the approach is that it is difficult to see how it might be applied beyond the context of mutation accumulation experiments using recombinant inbred lines. This is because the signal it detects, and hence its power, is based on the number of extra accumulated mutations linked to (i.e. on the same chromosome as) the mutator allele. In germline mutation studies of wild populations the number of generations involved (and hence the total number of mutations) is typically small, or else the mutator allele becomes unlinked from the mutations it has caused (due to recombination), or is lost from the population altogether (due to chance or perhaps selection against its deleterious consequences).

      The reviewer is correct that as it currently exists, IHD is mostly limited to applications in recombinant inbred lines (RILs) like the BXDs. This is due to the fact that IHD assumes that each diploid sample harbors one of two possible genotypes at a particular locus and ignores the possibility of heterozygous genotypes for simplicity. In natural, outbreeding populations, this assumption will obviously not hold. However, as we plan to further iterate on and improve the IHD method, we hope that it will be applicable to a wider variety of experimental systems in the future. We have added additional caveats about the applicability of our method to other systems in the text at lines 545-550.

      Private Comments

      1. On p. 8, perhaps I've misunderstood but it's not clear in what way the SVs identified were relevant to the samples used in this dataset - were the founder strains assembled? Is there any chance that additional SVs were present, e.g. de novo early in the accumulation line?

      Our description of this structural variation resource could have been clearer. The referenced SVs were identified in Ferraj et al. (2023) by generating high-quality long read assemblies of inbred laboratory mice. Both DBA/2J and C57BL/6J (the founder strains for the BXD resource) were included in the Ferraj et al. SV callset. We have clarified our description of the callset at lines 247-248.

      It is certainly possible that individual BXD lines have accumulated de novo structural variants during inbreeding. However, these "private" SVs are unlikely to produce a strong IHD association signal (via linkage to one of the ~7,000 markers) at either the chromosome 4 or chromosome 6 locus, since we only tested markers that were at approximately 50% D allele frequency among the BXDs.

      1. On p. 13, comparing the IHD and QTL approaches, regarding the advantage of the former in that it detects the combined effect of multiple k-mer mutation types, would it not be straightforward to aggregate counts for different types in a QTL setting as well?

      The mutation spectrum is a multi-dimensional phenotype (6-dimensional if using the 1-mer spectrum, 96-dimensional if using the 3-mer spectrum, etc.). Most QTL mapping methods use linear models to test for associations between genotypes and a 1-dimensional phenotype (e.g., body weight, litter size). In the past, we used QTL mapping to test for associations between genotypes and a single element of the mutation spectrum (e.g., the rate of C>A mutations), but there isn't a straightforward way to aggregate or collapse the mutation spectrum into a 1dimensional phenotype that retains the information contained within the full 1-mer or 3-mer spectrum. For that reason, we developed the "aggregate mutation spectrum" approach, as it preserves information about the complete mutation spectrum in each group of strains.

      The reviewer is correct that we could also aggregate counts of different mutation types to, say, perform a QTL scan for the load of a specific mutational signature. For example, we could first perform standard mutational signature analysis on our dataset and then test for QTLs associated with each signature that is discovered. However, this approach would not solve the second problem that our method is designed to solve: the appropriate weighting of samples based on how many mutations they contain.

      1. pp. 15-16: In the discussion of how you account for relatedness between strains, I found the second explanation (on p. 16) much clearer. It would be interesting to know how much variance was typically accounted for by this regression?

      As shown in the response to Reviewer 1, genotype similarity between genotype groups (i.e., those with either D or B genotypes at a marker) generally explains a small amount of variance in the cosine distance between those groups (R2 ~= 0.007). However, since the slope term in that regression is significantly non-zero, correcting for this relationship should still improve our power relative to using raw cosine distance values that are slightly confounded by this relationship.

      1. Similarly, in the section on Applying the IHD method to the BXDs (pp. 18-19), I think this description was very useful, and some or all of this description of the experiment (and how the DNMs in it arise) could profitably be moved to the introduction.

      We appreciate the reviewer’s feedback about the details of the BXD cohort. Overall, we feel the description of the BXDs in the Introduction (at lines 65-73) is sufficient to introduce the cohort, though we now add some additional detail about variability in BXD inbreeding duration (at lines 89-93) to the Introduction as well, since it is quite relevant to some of the new simulation results presented in the manuscript.

      1. A really minor one, not sure if this is for the journal or the authors, but it would be much better to include both page and line numbers in any version of an article for review. My pdf had neither!

      We apologize for the lack of page/line numbers in the submitted PDF. We have now added line numbers to the revised version of the manuscript.

      Reviewer 3 (Public Review):

      1. Under simulated scenarios, the authors' new IHD method is not appreciably more powerful than conventional QTL mapping methods. While this does not diminish the rigor or novelty of the authors findings, it does temper enthusiasm for the IHD method's potential to uncover new mutators in other populations or datasets. Further, adaptation of this methodology to other datasets, including human trios or multigenerational families, will require some modification, which could present a barrier to broader community uptake. Notably, BXD mice are (mostly) inbred, justifying the authors consideration of just two genotype states at each locus, but this decision prevents out-of-the-box application to outbred populations and human genomic datasets. Lastly, some details of the IHD method are not clearly spelled out in the paper. In particular, it is unclear whether differences in BXD strain relatedness due to the breeding epoch structure are fully accounted for in permutations. The method's name - inter-haplotype distance - is also somewhat misleading, as it seems to imply that de novo mutations are aggregated at the scale of sub-chromosomal haplotype blocks, rather than across the whole genome.

      The reviewer raises very fair concerns. As mentioned in response to a question from Reviewer 1, we performed additional simulation experiments that demonstrate the improved power of IHD (as compared to QTL mapping) in situations where mutation counts are variable across haplotypes or when mutator alleles are present at allele frequencies <50% (see Author response image 2 and 3, as well as new supplements to Figure 1 in the manuscript). However, the reviewer is correct that the IHD method is not applicable to collections of outbred individuals (that is, individuals with both heterozygous and homozygous genotypes), which will limit its current applications to datasets other than recombinant inbred lines. We have added a mention of these limitations to the Results at lines 138-141 and the Discussion at lines 545-550, but plan to iterate on the IHD method and introduce new features that enable its application to other datasets. We have also explicitly stated that we account for breeding epochs in our permutation tests in the Materials and Methods at lines 670-671. Both Reviewer 1 and Reviewer 3 raised concerns about the name of our method, and we have therefore changed “inter-haplotype distance” to “aggregate mutation spectrum distance” throughout the manuscript.

      1. Nominating candidates within the chr6 mutator locus requires an approach for defining a credible interval and excluding/including specific genes within that interval as candidates. Sasani et al. delimit their focal window to 5Mb on either side of the SNP with the most extreme P-value in their IHD scan. This strategy suffers from several weaknesses. First, no justification for using 10 Mb window, as opposed to, e.g., a 5 Mb window or a window size delimited by a specific threshold of P-value drop, is given, rendering the approach rather ad hoc. Second, within their focal 10Mb window, the authors prioritize genes with annotated functions in DNA repair that harbor protein coding variants between the B6 and D2 founder strains. While the logic for focusing on known DNA repair genes is sensible, this locus also houses an appreciable number of genes that are not functionally annotated, but could, conceivably, perform relevant biological roles. These genes should not be excluded outright, especially if they are expressed in the germline. Further, the vast majority of functional SNPs are non-coding, (including the likely causal variant at the chr4 mutator previously identified in the BXD population). Thus, the author's decision to focus most heavily on coding variants is not well-justified. Sasani et al. dedicate considerable speculation in the manuscript to the likely identity of the causal variant, ultimately favoring the conclusion that the causal variant is a predicted deleterious missense variant in Mbd4. However, using a 5Mb window centered on the peak IHD scan SNP, rather than a 10Mb window, Mbd4 would be excluded. Further, SNP functional prediction accuracy is modest [e.g., PMID 28511696], and exclusion of the missense variant in Ogg1 due its benign prediction is potentially premature, especially given the wealth of functional data implicating Ogg1 in C>A mutations in house mice. Finally, the DNA repair gene closest to the peak IHD SNP is Rad18, which the authors largely exclude as a candidate.

      We agree that the use of a 10 Mb window, rather than an empirically derived confidence interval, is a bit arbitrary and ad hoc. To address this concern, we have implemented a bootstrap resampling approach (Visscher et al. 1996, Genetics) to define confidence intervals surrounding IHD peaks. We have added a description of the approach to the Materials and Methods at lines 609-622, but a brief description follows. In each of N trials (here, N = 10,000), we take a bootstrap sample of the BXD phenotype and genotype data with replacement. We then perform an IHD scan on the chromosome of interest using the bootstrap sample and record the position of the marker with the largest cosine distance value (i.e., the "peak" marker). After N trials, we calculate the 90% confidence interval of bootstrapped peak marker locations; in other words, we identify the locations of two genotyped markers, between which 90% of all bootstrap trials produced an IHD peak. We note that bootstrap confidence intervals can exhibit poor "coverage" (a measure of how often the confidence intervals include the "true" QTL location) in QTL mapping studies (see Manichaikul et al. 2006, Genetics), but feel that the bootstrap is more reasonable than simply defining an ad hoc interval around an IHD peak.

      The new 90% confidence interval surrounding the IHD peak on chromosome 6 is larger than the original (ad hoc) 10 Mbp window, now extending from around 95 Mbp to 114 Mbp. Notably, the new empirical confidence interval excludes Mbd4. We have accordingly updated our Results and Discussion sections to acknowledge the fact that Mbd4 no longer resides within the confidence interval surrounding the IHD peak on chromosome 6 and have added additional descriptions of genes that are now implicated by the 90% confidence interval. Given the uncertainties associated with using bootstrap confidence intervals, we have retained a brief discussion of the evidence supporting Mbd4 in the Discussion but focus primarily on Ogg1 as the most plausible candidate.

      The reviewer raises a valid concern about our treatment of non-DNA repair genes within the interval surrounding the peak on chromosome 6. We have added more careful language to the text at lines 219-223 to acknowledge the fact that non-annotated genes in the confidence interval surrounding the chromosome 6 peak may play a role in the epistatic interaction we observed.

      The reviewer also raises a reasonable concern about our discussions of both Mbd4 and Ogg1 as candidate genes in the Discussion. Since Mbd4 does not reside within the new empirical bootstrap confidence interval on chromosome 6 and given the strong prior evidence that Ogg1 is involved in C>A mutator phenotypes (and is in the same gene network as Mutyh), we have reframed the Discussion to focus on Ogg1 as the most plausible candidate gene (see lines 357360).

      Using the GeneNetwork resource, we also more carefully explored the potential effects of noncoding variants on the C>A mutator phenotype we observed on chromosome 6. We have updated the Results at lines 240-246 and the Discussion at line 439-447 to provide more evidence for regulatory variants that may contribute to the C>A mutator phenotype. Specifically, we discovered a number of strong-effect cis-eQTLs for Ogg1 in a number of tissues, at which D genotypes are associated with decreased Ogg1 expression. Given new evidence that the original mutator locus we discovered on chromosome 4 harbors an intronic mobile element insertion that significantly affects Mutyh expression (see Ferraj et al. 2023, Cell Genomics), it is certainly possible that the mutator phenotype associated with genotypes on chromosome 6 may also be mediated by regulatory, rather than coding, variation.

      1. Additionally, some claims in the paper are not well-supported by the author's data. For example, in the Discussion, the authors assert that "multiple mutator alleles have spontaneously arisen during the evolutionary history of inbred laboratory mice" and that "... mutational pressure can cause mutation rates to rise in just a few generations of relaxed selection in captivity". However, these statements are undercut by data in this paper and the authors' prior publication demonstrating that a number of candidate variants are segregating in natural mouse populations. These variants almost certainly did not emerge de novo in laboratory colonies, but were inherited from their wild mouse ancestors. Further, the wild mouse population genomic dataset used by the authors falls far short of comprehensively sampling wild mouse diversity; variants in laboratory populations could derive from unsampled wild populations.

      The reviewer raises a good point. In our previous publication (Sasani et al. 2022, Nature), we hypothesized that Mutyh mutator alleles had arisen in wild, outbreeding populations of Mus musculus, and later became fixed in inbred strains like DBA/2J and C57BL/6J. However, in the current manuscript, we included a statement about mutator alleles "spontaneously arising during the evolutionary history of inbred laboratory mice" to reflect new evidence (from Ferraj et al. 2023, Cell Genomics) that the mutator allele we originally identified in Mutyh may not be wild derived after all. Instead, Ferraj et al. suggest that the C>A mutator phenotype we originally identified is caused by an intronic mobile element insertion (MEI) that is present in DBA/2J and a handful of other inbred laboratory strains. Although this MEI may have originally occurred in a wild population of mice, we wanted to acknowledge the possibility that both the original Mutyh mutator allele, as well as the new mutator allele(s) we discovered in this manuscript, could have arisen during the production and inbreeding of inbred laboratory lines. We have also added language to the Discussion at lines 325-327 to acknowledge that the 67 wild mice we analyzed do not comprise a comprehensive picture of the genetic diversity present in wild-derived samples.

      We have added additional language to the Discussion at lines 349-357 in which we acknowledge that the chromosome 6 mutator allele might have originated in either laboratory or wild mice and elaborate on the possibility that mutator alleles with deleterious fitness consequences may be more likely to persist in inbred laboratory colonies.

      1. Finally, the implications of a discovering a mutator whose expression is potentially conditional on the genotype at a second locus are not raised in the Discussion. While not a weakness per se, this omission is perceived to be a missed opportunity to emphasize what, to this reviewer, is one of the most exciting impacts of this work. The potential background dependence of mutator expression could partially shelter it from the action of selection, allowing the allele persist in populations. This finding bears on theoretical models of mutation rate evolution and may have important implications for efforts to map additional mutator loci. It seems unfortunate to not elevate these points.

      We agree and have added additional discussion of the possibility that the C>A mutator phenotypes in the BXDs are a result of interactions between the expression of two DNA repair genes in the same base-excision network to the Discussion section at lines 447-449.

      Private comments

      1. The criteria used to determine or specify haplotype size are not specified in the manuscript. I mention this above but reiterate here as this was a big point of confusion for me when reading the paper. Haplotype length is important consideration for overall power and for proper extension of this method to other systems/populations.

      We may not have been clear enough in our description of our method, and as suggested by Reviewer 1, the name "inter-haplotype distance" may also have been a source of confusion. At a given marker, we compute the aggregate mutation spectrum in BXDs with either B or D genotypes using all genome-wide de novo mutations observed in those BXDs. Since the BXDs were inbred for many generations, we expect that almost all de novo germline mutations observed in an RIL are in near-perfect linkage with the informative genotypes used for distance scans. Thus, the "haplotypes" used in the inter-haplotype distance scans are essentially the lengths of entire genomes.

      1. Results, first paragraph, final sentence. I found the language here confusing. I don't understand how one can compute the cosine distance at single markers, as stated. I'm assuming cosine distance is computed from variants residing on haplotypes delimited by some defined window surrounding the focal marker?

      As discussed above, we aggregate all genome-wide de novo mutations in each group of BXDs at a given marker, rather than only considering DNMs within a particular window surrounding the marker. The approach is discussed in greater detail in the caption of Figure 1.

      1. Nominating candidates for the chr6 locus, Table 1. It would be worth confirming that the three prioritized candidates (Setmar, Ogg1, and Mbd4) all show germline expression.

      Using the Mouse Genome Informatics online resource, we confirmed that all prioritized candidate genes (now including Setmar and Ogg1, but not Mbd4) are expressed in the male and female gonads, and mention this in the Results at lines 228 and 233-234.

      1. Does the chr6 peak on the C>A LOD plot (Figure 2- figure supplement 1) overlap the same peak identified in the IHD scan? And, does this peak rise to significance when using alpha = 0.05? Given that the goal of these QTL scans is to identify loci that interact with the C>A mutator on chr4, it is reasonable to hypothesize that the mutation impact of epistatic loci will also be restricted to C>A mutations. Therefore, I am not fully convinced that the conservative alpha = 0.05/7 threshold is necessary.

      The chromosome 6 peak in Figure 2-figure supplement 1 does, in fact, overlap the peak marker we identified on chromosome 6 using IHD. One reason we decided to use a more conservative alpha of (0.05 / 7) is that we wanted these results to be analogous to the ones we performed in a previous paper (Sasani et al. 2022, Nature), in which we first identified the mutator locus on chromosome 4. However, the C>A peak does not rise to genome-wide significance if we use a less conservative alpha value of 0.05 (see Author response image 5). As discussed in our response to Reviewer 1, we find that QTL mapping is not as powerful as IHD when haplotypes have accumulated variable numbers of germline mutations (as in the BXDs), which likely explains the fact that the peak on chromosome 6 is not genome-wide significant using QTL mapping.

      Author response image 5.

      QTL scan for the fraction of C>A mutations in BXDs harboring D alleles at the locus near Myth QTL scan was performed at a genome-wide significance alpha of 0.05, rather than 0.05/7.

      1. Is there significant LD between the IHD peaks on chr6 and chr4 across the BXD? If so, it could suggest that the signal is driven by cryptic population structure that is not fully accounted for in the author's regression based approach. If not, this point may merit an explicit mention in the text as an additional validation for the authenticity of the chr6 mutator finding.

      This is a good question. We used the scikit-allel Python package to calculate linkage disequilibrium (LD) between all pairs of genotyped markers in the BXD cohort, and found that the two peak loci (on chromosomes 4 and 6) exhibit weak LD (r2 = 4e-5). We have added a mention of this to the main text of the Results at lines 212-213. That being said, we do not think the chromosome 6 mutator association (or the apparent epistasis between the alleles on chromosomes 4 and 6) could be driven by cryptic population structure. Unlike in human GWAS and other association studies in natural populations, there is no heterogeneity in the environmental exposures experienced by different BXD subpopulations. In humans, population structure can create spurious associations (e.g., between height and variants that are in LD and are most common in Northern Europe), but this requires the existence of a phenotypic gradient caused by genetic or environmental heterogeneity that is not likely to exist in the context of inbred laboratory mice that are all the progeny of the same two founder strains.

      1. Discussion, last sentence of the "Possible causal alleles..." section: I don't understand how the absence of the Mariner-family domain leads the authors to this conclusion. Setmar is involved in NHEJ, which to my knowledge is not a repair process that is expected to have a specific C>A mutation bias. I think this is grounds enough for ruling out its potential contributions, in favor of focusing on other candidates, (e.g., Mbd4 and Ogg1).

      The reviewer raises a good point. Our main reason for mentioning the absence of the Marinerfamily domain is that even if NHEJ were responsible for the C>A mutator phenotype, it likely wouldn't be possible for Setmar to participate in NHEJ without the domain. However, the reviewer is correct that NHEJ is not expected to cause a C>A mutation bias, and we have added a mention of this to the text as well at lines 379-382.

      1. Discussion, second to last paragraph of section "Mbd4 may buffer...": The authors speculate that reduced activity of Mbd4 could modulate rates of apoptosis in response to DNA damage. This leads to the prediction that mice with mutator alleles at both Mutyh and Mbd4 should exhibit higher overall mutation rates compared to mice with other genotypes. This possibility could be tested with the authors' data.

      The reviewer raises a good question. As mentioned above, however, we implemented a new approach to calculate confidence intervals surrounding distance peaks and found that this empirical approach (rather than the ad hoc 10-Mbp window approach we used previously) excluded Mbd4 from the credible interval. Although we still mention Mbd4 as a possible candidate (since it still resides within the 10 Mbp window), we have refactored the Discussion section to focus primarily on the evidence for Ogg1 as a candidate gene on chromosome 6.

      In any case, we do not observe that mice with mutator alleles at both the chromosome 4 and chromosome 6 loci have higher overall mutation rates compared to mice with other genotype combinations. This may not be terribly surprising, however, since C>A mutations only comprise about 10% of all possible mutations. Thus, given the variance in other 1-mer mutation counts, even a substantial increase in the C>A mutation rate might not have a detectable effect on the overall mutation rate. Indeed, in our original paper describing the Mutyh mutator allele (Sasani et al. 2022, Nature), we did not identify any QTL for the overall mutation rate in the BXDs and found that mice with the chromosome 4 mutator allele only exhibited a 1.11X increase in their overall mutation rates relative to mice without the mutator allele.

      1. Methods, "Accounting for BXD population structure": An "epoch-aware" permutation strategy is described here, but it is not clear when (and whether) this strategy is used to determine significance of IHD P-values.

      We have added a more explicit mention of this to the Methods section at lines 670-671, as we do, in fact, use the epoch-aware permutation strategy when calculating empirical distance thresholds.

      1. The simulation scheme employed for power calculations is highly specific to the BXD population. This is not a weakness, and perfectly appropriate to the study population used here. However, it does limit the transferability of the power analyses presented in this manuscript to other populations. This limitation may merit an explicit cautionary mention to readers who may aspire to port the IHD method over to their study system.

      This is true. Our simulation strategy is relatively simple and makes a number of assumptions about the simulated population of haplotypes (allele frequencies normally distributed around 0.5, expected rates of each mutation type, etc.). In response to concerns from Reviewer 1, we performed an updated series of simulations in which we varied some of these parameters (mutator allele frequencies, mean numbers of mutations on haplotypes, etc.). However, we have added a mention of the simulation approach's limitations and specificity to the BXDs to the text at lines 545-550.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Author response:

      Reviewer #1:

      The main objective of this study is to achieve the development of a synthetic autotroph using adaptive laboratory evolution. To accomplish this, the authors conducted chemostat cultivation of engineered E. coli strains under xylose-limiting conditions and identified autotrophic growth and the causative mutations. Additionally, the mutational mechanisms underlying these causative mutations were also explored with drill down assays. Overall, the authors demonstrated that only a small number of genetic changes were sufficient (i.e., 3) to construct an autotrophic E. coli when additional heterologous genes were added. While natural autotrophic microorganisms typically exhibit low genetic tractability, numerous studies have focused on constructing synthetic autotrophs using platform microorganisms such as E. coli. Consequently, this research will be of interest to synthetic biologists and systems biologists working on the development of synthetic autotrophic microorganisms. The conclusions of this paper are mostly well supported by appropriate experimental methods and logical reasoning. However, further experimental validation of the mutational mechanisms involving rpoB and crp would enhance readers' understanding and provide clearer insights, despite acknowledgement that these genes impact a broad set of additional genes. Additionally, a similar study, 10.1371/journal.pgen.1001186, where pgi was deleted from the E. coli genome and evolved to reveal an rpoB mutation is relevant to this work and should be placed in the context of the presented findings.

      We thank the reviewer for pointing this study out. It is very interesting that a mutation in a similar region in RpoB was observed in a related context of Pgi loss of activity. We have added a reference to this study in our text (Page 11, line 21).

      he authors addressed rpoB and crp as one unit and performed validation. They cultivated the mutant strain and wild type in a minimal xylose medium with or without formate, comparing their growth and NADH levels. The authors argued that the increased NADH level in the mutant strain might facilitate autotrophic growth. Although these phenotypes appear to be closely related, their relationship cannot be definitively concluded based on the findings presented in this paper alone. Therefore, one recommendation is to explore investigating transcriptomic changes induced by the rpoB and crp mutations. Otherwise, conducting experimental verification to determine whether the NADH level directly causes autotrophic growth would provide further support for the authors' claim.

      We appreciate the valuable comment and agree that the work was lacking such an analysis. Due to various reasons we have opted to use a proteomic approach which we feel fulfills the same purpose as the transcriptomics suggestion. We found interesting evidence in up-regulation of the fdoGH operon (comprising the native formate dehydrogenase O enzyme complex) which could indicate why there is an increase in NADH/NAD+ levels. We also hypothesize that this upregulation might be important more generally by drawing comparisons to natural chemo-autotrophs.

      Further experimental work (which we were not able to include in the current study) could help validate this link by deleting fdoGH and observing a loss of phenotype and, on the flip side, directly overexpressing the fdoGH operon and observing an increase in the NADH/NAD+ ratio. Indeed, if this overexpression were to prove sufficient for achieving an autotrophic phenotype without the mutations in the global transcription regulators, it would be a much more transparent design.

      We have added a section titled "Proteomic analysis reveals up-regulation of rPP cycle and formate-associated genes alongside down-regulation of catabolic genes" to the Results based on this analysis.

      • It would be beneficial to provide a more detailed explanation of the genetic background before the evolution stage, specifically regarding the ∆pfk and ∆zwf mutations. Furthermore, it is suggested to include a figure that provides a comprehensive depiction of the reductive pentose phosphate pathway and the bypass pathway. These will help readers grasp the concept of the "metabolic scaffold" as proposed by the authors.

      We agree with the reviewer that this could be helpful and we added a reference to the original paper Gleizer et al. 2019 that reported this design and also includes the relevant figure. We feel that the figure should not be added to the current manuscript as we continue to show that this design is not relevant in the context of the three reported mutations and such a figure could distract the attention of the reader from the main takeaways of the current study.

      • Despite the essentiality of the rpoB mutation (A1245V) to the autotrophic phenotype in the final strain, the inclusion of this mutation in step C1 does not appear to be justified. According to line 37 on page 3, the authors chose to retain the unintended mutation in rpoB based on its essentiality to the phenotype observed in other evolved strains. However, it should be noted that the mutations found in the evolved strain I, II, and III (P552T or D866E) were entirely different from the unintended mutation (A1245V) during genetic engineering. This aspect should be revised to avoid confusion among readers.

      Thank you for pointing this issue out, we added a clarification in the text (page 4 line 7) to avoid such confusion. We believe this point is much clearer now.

      The rpoB mutation which was shown to be essential in the study is indeed known to be common in ALE experiments in E. coli. Thus, I searched the different rpoB mutations in ALEdb in E. coli and I was able to find a similar mutation in a study where pgi was knocked out and then evolved. https://doi.org/10.1371/journal.pgen.1001186 This study seems very relevant given that pgi was a key mutation in the compact set of this work and the section "Modulation of a metabolic branch-point activity increased the concentration of rPP metabolites" informs that loss of function mutations in pgi were also found. The findings of this study should thus be put in the context of the previous related ALE study. I would recommend a similar analysis of crp mutations from studies in ALEdb to see if there are similar mutations in this gene as well or if this a unique mutation.

      We thank the reviewer for bringing this publication to our attention. We have addressed this observation in the main text (page 11 , line 21). We agree that it could have some connection to the pgi mutation yet we would not want to overspeculate about this role, as we also found the exact same mutation (A1245V) as an adaptation to higher temperature in another E. coli study (Tenaillon et al. 2012). We would like to bring forward the fact that the two reported rpoB mutations are always accompanied by another mutation with pleiotropic effects, either in the transcription factor Crp or in another RNA polymerase subunit (e.g RpoC). As such many epistatic effects could occur, one of which we also report here in page 13, line 18. In conclusion, although there could be a connection between the rpoB and pgi mutations, it could be a mere coincidence and the two mutations could exhibit two distinct roles in two distinct phenotypes.

      We also would like to thank the reviewer for suggesting a similar analysis for crp and found another mutation at a nearby residue with strong adaptive effects and mentioned it in our main text.

      Can the typical number of mutations found in a given ALE experiment be directly compared to those found in this study? It seems like a retrospective analysis of other ALE studies to show how many mutations typically occur in an ALE study and sets which were found to be causal to reproduce the phenotype of interest (through similar reverse engineering in the starting strain) should be presented. Again, the authors cite ALEdb which should provide direct numbers of mutations found in similar ALE studies with E. coli and one could then examine them to find sets of clearly causal mutations which recreate phenotypes of interest. Such an analysis would go a long way in supporting the main finding of "small number" of mutations.

      Discussion, page 12, line 42. "This could serve as a promising strategy for achieving minimally perturbed genotypes in future metabolic engineering attempts". There is an entire body of work around growth-coupled production which can be predicted and evolved with a genome-scale metabolic model and ALE. Thus, if this statement is going to be made, relevant studies should be cited and placed in context.

      The reviewer raises an important point which could indeed yield an interesting perspective. However, it would be difficult to perform this comparison in practice since many of the studies published on ALEdb have not isolated essential mutations from other mutation incidents nor have they determined the role of each mutation in the reported phenotypes. For example, many ALE trajectories include a hypermutator that greatly increases the number of irrelevant mutations and it is nearly impossible to sieve through them to find an essential set.

      Moreover, it is hard to compare the “level of difficulty” of achieving one phenotype over another and therefore feel that even though such an analysis would be insightful, it requires an amount of work which is outside the scope of this study.

      Finally, we would like to highlight our approach of using the iterative approach, isolating the relevant consensus mutations and repeating this process until no evolution process is required, we are not aware of prior studies that used this approach.

      We now clarified what we mean by "promising strategy" in the discussion in order to avoid any false claims about novelty (page 16 line 32): "Using metabolic growth-coupling as a temporary 'metabolic scaffold' that can be removed, could serve as a promising strategy for achieving minimally perturbed genotypes in future metabolic engineering attempts."

      Reviewer #2:

      Synthetic autotrophy of biotechnologically relevant microorganisms offers exciting chances for CO2 neutral or even CO2 negative production of goods. The authors' lab has recently published an engineered and evolved Escherichia coli strain that can grow on CO2 as its only carbon source. Lab evolution was necessary to achieve growth. Evolved strains displayed tens of mutations, of which likely not all are necessary for the desired phenotype.

      In the present paper the authors identify the mutations that are necessary and sufficient to enable autotrophic growth of engineered E. coli. Three mutations were identified, and their phenotypic role in enhancing growth via the introduced Calvin-Benson-Bassham cycle were characterized. It was demonstrated that these mutations allow autotrophic growth of E. coli with the introduced CBB cycle without any further metabolic intervention. Autotrophic growth is demonstrated by 13C labelling with 13C CO2, measured in proteinogenic amino acids. In Figures 2B and S1, the labeling data are shown, with an interval of the "predicted range under 13CO2".

      Here, the authors should describe how this interval was derived.

      The methodology is clearly described and appropriate.

      The present results will allow other labs to engineer E. coli and other microorganisms further to assimilate CO2 efficiently into biomass and metabolic products. The importance is evident in the opportunity to employ such strain in CO2 based biotech processes for the production of food and feed protein or chemicals, to reduce atmospheric CO2 levels and the consumption of fossil resources.

      Please describe in the methodology how the interval of the predicted range of 13C labeling was derived for Figures 2B and S1. Was it calculated by the dilution factor during 4 generations, or did you predict the label incorporation individually with a metabolic model?

      The text needs careful editing, some sentences are incomplete and there are frequent inconsistencies in writing metabolites and enzymes.

      P2L6: unclear sentence (incomplete?)

      P2L19: pastoris with lower case "p"

      P2L40: incomplete sentence

      P2L42: here, and at many other places, the writing of RuBisCO needs to be aligned. It is an abbreviation and should begin with a capital letter. Most commonly it is written as RuBisCO which I would suggest - please unify throughout the text.

      P3L3: formate dehydrogenase ... metabolites and enzymes with lower case letter. And, no hyphen here.

      P5L4: delete the : after unintentionally

      P6L16: carboxylation of RuBP (it is not CO2 that is carboxylated - if any, CO2 is carboxylating)

      P7L25: phosphoglucoisomerase (lower case)

      P8L5: in line

      P8L9: part of glycolysis/ ...

      P10L4: pentose phosphates (lower case, no hyphen).

      P10L4: all metabolites lower case

      P12L28: incomplete sentence

      P18L4: Escherichia coli in italics P18L15: Pseudomonas sp. in italics P18L16: ... promoter and with a strong ...

      P20, chapter Metabolomics: put the numbers of 12C and 13C in superscript P23L9: pentose phosphates ; all metabolites in lower case (as above) P23: all 12C and 13C with superscript numbers.

      Response to reviewer #2:

      We thank the reviewer for their comments, and for pointing out the need to clarify how we derived the predicted range of 13C labeling. We edited the text accordingly, and added the relevant calculation to the methods section (under the “13C Isotopic labeling experiment”). We would like to also thank the reviewer for the required text improvements, which were implemented. 

      Reviewer #3:

      The authors previously showed that expressing formate dehydrogenase, rubisco, carbonic anhydrase, and phosphoribulokinase in Escherichia coli, followed by experimental evolution, led to the generation of strains that can metabolise CO2. Using two rounds of experimental evolution, the authors identify mutations in three genes - pgi, rpoB, and crp - that allow cells to metabolise CO2 in their engineered strain background. The authors make a strong case that mutations in pgi are loss-of-function mutations that prevent metabolic efflux from the reductive pentose phosphate autocatalytic cycle. The authors also argue that mutations in crp and rpoB lead to an increase in the NADH/NAD+ ratio, which would increase the concentration of the electron donor for carbon fixation. While this may explain the role of the crp and rpoB mutations, there is good reason to think that the two mutations have independent effects, and that the change in NADH/NAD+ ratio may not be the major reason for their importance in the CO2-metabolising strain.

      We thank the reviewer for their comments and constructive feedback.

      We agree that there is probably a broader effect caused by the rpoB and crp mutations, besides the change in the NADH/NAD+ ratio. Hence, we performed a proteomics analysis, comparing the rpoB and crp mutations on a WT background to an autotrophic E.coli, searching for a mutual change in both strains compared to their "ancestors". We found up-regulation of rPP cycle and formate-associated genes, and a down-regulation of catabolic genes. We added a section dedicated to this matter under the title "Proteomic analysis reveals up-regulation of rPP cycle and formate-associated genes alongside down-regulation of catabolic genes".

      Specific comments:

      1. Deleting pgi rather than using a point mutation would allow the authors to more rigorously test whether loss-off-function mutants are being selected for in their experimental evolution pipeline. The same argument applies to crp.

      We appreciate this recommendation and indeed tried to delete pgi, but the genetic manipulation caused a knockout of other genes along with pgi (pepE, rluF, yjbD, lysC) so in the time available to us we cannot confidently determine whether the deletion alone is sufficient and can replace the mutation.

      Regarding crp, we do not think there is a reason to believe the mutation is a loss-of-function. In any case, the proteomics-based characterization of the crp mutation is now included in the SI.

      1. Page 10, lines 10-11, the authors state "Since Crp and RpoB are known to physically interact in the cell (26-28), we address them as one unit, as it is hard to decouple the effect of one from the other". CRP and RpoB are connected, but the authors' description of them is misleading. CRP activates transcription by interacting with RNA polymerase holoenzyme, of which the Beta subunit (encoded by rpoB) is a part. The specific interaction of CRP is with a different RNA polymerase subunit. The functions of CRP and RpoB, while both related to transcription, are otherwise very different. The mutations in crp and rpoB are unlikely to be directly functionally connected. Hence, they should be considered separately.

      Indeed, the fact that the proteins are interacting in the cell does not necessarily mean that the mutations are functionally connected. We therefore added as further justification in the new section:

      "As far as we know, the mutations in the Crp and RpoB genes affect the binding of the RNA polymerase complex to DNA and/or its transcription rates. Depending on the transcribed gene target, the effect of the two mutations might be additive, antagonistic, or synergistic. Since each one of these mutations individually (in combination with the pgi mutation) is not sufficient to achieve autotrophic growth, it is reasonable to assume that only the target genes whose levels of expression change significantly in the double-mutant are the ones relevant for the autotrophic phenotype”.

      In our proteomics analysis we considered each mutation separately. We found that in some cases the two mutations together have an additive effect, but in other cases we found that the two mutations together affect differently on the proteome, compared to the effect of each mutation alone. Since both mutations are essential to the phenotype, we decided to go with the approach of addressing the two mutations as one unit for the physiological and metabolic experiments.

      1. A Beta-galactosidase assay would provide a very simple test of CRP H22N activity. There are also simple in vivo and in vitro assays for transcription activation (two different modes of activation) and DNA-binding. H22 is not near the DNA-binding domain, but may impact overall protein structure.

      The mutation is located in “Activating Region 2”, interacting with RNA polymerase. We tried an in-vivo assay to determine the CRP H22N activity and got inconclusive results, we believe the proteomics analysis serves as a good method for understanding the global effect of the mutation.

      1. There are many high-resolution structures of both CRP and RpoB (in the context of RNA polymerase). The authors should compare the position of the sites of mutation of these proteins to known functional regions, assuming H22N is not a loss-of-function mutation in crp.

      We added a supplementary figure regarding the structural location of the two mutations, where it is demonstrated that crp H22N is located in a region interacting with the RNA polymerase and rpoB A1245V is located in proximity to regions interacting with the DNA.

      1. RNA-seq would provide a simple assay for the effects of the crp and rpoB mutations. While the precise effect of the rpoB mutation on RNA polymerase function may be hard to discern, the overall impact on gene expression would likely be informative.

      Indeed we agree that an omics approach to infer the global effect of these mutations is beneficial, we opted to use a proteomics approach and think it serves the purpose of clarifying the final, down-stream, effect on the cell.

      1. Page 2, lines 40-45, the authors should more clearly explain that the deletion of pfkA, pfkB and zwf was part of the experimental evolution strategy in their earlier work (Gleizer et al., 2019), and not a new strategy in the current study.

      We thank you for pointing this out, and edited the text accordingly.

      1. Page 3, line 27. Why did the authors compare the newly acquired mutants to only two mutants from the earlier work, not all 6?

      The 6 clones that were isolated in Gleizer et al., had 2 distinct mutation profiles. During the isolation process the lineage split into two groups. Three out of the 6 clones (clones 1,2,6) came from the same ancestor, and the other three (clones 3,4,5) came from another ancestor. Hence, these two groups shared almost all of their mutations (see Venn diagram). We decided to use for our comparison the representative with the highest number of mutations from each group (clones 5 and 6).

      Author response image 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Continuous attractor networks endowed with some sort of adaptation in the dynamics, whether that be through synaptic depression or firing rate adaptation, are fast becoming the leading candidate models to explain many aspects of hippocampal place cell dynamics, from hippocampal replay during immobility to theta sequences during run. Here, the authors show that a continuous attractor network endowed with spike frequency adaptation and subject to feedforward external inputs is able to account for several previously unaccounted aspects of theta sequences, including (1) sequences that move both forwards and backwards, (2) sequences that alternate between two arms of a T-maze, (3) speed modulation of place cell firing frequency, and (4) the persistence of phase information across hippocampal inactivations. I think the main result of the paper (findings (1) and (2)) are likely to be of interest to the hippocampal community, as well as to the wider community interested in mechanisms of neural sequences. In addition, the manuscript is generally well written, and the analytics are impressive. However, several issues should be addressed, which I outline below.

      Major comments:

      1. In real data, population firing rate is strongly modulated by theta (i.e., cells collectively prefer a certain phase of theta - see review paper Buzsaki, 2002) and largely oscillates at theta frequency during run. With respect to this cyclical firing rate, theta sweeps resemble "Nike" check marks, with the sweep backwards preceding the sweep forwards within each cycle before the activity is quenched at the end of the cycle. I am concerned that (1) the summed population firing rate of the model does not oscillate at theta frequency, and (2) as the authors state, the oscillatory tracking state must begin with a forward sweep. With regards to (1), can the authors show theta phase spike preference plots for the population to see if they match data? With regards to (2), can the authors show what happens if the bump is made to sweep backwards first, as it appears to do within each cycle?

      Thank you for raising these two important points. As the reviewer mentioned, experimental data does show that the population activity (e.g., calculated from the multiunit activity of tetrode recording) is strongly modulated by theta. While we mainly focused on sweeps of bump position, the populational activity also shows cyclical firing at the theta frequency (we added Fig. S7 to reflect this). This is also reflected in Fig. 4d where the bump height (representing the overall activity) oscillates at individual theta cycles. The underlying mechanism of cyclical population activity is as follows: the bump height is determined by the amount of input the neuron received (which located at the center of the bump). While the activity bump sweeps away from the external input, the center neuron receives less input from the external input, and hence the bump height is smaller. Therefore, not only the position sweeps around the external input, also the populational activity sweeps accordingly at the same frequency.

      For the “Nike” check marks: we first clarify that the reason for we observed a forward sweep preceding a backward sweep is that we always force the artificial animal runs from left to right on the track where we treated “right” as “forward”. At the beginning of simulation, the external input to the network moves towards right, and therefore the activity bump starts from a position behind the animals and sweeps towards right (forward). In general, this means that the bump will never do a backward sweep first in our model. However, this does not mean that the forward sweeps precede the backward sweeps in each theta cycle. Experimentally, to determine the “0” phase of theta cycles, the LFP signal in CA1 was first bandpass filtered and then Hilbert transformed to get the phase at each time point. Then, a phase histogram of multiunit activity in CA1 was calculated across locomotor periods; the phase of maximal CA1 firing on the histogram was then defined to be “0” phase. Since we didn’t model LFP oscillation in the attractor model, we cannot obtain a “0” phase reference like the experimental procedure. Instead, we define the “0” phase using the “population activity quenched time”, where phase “0” is defined as the minimum population activity during oscillation cycles, which happens when the activity bump is farthest from the animal position. In this way, we observed a “Nike” pattern where the activity bump begins with a backward sweep towards the external input and then followed up with a forward sweep. This was showed in Fig. 3b in the main text.

      1. I could not find the width of the external input mentioned anywhere in the text or in the table of parameters. The implication is that it is unclear to me whether, during the oscillatory tracking state, the external input is large compared to the size of the bump, so that the bump lives within a window circumscribed by the external input and so bounces off the interior walls of the input during the oscillatory tracking phase, or whether the bump is continuously pulled back and forth by the external input, in which case it could be comparable to the size of the bump. My guess based on Fig 2c is that it is the latter. Please clarify and comment.

      Thank you for your comment. We added the width of the external input to the text and table (see table 1). The bump is continuously pulled back and forth by the external input, as guessed by the reviewer. Experimentally, theta sweeps live roughly in the window of place field size. This is also true in our model, where theta sweep length depends on the strength of recurrent connections which determines the place field size. However, it also depends on the adaptation strength where large adaptation (more intrinsic mobility) leads to large sweep length. We presume that the reason for the reviewer had the guess that the bump may live within a window bounded by the external input is that we also set the width of external input comparable to the place field size (in fact, we don’t know how wide the external location input to the hippocampal circuits is in the biological brain, but it might be reasonable to set the external input width as comparable to the place field size, otherwise the location information conveyed to the hippocampus might be too dispersed). We added a plot in the SI (see Fig. S1) to show that when choosing a smaller external input width, but increasing the adaptation strength, the activity bump lives in a window exceeding the external input.

      We clarified this point by adding the following text to line 159

      “... It is noteworthy that the activity bump does not live within a window circumscribed by the external input bump (bouncing off the interior walls of the input during the oscillatory tracking state), but instead is continuously pulled back and forth by the external input (see Fig. S1)...”

      1. I would argue that the "constant cycling" of theta sweeps down the arms of a T-maze was roughly predicted by Romani & Tsodyks, 2015, Figure 7. While their cycling spans several theta cycles, it nonetheless alternates by a similar mechanism, in that adaptation (in this case synaptic depression) prevents the subsequent sweep of activity from taking the same arm as the previous sweep. I believe the authors should cite this model in this context and consider the fact that both synaptic depression and spike frequency adaptation are both possible mechanisms for this phenomenon. But I certainly give the authors credit for showing how this constant cycling can occur across individual theta cycles.

      Thank you for raising this point. We added the citation of Romani & Tsodyks’ model in the context (line 304). As the reviewer pointed out, STD can also act as a potential mechanism for this phenomenon. We also gave the Romani & Tsodyks’ model credit for showing how this “cycling spanning several theta cycles” can account for the phenomenon of slow (~1Hz) and deliberative behaviors, namely, head scanning (Johson and Redish, 2007). We commented this in line 302

      “... As the external input approaches the choice point, the network bump starts to sweep onto left and right arms alternatively in successive theta cycles (Fig. 5b and video 4; see also Romani and Tsodyks (2015) for a similar model of cyclical sweeps spanning several theta cycles) ...”

      1. The authors make an unsubstantiated claim in the paragraph beginning with line 413 that the Tsodyks and Romani (2015) model could not account for forwards and backwards sweeps. Both the firing rate adaptation and synaptic depression are symmetry breaking models that should in theory be able to push sweeps of activity in both directions, so it is far from obvious to me that both forward and backward sweeps are not possible in the Tsodyks and Romani model. The authors should either prove that this is the case (with theory or simulation) or excise this statement from the manuscript.

      Thank you for your comment. Our claim about the Tsodyks and Romani (2015) model's inability to account for both forward and backward sweeps was inappropriate. We made this claim based on our own implementation of the Tsodyks and Romani (2015) model and didn’t find a parameter region where the bump oscillation shows both forward and backward sweeps. It might be due to the limited parameter range we searched from. Additionally, we also note some difference in these two models, where the Romani & Tsodyks’ model has an external theta input to the attractor network which prevent the bump to move further. This termination may also prevent the activity bump to move backward as well. We didn’t consider external theta input in our model, and the bump oscillation is based on internal dynamics. We have deleted that claim from line 424 in the revised paper, and revised that portion of the manuscript by adding the following text to line 424:

      “…Different from these two models, our model considers firing rate adaptation to implement symmetry breaking and hence generates activity propagation. To prevent the activity bump from spreading away, their model considers an external theta input to reset the bump location at the end of each theta cycle, whereas our model generates an internal oscillatory state, where the activity bump travels back due to the attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our model reveals how the adaptation strength affect the direction of theta sweeps, as well as offers a more detailed understanding of theta cycling in complex environments…”

      1. The section on the speed dependence of theta (starting with line 327) was very hard to understand. Can the authors show a more graphical explanation of the phenomenon? Perhaps a version of Fig 2f for slow and fast speeds, and point out that cells in the latter case fire with higher frequency than in the former?

      Thank you for raising this valuable point. There are two different frequencies showed in Fig. 6 a,c &d. One is the bump oscillation frequency, the other is the firing frequency of single cell. To help understanding, we included experimental results (from Geisler et al, 2007) in Fig. 6a. It showed that when the animal increases its running speed, the LFP theta only increases a bit (compare the blue curve and the green curve), while the single cell firing rate oscillation frequency increases more. In our model, we first demonstrated this result using unimodal cells which have only significant phase precession (Fig. 6c). While the animal runs through the firing field of a place cell, the firing phase will always precess for half a cycle in total. Therefore, faster running speed means that the half cycle will be accomplished faster, and hence single cell oscillation frequency will be higher. We also predicted the results on bimodal cells (Fig. 6d). To make this point clearer, we modified Fig. 6 by including experimental results, and rewrote the paragraph as follows (line 337):

      “…As we see from Fig. 3d and Fig. 4a&b, when the animal runs through the firing field of a place cell, its firing rate oscillates, since the activity bump sweeps around the firing field center of the cell. Therefore, the firing frequency of a place cell has a baseline theta frequency, which is the same as the bump oscillation frequency. Furthermore, due to phase precession, there will be a half cycle more than the baseline theta cycles as the animal runs over the firing field, and hence single cell oscillatory frequency will be higher than the baseline theta frequency (Fig. 6c). The faster the animal runs, the faster the extra half cycle is accomplished. Consequently, the firing frequency of single cells will increase more (a steeper slope in Fig. 6c red dots) than the baseline frequency.…”

      1. I had a hard time understanding how the Zugaro et al., (2005) hippocampal inactivation experiment was accounted for by the model. My intuition is that while the bump position is determined partially by the location of the external input, it is also determined by the immediate history of the bump dynamics as computed via the local dynamics within the hippocampus (recurrent dynamics and spike rate adaptation). So that if the hippocampus is inactivated for an arbitrary length of time, there is nothing to keep track of where the bump should be when the activity comes back online. Can the authors please explain more how the model accounts for this?

      Thank you for the comments. The easiest way to understand how the model account for the experimental result from Zugaro et al., (2005) is from Eq. 8:

      This equation says that the firing phase of a place cell is determined by the time the animal traveled through the place field, i.e., the location of the animal in the place field (with d0,c0 and vext all constant, and tf the only variable). No matter how long the hippocampus is inactivated (for an arbitrary length of time), once the external input is on, the new phase will continue from the new location of the animal in the place field. In other words, the peak firing phase keeps tracking the location of the animal. To make this point clearer, we modified Fig. 6 by including experimental results from Zugaro et al., (2005), and updated the description from line 356:

      “…Based on the theoretical analysis (Eq. 8), we see that the firing phase is determined by the location of the animal in the place field, i.e., vext tf. This means that the firing phase keeps tracking the animal's physical location. No matter how long the network is inactivated, the new firing phase will only be determined by the new location of the animal in the place field. Therefore, the firing phase in the first bump oscillation cycle after the network perturbation is more advanced than the firing phase in the last bump oscillation cycle right before the perturbation, and the amount of precession is similar to that in the case without perturbation (Fig. 6e) …”

      1. Can the authors comment on why the sweep lengths oscillate in the bottom panel of Fig 5b during starting at time 0.5 seconds before crossing the choice point of the T-maze? Is this oscillation in sweep length another prediction of the model? If so, it should definitely be remarked upon and included in the discussion section.

      We appreciate the reviewer’s valuable attention of this phenomenon. We thought it was a simulation artifact due to the parameter setting. However, we found that this phenomenon is quite robust to different parameter settings. While we haven’t found a theoretical explanation, we provide a qualitative explanation for it: this length oscillation frequency may be coupled with the time constant of the firing rate adaptation. Specifically, for a longer sweep, the neurons at the end of the sweep are adapted (inhibited), and hence the activity bump cannot travel that long in the next round. Therefore, the sweep length is shorter compared to the previous one. In the next round, the bump will sweep longer again because those neurons have recovered from the previous adaptation effect. We think this length oscillation is quite interesting and will check that in the experimental data in future works. We added this point in the main text as a prediction in line 321:

      “…We also note that there is a cyclical effect in the sweep lengths across oscillation cycles before the animal enters the left or right arm (see Fig. 5b lower panel), which may be interesting to check in the experimental data in future work (see Discussion for more details) …”

      And line 466:

      “…Our model of the T-maze environment showed an expected phenomenon that as the animal runs towards the decision point, the theta sweep length also shows cyclical patterns (Fig. 5b lower panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next round, the activity bump exhibits a longer sweep again because those neurons have recovered from the previous adaptation effect. We plan to test this phenomenon in future experiments...”

      1. Perhaps I missed this, but I'm curious whether the authors have considered what factors might modulate the adaptation strength. In particular, might rat speed modulate adaptation strength? If so, would have interesting predictions for theta sequences at low vs high speeds.

      Thank you for raising up this important point. As we pointed out in line 279: “…the experimental data (Fernandez et al, 2017) has indicated that there is a laminar difference between unimodal cells and bimodal cells, with bimodal cells correlating more with the firing patterns of deep CA1 neurons and unimodal cells with the firing patterns of superficial CA1 neurons. Our model suggests that this difference may come from the different adaptation strengths in the two layers…”. Our guess is that the adaptation strength might reflect some physiological differences of place cells in difference pyramidal layers in the hippocampus. For example, place cells in superficial layer and deep layer receive different amount of input from MEC and sensory cortex, and such difference may contribute to a different effect of adaptation of the two populations of place cells.

      Our intuition is that animal’s running speed may not directly modulate the adaptation strength. Note that the effect of adaptation and adaptation strength are different. As the animal rapidly runs across the firing field, the place cell experiences a dense firing (in time), therefore the adaptation effect is large; as the animal slowly runs across the field, the place cell experiences sparse firing (in time), and hence the adaptation effect is small. In these two situations, the adaption strength is fixed, but the difference is due to the spike intervals.

      From Eq. 45-47, our theoretical analysis shows several predictions of theta sequences regarding to the parameters in the network. For example, how the sweep length varies when the running speed changes in the network. We simulated the network in both low running speed and high running speed (while kept all other parameters fixed), and found that the sweep length at low speed is larger than that at high speed. This is different from previously data, where they showed that the sweep length increases as the animal runs faster (Maurer et al, 2012). However, we are not sure how other parameters are changed in the biological brain as the animal runs faster, e.g., the external input strength and the place field width might also vary as confounds. We will explore this more in the future and investigate how the adaptation strength is modulated in the brain.

      1. I think the paper has a number of predictions that would be especially interesting to experimentalists but are sort of scattered throughout the manuscript. It would be beneficial to have them listed more prominently in a separate section in the discussion. This should include (1) a prediction that the bump height in the forward direction should be higher than in the backward direction, (2) predictions about bimodal and unimodal cells starting with line 366, (3) prediction of another possible kind of theta cycling, this time in the form of sweep length (see comment above), etc.

      Thank you for pointing this out. We updated the manuscript by including a paragraph in Discussion summarizing the prediction we made throughout the manuscript (from line 459):

      ‘’…Our model has several predictions which can be tested in future experiments. For instance, the height of the activity bump in the forward sweep window is higher than that in the backward sweep window (Fig. 4c) due to the asymmetric suppression effect from the adaptation. For bimodal cells, they will have two peaks in their firing frequency as the animal runs across the firing fields, with one corresponding to phase precession and the other corresponding to phase procession. Similar to unimodal cells, both the phase precession and procession of a bimodal cell after transient intrahippocampal perturbation will continue from the new location of the animal (Fig. S5). Interestingly, our model of the T-maze environment showed an expected phenomenon that as the animal runs towards the decision point, the theta sweep length also shows cyclical patterns (Fig. 5b lower panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next round, the activity bump exhibits a longer sweep again because those neurons have recovered from the previous adaptation effect. We plan to test this phenomenon in future experiments…’

      Reviewer #2:

      In this work, the authors elaborate on an analytically tractable, continuous-attractor model to study an idealized neural network with realistic spiking phase precession/procession. The key ingredient of this analysis is the inclusion of a mechanism for slow firing-rate adaptation in addition to the otherwise fast continuous-attractor dynamics. The latter which continuous-attractor dynamics classically arises from a combination of translation invariance and nonlinear rate normalization. For strong adaptation/weak external input, the network naturally exhibits an internally generated, travelling-wave dynamics along the attractor with some characteristic speed. For small adaptation/strong external stimulus, the network recovers the classical externally driven continuous-attractor dynamics. Crucially, when both adaptation and external input are moderate, there is a competition with the internally generated and externally generated mechanism leading to oscillatory tracking regime. In this tracking regime, the population firing profile oscillates around the neural field tracking the position of the stimulus. The authors demonstrate by a combination of analytical and computational arguments that oscillatory tracking corresponds to realistic phase precession/procession. In particular the authors can account for the emergence of a unimodal and bimodal cells, as well as some other experimental observations with respect the dependence of phase precession/procession on the animal's locomotion. The strengths of this work are at least three-fold: 1) Given its simplicity, the proposed model has a surprisingly large explanatory power of the various experimental observations. 2) The mechanism responsible for the emergence of precession/procession can be understood as a simple yet rather illuminating competition between internally driven and externally driven dynamical trends. 3) Amazingly, and under some adequate simplifying assumptions, a great deal of analysis can be treated exactly, which allows for a detailed understanding of all parametric dependencies. This exact treatment culminates with a full characterization of the phase space of the network dynamics, as well as the computation of various quantities of interest, including characteristic speeds and oscillating frequencies.

      1. As mentioned by the authors themselves, the main limitation of this work is that it deals with a very idealized model and it remains to see how the proposed dynamical behaviors would persist in more realistic models. For example, the model is based on a continuous attractor model that assumes perfect translation-invariance of the network connectivity pattern. Would the oscillating tracking behavior persist in the presence of connection heterogeneities?

      Thank you for raising up this important point. Continuous attractor models have been widely used in modeling hippocampal neural circuits (see McNaughton et al, 2006 for a review), and researchers often assumed that there is a translation-invariance structure in these network models. The theta sweep state we presented in the current work is based on the property of the continuous attractor state. We do agree with the reviewer that the place cell circuit might not be a perfect continuous attractor network. For a simpler case where the connection weights are sampled from a Gaussian distribution around J_0, the theta sweep state still exhibit in the network (see Fig. S8 for an example). We also believe that the model can be extended to more complex cases where there exist over-representations of the “home” location and decision points in the real environment, i.e., the heterogeneity is not random, but has stronger connections near those locations, then the theta sweeps will be more biased to those location. However, if the heterogeneity breaks the continuous attractor state, the theta sweep state may not be presented in the network.

      1. Can the oscillating tracking behavior be observed in purely spiking models as opposed to rate models as considered in this work?

      Thank you for pointing this out. The short answer is yes. If the translation-invariance of the network connectivity pattern hold in the network, i.e., the spiking network is still a continuous attractor network (see the work from Tsodyks et al, 1996; and from Yu et al. "Spiking continuous attractor neural networks with spike frequency adaptation for anticipative tracking"), then the adaptation, which has the mathematical form of spike frequency adaptation (instead of firing rate adaptation), will still generate sweep state of the activity bump. We here chose the rate-based model because it is analytically tractable, which gives us a better understanding of the underlying dynamics. Many of the continuous attractor model related to spatial tuning cell populations are rate-based (see examples Zhang 1996; Burak & Fiete 2009). However, extending to spike-based model would be straightforward.

      1. Another important limitation is that the system needs to be tuned to exhibit oscillation within the theta range and that this tuning involves a priori variable parameters such as the external input strength. Is the oscillating-tracking behavior overtly sensitive to input strength variations?

      Thank you for pointing this out. In rodent studies, theta sequences are thought to result from the integration of both external inputs conveying sensory-motor information, and intrinsic network dynamics possibly related to memory processes (see Drieu and Zugaro 2019; Drieu at al, 2018). We clarified here that, in our modeling work, the generation of theta sweeps also depends on both the external input and the intrinsic dynamics (induced by the firing rate adaptation). Therefore, we don’t think the dependence of theta sweeps on the prior parameter – the external input strength – is a limitation here. We agreed with the reviewer that the system needs to be tuned to exhibit oscillation within the theta range. However, the parameter range of inducing oscillatory state is relatively large (see Fig. 2g in the main text). It will be interesting to investigate (and find experimental evidence) how the biological system adjusts the network configuration to implement the sweep state in network dynamics.

      1. The author mentioned that an external pacemaker can serve to drive oscillation within the desired theta band but there is no evidence presented supporting this.

      Thank you for pointing this out. We made this argument based on our initial simulation before but didn’t go into the details of that. We have deleted that argument in the discussion and rewrote that part. We will carry out more simulations in the future to verify if this is true. See our changes from line 418 to line 431:

      “... A representative model relying on neuronal recurrent interactions is the activation spreading model. This model produces phase precession via the propagation of neural activity along the movement direction, which relies on asymmetric synaptic connections. A later version of this model considers short-term synaptic plasticity (short-term depression) to implicitly implement asymmetric connections between place cells, and reproduces many other interesting phenomena, such as phase precession in different environments. Different from these two models, our model considers firing rate adaptation to implement symmetry breaking and hence generates activity propagation. To prevent the activity bump from spreading away, their model considers an external theta input to reset the bump location at the end of each theta cycle, whereas our model generates an internal oscillatory state, where the activity bump travels back due to the attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our model reveals how the adaptation strength affect the direction of theta sweeps, as well as offers a more detailed understanding of theta cycling in complex environments...”

      1. A final and perhaps secondary limitation has to do with the choice of parameter, namely the time constant of neural firing which is chosen around 3ms. This seems rather short given that the fast time scale of rate models (excluding synaptic processes) is usually given by the membrane time constant, which is typically about 15ms. I suspect this latter point can easily be addressed.

      Thank you for pointing this out. The time constant we currently chose is relatively short as used in other studies. We conducted additional simulation by adjusting the time constant to 10ms, and the results reported in this paper remain consistent. Please refer to Fig S9 for the results obtained with a time constant of 10 ms.

      Reviewer #3:

      With a soft-spoken, matter-of-fact attitude and almost unwittingly, this brilliant study chisels away one of the pillars of hippocampal neuroscience: the special role(s) ascribed to theta oscillations. These oscillations are salient during specific behaviors in rodents but are often taken to be part of the intimate endowment of the hippocampus across all mammalian species, and to be a fundamental ingredient of its computations. The gradual anticipation or precession of the spikes of a cell as it traverses its place field, relative to the theta phase, is seen as enabling the prediction of the future - the short-term future position of the animal at least, possibly the future in a wider cognitive sense as well, in particular with humans. The present study shows that, under suitable conditions, place cell population activity "sweeps" to encode future positions, and sometimes past ones as well, even in the absence of theta, as a result of the interplay between firing rate adaptation and precise place coding in the afferent inputs, which tracks the real position of the animal. The core strength of the paper is the clarity afforded by the simple, elegant model. It allows the derivation (in a certain limit) of an analytical formula for the frequency of the sweeps, as a function of the various model parameters, such as the time constants for neuronal integration and for firing rate adaptation. The sweep frequency turns out to be inversely proportional to their geometric average. The authors note that, if theta oscillations are added to the model, they can entrain the sweeps, which thus may superficially appear to have been generated by the oscillations.

      1. The main weakness of the study is the other side of the simplicity coin. In its simple and neat formulation, the model envisages stereotyped single unit behavior regulated by a few parameters, like the two time constants above, or the "adaptation strength", the "width of the field" or the "input strength", which are all assumed to be constant across cells. In reality, not only assigning homogeneous values to those parameters seems implausible, but also describing e.g. adaptation with the simple equation included in the model may be an oversimplification. Therefore, it remains important to understand to what extent the mechanism envisaged in the model is robust to variability in the parameters or to eg less carefully tuned afferent inputs.

      Thank you for pointing out this important question. As the reviewer pointed out, there is an oversimplification in our model compared to the real hippocampal circuits (also see Q1 and Q3 from reviewer2). We also pointed out that in the main text line 504:

      “…Nevertheless, it is important to note that the CANN we adopt in the current study is an idealized model for the place cell population, where many biological details are missed. For instance, we have assumed that neuronal synaptic connections are translation-invariant in the space...”

      To investigate model robustness to parameter setting, we divided all the parameters into two groups. The first group of parameters determines the bump state, i.e., width of the field a, neuronal density ρ, global inhibition strength k, and connection strength J_0. The second group of parameters determines the bump sweep state (which based on the existence of the bump state), i.e., the input strength α and the adaptation strength m. For the first group of parameters, we refer the reviewer to the Method part: stability analysis of the bump state. This analysis tells us the condition when the continuous attractor state holds in the network (see Eq. 20, which guides us to perform parameter selection). For the second group of parameters, we refer the reviewer to Fig. 2g, which tells us when the bump sweep state occurs regarding to input strength and adaptation strength. When the input strength is small, the range of adaptation strength is also small (to get the bump sweep state). However, as the input strength increases, we can see from Fig. 2g that the range of adaptation strength (to get the bump sweep state) also linearly increases. Although there exists other two state in the network when the two parameters are set out of the colored area in Fig. 2g, the parameter range of getting sweep state is also large, especially when the input strength value is large, which is usually the case when the animal actively runs in the environment.

      To demonstrate how the variability affect the results, we added variability to the connection weights by sampling the connection weights from a Gaussian distribution around J_0 (this introduces heterogeneity in the connection structure). We found that the bump sweep state still holds in this condition (see Fig. S8 as well as Q1 from reviewer2). For the variability in other parameter values, the results will be similar. Although adding variability to these parameters will not bring us difficulty in numerical simulation, it will make the theoretical analysis much more difficult.

      1. The weak adaptation regime, when firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel - I discussed it, among others, in trying to understand the significance of the CA3-CA1 differentiation (2004). What is novel here, as far as I know, is the strong adaptation regime, when the adaptation strength m is at least larger than the ratio of time constants. Then population activity literally runs away, ahead of the animal, and oscillations set in, independent of any oscillatory inputs. Can this really occur in physiological conditions? A careful comparison with available experimental measures would greatly strengthen the significance of this study.

      Thank you for raising up this interesting question.

      Re: “…firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel…”, We added Treves, A (2004) as a citation when we introduce the firing rate adaptation in line 116

      To test if the case of “…the adaptation strength m is at least larger than the ratio of time constants…” could occur in physiological conditions, it requires a measure of the adaptation strength as well as the time constant of both neuron firing and adaptation effect. The most straightforward way would be in vivo patch clamp recording of hippocampal pyramidal neurons when the animal is navigating an environment. This will give us a direct measure of all these values. However, we don’t have these data to verify this hypothesis yet. Another possible way of measure these values is through a state-space model. Specifically, we can build a state space model (considering adaptation effect in spike release) by taking animal’s position as latent dynamics, and recorded spikes as observation, then infer the parameters such as adaptation strength and time constant in the slow dynamics. Previous work of state-space models (without firing rate adaptation) in analyzing theta sweeps and replay dynamics have been explored by Denovellis et al. (2021), as well as Krause and Drugowitsch (2022). We think it might be doable to infer the adaptation strength and adaptation time constant in a similar paradigm in future work. We thank the reviewer for pointing out that and hope our replies have clarified the concerns of the reviewer.

    1. Author Response

      The following is the authors’ response to the original reviews.

      RESPONSE TO REVIEWERS:

      Reviewer #1 (Recommendations For The Authors):

      I think the manuscript of this excellent work can be improved, especially in writing (including a suggestion in the title) and presentation (Figure 6); Also some additional specific experiments and analyses could be important, as I suggest below,

      1. For the title, perhaps a shorter "The acetylase activity of Cdu1 protects Chlamydia effectors from degradation" would be better to convey the major significance of this work. Of course, Cdu1 must regulate the function of InaC, IpaM and CTL0480. But perhaps it is speculative to think that egress is the major function of these effectors as their activity on other host cell processes during the cycle could eventually impact the extrusion process indirectly.

      Although we concur with the insights provided by reviewer 1, we wish to underscore that a significant breakthrough presented in our study revolves around the regulation of Chlamydia exit by Cdu1. Consequently, we believe that this noteworthy discovery should be incorporated into the title.

      1. For the writing:

      a. The description of ubiquitination and DUBs could be synthesized to the essential, so that space is gained to explain things that then come a bit out of the blue in the results (what are Incs, the specific functions of InaC, IpaM, and CTL0480 - at least place the citations in lines 110-112 next to the corresponding Incs -, Cdu2, etc - see specifics below)

      In lines 182-196 of the revised manuscript, we have incorporated additional contextual information concerning the roles of Incs, along with descriptions of the functions of InaC, IpaM, and CTL0480.

      b. In the Results, there is a lot of Chlamydia- and maybe lab-specific jargon that could be significantly simplified for the more general reader. I detail some suggestions below in the specific issues.

      We have improved the readability of our manuscript for a general audience by removing Chlamydia-specific terminology from the entire text and figures.

      1. For the figures:

      a. Figure 6, this figure could be reorganized: why two graphs in panel D? If detailed quantifications were done, perhaps in panel B just zoom on the examples of Golgi distributed/compacted? And again the labelling Rif-R L2, L2 pBOMB, M407 p2TK2, etc, simplify?

      Figure 6 has undergone restructuring. The representative images have been relocated to Supplemental Figures 5 and 6, while we have introduced sample images demonstrating F-actin assembly and Golgi repositioning. Furthermore, the quantification of Golgi dispersal has been streamlined into a single panel. Additionally, we have simplified the labeling of the strains utilized in the study.

      b. Figure 3, in the labelling, WT, inaC null, cdu1::GII wouldn't be enough? Leave the details to the legend and/or M&M.

      We have simplified the labeling of Ct strains in Figure 3.

      c. Figure 3C, these arrowheads should not be so symmetric (small arrows instead?) and it is unclear that the indicated cells do not show CTL0480.

      We have substituted arrowheads with small arrow symbols and have also revised the Figure to incorporate a new representative image that prominently illustrates the absence of CTL0480 at the inclusion membrane of some cdu1::GII inclusions within infected Hela cells at 36 hpi.

      1. Experiments:

      a. In Figure 7, at least extrusion should be analysed also with the Cdu1-deficient strain expressing Ac-deficient Cdu1 and the inaC and ipaM phenotypes should be complemented.

      We have conducted additional experiments to analyze extrusion production in Hela cells infected with a cdu1 null strain expressing the acetylase-deficient Cdu1 variant. We have incorporated the relevant data into revised Figure 7, where the impact of this strain on extrusion production and size is presented. Additionally, we updated Supplemental Figure 8 to include data illustrating the number of inclusions produced by this strain. We have also addressed these new results in the revised manuscript (lines 424-432). We are currently complementing inaC and ipaM mutant strains with various InaC and IpaM constructs that will be used in a follow up manuscript.

      b. Does overexpression of InaC, IpaM, or CTL0480 in a cdu1-null background prevent the degradation of these Incs and suppress the defects of cells infected by the cdu1 mutant (F-actin, Golgi, MYPT1)? This would show that the multiple phenotypes displayed by cells infected by the cdu1 null mutant are indeed related to the decreased levels of InaC, IpaM and CTL0480.

      We opted not to include data from the overexpression of these effectors in a cdu1-null background due to an unexpected decrease in shuttle plasmid load during overexpression. This development prompted concerns regarding the potential detrimental effects of overexpressing these effectors in the absence of Cdu1. Data supporting this observation are not included in this report.

      c. Figures 3A and 3B should be quantified (it says it is from 3 independent experiments). It would be important to have a relative perspective of how much Cdu1 protects these Incs over time (for InaC, it would also be nice to have the 36 and 48 hpi time-point). This is in contrast with the microscopy data in Figure 5, which illustrates very clear effects, and the quantification is a bit redundant.

      In Figure 3, we have incorporated a new Western Blot image showing endogenous InaC protein levels in Hela cells following infection with both WT Ct and cdu1::GII strains at 24, 36, and 48 hours post-infection (hpi). Additionally, we have quantified the Western Blot signals for both InaC and IpaM, and these results are also presented in Figure 3. The quantification of MYPT1 recruitment has been relocated to a supplementary figure. We have also included details regarding the methodology employed for the quantification of Western Blot signals in the Materials and Methods section.

      d. What is the subcellular localization of InaC, IpaM, CTL0480 and Cdu1 when analysed by transfection? Does Cdu1 bind to of InaC, IpaM, CTL0480 in infected cells? If this was attempted and unsuccessful it should be mentioned.

      In transfected HEK cells, InaC, IpaM, CTL0480, and Cdu1 all exhibit cytoplasmic localization with a diffuse pattern (data not shown). Despite our efforts, we encountered challenges in observing co-immunoprecipitation of Cdu1 with all three Incs in infected Hela cells at 24 hpi, We have duly acknowledged this limitation in our findings, as reflected in line 221-226 of the revised manuscript.

      1. Specific issues:

      2. Line 87, "propagule" is really needed to describe the EB?

      The EB is the infectious form of Chlamydia species that spreads within the host to renew its life cycle; thus, "propagule" is a suitable term to characterize the EB.

      • Exocytosis implies fusion with the plasma membrane so "inclusion is exocytosed" (line 91) is not entirely correct.

      In line 91 of the revised manuscript, we referred to extrusion as the exit of an intact inclusion from the host cell and omitted the use of "exocytosed" to describe this process.

      • Line 126, "a Ct L2 (LGV L2 434 Bu) background". Maybe "a Ct cdu1-null strain" would be enough and leave the detail for Materials and Methods.

      In line 128 of the revised manuscript, we omitted "(LGV L2 434 Bu)" to avoid using jargon that may be unfamiliar to readers not well-versed in Chlamydia terminology.

      • Line 138, in the previous Pruneda et al, Nature Microbiol 2018, the title of figure 4 is "ChlaDUB deubiquitinase activity is required for C. trachomatis Golgi fragmentation", so why raise this hypothesis? And why in the end is the acetylation activity of Cdu1 that promotes Golgi distribution? I think this related with infection vs transfection experiments but it deserved to be briefly explained/discussed.

      In lines 140-142 of the revised manuscript, we provide clarification that the DUB activity of Cdu1 is required for Golgi fragmentation in transfected cells. This observation supports our initial hypothesis suggesting that the DUB activity of Cdu1 is also required for Golgi distribution in infected cells, and our rationale for identifying targets of its DUB activity.

      • Lines 147-155, what is the relevance of this non-ubiquitinated proteins that come along? Couldn't this be synthesized?

      We have included a discussion on non-ubiquitinated proteins, as they could potentially encompass proteins that interact with those protected by Cdu1. This perspective provides supplementary insights into the roles of proteins targeted for ubiquitination in the absence of Cdu1. The results of this analysis have been succinctly summarized in a single paragraph within the initial manuscript (lines 151-159 of the revised manuscript).

      • Line 170, I think it is the first time that "Type 3 secretion"; perhaps explain in the introduction.

      Type 3 secretion systems have been extensively characterized and discussed in the literature, and we anticipate that the majority of our readers are well-acquainted with this secretory mechanism.

      • Line 184, I think it is the first time "microdomains" are mentioned; perhaps mention in the introduction.

      The definition of "microdomains" has been provided in line 191 of the revised manuscript.

      • Figure 2, as it stands the analysis with truncated Cdu1 proteins adds little to the work. Binding to the Incs seems to be affected when the TM domain is not present, but it still binds. And this is in a transfection context.

      The results depicted in Figure 2, involving truncated Cdu1 proteins, illustrates that Cdu1 is capable of interacting with InaC, IpaM, and CTL0480 even in the absence of infection. This finding serves as evidence suggesting that all three Incs could potentially serve as direct targets for Cdu1 activity. As a result, we prefer to keep these findings in the manuscript.

      • Line 219, "late stages of infection", this is shown (albeit not completely quantified) for IpaM and CTL0480, but not for InaC.

      In the revised Figure 3, we show InaC protein levels at 24, 36, and 48 hours post-infection, and we have incorporated quantitative data for both InaC and IpaM protein levels in the context of Hela cells infected with both WT L2 and cdu1::GII strains. This updated figure serves to emphasize the pivotal role of Cdu1 in safeguarding all three Incs during the late stages of infection.

      • Line 233, "pBOMB-MCI backbone" - is this needed in the Results section? And this refers to Figure 4 while pBOMB appear already in Fig. 3.

      We have removed “pBOMB-MCI backbone” in the revised manuscript.

      • Line 236, should be cdu1 endogenous promoter.

      In line 265 of the revised manuscript we have replaced Cdu1 with cdu1 (italicized).

      • Line 263, WT.

      In line 293 of the revised manuscript we replaced “wild type” with “WT”.

      • Line 277, IncA instead of "the Inc protein IncA".

      In the manuscript we wanted to emphasize that IncA is also an inclusion membrane protein, therefore we have included “the Inc protein IncA” in the revised manuscript to avoid any confusion.

      • How does the data in Figure 5 relates to the relatively few proteins ubiquitinated in cells infected with cdu1-mutant Ct? These Ub-labelling corresponds to ubiquitinated InaC, IpaM and CTL0480?

      The findings presented in Figure 5 demonstrate that the acetylase activity of Cdu1 plays a crucial role in enabling Ct to block all ubiquitination events taking place on or in proximity to the periphery of the inclusion membrane. This encompasses Cdu1 targets that might not have been identified through our proteomic analysis.

      • Lines 299-301, "M923 inclusions", there is certainly a clear way to write this.

      In lines 326-327 and 332-332 of the revised manuscript, we have clarified that “M923” is an incA null strain to provide clarification.

      • Line 309, is "peripheries" correct?

      We have changed “peripheries” with “periphery” in the revised manuscript (line 360).

      • Line 312, "Rif-R L2" and "M407" - can this be simplified?

      In the revised manuscript, "Rif-R L2" was substituted with "WT L2" in lines 363 and 382, while "M407" was exchanged with "an inaC null strain" in lines 311, 367, and 368. These same replacements were applied to the Figures and their corresponding legends for consistency.

      • Lines 308-321, and 326-335, these % are all approximate figures and this should be made clear.

      In lines 364-395 of the revised manuscript we have stated that all percentages are approximate values.

      • Fig. S1, kb and not k.b; what's the "+ control"; and is not really possible to have a PCR that works for the *? 3 kb is not that long.

      In the updated Figure S1, we have corrected "k.b" to "kb". In the legend of Figure S1, we have clarified that the + control corresponds to the cdu2 locus. Moreover, we could not cleanly amplify a 3 kb PCR product from bacteria in whole cell lysates of infected mammalian cells (Vero cells).

      • Fig. S2, kb and not k.b, bp and not b.p

      In the updated Figure S2, we have corrected “k.b” with “kb” and “b.p” with “bp”.

      Reviewer #2 (Recommendations For The Authors):

      Figure 1 describes an affinity-based purification and mass spectrometric identification of differentially ubiquitinated proteins (host and chlamydial). Through different permutations of combinations of infection (mock, wild type, and Cdu1 mutant), three effectors, IpaM, InaC, and CTL0480, were identified as putative targets of Cdu1. The authors used a high-stringency cutoff, which could explain identification of only three targets. Having said this, the localization of Cdu1 to the inclusion membrane would be expected to also narrow down the number of targets. Interestingly, Cdu2, another deubiquitinase remained active in these experiments, which could have affected identification of Cdu1 targets. The authors addressed this issue by referring to previously reported structural studies. A somewhat glaring omission is the lack of reference to NF-kB as a substrate of ChlaDub1/Cdu1. In experiments by Le Negrate et al., ChlaDub1 ectopic overexpression in cells led to the deubiquitination of IkB-alpha, thus inhibiting the nuclear translation of NF-kB. Based on the inclusion membrane localization of Cdu1 during infection, is the identification of IkB an artifact of overexpression of Cdu1, or is it still a bona fide Cdu1 target?

      We conducted experiments using our cdu1 null strain to investigate whether IκBα could be a target of Cdu1 activity. While our findings are intriguing and relevant, it is not feasible to determine, at this stage, whether our findings result from a direct or indirect consequence of Cdu1 localizing to the inclusion membrane. Consequently, these findings extend beyond the scope of the current manuscript. We plan to explore the implications of our observations more deeply in a subsequent manuscript, where we intend to provide a more comprehensive and mechanistic analysis based on these preliminary findings. Additionally, we have referenced the potential targeting of IκBα by Cdu1 in lines 100-101 and 166-171 of the revised manuscript.

      Figure 2 demonstrates the individual interaction of the identified effectors with Cdu1. Interaction at the inclusion membrane is inferred from colocalization studies, while protein-protein interaction is monitored using ectopic overexpression of tagged versions of Cdu1 and the individual effectors. This is somewhat of a weakness of the manuscript because the mechanism of action of Cdu1 towards its target hinges on protein-protein interaction.

      Despite our efforts, we encountered challenges in co-immunoprecipitating endogenous Cdu1 with all three Incs in infected Hela cells at 24 hpi. There are multiple technical reasons as to why these interactions, which are predicted to be transient, will not be captured by bulk affinity approaches such as immunoprecipitations, especially when the starting materials are present in very low abundance. We acknowledged these limitations in our findings, as reflected in lines 221-226 of the revised manuscript.

      Figure 3 provides the first evidence in this paper of the importance of the inferred interaction of Cdu1 with the three effectors. The authors show that the loss of cdu1 has stability consequences on the three effectors. This figure would benefit from quantifying InaC- or IpaM-positive inclusions in the same manner done with CTL0480. The timepoint-dependent effect of Cdu1 loss of function is intriguing. Do InaC and IpaM retention at the inclusion show the same timepoint-dependent characteristic?

      In the revised Figure 3, we have incorporated InaC protein levels at 24, 36, and 48 hours post-infection. Additionally, we have included quantitative data representing both InaC and IpaM protein levels in HeLa cells infected with both WT L2 and cdu1::GII strains. The quantification of CTL0480 localization to cdu1::GII inclusions has been moved to a supplementary figure.

      This updated figure illustrates that the absence of Cdu1 has a time-dependent impact on both InaC and IpaM. However, it is noteworthy that the kinetics of degradation for these two proteins diverge significantly.

      For Figure 7, the authors should consider monitoring timing of inclusion extrusion to gain additional insight into the functional interactions between the effectors. For example, the loss of CTL0480 leads to increased extrusion, implying a role in delaying or suppressing extrusion. In a time-course experiment, a CTL0480 mutant could exhibit an earlier occurrence of inclusion extrusion.

      One of the principal discoveries of this study is that Cdu1, InaC, IpaM, and CTL0480 collaborate to facilitate optimal extrusion of Ct from host cells. These findings represent a significant contribution to our understanding of how Chlamydia controls its exit from infected cells. We are currently in the process of expanding on these results. A forthcoming follow-up manuscript will provide more detailed and comprehensive exploration of these findings.

      Reviewer #3 (Recommendations For The Authors):

      Specific comments.

      a. I have some concerns related to the time point chosen for mass spec analysis and potential caveats and alternative interpretations. This work was done relatively early (24 hours) compared to the most convincing Cdu1 functions that occur later, thus this may limit the authors global understanding of protein changes. For example, the known substrate of Cdu1, Mcl-1 was not identified but this is altered relatively late during infection. Thus, the surprise that minimal host proteins are altered in ubiquitination may be partially driven by the timing of the assay. This should be more clearly discussed as a caveat.

      In the revised manuscript (lines 166-171), we have acknowledged that there might be additional targets of Cdu1 that remain unidentified, primarily due to the specific time point we utilized in our study.

      b. Another caveat to these studies is while the loss of Cdu1 alters different effectors stability and function and extrusion size, these changes do not modulate bacterial growth in cells. The authors speculate that regulating extrusion size may alter interactions with innate cells to drive dissemination. However, a previous study found defects in an animal model using a Cdu1 transposon mutant found decreased bacterial load in the genital tract. It is also possible that redundancy of effectors may mask importance in growth of Cdu1, but the authors strongly argue against redundancy of Cdu1 and Cdu2 so this weakens the authors argument here. These concepts and published data should be more directly discussed in the context of the authors proposed extrusion model and the role in driving Chlamydia growth and pathogenesis.

      In our revised manuscript (lines 460-466) we propose that while we do not observe any growth impairments during Ct growth in the absence of Cdu1 in HeLa cells, the reduction in bacterial loads observed in murine models of infection with an independent cdu1 mutant strain (cdu1::Tn) may potentially be linked to defects in extrusion production or alterations in Cdu1-dependent regulation of extrusion size.

      c. Recent studies have found that IFNg activation can result in dramatic changes in ubiquitination to pathogen containing vacuoles. While some of these are blocked by the newly found GarD, it seems possible that Cdu1 may also play a role (and perhaps use its deubiquinating activity) to further protect the inclusion. In light of published results showing that Cdu1 mutants have lower IFU burst size only in IFNg activated cells, this may be an important caveat in the current studies. This should be more directly addressed in the current manuscript.

      We have incorporated two experimental findings indicating that the presence of Cdu1 is not required for Ct to defend itself against IFN cellular immunity in human cells. These recent discoveries are now presented in the updated Figure 5 and detailed in lines 338-355 of the revised manuscript.

      d. On lines 433-434 the authors claim that Cdu1 is atypical since it is not encoded with the metaeffector/target pairs. However, this is an oversimplification of what is known about metaeffectors. For example, there are meta-effector/effector pairs that are not encoded together in Legionella (see table 1 DOI: https://doi.org/10.3390/pathogens10020108). Thus, the discussion should be adjusted. It seems Cdu1 is the first meta-effector found in Chlamydia, and maybe this should be highlighted more strongly rather than its uniqueness in this aspect of meta-effector/effector functions.

      In lines 488-489 of the revised manuscript, we have removed the assertion that Cdu1 functions as an atypical metaeffector and emphasized that it represents the initial discovery of a metaeffector within Ct.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable paper examines the Bithorax complex in several butterfly species, in which the complex is contiguous and not split, as it is in the well-studied fruit fly Drosophila. Based on genetic screens and genetic manipulations of a boundary element involved in segment-specific regulation of Ubx, the authors provide solid evidence for their conclusions, which could be further strengthened by additional data and analyses. The data presented are relevant for those interested in the evolution and function of Hox genes and of gene regulation in general.

      We are deeply grateful to the eLife editorial team and the two reviewers for their thoughtful and constructive feedback. We have used this feedback to improve our manuscript and have provided a point-by-point response below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In their article, "Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings," Tendolkar and colleagues explore Ubx regulation in butterflies. The authors investigated how Ubx expression is restricted to the hindwing in butterflies through a series of genomic analyses and genetic perturbations. The authors provide evidence that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin around Ubx, largely through an apparent boundary element. CRISPR mutations of this boundary element led to ectopic Ubx expression in forewings, resulting in homeotic transformation in the wings. The authors also explore the results of the mutation in two non-coding RNA regions as well as a possible enhancer module. Each of these induces homeotic phenotypes. Finally, the authors describe a number of homeotic phenotypes in butterflies, which they relate to their work.

      Together, this was an interesting paper with compelling initial data. That said, I have several items that I feel would warrant further discussion, presentation, or data.

      First, I would not state, "Little is known about how Hox genes are regulated outside of flies." They should add "in insects" since so much in known in vertebrates

      Corrected

      For Figure 1, it would aid the readers if the authors could show the number of RNAseq reads across the locus. This would allow the readership to evaluate the frequency of the lncRNAs, splice variants, etc.

      We have found it useful in the past to feature “Sashimi Plots”, as they provide a good overview of transcript splicing junctions and read support. Here we could not accommodate this in our Fig. 1A as this would require compiling the RNAseq reads from many tissues and stages to be meaningful, and we would lose the resolution on forewing vs hindwing tissues that is important in this article (only the Kallima inachus dataset allows this comparison, and was used in Fig 1B). More specifically, the wing transcriptomes available for J. coenia and V. cardui are not deep enough to provide a good visualization of Antp alternative promoter usage or on AS5’ transcription.

      How common are boundary elements within introns? Typically, boundary elements are outside gene bodies, so this could be explored further. This seems like an interesting bit of biology which, following from the above point, it would be interesting to, at a minimum, discuss, but also relate to how transcription occurs through a possible boundary element (are there splice variants, for example?).

      We do not see evidence of alternative splicing, and prefer to avoid speculating on transcriptional effects, but we agree that the intragenicity of the TAD boundary is interesting. We briefly highlighted this point in the revised Discussion:

      "Lastly, it is worth noting that the Antp/Ubx TAD boundary we identified is intragenic, within the last intron of Ubx. It is unclear if this feature affects Ubx transcription, but this configuration might be analogue to the Notch locus in Drosophila, which includes a functional TAD boundary in an intronic position (Arzate-Mejía et al. 2020)."

      The CRISPR experiments led to compelling phenotypes. However, as a Drosophila biologist, I found it hard to interpret the data from mosaic experiments. For example, in control experiments, how often do butterflies die? Are there offsite effects? It's striking that single-guide RNAs led to such strong effects. Is this common outside of this system? Is it possible to explore the function effects at the boundary element - are these generating large deletions (for example, like Mazo-Vargas et al., 2022)? For the mosaic experiments, how frequent are these effects in nature or captive stocks? Would it be possible to resequence these types of effects? At the moment, this data, while compelling, was hard to put into the context of the experiments above without understanding how common the effects are. Ideally, there would be resequencing of these tissues, which could be targeted, but it was not clear to me the general rates of these variants.

      We agree with this assessment completely: mosaics complicate the proper interpretation of CRISPR based perturbation assays in regulatory regions. Here, unlike in Mazo-Vargas et al. (2022), we were unable to breed homeotic effects to a G1 generation, possibly because the phenotypes are dominant and lethal at the embryonic stage (see also our reply to Reviewer 2). This means that mosaic mutants are often survivors with clones of restricted size in the wing, and they are probably rare, but we are unable to meaningfully measure a mutation spectrum frequency (e.g. how often large deletions are generated). As mentioned in the first paragraph of our Discussion, we think that many of the phenotypes we observed (besides the Ubx GOF effects from the BE targeting) were confounded by alleles that could include large SVs. We aim to address these questions in an upcoming manuscript, at a locus where regulatory perturbation does not impact survival, including using germline mutants and unbiased genotyping (whole genome resequencing).

      We elaborated on this issue in our Discussion:

      "It is crucial here to highlight the limitations of the method, in order to derive proper insights about the functionality of the regulatory regions we tested. In essence, butterfly CRISPR experiments generate random mutations by non-homologous end joining repair, that are usually deletions (Connahs et al. 2019; Mazo-Vargas et al. 2022; Van Belleghem et al. 2023). Ideally, regulatory CRISPR-induced alleles require genotyping in a second (G1) generation to be properly matched to a phenotype (Mazo-Vargas et al. 2022). Possibly because of lethal effects, we failed to pass G0 mutations to a G1 generation for genotyping, and were thus limited here to mosaic analysis. As adult wings have lost scale building cells that may underlie a given phenotype, we circumvented this issue by genotyping a pupal forewing displaying an homeotic phenotype in the more efficient Antp-Ubx_BE perturbation experiment (Fig. S4). In this case, PCR amplification of a 600 bp fragment followed by Sanger sequencing recovered signatures of indel variants, with mixed chromatograms starting at the targeted sites. But in all other experiments (CRM11, IT1, and AS5’ targets), we did not genotype mutant tissues, as they were only detected in adult stages and generally with small clone sizes. Some of these clones may have been the results of large structural variants, as data from other organisms suggests that Cas9 nuclease targeting can generate larger than expected mutations that evade common genotyping techniques (Shin et al. 2017; Adikusuma et al. 2018; Kosicki et al. 2018; Cullot et al. 2019; Owens et al. 2019). Even under the assumption that such mutations are relatively rare in butterfly embryos, the fact we injected >100 embryos in each experiment makes their occurrence likely (Fig. 9), and we are unable to assign a specific genotype to the homeotic effects we obtained in CRM11, IT1 and AS5’ perturbation assays."

      Our revision also includes a new Fig. S4 that features the mosaic genotyping of a G0 Antp-Ubx_BE mutant tissue. While this does not fully address the reviewer questions, it provides reasonable validation that the frequent GOF effects we observed upon perturbation at this target site are generated by on-target indels from DNA repair.

      Author response image 1.

      Validation of CRISPR-induced DNA Lesions in an Antp-Ubx_BE crispant pupat forewing. (A-A') Pupal forewing cuticle phenotype of an Antp-Ubx_BE J. coenia crispant, as in Fig. S3. (B-B") Aspect of the same forewing under trans-illumination following dissection out of the pupal case. Regions from mutant clones have a more transparent appearance. (C). Sanger sequencing of an amplicon targeting the Antp-Ubx_BE region in the mutant tissue shown in panel B", compared to a control wing tissue, showing mixed chromatogram around the expected CRISPR cutting site due to indel mutations from non-homologous end-joining.

      In sum, I enjoyed the extensive mosaic perturbations. However, I feel that more molecular descriptions would elevate the work and make a larger impact on the field.

      Reviewer #2 (Public Review):

      Summary:

      The existence of hox gene complexes conserved in animals with bilateral symmetry and in which the genes are arranged along the chromosome in the same order as the structures they specify along the anteroposterior axis of organisms is one of the most spectacular discoveries of recent developmental biology. In brief, homeotic mutations lead to the transformation of a given body segment of the fly into a copy of the next adjacent segment. For the sake of understanding the main observation of this work, it is important to know that in loss-of-function (LOF) alleles, a given segment develops like a copy of the segment immediately anterior to it, and in gain-of-function mutations (GOF), the affected segment develops like a copy of the immediately posterior segment. Over the last 30 years the molecular lesions associated with GOF alleles led to a model where the sequential activation of the hox genes along the chromosome result from the sequential opening of chromosomal domains. Most of these GOF alleles turned out to be deletions of boundary elements (BE) that define the extent of the segment-specific regulatory domains. The fruit fly Drosophila is a highly specialized insect with a very rapid mode of segmentation. Furthermore, the hox clusters in this lineage have split. Given these specificities it is legitimate to question whether the regulatory landscape of the BX-C we know of in D.melanogaster is the result of very high specialization in this lineage, or whether it reflects a more ancestral organization. In this article, the authors address this question by analyzing the continuous hox cluster in butterflies. They focus on the intergenic region between the Antennapedia and the Ubx gene, where the split occurred in D.melanogaster. Hi-C and ATAC-seq data suggest the existence of a boundary element between 2 Topologically-Associated-Domain (TAD) which is also characterized by the presence of CTCF binding sites. Butterflies have 2 pairs of wings originating from T2 (forewing) specified by Antp and T3 specified by Ubx (hindwing). Remarkably, CRISPR mutational perturbation of this boundary leads to the hatching of butterflies with homeotic clones of cells with hindwings identities in the forewing (a posteriorly oriented homeotic transformation). In agreement with this phenotype, the authors observe ectopic expression of Ubx in these clones of cells. In other words, CRISPR mutagenesis of this BE region identified by molecular tool give rise to homeotic transformations directed towards more posterior segment as the boundary mutations that had been 1st identified on the basis of their posterior oriented homeotic transformation in Drosophila. None of the mutant clones they observed affect the hindwing, indicating that their scheme did not affect the nearby Ubx transcription unit. This is reassuring and important first evidence that some of the regulatory paradigms that have been proposed in fruit flies are also at work in the common ancestor to Drosophilae and Lepidoptera.

      Given the large size of the Ubx transcription unit and its associated regulatory regions it is not surprising that the authors have identified ncRNA that are conserved in 4 species of Nymphalinae butterflies, some of which also present in D.melanogaster. Attempts to target the promoters by CRISPR give rise to clones of cells in both forewings and hindwings, suggesting the generation of regulatory mutations associated with both LOF and GOF transformations. The presence of clones with dual homeosis suggests the targeting of Ubx activator and repression CRMs. Unfortunately, these experiments do not allow us to make further conclusions on the role of these ncRNA or in the identification of specific regulatory elements. To the opinion of this reviewer, some recent papers addressing the role that these ncRNA may play in boundary function should be taken with caution, and evidence that ncRNA(s) regulate boundaries in the BX-C in a WT context is still lacking.

      Strengths:

      The convincing GOF phenotype resulting from the targeting of the Antp-Ubx_BE.

      Weaknesses:

      The lack of comparisons with the equivalent phenotypes obtained in D.melanogaster with for example the Fub mutation.

      We are grateful for this excellent contextualization of our findings and have incorporated some of the historical elements into our revision, as detailed below.

      Reviewer #2 (Recommendations For The Authors):

      In the whole paper, the authors bring the notion of boundaries through the angle of the existence of TADs and ignore almost entirely to explain the characteristics of boundary mutation in the BX-C. To my knowledge examples where targeted boundary deletions between TADs result in misregulation of the neighboring genes, and/or a phenotype, are extremely sparse (especially in the context of the mouse hox genes). Given the extensive litterature describing the boundary mutations and their associated GOF phenotypes, the paper would certainly gain strength if the authors justify their approach through this wealth of information. I must admit that this referee is surprised by the absence of any references to the founding work of the Karch and Bender laboratories on this topic. As a matter of fact, one of the founding members of the boundary class of regulatory elements was already brought in 1993 with the Fab-7 and Mcp elements of the BX-C. Based on gain-of-function homeotic phenotypes, additional Fab boundaries were added to the list. Finally, in 2013, Bender and Lucas (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606092/) identified the Fub boundary element that delimits the Ubx and abd-A domains in the BX-C. Fub fulfills the criterium of lying at the border of 2 neighboring TADs. Significantly, a deletion of Fub leads to a very penetrant and strong homeotic gain-of-function phenotype in which the flies hatch with a 1st abdominal segment transformed into the 2nd. In agreement with this, abd-A is expressed one parasegment too anterior in embryos. This is exactly the observation gathered from the targeted mutations in the Antp-Ubx_BE; a dominant transformation of anterior to posterior wing accompanied by an ectopic expression of Ubx in the forming primordia of the forwing where it is normally silenced. I believe the paper would gain credibility if the results were reported with the knowledge of the similarities with Fub.

      Line 53, I am not aware of the existence of TADs for each of the 9 regulatory domains. The insulators delimit the extent of the regulatory domains but certainly not of TADs.

      We thank the reviewer for these suggestions, as well as for the correction – we agree our previous text suggested that all BX-C boundaries are TAD boundaries, which was incorrect. We added a new introduction paragraph that combines classic literature on GOF mutations at boundary elements with recent evidence these are TAD insulators, including Fub (as suggested), and adding Fab-7 for breadth of scope.

      "For instance, the deletion of a small region situated between Ubx and abd-A produces the Front-ultraabdominal phenotype (Fub) where the first abdominal segment (A1) is transformed into a copy of the second abdominal segment A2, due to a gain-of-expression of abd-A in A1 where it is normally repressed (Bender and Lucas 2013). At the molecular level, the Fub boundary is enforced by insulating factors that separate Topologically Associating Domains (TADs) of open-chromatin, while also allowing interactions of Ubx and abd-A enhancers with their target promoters (Postika et al. 2018; Srinivasan and Mishra 2020). Likewise, the Fab-7 deletion, which removes a TAD boundary insulating abd-A and Abd–B (Moniot-Perron et al. 2023), transforms parasegment 11 into parasegment 12 due to an anterior gain-of-expression of Abd-B (Gyurkovics et al. 1990). By extrapolation, one may expect that if the Drosophila Hox locus was not dislocated into two complexes, Antp and Ubx 3D contact domains would be separated by a Boundary Element (BE), and that deletions similar with Fub and Fab-7 mutations would result in gain-of-function mutations of Ubx that could effectively transform T2 regions into T3 identities."

      A reference to the 1978 Nature article of Lewis should be added after line 42 of introduction.

      Added

      Line 56-57; the BX-C encoded miRNAs are known to regulate Ubx and abd-A, but not Abd-B.

      Corrected

      From lines 57 to 61, the authors mention reports aimed at demonstrating a role of ncRNA into Ubx regulation. To my eyes, these gathered evidences are rather weak. A reference to the work of Pease et al in Genetics in 2013 should be mentioned (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832271/).

      Added. Our paragraph includes qualifier language about the functionality of the Ubx-related ncRNAs (“are thought to”, “appears to”), and updated references regarding bxd (Petruk et al. 2006; Ibragimov et al. 2023).

      Line 62 authors, should write "Little is known about how Hox genes are regulated outside of Drosophila" and not flies.

      Corrected

      Lines 110-112 could lncRNA:Ubx-IT1 correspond to PS4 antisense reported by Pease et al in 2023 (see URL above)? Lines 115-117, could lncRNA:UbxAS5' correspond to bxd antisense of Pease et al in 2023 (see above)?

      As we could not detect sequence similarities, we preferred to avoid drawing homology, and we intentionally avoided reference to the fly transcripts when we named IT1 and AS5’. This said, we agree it is important to clarify that further studies are needed to clarify this relationship. We elaborated on this point in our discussion:

      "Of note, a systematic in-situ survey (Pease et al. 2013) showed that Drosophila embryos express an antisense transcripts in its 5’ region (lncRNA:bxd), as well as within its first intron (lncRNA:PS4). It is thought that Drosophila bxd regulates Ubx, possibly by transcriptional interference or by facilitation of the Fub-1 boundary effect (Petruk et al. 2006; Ibragimov et al. 2023), while the possible regulatory roles of PS4 remain debated (Hermann et al. 2022). While these dipteran non-coding transcripts lack detectable sequence similarity with the lepidopteran IT1 and AS5’ transcripts, further comparative genomics analyses of the Ubx region across the holometabolan insect phylogeny should clarify the extent to which Hox cluster lncRNAs have been conserved or independently evolved."

      Lines 154-155: "This concordance between Hi-C profiling and CTCF motif prediction thus indicates that Antp-Ubx_BE region functions as an insulator between regulatory domains of Antp and Ubx ». This is only correlative, I would write "suggests" instead of "indicates" and add a "might function".

      Corrected as suggested.

      Line 254, I assume the authors wish to write Ubx-IT1 in V. cardui instead of Ubx-T1.

      Typo corrected

      Line 255 : Fig.5 is absent from the pdf file and replaced by table 1. I did not find a legend for Table 1.

      Corrected, with our sincere apologies for the loss of this image in our first submission.

      Line 293 "Individual with hindwing clones 2.75 times more common than...." "are" is missing?

      Corrected

      Lines 303-313, it is not entirely clear how many guide RNAs were injected. Would be useful to indicate the sites targeted in Fig.S8.

      We specify in the revised text : using a single guide RNA (Ubx11b9)

      Lines 323-337: it is not entirely clear to this referee (a drosophilist) if those spontaneous mutations can be inbred or whether these individuals are occasional mosaics. In general, did anyone try to derive lines from those mosaic animals? Is it possible to hit the germline at the syncitial stages at which the guides are injected? Are the individuals with wing phenotype fertile? Given the fact that the Antp-Ubx_BE mutations should be dominant, I wonder if this characteristic would not help in identifying germline transmission. Similar remark for the discussion where the authors explain at line 360, that genotyping can only be done in the progeny of the Go. I do not have the impression that the authors have performed this genotyping and if I am right, I do not understand why.

      We improved our discussion section on this topic (new text in orange):

      "It is crucial here to highlight the limitations of the method, in order to derive proper insights about the functionality of the regulatory regions we tested. In essence, butterfly CRISPR experiments generate random mutations by non-homologous end joining repair, that are usually deletions (Connahs et al. 2019; Mazo-Vargas et al. 2022; Van Belleghem et al. 2023). Ideally, regulatory CRISPR-induced alleles require genotyping in a second (G1) generation to be properly matched to a phenotype (Mazo-Vargas et al. 2022). Possibly because of lethal effects, we failed to pass G0 mutations to a G1 generation for genotyping, and were thus limited here to mosaic analysis. As adult wings have lost scale building cells that may underlie a given phenotype, we circumvented this issue by genotyping a pupal forewing displaying an homeotic phenotype in the more efficient Antp-Ubx_BE perturbation experiment (Fig. S4). In this case, PCR amplification of a 600 bp fragment followed by Sanger sequencing recovered signatures of indel variants, with mixed chromatograms starting at the targeted sites. But in all other experiments (CRM11, IT1, and AS5’ targets), we did not genotype mutant tissues, as they were only detected in adult stages and generally with small clone sizes. Some of these clones may have been the results of large structural variants, as data from other organisms suggests that Cas9 nuclease targeting can generate larger than expected mutations that evade common genotyping techniques (Shin et al. 2017; Adikusuma et al. 2018; Kosicki et al. 2018; Cullot et al. 2019; Owens et al. 2019). Even under the assumption that such mutations are relatively rare in butterfly embryos, the fact we injected >100 embryos in each experiment makes their occurrence likely (Fig. 9), and we are unable to assign a specific genotype to the homeotic effects we obtained in CRM11, IT1 and AS5’ perturbation assays."

      We agree that the work we conducted with mosaics has important caveats. So far, our attempts at breeding homeotic G0 mutants have not been fruitful at this locus, while less deleterious loci can yield viable alleles into further generations, such as WntA (published) and cortex (in prep.). We prefer to stay vague about negative data here, as it is difficult to disentangle if they were due to real mutational effects (e.g. the alleles can be dominant and lethal in the G1 generation) to failure to germline carriers of mutations as founders, or to health issues that are often amplified by inbreeding depression (including a possible iflavirus in our V. cardui cultures).

      We concur with the prediction that Antp-Ubx_BE mutations are probably dominant, and intend to follow up with similar GOF experiments in the Plodia pantry moth, a laboratory model for lepidopteran functional genomics that is more amenable than butterflies to inbreeding and long-term studies in mutant lines. In our experience (https://www.frontiersin.org/articles/10.3389/fevo.2021.643661/full), Ubx coding knock-out can be more extensive in Plodia than in butterflies, so we think these animals will also be more resilient to the deleterious effects of the GOF phenotype.

      Line 423, 425, I am not a fan of the term "de-insulating!!!!!

      We replaced this neologism by Similar deletion alleles resulting in a TAD fusion and misexpression effect (see below).

      Line 425, why bring the work on Notch while there are so many examples in the BX-C itself....

      Our revised sentence makes it more clear we are referring here to documented examples of deletion-mediated TAD fusion (ie. featuring a conformation capture assay such as HiC/micro-C):

      This suggests a possible loss of the TAD boundary in the crispant clones, resulting in a TAD fusion or in a long-range interaction between a T2-specific enhancer and Ubx promoter. Similar deletion alleles resulting in a TAD fusion and misexpression effect have been described at the Notch locus in Drosophila (Arzate-Mejía et al. 2020), in digit-patterning mutants in mice and humans (Lupiáñez et al. 2015; Anania et al. 2022), or at murine and fly Hox loci depleted of CTCF-mediated regulatory blocking (Narendra et al. 2015; Gambetta and Furlong 2018; Kyrchanova et al. 2020).

      Our revision also includes more emphasis on the Drosophila BX-C boundary elements Fub and Fab-7 (see above).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript is very well written, the data are clearly presented and the methodology is robust. I only have suggestions to improve the manuscript, to make the study more appealing or to discuss in more detail some questions raised by the work.

      1. In the study as it stands, PFG seems to come out of the blue. The authors apparently selected this protein based on sequence conservation between species but this is unlikely to be sufficient to identify novel TFs. Explaining in more detail the reasoning that led to PFG would make the story more appealing. Perhaps PFG was identified through a large reverse genetics screening?

      Response: Thank you for your suggestion. We identified this gene solely by the strategy we described in the manuscript. We decided on this strategy based on the findings of our previous study on AP2-Family TFs, whose DNA binding domains are highly conserved among Plasmodium orthologues. Using this screening strategy, we identified a novel AP2 family TF AP2-Z. The results of the present study demonstrated that this strategy is applicable to TFs other than those belonging to the AP2 family. We are aware that this strategy is not all-encompassing. In fact, we failed to identify HDP1 as a candidate TF when it was also in the target list of AP2-G. However, at present, this is our primary strategy for identifying novel TFs in the targetome.

      1. The authors propose that PFG and AP2-FG form a complex, but this is actually not shown. Did they try to document a physical interaction between the two proteins, for example using co-IP?

      Response: Even when the two molecules were identified to be at the same position by ChIPseq, it cannot be concluded that they form a physical complex because it is possible that they competitively occupy the region. However, in this study, we performed ChIP-seq in the absence of PFG and demonstrated that the cAP2-FG peaks disappeared while those of sAP2-FG remained. This result can only be explained by the two proteins forming a complex at this region, which excludes the possibility that AP2-FG binds the region independently.

      1. It is unclear how PFG can bind to DNA in the absence of DNA-binding domain. Did the authors search for unconventional domains in the protein? This should be at least discussed in the manuscript.

      Response: We speculate that the two highly conserved regions, region 1 and region 2, function as DNA-binding domains in PFG. However, this domain is not similar to any DNA binding domains reported thus far. A straightforward way to demonstrate this would be to perform in vitro binding assays using a recombinant protein. However, thus far, we have not succeeded in obtaining soluble recombinant proteins for these regions. We have added the following sentences to the results section.

      “At present, we speculate that PFG directly interacts with genomic DNA through two highly conserved regions; region 1 and region 2. However, these regions are not similar to any DNA binding domains reported thus far. In other apicomplexan orthologues, these two domains are located adjacent to one another in the protein (Fig. 1A). Therefore, these two regions may be separated by a long interval region but constitute a DNA binding domain of PFG as a result of protein folding.”

      1. How do the authors explain that PFG is still expressed in the absence of AP2-FG? Is AP2G alone sufficient to express sufficient levels of the protein? Is PFG down-regulated in the absence of AP2-FG?

      Response: Our previous ChIP-seq data indicate that PFG is a target of AP2-G. According to the study by Kent et al. (2018), this gene is up-regulated in the early period following conditional AP2-G induction. The results of the present study showed that PFG is capable of autoactivation through a transcriptional positive feed-back loop. These results suggest that PFG can maintain its expression to a certain level once activated by AP2-G, even in the absence of AP2-FG. In our previous microarray analysis, significant decreases in PFG expression were not observed in AP2-FG-diaruptedparasites.

      1. How do AP2-FG regulated genes (based on RNAseq) compare with the predicted cAP2FG/sAP2-FG predicted genes (based on ChIPseq)? Are the two subsets included in the genes that are actually down-regulated in AP2-FG(-)?

      Response: Disruption of the AP2-FG gene impairs gametocyte development. We considered that the direct effect of this disruption would be difficult to analyze in gametocyte-enriched blood, in which gametocytes are pooled during sulfadiazine treatment to deplete asexual stages. Therefore, in our previous paper, we performed microarray analysis between WT and KO parasites to detect the direct effect of AP2-FG disruption on target gene expression, using mice which were synchronously infected with parasites. According to our results, 206 genes were down-regulated in AP2-FG-disrupted parasites. Of these genes, 40 and 117 were targets of sAP2-FG and cAP2-FG, respectively. However, it is still possible that a significant proportion of genes were indirectly down-regulated by AP2-FG disruption, which may impair gametocyte development. Moreover, based on the results of the present study, expression of a significant proportion of AP2-FG target genes could be complemented by PFG transcription. We believe that it would be difficult to compare the direct effects of these TFs on gene expression via transcriptome analysis (therefore, targetome analysis is important). In this study, we compared the expression of target genes of sAP2-FG and cAP2FG between PFG(-) and WT parasites. We expected that down-regulation of PFG (cAP2FG) targets would be complemented with transcription by sAP2-FG.

      1. Minor points

      -Page 5 Line 10, remove "as"

      Response: We have corrected this.

      -Page 7 Lines 4-13: is it possible to perform the assay in PFG(-) parasites?

      Response: Thank you for your question. Even when the marker gene expression was decreased in PFG(-) parasites, we cannot conclude the reason to be a direct effect of the mutation. To determine the function of the motif, it is necessary to perform the assay using wild-type parasites.

      -Page 7 Line 45: Fig6C instead of 5C

      Response: Thank you for pointing this out. We have corrected this.

      -Page 8 Line 27: "decreases"

      Response: Thank you for pointing this out. We have corrected this.

      -Page 8 Line 36: PFG instead of PGP

      Response: We have corrected this.

      -Page 8 Line 39: remove "the fact"

      Response: We have removed this word.

      -Page 8 Line 42: Fig6G instead of 5G

      Response: We have corrected this.

      -Page 8 Line 43: PFG instead of PGP

      Response: We have corrected this.

      -Page 9 Line 23: "electroporation"

      Response: We have corrected this.

      -Page 9 Line 32: "BamHI"

      Response: We have corrected this.

      -Fig 2E: in the crosses did the authors check oocyst formation in the mosquito?

      Response: We did not check oocyst formation because abnormalities in males may not affect oocyst formation.

      -Page 17, legend Fig3, Line 14, there is probably an inversion between left and right for PFG versus AP2-FG (either in the legend or in the figure)

      Response: Thank you for pointing this out. PFG peaks are located in the center in both heat maps. The description “AP2-FG peaks” over the arrowhead in the left map was incorrect. We have corrected this to “PFG peaks”. The peaks in the left heat map must be located in the center; thus, this figure might be redundant.

      Reviewer #2 (Recommendations for the Authors):

      • Could the authors please state in the results section that PFG stands for partner of AP2FG.

      Response: Thank you for the comment. We have added the following to the results section:

      “Through this screening, a gene encoding a 2709 amino acid protein with two regions highly conserved among Plasmodium was identified (PBANKA0902300, designated as a partner of AP2-FG (PFG; Fig. 1A).”

      • Given that the transcriptional program is so dynamic, the timing of the ChIP-seq experiments is crucial. Could the authors clarify the timings of the different ChIP-seq experiments (AP2-FG, PFG, PFG in AP2-FG-, AP2-FG in PFG-, ...)

      Response: Thank you for the comment. To deplete any parasites in the asexual stages, all ChIP-seq experiments in this study were performed using blood from mice treated with sulfadiazine, namely, gametocyte-enriched blood. As the reviewer points out, timing is important, and samples from the period when TFs are maximally expressed are optimal for ChIP-seq. However, when parasites in the asexual stages are present, the background becomes higher. Thus we usually use gametocyte-enriched blood for ChIP-seq when expression of the TF is observed in mature gametocytes. The exception was our ChIP-seq analysis of AP2-G, because is not present in mature gametocytes.

      • Fig 4c is an example of great overlap of peaks, but it would be helpful if the authors could quantify the overlaps between experiments (and describe the overlap parameters used).

      Response: According to the comment, we have created a Venn diagram of overlapping peaks (attached below). However, the peaks used for this Venn diagram were selected after peakcalling via fold-enrichment values. Thus, even if the counterpart of a peak is absent in these selected peaks (non-overlapping peaks in the Venn diagram), it does not indicate that it is absent in the original read map. We believe the overlap of peaks would be estimated more correctly in the heat maps.

      Author response image 1.

      Legged: The Venn diagram shows the number of common peaks between these ChIP seq experiments (distance of peak summits < 150

      • Additionally, how were the promoter coordinates used for each gene when they associate ChIP peaks to a gene target. Did the authors choose 1-2kb? Or use a TSS/5utr dataset such as Adjalley 2016 or Chappell 2020?

      Response: We selected a 1.2 Kbp region for target prediction based on our previous studies. As the reviewer pointed out, target prediction using TSS information may be more accurate. However, reliable TSS information is not available for P. berghei to the best of our knowledge.

      The two papers are studies on P. falciparum.

      • In the absence of evidence of physical interaction, it remains unclear if AP2-FG and PFG actually interact directly or as part of the same complex. A more detailed characterisation with IPs/co-IPs followed by mass spectrometry of the GFP-tagged version of PFG in the presence and absence of AP2-FG would be highly informative.

      Response: Thank you for the comment. Even when these two TFs occupy the same genomic region, it cannot be conclusively said that they exist at the same time in the region: they might competitively occupy the region. However, we showed that the cAP2-FG peaks disappear from the region when PFG was disrupted, while sAP2-FG peaks remain. We believe that this is evidence that the two TFs physically interact with each other.

      • It was not clear if the assessment of motif binding using cytometry was performed using all the required controls and compensation. This section should be clarified.

      Response: Thank you for the comment. Condensation was performed using parasites expressing a single fluorescent protein. The results are attached below. The histogram of mCherry using control parasites expressing GFP under the control of the HSP70 promoter is also attached.

      Author response image 2.

      However, we found that descriptions of the filters for detecting red signals were not correct. This assay was performed using parasites which expressed GFP constitutively and mCherry under the control of the p28 promoter. These two fluorescent proteins were excited by independent lasers (488 and 561, respectively), and the emission spectra were detected using independent detectors (through 530/30 and 610/20 filters, respectively). We have revised the description regarding our FACS protocols as follows:

      “Flow cytometric analysis was performed using an LSR-II flow cytometer (BD Biosciences). In experiments using 820 parasites, the tail blood from infected mice was selected via gating with forward scatter and staining with Hoechst 33342 (excitation =355 nm, emission = 450/50). The gated population was then analyzed for GFP fluorescence (excitation = 488 nm, emission = 530/30) and RFP fluorescence (excitation = 561 nm, emission = 610/20). In the promoter assay (using parasites transfected with a centromere plasmid), the tail blood from infected mice was selected via gating with forward scatter and staining with Hoechst 33342 (excitation =355 nm, emission = 450/50), followed by GFP fluorescence (excitation = 488 nm, emission = 530/30). The gated population was analyzed for mCherry fluorescence (excitation = 561 nm, emission = 610/20). Analysis was performed using the DIVER program (BD Biosciences).”

      Minor points:

      • Page 4, line 37: The authors should specify the timing of expression of AP2-FG on the text.

      Response: We have added the following description to the text.

      “The timing of the expression was approximately four hours later than that of AP2-FG, which started at 16 hpi (9).” .

      • Ref 9 and 17 are repeated

      Response: Thank you for pointing this out. We have corrected this.

      • Fig 1D and 1F do not have scale bars

      Response: We have added scale bars to Fig. 1D.

      We have not changed Fig. 1F, because we believe that the scales can be estimated from the size of the erythrocyte.

      • Page 5, line 29-30. Could the authors specify how many and which of the de-regulated genes have a PFG in their promoter.

      Response: Thank you for the comment, As described in a later section (page 7; Impact of PFG disruption on the expression of AP2-FG target genes), among the 279 genes significantly downregulated in PFG(-) parasites, 165 genes were targets for PFG (unique for PFG or common for sAP2-FG and PFG). In contrast, only four genes were targets unique to sAP2-FG. Therefore, 165 genes harbor the upstream peaks of PFG. These genes are shown in Table S1.

      • Fig 5F. in the methods associated with this figure there seems to be a mixup with the description of the lasers. In addition, given the spillover of the red and green signal between detectors this experiment needs compensation parameters. The authors should provide the gating strategy before and after compensation as this is critical for the correct calculation of the number of red parasites. Indeed, the lowest red cloud on the gate shown could be green signal spill over.

      Response: Thank you for the comment. As described above, there were some incorrect descriptions about the conditions of our FACS protocols in the methods section. We have revised them.

      -Page 7, line 19. Could the authors explicitly say in the text that the 810 genes are those with 1 (or more?) PFG peaks in their promoter (out of a total of 1029) to best guide the reader. Additionally, it is important to define the maximum distance allowed between a peak and CDS for it to be associated with said CDS.

      Response: We have revised Table S2 by adding the nearest genes. The revised table shows the relationship between a PFG peak and its nearest genes, together with their distances.

      • Page 7, line 45: fig 6c, not 5c

      Response: Thank you for the comment. We have corrected this.

      • Page 7 last paragraph: This section is very hard to follow. For instance, on line 50 do the authors mean that the sAP2-FG unique targets are LESS de-regulated? On line 51: do the authors mean unique targets of cAP2-FG or unique targets of PFG? Line 53: do the authors mean that genes expressed in the "common" category are LESS de-regulated than the PFG unique targets?

      Response: We are sorry for the lack of clarity; after reviewing the manuscript, it appears to be unclear what the fold change means in this section. Here, fold change means the ratio of PFG(-)/wild type. Thus “High log2(fold change) value” means that the genes were less downregulated. We have revised the description as follows:

      “The log2 distribution (fold change = PFG(-)/wild type) in the three groups of target genes showed that the average value was significantly higher (i.e., less down-regulated) in targets unique to sAP2-FG than in the other two groups (targets unique to cAP2-FG or common targets for both), with p-values of 1.3 × 10-10 and 1.4 × 10-5, respectively, by two-tailed Student’s t-test (Fig. 6F). In addition, the average log2 (fold change) value of the common target genes was relatively higher (i.e., less down-regulated) than that of targets unique to PFG, suggesting that transcriptional activation by sAP2-FG partly complements the impact of PFG disruption on these common targets.”

      • Page 8, line 42: Fig 6G, not 5G

      Response: Thank you for pointing this out. We have corrected this.

      Reviewer #3 (Recommendations For The Authors):

      1. The gene at the center of this study (PBANKA_0902300) was identified in an earlier genetic screen by Russell et al. as being a female specific gene with essential role in transmission and named Fd2 (for female-defective 2). Since this name entered the literature first and is equally descriptive, the Fd2 name should be used instead of PFG to maintain clarity and avoid unnecessary confusion. Surprisingly, this study is neither cited nor acknowledged despite a preprint having been available since August of 2021. This should be remedied.

      Response: Thank you for the comment. We have added the paper by Russell et al. accordingly and mentioned the name FD2 in the revised manuscript. However, we have retained the use of PFG throughout the paper. We believe that this usage of PFG shouldn’t be confusing, as FD2 has only been used in one previous paper. We have added the following:

      “Through this screening, a gene encoding a 2709 amino acid protein with two regions highly conserved among Plasmodium was identified (PBANKA0902300, designated as a partner of AP2-FG (PFG; Fig. 1A). This gene is one of the P. berghei genes that were previously identified as genes involved in female gametocyte development (named FD2), based on mass screening combined with single cell RNA-seq (ref).”

      1. While it isn't really important how the authors came to arrive at studying the function of Fd2, the rationale/approach given in the first paragraph of the result section seems far too broad to lead to Fd2, given that it lacks identifiable domains and many other ortholog sets exist across these species.

      Response: We selected this gene from the list of AP2-G targets as a candidate for a sequence-specific TF based on the hypothesis that the amino acid sequences of DNAbinding domains are highly conserved. We successfully identified two TFs (including PFG) using this method. However, there may be TFs that do not fit this hypothesis which are also targets of AP2-G. In fact, we were unable to identify HDP1 as a TF candidate, despite being a AP2-G target.

      1. Fig. 1A-C: Gene IDs for the orthologs should be provided, as well as the methodology for generating the alignments.

      Response; We have added the gene IDs and method for alignment in the legend as follows:

      (A) Schematic diagram of PFG from P. berghei and its homologs in apicomplexan parasites. Regions homologous to Regions 1 and 2, which are highly conserved among Plasmodium species, are shown as yellow and blue rectangles, respectively. Nuclear localization signals were predicted using the cNLS mapper (http://nls-10 mapper.iab.keio.ac.jp/cgibin/NLS_Mapper_form.cgi). The gene IDs of P. berghei PFG, P. falciparum PFG, and their homologs in Toxoplasma gondii, Eimeria tenella and Vitrella brassicaformis are PBANKA_0902300, PF3D7_1146800, TGGT1_239670, ETH2_1252400, and Vbra_10234, respectively.

      (C) The amino acid sequences of Regions 1 and 2 from P. berghei PFG and its homologs from other apicomplexan parasites in (A) were aligned using the ClustalW program in MEGA X. The positions at which all these sequences have identical amino acids are indicated by two asterisks, and positions with amino acid residues possessing the same properties are indicated by one asterisk.

      1. Figure 2: The Phenotype of Fd2 knockout should be characterized more comprehensively.

      It remains unclear whether ∆Fd2 parasite generate the same number of females but these are defective upon fertilization or whether there is also a decrease in the number of female gametocytes. Is the defect just post-fertilization and zygotes lyse or are there fewer fertilization events? If so is activation of female GCs effected?

      The number of male and female gametocytes should be quantified using sex-specific markers not affected by Fd2 knockout rather than providing a single image of each. The ability of ∆Fd2 GCs should also be evaluated.

      This is also important for the interpretation of Fig 2G. Is the down-regulation of the genes due to fewer female GCs or are the down-regulated genes only a subset of female-specific genes.

      Response: In PFG(-) parasites, the rate of conversion into zygotes of female gametocytes decreased, and zygotes had lost capacity for developing into ookinetes. This indicates that gametocyte development (i.e., the ability to egress the erythrocyte and to fertilize) and zygote development were both impaired. This phenotype is consistent with the observation that genes expressed in female gametocytes are broadly downregulated. PFG is a TF, and its disruption led to decreased expression of hundreds of female genes. Thus, the observed phenotype may be derived from combined decreased expression of these genes. We believe further detailed phenotypic analyses will not generate much novel information on this TF. Instead, RNA-seq data in PFG(-) parasites and the targetome have promise in helping to characterize the functions of this TF.

      1. Figure 3: what fraction of down-regulated genes have the Fd2 10mer motif?

      Response: Thank you for the question. We investigated the upstream binding motifs of these genes. Of the 279 significantly down-regulated genes (containing 165 targets), 161 genes harbor the motif (including nine-base motifs that lack one lateral base which is likely not essential for binding) in their upstream regions (within 1,200 bp from the first methionine codon). However, this result has not been described in the revised manuscript because it is more important whether these regions harbor PFG peaks (upstream motifs can exist without being involved in the binding of PFG).

      1. sAP2-FG (single) vs cAP2-FG (complex) nomenclature is confusing and possibly misleading since few TFs function in isolation and sAP2-FG likely functions in a complex that doesn't contain Fd2, possibly with another DNA binding protein that binds the TGCACA hexamer. The name for the distinct peaks should refer to the presence or absence of Fd2 in the complex, or maybe simply refer to them as complex A & B.

      Response: As shown in the DIP-seq analysis results, AP2-FG can bind the motif by itself. In contrast, AP2-FG must form a complex with PFG to bind to the ten-base motif. The complex and single forms are named according to this difference (the presence or absence of PFG) and used solely in its relation with PFG. We wrote “In the following, we refer to the form with PFG as cAP2-FG or the complex form, and the form without PFG as sAP2-FG or the single form.” We believe that the nomenclature has sufficient clarity. However, we have partially (underlined) revised certain sentences in the discussion section as follows.

      “As the expression of PFG increases via this mechanism, AP2-FG recruited by PFG (cAP2FG) increases and eventually becomes predominant in the transcriptional regulation of female gametocytes.”

      “This suggests that the promoter of the CCP2 gene, which is a target of PFG only, is still active in AP2-FG(-)820 parasites.”

      We recently reported that the TGCACA motif is a cis-activation motif in early gametocytes and important for both male and female gametocyte development. Thus we speculate that sAP2-FG is not involved in cis-activation by the TGCACA motif. The p-value of the six-base motif is indeed comparable to that of the five-base motif. However, the pvalue (calculated by Fisher’s exact test) in six-base motifs tend to be lower than that calculated in five-base motifs, because the population is much large. We speculate that there is a sequence-specific TF that may be expressed in early gametocytes and bind this motif, independently of AP2-FG.

      1. I compared the overlap of peaks in the 4 ChIP-seq data sets:

      90% of the Fd2 peaks are shared with AP2-FG (binding 24% of shared peaks is lost in ∆AP2FG)

      10% are bound by Fd2 alone (binding at 35% of Fd2 is lost in ∆AP2-FG)

      75% of Fd2 peaks are bound independently of AP2-FG

      47% of AP2-FG peaks shared with Fd2 (binding at 71% of shared peaks is lost in ∆Fd2) 53% of AP2-FG peaks are bound only by AP2-FG (but binding at 82% of AP2-FG only peaks is still lost in the ∆Fd2)

      Binding at 78% of all AP2-FG peaks is lost in ∆Fd2

      This indicates that much of AP2-FG binding in regions even in regions devoid of Fd2 still depends on Fd2. What are possible explanations for this?

      https://elife-rp.msubmit.net/eliferp_files/2023/04/03/00117573/00/117573_0_attach_10_17936_convrt.pdf

      Response: In the ChIP-seq of AP2-FG in the absence of PFG, 441 peaks are still called. This means that at least 441 binding sites for AP2-FG independent of PFG exist. This is a straightforward conclusion from our ChIP-seq data. On the other hand, simple deduction of peaks between two ChIP-seq experiments (AP2-FG peaks minus PFG peaks) is not a precise method for determining sAP2-FG. Peak-calling is independently performed in each ChIP-seq experiment. Thus, peaks remaining after the deduction between two experiments can still contain peaks that are actually common, but which are differentially picked up through the process of peak calling. Even when using data obtained by the same ChIP-seq experiment, markedly different numbers of peaks are called according to the conditions for peak calling (in contrast, common peaks between two independent experiments increase the reliability of the data). If wanting to identify sAP2-FG peaks via comparisons between AP2-FG peaks and PFG peaks, the reviewer has to increase the number of PFG peaks by reducing the peak-calling threshold until the number of overlapping peaks between AP2-FG and PFG are saturated, and then deduce the overlapping peaks from the AP2-FG peaks. However, as described above, for the purposes of estimating the number of sAP2-FG, it would be better to perform ChIP-seq of AP2-FG in the absence of PFG.

      1. Possible explanations of why recombinant Fd2 doesn't bind the TGCACA hexamer. It would also be good to note that the GCTCA AP2-FG motif found in Fig4G is now perfect match for the motif identified by protein binding microarray in Campbell et al.

      Response: It is not known what sequence recombinant PFG binds. The TGCACA motif is not enriched in PFG peaks. If the reviewer is referring to AP2-FG, our findings that the recombinant AP2 domain binds the five-base motif strongly suggests that other TFs recognize this motif. As described in our response to comment 9, we recently reported that TGCACA is a cis-activating sequence important for the normal development of both male and female gametocytes. Therefore, we currently speculate that this motif is a binding motif of other TFs and is independent of AP2-FG.

      We have mentioned the protein binding microarray data in the Results section as follows.

      “The most enriched motif matched well with the binding sequence of the AP2 domain of P. falciparum AP2-FG, which was reported by Campbell et al.”

      1. What might explain the strong enrichment for TGCACA in ChIPseq but when pulled down by AP2-FG DBD: another binding partner? requires more of AP2-DF than just DBD?

      Response: As described above in our response to comment 6, we have recently submitted a preprint studying the roles of the remodeler subunit PbARID in gametocyte development. We reported that the remodeler subunit is recruited to the six-base motif and that the motif is a novel cis-activation element for early gametocyte development. We speculate that a proportion of AP2-FG targets are also targets of a TF that recognizes this motif and recruits the remodeler subunit. These two TFs may be involved in the regulation of early gametocyte genes but function independently.

      1. Calling DNA pulldown with recombinant AP2-FG DNA-binding domain DNAImmunoprecipitation sequencing (DIP-seq) is confusing since there are no antibodies involved. Describing it directly as a pulldown of fragmented DNA will be clearer to the reader.

      Response: Thank you for the comment. We have also recognized this discrepancy. However we called the method DIP-seq because the original paper reporting this method used this name, wherein it did not use antibodies to capture the MBP-fusion recombinant protein. Our experiment was performed using essentially the same methods, and thus we retained the name.

      1. The legends and methods are very sparse and should include substantially more detail.

      Response: Thank you for the comment. We have revised the description of the FACS experimental method for clarity.

      1. BigWig files for all ChIPseq enrichment used for analysis in this study need to be provided.

      (two replicates each of : Fd2 in WT, Fd2 in ∆AP2-GF, AP2-FG in WT, AP2-FG in ∆Fd2)

      Response: We have deposited the BigWig files to GEO (GSE.226028 and GSE114096).

      1. Tables of ChIP data need to have both summits and peaks and need to list nearest gene. Also the ChIPseq peaks for Fd2 are surprisingly broad (ChIP peaks are very large, e.g. 68% of Fd2 peaks (dataset2) are greater than 1000kb) give its specificity for a long motif. Why is this?

      Response: We have revised Table S2 to include the nearest genes. We are unsure why peaks in the over 1000-bp peak region exist in such high proportions. However, this proportion was also high in our previous ChIP-seq data. Therefore, we speculate that this is a tendency of peak-calling by MACS2. We did not use these values in this paper. For example, targets were predicted using peak summits, and binding motifs were calculated using the 100-base regions around peak summits.

      1. Figure 5E: The positions of the 10mer and 5mer motifs in the promoter should be indicated as well as the length of the promoter. Moreover, mutation of just the 5bp motifs would be valuable to understand if 10mer is sufficient for expression of the reporter.

      Response: Thank you for the comment. We have revised the figure accordingly. The majority of female-specific promoters only harbor ten-base motifs. Thus the ten-base motif is sufficient for evaluating reporter activity (i.e., it would function without five-base motifs).

      1. How is AP2-FG expression affected in ∆Fd2 and vice versa?

      Response: According to our previous microarray data, PFG expression was not significantly downregulated by disruption of AP2-FG. This may be because PFG transcriptionally activates itself through a positive feedback loop after being induced by AP2-G. Similarly, according to our present study, AP2-FG expression was not downregulated by PFG disruption. This may be because AP2-FG is transcriptionally activated by AP2-G.

      1. The single cell data in Russell et al. could easily be used to indicate the order of expression.

      Response: Determining the expression order of gametocyte TFs via the single cell RNA-seq data from Russel et al. is difficult, because only a small number of parasite cells were considered to be in the early gametocyte stage in this study. This is because the parasites were cultured for 24h before the analysis. The analysis suggested by the reviewer may be possible via single cell RNA-seq, but the experiments must be performed with more focus on the early gametocyte stage.

      1. A discussion of the implication of P. falciparum transmission would be appreciated.

      Response: Thank you for the comment. We have added the following to the Discussion section:

      “P. falciparum gametocytes require 9-12 days to mature, which is much longer than that of P. berghei. Meanwhile, it has been reported that the ten-base motif is highly enriched in the upstream regions of female-specific genes also in P. falciparum. Thus, despite the difference in maturation periods, PFG is likely to play an important role in the transcriptional regulation of female P. falciparum gametocyte development."

      1. The lack of identifiable DNA binding domains in Fd2 is intriguing given the strong sequence-specificity. Do the authors think they have identified a new DNA-binding fold ?

      Alphafold of the orthologs with contiguous regions 1&2 might offer insight.

      Response: We speculate that these regions function as DNA binding domains. We performed analysis using Alfafold2 according to the comment. However, the predicted structure of the region was not similar to any other canonical DNA-binding domains. Thus, it may be a novel DNA-binding fold as the reviewer mentioned. Further studies such as binding assays using recombinant proteins would be necessary to confirm this, but thus far we have not successfully obtained the soluble proteins of these regions.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Thank you and the reviewers for further providing constructive comments and suggestions on our manuscript. On behalf of all the co-authors, I have enclosed a revised version of the above referenced paper. Below, I have merged similar public reviews and recommendations (if applicable) from each reviewer and provided point-by-point responses.

      Reviewer #1:

      People can perform a wide variety of different tasks, and a long-standing question in cognitive neuroscience is how the properties of different tasks are represented in the brain. The authors develop an interesting task that mixes two different sources of difficulty, and find that the brain appears to represent this mixture on a continuum, in the prefrontal areas involved in resolving task difficulty. While these results are interesting and in several ways compelling, they overlap with previous findings and rely on novel statistical analyses that may require further validation.

      Strengths

      1. The authors present an interesting and novel task for combining the contributions of stimulus-stimulus and stimulus-response conflict. While this mixture has been measured in the multi-source interference task (MSIT), this task provides a more graded mixture between these two sources of difficulty.

      2. The authors do a good job triangulating regions that encoding conflict similarity, looking for the conjunction across several different measures of conflict encoding. These conflict measures use several best-practice approaches towards estimating representational similarity.

      3. The authors quantify several salient alternative hypothesis and systematically distinguish their core results from these alternatives.

      4. The question that the authors tackle is important to cognitive control, and they make a solid contribution.

      The authors have addressed several of my concerns. I appreciate the authors implementing best practices in their neuroimaging stats.

      I think that the concerns that remain in my public review reflect the inherent limitations of the current work. The authors have done a good job working with the dataset they've collected.

      Response: We would like to thank the reviewer for the positive evaluation of our manuscript and the constructive comments and suggestions. In response to your suggestions and concerns, we have removed the Stroop/Simon-only and the Stroop+Simon models, revised our conclusion and modified the misleading phrases.

      We have provided detailed responses to your comments below.

      1. The evidence from this previous work for mixtures between different conflict sources makes the framing of 'infinite possible types of conflict' feel like a strawman. The authors cite classic work (e.g., Kornblum et al., 1990) that develops a typology for conflict which is far from infinite. I think few people would argue that every possible source and level of difficulty will have to be learned separately. This work provides confirmatory evidence that task difficulty is represented parametrically (e.g., consistent with the n-back, MOT, and random dot motion literature).

      notes for my public concerns.

      In their response, the authors say:

      'If each combination of the Stroop-Simon combination is regarded as a conflict condition, there would be infinite combinations, and it is our major goal to investigate how these infinite conflict conditions are represented effectively in a space with finite dimensions.'

      I do think that this is a strawman. The paper doesn't make a strong case that this position ('infinite combinations') is widely held in the field. There is previous work (e.g., n-back, multiple object tracking, MSIT, dot motion) that has already shown parametric encoding of task difficulty. This paper provides confirmatory evidence, using an interesting new task, that demand are parametric, but does not provide a major theoretical advance.

      Response: We agree that the previous expression may have seemed somewhat exaggerative. While it is not “infinite”, recent research indeed suggests that the cognitive control shows domain-specificity across various “domains”, including conflict types (Egner, 2008), sensory modalities (Yang et al., 2017), task-irrelevant stimuli (Spape et al., 2008), and task sets (Hazeltine et al., 2011), to name a few.

      These findings collectively support the notion that cognitive control is contextspecific (Bream et al., 2014). That is, cognitive control can be tuned and associated with different (and potentially large numbers of) contexts. Recently, Kikumoto and Mayr (2020) demonstrated that combinations of stimulus, rule and response in the same task formed separatable, conjunctive representations. They further showed that these conjunctive representations facilitate performance. This is in line with the idea that each stimulus-location combination in the present task may be represented separately in a domain-specific manner. Moreover, domain-general task representation can also become domain-specific with learning, which further increases the number of domain-specific conjunctive representations (Mill et al., 2023). In line with the domain-specific account of cognitive control, we referred to the “infinite combinations” in our previous response to emphasize the extreme case of domainspecificity. However, recognizing that the term “infinite” may lead to ambiguity, we have replaced it with phrases such as “a large number of”, “hugely varied”, in our revised manuscript.

      We appreciate the reviewer for highlighting the potential connection of our work to existing literature that showed the parametric encoding of task difficulty (e.g., Dagher et al., 1999; Ritz & Shenhav, 2023). For instance, in Ritz et al.’s (2023) study, they parametrically manipulated target difficulty based on consistent ratios of dot color, and found that the difficulty was encoded in the caudal part of dorsal anterior cingulate cortex. Analogically, in our study, the “difficulty” pertains to the behavioral congruency effect that we modulated within the spatial Stroop and Simon dimensions. Notably, we did identify univariate effects in the right dmPFC and IPS associated with the difficulty in the Simon dimension. This parametric effect may lend support to our cognitive space hypothesis, although we exercised caution in interpreting their significance due to the absence of a clear brain-behavioral relevance in these regions. We have added the connection of our work to prior literature in the discussion. The parametric encoding of conflict also mirrors prior research showing the parametric encoding of task demands (Dagher et al., 1999; Ritz & Shenhav, 2023).

      However, our analyses extend beyond solely testing the parametric encoding of difficulty. Instead, we focused on the multivariate representation of different conflict types, which we believe is independent from the univariate parametric encoding. Unlike the univariate encoding that relies on the strength within one dimension, the multivariate representation of conflict types incorporates both the spatial Stroop and Simon dimensions. Furthermore, we found that similar difficulty levels did not yield similar conflict representation, as indicated by the low similarity between the spatial Stroop and Simon conditions, despite both showing a similar level of congruency effect (Fig. S1). Additionally, we also observed an interaction between conflict similarity and difficulty (i.e., congruency, Fig. 4B/D), such that the conflict similarity effect was more pronounced when conflict was present. Therefore, we believe that our findings make contribution to the literature beyond the difficulty effect.

      Reference:

      Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374-380. https://doi.org/10.1016/j.tics.2008.07.001

      Yang, G., Nan, W., Zheng, Y., Wu, H., Li, Q., & Liu, X. (2017). Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 43(4), 807-818. https://doi.org/10.1037/xhp0000351

      Spapé MM, Hommel B (2008). He said, she said: episodic retrieval induces conflict adaptation in an auditory Stroop task. Psychonomic Bulletin Review,15(6):1117-21. https://doi.org/10.3758/PBR.15.6.1117

      Hazeltine E, Lightman E, Schwarb H, Schumacher EH (2011). The boundaries of sequential modulations: evidence for set-level control. Journal of Experimental Psychology: Human Perception & Performance. 2011 Dec;37(6):1898-914. https://doi.org/10.1037/a0024662

      Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology, 5, 1134. https://doi.org/10.3389/fpsyg.2014.01134

      Kikumoto A, Mayr U. (2020). Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proceedings of the National Academy of Sciences, 117(19):10603-10608. https://doi.org/10.1073/pnas.1922166117.

      Mill, R. D., & Cole, M. W. (2023). Neural representation dynamics reveal computational principles of cognitive task learning. bioRxiv. https://doi.org/10.1101/2023.06.27.546751

      Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain, 122 ( Pt 10), 1973-1987. https://doi.org/10.1093/brain/122.10.1973

      Ritz, H., & Shenhav, A. (2023). Orthogonal neural encoding of targets and distractors supports multivariate cognitive control. https://doi.org/10.1101/2022.12.01.518771

      1. (Public Reviews) The degree of Stroop vs Simon conflict is perfectly negatively correlated across conditions. This limits their interpretation of an integrated cognitive space, as they cannot separately measure Stroop and Simon effects. The author's control analyses have limited ability to overcome this task limitation. While these results are consistent with parametric encoding, they cannot adjudicate between combined vs separated representations.

      (Recommendations) I think that it is still an issue that the task's two features (stroop and simon conflict) are perfectly correlated. This fundamentally limits their ability to measure the similarity in these features. The authors provide several control analyses, but I think these are limited.

      Response: We need to acknowledge that the spatial Stroop and Simon components in the five conflict conditions were not “perfectly” correlated, with r = –0.89. This leaves some room for the preliminary model comparison to adjudicate between these models. However, it’s essential to note that conclusions based on these results must be tempered. In line with the reviewer’s observation, we agree that the high correlation between the two conflict sources posed a potential limitation on our ability to independently investigate the contribution of spatial Stroop and Simon conflicts. Therefore, in addition to the limitation we have previously acknowledged, we have now further revised our conclusion and adjusted our expressions accordingly.

      Specifically, we now regard the parametric encoding of cognitive control not as direct evidence of the cognitive space view but as preliminary evidence that led us to propose this hypothesis, which requires further testing. Notably, we have also modified the title from “Conflicts are represented in a cognitive space to reconcile domain-general and domain-specific cognitive control” to “Conflicts are parametrically encoded: initial evidence for a cognitive space view to reconcile the debate of domain-general and domain-specific cognitive control”. Also, we revised the conclusion as: In sum, we showed that the cognitive control can be parametrically encoded in the right dlPFC and guides cognitive control to adjust goal-directed behavior. This finding suggests that different cognitive control states may be encoded in an abstract cognitive space, which reconciles the long-standing debate between the domain-general and domain-specific views of cognitive control and provides a parsimonious and more broadly applicable framework for understanding how our brains efficiently and flexibly represents multiple task settings.

      From Recommendations The authors perform control analyses that test stroop-only and simon-only models. However, these analyses use a totally different similarity metric, that's based on set intersection rather than geometry. This metric had limited justification or explanation, and it's not clear whether these models fit worse because of the similarity metric. Even here, Simon-only model fit better than Stroop+Simon model. The dimensionality analyses may reflect the 1d manipulation by the authors (i.e. perfectly corrected stroop and simon effects).

      Response: The Jaccard measure is the most suitable method we can conceive of for assessing the similarity between two conflicts when establishing the Stroop-only and Simon-only models, achieved by projecting them onto the vertical or horizontal axes, respectively (Author response image 1A). This approach offers two advantages. First, the Jaccard similarity combines both similarity (as reflected by the numerator) and distance (reflected by the difference between denominator and numerator) without bias towards either. Second, the Jaccard similarity in our design is equivalent to the cosine similarity because the denominator in the cosine similarity is identical to the denominator in the Jaccard similarity (both are the radius of the circle, Author response image 1B).

      Author response image 1.

      Definition of Jaccard similarity. A) Two conflicts (1 and 2) are projected onto the spatial Stroop/Simon axis in the Stroop/Simon-only model, respectively. The Jaccard similarity for Stroop-only and Simon-only model are and respectively. Letters a-d are the projected vectors from the two conflicts to the two axes. Blue and red colors indicate the conflict conditions. Shorter vectors are the intersection and longer vectors are the union. B) According to the cosine similarity model, the similarity is defined as , where e is the projected vector from conflict 1 to conflict 2, and g is the vector of conflict 1. The Jaccard similarity for this case is defined by , where f is the projector vector from conflict 2 to itself. Because f = g in our design, the Jaccard similarity is equivalent to the cosine similarity.

      Therefore, we believe that the model comparisons between cosine similarity model and the Stroop/Simon-Only models were equitable. However, we acknowledge the reviewer’s and other reviewers’ concerns about the correlation between spatial Stroop and Simon conflicts, which reduces the space to one dimension (1d) and limits our ability to distinguish between the Stroop-only and Simon-only models, as well as between Stroop+Simon and cosine similarity models. While these distinctions are undoubtedly important for understanding the geometry of the cognitive space, we recognize that they go beyond the major objective of this study, that is, to differentiate the cosine similarity model from domain-general/specific models. Therefore, we have chosen to exclude the Stroop-only, Simon-only and Stroop+Simon models in our revised manuscript.

      Something that raised additional concerns are the RSMs in the key region of interest (Fig S5). The pure stroop task appears to be represented very differently from all of the conditions that include simon conflict.

      Together, I think these limitations reflect the structure of the task and research goals, not the statistical approach (which has been meaningfully improved).

      Response: We appreciate the reviewer for pointing this out. It is essential to clarify that our conclusions were based on the significant similarity modulation effect identified in our statistical analysis using the cosine similarity model, where we did not distinguish between the within-Stroop condition and the other four within-conflict conditions (Fig. 7A, now Fig. 8A). This means that the representation of conflict type was not biased by the seemingly disparities in the values shown here. Moreover, to specifically test the differences between the within-Stroop condition and the other within-conflict conditions, we conducted a mixed-effect model analysis only including trial pairs from the same conflict type. In this analysis, the primary predictor was the cross-condition difference (0 for within-Stroop condition and 1 for other within-conflict conditions). The results showed no significant cross-condition difference in either the incongruent (t = 1.22, p = .23) or the congruent (t = 1.06, p = .29) trials. Thus, we believe the evidence for different similarities is inconclusive in our data and decided not to interpret this numerical difference. We have added this note in the revised figure caption for Figure S5.

      Author response image 2.

      Fig. S5. The stronger conflict type similarity effect in incongruent versus congruent conditions. (A) Summary representational similarity matrices for the right 8C region in incongruent (left) and congruent (right) conditions, respectively. Each cell represents the averaged Pearson correlation of cells with the same conflict type and congruency in the 1400×1400 matrix. Note that the seemingly disparities in the values of Stroop and other within-conflict cells (i.e., the diagonal) did not reach significance for either incongruent (t = 1.22, p = .23) or congruent (t = 1.06, p = .29) trials. (2) Scatter plot showing the averaged neural similarity (Pearson correlation) as a function of conflict type similarity in both conditions. The values in both A and B are calculated from raw Pearson correlation values, in contrast to the z-scored values in Fig. 4D.

      Minor:

      • In the analysis of similarity_orientation, the df is very large (~14000). Here, and throughout, the df should be reflective of the population of subjects (ie be less than the sample size).

      Response: The large degrees of freedom (df) in our analysis stem from the fact that we utilized a mixed-effect linear model, incorporating all data points (a total of 400×35=14000). In mixed-effect models, the df is determined by subtracting the number of fixed effects (in our case, 7) from the total number of observations. Notably, we are in line with the literature that have reported the df in this manner (e.g., Iravani et al., 2021; Schmidt & Weissman, 2015; Natraj et al., 2022).

      Reference:

      Iravani B, Schaefer M, Wilson DA, Arshamian A, Lundström JN. The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proc Natl Acad Sci U S A. 2021 Oct 19;118(42):e2101209118. https://doi.org/10.1073/pnas.2101209118.

      Schmidt, J.R., Weissman, D.H. Congruency sequence effects and previous response times: conflict adaptation or temporal learning?. Psychological Research 80, 590–607 (2016). https://doi.org/10.1007/s00426-015-0681-x.

      Natraj, N., Silversmith, D. B., Chang, E. F., & Ganguly, K. (2022). Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements. Neuron, 110(1), 154-174. https://doi.org/10.1016/j.neuron.2021.10.002.

      • it would improve the readability if there was more didactic justification for why analyses are done a certain way (eg justifying the jaccard metric). This will help less technically-savvy readers.

      Response: We appreciate the reviewer’s suggestion. However, considering the Stroop/Simon-only models in our design may not be a valid approach for distinguishing the contributions of the Stroop/Simon components, we have decided not to include the Jaccard metrics in our revised manuscript.

      Besides, to improve the readability, we have moved Figure S4 to the main text (labeled as Figure 7), and added the domain-general/domain-specific schematics in Figure 8.

      Author response image 3.

      Figure 8. Schematic of key RSMs. (A) and (B) show the orthogonality between conflict similarity and orientation RSMs. The within-subject RSMs (e.g., Group1-Group1) for conflict similarity and orientation are all the same, but the cross-group correlations (e.g., Group2-Group1) are different. Therefore, we can separate the contribution of these two effects when including them as different regressors in the same linear regression model. (C) and (D) show the two alternative models. Like the cosine model (A), within-group trial pairs resemble between-group trial pairs in these two models. The domain-specific model is an identity matrix. The domain-general model is estimated from the absolute difference of behavioral congruency effect, but scaled to 0(lowest similarity)-1(highest similarity) to aid comparison. The plotted matrices here include only one subject each from Group 1 and Group 2. Numbers 1-5 indicate the conflict type conditions, for spatial Stroop, StHSmL, StMSmM, StLSmH, and Simon, respectively. The thin lines separate four different sub-conditions, i.e., target arrow (up, down) × congruency (incongruent, congruent), within each conflict type.

      Reviewer #2:

      This study examines the construct of "cognitive spaces" as they relate to neural coding schemes present in response conflict tasks. The authors use a novel experimental design in which different types of response conflict (spatial Stroop, Simon) are parametrically manipulated. These conflict types are hypothesized to be encoded jointly, within an abstract "cognitive space", in which distances between task conditions depend only on the similarity of conflict types (i.e., where conditions with similar relative proportions of spatial-Stroop versus Simon conflicts are represented with similar activity patterns). Authors contrast such a representational scheme for conflict with several other conceptually distinct schemes, including a domain-general, domain-specific, and two task-specific schemes. The authors conduct a behavioral and fMRI study to test which of these coding schemes is used by prefrontal cortex. Replicating the authors' prior work, this study demonstrates that sequential behavioral adjustments (the congruency sequence effect) are modulated as a function of the similarity between conflict types. In fMRI data, univariate analyses identified activation in left prefrontal and dorsomedial frontal cortex that was modulated by the amount of Stroop or Simon conflict present, and representational similarity analyses (RSA) that identified coding of conflict similarity, as predicted under the cognitive space model, in right lateral prefrontal cortex.

      This study tackles an important question regarding how distinct types of conflict might be encoded in the brain within a computationally efficient representational format. The ideas postulated by the authors are interesting ones and the statistical methods are generally rigorous.

      Response: We would like to express our sincere appreciation for the reviewer’s positive evaluation of our manuscript and the constructive comments and suggestions. In response to your suggestions and concerns, we excluded the StroopOnly, SimonOnly and Stroop+Simon models, and added the schematic of domain-general/specific model RSMs. We have provided detailed responses to your comments below.

      The evidence supporting the authors claims, however, is limited by confounds in the experimental design and by lack of clarity in reporting the testing of alternative hypotheses within the method and results.

      1. Model comparison

      The authors commendably performed a model comparison within their study, in which they formalized alternative hypotheses to their cognitive space hypothesis. We greatly appreciate the motivation for this idea and think that it strengthened the manuscript. Nevertheless, some details of this model comparison were difficult for us to understand, which in turn has limited our understanding of the strength of the findings.

      The text indicates the domain-general model was computed by taking the difference in congruency effects per conflict condition. Does this refer to the "absolute difference" between congruency effects? In the rest of this review, we assume that the absolute difference was indeed used, as using a signed difference would not make sense in this setting. Nevertheless, it may help readers to add this information to the text.

      Response: We apologize for any confusion. The “difference” here indeed refers to the “absolute difference” between congruency effects. We have now clarified this by adding the word “absolute” accordingly.

      "Therefore, we defined the domain-general matrix as the absolute difference in their congruency effects indexed by the group-averaged RT in Experiment 2."

      Regarding the Stroop-Only and Simon-Only models, the motivation for using the Jaccard metric was unclear. From our reading, it seems that all of the other models --- the cognitive space model, the domain-general model, and the domain-specific model --- effectively use a Euclidean distance metric. (Although the cognitive space model is parameterized with cosine similarities, these similarity values are proportional to Euclidean distances because the points all lie on a circle. And, although the domain-general model is parameterized with absolute differences, the absolute difference is equivalent to Euclidean distance in 1D.) Given these considerations, the use of Jaccard seems to differ from the other models, in terms of parameterization, and thus potentially also in terms of underlying assumptions. Could authors help us understand why this distance metric was used instead of Euclidean distance? Additionally, if Jaccard must be used because this metric seems to be non-standard in the use of RSA, it would likely be helpful for many readers to give a little more explanation about how it was calculated.

      Response: We believe that the Jaccard similarity measure is consistent with the Cosine similarity measure. The Jaccard similarity is calculated as the intersection divided by the union. To define the similarity of two conflicts in the Stroop-only and Simon-only models, we first project them onto the vertical or horizontal axes, respectively (as shown in Author response image 1A). The Jaccard similarity in our design is equivalent to the cosine similarity because the denominator in the Jaccard similarity is identical to the denominator in the cosine similarity (both are the radius of the circle, Author response image 1B).

      However, it is important to note that a cosine similarity cannot be defined when conflicts are projected onto spatial Stroop or Simon axis simultaneously. Therefore, we used the Jaccard similarity in the previous version of our manuscript.

      Author response image 4.

      Definition of Jaccard similarity. A) Two conflicts (1 and 2) are projected onto the spatial Stroop/Simon axis in the Stroop/Simon-only model, respectively. The Jaccard similarity for Stroop-only and Simon-only model are and respectively. Letters a-d are the projected vectors from the two conflicts to the two axes. Blue and red colors indicate the conflict conditions. Shorter vectors are the intersection and longer vectors are the union. B) According to the cosine similarity model, the similarity is defined as , where e is the projected vector from conflict 1 to conflict 2, and g is the vector of conflict 1. The Jaccard similarity for this case is defined by , where f is the projector vector from conflict 2 to itself. Because f = g in our design, the Jaccard similarity is equivalent to the cosine similarity.

      However, we agree with the reviewer’s and other reviewers’ concern that the correlation between spatial Stroop and Simon conflicts makes it less likely to distinguish the Stroop+Simon from cosine similarity models. While distinguishing them is essential to understand the detailed geometry of the cognitive space, it is beyond our major purpose, that is, to distinguish the cosine similarity model with the domain-general/specific models. Therefore, we have chosen to exclude the Stroop-only, Simon-only and Stroop+Simon models from our revised manuscript.

      When considering parameterizing the Stroop-Only and Simon-Only models with Euclidean distances, one concern we had is that the joint inclusion of these models might render the cognitive space model unidentifiable due to collinearity (i.e., the sum of the Stroop-Only and Simon-Only models could be collinear with the cognitive space model). Could the authors determine whether this is the case? This issue seems to be important, as the presence of such collinearity would suggest to us that the design is incapable of discriminating those hypotheses as parameterized.

      Response: We acknowledge that our design does not allow for a complete differentiation between the parallel encoding (StroopOnly+SimonOnly) model and the cognitive space model, given their high correlation (r = 0.85). However, it is important to note that the StroopOnly+SimonOnly model introduces more free parameters, making the model fitting poorer than the cognitive space model.

      Additionally, the cognitive space model also shows high correlations with the StroopOnly and SimonOnly models (both rs = 0.66). It is crucial to emphasize that our study’s primary goal does not involve testing the parallel encoding hypothesis (through the StroopOnly+SimonOnly model). As a result, we have chosen to remove the model comparison results with the StroopOnly, SimonOnly and StroopOnly+SimonOnly models. Instead, the cognitive space model shows lower correlation with the purely domain-general (r = −0.16) and domain-specific (r = 0.46) models.

      1. Issue of uniquely identifying conflict coding

      We certainly appreciate the efforts that authors have taken to address potential confounders for encoding of conflict in their original submission. We broach this question not because we wish authors to conduct additional control analyses, but because this issue seems to be central to the thesis of the manuscript and we would value reading the authors' thoughts on this issue in the discussion.

      To summarize our concerns, conflict seems to be a difficult variable to isolate within aggregate neural activity, at least relative to other variables typically studied in cognitive control, such as task-set or rule coding. This is because it seems reasonable to expect that many more nuisance factors covary with conflict -- such as univariate activation, level of cortical recruitment, performance measures, arousal --- than in comparison with, for example, a well-designed rule manipulation. Controlling for some of these factors post-hoc through regression is commendable (as authors have done here), but such a method will likely be incomplete and can provide no guarantees on the false positive rate.

      Relatedly, the neural correlates of conflict coding in fMRI and other aggregate measures of neural activity are likely of heterogeneous provenance, potentially including rate coding (Fu et al., 2022), temporal coding (Smith et al., 2019), modulation of coding of other more concrete variables (Ebitz et al., 2020, 10.1101/2020.03.14.991745; see also discussion and reviews of Tang et al., 2016, 10.7554/eLife.12352), or neuromodulatory effects (e.g., Aston-Jones & Cohen, 2005). Some of these origins would seem to be consistent with "explicit" coding of conflict (conflict as a representation), but others would seem to be more consistent with epiphenomenal coding of conflict (i.e., conflict as an emergent process). Again, these concerns could apply to many variables as measured via fMRI, but at the same time, they seem to be more pernicious in the case of conflict. So, if authors consider these issues to be germane, perhaps they could explicitly state in the discussion whether adopting their cognitive space perspective implies a particular stance on these issues, how they interpret their results with respect to these issues, and if relevant, qualify their conclusions with uncertainty on these issues.

      Response: We appreciate the reviewer’s insightful comments regarding the representation and process of conflict.

      First, we agree that the conflict is not simply a pure feature like a stimulus but often arises from the interaction (e.g., dimension overlap) between two or more aspects. For example, in the manual Stroop, conflict emerges from the inconsistent semantic information between color naming and word reading. Similarly, other higher-order cognitive processes such as task-set also underlie the relationship between concrete aspects. For instance, in a face/house categorization task, the taskset is the association between face/house and the responses. When studying these higher-order processes, it is often impossible to completely isolate them from bottomup features. Therefore, methods like the representational similarity analysis and regression models are among the limited tools available to attempt to dissociate these concrete factors from conflict representation. While not perfect, this approach has been suggested and utilized in practice (Freund et al., 2021).

      Second, we agree that conflict can be both a representation and an emerging process. These two perspectives are not necessarily contradictory. According to David Marr’s influential three-level theory (Marr, 1982), representation is the algorithm of the process to achieve a goal based on the input. Therefore, a representation can refer to not only a static stimulus (e.g., the visual representation of an image), but also a dynamic process. Building on this perspective, we posit that the representation of cognitive control consists of an array of dynamic representations embedded within the overall process. A similar idea has been proposed that the abstract task profiles can be progressively constructed as a representation in our brain (Kikumoto & Mayr, 2020).

      We have incorporated this discussion into the manuscript:

      "Recently an interesting debate has arisen concerning whether cognitive control should be considered as a process or a representation (Freund, Etzel, et al., 2021). Traditionally, cognitive control has been predominantly viewed as a process. However, the study of its representation has gained more and more attention. While it may not be as straightforward as the visual representation (e.g., creating a mental image from a real image in the visual area), cognitive control can have its own form of representation. An influential theory, Marr’s (1982) three-level model proposed that representation serves as the algorithm of the process to achieve a goal based on the input. In other words, representation can encompass a dynamic process rather than being limited to static stimuli. Building on this perspective, we posit that the representation of cognitive control consists of an array of dynamic representations embedded within the overall process. A similar idea has been proposed that the representation of task profiles can be progressively constructed with time in the brain (Kikumoto & Mayr, 2020)."

      Reference:

      Freund, M. C., Etzel, J. A., & Braver, T. S. (2021). Neural Coding of Cognitive Control: The Representational Similarity Analysis Approach. Trends in Cognitive Sciences, 25(7), 622-638. https://doi.org/10.1016/j.tics.2021.03.011

      Marr, D. C. (1982). Vision: A computational investigation into human representation and information processing. New York: W.H. Freeman.

      Kikumoto A, Mayr U. (2020). Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proceedings of the National Academy of Sciences, 117(19):10603-10608. https://doi.org/10.1073/pnas.1922166117.

      1. Interpretation of measured geometry in 8C

      We appreciate the inclusion of the measured similarity matrices of area 8C, the key area the results focus on, to the supplemental, as this allows for a relatively model-agnostic look at a portion of the data. Interestingly, the measured similarity matrix seems to mismatch the cognitive space model in a potentially substantive way. Although the model predicts that the "pure" Stroop and Simon conditions will have maximal self-similarity (i.e., the Stroop-Stroop and Simon-Simon cells on the diagonal), these correlations actually seem to be the lowest, by what appears to be a substantial margin (particularly the Stroop-Stroop similarities). What should readers make of this apparent mismatch? Perhaps authors could offer their interpretation on how this mismatch could fit with their conclusions.

      Response: We appreciate the reviewer for bringing this to our attention. It is essential to clarify that our conclusions were based on the significant similarity modulation effect observed in our statistical analysis using the cosine similarity model, where we did not distinguish between the within-Stroop condition and the other four withinconflict conditions (Fig. 7A). This means that the representation of conflict type was not biased by the seemingly disparities in the values shown here. Moreover, to specifically address the potential differences between the within-Stroop condition and the other within-conflict conditions, we conducted a mixed-effect model. In this analysis, the primary predictor was the cross-condition difference (0 for within-Stroop condition and 1 for other within-conflict conditions). The results showed no significant cross-condition difference in either the incongruent trials (t = 1.22, p = .23) or the congruent (t = 1.06, p = .29) trials. Thus, we believe the evidence for different similarities is inconclusive in our data and decided not to interpret this numerical difference.

      We have added this note in the revised figure caption for Figure S5.

      Author response image 5.

      Fig. S5. The stronger conflict type similarity effect in incongruent versus congruent conditions. (A) Summary representational similarity matrices for the right 8C region in incongruent (left) and congruent (right) conditions, respectively. Each cell represents the averaged Pearson correlation of cells with the same conflict type and congruency in the 1400×1400 matrix. Note that the seemingly disparities in the values of Stroop and other within-conflict cells (i.e., the diagonal) did not reach significance for either incongruent (t = 1.22, p = .23) or congruent (t = 1.06, p = .29) trials. (2) Scatter plot showing the averaged neural similarity (Pearson correlation) as a function of conflict type similarity in both conditions. The values in both A and B are calculated from raw Pearson correlation values, in contrast to the z-scored values in Fig. 4D.

      1. It would likely improve clarity if all of the competing models were displayed as summarized RSA matrices in a single figure, similar to (or perhaps combined with) Figure 7.

      Response: We appreciate the reviewer’s suggestion. We now have incorporated the domain-general and domain-specific models into the Figure 7 (now Figure 8).

      Author response image 6.

      Figure 8. Schematic of key RSMs. (A) and (B) show the orthogonality between conflict similarity and orientation RSMs. The within-subject RSMs (e.g., Group1-Group1) for conflict similarity and orientation are all the same, but the cross-group correlations (e.g., Group2-Group1) are different. Therefore, we can separate the contribution of these two effects when including them as different regressors in the same linear regression model. (C) and (D) show the two alternative models. Like the cosine model (A), within-group trial pairs resemble between-group trial pairs in these two models. The domain-specific model is an identity matrix. The domain-general model is estimated from the absolute difference of behavioral congruency effect, but scaled to 0(lowest similarity)-1(highest similarity) to aid comparison. The plotted matrices here include only one subject each from Group 1 and Group 2. Numbers 1-5 indicate the conflict type conditions, for spatial Stroop, StHSmL, StMSmM, StLSmH, and Simon, respectively. The thin lines separate four different sub-conditions, i.e., target arrow (up, down) × congruency (incongruent, congruent), within each conflict type.

      1. Because this model comparison is key to the main inferences in the study, it might also be helpful for most readers to move all of these RSA model matrices to the main text, instead of in the supplemental.

      Response: We thank the reviewer for this suggestion. We have moved the Fig. S4 to the main text, labeled as the new Figure 7.

      1. It may be worthwhile to check how robust the observed brain-behavior association (Fig 4C) is to the exclusion of the two datapoints with the lowest neural representation strength measure, as these points look like they have high leverage.

      Response: We calculated the Pearson correlation after excluding the two points and found it does not affect the results too much, with the r = 0.50, p = .003 (compared to the original r = 0.52, p = .001).

      Additionally, we found the two axes were mistakenly shifted in Fig 4C. Therefore, we corrected this error in the revised manuscript. The correlation results would not be influenced.

      Author response image 7.

      Fig. 4. The conflict type effect. (A) Brain regions surviving the Bonferroni correction (p < 0.0001) across the regions (criterion 1). Labeled regions are those meeting the criterion 2. (B) Different encoding of conflict type in the incongruent with congruent conditions. * Bonferroni corrected p < .05. (C) The brain-behavior correlation of the right 8C (criterion 3). The x-axis shows the beta coefficient of the conflict type effect from the RSA, and the y-axis shows the beta coefficient obtained from the behavioral linear model using the conflict similarity to predict the CSE in Experiment 2. (D) Illustration of the different encoding strength of conflict type similarity in incongruent versus congruent conditions of right 8C. The y-axis is derived from the z-scored Pearson correlation coefficient, consistent with the RSA methodology. See Fig. S4B for a plot with the raw Pearson correlation measurement. l = left; r = right.

      Reviewer #3:

      Yang and colleagues investigated whether information on two task-irrelevant features that induce response conflict is represented in a common cognitive space. To test this, the authors used a task that combines the spatial Stroop conflict and the Simon effect. This task reliably produces a beautiful graded congruency sequence effect (CSE), where the cost of congruency is reduced after incongruent trials. The authors measured fMRI to identify brain regions that represent the graded similarity of conflict types, the congruency of responses, and the visual features that induce conflicts. They applied univariate, multivariate, and connectivity analyses to fMRI data to identify brain regions that represent the graded similarity of conflict types, the congruency of responses, and the visual features that induce conflicts. They further directly assessed the dimensionality of represented conflict space.

      The authors identified the right dlPFC (right 8C), which shows 1) stronger encoding of graded similarity of conflicts in incongruent trials and 2) a positive correlation between the strength of conflict similarity type and the CSE on behavior. The dlPFC has been shown to be important for cognitive control tasks. As the dlPFC did not show a univariate parametric modulation based on the higher or lower component of one type of conflict (e.g., having more spatial Stroop conflict or less Simon conflict), it implies that dissimilarity of conflicts is represented by a linear increase or decrease of neural responses. Therefore, the similarity of conflict is represented in multivariate neural responses that combine two sources of conflict.

      The strength of the current approach lies in the clear effect of parametric modulation of conflict similarity across different conflict types. The authors employed a clever cross-subject RSA that counterbalanced and isolated the targeted effect of conflict similarity, decorrelating orientation similarity of stimulus positions that would otherwise be correlated with conflict similarity. A pattern of neural response seems to exist that maps different types of conflict, where each type is defined by the parametric gradation of the yoked spatial Stroop conflict and the Simon conflict on a similarity scale. The similarity of patterns increases in incongruent trials and is correlated with CSE modulation of behavior.

      The main significance of the paper lies in the evidence supporting the use of an organized "cognitive space" to represent conflict information as a general control strategy. The authors thoroughly test this idea using multiple approaches and provide convincing support for their findings. However, the universality of this cognitive strategy remains an open question.

      (Public Reviews) Taken together, this study presents an exciting possibility that information requiring high levels of cognitive control could be flexibly mapped into cognitive map-like representations that both benefit and bias our behavior. Further characterization of the representational geometry and generalization of the current results look promising ways to understand representations for cognitive control.

      Response: We would like to thank the reviewer for the positive evaluation of our manuscript and for providing constructive comments. In response to your suggestions, we have acknowledged the potential limitation of the design and the cross-subject RSA approach, and incorporated the open questions to the discussions. Please find our detailed responses below.

      The task presented in the study involved two sources of conflict information through a single salient visual input, which might have encouraged the utilization of a common space.

      Response: We agree that the unified visual input in our design may have facilitated the utilization of a common space. However, we believe the stimuli are not necessarily unified in the construction of the common space. To further test the potential interaction between the concrete stimulus setting and the cognitive space representation, it is necessary to use varied stimuli in future research. We have left this as an open question in the discussion:

      Can we effectively map any sources of conflict with completely different stimuli into a single space?

      The similarity space was analyzed at the level of between-individuals (i.e., crosssubject RSA) to mitigate potential confounds in the design, such as congruency and the orientation of stimulus positions. This approach makes it challenging to establish a direct link between the quality of conflict space representation and the patterns of behavioral adaptations within individuals.

      Response: By setting the variables as random effects at the subject level, we have extracted the individual effects that incorporate both the group-level fixed effects and individual-level random effects. We believe this approach yields results that are as reliable, if not more, than effects calculated from individual data only. First, the mixed effect linear (LME) model has included all the individual data, forming the basis for establishing random effects. Therefore, the individual effects derived from this approach inherently reflect the individual-specific effects. To support this notion, we have included a simulation script (accessible in the online file “simulation_LME.mlx” at https://osf.io/rcq8w) to demonstrate the strong consistency between the two approaches (see Author response image 8). In this simulation, we generated random data (Y) for 35 subjects, each containing 20 repeated measurements across 5 conditions. To streamline the simulation, we only included one predictor (X), which was treated as both fixed and random effects at the subject level. We applied two methods to calculate the individual beta coefficient. The first involved extracting individual beta coefficients from the LME model by summing the fixed effect with the subject-specific random effect. The second method was entailed conducting a regression analysis using data from each subject to obtain the slope. We tested their consistency by calculating the Pearson correlation between the derived beta coefficients. This simulation was repeated 100 times.

      Author response image 8.

      The consistent individual beta coefficients between the mixed effect model and the individual regression analysis. A) The distribution of Pearson correlation between the two methods for 100 times. B) An example from the simulation showing the highly correlated results from the two methods. Each data point indicates a subject (n=35).

      Second, the potential difference between the two methods lies in that the LME model have also taken the group-level variance into account, such as the dissociable variances of the conflict similarity and orientation across subject groups. This enabled us to extract relatively cleaner conflict similarity effects for each subject, which we believe can be better linked to the individual behavioral adaptations. Moreover, we have extracted the behavioral adaptations scores (i.e., the similarity modulation effect on CSE) using a similar LME approach. Conducting behavioral analysis solely using individual data would have been less reliable, given the limited sample size of individual data (~32 points per subject). This also motivated us to maintain consistency by extracting individual neural effects using LME models.

      Furthermore, it remains unclear at which cognitive stages during response selection such a unified space is recruited. Can we effectively map any sources of conflict into a single scale? Is this unified space adaptively adjusted within the same brain region? Additionally, does the amount of conflict solely define the dimensions of this unified space across many conflict-inducing tasks? These questions remain open for future studies to address.

      Response: We appreciate the reviewer’s constructive open questions. We respond to each of them based on our current understanding.

      1) It remains unclear at which cognitive stages during response selection such a unified space is recruited.

      We anticipate that the cognitive space is recruited to guide the transference of behavioral CSE at two critical stages. The first stage involves the evaluation of control demands, where the representational distance/similarity between previous and current trials influences the adjustment of cognitive control. The second stage pertains to is control execution, where the switch from one control state to another follows a path within the cognitive space. It is worth noting that future studies aiming to address this question may benefit from methodologies with higher temporal resolutions, such as EEG and MEG, to provide more precise insights into the temporal dynamics of the process of cognitive space recruitment.

      2) Can we effectively map any sources of conflict into a single scale?

      It is possible that various sources of conflict can be mapped onto the same space based on their similarity, even if finding such an operational defined similarity may be challenging. However, our results may offer an approach to infer the similarity between two conflicts. One way is to examine their congruency sequence effect (CSE), with a stronger CSE suggesting greater similarity. The other way is to test their representational similarity within the dorsolateral prefrontal cortex.

      3) Is this unified space adaptively adjusted within the same brain region? We do not have an answer to this question. We showed that the cognitive space does not change with time (Note. S3). What have adjusted is the control demand to resolve the quickly changing conflict conditions from trial to trial. Though, it is an interesting question whether the cognitive space may be altered, for example, when the mental state changes significantly. And if yes, we can further test whether the change of cognitive space is also within the right dlPFC.

      4) Additionally, does the amount of conflict solely define the dimensions of this unified space across many conflict-inducing tasks?

      Our understanding of this comment is that the amount of conflict refers to the number of conflict sources. Based on our current finding, the dimensions of the space are indeed defined by how many different conflict sources are included. However, this would require the different conflict sources are orthogonal. If some sources share some aspects, the cognitive space may collapse to a lower dimension. We have incorporated the first question into the discussion:

      Moreover, we anticipate that the representation of cognitive space is most prominently involved at two critical stages to guide the transference of behavioral CSE. The first stage involves the evaluation of control demands, where the representational distance/similarity between previous and current trials influences the adjustment of cognitive control. The second stage pertains to control execution, where the switch from one control state to another follows a path within the cognitive space. However, we were unable to fully distinguish between these two stages due to the low temporal resolution of fMRI signals in our study. Future research seeking to delve deeper into this question may benefit from methodologies with higher temporal resolutions, such as EEG and MEG.

      We have included the other questions into the manuscript as open questions, calling for future research.

      Several interesting questions remains to be answered. For example, is the dimension of the unified space across conflict-inducing tasks solely determined by the number of conflict sources? Can we effectively map any sources of conflict with completely different stimuli into a single space? Is the cognitive space geometry modulated by the mental state? If yes, what brain regions mediate the change of cognitive space?

      Minor comments:

      • The original comment about out-of-sample predictions to examine the continuity of the space was a suggestion for testing neural representations, not behavior (I apologize for the lack of clarity). Given the low dimensionality of the conflict space shown by the participation ratio, we expect that linear separability exists only among specific combinations of conditions. For example, the pair of conflicts 1 and 5 together is not linearly separable from conflicts 2 and 3. But combined with other results, this is already implied.

      Response: We apologize for the misunderstanding. In fact, performing a prediction analysis using the extensive RSM in our study does presents certain challenges, primarily due to its substantial size (1400x1400) and the intricate nature of the mixed-effect linear model. In our efforts to simplify the prediction process by excluding random effects, we did observe a correlation between the predicted and original values, albeit a relatively small Pearson correlation coefficient of r = 0.024, p < .001. This small correlation can be attributed to two key factors. First, the exclusion of data points impacts not only the conflict similarity regressor but also other regressors within the model, thereby diminishing the predictive power. Secondly, the large amount of data points in the model heightens the risk of overfitting, subsequently reducing the model’s capacity for generalization and increasing the likelihood of unreliable predictions. Given these potential problems, we have opted not to include this prediction in the revised manuscript.

    1. Author Response

      We are delighted that eLife has assessed our study as a valuable contribution as well as appreciating the importance of working on asymptomatic reservoirs of P. falciparum in high transmission where not just children, but adolescents and adults harbor multiclonal infections. The constructive public reviews will serve to improve our manuscript.

      Detailed responses to referees’ comments and a revised manuscript are forthcoming. Here we make a provisional response to three key areas addressed by the referees:

      (1) census population size

      Referee 1 raises important questions although we respectfully disagree on the terminology we have adopted (of “census”) and on the unclear utility of the proposed quantity.

      We consider the quantity a census in that it is a total enumeration or count of the infections in a given population sample and over a given time period. In this sense, it gives us a tangible notion of the size of the parasite population, in an ecological sense, distinct from the formal effective population size used in population genetics. Given the low overlap between var repertoires of parasites (as observed in monoclonal infections), the population size we have calculated translates to a diversity of strains or repertoires. But our focus here is in a measure of population size itself. The distinction between population size in terms of infection counts and effective population size from population genetics has been made before for pathogens (see for example Bedford et al. 2011 for the seasonal influenza virus and for the measles virus) and is a clear one in the ecological literature for non-pathogen populations (Palstra et al. 2012).

      Both referees 1 and 2 point out that census population size will be sensitive to sample size. We completely agree with the dependence of our quantity on sample size. We used it for comparisons across time of samples of the same depth, to describe the large population size characteristic of high transmission, and persistent across the IRS intervention. Of course, one would like to be able to use this notion across studies that differ in sampling depth.

      Here, referee 1 makes an insightful and useful suggestion. It is true that we can use mean MOI, and indeed there is a simple map between our population size and mean MOI (as we just need to divide or multiply by sample size). We can do even more, as with mean MOI we can presumably extrapolate to the full sample size of the host population, or the population size of another sample in another location. What is needed for this purpose is a stable mean MOI relative to sample size. We can show that indeed in our study mean MOI is stable in that way, by subsampling to different depths of our original sample. We will include in the revision discussion of this point and result, which allows an extrapolation of the census population size to the whole population of hosts in the local area. We’ll also clarify the time denominator, as given the typical duration of infections, we expect our population size to be representative of a per-generation measure.

      Referee 2 suggests we adopt the term “census count” but as a census in our mind is a count we prefer to use “census”.

      Referee 3 considers the genetic data tracking parasite MOI and census changes gives the same result as prevalence which tracks infected hosts. Respectfully, we disagree and will provide an expanded response.

      (2) the importance of lineages (in response to referee 2)

      We do not think that lineages moving exclusively through a given type of host or “patch” is a requirement for enumerating the size of the total infections in such a subset. It is true that what we have is a single parasite population, but we are enumerating for the season the respective size in host classes (children and adults). This is akin to enumerating subsets of a population in ecological settings.

      We are also not clear on the concept of lineage for these highly recombinant parasites as we struggle to find highly related repertoires. In fact, we see the use of the var fingerprinting methodology as a means to capture changes in strain or var repertoires dynamics as a result of changing transmission conditions.

      (3) var methodology

      Comments and queries were made by all three referees about aspects of var methodology, including the Bayesian approach. These will be addressed in our full response.

      Here we respond to a very good point made by referee 2: “Thinking about the applicability of this approach to other studies, I would be interested in a larger treatment of how overlapping DBLa repertoires would impact MOIvar estimates. Is there a definable upper bound above which the method is unreliable? Alternatively, can repertoire overlap be incorporated into the MOI estimator?”

      There is no predefined threshold one can present a priori. Intuitively, the approach to estimate MOI would appear to breakdown as overlap moves away from extremely low, and therefore, for locations with lower transmission intensity. Interestingly, we have observed that this is not the case in our paper by Labbé et al. 2023 where we used model simulations in a gradient of three transmission intensities, from high to low. The original varcoding method performed well across the gradient. This may arise from a nonlinear and fast transition from low overlap to high overlap that is accompanied by the MOI transitioning quickly from primarily multiclonal (MOI > 1) to monoclonal (MOI = 1). This issue needs to be investigated further, including ways to extend the estimation to explicitly include the distribution of DBL repertoire overlap.

      References: Bedford T, Cobey S, Pascual, M. 2011. Strength and tempo of selection revealed in viral gene genealogies. BMC Evol Biol 11, 220. https://doi.org/10.1186/1471-2148-11-220

      Labbé F, He Q, Zhan Q, Tiedje KE, Argyropoulos DC, Tan MH, Ghansah A, Day KP, Pascual M. 2023. Neutral vs . non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol 19 :e1010816. doi:doi.org/10.1101/2022.06.27.49780

      Palstra FP, Fraser DJ. 2012. Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol. Sep;2(9):2357-65. doi:10.1002/ece3.329.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This research advance arctile describes a valuable image analysis method to identify individual cells (neurons) within a population of fluorescently labeled cells in the nematode C. elegans. The findings are solid and the method succeeds to identify cells with high precision. The method will be valuable to the C. elegans research community.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper, the authors developed an image analysis pipeline to automatically identify individual neurons within a population of fluorescently tagged neurons. This application is optimized to deal with multi-cell analysis and builds on a previous software version, developed by the same team, to resolve individual neurons from whole-brain imaging stacks. Using advanced statistical approaches and several heuristics tailored for C. elegans anatomy, the method successfully identifies individual neurons with a fairly high accuracy. Thus, while specific to C. elegans, this method can become instrumental for a variety of research directions such as in-vivo single-cell gene expression analysis and calcium-based neural activity studies.

      The analysis procedure depends on the availability of an accurate atlas that serves as a reference map for neural positions. Thus, when imaging a new reporter line without fair prior knowledge of the tagged cells, such an atlas may be very difficult to construct. Moreover, usage of available reference atlases, constructed based on other databases, is not very helpful (as shown by the authors in Fig 3), so for each new reporter line a de-novo atlas needs to be constructed.

      We thank the reviewer for pointing out a place where we can use some clarification. While in principle that every new reporter line would need fair prior knowledge, atlases are either already available or not difficult to construct. If one can make the assumption that the anatomy of a particular line is similar to existing atlases (Yemini 2021,Nejatbakhsh 2023,Toyoshima 2020), the cell ID can be immediately performed. Even in the case that one suspects the anatomy may have changes from existing atlases (e.g. in the case of examining mutants), existing atlases can serve as a starting point to provide a draft ID, which facilitates manual annotation. Once manual annotations on ~5 animals are available as we have shown in this work (which is a manageable number in practice), this new dataset can be used to build an updated atlas that can be used for future inferences. We have added this discussion in the manuscript: “If one determines that the anatomy of a particular animal strain is substantially different from existing atlases, new atlases can be easily constructed using existing atlases as starting points.” (page 18).

      I have a few comments that may help to better understand the potential of the tool to become handy.

      1. I wonder the degree by which strain mosaicism affects the analysis (Figs 1-4) as it was performed on a non-integrated reporter strain. As stated, for constructing the reference atlas, the authors used worms in which they could identify the complete set of tagged neurons. But how senstiive is the analysis when assaying worms with different levels of mosaicism? Are the results shown in the paper stem from animals with a full neural set expression? Could the authors add results for which the assayed worms show partial expression where only 80%, 70%, 50% of the cells population are observed, and how this will affect idenfication accuracy? This may be important as many non-integrated reporter lines show high mosaic patterns and may therefore not be suitable for using this analytic method. In that sense, could the authors describe the mosaic degree of their line used for validating the method.

      We appreciate the reviewer for this comment. We want to clarify that most of the worms used in the construction of the atlas are indeed affected by mosaicism and thus do not express the full set of candidate neurons. We have added such a plot as requested (Figure 3 – figure supplement 2, copied below). Our data show that there is no correlation between the fraction of cells expressed in a worm and neuron ID correspondence. We agree with the reviewer this additional insight may be helpful; we have modified the text to include this discussion: “Note that we observed no correlation between the degree of mosaicism and neuron ID correspondence (Figure 3- figure supplement 2).” (page 10).

      Author response image 1.

      No correlation between the degree of mosaicism (fraction of cells expressed in the worm) and neuron ID correspondence.

      1. For the gene expression analysis (Fig 5), where was the intensity of the GFP extracted from? As it has no nuclear tag, the protein should be cytoplasmic (as seen in Fig 5a), but in Fig 5c it is shown as if the region of interest to extract fluorescence was nuclear. If fluorescence was indeed extracted from the cytoplasm, then it will be helpful to include in the software and in the results description how this was done, as a huge hurdle in dissecting such multi-cell images is avoiding crossreads between adjacent/intersecting neurons.

      For this work, we used nuclear-localized RFP co-expressed in the animal, and the GFP intensities were extracted from the same region RFP intensities were extracted. If cytosolic reporters are used, one would imagine a membrane label would be necessary to discern the border of the cells. We clarified our reagents and approach in the text: “The segmentation was done on the nuclear-localized mCherry signals, and GFP intensities were extracted from the same region.” (page21).

      1. In the same mater: In the methods, it is specified that the strain expressing GCAMP was also used in the gene expression analysis shown in Figure 5. But the calcium indicator may show transient intensities depending on spontaneous neural activity during the imaging. This will introduce a significant variability that may affect the expression correlation analysis as depicted in Figure 5.

      We apologize for the error in text. The strain used in the gene expression analysis did not express GCaMP. We did not analyze GCaMP expression in figure 5. We have corrected the error in the methods.

      Reviewer #2 (Public Review):

      The authors succeed in generalizing the pre-alignment procedure for their cell idenfication method to allow it to work effectively on data with only small subsets of cells labeled. They convincingly show that their extension accurately identifies head angle, based on finding auto fluorescent tissue and looking for a symmetric l/r axis. They demonstrate that the method works to identify known subsets of neurons with varying accuracy depending on the nature of underlying atlas data. Their approach should be a useful one for researchers wishing to identify subsets of head neurons in C. elegans, for example in whole brain recording, and the ideas might be useful elsewhere.

      The authors also strive to give some general insights on what makes a good atlas. It is interesting and valuable to see (at least for this specific set of neurons) that 5-10 ideal examples are sufficient. However, some critical details would help in understanding how far their insights generalize. I believe the set of neurons in each atlas version are matched to the known set of cells in the sparse neuronal marker, however this critical detail isn't explicitly stated anywhere I can see.

      This is an important point. We have made text modifications to make it clear to the readers that for all atlases, the number of entities (candidate list) was kept consistent as listed in the methods. In the results section under “CRF_ID 2.0 for automatic cell annotation in multi-cell images,” we added the following sentence: “Note that a truncated candidate list can be used for subse-tspecific cell ID if the neuronal expression is known” (page 3). In the methods section, we added the following sentence: “For multi-cell neuron predictions on the glr-1 strain, a truncated atlas containing only the above 37 neurons was used to exclude neuron candidates that are irrelevant for prediction” (Page 20).

      In addition, it is stated that some neuron positions are missing in the neuropal data and replaced with the (single) position available from the open worm atlas. It should be stated how many neurons are missing and replaced in this way (providing weaker information).

      We modified the text in the result section as follows: “Eight out of 37 candidate neurons are missing in the neuroPAL atlas, which means 40% of the pairwise relationships of neurons expressing the glr-1p::NLS-mcherry transgene were not augmented with the NeuroPAL data but were assigned the default values from the OpenWorm atlas” (page 10).

      It also is not explicitly stated that the putative identities for the uncertain cells (designated with Greek letters) are used to sample the neuropal data. Large numbers of openworm single positions or if uncertain cells are misidentified forcing alignment against the positions of nearby but different cells would both handicap the neuropal atlas relative to the matched florescence atlas. This is an important question since sufficient performance from an ideal neuropal atlas (subsampled) would avoid the need for building custom atlases per strain.

      The putative identities are not used to sample the NeuroPAL data. They were used in the glr-1 multi-cell case to indicate low confidence in manual identification/annotation. For all steps of manual annotation and CRF_ID predictions, we used real neuron labels, and the Greek labels were used for reporting purposes only. It is true that the OpenWorm values (40% of the atlas) would be a handicap for the neuroPAL atlas. This is mainly due to the difficulty of obtaining NeuroPAL data as it requires 3-color fluorescence microscopy and significant time and labor to annotate the large set of neurons. This is one reason to take a complementary approach as we do in this paper.

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 3, there is a confusion in the legend relating to panels c-e (e.g. panel c is neuron ID accuracy but it is described per panel e in the legend.

      We made the necessary changes.

      1. Figure 3, were statistical tests performed for panels d-e? if so, and the outcome was not significant, then it might be good to indicate this in the legend.

      We have added results of statistical tests in the legend as the following sentence: “All distributions in panel d and e had a p-value of less than 0.0001 for one sample t-test against zero.” One sample t-tests were performed because what is plotted already represents each atlas’ differences to the glr-1 25 dataset atlas, we didn’t think the statistical analyses between the other atlases would add significant value.

      1. Figure 4, no asterisks are shown in the figure so it is possible to remove the sentence in the legend describing what the asterisk stands for.

      Thank you. We made the necessary changes.

      Reviewer #2 (Recommendations For The Authors):

      Comparison with deep learning approaches could be more nuanced and structured, the authors (prior) approach extended here combines a specific set of comparative relationship measurements with a general optimization approach for matching based on comparative expectations. Other measurements could be used whether explicit (like neighbor expectations) or learned differences in embeddings. These alternate measurements would both need to be extensively re-calibrated for different sets of cells but might provide significant performance gains. In addition deep learning approaches don't solve the optimization part of the matching problem, so the authors approach seems to bring something strong to the table even if one is committed to learned methods (necessary I suspect for human level performance in denser cell sets than the relatively small number here). A more complete discussion of these themes might better frame the impact of the work and help readers think about the advantages and disadvantages or different methods for their own data.

      We thank the reviewer for bringing up this point. We apologize perhaps not making the point clearer in the original submission. This extension of the original work (Chaudhary et al) is not changing the CRF-based framework, but only augmenting the approach with a better defined set of axes (solely because in multicell and not whole-brain datasets, the sparsity of neurons degrades the axis definition and consequently the neuron ID predictions). We are not fundamentally changing the framework, and therefore all the advantages (over registration-based approaches for example) also apply here. The other purpose of this paper is to demonstrate a couple of use-cases for gene expression analysis, which is common in studies in C. elegans (and other organisms). We hope that by showing a use-case others can see how this approach is useful for their own applications.

      We have clarified these points in the paper (page 18). “The fundamental framework has not been changed from CRF_ID 1.0, and therefore the advantages of CRF_ID outlined in the original work apply for CRF_ID 2.0 as well.”

      The atribution of anatomical differences to strain is interesting, but seems purely speculative, and somewhat unlikely. I would suspect the fundamentally more difficult nature of aligning N items to M>>N items in an atlas accounts for the differences in using the neuroPAL vs custom atlas here. If this is what is meant, it could be stated more clearly.

      It is important to note that the same neuron candidate list (listed in methods) was used for all atlases, so there is no difference among the atlases in terms of the number of cells in the query vs. candidate list. In other words, the same values for M and for N are used regardless of the reference atlas used.

      We have preliminary data indicating differences between the NeuroPAL and custom atlas. For instance, the NeuroPAL atlas scales smaller than the custom glr-1 atlas. Since direct comparisons of the different atlases are beyond the scope of this paper, we will leave the exact comparisons for future work. We suspect that the differences are from a combination of differences in anatomy and imaging conditions. While NeuroPAL atlas may not be exactly fitting for the custom dataset, it can serve as a good starting point for guesses when no custom atlases are available, as we have discussed earlier (response to Public Comments from Reviewer 1 Point 1). As explained earlier, we have added these discussions in the paper (see page 18).

      I was also left wondering if the random removal of landmarks had to be adjusted in this work given it is (potentially) helping cope with not just occasional weak cells but the systematic loss of most of the cells in the atlas. If the parameters of this part of the algorithm don't influence the success for N to M>>N alignment (here when the neuroPAL or OpenWorm atlas is used) this seems interesting in itself and worth discussing. Conversely, if these parameters were opitmized for the matched atlas and used for the others, this would seem to bias performance results.

      We may have failed to make this clear in the main text. As we have stated in our responses in the public review section, we do systematically limit the neuron labels in the candidate list to neurons that are known to be expressed by the promotor. The candidate list, which is kept consistent for all atlases, has more neurons than cells in the query, so it is always an N-to-M matching where M>N. We did not use landmarks, but such usage is possible and will only improve the matching.

      We have attempted to clarify these points in the manuscript. In the results section under “CRF_ID 2.0 for automatic cell annotation in multi-cell images,” we added the following sentence: “Note that a truncated candidate list can be used for subset-specific cell ID if the neuronal expression is known” (page 3). In the methods section, we added the following sentence: “For multi-cell neuron predictions on the glr-1 strain, a truncated atlas containing only the above 37 neurons was used to exclude neuron candidates that are irrelevant for prediction” (Page 20).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study that leverages a human-chimpanzee tetraploid iPSC model to test whether cis-regulatory divergence between species tends to be cell type-specific. The evidence supporting the study's primary conclusion--that species differences in gene regulation are enriched in cell type-specific genes and regulatory elements--is compelling, although attention to biases introduced by sequence conservation is merited, and the case that is made for cell type-specific changes reflecting adaptive evolution is incomplete. This work will be of broad interest in evolutionary and functional genomics.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study aims to identify gene expression differences exclusively caused by cis-regulatory genetic changes by utilizing hybrid cell lines derived from human and chimpanzee. While previous attempts have focused on specific tissues, this study expands the comparison to six different tissues to investigate tissue specificity and derive insights into the evolution of gene expression.

      One notable strength of this work lies in the use of composite cell lines, enabling a comparison of gene expression between human and chimpanzee within the same nucleus and shared trans factors environment. However, a potential weakness of the methodology is the use of bulk RNA-seq in diverse tissues, which limits the ability to determine cell-type-specific gene expression and chromatin accessibility regions.

      We agree that profiling single cells could lead to additional exciting discoveries. Although heterogeneity in cell types within samples will indeed reduce our power to detect cell-type-specific divergence, thankfully any heterogeneity will not introduce false positives, since our use of interspecies hybrids controls for differences in cell-type abundance. As a result, we think that the molecular differences we identified in this study represent a subset of the true cell-type specific cis-regulatory differences that would be identified with deep single-cell profiling. We have included a new paragraph in the discussion on future directions, highlighting the utility of single-cell profiling as an exciting future direction (lines 482-490): “In addition to following up on our findings on GAD1 and FABP7, there are other exciting future directions for this work. First, additional bulk assays such as those that measure methylation, chromatin conformation, and translation rate could lead to a better understanding of what molecular features ultimately lead to cell type-specific changes in gene expression. Furthermore, the use of deep single cell profiling of hybrid lines derived from iPSCs from multiple individuals of each species during differentiation could enable the identification of many more highly context-specific changes in gene expression and chromatin accessibility such as the differences in GAD1 we highlighted here. Finally, integration with data from massively parallel reporter assays and deep learning models will help us link specific variants to the molecular differences we identified in this study.”

      Another concern is the use of two replicates derived from the same pair of individuals. While the authors produced cell lines from two pairs of individuals in a previous study (Agloglia et al., 2021), I wonder why only one pair was used in this study. Incorporating interindividual variation would enhance the robustness of the species differences identified here.

      We agree that additional replicates, especially from lines from other individuals, would have improved the robustness of the species differences we identified. In our experience with these hybrid cells (as well as related work from many other labs), inter-species differences typically have much larger magnitudes than intra-species differences, so we expect that the vast majority of differences we identified would be validated with data from additional individuals. Unfortunately, differentiating additional cells and generating these data for this study would be cost-prohibitive. We now mention the use of additional replicates in lines 485-488 of the discussion: “Furthermore, the use of deep single cell profiling of hybrid lines derived from iPSCs from multiple individuals of each species during differentiation could enable the identification of many more highly context-specific changes in gene expression and chromatin accessibility such as the differences in GAD1 we highlighted here.”

      Furthermore, the study offers the opportunity to relate inter-species differences to trends in molecular evolution. The authors discovered that expression variance and haploinsufficiency score do not fully account for the enrichment of divergence in cell-type-specific genes. The reviewer suggests exploring this further by incorporating external datasets that bin genes based on interindividual transcriptomics variation as a measure of extant transcriptomics constraint (e.g., GTEx reanalysis by Garcia-Perez et al., 2023 - PMID: 36777183). Additionally, stratifying sequence conservation on ASCA regions, which exhibit similar enrichment of cell-type-specific features, using the Zoonomia data mentioned also in the text (Andrews et al., 2023 -- PMID: 37104580) could provide valuable insights.

      To address this, we used PhastCons scores computed from a 470-way alignment of mammals as we could not find publicly available PhastCons data from Zoonomia. When stratifying by the median PhastCons score of all sites in a peak, we observe very similar results to those obtained when stratifying by the constraint metric from the gnomAD consortium (see below). The one potential difference is that peaks in the top two bins have slightly weaker enrichment relative to the other bins when using PhastCons, but this is not the case when using gnomAD’s metric. We have elected to include this in the public review but not the manuscript as we are reluctant to add to the complexity of what is already complex analysis.

      Author response image 1.

      Finally, we think that comparisons of the properties of gene expression variance computed from ASE (as done by Starr et al.) and total expression (as done by Garcia-Perez et al.) is a very interesting, potentially complex question that is beyond the scope of this paper but an exciting direction for future work.

      Another potential strength of this study is the identification of specific cases of paired allele-specific expression (ASE) and allele-specific chromatin accessibility (ASCA) with biological significance.

      Prioritizing specific variants remains a challenge, and the authors apply a machine-learning approach to identify potential causative variants that disrupt binding sites in two examples (FABP7 and GAD1 in motor neurons). However, additional work is needed to convincingly demonstrate the functionality of these selected variants. Strengthening this section with additional validation of ASE, ASCA, and the specific putative causal variants identified would enhance the overall robustness of the paper.

      We strongly agree with the reviewer that additional work validating our results would be of considerable interest. We hope to perform follow-up experiments in the future. For now, we have been careful to present these variants only as candidate causal variants.

      Additionally, the authors support the selected ASE-ASCA pairs by examining external datasets of adult brain comparative genomics (Ma et al., 2022) and organoids (Kanton et al., 2019). While these resources are valuable for comparing observed species biases, the analysis is not systematic, even for the two selected genes. For example, it would be beneficial to investigate if FABP7 exhibits species bias in any cell type in Kanton et al.'s organoids or if GAD1 is species-biased in adult primate brains from Ma et al. Comparing these datasets with the present study, along with the Agoglia et al. reference, would provide a more comprehensive perspective.

      We agree with the reviewer’s suggestion that investigating GAD1 and FABP7 expression in other datasets is worthwhile. Unfortunately, the difference in human vs. chimpanzee organoid maturation rates and effects of culture conditions in Kanton et al. makes it unsuitable for plotting the expression of FABP7 as its expression is highly dependent on neuronal maturation. We therefore plotted bulk RNAseq data from multiple cortical regions from Sousa et al. 2017 (see below). This corroborates our claim that FABP7 has human-biased expression in adult humans compared to chimpanzees and rhesus macaques. We also investigated expression of GAD1 in the Ma et al. data as the reviewer suggested.

      Author response image 2.

      While there are differences in GAD1 expression between adult humans and chimpanzees, they are unlikely to be linked to the HAR we highlight as it is likely a transiently active cis-regulatory element (see below). In addition, some cell types seem to have chimpanzee-derived changes in GAD1 expression (e.g. SST positive neurons) whereas others seem to have human-derived changes in GAD1 expression (e.g. LAMP5 positive neurons).

      Author response image 3.

      While these are potentially interesting observations, we think that their inclusion in the manuscript might distract from our emphasis on the cell type-specific and developmental stage-specific of the changes in FABP7 and GAD1 expression we observe so we have not included them in the manuscript.

      The use of the term "human-derived" in ASE and ASCA should be avoided since there is no outgroup in the analysis to provide a reference for the observed changes.

      We agree with the reviewer that the term human-derived should be used with care and have changed the phrasing of line 230 to “human-chimpanzee differences in expression”. With regard to FABP7 we think that our analysis of the Ma et al. data—which includes data from rhesus macaques as an outgroup—justifies our use of “human-derived” in lines 360 and 457. As chimpanzee and macaque expression of FABP7 are similar but human expression is quite different, the most parsimonious explanation for our observations is that FABP7 upregulation occurred in the human lineage.

      Finally, throughout the paper, the authors refer to "hybrid cell lines." It has been suggested to use the term "composite cell lines" instead to address potential societal concerns associated with the term "hybrid," which some may associate with reproductive relationships (Pavlovic et al., 2022 -- PMID: 35082442). It would be interesting to know the authors' perspective on these concerns and recommendations presented in Pavlovic et al., given their position as pioneers in this field.

      We appreciate this question. Whether to refer to our fused cells as “hybrids” or not was indeed a question we considered at great length, starting from the very beginning of this project in 2015. From consultations with multiple bioethicists-- both formal and informal-- we have long been aware of the possibility of misunderstanding based on the word “hybrid”. However, we felt this possibility was outweighed by the long and well-established history of other scientists referring to interspecies fused cells as hybrids. This convention-- which is based on hundreds of papers about heterokaryons, somatic cell hybrids, and radiation hybrids-- goes back over 50 years (e.g. Bolund et al, Exp Cell Res 1969). Soon after the establishment of this nomenclature, cell fusion became widespread and ever since then it has become commonplace to generate interspecies hybrid cells from animals, plants and fungi.

      It is also important to note that in over two years since we published the first two papers on humanchimpanzee fused cells, we have been unable to find any misunderstanding of our use of the term “hybrid”. We have searched blogs, media articles, and social media, all with no evidence of misunderstanding. Therefore, in the current manuscript, rather than creating confusion by renaming a well-established approach, we have opted to clearly and prominently define hybrid cells: in the abstract of our paper we introduce the hybrid cells as “the product of fusing induced pluripotent stem (iPS) cells of each species in vitro.”

      Reviewer #2 (Public Review):

      In this paper, Wang and colleagues build on previous technical and analytical achievements in establishing tetraploid human-chimpanzee hybrid iPSCs to investigate the cell type-specificity of allelespecific expression and allele-specific chromatin accessibility across six differentiated cell types (here, "allele-specific" indicates species differences with a cis-regulatory basis). The combined body of work is remarkable in its creativity and ambition and has real potential for overcoming major challenges in understanding the evolutionary genetics of between-species differences. The present paper contributes to these efforts by showing how differentiated cells can be used to test a long-standing hypothesis in evolutionary genetics: that cis-regulatory changes may be particularly important in divergence because of their potential for modularity.

      In my view, the paper succeeds in making this case: allele (species)-specific expression (ASE) and allelespecific chromatin accessibility (ASCA) are enriched in genes asymmetrically expressed in one cell type, and many cases of ASE/ASCA are cell type-specific. The authors do an excellent job showing that these results are robust across a set of possible analysis decisions. It is somewhat less clear whether these enrichments are primarily a product of relaxed constraint on cell type-specific genes or primarily result from positive selection in the human or chimp lineage. While the authors attempt to control for constraint using several variables (variance in ASE in humans and the sequence-based probability of haploinsufficiency score, pHI), these are imperfect proxies for constraint. For the pHI scores, enrichments for ASE also appear to be strongest in the least constrained genes. Overall, the relative role of relaxation of constraint versus positive selection is unresolved, although the manuscript's language leans in favor of an important role for selection.

      We agree with the reviewer and apologize for the wording that indeed focused more on positive selection than relaxed constraint. We have added language clarifying that our stance is that our analyses suggest some role for positive selection, but that we do not claim that positive selection plays a larger role than reduced constraint (lines 432-437): “Overall, this suggests that broad changes in expression in cell type-specifically expressed genes may be an important substrate for evolution but it remains unclear whether positive selection or lower constraint plays a larger role in driving the faster evolution of more cell type-specifically expressed genes. Future work will be required to more precisely quantify the relative roles of positive selection and evolutionary constraint in driving changes in gene expression.”

      The remainder of the manuscript draws on the cell type-specific ASE/ASCA data to nominate candidate genes and pathways that may have been important in differentiating humans and chimpanzees. Several approaches are used here, including comparing human-chimp ASE to the distribution of ASE observed in humans and investigating biases in the direction of ASE for genes in the same pathway. The authors also identify interesting candidate genes based on their role in development or their proximity to human accelerated regions (where many changes have arisen on the human lineage in otherwise deeply conserved sequence) and use a deep neural network to identify sequence changes that might be causally responsible for ASE/ASCA. These analyses have value and highlight potential strategies for using ASE/ASCA and hybrid cell line data as a hypothesis-generating tool. Of course, the functional follow-up that experimentally tested these hypotheses or linked sequence/expression changes in the candidate pathways to organismal phenotype would have strengthened the paper further- but this is a lot to ask in an already technically and analytically challenging piece of work.

      We thank the reviewer for the kind words and strongly agree that follow-up experiments and orthogonal analyses will be key in validating our results and establishing links to human-specific phenotypes.

      As a minor critique, the present paper is very closely integrated with other manuscripts that have used the hybrid human-chimp cell lines for biological insight or methods development. Although its contributions make it a strong stand-alone contribution, some aspects of the methods are not described in sufficient detail for readers to understand (even on a general conceptual level) without referencing that work, which may somewhat limit reader understanding.

      We agree with the points the reviewer raises regarding the clarity of our methods. We have amended several sections to provide more conceptual information while pointing the reader to other publications for the technical details. For convenience, we include the text here as well as in the new draft.

      Lines 207-214 now provide more intuition for the method used to detect lineage-specific selection: “Next, we sought to use our RNA-seq data to identify instances of lineage-specific selection. In the absence of positive selection, one would expect that an approximately equal number of genes in a pathway would have human-biased vs. chimpanzee-biased ASE. Significant deviation from this expectation (as determined by the binomial test) rejects the null hypothesis of neutral evolution, instead providing evidence of lineage-specific selection on this pathway. Using our previously published modification of this test that incorporates a tissue-specific measure of constraint on gene expression, we detected several signals of lineage-specific selection, some of which were cell type-specific (Starr et al., 2023, Additional file 2).” This is also reflected in the Methods in lines 729-731: “Positive selection on a gene set is only inferred if there is statistically significant human- or chimpanzee-biased ASE in that gene set (using an FDR-corrected p-value from the binomial test).”

      Reviewer #3 (Public Review):

      The authors utilize chimpanzee-human hybrid cell lines to assess cis-regulatory evolution. These hybrid cell lines offer a well-controlled environment, enabling clear differentiation between cis-regulatory effects and environmental or other trans effects.

      In their research, Wang et al. expand the range of chimpanzee-human hybrid cell lines to encompass six new developmental cell types derived from all three germ layers. This expansion allows them to discern cell type-specific cis-regulatory changes between species from more pleiotropic ones. Although the study investigates only two iPSC clones, the RNA- and ATAC-seq data produced for this paper is a valuable resource.

      The authors begin their analysis by examining the relationship between allele-specific expression (ASE) as a measure of species divergence and cell type specificity. They find that cell-type-specific genes exhibit more divergent expression. By integrating this data with measures of constraint within human populations, the authors conclude that the increased divergence of tissue-specific genes is, at least in part, attributable to positive selection. A similar pattern emerges when assessing allele-specific chromatin accessibility (ASCA) as a measure of divergence of cis-regulatory elements (CREs) in the same cell lines.

      By correlating these two measures, the authors identify 95 CRE-gene pairs where tissue-specific ASE aligns with tissue-specific ASCA. Among these pairs, the authors select two genes of interest for further investigation. Notably, the authors employ an intriguing machine-learning approach in which they compare the inferred chromatin state of the human sequence with that of the chimpanzee sequence to pinpoint putatively causal variants.

      Overall, this study delves into the examination of gene expression and chromatin accessibility within hybrid cell lines, showcasing how this data can be leveraged to identify potential causal sequence differences underlying between-species expression changes.

      We appreciate this assessment.

      I have three major concerns regarding this study:

      1. The only evidence that the cells are indeed differentiated in the right direction is the expression of one prominent marker gene per cell type. Especially for the comparison of conservation between the differentiated cell types, it would be beneficial to describe the cell type diversity and the differentiation success in more detail.

      We appreciate this assessment. We agree that evidence beyond a single marker gene is necessary to demonstrate that the differentiations were successful and that a discussion of the limitations of these differentiations in the manuscript is worthwhile. We included figures showing additional marker genes and a thorough discussion of the differentiations in the supplement. For convenience, we have copied the supplemental figure and text here:

      “Before continuing with the analysis, we tested whether the differentiations were successful and contained primarily our target cell types. The very low expression of NANOG, a marker for pluripotency, across all differentiations indicates that the samples contain very few iPSCs (Agoglia et al., 2021). For cardiomyocytes (CM), NKX2-5, MYBPC3, and TNNT2 definitively distinguish CM from other heart cell types and their high expression indicates successful differentiations (Burridge et al., 2014). For motor neurons, the high expression of ELAVL2, a pan-neuronal marker, indicates a high abundance of neurons in the sample (Mickelsen et al., 2019). The expression of ISL1 and OLIG2 further demonstrates that these are motor neurons and not other types of neurons (Maury et al., 2015). For retinal pigment epithelium (RPE), the combined expression of MITF, PAX6, and TYRP1 provides strong evidence that the differentiations were successful in producing RPE cells (Sharma et al., 2019). For skeletal muscle, the very high expression of MYL1, MYLPF, and MYOG indicates that these samples contain a high proportion of skeletal muscle cells (Chal et al., 2016). In general, all these populations of cells contain some proportion of progenitors as there is detectable expression of MKI67 in all samples.

      The low expression of ALB (a marker for mature hepatocytes) and the high expression of TTR and GPC3 (markers for hepatocyte progenitors) combined with the high expression of HNF1B indicate that the bulk of the cells in the HP samples are hepatocyte progenitors rather than mature hepatocytes or endoderm cells, although there are likely some endoderm cells and immature hepatocytes in the sample (Hay et al., 2008; Mallanna & Duncan, 2013). Similarly, the combined expression of PDX1 and NKX6-1 and the low expression of NEUROG3 (a marker of endocrine progenitors which differentiate from pancreatic progenitors) in the PP samples indicates that these primarily contain pancreatic progenitors but likely contain some endocrine progenitors and endoderm cells (Cogger et al., 2017; Korytnikov & Nostro, 2016).

      Notably, HP and PP are closely related cell types that are derived from the same lineage. Indeed, heterogeneous multipotent progenitors can contribute to both the adult liver and adult pancreas in mice (Willnow et al., 2021). Progenitors that express PDX1 (often used as a marker for the pancreatic lineage) can differentiate into hepatocytes (Willnow et al., 2021). As a result, some overlap in the transcriptomic signature of both cell types is expected and we cannot rule out that the HP samples contain cells that could differentiate into pancreatic cells or that the PP samples contain cells that could differentiate into hepatocytes. However, the expression of NKX6-1 and GP2, markers for pancreatic progenitors, in the PP samples but not the HP samples indicates that these two populations of cells are distinct. Overall, the similarity of PP and HP likely explains the lower number of cell type-specific genes and genes showing cell type-specific ASE for these cell types. This similarity does not alter the conclusions presented in the main text.”

      Author response image 4.

      Author response image 5.

      Marker gene expression in different cell types. In order, the panels show: a marker for pluripotency, a marker gene for dividing cells, marker genes for cardiomyocytes, marker genes for hepatocytes and hepatocyte progenitors, marker genes for motor neurons, marker genes for pancreatic progenitors and more mature pancreatic cell types, marker genes for retinal pigment epithelial cells, and marker genes for skeletal myocytes. Hepatocyte progenitors and pancreatic progenitors generally show similar gene expression profiles. TPM: transcript per million.

      1. Check for a potential confounding effect of sequence similarity on the power to detect ASE or ASCA.

      We agree that checking for confounding by power to detect ASE or ASCA would increase confidence in our results. We have added supplementary figures 29-33 to show the results as well as a discussion of these figures in the text (lines 318-326):

      “Finally, it is possible that CREs and genes that are less conserved will have more SNPs, and therefore more power to call ASCA and ASE, leading to systematically biased estimates. There is a weak positive correlation between the number of SNPs and the -log10(FDR) for ASE and a weak negative or no correlation for ASCA (Supp Fig. 29). Similarly, we observe a weak relationship between the number of SNPs in CREs or genes and absolute log fold-change estimates (Supp Fig. 30). Although the relationship between the number of SNPs and ASE/ASCA is weak, we confirmed that cell type-specific genes and peaks are still strongly enriched for ASE and ASCA when stratifying by number of SNPs (Supp Fig. 31-32). Overall, our analysis suggests that the result that more cell type-specific genes and CREs are more evolutionarily diverged is robust to a variety of possible confounders.”

      Author response image 6.

      Relationship between number of SNPs and -log10(FDR) in a) ASE and -log10(pvalue) b) ASCA. These scatter plots show the relationship between the number of SNPs in a gene or peak and the -log10(FDR) for ASE or ASCA. Genes with significant ASE (FDR < 0.05) and peaks with significant ASCA (binomial p-value < 0.05) were annotated as blue dots, and all other genes and peaks were annotated as gray dots. All genes in each cell type in RNA-seq are shown. For clarity, the few outlier peaks with more than 200 SNPs are excluded from these plots.

      Author response image 7.

      Relationship between number of SNPs and absolute log2 fold-change in a) ASE and b) ASCA. These scatter plots show the relationship between the number of SNPs in a gene or peak and the estimated absolute log2 fold-change for ASE or ASCA. Genes with significant ASE (FDR < 0.05) and peaks with significant ASCA (binomial p-value < 0.05) were annotated as blue dots, and all other genes and peaks were annotated as gray dots. All genes in each cell type in RNA-seq are shown. For clarity, the few outlier peaks with more than 200 SNPs are excluded from these plots.

      Author response image 8.

      Cell type-specifically expressed genes are enriched for genes with ASE when stratifying by the number of SNPs per gene. a) Results when SKM is included. Genes were put into five bins with an equal number of genes in each bin. Genes with the fewest SNPs are in the 0-20% bin and genes with the most SNPs are in the 80-100% bin. Significance (using the Wald test) is indicated by asterisks where *** indicates p < 0.005, ** indicates p < 0.01, and * indicates p < 0.05. b) The same as in (a) but excluding SKM.

      Author response image 9.

      Cell type-specific peaks are enriched for ASCA when stratifying by the number of SNPs per peak. a) Peaks with an absolute log2 fold-change greater than or equal to 0.5 were called as having ASCA. Peaks were put into five bins with an equal number of peaks in each bin. Peaks with the fewest SNPs are in the 0-20% bin and genes with the most SNPs are in the 80-100% bin. Significance (using the Wald test) is indicated by asterisks where *** indicates p < 0.005, ** indicates p < 0.01, and * indicates p < 0.05. b) The same as in (a) but peaks with a binomial p-value less than or equal to 0.05 were called as having ASCA.

      1. In the last part the authors showcase 2 examples for which the log2 fold changes in chromatin state scores as inferred by the machine learning model Sei are used. This is an interesting and creative approach, however, more sanity checks on this application are necessary.

      We agree with the reviewer about the importance of sanity checks and apologize for omitting these from the manuscript. Below we highlight several such checks from previous publications:

      In the original Sei paper (Chen et al. 2022), the authors included several tests of their model’s ability to predict the effects on individual genetic variants. Using eQTL data from GTEx, they found that variants predicted to increase enhancer activity were more likely to be up-regulating eQTLs, and those predicted to increase polycomb repression had the expected repressive effect. These relationships became stronger when restricting the analysis only to fine-mapped eQTLs with >95% posterior probabilities of causality. Chen et al. also found that previously known disease-causing noncoding variants from the Human Gene Mutation Database were far more likely to reduce predicted enhancer/promoter activity than matched variants not linked to any disease.

      In addition, we note that a similar approach to ours was recently used to analyze all HARs and included considerable efforts to validate the utility of the Sei predictions in identifying causal variants (Whalen et al. 2023 in Neuron). For example, Whalen et al. found that the Sei output correlated with the effects of genetic variants on expression in a massively parallel reporter assay. They also found that the effect sizes predicted by Sei were much higher for variants in HARs than polymorphic variants in the human population, which is consistent with the idea that variants in HARs lie in highly conserved bases that are more likely to disrupt cis-regulatory elements. Finally, Whalen et al. found that effects on chromatin state predicted by Sei were generally highly correlated across tissues, supporting our approach that leverages all Sei outputs regardless of which cell type or tissue they correspond to. Overall, we think that Sei is a potentially powerful way to prioritize causal variants and that improved machine learning models trained on more extensive and context-specific data will be even more powerful.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper combines a number of cutting-edge approaches to explore the role of a specific mouse retinal ganglion cell type in visual function. The approaches used include calcium imaging to measure responses of RGC populations to a collection of visual stimuli and CNNs to predict the stimuli that maximally activate a given ganglion cell type. The predictions about feature selectivity are tested and used to generate a hypothesized role in visual function for the RGC type identified as interesting. The paper is impressive; my comments are all related to how the work is presented.

      We thank the reviewer for appreciating our study and for the interesting comments.

      Is the MEI approach needed to identify these cells?

      To briefly summarize the approach, the paper fits a CNN to the measured responses to a range of stimuli, extracts the stimulus (over time, space, and color) that is predicted to produce a maximal response for each RGC type, and then uses these MEIs to investigate coding. This reveals that G28 shows strong selectivity for its own MEI over those of other RGC types. The feature of the G28 responses that differentiate it appears to be its spatially-coextensive chromatic opponency. This distinguishing feature, however, should be relatively easy to discover using more standard approaches.

      The concern here is that the paper could be read as indicating that standard approaches to characterizing feature selectivity do not work and that the MEI/CNN approach is superior. There may be reasons why the latter is true that I missed or were not spelled out clearly. I do think the MEI/CNN approach as used in the paper provides a very nice way to compare feature selectivity across RGC types - and that it seems very well suited in this context. But it is less clear that it is needed for the initial identification of the distinguished response features of the different RGC types. What would be helpful for me, and I suspect for many readers, is a more nuanced and detailed description of where the challenges arise in standard feature identification approaches and where the MEI/CNN approaches help overcome those challenges.

      Thank you for the opportunity for clarification. In fact, the MEI (or an alternative nonlinear approach) is strictly necessary to discover this selectivity: as we show above (response #1 to editorial summary), the traditional linear filter approach does not reveal the color opponency. We realize that this fact was not made sufficiently clear in the initial submission. In the revised manuscript, we now include this analysis. Moreover, throughout the manuscript, we added explanations on the differences between MEIs and standard approaches and more intuitions about how to interpret MEIs. We also added a section to the discussion dedicated to explaining the advantages and limitations of the MEI approach.

      Interpretation of MEI temporal structure

      Some aspects of the extracted MEIs look quite close to those that would be expected from more standard measurements of spatial and temporal filtering. Others - most notably some of the temporal filters - do not. In many of the cells, the temporal filters oscillate much more than linear filters estimated from the same cells. In some instances, this temporal structure appears to vary considerably across cells of the same type (Fig. S2). These issues - both the unusual temporal properties of the MEIs and the heterogeneity across RGCs of the same type - need to be discussed in more detail. Related to this point, it would be nice to understand how much of the difference in responses to MEIs in Figure 4d is from differences in space, time, or chromatic properties. Can you mix and match MEI components to get an estimate of that? This is particularly relevant since G28 responds quite well to the G24 MEI.

      One advantage of the MEI approach is that it allows to distinguish between transient and sustained cells in a way that is not possible with the linear filter approach: Because we seek to maximize activity over an extended period of time, transient cells need to be repetitively stimulated whereas sustained cells will also respond in the absence of multiple contrast changes. In the revised manuscript, we add a section explaining this, together with Figure 3-supplement 2, illustrating this point by showing that oscillations disappear when we optimize the MEI for a short time window. The benefit of a longer time window lies in the increased discriminability between transient and sustained cells, which is also shown in the new supplementary figure.

      Regarding the heterogeneity of MEIs, this is most likely due to heterogeneity within the RGC group: “The mixed non-direction-selective groups G17 and G31 probably contain more than one type, as supported by multiple distinct morphologies and genetic identities (for example, G31,32, Extended Data Fig. 5) or response properties (for example, G17, see below)” (Baden et al. Nature 2016). We added a paragraph in the Results section.

      Concerning the reviewer’s last point: We agree that it is important to know whether the defining feature - i.e., the selectivity for chromatic contrast - is robust against variations in other stimulus properties. New electrophysiological data included in the manuscript (Fig. 6e,f) offers some insights here. We probed G28/tSbC cells with full-field flashed stimuli that varied in chromatic contrast. Despite not matching the cell’s preferred spatial and temporal properties, this stimulus still recovered the cell’s preference for chromatic contrast. While we think it is an interesting direction to systematically quantify the relative importance of temporal, spatial and chromatic MEI properties for an RGC type’s responses, we think this is beyond the scope of this manuscript.

      Explanation of RDM analysis

      I really struggled with the analysis in Figure 5b-c. After reading the text several times, this is what I think is happening. Starting with a given RGC type (#20 in Figure 5b), you take the response of each cell in that group to the MEI of each RGC type, and plot those responses in a space where the axes correspond to responses of each RGC of this type. Then you measure euclidean distance between the responses to a pair of MEIs and collect those distances in the RDM matrix. Whether correct or not, this took some time to arrive at and meant filling in some missing pieces in the text. That section should be expanded considerably.

      We appreciate the reviewer’s efforts to understand this analysis and confirm that they interpreted it correctly. However, we decided to remove the analysis. The point we were trying to make with this analysis is that the transformation implemented by G28/tSbC cells “warps” stimulus space and increases the discriminability of stimuli with similar characteristics like the cell’s MEI. We now make this point in a - we think - more accessible manner by the new analysis about the nonlinearity of G28/tSbC cell’s color opponency (see above).

      Centering of MEIs

      How important is the lack of precise centering of the MEIs when you present them? It would be helpful to have some idea about that - either from direct experiments or using a model.

      In the electrophysiological experiments, the MEIs were centered precisely (now Fig. 5 in revised manuscript) and these experiments yielded almost identical results to the 2P imaging experiments, where the MEIs were presented on a grid to approach the optimal position for the recorded cells. Additionally, all model simulations work with perfectly centered MEIs. We hence conclude that our grid-approach at presenting stimuli provided sufficient precision in stimulus positioning.

      We added this information to the revised manuscript.

      Reviewer #2 (Public Review):

      This paper uses two-photon imaging of mouse ganglion cells responding to chromatic natural scenes along with convolutional neural network (CNN) models fit to the responses of a large set of ganglion cells. The authors analyze CNN models to find the most effective input (MEI) for each ganglion cell as a novel approach to identifying ethological function. From these MEIs they identify chromatic opponent ganglion cells, and then further perform experiments with natural stimuli to interpret the ethological function of those cells. They conclude that a type of chromatic opponent ganglion cell is useful for the detection of the transition from the ground to the sky across the horizon. The experimental techniques, data, and fitting of CNN models are all high quality. However, there are conceptual difficulties with both the use of MEIs to draw conclusions about neural function and the ethological interpretations of experiments and data analyses, as well as a lack of comparison with standard approaches. These bear directly both on the primary conclusions of the paper and on the utility of the new approaches.

      We thank the reviewer for the detailed comments.

      1) Claim of feature detection.

      The color opponent cells are cast as a "feature detector" and the term 'detector' is in the title. However insufficient evidence is given for this, and it seems likely a mischaracterization. An example of a ganglion cell that might qualify as a feature detector is the W3 ganglion cell (Zhang et al., 2012). These cells are mostly silent and only fire if there is differential motion on a mostly featureless background. Although this previous work does not conduct a ROC analysis, the combination of strong nonlinearity and strong selectivity are important here, giving good qualitative support for these cells as participating in the function of detecting differential motion against the sky. In the present case, the color opponent cells respond to many stimuli, not just transitions across the horizon. In addition, for the receiver operator characteristic (ROC) analysis as to whether these cells can discriminate transitions across the horizon, the area under the curve (AUC) is on average 0.68. Although there is not a particular AUC threshold for a detector or diagnostic test to have good discrimination, a value of 0.5 is chance, and values between 0.5 and 0.7 are considered poor discrimination, 'not much better than a coin toss' (Applied Logistic Regression, Hosmer et al., 2013, p. 177). The data in Fig. 6F is also more consistent with a general chromatic opponent cell that is not highly selective. These cells may contribute information to the problem of discriminating sky from ground, but also to many other ethologically relevant visual determinations. Characterizing them as feature detectors seems inappropriate and may distract from other functional roles, although they may participate in feature detection performed at a higher level in the brain.

      The reviewer apparently uses a rather narrow definition of a feature detector. We, however, argue for a broader definition, which, in our view, better captures the selectivities described for RGCs in the literature. For example, while W3 cells have been quite extensively studied, one can probably agree on that so far only a fraction of the possible stimulus space has been explored. Therefore, it cannot be excluded that W3 cells respond also to other features than small dark moving dots, but we (like the reviewer) still refer to it as a feature detector. Or, for instance, direction-selective (DS) RGCs are commonly considered feature detectors (i.e., responsive to a specific motion direction), although they also respond to flashes and spike when null-direction motion is paused (Barlow & Levick J Physiol 1965).

      The G28/tSbC cells’ selectivity for full-field changes in chromatic contrast enables them to encode ground-sky horizon transitions reliably across stimulus parameters (e.g., see new Fig. 7i panel). This cell type is thus well-suited to contribute to detecting context changes, as elicited by ground-sky transitions.

      Therefore, we think that the G28/tSbC RGC can be considered a feature detector and as such, could be used at a higher level in the brain to quickly detect changes in visual context (see also Kerschensteiner Annu Rev Vis Sci 2022). Still, their signals may also be useful for other computations (e.g., defocus, as discussed in our manuscript).

      Regarding the ROC analysis, we acknowledge that an average AUC of .68 may seem comparatively low; however, this is based on the temporally downsampled information (i.e., by way of Ca2+ imaging) gathered from the activity of a single cell. A downstream area would have access to the activity of a local population of cells. This AUC value should therefore be considered a lower bound on the discrimination performance of a downstream area. We now comment on this in the manuscript.

      2) Appropriateness of MEI analysis for interpretations of the neural code.

      There is a fundamental incompatibility between the need to characterize a system with a complex nonlinear CNN and then characterizing cells with a single MEI. MEIs represent the peak in a complex landscape of a nonlinear function, and that peak may or may not occur under natural conditions. For example, MEIs do not account for On-Off cells, On-Off direction selectivity, nonlinear subunits, object motion sensitivity, and many other nonlinear cell properties where multiple visual features are combined. MEIs may be a useful tool for clustering and distinguishing cells, but there is not a compelling reason to think that they are representative of cell function. This is an open question, and thus it should not be assumed as a foundation for the study. This paper potentially speaks to this issue, but there is more work to support the usefulness of the approach. Neural networks enable a large set of analyses to understand complex nonlinear effects in a neural code, and it is well understood that the single-feature approach is inadequate for a full understanding of sensory coding. A great concern is that the message that the MEI is the most important representative statistic directs the field away from the primary promise of the analysis of neural networks and takes us back to the days when only a single sensory feature is appreciated, now the MEI instead of the linear receptive field. It is appropriate to use MEI analyses to create hypotheses for further experimental testing, and the paper does this (and states as much) but it further takes the point of view that the MEI is generally informative as the single best summary of the neural code. The representation similarity analysis (Fig. 5) acts on the unfounded assumption that MEIs are generally representative and conveys this point of view, but it is not clear whether anything useful can be drawn from this analysis, and therefore this analysis does not support the conclusions about changes in the representational space. Overall this figure detracts from the paper and can safely be removed. In addition, in going from MEI analysis to testing ethological function, it should be made much more clear that MEIs may not generally be representative of the neural code, especially when nonlinearities are present that require the use of more complex models such as CNNs, and thus testing with other stimuli are required.

      The reviewer correctly characterizes MEIs as representing the peak in a nonlinear loss landscape that, in this case, describes the neurons’ tuning. As such, the MEI approach is indeed capable of characterizing nonlinear neuronal feature selectivities that are captured by a nonlinear model, such as the CNN we used here. We therefore disagree with the suggestion that MEIs should not be used “when nonlinearities are present that require the use of more complex models such as CNNs”. It is unclear what other “analysis of neural networks” the reviewer refers to. One approach to analyze the predictive neural network are MEIs.

      We also want to clarify that, while the reviewer is correct in stating that the MEI approach as used here only identifies a single peak, this does not mean that it cannot capture neuronal selectivities for a combination of features, as long as this combination of features can be described as a point in high-dimensional stimulus space. In fact, this is demonstrated in our manuscript for the case of G28/tSbC cell’s selectivity for large or full-field, sustained changes in chromatic contrast (a combination of spatial, temporal, and chromatic features). While approaches similar to the one used here generate several diverse exciting inputs (Ding et al. bioRxiv 2023) and could therefore also fully capture On-Off selectivities, we pointed out the limitation of MEIs when describing On-Off cells in the manuscript (both original and revised).

      Regarding the reviewer’s concern that “[...] the message that the MEI is the most important representative statistic [...] takes us back to the days when only a single sensory feature is appreciated”. It was certainly not our intention to proclaim MEIs as the ultimate representation of a cell’s response features and we have clarified this in the revised manuscript. However, we also think that (i) in applying a nonlinear method to extract chromatic, temporal, and spatial response properties from natural movie responses, we go beyond many characterizations that use linear methods to extract spatial or temporal only, achromatic response properties from static, white-noise stimuli. This said, we agree that (ii) expanding around the peak is desirable, and we do that in an additional analysis (new Fig. 6); but that reducing complexity to a manageable degree (at least, at first) is useful and even necessary when discovering novel response properties.

      Concerning the representational similarity analysis (RSA): the point we were trying to make with this analysis is that the transformation implemented by G28 “warps” stimulus space and increases the discriminability of stimuli with similar characteristics like the cell’s MEI. We now made this point in a more accessible fashion through the above-mentioned analysis, where we extended the estimate around the peak. We therefore agree to remove the RSA from the paper.

      In the revised manuscript, we (a) discuss the advantages and limitations of the MEI approach in more detail (in Results and Discussion; see also our reply #1) and (b) replaced the RSA analysis.

      3) Usefulness of MEI approach over alternatives. It is claimed that analyzing the MEI is a useful approach to discovering novel neural coding properties, but to show the usefulness of a new tool, it is important to compare results to the traditional technique. The more standard approach would be to analyze the linear receptive field, which would usually come from the STA of white noise measurement, but here this could come from the linear (or linear-nonlinear) model fit to the natural scene response, or by computing an average linear filter from the natural scene model. It is important to assess whether the same conclusion about color opponency can come from this standard approach using the linear feature (average effective input), and whether the MEIs are qualitatively different from the linear feature. The linear feature should thus be compared to MEIs for Fig. 3 and 4, and the linear feature should be compared with the effects of natural stimuli in terms of chromatic contrast (Fig. 6b). With respect to the representation analysis (Fig. 5), although I don't believe this is meaningful for MEIs, if this analysis remains it should also be compared to a representation analysis using the linear feature. In fact, a representation analysis would be more meaningful when performed using the average linear feature as it summarizes a wider range of stimuli, although the most meaningful analysis would be directly on a broader range of responses, which is what is usually done.

      We agree that the comparison with a linear model is an important validation. Therefore, we performed an additional analysis (see also reply #1, as well as Fig. 6 and corresponding section in the manuscript) which demonstrates that an LN model does not recover the chromatic feature selectivity. This finding supports our claims about the usefulness of the MEI approach over linear approaches.

      Regarding the comment on the representation analysis, as mentioned above, we consider it replaced by the analysis comparing results from an LN model and a nonlinear CNN.

      4) Definition of ethological problem. The ethological problem posed here is the detection of the horizon. The stimuli used do not appear to relate to this problem as they do not include the horizon and only include transitions across the horizon. It is not clear whether these stimuli would ever occur with reasonable frequency, as they would only occur with large vertical saccades, which are less common in mice. More common would be smooth transitions across the horizon, or smaller movements with the horizon present in the image. In this case, cells which have a spatial chromatic opponency (which the authors claim are distinct from the ones studied here) would likely be more important for use in chromatic edge detection or discrimination. Therefore the ethological relevance of any of these analyses remains in question.

      It is further not clear if detection is even the correct problem to consider. The horizon is always present, but the problem is to determine its location, a conclusion that will likely come from a population of cells. This is a distinct problem from detecting a small object, such as a small object against the background of the sky, which may be a more relevant problem to consider.

      Thank you for giving us the opportunity to clear these things up. First, we would like to clarify that we propose that G28/tSbC cells contribute to detecting context changes, such as transitions across the horizon from ground to sky, not to detecting the horizon itself. We acknowledge that we were not clear enough about this in the manuscript and corrected this. To back-up our hypothesis that G28 RGCs contribute to detecting context changes, we performed an additional simulation analysis, which is described in our reply #3 (see above).

      5) Difference in cell type from those previously described. It is claimed that the chromatic opponent cells are different from those previously described based on the MEI analysis, but we cannot conclude this because previous work did not perform an MEI analysis. An analysis should be used that is comparable to previous work, the linear spatiotemporal receptive field should be sufficient. However, there is a concern that because linear features can change with stimulus statistics (Hosoya et al., 2005), a linear feature fit to natural scenes may be different than those from previous studies even for the same cell type. The best approach would likely be presenting a white noise stimulus to the natural scenes model to compute a linear feature, which still carries the assumption that this linear feature from the model fit to a natural stimulus would be comparable to previous studies. If the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set. One technical aspect relating to this is that MEIs were space-time separable. Because the center and surround have a different time course, enforcing this separability may suppress sensitivity in the surround. Therefore, it would likely be better if this separability were not enforced in determining whether the current cells are different than previously described cells. As to whether these cells are actually different than those previously described, the authors should consider the following uncited work; (Ekesten Gouras, 2005), which identified chromatic opponent cells in mice in approximate numbers to those here (~ 2%). In addition, (Yin et al., 2009) in guinea pigs and (Michael, 1968) in ground squirrels found color-opponent ganglion cells without effects of a spatial surround as described in the current study.

      First of all, we did not intend to claim to have discovered a completely new type of color-opponent tuning in general; what we were trying to say is that tSbC cells display spatially co-extensive color opponency, a feature selectivity previously not described in this mouse RGC type, and which may be used to signal context changes as elicited by ground-sky transitions.

      Concerning the reviewer’s first argument about a lack of comparability of our results to results previously obtained with a different approach: We think that this is now addressed by the new analysis (new Fig. 6), where we show why linear methods are limited in their capability to recover the type of color opponency that we discovered with the MEI approach.

      Regarding the argument about center-surround opponency, we agree that “if the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set”. We did not focus on analyzing center-surround opponency in the present study, but from the MEIs, it is visible that many cells have a stronger antagonistic surround in the green channel compared to the UV channel (see Fig. 4a, example RGCs of G21, G23, G24; Figure 3-supplement 1 example RGCs of G21, G23, G24, G31, G32). Importantly, the MEIs shown in Fig. 4a were also shown in the verification experiment, and had G28 RGCs preferred this kind of stimulus, they would have responded preferentially to these MEIs, which was not the case (Fig. 4f).

      It should also be noted here that, while the model’s filters were space-time separable, we did not impose a restriction on the MEIs to be space-time separable during optimization. However, we analyzed only the rank 1 components of the MEIs (see Methods section Validating MEIs experimentally). since our analysis focused on aspects of retinal processing not contingent on spatiotemporal interactions in the stimulus.

      In summary, we are convinced that our finding of center-opponency in G28 is not an artifact of the methodology.

      We discuss this in the manuscript and add the references mentioned by the reviewer to the respective part of the Discussion.

      Reviewer #3 (Public Review):

      This study aims to discover ethologically relevant feature selectivity of mouse retinal ganglion cells. The authors took an innovative approach that uses large-scale calcium imaging data from retinal ganglion cells stimulated with both artificial and natural visual stimuli to train a convolutional neural network (CNN) model. The resulting CNN model is able to predict stimuli that maximally excite individual ganglion cell types.

      The authors discovered that modeling suggests that the "transient suppressed-by-contrast" ganglion cells are selectively responsive to Green-Off, UV-On contrasts, a feature that signals the transition from the ground to the sky when the animal explores the visual environment. They tested this hypothesis by measuring the responses of these suppressed-by-contrast cells to natural movies, and showed that these cells are preferentially activated by frames containing ground-to-sky transitions and exhibit the highest selectivity of this feature among all ganglion cell types. They further verified this novel feature selectivity by single-cell patch clamp recording.

      This work is of high impact because it establishes a new paradigm for studying feature selectivity in visual neurons. The data and analysis are of high quality and rigor, and the results are convincing. Overall, this is a timely study that leverages rapidly developing AI tools to tackle the complexity of both natural stimuli and neuronal responses and provides new insights into sensory processing.

      We thank the reviewer for appreciating our study.

    2. Reviewer #2 (Public Review):

      This paper uses two-photon imaging of mouse ganglion cells responding to chromatic natural scenes along with convolutional neural network (CNN) models fit to the responses of a large set of ganglion cells. The authors analyze CNN models to find the most effective input (MEI) for each ganglion cell as a novel approach to identifying ethological function. From these MEIs they identify chromatic opponent ganglion cells, and then further perform experiments with natural stimuli to interpret the ethological function of those cells. They conclude that a type of chromatic opponent ganglion cell is useful for the detection of the transition from the ground to the sky across the horizon. The experimental techniques, data, and fitting of CNN models are all high quality. However, there are conceptual difficulties with both the use of MEIs to draw conclusions about neural function and the ethological interpretations of experiments and data analyses, as well as a lack of comparison with standard approaches. These bear directly both on the primary conclusions of the paper and on the utility of the new approaches.

      1. Claim of feature detection. The color opponent cells are cast as a "feature detector" and the term 'detector' is in the title. However insufficient evidence is given for this, and it seems likely a mischaracterization. An example of a ganglion cell that might qualify as a feature detector is the W3 ganglion cell (Zhang et al., 2012). These cells are mostly silent and only fire if there is differential motion on a mostly featureless background. Although this previous work does not conduct a ROC analysis, the combination of strong nonlinearity and strong selectivity are important here, giving good qualitative support for these cells as participating in the function of detecting differential motion against the sky. In the present case, the color opponent cells respond to many stimuli, not just transitions across the horizon. In addition, for the receiver operator characteristic (ROC) analysis as to whether these cells can discriminate transitions across the horizon, the area under the curve (AUC) is on average 0.68. Although there is not a particular AUC threshold for a detector or diagnostic test to have good discrimination, a value of 0.5 is chance, and values between 0.5 and 0.7 are considered poor discrimination, 'not much better than a coin toss' (Applied Logistic Regression, Hosmer et al., 2013, p. 177). The data in Fig. 6F is also more consistent with a general chromatic opponent cell that is not highly selective. These cells may contribute information to the problem of discriminating sky from ground, but also to many other ethologically relevant visual determinations. Characterizing them as feature detectors seems inappropriate and may distract from other functional roles, although they may participate in feature detection performed at a higher level in the brain.

      2. Appropriateness of MEI analysis for interpretations of the neural code. There is a fundamental incompatibility between the need to characterize a system with a complex nonlinear CNN and then characterizing cells with a single MEI. MEIs represent the peak in a complex landscape of a nonlinear function, and that peak may or may not occur under natural conditions. For example, MEIs do not account for On-Off cells, On-Off direction selectivity, nonlinear subunits, object motion sensitivity, and many other nonlinear cell properties where multiple visual features are combined. MEIs may be a useful tool for clustering and distinguishing cells, but there is not a compelling reason to think that they are representative of cell function. This is an open question, and thus it should not be assumed as a foundation for the study. This paper potentially speaks to this issue, but there is more work to support the usefulness of the approach. Neural networks enable a large set of analyses to understand complex nonlinear effects in a neural code, and it is well understood that the single-feature approach is inadequate for a full understanding of sensory coding. A great concern is that the message that the MEI is the most important representative statistic directs the field away from the primary promise of the analysis of neural networks and takes us back to the days when only a single sensory feature is appreciated, now the MEI instead of the linear receptive field. It is appropriate to use MEI analyses to create hypotheses for further experimental testing, and the paper does this (and states as much) but it further takes the point of view that the MEI is generally informative as the single best summary of the neural code. The representation similarity analysis (Fig. 5) acts on the unfounded assumption that MEIs are generally representative and conveys this point of view, but it is not clear whether anything useful can be drawn from this analysis, and therefore this analysis does not support the conclusions about changes in the representational space. Overall this figure detracts from the paper and can safely be removed. In addition, in going from MEI analysis to testing ethological function, it should be made much more clear that MEIs may not generally be representative of the neural code, especially when nonlinearities are present that require the use of more complex models such as CNNs, and thus testing with other stimuli are required.

      3. Usefulness of MEI approach over alternatives. It is claimed that analyzing the MEI is a useful approach to discovering novel neural coding properties, but to show the usefulness of a new tool, it is important to compare results to the traditional technique. The more standard approach would be to analyze the linear receptive field, which would usually come from the STA of white noise measurement, but here this could come from the linear (or linear-nonlinear) model fit to the natural scene response, or by computing an average linear filter from the natural scene model. It is important to assess whether the same conclusion about color opponency can come from this standard approach using the linear feature (average effective input), and whether the MEIs are qualitatively different from the linear feature. The linear feature should thus be compared to MEIs for Fig. 3 and 4, and the linear feature should be compared with the effects of natural stimuli in terms of chromatic contrast (Fig. 6b). With respect to the representation analysis (Fig. 5), although I don't believe this is meaningful for MEIs, if this analysis remains it should also be compared to a representation analysis using the linear feature. In fact, a representation analysis would be more meaningful when performed using the average linear feature as it summarizes a wider range of stimuli, although the most meaningful analysis would be directly on a broader range of responses, which is what is usually done.

      4. Definition of ethological problem. The ethological problem posed here is the detection of the horizon. The stimuli used do not appear to relate to this problem as they do not include the horizon and only include transitions across the horizon. It is not clear whether these stimuli would ever occur with reasonable frequency, as they would only occur with large vertical saccades, which are less common in mice. More common would be smooth transitions across the horizon, or smaller movements with the horizon present in the image. In this case, cells which have a spatial chromatic opponency (which the authors claim are distinct from the ones studied here) would likely be more important for use in chromatic edge detection or discrimination. Therefore the ethological relevance of any of these analyses remains in question.

      It is further not clear if detection is even the correct problem to consider. The horizon is always present, but the problem is to determine its location, a conclusion that will likely come from a population of cells. This is a distinct problem from detecting a small object, such as a small object against the background of the sky, which may be a more relevant problem to consider.

      5. Difference in cell type from those previously described. It is claimed that the chromatic opponent cells are different from those previously described based on the MEI analysis, but we cannot conclude this because previous work did not perform an MEI analysis. An analysis should be used that is comparable to previous work, the linear spatiotemporal receptive field should be sufficient. However, there is a concern that because linear features can change with stimulus statistics (Hosoya et al., 2005), a linear feature fit to natural scenes may be different than those from previous studies even for the same cell type. The best approach would likely be presenting a white noise stimulus to the natural scenes model to compute a linear feature, which still carries the assumption that this linear feature from the model fit to a natural stimulus would be comparable to previous studies. If the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set. One technical aspect relating to this is that MEIs were space-time separable. Because the center and surround have a different time course, enforcing this separability may suppress sensitivity in the surround. Therefore, it would likely be better if this separability were not enforced in determining whether the current cells are different than previously described cells. As to whether these cells are actually different than those previously described, the authors should consider the following uncited work; (Ekesten Gouras, 2005), which identified chromatic opponent cells in mice in approximate numbers to those here (~ 2%). In addition, (Yin et al., 2009) in guinea pigs and (Michael, 1968) in ground squirrels found color-opponent ganglion cells without effects of a spatial surround as described in the current study.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      The discussion seems to imply that the ball-and-chain peptide is or is related to the common gate. (Although it isn't stated explicitly, it is implied based on the presentation of the gating model in Figure 8 immediately after the discussion of common gating, and the simultaneous opening of both pores in Figure 8). What does the asymmetric structure say about the relationship between the N-term peptide and common gating in ClC-2? It seems like this structure suggests that the CTDs can independently rotate, and independently bind N-terminal peptide, which might not be expected to impact both pores. Some additional clarification and/or discussion of these ideas could be helpful here.

      We thank the reviewer for raising these very important points. We agree we should have been more explicit and have now expanded our discussion on this topic, highlighting the independent movement of the N-term peptide and CTDs and clarifying that it is currently unknown whether CLC-2 has a common gate (lines 431484).

      Discussion of "Revised Framework for CLC-2 gating": I think this would be a little easier to follow if most of the legend from Figure 8 was in the main text at the end of that section. Also, additional labels in Figure 8 (of the glutamates, the N-terminal peptide, and what the CTD arrows represent).

      We have revised this section of the text and added labels to the (revised) Figure as suggested.

      Line 261: typo, misspelling of "hydrogen"

      Fixed. (Now line 279.)

      Figure 6 - supplement 2B: Looks like an error in numbering y-axis - should be 90/120/150, I think. Can you show the three data points for the WT initial current rectification? Can you clarify whether the 3 that you are analyzing are the ones where AK42 the AK42 "zero current" level is not more than the initial positive current?

      We apologize for this error, which arose from the Y-axis label overlapping the tick labels, so 90/120/150 showed as 90/20/50. We have fixed this error and have added a new panel (C) to show three data points for the WT initial current rectification. In the Figure legend to panel C, we clarify that the 3 experiments we analyzed are the ones where the AK-42 current level is not more than the initial current at 80 mV.

      Reviewer #2 (Recommendations For The Authors):

      1. It appears from a close inspection of Figure 2 that the TM dimer is not quite symmetric, but I couldn't tell for sure from the figures as presented. No comment is made in the methods about symmetry imposed, and the authors explicitly comment on asymmetry in the cytoplasmic domain. It would be useful to have an explicit discussion of the TM dimer symmetry.

      We have now explicitly stated that the TM dimer is symmetric, and we have clarified the wording in the Methods:

      Main text, line 81: "The TM region of CLC-2 displays a typical CLC family symmetric homodimeric structure, with each subunit containing an independent Cl– pathway (Figure 2A, B)."

      Methods (lines 557-558): "The following ab initio reconstruction and 3D refinement (for all structures presented in this paper) were performed with C1 symmetry (no symmetry imposed)."

      1. For the simulations in Figure 5 Supplement 2, the N terminus flexibility is shown, but this of course can't be compared to a control. However, given the structural results, one might expect the JK helix to show changes in flexibility/mobility in the apo vs inactivated structures. Is this observed?

      We agree that the structures strongly suggest the JK-helix is not as stable without the N-terminus bound. We did not perform comparative simulations on the JK helix in the apo vs inactivated structures. While we agree this could be of interest, we don’t think it is essential to our conclusions, and the simulations might need to be quite long to adequately capture dynamics of the JK helix. [In the simulation results shown in Figure 5 Supplement 2, our aim was to test the validity of the structure by determining whether the N-terminus remains bound to the channel in simulations. The plot shows that the N-terminus stays in the same binding pose with an average RMSD (to the initial structure) of less than 2 angstroms, which is generally considered to be relatively stable.]

      1. I find the section "revised framework for ClC-2 gating" to be wanting. The ideas are illustrated in the cartoon, but should also be laid out in the text. In what ways are you revising the framework, and in what aspects are you carrying through ideas already proposed?

      Thank you for raising this point, which was also raised by Reviewer 1. We have revised this section and the accompanying Figure (Figure 8 and Lines 431-484).

      1. The authors mention in passing the idea that the hairpin could contribute to inward rectification (lines 227/8), but also suggest a role for the gating glutamate in this process. They also mention the idea of a common gate, but don't flesh out its function very much. These possibilities are very interesting and should be substantially fleshed out in the "framework" section, even if they cannot be fully answered yet.

      We have expanded on these points in the “framework” section.

      1. Figure 6E. points representing individual experiments should be shown.

      We added points representing individual experiments for Delta N (normalized to WT) in the surface-expression experiments in Figure 6E. Individual data points for the electrophysiology experiments are in panel C; we did not replot these in panel E because some of the points would have been off scale.

      1. The density in Figure 2A is hard to see, is there a better way to display it? Also, the orientation of the rightmost panel in Figure 2C is difficult to interpret.

      We revised 2A to make the density easier to see. We revised Figure 2C so that the middle and rightmost panels have the same orientation.

      1. P6. Line 87. This sentence is a little confusing, and perhaps could be a little clearer-the density is consistent with a Cl- ion, but no experiments have been done to support this, no?

      We have clarified the wording as suggested (now line 89) and added references supporting Clˉ binding to the Sext site in CLCs (line 90).

      1. P6 lines 89-98. Two lines of evidence, the conformation of the gate and the pinch point, both point to the structure representing a closed state. The wording as presented is a little hard to follow.

      We have revised the wording in this paragraph (lines 92-111)

      1. It's hard to distinguish water protons and oxygens in the lower right panel (QQQ).

      We revised this panel (in Figure 3 – figure supplement 2) to better distinguish the water protons and oxygens.

      Reviewer #3 (Recommendations For The Authors):

      A few points to consider for improving the manuscript

      1. It is intriguing that in the AK-42 structure, there is no density for the hairpin loop even though the CTD is in a symmetrical conformation as the apo. The authors could perhaps comment on whether there is any difference in the rectification properties of currents (or run-up) upon unblocking of AK-42 which may suggest that the hairpin binding is prevented by AK-42.

      We have not yet performed the suggested experiment nor any experiments to examine state-dependence, though we agree such experiments would be informative. We have added a note on this point in the discussion, lines 334-337.

      1. Although the conformation-dependent placement of the hairpin loop is convincing based on the density, the sequence assigned to this region is not conclusive.

      To strengthen our conclusion concerning the hairpin assignment, we investigated fits of peptide segments from the disordered sections of the C-terminal cytoplasmic domain to the hairpin density. We found that these fits are not as good as that with the N-terminal peptide. This analysis is described in lines 179-181 and a new figure (Figure 5 – figure supplement 1). We appreciate the reviewer’s point that it is extremely difficult to conclusively assign residues that are not contiguous with the rest of the structure. Nevertheless, given the wide variety of evidence all pointing to the conclusion that the hairpin loop corresponds to residues 14-28, we think the assignment is on strong footing. We respectfully ask that you consider removing this criticism from the public review, as we think it will hinder the casual reader from recognizing the strength of the evidence: (1) of unresolved regions in CLC-2, residues 14-28 fit best; (2) residues 14-28 were previously identified as part of the ball blocking region (lines 158-161); (3) MD simulations support that the N-terminal residues stay stably bound (Figure 5 – figure supplement 4) (4) gain-of-function disease causing mutations map onto either the Nterminal residues or interacting residues on the TM domain (Figure 5 – figure supplement 6). Thank you for considering this request.

      1. The authors should comment on the physiological relevance of the CBS domain rearrangements during gating.

      We have added this sentence (lines 131-133): “The physiological relevance of C-terminal domain rearrangements is suggested by disease-causing mutations that alter channel gating (Estevez et al., 2004; Brenes et al., 2023).”

      1. For the figures with cryo-EM maps, indicate the contour levels.

      Contour levels are now indicated in the Figure legends.

      1. It will be useful to the electrostatic map of the N-terminal peptide and the docking site.

      This is now shown in Figure 5 – figure supplement 3 and Video 5.

      1. Include a comment on the recent CLC-2 /AK-42 structure and if there are any differences in the structural features.

      We added this text to lines 273-274: “The RMSD between our CLC2-TM-AK42 structure and that of Ma et al. is 0.655 Å, and the RMSD between the apo TM structures is 0.756 Å.”

    1. This is a very cool paper! Thank you so much for developing this sensor and for studying the important topic of antibiotic resistance. I did not know about this disulfide bond sensor prior to reading your paper and what an amazing tool this is! I'm so glad that we have this technology at our disposal and there are people working on this. I was wondering if I could ask a question about this statement: "E. coli dsb mutants are viable aerobically but not anaerobically. Overall, disulfide bond formation is required for virulence but not for in vitro growth of gram-negative bacteria,". I think I understand the reason that disulfide bonds would be critical for virulence. But I don't think I understand why aren't disulfide bonds also critical for normal in vitro growth? While developing this sensor, have people looked at cytoplasmic proteins using mass spectrometry to confirm that they actually lack disulfide bonds? And if cytoplasmic proteins do indeed lack disulfide bonds, then may be one possibility cytoplasmic proteins can function without disulfide bonds is that they don't need to be as stable as periplasmic or secreted proteins? Thanks again for your hard work on this crucial topic! And thank you for your time!

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      Recommendation 1: The authors reasoned upon the presence of a differential basal hydraulic stress in waves' valleys vs hills at first from the observation of "domes" formation upon 48h cultivation. I suggest performing a quantification to support the statement as a good scientific practice. Furthermore, it would strengthen the concept when the formation of domes was compared between the waves' dimensions as a different grade of cell extrusion was quantified. i.e., 50, 100, and 200 µm.

      Response 1: Upon seeing the phenomenon (Author response image 1 A), we performed a count for domes on the 100 µm and saw a significant effect. We refrained from including the results as it is the subject of ongoing research in our lab. In response to the reviewer’s suggestion, we have included a graph (Author response image 1 B) showing the increasing number of domes over 48 hours from three 100 µm wave samples.

      We have updated Figure 2A and B in the manuscript to include the new graph.

      Author response image 1.

      (A) shows dome (white arrows) over a 100 µm wave substrate. (B) is the number of accumulated domes in valley and hill regions, for 3 independent samples, over 48 hours.

      Recommendation 2: Using RICM microscopy to quantify the cell basal separation with the substrate and hydraulic stress is very clever. Nevertheless, I am in doubt if the different intensity reported for the hills vs valley (Fig. 2G and H) is a result of the signal reduction at deeper Z levels. Since there is no difference in extrusion and forces between valleys and hills in the 200 µm waves but only in 50µm and 100µm, I would add this to the quantification. I would expect no intensity difference from RICM for the 200 µm sample if this is not an artefact of imaging.

      Response 2: We performed additional experiments on blank wave substrates (both 100 and 200 µm) to ascertain the extent of reflection intensity drop (Author response image 2A). And, as correctly pointed out by Reviewer #1, there was a drop in intensity even without cells. On the 100 µm waves, hill reflections are on average ~27 % dimmer than valley reflections. Whereas, on the 200 µm waves, hill reflections are on average ~39 % dimmer.

      Using this information, we performed a calibration on the RICM results obtained from both the 100 and 200 µm waves (Author response image 3B). The calibrated 100 µm data showed residual signatures of difference, whereas the calibrated 200 µm distributions appeared very similar. We noticed large cross- sample variations in the registered intensities, which will negatively impact effect size if not accounted for. To do this, we subsequently normalized both hill and valley intensities against planar region intensities for each sample. As shown by the final output (Author response image 3C), we were able to remove the skewness in the distributions. Moreover, 1-way ANOVA followed by a post hoc analysis with BH correction revealed a significant reduction in 100 µm hill/flat intensity ratio compared to 100 µm valley/flat intensity ratios (Δ~-23 %). Conversely, no significance was observed for the same comparison on the 200 µm waves.

      Author response image 2.

      (A). RICM from blank wave samples reveal a reduction in reflection intensity in hill regions compared to flat and valley regions.

      Author response image 3.

      (B) shows the RICM intensities after adjusting for the inherent reflection intensity drop shown in (A). (C) show the RICM intensities after normalization against planar region signals; this removes cross-sample variations and improve effect size of differences.

      We have updated the manuscript Figure 2I and text accordingly. The blank wave results are included in Figure 2-figure supplement 1 along with updated text and summary data table in Supplementary File 4.

      Recommendation 3: To measure 3D forces on top of the hills and valleys, the use of PAA gels is necessary. Since in Fig 3B, the authors show a difference in cell extrusion number between substrates and stiffnesses, I think it is necessary to confirm the presence of more extrusion in valleys vs hills on PAA gels. This would ensure the conclusion between normal forces and extrusion.

      Response 3: We do have time-lapse data with monolayers on the PAA waves. However, we felt results from the flat regions were sufficient in supporting the point being made in the text. Specifically, our original intention with PAA gels was to show that the extrusion reductions seen in osmotic perturbations were by virtue of removing basal stress and not some cryptic osmotic response. Hydrogels were chosen because they can effectively dilute basal solute concentration and thereby reduce the osmotically induced water transport. Moreover, as fluid could freely move within the gel, the fluid stress can quickly equilibrate across the basal surface. In contrast, poorly water/solute permeable substrates could lead to localized spikes in solute concentration and transient basal regions with high fluid stress.

      To get a sense of the potential difference in basal solute concentration between the two materials, we can do a quick hand-waving estimation. For monolayers on non-water/solute permeable PDMS of 20x20 mm and using the laser wavelength (640 nm) for RICM as an extreme estimate of basal separation, we should expect ~0.25 µl of total basal water content. On the other hand, we typically produce our PAM gel slabs using ~150 µl of precursor solutions. This means that, given similar amounts of solute, PAM gels will lead to monolayer basal osmolarity that is around 3 orders of magnitude lower than monolayers on PDMS, producing significantly lower osmotic potential. This implies from the outset that we should expect high survivability of cells on these substrates irrespective of curvature domains. Indeed, later immunoblotting experiments showed MDCKs exhibiting hyper activated FAK and Akt on PAM gels.

      In response to Reviewer #1’s suggestion then, we have added another supporting time-lapse (Video 19) showing typical response of MDCK monolayers on 100 µm PAA waves (Author response image 4). Evident from the time-lapses, like the planar regions, cell extrusions were very rare. This supports the idea that on PAM gels the effects of basal hydraulic stress and asymmetric forces are marginal against the strong survival signals. And the response is similar to hyper-osmotic perturbations; there, we did not see a significant difference between valley and hill extrusions.

      Author response image 4.

      Time-lapse snapshot showing negligible MDCK extrusions 24 hours after confluency over PAM gel wave substrates.

      Recommendation 4: Before proceeding with the FAK inhibitor experiment, the authors should better justify why the 4.1 wt % sucrose vs DMSO or NaCl is the most inert treatment. This can be done by citing relevant papers or showing time-lapses (as it is done for the higher FAKI14 dose).

      Response 4: Although some cells have recently been shown to be able to transport and utilize sucrose, mammalian cells generally cannot directly take up polysaccharides for metabolism and this is frequently mentioned in literature: see (Ref. R1) for example. Without special enzymes to break sucrose down into monosaccharides, such as sucrase found in the gut, the sugars should remain spectators in the culture medium, contributing only to osmotic effects.

      DMSO on the other hand, besides changing osmolarity, can also be integrated into cell membrane and pass through cells over time. It has been reported to chronically affect cell membrane properties and gene expressions (Ref. R2).

      Finally, it is well known that both sodium and chloride ions are readily taken up and transported by cells (Ref R3). They help to regulate the transmembrane potential, which in turn can affect membrane bound proteins and biochemical reactions within a cell.

      Hence, comparing the 3 hyper-osmotic perturbations, adding sucrose should have the least off- target effects on both the inhibitor study and the subsequent immunoblotting. And, in response to the reviewer’s recommendation, we have updated the text accordingly and included new references to support our statement.

      Ref R1. H. Meyer, O. Vitavska, H. Wieczorek; Identification of an animal sucrose transporter. Journal of Cell Science 124, 1984–1991 (2011). Doi: 10.1242/jcs.082024

      Ref R2. B. Gironi, Z. Kahveci, B. McGill, B.-D. Lechner, S. Pagliara, J. Metz, A. Morresi, F. Palombo, P. Sassi, P. G. Petrov; Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophysical Journal 119, 274-286 (2020). Doi: doi.org/10.1016/j.bpj.2020.05.037

      Ref R3. X. Zhang, H. Li; Interplay between the electrostatic membrane potential and conformational changes in membrane proteins. Protein Science 28, 502-512 (2019). Doi: 10.1002/pro.3563

      Recommendation 5: The data showing a FAK-dependent phosphorylation of AKT responsible for a higher cell survival rate in the hills is not yet completely convincing. Please show a reduced AKT phosphorylation level after FAK inhibition in high osmolarity levels. Furthermore, the levels of AKT activation seem to increase slightly upon substrate softening independently of FAK activation or osmotic pressure (i.e., Fig. 4E, Soft PDMS). The authors should comment on this in connection with the results shown for PAA gels.

      Response 5: For the additional immunoblotting experiments, work is currently underway. We could not, however, complete these experiments in time for this revision, as both Cheng-Kuang and Xianbin will shortly be taking on new jobs elsewhere. David will continue with the immunoblotting studies and should be able to include the results in an update in the coming months. As for the apparent elevated levels of AKT seen on soft silicones, we speculate that it is because we cannot immunoblot cells that have died and were inevitably washed out at the start of the procedure. Inferring from the higher extrusion rates on these soft substrates, we could be missing a significant portion of stats. Specifically, we are missing all the cells that would have lowered AKT activation but died, and had we been able to collect those statistics, perhaps both the FAK and AKT should have shown lower levels. We risk committing survival bias on the results if we read too much into the data as is.

      Alternatively, another explanation could be that, by virtue of survival of the fittest, we might have effectively selected a subpopulation of cells that were able to survive on lower FAK signals, or completely irrespectively of it.

      At any rate, to prove our foregoing hypothesis would require us to perform comprehensive immunoblotting and total transcriptome analysis over different duration conditions. Unfortunately, we do not have the time to do that for the current article, but it could be developed into a stand-alone molecular biology investigation in future. We have included similar discussion in the main text.

      Recommendation 6: In the discussion, the authors suggest the reported findings be especially relevant for epithelia that significantly separate compartments and regulate water and soluble transport. These are for example kidney epithelia (i.e., MDCK is the best experimental choice), retinal epithelium or intestinal epithelium. I would suggest that some proof-of-concept experiments could be done to support this concept. For example, I would expect keratinocytes (i.e., HaCaT) not to show a strong difference in extrusion rate between valleys and hills since the monolayer is not so sealed as kidney epithelium. In general, this kind of experiment would significantly strengthen the finding of this work.

      Response 6: As recommended, we tracked the behavior of retina pigment epithelial cells (hTERT RPE-1 from ATCC) which do not form tight monolayers like MDCKs (Ref. R4). We did not detect extrusion events occurring from monolayers of these cells (Author response image 5). This is true even for portions of monolayers over waved regions.

      Author response image 5.

      Time-lapse snapshot showing non-existent o cell extrusions from RPE monolayers confluent for over 21 hours.

      We have updated these findings in the main text discussions and included a new supporting time- lapse (Video 15) in our article.

      Ref R4 F. Liu, T. Xu, S. Peng, R. A. Adelman, L. I. Rizzolo; Claudins regulate gene and protein expression of the retinal pigment epithelium independent of their association with tight junctions. Experimental Eye Research 198, 108157 (2020). Doi: 10.1016/j.exer.2020.108157

      Recommendation 7 (minor point): Figure S1 needs to have clear notes indicating in each step what is what. i.e., where is glass, PDMS, NOA73, etc? A more detailed caption will help the figure's comprehension. Also "Cy52" should be changed to "soft silicone" to be consistent with the text (or Cy52 should be mentioned in the text).

      Response 7 (minor point): Changes were made to Figure 1-figure supplement 1 to improve comprehension accordingly. CY52 was added to the main-text, next to the first appearance of the word soft silicone, to be consistent with the figures.

      Recommendation 8 (minor point): The authors often mentioned that epithelial monolayers are denser on PAA gels. Please add a reference(s) to this statement.

      Response 8 (minor point): The statement is an inference from visually comparing monolayers on PAM gels and PDMS. The difference is quite evident (Author response image 6). The density difference is in spite of the fact that the substrates share similar starting cell numbers.

      To address the reviewer’s comment, we have combined time-lapses of monolayers on silicones and PAM gels side-by-side in Video 17 to facilitate convenient comparisons.

      Author response image 6.

      Time-lapse snapshot at 24 hours after confluence, showing conspicuously higher density of MDCK monolayers on PAM gel compared to those on silicon elastomer.

      Reviewer #2

      Recommendation 1: The sinusoidal wavy substrate that the authors use in their investigation is interesting and relevant, but it is important to realize that this is a single-curved surface (also known as a developable surface). This means that the Gaussian curvature is zero and that monolayers need to undergo (almost) no stretching to conform to the curvature. The authors should at least discuss other curved surfaces as an option for future research, and highlight how the observations might change. Convex and concave hemispherical surfaces, for example, might induce stronger differences than observed on the sinusoidal substrates, due to potentially higher vertical resultant forces that the monolayer would experience. The authors could discuss this geometry aspect more in their manuscript and potentially link it to some other papers exploring cell-curvature interactions in more complex environments (e.g. non-zero Gaussian curvature).

      Response 1: In response to reviewer #2’s recommendation we have highlighted in the discussion of our text that our waves constitute a developable surface and that cells will experience little stretching for the most part. Based on our knowledge of how curvature can modulate forces and thus osmotic effects, we included some rudimentary analysis of what one would expect on hemispherical surfaces of two types: one that is periodic and contiguous (Ref. R5), and another with delineating flat regions (Ref. R6).

      For epithelial monolayers in the first scenario, and on poorly solute/water permeable substrates, we should also expect to see a relatively higher likelihood of extrusions from concave regions compared to convex ones. Moreover, as the surfaces are now curved in both principal directions (producing larger out-of-plane forces), we should see the onset of differential extrusions seen in this study, but at larger length scales. For example, the effects seen on 100 µm hemicylindrical waves might now happen at larger feature size for hemispherical waves. Furthermore, as this kind of surface would invariably contain hyperbolic regions (saddle points), we might expect an intermediate response from these locations. If the forces in both principal directions offset each other, the extrusion response may parallel planar regions. On the other hand, if one dominates over the other, we may see extrusion responses tending to the dominating curvature (concave of convex).

      On the other hand, on curved landscapes with discrete convex or concave regions, we should expect, within the curved surface, extrusion behaviors paralleling findings in this study. What would be interesting would be to see what happens at the rims (or skirt regions) of the features. At these locations we effectively have hyperbolically curved surfaces, and like before, we should expect some sort of competing effect between the forces generated from the principal directions. So, for dome skirts, we should see fewer extrusions when the domes are small, and vice versa, when they are larger. Meanwhile, for pit rims, we should see a reversed behavior. It should also be noted that the transitioning curvature between convex/concave and planar regions would also modulate the effect.

      These effects might have interesting developmental implications. For instance, in developing pillar like tissues (e.g., villi) structures, the strong curvatures of nascent lumps would favor accumulation of cell numbers. However, once the size of the lumps reaches some critical value, epithelial cell extrusions might begin to appear at the roots of the developing structures, offsetting cell division, and eventually halting growth.

      Ref R5. L. Pieuchot, J. Marteau, A. Guignandon, T. Dos Santos, I. Brigaud, P. Chauvy, T. Cloatre, A. Ponche, T. Petithory, P. Rougerie, M. Vassaux, J. Milan, N. T. Wakhloo, A. Spangenberg, M. Bigerelle, K. Anselme, Curvotaxis directs cell migration through cell-scale curvature landscapes. Nature Communications 9, 3995 (2018). Doi: 10.1038/s41467-018-06494-6

      Ref R6. M. Werner, S. B.G. Blanquer, S. P. Haimi, G. Korus, J. W. C. Dunlop, G. N. Duda, D. W. Grijpma, A. Petersen, Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Advanced Science 4, 1–11 (2017). Doi: 10.1002/advs.201600347

      Recommendation 2: The discussion of the experiments on PAM gels is rather limited. The authors describe that cells on the PAM gels experience fewer extrusions than on the PDMS substrates, but this is not discussed in sufficient detail (e.g. why is this the case). Additionally, the description of the 3D traction force microscopy and its validation is quite limited and should be extended to provide more convincing evidence that the measured force differences are not an artefact of the undulations of the surface.

      Response 2: We first saw a significant reduction in cell extrusions when we performed hyper-osmotic perturbations, and to eliminate possible off-target effects of the compounds used to increase osmolarity, we used three different compounds to be sure. In spite of this, we felt it would further support our argument, that basal accumulation of fluid stress was responsible for the extrusions, if we had some other independent means of removing fluid stress without directly tuning osmolarity through addition of extraneous solutes. We hence thought of culturing MDCK monolayers on hydrogels.

      Hydrogels were chosen because they can effectively dilute basal solute concentration (for reference ions (Na+) are continuously pumped out basally by the monolayer) and thereby reduce the associated osmotically induced water transport. Moreover, as fluid could freely move within the gel, the fluid stress can quickly equilibrate across the basal surface. In contrast, poorly water/solute permeable substrates will lead to localized spikes in solute concentration and transient basal regions with high fluid stress.

      To get a sense of the extent of difference in basal solute concentration between the two materials, we can do a quick hand-waving estimation. For monolayers on non-water-permeable PDMS of 20x20 mm, and using the laser wavelength (640 nm) for RICM as an extreme estimate of basal separation, we should expect ~0.25 µl of total basal water content. On the other hand, we typically produce our PAM gel slabs using ~150 µl of precursor solutions. This means that, given similar amounts of solute, PAM gels will lead to monolayer basal osmolarity that is around 3 orders of magnitude lower than monolayers on PDMS, producing significantly lower osmotic potential. This implies from the outset that we should expect high survivability of cells on these substrates. Indeed, later immunoblotting experiments showed MDCKs exhibiting hyper activated FAK and Akt on PAM gels.

      As for the 3D TFM used in this study, it is actually implemented from a well-established finite element method to solve inverse problems in engineering and has been repeatedly validated in larger scale engineering contexts (Ref. R7). The novelty and contribution of our article is in its adaptation to reconstruct cellular forces at microscopic scales.

      In brief, soft materials, such as hydrogels used in our case, are doped with fluorescent particles, coated with ECM, and then seeded with cells. The cells would exert forces that deform the soft substrate, thereby displacing the fluorescent particles from their equilibrium positions. This particle displacement can be extracted by producing an image pair with microscopy; first one with the cells, and subsequent one of relaxed gel after removal of cells with acutely cytotoxic reagents, such as SDS. There are several ways in which the displacement field can be extracted from the image pair. These include particle tracking velocimetry, particle image velocimetry, digital volume correlation, and optical flow.

      We employed 3D Farneback optical flow in our study for its superior computational performance. The method was validated using synthetically generated images from Sample 14 of the Society for Experimental Mechanics DIC challenge. The accuracy of the calculated displacements using the 3D Farneback optical flow was then compared to the provided ground truth displacements. For the highest frequency displacement image pairs, an x-component root-mean-square-error (RMSE) value of 0.0113 was observed. This was lower than the 0.0141 RMSE value for the Augmented Lagrangian Digital Volume Correlation method. This suggested that the 3D Farneback optical flow is capable of accurately calculating the displacement between two bead images.

      The displacement fields are then fed into a finite element suite (ANSYS in our case) along with the model and mesh of the underlying substrate structure to obtain node specific displacements. This is required because mech nodes do not typically align with voxel positions of displacements. With these node specific displacements, we subsequently solve the inverse problem for the forces using Tikhonov regularization (Ref. R8). The outcome is a vector of node specific forces.

      In light of the above, to physically validate the method in our context would require the generation of a known ground truth force on the scale of pico- to nano-newtons and subsequently image the particle displacements from this force using confocal microscopy. The force must then be released in situ in order for the relaxed gel to be imaged again. This is not a straightforward feat at this scale, and a method that immediately springs to mind is magnetic tweezers. Unfortunately, this is a tool that we cannot develop within reasonable timeframes, as the method will have to be seamlessly integrated with our spinning-disk confocal. However, as a compromise, we have included an in-silico validation with our revised manuscript.

      Specifically, given a finite element model with a predefined curvature, a known force was applied to the surface of the model (Author response image 7A). The resulting displacements were then calculated from the finite element solution. A 10% random noise is then added to the resulting displacement. The traction force recovery (Fig. R2-1 B) was then performed using the in-silico noisy displacements. To evaluate the accuracy of the recovery, the cosine similarity along with the mean norm of the force vectors were calculated. A value closer to 1 for both evaluation metrics indicates a more accurate reconstruction of the simulated traction force. The cosine similarity of the recovered traction forces to the original applied force was 0.977±0.056 while the norm of the recovered traction forces as a proportion of the original applied force was 1.016±0.165. As both values are close to 1 (i.e., identical), this suggested that the traction forces could be satisfactorily recovered using the finite-element based method.

      In response to the reviewer’s recommendations then, additional content has been included in the main text to explain the use of PAM gels and the workings of our 3D TFM pipeline.

      Ref R7. James F. Doyle, Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems (John Wiley & Sons, Chichester, 2004).

      Ref R8. Per Christian Hansen, Discrete Inverse Problems: Insight and Algorithms (siam, Philadelphia, 2010).

      Author response image 7.

      (A) shows simulated force field to generate simulated displacements. (B) shows force field reconstructed from simulated displacements with noise.

      Recommendation 3: The authors show nuclear deformation on the hills and use this as evidence for a resultant downward-pointing force vector. This has, indeed, also been observed in other works referenced by the authors (e.g. Werner et al.), and could be interesting evidence to support the current observations, provided the authors also show a nuclear shape on the concave and flat regions. The authors could potentially also characterize this shape change better using higher-resolution data.

      Response 3: We characterized nucleus deformation using Hoechst-stained samples as per recommendation. The deformation is estimated by dividing segmented nuclei volumes by best-fit ellipsoid volumes of same objects. In this way, objects exhibiting minimal bending will lead to values close to 1.0. The obtained graph is shown in figure Author response image 8B (and manuscript Figure 3D).

      Author response image 8.

      (A) an example of deformed nuclei on 50 µm wave hill region. (B) a Violin plot of calculated nuclear deformations across dimensions and features using segmented volume normalized against best-fit ellipsoid volume.

      Our quantifications show a statistically significant difference in nuclei deformation measure medians between hill and valley cells on the 50 µm (0.973 vs 0.982) and 100 µm (0.971 vs 0.979) waves; this indicates that cells on the hills tend to have more deformed nuclei compared to cells in the valleys. Meanwhile, no significant difference was found for a similar comparison on 200 µm (0.978 vs 0.978) samples. For reference, the median found for cells pooled from planar regions was 0.975.

      In response to the reviewer’s suggestions Figure 3 of our manuscript has been updated to include the new results on nuclei deformation. The text has also been updated to account for the new information to support our claims. The statistics are included in a new summary data table in Supplementary File 6.

      Recommendation 4: The U-net for extrusion detection is a central tool used within this study, though the explanation and particularly validation of the tool are somewhat lacking. More clarity in the explanation and more examples of good (or bad) detections would help establish this tool as a more robust component of the data collection (on all geometries).

      Response 4: The architecture of the neural network used in this study is outlined in supplementary figure S5a. To validate the performance of the model, a test dataset consisting of 200 positive examples and 100 negative examples were fed into the network and the resulting prediction was obtained from model. The confusion matrix of the model is shown in supplementary figure S5c. The weighted precision and recall of the model are 0.958 and 0.953 respectively.

      Additionally, we have included examples of false positive and false negative detections in Figure 1-figure supplement 5 (Author response image 8). For false positive detections, these were typically observed to be extrusions that were labelled to have occurred the frame prior to the frame of interest (Author response image 9 bottom sequence). However, as the extrusion process is incomplete in the prior frame, there are still changes in the extruded cell body and the network falsely predicts this as a detection.

      Author response image 9.

      Examples of false negative and false positive extrusions registration.

      Recommendation 5: The authors study the involvement of FAK in the observed curvature-dependent and hydraulic stress-dependent spatial regulation of cell extrusion. In one of the experiments, the authors supplement the cell medium with FAK inhibitors, though only in a hyper-osmotic medium. They show that FAK inhibition counteracts the extrusion-suppressing effect of a hyper-osmotic medium. However, no data is shown on the effect of FAK inhibitors within the control medium. Would the extrusion rates be even higher then?

      Response 4: We proceeded, as suggested by the reviewer, to explore the effects of the FAK inhibitor on MDCK monolayers in our control medium. The results revealed that, at the 3 µM FAK concentration, where cells in sucrose media showed an elevated extrusion rate, monolayers in control medium quickly suffered massive cell death (Author response image 10) similar to what was seen when 6 µM FAK was introduced to sucrose medium.

      This finding suggests that osmolarity protects against FAK inhibitors in a dose dependent manner. Moreover, as cell extrusions require an intact monolayer, its rates cannot increase indefinitely: a point will be reached where an intact monolayer can no longer be maintained.

      We have updated the main text of our article to mention this observation, and also included a new time-lapse (Video 22) to demonstrate the effect.

      Author response image 10.

      Timelapse snapshot of MDCK monolayers over waves 4 hours after inclusion of focal adhesion kinase inhibitor.

      Recommendation 6: The supplementary videos show two fields of view next to each other, which is not immediately clear to the viewer. I strongly advise the authors to add a clear border between the two panels, so that it is clear that the cells from one panel are not migrating into the next panel.

      Response 6: A distinctive border has been added to the movies to separate panels showing different focal planes of the same stack.

      Recommendation 7: The general quality and layout of the figures could be improved. Some figures would benefit from higher-resolution or larger cell images (e.g. Figure 2A, C, D), and the organisation of subpanels could be improved (e.g. especially in Figure 2). The box plots and bar graphs are also not consistent throughout the manuscript in terms of colouring and style, which should be improved.

      Response 7: We have enlarged the figures in question accordingly, at the cost of reducing some information. However, the full scope of the sub-figures remains accessible in the supplementary movies. We have also tried to change the placement of the panels to improve readability. We have also adjusted the valley, hill, and flat coloring scheme for the extrusion boxplots in Figures 1 and 2 to make them consistent.

      Recommendation 8: The graphs in Figures 3E and F are confusing and difficult to interpret. The x-axis states "Position along curve in radians" but it is unclear how to relate this to the position on the wavy substrate. The graphs also have a second vertical axis on the right ("valley-interface-hill"), which adds to the confusion. I would recommend the authors provide more explanation and consider a different approach of plotting this.

      Response 8: We have removed the confusing plot of cross-sectional profile from the force graphs. To indicate positions on the waves, we have augmented radian values with Hill, Interface, and Valley accordingly.

      Recommendation 9: Specify which silicone was used for the low-stiffness silicone substrates in the methods and in the main text.

      Response 9: CY52 has been added to the main-text, next to the first appearance of the word soft silicone, to be consistent with the figures.

      Recommendation 10: The flow lines that are plotted over the RICM data make it difficult to see the underlying RICM images. I would advise to also show the RICM images without the flow lines.

      Response 10: The original movie S15 (now Video 16) showing the RICM overlapped with optical flow paths has now been replaced by a movie showing the same, but with the flow paths and RICM in separate panels.

      Recommendation 11: In the first paragraph of the discussion, the authors write: "And this difference was both dependent on the sense (positive or negative)...". This is superfluous since the authors already mentioned earlier in the paragraph that the convex and concave regions (i.e. different signs of curvature) show differences in extrusion rates.

      Response 11: The sentence has been changed to “And this difference was also dependent on the degree of curvature.”

      Recommendation 12: In the second paragraph of the discussion, the authors mention that "basal fluid spaces under monolayers in hill regions were found consistently smaller than those in valley regions". Is this data shown in the figures of the manuscript? If so, a reference should be made because it was unclear to me.

      Response 12: This statement is an inference from the comparison of the hill and valley RICM grey values. Specifically, RICM intensities are direct surrogates for basal separations (i.e., fluid space (as there cannot be a vacuum)) by virtue of the physics underlying the effect. To be more precise then, “inferred from RICM intensity differences (Figure 2I)” has been added to support the statement.

      Recommendation 13: On page 7 of the discussion, the authors talk about positively and negatively curved surfaces. This type of description should be avoided, as this depends on the definition of the surface normal (i.e. is positive convex or concave?). Rather use convex and concave in this context.

      Response 13: The wording has been changed accordingly.

      Recommendation 14: The label of Table 8 reads "Table 2".

      Response 14: The error has been corrected.

      Reviewer #3

      Recommendation 1: The central finding seems to be opposite to an earlier report (J Cell Sci (2019) 132, jcs222372), where MDCK cells in curved alginate tubes exhibit increased extrusion on a convex surface. I suggest that you comment on possible explanations for the different behaviors.

      Response 1: The article in question primarily reported the phenomenon of MDCK and J3B1A monolayers detaching from the concave alginate tube walls coated with Matrigel. The authors attributed this to the curvature induced out-of-plane forces towards the center of the tubes. Up to this point, the findings and interpretation are consistent with our current study where we also find a similar force trend in concave regions.

      To further lend support to the importance of curvature in inducing detachment, the authors cleverly bent the tubes to introduce asymmetry in curvature between outer and inner surfaces. Specifically, the outside bend is concave in both principal directions, whereas the inside bend is convex in one of its principal directions. As expected, the authors found that detachment rates from the outer surface were much larger compared to the inner one. Again, the observations and interpretations are consistent with our own findings; the convex direction will generate out-of-plane forces pointing into the surface, serving to stabilize the monolayer against the substrate. It should be noted however, since the inner-side tube is characterized by both convex and concave curvatures in its two principal directions, the resulting behavior of overlaying monolayers will depend on which of the two resulting forces become dominant. So, for gradual bends, one should expect the monolayers to still be able to detach from the inner tube surface. This is what was reported in their findings.

      For their extrusion observations, I am surprised. Because their whole material (hydrogels) is presumably both solute and water permeable, I would be more inclined to expect very few extrusions irrespective of curvature. This is indeed the case with our study of MDCKs on PAM hydrogels, where the hydrogel substrate effectively buffers against the quick build-up of solute concentration and basal hydraulic stress. Without the latter, concave monolayer forces alone are unlikely to be able to disrupt cell focal adhesions. Indeed, the detachments seen in their study are more likely by exfoliation of Matrigel rather than pulling cells off Matrigel matrix entirely.

      My guess is that the extrusions seen in their study are solely of the canonical crowding effect. If this was the case, then the detached monolayer on the outside bend could buffer against crowding pressure by buckling. Meanwhile, the monolayer on the inside bend, being attached to the surface, can only regulate crowding pressure by removing cells through extrusions. This phenomenon should be particular to soft matrices such as Matrigel. Using stiffer and covalently bonded ECM should be sufficient to prevent monolayers from detaching, leading to similar extrusion behaviors. In response to the reviewer’s recommendation then, we have included a short paragraph to state the points discussed in this response.

      Recommendation 2: Fig 3E, F: The quantities displayed on the panels are not forces, but have units of pressure (or stress).

      Response 2: we have changed “force” to “stress” according to the reviewer’s suggestion. The reason we kept the use of force in the original text was due to the fact that we were reconstructing forces. Due to discretization, the resulting forces will inevitably be assigned to element nodes. In between the nodes, in the faces, there will be no information. So, in order to have some form of continuity to plot, the face forces are obtained by averaging the 4 nodes around the element face. Unfortunately, element face areas are not typically of the same size, therefore the average forces obtained needs to be further normalized against the face area, leading to a quantity that has units of stress.

      Recommendation 3: Fig 2D: Asterisks are hard to see.

      Response 3: the color of the asterisks has been changed to green for better clarity against a B&W background.

      Recommendation 4: p 19, l 7: Word missing in "the of molding"

      Response 4: the typo has been amended to “the molding of”.

    1. Author Response

      Reviewer #1 (Public Review):

      In this work George et al. describe RatInABox, a software system for generating surrogate locomotion trajectories and neural data to simulate the effects of a rodent moving about an arena. This work is aimed at researchers that study rodent navigation and its neural machinery.

      Strengths:

      • The software contains several helpful features. It has the ability to import existing movement traces and interpolate data with lower sampling rates. It allows varying the degree to which rodents stay near the walls of the arena. It appears to be able to simulate place cells, grid cells, and some other features.

      • The architecture seems fine and the code is in a language that will be accessible to many labs.

      • There is convincing validation of velocity statistics. There are examples shown of position data, which seem to generally match between data and simulation.

      Weaknesses:

      • There is little analysis of position statistics. I am not sure this is needed, but the software might end up more powerful and the paper higher impact if some position analysis was done. Based on the traces shown, it seems possible that some additional parameters might be needed to simulate position/occupancy traces whose statistics match the data.

      Thank you for this suggestion. We have added a new panel to figure 2 showing a histogram of the time the agent spends at positions of increasing distance from the nearest wall. As you can see, RatInABox is a good fit to the real locomotion data: positions very near the wall are under-explored (in the real data this is probably because whiskers and physical body size block positions very close to the wall) and positions just away from but close to the wall are slightly over explored (an effect known as thigmotaxis, already discussed in the manuscript).

      As you correctly suspected, fitting this warranted a new parameter which controls the strength of the wall repulsion, we call this “wall_repel_strength”. The motion model hasn’t mathematically changed, all we did was take a parameter which was originally a fixed constant 1, unavailable to the user, and made it a variable which can be changed (see methods section 6.1.3 for maths). The curves fit best when wall_repel_strength ~= 2. Methods and parameters table have been updated accordingly. See Fig. 2e.

      • The overall impact of this work is somewhat limited. It is not completely clear how many labs might use this, or have a need for it. The introduction could have provided more specificity about examples of past work that would have been better done with this tool.

      At the point of publication we, like yourself, also didn’t know to what extent there would be a market for this toolkit however we were pleased to find that there was. In its initial 11 months RatInABox has accumulated a growing, global user base, over 120 stars on Github and north of 17,000 downloads through PyPI. We have accumulated a list of testimonials[5] from users of the package vouching for its utility and ease of use, four of which are abridged below. These testimonials come from a diverse group of 9 researchers spanning 6 countries across 4 continents and varying career stages from pre-doctoral researchers with little computational exposure to tenured PIs. Finally, not only does the community use RatInABox they are also building it: at the time of writing RatInABx has received logged 20 GitHub “Issues” and 28 “pull requests” from external users (i.e. those who aren’t authors on this manuscript) ranging from small discussions and bug-fixes to significant new features, demos and wrappers.

      Abridged testimonials:

      ● “As a medical graduate from Pakistan with little computational background…I found RatInABox to be a great learning and teaching tool, particularly for those who are underprivileged and new to computational neuroscience.” - Muhammad Kaleem, King Edward Medical University, Pakistan

      ● “RatInABox has been critical to the progress of my postdoctoral work. I believe it has the strong potential to become a cornerstone tool for realistic behavioural and neuronal modelling” - Dr. Colleen Gillon, Imperial College London, UK

      ● “As a student studying mathematics at the University of Ghana, I would recommend RatInABox to anyone looking to learn or teach concepts in computational neuroscience.” - Kojo Nketia, University of Ghana, Ghana

      ● “RatInABox has established a new foundation and common space for advances in cognitive mapping research.” - Dr. Quinn Lee, McGill, Canada

      The introduction continues to include the following sentence highlighting examples of past work which relied of generating artificial movement and/or neural dat and which, by implication could have been done better (or at least accelerated and standardised) using our toolbox.

      “Indeed, many past[13, 14, 15] and recent[16, 17, 18, 19, 6, 20, 21] models have relied on artificially generated movement trajectories and neural data.”

      • Presentation: Some discussion of case studies in Introduction might address the above point on impact. It would be useful to have more discussion of how general the software is, and why the current feature set was chosen. For example, how well does RatInABox deal with environments of arbitrary shape? T-mazes? It might help illustrate the tool's generality to move some of the examples in supplementary figure to main text - or just summarize them in a main text figure/panel.

      Thank you for this question. Since the initial submission of this manuscript RatInABox has been upgraded and environments have become substantially more “general”. Environments can now be of arbitrary shape (including T-mazes), boundaries can be curved, they can contain holes and can also contain objects (0-dimensional points which act as visual cues). A few examples are showcased in the updated figure 1 panel e.

      To further illustrate the tools generality beyond the structure of the environment we continue to summarise the reinforcement learning example (Fig. 3e) and neural decoding example in section 3.1. In addition to this we have added three new panels into figure 3 highlighting new features which, we hope you will agree, make RatInABox significantly more powerful and general and satisfy your suggestion of clarifying utility and generality in the manuscript directly.

      On the topic of generality, we wrote the manuscript in such a way as to demonstrate how the rich variety of ways RatInABox can be used without providing an exhaustive list of potential applications. For example, RatInABox can be used to study neural decoding and it can be used to study reinforcement learning but not because it was purpose built with these use-cases in mind. Rather because it contains a set of core tools designed to support spatial navigation and neural representations in general. For this reason we would rather keep the demonstrative examples as supplements and implement your suggestion of further raising attention to the large array of tutorials and demos provided on the GitHub repository by modifying the final paragraph of section 3.1 to read:

      “Additional tutorials, not described here but available online, demonstrate how RatInABox can be used to model splitter cells, conjunctive grid cells, biologically plausible path integration, successor features, deep actor-critic RL, whisker cells and more. Despite including these examples we stress that they are not exhaustive. RatInABox provides the framework and primitive classes/functions from which highly advanced simulations such as these can be built.”

      Reviewer #3 (Public Review):

      George et al. present a convincing new Python toolbox that allows researchers to generate synthetic behavior and neural data specifically focusing on hippocampal functional cell types (place cells, grid cells, boundary vector cells, head direction cells). This is highly useful for theory-driven research where synthetic benchmarks should be used. Beyond just navigation, it can be highly useful for novel tool development that requires jointly modeling behavior and neural data. The code is well organized and written and it was easy for us to test.

      We have a few constructive points that they might want to consider.

      • Right now the code only supports X,Y movements, but Z is also critical and opens new questions in 3D coding of space (such as grid cells in bats, etc). Many animals effectively navigate in 2D, as a whole, but they certainly make a large number of 3D head movements, and modeling this will become increasingly important and the authors should consider how to support this.

      Agents now have a dedicated head direction variable (before head direction was just assumed to be the normalised velocity vector). By default this just smoothes and normalises the velocity but, in theory, could be accessed and used to model more complex head direction dynamics. This is described in the updated methods section.

      In general, we try to tread a careful line. For example we embrace certain aspects of physical and biological realism (e.g. modelling environments as continuous, or fitting motion to real behaviour) and avoid others (such as the biophysics/biochemisty of individual neurons, or the mechanical complexities of joint/muscle modelling). It is hard to decide where to draw but we have a few guiding principles:

      1. RatInABox is most well suited for normative modelling and neuroAI-style probing questions at the level of behaviour and representations. We consciously avoid unnecessary complexities that do not directly contribute to these domains.

      2. Compute: To best accelerate research we think the package should remain fast and lightweight. Certain features are ignored if computational cost outweighs their benefit.

      3. Users: If, and as, users require complexities e.g. 3D head movements, we will consider adding them to the code base.

      For now we believe proper 3D motion is out of scope for RatInABox. Calculating motion near walls is already surprisingly complex and to do this in 3D would be challenging. Furthermore all cell classes would need to be rewritten too. This would be a large undertaking probably requiring rewriting the package from scratch, or making a new package RatInABox3D (BatInABox?) altogether, something which we don’t intend to undertake right now. One option, if users really needed 3D trajectory data they could quite straightforwardly simulate a 2D Environment (X,Y) and a 1D Environment (Z) independently. With this method (X,Y) and (Z) motion would be entirely independent which is of unrealistic but, depending on the use case, may well be sufficient.

      Alternatively, as you said that many agents effectively navigate in 2D but show complex 3D head and other body movements, RatInABox could interface with and feed data downstream to other softwares (for example Mujoco[11]) which specialise in joint/muscle modelling. This would be a very legitimate use-case for RatInABox.

      We’ve flagged all of these assumptions and limitations in a new body of text added to the discussion:

      “Our package is not the first to model neural data[37, 38, 39] or spatial behaviour[40, 41], yet it distinguishes itself by integrating these two aspects within a unified, lightweight framework. The modelling approach employed by RatInABox involves certain assumptions:

      1. It does not engage in the detailed exploration of biophysical[37, 39] or biochemical[38] aspects of neural modelling, nor does it delve into the mechanical intricacies of joint and muscle modelling[40, 41]. While these elements are crucial in specific scenarios, they demand substantial computational resources and become less pertinent in studies focused on higher-level questions about behaviour and neural representations.

      2. A focus of our package is modelling experimental paradigms commonly used to study spatially modulated neural activity and behaviour in rodents. Consequently, environments are currently restricted to being two-dimensional and planar, precluding the exploration of three-dimensional settings. However, in principle, these limitations can be relaxed in the future.

      3. RatInABox avoids the oversimplifications commonly found in discrete modelling, predominant in reinforcement learning[22, 23], which we believe impede its relevance to neuroscience.

      4. Currently, inputs from different sensory modalities, such as vision or olfaction, are not explicitly considered. Instead, sensory input is represented implicitly through efficient allocentric or egocentric representations. If necessary, one could use the RatInABox API in conjunction with a third-party computer graphics engine to circumvent this limitation.

      5. Finally, focus has been given to generating synthetic data from steady-state systems. Hence, by default, agents and neurons do not explicitly include learning, plasticity or adaptation. Nevertheless we have shown that a minimal set of features such as parameterised function-approximator neurons and policy control enable a variety of experience-driven changes in behaviour the cell responses[42, 43] to be modelled within the framework.

      • What about other environments that are not "Boxes" as in the name - can the environment only be a Box, what about a circular environment? Or Bat flight? This also has implications for the velocity of the agent, etc. What are the parameters for the motion model to simulate a bat, which likely has a higher velocity than a rat?

      Thank you for this question. Since the initial submission of this manuscript RatInABox has been upgraded and environments have become substantially more “general”. Environments can now be of arbitrary shape (including circular), boundaries can be curved, they can contain holes and can also contain objects (0-dimensional points which act as visual cues). A few examples are showcased in the updated figure 1 panel e.

      Whilst we don’t know the exact parameters for bat flight users could fairly straightforwardly figure these out themselves and set them using the motion parameters as shown in the table below. We would guess that bats have a higher average speed (speed_mean) and a longer decoherence time due to increased inertia (speed_coherence_time), so the following code might roughly simulate a bat flying around in a 10 x 10 m environment. Author response image 1 shows all Agent parameters which can be set to vary the random motion model.

      Author response image 1.

      • Semi-related, the name suggests limitations: why Rat? Why not Agent? (But its a personal choice)

      We came up with the name “RatInABox” when we developed this software to study hippocampal representations of an artificial rat moving around a closed 2D world (a box). We also fitted the random motion model to open-field exploration data from rats. You’re right that it is not limited to rodents but for better or for worse it’s probably too late for a rebrand!

      • A future extension (or now) could be the ability to interface with common trajectory estimation tools; for example, taking in the (X, Y, (Z), time) outputs of animal pose estimation tools (like DeepLabCut or such) would also allow experimentalists to generate neural synthetic data from other sources of real-behavior.

      This is actually already possible via our “Agent.import_trajectory()” method. Users can pass an array of time stamps and an array of positions into the Agent class which will be loaded and smoothly interpolated along as shown here in Fig. 3a or demonstrated in these two new papers[9,10] who used RatInABox by loading in behavioural trajectories.

      • What if a place cell is not encoding place but is influenced by reward or encodes a more abstract concept? Should a PlaceCell class inherit from an AbstractPlaceCell class, which could be used for encoding more conceptual spaces? How could their tool support this?

      In fact PlaceCells already inherit from a more abstract class (Neurons) which contains basic infrastructure for initialisation, saving data, and plotting data etc. We prefer the solution that users can write their own cell classes which inherit from Neurons (or PlaceCells if they wish). Then, users need only write a new get_state() method which can be as simple or as complicated as they like. Here are two examples we’ve already made which can be found on the GitHub:

      Author response image 2.

      Phase precession: PhasePrecessingPlaceCells(PlaceCells)[12] inherit from PlaceCells and modulate their firing rate by multiplying it by a phase dependent factor causing them to “phase precess”.

      Splitter cells: Perhaps users wish to model PlaceCells that are modulated by recent history of the Agent, for example which arm of a figure-8 maze it just came down. This is observed in hippocampal “splitter cell”. In this demo[1] SplitterCells(PlaceCells) inherit from PlaceCells and modulate their firing rate according to which arm was last travelled along.

      • This a bit odd in the Discussion: "If there is a small contribution you would like to make, please open a pull request. If there is a larger contribution you are considering, please contact the corresponding author3" This should be left to the repo contribution guide, which ideally shows people how to contribute and your expectations (code formatting guide, how to use git, etc). Also this can be very off-putting to new contributors: what is small? What is big? we suggest use more inclusive language.

      We’ve removed this line and left it to the GitHub repository to describe how contributions can be made.

      • Could you expand on the run time for BoundaryVectorCells, namely, for how long of an exploration period? We found it was on the order of 1 min to simulate 30 min of exploration (which is of course fast, but mentioning relative times would be useful).

      Absolutely. How long it takes to simulate BoundaryVectorCells will depend on the discretisation timestep and how many neurons you simulate. Assuming you used the default values (dt = 0.1, n = 10) then the motion model should dominate compute time. This is evident from our analysis in Figure 3f which shows that the update time for n = 100 BVCs is on par with the update time for the random motion model, therefore for only n = 10 BVCs, the motion model should dominate compute time.

      So how long should this take? Fig. 3f shows the motion model takes ~10-3 s per update. One hour of simulation equals this will be 3600/dt = 36,000 updates, which would therefore take about 72,000*10-3 s = 36 seconds. So your estimate of 1 minute seems to be in the right ballpark and consistent with the data we show in the paper.

      Interestingly this corroborates the results in a new inset panel where we calculated the total time for cell and motion model updates for a PlaceCell population of increasing size (from n = 10 to 1,000,000 cells). It shows that the motion model dominates compute time up to approximately n = 1000 PlaceCells (for BoundaryVectorCells it’s probably closer to n = 100) beyond which cell updates dominate and the time scales linearly.

      These are useful and non-trivial insights as they tell us that the RatInABox neuron models are quite efficient relative to the RatInABox random motion model (something we hope to optimise further down the line). We’ve added the following sentence to the results:

      “Our testing (Fig. 3f, inset) reveals that the combined time for updating the motion model and a population of PlaceCells scales sublinearly O(1) for small populations n > 1000 where updating the random motion model dominates compute time, and linearly for large populations n > 1000. PlaceCells, BoundaryVectorCells and the Agent motion model update times will be additionally affected by the number of walls/barriers in the Environment. 1D simulations are significantly quicker than 2D simulations due to the reduced computational load of the 1D geometry.”

      And this sentence to section 2:

      “RatInABox is fundamentally continuous in space and time. Position and velocity are never discretised but are instead stored as continuous values and used to determine cell activity online, as exploration occurs. This differs from other models which are either discrete (e.g. “gridworld” or Markov decision processes) or approximate continuous rate maps using a cached list of rates precalculated on a discretised grid of locations. Modelling time and space continuously more accurately reflects real-world physics, making simulations smooth and amenable to fast or dynamic neural processes which are not well accommodated by discretised motion simulators. Despite this, RatInABox is still fast; to simulate 100 PlaceCell for 10 minutes of random 2D motion (dt = 0.1 s) it takes about 2 seconds on a consumer grade CPU laptop (or 7 seconds for BoundaryVectorCells).”

      Whilst this would be very interesting it would likely represent quite a significant edit, requiring rewriting of almost all the geometry-handling code. We’re happy to consider changes like these according to (i) how simple they will be to implement, (ii) how disruptive they will be to the existing API, (iii) how many users would benefit from the change. If many users of the package request this we will consider ways to support it.

      • In general, the set of default parameters might want to be included in the main text (vs in the supplement).

      We also considered this but decided to leave them in the methods for now. The exact value of these parameters are subject to change in future versions of the software. Also, we’d prefer for the main text to provide a low-detail high-level description of the software and the methods to provide a place for keen readers to dive into the mathematical and coding specifics.

      • It still says you can only simulate 4 velocity or head directions, which might be limiting.

      Thanks for catching this. This constraint has been relaxed. Users can now simulate an arbitrary number of head direction cells with arbitrary tuning directions and tuning widths. The methods have been adjusted to reflect this (see section 6.3.4).

      • The code license should be mentioned in the Methods.

      We have added the following section to the methods:

      6.6 License RatInABox is currently distributed under an MIT License, meaning users are permitted to use, copy, modify, merge publish, distribute, sublicense and sell copies of the software.

    1. Author Response

      LD Score regression (LDSC) is a software tool widely used in the field of genome-wide association studies (GWAS) for estimating heritabilities, genetic correlations, the extent of confounding, and biological enrichment. LDSC is for the most part not regarded as an accurate estimator of \emph{absolute} heritability (although useful for relative comparisons). It is relied on primarily for its other uses (e.g., estimating genetic correlations). The authors propose a new method called \texttt{i-LDSC}, extending the original LDSC in order to estimate a component of genetic variance in addition to the narrow-sense heritability---epistatic genetic variance, although not necessarily all of it. Epistasis in quantitative genetics refers to the component of genetic variance that cannot be captured by a linear model regressing total genetic values on single-SNP genotypes. \texttt{i-LDSC} seems aimed at estimating that part of the epistatic variance residing in statistical interactions between pairs of SNPs. To simplify, the basic model of \texttt{i-LDSC} for two SNPs $X_1$ and $X_2$ is

      \begin{equation}\label{eq:twoX} Y = X_1 \beta_1 + X_2 \beta_2 + X_1 X_2 \theta + E, \end{equation}

      and estimation of the epistatic variance associated with the product term proceeds through a variant of the original LD Score that measures the extent to which a SNP tags products of genotypes (rather than genotypes themselves). The authors conducted simulations to test their method and then applied it to a number of traits in the UK Biobank and Biobank Japan. They found that for all traits the additive genetic variance was larger than the epistatic, but for height the absolute size of the epistatic component was estimated to be non-negligible. An interpretation of the authors' results that perhaps cannot be ruled out, however, is that pairwise epistasis overall does not make a detectable contribution to the variance of quantitative traits.

      We thank the reviewer for carefully reading of our manuscript and we appreciate the constructive comments. Our responses and edits to the specific major comments and minor issues are given below.

      Major Comments

      This paper has a lot of strong points, and I commend the authors for the effort and ingenuity expended in tackling the difficult problem of estimating epistatic (non-additive) genetic variance from GWAS summary statistics. The mere possibility of the estimated univariate regression coefficient containing a contribution from epistasis, as represented in the manuscript's Equation~3 and elsewhere, is intriguing in and of itself.

      Is \texttt{i-LDSC} Estimating Epistasis?

      Perhaps the issue that has given me the most pause is uncertainty over whether the paper's method is really estimating the non-additive genetic variance, as this has been traditionally defined in quantitative genetics with great consequences for the correlations between relatives and evolutionary theory (Fisher, 1930, 1941; Lynch & Walsh, 1998; Burger, 2000; Ewens, 2004).

      Let us call the expected phenotypic value of a given multiple-SNP genotype the \emph{total genetic value}. If we apply least-squares regression to obtain the coefficients of the SNPs in a simple linear model predicting the total genetic values, then the partial regression coefficients are the \emph{average effects of gene substitution} and the variance in the predicted values resulting from the model is called the \emph{additive genetic variance}. (This is all theoretical and definitional, not empirical. We do not actually perform this regression.) The variance in the residuals---the differences between the total genetic values and the additive predicted values---is the \emph{non-additive genetic variance}. Notice that this is an orthogonal decomposition of the variance in total genetic values. Thus, in order for the variance in $\mathbf{W}\bm{\theta}$ to qualify as the non-additive genetic variance, it must be orthogonal to $\mathbf{X} \bm{\beta}$.

      At first, I very much doubted whether this is generally true. And I was not reassured by the authors' reply to Reviewer~1 on this point, which did not seem to show any grasp of the issue at all. But to my surprise I discovered in elementary simulations of Equation~\ref{eq:twoX} above that for mean-centered $X_1$ and $X_2$, $(X_1 \beta_1 + X_2 \beta_2)$ is uncorrelated with $X_1 X_2 \theta$ for seemingly arbitrary correlation between $X_1$ and $X_2$. A partition of the outcome's variance between these two components is thus an orthogonal decomposition after all. Furthermore, the result seems general for any number of independent variables and their pairwise products. I am also encouraged by the report that standard and interaction LD Scores are ``lowly correlated' (line~179), meaning that the standard LDSC slope is scarcely affected by the inclusion of interaction LD Scores in the regression; this behavior is what we should expect from an orthogonal decomposition.

      I have therefore come to the view that the additional variance component estimated by \texttt{i-LDSC} has a close correspondence with the epistatic (non-additive) genetic variance after all.

      In order to make this point transparent to all readers, however, I think that the authors should put much more effort into placing their work into the traditional framework of the field. It was certainly not intuitive to multiple reviewers that $\mathbf{X}\bm{\beta}$ is orthogonal to $\mathbf{W}\bm{\theta}$. There are even contrary suggestions. For if $(\mathbf{X}\bm{\beta})^\intercal \mathbf{W} \bm{\theta} = \bm{\beta}^\intercal \mathbf{X}^\intercal \mathbf{W} \bm{\theta} $ is to equal zero, we know that we can't get there by $\mathbf{X}^\intercal \mathbf{W}$ equaling zero because then the method has nothing to go on (e.g., line~139). We thus have a quadratic form---each term being the weighted product of an average (additive) effect and an interaction coefficient---needing to cancel out to equal zero. I wonder if the authors can put forth a rigorous argument or compelling intuition for why this should be the case.

      In the case of two polymorphic sites, quantitative genetics has traditionally partitioned the total genetic variance into the following orthogonal components:

      \begin{itemize}

      \item additive genetic variance, $\sigma^2_A$, the numerator of the narrow-sense heritability;

      \item dominance genetic variance, $\sigma^2_D$;

      \item additive-by-additive genetic variance, $\sigma^2_{AA}$;

      \item additive-by-dominance genetic variance, $\sigma^2_{AD}$; and

      \item dominance-by-dominance genetic variance, $\sigma^2_{DD}$.

      \end{itemize}

      See Lynch and Walsh (1998, pp. 88-92) for a thorough numerical example. This decomposition is not arbitrary or trivial, since each component has a distinct coefficient in the correlations between relatives. Is it possible for the authors to relate the variance associated with their $\mathbf{W}\bm{\theta}$ to this traditional decomposition? Besides justifying the work in this paper, the establishment of a relationship can have the possible practical benefit of allowing \texttt{i-LDSC} estimates of non-additive genetic variance to be checked against empirical correlations between relatives. For example, if we know from other methods that $\sigma^2_D$ is negligible but that \texttt{i-LDSC} returns a sizable $\sigma^2_{AA}$, we might predict that the parent-offspring correlation should be equal to the sibling correlation; a sizable $\sigma^2_D$ would make the sibling correlation higher. Admittedly, however, such an exercise can get rather complicated for the variance contributed by pairs of SNPs that are close together (Lynch & Walsh, 1998, pp. 146-152).

      I would also like the authors to clarify whether LDSC consistently overestimates the narrow-sense heritability in the case that pairwise epistasis is present. The figures seem to show this. I have conflicting intuitions here. On the one hand, if GWAS summary statistics can be inflated by the tagging of epistasis, then it seems that LDSC should overestimate heritability (or at least this should be an upwardly biasing factor; other factors may lead the net bias to be different). On the other hand, if standard and interaction LD Scores are lowly correlated, then I feel that the inclusion of interaction LD Score in the regression should not strongly affect the coefficient of the standard LD Score. Relatedly, I find it rather curious that \texttt{i-LDSC} seems increasingly biased as the proportion of genetic variance that is non-additive goes up---but perhaps this is not too important, since such a high ratio of narrow-sense to broad-sense heritability is not realistic.

      We thank the reviewer for taking the time to thoughtfully offer more context on how we might situate the i-LDSC framework within the greater context of traditional quantitative genetics. We now formalize the interaction component used in the i-LDSC model as an estimate of the phenotypic variance explained by additive-by-additive interactions between genetic variants (which we denote by 𝜎" to follow the conventional notation). In the newly revised Material and Methods, we also show how the i-LDSC model can be formulated to include dominance effects in a more general framework. Our updated derivations provide two key takeaways.

      First, we assume that the additive and interaction effect sizes in the general model (𝜷,𝜽) are each normally distributed with variances proportional to their individual contributions to trait heritability: 𝛽& ∼ 𝒩(0, 𝜎"), 𝜃' ∼ 𝒩(0, 𝜎" ). This independence assumption implies that the additive and non- $ $$ additive components 𝑿𝜷 and 𝑾𝜽 are orthogonal where 𝔼[𝜷⊺𝑿⊺𝑾𝜽] = 𝔼[𝜷⊺]𝑿⊺𝑾𝔼[𝜽] = 𝟎. This is important because, as the reviewer points out, it means that there is a unique partitioning of genetic variance when studying a trait of interest. In the revised version of the manuscript, we show this derivation in the main text (see lines 129-143). We also extend this derivation in the Materials and Methods where we show the same result even after we include the presence of dominance effects in the generative model (see lines 415-417 and 438-457).

      Second, we show that the genotype matrix 𝑿 and the matrix of genetic interactions 𝑾 are not linearly dependent because the additive-by-additive effects between two SNPs are encoded as the Hadamard product of two genotypic vectors in the form 𝒘! = 𝒙" ∘ 𝒙# (which is a nonlinear function of the genotypes). Linear dependence would have implied that one could find a transformation between a SNP and an interaction term in the form 𝒘! = 𝑐 × 𝒙" for some constant 𝑐. However, despite their linear independence, 𝑿 and 𝑾 are themselves not orthogonal and still have a nonzero correlation. This implies that the inner product between genotypes and their interactions is nonzero 𝑿⊺𝑾 ≠ 𝟎. To see this, we focus on a focal SNP 𝒙& and consider three different types of interactions:

      • Scenario I: Interaction between a focal SNP with itself (𝒙" ∘ 𝒙").
      • Scenario II: Interaction between a focal SNP with a different SNP (𝒙" ∘ 𝒙#).
      • Scenario III: Interaction between a focal SNP with a pair of different SNPs (𝒙# ∘ 𝒙$).

      In the Materials and Methods of the revised manuscript, we now provide derivations showing when would expect nonzero correlation between 𝑿 and 𝑾 which rely on the fact that: (1) we assume that genotypes have been mean-centered and scaled to have unit variance, and (2) under Hardy-Weinberg equilibrium, SNPs marginally follow a binomial distribution 𝒙& ∼ 𝐵𝑖𝑛(2, 𝑝) where 𝑝 represents the minor allele frequency (MAF) (Wray et al. 2007, Genome Res; Lippert et al. 2013, Sci Rep). These new additions are given in new lines 460-485).

      Lastly, we agree with the reviewer that our results indicate that LDSC inflates estimates of SNP- based narrow-sense heritability. Our intuition for why this happens is largely consistent with the reviewer’s first point: since GWAS summary statistics can be inflated by the tagging of non- additive genetic variance, then it makes sense that LDSC should overestimate heritability. LDSC uses a univariate regression without the inclusion of cis-interaction scores. A simple consequence from “omitted variable bias” is likely happening where, since LDSC does not explicitly account for contributions from the tagged non-additive components which also contribute to the variance in the GWAS summary statistics, the estimate for the coefficient 𝜎" becomes slightly inflated.

      How Much Epistasis Is \texttt{i-LDSC} Detecting?

      I think the proper conclusion to be drawn from the authors' analyses is that statistically significant epistatic (non-additive) genetic variance was not detected. Specifically, I think that the analysis presented in Supplementary Table~S6 should be treated as a main analysis rather than a supplementary one, and the results here show no statistically significant epistasis. Let me explain.

      Most serious researchers, I think, treat LDSC as an unreliable estimator of narrow-sense heritability; it typically returns estimates that are too low. Not even the original LDSC paper pressed strongly to use the method for estimating $h^2$ (Bulik-Sullivan et al., 2015). As a practical matter, when researchers are focused on estimating absolute heritability with high accuracy, they usually turn to GCTA/GREML (Evans et al., 2018; Wainschtein et al., 2022).

      One reason for low estimates with LDSC is that if SNPs with higher LD Scores are less likely to be causal or to have large effect sizes, then the slope of univariate LDSC will not rise as much as it ``should' with increasing LD Score. This was a scenario actually simulated by the authors and displayed in their Supplementary Figure~S15. [Incidentally, the authors might have acknowledged earlier work in this vein. A simulation inducing a negative correlation between LD Scores and $\chi^2$ statistics was presented by Bulik-Sullivan et al. (2015, Supplementary Figure 7), and the potentially biasing effect of a correlation over SNPs between LD Scores and contributed genetic variance was a major theme of Lee et al. (2018).] A negative correlation between LD Score and contributed variance does seem to hold for a number of reasons, including the fact that regions of the genome with higher recombination rates tend to be more functional. In short, the authors did very well to carry out this simulation and to show in their Supplementary Figure~S15 that this flaw of LDSC in estimating narrow-sense heritability is also a flaw of \texttt{i-LDSC} in estimating broad-sense heritability. But they should have carried the investigation at least one step further, as I will explain below.

      Another reason for LDSC being a downwardly biased estimator of heritability is that it is often applied to meta-analyses of different cohorts, where heterogeneity (and possibly major but undetected errors by individual cohorts) lead to attenuation of the overall heritability (de Vlaming et al., 2017).

      The optimal case for using LDSC to estimate heritability, then, is incorporating the LD-related annotation introduced by Gazal et al. (2017) into a stratified-LDSC (s-LDSC) analysis of a single large cohort. This is analogous to the calculation of multiple GRMs defined by MAF and LD in the GCTA/GREML papers cited above. When this was done by Gazal et al. (2017, Supplementary Table 8b), the joint impact of the improvements was to increase the estimated narrow-sense heritability of height from 0.216 to 0.534.

      All of this has at least a few ramifications for \texttt{i-LDSC}. First, the authors do not consider whether a relationship between their interaction LD Scores and interaction effect sizes might bias their estimates. (This would be on top of any biasing relationship between standard LD Scores and linear effect sizes, as displayed in Supplementary Figure~S15.) I find some kind of statistical relationship over the whole genome, induced perhaps by evolutionary forces, between \emph{cis}-acting epistasis and interaction LD Scores to be plausible, albeit without intuition regarding the sign of any resulting bias. The authors should investigate this issue or at least mention it as a matter for future study. Second, it might be that the authors are comparing the estimates of broad-sense heritability in Table~1 to the wrong estimates of narrow-sense heritability. Although the estimates did come from single large cohorts, they seem to have been obtained with simple univariate LDSC rather than s-LDSC. When the estimate of $h^2$ obtained with LDSC is too low, some will suspect that the additional variance detected by \texttt{i-LDSC} is simply additive genetic variance missed by the downward bias of LDSC. Consider that the authors' own Supplementary Table~S6 gives s-LDSC heritability estimates that are consistently higher than the LDSC estimates in Table~1. E.g., the estimated $h^2$ of height goes from 0.37 to 0.43. The latter figure cuts quite a bit into the estimated broad-sense heritability of 0.48 obtained with \texttt{i-LDSC}.

      Here we come to a critical point. Lines 282--286 are not entirely clear, but I interpret them to mean that the manuscript's Equation~5 was expanded by stratifying $\ell$ into the components of s-LDSC and this was how the estimates in Supplementary Table~S6 were obtained. If that interpretation is correct, then the scenario of \texttt{i-LDSC} picking up missed additive genetic variance seems rather plausible. At the very least, the increases in broad-sense heritability reported in Supplementary Table~S6 are smaller in magnitude and \emph{not statistically significant}. Perhaps what this means is that the headline should be a \emph{negligible} contribution of pairwise epistasis revealed by this novel and ingenious method, analogous to what has been discovered with respect to dominance (Hivert et al., 2021; Pazokitoroudi et al., 2021; Okbay et al., 2022; Palmer et al., 2023).

      This is an excellent question raised by the reviewer and, again, we really appreciate such a thoughtful and thorough response. First, we completely agree with the reviewer that the s-LDSC estimates previously included in the Supplementary Material should instead be discussed in the main text of the manuscript. In the revision, we have now moved the old Supplemental Table S6 to be the new Table 2. Second, we also agree that the conclusions about the magnitude of additive-by-additive effects should be based upon variance explained when using the cis- interaction score in addition to scores specific to different biological annotations when available, per s-LDSC.

      However, we want to respectfully disagree that the results indicate a negligible contribution of additive-by-additive genetic variance to all the traits we analyzed (see Figure 4D). Although the additive-by-additive genetic variance component is not significant in any trait in the UK Biobank, there is little reason to expect that they would be given the inclusion of 97 other biological annotations from the s-LDSC model. Indeed, in the s-LDSC paper itself the authors look only for enrichment of heritability for a given annotation not a statistically significant test statistic. It also worth noting that jackknife approaches tend to be conservative and yield slightly larger standard errors for hypothesis testing. Taking all the great points that the reviewer mentioned into account, we believe that a moderate stance to the interpretation of our results is one that: (i) emphasizes the importance of using s-LDSC with the cis-interaction score to better assess the variance explained by additive-by-additive interaction effects and (ii) allows for the significance of the additive-by-additive component to not be the only factor when determining the importance of the role of non-additive effects in shaping trait architecture.

      In the revision, we now write the following in lines 331-343:

      Lastly, we performed an additional analysis in the UK Biobank where the cis-interaction scores are included as an annotation alongside 97 other functional categories in the stratified-LD score regression framework and its software s-LDSC (Materials and Methods). Here, s-LDSC heritability estimates still showed an increase with the interaction scores versus when the publicly available functional categories were analyzed alone, but albeit at a much smaller magnitude (Table 2). The contributions from the additive-by-additive component to the overall estimate of genetic variance ranged from 0.005 for MCHC (P = 0.373) to 0.055 for HDL (P = 0.575) (Figures 4C and 4D). Furthermore, in this analysis, the estimates of the additive-by-additive components were no longer statistically significant for any of the traits in the UK Biobank (Table 2). Despite this, these results highlight the ability of the i-LDSC framework to identify sources of “missing” phenotypic variance explained in heritability estimation. Importantly, moving forward, we suggest using the cis- interaction scores with additional annotations whenever they are available as it provides more conservative estimates of the role of additive-by-additive effects on trait architecture.

      Lastly, in the Discussion, we now mention an area of future work would be to explore how the relationship between cis-interaction LD scores and interaction effect sizes might bias heritability estimates from i-LDSC (e.g., similar to the relationship explored standard LD scores and linear effect sizes in Figure 3 – figure supplement 8). See new lines 364-367.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      Despite the importance of T follicular helper cells (Tfh cells) in vaccine-induced humoral responses, it is still unclear which type of Tfh cells (Tfh1, Tfh2, and Tfh17) is critical for generating protective humoral immunity. By using the rhesus macaques model (most similar to human), the authors have addressed this potentially important question and obtained suggestive data that Tfh1 is critical. Although being suggestive, the evidence for the importance of Tfh1 is incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Developing vaccination capable of inducing persistent antibody responses capable of broadly neutralizing HIV strains is of high importance. However, our ability to design vaccines to achieve this is limited by our relative lack of understanding of the role of T-follicular helper (Tfh) subtypes in the responses. In this report Verma et al investigate the effects of different prime and boost vaccination strategies to induce skewed Tfh responses and its relationship to antibody levels. They initially find that live-attenuated measles vaccine, known to be effective at inducing prolonged antibody responses has a significant minority of germinal center Tfh (GC-Tfh) with a Th1 phenotype (GC-Tfh1) and then explore whether a prime and boost vaccination strategy designed to induce GC-Tfh1 is effective in the context of anti-HIV vaccination. They conclude that a vaccine formulation referred to as MPLA before concluding that this is the case.

      Clarification: MPLA serves as the adjuvant, and the vaccine formulation is characterized as a Th1 formulation based on the properties of the adjuvant.

      Strengths:

      While there is a lot of literature on Tfh subtypes in blood, how this relates to the germinal centers is not always clear. The strength of this paper is that they use a relevant model to allow some longitudinal insight into the detailed events of the germinal center Tfh (GC-Tfh) compartment across time and how this related to antibody production.

      Weaknesses:

      The authors focus strongly on the numbers of GC-Tfh1 as a proportion of memory cells and their comparison to GC-Tfh17. There seems to be little consideration of the large proportion of GC-Tfh which express neither CCR6 and CXCR3 and currently no clear reasoning for excluding the majority of GC-Tfh from most analysis. There seems to be an assumption that since the MPLA vaccine has a higher number of GC-Tfh1 that this explains the higher levels of antibodies. There is not sufficient information to make it clear if the primary difference in vaccine efficacy is due to a greater proportion of GC-Tfh1 or an overall increase in GC-Tfh of which the percentage of GC-Tfh1 is relatively fixed.

      Response: We appreciate the reviewer's comment. Indeed, while there is substantial literature on Tfh subtypes in blood; the strength of our study lies in utilizing a relevant model to provide longitudinal insights into the dynamics of the germinal center Tfh (GC-Tfh) compartment over time and its relationship to antibody production. Regarding the concern about the comprehensive analysis of GC Tfh subsets, including GC-Tfh1, GC-Tfh17, and others not expressing CCR6 and/or CXCR3, we fully acknowledge its importance. To address this, we will conduct a detailed analysis of GC Tfh and GC Tfh1 frequencies, encompassing subsets without CCR6 and CXCR3 expression, to provide a more comprehensive view of the GC-Tfh population in our analysis.

      Reviewer #2 (Public Review):

      Summary:

      Anil Verma et al. have performed prime-boost HIV vaccination to enhance HIV-1 Env antibodies in the rhesus macaque model. The authors used two different adjuvants, a cationic liposome-based adjuvant (CAF01) and a monophosphoryl lipid A (MPLA)+QS-21 adjuvant. They demonstrated that these two adjuvants promote different transcriptomes in the GC-TFH subsets. The MPLA+QS-21 adjuvant induces abundant GC TFH1 cells expressing CXCR3 at first priming, while the CAF01 adjuvant predominantly induced GC TFH1/17 cells co-expressing CXCR3 and CCR6. Both adjuvants initiate comparable Env antibody responses. However, MPLA+QS-21 shows more significant IgG1 antibodies binding to gp140 even after 30 weeks.

      The enhancement of memory responses by MPLA+QS-21 consistently associates with the emergence of GC TFH1 cells that preferentially produce IFN-γ.

      Strengths:

      The strength of this manuscript is that all experiments have been done in the rhesus macaque model with great care. This manuscript beautifully indicated that MPLA+QS-21 would be a promising adjuvant to induce the memory B cell response in the HIV vaccine.

      Weaknesses:

      The authors did not provide clear evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses.

      Response. We appreciate the recognition of our meticulous work in the rhesus macaque model and the potential of MPLA+QS-21 as an adjuvant for HIV vaccine-induced humoral immunity. We acknowledge the need to provide clearer evidence of the functional relevance of GC Tfh1 in IgG1 class-switching and B cell memory responses. We will attempt to address this concern in our revisions.

      Recommendations for Authors:

      Reviewer #1:

      1. Is the proportion of GC-Tfh1 within GC-Tfh significantly increased in MPLA vs CAF01? The balance between Tfh1 and Tfh17 data is shown in 4C but appears quite a modest difference. Additionally, it excludes the majority of GC-Tfh since it only considers CCR6 and CXCR3 expressing cells.

      Response. We have now included a comparison of the relative proportions of GC Tfh cells expressing CCR6 and CXCR3, as well as those lacking these markers. Our data now demonstrate an increased presence of Tfh1 within the GC-Tfh population when MPLA is employed at P1w2, as depicted in Figure 4D.

      1. Is there any relationship between GC-Tfh17, 1/17 and non Th1/17 GC-Tfh and antibody levels? In Figure 5C only GC Tfh1 is examined making it impossible to judge if this is specific to GC-Tfh1 or a general relationship between higher total GC-Tfh and antibodies.

      Response. In our revised description of the results, we have mentioned that GC Tfh frequencies correlated with antibody levels (r = 0.6, p < 0.05). However, it is important to note that this correlation was specific to the GC Tfh1 subset and was not observed with other subsets.

      Other points:

      1. The authors make a number of statements that rather exaggerate differences such as stating in the abstract that CAF01 induces Tfh1/17 while MPLA predominantly induces Tfh1. As shown in Figure 4C the majority of CCR6-CXCR3- GC-Tfh induced by CAF01 are GC-Tfh1 i.e. both formulations predominantly induce GC-Tfh1. Also, it is difficult to judge since the data is never provided but the predominant group of GC-Tfh appears to be CCR6-CXCR3- in both cases.

      Response. We acknowledge the need for greater precision in our descriptions. In response, we have addressed this concern by providing the frequencies of CCR6-CXCR3- GC Tfh cells in Figure 4D. We have also included a comparison of the relative frequencies across the adjuvant groups in the Results section (Lines 331-338).

      1. The authors use the term peripheral Tfh (pTfh), it may be better to use the more common term circulating Tfh (cTfh) to avoid confusion with T peripheral helper cells (Tph).

      Response. We appreciate the reviewer's suggestion to use the more commonly accepted term "circulating Tfh (cTfh)" instead of "peripheral Tfh (pTfh)." We have incorporated this change into our manuscript to ensure clarity and avoid potential confusion with "peripheral helper cells (Tph).

      1. Some further labelling of the pie chart in Figure 1G to at least specify larger groups such as Tfh2, Tfh17, Tfh1/17 would be helpful.

      Response. We have incorporated the suggestion and identified cTfh2, cTfh17, and cTfh2/17 cells. We additionally now state in the legend that overlapping pie arcs correspond to specific polarized Tfh subsets denoted by arc color.

      1. A gating example of the CXCR3, CCR6, CCR4 patterns in the GC Tfh would be helpful. "up to 25% of GC Tfh cells expressed CCR6" I think it is better to state the average here since 25% appears an outlier.

      Response. We have now included a gating example of chemokine receptor expression, patterns in the GC Tfh. Additionally, we have revised the statement to mention the median (7%) of GC Tfh cells expressing CCR6 instead of specifying the upper limit.

      1. Figure 1I, does this graph exclude triple negative cells? It's not clear from the figure legend but the numbers do not seem to add up with the graphical proportions shown in figure 1H.

      Response. We have made the necessary clarification in both the results section, figure, and the figure legend to state that the Boolean analysis is based on cells expressing either CXCR3 or CCR6, thus explaining the exclusion of triple negative cells.

      1. Figure 3C. Some label should be added to make clear which violins are from the CD95- and CD95+ groups. There may be too much data in this panel for p values to be legible. Either less graphs or more space may be needed.

      Response. We have updated the Y axis labels in the figure to state that the violin plots show the differences in gene expression between CD95+ CD4 T cells and CD95- CD4 T cells (naive).

      1. Figure 4B. Numbers attached to the gates (1, 17 etc) should be more clearly labeled Tfh1, Tfh17 etc since normally they might be expected to be gate percentages in this format. Gate percentages should also be added.

      Response. We have clearly labeled the subsets as "Tfh1" and "Tfh17," making it easier for readers to interpret the figure. Additionally, we have included gate percentages in the flow plot. Furthermore, the percentages of GC Tfh subsets are now depicted in Figure 4D.

      1. Overlarge and indistinct datapoint symbols are often a problem e.g. Figure 4G most of the CAF01 datapoints are merged into a single blob with no indication of where one point ends or begins. Supplementary figure 5E. Datapoint sizes are large to the extent that the lines are difficult to see. Lines indicating central tendency are often lost.

      Response. We have reworked the graphs (including 4G, now 4I) to ensure clarity,

      1. Generally greater care is needed with graph layout e.g. the B indicating figure 6B is on the graph of figure 6A.

      Response. We have made the necessary adjustment to ensure that the letter "B" correctly corresponds to the graph in Figure 6B.

      1. Figure 6J, the text seems to indicate "higher avidity with MPLA against autologous Env including V1V2 loops." However, the graph seems to indicate lower avidity for V1V2 loops? Response. We appreciate the careful observation. We have rectified this by updating the description in the results section to accurately reflect the graph, which shows higher avidity for V1V2 loops with CAF01.

      2. Figure 6A. The authors state that significantly higher IgG1 was induced but Figure 6A seems to be the only graph lacking an indication of statistical significance.

      Response. We have made the necessary adjustment to ensure that significance symbol is depicted in Figure 6A.

      1. Brackets indicating significance are often unclear. e.g. in Figure 4B MPLA graph there are three groups and a single multipoint bracket with a single result making it unclear which groups are being compared.

      Response. We have added clarification to the legend. It now states that the temporal comparisons in GC Tfh subsets for each vaccine group are made in relation to frequencies at baseline. This revision provides a clear reference point for the significance comparisons and ensures that readers can easily understand which groups are being compared.

      Reviewer #2:

      Overall, the manuscript is well-written and addresses an important issue. However, further investigation is warranted to understand how the MPLA+QS-21 induced GC TFH1 influenced on memory B cell response. This manuscript only showed the correlation between GC TFH1 and antibody responses. If the authors explain adjuvant preference in memory B cell responses, this manuscript could be more considerable for publication.

      1. This reviewer recommends that the author provide more evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses. Some evidence supports that IFN-γ controls the antigen-specific IgG1 responses in humans, but it is still controversial. The author also suggests the involvement of IL-21, but this is also an open question even in the human system. This is also the case in the memory responses. There is no direct link between IFN-γ and memory B cell responses in the human system. The authors need more evidence of how GC TFH1 cell development has more advantages in IgG1 and memory responses than GC TFH1 /17 cells. I believe an antibody blockade of cytokines would be a possible strategy to prove these questions.

      Response. We appreciate the reviewer's valuable suggestion to provide more evidence regarding the functional relevance of GC Tfh1 cells in IgG1 class-switch and B cell memory responses. It is indeed important to establish a direct link between GC Tfh1 cells and these responses, particularly in the context of cytokine skewing. The suggestion of antibody blockade studies to mechanistically link the modulation of the inflammatory milieu to Tfh differentiation and subsequent antibody functions is important. However, we must acknowledge that these studies are currently beyond the scope of our work. We have included this as a limitation in our study, recognizing the need for further studies to address these important questions.

      1. In Fig.5, the authors use different scales to indicate the IgG antibody titer. A shows the log scale, while B shows the linear scale. Moreover, the differences are minimal, even though the authors indicated a significant difference. I am not sure this difference is meaningful.

      Response. To clarify, we used a log scale in Figure 5A to demonstrate temporal changes over the course of vaccination. In Figure 5B, where we are comparing differences across vaccine regimens at week 30, a linear scale was deemed more appropriate, as it allows for a clear representation of the approximately two-fold difference observed. We fully acknowledge that to establish the biological significance of the observed difference, challenge studies will be essential.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper reports the development of SCA-seq, a new method derived from PORE-C for simultaneously measuring chromatin accessibility, genome 3D and CpG DNA methylation. Most of the conclusions are supported by convincing data. SCA-seq has the potential to become a useful tool to the scientific communities to interrogate genome structure-function relationships.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work, Xie et al. developed SCA-seq, which is a multiOME mapping method that can obtain chromatin accessibility, methylation, and 3D genome information at the same time. SCA-seq first uses M.CviPI DNA methyltransferase to treat chromatin, then perform proximity ligation followed by long-read sequencing. This method is highly relevant to a few previously reported long read sequencing technologies. Specifically, NanoNome, SMAC-seq, and Fiber-seq have been reported to use m6A or GpC methyltransferase accessibility to map open chromatin, or open chromatin together with CpG methylation; Pore-C and MC-3C have been reported to use long read sequencing to map multiplex chromatin interactions, or together with CpG methylation. Therefore, as a combination of NanoNome/SMAC-seq/Fiber-seq and Pore-C/MC-3C, SCA-seq is one step forward. The authors tested SCA-seq in 293T cells and performed benchmark analyses testing the performance of SCA-seq in generating each data module (open chromatin and 3D genome). The QC metrics appear to be good and I am convinced that this is a valuable addition to the toolsets of multi-OMIC long-read sequencing mapping.

      The revised manuscript addressed most of my questions except my concern about Fig. S9. This figure is about a theory that a chromatin region can become open due to interaction with other regions, and the author propose a mathematic model to compute such effects. I was concerned about the errors in the model of Fig. S9a, and I was also concerned about the lack of evidence or validation. In their responses, the authors admitted that they cannot provide biological evidence or validations but still chose to keep the figure and the text.

      The revised Fig. S9a now uses a symmetric genome interaction matrix as I suggested. But Figure S9a still have a lot of problems. Firstly, the diagonal of the matrix in Fig. S9a still has many 0's, which I asked in my previous comments without an answer. The legend mentioned that the contacts were defined as 2, 0 or -2 but the revised Fig. S9a only shows 1,0, or -1 values. Furthermore, Fig. S9b,9c,9d all added a panel of CTCF+/- but there is no explanation in text or figure legend about these newly added panels. Given many unaddressed problems, I would still suggest deleting this figure.

      In my opinion, this paper does not need Fig. S9 to support its major story. The model in this figure is independent of SCA-seq. I think it should be spinoff as an independent paper if the authors can provide more convincing analysis or experiments. I understand eLife lets authors to decide what to include in their paper. If the authors insist to include Fig. S9, I strongly suggest they should at least provide adequate explanation about all the figure panels. At this point, the Fig. S9 is not solid and clearly have many errors. The readers should ignore this part.

      We appreciate the reviewer for raising these concerns regarding Fig. S9. After careful consideration, we have decided to address your concerns by deleting Fig. S9 and the corresponding text from the manuscript. We understand your point that the model presented in Fig. S9 is independent of SCA-seq and may require additional evidence and validation to be presented in a separate paper.

      We agree that it is important to maintain the integrity and accuracy of the manuscript, and we appreciate your feedback in helping us make this decision.

      Reviewer #2 (Public Review):

      In this manuscript, Xie et al presented a new method derived from PORE-C, SCA-seq, for simultaneously measuring chromatin accessibility, genome 3D and CpG DNA methylation. SCA-seq provides a useful tool to the scientific communities to interrogate the genome structure-function relationship.

      The revised manuscript has clarified almost of the concerns raised in the previous round of review, though I still have two minor concerns,

      1. In fig 2a, there is no number presented in the Venn diagram (although the left panel indeed showed the numbers of the different categories, including the numbers in the right panel would be more straightforward).

      We appreciate the reviewer for pointing out the need for clarification in the Venn diagram in Fig 2a. We have added the numbers to Venn diagram.

      1. The authors clarified the discrepancy between sfig 7a and sfig 7g. However, the remaining question is, why is there a big difference in the percentage of the cardinality count of concatemers of the different groups between the chr7 and the whole genome?

      We apologize for the confusion regarding the difference in the percentage of the cardinality count of concatemers between chr7 and the whole genome in figures S7a and S7g. The difference arises because the chr7 cardinality count only considers the intra-chromosome segments that are adjacent to each other on a SCA-seq concatemer, while the whole genome cardinality count includes both intra-chromosome and inter-chromosome segments.

      In the case of a SCA-seq concatemer that contains both intra-chromosome junctions and inter-chromosome junctions, the whole genome cardinality count will be greater than the intra-chromosome cardinality count. This explains the difference in the percentages between chr7 and the whole genome in figures S7a and S7g.

      To better clarify the definition of intra-chromosome cardinality, we have added an illustrative graph in figure S7a. In the updated figure S7a, the given exemplary SCA-seq concatemer has a whole genome cardinality of 4 and a chr7 intra-chromosome cardinality of 3.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study reports investigation of the dynamics of PKA at the single-cell level in in vitro and in epithelia in vivo. Using different fluorescent biosensors and optogenetic actuators, the authors dissect the signaling pathway responsible for PKA waves, finding that PKA activation is a consequence of PGE2 release, which in turn is triggered by calcium pulses, requiring high ERK activity. The evidence supporting the claims is solid. At this stage the work is still partly descriptive in nature, and additional measurements would increase the strength of mechanistic insights and physiological relevance.

      We deeply appreciate Dr. Alejandro San Martín and Dr. Jonathan Cooper and the reviewers. Each comment is valuable and reasonable. We will revise our paper as much as possible.

      We have described what we will do for the reviewer’s comments one by one in the below section.

      Reviewer #1 (Recommendations For The Authors):

      1. Even though the phenomenon of PGE2 signal propagation is elegantly demonstrated and well described, the whole paper is mostly of descriptive nature - the PGE2 signal is propagated via intercellular communication and requires Ca transients as well as MAPK activity, however function of these RSPAs in dense epithelium is not taken into consideration. What is the function of these RSPAs in cellular crowding? - Does it promote cell survival or initiate apoptosis? Does it feed into epithelial reorganization during cellular crowding? Still something else? The authors discuss possible roles of this phenomenon in cell competition context, but show no experimental or statistical efforts to answer this question. I believe some additional analysis or simple experiment would help to shed some light on the functional aspect of RSPAs and increase the importance of all the elegant demonstrations and precise experimental setups that the manuscript is rich of. Monolayer experiments using some perturbations that challenge the steady state of epithelial homeostasis - drug treatments/ serum deprivation/ osmotic stress/ combined with live cell imaging and statistical methods that take into account local cell density might provide important answers to these questions. The authors could consider following some of these ideas to improve the overall value of the manuscript.

      We would like to thank the reviewer’s comment. Although we have intensively tried to identify the physiological relevance of RSPA, we could not detect the function at present.

      In the case of MDCK, the treatment of NSAIDs, which cancels RSPA, did not affect its cell growth, ERK wave propagation during collective migration, migration velocity, cell survival, or apoptosis. In mouse epidermis, the frequency of RSPA was NOT affected by inflammation and collective cell migration, evoked by TPA treatment and wound, respectively.

      Notably, RSPA also occurs in the normal epidermis, implying its relevance in homeostasis. However, at the current stage, we believe that the PGE2 dynamics and its regulation mechanism in the normal epidermis would be worth reporting to researchers in the field.

      1. In the line 82-84 the authors claim: "We found that the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating that a Gs protein-coupled receptor (GsPCR) mediates RSPA". In our opinion, this conclusion is not well-supported by the results. The authors should at least show that some measurements of the two patterns show correlation. Are the patterns of cAMP of the same size as the pattern of PKA? Do they have the same size depending on cell density? Do they occur at the same frequency as the PKA patterns, depending on the cell density? Do they have an all or nothing activation as PKA or their activation is shading with the distance from the source?

      We have modified the text (line85)

      “Although the increment of the FRET ratio was not so remarkable as that of Booster-PKA, Wwe found that the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating that a Gs protein-coupled receptor (GsPCR) mediates RSPA. This discrepancy may be partially explained by the difference in the dynamic ranges for cAMP signaling in each FRET biosensor (Watabe2020). “

      1. In general, the absolute radius of the waves is not a good measurement for single-cell biology studies, especially when comparing different densities or in vivo vs in vitro experiments. We suggest the authors add the measurement of the number of the cells involved in the waves (or the radius expressed in number of cells).

      We appreciate the reviewer’s comment. We have analyzed our results to demonstrate the number of cells as in Fig2E, which would be easy for readers to understand.

      1. In 6D, the authors should also show the single-cell trajectories to understand better the correlation between PKA and ERK peaks. Is the huger variability in ERK activity ratio dues to different peak time or different ERK activity levels in different cells? The authors should show both the variability in the time and intensity.

      We have added a few representative results as Fig. S4.

      1. In lines 130-132, the authors write, "This observation indicates that the amount of PGE2 secretion is predetermined and that there is a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion". How could the author exclude that the amount of PGE2 is not regulated in its intensity as well? For sure, there is a threshold effect regarding calcium, but this doesn't mean that PGE2 secretion can be further regulated, e.g. by further increasing calcium concentration or by other mechanisms.

      We agree with the reviewer’s comment. We have modified the text.

      1. The manuscript shows that not all calcium transients are followed by RSPAs. Does the local cell density/crowding increase the probability of overlap between calcium transients and RSPAs?

      We appreciate the reviewer’s comment. We have also hypothesized the model. However, we did not see the correlation that the reviewer pointed out. Currently, the increment of the RSPA frequency at high density is partially caused by the increment of calcium transients.

      Reviewer #2 (Recommendations For The Authors):

      1. The work is hardly conclusive as to the actual biological significance of the phenomenon. It would be interesting to know more under which physiological and pathological conditions PGE2 triggers such radial PKA activity changes. It is not well explained in which tissues and organs and under what conditions this type of cell-to-cell communication could be particularly important.

      The greatest weakness of the study seems to be that the biological significance of the phenomenon is not clearly clarified. Although it can be deduced that PKA activation has many implications for cell signaling and metabolism, the work lacks the actual link to physiological or pathological significance.

      We deeply appreciate the reviewer’s comment. Similar to the reseponse of reviewer#1, although we have intensively tried to identify the physiological relevance of RSPA, we could not detect the function.

      On the other hand, we believe that the PGE2 dynamics and its regulation mechanism in the normal epidermis would be worth reporting to researchers in the field.

      1. The authors do not explain further why in certain cells of the cell clusters Ca2+ signals occur spontaneously and thus trigger the phenomenon. What triggers these Ca2+ changes? And why could this be linked to certain cell functions and functional changes?

      At this moment, we do not have a clear answer or model for the comment although the calcium transients have been reported in the epidermis (https://doi.org/10.1038/s41598-018-24899-7). Further studies are needed and we will pursue this issue as a next project.

      1. What explains the radius and the time span of the radial signal continuation? To what extent are these factors also related to the degradation of PGE2? The work could be stronger if such questions and their answers would be experimentally integrated and discussed.

      We agree with the reviewer’s comment. Although we have intensively studied that point, we have omitted the results because of its complications. In HeLa cells, but not MDCK cells, we demonstrate the meaning of the radius of RSPA (https://pubmed.ncbi.nlm.nih.gov/37813623/)

      1. The authors could consider whether they could investigate the subcellular translocation of cPLA2 in correlation with cytosolic Ca2+ signals using GFP technology and high-resolution fluorescence microscopy with their cell model.

      Actually, we tried to monitor the cPLA2 translocation using GFP-tagged cPLA2. However, the translocation of GFP-cPLA2 was detected, only when the cells were stimulated by calcium ionophore. At this point, we have concluded that the quantitative analysis of cPLA2 translocation would be difficult.  

      Reviewer #3 (Recommendations For The Authors):

      1. "The cell density in the basal layer is approximately 2x106 cells cm-2, which is markedly higher than that in MDCK cells (Fig. 2D). It is not clear whether this may be related to the lower frequency (~300 cm-2 h-1) and smaller radius of RSPA in the basal layer cells compared to MDCK cells (Fig. 2E)." Wasn't the relationship with cell density the opposite, higher density higher frequency? Isn't then this result contradicting the "cell density rule" that the authors argue is there in the in vitro system? The authors need to revise their interpretation of the data obtained.

      We agree with the reviewer’s comment. Currently, we do not find the "cell density rule" in mouse epidermis. It would be difficult to identify common rules between mouse epidermis and MDCK cells. However, although it is descriptive, we believe it is worth comparing the MDCK results at this moment.

      1. Similarly, the authors over conclude on the explanation of lack of change in the size of RSPA size when the change in fluorescence for the calcium reporter surpasses a threshold by saying that "This observation indicates that the amount of PGE2 secretion is predetermined and that there is a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion." First, the study does not really measure directly PGE2 secretion. Hence, there is no way that they can argue that the level of PGE2 secreted is "predetermined". Instead, there could be an inhibitory mechanism that is triggered to limit further activation of PGE2 signaling/PKA in neighboring cells.

      We agree with the reviewer’s comment. We have omitted the context.

      1. To rule out a transcription-dependent mechanism in the apparent cell density-regulated sensitivity to PGE2, the authors need to inhibit transcription. We agree that our RNA-seq analysis would not 100% rule out the transcription-dependent mechanism. However, we believe that shutting down all transcription will show a severe off-target effect that indirectly affects the calcium transients and the PGE2-synthetase pathway. Therefore, our conclusion is limited.

      4) EGF is reported to increase the frequency of RSPA but the change shown in Fig. 6F is not statistically significant, hence, EGF does not increase RSPA frequency in their experiments.

      We have toned down the claim that EGF treatment increases the frequency (line172).

      "Accordingly, the addition of EGF faintly increased the frequency of RSPA in our experiments, while the MEK and EGFR inhibitors almost completely abrogated RSPA (Fig. 6F), representing that ERK activation or basal ERK activity is essential for RSPA.“

      1. The Discussion section is at times redundant with the results section. References to figures should be kept in the Results section.

      We would like to argue in opposition to this comment. For readers, we believe that the reference to figures would be helpful and kind. However, if eLife recommends removing the reference from the Discussion section, we will follow the publication policy.

      1. "Notably, the propagation of PKA activation, ~100 μm/min (Fig. 1H), is markedly faster than that of ERK activation, 2-4 μm/min (Hiratsuka et al., 2015)." The 2 kinase reporters are based on different molecular designs. Thus, it does not seem appropriate to compare the kinetics of both reporters as a proxy of the comparison of the kinetics of propagation of both kinases.

      We think that we should discuss the comparison of the activity propagation between ERK and PKA. First, among many protein kinases, only ERK and PKA activities have been shown to spread in the epithelial cells. Second, both pathways are considered to be intercellular communication. Finally, crosstalk between these two pathways has been reported in several cells and organs.

      1. In Figure 1E it is unclear what is significantly different from what. Statistical analysis should be added and reporting of the results should reflect the results from that analysis.

      2. In Figure 3F and G the color coding is confusing. In F pink is radius and black is GCaMP6 and in G is RSPA+ and - cells. The authors should change the color to avoid ambiguity in the code.

      We have amended the panels.

      1. In Fig. 5C, how do they normalize per cell density if they are measuring radius of the response?

      In Fig5C, we just measure the increment of FRET ratio in the view fields.

      1. In Fig. 5D, what is the point of having a label for PTGER3 if data were not determined (ND)?

      We have added what N.D. means.

      “N.D. represents Not Detected.”

      1. It is important to assess whether ERK activation depends of PGE2 signaling to better place ERK in the proposed signaling pathway. In fact, the authors argue that "ERK had a direct effect on the production of PGE2." But it could be that ERK is downstream PGE2 signaling instead.

      It could be possible in other experimental conditions via EP1 and/or EP3 pathways. However, we never detected an effect of RSPA on ERK activity by analyzing our imaging system. In addition, treatment with NSAIDs or COX-2 depletion, which completely abolishes RSPA, did not affect ERK wave propagation. Thus, in our context, we concluded that ERK is not downstream of PGE2. This notion is also supported by the NGS results in Fig. 5D.

      We have refrained from discussing the pathway of PGE2-dependent ERK activation because it would be redundant.

      1. The authors need to explain better what they mean by "AND gate" if they want to reach a broad readership like that of eLife

      We have modified the legend to explain the “AND gate” as much as possible (line639).

      “Figure 7: Models for PGE2 secretion.

      The frequency of calcium transients is cell density-dependent manner. While the ERK activation wave is there in both conditions. Because both calcium transient and ERK activation are required for RSPA, the probability for PGE2 secretion is regulated as “AND gate”. ”

      1. In Fig. 5D, "The average intensity of the whole view field of mKate2 or mKOκ, at 20 to 30 min after the addition of PGE2, was applied to calculate the mKate2/mKOκ ratio." But this means that overlapping/densely plated cells in high density will show stronger changes in fluorescence. This should be done per cell not per field of view. It is obvious that the higher density will have more dense/brighter signal in a given field of view.

      We are sorry for the confusion. The cell density does not affect the FRET ratio, although the brightness could be changed. A typical example is Fig1D. Thus, we are sure that our procedures represent the PKA activity in plated cells.

      1. In Fig. 6B the authors need to explain how were the "randomly set positions" determined.

      We have modified the legend section as below (line618).

      “The ERK activities within 10 µm from the center of RSPA and within 10 µm from randomly set positions with a random number table generated by Python are plotted in the left panel. Each colored dot represents an average value of an independent experiment.”

      1. Sentences 314-318 are repeated in 318-322.

      We deeply appreciate the reviewer’s comment and have amended

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Here, Boor et al focus on the regulation of daf-7 transcription in the ASJ chemosensory neurons, which has previously been shown to be sensitive to a variety of external and internal signals. Interestingly, they find that soluble (but not volatile) signals released by food activate daf-7 expression in ASJ, but that this is counteracted by signals from the ASIC channels del-3 and del-7, previously shown to detect the ingestion of food in the pharynx. Importantly, the authors find that ASJ-derived daf-7 can promote exploration, suggesting a feedback loop that influences locomotor states to promote feeding behavior. They also implicate signals known to regulate exploratory behavior (the neuropeptide receptor PDFR-1 and the neuromodulator serotonin) in the regulation of daf-7 expression in ASJ. Additionally, they identify a novel role for a pathway previously implicated in C. elegans sensory behavior, HEN1/SCD-2, in the regulation of daf-7 in ASJ, suggesting that the SCD-2 homolog ALK may have a conserved role in feeding and metabolism.

      Strengths:

      The studies reported here, particularly the quantitation of gene expression and the careful behavioral analysis, are rigorously done and interpreted appropriately. The results suggest that, with respect to food, DAF-7 expression encodes a state of "unmet need" - the availability of nearby food to animals that are not currently eating. This is an interesting finding that reinforces and extends our understanding of the neurobiological significance of this important signaling pathway. The identification of a role for ASJ-derived daf-7 in motor behavior is a valuable advance, as is the finding that SCD-2 acts in the AIA interneurons to influence daf-7 expression in ASJ.

      We appreciate the Reviewer 1’s thoughtful assessment of our work and inference that the expression of daf-7 encodes internal state corresponding to “unmet need.” Based on comments of Reviewer 1 and other reviewers, we have revised the title, abstract, and parts of the discussion to highlight not only the functional contribution of daf-7 expression in the ASJ neurons to behavioral state, but also the remarkable correlation between gene expression and internal state driving foraging behavior.

      Weaknesses:

      A limitation of the work is that some mechanistic relationships between the identified signaling pathways are not carefully examined, but this provides interesting opportunities for future work.

      To enable the reader to begin to infer the relative contributions of the identified signaling pathways to the circuitry coupling distinct bacterial cues to foraging behavior, we have added data for the analysis of DAF-7 expression in the ASJ neurons in the tph-1 and pdfr-1 mutants in the complete absence of food. Our current leaning is that multiple pathways, including those we have begun to characterize here, may function in parallel to influence DAF-7 expression and internal state driving foraging behavior. Future work to explore this further is certainly of interest.

      A minor weakness concerns the experiment in which daf-7 is conditionally deleted from ASJ. This is an ideal approach for probing the function of daf-7, but these experiments seem to be carried out in the well-fed, on-food condition in which control animals should express little or no daf-7 in ASJ. Thus, the experimental design does not allow an assessment of the role of daf-7 under conditions in which its expression is activated (e.g., in animals exposed to un-ingestible food).

      The interpretation of genetic analysis in the complete absence of food is complicated by what we think are multiple parallel pathways that function to strongly promote roaming, as indicated in the prior work of Ben Arous et al. Our observation that the conditional deletion of daf-7 from the ASJ pair of neurons confers altered roaming behavior on a lawn of bacterial food supports physiological ongoing role for dynamic daf-7 expression from the ASJ neurons even in the presence of bacterial food that may contribute to the control of transitions between foraging states and the persistence of roaming and dwelling states.

      To demonstrate the functional contribution of DAF-7 expression from the ASJ neuron pair during constitutive expression favoring roaming, we examined the roaming behavior of scd2(syb2455) animals that carry a gain-of-function mutation in scd-2 that promotes roaming and how the selective deletion of daf-7 from the ASJ neurons in the scd-2(syb2455) genetic background influences roaming behavior. This new experiment supports a model in which DAF-7 expression from the ASJ neurons contributes to the increased roaming behavior exhibited by scd-2(syb2455) animals. The new experiment is added as Figure 4I.

      An additional minor issue concerns the interpretation of the scd-2 experiments. The authors' findings do support a role for scd-2 signaling in the activation of daf-7 expression by un-ingestible food, but the data also suggest that scd-2 signaling is not essential for this effect, as there is still an effect in scd-2 mutants (Figure 4B).

      Considering that most of previous Figure 4B is redundant with previous Figure 4D, we removed previous Figure 4B. Our current Figure 4 has redesignated previous Figure 4D as 4B. We have also added qualification to the text to indicate that other pathways may modulate the daf-7 expression response to ingested food in parallel to SCD-2 signaling.

      Reviewer #2 (Public Review):

      Summary:

      In this work, Boor and colleagues explored the role of microbial food cues in the regulation of neuroendocrine-controlled foraging behavior. Consistent with previous reports, the authors find that C. elegans foraging behavior is regulated by the neuroendocrine TGFβ ligand encoded by daf-7. In addition to its known role in the neuroendocrine/sensory ASI neurons, Boot and colleagues show that daf-7 expression is dynamically regulated in the ASJ sensory neurons by microbial food cues - and that this regulation is important for exploration/exploitation balance during foraging. They identify at least two independent pathways by which microbial cues regulate daf-7 expression in ASJ: a likely gustatory pathway that promotes daf-7 expression and an opposing interoceptive pathway, also likely chemosensory in nature but which requires microbial ingestion to inhibit daf-7 expression. Two neuroendocrine pathways known to regulate foraging (serotonin and PDF-1) appear to act at least in part via daf-7 induction. They further identify a novel role for the C. elegans ALK orthologue encoded by scd-2, which acts in interneurons to regulate daf-7 expression and foraging behavior. These results together imply that distinct cues from microbial food are used to regulate the balance between exploration and exploitation via conserved signaling pathways.

      Strengths:

      The findings that gustatory and interoceptive inputs into foraging behavior are separable and opposing are novel and interesting, which they have shown clearly in Figure 1. It is also clear from their results that removal of the interoceptive cue (via transfer to non-digestible food) results in rapid induction of daf-7::gfp in ASJ, and that ASJ plays an important role in the regulation of foraging behavior.

      We thank Reviewer 2 for underscoring the modulation of neuroendocrine gene expression in the ASJ neuron pair by distinct gustatory and interoceptive inputs derived from bacterial food that we show in Figure 1.

      The role of the hen-1/scd-2 pathway in mediating the effects of ingested food is also compelling and well-interpreted. The use of precise gain-of-function alleles further supports their conclusions. This implies that important elements of this food-sensing pathway may be conserved in mammals.

      We thank Reviewer 2 for emphasizing the implications of our study on SCD-2/ALK as well as the generation and use of gain-of-function scd-2 alleles based on oncogenic mutations in ALK.

      Weaknesses:

      What is less clear to me from the work at this stage is how the gustatory input fits into this picture and to what extent can it be strongly concluded that the daf-7regulating pathways that they have identified (del-3/7, 5-HT, PDFR-1, scd-2) act via the interoceptive pathway as opposed to the gustatory pathway.

      It follows from the work of the Flavell lab that del-3/7 likely acts via the interoceptive pathway in this context as well but this isn't shown directly - e.g. comparing the effects of aztreonam-treated bacteria and complete food removal to controls. The roles of 5-HT and PDFR-1 are even a bit less clear. Are the authors proposing that these are entirely parallel pathways? This could be explained in better detail.

      We have added additional data regarding daf-7 expression from the ASJ neurons in the complete absence of food in the different mutant backgrounds noted by Reviewer 2. Data regarding daf-7 expression in the ASJ neurons under three distinct conditions—ingestible bacterial food, non-ingestible bacterial food, and the complete absence of food—enable the pairwise comparison of mutant data that allows for inference regarding the relative contributions of the genes to the interoceptive vs. gustatory pathways. In particular, effects on the interoceptive pathway can be inferred from the comparison of daf-7 expression on ingestible vs. non-ingestible food, whereas effects on the gustatory pathway can be inferred from the comparison of daf-7 expression on non-ingestible food vs. the absence of food (newly added).

      These additional data are most informative for del-3; del-7 (Figure 1H), where the added data corroborate a role for these genes in the interoceptive pathway, consistent with the findings of the Flavell lab. Specifically, the observation that daf-7 expression levels are equivalent between wild-type and del-3;del-7 animals when there is no ingestible food (either no food or non-ingestible food conditions) suggest that DEL-3 and DEL-7 are functioning specifically to sense ingested food.

      For pdfr-1, the analysis of the gain-of-function allele suggest that this pathway may have a greater relative effect on the gustatory pathway compared with the interoceptive pathway (Figure 3D). The robust upregulation seen in the pdfr-1(syb3826) animals between animals on ingestible and non-ingestible food, suggests that the interoceptive regulation is functional in these mutants, while the lack of upregulation between no-food and noningestible-food conditions suggests that the gustatory pathway is affected.

      The observations with the 5-HT biosynthesis mutant are most consistent with serotonin signaling affecting daf-7 expression in the ASJ neurons through a mechanism that is parallel to the gustatory and interoceptive inputs into daf-7 expression in the ASJ neurons, as tph1(n4622) animals appear to have an elevated baseline expression of daf-7 in the ASJ neurons while retaining sensitivity to both gustatory and interoceptive food cues (Figure 3B).

      The data with scd-2 are consistent with a role in the epistatic interoceptive pathway, considering the roughly equivalent levels of daf-7 expression in the ASJ neurons under all food conditions in scd-2(syb2455) animals (Figure 4B). However it is difficult to exclude the possibility that SCD-2 functions in both pathways or parallel to the gustatory and interoceptive inputs.

      While we agree that our genetic analysis alone cannot distinguish between genes acting in parallel or directly in serial with the gustatory or interoceptive inputs, our data do establish that signaling through SCD-2, 5-HT or PDFR-1-dependent pathways can act on the same gene expression and signaling node (i.e. daf-7 expression in the ASJ neurons) to modulate the effects of bacterial food inputs on foraging behavior, with the effects on daf-7 expression in the ASJ neurons in scd-2, tph-1 and pdfr-1 mutants correlating with their effects on roaming and dwelling behaviors.

      It would also be helpful to elaborate more on why the identified transcriptional positive feedback loop is predicted to extend roaming state duration - as opposed to some other mechanism of increasing roaming such as increased probability of roaming state initiation. This doesn't seem self-evident to me.

      Given that animals can exist in only two states, the increased probability of roaming state initiation would present as shorter dwelling states, which we do not see for daf-7 mutants. As described in Flavell, et al., 2013, a decreased fraction of time roaming can be attributed to longer dwelling states, shorter roaming states, or both. Our positive feedback loop is predicted to extend roaming states because of the predicted effect of DAF-7 on stabilizing the roaming state.

      Related to this point is the somewhat confusing conclusion that the effects of tph-1 and pdfr-1 mutations on daf-7 expression are due to changes in ingestion during roaming/dwelling. From my understanding (e.g. Cermak et al., 2020), pharyngeal pumping rate does not reliably decrease during roaming - so is it clear that there are in fact lower rates of ingestion during roaming in their experiments?

      This is an interesting point. Despite consistent pumping rates, we still believe that roaming animals ingest less food than dwelling animals. For instance, dwelling animals are localized to areas with bacterial food, while roaming animals might traverse patches with no food where pumping does not result in food ingestion.

      If so, why does increased roaming (via tph-1 mutation) result in further increases in daf-7 expression in animals fed aztreonam-treated food (Fig 3B)?

      This is possibly because although roaming animals are eating less, when animals are on non-ingestible food, they’re not eating at all, resulting in further daf-7 upregulation.

      Alternatively, there could be a direct signaling connection between the 5-HT/PDFR-1 pathways and daf-7 expression which could be acknowledged or explained.

      Yes, this is certainly possible. We do not propose that all of the difference in daf-7 expression is due to changes in foraging behavior, but rather we are highlighting further instances of the correlation between daf-7 expression in the ASJ neurons and roaming. For instance, in the case of our tph-1 mutants, we see a relatively modest effect on daf-7 expression in the ASJ neurons but a large difference in the fraction of time roaming. This suggests that the magnitude of change in one (daf-7 expression in ASJ or roaming) does not predict the magnitude of the change in the other, but rather that they trend in the same direc<on.

      Reviewer #3 (Public Review):

      Summary:

      In this interesting study, the authors examine the function of a C. elegans neuroendocrine TGF-beta ligand DAF-7 in regulating foraging movement in response to signals of food and ingestion. Building on their previous findings that demonstrate the critical role of daf-7 in a sensory neuron ASJ in behavioral response to pathogenic P. aeruginosa PA14 bacteria and different foraging behavior between hermaphrodite and male worms, the authors show, here, that ingestion of E. coli OP50, a common food for the worms, suppresses ASJ expression of daf-7 and secreted water-soluble cues of OP50 increases it. They further showed that the level of daf-7 expression in ASJ is positively associated with a higher level of roaming/exploration movement. Furthermore, the authors identify that a C. elegans ortholog of Anaplastic Lymphoma Kinase, scd-2, functions in an interneuron AIA to regulate ASJ expression of daf-7 in response to food ingestion and related cues. These findings place the DAF-7 TGF-beta ligand in the intersection of environmental food conditions, food intake, and foodsearching behavior to provide insights into how orchestrated neural functions and behaviors are generated under various internal and external conditions.

      Strengths:

      The study addresses an important question that appeals to a wide readership. The findings are demonstrated by generally strong results from carefully designed experiments.

      We thank Reviewer 3 for the comments and interest in the work.

      Weaknesses:

      However, a few questions remain to provide a complete picture of the regulatory pathways and some analyses need to be strengthened. Specifically,

      1. The authors show that diffusible cues of bacteria OP50 increase daf-7 expression in ASJ which is suppressed by ingestible food. Their results on del-3 and del-7 suggest that NSM neuron suppresses daf-7 ASJ expression. What sensory neurons respond to bacterial diffusible cues to increase daf-7 expression of ASJ? Since ASJ is able to respond to some bacterial metabolites, does it directly regulate daf-7 expression in response to diffusible cues of OP50 or does it depend on neurotransmission for the regulation? Some level of exploration in this question would provide more insights into the regulatory network of daf-7.

      The focus of our study has been on the modulation of daf-7 expression in the ASJ neurons by distinct bacterial food cues and the downstream neuroendocrine circuitry that is influenced. The question of whether bacterial cues are directly sensed by the ASJ neurons remains unresolved by our study. However, we have previously demonstrated that the daf-7 expression in the ASJ neurons induced by P. aeruginosa metabolites is likely the result of direct detection by the ASJ neurons. We would also note (and have added to the manuscript) the observation of Zaslaver et al. (2015), in which increased calcium transients were observed in the ASJ neurons in response to the withdrawal of E. coli OP50 supernatant, which is consistent with our observations of the effect of a soluble bacterial food signal on daf-7 expression in the ASJ neurons.

      1. The results including those in Figure 2 strongly support that daf-7 in ASJ is required for roaming. Meanwhile, authors also observe increased daf-7 expression in ASJ under several conditions, such as non-ingestible food. Does non-ingestible food induce more roaming?

      Yes, this has been published by Ben Arous, et al., 2009. Figure 3C shows increased roaming on aztreonam-treated food. We have added specific mention of this in the text.

      It would complete the regulatory loop by testing whether a higher (than wild type) level of daf-7 in ASJ could further increase roaming. The results in pdf-1 and scd-2 gain-of-function alleles support more ASJ leads to more roaming, but the effect of these gain-of-function alleles may not be ASJ-specific and it would be interesting to know whether ASJ-specific increase of daf-7 leads to a higher level of roaming. In my opinion, either outcome would be informative and strengthen our understanding of the critical function of daf-7 in ASJ demonstrated here.

      We looked at roaming in animals with a ptrx-1::daf-7 cDNA transgene in a wild-type background and did not see changes in the fraction of time animals roam. However, multiple experimental factors could contribute to our inability to detect an effect, including relative promoter strength and context of other variables that alter daf-7 expression. Nevertheless, our data confirmed that ASJ neuron-specific expression of daf-7 cDNA can increase roaming in a daf-7 mutant background (Figure 2B).

      We have also included an experiment (Figure 4I) looking at roaming in the scd-2(syb2455) gain-of-function animals in animals with daf-7 deleted from the ASJ neurons. These results suggest that part of the increased roaming seen in these scd-2(syb2455) animals is specifically due to increased daf-7 expression in the ASJ neurons.

      1. The analyses in Figure 4 cannot fully support "We further observed that the magnitude of upregulation of daf-7 expression in the ASJ neurons when animals were moved from ingestible food to non-ingestible food was reduced in scd-2(syb2455) to levels only about one-fourth of those seen in wild-type animals (Figure 4D)...", because the authors tested and found the difference in daf-7 expression between ingestible and non-ingestible food conditions in both wild type and the mutant worms. The authors did not analyze whether the induction was different between wild type and mutant. Under the ingestible food condition, ASJ expression of daf-7 already looks different in scd-2(syb2455).

      We appreciate the reviewer pointing out our lack of clarity in discussing our analysis of the data. The 4x difference represents the difference in fold change from ingested to noningested food in wild type and scd-2(syb2455) backgrounds. For wild-type animals, daf-7 expression in the ASJ neurons on non-ingestible food is 8.1-times higher on non-ingestible food than on ingestible food. In scd-2(syb2455) animals, this difference is 1.7 times. We have clarified this in the text.

      1. The authors used unpaired two-tailed t-tests for all the statistical analyses, including when there are multiple groups of data and more than one treatment. In their previous study Meisel et al 2014, the authors used one-way ANOVA, followed by Dunnett's or Tukey's multiple comparison test when they analyzed daf-7 expression or lawn leaving in different mutants or under different bacterial conditions. It is not clear why a two-tailed t-test was used in similar analyses in this study

      We have performed one-way ANOVAs for all comparisons included, and the results were largely consistent with what we found for t-tests. Ultimately, for our analysis we were most interested in pairwise comparisons and decided that t-tests would be most appropriate.

      *Reviewer #1 (Recommendations For The Authors):

      Line 170: For clarity, I suggest editing this to: "When animals are removed from edible food but are still exposed to soluble food signals, upregulation of daf-7..."

      We have edited this in the text and appreciate the suggestion.

      The authors report that pdfr-1(syb3826) was retrieved from "a screen done in parallel to this work." syb3826 is a Suny Biotech allele, suggesting that this screen may not have been done in the authors' lab but rather outsourced. Some additional details might be useful.

      This S325F allele was originally recovered as qd385 in an EMS screen performed in our lab. syb3826 is an independently generated Suny Biotech allele we ordered to confirm that the S325F substitution in PDFR-1 was responsible for our phenotypes. This has been clarified in the text.

      Line 210: Please provide a citation for the screen that identified hen-1(qd259).

      This is the first time the allele is being published. The screen is included in two theses from our lab, Meisel 2016 and Park 2019.

      Line 214: It would be useful here to also mention the previously identified role of scd2 in sensory integration.

      Yes, we have added this to the text. Additionally, we have included a couple of sentences in the discussion about how previous studies that have found a role for SCD-2 in sensory integration may instead be detecting the role for SCD-2 in food sensing, as many of the assays used for sensory integration are also sensitive to nutritional status of the animals.

      Line 271: Please provide a citation for the sex differences in food-leaving behavior (Lipton 2004 PMID 15329389 is the first careful characterization of this).<br /> We have added this to the text.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Recommendations For The Authors):

      The evidence provided in this study reflects important discoveries on language lateralisation and most of the conclusions of this paper are supported by evidence. However, there are several areas regarding the characteristics of participants tested, hypotheses/predictions and the type of analysis, that need to be clarified and/or corrected.

      1. There is a substantial disconnection between the introduction and the methods/results section.

      One reason is because of lack of consistency. One example refers to the fact that, in the introduction, only IFC is mentioned. However, the analyses carried out to examine neural activity in different groups focused on IFC as well as other brain regions related to inhibitory control. However, these areas were not mentioned at all in the introduction. Second and related to the above, the rationale for conducting certain types of analyses is not specified. Some brain analyses focus on IFC only. Instead, other analyses focus on several areas.

      Another weakness is that there is not sufficient detail regarding the hypotheses/predictions and the specific types of analyses chosen to test these hypotheses/predictions. For example, there is no mention of resting state fMRI data in the introduction, but later we discover that this type of data was collected and analyzed. Even a brief mention of the inclusion of resting state data in the introduction would be beneficial. Along the same lines, by reading the methods section we find out that VBM analyses were conducted. But it is unclear why. What was the purpose of this data analysis? This should be clarified briefly in the introduction and then in the methods section. It remains unclear why resting state results would be particularly informative for addressing the research question of this study. Task-related brain connectivity seems a more appropriate choice. Additionally, it is not explained what comparisons and outcomes would be informative/expected to distinguish between the two mentioned competing hypotheses. This should be made clear.

      Another aspect that lacks clarity is the authors' predictions when investigating the relationship "between the lateralization of both functions and inter-hemispheric structural-functional connectivity, as well as with behavioural markers of certain clinical conditions that have been related with atypical lateralization". The hypotheses are completely omitted in this section.

      Thank you for bringing this to our attention. We concur with Reviewer #2 that our introduction was somewhat lacking in detail and assumed too much prior knowledge on the part of the reader. This, together with a lack of a clear presentation of our tested hypotheses, made the introduction have a poor connection with both the results and discussion sections, which hindered the understanding of the paper.

      As a result, we have made some additions to enhance the exposition of the following areas: (1) the causal and statistical hypotheses of lateralization (Lines 55-65); and (2) the hypotheses regarding subclinical markers of neurological disorders and the corpus callosum (Lines 90-104).

      Furthermore, we have extensively revised the final paragraph of the introduction (Lines 105-121) to provide a clearer and more coherent linkage between the drivers presented during the introduction, our hypotheses, and the subsequent analyses.

      1. It is important to provide more information on the language background of the participants. Were the participants in this study Catalan-Spanish bilinguals? If so, it is crucial for the authors to mention this.

      Language background of the participants has been added to the corresponding section (Lines 138-145).

      In fact, previous studies, including several publications from the authors themselves (Garbin et al., 2010; Rodríguez-Pujadas et al., 2013; Anderson et al., 2018), have shown that there are qualitative differences between bilinguals and monolinguals in the neural circuitry underlying executive control. Across all these studies, it was consistently reported that bilingual individuals, when engaged in non-linguistic inhibitory control tasks, recruited a broader network of left-brain regions associated with language control, including the left IFC, in comparison to monolingual individuals. If the participants in this study were indeed bilinguals, it raises concern if the aim of the study is to generalize the conclusions on lateralization effects beyond the bilingual population.

      Rodríguez-Pujadas, A., Sanjuán, A., Ventura-Campos, N., Román, P., Martin, C., Barceló, F., … & Ávila, C. (2013). Bilinguals use language-control brain areas more than monolinguals to perform non-linguistic switching tasks. PLoS One, 8(9), e73028.

      Garbin, G., Sanjuan, A., Forn, C., Bustamante, J. C., Rodríguez-Pujadas, A., Belloch, V., ... & Ávila, C. (2010). Bridging language and attention: Brain basis of the impact of bilingualism on cognitive control. NeuroImage, 53(4), 1272-1278.

      Anderson, J. A., Chung-Fat-Yim, A., Bellana, B., Luk, G., & Bialystok, E. (2018). Language and cognitive control networks in bilinguals and monolinguals. Neuropsychologia, 117, 352-363.

      Indeed, we have thoroughly reported that, when compared to monolinguals, bilinguals exhibit a significant implication of left brain regions during switching and inhibition tasks. So, this is a legitimate concern. Unfortunately, the society from which our participants were drawn is primarily bilingual, encompassing both active and passive bilinguals. The monolingual sample in those previous studies consisted of university students originating from predominantly monolingual regions of Spain. Given this context, it is unsurprising that the current study has a rather limited number of monolinguals (n=8), with only 2 displaying atypical language lateralization. Thus, we cannot provide a reliable answer to the role of bilingualism status in our data. Consequently, we have included a comment on this limitation on the discussion (Lines 504-512).

      1. Regarding the methods section, I have the following specific queries. The first is about the control condition in the verb generation task. I find it puzzling that the 'task' and 'control' conditions differ in terms of the number of words uttered. Could the authors please provide further clarification on this?

      Thank you for raising this question. Regarding the control condition, it is important to note that the design of this task drew inspiration from previously published verb generation tasks for fMRI (Benson et al., 1999; Fitzgerald et al., 1997) and PET (Petersen et al., 1988). In the fMRI tasks, a fixation cross served as the control condition, while the PET study used word repetition as the control. We acknowledged that a mere fixation cross might not adequately control for the movement and visual-related activations inherent in the verb generation task. Conversely, word repetition could potentially engage the default mode network due to the repetition of the same simple task, which might not be suitable for a control condition, and it could be overly linguistic because it involves a word. Consequently, we aimed to strike a balance by employing a control condition that consisted of reading letters. This approach allowed us to control for movement and vision factors without invoking semantics. Thus, after careful consideration, we ultimately opted on the reading of two letters to equate the response to the vocalization length of generating a verb.

      Although we understand the concern of single vs. two vocalizations, it is worth emphasizing that this version of the verb generation task had undergone prior testing to assess its suitability for determining language lateralization in both healthy and clinical populations (Sanjuan et al., 2010). In fact, this task has been an integral component of our lab’s standard presurgical assessment protocol, which has been used for nearly two decades in individually evaluating language function in over 500 patients with central nervous system lesions.

      Benson, R. R., Fitzgerald, D. B., Lesueur, L. L., Kennedy, D. N., Kwong, K. K., Buchbinder, B. R., Davis, T. L., Weisskoff, R. M., Talavage, T. M., Logan, W. J., Cosgrove, G. R., Belliveau, J. W., & Rosen, B. R. (1999). Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology, 4(52), 798–809.

      Fitzgerald, D. B., Cosgrove, G. R., Ronner, S., Jiang, H., Buchbinder, B. R., Belliveau, J. W., Rosen, B. R., & Benson, R. R. (1997). Location of Language in the Cortex: A Comparison between Functional MR Imaging and Electrocortical Stimulation. AJNR Am J Neuroradiol, 18, 1529–1539.

      Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(18), 585–589.

      Sanjuán, A., Bustamante, J. C., Forn, C., Ventura-Campos, N., Barrós-Loscertales, A., Martínez, J. C., Villanueva, V., & Ávila, C. (2010). Comparison of two fMRI tasks for the evaluation of the expressive language function. Neuroradiology, 52(5), 407–415. https://doi.org/10.1007/s00234-010-0667-8

      Second, it is mentioned that some participants were excluded from different tasks due to technical issues or time constraints. It is important to ensure that all the results can be attributed to the exact same sample of participants across all tasks.

      We absolutely agree that excluding participants can be problematic when presenting the results of multiple sets of analyses. Therefore, we repeated all analyses while excluding the 7 participants that lacked resting-state data. All results remained virtually identical, with a few minor exceptions:

      1) Region-wise analysis of the stop-signal task: Hemisphere × Group effect in the preSMA region is significant (uncorrected P = 0.019), but it does not survive Bonferroni correction (corrected P = 0.076)

      2) Voxel-wise analysis of the stop-signal task: The Thalamus + STN and Caudate clusters are significant at the voxel level, but do not survive the cluster-based FWE correction. They do survive FDR correction, though.

      3) Correlation between SPQ score and LI of the stop-signal task: This correlation weakens just behind statistical significance, with a P value of 0.053.

      4) Correlation between reading variables and LIs of both tasks: Severe drops in P values are evident between both LIs and reading length accuracy (P = .111 and .133), as well as between verb generation LI and reading familiarity accuracy (P = .111). However, the association between the stop-signal LI and the reading length time is now significant (r = −.229, P = .042).

      According to this, we have included this statement in the methods section: (Lines 218-220).“It is important to highlight that the exclusion of these seven participants across all analyses does not notably impact the overall results.“

      It is unclear how the authors have estimated the RTs results from the practice trials. This requires more explanation. Also, why was the median used for the Go Reaction Time instead of the mean, when calculating the individual SSRT?

      We adapted the procedure used by Xue et al. (2008), implementing their approach to calculate SSRT. This has been elaborated further (Lines 227-230), together with the use of practice trials (Lines 233-236).

      Xue, G., Aron, A.R., and Poldrack, R.A. (2008). Common Neural Substrates for Inhibition of Spoken and Manual Responses. Cerebral Cortex 18, 1923–1932. 10.1093/CERCOR/BHM220.

      On a final note, information about the different types of pre-processing and data analysis is all reported in the same paragraph. I think using subsections would increase the intelligibility of the section.

      Thank you for this suggestion. We have added subsections in both the ‘image processing’ and ‘statistical analyses’ sections.

      1. Data analysis and Interpretation of the results. It is unclear how the mean BOLD signal was extracted to conduct ROI analysis (Marsbar?).

      Thank you for ponting this out. Indeed, we were not very accurate in the description of this procedure. We extracted the first eigenvariate via the VOI function within SPM12. This has been included in Lines 291-293.

      I feel uneasy about the way results are corrected for multiple comparisons. For instance, it is mentioned that in the ROI analysis, all p-values were FDR-corrected for four comparisons, but it is unclear why. The correct procedure for supporting conclusions about the effect of specific brain would be to have 'brain region' (n=4) as another within-subject factor. Furthermore, the one-tailed correlation is appropriate but only when testing for the possibility of a relationship in one direction and completely disregarding the possibility of a relationship in the other direction. However, this does not seem to be the case here (see Introduction), so a two-tailed correlation would be more appropriate.

      We agree with Reviewer #2 that presenting this analysis as a single MANOVA that includes a ‘Region’ factor is a more accurate approach. Consequently, we have made the aforementioned correction in the methods section (Lines 357-364) and the results section (Lines 395-406). The LI-LI one-tailed correlation was also changed to a two-tailed correlation in the methods section (Line 383), the results section (Line 417), and Figure 2 (Line 886).

      I am quite confused about using the term interhemispheric connectivity to refer to the volume of the genu, body and splenium of the corpus callosum. In fact, the volumes of genu, body and splenium of the corpus callosum do not reflect a measure of how strongly RH and LH IFC are connected to each other.

      We agree that using the term ‘interhemispheric connectivity’ when referring to callosal volume may be somewhat misleading. We have replaced every instance of this terminology throughout the paper.

      Furthermore, it is unclear why in a set of analyses (ROI and whole brain analyses) the authors focus on brain responses in different ROIs but instead, in connectivity measures the focus is only on IFC.

      Our initial rationale was to focus on regions that are prominently involved in language, particularly the IFC, for examining inter-hemispheric connectivity at rest.

      However, upon more careful consideration, it is true that the preSMA is also implicated in the language network (Labache et al., 2018), and certain studies have reported an impact of STN stimulation on specific language skills (for a review, see Vos et al., 2021). Consequently, we have incorporated these two regions into the resting-state analysis, along with subsequent correlations with LIs (Table 1 and Lines 118, 321-322 & 449-452).

      Labache, L., Joliot, M., Saracco, J., Jobard, G., Hesling, I., Zago, L., Mellet, E., Petit, L., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2018). A SENtence Supramodal Areas AtlaS (SENSAAS) based on multiple task-induced activation mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers. Brain Structure and Function 2018 224:2, 224(2), 859–882. https://doi.org/10.1007/S00429-018-1810-2

      Vos, S. H., Kessels, R. P. C., Vinke, R. S., Esselink, R. A. J., & Piai, V. (2021). The Effect of Deep Brain Stimulation of the Subthalamic Nucleus on Language Function in Parkinson’s Disease: A Systematic Review. Journal of Speech, Language, and Hearing Research, 64(7), 2794–2810. https://doi.org/10.1044/2021_JSLHR-20-00515

      Minor corrections/comments:

      It is unclear why in figure caption 1, the conjunction maps are mentioned even if formal conjunction analysis was not conducted.

      This poor choosing of words has been replaced to ‘overlapping maps’.

      Line 382. VHMC should be VMHC.

      Fixed. Thank you.

      Line 334. This sentence and especially its relationship with the results is not clear at all. What do you mean by 'This finding is consistent with previous reports showing that cognitive deficits appear only in specific cognitive domains'?

      This has been clarified (Lines 521-525).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We appreciate the reviewers’ thoughtful feedback and thank them for their valuable suggestions to improve the manuscript. We have endeavored to respond to all their comments, with many of their concerns already incorporated in the manuscript. Validations for the additional experiments to be incorporated into the manuscript have been performed and show that all the plans outlined in Section 2 are highly feasible and will be added for the full revision. We believe that the incorporated and planned revisions contribute to a significant improvement on the original manuscript.

      2. Description of the planned revisions

      Reviewer 1

      Major comments:

      Point 3. p. 5. The authors do not describe any relationship to notch signaling. But notch signaling is the mechanism by which a sprout is selected. The CA phenotype shows no selection, and every sprout can continue migration. Did the authors check for any relationship between notch signaling c-Src activation? Does upregulation of C-Src downregulate notch?

      In previous unpublished results examining the impact of the loss of endothelial c-Src on notch signaling, we observed no alteration in DLL4 expression in the sprouting retina on postnatal day 5. Furthermore, no change in tip cell number was observed in mice with a loss of endothelial c-Src, suggesting c-Src depletion does not impact notch activity (Schimmel et al., Development, 2020, Figure 1M). We have started additional preliminary experiments performing immunostaining with a DLL4 antibody in migrating c-Src-CA cells to assess activation of notch signaling upon c-Src activation. We will continue these experiments for the full revision and will confirm the results via further analysis of notch activation by assessing DLL4 expression in the c-Src mutant cells using Western blot.

      Reviewer 2

      Major comments:

      Point 1. The authors have only used one type of vein endothelial cells from one single donor but they conclude that is effect is general for all endothelial cells. Endothelial cells are very heterogeneous, not only depending on their function and localization, vein, artery or capillary, but also between different organs and in disease (PMID: 22315715, PMID: 28775214, PMID: 31944177, PMID: 33514719). The authors, should either repeat some of the key experiments in other type of endothelial cells, maybe arterial or microvasculature cells which are commercially available or at least state that the observations presented in this manuscript apply to HUVECs and discuss whether this would also apply for other cell types.

      We agree it would be highly beneficial to assess whether c-Src-CA induces vascular expansion in other endothelial cell types. We have successfully transduced human arterial endothelial cells (HAEC) with empty vector and c-Src-CA lentivirus and are able to grow HAECs in 3D vessels. This demonstrates that introducing the c-Src constructs into other endothelial cells and putting them in 3D assays is highly feasible. We have also used human microvascular endothelial cells (HMVEC) in 3D vessels in previous studies (Schimmel et al., Clin Trans Immunol, 2021). Therefore, we will perform experiments introducing the full set of c-Src mutations in HAEC and/or HMVEC in 3D vessels for the revision to strengthen our findings.

      Reviewer 3

      Major comments:

      Point 1. "This was further supported by our observation that there were no changes in proliferation in c-Src mutant cells grown in a 2D monolayer". Figure 1A appears to have increased number of cells in the c-Src-CA condition compared to the control condition. Could the authors quantify the number of cells/area as they did for their 3D vessel model? This would reinforce the idea that the ballooning phenotype they observe is not due to differences in proliferation.

      We have started quantification on the number of cells per bead for the 3D bead sprouting experiments shown in Figure 1. We will complete this quantification for 3 independent experiments and the results will be added for the full revision.

      Point 2. Would be strengthened with analysis of another proliferation marker, such as EdU label, which is incorporated only during S phase of the cell cycle. Comparing ki67 staining and EdU staining would provide more insights. Also, using their 3D vessel model for this analysis would increase its relevance.

      We agree that showing proliferation in a 3D setting would be highly beneficial. We tested proliferation marker Ki67 in 3D vessels to ensure this analysis will be possible. We will perform full analysis of proliferation across c-Src mutations in 3D for the revision. We have started with BrdU labelling in 2D, and we will perform full analysis of proliferation with BrdU across c-Src mutations for the revision.

      Point 3. In Figure 1E', cells expressing the constitutively active form of cSrc appear to detach, giving the impression of cell death. Have the authors tested the viability/apoptosis of c-Src-CA cells, particularly in their 3D model?

      We agree that showing cell death in our model, especially in a 3D setting, would be highly beneficial. We have tested cell death marker Cleaved Caspase 3 (CC-3) in 3D vessels to ensure this analysis is feasible. We will perform full analysis of cell death across c-Src mutations in 3D for the revision.

      Point 4. "Therefore, reduction of endothelial cell-cell contacts in c-Src-CA cells may be due to elevated VE-cadherin phosphorylation and subsequent internalisation", "As reduction in cell-cell junction integrity has been shown to increase migratory capacity and sprouting angiogenesis [38], our data suggest that a balanced control of both cell-matrix and cell-cell junctions is essential for mediating migration." In general, it's not clear how constitutively active cSrc affects focal adhesions and cell-cell adhesion and how this is responsible for their ballooning phenotype. The role of the phosphorylation of the VE-Cadherin and cell-cell junctions in this process is not clear either. Further analysis of cell-cell junctions and focal adhesions (co-staining of phosphorylated paxillin and VE-Cadherin) and focal adhesions/fibronectin (like in figure 4C) in the context of cell migration (scratch wound assay) would provide important information to strengthen this notion of balanced control of both cell-matrix and cell-cell junctions.

      We will perform experiments on migrating cells in 2D, co-staining for p-paxillin and VE-cadherin, and p-paxillin and Fibronectin, to address the role of balanced cell-matrix and cell-cell junction adhesion, and how they influence Fibronectin deposition in migrating cells.

      Point 6. "Taken together, these results reveal that proteases produced by c-Src-CA cells are locally secreted at FAs but are membrane bound." The claim that proteases are membrane-bound is not convincingly demonstrated. Could the authors assess whether the constitutive form of cSrc activates the expression of specific genes encoding MMPs by qPCR? Or is it more a matter of the effect of c-Src on the transport of MMPs by microtubules?

      We would like to clarify the content of Figure 5, which presents two distinct sets of experiments supporting the assertion that the proteases under investigation are membrane-bound. Firstly, the transfer of conditioned medium from c-Src mutant cells demonstrated no degradation of fibronectin fibrils. Secondly, in the bead sprouting assay, a mixed culture of untransduced and c-Src-CA expressing cells was utilised. The results revealed that only c-Src-CA cells formed balloons, while untransduced cells sprouted normally right next to or sometimes even through a balloon.

      Recognising the need for a more in-depth understanding, we acknowledge the importance of analysing specific MMP gene expression. To this end, we have ordered qPCR primers for distinct MMPs, namely MMP2, MMP7, MMP9, and MT1-MMP. These forthcoming experiments are not only highly feasible but will also contribute valuable insights. The results of this gene expression analysis will be incorporated into the revision, shedding light on whether constitutively active c-Src induces MMP gene expression or influences MMP transport.

      Minor comments:

      Point 2. The lab already showed in a previous study that mice lacking c-Src specifically in endothelial cells have reduced blood vessel sprouting, leading to the expectation that the constitutively active form of cSrc would increase sprout number in the sprouting assay. Could the authors explain why the constitutively active form of cSrc induces this vascular ballooning and not an increase in the number of sprouts?

      In line with analysis to be performed on notch activity and DLL4 expression (Reviewer 1 point 3), we will provide additional discussion on the role of notch signalling and tip cell identity with the full revision.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      R____eviewer 1

      Major comments:

      Point 1. p5. Fig 1: The sentence that the dominant negative completely abrogated 'this' phenotype implies that the dominant negative was put into the same cells as the constitutively active mutation. 'Abrogated' means it stops the phenotype, and the phenotype in the sentence prior was constitutively active. It is more accurate to say that the dominant negative was not distinguishable from wild type, which is what the statistics show. No double transfection (DN-CA) was performed.

      We have changed the wording in the manuscript accordingly to ‘The c-Src-DN mutation showed no phenotype distinguishable from Ctrl (Fig 1A-D).’ on page 5.

      Point 2. p.5. Fig 1: the phenotype of the CA cells is fascinating. They expand far beyond their normal territory, but they are held together in a lacy bubble. To me, this looks like a different phenotype from the ballooning that might occur in an arteriovenous malformation in vivo, as in vivo malformations are continuously covered by cells. I understand why the authors might use the term ballooning but given that the cells expand without continuously touching each other, I do not think this is the correct term. Would blebbing, or radial migration in a lace-like discontinuous pattern describe it better?

      We have changed the phrasing from ‘ballooning morphology’ to ‘radial migration in a lace-like discontinuous pattern’ on page 5. For brevity, this has been referred to as ‘ballooning’ for the remainder of the manuscript, as noted on page 5.

      Point 4. The statistical methods are not described in the methods (GraphPad?). These need to be added. Are only significant comparisons plotted? In Fig 6 and 7 only pairwise statistics are shown. If all significant comparisons are plotted, then this means that the comparison between the rescued CA and the treated or untreated control is not significant. This can be thought of as a partial rescue towards a wild type, but it is definitely not a full rescue. None of the statistical comparisons in Figure 6 or 7 show significant comparisons to wildtype. This needs more discussion.

      We have now added additional clarification on statistical methods. Details on the statistical tests for each figure are mentioned in the figure legends. A general section on the statistical methods is now added to the methods section on page 18. Only significant comparisons are displayed in the graphs, but as mentioned by reviewer 2 (minor point 2), we have added additional information for transparency. Each of the different comparisons that were made, and their precise p value, have been compiled a table which has been added as Supplementary Table 1 to the manuscript.

      In Figures 6 and 7, we exclusively plotted pairwise comparisons to assess the impact of Marimastat treatment. As outlined in Supplementary Table 1, there is still a statistical significance when comparing Marimastat-treated c-Src-CA with either Marimastat-treated Ctrl or Marimastat-treated c-Src-WT. This suggests a partial rescue. For clarity, we kept only pairwise comparisons in the graphs, but discussed the partial rescue due to remaining significant difference between Marimastat-treated c-Src-CA and Ctrl or c-Src-WT cells in the results, referring to Supplementary Table 1 for p values. An important sidenote: c-Src-CA treated cells cannot exhibit complete rescue since they are initially seeded without Marimastat, and have already initiated ballooning by the time treatment commences.

      Point 5. Mmp activity is inferred, but not measured. This is a limitaion as the assumption is that marimostat acting through the expected pathway.

      Marimastat is one of the most commonly used broad spectrum MMP inhibitors, with potent activity against major MMPs, including MMP1, MMP3, MMP2, MMP9, MMP7 and MMP14. This is outlined in the existing reference (Rasmussen and McCann, 1997). We have adjusted phrasing to clarify the potency of Marimastat and have emphasised this is an MMP targeting drug which has been widely utilised in oncology clinical trials (page 8).

      Minor comments:

      Point 1. Fig 5D. The presentation of the data in this graph is difficult to understand. It is trying to show the proportion of mScarlet in sprouts or balloons a percentage of all the scarlet cells. It would be better to have all cells represented in one bar, distributed between sprout and balloon in that one bar. i.e., for the control and dominant negative, the bars would be all black and then for the CA it would be all white. The zero data points are confusing. A proportions graph should be investigated here.

      We have changed the graph in Figure 5D, which now represents the % of the outgrowth area, sprouts for Ctrl, c-Src-WT and c-Src-DN and balloon for c-Src-CA, that are mScarlet positive. Resulting in all black bars for Ctrl, c-Src-WT and c-Src-DN and all white bar for c-Src-CA, as the reviewer predicted.

      Point 2. The methods for vessel coverage for quantification in figs 1 and 7 are missing.

      We have added details of how quantification of vessel coverage in Figure 1 and 7 was performed to the methods section on page 17/18 as follow: ‘Microfluidic vessel coverage was measured by tracing any holes in the vessel wall (inverse of cell area marked by phalloidin) and dividing this by the total cell area per image.’

      Reviewer 2

      Minor comments:

      Point 1. Although the methods are well written and can be understood. To improve transparency, the authors should reduce the referring to other papers to describe the methods they perform and at least some kind of brief description should be included.

      We have added a brief description of the methods that included references to other papers; lentiviral transduction and microfluidic devices. More details about the lentivirus transduction were added on page 15 and a short description about the fabrication of the microfluidic devices was added on page 15/16.

      Point 2. The authors should report the real p value for their tests. Also, when the test is not significant.

      To provide more transparency about all of the different comparisons that were made and their precise p value, we have compiled a table listing all the p values and which is added as Supplementary Table 1 to the manuscript.

      Reviewer 3

      Minor comments:

      Point 3. In Figure 1A, it would be beneficial to include images from orthogonal views. Indeed, in the c-Src-CA condition, it's not clear whether the vascular ballooning observed represents a cluster of cells or an empty space between the bead and the endothelial cells. (Supp movie 1 helps, but it would be useful to add orthogonal views to the figure)

      For clarity, we have added single Z plane image for cross sectional views of the bead sprouts in Figure 1A to show that the c-Src-CA cells have an empty space inside the balloon, rather than being a big cluster of cells.

      Point 4. In Figure 1D, the method used to analyze sprout shape is not clear, especially for the c-Src-CA condition where the number of sprouts is close to 0. The figure legend indicates that this measurement corresponds to the shape of the sprouting area. Could the authors clarify and explain their quantification method?

      The shape of the sprouting area refers to the circularity index of the vascular area, measured by tracing the perimeter of the cell area in a minimum Z-projection of brightfield images and subtracting the area of the bead. For better clarity, we have adjusted the title of Figure 1D and Figure 6D to ‘Vascular area shape’ and added details of the quantification method in the methods section on page 17.

      Point 5. "however cells within the vessel still maintained some connections (Fig 1E')": The connections between cells are difficult to see in the images in Figure 1E'. Could the authors provide higher magnification images of the VE-cadherin staining to illustrate these connections between cells?

      For improved clarity, we have added high magnification images of the VE-cadherin channel only in black and white (Figure 1E’’) and indicated some of the maintained cell-cell connections in the c-Src-CA cells with black arrowheads.

      Point 6. "The reduction in migration correlated with an increase in FA size c-Src-CA expressing cells.": Could the authors give more explanation?

      We have adjusted phrasing to provide additional information (page 6/7) as follows: ‘The reduction in migration velocity in c-Src-CA cells coincides with an increase in FA size, number and density (Fig 2A-D). This suggests that the reduction of migration velocity is due to increased cellular adhesion via FAs.’

      Point 7. Could the authors widen the cell trajectory trace in Supplementary Figure 3A?

      We have adjusted the trajectory traces in Supplementary Figure 3A with wider lines for improved visibility.

      Point 8. it is very difficult to distinguish fibronectin fibrils on the images shown in figure 4C. it would be beneficial to change the images.

      We have enlarged the zoomed areas for better visibility of the focal adhesions and fibronectin degradation underneath those areas in the c-Src-CA cells. Additionally, arrows are added to indicate fibronectin fibrils.

      Point 9. "Treatment of ECs with Marimastat in a fibrin bead sprouting assay resulted in a rescue of the ballooning morphology observed in the c-Src-CA cells" Based on the images displayed in the figure and the associated quantifications, it still appears that c-Src-CA+Marimastat induces a vascular ballooning even if it is less pronounced than in the DMSO condition. Hence, it would be more accurate to describe the observed effect as a "partial rescue". In the microfabricated 3D vessel, in the figure 7A, cell-cell junctions still appear altered by c-Src-CA after the treatment with Marimastat, compared to the c-Src-WT-Marimastat, it would be more appropriate to talk about "partial rescue".

      We have changed ‘rescue’ to ‘partial rescue’ when referring to results in Figure 6 and 7 (page 8).

      Point 10. In Figure 6A, it seems that there is a decrease in the number of sprouts in the c-Src-DN condition compared to the control condition after the DMSO treatment, which is not observed in Figure 1, could the authors explain why?

      In Figure 1C, the number of sprouts is also reduced in the c-Src-DN condition compared to c-Src-WT, but this is not significant when compared to control (see Supplementary Table 1 for p values of all comparisons). However, it is true that the number of sprouts in the c-Src-DN condition is significantly reduced compared to both control and c-Src-WT upon DMSO treatment (Fig 6C). Reduction of sprouts in c-Src-DN cells was expected due to the dysfunctional kinase domain, as mentioned on page 5 and shown in reference 30 (Shvartsman, D.E., et al., J Cell Biol, 2007. 178(4): p. 675-86.). Why DMSO treatment seems to enhance the effects of dominant negative c-Src expression on sprouting behaviour remains unclear. However, DMSO has adverse effects on sprouting shown by reduction of sprouts in both control and c-Src-WT cells (comparing untreated condition in Fig 1C with DMSO treated condition in Fig 6C). We believe that DMSO treatment is an extra challenge for cells on top of c-Src-DN expression, which therefore display reduced sprouting compared to control and c-Src-WT.

      Point 11. There is no statistical paragraph in the method section.

      As pointed out by reviewer 1 and 2, we have now added a general section on the statistical methods to the method section on page 18. Additional details on the tests used for each specific graph can be found in the figure legends and Supplementary Table 1.

      4. Description of analyses that authors prefer not to carry out

      Reviewer 3

      Major comments:

      Point 5. It is not clear how the constitutive activation of c-Src affects both cell-cell junction and focal adhesion morphology. Did the authors study signaling pathways downstream of c-Src such as the PI3K-AKT pathway?

      c-Src is well known to regulate a multitude of signalling pathways, which was definitively shown in analysis by Ferrando et al. using phosphoproteomics (Ferrando, I.M., et al., Mol Cell Proteomics, 2012. 11(8): p. 355-69.) In this manuscript, our primary emphasis is on elucidating the role of c-Src in governing cell-matrix adhesions and the degradation of the extracellular matrix. We delve into the nuanced connection between focal adhesions (FAs) and VE-cadherin through the actin framework in the discussion (see page 10). Additionally, we highlight that beyond its recognised direct targets in FAs and adherens junctions (AJs), c-Src exerts regulatory influence on these structures through its effects on the actin cytoskeleton.

      The PI3K/AKT pathway is implicated in the progression of vascular malformations in Hereditary Hemorrhagic Telangiectasia (HHT), where patients exhibit rapid vasculature expansion akin to the observed effects upon introducing the c-Src-CA mutation. In HHT, PTEN inhibition triggers heightened activity of VEGFA/VEGFR2 and subsequent AKT kinase activation. Although we have conducted preliminary analysis revealing elevated phospho-AKT, we contend that an in-depth examination of each signaling pathway perturbed downstream of c-Src-CA is beyond the current scope of this manuscript. Our future studies will specifically address this, providing a meticulous exploration of c-Src activity in HHT and its intricate interaction with the AKT pathway.

      Minor comments:

      Point 1: General comment: The authors have predominantly presented composite images with overlapping staining, making it challenging to differentiate between different labels. It would be beneficial if the authors could provide individual channel images along with a merge.

      Given the large numbers of multi-channel composite images, we believe it is not feasible to show each individual channel of every merged image in the manuscript. We have included individual channel images where we believe is appropriate. For example, p-paxillin Y118 (Figure 2), Fibronectin (Figure 4). We are happy to provide individual channel images for any image, where specifically requested, such as in Figure 1E’’ where VE-cadherin channel was added.

    1. Ultimately, this hybrid, semio-pen, multistage model of peer review incorporated the innovations of completelyopen models of peer-to-peer review while retaining the strengths of more tradi-tional processes.

      Though on the surface it may seem that having a multistage procedure that works in this order -eventually including all traditional steps of the peer review process- would work to alleviate the potential pitfalls of some of the newer more experimental "peer-to-peer" practices, it is likely worth noting that the traditional process in question taking place at the end of the line will limit what it is able to do based on what it is given.

      It is possible that by injecting public interpersonal and subjective accountability into the mix so early in the process, the product may be limited by socially conformist pressures and suffer from ideological homogeneity before it is even eligible to be within reach of the finish line.

      This is a danger in academic fields as, historically, common academic understandings have been reached by forging some synthesis of competing perspectives and theories on any given subject. This traditional system also results in occasional breakthroughs on each extreme respectively, due to more resources and research being allocable to valid, though potentially controversial or unpopular ideas. Widespread agreement on things is not necessarily as healthy for progress as it may seem.

      I think that in moving forward with using both new processes and digital tools to enhance our academic efforts, we should be keen to remember that although the past is the past and the present feels like where we always will be, no field is or ever will be "final," and making any adjustments to our current processes that run the risk of leaving them even more beholden to contemporary and situational forces than they already are is not a decision that should be taken lightly. Mainstream senses of morality and goodness have historically proven time and again to be shockingly impermanent.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for the thoughtful consideration of our work, including both reviewers’ constructive comments. Our apologies for taking some extra time for this revision, but we wanted to adress comments thoroughly with new analyses, not to mention a PhD defense, parental leave and my teaching ultimately being the bottleneck for the team’s work!

      Reviewer #1 (Public Review):

      The authors use a combination of structural and MD simulation approaches to characterize phospholipid interactions with the pentameric ligand-gated ion channel, GLIC. By analyzing the MD simulation data using clusters of closed and open states derived previously, the authors also seek to compare lipid interactions between putative functional states. The ultimate goal of this work is to understand how lipids shape the structure and function of this channel.

      The strengths of this article include the following:

      1) The MD simulation data provide extensive sampling of lipid interactions in GLIC, and these interactions were characterized in putative closed and open states of the channel. The extensive sampling permits confident delineation of 5-6 phospholipid interaction sites per subunit. The agreement in phospholipid binding poses between structures and the all-atom MD simulations supports the utility of MD simulations to examine lipid interactions.

      2) The study presents phospholipid binding sites/poses that agree with functionally-important lipid binding sites in other pLGICs, supporting the notion that these sites are conserved. For example, the authors identify interactions of POPC at an outer leaflet intersubunit site that is specific for the open state. This result is quite interesting as phospholipids or drugs that positively modulate other pLGICs are known to occupy this site. Also, the effect of mutating W217 in the inner leaflet intersubunit site suggests that this residue, which is highly conserved in pLGICs, is an important determinant of the strength of phospholipid interactions at this site. This residue has been shown to interact with phospholipids in other pLGICs and forms the binding site of potentiating neurosteroids in the GABA(A) receptor.

      Weaknesses of this article include the following:

      1) The authors describe in detail state-dependent lipid interactions from the MD simulations; however, the functional significance of these findings is unclear. GLIC function appears to be insensitive to lipids, although this understanding is based on experiments where GLIC proteoliposomes were fused to oocyte membranes, which may not be optimal to control the lipid environment. Without functional studies of GLIC in model membranes, the lipid dependence of GLIC function is not definitively known. Therefore, it is difficult to interpret the meaning of these state-dependent lipid interactions in GLIC.

      2) It is unlikely that the bound phospholipids in the GLIC structures, which are co-purified from e. coli membranes, are POPC. Rather, these are most like PE or PG lipids. While it is difficult to accommodate mixed phospholipid membranes in all-atom MD simulations, the choice of POPC for this model, while practically convenient, seems suboptimal, especially since it is not known if PE or PG lipids modulate GLIC function. Nevertheless, it is striking that the overall binding poses of POPC from the simulations agree with those identified in the structures. It is possible that the identity of the phospholipid headgroup will have more of an impact on the strength of interactions with GLIC rather than the interaction poses (see next point).

      3) The all-atom MD simulations provide limited insight into the strength of the POPC interactions at each site, which is important to interpret the significance of these interactions. It is unlikely that the system has equilibrated within the 1.7 microseconds of simulation for each replicate preventing a meaningful assessment of the lipid interaction times. Although the authors report exchange of up to 4 POPC interacting at certain residues in M4, this may not represent binding/unbinding events (depending on how binding/interaction is defined), since the 4 Å cutoff distance for lipid interactions is relatively small. This may instead be a result of small movements of POPC in and out of this cutoff. The ability to assess interaction times may have been strengthened if the authors performed a single extended replicate up to, for example, 10-20 microseconds instead of extending multiple replicates to 1.7 microseconds.

      Reviewer #2 (Public Review):

      The authors convincingly show multiple inner and outer leaflet non-protein (lipid) densities in a cryo-EM closed state structure of GLIC, a prokaryotic homologue of canonical pentameric ligand-gated ion channels, and observe lipids in similar sites during extensive simulations at both resting and activating pH. The simulations not only corroborate structural observations, but also suggest the existence of a state-dependent lipid intersubunit site only occupied in the open state. These important findings will be of considerable interest to the ion channel community and provide new hypotheses about lipid interactions in conjunction with channel gating.

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      In particular, a discussion of whether the timescale of the simulations permit measurements of residence or interaction times of the lipids should be addressed.

      Reviewer #1 (Recommendations for the authors):

      Comment 1.1: The authors may consider expanding the discussion about the significance of state-dependent lipid interactions. On the one hand, they emphasize state-dependent interactions of POPC with closed and open states in the outer leaflet in the results. On the other hand, they state that GLIC is insensitive to its lipid environment. What is the significance of the state-dependent interactions of POPC in GLIC, if any? It is possible that GLIC agonist responses are sensitive to phospholipids (such as PE or PG found in e. coli)? The state-dependent differences in lipid interaction identified in this study support this possibility and suggest the need to better understand the effects of phospholipids on GLIC function.

      Response 1.1: We agree with the reviewer that this is an interesting question and we have therefore extended the discussion with additional references on the functional effects on GLIC of various lipid membranes:

      p. 11 (Discussion)

      “Sampling was further simplified by performing simulations in a uniform POPC membrane. Prior experiments have been conducted to assess the sensitivity of GLIC in varying lipid environments (Labriola et al., 2013; Carswell et al., 2015; Menny et al., 2017), indicating that GLIC remains fully functional in pure POPC bilayers. In our cryo-EM experiments, the protein was recombinantly expressed from E. coli, which means that the experimental density would likely represent phosphatidylglycerol or phosphatidylethanolamine lipids. However, as the molecular identities of bound lipids could not be precisely determined, POPC lipids were built for straightforward comparison with simulation poses. While it appears that GLIC is capable of gating in a pure POPC bilayer, it remains plausible that its function could be influenced by different lipid species, especially due to the presence of multiple charged residues around the TMD/ECD interface which might interact differently with different lipid head groups. Further experiments would be needed to confirm whether the state dependence observed in simulations is also lipid-dependent. It is possible that certain types of lipids bind in one but not the other state, or that certain states are stabilized by a particular lipid type.”

      Comment 1.2: It would be helpful to state in the discussion that the co-purified lipids from GLIC structures are likely PE or PG from e. coli membranes. Nevertheless, it is interesting that the phospholipid poses from the structures generally agree with those identified from the MD simulations using PC.

      Response 1.2: Good point. We have clarified in the discussion that the native lipids in the cryo-EM structure are likely PG or PE lipids, as quoted in the preceding Response.

      Comment 1.3: The authors describe a more deeply penetrating interaction of POPC in the outer intrasubunit cleft in the open state, but this is difficult to appreciate from the images in Fig. 4B, 4E or S3B. The same is true of the deep POPC interaction at the outer intersubunit site. It may be helpful to show these densities from a different perspective to appreciate the depth of these binding poses.

      Response 1.3: We have added Figure 4 – figure supplement 1 to better show the depth of lipid binding poses, especially the ones in the outer leaflet intrasubunit cleft and at the inner intersubunit site, and cited the figure on p. 7 (Results).

      Comment 1.4: The representation of the lipid densities in Fig. 4B is not easy to interpret. First, the meaning of resting versus activating conditions and closed versus open states can be easily missed for readers who are not familiar with the author's previous study. It may be helpful to describe this (i.e. how open and closed state clusters were generated from structures determined in resting and activating conditions) in greater detail in either the figure legend, results or methods. Second, the authors state that there are differences in lipid poses between the closed and open states but not resting and activating conditions. With the exception of the intersubunit density, this is difficult to appreciate from Fig. 4B. As stated in point #3, the difference, for example, in the complementary intrasubunit site may be better appreciated with an image from a different perspective.

      Response 1.4: Acknowledged - the distinction between resting and activating conditions v.s. open and closed states can be confusing. We have tried to clarify these differences at the beginning of the results section, the methods section, and in the caption of Figure 4. Regarding differences in lipid poses between open and closed states, we agree it is difficult to appreciate from Figure 4, but here we refer the reader to Figure 4 – figure supplement 2 for an overlay between open and closed densities. Additionally, we now added Figure 1 – figure supplement 1 which provides lipid densities for all five subunits and overlays with the build cryo-EM lipids, possibly making differences easier to appreciate. Regarding images from different perspectives, we trust the new figure supplement described in Response 1.3 provides a better perspective.

      p. 3 (Results)

      “For computational quantification of lipid interactions and binding sites, we used molecular simulations of GLIC conducted under either resting or activating conditions (Bergh et al., 2021a). As described in Methods, resting conditions corresponded to neutral pH with most acidic residues deprotonated; activating conditions corresponded to acidic pH with several acidic residues protonated. Both open and closed conformations were present in both conditions, albeit with different probabilities.”

      p. 8 (Figure 4)

      “Overlaid densities for each state represent simulations conducted under resting (dark shades) or activating (light shades) conditions, which were largely superimposable within each state.”

      p. 24 (Methods)

      “We analyzed previously published MSMs of GLIC gating under both resting and activating conditions (Bergh et al., 2021a). Resting conditions corresponded to pH 7, at which GLIC is nonconductive in functional experiments, with all acidic residues modeled as deprotonated. Activating conditions corresponded to pH 4.6, at which GLIC is conductive and has been crystallized in an open state (Bocquet et al., 2009). These conditions were modeled by protonating a group of acidic residues (E26, E35, E67, E75, E82, D86, D88, E177, E243; H277 doubly protonated) as previously described (Nury et al., 2011).”

      Comment 1.5: The new closed GLIC structure was obtained by merging multiple datasets. What were the conditions of the datasets used? Was it taken from samples in resting or also activating conditions?

      Response 1.5: We have updated the Results, Discussion, and Methods to clarify this important point, in particular by merging datasets and rerunning the classification:

      p. 3 (Results)

      “In our cryo-EM work, a new GLIC reconstruction was generated by merging previously reported datasets collected at pH 7, 5, and 3 (Rovšnik et al., 2021). The predominant class from the merged data corresponded to an apparently closed channel at an overall resolution of 2.9 Å, the highest resolution yet reported for GLIC in this state (Figure 1 – figure supplement 2, Table 1).”

      p. 11 (Discussion)

      “Interestingly, the occupational densities varied remarkably little between resting and activating conditions (Figure 1 – figure supplement 1), indicating state- rather than pH- dependence in lipid interactions, also further justifying the approach of merging closed- state GLIC cryo-EM datasets collected at different pH conditions to resolve lipids.”

      p. 14 (Methods)

      “After overnight thrombin digestion, GLIC was isolated from its fusion partner by size exclusion in buffer B at pH 7, or in buffer B with citrate at pH 5 or 3 substituted for Tris. The purified protein was concentrated to 3–5 mg/mL by centrifugation. [...] Data from three different grids, at pH 7, 5, and 3, were merged and processed together.”

      Comment 1.6: In Fig. 3D, do the spheres represent the double bond? If so, please state in the legend

      Response 1.6: We have clarified in the legend of Figure 3D that the yellow spheres on the lipid tails represent a double bond.

      Comment 1.7: In Fig. 3E, what is the scale of the color representation?

      Response 1.7: We have clarified in the legend of Figure 3E that colors span 0 (white) to 137015 contacts (dark red).

      Reviewer #2 (Recommendations For The Authors):

      Comment 2.1: I'm not sure I fully understand how the final lipids were modeled (built). Fig. 1 caption suggests they may have been manually built? I understand that the idea was to place them in the overlap of simulation densities and structure densities, but can the authors please clarify if there were any quantifiable conditions that were employed during this process or if this was entirely manual placement in a pose that looked good? Regardless, it would be helpful to see an overlay of the built lipids with both the cryo and simulation densities (e.g., overly of Fig. 1F/H and G/H) to better visualize how the final built lipids compare.

      Response 2.1: We thank the reviewer for pointing out unclarities regarding our methods. We have extended the methods section to clarify how the lipids were manually built in the cryo-EM structure. We have also added Figure 1 – figure supplement 1 showing overlays of the computational densities and built cryo-EM lipids.

      p. 15 (Methods)

      “Lipids were manually built in COOT by importing a canonical SMILES format of POPC (Kim et al., 2021) and adjusting it individually into the cryo-EM density in each of the sites associated with a single subunit, based in part on visual inspection of lipid densities from simulations, as described above. After building, 5-fold symmetry was applied to generate lipids at the same sites in the remaining four subunits.”

      Comment 2.2: Regarding the state-dependent lipid entry to the outer leaflet intersubunit site associated with channel opening, if the authors could include a movie depicting this process that would be great. The current short explanation does not do this justice. Also, what were the dynamics of this process? Beyond the correlation between site occupancy and the pore being open, how did the timing of lipid entry/exit and pore opening/closing correlate?

      Response 2.2: The point regarding the timing of state-dependent lipid binding at the subunit interface and pore opening is indeed an interesting one. We have added Figure 4 – figure supplement 3D showing that the state-dependent P250 lipid interaction precedes pore opening, as quantified by pore hydration levels, indicating a potential role in gating. The interaction between lipid binding and conformational change of the protein is also depicted in the newly added Figure 4 - video supplement 1, which we hope will be able to better communicate the conclusions regarding state-dependent interactions. We have also expanded the results and discussion to better explain these results:

      p. 9 (Results)

      “The lipid head made particularly close contacts with residue P250 on the M2-M3 loop, which undergoes substantial conformational change away from the pore upon channel opening, along with outer-leaflet regions of M1–M3 (Figure 4E, Figure 4—figure Supplement 3A,B,C, Figure 4—video 1). These conformational changes were accompanied by a flip of M1 residue F195, which blocked the site in the closed state but rotated inward to allow closer lipid interactions in the open state (Figure 4—figure Supplement 3C, Figure 4—video 1). Indeed, P250 was predominantly located within 3 Å of the nearest lipid atom in open- but not closed-state frames (Figure 4F). Despite being restricted to the open state, interactions with P250 were among the longest duration in all simulations (Figure 2C) and as these binding events preceded pore opening, it is plausible to infer a role for this state-dependent lipid interaction in the gating process (Figure 4 – figure supplement 3D).”

      p. 12 (Discussion)

      “The state-dependent binding event at this site preceded pore opening in MSMs, where lipid binding coincided with crossing a smaller energy barrier between closed and intermediate states, followed by pore opening at the main energy barrier between intermediate and open states (Figure 4 – figure supplement 3D). Further, since the P250- lipid interaction was characterized by relatively long residence times (Figure 2), it is possible this lipid interaction has a role to play in GLIC gating.”

      Comment 2.3: Although the interaction times are helpful, I didn't get a great sense of how mobile the lipids are during the simulations. Can the authors discuss this a bit more. For example, are interaction times dominated by lipids that jiggle a bit away from a residue and then back again, vs how often are lipids exchanging with other lipids initially further away from the protein?

      Response 2.3: We have now added various measures of lipid diffusion, both for initially interacting lipids and for bulk lipids, which are summarized in the new Figure 2 – figure supplement 1. We have further addressed the question of simulation timescales in Results, Discussion, and Methods. These numbers highlight that it is possible for lipids several nanometers away from the protein surface to exchange with lipids of the first lipid shell.

      p. 3,6 (Results)

      “Lateral lipid diffusion coefficients were estimated to 1.47 nm2/µs for bulk lipids and 0.68 nm2/µs for lipids of the first lipid shell (Figure 2 – figure supplement 1A), which is relatively slow compared to the timescales of each trajectory (1.7 µs). However, multiple residues throughout the M1, M3, and M4 helices exchanged contacts with 2-4 different lipid molecules in individual simulations (Figure 2C). Furthermore, 1.7-µs root mean square displacement of lipids originally in the first lipid shell was 2.15 nm, and 3.16 nm in the bulk bilayer, indicating such exchanges are not limited to nearby lipids (Figure 2 – figure supplement 1B). Thus, exchange events and diffusion estimates indicate that the duration of lipid contacts observed in this work can be at least partly attributed to interaction stabilities and not solely to sampling limitations.”

      p. 11 (Discussion)

      “Indeed, the unrestrained atomistic MD simulations studied here were not expected to capture the maximal duration of stable contacts, as indicated by some interaction times approaching the full 1.7-µs trajectory (Figure 2}). Nevertheless, simulations were of sufficient length to sample exchange of up to four lipids, particularly around the M4 helix. Calculation of lipid lateral diffusion coefficients resulted in average displacements at the end of simulations of 2.15 nm for lipids initially interacting with the protein surface, roughly corresponding to lipids diffusing out to the 4th lipid shell. Diffusion of bulk lipids was faster, allowing lipids originally 3.16 nm away from the protein surface to ingress the first lipid shell. This observation underscores the potential for lipid exchange events even among lipids initially distant from the protein surface. Of course, duration of exceptionally stable interactions, such as those involving T274 (Figure 2C), inevitably remain bounded by the length of our simulations. Still, diffusion metrics, supported by robust statistical analysis encompassing diverse starting conditions (500 trajectories), enable confident estimation of relative interaction times.“

      p. 13 (Methods)

      “Time-based measures of protein-lipid interactions, such as mean duration times and exchange of interactions, were calculated for the 100 x 1.7 µs-long simulations using prolintpy (Sejdiu and Tieleman, 2021) with a 4 Å interaction cutoff. Analysis of lateral lipid diffusion in individual simulations was carried out for two disjoint sets of lipids: the first lipid shell defined as lipids with any part within 4 Å of the protein surface (~90 lipids), and bulk lipids consisting of all other lipids (~280 lipids). Mean square displacements of each lipid set were calculated using GROMACS 2021.5 (Abraham et al., 2015b) with contributions from the protein center of mass removed. Diffusion coefficients for each set, DA, were calculated using the Einstein relation (Equation 1) by estimating the slope of the linear curve fit to the data.

      where ri(t) is the coordinate of the center of mass of lipid i of set A at time t and DA is the self-diffusion coefficient.”

      Comment 2.4: How symmetric or asymmetric are the cryo and simulation densities across subunits and was there subunit asymmetry in the final build lipids? I could not tell from any of the figures beyond the casual observation that they maybe look somewhat similar in Fig. 1?

      Response 2.4: We thank the reviewer for this useful remark. We have clarified in the methods that the cryo-EM lipids were built in C5-symmetry, and thus the positions are symmetric. The computational densities were calculated independently for each subunit and are thus not necessarily symmetric. We have added Figure 1 – figure supplement 1 showing densities for all five subunits, also serving as an indication of convergence of the results.

      p. 3 (Results) “Although the stochastic nature of simulations resulted in nonidentical lipid densities associated with the five GLIC subunits, patterns of lipid association were notably symmetric (Figure 1 – figure supplement 1).”

      p. 14-15 (Methods)

      “A smaller subset of particles was used to generate an initial model. All subsequent processing steps were done using 5-fold symmetry. […] A monomer of that model was fit to the reconstructed density and 5-fold symmetry was applied with PHENIX 1.19.2-4158 through NCS restraints detected from the reconstructed cryo-EM map, to generate a complete channel. […] After building, 5-fold symmetry was applied to generate lipids at the same sites in the remaining four subunits.”

      Minor comments:

      Comment 2.5: Fig. 1 is probably not easy to follow for the general reader and the caption is very brief. I suggest adding an additional explanation to the caption and/or additional annotations to the figure to help a general reader step through this.

      Response 2.5: We have expanded the caption of Figure 1 and clarified the meanings of colors, labels, and annotations.

      Comment 2.6: Fig. 1B - Caption is confusing. I would not call the state separation lines outlines as they are not closed loops. Also, I see red/orange and two shades of blue whereas the caption mentions orange and blue only. The caption should also explicitly say what the black lines are (other cluster separations).

      Response 2.6: We have edited the caption to better describe colors, annotations, and the meaning of the data:

      p. 4 (Figure 1)

      “(B) Markov state models were used to cluster simulations conducted under resting (R) or activating (A) conditions into five states, including closed (left of the light or dark orange lines) and open (right of the light or dark blue lines). Black lines mark edges of other state clusters derived from MSM eigenvectors. Experimental structures are highlighted as white circles.”

      Comment 2.7: Fig. 3F caption appears to conflict with data where interaction with W217A appears longer than W217. I think the authors want to suggest here that W217A reduces contact time with T274 as stated in the main text.

      Response 2.7: We have clarified in this legend that “Mutation of residue W217, lining this pocket, reveals shortened interactions at the T274 binding site” (p. 6, Figure 3).

      Comment 2.8: Ref 25 and 26 are the same.

      Response 2.8: Apologies; this mistake has been corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to Reviewer 1 Comments (Public Review):

      Point 1: While the authors provided a large amount of data regarding the genes involved in the TOR pathway, it is highly descriptive and mostly confirmative data, as numerous papers have already shown that the TOR pathway plays essential roles in a myriad of biological processes in multiple fungi.

      Response 1: Thank you for your comment. The target of rapamycin (TOR) signal pathway plays critical roles in various eukaryotic organisms. However, its specific role in controlling the development and virulence of opportunistic pathogenic fungi like A. flavus has remained unclear. Additionally, the underlying mechanism of the TOR pathway remains elusive in the A. flavus. As such, our study provides a useful contribution, as it is the first to comprehensively investigate the majority of genes in the conserved TOR signaling pathway in A. flavus.

      Point 2: The authors seemed to perform a series of parallel studies in several genes involved in the TOR pathway in other fungi. However, their data are not properly interconnected to understand the TOR signaling pathway in this fungal pathogen. The authors frequently drew premature conclusions from basic phenotypic observations. For instance, based on their finding that sch9 mutant showed high calcium stress sensitivity, they concluded that Sch9 is the element of the calcineurin-CrzA pathway. Furthermore, based on their finding that the sch9 mutant show weak rapamycin sensitivity and increased Hog1 phosphorylation, they concluded that Sch9 is involved in TOR and HOG pathways. To make such conclusions, the authors should provide more detailed mechanistic data.

      Response 2: Yes, we agree with the reviewer's comment. We have carefully reviewed the manuscript and made necessary revisions to eliminate arbitrary conclusions. For example, we have removed the statement that "Sch9 is the element of the calcineurin-CrzA pathway". Furthermore, we have rephrased our conclusions to better reflect our findings. "these results reflected that Sch9 regulates osmotic stress response via the HOG pathway in A. flavus"(Lines 279-280, page 13). We appreciate the reviewer's input, which has contributed to the clarity and accuracy of our work.

      Point 3: In the section "Tor kinase plays important roles in A. flavus", some parts of their data are confusing. The authors said they identified a single Tor kinase ortholog, which is orthologous to S. cerevisiae Tor2. And then, they said failed to obtain a null mutant, but constructed a single copy deletion strain delta Tor1+/Tor2-. What does this mean? Does this mean A. flavus diploid strain? So is this heterozygous TOR/tor mutant? Otherwise, does the haploid A. flavus strain they used contain multiple copies of the TOR gene within its genome? What is the real name of A. flavus Tor kinase (Tor1 or Tor2?). "tor1+/tor2-" is the wrong genetic nomenclature. What is the identity of detalTor1+/Tor2-? Please provide detailed information on how all these mutants were generated. A similar issue was found in the analysis of TapA, which is speculated to be essential (what is the deltaTapA1+/TapA2-?). I couldn't find any detailed information even in Materials and Methods. The authors should provide southern blot data to validate all their mutants.

      Response 3: Thank you for your comments. We acknowledge the confusion in our presentation and will ensure that accurate genetic nomenclature is used consistently throughout the paper.

      In response to your queries, we have included a section in the Materials and Methods, titled "Detection of tor and tapA genes copy number in strains" (Lines 615-621, page 29), to provide details on how we determined the copy numbers of the tor and tapA genes in the strains. Our findings revealed that both the tor and tapA genes are present in double copies in our strains, which guided our decision to construct single-copy deletion strains using homologous recombination. We have verified these copy numbers using absolute quantification PCR (Table S1).

      The use of the abbreviation '+/-' for the single copy knockout strains, such as tor+/- and tapA+/-, is consistent with common fungal literature practice. We apologize for any confusion caused by this nomenclature.

      Although we did not employ southern blot data for validation, we conducted PCR and gene sequencing to confirm the mutants. We appreciate your comments to improve the clarity and accuracy of our manuscript.

      Point 4: How were the FRB domain deletion mutants constructed? If the FKBP12-rapamycin binding (FRB) domain is specifically deleted in the Tor kinase allele, should it be insensitive and resistant to rapamycin? However, the authors showed that the FRB domain deleted TOR allele was indeed non-functional.

      Response 4: We appreciate the reviewer's attention to the construction of the Fkbp12-rapamycin binding (FRB) domain deletion mutants and the discrepancy between the expected and observed results.

      For the knockout of the FRB domain, we used the homologous recombination method, but because tor genes are double-copy genes, there are also double copies in the FRB domain. Despite our efforts, we encountered challenges in precisely determining the location of the other copy of the tor gene.

      We speculate the common expectation that the deletion of the FRB domain should result in insensitivity and resistance to rapamycin, as it disrupts the binding site for Fkbp-rapamycin. However, we observed that the FRB domain-deleted mutant was more sensitive to rapamycin. This intriguing result suggests that there are additional factors or complexities involved in TOR signaling pathway regulation in A. flavus. We hypothesize that this result is related to the double copy of the tor gene. The reviewer's keen observation and comment have contributed to our efforts to better understand and explain this intriguing result.

      Point 5: In Figure 4C, the authors should monitor Hog1 phosphorylation patterns under stressed conditions, such as NaCl treatment, and provide quantitative measurements. Similar issues were found in the western blot analysis of Slt2 (Fig. 8D).

      Response 5: We agree with the reviewer that we should monitor Hog1 phosphorylation patterns under stressed conditions. In response to this valuable suggestion, we conducted additional experiments to examine Hog1 phosphorylation patterns under NaCl treatment for 30 minutes. The quantitative measurements of Hog1 phosphorylation levels under stress have been added to Figure 4E in the revised manuscript. Similarly, we have addressed the issue raised regarding Slt2 in Figure 8D.

      Point 6: For all the deletion mutants generated in this study, the authors should generate complemented strains to validate their data.

      Response 6: We appreciate the reviewer's suggestion to generate complemented strains for all the deletion mutants in our study to validate our data. However, due to the extensive number of genes involved in this research, it is hard to create complemented strains for each individual deletion mutant. As suggested by the reviewer, we have constructed complemented strains for several key deletion mutants, such as ΔsitA-C and Δppg1-C.

      Response to Reviewer 1 Comments (Recommendations For The Authors):

      Point 1: Overall, this manuscript was very poorly organized and not presented logically. It requires extensive English language editing.

      Response 1: We appreciate the reviewer's feedback regarding the organization and language quality of our manuscript. To address these concerns, we have restructured the manuscript to improve its logical flow and coherence. We thank the reviewer for their constructive criticism, which has been instrumental in the manuscript's refinement.

      Point 2: The authors did not present their figures in the order of description. For example, the authors suddenly described Figure 9A data in lines 128-130 in the middle of describing Figure 1. Furthermore, Figures 1D and 1F were described earlier than Figures 1B and 1C. In addition, Figure S2 was shown earlier than Figure S1. Please check this throughout the manuscript.

      Response 2: We thank the reviewer for their insightful observation. We acknowledge the importance of a logical and coherent figure sequence for reader comprehension. After careful review, we have rearranged the text and images throughout the entire document to enhance the reading experience. The revised manuscript now presents figures in a consistent and logical order, following the sequence of descriptions. We believe this improvement will enhance the overall readability and comprehension of our research.

      Point 3: The authors should follow the standard genetic nomenclature rules.

      Response 3: Thank you for your suggestion. We have revised our manuscript to ensure that we are following the standard genetic nomenclature rules throughout. This includes the correct naming of genes, proteins, and mutations, as well as the use of appropriate italicization and formatting. We follow the rules: gene symbols are typically composed of three lowercase italicized letters, while protein symbols are not italicized, with an initial capital letter followed by lowercase letters.

      Point 4: These are just a few examples. Besides the ones that I mentioned, I found numerous grammatically wrong or awkward sentences throughout the manuscript. So this manuscript requires extensive English proofreading.

      Response 4: We apologize for the problem of our manuscript. We have asked an English native speaker to enhance the overall language quality and readability of the text. We believe that these improvements will significantly enhance the manuscript's overall quality and make it more accessible to a broader audience.

      Response to Reviewer 2 Comments (Public Review):

      Point 1: However, findings have not been deeply explored and conclusions mostly are based on parallel phenotypic observations. In addition, there are some concerns that exist surrounding the conclusions.

      Response 1: We are grateful for the suggestion. We conduct additional experiments and analyses to delve more deeply into our findings and ensure a more robust basis for our conclusions.

      Response to Reviewer 2 Comments (Recommendations For The Authors):

      Point 1: Verification for mutants: a single copy deletion strain ΔTor1+/Tor2(containing one copy of the Tor gene), however, in the table of strain list, it seems like null mutants. There are no further verifications for relative genes' expression and no complementary strains.

      A. Flavus ΔTor: Δku70; ΔniaD; ΔTor::pyrG

      A. Flavus ΔTapA Δku70; ΔniaD; ΔTapA::pyrG

      As described in pp208, "While we failed to obtained a null mutant, we constructed a single copy deletion strain ΔTor1+/Tor2- (containing one copy of the Tor gene) constructed by homologous recombination)"? But the authors think there was only one Tor kinase ortholog (AFLA_044350). It is hard to understand for this mutant What is the evidence to verify phenotypes of the ΔTor1+/Tor2- strain resulted from deletion of Tor2, no detail for how to make ΔTor1+/Tor2- strain.

      Response 1: Thank you for your important comments and suggestion. We apologize for the confusion caused by genetic nomenclature. We make the necessary corrections in the table of strain lists to accurately reflect the genotypes of the strains (Table S3).

      Multicopy variation of genes has not been explored in detail in fungi, especially in A. flavus, but is a commonly known phenomenon in mammalian genomes[1-2]. In yeast, the presence of two tor genes, tor1 and tor2, whereas in higher eukaryotes such as plants, animals, and filamentous fungi, there is only one tor gene[3-4]. The homology comparison results show that the genome of A. flavus contains only one tor gene. However, the tor gene in A. flavus exhibited varying copy numbers, as was confirmed by absolute quantification PCR at the genome level (Table S1).

      In this study, we constructed a single copy deletion strain, tor+/-, through homologous recombination. This strain contains one copy of the tor gene. We provide a more detailed and explicit description of the methods used to detect of the genes copy number in strains (Lines 615-621, page 29). We thank the reviewer for pointing out these important issues.

      Point 2: For a point mutant strain TORS1904L, they found that the sensitivity to rapamycin is consistent with the WT strain, it could not tell anything. It should be moved to Suppl.

      Response 2: Thanks for your important comments. We acknowledge that these results may not provide significant insights. In response to this suggestion, we delete the data related to the TORS1904L point mutant strain and its sensitivity to rapamycin to ensure that the main manuscript focuses on the most pertinent and informative findings. Corresponding modifications have been made in the revised manuscript.

      Point 3: For subtitle "Sch9 is correlate with the HOG and TOR pathways "What is the meaning for "correlate" similarly?

      Response 3: Thank you for this comment. We apologize for the unclear wording. To enhance clarity, we revise the subtitle to more explicitly convey this conclusion, for example, "The Sch9 kinase is involved in aflatoxin biosynthesis and the HOG pathway". (Lines 242, page 12).

      Point 4:for the ΔTapA 1+/TapA 2- strain (containing one copy of the TapA gene). It should have the complementary strain to verify the specific role of TapA. In FigS1B, ΔTOR and ΔTapA it could not tell TOR gene has been edited. Did you test mRNA of TOR gene?

      Response 4: Thanks for your important comments. Due to the large number of genes involved, we did not perform a complementation experiment. However, we used PCR and sequencing to verify the editing of our gene. Additionally, we conducted copy number and mRNA analyses to verify its function. The transcriptional level of the tor gene in the tor+/- mutant was downregulated compared to the level in the wild-type strain (Fig. S6).

      Response to Reviewer 3 Comments (Public Review):

      Point 1: As for many results, I miss the re-complementation of the created mutants throughout the manuscript. This is standard praxis.

      Response 1: Thanks for your suggestions. We acknowledge that re-complementation is a standard practice for validating the effects of gene deletions. However, due to the large number of genes involved in our study, we have performed supplementary experiments on a selection of them, such as ΔsitA-C and Δppg1-C. We are grateful to the reviewer for your understanding of this practical consideration.

      Point 2: Fig. 1: cultures were grown for 48 h before measuring the transcript level. The authors show that brlA, abaA, and some sexual regulators are less expressed. In my opinion, this does not allow the conclusion that there is a direct control through rapamycin. Since the colonies grow very slowly in the presence of rapamycin, the authors should add rapamycin and follow gene expression after 15, 30, 60, 90 min. The figure legend needs to be more detailed. Which type of cultures were used, liquid, solid medium? Etc.

      Response 2: We deeply appreciate the reviewer’s suggestion. Since we found that there were no significant differences in gene expression changes following shorter treatment times, we extended the treatment duration. We conduct additional experiments to examine the gene expression levels at longer time intervals (3, 6, and 9 h) after the addition of rapamycin (Figure 1H-1J). These time points allow us to capture the dynamic changes in gene expression in response to rapamycin more effectively. Additionally, we enhance the figure legend to provide a more comprehensive description that specifies the type of cultures used in the experiments.

      Point 3: Why in chapter one Fig. 9 is already cited? Those data should then be included in Fig. 1 for the general phenotype.

      Response 3: Thank you for the suggestion. We have reordered the figures in the updated version of the manuscript to ensure that the data for consistent and clarity.

      Point 4: The authors wrote that radial growth and conidiation were gradually reduced with increasing rapamycin concentrations. This is not true. There is no gradient! However, it should be tested if there is a gradient if lower concentrations are used. The current data imply that there is a threshold concentration, so either there is 100 % growth or a reduction to 25 %. This looks strange.

      Response 4: Thank you for underlining this deficiency. We agree that a threshold concentration versus a gradient is an important distinction that needs to be clarified. Our results show that the addition of excessive quantities of rapamycin does not increase the inhibition of A. flavus growth. As the concentration of the FK506 drug increases, there is a gradual decrease in the growth and cell production of A. flavus. This phenomenon could potentially be attributed to varying mechanisms of action exhibited by the drugs. Therefore, we have revised these confused sentences. ( Lines 120-121, Page 5)

      Point 1: There are many wrong spellings:

      Fig. 1. Before washed, before washing; RelaTEtive gene expERSion should read relative gene expression. Sclerotial should be sclerotia. See also Fig. 5 F, H, Fig. 6 E. 6D colon diameter should be colony diameter.

      Fig. 4E. The expressED level... should read Expression level..... (also without article) Also in A, F, H.

      Fig. 6C. TLC detection of WT.... The authors mean AF detection in extracts of WT..... AF was extracted and analyzed by TLC.....

      Labelling of axes in one figure should be uniform.

      Response 1: Thank you for your reminder. We apologize for the oversights, and we carefully address and correct all the mentioned spelling issues to ensure the accuracy and clarity of the manuscript.

      Point 2: If the authors refer to the genes, I think they should be in small letters and italics, if it is the protein, the first letter should be capitalised tap1 (italics) and Tap1.

      Response 2: We appreciate this suggestion. We have carefully checked the entire manuscript and revised follow the standard genetic nomenclature rules. We follow the naming conventions for microbial genes and proteins, where gene symbols are typically composed of three lowercase italicized letters, and protein symbols are not italicized, with an initial capital letter followed by lowercase letters.

      Point 3: Very often articles are used where I would not use them.

      Response 3: Thanks for your careful checks. We are sorry for our carelessness. Based on your comments, we have made the corrections to make the articles harmonized within the whole manuscript. We value the reviewer's feedback, which will contribute to the overall quality of our writing.

      References:

      [1] Handsaker R, Van Doren, V, Berman, J. et al. Large multiallelic copy number variations in humans. Nat Genet 47, 296–303 (2015).

      [2] Wang Y, Wang S, Nie X. et al. Molecular and structural basis of nucleoside diphosphate kinase-mediated regulation of spore and sclerotia development in the fungus Aspergillus flavus. J Biol Chem. 2019 Aug 16;294(33):12415-12431.

      [3] Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002; 110(2): 163-75.

      [4] Fu L, Liu Y, Qin G, et al. The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth. Nature. 2021; 591(7849): 288-292.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for submitting your article "New genetic tools for mushroom body output neurons in Drosophila" for consideration by eLife. Your article has been reviewed by 2 peer reviewers, and the assessment has been overseen by a Reviewing Editor and Albert Cardona as the Senior Editor.

      eLife assessment:

      This work advances on two Aso et al 2014 eLife papers to describe further resources valuable for the field. This paper adds more MBON split-Gal4s convincingly describing their anatomy, connectivity and function.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript Rubin and Aso provide important new tools for the study of learning and memory in Drosophila. In flies, olfactory learning and memory occurs at the Mushroom Body (MB) and is communicated to the rest of the brain through Mushroom Body Output Neurons (MBONs). Previously, typical MBONs were thoroughly studied. Here, atypical MBONs that have dendritic input both within the MB lobes and in adjacent brain regions are studied. The authors describe new cell-type-specific GAL4 drivers for the majority of atypical MBONs (and other MBONs) and using an optogenetic activation screen they examined their ability to drive behaviors and learning.

      The experiments in this manuscript were carefully performed and the results are clear. The tools provided in this manuscript are of great importance to the field.

      Reviewer #2 (Public Review):

      In this study, Aso and Rubin generated new split-GAL4 lines to label Drosophila mushroom body output neurons (MBONs) that previously lacked specific GAL4 drivers. The MBONs represent the output channels for the mushroom body (MB), a computational center in the fly brain. Prior research identified 21 types of typical MBONs whose dendrites exclusively innervate the MB and 14 types of atypical MBONs whose dendrites also innervate brain regions outside the MB. These MBONs transmit information from the MB to other brain areas and form recurrent connections to dopaminergic neurons whose axonal terminals innervate the MB. Investigating the functions of the MBONs is crucial to understanding how the MB processes information and regulates behavior. The authors previously established a collection of split-GAL4 lines for most of the typical MBONs and one atypical MBON. That split-GAL4 collection has been an invaluable tool for researchers studying the MB. This work extends their previous effort by generating additional driver lines labeling the MBON types not covered by the previous split-GAL4 collection. Using these new driver lines, the authors also activated the labeled MBONs using optogenetics and assessed their role in learning, locomotion, and valence coding. The expression patterns of the new split-GAL4 lines and the behavioral analysis presented in this manuscript are generally convincing. I believe that these new lines will be a valuable resource for the fly community.

      Recommendations for the authors:

      Minor additional suggestions:

      1. Please ensure that the FlyLight links are provided for the new splitGal4s in the methods as well as results.

      We added the requested link to the methods.

      1. Correct a typo in 'ethyl lactate in the learning assays section of methods

      corrected

      Reviewer #1 (Recommendations For The Authors):

      In the behavior assay, the authors use the same flies that were used for optogenetic olfactory conditioning and memory tests, to also examine the effects of activation in the absence of odors but with airflow. I think this may affect the interpretation of the results. If possible, it would be nice to show in the MBON types where a conditioning effect was found (i.e. MBON21, 29, 33) that performing the activation in the absence of odors but with airflow without previous conditioning yields the same results.

      We share the reviewers concern that behavioral phenotypes during the later 10s LED sessions may be compromised by early optogenetic olfactory conditioning. Therefore, prior to running the experiment shown in Figure 2, we confirmed that the activation phenotypes of three positive control lines (MB011B and SS40755) could be observed after olfactory conditioning sessions. We added this data as Figure 2-figure supplement 2. For SS75200 and SS77383, a split-GAL4 driver for MBON33, we observed a loss of activation phenotype in the second trial of LED ON/OFF binary choice assay (Figure 3H). Therefore, we reran the 10s LED activation experiments without a previous optogenetic olfactory conditioning assay; these data are now also included in Figure 2-figure supplement 2.

      Reviewer #2 (Recommendations For The Authors):

      Below, I list some comments and suggestions which I hope could help the authors further improve their manuscript.

      1. The authors identified 2 candidate lines for MBON28. It would be helpful if they could clarify how they determined whether a split-GAL4 correctly labels an MBON or is just a candidate line.

      We have added in the methods section an explanation of the criteria used.

      “The correspondence between the morphologies of EM skeletons and light microscopic images of GAL4 driver line expression patterns was used to assign GAL4 lines to particular cell types. This can be done with confidence when there are not multiple cell types with very similar morphology. However, in the case MBON28 we were not able to make a definitive assignment because of the similarity in the morphologies of MBON16, MBON17 and MBON28.”

      1. The authors have previously shown that the expression pattern of a GAL4 driver is strongly influenced by the reporter used. The expression patterns of the split-GAL4 lines in this study are based on 20XUAS-Chrimson-mVenus trafficked (attp18), the expression strength of which may differ from other reporters or effectors. I suggest that the authors discuss this potential caveat in their manuscript. This will allow readers to be more cautious and check the expression patterns with their own reporters/effectors when using these new split-GAL4 lines.

      We added the sentences below to address this concern.

      “The expression patterns shown in this paper were obtained using an antibody against GFP which visualizes expression from 20xUAS-CsChrimson-mVenus in attP18. Directly visualizing the optogenetic effector is important since expression intensity, the number of labeled MBONs and off-targeted expression can differ when other UAS-reporter/effectors are used (for an example, see Figure 2—figure supplement 1 of Aso et al., 2014a).”

      1. For the kinematic parameters in Fig. 2C, it is important to also show the baseline value of the parameters (i.e., the value before the light stimulation). For example, if a group of flies moves slower during the baseline period, their slower speed during the light-on period may not be due to MBON activation.

      Figure 2 has been revised to include the z-scores for the 2s period just before turning on LED. The source data includes the parameter values used to calculate z-scores.

      1. For Methods and Materials, the authors mostly refer to previous papers or websites for details. However, it would be helpful if they could include in this manuscript key information essential for repeating their experiments, such as the reporter/effector transgenes, empty-split controls, and antibodies and their working concentrations. It would also be helpful if they could provide the manufacturers and catalog numbers for the reagents used in this study.

      We have added Appendix 1- Key Resource Table to list all the key reagents.

      1. The original studies that identified the reward or punishment dopaminergic neurons mentioned in this manuscript should be cited.

      We have added the following citations:

      “Total number of synaptic connections from each MBON type to DANs and OANs. Based on the valence of memory when activation of DANs is used as unconditioned stimulus in olfactory conditioning (Aso et al., 2012, 2010; Aso and Rubin, 2016; Claridge-Chang et al., 2009; Huetteroth et al., 2015; Ichinose et al., 2015; Lin et al., 2014; Liu et al., 2012; Yamada et al., 2023; Yamagata et al., 2016, 2015)”

    1. Late maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point (pI) alpha-amylase in the aleurone as a result of a temperature shock during mid-grain development or prolonged cold throughout grain development leading to an unacceptable low falling numbers (FN) at harvest or during storage. High pI alpha-amylase is normally not synthesized until after maturity in seeds when they may sprout in response to rain or germinate following sowing the next season’s crop. Whilst the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have employed high-throughput proteomics to analyse thousands of wheat flours displaying a range of LMA values. We have applied an array of statistical analyses to select LMA-responsive biomarkers and we have mined them using a suite of tools applicable to wheat proteins. To our knowledge, this is not only the first proteomics study tackling the wheat LMA issue, but also the largest plant-based proteomics study published to date. Logistics, technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics experiment along with the challenges associated with big data analyses are discussed. We observed that stored LMA-affected grains activated their primary metabolisms such as glycolysis and gluconeogenesis, TCA cycle, along with DNA- and RNA binding mechanisms, as well as protein translation. This logically transitioned to protein folding activities driven by chaperones and protein disulfide isomerase, as wellas protein assembly via dimerisation and complexing. The secondary metabolism was also mobilised with the up-regulation of phytohormones, chemical and defense responses. LMA further invoked cellular structures among which ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, LMA expression greatly impacted grain starch and other carbohydrates with the up-regulation of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-galactose and UDP-glucose were down-regulated. This work demonstrates that proteomics deserves to be part of the wheat LMA molecular toolkit and should be adopted by LMA scientists and breeders in the future.Competing Interest StatementThe authors have declared no competing interest.

      Reviewer 2. Luca Ermini

      This manuscript, which I had the pleasure of reading, is, simply put, a benchmark of five long read de novo assembly tools. Using 13 real and 72 simulated datasets, the manuscript evaluated the performance of five widely used long-read de novo assemblers: Canu, Flye, Miniasm, Raven, and Redbean.

      Although I find the methodological approach of the manuscript to be solid and trustworthy, I do not think the research is particularly innovative. Long-read assemblers have already been benchmarked in the scientific literature, and similar findings have been made. The authors are aware of this limitation of the study and have added a novel feature: the impact of read length on assembly quality, which in my opinion is still lacking sufficient innovation. However, the manuscript as a whole is valid and worthy of consideration. In light of this, I would like to share some suggestions I made in an effort to make the manuscript unique and more novel.

      Please see my comment below.

      1) Evaluation of the assemblies The metrics used to evaluate an assembly are frequently a murky subject as we are still lacking a standard language. The authors assessed the assemblies using three types of metrics: compass analysis, assembly statistics, and the Busco assessment, in addition to computational metrics like runtime and RAM usage. This is not incorrect, but I would suggest making a clear distinction between the metrics using (in addition to the computational metrics) three widely recognised metrics, or in short, the 3C criterion. The assembly metrics can be broken down into three dimensions: correctness (your compass analysis), contiguity (NG50) and completeness (the BUSCO assessment). The authors should reconsider the text using the 3C criterion; this will provide a clear, understandable, and structured way of categorising metrics. The paragraph beginning at line 197, for example, causes some confusion for the reader. The NG50 metrics evaluate assembly contiguity, whereas the number of misassemblies (considered by the authors in terms of relocation, inversion, and translocation) evaluate assembly correctness. I must admit that the misassemblies and contiguity can overlap, but I would still recommend keeping the NG50 (within contiguity) and misassemblies (within correctness) metrics separate.

      2) Novelty of the comparison The authors of the study had two main goals: to conduct a systematic comparison of five long-read assembly tools (Raven, Flye, Wtdbg2 or Redbean, Canu, and Miniasm) and to determine whether increased read length has a positive effect on overall assembly quality. The authors acknowledge the study's limitations and include an evaluation of the effect of read length on assembly quality as a novel feature of the manuscript (see line 70).

      The manuscript that described the Raven assembler (Vaser, R., Sikic, M. Time- and memory-efficient genome assembly with Raven. Nat Comput Sci 1, 332-336 (2021)) compared the same assemblers' tools (Raven, Flye, Wtdbg2 or Redbean, Canu and Miniasm) evaluated in this manuscript plus two more (Ra and Shasta), used similar eukaryotes (A. thaliana, D. melanogaster, and Human), and reached a similar conclusion on Flye in terms of contiguity (NG50), and completeness (genome fraction) but overall there is not a best assembler in all of the evaluated categories. In this manuscript authors increased the number of eukaryotic genomes (including S. cerevisiae, C. elegans, T. rupribes, and P. falciparum) and reached similar conclusions: there is no assembler that performs the best in all the evaluation categories, but overall Flye is the best-performing assembler. This strengthens the manuscript, but the research is not entirely novel.

      Given that the field of third-generation technologies is rapidly progressing toward the generation of high-quality reads (Pacbio HiFi technology and ONT Q20+ chemistry are achieving accuracy of 99% and higher), the manuscript should also include a HiFi assembler benchmark. This would add novelty to the manuscript and pique the scientific community's interest. The authors have already simulated HiFi reads from S. cerevisiae, P. falciparum, C. elegans, A. thaliana, D. melanogaster, T. rubripes in addition to reference reads (or real reads) from S. cerevisiae (SRR18210286). P. falciparum (SRR13050273) and A. thaliana (SRR14728885).

      Furthermore, I am not sure what the benefit is of evaluating Canu on HiFi data instead of HiCanu, which was designed to deal with HiFi data. The authors already included some HiFi-enabled assemblers like Flye and Wtdbg2 but also HiFiasm should also be considered. I would strongly advise benchmarking the HiFi assemblers to complete the study and add a level of novelty. I would like to emphasise that the manuscript is solid and that I appreciate it; however, I believe that some novelty should be added.

      3) C elegans genomics The now-discontinued RSII, which had a higher error rate and a shorter average read than Sequel I or Sequel II, was used to generate the genomic data from C elegans. I understand the authors' motivation for including it in the analysis, but the use of RSII may skew the comparisons, and I would suggest adding a few sentences to the discussion about it.

      4) CPU time (h) and memory usage The authors claim the benchmark evaluation included runtime and RAM usage. However, I missed finding information about the runtime and RAM usage. Please provide CPU time (h) and memory usage (GB)


      Minor comments:

      1) Lines 64-65 "Here, we provide a comprehensive comparison on de novo assembly tools on all TGS technologies and 7 different eukaryotic genomes, to complement the study of Wick and Holt" I would modify "on all TGS technologies" as "at the present the two main TGS technologies"

      2) Line 163 Real reads. The term "real reads" may cause confusion for readers, leading them to believe that the authors produced the sequencing reads for the manuscript. I would use the term "ref-reads" indicating "reads from the reference genomes"

      3) Lines 218-219 Please provide full names (genus + species): S. cerevisiae, P. falciparum, A. thaliana, D. melanogaster, C. elegans, and T. rubripes

      4) Supplementary Table S4 "Accession number SRR15720446 seems to belong to a sample sequenced with 1 PACBIO_SMRT (Sequel II) rather than ONT

      5) Figures 2 and 3. Figures 2 and 3 give visual results of the performance of the five assemblers. I want to make a few points here: According to what I understand, the top-performing assembler is marked with a star and is plotted with a brighter colour than the others. However, this is not immediately apparent, and some readers might have trouble identifying the colour that has been highlighted. I would suggest either lessening the intensity of the other, lower-performance assemblers or giving the best assembler a graphically distinct outline. I also wonder if it would be useful to give the exact numbers as supplemental tables.

      Re-Review:

      Dear Cosma and colleagues, Thank you so much for addressing my comments in a satisfactory manner. The manuscript, in my opinion, has dramatically improved.

    2. AbstractLate maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point (pI) alpha-amylase in the aleurone as a result of a temperature shock during mid-grain development or prolonged cold throughout grain development leading to an unacceptable low falling numbers (FN) at harvest or during storage. High pI alpha-amylase is normally not synthesized until after maturity in seeds when they may sprout in response to rain or germinate following sowing the next season’s crop. Whilst the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have employed high-throughput proteomics to analyse thousands of wheat flours displaying a range of LMA values. We have applied an array of statistical analyses to select LMA-responsive biomarkers and we have mined them using a suite of tools applicable to wheat proteins. To our knowledge, this is not only the first proteomics study tackling the wheat LMA issue, but also the largest plant-based proteomics study published to date. Logistics, technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics experiment along with the challenges associated with big data analyses are discussed. We observed that stored LMA-affected grains activated their primary metabolisms such as glycolysis and gluconeogenesis, TCA cycle, along with DNA- and RNA binding mechanisms, as well as protein translation. This logically transitioned to protein folding activities driven by chaperones and protein disulfide isomerase, as wellas protein assembly via dimerisation and complexing. The secondary metabolism was also mobilised with the up-regulation of phytohormones, chemical and defense responses. LMA further invoked cellular structures among which ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, LMA expression greatly impacted grain starch and other carbohydrates with the up-regulation of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-galactose and UDP-glucose were down-regulated. This work demonstrates that proteomics deserves to be part of the wheat LMA molecular toolkit and should be adopted by LMA scientists and breeders in the future.

      This work has been published in GigaScience Journal under a CC-BY 4.0 license (https://doi.org/10.1093/gigascience/giad100), and has published the reviews under the same license. These are as follows.

      **Reviewer 1. Brandon Pickett **

      Overall, this manuscript is well-written and understandable. There's a lot of good work here and I think the authors were thoughtful about how to compare the resulting assemblies. Scripts and models used have been made available for free via GitHub and could be mirrored on or moved to GigaDB if required. I'll include a several minor comments, including some line-item edits, but the bulk of my comments will focus on a few major items.

      Major Comments: My primary concern here is that the comparison is outdated and doesn't address some of the most helpful questions. CLR-only assemblies are no longer state-of-the-art. There are still applications and situations where ONT (simplex, older-pore)-only assemblies are reasonable, but most projects that are serious about generating excellent assemblies as references are unlikely to take that approach.

      Generating assemblies for non-reference situations, especially when the sequencing is done "in the field" (e.g., using a MinION with a laptop) or by a group with insufficient funding or other access to PromethIONs and Sequel/Revios, is an exception to this for ONT-only assemblies. Further, this work assumes a person wants to generate "squashed" assemblies instead of haplotype-resolved or pseudohaplotype assemblies. To be fair, sequencing technology in the TGS space has been advancing so rapidly that it is extremely difficult to keep up, and a sequencing run is often outdated by the time analyses are finished, not to mention by the time a manuscript is written, reviewed, and published.

      Accordingly, in raising my concerns, I am not objecting to the analysis being published or suggesting that the work performed was poor, but I do believe clarifications and discussion are necessary to contextualize the comparison and specify what is missing.

      1. This comparison seeks to address Third-generation sequencing technologies: namely PacBio vs. ONT. However, each company offers multiple kinds of long-read sequencing, and they are not all comparable in the same way. Just as long noisy reads (PacBio CLR & ONT simplex) are a whole new generation from "NGS" short reads like from Illumina, long-accurate reads are arguably a new generation beyond noisy long reads. If this paper wants to include PacBio HiFi reads in the comparison, significant changes are necessary to make the comparison meaningful. I think it's reasonable to drop HiFi reads from this paper altogether and focus on noisy long reads since the existing comparison isn't currently set up to tell us enough about HiFi reads and including them would be an ordeal. If including HiFi, consider the following:

      1.a. Use assemblers designed for long-accurate reads. HiCanu (i.e., Canu with --pacbio-hifi option) is already used, as is a similar approach for Flye and wtdbg2. However, raven is not meant for HiFi data and miniasm is not either (though, it could be done with the correct minimap2 settings, but Hifiasm would be better). Assemblies of HiFi data with Raven and miniasm should be removed. Sidenote – Raven can be run with --weaken (or similar) for HiFi data, but it is only experimental and the parameter has since been removed. Including Hifiasm would be necessary, and it should have been included since Hifiasm was out when this analysis was done. Similarly, including MBG (released before your analysis was done) would be appropriate. Since you'd be redoing the analyses, it would be appropriate to include other assemblers that have since been released: namely LJA. Once could argue that Verkko should be included, but that opens another can of worms as a hybrid assembler (more on that later).

      1b. Use a read simulator that is built for HiFi reads. Badreads is not built for HiFi data (though using custom parameters to make it work for HiFi reads wasn't a bad idea at the time), and new simulators (e.g., PBSIM3, DOI: 10.1093/nargab/lqac092) have since been released that consider the multi-pass process used to generate HiFi data.

      1c. ONT Duplex data is likely not available for the species you've chosen as it is a very new technology. However, you should at least discuss its existence as something for readers to "keep an eye on" as something that is conceptually comparable to HiFi. 1d. Use the latest & greatest HiFi data if possible and at least discuss the evolution of HiFi data. Even better would be to compare HiFi data over time, but this data may not really be available and most people won't be using older HiFi data. Though, simulation of older data would conceivably be possible. While doing so would make this paper more complete, I would argue that it isn't worth the effort at this juncture. For reference, in my observation, older data has a median read length around 10-15 kb instead of 18-22 kb. 1e. Include real Hifi data for the species you are assembling. If none is available and you aren't in a position to generate it, then keep the hifi assembler comparison on real data separate from that of the CLR/ONT assembler comparisons on real data by using real HiFi data for other species. 2. Discuss in the intro and/or discussion that you are focusing on "squashed" assemblies. Without clever sample separation and/or trio-based approaches (e.g., DOI: 10.1038/nbt.4277), a single squashed haplotype is the only possible outcome for PacBio CLR and ONT-only approaches. For non-haploid genomes, other approaches (HiFi-only or hybrid approaches (e.g., HiFi + ONT or HiFi + Hi-C)) can generate pseudohaplotypes at worse and fully-resolved haplotypes at best. The latter is an objectively better option when possible, and it's important to note that this comparison wouldn't apply when planning a project with such goals. Similarly, it would probably be helpful to point out to the novice reader that this comparison doesn't apply to metagenome assembly either. 3. The title suggests to the reader that we'll be shown how long reads makes a difference in assembly compared to non-long read approaches. However, this is not the case, despite some mention of it in near line 318. Short read assemblies are not compared here and no discussion is provided to suggest how long read-based assemblies would improve outcomes in various situations relative to short reads. Unless such a comparison and/or discussion is added, I think the title should be changed. I've included this point in the "Major Comments" section because including such a comparison would be a big overhaul, but I don't expect this to be done. The core concern is that the analysis is portrayed correctly. 4. Sequencing technologies are often portrayed as static through time, but this is not accurate. This is a failing of the field generally. Part of the problem is the length of the publishing cycle (often >1yr from when a paper is written to when it's published, not to mention how long it takes to do the analysis before a paper is even written). Part of the problem is that current statistics are often cited in influential papers and then recited in more recent papers based on the influential paper despite changes having been made since that influential paper was released. Accordingly, the error rate in ONT reads has been misreported as being ~15% for many years even though their chemistry has improved over time and the machine learning models (especially for human samples) have also improved, dropping the error rate substantially. ONT has made improvements to their chemistry and changed nanopores over time and PacBio has tinkered with their polymerase and chemistry too. Accordingly, a better question for a person planning to perform an assembly would be "which assembler is best for my datatype (pacbio clr vs ont) and chemistry/etc.?" instead of just differentiating by company. Any comparison of those datatypes should at least address this as a factor in their discussion, if not directly in their analysis. I feel that this is missing from this comparison. In an ideal world, we'd have various CLR chemistries and ONT pores/etc. for each species in this analysis. That data likely doesn't exist for each of the chosen species though, and generating it would be non-trivial, especially retroactively. Using the most recent versions is a good option, but may also not exist for every species chosen. Since this analysis was started (circa Nov/Dec 2021 by my estimate based on the chosen assembler versions), ONT has released pore 10; in combination with the most recent release of Guppy, error rates <=3% are expected for a huge portion of the data. That type of data is likely to assemble very differently from R9.4, and starker differences would be expected for data older than R9.4. Even if all the data were the most recent (or from the same generation (e.g., R9.4)), library preps vary greatly, especially between UL (ultralong) libraries and non-UL libraries. Having reads >100kb, especially a large number of them, makes a big difference in assembly outcome in my observation. How does choice of assembler (and possibly different parameters) affect the assembly when UL data is included? How is that different from non-UL data? What about UL data at different percentages of the reads being considered UL? A paper focusing on long noisy reads would be much more impactful if it addresses these questions. Again, this may not be possible for this particular paper considering what's already been done and the available funding, and I think that's okay. However, these issues need to addressed in the discussion as open questions and suggested future work. The type of CLR and ONT data also needs to be specified in this work, e.g., in a supplemental table, and if the various datasets are not from the same types, these differences need to be acknowledged. At a minimum, I think the following data points should be included: chemistry/pore information (e.g., R9.4 for ONT or P2/C5 for PacBio), basecaller (e.g., guppy vX.Y.Z), and read length distribution info (e.g., mean, st. dev., median, %>100kb), ideally a plot of the distribution in addition to summary values. I also understand that these data were generated previously by others, and this information should theoretically be available from their original publications, which are hopefully accessible via the INSDC records associated with the provided accessions. The objective here is making the information easily accessible to the readers of this paper because those could be confounding variables in the analysis.

      1. This comparison considered only a single coverage level (30x). That's not an unreasonable shortcut, but it certainly leaves a lot of room for differences between assemblers. If the objective the paper is to help future project planners decide what assembler to use, it would be most helpful if they had an idea of what coverage they can use and still succeed. That's especially true for projects that don't have a lot of funding or aren't planning to make a near-perfect reference genome (which would likely spend the money on high coverage of multiple datatypes). It would be helpful to include some discussion about how these results may be different at much lower (e.g., 2x or 10x coverage) or at higher coverage (e.g., 50x, 70x, etc.) and/or provide some justification from another study for why including that kind of comparison would be unlikely to be worthwhile for this study, even if project planners should consider those factors when developing their budget and objectives.
      2. Figure 2 and 3 include a lot of information, and I generally like how they look and that they provide a quick overview. I believe two things are missing that will improve either the assessment or the presentation of the information, and I think one change will also improve things. 6a. I think metrics from Merqury (DOI: 10.1186/s13059-020-02134-9) should be included where possible. Specifically, the k-mer completeness (recovery rate) and reference-free QV estimate (#s 1 and 3 from https://github.com/marbl/merqury/wiki/2.-Overall-k-mer-evaluation). Generally these are meant to be done from data of the same individual. However, most of the species selected for this comparison are highly homozygous strains that should have Illumina data available, and thus having the data come from not the exact some individual will likely be okay. This can serve as another source of validation. If such a dataset is not available for 1 or more of these species, then specify in the text that it wasn't available, and thus such an evaluation wasn't possible. If it's not possible to add one or both of these metrics to the figures (2 & 3), that's fine, but having it as a separate figure would still be helpful. I find these values to be some of the most informative for the quality of an assembly. 6b. It's not strictly necessary, so this might be more of a minor comment, but I found that I wanted to view individual plots for each metric. Perhaps including such plots in the supplement would help (e.g., 6 sets of plots similar to figure 4 with color based on assembler, grouping based on species, and opacity based on datatype). The specifics aren't critical, I just found it hard to get more than a very general idea from the main figures and wanted something easy to digest for each metric. 6c. Using N50/NG50 for a measure of contiguity is an outdated and often misleading approach. Unfortunately, it's become such common practice that many people feel obligated to include it or use it. Instead, the auN (auNG) would be a better choice for contiguity: https://lh3.github.io/2020/04/08/a-new-metric-on-assembly-contiguity.
      3. This paper focuses on assembly and intentionally does not consider polishing (line 176), which I think is a reasonable choice. It also does not consider scaffolding or hybrid assembly approaches (again, reasonable choices). In the case of hybrid assembly options, most weren't available when this analysis was done (short read + long read assemblers were available, but I think it's perfectly reasonable to not have included those). Given the frequency of scaffolding (especially with Hi-C data [DOIs:10.1371/journal.pcbi.1007273 & 10.1093/bioinformatics/btac808]) and the recent shift to hybrid assemblers (e.g., phasing HiFi-based string graphs using Hi-C data to get haplotype resolved diploid assemblies (albeit with some switch errors) [DOI: 10.1038/s41587-022-01261-x] or resolving HiFi-based minimizer de bruijn graphs using ONT data and parental Illumina data to get complete, T2T diploid assemblies [DOI: 10.1038/s41587-023-01662-6]), I think it would be appropriate to briefly mention these methods so the novice reader will know that this benchmark does not apply to hybrid approaches or post-assembly genome finishing. This is a minor change, but I included it in this section because it matches the general theme of ensuring the scope of this benchmark is clear.

      Minor Comments: 1. line 25 in the abstract. Change Redbean to wtdbg2 for consistency with the rest of the manuscript.

      1. "de novo" should be italicized. It is done correctly in some places but not in others.

      2. line 64. "all TGS technologies": I would argue that this isn't quite true. ONT Duplex isn't included here even though Duplex likely didn't exist when you did this work. Also, see the major comments concerning whether TGS should include HiFi and Duplex.

      3. Table 1. Read length distributions vary dramatically by technology and library prep. E.g., HiFi is often a very tight distribution about the mean because of size selection. Including the median in the table would be helpful, but more importantly, I would like to see read-length distribution plots in the supplement for (a) the real data used to generate the initial iteration models and (b) the real data from each species.

      4. line 166 "fair comparison". I'm not sure that a fair comparison should be the goal, but having them at the same coverage level makes them more comparable which is helpful. Maybe rephrase to indicate that keeping them at the same coverage level reduces potentially confounding variables when comparing between the real and simulated datasets.

      5. line 169. Citation 18 is used for Canu, which is appropriate but incomplete. The citation for HiCanu should also be included here: DOI: 10.1101/gr.263566.120.

      6. line 169. State that these were the most current releases of the various assemblers at the time that this analysis was started. Presumably, that was Nov/Dec 2021. Since then, Raven has gone from v1.7.0->1.8.1 and Flye has gone from v2.9->2.9.1.

      7. line 175. Table S6 is mentioned here, but S5 has not yet been mentioned. S5 is mentioned for the first time on line 196. These two supp tables' numbers should be swapped.

      8. There is inconsistent use of the Oxford comma. I noticed is missing multiple times, e.g., lines 191, 208, 259, & 342.

      9. line 193. The comma at the end of the line (after "tools") should be removed. Alternatively, keep the comma but add a subject to the next clause to make it an independent clause (e.g., "...assembly tools, and they were computed...").

      10. line 237. The N50 of the reference is being used here. You provide accessions for the references used, but most people will not go look those up (which is reasonable). The sequences in a reference can vary greatly in their lengths, even within the same species, because which sequences are included in the reference are not standardized. Even the size difference between a homogametic and heterogametic reference can be non-trivial. Which are included in the reference, and more importantly included in your N50 value, can significantly change the outcome and may bias results if these are not done consistently between the included species. It would be helpful if here or somewhere (e.g., in some supplemental text or a table) the contents of these references was somehow summarized. In addition to 1 copy of each of the expected autosomes, were any of the following included: (a) one or two sex chromosomes if applicable, (b) mitochondrial, chloroplast, or other organelle sequences, (c) alternate sequences (i.e., another copy of an allele of some sequence included elsewhere), (d) unplaced sequence from the 1st copy, (e) unplaced sequence from subsequent copies, and (f) vectors (e.g., EBV used when transforming a cell line)?

      11. Supplemental tables. Some cells are uncolored, and other cells are colored red or blue with varying shading. I didn't notice a legend or description of what the coloring and shading was supposed to mean. Please include this either with each table or at the beginning of the supplemental section that includes these tables and state that it applies to all tables #-#.

      12. Supplemental table S3. It was not clear to me that you created your own model for the hifi data (pacbio_hifi_human2022). I was really confused when I couldn't find that model in the GitHub repo for Badreads. In the caption for this table or in the text somewhere, please make it more explicit that you created this yourself instead of using an existing model.

    1. AbstractBackground Machine learning (ML) technologies, especially deep learning (DL), have gained increasing attention in predictive mass spectrometry (MS) for enhancing the data processing pipeline from raw data analysis to end-user predictions and re-scoring. ML models need large-scale datasets for training and re-purposing, which can be obtained from a range of public data repositories. However, applying ML to public MS datasets on larger scales is challenging, as they vary widely in terms of data acquisition methods, biological systems, and experimental designs.Results We aim to facilitate ML efforts in MS data by conducting a systematic analysis of the potential sources of variance in public MS repositories. We also examine how these factors affect ML performance and perform a comprehensive transfer learning to evaluate the benefits of current best practice methods in the field for transfer learning.Conclusions Our findings show significantly higher levels of homogeneity within a project than between projects, which indicates that it’s important to construct datasets most closely resembling future test cases, as transferability is severely limited for unseen datasets. We also found that transfer learning, although it did increase model performance, did not increase model performance compared to a non-pre-trained model.Competing Interest StatementThe authors have declared no competing interest.

      **Reviewer 2. Luke Carroll **

      The paper applies machine learning to publicly available proteomics data sets and assesses the ability to transfer learning algorithms between projects. The primary aim of these algorithms appears to be an attempt to increase consistency of retention time prediction for data-dependent acquisition data sets, however this is not explicitly stated within the text. The application of machine learning to derive insight from previous performed proteomics experienced is a worthwhile exercise.

      1. The authors report ΔRT to determine fitting for their models. It would be interesting to see whether the models had other metrics used to assess fitting, or could be used to increase number of identifications within sample sets, and whether this was successful. ALternatively, was there any conclusions able to be drawn about peptide structure and RT determination from these models?

      2. Project specific libraries are well known to improve results compared with publicly available databases, and the discussion on this point should be developed further through comparison of this work with other papers - particularly with advances in machine learning and neural networks in the data independent analysis field.

      3. Comparison of Q-Exactiv models vs Orbitraps appears to be somewhat redundant, and possible a result of poor meta-data as Q-Exactiv instruments are orbitrap mass spectrometers. A more interesting comparison to make here would be between orbitrap and TOF instruments, though as the datasets have all been processed through MaxQuant, it is likely the vast majority were acquired on orbitrap instruments.

      4. The paper uses ΔRT as the readout for all models tested, however the only chromatography variable considered in testing the models is gradient length. However, chromatography is also dependent on column chemistry, column dimensions, composition of buffer, use of traps, temperature etc. These are also likely to be contributing the variance observed between the PT datasets where these variables will be consistent and publicly available datasets. These factors are also likely to play a role in higher uncertainty for early and late eluting peptides where these factors are likely to vary most between sample sets. The metadata may not be available to use to compare within the data sets selected, so the authors should at minimum make discussion around these points.

      5. Sample preparation is likely to have similar effects, and as the PT datasets are generated synthetically using ideal peptides, publicly available datasets will be generated from complex sample mixtures, and have increased variance due to inefficiencies of digestion, sample clean up and matrix effects. Previous studies on variance have also described sample preparation as the highest cause of variance. This needs further discussion

      6. While the isolation windows of the m/z will lead to unobserved space, search engines setting will also apply here. From the text, it appears that the only spectra that were considered were those already identified in a search program (due to having Andromeda cut-off scores always apply). Typical setting for a database search will have a cut off of peptide sequences of at least 7 residues, making peptide masses appearing lower than 350 m/z unlikely. There is also significant amount of noise below 350 m/z and this also likely contributes to poorer fitting.

      7. The authors identify differences in MSMS spectral features, however, most of these points are well known in the field. The authors should develop the discussion on the causes of the differences in fragmentation, as CID low mass drop off is expected, and the change in profile is expected with increasing activation energies. A more developed analysis could exclude precursor masses from these plots and focus solely on fragment ions generated.

      8. The authors highlight that internal fragmentation of peptides could be used as a valuable resource to implement in machine learning. There has already been some success using these fragmentation patterns for sequence identification within both top-down and bottom up proteomic searches that the authors should consider discussing. However, these data do not appear to be incorporated into the machine learning models in this paper - or at least seem not to play a significant role in prediction, and this section appears to be a bit out of place.

      Re-Review The changes and additions to the discussion for the paper address the key points, and have addressed some of the limitations imposed by the availability and ability to extract certain data elements particularly around sample preparation and LC settings. I think this strengthens their manuscript, and provides a more wholistic discussion of factor in the experimental setup.

  5. Dec 2023
      • for: climate crisis - multiple dimensions, polycrisis - multiple dimensions, climate crisis - good references, polycrisis - good references, polycrisis - comprehensive map, power to the people, climate change - politics, climate crisis - politics

      • comment / summary

        • The content on this website may be what some call "doomers" that support a narrative of unavoidable catastrophe and civilization collapse
        • The author does an excellent job of drawing together many scientifically validated research papers and news media stories on various crisis and integrates them together to support his narrative.
        • As the author states, it is still incomplete but it is comprehensive and detailed enough to use as a starting foundation to build a complex polycrisis map upon. becaues it shows the complexities of the interwoven nexus of problems we face and the massive network of feedbacks between them that makes solving any one of them alone in isolation an impossibility
        • The Cascade Institute focuses on social tipping points, complexity and polycrisis. We could synthesis a number of tools to map out and reveal effective mitigation strategies including:
          • Cascade Institute tools
          • Social tipping point tools
          • SRG mapping tool along with Indyweb / Indranet
          • Culture hacking tools
          • SIMPOL strategy
          • Downscaled Earth System Boundary tools
          • SRG Deep Humanity BEing journey tools
          • James Hansen's recommendation that the biggest leverage point is new form of governance
            • We need to rapidly emerge a new global third political party that does not take money from special interest groups
          • Progressive International comes to the same conclusion as James Hansen, that the key leverage point for rapid whole system change is radically new governance that puts power back to the hands of the people - power to the people
          • SONEC's
          • Indyweb's people-centered, interpersonal methodology is a perfect match for SONEC circle-within-circles fractal structure
            • mention to @Gyuri
            • I've seen this circle-within-circle fractal, holonic group idea with Tim's software as well as Roberto's
        • Feebate from local governance groups (from another Doomer site - Arctic Emergency)
        • What the author's narrative shows is
          • how precarious our situation is
          • how many trends are getting far worse in the immediate future
          • how we are already undercapacitated to deal with existing crisis so how will we deal with new ones that are exponentially worse?
          • all these crisis will impact our supply chains. Why are these important? Our reliance on technology is dangerous and makes us very vulnerable
          • Think of your laptop, cellphone or other electronic device that relies on a vast, complex and globally operational internet. Imagine that tidal surges wipes out the globally critical data centers located in New York. Or imagine electronic factories in China and Taiwan are wiped out due to extreme weather. How will you get or fix a broken piece of electronic equipment? We rely on each millions of specialized jobs all working smoothly in order for our laptop to continue working and communicating with each other.
      • epiphany

      • recommendation for new Indyweb / Indranet tools
        • independent time and date stamp tool for every online, virtual sentence we write so we recognize in a long composition when we inserted a new idea
        • ability to trace rapid trains of thought to reveal how new insights emerge from within our consciousness
      • While writing this, I just recalled that we should have a way to time and date stamp every single virtual online action, like in this annotation because recall happens so nonlinearly and we won't have a hope to trace and trailmark without it. Hypothesis doesn't have time and date stamps of every sentence available to the user. So we don't know what nonlinear memory recall led to a specific sentence in an annotation. We need some independent Indyweb / Indranet tool that will do this universally. Trains of thoughts are so fragile we can forget the quick cascades very easily.
    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors explored correlations between taste features of botanical drugs used in ancient times and therapeutic uses, finding some potentially interesting associations between intensity and complexity of flavors and therapeutic potential, plus some more specific associations described in the discussion sections. I believe the results could be of potential benefit to the drug discovery community, especially for those scientists working in the field of natural products.

      Strengths:

      Owing to its eclectic and somehow heterodox nature, I believe the article might be of interest to a general audience. In fact, I have enjoyed reading it and my curiosity was raised by the extensive discussion.

      The idea of revisiting a classical vademecum with new scientific perspectives is quite stimulating.

      The authors have undertaken a significant amount of work, collecting 700 botanical drugs and exploring their taste and association with known uses via eleven trained panelists.

      Weaknesses:

      I have some methodological concerns. Was subjective bias within the panel of participants explored or minimized in any manner?

      Yes, in all models we included ‘panellist’ as a random effect and therefore any biased perception by a single panellist across drugs or differences among panellists for an individual drug was accounted for. We now make this clearer in our methods.

      Were the panelists exposed to the drugs blindly and on several occasions to assess the robustness of their perceptions?

      The study was double blind, but blinding was not possible with the more well-known drugs (e.g., almonds, walnuts, thyme, mint). A random number generator was used to assign the drugs to the panellists, and according to the random distribution, some drugs were presented to the same panellist more than once. Robustness of panellists’ perception was not assessed specifically. We have added some text to the methods to clarify.

      Judging from the total number of taste assessments recorded and from Supplementary Material, it seems that not every panelist tasted every drug. Why?

      Because there were many drugs and panellists had time constraints. Overall, 3973 individual sensory trials were conducted, with an average of 361±153 trials per panellist and 5.7±1.3 trials per botanical drug.

      It may be a good idea to explore the similarity in the assessments of the same botanical drug by different volunteers. If a given descriptor was reported by a single volunteer, was it used anyway for the statistical analysis or filtered out?

      All responses were used as reported by the panellists, including potential ‘outliers’. As described above, the inclusion of ‘panellist’ as a random effect means that if one individual gave an unusual description of a particular drug in comparison to other individuals, this would be less impactful on any parameter estimates.

      The idea of "versatility" is repeatedly used in the manuscript, but the authors do not clearly define what they call "versatile".

      In line with suggestions made by reviewers, we have slightly adjusted the definition of therapeutic versatility and have now clearly defined the term on first use. Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      The introduction should be expanded. There are plenty of studies and articles out there exploring the evolution of bitter taste receptors, and associating it with a hypothetical evolutionary advantage since bitter plants are more likely to be poisonous.

      We agree. Bitter is arguably the most frequent chemosensory attribute of plants and botanical drugs perceived by humans. Our data shows that ‘poisons’ are not associated with bitterness but positively with ‘aromatic’, ‘sweet’ and ‘soapy’ – and negatively with ‘salty’ qualities.

      We have added this paragraph to the introduction:

      "The perception of taste and flavour (a combination of taste, smell and chemesthesis) here also referred to as chemosensation, has evolved to meet nutritional requirements and are particularly important in omnivores for seeking out nutrients and avoiding toxins (Rozin and Todd, 2016; Breslin, 2013; Glendinning, 2022). The rejection of bitter stimuli has generally been associated with the avoidance of toxins (Glendinning, 1994; Lindemann, 2001; Breslin, 2013) but to date no clear relationship between bitter compounds and toxicity at a nutritionally relevant dose could be established (Glendinning, 1994; Nissim et al., 2017). While bitter tasting metabolites occurring in fruits and vegetables have been linked with a lower risk for contracting cancer and cardiovascular diseases (Drewnoswski and Gomez-Carneros, 2000) the avoidance of pharmacologically active compounds is probably the reason why many medicines, including botanical drugs, taste bitter (Johns, 1990; Mennella et al., 2013)."

      And expanded in the discussion:

      "Though many bitter compounds are toxic, not all bitter plant metabolites are (Glendinning, 1994; Drewnoswski and Gomez-Carneros, 2000; e.g., iridoids, flavonoids, glucosinolates, bitter sugars). In part, this may be the outcome of an arms race between plant defence and herbivorous mammals’ bitter taste receptor sensitivities, resulting in the synthesis of metabolites capable of repelling herbivores and confounding the perception of potential nutrients by mimicking tastes of toxins. Here, poisons showed no association with bitter but positive associations with aromatic (px = 0.041), sweet (px = 0.022) and soapy (px = 0.025) as well as a negative association with salty (px = 0.046) qualities."

      Since plant secondary metabolites are one of the most important sources of therapeutic drugs and one of their main functions is to protect plants from environmental dangers (e.g., animals), this evolutionary interplay should be at least briefly discussed in the introductory section.

      This is now referred to in the introduction as well as in the discussion.

      Since the authors visit some classical authors, Parecelsus' famous quote "All things are poison and nothing is without poison. Solely the dose determines that a thing is not a poison" may be relevant here. Also note that some authors have explored the relationship between taste receptors and pharmacological targets (e.g., Bioorg Med Chem Lett. 2012 Jun 15;22(12):4072-4).

      We agree that pharmacologic action is determined by the dose. We now refer to the dose in the introduction: “…to date no clear relationship between bitter compounds and toxicity at a nutritionally relevant dose could be established (Glendinning, 1994; Nissim et al., 2017)”.

      We are aware of the fact that several authors have explored the relationship between taste receptors as targets and their similarity with other targets. We use many examples from the literature to explain our data. Our analysis did, however, not highlight any association between sweet tastes and epilepsy (as reported in Bioorg Med Chem Lett. 2012 Jun 15;22(12):4072-4)). We are not able to explain all associations, and we acknowledge that there may be more associations between chemosensory receptors and therapeutic effects than those found and discussed here.

      Reviewer #2 (Public Review):

      Summary:

      This is an unusual, but interesting approach to link the "taste" of plants and plant extracts to their therapeutic use in ancient Graeco-Roman culture. The authors used a panel of 11 trained tasters to test ~700 different medicinal plants and describe them in terms of 22 "taste" descriptors. They correlated these descriptors with the plant's medical use as reported in the De Materia Medica (DMM 1st Century, CE). Correcting for some of the plants' evolutionary phylogenetic relationships, the authors found that taste descriptors along with intensity measures were correlated with the "versatility" and/or specific therapeutic use of the medicine. For example, simple but intense tastes were correlated with the versatility of a medicine. Specific intense tastes were linked to versatility while others were not; intense bitter, starchy, musky, sweet, cooling, and soapy were associated with versatility, but sour and woody were negatively associated. Also, some specific tastes could be associated with specific uses - both positive and negative associations. Some of these findings make sense immediately, but others are somewhat surprising, and the authors propose some links between taste and medicinal use (both historical and modern use) in the discussion. The authors state that this study allows for a re-evaluation of pre-scientific knowledge, pointing toward a central role of taste in medicine.

      Strengths:

      The real strength of this study is the novelty of this approach - using modern-day tasters to evaluate ancient medicinal plants to understand the potential relationships between taste and therapeutic use, lending some support to the idea that the "taste" of a medicine is linked to its effectiveness as a treatment.

      Weaknesses:

      While I find this study very interesting and potentially insightful into the development and classification of certain botanical drugs for specific medicinal use, I would encourage the authors to revise the manuscript and the accompanying figures significantly to improve the reader's understanding of the methods, analyses, and findings. A more thorough discussion of the limitations of this particular study and this general type of approach would also be very important to include.

      Figures were revised, one deleted (former Fig. 3), and another one put to the supplementary (former Fig. 4, now Figure supplement 1). We now acknowledge limitations in the final paragraph.

      The metric of versatility seems somewhat arbitrary. It is not well explained why versatility is important and/or its relationship with taste complexity or intensity.

      We have modified the definition of versatility in line with reviewers’ comments. We have provided a detailed explanation of this in our response to reviewer #1 but for ease of reference, we paste this again here:

      Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      The importance of versatility was not the focus but the impact of taste intensity and complexity on versatility. We hypothesize that associations between perceived complexity and intensity of chemosensory qualities with versatility of botanical drug use provides insights into the development of empirical pharmacological knowledge and therapeutic behaviour (now included in the introduction).

      Similarly, the rationale for examining the relationships between individual therapeutic uses and taste intensity/complexity is not well explained, and given that a similar high intensity/low complexity relationship is common for most of the therapeutic uses, it restates the same concepts that were covered by the initial versatility comparison.

      The examination of the relationships between individual therapeutic uses and taste intensity/complexity fine-tunes the overall analysis and shows that this concept is applicable in general. However, in general, the reviewer is correct, and this is not our main focus. We therefore shifted the analysis including the figure to the supplementary material and state in the discussion: “We also detected nuances in significance, and complete absence of significance across the relationships between individual therapeutic uses and complexity/intensity magnitudes for which we lack, however, more specific explanations (Figure supplement 1).

      There are multiple issues with the figures - the use of icons is in many cases counterproductive and other representations are not clear or cause confusion (especially Figure 3).

      We have excluded former Fig. 3. Otherwise, the use of iconography is to facilitate graphical representation and cross-referencing between figures without over-cluttering. We provide all text and numeric values in the supporting information if individual detail is required.

      The phylogenetic information about the botanicals is missing. Also missing is any reference/discussion about how that analysis was able to disambiguate the confounding effects of shared uses and tastes of drugs from closely related species.

      This is explained in the methods (sections: ‘Phylogenetic tree’ and ‘statistical procedure’). We highlight that all models showed high heritability which means that shared ancestry has a statistical influence on the model. The trees themselves are now represented in our modified Figure 2.

      Reviewer #1 (Recommendations For The Authors):

      Besides the points already covered in my public review, I believe it would be interesting to assess and discuss the differences between the category "food" (how many drugs were allocated there?) and the drugs used for therapeutic purposes. In this manner, the food category could serve as a retrospective negative control to test the authors' hypotheses. Does the food category include drugs of weak flavor? Does it include drugs of complex flavor?

      All drugs in this database are associated with therapeutic uses. Only 96 are specifically mentioned to be also used as food while in total at least 152 are also used as food (many of the most obvious food drugs are not labelled as such in DMM). It is difficult to use the food category as a negative control (for testing whether food drugs have weaker tastes), because spices are included in the food category. If at all, only staples should be used for such an analysis. But this would be another study.

      In the context of the present analyses, we do agree that there is interest and so we have therefore added a small section to our manuscript: The 96 botanical drugs specifically mentioned also for food (though there are more than 150 edible drugs in our dataset; Supplementary file 1) show positive associations with starchy (px = 0.005), nutty (px = 0.002) and salty (px = 0.001) and negative associations with bitter (px = 0.007), woody (px = 0.001) and stinging (px = 0.033) tastes and flavours.

      Please replace "plant defence" with "plant defense".

      Currently the whole MS is formatted BE. We are happy to revise on the basis of editorial policy.

      Reviewer #2 (Recommendations For The Authors):

      1. I would encourage replacing "taste" with "flavor" throughout the manuscript and in the title because this paper addresses "taste here defined as a combination of taste, odour and chemesthesis" which essentially is the definition of flavor, and should not be simplified to taste. Flavor is the more precise word, and there is no need to confuse readers by defining "taste" in this way when taste means just the gustatory aspect of flavor.

      We now define flavour as a combination of taste, smell and chemesthesis and use ‘taste’ when referring to a specific taste quality. We use the term ‘chemosensory’ (perception, quality) and chemosensation for addressing the perception of both, taste and flavour qualities together. The abstract now reads: “The perception of taste and flavour (a combination of taste, smell and chemesthesis) here referred to as chemosensation, enables animals to find high-value foods and avoid toxins.”

      We prefer to leave the title as it is in accordance with standard books (e.g., “Pharmacology of Taste” by Palmer and Servant) which address all kinds of chemosensory interactions and the fact that we’ve conducted a ‘tasting panel’ (and not a ‘flavour panel’), and because flavour as a concept is only used in English (and also there not consistently, with ‘taste’ being the preferred term used by English native speakers for describing perception where in a strict sense, ‘flavour’ would be the correct term, see Rozin P. "Taste-smell confusions" and the duality of the olfactory sense. Percept Psychophys. 1982 Apr;31(4):397-401)) and maybe also in French.

      1. Methods - A much more detailed description of how the samples were prepared for the taste tests is needed. Were they sampled as a dry powder? No, they were sampled as dried pieces. We have added more information to our methods section to clarify.

      Why is there such a big range in the amount provided (.1 to 2 g)? Because certain drugs are highly toxic (aconitum, opium) we could only provide a relatively small amount (that still permitted the perception of taste qualities). For practical reasons, half a walnut was dispensed. We have added more information to our methods section to clarify.

      Also "Panelists were instructed to spit, rinse their mouth with drinking water and to take a break before tasting the next sample" This seems more likely that the samples were dissolved in a liquid if they were spitting and rinsing, but this is not clear. Also - take a break for how long between samples?

      Panellists were instructed to chew the amount of sample necessary for taste perception, to annotate their perception, and to spit out residues of samples and finally rinse their mouth with drinking water. The breaks between tasting different samples depended on chemosensory persistence. We have added more information to our methods section to clarify.

      How many samples were tested per day?

      The number of tasted samples was different from panelist to panelist and depending on available time frames. On average each panellist tasted 17,2 drugs per hour using 10.5 sessions (18 sessions in total) lasting approximately two hours each. We have added more information to our methods section to clarify.

      Did individual panelists get repeated samples?

      Random distribution permitted that individual panellists were challenged also with repeated samples. We have added more information to our methods section to clarify.

      1. Methods - Phylogenetic tree - Where is the output of this tree? It should be included in the figures and referred to in the results/discussion where the authors claim that they have been able to disambiguate phylogenetic closeness with taste and medicinal use.

      We did not ‘build’ a phylogenetic tree, rather we modified an existing one. Therefore, the wording of that section in the methods has been adjusted for clarity. We refer to the tree in the results pertaining to phylogenetic relatedness by explicitly quantifying the extent of phylogenetic signal using the widely used heritability (h2) statistic. This means that shared ancestry has a statistical influence on the model. We have also added to our Figure 2 representations of the phylogenetic tree we used in our analysis, limited to the species for which we have data, also displaying the data (in this case, intensity and complexity) at the tips.

      1. Taste intensity ratings should be better explained. Since the panelists are evaluating different amounts of samples (.1 to 2g) wouldn't the intensity of taste also depend on the amount of the substance?

      The panelists were not told to introduce all the sample into their mouth but just enough to perceive the taste qualities clearly (explanation given in methods). E.g.: one black pepper corn is normally enough to perceive the taste and flavour of pepper while the same amount of hazelnut would be insufficient.

      Or is this measure a relative value - "woodiness" vs "sourness" for example within the sample is strong/weak?

      Chemosensation and sensory perception in general is always relative. (For instance, currently I can hear the birds singing outside. Was there music playing in my room I wouldn’t be able to hear them).

      Because of this - are samples with strong tastes less likely to seem complex because the intensity of one stimulus masks the other?

      Yes, we argue that drugs with strong tastes/flavours are less likely be perceived as being complex (fewer individual qualities perceived), arguably because strong stimuli overshadow weaker ones. We currently address this in the discussion and have made some modifications in line with the below comment.

      This issue was presented briefly in the discussion when addressing the finding that samples with intense, but fewer tastes were more versatile, but this was highly confusing.

      The authors presented both sides of the problem without referring to any of their own experiments to resolve the issue, or to highlight this as a potential limitation of the study at hand.

      Yes, stronger tastes mask weaker tastes which addresses both sides of the problem.

      We have modified the first paragraph of the discussion to make this clearer.

      It now reads: "Unexpectedly, botanical drugs eliciting fewer but intense chemosensations were more versatile (Fig. 2). People often associate complexity with intensity, and taste complexity is popularly interpreted with a higher complexity of ingredients (Spence, and Wang, 2018). However, simple tastes can be associated with complex chemistry when intense tastes mask weaker tastes, or when tastants are blended (Breslin and Beauchamp, 1997; Green et al., 2010). For example, starchy flavours or sweet tastes can be sensed when bitter and astringent antifeedant compounds are present below a certain threshold while salts enhance overall flavour by suppressing the perception of bitter tastants (Breslin and Beauchamp, 1997; Johns, 1990). On the other hand, combinations of different tastants or olfactory stimuli do not necessarily result in increased perceived complexity (Spence and Wang, 2018; Weiss et al., 2012)."

      It would be useful to understand the parameters a bit more - a data visualization of the relationships of intensity and complexity across all samples would be a welcome addition to Figure 2.

      Shared ancestry has a statistical influence on the model. We have now also added to our Figure 2 representations of the phylogenetic tree we used in our analysis, limited to the species for which we have data, also displaying the data (in this case, intensity and complexity) at the tips.

      1. "Therapeutic Versatility" is a measure of how many different therapeutic uses a given botanic is listed in the DMM. This is one of the primary comparisons of this study, but the authors do not provide much of a rationale for using this metric. Also, there are 46 therapeutic uses, but many are interrelated such as gastric, gynecology, muscle, neurological, respiratory, skin, and kidney. It is not clear in my reading of the methods if this was also treated in some type of "phylogeny" as well or not. I would assume a real therapeutic versatility metric should be higher for something used for cough, ulcers, gout, and menses rather than something that was used for 4 different, but skin-related complaints.

      The reviewer is correct, and we appreciate this comment. We have modified the definition of versatility in line with the suggestions laid out here. We have provided a detailed explanation of this in our public responses but for ease of reference, we paste this again here:

      Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      We repeated our original ‘versatility’ analyses using the 25 broader categories rather than the 46 individual uses. The results remained largely the same.

      1. Use of icons/pictorial representations in figures. Overall, the use of icons is not necessary - words could be used, and then readers would not need to keep going back and forth to the key in Figure 1 to identify the taste/use. I am very confused by Figure 3. How is the strength of taste shown in this figure? The use of the balance is a confusing representation since I don't associate strength/intensity with weight. Also there are specific tastes that are used more, and others that are used less (but the numbers of those are also more/less). I do not think this figure accomplishes the goal of relaying these findings.

      Whilst we agree that iconography is not strictly necessary, we think it is a good way of graphically representing the results without over-crowding the figures or introducing text sizes too small to read in print. All values are provided in the supporting information if any individual detail is required.

      We have decided on the basis of these comments to exclude former Fig. 3 and (Figure supplement 1). We hope that the removal of this figure and clearer signposting towards the text and numerical tables in the supplementary information alleviates the reviewer’s concerns.

      1. Similarly, figure 4 is unclear. This could be better represented in a table with words and p values listed. But a larger issue is that this shows essentially the same overarching relationship across the therapeutic use cases - high intensity, low complexity. Only the pink kidney (other?) case differs from this pattern. In the discussion, several therapeutic uses are discussed that could need intense tasting medicine - but these are not related directly back to the relationships shown in Figure 4.

      Yes, we agree with the reviewer and have now moved Fig. 4 to the supplementary (Figure supplement 1)

    1. Reviewer #1 (Public Review):

      Summary:<br /> This manuscript reports a series of experiments examining category learning and subsequent generalization of stimulus representations across spatial and nonspatial domains. In Experiment 1, participants were first trained to make category judgments about sequences of stimuli presented either in nonspatial auditory or visual modalities (with feature values drawn from a two-dimensional feature manifold, e.g., pitch vs timbre), or in a spatial modality (with feature values defined by positions in physical space, e.g., Cartesian x and y coordinates). A subsequent test phase assessed category judgments for 'rotated' exemplars of these stimuli: i.e., versions in which the transition vectors are rotated in the same feature space used during training (near transfer) or in a different feature space belonging to the same domain (far transfer). Findings demonstrate clearly that representations developed for the spatial domain allow for representational generalization, whereas this pattern is not observed for the nonspatial domains that are tested. Subsequent experiments demonstrate that if participants are first pre-trained to map nonspatial auditory/visual features to spatial locations, then rotational generalization is facilitated even for these nonspatial domains. It is argued that these findings are consistent with the idea that spatial representations form a generalized substrate for cognition: that space can act as a scaffold for learning abstract nonspatial concepts.

      Strengths:<br /> I enjoyed reading this manuscript, which is extremely well-written and well-presented. The writing is clear and concise throughout, and the figures do a great job of highlighting the key concepts. The issue of generalization is a core topic in neuroscience and psychology, relevant across a wide range of areas, and the findings will be of interest to researchers across areas in perception and cognitive science. It's also excellent to see that the hypotheses, methods, and analyses were pre-registered.

      The experiments that have been run are ingenious and thoughtful; I particularly liked the use of stimulus structures that allow for disentangling of one-dimensional and two-dimensional response patterns. The studies are also well-powered for detecting the effects of interest. The model-based statistical analyses are thorough and appropriate throughout (and it's good to see model recovery analysis too). The findings themselves are clear-cut: I have little doubt about the robustness and replicability of these data.

      Weaknesses:<br /> I have only one significant concern regarding this manuscript, which relates to the interpretation of the findings. The findings are taken to suggest that "space may serve as a 'scaffold', allowing people to visualize and manipulate nonspatial concepts" (p13). However, I think the data may be amenable to an alternative possibility. I wonder if it's possible that, for the visual and auditory stimuli, participants naturally tended to attend to one feature dimension and ignore the other - i.e., there may have been a (potentially idiosyncratic) difference in salience between the feature dimensions that led to participants learning the feature sequence in a one-dimensional way (akin to the 'overshadowing' effect in associative learning: e.g., see Mackintosh, 1976, "Overshadowing and stimulus intensity", Animal Learning and Behaviour). By contrast, we are very used to thinking about space as a multidimensional domain, in particular with regard to two-dimensional vertical and horizontal displacements. As a result, one would naturally expect to see more evidence of two-dimensional representation (allowing for rotational generalization) for spatial than nonspatial domains.

      In this view, the impact of spatial pre-training and (particularly) mapping is simply to highlight to participants that the auditory/visual stimuli comprise two separable (and independent) dimensions. Once they understand this, during subsequent training, they can learn about sequences on both dimensions, which will allow for a 2D representation and hence rotational generalization - as observed in Experiments 2 and 3. This account also anticipates that mapping alone (as in Experiment 4) could be sufficient to promote a 2D strategy for auditory and visual domains.

      This "attention to dimensions" account has some similarities to the "spatial scaffolding" idea put forward in the article, in arguing that experience of how auditory/visual feature manifolds can be translated into a spatial representation helps people to see those domains in a way that allows for rotational generalization. Where it differs is that it does not propose that space provides a *scaffold* for the development of the nonspatial representations, i.e., that people represent/learn the nonspatial information in a spatial format, and this is what allows them to manipulate nonspatial concepts. Instead, the "attention to dimensions" account anticipates that ANY manipulation that highlights to participants the separable-dimension nature of auditory/visual stimuli could facilitate 2D representation and hence rotational generalization. For example, explicit instruction on how the stimuli are constructed may be sufficient, or pre-training of some form with each dimension separately, before they are combined to form the 2D stimuli.

      I'd be interested to hear the authors' thoughts on this account - whether they see it as an alternative to their own interpretation, and whether it can be ruled out on the basis of their existing data.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      The study could also valuably explore what kinds of genes experienced what forms of expression evolution. A brief description of GO terms frequently represented in genes which showed strong patterns of expression evolution might be suggestive of which selective pressures led to the changes in expression in the C. bursa-pastoris lineage, and to what extent they related to adaptation to polyploidization (e.g. cell-cycle regulators), compensating for the initial pollen and seed inviability or adapting to selfing (endosperm- or pollen-specific genes), or adaptation to abiotic conditions. ”

      We did not include a gene ontology (GO) analysis in the first place as we did not have a clear expectation on the GO terms that would be enriched in the genes that are differentially expressed between resynthesized and natural allotetraploids. Even if we only consider adaptive changes, the modifications could occur in various aspects, such as stabilizing meiosis, adapting to the new cell size, reducing hybrid incompatibility and adapting to self-fertilization. And each of these modifications involves numerous biological processes and molecular functions. As we could make post-hoc stories for too many GO terms, extrapolating at this stage have limited implications and could be misleading.

      Nonetheless, we are not the only study that compared newly resynthesized and established allopolyploids. GO terms that were repeatedly revealed by this type of exploratory analysis may give a hint for future studies. For this reason, now we have reported the results of a simple GO analysis.

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      The majority of concerns from reviewers and the reviewing editor are in regards to the presentation of the manuscript; that the framing of the manuscript does not help the general reader understand how this work advances our knowledge of allopolyploid evolution in the broad sense. The manuscript may be challenging to read for those who aren't familiar with the study system or the genetic basis of polyploidy/gene expression regulation. Further, it is difficult to understand from the introduction how this work is novel compared to the recently published work from Duan et al and compared to other systems. Because eLife is a journal that caters to a broad readership, re-writing the introduction to bring home the novelty for the reader will be key.

      Additionally, the writing is quite technical and contains many short-hands and acronyms that can be difficult to keep straight. Revising the full text for clarity (and additionally not using acronyms) would help highlight the findings for a larger audience.

      Reviewer #1 (Recommendations For The Authors):

      Most of my suggestions on this interesting and well-written study are minor changes to clarify the writing and the statistical approaches.

      The use of abbreviations throughout for both transcriptional phenomena and lines is logical because of word limits, but for me as a reader, it really added to the cognitive burden. Even though writing out "homoeolog expression bias" or "hybridization-first" every time would add length, I would find it easier to follow and suspect others would too.

      Thank you for this suggestion. Indeed, using less uncommon acronyms or short-hands should increase the readability of the text for broader audience. Now in most places, we refer to “Sd/Sh” and “Cbp” as “resynthesized allotetraploids” and “natural allotetraploids”, respectively. We have also replaced the most occurrences of the acronyms for transcriptional phenomena (ELD, HEB and TRE) with full phrases, unless there are extra attributes before them (such as “Cg-/Co-ELD” and “relic/Cbp-specific ELD”).

      It would be helpful to include complete sample sizes to either a slightly modified Figure 1 or the beginning of the methods, just to reduce mental arithmetic ("Each of the five groups was represented by six "lines", and each line had six individuals" so there were 180 total plants, of which 167 were phenotyped - presumably the other 13 died? - and 30 were sequenced).

      The number 167 only applied to floral morphorlogical traits (“Floral morphological traits were measured for all five groups on 167 plants…”), but the exact total sample size for other traits differed. Now the total sample sizes of other traits have also been added to beginning of the second paragraph of the methods.

      For this study 180 seedings have been transplanted from Petri dishes to soil, but 8 seedlings died right after transplanting, seemingly caused by mechanical damage and insufficient moistening. Later phenotyping (2020.02-2020.05) was also disrupted by the COVID-19 pandemic, and some individuals were not measured as we missed the right life stages. Specifically, 5 individuals were missing for floral morphological traits (sepal width, sepal length, petal width, petal length, pistil width, pistil length, and stamen length), 30 for pollen traits, 1 for stem length, and 2 for flowering time. As for seed traits, we only measured individuals with more than ten fruits, so apart from the reasons mentioned above, individuals that were self-incompatible and had insufficient hand-pollination were also excluded. We spotted another mistake during the revision: two individuals with floral morphological measurements had no positional information (tray ID). These measurements were likely mis-sampled or mislabeled, and were therefore excluded from analysis. We assumed most of these missing values resulted from random technical mistakes and were not directly related to the measured traits.

      In general, the methods did a thorough job of describing the genomics approaches but could have used more detail for the plant growth (were plants randomized in the growth chamber, can you rule out block/position effects) and basic statistics (what statistical software was used to perform which tests comparing groups in each section, after the categories were identified).

      When describing the methods, mention whether the plants; this should be straightforward as a linear model with position as a covariate.

      Data used in the present study and a previously published work (Duan et al., 2023) were different subsets of a single experiment. For this reason, we spent fewer words in describing shared methods in this manuscript but tried to summarize some methods that were essential for understanding the current paper. But as you have pointed out, we did miss many important details that should have been kept. Now we have added some description and a table (Supplementary file 1) in the “Plant material” section for explaining randomization, and added more information of the software used for performing statistic tests in the “Phenotyping” section.

      Although we did not mention in the present manuscript, we used a randomized block design for the experiment (Author response image 1).

      Author response image 1.

      Plant positions inside the growth chamber.

      Plants used in the present study and Duan et al. (2023) were different subsets of a single experiment. The entire experiment had eight plant groups, including the five plant groups used in the present study (diploid C. orientalis (Co2), diploid C. grandiflora (Cg2), “whole-genome-duplication-first” (Sd) and “hybridization-first”(Sh) resynthesized allotetraploids, and natural allotetraploids, C. bursa pastoris (Cbp), as well as three plant groups that were only used in Duan et al. (2023; tetraploid C. orientalis (Co4), tetraploid C. grandiflora (Cg4) and diploid hybrids (F)). Each of the eight plant groups had six lines and each line represented by six plants, resulting in 288 plants (8 groups x 6 lines x 6 individuals = 288 plants). The 288 plants were grown in 36 trays placed on six shelves inside the same growth chamber. Each tray had exactly one plant from each of the eight groups, and the position of the eight plants within each tray (A-H) were randomized with random.shuffle() method in Python (Supplementary file 1). The position of the 36 trays inside the growth room (1-36) was also random and the positions of all trays were shuffled once again 28 days after germination (randomized with RAND() and sorting in Microsoft Excel Spreadsheet). (a) Plant distribution; (b) An example of one tray; (c) A view inside the growth chamber, showing the six benches.

      With the randomized block design and one round of shuffling, positional effect is very unlikely to bias the comparison among the five plant groups. The main risk of not adding positions to the statistical model is increasing error variance and decreasing the statistical power for detecting group effect. As we had already observed significant among-group variation in all phenotypic traits (p-value <2.2e-16 for group effect in most tests), further increasing statistical power is not our primary concern. In addition, during the experiment we did not notice obvious difference in plant growth related to positions. Although we could have added more variables to account for potential positional effects (tray ID, shelf ID, positions in a tray etc.), adding variables with little effect may reduce statistical power due to the loss of degree of freedom.

      Due to one round of random shuffling, positions cannot be easily added as a single continuous variable. Now we have redone all the statistical tests on phenotypic traits and included tray ID as a categorical factor (Figure 2-Source Data 1). In general, the results were similar to the models without tray ID. The F-values of group effect was only slightly changed, and p-values were almost unchanged in most cases (still < 2.2e-16). The tray effect (df=35) was not significant in most tests and was only significant in petal length (p-value=0.0111), sepal length (p-value=0.0242) and the number of seeds in ten fruits (p-value=0.0367). As expected, positions (tray ID) had limited effect on phenotypic traits.

      Figure 2 - I assume the numbers at the top indicate sample sizes but perhaps add this to the figure caption.

      Statistical power depends on both the total sample size and the sample size of each group, especially the group with the fewest observations. We lost different number of measurements in each phenotypic trait, and for pollen traits we did have a notable loss, so we chose to show sample sizes above each group to increase transparency. Since we had five different sets of sample sizes (for floral morphological traits, stem length, days to flowering, pollen traits and seed traits, respectively), it would be cumbersome to introduce all 25 numbers in figure caption and could be hard for readers to match the sample sizes with results. For this reason, we would like to keep the sample sizes in the figure, and now we have modified the legend to clarify that the numbers above groups are sample sizes.

      ’The trend has been observed in a wide range of organisms, including ...’ - perhaps group Brassica and Raphanobrassica into one clause in the sentence, since separating them out undermines the diversity somewhat.

      Indeed, it is very strange to put “cotton” between two representatives from Brassicaceae. Now the sentence is changed to “… including Brassica (Wu et al., 2018; Li et al., 2020; Wei et al., 2021) and Raphanobrassica (Ye et al., 2016), cotton (Yoo et al., 2013)…”

      The diagrams under the graph in Figure 4B are particularly helpful for understanding the expression patterns under consideration! I appreciated them a lot!

      Thank you for the comment. We also feel the direction of expression level dominance is convoluted and hard to remember, so we adopted the convention of showing the directions with diagrams.

      Reviewer #2 (Recommendations For The Authors):

      The science is very interesting and thorough, so my comments are mostly meant to improve the clarity of the manuscript text:

      • I found it challenging to remember the acronyms for the different gene expression phenomena and had to consistently cross-reference different parts of the manuscript to remind myself. I think using the full phrase once or twice at the start of a paragraph to remind readers what the acronym stands for could improve readability.

      Thank you for this reasonable suggestion. Now we have replaced the most occurrence of acronyms with the full phrases.

      • There are some technical terms, such as "homoeologous synapsis" and "disomic inheritance", which I think are under-defined in the current text.

      Indeed these terms were not well-defined before using in the manuscript. Now we have added a brief explanation for each term.

      • Under the joint action of these forces, allopolyploid subgenomes are further coordinated and degenerated, and subgenomes are often biasedly fractionated" This sentence has some unclear terminology. Does "coordinated" mean co-adapted, co-inherited, or something else? Is "biasedly fractionated" referring to biased inheritance or evolution of one of the parental subgenomes?

      We apologize for not using accurate terms. With “coordinated” we emphasized the evolution of both homoeologs depends on the selection on total expression of both homoeologs, and on both relative and absolute dosages, which may have shifted away from optima after allopolyploidization. “Co-evolved” or “co-adapted” might be a better word.

      But the term "biasedly fractionation" has been commonly used for referring to the phenomenon that genes from one subgenome of polyploids are preferentially retained during diploidization (Woodhouse et al., 2014; Wendel, 2015). Instead of inventing a new term, we prefer to keep the same term for consistency, so readers could link our findings with numerous studies in this field. Now the sentence is changed to “Under the joint action of these forces, allopolyploid subgenomes are further co-adapted and degenerated, and subgenomes are often biasedly retained, termed biased fractionation”.

      • There are a series of paragraphs in the results, starting with "Resynthesized allotetraploids and the natural Cbp had distinct floral morphologies", which consistently reference Figure 1 where they should be referencing Figure 2.

      Thank you for spotting this mistake! Now the numbers have been corrected.

      • ‘The number of pollen grains per flower decreased in natural Cbp’ this wording implies it's the effect of some experimental treatment on Cbp, rather than just measured natural variation.

      Yes, it is not scientifically precise to say this in the Results section, especially when describing details of results. We meant that assuming resynthesized allopolyploids are good approximation of the initial state of natural allotetraploid C. bursa-pastoris, our results indicate that the number of pollen grains had decreased in natural C. bursa-pastoris. But this is an implication, rather than an observation, so the sentence is better rewritten as “Natural allotetraploids had less pollen grains per flower.”

      • ‘The percentage of genes showing complete ELD was altogether limited but doubled between resynthesized allotetraploid groups and natural allotetraploids’ for clarity, I would suggest revising this to something like "doubled in natural allotetraploids relative to resynthesized allotetraploids

      Thank you for the suggestion. The sentence has been revised as suggested.

      • I'm not sure I understand what the difference is between expression-level dominance and homeolog expression bias. It seems to me like the former falls under the umbrella of the latter.

      Expression-level dominance and homeolog expression bias are easily confused, but they are conceptually independent. One gene could have expression-level dominance without any homeolog expression bias, or strong homeolog expression bias without any expression-level dominance. The concepts were well explained in Grover et al., (2012) with nice figures.

      Expression level dominance compares the total expression level of both homoeologs in allopolyploids with the expression of the same gene in parental species, and judges whether the total expression level in allopolyploids is only similar to one of the parental species. The contributions from different homoeologs are not distinguished.

      While homoeolog expression bias compares the relative expression level of each homoeologs in allopolyploids, with no implication on the total expression of both homoeologs.

      Let the expression level of one gene in parental species X and Y be e(X) and e(Y), respectively. And let the expression level of x homoeolog (from species X) and y homoeolog (from species Y) in allopolyploids be e(x) and e(y), respectively.

      Then a (complete) expression level dominance toward species X means: e(x)+e(y)=e(X) and e(x)+e(y)≠e(Y);

      While a homoeolog expression bias toward species X means: e(x) > e(y), or e(x)/e(y) > e(X)/e(Y), depending on the definition of studies.

      Both expression-level dominance and homeolog expression bias have been widely studied in allopolyploids (Combes et al., 2013; Li et al., 2014; Yoo et al., 2014; Hu & Wendel, 2019). As the two phenomena could be in opposite directions, and may be caused by different mechanisms, we think adopting the definitions in Grover et al., (2012) and distinguishing the two concepts would facilitate communication.

      • Is it possible to split up the results in Figure 7 to show which of the two homeologs was lost (i.e. orientalis vs. grandiflora)? Or at least clarify in the legend that these scenarios are pooled together in the figure?

      Maybe using acronyms without explanation made the figure titles hard to understand, but in the original Figure 7 the loss of two homoeologs were shown separately. Figure 7a,c showed the loss of C. orientalis-homoeolog (“co-expession loss”), and Figure 7b,d showed the loss of C. grandiflora-homoeolog (“cg-expession loss”). Now the legends have been modified to explain the Figure.

      • The paragraph starting with "The extant diploid species" is too long, should probably be split into two paragraphs and edited for clarity.

      The whole paragraph was used to explain why the resynthesized allotetraploids could be a realistic approximation of the early stage of C. bursa-pastoris with two arguments:

      1) The further divergence between C. grandiflora and C. orientalis after the formation of C. bursa-pastoris should be small compared to the total divergence between the two parental species; 2) The mating systems of real parental populations were most likely the same as today. Now the two arguments were separated as two paragraphs, and the second paragraph has been shortened.

      • On the other hand, the number of seeds per fruit" implies this is evidence for an alternative hypothesis, when I think it's really just more support for the same idea.

      “On the other hand” was used to contrast the reduced number of pollen grains and the increased number of seeds in natural allotetraploids. As both changes are typical selfing syndrome, indeed the two support the same idea. We replaced the “On the other hand” with “Moreover”.

      • ‘has become self-compatible before the formation" "has become" should be "became".

      The tense of the word has been changed.

      • If natural C. bursa-pastoris indeed originated from the hybridization between C. grandiflora-like outcrossing plants and C. orientalis-like self-fertilizing plants, the selfing syndrome in C. bursa-pastoris does not reflect the instant dominance effect of the C. orientalis alleles, but evolved afterward.’ This sentence should be closer to the end of the paragraph, after the main morphological results are summarized.

      Thank you for the suggestion. The paragraph is indeed more coherent after moving the conclusion sentence.

      References

      Combes, M.C., Dereeper, A., Severac, D., Bertrand, B. & Lashermes, P. (2013) Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. New Phytologist, 200, 251–260.

      Grover, C.E., Gallagher, J.P., Szadkowski, E.P., Yoo, M.J., Flagel, L.E. & Wendel, J.F. (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytologist, 196, 966–971.

      Hu, G. & Wendel, J.F. (2019) Cis – trans controls and regulatory novelty accompanying allopolyploidization. New Phytologist, 221, 1691–1700.

      Li, A., Liu, D., Wu, J., Zhao, X., Hao, M., Geng, S., et al. (2014) mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in

      Nascent Hexaploid Wheat. The Plant Cell, 26, 1878–1900. Wendel, J.F. (2015) The wondrous cycles of polyploidy in plants. American Journal of Botany, 102, 1753–1756.

      Woodhouse, M.R., Cheng, F., Pires, J.C., Lisch, D., Freeling, M. & Wang, X. (2014) Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proceedings of the National Academy of Sciences of the United States of America, 111, 5283–5288.

      Yoo, M.J., Liu, X., Pires, J.C., Soltis, P.S. & Soltis, D.E. (2014) Nonadditive Gene Expression in Polyploids. https://doi.org/10.1146/annurev-genet-120213-092159, 48, 485–517.

    1. Author Response

      Reviewer #1 (Public Review):

      De Seze et al. investigated the role of guanine exchange factors (GEFs) in controlling cell protrusion and retraction. In order to causally link protein activities to the switch between the opposing cell phenotypes, they employed optogenetic versions of GEFs which can be recruited to the plasma membrane upon light exposure and activate their downstream effectors. Particularly the RhoGEF PRG could elicit both protruding and retracting phenotypes. Interestingly, the phenotype depended on the basal expression level of the optoPRG. By assessing the activity of RhoA and Cdc42, the downstream effectors of PRG, the mechanism of this switch was elucidated: at low PRG levels, RhoA is predominantly activated and leads to cell retraction, whereas at high PRG levels, both RhoA and Cdc42 are activated but PRG also sequesters the active RhoA, therefore Cdc42 dominates and triggers cell protrusion. Finally, they create a minimal model that captures the key dynamics of this protein interaction network and the switch in cell behavior.

      We thank reviewer #1 for this assessment of our work.

      The conclusions of this study are strongly supported by data. Perhaps the manuscript could include some further discussion to for example address the low number of cells (3 out of 90) that can be switched between protrusion and retraction by varying the frequency of the light pulses to activate opto-PRG.

      The low number of cells being able to switch can be explained by two different reasons:

      1) first, we were looking for clear inversions of the phenotype, where we could see clear ruffles in the case of the protrusion, and clear retractions in the other case. Thus, we discarded cells that would show in-between phenotypes, because we had no quantitative parameter to compare how protrusive or retractile they were. This reduced the number of switching cells

      2) second, we had a limitation due to the dynamic of the optogenetic dimer used here. Indeed, the control of the frequency was limited by the dynamic of unbinding of the optogenetic dimer. This dynamic of recruitment (~20s) is comparable to the dynamics of the deactivation of RhoA and Cdc42. Thus, the differences in frequency are smoothed and we could not vary enough the frequency to increase the number of switches. Thanks to the model, we can predict that decreasing the unbinding rate of the optogenetic tool should allow us to increase the number of switching cells.

      We will add further discussion of this aspect to the manuscript.

      Also, the authors could further describe their "Cell finder" software solution that allows the identification of positive cells at low cell density, as this approach will be of interest for a wide range of applications.

      There is a detailed explanation of the ‘Cell finder’ in the method sections. It is also available on github at https://github.com/jdeseze/cellfinder and currently in development to be more user-friendly and properly commented.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript builds from the interesting observation that local recruitment of the DHPH domain of the RhoGEF PRG can induce local retraction, protrusion, or neither. The authors convincingly show that these differential responses are tied to the level of expression of the PRG transgene. This response depends on the Rho-binding activity of the recruited PH domain and is associated with and requires (co?)-activation of Cdc42. This begs the question of why this switch in response occurs. They use a computational model to predict that the timing of protein recruitment can dictate the output of the response in cells expressing intermediate levels and found that, "While the majority of cells showed mixed phenotypes irrespectively of the activation pattern, in few cells (3 out of 90) we were able to alternate the phenotype between retraction and protrusion several times at different places of the cell by changing the frequency while keeping the same total integrated intensity (Figure 6F and Supp Movie)."

      Strengths:

      The experiments are well-performed and nicely documented. However, the molecular mechanism underlying the shift in response is not clear (or at least clearly described). In addition, it is not clear that a prediction that is observed in ~3% of cells should be interpreted as confirming a model, though the fit to the data in 6B is impressive.

      Overall, the main general biological significance of this work is that RhoGEF can have "off target effects". This finding is significant in that an orthologous GEF is widely used in optogenetic experiments in drosophila. It's possible that these findings may likewise involve phenotypes that reflect the (co-)activation of other Rho family GTPases.

      We thank reviewer #2 for having assessed our work. Indeed, the main finding of this work is the change in the GEF function upon its change in concentration, which could be explained with a simple model supported by quantitative data. We think that the mechanism of the switch is quite clear, supported by the data showing the double effect of the PH domain and the activation of Cdc42. The few cells that are able to switch phenotype have to be seen as an honest data confirming that 1) concentration is indeed the main determinant of the protein’s function, and the switch is hard to obtain (which is also predicted by the model) 2) the two underlying networks are being activated at different timescales, which leaves some space for differential activation in the same cell. We are here limited by the dynamic of the optogenetic tool, as explained in the response to reviewer #1, and the intrinsic cell-to-cell variability.

      Regarding the interpretation of our results as RhoGEF “off target effects”, we think that it might be too reductive. As said in the discussion, we proposed that the dual role of the RhoGEF could have physiological implications on the induction of front protrusions and rear retractions. While we do not demonstrate it here, it opens the door for further investigation.

      Weaknesses:

      The manuscript makes a number of untested assumptions and the underlying mechanism for this phenotypic shift is not clearly defined.

      We may not have been clear in our manuscript, but we think that the underlying mechanism for this phenotypic shift is clearly explained and backed up by the data and the literature. It relies on 1) the ability of PRG to activate both RhoA and Cdc42 and 2) the ability of the PH domain to directly bind to active RhoA (which is, as shown in the manuscript, necessary but not sufficient for protrusions to happen). The model succeeds in reproducing the data of RhoA with only one free parameter and two independently fitted ones. The fact that activation of RhoA and Cdc42 lead to retraction and protrusion respectively is known since a long time. Thus, we think that the switch is clearly and quantitatively explained.

      This manuscript is missing a direct phenotypic comparison of control cells to complement that of cells expressing RhoGEF2-DHPH at "low levels" (the cells that would respond to optogenetic stimulation by retracting); and cells expressing RhoGEF2-DHPH at "high levels" (the cells that would respond to optogenetic stimulation by protruding). In other words, the authors should examine cell area, the distribution of actin and myosin, etc in all three groups of cells (akin to the time zero data from figures 3 and 5, with a negative control). For example, does the basal expression meaningfully affect the PRG low-expressing cells before activation e.g. ectopic stress fibers? This need not be an optogenetic experiment, the authors could express RhoGEF2DHPH without SspB (as in Fig 4G).

      We thank reviewer #2 for this suggestion. PRG-DHPH is known to affect the phenotype of the cell as shown in Valon et al., 2017. Thus, we really focused on the change implied by the change in optoPRG expression, to understand the phenotype difference. However, we agree that this could be an interesting data to add and will do the experiments for the revised version of the manuscript.

      Relatedly, the authors seem to assume ("recruitment of the same DH-PH domain of PRG at the membrane, in the same cell line, which means in the same biochemical environment." supplement) that the only difference between the high and low expressors are the level of expression. Given the chronic overexpression and the fact that the capacity for this phenotypic shift is not recruitment-dependent, this is not necessarily a safe assumption. The expression of this GEF could well induce e.g. gene expression changes.

      We agree with reviewer #2 that there could be changes in gene expression. In the next point of this supplementary note, we had specified it, by saying « that overexpression has an influence on cell state, defined as protein basal activity or concentration before activation. » We are sorry if it was not clear and will change this sentence for the new version.

      One of the interests of the model is that it does not require any change in absolute concentrations, beside the GEF. The model is thought to be minimal and fits well and explains the data with very few parameters. We don’t show that there is no change in concentration but we show that it is not required to invoke it.

      We will add in the revised version of the manuscript a paragraph discussing this question.

      The third paragraph of the introduction, which begins with the sentence, "Yet, a large body of works on the regulation of GTPases has revealed a much more complex picture with numerous crosstalks and feedbacks allowing the fine spatiotemporal patterning of GTPase activities" is potentially confusing to readers. This paragraph suggests that an individual GTPase may have different functions whereas the evidence in this manuscript demonstrates, instead, that a particular GEF can have multiple activities because it can differentially activate two different GTPases depending on expression levels. It does not show that a particular GTPase has two distinct activities. The notion that a particular GEF can impact multiple GTPases is not particularly novel, though it is novel (to my knowledge) that the different activities depend on expression levels.

      We thank the reviewer for this remark and didn’t intended to confuse the readers. Indeed, we think that this manuscript confirms the canonical view on the GTPases (as most optogenetic experiments did in the past years). We show here that it is more complicated at the level of the GEF. We agree that this is not particularly novel. However, to our knowledge, there is no example of such clear phenotypic control, explained solely by the change in concentration.

      We think that the last paragraph of the introduction is quite clear in the fact that it is the GEF itself that switches its function, and not the Rho-GTPases, but we will reconsider the phrasing of this paragraph for the revised version.

      Concerning the overall model summarizing the authors' observations, they "hypothesized that the activity of RhoA was in competition with the activity of Cdc42"; "At low concentration of the GEF, both RhoA and Cdc42 are activated by optogenetic recruitment of optoPRG, but RhoA takes over. At high GEF concentration, recruitment of optoPRG lead to both activation of Cdc42 and inhibition of already present activated RhoA, which pushes the balance towards Cdc42."

      These descriptions are not precise. What is the nature of the competition between RhoA and Cdc42? Is this competition for activation by the GEFs? Is it a competition between the phenotypic output resulting from the effectors of the GEFs? Is it competition from the optogenetic probe and Rho effectors and the Rho biosensors? In all likelihood, all of these effects are involved, but the authors should more precisely explain the underlying nature of this phenotypic switch. Some of these points are clarified in the supplement, but should also be explicit in the main text.

      We are going to precise these descriptions for the revised version of the manuscript. The competition between RhoA and Cdc42 was thought as a competition between retraction due to the protein network triggered by RhoA (through ROCK-Myosin and mDia-bundled actin) and the protrusion triggered by Cdc42 (through PAK-Rac-ARP2/3-branched Actin). We will make it explicit in the main text.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Heyndrickx et al describes protein crystal formation and function that bears similarity to Charcot-Leyden crystals made of galectin 10, found in humans under similar conditions. Therefore, the authors set out to investigate CLP crystal formation and their immunological effects in the lung. The authors reveal the crystal structure of both Ym1 and Ym2 and show that Ym1 crystals trigger innate immunity, activated dendritic cells in the lymph node, enhancing antigen uptake and migration to the lung, ultimately leading to induction of type 2 immunity.

      Strengths:

      We know a lot about expression levels of CLPs in various settings in the mouse but still know very little about the functions of these proteins, especially in light of their ability to form crystal structures. As such data presented in this paper is a major advance to the field.

      Resolving the crystal structure of Ym2 and the comparison between native and recombinant CLP crystals is a strength of this manuscript that will be a very powerful tool for further evaluation and understanding of receptor, binding partner studies including the ability to aid mutant protein generation.

      The ability to recombinantly generate CLP crystals and study their function in vivo and ex vivo has provided a robust dataset whereby CLPs can activate innate immune responses, aid activation and trafficking of antigen presenting cells from the lymph node to the lung and further enhances type 2 immunity. By demonstrating these effects the authors directly address the aims for the study. A key point of this study is the generation of a model in which crystal formation/function an important feature of human eosinophilic diseases, can be studied utilising mouse models. Excitingly, using crystal structures combined with understanding the biochemistry of these proteins will provide a potential avenue whereby inhibitors could be used to dissolve or prevent crystal formation in vivo.

      The data presented flows logically and formulates a well constructed overall picture of exactly what CLP crystals could be doing in an inflammatory setting in vivo. This leaves open a clear and exciting future avenue (currently beyond the scope of this work) for determining whether targeting crystal formation in vivo could limit pathology.

      Weaknesses:

      Although resolving the crystal structure of Ym2 in particular is a strength of the authors work, the weaknesses are that further work or even discussion of Ym2 versus Ym1 has not been directly demonstrated. The authors suggest Ym2 crystals will likely function the same as Ym1, but there is insufficient discussion (or data) beyond sequence similarity as to why this is the case. If Ym1 and Ym2 crystals function the same way, from an evolutionary point, why do mice express two very similar proteins that are expressed under similar conditions that can both crystalise and as the authors suggest act in a similar way. Some discussion around these points would add further value.

      We agree with reviewer. We have further elaborated the discussion section including these points, stating clearly that more research needs to be done using Ym2 crystals before we can draw parallels in vivo.

      Additionally, the crystal structure for Ym1 has been previously resolved (Tsai et al 2004, PMID 15522777) and it is unclear whether the data from the authors represents an advance in the 3D structure from what is previously known.

      The crystal structure of Ym1 has indeed been previously solved, and we refer to that paper. In addition, we also provide the crystal structure of in vitro grown Ym1, ashowing biosimilarity. This, for the field of crystallography is a major finding, since it validates the concept that crystal structures generated in vitro can reflect in vivo grown structures. Moreover, the in vivo crystallization of Ym2 was unknown prior to this work, and is now clear as revealed by the ex vivo X-ray crystallography. The strength of our story is that we can now compare Ym1 and Ym2 crystals structures in detail.

      Whilst also generating a model to understand Charcot-Leyden crystals (CLCs), the authors fail to discuss whether crystal shape may be an important feature of crystal function. CLCs are typically needle like, and previous publications have shown using histology and TEM that Ym1 crystals are also needle like. However, the crystals presented in this paper show only formation of plate like structures. It is unclear whether these differences represent different methodologies (ie histology is 2D slides), or differences in CLP crystals that are intracellular versus extracellular. These findings highlight a key question over whether crystal shape could be important for function and has not been addressed by the authors.

      In contrast to the bipyramidal, needle-like CLC crystals formed by human galectin-10 protein (hexagonal space group P6522), the in vivo grown Ym1 and Ym2 crystals we were able to isolate for X-ray diffraction experiments had a plate-like morphology with identical crystallographic parameters as recombinant Ym1/Ym2 crystals (space group P21). We note that depending on the viewing orientation of the thin plate-like Ym1 crystals, they may appear needle-like in histology and TEM images. In addition, we can fully not exclude that both Ym1 or Ym2 may crystallize in vivo in different space groups (which could result in different crystal morphologies for Ym1/Ym2) but we have no data to support this. It is finally also a possibility that plate like structures can break up in vivo along a long axis as a result of mechanical forces, and end up as rod-or needle like shapes.

      Ym1/Ym2 crystals are often observed in conditions where strong eosinophilic inflammation is present. However, soluble Ym1 delivery in naïve mice shows crystal formation in the absence of a strong immune response. There is no clear discussion as to the conditions in which crystal formation occurs in vivo and how results presented in the paper in terms of priming or exacerbating an immune response align with what is known about situations where Ym1 and Ym2 crystals have been observed.

      Although Ym1 and Ym2 crystals are often observed in mice at sites of eosinophilic inflammation, they are not made by eosinophils, but mainly by macrophages and epithelial cells, respectively. In vitro, protein crystallization typically starts from supersaturated solutions that support crystal nucleation. Several factors such as temperature and pH can affect the solubility of Ym1 and Ym2 in vivo and thus affect the nucleation and crystallization process. For Ym1 and Ym2 we noticed in vitro that a small drop in pH facilitates the crystallization process. Although the physiological pH is 7.4, during inflammation, there is a drop in pH. This drop in pH is the result of the infiltration and activation of inflammatory cells in the tissue, which leads to an increased energy and oxygen demand, accelerated glucose consumption via glycolysis and thus increased lactic acid secretion. In addition, we cannot exclude that in vivo, the nucleation process for Ym1/Ym2 is facilitated by interaction with ligands in the extracellular space (e.g. polysaccharide ligands or other – yet to be identified – specific ligands to Ym1/Ym2).

      Reviewer #2 (Public Review):

      Summary:

      This interesting study addresses the ability of Ym1 protein crystals to promote pulmonary type 2 inflammation in vivo, in mice.

      Strengths:

      The data are extremely high quality, clearly presented, significantly extending previous work from this group on the type 2 immunogenicity of protein crystals.

      Weaknesses:

      There are no major weaknesses in this study. It would be interesting to see if Ym2 crystals behave similarly to Ym1 crystals in vivo. Some additional text in the Introduction and Discussion would enrich those sections.

      We agree that this would be interesting to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved experiments and to strengthen findings:

      I think additional data on the ability of Ym2 crystals to induce an immune response would be advantageous. I'm not by any means suggesting the authors repeat all the experiments with Ym2 crystals, but even just the ability to show that Ym2 could promote type 2 immunity in the acute OVA model, would help to strengthen the argument that these crystals in general function in a similar way. Alternatively, a discussion on whether these protein crystals may function in different scenarios/tissues or conditions could help in light of additional data

      We agree that this is an interesting point to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Measuring IL-33 in lung tissue is difficult to interpret as cells will express intracellular IL-33 that is not active and may explain why the results in Fig 2D are not overly convincing. It could just be that Ym1 crystals are changing the number of cells expressing IL-33 (e.g macrophages, or type 2 pneumocytes) Did the authors also measure active IL-33 release in the BAL fluid which may give a better indication of Ym1's ability to activate DAMPs?

      We also measured active IL-33 release in the BAL fluid, but due to the limited sample availability we could only measure this in one of the two repeat experiments, resulting in non-significant results for the BAL fluid. However, certainly for the 6h timepoint we saw a similar trend in the BAL fluid as in the lung tissue, meaning higher levels of IL-33 in the Ym1 crystal group compared to the PBS and soluble Ym1 group.

      Crystals in Fig 2F staining with Ym1 appear to be brighter in the soluble Ym1 group. Is this related to increased packing of Ym1 in the crystals formed in vivo as opposed to those formed in vitro? Aside from reduced amount of crystals that form when you give soluble Ym1, could the type of crystal also be influencing the ability of soluble Ym1 crystals to generate an immune response?

      Our X-ray diffraction experiments show that the packing of Ym1 is identical for in vivo and in vitro grown crystals. Possibly the apparent difference in brightness is caused by stochastic staining by the antibody. In this regard we note that the crystals formed from soluble Ym1 after 24h also can appear as less bright in a similar fashion as recombinant Ym1 crystals.

      Overall, the data and writing of the manuscript is presented to a very high standard

      A few minor points:

      • Fig 2F - a little unsure what the number in the left top corner of the images represented.

      These numbers represent the picture numbers generated by the software, but as they don’t have any added value for the story, we removed these numbers from the images.

      • Not clear why two different expression vectors were used - one for Ym1 and one for Ym2?

      Because we observed that recombinant Ym2 is more poorly secreted in the mammalian cell culture supernatant as compared to recombinant Ym1, we produced Ym2 with an N-terminal hexahistidine-tag followed by a Tobacco Etch Virus (TEV)-protease cleavage site to facilitate its purification.

      Reviewer #2 (Recommendations For The Authors):

      The authors briefly outline in their Introduction potential Sources of Ym1/2 in vivo, highlighting monocytes, M2 macrophages, alveolar macrophages, neutrophils and epithelial cells. Do DCs also make detectable/meaningful amounts of Ym1/2 in vivo, particularly in type 2 settings?

      In the introduction we only highlighted the main cellular sources of Ym1 and Ym2, but there is literature available stating/showing that Ym1/2 is not only expressed by macrophages, neutrophils, monocytes and epithelial cells, but can also be induced in DCs and mast cells. We added the word ‘mainly’ to this sentence in the introduction, to make clear that macrophages, neutrophils and monocytes are not the only sources of Ym1.

      Given the nicely demonstrated similarity of recombinant Ym1 and Ym2 crystals, I think it is important for the authors to include at least initial data on the outcome of recombinant Ym2 crystal admin to mice, in comparison to their Ym1 data.

      We agree that this is an interesting point to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Given the generation of crystals following in vivo administration of soluble Ym1, albeit at a lower level than when crystals were administered, it would be interesting to see if increased concentrations of soluble material show a dose dependent increase in lung inflammation readouts.

      We agree that this would be an interesting point to investigate. Alongside this we could also titrate down the crystal dose, to see if there is a dose dependent decrease in lung inflammation readouts. However, at this time, we choose to not investigate this further.

      I couldn't easily follow the authors' Discussion about potential ability of anti Ym-1/2 Abs to dissolve Ym1/2 crystals (similar to what they have demonstrated for Abs vs Gal10 crystals). Have they addressed this possibility experimentally? If so, addition of such data to the manuscript would be extremely interesting, given the obvious potential Ym1/2 crystal dissolving Abs for investigation of the role of these in a range of different murine models of type 2 inflammation.

      We agree that the phrasing of this part of the discussion can be unclear/confusing. We rephrased this part to make it clearer. However, we did not address the possibility of Ym1/2 crystal dissolving antibodies experimentally.

      In the Results section, the authors briefly comment on the pro-type 2 nature of Ym1 crystals in relation to their previous work with uric acid and Gal10 crystals, proposing that the pulmonary type 2 response may be a 'generic response to crystals of different chemical composition'. The Discussion would be enriched by deeper exploration of this comment.

      We have further elaborated the discussion section including this point.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you very much for forwarding these two important reviews on our paper. Please find hereby our point-by-point responses addressing the ideas, arguments and points of concern raised by the reviewers. We provide explanation of how these points have been incorporated in the paper.

      We feel the review process has been a useful exercise and that the paper has greatly benefited in terms of clarity and accessibility. It is our hope that our findings may ignite renewed interest on unexplored and “unexpected” aspects of great ape vocal communication, inspire novel research, and invite bold new advances on the long-standing puzzle of language origins and evolution. In several relevant sections, we have also sought to explicitly address the point of doubt raised in eLife’s editorial assessment, published alongside the reviewed preprint of our paper. The editorial assessment stated that “…However the evidence provided to support the major claims of the paper is currently incomplete. Specifically, it is not yet clear how the rhythmic structuring found in these long calls is more similar to human language recursion per se rather than isochrony as a broader, more common phenomenon.” To directly clarify this point, we provide now various examples of how recursion is distinct from repetition, using everyday objects for an intuitive understanding (e.g., lines 43-51). We have also expanded the discussion to better contextualise and clarify the implications of our findings on language evolution theory. We hope this will help addressing the implicit request for clarification in the previous editorial assessment.

      Thank you very much for your kind and dedicated attention in the processing of our study.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study investigates the structuring of long calls in orangutans. The authors demonstrate long calls are structured around full pulses, repeated following a regular tempo (isochronic rhythm). These full pulses are themselves structured around different sub-pulses, themselves repeated following an isochronic rhythm. The authors argue this patterning is evidence for self-embedded, recursive structuring in orangutang long calls.

      The analyses conducted are robust and compelling and they support the rhythmicity the authors argue is present in the long calls. Furthermore, the authors went above and beyond and confirmed acoustically the sub-categories identified were accurate.

      We thank the reviewer for this important support regarding our methods and findings.

      However, I believe the manuscript would benefit from a formal analysis of the specific recursive patterning occurring in the long call. Indeed, as of now, it is difficult for the reader to identify what the authors argue to be recursion and distinguish it from simple repetitions of motifs, which is essential.

      We agree with the reviewer that the distinction between repetition and recursion is very important for the adequate interpretation of our findings. Following the reviewer’s point (and the Editorial Assessement), we have now rephrased several passages in the initial paragraph of the paper for added clarity, where recursion is introduced and explained. We now also provide various new examples of recursion in everyday life and popular culture to better illustrate in an easy and accessible way the fundamental nature of recursion. We then use two of these common examples (computer folders and Russian dolls) to specifically distinguish repetition from recursion.

      Although the authors already discuss briefly why linear patterning is unlikely, the reader would benefit from expanding on this discussion section and clarifying the argument here (a lay terminology might help).

      Corrected accordingly.

      I believe an illustration here might help. In the same logic, I believe a tree similar to the trees used in linguistics to illustrate hierarchical structuring would help the reader understand the recursive patterning in place here. This would also help get the "big picture", as Fig 1A is depicting a frustratingly small portion of the long call.

      We completely understand the reviewer’s concern here. As proposed by the reviewer, and in addition to changes in the Introduction (see above) and Discussion (see below), we have now added a new figure in the Discussion to help the reader get the “big picture” of our findings.

      We have also made revisions throughout the Introduction and Discussion to simplify the text, clarify our exposition and facilitate the reader better and intuitively understand the nature and relevance of our results.

      Notwithstanding these comments, this paper would provide crucial evidence for recursion in the vocal production of a non-human ape species. The implication it would have would represent a key shift in the field of language evolution. The study is very elegant and well-constructed. The paper is extremely well written, and the point of view adopted is original, well-argued and compelling.

      We are humbled by the reviewer’s words, and we thank the reviewer for attributing these qualities to our paper. This feedback reassures us of the disruptive potential that these and similar future findings may have on our understanding of language evolution.

      Reviewer #2 (Public Review):

      I am not qualified to judge the narrow claim that certain units of the long calls are isochronous at various levels of the pulse hierarchy. I will assume that the modelling was done properly. I can however say that the broad claims that (i) this constitutes evidence for recursion in non-human primates, (ii) this sheds light on the evolution of recursion and/or language in humans are, when not made trivially true by a semantic shift, unsupported by the narrow claims. In addition, this paper contains errors in the interpretation of previous literature.

      We report the first confirmed case of “vocal sequences within vocal sequences” in a wild nonhuman primate, namely a great ape. The currently prevailing models of language evolution often rest on the (purely theorical) premise that such structures do not exist in any animal bar humans. We find the discovery of such structures in a wild great ape exciting, remarkable, and promising. We regret that the reviewer does not share this sentiment with us. We feel that the statement that these findings are trivial and narrow is unfounded.

      In order to clarify and better communicate the significance of our findings, we now explain in more detail in the Introduction and Discussion how the discovery of nested isochrony in wild orangutans promises to stimulate new series of studies in nature and captivity. Our findings dovetail nicely with previous captive studies that have shown that animals can learn how to recognise recursive patterns and invite new research efforts for the investigation of recursive abilities in the wild and in the absence of human priming and in nonhuman primates.

      The main difficulty when making claims about recursion is to understand precisely what is meant by "recursion" (arguably a broader problem with the literature that the authors engage with). The authors offer some characterization of the concept which is vague enough that it can include anything from "celestial and planetary movement to the splitting of tree branches and river deltas, and the morphology of bacteria colonies". With this appropriately broad understanding, the authors are able to show "recursion" in orangutans' long calls. But they are, in fact, able to find it everywhere.

      The reviewer is correct in highlighting that recursion is ubiquitous in nature and this is something that we explicitly state in the paper. This only makes it the more surprising that, when it comes to vocal combinatorics, recursion has only been described in human language and music, but in no other animals. If studies providing such evidence are known to reviewer, we kindly request their corresponding references.

      In the new revised version, we have paid attention to this aspect raised by the reviewer, and we have sought to disambiguate that our observations pertain to temporal recursion. This clarification will hopefully allow a better understanding of our results.

      The sound of a plucked guitar string, which is a sum of self-similar periodic patterns, count as recursive under their definition as well.

      The example pointed out here by reviewer is factually correct; sound harmonics represent a recursive pattern of a fundamental frequency. (In fact, we explain this phenomenon in the Discussion.) The reviewer’s comment seems to offer an analogy to oscillatory phenomena in the physiology of the vocal folds, and so, it is misplaced with regards to our present study, which focused vocal sequences. Admittedly, this misinterpretation may have been implicitly caused by our wording and we apologise for this. We now refer to “vocal combinatorics” instead of “vocal production” throughout the paper to avoid the reader considering that our findings pertain to the physiology of the vocal folds.

      One can only pick one's definition of recursion, within the context of the question of interest: evolution of language in humans. One must try to name a property which is somewhat specific to human language, and not a ubiquitous feature of the universe we live in, like self-similarity. Only after having carved out a sufficiently distinctive feature of human language, can we start the work of trying to find it in a related species and tracing its evolutionary history. When linguists speak of recursion, they speak of in principle unbounded nested structure (as in e.g., "the doctor's mother's mother's mother's mother ..."). The author seems to acknowledge this in the first line of the introduction: "the capacity to iterate a signal within a self-similar signal" (emphasis added). In formal language theory, which provides a formal and precise definition of one notion of recursivity appropriate for human language, unbounded iteration makes a critical difference: bounded "nested structures" are regular (can be parsed and generated using finite-state machines), unbounded ones are (often) context-free (require more sophisticated automaton). The hierarchy of pulses and sub-pulses only has a fixed amount of layers, moreover the same in all productions; it does not "iterate".

      The reviewer explains here how recursion, in its fully fledged form in modern language(s), is defined by linguistics. We fully agree and do not contest such descriptions and definitions in any way. These descriptions and definitions aim to describe how recursion operates today, not how it evolved. Nor do these descriptions and definitions generate data-driven, testable predictions about precursors or proto-states of recursion as used by modern language-able humans. This is scientifically problematic and heuristically unsatisfying regarding the open question of language evolution.

      Following human-specific definitions for recursion, as proposed by the reviewer, cannot per se be used to undertake a comparative approach to evolution because they leave nothing to compare recursion with in other (wild) species. Using human-specific definitions unavoidably leads to black-and-white notions that language is always absolutely present in humans and always absolutely absent in other animals, regardless of their degree of relatedness to humans. It is unpreventable that these descriptions flout foundational principles of evolution, such as descent with modification and shared ancestry.

      This conceptual problem is not new. Less than a century ago, it was believed that humans were the only tool-user (thousands of examples are known today in nonhuman animals, including fish and invertebrates), and later, that humans were the only cultural animal (today it is known that migrating caribou and fruit flies can establish traditions based on social learning). We must follow in the footsteps of those who have helped redefine human nature in the past. As famously stated by Louis Leakey when presented with evidence for chimpanzee tool-use collected by Jane Goodall, “Now we must redefine tool, redefine man, or accept chimpanzees as human”. Therefore, as a matter of course, we must redefine recursion, embracing empirically (other than purely theoretically) definitions that allow recursion to take on forms and functions different from that of modern language-able humans.

      Another point is that the authors don't show that the constraints that govern the shape of orangutans long calls are due to cognitive processes.

      The reviewer is indeed correct. This does not, however, refute our findings. We do not directly show that cognitive processes govern recursion in orangutan long calls. Instead, we show that the observed patterns cannot be explained by simple bodily or motoric processes, excluding therefore low-level explanations. With more than 50 years of accumulated field experience in primatology, this was the only possible way that our team found to go about conducting research and analyses on natural behaviour, in the wild, with a critically endangered primate. We would be very interested in learning from the reviewer what ethical and non-invasive methods, specific locations in the wild, and type of behavioural or socio-ecological data could be otherwise viably used to demonstrate what the reviewer requests. If other scientists believe that the patterns observed in wild orangutan long calls – three independent, but simultaneously-occurring recursive motifs – can be generated based on low-level physiological mechanisms alone, the burden of proof resides with them.

      Any oscillating system will, by definition, exhibit isochrony.

      We disagree with this statement. The example provided above by the reviewer him/her-self disproves the statement: a guitar string when struck is an oscillating system but it is not isochronic nor is it combinatorial. Isochrony cannot be established with single events, only with event sequences (in practice, ideally >3).

      For instance, human trills produce isochronouns or near isochronous pulses. No cognitive process is needed to explain this; this is merely the physics of the articulators. Do we know that the rhythm of the pulses and sub-pulses in orangutans is dictated by cognition as opposed to the physics of the articulators?

      The reviewer seems to misinterpret our results here. Our focus is on vocal combinatorics, not vocal fold oscillation (see previous response). We have now reworded all instances where the text could be unclear.

      Even granting the authors' unjustified conclusion that wild orangutans have "recursive" structures and that these are the result of cognition, the conclusions drawn by the authors are too often fantastic leaps of induction. Here is a cherry-picked list of some of the far-fetched conclusions: - "our findings indicate that ancient vocal patterns organized across nested structural strata were likely present in ancestral hominids". Does finding "vocal patterns organized across nested structural strata" in wild orangutans suggest that the same were present in ancestral hominids?

      Following the reviewer’s comment, we have now rephrased and toned down this passage, stating that such structures “may have been present” in ancestral hominids. We are grateful to the reviewer for this comment.

      • "given that isochrony universally governs music and that recursion is a feature of music, findings (sic.) suggest a possible evolutionary link between great ape loud calls and vocal music". Isochrony is also a feature of the noise produced by cicadas. Does this suggest an evolutionary link between vocal music and the noise of cicadas?

      We apologise, but it is unclear what the reviewer is exactly suggesting or proposing here. It seems as though it is believed that cicadas are as phylogenetically related to humans as great apes are. Our last common ancestor with great apes diverged about 10mya, but with cicadas 600mya. The last common ancestor with great apes was a great ape (or hominid). The human-cicada last common ancestor would have looked like a worm (it is probable it would already have a nervous bulge at the head, or “brain”). In order to avoid similar misinterpretations, we have now clarified in several instances that our study and interpretation of results are based on shared ancestry within the Hominid family.

      It seems that the reviewer may be also misinterpreting our findings. We do not simply report isochrony in a wild great ape (multiple references for isochronous calls in primate are provided in the Discussion). We report isochrony within isochrony in three non-exclusive rhythmic arrangements. In case the reviewer knows of a study on cicadas, or any non-human species, showing recursive sound combinatorics of this nature, we kindly request the citation. We can only hope that such new cases may be gradually unveiled in wild animals to help propel our general understanding of possible ways of how insipient recursive vocal combinatorics in ancient hominids could have given rise to recursion as used today by language-able modern humans.

      Finally, some passages also reveal quite glaring misunderstandings of the cited literature. For instance:

      • "Therefore, the search for recursion can be made in the absence of meaning-base operations, such as Merge, and more generally, semantics and syntax". It is precisely Chomsky's (disputable) opinion that the main operation that govern syntax, Merge, has nothing to do with semantics. The latter is dealt within a putative conceptual-intentional performance system (in Chomsky's terminology), which is governed by different operations.

      Following the reviewer’s comment, we have now removed “meaning-base operations, such as Merge, and more generally” from the target sentence in order to avoid confusion. Thank you.

      • "Namely, experimental stimuli have consisted of artificial recursive signal sequences organized along a single temporal scale (though not structurally linear), similarly with how Merge and syntax operate". The minimalist view advocated by Chomsky assumes that mapping a hierarchichal structure to a linear order (a process called linearizarion) is part of the articulatory-perceptual system. This system is likewise not governed by Merge and is not part of "syntax" as conceived by the Chomskyan minimalists.

      Following the reviewer’s comment, we have not omitted the target sentence for added clarity.

      Reviewer #1 (Recommendations For The Authors):

      L55-67: I feel there is a step missing in the logic of the argumentation here. The studies cited by the authors here are mostly about syntactic-like structuring but not recursion. Hence when the authors mention in the next sentence that these studies investigate the perception of recursive signalling, it seems incorrect. I agree with the logic, but the references do not seem appropriate. I would further suggest that if there are no other references, that would make the introduction of the study here even easier: there is very little work investigating this capacity in non-human animals, let alone on a production perspective, therefore, the study conducted here is paramount and fills this important gap in the literature.

      We are grateful to Reviewer #1 for these comments, and we are honoured to hear that our findings are filling a literature gap. We have now carefully revised the manuscript, hopefully, streamlining our line of reasoning and improving the paper’s overall readability. We agree that there is very little work investigating the spontaneous “production” of recursion in nonhuman animals. We decided to better detail the logic of our paper by clarifying the difference between recursion and repetition and clarifying that the motifs that we identify in wild orangutan represent a case of "temporal recursion".

      L59: Johan J should be removed (same in discussion).

      Removed, thanks.

      L60: For example is repeated twice, here and L55.

      We have rephrased this part of the manuscript, thanks.

      L72-73: If we consider the Watson et al., 2020 study an example of recursive perception (which I do not think is true), this was conducted using a passive design - i.e. with no active training.

      We have rephrased this part of the manuscript, thanks.

      L240-241: Again, non-adjacent dependency processing does not equal recursion.

      We agree that non-adjacent dependency processing does not equal recursion. We have now clarified this section accordingly.

      L269: one of the most.

      Corrected, thanks.

      L296: add space after settings.

      Corrected, thanks.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the public portion of the review, I advise the authors' to substantially alter their style of writing. The language used is not accurate and the intended meaning is often not clear. This makes it hard for any reader to follow the authors' reasoning fully. Below I list only a few of the egregious examples but the examples abound:

      • "this hints at a neuro-cognitive or neuro-computational transformation in the human brain" what meaning do the author assign to "neuro-cognitive" and "neuro-computational" ? what difference do they place between the two (so that they would be disjoined.) ? What "transformation" are we talking about ? From what to what ?

      • " However, recursive signal structures can also unfold in other manners, such as across nested temporal scales and in the absence of semantics (Fitch, 2017a), as in music." what is meant here by nested temporal scales ?

      • "The simultaneous occurrence of non-exclusive recursive patterns excludes the likelihood that orangutans concatenate long calls and their subunits in linear structure without any recursive processes": isn't there a more straightforward way to say "excludes the likelihood"? What is meant by "non-exclusive recursive patterns"?

      It seems that Reviewer #2 does not share our writing style. Nonetheless, we have tried to meet the reviewer halfway, clarifying throughout the new revised version our definitions, our line of argument, our motivations, our results, the context of our findings in what is known about recursion in animals, and the implication of our discovery for language evolution theory.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their feedback. Our response and a summary of the changes made to the manuscript are shown below. In addition to the changes made in response to the reviewer’s comments, we made the following changes to improve the manuscript:

      • We updated figures 8 and 9 using data with improved preprocessing and source reconstruction. We now also include graphical network plots. This helps in the cross method (figure 8 vs 9) and cross dataset (figure 9 vs 10) comparison.

      • We added funding acknowledgments and a credit author statement.

      Reviewer #1 (Public Review):

      Summary:

      These types of analyses use many underlying assumptions about the data, which are not easy to verify. Hence, one way to test how the algorithm is performing in a task is to study its performance on synthetic data in which the properties of the variable of interest can be apriori fixed. For example, for burst detection, synthetic data can be generated by injected bursts of known durations, and checking if the algorithm is able to pick it up. Burst detection is difficult in the spectral domain since direct spectral estimators have high variance (see Subhash Chandran et al., 2018, J Neurophysiol). Therefore, detected burst lengths are typically much lower than injected burst lengths (see Figure 3). This problem can be solved by doing burst estimation in the time domain itself, for example, using Matching Pursuit (MP). I think the approach presented in this paper would also work since this model is also trained on data in the time domain. Indeed, the synthetic data can be made more "challenging" by injecting multiple oscillatory bursts that are overlapping in time, for which a greedy approach like MP may fail. It would be very interesting to test whether this method can "keep up" as the data is made more challenging. While showing results from brain signals directly (e.g., Figure 7) is nice, it will be even more impactful if it is backed up with results obtained from synthetic data with known properties.

      We completely agree with the reviewer that testing the methods using synthetic data is an important part of validating such an approach. Each of the original papers that apply these methods to a particular application do this. The focus of this manuscript is to present a toolbox for applying these methods rather than to introduce/validate the methods themselves. For a detailed validation of the methods, the reader should see the citations. For example, the following paper introduces the HMM as a method for oscillatory burst detection:

      • A.J. Quinn, et al. “Unpacking transient event dynamics in electrophysiological power spectra”. Brain topography 32.6 (2019): 1020-1034. See figures 2 and 3 for an evaluation of the HMM’s performance in detecting single-channel bursts using synthetic data.

      We have added text to paragraph 2 in section 2.5 to clarify this burst detection method has been validated using simulated data and added references.

      I was wondering about what kind of "synthetic data" could be used for the results shown in Figure 8-12 but could not come up with a good answer. Perhaps data in which different sensory systems are activated (visual versus auditory) or sensory versus movement epochs are compared to see if the activation maps change as expected. We see similarities between states across multiple runs (reproducibility analysis) and across tasks (e.g. Figure 8 vs 9) and even methods (Figure 8 vs 10), which is great. However, we should also expect the emergence of new modes specific to sensory activation (say auditory cortex for an auditory task). This will allow us to independently check the performance of this method.

      The following papers study the performance of the HMM and DyNeMo in detecting networks using synthetic data:

      • D. Vidaurre, et al. “Spectrally resolved fast transient brain states in electrophysiological data”. Neuroimage 126 (2016): 81-95. See figure 3 in this paper for an evaluation of the HMM’s performance in detecting oscillatory networks using simulation data.

      • C. Gohil, et al. “Mixtures of large-scale dynamic functional brain network modes”. Neuroimage 263 (2022): 119595. See figures 4 and 5 for an evaluation of DyNeMo performance in detecting overlapping networks and long-range temporal structure in the data.

      We have added text to paragraph 2 in section 2.5 to clarify these methods have been well tested on simulated data and added references.

      The authors should explain the reproducibility results (variational free energy and best run analysis) in the Results section itself, to better orient the reader on what to look for.

      Considering the second reviewer’s comments, we moved the reproducibility results to the supplementary information (SI). This means the reproducibility results are no longer part of the main figures/text. However, we have added some text to help the reader understand what aspects indicate the results are reproducible in section 2 of the SI.

      Page 15: the comparison across subjects is interesting, but it is not clear why sensory-motor areas show a difference and the mean lifetime of the visual network decreases. Can you please explain this better? The promised discussion in section 3.5 can be expanded as well.

      It is well known that the frequency and amplitude of neuronal oscillations changes with age. E.g. see the following review: Ishii, Ryouhei, et al. "Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity." Neuropsychobiology 75.4 (2018): 151-161. We observe older people have more beta activity and less alpha activity. These changes are seen in time-averaged calculations, i.e. the amplitude of oscillations are calculated using the entire time series for each subject.

      The dynamic analysis presented in the paper provides further insight into how changes in the time-averaged quantities can occur through changes in the dynamics of frequency-specific networks. The sensorimotor network, which is a network with high beta activity, has a higher fractional occupancy. This indicates the change we observe in time-average beta power may be due to a longer amount of time spent in the sensorimotor network. The visual network, which is a network with high alpha activity, shows reduced lifetimes, which can explain the reduced time-averaged alpha activity seen with ageing.

      We hope the improved text in the last paragraph of section 3.5 clarifies this. It should also be taken into account that the focus of this manuscript is the tools rather than an in-depth analysis of ageing. We use the age effect as an example of the potential analysis this toolbox enables.

      Reviewer #2 (Public Review):

      Summary:

      The authors have developed a comprehensive set of tools to describe dynamics within a single time-series or across multiple time-series. The motivation is to better understand interacting networks within the human brain. The time-series used here are from direct estimates of the brain's electrical activity; however, the tools have been used with other metrics of brain function and would be applicable to many other fields.

      Strengths:

      The methods described are principled, and based on generative probabilistic models.

      This makes them compact descriptors of the complex time-frequency data.

      Few initial assumptions are necessary in order to reveal this compact description.

      The methods are well described and demonstrated within multiple peer-reviewed articles.

      This toolbox will be a great asset to the brain imaging community.

      Weaknesses:

      The only question I had was how to objectively/quantitatively compare different network models. This is possibly easily addressed by the authors.

      We thank the reviewer for his/her comments. We address the weaknesses in our response in the “Recommendations For The Authors” section.

      Reviewer #1 (Recommendations For The Authors):

      Figure 2 legend: Please add the acronym for LCMV also.

      We have now done this.

      Section 2.5.1 page 8: the pipeline is shown in Figure 4, not 3.

      This has been fixed.

      Reviewer #2 (Recommendations For The Authors):

      This is a great paper outlining a resource that can be applied to many different fields. I have relatively minor comments apart from one.

      How does one quantitatively compare network descriptors (from DyNeMo and TDE-HMM for example)? At the moment the word 'cleaner' (P17) is used, but is there any non-subjective way? (eg Free energy/ cross validation etc). At the moment it is useful that one method gives a larger effect size (in a comparison between groups).. but could the authors say something about the use of these methods as more/less faithful descriptors of the data? Or in other words, do all methods generate datasets (from the latent space) that can be quantitatively compared with the original data?

      In principle, the variational free energy could be used to compare models. However, because we use an approximate variational free energy (an exact measure is not attainable) for DyNeMo and an exact free energy for the HMM, it is possible that any differences we see in the variational free energy between the HMM and Dynemo are caused by the errors in its approximation. This makes it unreliable for comparing across models. That said, we can still use the variational free energy to compare within models. Indeed, we use the variational free energy for quantitative model comparisons when we select the best run to analyse from a set of 10.

      One viable approach for comparing models is to assess their performance on downstream tasks. In this manuscript, examples of downstream tasks are the evoked network response and the young vs old group difference. We argue a better performance in the downstream task indicates a more useful model within that context. This performance is a quantitative measure. Note, there is no straightforward answer to which is the best model. It is likely different models will be useful for different downstream tasks.

      In terms of which model provides a more faithful description of the data. The more flexible generative model for DyNeMo means it will generate more realistic data. However, this doesn’t necessarily mean it’s the best model (for a particular downstream task). Both the HMM and DyNeMo provide complementary descriptions that can be useful.

      We have clarified the above in paragraph 5 of section 4.

      Other comments:

      • Footnote 6 - training on concatenated group data seems to be important. It could be more useful in the main manuscript where the limitations of this could be discussed.

      By concatenating the data across subjects, we learn a group-level model. By doing this, we pool information across all subjects to estimate the networks. This can lead to more robust estimates. We have moved this footnote to the main text in paragraph 1 of section 2.5 and added further information.

      • In the TDE burst detection section- please expand on why/how a specific number of states was chosen.

      As with the HMM dynamic network analysis, the number of states must be pre-specified. For burst detection, we are often interested in an on/off type segmentation, which can be achieved with a 2 state HMM. However, if there are multiple burst types, these will all be combined into a single ‘on’ state. Therefore, we might want to increase the number of states to model multiple burst types. 3 was chosen as a trade-off to stay close to the on/off description but allow the model to learn more than 1 burst type. We have added text discussing this in paragraph 4 of section 4.

      • Normally the value of free energy is just a function of the data - and only relative magnitude is important. I think figures (eg 7c) would be clearer if the offset could be removed.

      We agree only the relative magnitude is important. We added text clarifying this in section 2 of the SI. We think it would still be worthwhile to include the offset so that future users can be sure they have correctly trained a model and calculated the free energy.

      • Related to the above- there are large differences in model evidence shown between sets. Yet all sets are the same data, and all parameter estimates are more or less the same. Could the authors account for this please (i.e. is there some other parameter that differentiates the best model in one set from the other sets, or is the free energy estimate a bit variable).

      We would like to clarify only the model parameters for the best run are shown in the group-level analysis. This is the run with the lowest variational free energy, which is highlighted in red. We have now clarified this in the caption of each figure. The difference in free energy for the best runs (across sets) is relatively small compared to the variation across runs within a set. If we were to plot the model parameters for each of the 10 runs in a set, we would see more variability. We have now clarified this in section 2 of the SI.

      Also note, the group analysis usually involves taking an average. Small differences in the variational free energy could reflect small differences in subject-specific model parameters, which are then averaged out, giving virtually identical group effects.

      • And related once again, if the data are always the same, I wonder if the free-energy plots and identical parameter estimates could be removed to free up space in figures?

      The reproducibility results have now been moved to the supplementary information (SI).

      • When citing p-values please specify how they are corrected (and over what please eg over states, nodes, etc?). This would be useful didactically as I imagine most users will follow the format of the presentation in this paper.

      We now include in the caption further details of how the permutation significance testing was done.

      • Not sure of the value of tiny power maps in 9C. Would consider making it larger or removing it?

      The scale of these power maps is identical to part (A.I). We have moved the reproducibility analysis to the SI, enlarged the figure and added colour bars. We hope the values are now legible.

      • Figure 3. I think the embedding in the caption doesn't match the figure (+-5 vs +-7 lags). Would be useful to add in the units of covariance (cii).

      The number of embeddings in the caption has been fixed. Regarding the units for the covariances, as this is simulated data there aren’t really any units. Note, there is already a colour bar to indicate the values of each element.

      • Minimize variational free energy - it may be confusing for some readers that other groups maximize the negative free energy. Maybe a footnote?

      We thank the reviewer for their suggestion. We have added a footnote (1).

      • Final question- and related to the Magnetoencephalography (MEG) data presented. These data are projected into source space using a beamformer algorithm (with its own implicit assumptions and vulnerabilities). Would be interested in the authors' opinion on what is standing between this work and a complete generative model of the MEG data - i.e. starting with cortical electrical current sources with interactions modeled and a dynamic environmental noise model (i.e. packing all assumptions into one model)?

      In principle, there is nothing preventing us from including the forward model in the generative model and training on sensor level MEG data. This would be a generative model starting from the dipoles inside the brain to the MEG sensors. This is under active research. If the reviewer is referring to a biophysical model for brain activity, the main barrier for this is the inference of model parameters. However, note that the new inference framework presented in the DyNeMo paper (Gohil, et al. 2022) actually makes this more feasible. Given the scope of this manuscript is to present a toolbox for studying dynamics with existing methods, we leave this topic as future work.

    2. Reviewer #1 (Public Review):

      In their revised manuscript, the authors have addressed all the concerns raised earlier (written below for completeness).

      Summary:

      These types of analyses use many underlying assumptions about the data, which are not easy to verify. Hence, one way to test how the algorithm is performing in a task is to study its performance on synthetic data in which the properties of the variable of interest can be apriori fixed. For example, for burst detection, synthetic data can be generated by injected bursts of known durations, and checking if the algorithm can pick it up. Burst detection is difficult in the spectral domain since direct spectral estimators have high variance (see Subhash Chandran et al., 2018, J Neurophysiol). Therefore, detected burst lengths are typically much lower than injected burst lengths (see their Figure 3). This problem can be solved by doing burst estimation in the time domain itself, for example, using Matching Pursuit (MP). I think the approach presented in this paper would also work since this model is also trained on data in the time domain. Indeed, the synthetic data can be made more "challenging" by injecting multiple oscillatory bursts that are overlapping in time, for which a greedy approach like MP may fail. It would be very interesting to test whether this method can "keep up" as the data is made more challenging. While showing results from brain signals directly (e.g., Figure 7) is nice, it will be even more impactful if it is backed up with results obtained from synthetic data with known properties.

      I was wondering about what kind of "synthetic data" could be used for the results shown in Figure 8-12 but could not come up with a good answer. Perhaps data in which different sensory systems are activated (visual versus auditory) or sensory versus movement epochs are compared to see if the activation maps change as expected? We see similarities between states across multiple runs (reproducibility analysis) and across tasks (e.g. Figure 8 vs 9) and even methods (Figure 8 vs 10), which is great. However, we should also expect emergence of new modes specific to sensory activation (say auditory cortex for an auditory task). This will allow us to independently check the performance of this method.

      The authors should explain the reproducibility results (variational free energy and best run analysis) in the Results section itself, to better orient the reader on what to look for.

      Page 15: the comparison across subjects is interesting, but it is not clear why sensory-motor areas show a difference and the mean lifetime of the visual network decreases. Can you please explain this better? The promised discussion in section 3.5 can be expanded as well.

    1. Author Response:

      Reviewer #1 (Public Review):

      Summary:<br /> The global decline of amphibians is primarily attributed to deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). It is unclear whether and how skin-resident immune cells defend against Bd. Although it is well known that mammalian mast cells are crucial immune sentinels in the skin and play a pivotal role in the immune recognition of pathogens and orchestrating subsequent immune responses, the roles of amphibian mast cells during Bd infections are largely unknown. The current study developed a novel way to enrich X. laevis skin mast cells by injecting the skin with recombinant stem cell factor (SCF), a KIT ligand required for mast cell differentiation and survival. The investigators found an enrichment of skin mast cells provides X. laevis substantial protection against Bd and mitigates the inflammation-related skin damage resulting from Bd infection. Additionally, the augmentation of mast cells leads to increased mucin content within cutaneous mucus glands and shields frogs from the alterations to their skin microbiomes caused by Bd.

      Strengths:<br /> This study underscores the significance of amphibian skin-resident immune cells in defenses against Bd and introduces a novel approach to examining interactions between amphibian hosts and fungal pathogens.

      Weaknesses:<br /> The main weakness of the study is the lack of functional analysis of X. laevis mast cells. Upon activation, mast cells have the characteristic feature of degranulation to release histamine, serotonin, proteases, cytokines, and chemokines, etc. The study should determine whether X. laevis mast cells can be degranulated by two commonly used mast cell activators IgE and compound 48/80 for IgE-dependent and independent pathways. This can be easily done in vitro. It is also important to assess whether in vivo these mast cells are degranulated upon Bd infection using avidin staining to visualize vesicle releases from mast cells. Figure 3 only showed rSCF injection caused an increase in mast cells in naïve skin. They need to present whether Bd infection can induce mast cell increase and rSCF injection under Bd infection causes a mast cell increase in the skin. In addition, it is unclear how the enrichment of mast cells provides protection against Bd infection and alternations to skin microbiomes after infection. It is important to determine whether skin mast cells release any contents mentioned above.

      We would like to thank the reviewer for taking the time to review our work and for providing us with valuable feedback.

      Please note that amphibians do not possess the IgE antibody isotype1.

      To our knowledge there have been no published studies using approaches for studying mammalian mast cell degranulation to examine amphibian mast cells. Notably, several studies suggest that amphibian mast cells lack histamine2, 3, 4, 5 and serotonin2, 6. While there are commercially available kits and reagents for examining mammalian mast cell granule content, most of these reagents may not cross-react with their amphibian counterparts. This is especially true of cytokines and chemokines, which diverged quickly with evolution and thus do not share substantial protein sequence identity across species as divergent as frogs and mammals. Respectfully, while following up on these findings is possible, it would involve considerable additional work to find reagents that would detect amphibian mast cell contents.

      We would also like to respectfully point out that while mast cell degranulation is a feature most associated with mammalian mast cells, this is not the only means by which mammalian mast cells confer their immunological effects. While we agree that defining the biology of amphibian mast cell degranulation is important, we anticipate that since the anti-Bd protection conferred by enriching frog mast cells is seen after 21 days of enrichment, it is quite possible that degranulation may not be the central mechanism by which the mast cells are mediating this protection.

      As noted in our manuscript, frog mast cells upregulate their expression of interleukin-4 (IL4), which is a hallmark cytokine associated with mammalian mast cells7. We are presently exploring the role of the frog IL4 in the observed mast cell anti-Bd protection. Should we generate meaningful findings in this regard, we will add them to the revised version of this manuscript.

      We are also exploring the heparin content of frog mast cells and capacities of these cells to degranulate in vitro in response to compound 48/80. In addition, we are exploring in vivo mast cell degranulation via histology and avidin-staining. Should these studies generate significant findings, we will include them in the revised version of this manuscript.

      Per the reviewer’s suggestion, in our revised manuscript we also plan to include data showing whether Bd infections affect skin mast cell numbers and how rSCF injection impacts skin mast cell numbers in the context of Bd infections.

      In regard to how mast cells impact Bd infections and skin microbiomes, our data indicate that mast cells are augmenting skin integrity during Bd infections and promoting mucus production, as indicated by the findings presented in Figure 4A-C and Figure 5A-C, respectively. There are several mammalian mast cell products that elicit mucus production. In mammals, this mucus production is mediated by goblet cells while the molecular control of amphibian skin mucus gland content remains incompletely understood. Interleukin-13 (IL13) is the major cytokine associated with mammalian mucus production8, while to our knowledge this cytokine is either not encoded by amphibians or else has yet to be identified and annotated in these animals’ genomes. IL4 signaling also results in mucus production9 and we are presently exploring the possible contribution of the X. laevis IL4 to skin mucus gland filling. Any significant findings on this front will be included in the revised manuscript. Histamine release contributes to mast cell-mediated mucus production10, but as we outline above, several studies indicate that amphibian mast cells may lack histamine2, 3, 4, 5. Mammalian mast cell-produced lipid mediators also play a critical role in eliciting mucus secretion11 and our transcriptomic analysis indicates that frog mast cells express several enzymes associated with production of such mediators. We will highlight this observation in our revised manuscript.

      We anticipate that X. laevis mast cells influence skin integrity, microbial composition and Bd susceptibility in a myriad of ways. Considering the substantial differences between amphibian and mammalian evolutionary histories and physiologies, we anticipate that many of the mechanisms by which X. laevis mast cells confer anti-Bd protection will prove to be specific to amphibians and some even unique to X. laevis. We are most interested in deciphering what these mechanisms are but foresee that they will not necessarily reflect what one would expect based on what we know about mammalian mast cells in the context of mammalian physiologies.

      Reviewer #2 (Public Review):

      Summary:<br /> In this study, Hauser et al investigate the role of amphibian (Xenopus laevis) mast cells in cutaneous immune responses to the ecologically important pathogen Batrachochytrium dendrobatidis (Bd) using novel methods of in vitro differentiation of bone marrow-derived mast cells and in vivo expansion of skin mast cell populations. They find that bone marrow-derived myeloid precursors cultured in the presence of recombinant X. laevis Stem Cell Factor (rSCF) differentiate into cells that display hallmark characteristics of mast cells. They inject their novel (r)SCF reagent into the skin of X. laevis and find that this stimulates the expansion of cutaneous mast cell populations in vivo. They then apply this model of cutaneous mast cell expansion in the setting of Bd infection and find that mast cell expansion attenuates the skin burden of Bd zoospores and pathologic features including epithelial thickness and improves protective mucus production and transcriptional markers of barrier function. Utilizing their prior expertise with expanding neutrophil populations in X. laevis, the authors compare mast cell expansion using (r)SCF to neutrophil expansion using recombinant colony-stimulating factor 3 (rCSF3) and find that neutrophil expansion in Bd infection leads to greater burden of zoospores and worse skin pathology.

      Strengths: <br /> The authors report a novel method of expanding amphibian mast cells utilizing their custom-made rSCF reagent. They rigorously characterize expanded mast cells in vitro and in vivo using histologic, morphologic, transcriptional, and functional assays. This establishes solid footing with which to then study the role of rSCF-stimulated mast cell expansion in the Bd infection model. This appears to be the first demonstration of the exogenous use of rSCF in amphibians to expand mast cell populations and may set a foundation for future mechanistic studies of mast cells in the X. laevis model organism. 

      We thank the reviewer for recognizing the breadth and extent of the undertaking that culminated in this manuscript. Indeed, this manuscript would not have been possible without considerable reagent development and adaptation of techniques that had previously not been used for amphibian immunity research. In line with the reviewer’s sentiment, to our knowledge this is the first report of using molecular approaches to augment amphibian mast cells, which we hope will pave the way for new areas of research within the fields of comparative immunology and amphibian disease biology.

      Weaknesses:<br /> The conclusions regarding the role of mast cell expansion in controlling Bd infection would be stronger with a more rigorous evaluation of the model, as there are some key gaps and remaining questions regarding the data. For example:

      1. Granulocyte expansion is carefully quantified in the initial time courses of rSCF and rCSF3 injections, but similar quantification is not provided in the disease models (Figures 3E, 4G, 5D-G). A key implication of the opposing effects of mast cell vs neutrophil expansion is that mast cells may suppress neutrophil recruitment or function. Alternatively, mast cells also express notable levels of csfr3 (Figure 2) and previous work from this group (Hauser et al, Facets 2020) showed rG-CSF-stimulated peritoneal granulocytes express mast cell markers including kit and tpsab1, raising the question of what effect rCSF3 might have on mast cell populations in the skin. Considering these points, it would be helpful if both mast cells and neutrophils were quantified histologically (based on Figure 1, they can be readily distinguished by SE or Giemsa stain) in the Bd infection models.

      We thank the reviewer for this insightful suggestion. We are performing a further examination of skin granulocyte content during Bd infections and plan on including any significant findings in our revised manuscript.

      We predict that rSCF administration results in the accumulation of mast cells that are polarized such that they ablate the inflammatory response elicited by Bd infection. Mammalian mast cells, including peritonea-resident mast cells, express csf3r12, 13. Although the X. laevis animal model does not permit nearly the degree of immune cell resolution afforded by mammalian animal models, we do know that the adult X. laevis peritonea contain heterogenous leukocyte populations. We anticipate that the high kit expression reported by Hauser et al., 2020 in the rCSF3-recruited peritoneal leukocytes reflects the presence of mast cells therein. As such and in acknowledgement of the reviewer’s suggestion, we also think that the cells recruited by rCSF3 into the skin may include not only neutrophils but also mast cells. Possibly, these mast cells have distinct polarization states from those enriched by rSCF. While the lack of antibodies against frog neutrophils or mast cells has limited our capacity to address this question, we will attempt to reexamine by histology the proportions of skin neutrophils and mast cells in the skins of frogs under the conditions described in our manuscript. Any new findings in this regard will be included in the revised version of this work.

      2. Epithelial thickness and inflammation in Bd infection are reported to be reduced by rSCF treatment (Figure 3E, 5A-B) or increased by rCSF3 treatment (Figure 4G) but quantification of these critical readouts is not shown.

      We thank the reviewer for this suggestion. We will score epithelial thickness under the distinct conditions described in our manuscript and present the quantified data in the revised paper.

      3. Critical time points in the Bd model are incompletely characterized. Mast cell expansion decreases zoospore burden at 21 dpi, while there is no difference at 7 dpi (Figure 3E). Conversely, neutrophil expansion increases zoospore burden at 7 dpi, but no corresponding 21 dpi data is shown for comparison (Figure 4G). Microbiota analysis is performed at a third time point,10 dpi (Figure 5D-G), making it difficult to compare with the data from the 7 dpi and 21 dpi time points. Reporting consistent readouts at these three time points is important to draw solid conclusions about the relationship of mast cell expansion to Bd infection and shifts in microbiota.

      Because there were no significant effects of mast cell enrichment at 7 days post Bd infection, we chose to look at the microbiome composition in a subsequent experiment at 10 days and 21 days post Bd infection, with 10 days being a bit more of a midway point between the initial exposure and day 21, when we see the effect on Bd loads. We will clarify this rationale in the revised manuscript.

      The enrichment of neutrophils in frog skins resulted in prompt (12 hours post enrichment) skin thickening (in absence of Bd infection) and increased frog Bd susceptibility by 7 days of infection. Conversely, mast cell enrichment stabilized skin mucosal and symbiotic microbial environment, presumably accounting at least in part for the lack of further Bd growth on mast cell-enriched animals by 21 days of infection. Our question regarding the roles of inflammatory granulocytes/neutrophils during Bd infections was that of ‘how’ rather ‘when’ these cells affect Bd infections. Because the central focus of this work was mast cells and not other granulocyte subsets, when we saw that rCSF3-recruited granulocytes adversely affected Bd infections at 7 days post infection, we did not pursue the kinetics of these responses further. We plan to explore the roles of inflammatory mediators and disparate frog immune cell subsets during the course of Bd infections, but we feel that these future studies are more peripheral to the central thesis of the present manuscript regarding the roles of frog mast cells during Bd infections.

      4. Although the effect of rSCF treatment on Bd zoospores is significant at 21 dpi (Figure 3E), bacterial microbiota changes at 21 dpi are not (Figure S3B-C). This discrepancy, how it relates to the bacterial microbiota changes at 10 dpi, and why 7, 10, and 21 dpi time points were chosen for these different readouts (Figure 5F-G), is not discussed.

      Our results indicate that after 10 days of Bd infection, control Bd-challenged animals exhibited reduced microbial richness, while skin mast cell-enriched Bd-infected frogs were protected from this disruption of their microbiome. The amphibian microbiome serves as a major barrier to these fungal infections14, and we anticipate that Bd-mediated disruption of microbial richness and composition facilitates host skin colonization by this pathogen. Control and mast cell-enriched animals had similar skin Bd loads at 10 days post infection. However, by 21 days of Bd infection the mast cells-enriched animals maintained their Bd loads to levels observed at 10 days post infection, whereas the control animals had significantly greater Bd loads. Thus, we anticipate that frog mast cells are conferring the observed anti-Bd protection in part by preventing microbial disassembly and thus interfering with optimal Bd colonization and growth on frog skins. In other words, maintained microbial composition at 10 days of infection may be preventing additional Bd colonization/growth, as seen when comparing skins of control and mast cell-enriched frogs at 21 days post infection. By 21 days of infection, control animals rebounded from the Bd-mediated reduction in bacterial richness seen at 10 days. Considering that after 21 days of infection control animals also had significantly greater Bd loads than mast-cell enriched animals suggests that there may be a critical earlier window during which microbial composition is able to counteract _Bd_growth. 

      While the current draft of our manuscript has a paragraph to this effect (see below), we appreciate the reviewer conveying to us that our perspective on the relationship between skin mast cells and the kinetics of microbial composition and _Bd_loads could be better emphasized. We plan to revise our manuscript to include the above discussion points. 

      Bd infections caused major reductions in bacterial taxa richness, changes in composition and substantial increases in the relative abundance of Bd-inhibitory bacteria early in the infection. Similar changes to microbiome structure occur during experimental Bd infections of red-backed salamanders and mountain yellow-legged frogs15, 16. In turn, progressing Bd_infections corresponded with a return to baseline levels of _Bd-inhibitory bacteria abundance and rebounding microbial richness, albeit with dissimilar communities to those seen in control animals. These temporal changes indicate that amphibian microbiomes are dynamic, as are the effects of Bd infections on them. Indeed, Bd infections may have long-lasting impacts on amphibian microbiomes15. While Bd infections manifested in these considerable changes to frog skin microbiome structure, mast cell enrichment appeared to counteract these deleterious effects to their microbial composition. Presumably, the greater skin mucosal integrity and mucus production observed after mast cell enrichment served to stabilize the cutaneous environment during Bd infections, thereby ameliorating the Bd-mediated microbiome changes. While this work explored the changes in established antifungal flora, we anticipate the mast cell-mediated inhibition of Bd may be due to additional, yet unidentified bacterial or fungal taxa. Intriguingly, while mammalian skin mast cell functionality depends on microbiome elicited SCF production by keratinocytes17, our results indicate that frog skin mast cells in turn impact skin microbiome structure and likely their function. It will be interesting to further explore the interdependent nature of amphibian skin microbiomes and resident mast cells.

      5. The time course of rSCF or rCSF3 treatments relative to Bd infection in the experiments is not clear. Were the treatments given 12 hours prior to the final analysis point to maximize the effect? For example, in Figure 3E, were rSCF injections given at 6.5 dpi and 20.5 dpi? Or were treatments administered on day 0 of the infection model? If the latter, how do the authors explain the effects at 7 dpi or 21 dpi given mast cell and neutrophil numbers return to baseline within 24 hours after rSCF or rCSF3 treatment, respectively?

      Please find the schematic of the immune manipulation, Bd infection, and sample collection times below. We will include a figure like this in our revised manuscript.

      The title of the manuscript may be mildly overstated. Although Bd infection can indeed be deadly, mortality was not a readout in this study, and it is not clear from the data reported that expanding skin mast cells would ultimately prevent progression to death in Bd infections.

      We acknowledge this point. The revised manuscript will be titled: “Amphibian mast cells: barriers to chytrid fungus infections”.

      Reviewer #3 (Public Review):

      Summary:<br /> Hauser et al. provide an exceptional study describing the role of resident mast cells in amphibian epidermis that produce anti-inflammatory cytokines that prevent Batrachochytrium dendrobatidis (Bd) infection from causing harmful inflammation, and also protect frogs from changes in skin microbiomes and loss of mucin in glands and loss of mucus integrity that otherwise cause changes to their skin microbiomes. Neutrophils, in contrast, were not protective against Bd infection. Beyond the beautiful cytology and transcriptional profiling, the authors utilized elegant cell enrichment experiments to enrich mast cells by recombinant stem cell factor, or to enrich neutrophils by recombinant colony-stimulating factor-3, and examined respective infection outcomes in Xenopus.

      Strengths:<br /> Through the use of recombinant IL4, the authors were able to test and eliminate the hypothesis that mast cell production of IL4 was the mechanism of host protection from Bd infection. Instead, impacts on the mucus glands and interaction with the skin microbiome are implicated as the protective mechanism. These results will press disease ecologists to examine the relative importance of this immune defense among species, the influence of mast cells on the skin microbiome and mucosal function, and open the potential for modulating mucosal defense.

      We thank the reviewer for recognizing the significance and utility of the findings presented in our manuscript.

      Weaknesses:<br /> A reduction of bacterial diversity upon infection, as described at the end of the results section, may not always be an "adverse effect," particularly given that anti-Bd function of the microbiome increased. Some authors (see Letourneau et al. 2022 ISME, or Woodhams et al. 2023 DCI) consider these short-term alterations as encoding ecological memory, such that continued exposure to a pathogen would encounter an enriched microbial defense. Regardless, mast cell-initiated protection of the mucus layer may negate the need for this microbial memory defense.

      We thank the reviewer their insightful comment. We will revise our discussion to include this possible interpretation.

      While the description of the mast cell location in the epidermal skin layer in amphibians is novel, it is not known how representative these results are across species ranging in chytridiomycosis susceptibility. No management applications are provided such as methods to increase this defense without the use of recombinant stem cell factor, and more discussion is needed on how the mast cell component (abundance, distribution in the skin) of the epidermis develops or is regulated.

      We appreciate the reviewer’s comment and would like to point out that the work presented in our manuscript was driven by comparative immunology questions more than by conservation biology.

      We thank the reviewer for suggesting expanding our discussion to include potential management applications and potential mechanisms for regulating frog skin mast cells. While any content to these effects would be highly speculative, we agree that it may spark new interest and pave new avenues for research. To this end, our revised manuscript will include a paragraph to this effect.

      References:

      1.         Flajnik, M.F. A cold-blooded view of adaptive immunity. Nat Rev Immunol 18, 438-453 (2018).

      2.         Mulero, I., Sepulcre, M.P., Meseguer, J., Garcia-Ayala, A. & Mulero, V. Histamine is stored in mast cells of most evolutionarily advanced fish and regulates the fish inflammatory response. Proc Natl Acad Sci U S A 104, 19434-19439 (2007).

      3.         Reite, O.B. A phylogenetical approach to the functional significance of tissue mast cell histamine. Nature 206, 1334-1336 (1965).

      4.         Reite, O.B. Comparative physiology of histamine. Physiol Rev 52, 778-819 (1972).

      5.         Takaya, K., Fujita, T. & Endo, K. Mast cells free of histamine in Rana catasbiana. Nature 215, 776-777 (1967).

      6.         Galli, S.J. New insights into "the riddle of the mast cells": microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab Invest 62, 5-33 (1990).

      7.         Babina, M., Guhl, S., Artuc, M. & Zuberbier, T. IL-4 and human skin mast cells revisited: reinforcement of a pro-allergic phenotype upon prolonged exposure. Archives of dermatological research 308, 665-670 (2016).

      8.         Lai, H. & Rogers, D.F. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways. J Aerosol Med Pulm Drug Deliv 23, 219-231 (2010).

      9.         Rankin, J.A. et al. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc Natl Acad Sci U S A 93, 7821-7825 (1996).

      10.       Church, M.K. Allergy, Histamine and Antihistamines. Handb Exp Pharmacol 241, 321-331 (2017).

      11.       Nakamura, T. The roles of lipid mediators in type I hypersensitivity. J Pharmacol Sci 147, 126-131 (2021).

      12.       Aponte-Lopez, A., Enciso, J., Munoz-Cruz, S. & Fuentes-Panana, E.M. An In Vitro Model of Mast Cell Recruitment and Activation by Breast Cancer Cells Supports Anti-Tumoral Responses. Int J Mol Sci 21 (2020).

      13.       Jamur, M.C. et al. Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors. BMC Immunol 11, 32 (2010).

      14.       Walke, J.B. & Belden, L.K. Harnessing the Microbiome to Prevent Fungal Infections: Lessons from Amphibians. PLoS Pathog 12, e1005796 (2016).

      15.       Jani, A.J. et al. The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME J 15, 1628-1640 (2021).

      16.       Muletz-Wolz, C.R., Fleischer, R.C. & Lips, K.R. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol Ecol 28, 2917-2931 (2019).

      17.       Wang, Z. et al. Skin microbiome promotes mast cell maturation by triggering stem cell factor production in keratinocytes. J Allergy Clin Immunol 139, 1205-1216 e1206 (2017).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 Evidence, reproducibility and clarity: Bompierre et al have presented a set of interesting findings that demonstrate the interconnected roles of multiple PDEs in striatal cholinergic interneurons. They show that the regulation of neurons by PDEs differs between ChiNs and MSNs. Disentangling the complex and interconnected biology of PDE subtypes and calcium signalling is notoriously difficult and I commend the authors for not shying away from it. The data are interesting and compelling however I have a number of readily addressable concerns regarding their statistical analysis.

      We are very grateful to the reviewer for the careful reading of our manuscript, positive comments and useful suggestions to enhance its readability. We also thank the reviewer for highlighting the difficulties resulting from the scarcity of these neurons. As described in the manuscript, during the course of several other projects, we noticed this sparse neuronal population that clearly departed from the vast majority of striatal neurons, the medium-sized spiny neurons. This particular neuronal population was identified as ChINs only later with immunohistochemistry. We were quite surprised that our visual identification was confirmed by immunohistochemistry in all cases, as described, now with more details, in the manuscript. We then performed a number of new experiments focused on ChINs while we could also re-analyze older experiments performed for other projects and in which ChINs were visually identified - all our experiments are terminated with the acquisition of a Z stack which allows a precise observation of each neuron in the imaging field. This explains some changes in the drugs presented in this manuscript.

      Major concerns: • Statistics, general comments: o When performing multiple comparisons (as in figures 2-6) the authors should be using a one-way ANOVA or Friedman's test (for non-parametric).

      Since data normality of a few samples was rejected by the Shapiro-Wilk test, and in line with our previous publication, we used non-parametric statistics for all of this study. The Friedman’s test is now applied to all situations comparing more than two conditions.

      o When comparing an effect size between experimental conditions e.g. cAMP following NMDA with or without Lu AF64193, the conditions need to be compared directly, not just inferred from being 0.05. [ see Makin and Orban de Xivry 2019 PMID: 31596231 and Nieuwnhuis et al 2011 PMID: 31596231 for more details].

      We agree with this comment and the recommended tests have been performed.

      o Please include P values and degrees of freedom for each analysis, rather than just * indicating PP values are now indicated in the text - although a smaller P value does not imply that the difference is “more” significant. Degrees of freedom do not apply with Friedman and Wilcoxon rank tests.

      • Introduction: o Page 3 para, describing the various PDEs reported to operate in ChiNs vs MSNs, is very convoluted and hard to follow. I recommend replacing this paragraph with a table: column 1: PDE subtype, 2: neuron type, 3: effect reported 4: ref.

      We agree that this paragraph was difficult to understand. We tried to build a table as suggested, but such table could not convey all the aspects that we think should be made clear (mRNA or protein data, for example). Instead, we propose a revised paragraph that we hope will be easier to read.

      • Methods: o Please include explanation for estimated cAMP concentration (right axis on figs 2c, 3b,5c-f

      This was described in “Methods / Estimates of biosensor activation level”. We also added a similar estimate for cGMP concentration based on our previous work with the cGMP biosensor cyGNAL in Figures 4 and 6.

      o Please specify slice thickness and age of mice

      Slice thickness was missing and now added in methods (300 µm). The age was indicated in the first paragraph of Methods: “7 to 12 days”.

      • Figure 1: o describe if 13 uM fsk is supposed to be a maximal concentration, what is the justification for this concentration. Is there a previously published dose-response curve?

      A biochemical study of adenylyl cyclase intracellular domains (VC1 and IIC2 heteromer) reports a Kd for forskolin of 0.1 µM {Dessauer et al., 1997, J Biol Chem, 272, 22272-7}, well below the dose we used. To our knowledge, there is no published dose-response analysis of forskolin effect in ChINs and we did not perform this measurement. We routinely use 13 µM for practical reasons, our stock being 25 mM diluted 2,000-fold. ChINs display a much lower cAMP response than MSNs at this dose: we think that this interesting observation deserves to be reported (but we would like to point out that this is only a marginal aspect of our study). We totally agree that this point deserves more explanation and a paragraph has been added in the discussion: “The low responsiveness of ChINs to cAMP-activating signals such as forskolin is striking but the underlying cellular mechanisms remain to be determined. All adenylyl cyclases except AC9 are activated by forskolin {Defer et al., 2000, Am J Physiol Renal Physiol, 279, F400-16}. AC1, AC2 and AC5 are widely expressed in the brain, including the striatum {Matsuoka et al., 1997, J Neurochem, 68, 498-506}. Cluster analysis of mRNA transcript suggest that AC1 and AC2 predominate in ChINs whereas AC5 is mainly expressed in MSNs {Saunders et al., 2018, Cell, 174, 1015-1030.e16}. This indicates that the reduced responsiveness to forskolin in ChINs compared to MSNs does not result from ChINs lacking adenylyl cyclases sensitive to forskolin.”.

      • Figure 2c: o Clarify which replicates are shown on the graph (I assume it's the n=11 i.e. number of slices)

      Yes, the plot shows the 11 replicates of the same protocol, with each set of 3 points of a same color linked with a line showing the measurements for one experiment. This is now stated more clearly in the figure legend.

      o You say "PDE3 thus contributes importantly to the regulation of cAMP level, and when this phosphodiesterase is inactivated pharmacologically, cAMP level becomes controlled by PDE4." But in fig 2c panel 2 inhibition of PDE4 with Picla increases cAMP without PDE3 being already inhibited. This doesn't agree with your statement, which implies that PDE4 only controls cAMP once PDE3 has been inhibited.

      This is unfortunate since we did not want to suggest that PDE4 has no effect unless PDE3 is inhibited. Indeed, this experiment together with the next actually demonstrate that PDE3 and 4 are simultaneously engaged in cAMP regulation. This ambiguity was also noted by reviewer 3. We thus rephrased the link between between these two paragraphs.

      o Data described but not shown: "In the absence of forskolin, application of PDE3 inhibitor (cilostamide, 1 µM, N=3; n=3; A=3) or PDE4 inhibitor (rolipram, 1 µM, N=2; n=2; A=2) or their combination (N=6; n=8; A=3) induced no significant ratio change in ChINs (as well as in MSNs)".

      We removed the mention to the experiments with cilostamide and rolipram alone since N was less than 5. The effect of rolipram and cilostamide together are displayed in Figure 2, with proper statistics indicated in the text.

      Also please explain why you have changed PDE inhibitor?

      This project developed over several years and the phosphodiesterase inhibitors used in the team changed depending on their availability. In addition, some data such as the lack of effects on baseline cAMP level were extracted from experiments performed for other purposes, hence some differences in the inhibitors we used. Please note that given the scarcity of this neuronal population, many more trials and mice would be required to reproduce these experiments with a single inhibitor. We further consider that our approach contributes to the desired reduction in the use of animals in research (the 3-R).

      • Figure 4: o Please clarify in text that data in 4b is from ChiNs and not pooled with data from MSNs? i.e. is the summary data from MSNs not shown?

      Figure 4B and C only show average calcium responses in ChINs. This is now indicated in the results section “Figure 4B shows the calcium response to NMDA in ChINs with the average trace (left), and baseline and peak amplitude (right) for individual ChINs.” The calcium response to NMDA uncaging in MSNs has already been published (Betolngar 2019) and is not shown in this study.

      o Response to DHPG is not formally compared between MSNs and ChiNs

      In MSNs, the calcium response to DHPG showed variability, with a lack of response in most experiments but a clear calcium signal in a few MSNs. The cause of this variability was not the focus of this study but, nevertheless, we wanted to mention this qualitative observation to stimulate future studies on this subject. However, if a quantitative measurement of this variability is required, the description of the DHPG effect on MSNs will be removed.

      • Figure 5: o Explain reasoning for switching PDE4 inhibitor (roflumilast).

      At the time these experiments were performed, we were using roflumilast to inhibit PDE4.

      Explain change in fsk concentration (0.5 uM in figure 5 vs 13 uM in earlier figs)

      We wanted to study PDE1 in isolation, i.e. in conditions in which both PDE3 and PDE4 were inhibited. Simultaneous inhibition of PDE3 and 4 leads to biosensor saturation (Figure 2), a situation in which a PDE1-mediated decrease in cAMP level might be difficult to resolve. The forskolin concentration was therefore reduced to decrease adenylyl cyclase activation. This is now explained in the manuscript: ”In order to stimulate a moderate cAMP production and thus maintain the visibility of PDE1 action, a lower concentration of forskolin (0.5 µM) was employed in these experiments.“

      o Text states: "These effects were blocked with Lu AF64196 (1-10 µM), a potent and selective PDE1 inhibitor" but this was not formally tested and in the figure a response is still visible (smaller than before Lu, but not blocked)

      Indeed, a small change in the average ratio trace is still visible, so we changed “blocked” by “largely reduced”. The effect of Lu AF64196 in the NMDA condition was tested as follows: the change in ratio level induced by NMDA uncaging was calculated in control and Lu AF64196 conditions. This ratio change was compared between control and Lu condition with a Wilcoxon rank test. The same test was applied to compare control and DHPG condition. This is now indicated in the manuscript.

      o Please explain the reason for the different time courses in figure 5ab vs 5c-f)

      Figure 5A,B are illustrative experiments. Figure 5C-F are average traces from several experiments. This is indicated in the figure legend.

      o Data not shown: "Of note, the addition of the PDE1 inhibitor did not increase the steady-state cAMP level, demonstrating that PDE1 did not exhibit a tonic activity before its activation by the calcium signal"

      In our experimental conditions, the cAMP level is too high to faithfully report an increase in cAMP upon Lu AF64196 application, so we removed this sentence. However, the cGMP level in the presence of DEANO is farther from saturation, allowing to perform this control: the application of Lu AF64196 produced no significant increase in cGMP level, indicating that PDE1 is not active in our experimental conditions. This has been added in the results.

      • Figure 6: o Comment on why using quisqualate (mixed AMPA and mGLuR) rather than DHPG as used previously?

      These early experiments were performed with these drugs until we made sure that group 1 mGlu was responsible for this effect and the more specific agonist DHPG was used. The drug combination, however, is specific of group I mGlu activation.

      o Again, effect reported as being blocked, but not formally tested and a response is still evident on the graph. If the authors believe that response is an artefact from the stim then please show data with NMDAR antagonists.

      We agree that a small change in the average ratio trace is still visible, so we changed “blocked” by “largely reduced”. The effect of Lu AF64196 was tested as described above for cAMP, which is now indicated in the manuscript. We agree that NMDA as well as mGlu stimulation, by increasing calcium, can affect cyclic nucleotides by other mechanisms than PDE1 activation. This was already reported in our previous work, in particular in the hippocampus and cortex (Betolngar 2019). We are not sure that NMDAR antagonists would clarify the situation since NMDA receptor blockade would probably suppress the cAMP change that is still visible in the presence of the PDE1 inhibitor. Nonetheless our manuscript reports experimental conditions in which the vast majority of the effect that we focus on is blocked by the PDE1 selective inhibitor.

      • Discussion: o Add references in para 2 describing the PDEs expressed by ChiNs

      Done

      o Figure 7: cartoon indicates that calcium will exclusively activate PDE1A, is this for simplicity or is their evidence to support this?

      Single-cell RT-PCR data {Saunders et al., 2018, #42891} indicate that ChINs express PDE1A but not PDE1B. This is now indicated in the introduction. The cartoon has been changed accordingly.

      o Please comment on the specificity of the pharmacological tools used throughout the study.

      Phosphodiesterases bear a cleft-shaped catalytic site that is particularly amenable to chemical inhibition, and phosphodiesterase thus constitute a therapeutic target of great interest: a large number of highly specific phosphodiesterase inhibitors have been developed and tested by pharmaceutical companies. It nonetheless remains that our demonstration relies on the specificity of the phosphodiesterase inhibitors. We added a sentence in the discussion “We used highly specific phosphodiesterase inhibitors to acutely test the functional contribution of these phosphodiesterases.” to acknowledge this.

      o In the context of regulation of striatal cholinergic and dopaminergic signalling by NO (via cGMP), I believe the authors should cite Hartung et al PMID: 21508928

      This very valuable citation has been added in the discussion.

      Minor comments: • Page 3 paragraph 1 and 3 the authors have used ellipsis instead of finishing their sentences.

      Done.

      • In figure 1a please indicate you are recording in dorsomedial region of the striatum (you state in methods this is your recording location, but it would be helpful to show it here)

      We thought of improving the cartoon in Figure 1 by drawing a rectangle over the dorso-medial striatum on the image of the brain slice, but that would suggest that the slices had been cut at this stage of the preparation, which was not the case. Adding another image of a brain slice would clutter the figure. We leave it to the Editor to decide how this should be handled.

      • The authors use a lot of different drugs, I think a table listing the drugs, concentrations and their targets would help limit confusion.

      This will certainly make it easier for the reader. This table has been added in Methods / Chemicals and drugs.

      • I found the graphs with each replicate in a different colour quite difficult to read. My personal preference would be for graphs to show each replicate as a transparent line/small symbol, with the mean and SEM shown larger and in bold.

      We tried to enhance the visibility as suggested. SEM should not be shown since our statistics are non-parametric.

      Significance: General strengths: The question of how PDEs interact to regulate striatal output is extremely interesting and notoriously difficult to tackle. The authors have relied upon pharmacological manipulation of PDEs. A pharmacological approach has both strengths (intact system with little compensation occurring between PDEs, which would occur with a genetic strategy) and weaknesses (relying on each of the drugs to act selectively and specifically). By investigating multiple PDEs in the same system in two neuron types, I believe the authors are illustrating interesting findings. For these findings to be more concrete I believe they need a more robust statistical approach, but the experiments and questions are valid. PDEs are of interest to most neuroscientists and understanding cholinergic function is of interest to anyone studying the striatum of basal ganglia more broadly. My expertise is investigating the interactions between striatal cholinergic and dopaminergic signalling.

      Reviewer #2 Evidence, reproducibility and clarity : The work characterizes in depth the dynamics of the cyclic nucleotide signaling in cholinergic interneurons (ChINs) in the striatum and the interconnection with calcium signaling. The study is ambitious and risky since it targets a minority of neurons representing only 1% of the total population of striatal neurons. For that they used genetically encoded biosensors, at a very low infection rate, and highly specific phosphodiesterase inhibitors. With these tools they defined PDE1, PDE3 and PDE4 as the key regulators of cAMP levels in ChINs and the interplay with incoming signals raising cGMP and free-calcium levels after nitric oxide or glutamate activation of NMDA or mGlu1/5 receptors, respectively. The conclusions of the study are solid and well supported by the experimental results.

      We would like to thank the reviewer for his/her positive comments about our work.

      The team has the necessary technical and conceptual background in the field. This is very important to trust the criteria they used to identify ChINs, a fundamental hallmark in this study.

      Again, we are very grateful to the reviewer for this very positive comment.

      Still, confirmation by immunohistochemical labeling with ChAT antibodies sounds important and perhaps it should had been performed in more experiments.

      We agree that our qualitative immunostaining validation of ChAT expression was too terse. We re-analyzed our archived data to provide a more precise account of our observations. We first identified ChINs from their morphology in the biosensor image stack, then checked whether these neurons were positive for ChAT. This is now explained in detail in “Identification of Cholinergic Interneurons in a brain slice”: “11 brain slices were fixed after the biosensor experiment and later processed for ChAT immunoreactivity. In these slices, 15 neurons were visually identified as ChINs during the biosensor recording session. All of these neurons showed a positive ChAT labelling.”

      Significance: The results represent an important conceptual advance in the field. To understand better the signaling that regulates firing of cholinergic neurons in the striatum might be relevant to explain pathological responses and they could be useful to define better strategies for the treatment of Parkinson's patients, for instance. In this regard, this study fills an existing gap since this elusive neuronal population was not functionally characterized before. The basic aspects of the study could be of interest to a broad audience.

      Reviewer #3 Evidence, reproducibility and clarity: Summary: The author's present very elegant findings regarding how NO regulates cAMP in striatal cholinergic interneurons (ChINs). The major strength of the manuscript lies in the approach, which enables single-cell imaging of neuronal signaling in acute brain slices. A clever combination of pharmacological tools were then utilized to dissect PDE contribution toward cAMP alterations in ChINs. While the manuscript is high-quality, there are a few controls and points of discussion that need to be considered.

      We would like to thank the reviewer for his/her careful reading of our manuscript and very positive comments about our study.

      Major: There are numerous references to results seemingly missing from the figures. - Figure 2 TP-10 - Figure 2 PF-05 traces - Figure 2 data in absence of FSK (rolipram, cilo) - Figure 3 ODQ

      We thought that these experiments showing a lack of effect were of little interest to the reader and therefore omitted raw traces and statistics from the manuscript. However, we fully agree to display more of our data, as long as it does not clutter the main points of our manuscript. We now illustrate the lack of effect of PDE2A inhibition with a typical experiment in Figure 2C. The ratio level is now shown in Figure 2D for roli-cilo and TP-10, with matching statistics in the text. Figure 3 now shows the lack of effect of ODQ.

      Have the author's considered an alternative perspective that slow cAMP detection in ChIN, relative to MSN, could be due to the size of neuron? The significantly greater volume of ChIN soma could conceivably require more cAMP to reach the detection threshold of the biosensor. Therefore, how do the author's reconcile such technical caveats?

      This is a very interesting hypothesis that is supported by many theoretical and experimental data: it takes longer for membrane adenylyl cyclases to fill up a void volume in which both phosphodiesterases and the biosensor reside. We could rule-out the buffering effect of the biosensor by the experiment described in Figure 1B, but a lower surface to volume ratio such as that observed for ChINs vs MSNs could indeed explain a biologically slower onset in cAMP level. However, a lower surface to volume ratio should not affect the steady-state level that will be eventually reached upon continuous forskolin application: it takes longer to fill up the volume but, if waiting long enough, the final level will be only determined by the equilibrium between cyclase and phosphodiesterase. Forskolin applications of more than 10 min (Figure 2) led to steady-state levels that were far below biosensor saturation, while it did reach saturation in MSNs. Therefore, while we certainly acknowledge the importance of the peculiar neuronal morphology of ChINs, there must be additional specific differences between ChINs and MSNs. In any case, we agree that this important point was missing in our manuscript and we added a paragraph in the discussion to discuss differences in adenylyl cyclases and cell geometry.

      In the traces from Figure 2, it is unclear why PDE3 and PDE4 have differential contributions toward cAMP elevation depending on the order of inhibition.

      Thank you for pointing out our poor wording, which has also been noted by the first reviewer. Indeed, the data in Figure 2 shows that PDE3 and PDE4 are simultaneously engaged in cAMP regulation. This part has been rewritten.

      Moreover, we cannot conclude that PDE3 and PDE4 the major PDEs in ChIN from such experiment based on the result that IBMX did not further raise cAMP. Likely, the biosensor has reached the detection ceiling. This should be discussed as a possibility.

      It is an interesting possibility that cAMP levels higher than biosensor saturation level ([cAMP] above 100 µM) could be modulated after PDE3 and PDE4 inhibition, in concentration ranges that go beyond biosensor saturation level. However, our experiments clearly demonstrate that the combined action of PDE3 and PDE4 constitutes the first line of cAMP control since the concomitant inhibition of PDE3 and PDE4 raises [cAMP] beyond physiological relevance. When both PDE3 and PDE4 were inhibited, cAMP indeed reached the level of biosensor saturation which led us to state “The ratio was not further raised by the non-specific phosphodiesterase inhibitor IBMX (200 µM), indicating the saturation level of the biosensor by cAMP (Rmax)”, a conclusion that remains valid.

      The author's intepretation ignores the influence of calcium on the activity of various types of ACs, which seems to be a critical feature given the experimental design that first broadly stimulates ACs with forskolin.

      We agree with the Reviewer that calcium will certainly activate AC1 (possibly present in ChINs) and inhibit AC5 (expressed in MSNs and possibly also in ChINs). Our experimental design relies on the highly specific PDE1 inhibitor to isolate the selective contribution of PDE1, but minor changes in cAMP and cGMP remained even after PDE1 inhibition, as also pointed out by the first Reviewer. We found experimental conditions in which the contribution of PDE1 could be largely visible, which was the point of this study. However, we certainly agree with the Reviewer that a calcium signal will affect cyclic nucleotide levels through a number of other mechanisms. Therefore, we added the sentence “It should also be noted that, in the presence of the PDE1 inhibitor Lu AF64196, some changes in cAMP level still remained, which can result either from incomplete PDE1A inhibition and/or from NMDA effects on other targets, such as calcium-modulated adenylyl cyclases.”

      A missing control in Figure 5 is the effect of Lu AF64196 by itself on cAMP (and in the presence of FSK pre stimulation).

      We agree that this is an important control. However, this could not be tested on this protocol with cAMP since the ratio was too close to Rmax, and an increase in cAMP level following PDE1 inhibition would be undetectable. However, with cGMP imaging, the ratio reached with DEANO was farther from saturation such that an increase in cGMP resulting from the inhibition of PDE1 should be detectable. However, Lu AF64196 showed no significant effect. This measurement was added in the manuscript: “As a control, we verified that PDE1inhibition had no effect on the steady-state cGMP level elicited by 10 µM DEANO (Figure 7G: in DEANO: 0.78 of Rmax; in DEANO and Lu AF64196: 0.81; N=5, n=6, a=5; Wilcoxon P=0.094).”

      The mechanism would be signicantly bolstered by measuring cAMP from PDE4 inhibition following forskolin and DEANO (Figure 3).

      It is true that, in the presence of forskolin and DEANO, the only PDE that remains is PDE4: its inhibition should increase cAMP to the maximal level. Unfortunately, this experimental scheme was not tested. However, Figure 3 is focusing on the regulation of PDE3 by cGMP and at this stage of the reasoning, it might be confusing to get back to the question of which PDE remains after PDE3 has been blocked. In this manuscript, we want to highlight that PDE3 is blocked via the NO-cGMP signaling pathway, and we think that the data in Figure 3 demonstrates this point clearly.

      Minor: The introduction should discuss the critical role of ChIN in striatum rather than simply stating "critical role in striatal functions"

      A paragraph has been added in the Introduction to highlight the importance of ChINs in striatal function.

      PDE should be included as abbreviation in introduction after first mention of phosphodiesterases.

      We agree that this was inducing confusion. We keep PDE1-11 as it is the official names of proteins, but we replaced all occurrences of “PDE” by “phosphodiesterases” when alluding to the general concept of this class of enzymes.

      Light sources (e.g. laser) for excitation during imaging are missing from the methods.

      This was indicated in Methods / Biosensor imaging: “LED light sources (420 nm with a 436 nm excitation filter and 360 nm) were purchased from Mightex (Toronto, Canada).”

      The study certainly provides implication for diseases associated with striatal dysfunction such as Parkinson's disease. However, it may be important to note that experiments were performed on slice preparations from very young animals, which could have inherent differences in functionality relative to an aged or diseased context.

      We agree that our preparation of brain slices from mice pups is not representative of what could be found in adults, and even less in pathological conditions. Nonetheless, we believe that we identified a crosstalk mechanism that has never been reported in neurons, and that is not taken into account in theories of striatal functions. We hope that this novel understanding will lead to the development of experiments on adult mice that might confirm the functional importance of this effect, in particular pharmacological studies in adult animals with PDE3 inhibitors.

      Significance: General assessment: The study utilizes pharmacological tools to selectively target enzymes and receptors in the cAMP cascade to mechanistically dissect how cAMP is handled in ChINs. The major strength is ability to perform such experiments in acute brain slices, i.e. a "native" neuronal context. An exciting aspect is stimulation of NMDAR by agonist-uncaging, thereby revealing an endogenous signaling route that modulates cAMP. A major physiological limitation is reliance on fsk to induce AC activity, however the approach is suitable to obtain mechanistic information. Moreover, conducting experiments in a Parkinsonian disease model would provide tremendous value, although such pursuits are beyond the scope of the work here. Advance: The study builds off robust studies previously published by the author's. The work is also similar to AC-cAMP investigations on acute brain slices performed by the Sabatini (24765076, 29154125) and Martemyanov (29298426, 31644915) labs, which unfortunately were not discussed/cited here. This is perhaps a missed opportunity to highlight the significance of the author's study. For instance, the Sabatini lab investigated calcium influence on cAMP but in the hippocampus. The Martemyanov lab investigated striatal cAMP, but not in ChINs or through calcium or cGMP mechanisms. Therefore there is a gap toward understanding striatal ChINs, which is clearly demonstrated in the author's work here.

      These very important references have been left out of our manuscript intentionally since not pertaining directly to the topic of the manuscript. We would like to point out that we also omitted citations to our own work which had also described dopamine, adenosine and acetylcholine responses measured with various biosensors in striatal neurons (Castro 2013 23551948; Yapo 2017 28782235; Nair 2019 24560149). Indeed, this research field is flourishing and we hope that people interested in the general question of cAMP signal integration in neurons will easily find many such relevant publications.

      Audience: I find this basic research to have a relatively broad appeal. For example, my lab is working on behavioral aspects of motor dysfunction. Therefore, the pharmacological insight here is very intriguingly. The mechanistic nature of the work may also appeal to those working on the signaling aspect of such diseases.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the two reviewers very much for their careful review and valuable comments. Upon these comments, the following revisions have been made. First, we have performed a new analysis on human accelerated regions (HARs) recently reported by the Zoonomia Project. Second, we have presented more data on experimentally detected and computationally predicted DBSs of MALAT1, NEAT1, and MEG3. Third, we have added details on the RNA-seq data processing and subsequent differential expression testing to the Materials and Methods section. Fourth, we have clarified some details on the human ancestor sequence and the use of parameters and thresholds. Six new citations are added. In addition, we have also carefully polished the main text. We hope these revisions, together with the Responses-to-Reviewers, would help the reader better get the information from the paper.

      eLife assessment

      In this valuable manuscript, the authors attempt to examine the role of long non-coding RNAs (lncRNAs) in human evolution, through a set of population genetics and functional genomics analyses that leverage existing datasets and tools. Although the methods are at times inadequate - for example, suitable methods and/or relevant controls are lacking at many points, and selection is inferred sometimes too quickly - the results nonetheless point towards a possible contribution of long non-coding RNAs to the evolution of human biology and they suggest clear directions for future, more rigorous study.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      While DNA sequence divergence, differential expression, and differential methylation analysis have been conducted between humans and the great apes to study changes that "make us human", the role of lncRNAs and their impact on the human genome and biology has not been fully explored. In this study, the authors computationally predict HSlncRNAs as well as their DNA Binding sites using a method they have developed previously and then examine these predicted regions with different types of enrichment analyses. Broadly, the analysis is straightforward and after identifying these regions/HSlncRNAs the authors examined their effects using different external datasets.

      Strengths/weaknesses

      By and large, the analysis performed is dependent on their ability to identify HSlncRNAs and their DBS. I think that they have done a good job of showing the performance metrics of their methods in previous publications. Thereafter, they perform a series of enrichment-type analyses that have been used in the field for quite a while now to look at tissue-specific enrichment, or region-specific enrichment, or functional enrichment, and I think these have been carried out well. The authors achieved the aims of their work. I think one of the biggest contributions that this paper brings to the field is their annotation of these HSlncRNAs. Thus a major revisionary effort could be spent on applying their method to the latest genomes that have been released so that the community could get a clean annotation of newly identified HSlncRNAs (see comment 2).

      Comments

      1. Though some of their results about certain HSlncRNAs having DBSs in all genes is rather surprising/suspicious, I think that broadly their process to identify and validate DBSs is robust, they have multiple lines of checks to identify such regions, including functional validation. These predictions are bound to have some level of false positive/negative rate and it might be nice to restate those here and on what experiment/validation data these were conducted. However, the rest of their analysis comprises different types of enrichment analysis which shouldn't be affected by outlier HSlncRNAs if indeed their FPR/FNR are low.

      2. There are now several new genomes available as part of the Zoonomia consortium and 240 Primate consortium papers released. These papers have re-examined some annotations such as Human Accelerated Regions (HARs) and found with a larger dataset as well as better reference genomes, that a large fraction of HARs were actually incorrectly annotated - that is that they were also seen in other lineages outside of just the great apes. If these papers have not already examined HSlncRNAs, the authors should try and re-run the computational predictions with this updated set and then identify HSlncRNAs there. This might help to clarify their signal and remove lncRNAs that might be present in other primates but are somehow missing in the great apes. This might also help to mitigate some results that they see in section 3 of their paper in comparing DBS distances between archaics and humans.

      Responses:

      (1) Thanks for the good suggestion. We have checked the Zoonomia reported genomes and found that new primate genomes are monkeys and lemurs but not apes (Zoonomia Consortium. Nature 2023. https://doi.org/10.1038/s41586-020-2876-6), and the phylogenetic relationships between monkeys and humans are much more remote than those between apes and humans. In addition, the Zoonomia project did target identifying new lncRNA genes.

      (2) We have examined the Zoonomia-reported HARs (Keough et al. Science 2023. DOI: 10.1126/science.abm1696). Of the 312 HARs reported by Keough et al, 8 overlap 26 DBSs of 14 HS lncRNAs; moreover, DBSs greatly outnumber HARs, suggesting that HAR and DBS are different sequences with different functions.

      (3) In the revised manuscript, a new paragraph (the second one) has been added to the section “HS lncRNAs regulate diverse genes and transcripts” to describe the HAR analysis result.

      1. The differences between the archaic hominins in their DBS distances to modern humans are a bit concerning. At some level, we expect these to be roughly similar when examining African modern humans and perhaps the Denisovan being larger when examining Europeans and Asians, but they seem to have distances that aren't expected given the demography. In addition, from their text for section 3, they begin by stating that they are computing two types of distances but then I lost track of which distance they were discussing in paragraph 3 of section 3. Explicitly stating which of the two distances in the text would be helpful for the reader.

      Responses:

      (1) Upon the archaic human genomes, the genomic distances from the three modern humans are shorter to Denisovan than to Altai Neanderthal; however, upon the related studies we cite, the phylogenetic relationship between the three modern humans is more remote to Denisovan than to Altai Neanderthal. Thus, the finding that 2514 and 1256 DBSs have distances >0.034 in Denisovans and Altai Neanderthals is not unreasonable. The numbers of DBSs, of course, depend on the cutoff of 0.034, which is somewhat subjective but not unreasonable.

      (2) The second paragraph is added to the Discussion, discussing parameters and cutoffs.

      (3) Regarding the two types of distance, the distances computed in the first way were not further analyzed because, as we note, “This anomaly may be caused by that the human ancestor was built using six primates without archaic humans”.

      1. Isn't the correct control to examine whether eQTLs are more enriched in HSlncRNA DBSs a set of transcription factor binding sites? I don't think using just promoter regions is a reasonable control here. This does not take away from the broader point however that eQTLs are found in DBSs and I think they can perform this alternate test.

      Responses:

      Indeed, TFBSs are more comparable to DBSs than promoters. However, many more methods have been developed to predict TFBSs than to predict DBSs, making us concerned about TFBS prediction's reliability. Since most QTLs in DBSs are mQTLs (Supplementary Table 13), but many QTLs in TFBSs are eQTLs (Flynn et al. PLoS Genetics 2021. DOI: 10.1371/journal.pgen.1009719), it is pretty safe to conclude that DBSs are enriched in mQTLs.

      1. In the Discussion, they highlight the evolution of sugar intake, which I'm not sure is appropriate. This comes not from GO enrichment but rather from a few genes that are found at the tail of their distribution. While these signals may be real, the evolution of traits is often highly polygenic and they don't see this signal in their functional enrichment. I suggest removing that line. Moreover, HSlncRNAs are ones that are unique across a much longer time frame than the transition to agriculture which is when sugar intake rose greatly. Thus, it's unlikely to see enrichment for something that arose in the past 6000-7000 years would in the annotation that is designed to detect human-chimp or human-neanderthal level divergence.

      Responses:

      (1) The Discussion on human adaptation to high sugar intake is based on both enriched GO terms (Supplementary Table 4, 7) and a set of genes in modern humans with the most SNP-rich DBSs (Table 2). These glucose-related GO terms are not at the tail of the list because, of the 614 enriched GO terms (enriched in genes with strongest DBSs), glucose metabolism-related ones are ranked 208, 212, 246, 264, 504, 522, 591, and of the 409 enriched GO terms (enriched in the top 1256 genes in Altai Neanderthals), glucose metabolism-related ones are ranked 152 and 217.

      (2) Indeed, there are other top-ranked enriched GO terms; some (e.g., neuron projection development (GO:0031175) and cell projection morphogenesis (GO:0048858)) have known impact on human evolution, but the impact of others (e.g., cell junction organization (GO:0034330)) remain unclear. We specifically report human adaptation to high sugar intake because the DBSs in related genes show differences in modern humans (Table 2).

      Reviewer #2 (Public Review):

      Lin et al attempt to examine the role of lncRNAs in human evolution in this manuscript. They apply a suite of population genetics and functional genomics analyses that leverage existing data sets and public tools, some of which were previously built by the authors, who clearly have experience with lncRNA binding prediction. However, I worry that there is a lack of suitable methods and/or relevant controls at many points and that the interpretation is too quick to infer selection. While I don't doubt that lnc RNAs contribute to the evolution of modern humans, and certainly agree that this is a question worth asking, I think this paper would benefit from a more rigorous approach to tackling it.

      At this point, my suggestions are mostly focused on tightening and strengthening the methods; it is hard for me to predict the consequence of these changes on the results or their interpretation, but as a general rule I also encourage the authors to not over-interpret their conclusions in terms of what phenotype was selected for when as they do at certain points (eg glucose metabolism).

      Responses:

      (1) Now, we use more cautious wording to describe the results.

      (2) A paragraph (the second one) is added to Discussion to explain parameters and cutoffs.

      (3) We make the caution at the end of the third paragraph that “We note that these are findings instead of conclusions, and they indicate, suggest, or support something revealing the primary question of what genomic differences critically determine the phenotypic differences between humans and apes and between modern and archaic humans”.

      I note some specific points that I think would benefit from more rigorous approaches, and suggest possible ways forward for these.

      1. Much of this work is focused on comparing DNA binding domains in human-unique long-noncoding RNAs and DNA binding sites across the promoters of genes in the human genome, and I think the authors can afford to be a bit more methodical/selective in their processing and filtering steps here. The article begins by searching for orthologues of human lncRNAs to arrive at a set of 66 human-specific lncRNAs, which are then characterised further through the rest of the manuscript. Line 99 describes a binding affinity metric used to separate strong DBS from weak DBS; the methods (line 432) describe this as being the product of the DBS or lncRNA length times the average Identity of the underlying TTSs. This multiplication, in fact, undoes the standardising value of averaging and introduces a clear relationship between the length of a region being tested and its overall score, which in turn is likely to bias all downstream inference, since a long lncRNA with poor average affinity can end up with a higher score than a short one with higher average affinity, and it's not quite clear to me what the biological interpretation of that should be. Why was this metric defined in this way?

      Responses:

      (1) Binding affinity and length of all DBSs of HS lncRNAs are given in Supplementary Table 2 and 3. Since a triplex (say, 100 bp in length) may have 50% or 70% of nucleotides bound, it is necessary to differentiate binding affinity and length, and the two measures can differentiate DBSs of the same length but with different binding affinity and DBSs with the same binding affinity but different length.

      (2) Differentiating DBSs into strong and weak ones is somewhat subjective, accurately differentiating them demands experimental data that are currently unavailable, and it is advisable to separately analyze strong and weak DBSs because they may likely influence different aspects of human evolution.

      1. There is also a strong assumption that identified sites will always be bound (line 100), which I disagree is well-supported by additional evidence (lines 109-125). The authors show that predicted NEAT1 and MALAT1 DBS overlap experimentally validated sites for NEAT1, MALAT1, and MEG3, but this is not done systematically, or genome-wide, so it's hard to know if the examples shown are representative, or a best-case scenario.

      Responses:

      (1) We do not assume/think that identified sites will always be bound. Instead, lncRNA/DBS binding is highly context-dependent (including tissue-specific).

      (2) An extra supplementary table (Supplementary Table 15) is added to show what predicted DBSs overlap experimentally detected DBSs for NEAT1, MALAT1, and MEG3. By the way, it is more accurate to say “experimentally detected” than “experimentally validated”, because experimental data have true/false positives and true/false negatives, and different sequencing protocols (for detecting lncRNA/DNA binding) may generate somewhat different results.

      It's also not quite clear how overlapping promoters or TSS are treated - are these collapsed into a single instance when calculating genome-wide significance? If, eg, a gene has five isoforms, and these differ in the 3' UTR but their promoter region contains a DBS, is this counted five times, or one? Since the interaction between the lncRNA and the DBS happens at the DNA level, it seems like not correcting for this uneven distribution of transcripts is likely to skew results, especially when testing against genome-wide distributions, eg in the results presented in sections 5 and 6. I do not think that comparing genes and transcripts putatively bound by the 40 HS lncRNAs to a random draw of 10,000 lncRNA/gene pairs drawn from the remaining ~13500 lncRNAs that are not HS is a fair comparison. Rather, it would be better to do many draws of 40 non-HS lncRNAs and determine an empirical null distribution that way, if possible actively controlling for the overall number of transcripts (also see the following point).

      Responses:

      (1) We analyzed each and every GENCODE-annotated transcript (Supplementary Table 2). For example, if a gene has N TSS and N transcripts, DBSs are predicted in N promoter regions. When analyzing gene expression in tissues, each and every transcript is analyzed.

      (2) Ideally, it would be better to do many draws, but statistically, a huge number is needed due to the number of total genes in the human genome.

      (3) We feel that doing many draws of 40 non-HS lncRNAs and determining an empirical null distribution is not as straightforward as comparing HS lncRNA-target transcript pairs (45% show significant expression correlation) with random lncRNA-random transcript pairs (2.3% show significant expression correlation).

      1. Thresholds for statistical testing are not consistent, or always well justified. For instance, in line 142 GO testing is performed on the top 2000 genes (according to different rankings), but there's no description of the background regions used as controls anywhere, or of why 2000 genes were chosen as a good number to test? Why not 1000, or 500? Are the results overall robust to these (and other) thresholds? Then line 190 the threshold for downstream testing is now the top 20% of genes, etc. I am not opposed to different thresholds in principle, but they should be justified.

      Responses:

      (1) The over-representation analysis using g:Profiler was applied to the top and bottom 2000 genes with the whole genome as the background. The number “2000” was chosen somewhat subjectively. If more or fewer genes were chosen, more or fewer enriched GO terms would be identified, but GO terms with adjusted P-values <0.05 would be quite stable.

      (2) A paragraph (the second one) is added to the Discussion to explain parameters and cutoffs.

      Likewise, comparing Tajima's D values near promoters to genome-wide values is unfair, because promoters are known to be under strong evolutionary constraints relative to background regions; as such it is not surprising that the results of this comparison are significant. A fairer comparison would attempt to better match controls (eg to promoters without HS lncRNA DBS, which I realise may be nearly impossible), or generate empirical p-values via permutation or simulation.

      Responses:

      We examined Tajima’s D in DBSs (Supplementary Figure 9) and in HS lncRNA genes (Supplementary Figure 18). We compared the Tajima’s D values with the genome-wide background in both cases.

      1. There are huge differences in the comparisons between the Vindija and Altai Neanderthal genomes that to me suggest some sort of technical bias or the such is at play here. e.g. line 190 reports 1256 genes to have a high distance between the Altai Neanderthal and modern humans, but only 134 Vindija genes reach the same cutoff of 0.034. The temporal separation between the two specimens does not seem sufficient to explain this difference, nor the difference between the Altai Denisovan and Neanderthal results (2514 genes for Denisovan), which makes me wonder if it is a technical artefact relating to the quality of the genome builds? It would be worth checking.

      Responses:

      (1) The cutoff of 0.034 was chosen upon that DBSs in the top 20% (4248) genes in chimpanzees have distances larger than this cutoff, and accordingly, 4248, 1256, 2514, and 134 genes have DBSs distances >0.034 in chimpanzees, Altai Neanderthals, Denisovans, and Vindija Neanderthals. These numbers of genes qualitatively agree with the phylogenetic distances from chimpanzees, archaic humans to modern humans. If a percentage larger or smaller than 20% (e.g., 10% or 30%) is chosen, and so is a cutoff X, the numbers of genes with DBSs distance >X would not be 4248, 1256, 2514, and 134, but could still qualitatively agree with the phylogenetic distances from chimpanzees, archaic humans to modern humans.

      (2) The second paragraph in the Discussion now explains the parameters and cutoffs.

      1. Inferring evolution: There are some points of the manuscript where the authors are quick to infer positive selection. I would caution that GTEx contains a lot of different brain tissues, thus finding a brain eQTL is a lot easier than finding a liver eQTL, just because there are more opportunities for it. Likewise, claims in the text and in Tables 1 and 2 about the evolutionary pressures underlying specific genes should be more carefully stated. The same is true when the authors observe high Fst between groups (line 515), which is only one possible cause of high Fst - population differentiation and drift are just as capable of giving rise to it, especially at small sample sizes.

      Responses:

      (1) We analyzed brain tissues separately instead of taking the whole brain as a tissue, see Supplementary Table 12 and Figure 3.

      (2) We make the caution at the end of the third paragraph that “We note that these are findings instead of conclusions, and they indicate, suggest, or support something revealing the primary question of what genomic differences critically determine the phenotypic differences between humans and apes and between modern and archaic humans”.

      Reviewer #1 (Recommendations For The Authors):

      Some figures are impossible to see/read so I wasn't able to evaluate them - Fig, 1B, 1E, 1F are small and blurry.

      Responses:

      High-quality figures are provided.

      Typo in line 178: in these archaic humans, the distances of HS lncRNAs are smaller than the distances of DBSs.

      Responses:

      This is not a typo. We use “distance per base” to measure whether HS lncRNAs or their DBSs have evolved more from archaic humans to modern humans. See also Supplementary Note 4 and 5.

      Reviewer #2 (Recommendations For The Authors):

      1. There's some inconsistency in the genome builds and the database versions used, eg, sometimes panTro4 is used and sometimes panTro5 (line 456). Likewise, the version of GENCODE used is very old (18), the current version is 43. The current version contains 19928 lncRNAs, which is a big difference relative to what is being tested!

      Responses:

      (1) panTro4 was used to search orthologues of human lncRNAs; this time-consuming work started several years ago when the version of GENCODE was V18 (see Lin et al., 2019).

      (2) Regarding “the version of GENCODE used is very old (V18)”, we have later examined the 4396 human lncRNAs reported in GENCODE V36 and found that the set of 66 HS lncRNAs remains the same.

      (3) The counterparts of HS lncRNAs’ DBSs in chimpanzees were predicted recently using panTro5.

      1. Table 1: What does 'mostly' mean in this context? I understand that it refers to sequence differences between humans and the other genomes, but what is the actual threshold, and how is it defined?

      Responses:

      The title of Table 1 is “Genes with strongest DBSs and mostly changed sequence distances from modern humans to archaic humans and chimpanzees”. Instead of using two cutoffs, choosing genes with the two features seems easy and sensible.

      1. Line 117: The methods do not include information on the RNA-seq data processing and subsequent DE testing.

      Responses:

      The details are added to the section “Experimentally validating DBS predictiom” (The reads were aligned to the human GRCh38 genome using Hiasat2 (Kim et al., 2019), and the resulting sam files were converted to bam files using Samtools (Li et al., 2009). Stringtie was used to quantify gene expression level (Pertea et al., 2015). Fold change of gene expression was computed using the edgeR package (Robinson et al., 2010), and significant up- and down-regulation of target genes after DBD knockout was determined upon |log2(fold change)| > 1 with FDR < 0.1).

      1. Line 180: I looked at the EPO alignment and it's not clear to me what 'human ancestor' means, but it may well explain the issues the authors have with calculating distances (I agree those numbers are weird). Is it the reconstructed ancestral state of humans at around 300-200,000 years ago (coalescence of most human uniparental lineages), or the inferred sequence of the human-chimpanzee most recent common ancestor? If it's the former, it's not surprising it skews results towards shorter distances for modern humans, since the tree distance from that point to archaic hominins is significantly larger than to modern humans.

      Responses:

      The “human ancestor” is constructed by the EBI team upon the genomes of six primates in the Ensembl website. We find that the reconstructed ancestral state of humans may be unlikely around 300,000-200,000 years, and may be much earlier. We also find that many DNA sequences of the “human ancestor” are low-confidence calls (i.e., the ancestral states are supported by only one primate’s sequence).

      1. Line 221: SNP-rich DBS: Is this claim controlled for the length of the DBS?

      Responses:

      No. Long DBSs tend to have more SNPs. When comparing the same DBS in modern humans, archaic humans, and chimpanzees, both the length and SNP number reflect evolution, so it is not necessary to control for the length.

      1. Given that GTEx is primarily built off short-read data and it is impossible to link binding of a lncRNA to a DBS with its impact with a specific transcript

      Responses:

      As written in the section “Examining the tissue-specific impact of HS lncRNA-regulated gene expression”, we calculated the pairwise Spearman's correlation coefficient between the expression of an HS lncRNA (the representative transcript, median TPM value > 0.1) and the expression of each of its target transcripts (median TPM value > 0.1) using the scipy.stats.spearmanr program in the scipy package. The expression of an HS lncRNA gene and a target transcript was considered to be significantly correlated if the |Spearman's rho| > 0.3, with Benjamini-Hochberg FDR < 0.05.

      1. Line 429: should TTO be TFO?

      Responses:

      Here TTO should be TFO; the typo is corrected.

      1. Methods, section 7: Some of the text in this section should perhaps be moved to the results section?

      Responses:

      Each of the two paragraphs in Methods’ section 7 is quite large, and some contents in Supplementary Notes are also very relevant. Thus, moving them to the Results section could make the Results too lengthy and specific.

      1. Line 587: GTEx is built from samples of primarily European ancestry and has poor representation of African ancestry and negligible representation of Asian ancestry (see the GTEx v8 paper supplement). This means that it is basically impossible to find a non-European population-specific eQTL in GTEx, which in turn impacts these results.

      Responses:

      (1) Indeed, this is a serious issue of data analysis, and this issue cannot be solved until more Africans are sequenced.

      (2) Anyway, one can still find considerable African-specific eQTLs in GTEx, such as rs28540058 (with frequency of 0, 0, 0.13 in CEU, CHB, YRI) and rs58772997 (with frequency of 0, 0, 0.12 in CEU, CHB, YRI (see Supplementary Table12 and Supplementary Figure 22).

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] Weaknesses:

      1. I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aim to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:

      Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.

      Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725

      Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666

      Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.

      The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d). It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?

      The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins, and the bipolar crushing is not expected to help with this.

      The authors would like to clarify that the velocity-nulling gradient is NOT designed to suppress all the contributions from intravascular blood. Instead, we tried to find a balance so that the VN gradient maximally suppressed the macrovascular signal in unspecific veins but minimally attenuated the microvascular signal in specific capillary bed. We acknowledge the reviewer's concern regarding the potential extravascular contributions from large, non-specific vessels. This aspect will be thoroughly evaluated and addressed in the revised manuscript. Additionally, we will make clarifications in other parts that may have cause the reviewer’s misunderstandings.

      1. The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions. VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.

      Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358

      Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121

      If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.

      We acknowledge that the degree of velocity nulling varies across the cortical folding pattern. We intend to discuss potential solutions to address this variance, and these may be implemented in the revised manuscript as appropriate. Furthermore, we will provide a comprehensive discussion on the advantages and disadvantages of both CBV-based and BOLD-based approaches.

      1. The comparison with VASO is misleading. The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years. Koiso et al. performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation), 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation). Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).

      Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502

      Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855

      Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544

      The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that wants to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401

      Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab? Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion, it looks like random noise, with most of the activation outside the ROI (in white matter).

      Those literatures will be included and discussed in the revised manuscript. Furthermore, we are considering the exclusion of the LGN results presented in Figure 6, as they may divert attention from the primary focus of the study.

      We are enthusiastic about sharing our imaging sequence, provided its usefulness is conclusively established. However, it's important to note that without an online reconstruction capability, such as the ICE, the practical utility of the sequence may be limited. Unfortunately, we currently don’t have the manpower to implement the online reconstruction. Nevertheless, we are more than willing to share the offline reconstruction codes upon request.

      1. The repeatability of the results is questionable. The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact, the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. The location of peaks turns into locations of dips and vice versa. The methods are not described in enough detail to reproduce these results. The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.

      It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination. No data are shared for reproduction of the analysis.

      There may have been a misunderstanding regarding the presentation in Figure 4, which illustrates the impact of TEs and the VN gradient. To enhance clarity and avoid further confusion, we will redesign this figure for improved comprehension.

      The authors are open to sharing the MATLAB codes associated with our study. However, we were limited by manpower for refining and enhancing the readability of these codes for broader use.

      Regarding the coil combination, we utilized an adaptive coil combination approach as described in the paper by Walsh DO, Gmitro AF, and Marcellin MW, titled 'Adaptive reconstruction of phased array MR imagery' (Magnetic Resonance in Medicine 2000; 43:682-690). The MATLAB code for this method was implemented by Dr. Diego Hernando. We will include a link for downloading this code in the revised manuscript for the convenience of interested readers.

      1. The application of NODRIC is not validated. Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.

      Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924

      Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658

      During our internal testing, we observed that the NORDIC denoising process did not alter the activation patterns. These findings will be incorporated into the revised manuscript. The details of NORDIC will be provided as well.

      Reviewer #2 (Public Review):

      [...] The well-known double peak feature in M1 during finger tapping was used as a test-bed to evaluate the spatial specificity. They were indeed able to demonstrate two distinct peaks in group-level laminar profiles extracted from M1 during finger tapping, which was largely free from superficial bias. This is rather intriguing as, even at 7T, clear peaks are usually only seen with spatially specific non-BOLD sequences. This is in line with their simple simulations, which nicely illustrated that, in theory, intravascular macrovascular signals should be suppressible with only minimal suppression of microvasculature when small b-values of the VN gradients are employed. However, the authors do not state how ROIs were defined making the validity of this finding unclear; were they defined from independent criteria or were they selected based on the region mostly expressing the double peak, which would clearly be circular? In any case, results are based on a very small sub-region of M1 in a single slice - it would be useful to see the generalizability of superficial-bias-free BOLD responses across a larger portion of M1.

      Given the individual variations in the location of the M1 region, we opted for manual selection of the ROI. In the revised manuscript, we plan to explore and implement an independent criterion for ROI selection to enhance the objectivity and reproducibility of our methodology.

      As repeatedly mentioned by the authors, a laminar fMRI setup must demonstrate adequate functional sensitivity to detect (in this case) BOLD responses. The sensitivity evaluation is unfortunately quite weak. It is mainly based on the argument that significant activation was found in a challenging sub-cortical region (LGN). However, it was a single participant, the activation map was not very convincing, and the demonstration of significant activation after considerable voxel-averaging is inadequate evidence to claim sufficient BOLD sensitivity. How well sensitivity is retained in the presence of VN gradients, high acceleration factors, etc., is therefore unclear. The ability of the setup to obtain meaningful functional connectivity results is reassuring, yet, more elaborate comparison with e.g., the conventional BOLD setup (no VN gradients) is warranted, for example by comparison of tSNR, quantification and comparison of CNR, illustration of unmasked-full-slice activation maps to compare noise-levels, comparison of the across-trial variance in each subject, etc. Furthermore, as NORDIC appears to be a cornerstone to enable submillimeter resolution in this setup at 3T, it is critical to evaluate its impact on the data through comparison with non-denoised data, which is currently lacking.

      We appreciate the reviewer’s comments. Those issues will be addressed carefully.

      Reviewer #3 (Public Review):

      [...] Weaknesses: - Although the VASO acquisition is discussed in the introduction section, the VN-sequence seems closer to diffusion-weighted functional MRI. The authors should make it more clear to the reader what the differences are, and how results are expected to differ. Generally, it is not so clear why the introduction is so focused on the VASO acquisition (which, curiously, lacks a reference to Lu et al 2013). There are many more alternatives to BOLD-weighted imaging for fMRI. CBF-weighted ASL and GRASE have been around for a while, ABC and double-SE have been proposed more recently.

      The principal distinction between DW-fMRI and our methodology lies in the level of the b-value employed. DW-fMRI typically measures cellular swelling by utilizing a b-value greater than 1000 s/mm^2 (e.g. 1800). Conversely, our Velocity Nulling functional MRI (VN-fMRI) approach continues to assess hemodynamic responses, utilizing a smaller b-value specifically for the suppression of signals from draining veins. In addition, other layer-fMRI methods will be discussed.

      • The comparison in Figure 2 for different b-values shows % signal changes. However, as the baseline signal changes dramatically with added diffusion weighting, this is rather uninformative. A plot of t-values against cortical depth would be much more insightful.
      • Surprisingly, the %-signal change for a b-value of 0 is not significantly different from 0 in the gray matter. This raises some doubts about the task or ROI definition. A finger-tapping task should reliably engage the primary motor cortex, even at 3T, and even in a single participant.
      • The BOLD weighted images in Figure 3 show a very clear double-peak pattern. This contradicts the results in Figure 2 and is unexpected given the existing literature on BOLD responses as a function of cortical depth.

      In our study, the TE in Figure 2 is shorter than that in Figure 3 (33 ms versus 43 ms). It has been reported in the literature that BOLD fMRI with a shorter TE tends to include a greater intravascular contribution. Acknowledging this, we plan to repeat the experiments with a controlled TE to ensure consistency in our results.

      • Given that data from Figures 2, 3, and 4 are derived from a single participant each, order and attention affects might have dramatically affected the observed patterns. Especially for Figure 4, neither BOLD nor VN profiles are really different from 0, and without statistical values or inter-subject averaging, these cannot be used to draw conclusions from.

      The order of the experiments were randomized to ensure unbiased results.

      It is important to note that the error bars presented in Figures 2, 3, and 4 do not represent the standard deviation of the residual fitting error. Instead, they illustrate the variation across voxels within a specific layer. This approach may lead to the error bars being influenced by the selection of the Region of Interest (ROI). In light of this, we intend to refine our statistical methodologies in the revised manuscript to address this issue.

      • In Figure 5, a phase regression is added to the data presented in Figure 4. However, for a phase regression to work, there has to be a (macrovascular) response to start with. As none of the responses in Figure 4 are significant for the single participant dataset, phase regression should probably not have been undertaken. In this case, the functional 'responses' appear to increase with phase regression, which is contra-intuitive and deserves an explanation.
      • Consistency of responses is indeed expected to increase by a removal of the more variable vascular component. However, the microvascular component is always expected to be smaller than the combination of microvascular + macrovascular responses. Note that the use of %signal changes may obscure this effect somewhat because of the modified baseline. Another expected feature of BOLD profiles containing both micro- and microvasculature is the draining towards the cortical surface. In the profiles shown in Figure 7, this is completely absent. In the group data, no significant responses to the task are shown anywhere in the cortical ribbon.
      • Although I'd like to applaud the authors for their ambition with the connectivity analysis, I feel that acquisitions that are so SNR starved as to fail to show a significant response to a motor task should not be used for brain wide directed connectivity analysis.

      We agree that exploring brain-wide directed functional connectivity may be overly ambitious at this stage, particularly before the VN-fMRI technique has been comprehensively evaluated and validated. In the revised manuscript, we will focus more on examining the characteristics of the layer-dependent BOLD signal rather than delving into layer-dependent functional connectivity.

    1. we need to build this this again this bridge and it's obviously not going to be written in the 00:50:41 same style or standard as your kind of deep academic papers if you think this is uh U unnecessary or irrelevant then you end up with is a scientific 00:50:56 Community which talks only to itself in language that nobody else understands and you live the general Republic uh uh prey to a lot of very 00:51:09 unscientific conspiracy theories and mythologies and theories about the world
      • for: academic communication to the public - importance, elites - two types, key insight - elites, key insight - science communication

      • comment

      • key insight

        • Elites are necessary in every society
        • Historically, people who strongly believe that the current elites aren't necessary or are harmful often become the revolutionaries who become the new elites
        • elites need to speak in their own specialist language to each other but there are two kinds of elites
          • those who serve society
          • those who serve themselves
          • often, we have fox in sheep's clothing - elites who serve themselves but disguise themselves in the language of elites who serve others in order to gain access to power ,
          • we normally think of wealthy people as elites, but Harari classifies scientists as also a kind of elite
        • elites may be necessary but
          • We are caught in a double bind, a wicked problem as elites are also the world's greatest per capita energy consumers and their outsized ecological, consumption and energy footprint is now a existential threat to the survival of our species
      • references

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary

      In this manuscript, the authors characterized the molecular function of the brain-enriched kinase KIS by combining transcriptome-wide approaches with molecular and functional studies. They uncover that KIS regulates isoform selection of genes involved in neuronal differentiation and inhibits through phosphorylation the capacity of the splicing regulator PTB2 to interact with both target RNAs and protein partners.

      Major comments

      - This is a very clear and well-written manuscript presenting high-quality and carefully controlled experimental results. The authors used an impressive range of approaches (transcriptome-wide exon usage, phospho-proteomic, imaging, biochemical assays..) to profile exon usage alterations upon KIS knock down and provide a mechanistic understanding of how KIS regulate the splicing activity of PTBP2. Specifically, they convincingly demonstrate that the phosphorylation of PTBP2 by KIS leads to both dismantling of PTBP2 protein complexes and impaired RNA binding.

      My only main concerns relate to the understanding of the biological context in which the mechanism studied may be at play. That KIS can counteract PTB2 activity through direct phosphorylation has been very clearly shown by the authors using overexpression of KIS and /or PTB constructs in different contexts (HEK293T cells, N2A cell line, hippocampal neurons). Whether this occurs endogenously in the context of neuronal differentiation, and how much this contributes to the overall phenotypes induced by KIS inactivation, is less clear. While fully investigating the interplay between KIS and PTB2 in the context of neuronal differentiation is beyond the scope of this study, the three following points could be addressed to provide some evidence in this direction.

      1- Building on the experiments they perform in a KIS knock-down context (e.g. Fig. 3B, or previously described spine phenotype), the authors should investigate whether inhibiting PTBP2 in this context (through shRNA or expression of a phospho-mimetic construct) might suppress the phenotypes observed when inactivating KIS.

      As suggested by the reviewer, we have added a new results section showing the effects on spine maturation in hippocampal neurons expressing PTBP2 phosphomutants and in a PTBP2-KIS double knockdown scenario (Fig4 and S4 Fig; Results section: P6 L12-P7 L21). First, PTBP2-overexpression effects on post-synaptic protrusion density are exacerbated by the phosphoablated mutant. Intriguingly, the phosphomimetic mutant still has a negative impact in spine formation, suggesting either a residual ability of this protein to interact with its normal partners or the existence of additional roles of PTBP2 in spine development that are Matrin3 and hnRNPM independent. Second, KIS knockdown partially suppresses the defects in mature spine formation produced by the loss of PTBP2. In all, these data support the notion of KIS being a phosphorylation-mediated inhibitor of PTBP2 activity during neuronal differentiation.

      2- Based on Figures 1E and 3A, it seems that KIS downregulation affects both exon inclusion and exon skipping, and that its function in exon usage is only partly explained by modulation of PTBP2-dependent exons. Have the authors analyzed the populations of PTBP2-dependent exons that are regulated by KIS in an opposite manner? This may point to specific classes of transcripts (in terms of expression pattern, function, molecular signature) important in the context of endogenous neuronal differentiation.

      We have analyzed the GO terms of genes with KIS-upregulated exons by that are either downregulated or upregulated by PTBP2. In both groups we found an enrichment of genes in terms associated with calcium ion activity but with different specific functions. Genes with exons downregulated by PTBP2 are more involved in transmembrane transfer of calcium ions from intracellular stores whereas genes with exons upregulated by PTBP2 facilitate the diffusion of calcium ions through transmembrane postsynaptic. Interestingly, with respect to the cytoskeleton, the two groups show a clearly different term enrichment. Genes with exons downregulated by PTBP2 are significantly associated with the tubulin cytoskeleton, whereas genes with exons upregulated by PTBP2 are associated with the actin cytoskeleton. We have added a paragraph in the results section (P8 L6-15) and a new panel in S4C Fig.

      3- The authors should better discuss when and where they think PTBP2 phosphorylation by KIS might be relevant. Is there evidence that this process (or PTBP2 complex assembly) might be regulated upon differentiation or plasticity?

      We have modified the Discussion section (P11 L35-P12 L14) as follows:

      Regarding neuronal differentiation, it is worth noting that KIS expression increases during brain development (Bièche et al, 2003) and in vitro differentiation of hippocampal cultures (Fig. 1B), coinciding with postnatal decrease of PTBP2 levels (Zheng et al, 2012). Therefore, the phosphorylation-dependent inhibition of PTPB2 by KIS and the concerted relative inversion in their levels would generate a molecular switch linking transcriptional and alternative exon usage programs in neuronal development (Fig 6D). In mature neurons, alternative splicing has a well-established role in expanding proteome diversity (Mauger & Scheiffele, 2017). Although the connection between synaptic activity and the control of KIS expression and/or kinase activity is not yet established, the contraposition of PTBP2 and KIS in splicing may constitute a fine-tuning mechanism to modulate proteome diversity as a function of plasticity-inducing signals. In this regard, single-cell transcriptomic data from hippocampal neurons show that expression variability of KIS and PTBP2 is much higher compared to actin (Perez et al, 2021) (S6B Fig). Thus, differences in the expression of these two splicing regulators at a single neuron level would increase protein isoform variability and expand diversity in neural circuits, a crucial property in information processing (Miller et al, 2019).

      Minor comments

      1- Figures and associated legends are overall very clear and well-organized. Addressing the following points would however help improving the clarity of some Figures:

      • In Figure 2EV2C legend, the characteristics of the 3SA constructs are not described

      We have modified the legend of Fig 2EV2C (S2C Fig in revised version) to clarify this point.

      - the difference between Figure EV1A and Figure 1H classifications is unclear, nor the interpretation regarding the different GO classes identified

      The gene lists used for the two GO term analyses are different. In Fig EV1A (now S1A Fig) the gene list is more restrictive than in Fig 1H as we choose genes with more than one exon upregulated by KIS. In contrast, the analysis in Fig 1H includes all genes with one exon upregulated by KIS.

      2- Whether PTBP2 is endogenously the major target of KIS explaining transcriptome-wide changes in exon selection is a possibility that remains to be demonstrated. Thus, the authors should correct and tune down the following sentences:

      "KIS phosphorylation counteracts PTBP2 activity and thus alters isoform expression patterns ..." (end of introduction)

      "PTBP2 being one of the most relevant phosphotargets" (results, end of the second section)

      We agree with the reviewer and we have modified the two sentences (P4 L6-8) and (P6 L10) in the revised version of the paper.

      Reviewer #1 (Significance (Required)):

      • The splicing regulator PTBP2 is a known master regulator of neuronal fate whose tightly controlled expression drives the progenitor-to-neuron transition as well as the establishment of neuronal differentiation programs. How this protein is regulated at the post-translational level has so far remains poorly investigated. In this manuscript, the authors provide a thorough mechanistic understanding of how KIS-mediated phosphorylation of PTB2 impacts on its regulation of exon usage. They also provide a transcriptome-wide view on the function of the brain-enriched KIS kinase in exon usage, uncovering its broad functions in alternative splicing.

      If the physiological context in which KIS-mediated phosphorylation of PTB2 is induced remains to be precisely defined, this work opens interesting new perspectives on regulatory mechanisms at play during neuronal differentiation. Providing extra lines of evidence indicating that KIS acts on neuronal functions through PTBP2 phosphorylation will help further strengthen this aspect.

      • This manuscript will be of interest to different large communities interested on one hand on the regulation of gene expression programs underlying neuronal differentiation and on the other hand on the molecular regulation of major complexes involved in alternative splicing and isoform selection. It opens new perspectives related to the spatiotemporal regulation of neuronal isoform selection.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary

      The manuscript by Moreno-Aguilera et al. shows that the brain enriched protein kinase KIS targets the well known neuronal splicing regulator PTBP2 and several of its interaction partners. As a consequence, PTBP2 activity is down-regulated. Using cultured primary immature neurons they show that KIS expression increases during differentiation and that shRNA knockdown of KIS alters the splicing of many alternative exons. Phosphoproteomic analysis of HEK293 cells transfected with KIS or a kinase dead mutant (K545A) show that it phosphorylates both PTBP2 as well as a cluster of proteins that are known to interact with PTBP2 or its paralog PTBP1. By comparing the new data on KIS-dependent splicing with previous data-sets on PTBP2-dependent splicing targets they show that KIS appears to act antagonistically with PTBP2 when it acts as a repressive regulator, but not when it is an activator. Using combinations of wt and kinase-dead KIS with PTBP2 mutants in the 3 main phosphorylation sites (3SA - non-phosphorylatable, S3D - phosphomimetic) to look at the effects on a known PTBP2 functional target, PSD95, they show that the likely effect of KIS is to antagonise PTBP2 function by phosphorylation at one or more of three residues (S178, S308, S434). Finally, they show that transfected KIS (but not K54A) reduces known protein-protein interactions of PTBP2 and that the triple phosphomimetic PTBP2 mutant shows reduced binding to RNA. Alphafold2 predictions show that the S178 phosphomimetic mutant might alter the conformation of the RRM2 domain, in particular altering the environment of Y244, which has been shown in PTBP1 to be critical for interaction with MATR3 and other coregulators.

      Major points

      In general, the conclusions drawn are consistent with the data. I have a few suggestions where the authors could either extend their findings with a few straightforward additional experiments, or clarify some of the existing data.

      FigEV4 (also introductory text on p3): RRMs 3 and 4 of PTBP1/2/3 fold as a single back to back packed didomain - with the so-called linker contributing to the didomain fold (e.g. PMID: 24688880, PMID: 16179478) and also extending the RNA binding surface by creating a positive patch (e.g. PMID:20160105 PMID: 24957602). AlphaFold successfully predicts the didomain in full length PTBP2 (https://alphafold.ebi.ac.uk/entry/A0A7I2RVZ4). The authors should therefore use AlphaFold2 to predict the RRM3-4 di-domain structure of wt and phosphomimetic mutant PTBP2s. Phosphorylation of S434 or S434D, which is on the C-terminal end of RRM3 may have no predicted effect on RRM3 alone (FigEV4), but it could conceivably disrupt didomain packing, which could itself have important knock-on consequences for RNA binding. In addition, the inrtoduction of negative charges at S434 might affect the ability of R438, K440 & K441 to interact with RNA. An image of the didomain charge density of WT and mutant PTBP2 would be useful to address this.

      As suggested by the reviewer, we have considered the di-domain structure of RRM3 and RRM4, and AlphaFold2 predicted no effects by the phosphomimetic residues. We have added the di-domain predictions to S6B Fig.

      S434 lies at the very end of RRM3 and limits with a basic region that would not bind RNA in a canonical RRM-dependent manner. In addition, as predicted by AlphaFold2, this basic region is not structured and the effects of a nearby negative charge may be difficult to predict.

      Figure 4 could also easily go further in experimentally testing the effects of individual phosphomimetic mutations upon protein-protein interactions (Alphafold predicts that S178D, but not S308 or S434D, should affect Y244 mediated interactions, such as MATR3). The co-IP approach in Fig 4A could readily be used with FLAG-PTBP2 mutants. Likewise, consequences of individual mutations upon RNA binding (Fig 4D) could be tested. The use of a Y244N mutant here would test whether the loss of RNA binding is a consequence of the loss of protein-protein interactions. Such experiments are not essential, but they are readily carried out and have the potential to unravel the consequences of the individual phosphorylation events (more correctly of phosphomimetic mutants).

      After building the Y244N mutant we tested PTBP2 interactions with protein partners and observed no significant changes in the levels of Matrin3 and hnRNPM proteins in FLAG-PTBP2 immunoprecipitates nor in the RNA binding ability of PTBP2. These data suggest that, although Y244 is involved in the interaction between PTBP1 and PRI-containing proteins such as Raver1, the interaction between Matrin3 and PTBP2 would involve structural determinants other than the Matrin3 PRI and the PTPB2 Y244 residue. Compared to PTBP1, the nearby flexible loop between RRM2 and RRM3 in PTBP2 is very different and could accommodate specific interaction determinants with Matrin3.

      Minor points

      Do KIS regulated exons show enrichment of motifs associated with PTBP2, consistent with the proposed model - particularly CU-rich motifs upstream of exons that are more repressed upon KIS shRNA treatment.

      We have not observed a significant enrichment of CU-rich sequences upstream of the top 100 exons upregulated by KIS. Indeed, our data suggest that only a fraction of exons upregulated by KIS are inhibited by PTBP2.

      For the splicing analysis pipeline, how were exon-exon junction reads treated? If "only exons with more than 5 reads in all samples" were considered, will this not exclude highly regulated exons that are completely skipped under one condition?

      This sentence has been corrected as "only exons with more than 5 reads in all samples of one condition..." (P17 L9)

      The Introduction mentions U2AF homology (UHM) domains, but neglects to discuss their known binding partners - ULMs (UHM ligand motifs), which contain an essential tryptophan. It would be useful for the discussion to highlight whether any direct KIS interactors possess ULMs and how this relates to the phospho-targets identified here. The authors may wish to draw the parallel with the structurally analogous way that PTBP1 (and presumably PTBP2) interact with their short peptide ligand motifs.

      As suggested by the reviewer, we have searched for ULM sequences in the identified KIS phosphotargets, but we only found clear ULMs in SUGP1, which contains KRKRKSR__W__385 and KMG__W__573K. The absence of ULM motifs in most of the proteins identified in the KIS phosphoproteome would indicate that phosphorylation does not require stable protein-protein interactions. We have added these lines to the Discussion section (P10 L34-P11 L2). We completely agree with the reviewer that, in future work, it would be very interesting to test the possibility that KIS binding modulates the composition and functional properties of splicing complexes through ULM domains.

      Figure EV2C. The S3A and S308A mutations clearly reduce phosphorylation. However, the effects of S178A and S434A are far less clear. Presumably the quantitation shown in the lower panel of EV2C relies on normalization to PTBP2 protein input, which appears quite variable in the Coomassie gel. It might be better to repeat the experiment with uniform protein inputs. Minimally, details of the quantitation approach should be added to Materials and Methods.

      The different levels of reduction in 32P incorporation displayed by the single phosphonull mutants suggests that phosphorylation follows a hierarchical pattern, S308-P facilitating phosphorylation of the other two phosphosites. We have added this comment to the revised version of the paper (P5 L25-28). As mentioned by the reviewer, 32P incorporation was made relative to the total amount of PTBP2 present in the assay, which was deduced from cold Coomassie-stained gels run in parallel to the radioactive gels with same amount of proteins. We have added details of the quantification in the Methods section from 3 independent experiments

      Fig 3D shows PTBP2 overexpression, but the main text (p7) states KIS overexpression.

      The text and panel order in Fig 3D were misleading and have been corrected (P7 L9-14).

      Fig 4B should have a scale bar for the FRET signal

                Done (now Fig 5B)
      

      Fig 4E should indicate the location of S178

                Done (now Fig 6C)
      

      Reviewer #2 (Significance (Required)):

      Significance

      This interesting, clear and concise manuscript provides important new insights into the way that a neuron specific kinase can regulate neuronal splicing networks by phosphorylating and thereby downregulating the known neuronal splicing regulator PTBP2. Alternative splicing is known to play a particularly important role in neurons, so this demonstration of an additional layer of regulation by post-translational modification should make the manuscript of wide interest to investigators of splicing regulation, neuronal differentiation and maturation.

      Issues that are not addressed in the manuscript include; i) how does KIS specifically target PTBP2 and related proteins? The UHM domain can mediate interaction with ULM containing splicing factors (such as U2AF2, SF3B1), but none of the identified targets have known ULMs. ii) the consequences of individual phoshomimetic mutants upon protein-protein interactions and RNA binding could readily be explored further using computational and experimental methods already used in the manuscript.

      For context, this reviewer has a direct interest in the mechanisms of regulation of alternative splicing, but not in the context of neurons (though I am familiar with a lot of the relevant literature), and I do not have expertise in neuronal cell biology.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors explored the function of the protein kinase KIS in splicing regulation associated with neuronal differentiation in vitro. KIS is a serine threonine kinase known to phosphorylate splicing factors such as SF1 and SUGP1, and to be preferentially expressed in adult brain in mammals. Using an shRNA based approach, the authors characterize cassette exon usage upon partial KIS depletion in cultured mouse cortical neurons.

      In parallel using mass spectrometry of proteins in KIS overexpressing HEK293 cells, they identify potential KIS substrates including the splicing regulator PTBP2. They confirm that recombinant KIS can phosphorylates PTBP2 in vitro. They show a correlation between KIS-activated and PTBP2-inhibited exons using published data for this factor. They report opposite effects of KIS and PTBP2 on CamKIIB splicing and Finally, coimmunoprecipitation and FRET experiments suggest that KIS inhibits the interactions of PTBP2 with known protein binders, hnRNPM and Matrin3 as well as with RNA. Altogether these data suggest that KIS downregulates PTBP2 during neuronal differentiation.

      Majors comments:

      Overall the manuscript is well written and the data are interesting.

      However several points could have been more extensively studied or discussed to achieve a stronger demonstration of the role of KIS in PTBP2 phosphorylation and neuronal differentiation.

      1) To minimize possible off target problems, the RNAseq analysis would be more convincing if replicated with a second shRNA to knockdown KIS.

      The efficiency of the selected shRNA had been validated both by the supplier (Merck-Sigma) and in our previous work, which also included a complementation assay (see Fig. 4A-C in Pedraza et al 2014).

      2) Part of the reported splicing changes might reflect an indirect consequence of an altered differentiation contributing to the correlation observed in figure 1F. It would be interesting to confirm splicing changes using shorter incubation times with the shRNA compared to the 11 days used in this study.

      The levels of splicing regulators such as PTBP1 and PTBP2 change quite markedly during the initial phases of neuronal differentiation (Zheng et al 2012). However, we observed no change in their levels when comparing KIS knockdown to control conditions, suggesting no major upstream effects on the differentiation program per se. But, more important, whereas the splicing pattern of CamKIIβ transcript was clearly affected by KIS knockdown at 18 DIV (Fig 3B), we observed no changes at 14 DIV.

      3) Standard deviation is more relevant to describe data dispersion in all figures.

      For non-parametric statistics we prefer the interquartile range as a measure of dispersion. For the parametric statistics of 3 independent experiments we show the standard error of the mean as a measure of dispersion.

      4) Previous papers of the group described a function of KIS in translation (Cambray et al 2009, Pedraza et al 2014). This is not discussed here. For example, the possibility that RBPs are regulated by KIS at the translation level is not excluded by the analysis in Fig EV2a.

      It is an interesting comment by the reviewer that we have considered during the course of this work. Nevertheless, in our experiments coexpressing KIS and PTBP2 in HEK293 cells we did not observe any reduction in splicing factor levels. We have included a representative immunoblot (S5C Fig) of input samples from the experiments shown in the corresponding main figure (Fig 5A in the revised version).

      Minor comments:

      Figure 1: The authors state that "KIS...accumulates in nuclear sub-structures adjacent to those formed by splicing factors". As the figure presents in fact GFP-KIS, it should be mentioned, and how this localisation is relevant for endogenous KIS should be addressed.

      We have corrected the text to mention that GFP-KIS was used to analyse its nuclear localization pattern as shown in Fig 1A (P4 L12-13). We had previously validated the nuclear localization (Boehm et al, 2002) of an N-terminal fusion of KIS to a fluorescent protein (Cambray et al, 2009).

      Fig EV1: SI range in pannel D is very different from that in pannel C and Fig1E.

      In this figure we plot the average SI obtained from bins with 2500 exons, which would necessarily narrow the SI range obtained from individual exons. Our data indicate that protein disorder would only constitute a minor, but significant, factor in exon usage.

      On page 4 "KIS expression reached maximal levels in hippocampal cultures (Fig 1B)." However the figure legend indicate that this analysis was performed with cortical neurons. The use of cortical or hippocampal neurons along the manuscript should be clarified.

      We apologize for the typing mistake, and it has been corrected in the revised version (P4 L17-18)

      page 4 " KISK54A, a point mutant without kinase activity" The authors should indicate the reference.

      The reference to Maucuer et al (1997) has been added (P5 L15)

      Figure EV2C: It is not clear whether the Coomassie staining and autoradiography do correspond to the same gel.

      32P incorporation was made relative to the total amount of PTBP2 present in the assay, which was deduced from cold Coomassie-stained gels run in parallel to the radioactive gels with same amount of proteins.

      Figure 3C. The authors use a dual fluorescence reporter to analyse PSD95 exon 18 splicing. However the well to well variability in such experiments might be elevated. Not only the cells number in a single well but also the number of replicates should be indicated and well to well variability reported.

      As stated in the figure legend, the dual fluorescence reporter experiment has been analyzed at a single-cell level. Using ImageJ software, we analyzed the fluorescence of 1054, 970 and 672 cells expressing KIS, KISK54A or none, respectively, from 3 independent experiments.

      Figure 3D. The precise timing for the transfection and culture of cells before staining is unclear

      Hippocampal neurons were transfected at 5DIV and fixed at 12 DIV. This description has been added to the legend in Fig 3D.

      Figure 4A. The input should be loaded to evaluate the coIP efficiencies and ascertain that KIS does not downregulate Matrin3 and hnRNPM levels.

      We agree with the reviewer. We have included a representative immunoblot (S5C Fig) of input samples from the experiments shown in the corresponding main figure (Fig 5A in the revised version).

      Figure EV4A. No difference of Matrin3 binding is to be seen on the gel. In addition, the authors should confirm that PTBP2 or binders are phosphorylated by recombinant KIS. The preparation of GST-KIS is not described.

      We agree with the reviewer that in the in vitro assays the differences in phosphorylation are not as clear as in the in vivo experiments. Fig S2C shows an in vitro kinase assay of PTBP2 by recombinant KIS. Finally, we include a reference (Pedraza et al, 2009) for the preparation of recombinant GST-KIS (P14 L7)

      Page 6: "We found that PTBP2-inhibited exons are significantly (FDR=0.001) enriched in KIS knockdown neurons, supporting the notion that KIS acts on AS, at least in part, by inhibiting PTBP2 activity." This should be rephrased as in fact PTBP2-inhibited exons are enriched among KIS activated exons.

      The sentence has been rephrased as “We found that PTBP2-inhibited exons are significantly (FDR=0.001) among KIS activated exons…” (P6 L17-18)

      Page 10: "SUGP1 is one of the most enriched proteins in our KIS phosphoproteome (see Fig 2A)". Phosphorylation and interaction with KIS was already reported by Arfelli and coll. 2023 supplementary figure 2.

      We have modified the Discussion section to add this information (P11 L14-15)

      Page 10: " It forms part of the spliceosome complex, interacts with the general splicing factor U2AF2 and has been reported to play an important role in branch recognition by its association with SF3B1." A reference is needed there.

      A reference to Zhang et al (2019) has been added.

      Page 10: The authors previously reported a differentiation defect in cultured neurons 'Cambray et al, 2008' that was not observed by another group (Manceau et al., PLOS One 2012). This should be discussed in view of these more recent results. Is there any differentiation defect in the experiments reported there?

      We have added a new results section showing the effects on spine maturation in hippocampal neurons expressing PTBP2 phosphomutants and in a PTBP2-KIS double knockdown scenario (Fig4 and S4 Fig; Results section: P6 L12-P7 L21). First, PTBP2-overexpression effects on post-synaptic protrusion density are exacerbated by the phosphoablated mutant. Related to the point raised by the reviewer, KIS knockdown also decreased spine emergence and maturation, but partially suppressed the defects produced by the loss of PTBP2. In all, these data support the notion of KIS being a phosphorylation-mediated inhibitor of PTBP2 activity during neuronal differentiation.

      Statistical values are difficult to read in the figures. Please use larger fonts.

      Done

      Reviewer #3 (Significance (Required)):

      This manuscript brings new elements supporting the function of the protein kinase KIS in splicing regulation in neurons. In particular it identifies for the first time the splicing regulator PTBP2 as a substrate for KIS.

      It will be of interest to a specialized audience of researchers interested in splicing regulators in neuronal differentiation.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors developed computational models that capture the electrical and Ca2+ signaling behavior in mesenteric arterial cells from male and female mice. A baseline model was first formulated with eleven transmembrane currents and three calcium compartments. Sex-specific differences in the L-type calcium channel and two voltage-gated potassium channels were then tuned based on experimental measurements. To incorporate the stochastic ion channel openings seen in smooth muscle cells under physiological conditions, noise was added to the membrane potential and the sarcoplasmic Ca2+ concentration equations. Finally, the models were assembled into 1D vessel representations and used to investigate the tissue-level electrical response to an L-type calcium channel blocker.

      Strengths:

      A major strength of the paper is that the modeling studies were performed on three different scales: individual ionic currents, whole-cell, and 1D tissue. This comprehensive computational framework can help provide mechanistic insight into arterial myocyte function that might be difficult to achieve through traditional experimental methods.

      The authors aimed to develop sex-specific computational models of mesenteric arterial myocytes and demonstrate their use in drug-testing applications. Throughout the paper, model behavior was both validated by experimental recordings and supported by previously published data. The main findings from the models suggested that sex-specific differences in membrane potential and Ca2+ handling are attributable to variability in the gating of a small number of voltage-gated potassium channels and L-type calcium channels. This variability contributes to a higher Ca2+ channel blocker sensitivity in female arterial vessels. Overall, the study successfully met the aims of the paper.

      Thank you for your insightful review and for recognizing the strengths of our study. We appreciate your encouraging comment regarding our multi-scale approach. Indeed, we believe that by systematically connecting these scales—individual ionic currents, whole-cell, and 1D tissue—we can integrate and reconcile experimental and clinical data. We anticipate that this approach will not only provide mechanistic insights into arterial myocyte function that may not be easy to glean from traditional experimental methods but will also facilitate the translation of this information into the development of therapeutic interventions.

      Weaknesses:

      A main weakness of the paper, as addressed by the authors, is the simplicity of the 1D vessel model; it does not take into account various signaling pathways or interactions with other cell types which could impact smooth muscle electrophysiology.

      Thank you for highlighting areas for improvement in our study. The strength of computational modeling lies in its iterative nature, allowing us to introduce and examine variables in a systematic manner. While our current model is simplified and does not contain all details, the modular nature of the build will allow continuous expansion to add the important elements described by the reviewer. We are enthusiastic about progressively enriching the model in subsequent studies, introducing signaling pathways in a step-by-step manner, and ensuring their validation with rigorous experimental data.

      Another potential shortcoming is the use of mouse data for optimizing the model, as there could be discrepancies in signaling behavior that limit the translatability to human myocyte predictions.

      We appreciate this important comment. Our model was parametrized using data from mouse mesenteric artery smooth muscle cells as initial proof of concept. Mouse arteries are a good representation of human arteries, as they have similar intravascular pressure-myogenic tone relationships, resting membrane potentials, and express similar ionic channels (e.g., CaV1.2, BK channels, RyRs, etc) (PMID: 28119464, PMID: 29070899, PMID: 23232643). In response to the reviewer, we have modified the discussion section of the manuscript to specifically note the mouse is not identical to the human but does share some common important features that make mice a good approximate model.

      Reviewer #2 (Public Review):

      In this study, Hernandez-Hernandez et al developed a gender-dependent mathematical model of arterial myocytes based on a previous model and new experimental data. The ionic currents of the model and its sex difference were formulated based on patch-clamp experimental data, and the model properties were compared with single-cell and tissue scale experimental results. This is a study that is of importance for the modeling field as well as for experimental physiology.

      Thank you for the comment. In fact, we developed a model that incorporates sex-dependent differences that allowed for male and female models. It’s an important distinction as sex is a biological variable and gender is a self-ascribed characteristic.

      Reviewer #3 (Public Review):

      Summary:

      This hybrid experimental/computational study by Hernandez-Hernandez sheds new light on sex-specific differences between male and female arterial myocytes from resistance arteries. The authors conduct careful experiments in isolated myocytes from male and female mice to obtain the data needed to parameterize sex-specific models of two important ionic currents (i.e., those mediated by CaV1.2 and KV2.1). Available experimental data suggest that KV1.5 channel currents from male and female myocytes are similar, but simulations conducted in the novel Hernandez-Hernandez sex-specific models provide a more nuanced view. This gives rise to the first of the authors' three key scientific claims: (1) In males, KV1.5 is the dominant current regulating membrane potential; whereas, in females, KV2.1 plays a primary role in voltage regulation. They further show that this (2) the latter distinction drives drive sex-specific differences in intracellular Ca2+ and cellular excitability. Finally, working with one-dimensional models comprising several copies of the male/female myocyte models linked by resistive junctions, they use simulations to (3) predict that the sensitivity of arterial smooth muscle to Ca2+ channel-blocking drugs commonly used to treat hypertension is heightened in female compared to male cells.

      Strengths:

      The Methodology is described in exquisite detail in straightforward language that will be easy to understand for most if not all peer groups working in computational physiology. The authors have deployed standard protocols (e.g., parameter fitting as described by Kernik et al., sensitivity analysis as described by Sobie et al.) and appropriate brief explanations of these techniques are provided. The manoeuvre used to represent stochastic effects on voltage dynamics is particularly clever and something I have not personally encountered before. Collectively, these strengthen the credibility of the model and greatly enrich the manuscript.

      We appreciate your comment highlighting the robustness of our methodology. Your acknowledgment of our approach to represent stochastic effects on voltage dynamics is especially encouraging. Indeed, noise is a fundamental component of physiological systems, including in vascular myocytes

      Broadly speaking, the Results section describes findings that robustly support the three key scientific claims outlined in my summary. While there is certainly room for further discussion of some nuanced points as outlined below, it is evident these experiments were carefully designed and carried out with care and intentionality. In the present version of the manuscript, there are a few figures in which experimental data is shown side-by-side with outputs from the corresponding models. These are an excellent illustration of the power of the authors' novel sex-specific computational simulation platform. I think these figures will benefit from some modest additional quantitative analysis to substantiate the similarities between experimental and computational data, but there is already clear evidence of a good match.

      We sincerely appreciate your constructive feedback on the Results section. We have included additional quantitative analysis to substantiate the similarities between experimental and computational data. We agree with the reviewer that the suggestion on the potential value of a more quantitative assessment. As such we have updated the figure to include an in-depth analysis that provides greater insights and solidifies the power of our simulation predictions when compared to experimental results. A detailed analysis of the male and female data as well as the male and female simulations are summarized in the text as follows:

      Baseline membrane potential is -40 mV in male myocytes compared to -30 mV. The frequency of hyperpolarization transients (THs) is 1 Hz in male and 2.5 Hz in female cells for the specific baseline membrane potential shown in Figure 5 A-B. In the range of membrane potentials from -50 mV to -30 mV the frequency increases from 1-2.8Hz which is identical to the experimental frequency range.

      Areas for Improvement:

      The authors used experimental data from a prior publication to calibrate their model of the BKCa current. As indicated in the manuscript, these data are for channel activity measured in a heterologous expression system (Xenopus oocytes). A similar principle applies to other major ion channels/pumps/etc. Is it possible there might be relevant sex-specific differences in these players as well? In the context of the present work, this feels like an important potential caveat to highlight, in case male/female differences in the activity of BKCa or other currents might influence model-predicted differences (e.g., the relative importance of KV1.5 and KV2.1). This should be discussed, and, if possible, related to the elegant sensitivity analysis presented in Fig. 5C (which shows, for example, that the models are relatively insensitive to variation in GBK).

      We fully agree with the reviewer - an important caveat to highlight is the unknown sex-specific differences in all the other players regulating membrane potential and calcium signaling. While our initial assessments indicated that the contribution of BKCa channels to the total voltage-gated K+ current (IKvTOT) was small within the physiological range of -50 mV to -30 mV, further analysis of spontaneous transient outward currents revealed sex-specific variations. We have investigations underway to explore if BKCa channel expression and organization may be also sex-dependent.

      The authors state that their model can be expanded to 2D/3D applications, "transitioning seamlessly from single-cell to tissue-level simulations". I would like to see more discussion of this. For example, given the modest complexity of the cell-scale model, how considerable would the computational burden be to implement a large network model of a subset of the human female or male arterial system? Are there sex-specific differences in vessel and/or network macro-structure that would need to be considered? How would this influence feasibility? Rather than a 1D cable as implemented here, I imagine a multi-scale implementation would involve the representation of myocytes wrapped around vessels. How would the behavior of such a system differ from the authors' presented work using a 1D representation of 100 myocytes coupled end-to-end? Could these differences partially explain why the traces in Fig. 8D are smoother than those in Fig. 8C? From my standpoint, discussing these points would enrich the paper.

      We appreciate the reviewer’s thoughtful and forward-looking ideas! Indeed, we are very interested to extend the model to incorporate a number of these important items.

      Our choice for the 1D cable model was driven by its anatomical relevance to the structure of third and fourth-order mesenteric arteries. These arteries possess a singular layer of vascular myocytes encircling the lumen in a cylindrical arrangement. When we conceptualize this structure as unrolled or viewed laterally, it aligns with a flat, rectangular form, closely paralleling our 1D cable implementation. One option is to expand this into a 2D representation by connecting multiple 1D cables together. Another option would be to connect the 1D cable end-to-end to create a ring to represent a cross section. While these approaches would appear to be different geometries, in either case, the dynamics will remain consistent because the cells comprising the tissue are the same. There is no propagating impulse (for example – although even then in a 2D homogenous tissue, a planar wave is identical in 1D), and the only effect will be an increase in electrotonic load (sink) from neighboring cells, which can readily be approximated in 1D by increasing coupling or modification of the boundary conditions.

      We totally agree that future investigation should include exploration into the potential sex-specific differences in vessel and/or network macro-structure, as these factors may critically impact predictions and indeed the difference in traces observed between Fig. 8D and Fig. 8C may well involve “insulating” effects of vessel layers and interaction between various cell types and other structural factors. In particular, the contribution of endothelial cells in modulating membrane potential in vascular myocytes might be one such influential factor. In future studies, we are also keen to investigate blood flow regulation where a 3D configuration might become necessary.

      The nifedipine data presented in Fig. 9 are quite compelling, and a nice demonstration of the potential power of the new models. How does this relate to what is known about the clinical male/female responses to nifedipine? Are there sex differences in drug efficacy?

      Thank you for your comment regarding Fig. 9.

      It is well known that sex-specific differences in pharmacokinetics and pharmacodynamics influence antihypertensive drug responses [PMID: 8651122., PMID: 22089536]. Previous studies, notably by Kloner et al., have illustrated this point quantitatively, highlighting a more pronounced diastolic BP response in women (91.4%) compared to men (83%) when treated with dihydropyridine-type channel blockers, such as amlodipine/nifedipine. Importantly, this distinction persisted even after adjusting for confounding factors such as baseline BP, age, weight, and dosage per kilogram [PMID: 8651122]. An interesting observation from Kajiwara et al. emphasizes that vasodilation-related adverse symptoms occur significantly more frequently in younger women (<50 years) compared to their male counterparts, suggesting a heightened sensitivity to dihydropyridine-type calcium channel blockers [PMID: 24728902].

      While our findings resonate with clinical observations, a word of caution is in order. Our data suggest that, in the mouse model, nifedipine elicits distinct sex-specific effects. Importantly, future research should test the direct translatability and implications of these observations in human subjects.

      Reviewer #1 (Recommendations For The Authors):

      1. Cellular simulations with noise: It might be useful to also include in this section how noise was introduced specifically into the [Ca]SR equations.

      We agree. The manuscript now includes an expanded explanation of how noise was incorporated into the model. This includes the addition of Equation 6 into section 2.4 "Cellular simulations with noise" to describe how noise was specifically integrated into the [Ca]SR equations. Please see LINE 355.

      1. For equation 14, the description might be confusing. RCG and Ri are not explicitly included.

      Thank you – this has been corrected.

      1. In the paragraph starting with, "Having explored the regulation of graded membrane potential..." , the references to Figure 7C-D do not seem to match the content of the text. Namely, the figures show female versus male responses to nifedipine, which is not introduced until the next paragraph. Additionally, the graphs in 7C-D do not have the panels titled and the y-axes labeled.

      We apologize for the error. We have modified the text and figures to address these issues.

      1. Perhaps give more detail on how the effects of nifedipine were mathematically simulated at the ionic current level.

      Good suggestion. Briefly, previous studies [PMID: 1329564] have shown that at the therapeutic dose of nifedipine (i.e., about 0.1 μM) L-type Cav1.2 channel currents are reduced by about 70%. Accordingly, we decreased ICaL in our mathematical simulations by the same extent. It is known that dihydropyridine-type channel blockers exhibit a voltage-dependent behavior, predominantly binding to the inactivated state. In smooth muscle cells, these blockers initiate inhibition quickly within a voltage range of -60 to -40 mV. This range aligns with the membrane potential baseline of vascular muscle cells (PMID: 8388295), ensuring the blockers are effective without the need of inducing significant depolarization. Therefore, the voltage dependency of dihydropyridine-type channel blockers can be neglected.

      1. For the simulations with 400 uncoupled myocytes, the methods stated that the "gap junctional resistance [was set] to zero". Did the authors mean to use "conductivity" or am I misunderstanding?

      Thank you for bringing up this issue with the term "gap junctional resistance." We now state that the "gap junctional conductivity" was set to zero to indicate no electrical communication/coupling.

      1. Address whether there are differences-such as in cell geometry, degree of sex-based ionic current changes, and frequency of spontaneous hyperpolarization-between mice and human smooth muscle myocytes that could limit the predictive capability of the model.

      Excellent point. Our model was parametrized using data from mouse mesenteric artery smooth muscle cells as initial proof of concept. In general terms, mouse arteries are a good animal model for human arteries, as they have similar intravascular pressure-myogenic tone relationships, resting membrane potentials, and express similar ionic channel (e.g., CaV1.2, BK channels, RyRs, etc) (PMID: 28119464, PMID: 29070899). Unfortunately, these studies have largely been done in male arteries and myocytes. Thus, while we recognize that the physiological distinctions between mice and humans could introduce variances in the model's outcomes. Our model offers valuable insights into the sex-specific mechanisms of KV2.1 and CaV1.2 channels in controlling membrane potential and Ca2+ dynamics in mice. It has been shown that sex-specific differences in pharmacokinetics and pharmacodynamics influence antihypertensive drug responses [[PMID: 8651122., PMID: 22089536]. Previous studies, notably by Kloner et al., have illustrated this point quantitatively, highlighting a more pronounced diastolic BP response in women (91.4%) compared to men (83%) when treated with dihydropyridine-type channel blockers, such as amlodipine/nifedipine. Importantly, this distinction persisted even after adjusting for confounding factors such as baseline BP, age, weight, and dosage per kilogram [PMID: 8651122]. An interesting observation from Kajiwara et al. emphasizes that vasodilation-related adverse symptoms occur significantly more frequently in younger women (<50 years) compared to their male counterparts, suggesting a heightened sensitivity to dihydropyridine-type calcium channel blockers [PMID: 24728902].

      While our findings resonate with clinical observations, a word of caution is in order. Our data suggest that, in the mouse model, nifedipine elicits distinct sex-specific effects. Importantly, future research should test the direct translatability and implications of these observations in human subjects.

      1. "A virtual drug-screening system that can model drug-channel interactions" (pg 32) sounds very novel.

      Thank you for highlighting this. We recognize the typo in our manuscript and have made the necessary corrections to ensure clarity and accuracy.

      Reviewer #2 (Recommendations For The Authors):

      The manuscript is well written. I only have some minor comments:

      1. In the patch clamp experiments, there is no information on the recovery of the ionic currents. Is recovery important or not in arterial myocytes? This question is related to the results shown in Figs 5-7. In Fig.5, is the oscillation caused by noise alone or a spontaneous oscillation (such as the oscillation in Fis.6-7) modulated by noise? In general, recovery is an important parameter for the frequency of spontaneous oscillations. It seems to me that the spontaneous oscillations in Fig.8 are mainly noise-driven since they disappear after the cells are coupled through gap junctions.

      One important aspect of the oscillatory behavior of the smooth muscle cells is the very long timescales, with fluctuations occurring on the order of seconds. But the majority of ion channels are operating and recovering on the order of milliseconds, so a reasonable approximation is that most ion channels in the cell are operating at steady state at low voltages.

      Oscillations in Fig.5: Both the intrinsic oscillations and the noise play key roles in shaping in the oscillations.

      The intrinsic deterministic dynamics of the model cells are oscillatory (as seen in Figures 6-7), but the noise can trigger sparks early or delay them, which leads to substantial fluctuations in the inter-spark intervals. Therefore, the spontaneous oscillations are technically modulated by the noise rather than driven by the noise. Nevertheless, in both cases, recovery dynamics play an essential role in shaping the oscillations and determining their frequency

      Note however that, when an excitable system is around the bifurcation for oscillations and noise is included, the "firing" statistics in the oscillatory state and the non-oscillatory state are indistinguishable for moderate to high levels of noise.

      Noise Exclusion in Figures 6-7: To offer a clear and undistracted interpretation of the results, noise was intentionally omitted from Figures 6-7. This was done to ensure that the primary phenomena under investigation were not obscured. While we recognize the significance of incorporating all elements, including noise, in simulating biological systems, in this case we prioritized a clear point to be made in this context.

      Oscillations in Fig.8: Your observation regarding Fig.8 is insightful. Here, uncoupled cells indeed display a spontaneous oscillatory behavior. As documented in previous research, this behavior is not an artifact resulting from cell isolation from the vessel but represents an intrinsic characteristic vital for maintaining electrical signals. The noise in the cells leads to substantial fluctuations in the inter-spike intervals. Because the noise in each cell is uncorrelated, it acts to desynchronize the activity of the cells. Therefore, instead of synchronizing the activity of the cells, the gap junction coupling quenches the large-scale oscillations (the spikes), creating lower amplitude irregular oscillations.

      1. The calcium level is much higher in women than in men as shown in Figs.7 and 9. Do women have higher arterial pressure than men?

      We thank the reviewer for the observation regarding the calcium levels in Figs.7 and 9. All data presented comes from both male and female C57BL/6J animal models, forming the foundation of our experimental framework.

      From earlier studies by the Santana lab (PMID: 32015129), distinct sex-specific differences were found between male and female vascular mesenteric vessels. When the endothelium was removed from small arteriole segments and these segments were subsequently pressurized within a range of 20–120 mmHg, the female arterioles exhibited a pronounced myogenic response in comparison to the male ones. This brings to the forefront the marked sex-based differences, especially in the context of vascular smooth muscle activity.

      Yet, when examining the behavior of whole, intact vessels, a different picture emerges. Despite clear sex-specific differences in conditions with the endothelium removed, these distinctions become less pronounced in whole, intact vessels. In essence, both male and female mice exhibit analogous arterial pressure patterns. This suggests possible compensatory mechanisms related to the caliber and structure of the small vessels.

      To address the core issue: Despite our data showing higher calcium levels in female samples, it doesn't necessarily imply females consistently exhibit higher arterial pressure across all physiological scenarios.

      1. In Fig.9, where is the intravascular pressure (a variable or a parameter) in the mathematical model?

      In our model, the intravascular pressure effects are implicitly introduced by modulating the conductance of the non-selective cation currents (INSCC). Specifically, the increase in INSCC is our way of simulating the effects of pressure-induced membrane depolarization. This approach allows us to capture the physiological response to intravascular pressure changes without explicitly introducing it as a separate parameter in the model. We have modified the manuscript to ensure that this rationale is clarified.

      1. In Eq.14, the given units of Rmyo (Ohmcm) and Rg (Ohmcmcm) are different, but Eq.14 implies they should have the same unit.

      We sincerely appreciate the reviewer's meticulous observation regarding the units discrepancy in Eq.14. We have revised the manuscript to correct the error.

      Reviewer #3 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data, or analyses:

      Fig. 5 A-B: This is a beautiful qualitative comparison between experimental and simulation data! I think it would be even more impactful if the authors carried out some quantitative analysis of the similarity between male/female experimental/simulation data. For example, the "resting" Vm levels (approx. -30 mV and -40 mV for females and males, respectively) and the peak levels of Vm hyperpolarization could be compared, as well as the frequency of transient hyperpolarization events. It seems like the female model is much more prone to intervals of relative quiescence (i.e., absence of transient hyperpolarization events - e.g., from ~5-6.5 s). Is this consistent with the duration of such ranges in the experimental data (e.g., from 0 to 2.5 s in Fig. 5A).

      Thank you for your positive remarks concerning the qualitative comparison in Fig. 5 A-B. We are indeed enthusiastic about the parallels we've identified between experimental and simulation outcomes. We agree with the reviewer that the suggestion on the potential value of a more quantitative assessment. As such we have updated the figure to include an in-depth analysis that provides greater insights and solidifies the power of our simulation predictions when compared to experimental results. A detailed analysis of the male and female data as well as the male and female simulations are summarized in the text as follows:

      Baseline membrane potential is -40 mV in male myocytes compared to -30 mV. The frequency of hyperpolarization transients (THs) is 1 Hz in male and 2.5 Hz in female cells for the specific baseline membrane potential shown in Figure 5 A-B. In the range of membrane potentials from -50 mV to -30 mV the frequency increases from 1-2.8Hz which is identical to the experimental frequency range.

      • Fig. 7 C-D: Likewise, it would be helpful to quantitatively characterize male/female differences in the model's response to simulated Ca channel blockade (e.g., rate of transient hyperpolarization events, relative levels of ICa and [Ca]i).

      Thank you for the constructive feedback on Fig. 7 C-D. We appreciate the emphasis on a quantitative approach to solidify our understanding and have modified the results as follows:

      Next, we simulated the effects of calcium channel blocker nifedipine on ICa at a steady membrane potential of -40 mV in male and female simulations. Briefly, previous studies70 have shown that at the therapeutic dose of nifedipine (i.e., about 0.1 μM) L-type Cav1.2 channel currents are reduced by about 70%. Accordingly, we decreased ICa in our mathematical simulations by the same extent. In Figure 7C-D, we show the predicted male (gray) and female (pink) time course of membrane voltage at -40 mV (top panel), ICa (middle panel), and [Ca2+]i (lower panel). First, we observed that in both male and females 0.1 μM nifedipine modifies the frequency of oscillation in the membrane potential, by causing a reduction in oscillation frequency. Second, both male and female simulations (middle panels) show that 0.1 μM nifedipine caused a reduction of ICa to levels that are very similar in male and female myocytes following treatment. Consequently, the reduction of ICa causes both male and female simulations to reach a very similar baseline [Ca2+]i of about 85 nM (lower panels). As a result, simulations provide evidence supporting the idea that CaV1.2 channels are the predominant regulators of intracellular [Ca2+] entry in the physiological range from -40 mV to -20 mV. Importantly, these predictions also suggest that clinically relevant concentrations of nifedipine cause larger overall reductions in Ca2+ influx in female than in male arterial myocytes.

      Recommendations for improving the writing and presentation:

      When I accessed the GitHub repository linked in section 2.7 (Aug 17, 13:30 PT) it only contained a LICENSE file and none of the described codes and model equations appeared to be publicly available. I would like to access and examine these files. Based on the Clancy lab's excellent track record for making their work publicly available, I have no doubt that the published files will be complete, thoroughly documented, and ready for implementation in studies to reproduce or extend the work described in this manuscript.

      https://github.com/ClancyLabUCD/sex-specific-responses-to-calcium-channel-blockers-in-mesenteric-vascular-smooth-muscle

      We sincerely apologize for the omission regarding the GitHub repository. It was never our intention to omit the crucial files that should accompany our manuscript. We deeply regret any inconvenience this may have caused in your review process.

      We deeply value transparency and the importance of making our work accessible to fellow researchers and the wider community. As you rightly pointed out, the Clancy lab has always been committed to ensuring that our work is available publicly, and this instance is no exception. Please find all codes and documentation here:

      Minor corrections to the text and figures:

      The introduction is somewhat lengthy, and some of the material contained therein might be more suitable to be merged into the Discussion instead (e.g., paragraphs on negative feedback regulation and the recent study by O'Dwyer et al.).

      Thank you – we have updated the introduction but left some foundational work descriptions intact.

      • Page 6, section 1.1: There is a missing word (mice?) in the first sentence.

      • Page 11, under Eqn. 7: Luo is misspelled as Lou. (Also twice on Page 20.)

      Thank you – these have been corrected.

      Figs. 2-3: As a colorblind person, it was somewhat challenging for me to differentiate between the red and black lines. Choosing a higher-contrast colour pairing would be beneficial. For some reason, this is not so much of an issue for other figures that use the red/black scheme later in the manuscript (e.g., Figs. 5, 7-8).

      We truly appreciate your feedback on the color contrast used in our figures. Accessibility and clarity are crucial to us, and we regret any difficulty you encountered due to the color choices. Based on your valuable feedback, we have included different color pairings in our visual representations to ensure they are comprehensible to all readers, including those who are colorblind.

      Fig. 2-3: I am also confused about the use of symbols to indicate significant differences in these plots. In Fig. 2, ** is defined in the legend but not used in the figure. In both figures, the symbols are placed above/below specific sets of points, but it is unclear whether large differences for other x-axis values are statistically significant (e.g., -20 mV in Fig. 3B, +40 mV in Fig. 2C, etc.) This should be clarified.

      Thank you – we now have included all the significant differences in the data discussed in the manuscript.

      Page 22: The authors state that they "introduced noise into the [Ca]SR..." but the specifics of this approach are not described. As with other aspects of the Methods section, it would be suitable to provide a brief description of the technique used in ref. 40, perhaps added to section 2.4.

      Thank you – it has been corrected.

      Fig.7 C-D: Axis labels and units are missing. Even though the labels and units will be inferred by most readers, it would be helpful to include them here (at least in C).

      Thank you for pointing out the inconsistency between the textual references and Figure 7C-D. We have added the corrected figure.

      Page 32: "...the first step toward the development of a virtual drug-screaming system..." I think the authors mean drug-screening. As a side note, this is immediately in the running for the best typo I've ever seen as a peer reviewer.

      <good laugh> Thank you for pointing out this error, and we sincerely appreciate your sense of humor about it. You are indeed correct; the intended word is "drug-screening." We have corrected this typo in the manuscript. We're grateful for your thorough review and the light-hearted way you brought this to our attention.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their strong interest in our studies and their excellent suggestions for improvement.

      Reviewer #1:

      Weaknesses:

      Comment 1. The authors identified NPR-15 and ASJ neurons that are involved in both molecular and behavioral responses to pathogen attack. This finding, by itself, is significant. However, how the NPR-15/ASJ circuit regulates the interplay between the two defense strategies was not explored. Therefore, emphasizing the interplay in the title and the abstract is misleading.

      Response to comment 1. We have removed the word “interplay.”

      Comment 2. Although the discovery of a single GPCR regulating both immunity and avoidance behavior is significant and novel, NPR-15 is not the first GPCR identified with these functions. Previously, the same lab reported that the GPCR OCTR-1 also regulates immunity and avoidance behavior through ASH and ASI neurons respectively (PMID: 29117551). This point was not mentioned in the current manuscript.

      Response to Comment 2. We’d like to clarify that it remains unclear whether OCTR-1 itself controls both immunity and behavior (PMID: 29117551). The reference study showed that OCTR-1-expressing neurons ASH and ASI control immunity and behavior, respectively. We modified the manuscript to make this point clearer: “While OCTR-1-expressing neurons ASI play a role in avoidance (34), the specific role of OCTR-1 in ASH and ASI neurons remains unclear. “

      Comment 3. The authors discovered that NPR-15 regulates avoidance behavior via the TRPM gene, GON-2. Only two factors (GON-2 and GTL-2) were examined in this study, and GON-2 happens to function through the intestine.

      Response to comment 3. We studied GON-2 and GTL-2 because a recent screen of intestinal TRPM genes showed that they are the only two involved in the control of pathogen avoidance. We modified the manuscript to make this rationale clearer: “Because transient receptor potential melastatin (TRPM) ion channels, GON-2 and GTL-2, are required for pathogen avoidance (32), we studied whether they may be part of the NPR-15 pathway that controls pathogen avoidance”

      Comment 3b. It is possible that NPR-15 may broadly regulate multiple effectors in multiple tissues. Confining the regulation to the amphid sensory neuron-intestinal axis, as stated in the title and elsewhere in the manuscript, is not accurate.

      Response to comment 3b. We agree that NPR-15 may broadly regulate multiple effectors in different tissues. Indeed, we have shown that the transcriptional activity of ELT-2, HLH-30, DAF-16, and PMK-1 is higher in npr-15 than in WT animals. We found that expression of NPR-15 only in ASJ cells rescues both the survival and behavioral phenotypes of npr-15 animals (Figs. 4F and 5C).

      Comment 4. The C. elegans nervous system is simple, and hermaphrodites only have 302 neurons. Individual neurons possessing multiple regulatory functions is expected. Whether this is conserved in mammals and other vertebrates is unknown, because in higher animals, neurons and neuronal circuits could be more specialized.

      Response to Comment 4. We agreed. We have removed the statements discussing conservation in that manner.

      Comment 5. A key question, that is, why would NPR-15 suppress immunity (which is bad for defense) but enhance avoidance behavior (which is good for defense), is not addressed or explained. This could be due to temporal regulation, for example, upon pathogen exposure, NPR-15 could regulate behavior to avoid the pathogen, but after infection, NPR-15 could suppress excessive immune responses or quench the responses for the resolution of infection.

      Response to comment 5. We found that NPR-15 controls the expression of immune genes in the absence of an infection. Without further experiments, we think it would be too speculative to discuss the possibility of a temporal regulation. However, we modified the manuscript to address the control of both molecular and behavioral immunity by NPR-15. The revised discussion reads: “Our findings shed light on the role of NPR-15 in the control of the immune response. NPR-15 seems to suppress specific immune genes while activating pathogen avoidance behavior to minimize potential tissue damage and the metabolic energy cost associated with activating the molecular immune response against pathogen infections. Overall, the control of immune activation is essential for maintaining homeostasis and preventing excessive tissue damage caused by an overly aggressive and energy-costly response against pathogens (60-63).”

      Comment 6. Discussion appears timid in scope and contains some repetitive statements. Point 5 can be addressed in the Discussion.

      Response to comment 6. We have removed repetitive concepts and modified the discussion as mentioned in the response to point 5.

      Comment 7. Overall, the authors presented an impactful study that identified specific molecules and neuronal cells that regulate both molecular and behavioral immune responses to pathogen attack. Most conclusions are supported by solid evidence. However, some statements are overreaching, for example, regulation of the interplay between molecular and behavioral immune responses was emphasized but not explored. Nonetheless, this study reported a significant and novel discovery and has laid a foundation for investigating such an interplay in the future.

      Response to comment 7: We removed the statements that may have appeared to be overreaching and addressed the weakness raised by the reviewer. The revised discussion reads “Our findings shed light on the role of NPR-15 in the control of the immune response. NPR-15 seems to suppress specific immune genes while activating pathogen avoidance behavior to minimize potential tissue damage and the metabolic energy cost associated with activating the molecular immune response against pathogen infections. Overall, the control of immune activation is essential for maintaining homeostasis and preventing excessive tissue damage caused by an overly aggressive and energy-costly response against pathogens (60-63).”

      Recommendations for the authors:

      Recommendations 1. The title, abstract and some statements in the main text need to be re-written to reflect the fact that regulation of the interplay between molecular and behavioral immune responses was not explored in this study.

      Response to recommendations 1. We modified the title and abstract accordingly.

      Recommendations 2. It should be mentioned in the manuscript that OCTR-1 is the first GPCR that was identified to regulate both immunity and avoidance behavior.

      Response to recommendation 2. We addressed this issue as discussed in the response to comment 2.

      Recommendations 3. Repetitive statements should be removed from Discussion.

      Response to recommendations 3. The statements were removed.

      Recommendations 4. It is surprising to see that pmk-1 RNAi did not affect the survival of npr-15(tm12539) animals against S. aureus because PMK-1 has a general role in defense against S. aureus infection.

      Response to recommendations 4. We agree. However, the RNAi studies were validated using mutants (Fig. S3B).

      Recommendations 4b. Also, the rationale for using skn-1 RNAi as a control was not given. These need to be explained adequately in the manuscript.

      Response to recommendations 4b. There’s no need to include skn-1 RNAi and we removed the data.

      Recommendations 5. The conclusion that the lack of avoidance behavior by NPR-15 loss-of-function is independent of immunity and neuropeptide genes was drawn entirely based on experiments with RNAi of individual genes. Functional redundancy among genes could render RNAi of individual genes ineffective, thus masking the dependence of avoidance behavior on these genes. More experiments are needed to support this conclusion, or the wording of the conclusion need to be changed.

      Response to recommendations 5. We modified the conclusion to address this issue: “Given the possibility of functional redundancy among these genes, we cannot rule out the possibility that different combinations may play a role in controlling avoidance behavior.”

      Recommendations 6. What is representation factor in Fig. 2B and 2C?

      Response to recommendations 5. Figure 2B shows significantly enriched terms with a Q value < 0.1, sorted by P values. Figure 2 C shows the representation factor that is calculated using a tool, http://nemates.org/MA/progs/overlap_stats.html. The calculation is based on the number of genes in set 1, the number of genes in set 2, and the Overlap between set 1 and set 2, as well as the number of genes in the genome.

      We corrected the Figure legends and included the corresponding information in Material and Methods.

      Recommendations 7. The legend of Fig. 6 was wrong and should be changed to 'GPCR/NPR-15 suppressed immune response and enhanced avoidance behavior via sensory neurons'.

      Response to recommendations 7. Thank you for pointing this out. We changed the legend.

      Reviewer #2:

      Comments 1. There is some variance in lawn occupancy of wt strains between the different trials in WT animals (e.g. in Fig. 1: 25 for wt vs 60% for npr mutant; S1c 5% for wt and 60% for npr mutant).

      Response to comment 1. We appreciate the observation. We did notice some variation in both the WT and npr-15(tm12539) animals during our study. Notably, the variation appeared to be more in the WT compared to the npr-15(tm12539) animals. However, it's important to note that these variations did not significantly affect the outcome of our findings. We calculated the means, standard deviation, and standard error across different experimental trials that are presented in the manuscript (Table S2) (new Table). It's worth noting that these variations did not significantly impact the observed differences in lawn occupancy between the wild-type (WT) and npr-15 mutant strains.

      We addressed this issue in the revised manuscript: “Interestingly, we noticed that the variation in lawn occupancy is greater in WT than in npr-15(tm12539) animals across experiments (Table S2), which suggests that the strong lack of avoidance of npr-15(tm12539) somehow counteracts the experimental variation”

      Comment 2. Does this reflect rates of migration or re-occupancy in WT?

      Response to comment 2. We did not observe any re-occupancy in either the WT or npr-15 animals at 24-hour time points (which we mostly use in this study) or beyond. To address the comment, we performed a new experiment and found that the re-occupancy of npr-15 mutants is comparable to that of WT animals at 4 hours post-exposure (Figure S1B).

      Comment 3. Does pathogen avoidance persist and/or the rate of avoidance differ in npr mutant worms?

      Response to comment 3. As illustrated in new Figure S1B, the avoidance behavior in response to pathogens remained consistent even when we extended our observations up to 48 hours (Figure S1B).

      Comment 4. if animals were exposed then re-exposed, could the authors to determine whether a learned avoidance was similarly affected by this mutation by assessing rate changes?

      Response to comment 4. We conducted the proposed experiment and observed that the WT animals learned to avoid the pathogen but not npr-15(tm12539) mutants (Figure S1C). The revised manuscript reads: “We also found that npr-15(tm12539) exhibited reduced learned avoidance compared to WT animals (Figure S1C).”

      Comment 5: Is there any difference in gene expression of animals that have migrated off the lawn to those remaining on the lawn (e.g. in partial lawn experiments?).

      Response to comment 5. This is an interesting question that has not been addressed in the field yet. While we think the study is exciting, we believe that it is outside the scope of our work. All the gene expression studies performed here are in non-avoiding conditions.

      Comment 6. No concerns but the P values in the legends are a pain to read. Why not put them in figures as in above figures.

      Response to comment 6. We included the P values as suggested.

      Recommendations for the authors:

      Recommendation 1. Fig. 1/S1. Comments: There is some variance in lawn occupancy of wt strains between the different trials in WT animals (e.g. in Fig. 1: 25 for wt vs 60% for npr mutant; S1c 5% for wt and 60% for npr mutant).

      Response to recommendation 1. We addressed this issue as discussed in the response to comment 1.

      Recommendation 2. Fig. 1/S1. Comments. Does this reflect rates of migration or re-occupancy in WT?

      Response to recommendation 2. We have responded to this issue in comment 2.

      Recommendations 3. Fig. 1/S1. Comments. Does pathogen avoidance persist and/or the rate of avoidance differ in npr mutant worms.

      Response to recommendation 3. We have responded to this issue in comment 3.

      Recommendation 4. Fig. 1/S1. Comments B. and if animals were exposed then re- exposed, could the authors to determine whether a learned avoidance was similarly affected by this mutation by assessing rate changes?

      Response to recommendation 4: We have responded to this issue in comment 4 above.

      Recommendation 5. Fig. 2/S2. Comment: Is there any difference in gene expression of animals that have migrated off the lawn to those remaining on the lawn (e.g. in partial lawn expts?).

      Response to recommendation 5. We have responded to this issue in comment 5 above.

      Recommendation 6. Fig. 3/S3. Comment. No concerns but the P values in the legends are a pain to read. Why not put them in figures as in above figures.

      Response to recommendation 6. We included the P values.

      Recommendation 7. Fig. 5. Comments: The authors suggest that the ASJ/NPR15 effect to limit avoidance acts via inhibition of GON-2 in the intestine. The observation that GON-2 inhibition effects on pathogen avoidance occur independently of neurons could suggest that it is a redundant way of accomplishing the same thing, which then makes one wonder if or what the connection is exists between the neuron and the gut. The effect of ASJ via NPR on pathogen avoidance is not neuropeptide dependent, which they show. So how the neuronal-gut communication works. Specific Transmitters... perhaps.

      Response to Recommendation 7 Fig. 5. Thanks for this observation. To address the recommendation, we modified the discussion: “Our research additionally indicates that the regulation of NPR-15-mediated avoidance is not influenced by intestinal immune and neuropeptide genes. Given the potential for functional redundancy and our focus on genes upregulated in the absence of NPR-15, we cannot entirely rule out the possibility that unexamined immune effectors or neuropeptides, not transcriptionally controlled by NPR-15, might be involved. Different intestinal signals may also participate in the NPR-15 pathway that controls pathogen avoidance.”

      Recommendation 8. Comment. Since ASJ neurons control entry into dauer, perhaps isn't surprising that DAF-16 showed up as an NPR-15. induced factor (and dauer worms are resistant to a lot of stressors); that said dauer hormones might be involved as well. Is there any evidence that DAF-16 down-regulates GON-2 expression (see Murphy, Kenyon et al. 2005), and along these lines would GON-2 RNAi work in a DAF-16 mutant? I think addressing these issues are the subject of future studies.

      Response to recommendation 8. We checked the data in the study by Murphy, Kenyon et al., and found that the gon-2 gene was not downregulated.

      Recommendation 9. Minor: Regarding the description to Fig. 5. "Consistently with our previous findings, we found that only " The adverb form of consistent should not be used here.

      Response to recommendation 9. Thank you for pointing this out. The description of Figure 5 was corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      A weakness of the paper is that the power of the model is illustrated for only one specific set of parameters, added in a stepwise manner and the comparison to one specific empirical TGM, assumed to be prototypical; And that this comparison remains descriptive. (That is could a different selection of parameters lead to similar results and is there TGM data which matches these settings less well.)

      The fact that the comparisons in the paper are descriptive is a central point of criticism from both reviewers. As mentioned in my preliminary response, I intentionally did not optimise the model to a specific TGM or show an explicit metric of fitness. As I now explicitly mention in the new experimental section of the paper:

      “The previous analyses were descriptive in the sense that they did not quantify how much the generated TGMs resembled a specific empirical TGM. This was deliberate, because empirical TGMs vary across subjects and experiments, and I aimed at characterising them as generally as possible by looking at some characteristic features in broad terms. For example, while TGMs typically have a strong diagonal and horizontal/vertical bars of high accuracy, questions such as when these effects emerge and for how long are highly dependent on the experimental paradigm. For the same reason, I did not optimise the model hyperparameters, limiting myself to observing the behaviour of the model across some characteristic configurations”

      And, in the Discussion:

      “The demonstrations here are not meant to be tailored to a specific data set, and are, for the most part, intentionally qualitative. TGMs do vary across experiments and subjects; and the hyperparameters of the model can be explicitly optimised to specific scientific questions, data sets, and even individuals. In order to explore the space of configurations effectively, an automatic optimisation of the hyperparameter space using, for instance, Bayesian optimisation (Lorenz, et al., 2017) could be advantageous. This may lead to the identification of very specific (spatial, spectral and temporal) features in the data that may be neurobiologically interpreted.”

      Nonetheless, it is possible to fit the model to a specific TGMs by using a explicit metric of fitness. For illustration, this is what I did in the new experimental section Fitting and empirical TGM, where I used correlation with an empirical TGM to optimise two temporal parameters: the rise slope and the fall slope. As can be seen in the Figure 8, the correlation with the empirical TGM was as high as 0.7, even though I did not fit the other parameters of the model. As mentioned in the paragraph above, more sophisticated techniques such as Bayesian optimisation might be necessary for a more exhaustive exploration, but this would be beyond the scope of the current paper.

      I would also like to point out that fitting the parameters in a step-wise manner was a necessity for interpretation. I suggest to think of the way we use F-tests in regression analyses as a comparison: if we want to know how important a feature is, we compare the model with and without this feature and see how much we loss.

      It further remained unclear to me, which implications may be drawn from the generative model, following from the capacities to mimic this specific TGM (i) for more complex cases, such as the comparison between experimental conditions, and (ii) about the complex nature of neural processes involved.

      Following on the previous points, the object of this paper (besides presenting the model and the associated toolbox) was not to mimic a specific TGM, but to characterise the main features that we generally see across studies in the field. To clarify this, I have added Figure 2 (previously a Supplemental Information figure), and added the following to the Results section:

      “Figure 2 shows a TGM for an example subject, where some archetypal characteristics are highlighted. In the experiments below, specifically, I focus on the strong narrow diagonal at the beginning of the trial, the broadening of accuracy later in the trial, and the vertical/horizontal bars of higher-than-chance accuracy. Importantly, this specific example in Figure 2 is only meant as a reference, and therefore I did not optimise the model hyperparameters to this TGM (except in the last subsection), or showed any quantitative metric of similarity.”

      I mention the possibility of using the model to explore more complex cases in the Introduction, although doing so here would be out of scope:

      “Other experimental paradigms, including motor tasks and decision making, can be investigated with genephys”

      Towards this end, I would appreciate (i) a more profound explanation of the conclusions that can be drawn from this specific showcase, including potential limitations, as well as wider considerations of how scientists may empower the generative model to (ii) understand their experimental data better and (iii) which added value the model may have in understanding the nature of underlying brain mechanism (rather than a mere technical characterization of sensor data).

      To better illustrate how to use genephys to explore a specific data set, I have added a section (Fitting an empirical TGM) where I show how to fit specific hyperparameters to an empirical TGM in a simple manner.

      In the Introduction, I briefly mentioned:

      “This (not exhaustive) list of effects was considered given previous literature (Shah, et al., 2004; Mazaheri & Jensen, 2006; Makeig, et al., 2002; Vidaurre, et al., 2021), and each effect may be underpinned by distinct neural mechanisms. For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question”

      In the Discussion, I have further commented:

      “Genephys has different available types of effect, including phase resets, additive damped oscillations, amplitude modulations, and non-oscillatory responses. All of these elements, which may relate to distinct neurobiological mechanisms, are configurable and can be combined to generate a plethora of TGMs that, in turn, can be contrasted to specific empirical TGMs. This way, we can gain insight on what mechanisms might be at play in a given task.

      The demonstrations here are not meant to be tailored to a specific data set, and are, for the most part, intentionally qualitative. TGMs do vary across experiments and subjects; and the hyperparameters of the model can be explicitly optimised to specific scientific questions, data sets, and even individuals. In order to explore the space of configurations effectively, an automatic optimisation of the hyperparameter space using, for instance, Bayesian optimisation (Lorenz, et al., 2017) could be advantageous. This may lead to the identification of very specific (spatial, spectral and temporal) features in the data that may be neurobiologically interpreted. “

      On p. 15 "Having a diversity of frequencies but not of latencies produces another regular pattern consisting of alternating, parallel bands of higher/lower than baseline accuracy. This, shown in the bottom left panel, is not what we see in real data either. Having a diversity of latencies but not of frequencies gets us closer to a realistic pattern, as we see in the top right panel." The terms frequency and latency seem to be confused.

      The Reviewer is right. I have corrected this now. Thank you.

      Reviewer #2:

      The results of comparisons between simulations and real data are not always clear for an inexperienced reader. For example, the comparisons are qualitative rather than quantitative, making it hard to draw firm conclusions. Relatedly, it is unclear whether the chosen parameterizations are the only/best ones to generate the observed patterns or whether others are possible. In the case of the latter, it is unclear what we can actually conclude about underlying signal generators. It would have been different if the model was directly fitted to empirical data, maybe of different cognitive conditions. Finally, the neurobiological interpretation of different signal properties is not discussed. Therefore, taken together, in its currently presented form, it is unclear how this method could be used exactly to further our understanding of the brain.

      This critique coincides with that of Reviewer 1. In the current version, I made more clear the fact that I am not fitting a specific empirical TGM and why, and that, instead, I am referring to general features that appear broadly throughout the literature. See more detailed changes below.

      Regarding whether the chosen parameterizations are the only/best ones to generate the observed patterns, the Discussion reflects this limitation:

      “Also importantly, I have shown that standard decoding analysis can differentiate between these explanations only to some extent. For example, the effects induced by phase-resetting and the use of additive oscillatory components are not enormously different in terms of the resulting TGMs. In future work, alternatives to standard decoding analysis and TGMs might be used to disentangle these sources of variation (Vidaurre, et al., 2019). ”

      And

      “Importantly, the list of effects that I have explored here is not exhaustive …”

      Of course, since the list of signal features I have explored is not exhaustive, it cannot be claimed without a doubt that these features are the ones generating the properties we observe in real TGMs. The model, however, is a step forward in that direction, as it provides us with a tool to at least rule out some causes.

      Firstly, it was not entirely clear to me from the introduction what gap exactly the model is supposed to fill: is it about variance in neural responses in general, about which signal properties are responsible for decoding, or about capturing stability of signals? It seems like it does all of these, but this needs to be made clearer in the introduction. It would be helpful to emphasize exactly what insights the model can provide that are unable to be obtained with the current methods.

      I have now made this explicit in in the Introduction, as suggested:

      “To gain insight into what aspects of the signal underpin decoding accuracy, and therefore the most stable aspects of stimulus processing, I introduce a generative model”

      To help illustrating what insights the model can provide, I have added the following sentence as an example:

      “For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question.”

      Furthermore, I was unclear on why these specific properties were chosen (lines 71 to 78). Is there evidence from neuroscience to suggest that these signal properties are especially important for neural processing? Or, if the logic has more to do with signal processing, why are these specific properties the most important to include?

      To clarify this the text now reads:

      “In the model, when a channel responds, it can do it in different ways: (i) by phase-resetting the ongoing oscillation to a given target phase and then entraining to a given frequency, (ii) by an additive oscillatory response independent of the ongoing oscillation, (iii) by modulating the amplitude of the stimulus-relevant oscillations, or (iv) by an additive non-oscillatory (slower) response. This (not exhaustive) list of effects was considered given previous literature (Shah, et al., 2004; Mazaheri & Jensen, 2006; Makeig, et al., 2002; Vidaurre, et al., 2021), and each effect may be underpinned by distinct neural mechanisms”

      The general narrative and focus of the paper could also be improved. It might help to start off with an outline of what the goal is at the start of the paper and then explicitly discuss how each of the steps works toward that goal. For example, I got the idea that the goal was to capture specific properties of an empirical TGM. If this was the case, the empirical TGM could be placed in the main body of the text as a reference picture for all simulated TGMs. For each simulation step, it could be emphasized more clearly exactly which features of the TGM is captured and what that means for interpreting these features in real data.

      Thank you. To clarify the purpose of the paper better, I have brought Figure 2 to the front (before a Supplementary Figure), and in the first part of Results I have now added:

      “Figure 2 shows a TGM for an example subject, where some archetypal characteristics are highlighted. In the experiments below, specifically, I focus on the strong narrow diagonal at the beginning of the trial, the broadening of accuracy later in the trial, and the vertical/horizontal bars of higher-than-chance accuracy. Importantly, this specific example in Figure 2 is only meant as a reference, and therefore I did not optimise the model hyperparameters to this TGM (except in the last subsection), or showed any quantitative metric of similarity. ”

      I have enunciated the goals more clearly in the Introduction:

      “To gain insight into what aspects of the signal underpin decoding accuracy, and therefore the most stable aspects of stimulus processing, …”

      Relatedly, it would be good to connect the various signal properties to possible neurobiological mechanisms. I appreciate that the author tries to remain neutral on this in the introduction, but I think it would greatly increase the implications of the analysis if it is made clearer how it could eventually help us understand neural processes.

      The Reviewer is right in pointing out that I preferred to remain neutral on this. While I have still kept that tone of neutrality throughout the paper, I have now included the following sentence as an example of a neurobiological question that could be investigated with the model:

      “For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question.”

      And, more generally,

      “Genephys has different available types of effect, including phase resets, additive damped oscillations, amplitude modulations, and non-oscillatory responses. All of these elements, which may relate to distinct neurobiological mechanisms, are configurable and can be combined to generate a plethora of TGMs that, in turn, can be contrasted to specific empirical TGMs. This way, we can gain insight on what mechanisms might be at play in a given task. ”

      Line 57: this sentence is very long, making it hard to follow, could you break up into smaller parts?

      Thank you. The sentence is fragmented now.

      Please replace angular frequencies with frequencies in Hertz for clarity.

      Here I have preferred to stick to angular frequencies because it is more general than if I talk about Hertz, because that would entail having a specific sampling frequency. I think doing so would create confusion precisely of the sorts that I am trying to clarify in this revision: that is, that these results are not specific of one TGM but reflect general features that we see broadly in the literature.

      There are quite some types throughout the paper, please recheck

      Thank you. I have revised and have made my best to clear them out.

    2. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      A weakness of the paper is that the power of the model is illustrated for only one specific set of parameters, added in a stepwise manner and the comparison to one specific empirical TGM, assumed to be prototypical; And that this comparison remains descriptive. (That is could a different selection of parameters lead to similar results and is there TGM data which matches these settings less well.)

      The fact that the comparisons in the paper are descriptive is a central point of criticism from both reviewers. As mentioned in my preliminary response, I intentionally did not optimise the model to a specific TGM or show an explicit metric of fitness. As I now explicitly mention in the new experimental section of the paper:

      “The previous analyses were descriptive in the sense that they did not quantify how much the generated TGMs resembled a specific empirical TGM. This was deliberate, because empirical TGMs vary across subjects and experiments, and I aimed at characterising them as generally as possible by looking at some characteristic features in broad terms. For example, while TGMs typically have a strong diagonal and horizontal/vertical bars of high accuracy, questions such as when these effects emerge and for how long are highly dependent on the experimental paradigm. For the same reason, I did not optimise the model hyperparameters, limiting myself to observing the behaviour of the model across some characteristic configurations”

      And, in the Discussion:

      “The demonstrations here are not meant to be tailored to a specific data set, and are, for the most part, intentionally qualitative. TGMs do vary across experiments and subjects; and the hyperparameters of the model can be explicitly optimised to specific scientific questions, data sets, and even individuals. In order to explore the space of configurations effectively, an automatic optimisation of the hyperparameter space using, for instance, Bayesian optimisation (Lorenz, et al., 2017) could be advantageous. This may lead to the identification of very specific (spatial, spectral and temporal) features in the data that may be neurobiologically interpreted.”

      Nonetheless, it is possible to fit the model to a specific TGMs by using a explicit metric of fitness. For illustration, this is what I did in the new experimental section Fitting and empirical TGM, where I used correlation with an empirical TGM to optimise two temporal parameters: the rise slope and the fall slope. As can be seen in the Figure 8, the correlation with the empirical TGM was as high as 0.7, even though I did not fit the other parameters of the model. As mentioned in the paragraph above, more sophisticated techniques such as Bayesian optimisation might be necessary for a more exhaustive exploration, but this would be beyond the scope of the current paper.

      I would also like to point out that fitting the parameters in a step-wise manner was a necessity for interpretation. I suggest to think of the way we use F-tests in regression analyses as a comparison: if we want to know how important a feature is, we compare the model with and without this feature and see how much we loss.

      It further remained unclear to me, which implications may be drawn from the generative model, following from the capacities to mimic this specific TGM (i) for more complex cases, such as the comparison between experimental conditions, and (ii) about the complex nature of neural processes involved.

      Following on the previous points, the object of this paper (besides presenting the model and the associated toolbox) was not to mimic a specific TGM, but to characterise the main features that we generally see across studies in the field. To clarify this, I have added Figure 2 (previously a Supplemental Information figure), and added the following to the Results section:

      “Figure 2 shows a TGM for an example subject, where some archetypal characteristics are highlighted. In the experiments below, specifically, I focus on the strong narrow diagonal at the beginning of the trial, the broadening of accuracy later in the trial, and the vertical/horizontal bars of higher-than-chance accuracy. Importantly, this specific example in Figure 2 is only meant as a reference, and therefore I did not optimise the model hyperparameters to this TGM (except in the last subsection), or showed any quantitative metric of similarity.”

      I mention the possibility of using the model to explore more complex cases in the Introduction, although doing so here would be out of scope:

      “Other experimental paradigms, including motor tasks and decision making, can be investigated with genephys”

      Towards this end, I would appreciate (i) a more profound explanation of the conclusions that can be drawn from this specific showcase, including potential limitations, as well as wider considerations of how scientists may empower the generative model to (ii) understand their experimental data better and (iii) which added value the model may have in understanding the nature of underlying brain mechanism (rather than a mere technical characterization of sensor data).

      To better illustrate how to use genephys to explore a specific data set, I have added a section (Fitting an empirical TGM) where I show how to fit specific hyperparameters to an empirical TGM in a simple manner.

      In the Introduction, I briefly mentioned:

      “This (not exhaustive) list of effects was considered given previous literature (Shah, et al., 2004; Mazaheri & Jensen, 2006; Makeig, et al., 2002; Vidaurre, et al., 2021), and each effect may be underpinned by distinct neural mechanisms. For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question”

      In the Discussion, I have further commented:

      “Genephys has different available types of effect, including phase resets, additive damped oscillations, amplitude modulations, and non-oscillatory responses. All of these elements, which may relate to distinct neurobiological mechanisms, are configurable and can be combined to generate a plethora of TGMs that, in turn, can be contrasted to specific empirical TGMs. This way, we can gain insight on what mechanisms might be at play in a given task.

      The demonstrations here are not meant to be tailored to a specific data set, and are, for the most part, intentionally qualitative. TGMs do vary across experiments and subjects; and the hyperparameters of the model can be explicitly optimised to specific scientific questions, data sets, and even individuals. In order to explore the space of configurations effectively, an automatic optimisation of the hyperparameter space using, for instance, Bayesian optimisation (Lorenz, et al., 2017) could be advantageous. This may lead to the identification of very specific (spatial, spectral and temporal) features in the data that may be neurobiologically interpreted. “

      On p. 15 "Having a diversity of frequencies but not of latencies produces another regular pattern consisting of alternating, parallel bands of higher/lower than baseline accuracy. This, shown in the bottom left panel, is not what we see in real data either. Having a diversity of latencies but not of frequencies gets us closer to a realistic pattern, as we see in the top right panel." The terms frequency and latency seem to be confused.

      The Reviewer is right. I have corrected this now. Thank you.

      Reviewer #2:

      The results of comparisons between simulations and real data are not always clear for an inexperienced reader. For example, the comparisons are qualitative rather than quantitative, making it hard to draw firm conclusions. Relatedly, it is unclear whether the chosen parameterizations are the only/best ones to generate the observed patterns or whether others are possible. In the case of the latter, it is unclear what we can actually conclude about underlying signal generators. It would have been different if the model was directly fitted to empirical data, maybe of different cognitive conditions. Finally, the neurobiological interpretation of different signal properties is not discussed. Therefore, taken together, in its currently presented form, it is unclear how this method could be used exactly to further our understanding of the brain.

      This critique coincides with that of Reviewer 1. In the current version, I made more clear the fact that I am not fitting a specific empirical TGM and why, and that, instead, I am referring to general features that appear broadly throughout the literature. See more detailed changes below.

      Regarding whether the chosen parameterizations are the only/best ones to generate the observed patterns, the Discussion reflects this limitation:

      “Also importantly, I have shown that standard decoding analysis can differentiate between these explanations only to some extent. For example, the effects induced by phase-resetting and the use of additive oscillatory components are not enormously different in terms of the resulting TGMs. In future work, alternatives to standard decoding analysis and TGMs might be used to disentangle these sources of variation (Vidaurre, et al., 2019). ”

      And

      “Importantly, the list of effects that I have explored here is not exhaustive …”

      Of course, since the list of signal features I have explored is not exhaustive, it cannot be claimed without a doubt that these features are the ones generating the properties we observe in real TGMs. The model, however, is a step forward in that direction, as it provides us with a tool to at least rule out some causes.

      Firstly, it was not entirely clear to me from the introduction what gap exactly the model is supposed to fill: is it about variance in neural responses in general, about which signal properties are responsible for decoding, or about capturing stability of signals? It seems like it does all of these, but this needs to be made clearer in the introduction. It would be helpful to emphasize exactly what insights the model can provide that are unable to be obtained with the current methods.

      I have now made this explicit in in the Introduction, as suggested:

      “To gain insight into what aspects of the signal underpin decoding accuracy, and therefore the most stable aspects of stimulus processing, I introduce a generative model”

      To help illustrating what insights the model can provide, I have added the following sentence as an example:

      “For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question.”

      Furthermore, I was unclear on why these specific properties were chosen (lines 71 to 78). Is there evidence from neuroscience to suggest that these signal properties are especially important for neural processing? Or, if the logic has more to do with signal processing, why are these specific properties the most important to include?

      To clarify this the text now reads:

      “In the model, when a channel responds, it can do it in different ways: (i) by phase-resetting the ongoing oscillation to a given target phase and then entraining to a given frequency, (ii) by an additive oscillatory response independent of the ongoing oscillation, (iii) by modulating the amplitude of the stimulus-relevant oscillations, or (iv) by an additive non-oscillatory (slower) response. This (not exhaustive) list of effects was considered given previous literature (Shah, et al., 2004; Mazaheri & Jensen, 2006; Makeig, et al., 2002; Vidaurre, et al., 2021), and each effect may be underpinned by distinct neural mechanisms”

      The general narrative and focus of the paper could also be improved. It might help to start off with an outline of what the goal is at the start of the paper and then explicitly discuss how each of the steps works toward that goal. For example, I got the idea that the goal was to capture specific properties of an empirical TGM. If this was the case, the empirical TGM could be placed in the main body of the text as a reference picture for all simulated TGMs. For each simulation step, it could be emphasized more clearly exactly which features of the TGM is captured and what that means for interpreting these features in real data.

      Thank you. To clarify the purpose of the paper better, I have brought Figure 2 to the front (before a Supplementary Figure), and in the first part of Results I have now added:

      “Figure 2 shows a TGM for an example subject, where some archetypal characteristics are highlighted. In the experiments below, specifically, I focus on the strong narrow diagonal at the beginning of the trial, the broadening of accuracy later in the trial, and the vertical/horizontal bars of higher-than-chance accuracy. Importantly, this specific example in Figure 2 is only meant as a reference, and therefore I did not optimise the model hyperparameters to this TGM (except in the last subsection), or showed any quantitative metric of similarity. ”

      I have enunciated the goals more clearly in the Introduction:

      “To gain insight into what aspects of the signal underpin decoding accuracy, and therefore the most stable aspects of stimulus processing, …”

      Relatedly, it would be good to connect the various signal properties to possible neurobiological mechanisms. I appreciate that the author tries to remain neutral on this in the introduction, but I think it would greatly increase the implications of the analysis if it is made clearer how it could eventually help us understand neural processes.

      The Reviewer is right in pointing out that I preferred to remain neutral on this. While I have still kept that tone of neutrality throughout the paper, I have now included the following sentence as an example of a neurobiological question that could be investigated with the model:

      “For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question.”

      And, more generally,

      “Genephys has different available types of effect, including phase resets, additive damped oscillations, amplitude modulations, and non-oscillatory responses. All of these elements, which may relate to distinct neurobiological mechanisms, are configurable and can be combined to generate a plethora of TGMs that, in turn, can be contrasted to specific empirical TGMs. This way, we can gain insight on what mechanisms might be at play in a given task. ”

      Line 57: this sentence is very long, making it hard to follow, could you break up into smaller parts?

      Thank you. The sentence is fragmented now.

      Please replace angular frequencies with frequencies in Hertz for clarity.

      Here I have preferred to stick to angular frequencies because it is more general than if I talk about Hertz, because that would entail having a specific sampling frequency. I think doing so would create confusion precisely of the sorts that I am trying to clarify in this revision: that is, that these results are not specific of one TGM but reflect general features that we see broadly in the literature.

      There are quite some types throughout the paper, please recheck

      Thank you. I have revised and have made my best to clear them out.