4,746 Matching Annotations
  1. Last 7 days
    1. Graffiti and other notes left on walls were used for sharing updates, spreading rumors, and tracking accounts

      Cool that graffiti has kind of changed in a way where people will tag pretty much whatever just with their name when it used to be more informative. That informative part of street art I think it has been taken by flyers or posters that will have updates or messages. But more and more these days I am seeing explicitly politic graffiti around witch seems a bit closer to it's original use.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the referees for taking time to review our manuscript. These reviews are positive, highlighting the novelty of our findings. The majority of comments are cosmetic, and we have added data in response to some technical points. We feel that some of the additional experiments proposed would not add significant methodological depth, and cross-commenting suggests that our referees agree. At present we are attempting antibody staining to quantify Tk peptide retention in the midgut, as per suggestion by reviewer #2.

      We enclose our point-by-point response to each referee's points, below.



      __Reviewer #1 __

      • Can the authors state in the figure legends the numbers of flies used for each lifespan and whether replicates have been done?
      • We have incorporated the requested information into legends for lifespan experiments.

      • Do the interventions shorten lifespan relative to the axenic cohort? Or do they prevent lifespan extension by axenic conditions? Both statements are valid, and the authors need to be consistent in which one they use to avoid confusing the reader.

      • We read these statements differently. The only experiment in which a genetic intervention prevented lifespan extension by axenic conditions is neuronal TkR86C knockdown (Figure 6B-C). Otherwise, microbiota shortened lifespan relative to axenic conditions, and genetic knockdowns extend blocked this effect (e.g. see lines 131-133). We have ensured that the framing is consistent throughout, with text edited at lines 198-199, 298-299, 311-312, 345-347, 408-409, 424-425, 450, 497-503.

      • TkRNAi consistently reduces lipid levels in axenic flies (Figs 2E, 3D), essentially phenocopying the loss of lipid stores seen in control conventionally reared (CR) flies relative to control axenic. This suggests that the previously reported role of Tk in lipid storage - demonstrated through increased lipid levels in TkRNAi flies (Song et al (2014) Cell Rep 9(1): 40) - is dependent on the microbiota. In the absence of the microbiota TkRNAi reduces lipid levels. The lack of acknowledgement of this in the text is confusing

      • We have added text at lines 219-222 to address this point. We agree that this effect is hard to interpret biologically, since expressing RNAi in axenics has no additional effect on Tk expression (Figure S7). Consequently we can only interpret this unexpected effect as a possible off-target effect of RU feeding on TAG, specific to axenic flies. However, this possibility does not void our conclusion, because an off-target dimunition of TAG cannot explain why CR flies accumulate TAG following TkRNAi We hope that our added text clarifies.

      • *I have struggled to follow the authors logic in ablating the IPCs and feel a clear statement on what they expected the outcome to be would help the reader. *

      • We have added the requested statement at lines 423-424, explaining that we expected the IPC ablation to render flies constitutively long-lived and non-responsive to A pomorum.

      • *Can the authors clarify their logic in concluding a role for insulin signalling, and qualify this conclusion with appropriate consideration of alternative hypotheses? *

      • We have added our logic at lines 449-454. In brief, we conclude involvement for insulin signalling because FoxO mutant lifespan does not respond to TkRNAi, and diminishes the lifespan-shortening effect of * pomorum*. However, we cannot state that the effects are direct because we do not have data that mechanistically connects Tk/TkR99D signalling directly in insulin-producing cells. The current evidence is most consistent with insulin signalling priming responses to microbiota/Tk/TkR99D, as per the newly-added text.

      • Typographical errors

      • We have remedied the highlighted errors, at lines 128-140.

      • I'd encourage the authors to provide lifespan plots that enable comparison between all conditions

      • We have plotted our figures in faceted boxes, because the number of survival curves that would need to be presented on the same axis (e.g. 16 for Figure 5) would not be intellegible. However we have ensured that axes on faceted plots are equivalent and with grid lines for comparison. Moreover, our approach using statistical coefficients (EMMs) enables direct quantitative comparison of the differences among conditions.

      Reviewer #2

      • Not…essential for publication…is it possible to look at Tk protein levels?
      • We have acquired a small amount of anti-TK antibody and we will attempt to immunostain guts associated with * pomorum and L. brevis*. We are also attempting the equivalent experiment in mouse colon reared with/without a defined microbiota. These experiments are ongoing, but we note that the referee feels that the manuscript is a publishable unit whether these stainings succeed or not.

      • it would be good to show that the bacterial levels are not impacted [by TkRNAi]

      • We have quantified CFUs in CR flies upon ubiquitous TkRNAi (Figure S5), finding that the RNAi does not affect bacterial load. New text at lines 138-139 articulates this point.

      • The effect of Tk RNAi on TAG is opposite in CR and Ax or CR and Ap flies, and the knockdown shows an effect in either case (Figure 2E, Figure 3D). Why is this?

      • As per response to Reviewer #1, we have added text at lines 219-222 to address this point.

      • Is it possible to perform at least one lifespan repeat with the other Tk RNAi line mentioned?

      • We have added another experiment showing longevity upon knockdown in conventional flies, using an independent TkRNAi line (Figure S3).

      • Is it possible that this driver is simply not resulting in an efficient KD of the receptor? I would be inclined to check this

      • This comment relates to Figure 7G. We do see an effect of the knockdown in this experiment, so we believe that the knockdown is effective. However the direction of response is not consistent with our hypothesis so the experiment is not informative about the role of these cells. We therefore feel there is little to be gained by testing efficacy of knockdown, which would also be technically challenging because the cells are a small population in a larger tissue which expresses the same transcripts elsewhere (i.e. necessitating FISH).

      • Would it be possible to use antibodies for acetylated histones?

      • The comment relates to Figure 4C-E. The proposed studies would be a significant amount of work because, to our knowledge, the specific histone marks which drive activation in TK+ cells remain unknown. On the other hand, we do not see how this information would enrich the present story, rather such experiments would appear to be the beginning of something new. We therefore agree with Reviewer #1 (in cross-commenting) that this additional work is not justified.

      Reviewer #3

      • *In Line243, the manuscript states that the reporter activity was not increased in the posterior midgut. However, based on the presented results in Fig4E, there is seemingly not apparent regional specificity. A more detailed explanation is necessary. *
      • We thank the reviewer sincerely for their keen eye, which has highlighted an error in the previous version of the figure. In revisiting this figure we have noticed, to our dismay, that the figures for GFP quantification were actually re-plots of the figures for (ac)K quantification. This error led to the discrepancy between statistics and graphics, which thankfully the reviewer noticed. We have revised the figure to remedy our error, and the statistics now match the boxplots and results text.

      • Fig1C uses Adh for normalization. Given the high variability of the result, the authors should (1) check whether Adh expression levels changed via bacterial association

      • We selected Adh on the basis of our RNAseq analysis, which showed it was not different between AX and CV guts, whereas many commonly-used “housekeeping” genes were. We have now added a plot to demonstrate (Figure S2).

      • The statement in Line 82 that EEs express 14 peptide hormones should be supported with an appropriate reference

      • We have added the requested reference (Hung et al, 2020) at line 86.

      • Tk+ EEC activity should be assessed directly, rather than relying solely on transcript levels. Approaches such as CaLexA or GCaMP could be used.

      • We agree with reviewers 1-2 (in cross-commenting) that this proposal is non-trivial and not justified by the additional insight that would be gained. As described above, we are attempting to immunostain Tk, which if successful will provide a third line of evidence for regulation of Tk+ cells. However we note that we already have the strongest possible evidence for a role of these cells via genetic analysis (Figure 5).

      • While the difficulty of maintaining lifelong axenic conditions is understandable, it may still be feasible to assess the induction of Tk (ie. Tk transcription or EE activity upregulation) by the microbiome on males.

      • As the reviewer recognises, maintaining axenic experiments for months on end is not trivial. Given the tendency for males either to simply mirror female responses to lifespan-extending interventions, or to not respond at all, we made the decision in our work to only study females. We have instead emphasised in the manuscript that results are from female flies.

      • TkR86C, in addition to TkR99D, may be involved in the A. pomorum-lifespan interaction. Consider revising the title to refer more generally to the "tachykinin receptor" rather than only TkR99D.

      • We disagree with this interpretation: the results do not show that TkR86C-RNAi recapitulates the effect of enteric Tk-RNAi. A potentially interesting interaction is apparent, but the data do not support a causal role for TkR86C. A causal role is supported only for TkR99D, knockdown of which recapitulates the longevity of axenic flies and TkRNAi flies. Therefore we feel that our current title is therefore justified by the data, and a more generic version would misrepresent our findings.

      • The difference between "aging" and "lifespan" should also be addressed.

      • The smurf phenotype is a well-established metric of healthspan. Moreover, lifespan is the leading aggregate measure of ageing. We therefore feel that the use of “ageing” in the title is appropriate.

      • If feasible, assessing foxo activation would add mechanistic depth. This could be done by monitoring foxo nuclear localization or measuring the expression levels of downstream target genes.

      • Foxo nuclear localisation has already been shown in axenic flies (Shin et al, 2011). We have added text and citation at lines 402-403.
    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The main finding of this work is that microbiota impacts lifespan though regulating the expression of a gut hormone (Tk) which in turn acts on its receptor expressed on neurons. This conclusion is robust and based on a number of experimental observation, carefully using techniques in fly genetics and physiology: 1) microbiota regulates Tk expression, 2) lifespan reduction by microbiota is absent when Tk is knocked down in gut (specifically in the EEs), 3) Tk knockdown extends lifespan and this is recapitulated by knockdown of a Tk receptor in neurons. These key conclusions are very convincing. Additional data are presented detailing the relationship between Tk and insulin/IGF signalling and Akh in this context. These are two other important endocrine signalling pathways in flies. The presentation and analysis of the data are excellent.

      There are only a few experiments or edits that I would suggest as important to confirm or refine the conclusions of this manuscript. These are:

      1. When comparing the effects of microbiota (or single bacterial species) in different genetic backgrounds or experimental conditions, I think it would be good to show that the bacterial levels are not impacted by the other intervention(s). For example, the lifespan results observed in Figure 2A are consistent with Tk acting downstream of the microbes but also with Tk RNAi having an impact on the microbiota itself. I think this simple, additional control could be done for a few key experiments. Similarly, the authors could compare the two bacterial species to see if the differences in their effects come from different ability to colonise the flies.
      2. The effect of Tk RNAi on TAG is opposite in CR and Ax or CR and Ap flies, and the knockdown shows an effect in either case (Figure 2E, Figure 3D). Why is this? Better clarification is required.
      3. With respect to insulin signalling, all the experiments bar one indicate that insulin is mediating the effects of Tk. The one experiment that does not is using dilpGS to knock down TkR99D. Is it possible that this driver is simply not resulting in an efficient KD of the receptor? I would be inclined to check this, but as a minimum I would be a bit more cautious with the interpretation of these data.
      4. Is it possible to perform at least one lifespan repeat with the other Tk RNAi line mentioned? This would further clarify that there are no off-target effects that can account for the phenotypes.

      There are a few other experiments that I could suggest as I think they could enrich the current manuscript, but I do not believe they are essential for publication: 5. The manuscript could be extended with a little more biochemical/cell biology analysis. For example, is it possible to look at Tk protein levels, Tk levels in circulation, or even TkR receptor activation or activation of its downstream signalling pathways? Comparing Ax and CR or Ap and CR one would expect to find differences consistent with the model proposed. This would add depth to the genetic analysis already conducted. Similarly, for insulin signalling - would it be possible to use some readout of the pathway activity and compare between Ax and CR or Ap and CR? 6. The authors use a pan-acetyl-K antibody but are specifically interested in acetylated histones. Would it be possible to use antibodies for acetylated histones? This would have the added benefit that one can confirm the changes are not in the levels of histones themselves. 7. I think the presentation of the results could be tightened a bit, with fewer sections and one figure per section.

      Referees cross-commenting

      Reviewer 1

      I generally agree with this reviewer but for

      "I'm convinced by the data showing that FOXO is required for TkRNAi to prevent lifespan shortening by Ap, but FOXO doesn't only respond to insulin signalling and can't be taken by itself to indicate a role for insulin signalling which the authors appear to do here."

      To the best of my knowledge, Foxo has only been shown to be required for lifespan extension/modulation by a reduction in insulin-like signalling. I.e. it does respond to other pathways but this is the only one where Foxo activity is known to modulate lifespan.

      Reviewer 3

      I agree with reviewer 1 that point raised under (1) does not appear strictly required for the conclusions of the manuscript.

      Both reviewers 1 and 3:

      I have a different take on the results of experiments where IPCs are manipulated. To me, Figure 7D and E show that ablating the IPCs removes the difference between Ax and Ap i.e. the IPCs are involved and insulin-like signalling is likely involved. The fact that RNAi against the TKR99D receptor does not have the same effect, does not matter (the sensing could happen in different neurons). Similarly, dilp expression is only a minor readout of what is happening with insulin-like signalling - dilps are controlled at the level of secretion.

      However, I would be happy for the authors to present different arguments and make a reasonable conclusion, which may differ from mine. But I think the arguments I present above should be taken into account.

      Significance

      The main contribution of this manuscript is the identification of a mechanism that links the microbiota to lifespan. This is very exciting and topical for several reasons:

      1) The microbiota is very important for overall health but it is still unclear how. Studying the interaction between microbiota and health is an emerging, growing field, and one that has attracted a lot of interest, but one that is often lacking in mechanistic insight. Identifying mechanisms provides opportunities for therapies. The main impact of this study comes from using the fruit fly to identify a mechanism.

      2) It is very interesting that the authors focus on an endocrine mechanism, especially with the clear clinical relevance of gut hormones to human health recently demonstrated with new, effective therapies (e.g. Wegovy).

      3) Tk is emerging as an important fly hormone and this study adds a new and interesting dimension by placing TK between microbiota and lifespan.

      I think the manuscript will be of great interest to researchers in ageing, human and animal physiology and in gut endocrinology and gut function.

    1. Author Response:

      Assessment note: “Whereas the results and interpretations are generally solid, the mechanistic aspect of the work and conclusions put forth rely heavily on in vitro studies performed in cultured L6 myocytes, which are highly glycolytic and generally not viewed as a good model for studying muscle metabolism and insulin action.”

      While we acknowledge that in vitro models may not fully recapitulate the complexity of in vivo systems, we believe that our use of L6 myotubes is appropriate for studying the mechanisms underlying muscle metabolism and insulin action. As mentioned below (reviewer 2, point 1), L6 myotubes possess many important characteristics relevant to our research, including high insulin sensitivity and a similar mitochondrial respiration sensitivity to primary muscle fibres. Furthermore, several studies have demonstrated the utility of L6 myotubes as a model for studying insulin sensitivity and metabolism, including our own previous work (PMID: 19805130, 31693893, 19915010).

      In addition, we have provided evidence of the similarities between L6 cells overexpressing SMPD5 and human muscle biopsies at protein levels and the reproducibility of the negative correlation between ceramide and Coenzyme Q observed in L6 cells in vivo, specifically in the skeletal muscle of mice in chow diet. These findings support the relevance of our in vitro results to in vivo muscle metabolism.

      Finally, we will supplement our findings by demonstrating a comparable relationship between ceramide and Coenzyme Q in mice exposed to a high-fat diet, to be shown in Supplementary Figure 4 H-I. Further animal experiments will be performed to validate our cell-line based conclusions. We hope that these additional results address the concerns raised by the reviewer and further support the relevance of our in vitro findings to in vivo muscle metabolism and insulin action.

      Points from reviewer 1:

      1. Although the authors' results suggest that higher mitochondrial ceramide levels suppress cellular insulin sensitivity, they rely solely on a partial inhibition (i.e., 30%) of insulin-stimulated GLUT4-HA translocation in L6 myocytes. It would be critical to examine how much the increased mitochondrial ceramide would inhibit insulin-induced glucose uptake in myocytes using radiolabel deoxy-glucose.

      Response: The primary impact of insulin is to facilitate the translocation of glucose transporter type 4 (GLUT4) to the cell surface, which effectively enhances the maximum rate of glucose uptake into cells. Therefore, assessing the quantity of GLUT4 present at the cell surface in non-permeabilized cells is widely regarded as the most reliable measure of insulin sensitivity (PMID: 36283703, 35594055, 34285405). Additionally, plasma membrane GLUT4 and glucose uptake are highly correlated. Whilst we have routinely measured glucose uptake with radiolabelled glucose in the past, we do not believe that evaluating glucose uptake provides a better assessment of insulin sensitivity than GLUT4.

      We will clarify the use of GLUT4 translocation in the Results section:

      “...For this reason, several in vitro models have been employed involving incubation of insulin sensitive cell types with lipids such as palmitate to mimic lipotoxicity in vivo. In this study we will use cell surface GLUT4-HA abundance as the main readout of insulin response...”

      1. Another important question to be addressed is whether glycogen synthesis is affected in myocytes under these experimental conditions. Results demonstrating reductions in insulin-stimulated glucose transport and glycogen synthesis in myocytes with dysfunctional mitochondria due to ceramide accumulation would further support the authors' claim.

      Response: We have carried out supplementary experiments to investigate glycogen synthesis in our insulin-resistant models. Our approach involved L6-myotubes overexpressing the mitochondrial-targeted construct ASAH1 (as described in Fig. 3). We then challenged them with palmitate and measured glycogen synthesis using 14C radiolabeled glucose. Our observations indicated that palmitate suppressed insulin-induced glycogen synthesis, which was effectively prevented by the overexpression of ASAH1 (N = 5, * p<0.05). These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism.

      These data will be added to Supplementary Figure 4K and the results modified as follows:

      “Notably, mtASAH1 overexpression protected cells from palmitate-induced insulin resistance without affecting basal insulin sensitivity (Fig. 3E). Similar results were observed using insulin-induced glycogen synthesis as an ortholog technique for Glut4 translocation. These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism (Sup. Fig. 5K). Importantly, mtASAH1 overexpression did not rescue insulin sensitivity in cells depleted…”

      We will add to the method section:

      “L6 myotubes overexpressing ASAH were grown and differentiated in 12-well plates, as described in the Cell lines section, and stimulated for 16 h with palmitate-BSA or EtOH-BSA, as detailed in the Induction of insulin resistance section.

      On day seven of differentiation, myotubes were serum starved in plain DMEM for 3 and a half hours. After incubation for 1 hour at 37C with 2 µCi/ml D-[U-14C]-glucose in the presence or absence of 100 nM insulin, glycogen synthesis assay was performed, as previously described (Zarini S. et al., J Lipid Res, 63(10): 100270, 2022).”

      1. In addition, it would be critical to assess whether the increased mitochondrial ceramide and consequent lowering of energy levels affect all exocytic pathways in L6 myoblasts or just the GLUT4 trafficking. Is the secretory pathway also disrupted under these conditions?

      Response: As the secretory pathway primarily involves the synthesis and transportation of soluble proteins that are secreted into the extracellular space, and given that the majority of cellular transmembrane proteins (excluding those of the mitochondria) use this pathway to arrive at their ultimate destination, we believe that the question posed by the reviewer is highly challenging and beyond the scope of our research. We will add this to the discussion:

      “...the abundance of mPTP associated proteins suggesting a role of this pore in ceramide induced insulin resistance (Sup. Fig. 6E). In addition, it is yet to be determined whether the trafficking defect is specific to Glut4 or if it affects the exocytic-secretory pathway more broadly…”

      Points from reviewer 2:

      1. The mechanistic aspect of the work and conclusions put forth rely heavily on studies performed in cultured myocytes, which are highly glycolytic and generally viewed as a poor model for studying muscle metabolism and insulin action. Nonetheless, the findings provide a strong rationale for moving this line of investigation into mouse gain/loss of function models.

      Response: The relative contribution of the anaerobic (glycolysis) and aerobic (mitochondria) contribution to the muscle metabolism can change in L6 depending on differentiation stage. For instance, Serrage et al (PMID30701682) demonstrated that L6-myotubes have a higher mitochondrial abundance and aerobic metabolism than L6-myoblasts. Others have used elegant transcriptomic analysis and metabolic characterisation comparing different skeletal muscle models for studying insulin sensitivity. For instance, Abdelmoez et al in 2020 (PMID31825657) reported that L6 myotubes exhibit greater insulin-stimulated glucose uptake and oxidative capacity compared with C2C12 and Human Mesenchymal Stem Cells (HMSC). Overall, L6 cells exhibit higher metabolic rates and primarily rely on aerobic metabolism, while C2C12 and HSMC cells rely on anaerobic glycolysis. It is worth noting that L6 myotubes are the cell line most closely related to adult human muscle when compared with other muscle cell lines (PMID31825657). Our presented results in Figure 6 H and I provide evidence for the similarities between L6 cells overexpressing SMPD5 and human muscle biopsies. Additionally, in Figure 3J-K, we demonstrate the reproducibility of the negative correlation between ceramide and Coenzyme Q observed in L6 cells in vivo, specifically in the skeletal muscle of mice in chow diet. Furthermore, we have supplemented these findings by demonstrating a comparable relationship in mice exposed to a high-fat diet, as shown in Supplementary Figure 4 H-I (refer to point 4). We will clarify these points in the Discussion:

      “In this study, we mainly utilised L6-myotubes, which share many important characteristics with primary muscle fibres relevant to our research. Both types of cells exhibit high sensitivity to insulin and respond similarly to maximal doses of insulin, with Glut4 translocation stimulated between 2 to 4 times over basal levels in response to 100 nM insulin (as shown in Fig. 1-4 and (46,47)). Additionally, mitochondrial respiration in L6-myotubes have a similar sensitivity to mitochondrial poisons, as observed in primary muscle fibres (as shown in Fig. 5 (48)). Finally, inhibiting ceramide production increases CoQ levels in both L6-myotubes and adult muscle tissue (as shown in Fig. 2-3). Therefore, L6-myotubes possess the necessary metabolic features to investigate the role of mitochondria in insulin resistance, and this relationship is likely applicable to primary muscle fibres”.

      We will also add additional data - in point 2 - from differentiated human myocytes that are consistent with our observations from the L6 models. Additional experiments are in progress to further extend these findings.

      1. One caveat of the approach taken is that exposure of cells to palmitate alone is not reflective of in vivo physiology. It would be interesting to know if similar effects on CoQ are observed when cells are exposed to a more physiological mixture of fatty acids that includes a high ratio of palmitate, but better mimics in vivo nutrition.

      Response: Palmitate is widely recognized as a trigger for insulin resistance and ceramide accumulation, which mimics the insulin resistance induced by a diet in rodents and humans. Previous studies have compared the effects of a lipid mixture versus palmitate on inducing insulin resistance in skeletal muscle, and have found that the strong disruption in insulin sensitivity caused by palmitate exposure was lessened with physiologic mixtures of fatty acids, even with a high proportion of saturated fatty acids. This was associated, in part, to the selective partitioning of fatty acids into neutral lipids (such as TAG) when muscle cells are exposed to physiologic lipid mixtures (Newsom et al PMID25793412). Hence, we think that using palmitate is a better strategy to study lipid-induced insulin resistance in vitro. We will add to results:

      “In vitro, palmitate conjugated with BSA is the preferred strategy for inducing insulin resistance, as lipid mixtures tend to partition into triacylglycerides (33)”.

      We are also performing additional in vivo experiments to add to the physiological relevance of the findings.

      1. While the utility of targeting SMPD5 to the mitochondria is appreciated, the results in Figure 5 suggest that this manoeuvre caused a rather severe form of mitochondrial dysfunction. This could be more representative of toxicity rather than pathophysiology. It would be helpful to know if these same effects are observed with other manipulations that lower CoQ to a similar degree. If not, the discrepancies should be discussed.

      Response: We conducted a staining procedure using the mitochondrial marker mitoDsRED to observe the effect of SMPD5 overexpression on cell toxicity. The resulting images, displayed in the figure below (Author response image 1), demonstrate that the overexpression of SMPD5 did not result in any significant changes in cell morphology or impact the differentiation potential of our myoblasts into myotubes.

      Author response image 1.

      In addition, we evaluated cell viability in HeLa cells following exposure to SACLAC (2 uM) to induce CoQ depletion (left panel). Specifically, we measured cell death by monitoring the uptake of Propidium iodide (PI) as shown in the right panel. Our results demonstrated that Saclac-induced CoQ depletion did not lead to cell death at the doses used for CoQ depletion (Author response image 2).

      Author response image 2.

      Therefore, we deemed it improbable that the observed effect is caused by cellular toxicity, but rather represents a pathological condition induced by elevated levels of ceramides. We will add to discussion:

      “...downregulation of the respirasome induced by ceramides may lead to CoQ depletion. Despite the significant impact of ceramide on mitochondrial respiration, we did not observe any indications of cell damage in any of the treatments, suggesting that our models are not explained by toxic/cell death events.”

      1. The conclusions could be strengthened by more extensive studies in mice to assess the interplay between mitochondrial ceramides, CoQ depletion and ETC/mitochondrial dysfunction in the context of a standard diet versus HF diet-induced insulin resistance. Does P053 affect mitochondrial ceramide, ETC protein abundance, mitochondrial function, and muscle insulin sensitivity in the predicted directions?

      Response: We would like to note that the metabolic characterization and assessment of ETC/mitochondrial function in these mice (both fed a high-fat (HF) and chow diet, with or without P053) were previously published (Turner N, PMID30131496). In addition to this, we have conducted targeted metabolomic and lipidomic analyses to investigate the impact of P053 on ceramide and CoQ levels in HF-fed mice. As illustrated in the figures below (Author response image 3), the administration of P053 led to a reduction in ceramide levels (left panel) and an increase in CoQ levels (right panel) in HF-fed mice, which is consistent with our in vitro findings.

      Author response image 3.

      We will add to results:

      “…similar effect was observed in mice exposed to a high fat diet for 5 wks (Supp. Fig. 4H-I further phenotypic and metabolic characterization of these animals can be found in (41))”

      We will further perform more in-vivo studies to corroborate these findings.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study, Ana Lapao et al. investigated the roles of Rab27 effector SYTL5 in cellular membrane trafficking pathways. The authors found that SYTL5 localizes to mitochondria in a Rab27A-dependent manner. They demonstrated that SYTL5-Rab27A positive vesicles containing mitochondrial material are formed under hypoxic conditions, thus they speculate that SYTL5 and Rab27A play roles in mitophagy. They also found that both SYTL5 and Rab27A are important for normal mitochondrial respiration. Cells lacking SYTL5 undergo a shift from mitochondrial oxygen consumption to glycolysis which is a common process known as the Warburg effect in cancer cells. Based on the cancer patient database, the author noticed that low SYTL5 expression is related to reduced survival for adrenocortical carcinoma patients, indicating SYTL5 could be a negative regulator of the Warburg effect and potentially tumorigenesis.

      Strengths:

      The authors take advantage of multiple techniques and novel methods to perform the experiments.

      (1) Live-cell imaging revealed that stably inducible expression of SYTL5 co-localized with filamentous structures positive for mitochondria. This result was further confirmed by using correlative light and EM (CLEM) analysis and western blotting from purified mitochondrial fraction.

      (2) In order to investigate whether SYTL5 and Rab27A are required for mitophagy in hypoxic conditions, two established mitophagy reporter U2OS cell lines were used to analyze the autophagic flux.

      Weaknesses:

      This study revealed a potential function of SYTL5 in mitophagy and mitochondrial metabolism. However, the mechanistic evidence that establishes the relationship between SYTL5/Rab27A and mitophagy is insufficient. The involvement of SYTL5 in ACC needs more investigation. Furthermore, images and results supporting the major conclusions need to be improved.

      We thank the reviewer for their constructive comments. We agree that a complete understanding of the mechanism by which SYTL5 and Rab27A are recruited to the mitochondria and subsequently involved in mitophagy requires further investigation. Here, we have shown that SYTL5 recruitment to the mitochondria requires both its lipid-binding C2 domains and the Rab27A-binding SHD domain (Figure 1G-H). This implies a coincidence detection mechanism for mitochondrial localisation of SYTL5.  Additionally, we find that mitochondrial recruitment of SYTL5 is dependent on the GTPase activity and mitochondrial localisation of Rab27A (Figure 2D-E). We also identified proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      However, less details regarding the mitochondrial localisation of Rab27A are understood. To investigate this, we have now performed a mass spectrometry analysis to identify the interactome of Rab27A (see Author response table 1 below,). U2OS cells with stable expression of mScarlet-Rab27A or mScarlet only, were subjected to immunoprecipitation, followed by MS analysis.  Of the 32 significant Rab27A-interacting hits (compared to control), two of the hits are located in the inner mitochondrial membrane (IMM); ATP synthase F(1) complex subunit alpha (P25705), and mitochondrial very long-chain specific acyl-CoA dehydrogenase (VLCAD)(P49748). However, as these IMM proteins are not likely involved in mitochondrial recruitment of Rab27A, observed under basal conditions, we choose not to include these data in the manuscript. 

      It is known that other RAB proteins are recruited to the mitochondria. During parkin-mediated mitophagy, RABGEF1 (a guanine nucleotide exchange factor) is recruited through its ubiquitin-binding domain and directs mitochondrial localisation of RAB5, which subsequently leads to recruitment of RAB7 by the MON1/CCZ1 complex[1]. As already mentioned in the discussion (p. 12), ubiquitination of the Rab27A GTPase activating protein alpha (TBC1D10A) is reduced in the brain of Parkin KO mouse compared to controls[35], suggesting a possible connection of Rab27A with regulatory mechanisms that are linked with mitochondrial damage and dysfunction. While this an interesting avenue to explore, in this paper we will not follow up further on the mechanism of mitochondrial recruitment of Rab27A. 

      Author response table 1.

      Rab27A interactome. Proteins co-immunoprecipitated with mScarlet-Rab27A vs mScarlet expressing control. The data show average of three replicates. 

      To investigate the role of SYTL5 in the context of ACC, we acquired the NCI-H295R cell line isolated from the adrenal gland of an adrenal cancer patient. The cells were cultured as recommended from ATCC using DMEM/F-12 supplemented with NuSerum and ITS +premix. It is important to note that the H295R cells were adapted to grow as an adherent monolayer from the H295 cell line which grows in suspension. However, there can still be many viable H295R cells in the media. 

      We attempted to conduct OCR and ECAR measurements using the Seahorse XF upon knockdown of SYTL5 and/or Rab27A in H295R cells. For these assays, it is essential that the cells be seeded in a monolayer at 70-90% confluency with no cell clusters[4]. Poor adhesion of the cells can cause inaccurate measurements by the analyser. Unfortunately, the results between the five replicates we carried out were highly inconsistent, the same knockdown produced trends in opposite directions in different replicates. This is likely due to problems with seeding the cells. Despite our best efforts to optimise seeding number, and pre-coating the plate with poly-D-lysine[5] we observed poor attachment of cells and inability to form a monolayer. 

      To study the localisation of SYTL5 and Rab27A in an ACC model, we transduced the H295R cells with lentiviral particles to overexpress pLVX-SV40-mScarlet-I-Rab27A and pLVX-CMV-SYTL5-EGFP-3xFLAG. Again, this proved unsuccessful after numerous attempts at optimising transduction. 

      These issues limited our investigation into the role of SYTL5 in ACC to the cortisol assay (Supplementary Figure 6). For this the H295R cells were an appropriate model as they are able to produce an array of adrenal cortex steroids[6] including cortisol[7]. In this assay, measurements are taken from cell culture supernatants, so the confluency of the cells does not prevent consistent results as the cortisol concentration was normalised to total protein per sample. With this assay we were able to rule out a role for SYTL5 and Rab27A in the secretion of cortisol.  

      Another consideration when investigating the involvement of SYTL5 in ACC, is that in general ACC cells should have a low expression of SYTL5 as is seen from the patient expression data (Figure 6B).

      The reviewer also writes “Furthermore, images and results supporting the major conclusions need to be improved.”. We have tried several times, without success, to generate U2OS cells with CRISPR/Cas9-mediated C-terminal tagging of endogenous SYTL5 with mNeonGreen, using an approach that has been successfully implemented in the lab for other genes. This is likely due to a lack of suitable sgRNAs targeting the C-terminal region of SYTL5, which have a low predicted efficiency score and a large number of predicted off-target sites in the human genome including several other gene exons and introns (see Author response image 2). 

      We have also included new data (Supplementary Figure 4B) showing that some of the hypoxia-induced SYTL5-Rab27A-positive vesicles stain positive for the autophagy markers p62 and LC3B when inhibiting lysosomal degradation, further strengthening our data that SYTL5 and Rab27A function as positive regulators of mitophagy.  

      Reviewer #2 (Public review): 

      Summary:

      The authors provide convincing evidence that Rab27 and STYL5 work together to regulate mitochondrial activity and homeostasis.

      Strengths:

      The development of models that allow the function to be dissected, and the rigorous approach and testing of mitochondrial activity.

      Weaknesses:

      There may be unknown redundancies in both pathways in which Rab27 and SYTL5 are working which could confound the interpretation of the results.

      Suggestions for revision:

      Given that Rab27A and SYTL5 are members of protein families it would be important to exclude any possible functional redundancies coming from Rab27B expression or one of the other SYTL family members. For Rab27 this would be straightforward to test in the assays shown in Figure 4 and Supplementary Figure 5. For SYTL5 it might be sufficient to include some discussion about this possibility.

      We thank the reviewer for pointing out the potential redundancy issue for Rab27A and SYTL5. There are multiple studies demonstrating the redundancy between Rab27A and Rab27B. For example, in a study of the disease Griscelli syndrome, caused by Rab27A loss of function, expression of either Rab27A or Rab27B rescues the healthy phenotype indicating redundancy[8]. This redundancy however applies to certain function and cell types. In fact, in a study regarding hair growth, knockdown of Rab27B had the opposite effect to knockdown of Rab27A[9].

      In this paper, we conducted all assays in U2OS cells, in which the expression of Rab27B is very low. Human Protein Atlas reports expression of 0.5nTPM for Rab27B, compared to 18.4nTPM for Rab27A. We also observed this low level of expression of Rab27B compared to Rab27A by qPCR in U2OS cells. Therefore, there would be very little endogenous Rab27B expression in cells depleted of Rab27A (with siRNA or KO). In line with this, Rab27B peptides were not detected in our SYTL5 interactome MS data (Table 1 in paper). Moreover, as Rab27A depletion inhibits mitochondrial recruitment of SYTL5 and mitophagy, it is not likely that Rab27B provides a functional redundancy. It is possible that Rab27B overexpression could rescue mitochondrial localisation of SYTL5 in Rab27A KO cells, but this was not tested as we do not have any evidence for a role of Rab27B in these cells. Taken together, we believe our data imply that Rab27B is very unlikely to provide any functional redundancy to Rab27A in our experiments. 

      For the SYTL family, all five members are Rab27 effectors, binding to Rab27 through their SHD domain. Together with Rab27, all SYTL’s have been implicated in exocytosis in different cell types. For example, SYTL1 in exocytosis of azurophilic granules from neutrophils[10], SYTL2 in secretion of glucagon granules from pancreatic α cells[11], SYTL3 in secretion of lytic granules from cytotoxic T lymphocytes[12], SYTL4 in exocytosis of dense hormone containing granules from endocrine cells[13] and SYTL5 in secretion of the RANKL cytokine from osteoblasts[14]. This indicates a potential for redundancy through their binding to Rab27 and function in vesicle secretion/trafficking. However, one study found that different Rab27 effectors have distinct functions at different stages of exocytosis[15].

      Very little known about redundancy or hierarchy between these proteins. Differences in function may be due to the variation in gene expression profile across tissues for the different SYTL’s (see Author response image 1 below). SYTL5 is enriched in the brain unlike the others, suggesting possible tissue specific functions. There are also differences in the binding affinities and calcium sensitivities of the C2iA and C2B domains between the SYTL proteins[16].

      Author response image 1.

      GTEx Multi Gene Query for SYTL1-5

      All five SYTL’s are expressed in the U2OS cell line with nTPMs according to Human Protein Atlas of SYTL1: 7.5, SYTL2: 13.4, SYTL3:14.2, SYTL4: 8.7, SYTL5: 4.8. In line with this, in the Rab27A interactome, when comparing cells overexpressing mScarlet-Rab27A with control cells, we detected all five SYTL’s as specific Rab27A-interacting proteins (see Author response table 1 above). Whereas, in the SYTL5 interactome we did not detect any other SYTL protein (table 1 in paper), confirming that they do not form a complex with SYTL5. 

      We have included the following text in the discussion (p. 12): “SYTL5 and Rab27A are both members of protein families, suggesting possible functional redundancies from Rab27B or one of the other SYTL isoforms. While Rab27B has a very low expression in U2OS cells, all five SYTL’s are expressed. However, when knocking out or knocking down SYTL5 and Rab27A we observe significant effects that we presume would be negated if their isoforms were providing functional redundancies. Moreover, we did not detect any other SYTL protein or Rab27B in the SYTL5 interactome, confirming that they do not form a complex with SYTL5.”

      Suggestions for Discussion: 

      Both Rab27A and STYL5 localize to other membranes, including the endolysosomal compartments. How do the authors envisage the mechanism or cellular modifications that allow these proteins, either individually or in complex to function also to regulate mitochondrial funcYon? It would be interesYng to have some views.

      We agree that it would be interesting to better understand the mechanism involved in modulation of the localisation and function of SYTL5 and Rab27A at different cellular compartments, including the mitochondria. Here, we have shown that SYTL5 recruitment to the mitochondria involves coincidence detection, as both its lipid-binding C2 domains and the Rab27A-binding SHD domain are required (Figure 1G-H). Both these domains also seem required for localisation of SYTL5 to vesicles, and we can only speculate that binding to different lipids (Figure 1F) may regulate SYTL5 localisation. Additionally, we find that mitochondrial recruitment of SYTL5 is dependent on the GTPase activity and mitochondrial localisation of Rab27A (Figure 2D-E). However, this seems also the case for vesicular recruitment of SYTL5, although a few SYTL5-Rab27A (T23N) positive vesicles were seen (Figure 2E). 

      To characterise the mechanisms involved in mitochondrial localisation of Rab27A, we have performed mass spectrometry analysis to identify the interactome of Rab27A (see Author response table 1 above). U2OS cells with stable expression of mScarlet-Rab27A or mScarlet only were subjected to immunoprecipitation, followed by MS analysis.  Of the 32 significant Rab27A-interacting hits (compared to control), two of the hits localise in the inner mitochondrial membrane (IMM); ATP synthase F(1) complex subunit alpha (P25705), and mitochondrial very long-chain specific acyl-CoA dehydrogenase (VLCAD)(P49748). However, as these IMM proteins are not likely involved in mitochondrial recruitment of Rab27A, observed under basal conditions, we chose not to include these data in the manuscript. 

      It is known that other RAB proteins are recruited to the mitochondria by regulation of their GTPase activity. During parkin-mediated mitophagy, RABGEF1 (a guanine nucleotide exchange factor) is recruited through its ubiquitin-binding domain and directs mitochondrial localisation of RAB5, which subsequently leads to recruitment of RAB7 by the MON1/CCZ1 GEF complex[1]. As already mentioned in the discussion (p.12), ubiquitination of the Rab27A GTPase activating protein alpha (TBC1D10A) is reduced in the brain of Parkin KO mouse compared to controls[35], suggesting a possible connection of Rab27A with regulatory mechanisms that are linked with mitochondrial damage and dysfunction. While this an interesting avenue to explore, it is beyond the scope of this paper. 

      Our data suggest that SYTL5 functions as a negative regulator of the Warburg effect, the switch from OXPHOS to glycolysis. While both SYTL5 and Rab27A seem required for mitophagy of selective mitochondrial components, and their depletion leading to reduced mitochondrial respiration and ATP production, only depletion of SYTL5 caused a switch to glycolysis. The mechanisms involved are unclear, but we found several proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      We have addressed this comment in the discussion on p.12 

      Reviewer #3 (Public review):

      Summary:

      In the manuscript by Lapao et al., the authors uncover a role for the Rab27A effector protein SYTL5 in regulating mitochondrial function and turnover. The authors find that SYTL5 localizes to mitochondria in a Rab27A-dependent way and that loss of SYTL5 (or Rab27A) impairs lysosomal turnover of an inner mitochondrial membrane mitophagy reporter but not a matrix-based one. As the authors see no co-localization of GFP/mScarlet tagged versions of SYTL5 or Rab27A with LC3 or p62, they propose that lysosomal turnover is independent of the conventional autophagy machinery. Finally, the authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      Strengths:

      There are clearly interesting and new findings here that will be relevant to those following mitochondrial function, the endocytic pathway, and cancer metabolism.

      Weaknesses:

      The data feel somewhat preliminary in that the conclusions rely on exogenously expressed proteins and reporters, which do not always align.

      As the authors note there are no commercially available antibodies that recognize endogenous SYTL5, hence they have had to stably express GFP-tagged versions. However, it appears that the level of expression dictates co-localization from the examples the authors give (though it is hard to tell as there is a lack of any kind of quantitation for all the fluorescent figures). Therefore, the authors may wish to generate an antibody themselves or tag the endogenous protein using CRISPR.

      We agree that the level of SYTL5 expression is likely to affect its localisation. As suggested by the reviewer, we have tried hard, without success, to generated U2OS cells with CRISPR knock-in of a mNeonGreen tag at the C-terminus of endogenous SYTL5, using an approach that has been successfully implemented in the lab for other genes. This is likely due to a lack of suitable sgRNAs targeting the C-terminal region of SYTL5, which have a low predicted efficiency score and a large number of predicted off-target sites in the human genome including several other gene exons and introns (see Author response image 2). 

      Author response image 2.

      Overview of sgRNAs targeting the C-terminal region of SYTL5 

      Although the SYTL5 expression level might affect its cellular localization, we also found the mitochondrial localisation of SYTL5-EGFP to be strongly increased in cells co-expressing mScarletRab27A, supporting our findings of Rab27A-mediated mitochondrial recruitment of SYTL5. We have also included new data (Supplementary Figure 4B) showing that some of the hypoxia-induced SYTL5Rab27A-positive vesicles stain positive for the autophagy markers p62 and LC3B when inhibiting lysosomal degradation, further strengthening our data that SYTL5 and Rab27A function as positive regulators of mitophagy.  

      In relation to quantitation, the authors found that SYTL5 localizes to multiple compartments or potentially a few compartments that are positive for multiple markers. Some quantitation here would be very useful as it might inform on function. 

      We find that SYTL5-EGFP localizes to mitochondria, lysosomes and the plasma membrane in U2OS cells with stable expression of SYTL5-EGFP and in SYTL5/Rab27A double knock-out cells rescued with SYTL5EGFP and mScralet-Rab27A. We also see colocalization of SYTL5-EGFP with endogenous p62, LC3 and LAMP1 upon induction of mitophagy. However, as these cell lines comprise a heterogenous pool with high variability we do not believe that quantification of the overexpressing cell lines would provide beneficial information in this scenario. As described above, we have tried several times to generate SYTL5 knock-in cells without success.  

      The authors find that upon hypoxia/hypoxia-like conditions that punctate structures of SYTL5 and Rab27A form that are positive for Mitotracker, and that a very specific mitophagy assay based on pSu9-Halo system is impaired by siRNA of SYTL5/Rab27A, but another, distinct mitophagy assay (Matrix EGFP-mCherry) shows no change. I think this work would strongly benefit from some measurements with endogenous mitochondrial proteins, both via immunofluorescence and western blot-based flux assays. 

      In addition to the western blotting for different endogenous ETC proteins showing significantly increased levels of MTCO1 in cells depleted of SYTL5 and/or Rab27A (Figure 5E-F), we have now blotted for the endogenous mitochondrial proteins, COXIV and BNIP3L, in DFP and DMOG conditions upon knockdown of SYTL5 and/or Rab27A (Figure 5G and Supplementary Figure 5A). Although there was a trend towards increased levels, we did not see any significant changes in total COXIV or BNIP3L levels when SYTL5, Rab27A or both are knocked down compared to siControl. Blotting for endogenous mitochondrial proteins is however not the optimum readout for mitophagy. A change in mitochondrial protein level does not necessarily result from mitophagy, as other factors such as mitochondrial biogenesis and changes in translation can also have an effect. Mitophagy is a dynamic process, which is why we utilise assays such as the HaloTag and mCherry-EGFP double tag as these indicate flux in the pathway. Additionally, as mitochondrial proteins have different half-lives, with many long-lived mitochondrial proteins[17], differences in turnover rates of endogenous proteins make the results more difficult to interpret. 

      A really interesting aspect is the apparent independence of this mitophagy pathway on the conventional autophagy machinery. However, this is only based on a lack of co-localization between p62or LC3 with LAMP1 and GFP/mScarlet tagged SYTL5/Rab27A. However, I would not expect them to greatly colocalize in lysosomes as both the p62 and LC3 will become rapidly degraded, while the eGFP and mScarlet tags are relatively resistant to lysosomal hydrolysis. -/+ a lysosome inhibitor might help here and ideally, the functional mitophagy assays should be repeated in autophagy KOs. 

      We thank the reviewer for this suggestion. We have now repeated the colocalisation studies in cells treated with DFP with the addition of bafilomycin A1 (BafA1) to inhibit the lysosomal V-ATPase. Indeed, we find that a few of the SYTL5/Rab27A/MitoTracker positive structures also stain positive for p62 and LC3 (Supplementary Figure 4B). As expected, the occurrence of these structures was rare, as BafA1 was only added for the last 4 hrs of the 24 hr DFP treatment. However, we cannot exclude the possibility that there are two different populations of these vesicles.

      The link to tumorigenesis and cancer survival is very interesYng but it is not clear if this is due to the mitochondrially-related aspects of SYTL5 and Rab27A. For example, increased ECAR is seen in the SYTL5 KO cells but not in the Rab27A KO cells (Fig.5D), implying that mitochondrial localization of SYTL5 is not required for the ECAR effect. More work to strengthen the link between the two sections in the paper would help with future direcYons and impact with respect to future cancer treatment avenues to explore. 

      We agree that the role of SYTL5 in ACC requires future investigation. While we observe reduced OXPHOS levels in both SYTL5 and Rab27A KO cells (Figure 5B), glycolysis was only increased in SYTL5 KO cells (Figure 5D). We believe this indicates that Rab27A is being negatively regulated by SYTL5, as ECAR was unchanged in both the Rab27A KO and Rab27A/SYTL5 dKO cells. This suggests that Rab27A is required for the increase in ECAR when SYTL5 is depleted, therefore SYTL5 negatively regulates Rab27A. The mechanism involved is unclear, but we found several proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      To investigate the link to cancer further, we tested the effect of knockdown of SYTL5 and/or Rab27A on the levels of mitochondrial ROS. ROS levels were measured by flow cytometry using the MitoSOX Red dye, together with the MitoTracker Green dye to normalise ROS levels to the total mitochondria. Cells were treated with the antioxidant N-acetylcysteine (NAC)[18] as a negative control and menadione as a positive control, as menadione induces ROS production via redox cycling[19]. We must consider that there is also a lot of autofluorescence from cells that makes it impossible to get a level of ‘zero ROS’ in this experiment. We did not see a change in ROS with knockdown of SYTL5 and/or Rab27A compared to the NAC treated or siControl samples (see Author response image 3 below). The menadione samples confirm the success of the experiment as ROS accumulated in these cells. Thus, based on this, we do not believe that low SYTL5 expression would affect ROS levels in ACC tumours.

      Author response image 3.

      Mitochondrial ROS production normalised to total mitochondria

      As discussed in our response to Reviewer #1, we tried hard to characterise the role of SYTL5 in the context of ACC using the NCI-H295R cell line isolated from the adrenal gland of an adrenal cancer patient. We attempted to conduct OCR and ECAR measurements using the Seahorse XF upon knockdown of SYTL5 and/or Rab27A in H295R cells without success, due to poor attachment of the cells and inability to form a monolayer. We also transduced the H295R cells with lentiviral particles to overexpress pLVX-SV40-mScarlet-I-Rab27A and pLVX-CMV-SYTL5-EGFP-3xFLAG to study the localisation of SYTL5 and Rab27A in an ACC model. Again, this proved unsuccessful after numerous attempts at optimising the transduction. These issues limited our investigation into the role of SYTL5 in ACC to the cortisol assay (Supplementary Figure 6). For this the H295R cells were an appropriate model as they are able to produce an array of adrenal cortex steroids[6] including cortisol[7] In this assay, measurements are taken from cell culture supernatants, so the confluency of the cells does not prevent consistent results as the cortisol concentration was normalised to total protein per sample. With this assay we were able to rule out a role for SYTL5 and Rab27A in the secretion of cortisol.  

      Another consideration when investigating the involvement of SYTL5 in ACC, is that in general ACC cells should have a low expression of SYTL5 as is seen from the patient expression data (Figure 6B).

      Further studies into the link between SYTL5/Rab27A and cancer are beyond the scope of this paper as we are limited to the tools and expertise available in the lab.

      References

      (1) Yamano, K. et al. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife 7 (2018). https://doi.org:10.7554/eLife.31326

      (2) Carré, M. et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. The Journal of biological chemistry 277, 33664-33669 (2002). https://doi.org:10.1074/jbc.M203834200

      (3) Hoogerheide, D. P. et al. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes. Proceedings of the National Academy of Sciences 114, E3622-E3631 (2017). https://doi.org:10.1073/pnas.1619806114

      (4) Plitzko, B. & Loesgen, S. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism. Bio Protoc 8, e2850 (2018). https://doi.org:10.21769/BioProtoc2850

      (5) Yavin, E. & Yavin, Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. The Journal of cell biology 62, 540-546 (1974). https://doi.org:10.1083/jcb.62.2.540

      (6) Wang, T. & Rainey, W. E. Human adrenocortical carcinoma cell lines. Mol Cell Endocrinol 351, 5865 (2012). https://doi.org:10.1016/j.mce.2011.08.041

      (7) Rainey, W. E. et al. Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids. J Clin Endocrinol Metab 77, 731-737 (1993). https://doi.org:10.1210/jcem.77.3.8396576

      (8) Barral, D. C. et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest. 110, 247-257 (2002). https://doi.org:10.1172/jci15058

      (9) Ku, K. E., Choi, N. & Sung, J. H. Inhibition of Rab27a and Rab27b Has Opposite Effects on the Regulation of Hair Cycle and Hair Growth. Int. J. Mol. Sci. 21 (2020). https://doi.org:10.3390/ijms21165672

      (10) Johnson, J. L., Monfregola, J., Napolitano, G., Kiosses, W. B. & Catz, S. D. Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase–activating protein Gem-interacting protein. Mol. Biol. Cell 23, 1902-1916 (2012). https://doi.org:10.1091/mbc.e11-12-1001

      (11) Yu, M. et al. Exophilin4/Slp2-a targets glucagon granules to the plasma membrane through unique Ca2+-inhibitory phospholipid-binding activity of the C2A domain. Mol. Biol. Cell 18, 688696 (2007). https://doi.org:10.1091/mbc.e06-10-0914

      (12) Kurowska, M. et al. Terminal transport of lyXc granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood 119, 3879-3889 (2012). https://doi.org:10.1182/blood-2011-09-382556

      (13) Zhao, S., Torii, S., Yokota-Hashimoto, H., Takeuchi, T. & Izumi, T. Involvement of Rab27b in the regulated secretion of pituitary hormones. Endocrinology 143, 1817-1824 (2002). https://doi.org:10.1210/endo.143.5.8823

      (14) Kariya, Y. et al. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res 26, 689-703 (2011). https://doi.org:10.1002/jbmr.268

      (15) Zhao, K. et al. Functional hierarchy among different Rab27 effectors involved in secretory granule exocytosis. Elife 12 (2023). https://doi.org:10.7554/eLife.82821

      (16) Izumi, T. Physiological roles of Rab27 effectors in regulated exocytosis. Endocr J 54, 649-657 (2007). https://doi.org:10.1507/endocrj.kr-78

      (17) Bomba-Warczak, E. & Savas, J. N. Long-lived mitochondrial proteins and why they exist. Trends in cell biology 32, 646-654 (2022). https://doi.org:10.1016/j.tcb.2022.02.001

      (18) Curtin, J. F., Donovan, M. & Cotter, T. G. Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods 265, 49-72 (2002). https://doi.org:https://doi.org/10.1016/S0022-1759(02)00070-4

      (19) Criddle, D. N. et al. Menadione-induced Reative Oxygen Species Generation via Redox Cycling Promotes Apoptosis of Murine Pancreatic Acinar Cells. Journal of Biological Chemistry 281, 40485-40492 (2006). https://doi.org:https://doi.org/10.1074/jbc.M607704200

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):  

      Summary:

      The manuscript by Cupollilo et al describes the development, characterization, and application of a novel activity labeling system; fast labelling of engram neurons (FLEN). Several such systems already exist but this study adds additional capability by leveraging an activity marker that is destabilized (and thus temporally active) as well as being driven by the full-length promoter of cFos. The authors demonstrate the activity-dependent induction and time course of expression, first in cultured neurons and then in vivo in hippocampal CA3 neurons after one trial of contextual fear conditioning. In a series of ex vivo experiments, the authors perform patch clamp analysis of labeled neurons to determine if these putative engram neurons differ from non-labelled neurons using both the FLEN system as well as the previously characterized RAM system. Interestingly the early labelled neurons at 3 h post CFC (FLEN+) demonstrated no differences in excitability whereas the RAMlabelled neurons at 24h after CFC had increased excitability. Examination of synaptic properties demonstrated an increase in sEPCS and mEPSC frequencies as well as those for sIPSCs and mIPSCs which was not due to a change in the mossy fiber input to these neurons.

      Strengths:

      Overall the data is of high quality and the study introduces a new tool while also reassessing some principles of circuit plasticity in the CA3 that have been the focus of prior studies.

      Weaknesses:

      No major weaknesses were noted.

      Reviewer #2 (Public review): 

      Summary: 

      Cupollilo et al. investigate the properties of hippocampal CA3 neurons that express the immediate early gene cFos in response to a single foot shock. They compare ex-vivo the electrophysiological properties of these "engram neurons" labeled with two different cFos promoter-driven green markers: Their new tool FLEN labels neurons 2-6 h after activity, while RAM contains additional enhancers and peaks considerably later (>24 h). Since the fraction of labeled CA3 cells is comparable with both constructs, it is assumed (but not tested) that they label the same population of activated neurons at different time points. Both FLEN+ and RAM+ neurons in CA3 receive more synaptic inputs compared to non-expressing control neurons, which could be a causal factor for cFos activation, or a very early consequence thereof. Frequency facilitation and E/I ratio of mossy fiber inputs were also tested, but are not different in both cFos+ groups of neurons. One day after foot shock, RAM+ neurons are more excitable than RAM- neurons, suggesting a slow increase in excitability as a major consequence of cFos activation.

      Strengths: 

      The study is conducted to high standards and contributes significantly to our understanding of memory formation and consolidation in the hippocampus. Modifications of intrinsic neuronal properties seem to be more salient than overall changes in the total number of (excitatory and inhibitory) inputs, although a switch in the source of the synaptic inputs would not have been detected by the methods employed in this study

      Weaknesses: 

      With regard to the new viral tool, a direct comparison between the new tool FLEN and existing cFos reporters is missing. 

      Reviewer #1 (Recommendations for the authors):

      I have only minor suggestions for the authors to consider. 

      (1) In the in vitro characterization, the percentage of labelled neurons seems very low after a powerful and prolonged activation. It was somewhat surprising and raised the question of how accurately the FLEN construct reflects endogenous cFOS activity. Could the authors speak to this?

      The reviewer is correct that the level of FLEN positive neurons, as compared to mCherry positive neurons, is low as compared to studies using viral infection with RAM vectors in neuronal cultures (Sorensen et al, 2016, Sun et al, 2020), which is around 70-80% following chemical stimulation. The authors do not provide evidence however for a comparison with endogenous c-Fos activity in cell cultures. The reason for a discrepancy in the effect of chemical stimulation of cultured neurons is not clear, but may depend on culture conditions which may vary between labs. 

      FLEN was constructed using a mouse c-Fos promoter (-355 to +109) (Cen et al, 2003). To answer the reviewer’s question we performed an additional experiment in cultured neurons in which we found that 77.1 % of FLEN positive neurons were also c-fos positive neurons (using immunocytochemistry).

      (2) The authors compare the two labelling strategies and interpret their data with the presumption that both label a similar set of active neurons. This is particularly relevant when they suggest there might be a progressive increase in the excitability of active neurons with time. This is certainly a possibility, but the authors should also consider other possibilities that the two markers might label different populations of neurons. For example, if they require different thresholds for activation, it is possible that one is more sensitive to activity than the other. As these are unknown variables the authors should temper the interpretation accordingly.

      Indeed, the reviewer is correct that this limitation should be discussed. We have added this as a point of discussion in the text (line 355-358). In the article describing the RAM strategy (Sorensen et al, 2016) the authors use RAM to label DG neurons activated during an experience in a context A (Figure 4). Exploiting the fact that engram cells are re-activated when the animal is re-exposed to the same environment of training (memory recall), they performed c-Fos staining 90 minutes following either context A or context B re-exposure. The RAM-c-Fos overlap percentage was higher in A-A rather than A-B (A-A was a bit more than 20%). This means that RAM has captured a group of cells during training that, at least in part, were re-activated during recall. This could in part support the assumption that RAM and c-Fos share a certain overlap. Of course, this was done in DG, while we worked in CA3. In addition, both strategies label in their great majority c-Fos+ neurons (see above answer to point #1). This can not completely rule out the possibility that FLEN and RAM label partly distinct population of activated cells. 

      (3) An increase in the frequency of synaptic events is observed in neurons labelled with both markers. The authors propose that this may be due to an increase in synaptic contacts based on prior studies. However, as this is the first functional assessment why not consider changes in release probability as a mechanism for this finding? 

      We have added this as a possibility in the text (line 362-363).

      (4) It would be useful to include plots of the average frequency of m/sEPSCs and m/sIPSCs in Figures 4 and 5. These figures could also be combined into a single figure.

      We agree with the reviewer that figure 4 and 5 could be merged into a single figure. In the revised version, figure 5A becomes panel C in figure 4. Text and figure descriptions were adjusted accordingly.

      Reviewer #2 (Recommendations for the authors): 

      (1) Abstract, line 24: "In contrast, FLEN+ CA3 neurons show an increased number of excitatory inputs." RAM+ neurons also show an increased number of excitatory inputs, so this is not "in contrast". Also, not just excitatory, but also inhibitory synaptic inputs are more numerous in cFos+ neurons. Please improve the summary of your findings.

      “In contrast” referred to the fact that FLEN+ neurons do not show differences in excitability as compared to FLEN- neurons, as mentioned in the previous sentence. We now provide a more explicit sentence to explain this point: “On the other hand, like RAM+ neurons, FLEN+ CA3 neurons show an increased number of excitatory inputs.”

      (2) Novel tool: Destabilized cFos reporters were introduced 23 years ago and are also part of the TetTag mouse. I am not sure that changing the green fluorescent protein to a different version merits a new acronym (FLEN). To convince the readers that this is more than a branding exercise, the authors should compare the properties (brightness, folding time, stability) of FLEN to e.g. the d2EGFP reporter introduced by Bi et al. 2002 (J Biotechnol. 93(3):231) and show significant improvements.

      We thank the reviewer for this comment which compelled us to evaluate the features of other tools used to label neurons activated following contextual fear conditioing. The key properties of FLEN as compared to other tools used to label engrams is that: (i) it is a viral tool, as opposed to transgenic mice, (ii) a c-fos promoter drives the expression of a brightly fluorescent protein allowing their identification ex vivo for functional analysis, (iii) the fluorescent protein is rapidly destabilized, providing the possibility to label neurons only a few hours after their activation by a behavioural task.

      We did not find any viral tools providing the possibility to label c-fos activated neurons for functional assesment. We have not been able to find references for the use of the d2EGFP reporter introduced by Bi et al. 2002 in a behavioural context. One of the major difference and improvement is certainly the brightness of ZsGreen. In cell cultures, ZsGreen1 showed a 8.6-fold increase in fluorescence intensity as compared with EGFP (Bell et al, 2007).

      Amongst tools with comparable properties, eSARE was developed based on a synthetic Arc promoter driving the expression of a destabilized GFP (dEGFP) (Kawashima et al 2013). We initially used ESARE–dGFP but unfortunately, in our experimental conditions we found that the signal to noise ratio was not satisfactory (number of cells label in the home cage vs. following contextual fear conditining).

      We developed a viral tool to avoid the use of transgenic reporter lines which require laborious breeding and is experimentally less flexible. Nevertheless, many transgenic mice based on the expression of fluorescent proteins under the control of IEG promoters have been developed and used. Some of these mice show a time course of expression of the transgene which is comparable to FLEN. For instance, in organotypic slices from Tet-Tag mice, the time course of expression of EGFP slices follows with a small delay endogenous cFOS expression, and starts decaying after 4 hours (Lamothe-Molina et al, 2022). However, the fluorescence was too weak to visualize neurons in the slice (Christine Gee, personal communication), and imaging is perfomed after immunocytochemistry against GFP. 

      Therefore, we feel that the name given to the FLEN strategy is legitimate. The features of the FLEN strategy were summarized in the discussion (Lines 318-322).

      (3) Line 214: "...FLEN+ CA3 PNs do not show differences in [...] patterns of bursting activity as compared to control neurons." It looks quite different to me (Figure 3E). Just because low n precludes meaningful statistical analysis, I would not conclude there is no difference.

      We agree with the reviewer that the data in Figure 3E are not conclusive due to small sample size, which limits the reliability of statistical comparison. Additionally, the classification of bursting neurons is highly dependent on the specific criteria used, which vary considerably across the literature. To avoid overinterpretation or misleading conclusions, we decided to remove the panel E of Figure 3 showing the fraction of bursting neurons. Nevertheless, we draw the attention to the more robust and interpretable results: RAM⁺ neurons exhibit an increase in firing frequency and a distinct action potential discharge pattern, data which we believe are informative of altered excitability.

      (4) Line 304: Remove the time stamp.

      This was done.

      (5) Line 334: "...results may be explained by an overall increased activity of CA1 neurons..." I don't understand - isn't CA1 downstream of CA3? 

      The reviewer is correct that the sentence was misleading. We removed the reference to CA1, as it was more of a general principle about neuronal activity.

      (6) Line 381: "resolutive", better use "sensitive". 

      This was changed.

      (7) Figure S3: Fear-conditioned animals were 3 days off Dox, controls only 2 days. As RAM expression accumulates over time off Dox, this is not a fair comparison.

      We thank the reviewer for pointing out the incorrect reporting of the experimental design in Figure S3 panel A (bottom), which could lead to misinterpretation of results. In fact, the two groups of mice (CFC vs. HC) underwent all experimental steps in parallel. Specifically, both groups were maintained on and off Doxycycline for the same duration and received viral injection on the same day. 48 hours after Dox withdrawal, the CFC group was trained for contextual conditioning, while the HC group remained in the home cage in the holding room. All animals were thus sacrificed 72 hours after Dox removal. We have corrected the figure to accurately reflect this timeline.

      (8) Please provide sequence information for c-cFos-ZsGreen1-DR. Which regulatory elements of the cFos promoter are included, is the 5' NTR included? This information is very important.

      The information is now provided in the Methods section.

      (9) Please provide the temperature during pharmacological treatments (TTX etc.) before fixation.

      The pharmacological treatment was performed in the incubator at 37°C, this is now indicated in the methods.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Shigella flexneri is a bacterial pathogen that is an important globally significant cause of diarrhea. Shigella pathogenesis remains poorly understood. In their manuscript, Saavedra-Sanchez et al report their discovery that a secreted E3 ligase effector of Shigella, called IpaH1.4, mediates the degradation of a host E3 ligase called RNF213. RNF213 was previously described to mediate ubiquitylation of intracellular bacteria, an initial step in their targeting of xenophagosomes. Thus, Shigella IpaH1.4 appears to be an important factor in permitting evasion of RNF213-mediated host defense.

      Strengths:

      The work is focused, convincing, well-performed, and important. The manuscript is well-written.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of the novelty and importance of our study. We provide a comprehensive response to each of the reviewer’s specific recommendations below and highlight any changes made to the manuscript in response to those recommendations.

      Reviewer #1 (Recommendations for the authors):

      (1) In the abstract (and similarly on p.10), the authors claim to have shown "IpaH1.4 protein as a direct inhibitor of mammalian RNF213". However, they do not show the interaction is direct. This, in my opinion, would require demonstrating an interaction between purified recombinant proteins. I presume that the authors are relying on their UBAIT data to support the direct interaction, but this is a fairly artificial scenario that might be prone to indirect substrates. I would therefore prefer that the 'direct' statement be modified (or better supported with additional data). Similarly, on p.7, the section heading states "S. flexneri virulence factors IpaH1.4 and IpaH2.5 are sufficient to induce RNF213 degradation". The corresponding experiment is to show sufficiency in a 293T cell, but this leaves open the participation of additional 293T-expressed factors. So I would remove "are sufficient to", or alternatively add "...in 293T cells".

      We agree with the reviewer and made the recommended changes to the text in the abstract, in the results section on page 7, and in the Discussion on page 11. During the revision of our manuscript two additional studies were published that provide convincing biochemical evidence for the direct interaction between IpaH1.4 and RNF213 (PMID: 40205224; PMID: 40164614). These studies address the reviewer’s concern extensively and are now briefly discussed and cited in our revised MS.

      (2) In the abstract the authors state "Linear (M1-) and lysine-linked ubiquitin is conjugated to bacteria by RNF213 independent of the linear ubiquitin chain assembly complex (LUBAC)." However, it is not shown that RNF213 is able to directly perform M1-ubiquitylation. It is shown that RNF213 is required for M1-linked ubiquitylation in IpaH1.4 or MxiE mutants, this is different than showing conjugation is done by RNF213 itself. This should be reworded.

      We agree and edited the text accordingly

      (3) Introduction: one of the main points of the paper is that RNF213 conjugates linear ubiquitin to the surface of bacteria in a manner independent of the previously characterized linear ubiquitin conjugation (LUBAC) complex. This is indeed an interesting result, but the introduction does not put this discovery in much context. I would suggest adding some discussion of what was known, if anything, about the type of Ub chain formed by RNF213, and specifically whether linear Ub had previously been observed or not.

      We now provide context in the Introduction on page 3 and briefly discuss previous work that had implicated LUBAC in the ubiquitylation of cytosolic bacteria. We emphasize that LUBAC specifically generates linear (M1-linked) ubiquitin chains, while the types of ubiquitin linkages deposited on bacteria through RNF213-dependent pathways had remained unidentified.

      (4) Figure 3C: is the difference in 7KR-Ub between WT and HOIP KO cells significant? If so, the authors may wish to acknowledge the possibility that HOIP partially contributes to M1-Ub of MxiE mutant Shigella

      The frequencies at which bacteria are decorated with 7KR-Ub is not statistically different between WT and HOIP KO cells. We have included this information in the panel description of Figure 3.

      (5) On page 11, the authors state that "...we observed that LUBAC is dispensable for M1-linked ubiquitylation of cytosolic S. flexneri ∆ipaH1.4. We found that lysine-less internally tagged ubiquitin or an M1-specific antibody bound to S. flexneri ∆ipaH1.4 in cells lacking LUBAC (HOIL-1KO or HOIPKO) but failed to bind bacteria in RNF213-deficient cells". In fact, what is shown is that M1-ubiquitylation in ∆ipaH1.4 infection is RNF213-dependent (5E), but the work with lysine mutants, HOIP or HOIL-1 KOs are all with ∆mxiE, not ∆ipaH1.4 (3B) in this version of the manuscript. Ideally, the data with ∆ipaH1.4 could be added, but alternatively, the conclusion could be re-worded.

      We now include the data demonstrating that staining of ∆ipaH1.4 with an M1-specific antibody is unchanged from WT cells in HOIL-1 KO and HOIP KO cells. These data are shown in supplementary data (Fig. S3E) and referred to on page 9 of the revised manuscript.

      (6) The UBAIT experiment should be explained in a bit more detail in the text. The approach is not necessarily familiar to all readers, and the rationale for using Salmonella-infected ceca/colons is not well explained (and seems odd). Some appropriate caution about interpreting these data might also be welcome. Did HOIP or HOIL show up in the UBAIT? This perhaps also deserves some discussion.

      As expected, HOIP (listed under its official gene name Rnf31 in the table of Fig.S2B) was identified as a candidate IpaH1.4 interaction partner as the third most abundant hit from the UBAIT screen. Remarkably, Rnf213 was the hit with the highest abundance in the IpaH1.4 UBAIT screen. To address the reviewer’s comments, we now explain the UBAIT approach in more detail and provide the rational for using intestinal protein lysates from Salmonella infected mice. The text on page 8 reads as follows: “To investigate potential physical interactions between IpaH1.4 and IpaH2.5, we reanalyzed a previously generated dataset that employed a method known as ubiquitin-activated interaction traps (UBAITs) (32). As shown in Fig. S2A, the human ubiquitin gene was fused to the 3′ end of IpaH2.5, producing a C-terminal IpaH2.5-ubiquitin fusion protein. When incubated with ATP, ubiquitin-activating enzyme E1, and ubiquitin-conjugating enzyme E2, the IpaH2.5-ubiquitin "bait" protein is capable of binding to and ubiquitylating target substrates. This ubiquitylation creates an iso-peptide bond between the IpaH2.5 bait and its substrate, thereby enabling purification via a Strep affinity tag incorporated into the fusion construct (32). IpaH2.5-ubiquitin bait and IpaH3-ubiquitin control proteins were incubated with lysates from murine intestinal tissue. To detect interaction partners in a physiologically relevant setting, we used intestinal lysates derived from mice infected with Salmonella, which in contrast to Shigella causes pronounced inflammation in WT mice and therefore better simulates human Shigellosis in an animal model. Using UBAIT we identified HOIP (Rnf31) as a likely IpaH2.5 binding partner (Fig. S2B), thus confirming previous observations (28) and validating the effectiveness our approach. Strikingly, we identified mouse Rnf213 as the most abundant interaction partner of the IpaH2.5-ubiquitin bait protein (Fig. S2B). Collectively, our data and concurrent reports showing direct interactions between IpaH1.4 and human RNF213 (36, 37) indicate that the virulence factors IpaH1.4 and IpaH2.5 directly bind and degrade mouse as well as human RNF213.”

      (7) It would be helpful if the authors discussed their results in the context of the prior work showing IpaH1.4/2.5 mediate the degradation of HOIP. Do the authors see HOIP degradation? If indeed HOIP and RNF213 are both degraded by IpaH1.4 and IpaH2.5, are there conserved domains between RNF213 and HOIP being targeted? Or is only one the direct target? A HOIP-RNF213 interaction has previously been shown (https://doi.org/10.1038/s41467-024-47289-2). Since they interact, is it possible one is degraded indirectly? To help clarify this, a simple experiment would be to test if RNF213 degraded in HOIP KO cells (or vice-versa)?

      We appreciate the reviewer’s suggestions. We conducted the proposed experiments and found that WT S. flexneri infections result in RNF213 degradation in both WT and HOIP KO cells. Similarly, we found that HOIP degradation was independent of RNF213. We have included these data in Figs. 5A and S3B of our revised submission. A study published during revisions of our paper demonstrates that the LRR of IpaH1.4 binds to the RING domains of both RNF213 and LUBAC (PMID: 40205224). We refer to this work in our revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The authors find that the bacterial pathogen Shigella flexneri uses the T3SS effector IpaH1.4 to induce degradation of the IFNg-induced protein RNF213. They show that in the absence of IpaH1.4, cytosolic Shigella is bound by RNF213. Furthermore, RNF213 conjugates linear and lysine-linked ubiquitin to Shigella independently of LUBAC. Intriguingly, they find that Shigella lacking ipaH1.4 or mxiE, which regulates the expression of some T3SS effectors, are not killed even when ubiquitylated by RNF213 and that these mutants are still able to replicate within the cytosol, suggesting that Shigella encodes additional effectors to escape from host defenses mediated by RNF213-driven ubiquitylation.

      Strengths:

      The authors take a variety of approaches, including host and bacterial genetics, gain-of-function and loss-of-function assays, cell biology, and biochemistry. Overall, the experiments are elegantly designed, rigorous, and convincing.

      Weaknesses:

      The authors find that ipaH1.4 mutant S. flexneri no longer degrades RNF213 and recruits RNF213 to the bacterial surface. The authors should perform genetic complementation of this mutant with WT ipaH1.4 and the catalytically inactive ipaH1.4 to confirm that ipaH1.4 catalytic activity is indeed responsible for the observed phenotype.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of our work, especially its scientific rigor. We conducted the experiment suggested by the reviewer and included the new data in the revised manuscript. As expected, complementation of the ∆ipaH1.4 with WT IpaH1.4 but not with the catalytically dead C338S mutant restored the ability of Shigella to efficiently escape from recognition by RNF213 (Figs. 5C-D).

      Reviewer #2 (Recommendations for the authors):

      The authors should perform genetic complementation of the ipaH1.4 mutant with WT ipaH1.4 and the catalytically inactive ipaH1.4 to confirm that ipaH1.4 catalytic activity is indeed responsible for the observed phenotype.

      We performed the suggested experiment and show in Figs. 5C-D that complementation of the ∆ipaH1.4 mutant with WT IpaH1.4 but not with the catalytically dead C338S mutant restored the ability of Shigella to efficiently escape from recognition by RNF213. These data demonstrate that the catalytic activity of IpaH1.4 is required for evasion of RNF213 binding to the bacteria.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors set out to investigate whether and how Shigella avoids cell-autonomous immunity initiated through M1-linked ubiquitin and the immune sensor and E3 ligase RNF213. The key findings are that the Shigella flexneri T3SS effector, IpaH1.4 induces degradation of RNF213. Without IpaH1.4, the bacteria are marked with RNF213 and ubiquitin following stimulation with IFNg. Interestingly, this is not sufficient to initiate the destruction of the bacteria, leading the authors to conclude that Shigella deploys additional virulence factors to avoid this host immune response. The second key finding of this paper is the suggestion that M1 chains decorate the mxiE/ipaH Shigella mutant independent of LUBAC, which is, by and large, considered the only enzyme capable of generating M1-linked ubiquitin chains.

      Strengths:

      The data is for the most part well controlled and clearly presented with appropriate methodology. The authors convincingly demonstrate that IpaH1.4 is the effector responsible for the degradation of RNF213 via the proteasome, although the site of modification is not identified.

      Weaknesses:

      (1)The work builds on prior work from the same laboratory that suggests that M1 ubiquitin chains can be formed independently of LUBAC (in the prior publication this related to Chlamydia inclusions). In this study, two pieces of evidence support this statement -fluorescence microscopy-based images and accompanying quantification in Hoip and Hoil knockout cells for association of M1-ub, using an antibody, to Shigella mutants and the use of an internally tagged Ub-K7R mutant, which is unable to be incorporated into ubiquitin chains via its lysine residues. Given that clones of the M1-specific antibody are not always specific for M1 chains, and because it remains formally possible that the Int-K7R Ub can be added to the end of the chain as a chain terminator or as mono-ub, the authors should strengthen these findings relating to the claim that another E3 ligase can generate M1 chains de novo.

      (2) The main weakness relating to the infection work is that no bacterial protein loading control is assayed in the western blots of infected cells, leaving the reader unable to determine if changes in RNF213 protein levels are the result of the absent bacterial protein (e.g. IpaH1.4) or altered infection levels.

      (3)The importance of IFNgamma priming for RNF213 association to the mxiE or ipaH1.4 strain could have been investigated further as it is unclear if RNF213 coating is enhanced due to increased protein expression of RNF213 or another factor. This is of interest as IFNgamma priming does not seem to be needed for RNF213 to detect and coat cytosolic Salmonella.<br /> Overall, the findings are important for the host-pathogen field, cell-autonomous/innate immune signaling fields, and microbial pathogenesis fields. If further evidence for LUBAC independent M1 ubiquitylation is achieved this would represent a significant finding.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of our work and its significance. We provide a comprehensive response to the main three critiques listed under ‘weaknesses’ and also have responded to each of the reviewer’s specific recommendations below. We highlight any changes made to the manuscript in response to those recommendations.

      (1) As the reviewer correctly pointed out, 7KR ubiquitin cannot only be used for linear ubiquitylation but can also function as a donor ubiquitin and can be attached as mono-ubiquitin to a substrate or to an existing ubiquitin chain as a chain terminator. To distinguish between 7KR INT-Ub signals originating from linear versus mono-ubiquitylation, we followed the reviewer’s advice and generated a N-terminally tagged 7KR INT-Ub variant. The N-terminal tag prevents linear ubiquitylation but still allows 7KR INT-Ub to be attached as a mono-ubiquitin. We found that the addition of this N-terminal tag significantly reduced but not completely abolished the number of Δ_mxiE_ bacteria decorated with 7KR INT-Ub. These data are shown in a new Fig. S1 and indicate that 7KR lacking the N-terminal tag is attached to bacteria both in the form of linear (M1-linked) ubiquitin and as donor ubiquitin, possibly as a chain terminator. While we cannot rule out that the anti-M1 antibodies used here cross-react with other ubiquitin linkages, we reason that the 7KR data strongly argues that linear ubiquitin is part of the ubiquitin coat encasing IpaH1.4-deficient cytosolic Shigella. Collectively, our data show that both linear and lysine-linked (especially K27 and K63) ubiquitin chains are part of the RNF213-dependent ubiquitin coat on the surface of IpaH1.4 mutants. And furthermore, our data strongly indicate that this ubiquitylation of IpaH1.4 mutants is independent of LUBAC.

      (2) We used GFP-expressing strains of S. flexneri for our infection studies and were therefore able to use GFP expression as a loading control. We have incorporated these data into our revised figures. These new data (Figs. 4A, 5A, and S3B) show that bacterial infection levels were comparable between WT and mutant infections and that therefore the degradation of RNF213 (or HOIP – see new data in Fig. S3B) is not due to differences in infection efficiency.

      (3) We agree with the reviewer that the mechanism by which RNF213 binds to bacteria is an important unanswered question. Similarly, whether other ISGs have auxiliary functions in this process or whether binding efficiencies vary between different bacterial species are important questions in the field. However, these questions go far beyond the scope of this study and were therefore not addressed in our revisions.

      Reviewer #3 (Recommendations for the authors):

      (1) An N-terminally tagged K7R-ub should be used as a control to test whether the signal found around the mutant shigella is being added via the N terminal Met into chains. As it is known that certain batches of the M1-specific antibodies are in fact not specific and able to detect other chain types, the authors should test the specificity of the antibody used in this study (eg against different di-Ub linkage types) and include this data in the manuscript.

      We agree with the reviewer in principle. The anti-linear ubiquitin (anti-M1) monoclonal antibody, clone 1E3, prominently used in this study was tested by the manufacturer (Sigma) by Western blotting analysis and according to the manufacturer “this antibody detected ubiquitin in linear Ub, but not Ub K11, Ub K48, Ub K63.” However, this analysis did not include all possible Ub linkage types and thus the reviewer is correct that the anti-M1 antibody could theoretically also detect some other linkage types. To address this concern, we added new data during revisions demonstrating that 7KR INT-Ub targeting to S. flexneri is largely dependent on the N-terminus (M1) of ubiquitin. Our combined observations therefore overwhelmingly support the conclusion that linear (M1-linked) as well as K-linked ubiquitin is being attached to the surface of IpH1.4 S. flexneri bacteria in an RNF213-dependent and LUBAC-independent manner.

      (2) The M1 signal detected on bacteria with the antibody is still present in either Hoip or Hoil KO’s but due to the potential non-specificity of the antibody, the authors should test whether K7R ub is detected on bacteria in the Hoil ko (in addition to Hoip KO). This would strengthen the authors’ data on LUBAC-independent M1 and is important because Hoil can catalyse non-canonical ubiquitylation.

      The specific linear ubiquitin-ligating activity of LUBAC is enacted by HOIP. We show that linear ubiquitylation of susceptible S. flexneri mutants as assessed by anti-M1 ubiquitin staining or 7KR INT-Ub recruitment occurs in HOIPKO cells at WT levels (Figs. 3B, 3C, S3E [new data]). In our view , these data unequivocally show that the observed linear ubiquitylation of cytosolic S. flexneri ipaH1.4 and mxiE mutants is independent of LUBAC.

      (3) For Figure 4A, do mxiE bacteria show similar invasion - authors should include a bacterial protein control to show levels of bacteria in WT and mxiE infected conditions. A similar control should be included in Figure 5A.

      We used GFP-expressing strains of S. flexneri for our infection studies and were therefore able to use GFP expression as a loading control. We have incorporated these data into our revised figures. These new data (Figs. 4A, 5A, and S3B) show that bacterial infection levels were comparable between WT and mutant infections and that therefore the degradation of RNF213 (or HOIP – see new data in Fig. S3B) is not due to differences in infection efficiency.

      (4) Can the authors speculate why IFNg priming is needed for the coating of Shigella mxiE mutant but not in the case of Salmonella or Burkholderia? Is this just amounts of RNF213 or something else?

      In our studies we did not directly compare ubiquitylation rates of cytosolic Shigella, Burkholderia, and Salmonella bacteria with each other under the same experimental conditions. However, such a direct comparison is needed to determine whether IFNgamma priming is required for RNF213-dependent bacterial ubiquitylation of some but not other pathogens. Two papers published during the revisions of our manuscript (PMID: 40164614, PMID: 40205224) reports robust RNF213 targeting to IpaH1.4 Shigella mutants in unprimed cells HeLa cells (whereas we used A549 and HT29 cells). Therefore, differences in reagents, cell lines, and/or other experimental conditions may determine whether IFNgamma priming is necessary to observe substantial RNF213 translocation to cytosolic bacteria.

      (5) Typos - there are several, but this is hard to annotate with line numbers so the authors should proofread again carefully.

      We proofread the manuscript and corrected the small number of typos we identified

  2. Oct 2025
    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Raices et al., provides novel insights into the role and interactions between SPO-11 accessory proteins in C. elegans. The authors propose a model of meiotic DSBs regulation, critical to our understanding of DSB formation and ultimately crossover regulation and accurate chromosome segregation. The work also emphasizes the commonalities and species-specific aspects of DSB regulation.

      Strengths:

      This study capitalizes on the strengths of the C. elegans system to uncover genetic interactions between a large number of SPO-11 accessory proteins. In combination with physical interactions, the authors synthesize their findings into a model, which will serve as the basis for future work, to determine mechanisms of DSB regulation.

      Weaknesses:

      The methodology, although standard, lacks quantification. This includes the mass spectrometry data , along with the cytology. The work would also benefit from clarifying the role of the DSB machinery on the X chromosome versus the autosomes.

      • We have uploaded the MS data and added a summary table with the number of peptides and coverage.

      • We have added statistics to the comparisons of DAPI body counts.

      • We have provided additional images of the change in HIM-5 localization

      • We have quantified the overlap (or lack thereof) between XND-1 and HIM-17 and the DNA axis

      Reviewer #2 (Public Review):

      Summary:

      Meiotic recombination initiates with the formation of DNA double-strand break (DSB) formation, catalyzed by the conserved topoisomerase-like enzyme Spo11. Spo11 requires accessory factors that are poorly conserved across eukaryotes. Previous genetic studies have identified several proteins required for DSB formation in C. elegans to varying degrees; however, how these proteins interact with each other to recruit the DSB-forming machinery to chromosome axes remains unclear.

      In this study, Raices et al. characterized the biochemical and genetic interactions among proteins that are known to promote DSB formation during C. elegans meiosis. The authors examined pairwise interactions using yeast two-hybrid (Y2H) and co-immunoprecipitation and revealed an interaction between a chromatin-associated protein HIM-17 and a transcription factor XND-1. They further confirmed the previously known interaction between DSB-1 and SPO-11 and showed that DSB-1 also interacts with a nematodespecific HIM-5, which is essential for DSB formation on the X chromosome. They also assessed genetic interactions among these proteins, categorizing them into four epistasis groups by comparing phenotypes in double vs. single mutants. Combining these results, the authors proposed a model of how these proteins interact with chromatin loops and are recruited to chromosome axes, offering insights into the process in C. elegans compared to other organisms.

      Weaknesses:

      This work relies heavily on Y2H, which is notorious for having high rates of false positives and false negatives. Although the interactions between HIM-17 and XND-1 and between DSB-1 and HIM-5 were validated by co-IP, the significance of these interactions was not tested, and cataloging Y2H interactions does not yield much more insight.

      We appreciate that the reviewer recognized the value of our IP data, but we beg to differ that we rely too heavily on the Y2H. We also provide genetic analysis on bivalent formation to support the physical interaction data. We do acknowledge that there are caveats with Y2H, however, including that a subset of the interactions can only be examined with proteins in one orientation due to auto-activation. While we acknowledge that it would be nice to have IP data for all of the proteins using CRISPR-tagged, functional alleles, these strains are not all feasible (e.g. no functional rec-1 tag has been made) and are beyond the scope of the current work.

      Moreover, most experiments lack rigor, which raises serious concerns about whether the data convincingly supports the conclusions of this paper. For instance, the XND-1 antibody appears to detect a band in the control IP; however, there was no mention of the specificity of this antibody.

      We previously showed the specificity of this antibody in its original publication showing lack of staining in the xnd-1 mutant by IF (Wagner et al., 2010). To further address this, however, we have now included a new supplementary figure (Figure S1) demonstrating the specificity of the XND-1 antibody by Western blot. The antibody detects a distinct band in extracts from wild-type (N2) worms, but this band is absent in two independent xnd-1 mutant strains. This confirms that the antibody specifically recognizes XND-1, supporting the validity of the IP results shown in the main figures.

      Additionally, epistasis analysis of various genetic mutants is based on the quantification of DAPI bodies in diakinesis oocytes, but the comparisons were made without statistical analyses.

      We have added statistical analysis to all datasets where quantification was possible, strengthening the rigor and interpretation of our findings.

      For cytological data, a single representative nucleus was shown without quantification and rigorous analysis. The rationale for some experiments is also questionable (e.g. the rescue by dsb-2 mutants by him-5 transgenes in Figure 2), making the interpretation of the data unclear. Overall, while this paper claims to present "the first comprehensive model of DSB regulation in a metazoan", cataloging Y2H and genetic interactions did not yield any new insights into DSB formation without rigorous testing of their significance in vivo. The model proposed in Figure 4 is also highly speculative.

      Regarding the cytology, we provide new images and quantification of HIM-17 and XND-1 overlap with the DNA axes. We also added full germ line images showing HIM-5 localization in wild type and dsb-1 mutants, to provide a more complete and representative view of the observed phenotype. To further support our findings, we’ve also included images demonstrating that this phenotype is consistently observed with both in live worm with the the him-5::GFP transgene and in fixed worms with an endogenously tagged version of HIM-5.

      Reviewer #3 (Public Review):

      During meiosis in sexually reproducing organisms, double-strand breaks are induced by a topoisomerase-related enzyme, Spo11, which is essential for homologous recombination, which in turn is required for accurate chromosome segregation. Additional factors control the number and genome-wide distribution of breaks, but the mechanisms that determine both the frequency and preferred location of meiotic DSBs remain only partially understood in any organism.

      The manuscript presents a variety of different analyses that include variable subsets of putative DSB factors. It would be much easier to follow if the analyses had been more systematically applied. It is perplexing that several factors known to be essential for DSB formation (e.g., cohesins, HORMA proteins) are excluded from this analysis, while it includes several others that probably do not directly contribute to DSB formation (XND-1, HIM-17, CEP-1, and PARG-1).

      We respectfully disagree with the reviewer’s statement regarding the selection of factors included in our analysis. In this work, our focus was specifically on SPO-11 accessory factors — proteins that directly interact with or regulate SPO-11 activity during doublestrand break formation. Cohesins and chromosome axis proteins (such as the HORMA domain proteins) are essential for establishing the correct chromosome architecture that supports DSB formation, but there is no evidence that they are direct accessory factors of SPO-11. Therefore, they were intentionally excluded from this study to maintain a clear and focused scope on proteins that more directly modulate SPO-11 function.

      Conversely, XND-1, HIM-17, CEP-1, and PARG-1 have all been implicated in regulating aspects of SPO-11-mediated DSB formation or its immediate environment. Although their contributions mayinvolve broader chromatin or DNA damage response regulation, prior literature supports their inclusion as relevant modulators of SPO-11 activity, justifying their analysis within the context of this work.

      The strongest claims seem to be that "HIM-5 is the determinant of X-chromosome-specific crossovers" and "HIM-5 coordinates the actions of the different accessory factors subgroups." Prior work had already shown that mutations in him-5 preferentially reduce meiotic DSBs on the X chromosome. While it is possible that HIM-5 plays a direct role in DSB induction on the X chromosome, the evidence presented here does not strongly support this conclusion. It is also difficult to reconcile this idea with evidence from prior studies that him-5 mutations predominantly prevent DSB formation on the sex chromosomes, while the protein localizes to autosomes.

      HIM-5 is not the only protein that is autosomally enriched but preferentially affects the X chromosome: MES-4 and MRG-1 are both autosomally-enriched but influence silencing of the X chromosome. While HIM-5 appears autosomally-enriched, it does not appear to be autosomal-exclusive. While we would ideally perform ChIP to determine its localization on chromatin, this method for assaying DSB sites is likely insufficient to identify DSB sites which differ in each nucleus and for which there are no known hotspots in the worm.

      him-5 mutants confer an ~50% reduction in total number of breaks and a very profound change in break dynamics (seen by RAD-51 foci (Meneely et al., 2012)). Since the autosomes receives sufficient breaks in this context to attain a crossover in >98% of nuclei, this indicates that the autosomes are much less profoundly impacted by loss of DSB functions than is the X chromosome. Indeed, prior data from co-author, Monica Colaiacovo, showed that fewer breaks occur on the X (Gao, 2015) likely resulting from differences in the chromatin composition of the X and autosome resulting from X chromosome silencing.

      The conclusion that HIM-5 must be required for breaks on the X comes from the examination of DSB levels and their localization in different mutants that impair but do not completely abrogate breaks. In any situation where HIM-5 protein expression is affected (xnd-1, him-17, and him-5 null alleles), breaks on the X are reduced/ eliminated. By contrast, in dsb-2 mutants, where HIM-5 expression is unaffected, both X and autosomal breaks are impacted equally. As discussed above, in the absence of HIM-5 function, there are ~15 breaks/ nucleus. The Ppie1::him-5 transgene is expressed to lower levels than Phim-5::him-5, but in the best case, the ectopic expression of this protein should give a maximum of ~15 breaks (the total # of breaks is thought to be ~30/nucleus). By these estimates, Ppie-1::him-5; him-17 and him-5 null mutants have the same number of breaks. Yet, in the former case, breaks occur on the X; whereas in the latter they do not. The best explanation for this discrepancy is that HIM-5 is sufficient to recruits the DSB machinery to the X chromosome.

      The one experiment that seems to elicit the conclusion that HIM-5 expression is sufficient for breaks on the X chromosome is flawed (see below). The conclusion that HIM-5 "coordinates the activities of the different accessory sub-groups" is not supported by data presented here or elsewhere.

      We have reorganized the discussion to more directly address the reviewers’ concerns. We raise the possibility that HIM-5 has an important role in bringing together the SPO-11 and its interacting components (DSB-1/2/3) with the other DSB inducing factors, including those factors that regulating DSB timing (XND-1), coordination with the cell cycle (REC-1), association with the chromosome axis (PARG-1, MRE-11), and coupling to downstream resection and repair (MRE-11, CEP-1).  

      This raises a natural question: if HIM-5 has such a central role, why are the phenotypes of HIM-5 so mild? We propose that while the loss of DSBs on the X appears mild, more profound effects are seen in the total number, timing, and placement of the DSBs across the genome- all of which are diminished or altered in the absence of HIM-5. The phenotypes of him-5 loss reminiscent of those observed in Prdm9-/- in mice where breaks are relocated to transcriptional start sites and show significant delay in formation. As with PRDM9, the comparatively subtle phenotypes of HIM-5 loss do not diminish its critical role in promoting proper DSB formation in most mammals.

      Like most other studies that have examined DSB formation in C. elegans, this work relies on indirect assays, here limited to the cytological appearance of RAD-51 foci and bivalent chromosomes, as evidence of break formation or lack thereof. Unfortunately, neither of these assays has the power to reveal the genome-wide distribution or number of breaks. These assays have additional caveats, due to the fact that RAD-51 association with recombination intermediates and successful crossover formation both require multiple steps downstream of DSB induction, some of which are likely impaired in some of the mutants analyzed here. This severely limits the conclusions that can be drawn. Given that the goal of the work is to understand the effects of individual factors on DSB induction, direct physical assays for DSBs should be applied; many such assays have been developed and used successfully in other organisms.

      We appreciate the reviewer’s thoughtful comments. We agree that RAD-51 foci are an indirect readout of DSB formation and that their dynamics can be influenced by defects in downstream repair processes. However, in C. elegans, the available methods for directly detecting DSBs are limited. Unlike other organisms, C. elegans lacks γH2AX, eliminating the possibility of using γH2AX as a DSB marker. TUNEL assays, while conceptually appealing, have proven unreliable and poorly reproducible in the germline context. Similarly, RPA foci do not consistently correlate with the number of DSBs and are influenced by additional processing steps.

      Given these limitations, RAD-51 foci remain the most widely accepted surrogate for monitoring DSB formation in C. elegans. While we fully acknowledge the caveats associated with this approach — particularly the potential effects of downstream repair defects — RAD-51 analysis continues to provide valuable insight into DSB dynamics and regulation, especially when interpreted in combination with other phenotypic assessments.

      Throughout the manuscript, the writing conflates the roles played by different factors that affect DSB formation in very different ways. XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes, including genes encoding proteins that directly promote DSBs. Mutations in either xnd-1 or him-17 result in dysregulation of germline gene expression and pleiotropic defects in meiosis and fertility, including changes in chromatin structure, dysregulation of meiotic progression, and (for xnd-1) progressive loss of germline immortality. It is thus misleading to refer to HIM-17 and XND-1 as DSB "accessory factors" or to lump their activities with those of other proteins that are likely to play more direct roles in DSB induction.

      It is clear that we will not reach agreement about the direct vs indirect roles here of chromatin remodelers/transcription factors in break formation. In yeast, there is a precedent for SPP1 and in mouse for Prdm9, both of which could be described as transcription factors as well, as having roles in break formation by creating an open chromatin environment for the break machinery. We envision that these proteins function in the same fashion. The changes in histone acetylation in the xnd-1 mutants supports such a claim.

      We do not know what the reviewer is referring to in statement that “XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes.” While the Carelli et al paper indeed shows a role for HIM-17 in expression of many germline genes, there is only one reference to XND-1 in this manuscript (Figure S3A) which shows that half of XND-1 binding sites overlap with the co-opted germline promoters. There is no transcriptional data at all on xnd-1 mutants, save our studies (referenced herein) that XND-1 regulates him-5 expression.

      For example, statements such as the following sentence in the Introduction should be omitted or explained more clearly: "xnd-1 is also unique among the accessory factors in influencing the timing of DSBs; in the absence of xnd-1, there is precocious and rapid accumulation of DSBs as monitored by the accumulation of the HR strand-exchange protein RAD-51.

      We are not sure what is confusing here. The distribution of RAD-51 foci is significantly altered in xnd-1 mutants and peak levels of breaks are achieved as nuclei leave the transition zone (Wagner et al., 2010; McClendon et al., 2016). There is no other mutation that causes this type of change in RAD-51 distribution.

      "The evidence that HIM-17 promotes the expression of him-5 presented here corroborates data from other publications, notably the recent work of Carelli et al. (2022), but this conclusion should not be presented as novel here.

      We have clarified this in the text. We note that this paper showed alterations in him-5 levels by RNA-Seq but they did not validate these results with quantitative RT-PCR. Thus, our studies do provide an important validation of their prior results.

      The other factors also fall into several different functional classes, some of which are relatively well understood, based largely on studies in other organisms. The roles of RAD50 and MRE-11 in DSB induction have been investigated in yeast and other organisms as well as in several prior studies in C. elegans. DSB-1, DSB-2, and DSB-3 are homologs of relatively well-studied meiotic proteins in other organisms (Rec114 and Mei4) that directly promote the activity of Spo11, although the mechanism by which they do so is still unclear.

      Whilst we agree that we understand some of the functions of the homologs, there are clearly examples in other processes of conserved proteins adopting unique regulatory function. We should not presume evolutionary conservation until proven. Indeed the comparison between the Mer2 proteins becomes particularly relevant here. For example, the RMM complex in plants does not contain PRD3, although this protein is thought to have function in DSB formation and repair (Lambing et al, 2022; Vrielynck et al., 2021; Thangavel et al., 2023). In Sordaria, as well, the Mer2 homolog has distinct functions (Tesse et al., 2017).  

      Mutations in PARG-1 (a Poly-ADP ribose glycohydrolase) likely affect the regulation of polyADP-ribose addition and removal at sites of DSBs, which in turn are thought to regulate chromatin structure and recruitment of repair factors; however, there is no convincing evidence that PARG-1 directly affects break formation.

      Our prior collaborative studies on PARG-1 showed that is has a non-catalytic function that promote DSBs that is independent of accumulation of PAR (Janisiw et al., 2020; Trivedi et al., 2022)

      CEP-1 is a homolog of p53 and is involved in the DNA damage response in the germline, but again is unlikely to directly contribute to DSB induction.

      We respectfully disagree with the reviewer’s statement. While CEP-1 is indeed a homolog of p53 and plays a major role in the DNA damage response, prior work from Brent Derry’s lab and from our group (Mateo et al., 2016) demonstrated that specific cep-1 separationof-function alleles affect DSB induction and/or repair pathway choice independently of canonical DNA damage checkpoint activation. In particular, defects in DSB formation observed in certain cep-1 mutants can be rescued by exogenous irradiation, supporting a direct or closely linked role in promoting DSB formation rather than merely responding to damage. Thus, based on these functional data, we considered CEP-1 a relevant factor to include in our analysis. We have now clarified this rationale in the revised manuscript.

      HIM-5 and REC-1 do not have apparent homologs in other organisms and play poorly understood roles in promoting DSB induction. A mechanistic understanding of their functions would be of value to the field, but the current work does not shed light on this. A previous paper (Chung et al. G&D 2015) concluded that HIM-5 and REC-1 are paralogs arising from a recent gene duplication, based on genetic evidence for a partially overlapping role in DSB induction, as well as an argument based on the genomic location of these genes in different species; however, these proteins lack any detectable sequence homology and their predicted structures are also dissimilar (both are largely unstructured but REC-1 contains a predicted helical bundle lacking in HIM-5). Moreover, the data presented here do not reveal overlapping sets of genetic or physical interactions for the two genes/proteins. Thus, this earlier conclusion was likely incorrect, and this idea should not be restated uncritically here or used as a basis to interpret phenotypes.

      Actually, there is quite good bioinformatic analysis that the rec-1 and him-5 loci evolved from a gene duplication and that each share features of the ancestral protein (Chung et al., 2015). We are sorry if the reviewer casts aspersions on the prior literature and analyses. The homology between these genes with the ancestral protein is near the same degree as dsb-1, dsb-2, or dsb-3 to their ancestral homologs (<17%).

      DSB-1 was previously reported to be strictly required for all DSB and CO formation in C. elegans. Here the authors test whether the expression of HIM-5 from the pie-1 promoter can rescue DSB formation in dsb-1 mutants, and claim to see some rescue, based on an increase in the number of nuclei with one apparent bivalent (Figure 2C). This result seems to be the basis for the claim that HIM-5 coordinates the activities of other DSB proteins. However, this assay is not informative, and the conclusion is almost certainly incorrect. Notably, a substantial number of nuclei in the dsb-1 mutant (without Ppie-1::him-5) are reported as displaying a single bivalent (11 DAPI staining bodies) despite prior evidence that DSBs are absent in dsb-1 mutants; this suggests that the way the assay was performed resulted in false positives (bivalents that are not actually bivalents), likely due to inclusion of nuclei in which univalents could not be unambiguously resolved in the microscope. A slightly higher level of nuclei with a single unresolved pair of chromosomes in the dsb-1; Ppie-1::him-5 strain is thus not convincing evidence for rescue of DSBs/CO formation, and no evidence is presented that these putative COs are X-specific. The authors should provide additional experimental evidence - e.g., detection of RAD-51 and/or COSA-1 foci or genetic evidence of recombination - or remove this claim. The evidence that expression of Ppie-1::him-5 may partially rescue DSB abundance in dsb-2 mutants is hard to interpret since it is currently unknown why C. elegans expresses 2 paralogs of Rec114 (DSB-1 and DSB-2), and the age-dependent reduction of DSBs in dsb-2 mutants is not understood.

      We have removed this claim in part because we have been unable to create the triple mutants strains to analyze COSA-1 foci.

      To the point about 11 vs 12 DAPI bodies: the literature is actually replete with examples of 11 DAPI bodies vs 12 in mutants with no breaks:

      Hinman al., 2021: null allele of dsb-3 has an average of 11.6 +/- 0.6 breaks;

      Stamper et al, 2013, show just over 60% of dsb-1 nuclei with 12 DAPI bodies and 5-10% with 10 DAPI bodies. (Figure 1);

      In addition, we also previously showed (Machovina et al., 2016) that a subset of meiotic nuclei have a single RAD-51 focus and can achieve a crossover. RAD-51 foci in spo-11 were also reported in Colaiacovo et al., 2003.

      Several of the factors analyzed here, including XND-1, HIM-17, HIM-5, DSB-1, DSB-2, and DSB-3, have been shown to localize broadly to chromatin in meiotic cells. Coimmunoprecipitation of pairs of these factors, even following benzonase digestion, is not strong evidence to support a direct physical interaction between proteins.

      Similarly, the super-resolution analysis of XND-1 and HIM-17 (Figure 1EF) does not reveal whether these proteins physically interact with each other, and does not add to our understanding of these proteins functions, since they are already known to bind to many of the same promoters. Promoters are also likely to be located in chromatin loops away from the chromosome axis, so in this respect, the localization data are also confirmatory rather than novel.

      While the binding to promoters would be expected to be on DNA loops, that has not been definitively shown in the worm germ line. The supplemental data of the Carelli paper suggests that there are ~250 binding sites for each protein at these coopted promoters. This could not account for crossover map seen in C. elegans.

      The reviewer states correct that we do not reveal that these proteins interact, but we have shown that the two proteins co-IP and have a Y2H interaction. This interaction is supporedt by a recent publication (Blazickova et al., 2025) corroborating this conclusion and identifies XND-1 in HIM-17 co-IPs also in the presence of benzonase. We do now show, however, by immuno-localization that the two proteins appear to be adjacent, but nonoverlapping. As now described in the text, AlphaFold 3 modeling and structural analysis suggests that the two proteins do interact directly and that the tagged 5’ end of HIM-17 used in our studies is likely to be at least 200nm from the putative XND-1 binding interface, a distance that is consistent with our confocal images showing frequent juxtaposition of the two proteins.

      The phenotypic analysis of double mutant combinations does not seem informative. A major problem is that these different strains were only assayed for bivalent formation, which (as mentioned above) requires several steps downstream of DSB induction. Additionally, the basis for many of the single mutant phenotypes is not well understood, making it particularly challenging to interpret the effects of double mutants. Further, some of the interactions described as "synergistic" appear to be additive, not synergistic. While additive effects can be used as evidence that two genes work in different pathways, this can also be very misleading, especially when the function of individual proteins is unknown. I find that the classification of genes into "epistastasis groups" based on this analysis does not shed light on their functions and indeed seems in some cases to contradict what is known about their functions. ‘

      As described above, each of the proteins analyzed is thought to have a direct role in regulating meiotic DSB formation and single mutant phenotypes are consistent with this interpretation. In almost all-if not all- of these cases, IR induced breaks suppress univalent phenotypes (or uncover a downstream repair defect (e.g. in mre-11)) supporting this conclusion. We have changed the terminology from “epistasis groups” since this is not strict epistasis, but rather, “functional groups”.  

      The yeast two-hybrid (Y2H) data are only presented as a single colony. While it is understandable to use a 'representative' colony, it is ideal to include a dilution series for the various interactions, which is how Y2H data are typically shown.

      The Y2H data are presented as spots on a plate and are from three to four individual transformants per interaction tested, and are not individual colonies. The experiment was repeated in triplicate from different transformations. We have now made this clearer in the materials and methods section. This approach has been successfully used to examine protein interactions in our prior manuscripts of yeast and human proteins [Gaines et al (2015) Nat. Comms 6:7834; Kondrashova et al (2017) Cancer Discovery 7:984; Garcin et al (2019) PLoS Genetics 15:e1008355; Bonilla et al (2021) eLife 1: e68080) Prakash et al (2022) PNAS 119: e2202727119, etc]

      Additional (relatively minor) concerns about these data:

      (1) Several interactions reported here seem to be detected in only one direction - e.g., MRE-11-AD/HIM-5-BD, REC-1-AD/XND-1-BD, and XND-1-AD/HIM-17-BD - while no interactions are seen with the reciprocal pairs of fusion proteins. I'm not sure if some of this is due to pasting "positive" colony images into the wrong position in the grid, but this should be addressed.

      The asymmetry in the interactions observed is due to the well-known phenomenon in yeast two-hybrid (Y2H) assays where certain plasmids exhibit self-activation when fused in one orientation, making interpretation of reciprocal interactions challenging. In our experiment, some of the plasmids indeed showed self-activation in one direction, which likely accounts for the lack of interaction seen with the reciprocal pairs of fusion proteins. We have clarified this point in the Methods.

      (2) DSB-3 was only assayed in pairwise combinations with a subset of other proteins; this should be explained; it is also unclear why the interaction grids are not symmetrical about the diagonal.

      We have now completed the analysis by adding the interactions of DSB-3 with the remaining proteins that were missing from the initial set.

      (3) I don't understand why the graphic summaries of Y2H data are split among 3 different figures (1, 2, and 3).

      We chose to split the graphic summaries of the Y2H data across Figures 1, 2, and 3 because we felt this organization better aligns with the flow of the results presented in each figure. Each set of interactions is shown in the context of the specific experiments and findings discussed in those sections, which we believe helps provide a clearer and more logical presentation of the data.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figure 1: B) The IP is difficult to interpret - there is a band of the corresponding size to XND-1 in the control lane calling into question the specificity of the IP/Western.

      We added a supplemental figure with the specificity of the antibody showing that there is a background non-specific band.

      C) More information about the mass spectrometry should be included. No indication of the number of times a peptide was identified, or the overall coverage of the identified proteins.

      Done

      This is important as in the results section (line 114) the authors indicate that there was "strong" interaction yet there is no way to assess this.

      D) Why wasn't hatching measured in the him-5p::him-5; him-17(ok424) strain?

      Great question. I guess we need to do this while back out for review. If anyone has suggestions of what to say here. Clearly we overlooked this point but do have the strain.

      E) Quantification of the cytology should be included.

      We have now quantified overlap between XND-1 and HIM-17

      Figure 2: C) Statistics should be included.

      Done

      E) Quantification should be included for the cytology. I recommend changing the eals15 to HIM-5.

      We included better images showing whole gonads instead of one or two nuclei. We were not sure what the reviewers want us to quantify here since the relocalization of the protein to the cytoplasm is very clear.

      I have a general issue with the use of the term epistasis - this is used to order gene function based on different mutant phenotypes, usually with null alleles. While I think the authors have valid points with how they group the different SPO-11 accessory proteins, I do not think they should use the word epistasis, but rather genetic interactions.

      We appreciate the reviewers thoughts on this matter and have removed the term epistasis and use functional groups or genetic interactions throughout the text.

      Figure 4 and the nature of the X chromosome: First, I think it would help the non-C. elegans reader to include a little more information on the X chromosome with respect to its differences compared to the autosomes. I also think that, if possible, it would be beneficial to include a model of the X in Figure 4.

      We have added more about X/autosome differences in the intro and during the discussion of HIM-5 function and have added a figure showing difference in the behavior of the X/autosomes during DSB/crossover formation.

      Minor points:

      Abstract: Given the findings of Silva and Smolikove on SPO-11 breaks, I recommend removing "early" from line 28 in the Abstract.

      Done

      Introduction (line 93): I think "biochemical studies" is a stretch here - I recommend "interaction studies".

      Done

      Results: (lines 160-161): mutations are not required for breaks. Line 172, there is a problem with the sentence.

      Corrected

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) Figure 1B- The signal for XND-1 seems to appear both in the control and him-17::HA IP. Do the authors have tested the specificity of the XND-1 antibody?

      We included a supplementary figure demonstrating the specificity of the XND-1 antibody by Western blot. This was also previously published (Wagner et al., 2010)

      (2) Figure 1D - can the authors provide an explanation why the him-5p::him-5 transgene that drives a higher expression than pie-1p::him-5 fails to suppress the Him phenotype seen in him-17? What are the HIM-5 levels like in these two strains compared to N2 and him-17 null mutants? Can this information provide explanation for the differential effect of the him-5 transgenes?

      We previously reported that him-5p::him-5 drives higher expression than pie-1p::him-5 (McClendon et al, 2016).

      The reason that him-5p::him-5 does not rescue, despite higher wild type expression is that HIM-17 directly regulates expression of him-5. Since HIM-17 does not regulate the pie-1 promoter, the pie-1p::him-5 construct can at least partially suppress the him-17 mutation.

      We have (hopefully) explained this better in the text.  

      (3) Line 102- the subheading "HIM-5 is the essential factor for meiotic breaks in the Xchromosome" may not be appropriate for this section. This is what has previously been known. However, the results in Figure 1 demonstrate that a him-5 transgene can partially rescue the him-17 and ¬xnd-1 phenotype, but not that it is essential for meiotic DSB formation on X chromosomes.

      We think some of the concern here is sematic and have changed the phraseology to say that HIM-5 is SUFFICIENT for DSBs on the X… which had not previously been shown.

      Vis-à-vis the X chromosome, in all genetic backgrounds examined, the absence of HIM-5 consistently results in a complete lack of DSBs on the X. For instance, in dsb-2 mutants— where HIM-5 is still expressed—DSBs are reduced genome-wide, but the X chromosome occasionally retains breaks. In contrast, even a weak allele of him-17 results specifically in the loss of X chromosome breaks, underscoring a unique requirement for HIM-5 in promoting DSBs on the X. While Figure 1 shows that a him-5 transgene can partially rescue him-17 and xnd-1 phenotypes, the consistent observation that X breaks are absent without HIM-5 supports its classification as sufficient for DSB formation on the X chromosome.

      (4) Figure 1E - please consider enlarging the images and showing multiple examples.

      Done.

      I also suggest that the authors perform a more rigorous analysis to support the conclusion that XND-1 and HIM-17 localize away from the axis by quantifying multiple images and doing line-scan analysis.

      Provided. New images are provided in both, the main and supplemental figures, and quantification is included. There is no detectable overlap of the two protein with one another or the DNA axes (see quantification of overlap in Fig. 1).

      (5) Line 162 - This is the first mention of DSB-1, DSB-2, and DSB-3 in the paper. DSB-1 and DSB-2 are Rec114 homologs in C. elegans (Tesse et al., 2017), while DSB-3 is a homolog of Mei4 (Hinman et al., 2021). These proteins should be properly introduced in the introduction with appropriate citations.

      Done. We appreciate the reviewer pointing out that this was the first reference to these genes.

      (6) Line 169 - the rationale for this experiment is unclear. Why did the Y2H interaction between HIM-5 and DSB-1 prompt the authors to test the rescue of dsb-1 or dsb-2 phenotypes by the ectopic expression of him-5? Do the authors have evidence that HIM-5 level is reduced in dsb-1 or dsb-2 mutants?

      We have reorganized this section to better explain the motivation for looking at these interactions. We did see a difference in the localization in HIM-5 in the dsb-1 mutant animals and we did have a sense that HIM-5 was critical for breaks on the X. We reasoned that it could have independent functions in promoting breaks that were not yet appreciated so wanted to do this experiment.

      (7) Line 172 - "very slightly reduced". This claim requires statistical analysis.

      We added statistical analysis, but we also removed this claim.

      (8) Figures 2C and 2D - Can the authors provide an explanation why the pie-1p::him-5 transgene fails to suppress the phenotypes in dsb-1, while the him-5p::him-5 trasgene can? Again, the rationale for these experiments is unclear. Because of this, the interpretation is also unclear.

      The difference in rescue between the pie-1p::him-5 and him-5p::him-5 transgenes likely reflects differences in expression levels. As previously shown (McClendon et al., 2016), the him-5p::him-5 construct results in significantly higher expression of HIM-5 protein compared to pie-1p::him-5. This elevated expression likely explains its ability to partially rescue the dsb-1 phenotype. In contrast, the lower expression driven by the pie-1 promoter is insufficient to compensate for the absence of dsb-1 function. We have clarified the rationale and interpretation of these experiments in the revised manuscript to better reflect this point.

      (9) Lines 184-185 - the data for endogenously tagged HIM-5::3xHA are not shown anywhere in the paper. This must be shown.

      We have added this in the supplemental figures.

      (10) Figure 2D and 2E - what does the localization of pie-1p::him-5::GFP (eaIs15) and him5p::him-5::GFP (eaIs4) look like in wild-type and dsb-1 mutants? Are the cytoplasmic aggregates caused by increased levels of HIM-5 expression? Can the differential behavior of him-5 transgenes provide explanation for differential rescues?

      We now show both live and fixed images of Phim-5::him-5::gfp transgenes, as well as the localization of the endogenously HA-tagged HIM-5 locus (Figure 2 and S3). In all cases, the protein is initially nuclear and then absent from meiotic nuclei with similar timing. The Ppie1::him-5 transgene was very difficult to image due to low expression (even in wild type) so it not shown here. We presume it is the slightly elevated level of expression of the Phim5::him-5::gfp that can explain the differential rescue.

      (11) Lines 221-222, where are the results shown? Please refer to Figure S3.

      Done

      (12) Figure S3 - these need statistical analyses.

      Done

      (13) Lines 230-231 - what about the rec-1; parg-1; cep-1 triple mutant?

      This is an excellent suggestion and not one we have not yet pursued. Given the lack of strong phenotypes in all combination of double mutants, we prioritized other experiments . However, we agree that examining the rec-1; parg-1; cep-1 triple mutant would provide a valuable test of whether these factors act in the same pathway, and we appreciate the reviewer highlighting this potential future direction.

      (14) Line 298 - I suggest the authors take a look at the Alphafold prediction of DSB-1/DSB-2/DSB-3 and the comparison to human and budding yeast Rec114/Mei4 complex in Guo et al., 2022 eLife, which could provide insights into the Y2H results.

      We thank the reviewer for these comments and have indeed used these interactions and predicted homologies to zero in a region of interaction between these proteins that resembles what is seen in humans and yeast with a dimer of REC114 like proteins wraps stabilizing a central Mei4 helix . This is now shown in Figure 3H, I. Satisfyingly, this modeling predicts that a trimer comprised of 2 DSB-1 proteins with DSB-3 is more stable than a DSB1-DSB-2-DSB-3 trimer. This might explain why DSB-2 is not required in young adults and only becomes essential as DSB-1 levels drop in older animals (Rosu et al., 2013)

      (15) Can the authors introduce mutations within the DSB-1 interfaces that disrupt the interaction to either SPO-11 or DSB-2?

      We have begun to address this question by introducing targeted mutations within DSB-1. As shown in Figure 3E and 3F, mutations in the C-terminal region of DSB-1—which includes a core of four α-helices—disrupt its interaction with DSB-2 and DSB-3, but not with SPO-11. These findings suggest that the C-terminus mediates interactions specifically with DSB2 and DSB-3

      (16) Line 323 - The him-5 phenotypes are too weak to support the idea that it serves as the linchpin for the whole DSB complex. Do the authors have an explanation for why him-5 mutants exhibit X-chromosome-specific DSB defects?

      In response to the reviewer, above, and in the text, we have included a more detailed explanation of why we think HIM-5 has a key role in coordinating meiotic break formation. Although, identified for its role on the X, the phenotypes associated with DSB formation in the mutant are really quite pleiotropic and severe.

      (17) Line 436 - C. elegans lacks DSB hotspots.

      Removed

      Minor comments:

      (1) Figure 1A - please show the raw data for the yeast two-hybrid.

      We show representative yeast colonies in Figure S3.

      (2) It looks like the labeling for Figure 1B and 1C are switched.

      Fixed.

      (3) Figure 1B - what does the red box indicate? Please explain it in the legend.

      It indicates the XND-1 band. We added that information in the legend.

      (4) Figure 1C - in the legend, it was noted that the results are from GFP pulldowns of HIM17::GFP. However, the method for Figure 1B and the method section noted that HIM-17 was tagged with 3xHA, and the pull-down was performed using anti-HA affinity matrix. Please reconcile this discrepancy.

      That’s because they were done in two different sets of experiments. For the IPs we used a HIM-17::HA strain and for the MS, a HIM-17::GFP strain.

      (5) Also in Figure 1C - please call Table S2 in the main text when discussing the mass spec results. Also, it is not clear what HIM-17 and GFP indicate in the table. What makes CKU80 different from the other proteins listed under GFP? Please explain more clearly in the legend.

      We have move the table to supplemental data where we have included all of the peptide counts and gene coverage. We have included in the revised method rationale for inclusion in this table which explains why CKU-80 differs.

      (6) Line 527 - it is unclear what experiment was done for HIM-17. Please revise it to indicate that this is for "HIM-17 immunoprecipitation". Also please indicate the strain used for HIM17 pull-down (AV280?).

      (7) Line 113- please be specific about how the HIM-17 IP was performed. Which epitope and strains are used for pull-downs?

      This indeed was AV280. This has been added to the text and methods.

      (8) Figure 1D- What does ND mean? In the text, it was stated that there was only a minor suppression of hatching rates. The hatching rate for him-5p::him-5; him-17 must have been measured, and the data must be presented.

      ND does mean not determined. We have removed the statement about “minor suppression”. We only tested the overall population dynamics in the Phim-5::him-5;him17(ok424) and the DAPI body counts. The failure to suppress the latter suggests there would be no enect on hatching rates, although we did not test this directly. Since we had done this for the Ppie-1::him-5;him-17 strain, we provided this information to further support the claims of genetic rescue by ectopic expression.

      (9) Line 151 - please specify that STED was used.

      We have removed the STED images, and just show the confocal images with Lightning Processing.

      (10) Figure 1E- the authors suggested that HIM-17 and XND-1 mainly localize to autosomes but not the X chromosome. However, there is not enough evidence that the chromosome excluded from HIM-17 staining is indeed an X chromosome.

      (11) Figure 1E (Line 154) - what are the active chromatin markers examined? Where are the data?

      We have previously shown that the chromosome lacking XND-1 staining is the X (Wagner et al., 2010). The X is heterochromatic and chromatin marks associated with active transcription, including H3K4me3 and HTZ-1 (a variant H2A), preferentially localize to autosomes, effectively anti-marking the X chromosome. As shown in the new Figure 1E, a single chromosome has very little XND-1 and HIM-17 associated proteins. This is the X chromosome.

      (12) Line 172 - It should be a comma instead of the period after "In dsb-1 mutants".

      Fixed

      (13) Figure S3H-K - I suggest the authors indicate the alleles of mre-11 (null vs. iow1) on the graph, similarly to him-5(e1490) to avoid confusion.

      Done

      (14) Lines 294 and 600 - Guo et al. 2022 is now published in eLife. The authors must cite the published paper, not the preprint.

      Fixed

      (15) Line 407 - the reference Carelli et al., 2022 is missing.

      Added

      (16) Line 766 - please remove "is" before nuclear.

      Done

      Reviewer #3 (Recommendations For The Authors):

      Major issues:

      In my view, the most interesting mechanistic finding in the paper is the evidence that HIM-5 may not bind to chromatin in the absence of DSB-1. If validated, this would suggest that HIM-5 is likely to be directly involved in a process that promotes break formation, in contrast to factors such as HIM-17 and XND-1. It does not, however, support the idea that HIM-5 is at the top of a hierarchy of DSB factors, as it is interpreted here. More importantly, the data supporting this claim are unconvincing; only a single image of an unfixed gonad from an animal expressing HIM-5::GFP is shown. Immunofluorescence should be performed and the results must be quantified.

      We have provided additional images of the HIM-5 relocalization to show that we observed this in both fixed and live worms with two different tagged strains. The exclusion from the nucleus is seen in all scenarios. Whether the protein now accumulates exclusively in the cytoplasm/ is destabilized is challenging to address with the fixed images due to the arbitrariness of defining “background” staining.

      More generally, this type of analysis, looking at the interdependence of different factors for their association with chromosomes, is much more informative than the genetic interaction data presented in the paper, which does not seem to provide any mechanistic insights into the functions of the factors analyzed. The paper could potentially be greatly improved through a more extensive, systematic analysis of the interdependence of DSBpromoting factors for their localization to chromosomes.

      We have at least added this for XND-1 and HIM-17 and show they are not interdependent for chromosome association. We also provide for the first time data on the localization of HIM-5 in the dsb-1 mutant. Many of the other interactions have already been shown in the literature and/or were not warranted base on the lack of genetic interaction we present here.

      Minor issues:

      The title is vague and inconclusive. A more concrete title summarizing the major findings would help readers to assess whether the work is of interest.

      We have discussed the title extensively with all authors and all would like to keep the current title.

      The authors claim that the expression of HIM-5 from a different promoter (Ppie-1::him-5) but not its endogenous promoter (Phim-5::him-5) can partially rescue the DSB defect in him-17 mutants. To support this claim, they should really quantify the germline expression of HIM-5 in wild-type, him-17, him-17; Ppie-1::him-5, and Phim-5::him-5; him-17.

      We had previously reported the expression in the N2 background of both transgenes (McClendon et al., 2016)

      Panel O appears to be missing from Figure S3.

      Fixed

      The evidence for chromosome fusions in cep-1; mre-11 mutants shown in S4D is not convincing and the claim should be removed unless stronger evidence can be obtained.

      A clearer image has been added

      The basis of the following statement is unclear: "Furthermore, rec-1;him-5 double mutants give an age-dependent severe loss of DSBs (like dsb-2 mutants) suggesting that the ancestral function of the protein may have a more profound effect on break formation." The manuscript does not seem to include data regarding age-dependent loss of DSBs and no other publication is cited to support this claim. The interpretation is also perplexing; I think that it may be predicated on the idea that REC-1 and HIM-5 are paralogs, but as stated above, this claim is not well supported and is likely specious.

      We have added the reference. This was shown in Chung et al., 2013 – the paper that presented the cloning of the rec-1 locus.

  3. Sep 2025
    1. Reviewer #3 (Public review):

      Summary:

      Knoerzer-Suckow et al. explore the mechanisms of organelle inheritance during endodyogeny in Toxoplasma gondii using an innovative dual-labeling approach to track the distribution of maternal organelles into daughter parasites. They can clearly distinguish between maternal and daughter-derived organelles using their dual-labeling Halo Tag approach. They reveal that different organelles are trafficked to daughter parasites in three broad patterns, which they have binned into groups. Their findings reveal a role for MyoF in the inheritance of micronemes and rhoptries, and notably, they observe that the inner membrane complex (IMC) is not recycled. Instead, the IMC undergoes a pronounced relocalization to the posterior of the maternal cell, where it is likely targeted for degradation.

      Strengths:

      The data surrounding their MyoF knockdown experiments, IMC degradation, and trafficking of MIC2 after auxin washout are compelling. These data add to the knowledge of how organelle inheritance occurs in T. gondii, increasing the field's understanding of endodyogeny.

      Weaknesses:

      (1) The evidence provided to support the claim that microneme and rhoptry inheritance specifically traffics through the residual body does not sufficiently substantiate the claim. The temporal resolution of the imaging is inadequate to precisely trace the path of microneme and rhoptry inheritance. From the data shown in the manuscript, it can be concluded that at least some of the micronemes and rhoptries might be recycled through the residual body, but it is unclear whether many or most of these organelles do so.

      (2) The absence of specific markers for the residual body brings into question whether microneme inheritance occurs through a discrete residual body or simply via the basal end of the maternal parasite. The authors need a robust way to visualize and define the residual body to claim that micronemes and rhoptries are specifically transported through this structure.

    1. Reviewer #1 (Public review):

      Summary:

      The extent to which P. falciparum liver stage parasites export proteins into the host cell is unclear. Most blood-stage exported proteins tested in liver stages were not exported. An exception is LISP2, which is exported in P. berghei but not P. falciparum liver stages. While the machinery for export is present in liver stages, efforts to demonstrate export have so far been mostly unsuccessful. Parasite proteins exported during the liver stage could be presented by MHC and thereby become the target of immune control, an incentive to study liver stage export and identify proteins exported during this stage. However, particularly for P. falciparum, it is very difficult to study liver stages.

      This work studies LSA3 in P. falciparum blood and liver stages. The authors show that this protein is exported into the host cell in blood stages, but in liver stages, no or only very little export was detected. A disruption of LSA3 reduced liver stage load in a humanized mouse model, indicating this protein contributes to efficient development of the parasites in the liver.

      The paper also studies the localization of LSA3 in blood stages and uses a known inhibitor to show that it is processed by plasmepsin 5, a protease important for protein trafficking. The work also shows that LSA3 is not needed for passage through the mosquito.

      Strengths:

      The main strength of this work is the use of the humanized mouse model to study liver stages of P. falciparum, which is technically challenging and requires specialized facilities. The biochemical analysis of LSA3 localization and processing by plasmepsin 5 is thorough and mostly overcame adverse issues such as a cross-reactive antibody and the negative influence of the GFP-tag on LSA3 trafficking. The mosquito stage analysis is also notable, as these kinds of studies are difficult with P. falciparum. However, there was no evidence for a function of LSA3 in mosquito stages.

      Weaknesses:

      The cross-reactivity of the antibody, together with the co-infection strategy, prevents reliable assessment of LSA3 localization in liver stages. Despite this, it seems LSA3 is not exported in liver stages, and the paper does not bring us closer to the original goal of finding an exported liver stage protein.

      While the localization analysis in blood stages is well done and thorough, the advance is somewhat limited. LSA3 may be in structures like J dots, but this hypothesis was not tested. Although parasites with a disrupted LSA3 were generated, the function of this protein was not explored. Given that a previous publication found some inhibitory effect of LSA3 antibodies on blood stage growth, a comparison of the growth of the LSA3 disruption clones with the parent would have been very welcome and easy to do. At this point, LSA3 is one more of many proteins exported in blood stages for which the function remains unclear.

      It might be possible to refine some of the conclusions. The impact on liver stage development is interesting, but which phase of the liver stage is affected, and the phenotype remains largely unknown. The co-infection (WT together with LSA3 mutant) has the advantage of a direct comparison of the mutant with the control in the same liver, but complicates phenotypic analysis if the LSA3 antibody is also cross-reactive in liver stages. This issue adds a question mark to the shown localization and precludes phenotypic comparisons. The authors write that they do not know if the cross-reactive protein is expressed at that stage. But this should be immediately evident from the mixed WT/mutant infection. If all cells are positive for LSA3, there is a cross-reaction. If about half of the cells are negative, there isn't. In the latter case, the localization shown in the paper is indeed LSA3, and morphological differences between WT and LSA3 disruption could be assessed without additional experiments.

      Significance:

      The conclusion from the paper that "our study presents just the second PEXEL protein so far identified as important for normal P. falciparum liver-stage development and confirms the hypothesized potential of exported proteins as malaria vaccine candidates" is partially misleading. Neither LISP2 nor LSA3 seems to be exported in P. falciparum liver stages, and we can't confirm the potential of vaccines with proteins exported in this stage. LSA3 is still important and may still be the target of the immune response, but based on this work, probably not due to export in liver stages.

    1. (Try it out: Download Links to an external site. and install the Hypothesis extension to view an annotation on this page! By default, annotations will be public, so be mindful of that.)

      Isn't it cool to have this extra layer of discussion? I could tag my annotation, share a link with further resources, and more.

    1. (Try it out: Download Links to an external site. and install the Hypothesis extension to view an annotation on this page! By default, annotations will be public, so be mindful of that.)

      Isn't it cool to have this extra layer of discussion? I could tag my annotation, share a link with further resources, and more.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary: 

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function. 

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on some behavioral outcomes may be a bit overstated given technical limitations of the experiments. 

      For example, after virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic. 

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in some of the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences? 

      We thank the reviewer for the comments and for raising additional interpretations of our results. We agree that determining the relative number of D1- versus D2-SPN starter cells would allow a more accurate estimate of connectivity. However, due to current technical limitations, achieving this level of precision remains challenging. As the reviewer also noted, differences in the number of cortical neurons targeting D1- versus D2-SPNs could introduce additional complexity to the functional effects observed in the behavioral experiments. Moreover, functional heterogeneity is likely to exist not only among cortical neurons projecting to striatal D1- or D2-SPNs, but also within the striatal D1- and D2-SPN populations themselves. Addressing these questions at the single-neuron level will require more refined viral tools in combination with improved recording and manipulation techniques. Despite these limitations, our results suggest that a subpopulation of cortical neurons selectively targets striatal D1-SPNs, supporting a functional dichotomy of pathway-specific corticostriatal subcircuits in the control of behavior.   

      Reviewer #2 (Public review): 

      Summary: 

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs). 

      Strengths: 

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum. This study adds to our understanding of the logic of corticostriatal connections, suggesting a previously unappreciated structure. 

      Weaknesses: 

      One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not. 

      Thank you for raising this thoughtful concern. It is indeed not feasible to restrict ChR2 expression to a specific cortical region using the first-generation rabies-ChR2 system alone. A more refined approach would involve injecting Cre-dependent TVA and RG into the striatum of D1- or A2A-Cre mice, followed by rabies-Flp infection. Subsequently, a Flp-dependent ChR2 virus could be injected into the MCC or M1 to selectively label D1- or D2-projecting cortical neurons. This strategy would allow for more precise targeting and address many of the current limitations.

      However, a significant challenge lies in the cytotoxicity associated with rabies virus infection. Neuronal health begins to deteriorate substantially around 10 days post-infection, which provides an insufficient window for robust Flp-dependent ChR2 expression. We have tested several new rabies virus variants with extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, they did not perform effectively or suitably in the corticostriatal systems we examined.

      In our experimental design, the aim is to delineate the connectivity probabilities to D1 or D2-SPNs from cortical neurons. Our hypothesis considered includes the possibility that similar innervation patterns could occur across multiple cortical subregions, or that some subregions might show preferential input to D1-SPNs while others do not, or a combination of both scenarios. This leads us to perform a series behavior test that using optogenetic activation of the D1- or D2-projecting cortical populations to see which could be the case.

      In the cortical areas we examined, MCC and M1, during behavioral testing, there is consistency with our electrophysiological results. Specifically, when we stimulated the D1-projecting cortical neurons either in MCC or in M1, mice exhibited facilitated local motion in open field test, which is the same to the activation of D1 SPNs in the striatum along (MCC: Fig 3C & D vs. I; M1: Fig 3F & G vs. L). Conversely, stimulation of D2-projecting MCC or M1 cortical neurons resulted in behavioral effects that appeared to combine characteristics of both D1- and D2-SPNs activation in the striatum (MCC: Fig 3C & D vs. J; M1: Fig 3F & G vs. M). The similar results were observed in the ICSS test. Our interpretation of these results is that the activation of D1-projecting neurons in the cortex induces behavior changes akin to D1 neuron activation, while activation of D2-projecting neurons in the cortex leads to a combined effect of both D1 and D2 neuron activation. This suggests that at least some cortical regions, the ones we tested, follow the hypothesis we proposed.

      There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. The authors indicate they are patching from mCherry-negative neurons within the region of the mCherry-positive neurons, but since the mCherry population will include both true starter cells and monosynaptically connected cells, this is not perfectly precise. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021). 

      This is a valid concern regarding anatomical studies. Investigating cortico-striatal connectivity at the single-cell level remains technically challenging due to current methodological limitations. At present, we rely on rabies virus-mediated trans-synaptic retrograde tracing to identify D1- or D2-projecting cortical populations. This anatomical approach is coupled with ex vivo slice electrophysiology to assess the functional connectivity between these projection-defined cortical neurons and striatal SPNs. This enables us to quantify connection ratios, for example, the proportion of D1-projecting cortical neurons that functionally synapse onto non-starter D1-SPNs.

      To ensure the robustness of our conclusions, it is essential that both the starter cells and the recorded non-starter SPNs receive comparable topographical input from the cortex and other brain regions. Therefore, we carefully designed our experiments so that all recorded cells were located within the injection site, were mCherry-negative (i.e., non-starter cells), and were surrounded by ChR2-mCherry-positive neurons. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.

      These methodological details are also described in the section on ex vivo brain slice electrophysiology, specifically in the Methods section, lines 453–459:

      “D1-SPNs (eGFP-positive in D1-eGFP mice, or eGFP-negative in D2-eGFP mice) or D2-SPNs (eGFP-positive in D2-eGFP mice, or eGFP-negative in D1-eGFP mice) that were ChR2-mCherry-negative, but in the injection site and surrounded by cells expressing ChR2-mCherry were targeted for recording. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.”

      This experimental strategy was implemented to control for potential spatial biases and to enhance the interpretability of our connectivity measurements.

      A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls, although a different control (with light delivered in M1) is provided in Supplementary Figure 3. Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement. This study may have given different results due to subtly different experimental parameters, including fiber optic placement and NA.

      We appreciate the reviewer’s thoughtful evaluation and comments. We have added a short discussion of Cui et al.’s study on optogenetic stimulation of D1-SPNs in the DLS (lines 341-343), which reports findings that contrast with ours and those of other studies.

      Reviewer #3 (Public review): 

      Review of resubmission: The authors provided a response to the reviews from myself and other reviewers. While some points were made satisfactorily, particularly in clarification of the innervation of cortex to striatum and the effects of input stimulation, many of my points remain unaddressed. In several cases, the authors chose to explain their rationale rather than address the issues at hand. A number of these issues (in fact, the majority) could be addressed simply by toning done the confidence in conclusions, so it was disappointing to see that the authors by and large did not do this. I repeat my concerns below and note whether I find them to have been satisfactorily addressed or not. 

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity, and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points. 

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below. 

      Major: 

      There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results. 

      This is still an issue. The authors point out why they chose various vectors. I can understand why the authors chose the fluorophores etc. that they did, yet the issues I raised previously are still valid. The discussion should mention that this is a potential issue. It does not necessarily invalidate results, but it is an issue. Furthermore, it is possible (in all systems) that rabies replicates better/more efficiently in some cells than others. This is one possible interpretation that has not really been explored in any study. I don't suggest the authors attempt to do that, but it should be raised as a potential interpretation. If the rabies results could mean several different things, the authors owe it to the readership to state all possible interpretations of data.

      We thank the reviewer for the comments and suggestions. Because the same fluorophore (mCherry) was used in both TVA- and ChR2-expressing viruses, it was not possible to distinguish true starter SPNs from TVA-only SPNs or monosynaptically labeled SPNs. This limitation makes it difficult to precisely assess the efficiency of rabies labeling and retrograde tracing in our experimental setup. Moreover, differences in rabies replication efficiency between D1- and D2-SPNs could potentially lead to an apparent lower connection probability from D1-projecting cortical neurons to D2-SPNs than from D2-projecting cortical neurons to D1-SPNs. We have added this clarification to the Discussion (lines 280-297).

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. Health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included. 

      This issue remains unaddressed. I did not request clarity about experimental design, but rather, raised issues about the potential effects of toxicity. I believe this to be a valid concern that needs to be discussed in the manuscript, especially given what look visually like potential differences in S2. 

      We understand and appreciate the reviewer’s concern regarding the potential cytotoxicity of rabies virus infection. Although we performed the in vivo optogenetic behavioral experiments during a period when rabies-infected cells are generally considered relatively healthy, some deficits in starter cells may still occur and could contribute to the observed effects of optogenetic cortical stimulation. We have added this clarification to the Discussion (lines 298-306).

      The overall purity (e.g., EnvA pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity. This issue has not been addressed. Viral strain is irrelevant. The quality of the specific preparations used is what matters.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down. 

      The authors added text to the discussion to address this point. While it largely does what is intended, based on the one study cited, I disagree with the authors' conclusions that it is "clear" that potential contamination from other sites does not play a role. The simplest interpretation is the one the authors state, and there is some supporting evidence to back up that assertion, but to me that falls short of making the point "clear" that there are no other interpretations. 

      The statements about specificity of connectivity are not well founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results. 

      Again, the goal here would be to make a statement about this in the discussion to clarify limitations of the study. I don't expect the authors to re-do all of these experiments, but since they are discussing the corticostriatal circuits, which have multiple subdomains, this remains a relevant point. It has not been addressed. 

      The results in Figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret. 

      I think that the caveat of showing no clear effects of inputs to D2 stimulation should be pointed out. Yes, I understand that the viruses appeared to express etc., but again it remains possible that the results are driven by a lack of e.g., sufficient ChR2 expression. Aside from a full quantification of the number of cells expressing ChR2, overlap in fiber placement and ChR2 expression (which I don't suggest), this remains a possibility and should be pointed out, as it remains a possibility. 

      In the light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in Figure 4 - the inputs and putative downstream cells do not have the same effects. Given potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments. 

      The explanation the authors provide in their rebuttal makes sense, however this should be included in the discussion of the manuscript, as it is interesting and relevant. 

      We thank the reviewer for the valuable comments and suggestions. In line with the reviewer’s recommendation, we have incorporated these explanations into the Discussion (lines 242–279) to help interpret the complex behavioral outcomes of optogenetic stimulation of cortical neurons projecting to D1- or D2-SPNs.

      Reviewer #2 (Recommendations for the authors): 

      I appreciate the authors' responses, which helped clarify some experimental choices. I appreciate that the experiment in Fig S3 serves as a reasonable light control for optogenetics experiments. The careful comparison with methods in Cui et al (2021) is useful, although not added to the main manuscript. Some of the other citations here don't really address the controversy, e.g. Kravitz at al is in DMS, but perhaps fully addressing this issue is outside the scope of the current manuscript and awaits further experiments. I also appreciate the clarification for recording locations that "This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry." However, the statement in the reviewer response does not seem to be added to the manuscript's methods, which I think would be helpful. The criteria for choosing recorded cells are still a bit fuzzy without a map of recording locations and histology. There is also a problem that mCherry-positive cells could be starter cells or could be monosynaptically traced cells, so it is hard to know the area of the starter cell population in these experiments for sure. My evaluation of the manuscript remains largely the same as the original. However, I have adjusted my public review a bit to incorporate the authors' responses. I still think this paper has valuable information, suggesting an interesting and previously unappreciated structure of corticostriatal inputs that I hope this group and others will continue to investigate and incorporate into models of basal ganglia function.

      We thank the reviewer for the valuable suggestions. We have now included a comparison with Cui et al. in the Discussion. In addition, we have added the criteria for selecting recorded cells to the Methods section: ‘This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.’

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Zhang et al. demonstrates that MORC2 undergoes liquid-liquid phase separation (LLPS) to form nuclear condensates critical for transcriptional repression. Using a combination of in vitro LLPS assays, cellular studies, NMR spectroscopy, and crystallography, the authors show that a dimeric scaffold formed by CC3 drives phase separation, while multivalent interactions between an intrinsically disordered region (IDR) and a newly defined IDR-binding domain (IBD) further promote condensate formation. Notably, LLPS enhances MORC2 ATPase activity in a DNA-dependent manner and contributes to transcriptional regulation, establishing a functional link between phase separation, DNA binding, and transcriptional control. Overall, the manuscript is well-organized and logically structured, offering mechanistic insights into MORC2 function, and most conclusions are supported by the presented data. Nevertheless, some of the claims are not sufficiently supported by the current data and would benefit from additional evidence to strengthen the conclusions.

      The following suggestions may help strengthen the manuscript:

      Major comments:

      (1) The central model proposes that multivalent interactions between the IDR and IBD promote MORC2 LLPS. However, the characterization of these interactions is currently limited. It is recommended that the authors perform more systematic analyses to investigate the contribution of these interactions to LLPS, for example, by in vitro assays assessing how the IDR or IBD individually influence MORC2 phase separation.

      (2) The authors mention that DNA binding can promote MORC2 LLPS. It is recommended that they generate a phase diagram to systematically assess how DNA influences phase separation.

      (3) The authors use the N39A mutant as a negative control to study the effect of DNA binding on ATP hydrolysis. Given that N39A is defective in DNA binding, it could also be employed to directly test whether DNA binding influences MORC2 phase separation.

      (4) Many of the cellular and in vitro LLPS experiments employ EGFP fusions. The authors should evaluate whether the EGFP tag influences MORC2 phase separation behavior.

    1. reply to u/GrandRevolutionary99 at https://reddit.com/r/stationery/comments/1nrkuqf/i_need_help_to_create_my_own_letterhead_for_my/

      Typewriter enthusiasts often use 100% cotton or high linen content papers with weights in the 32 pound range for 8.5x11. This gives you some nice tactile feel, but will also feed into most typewriters, even with a solid backing sheet. If you want to do thicker card stocks, then you might opt for a bigger standard typewriter which generally have larger diameter platens and more easily handle much thicker paper (they were meant for doing carbon packs up up to 10 sheets or more.)

      When it comes to the look of your letters, you can generally choose between silk (clean, crisp imprints), nylon (almost as clean as silk, but with more "grain"), and cotton typewriter ribbon (which leaves a very grainy/old timey and "typewriter-y" imprint). Comparisons here.

      I've got a small fleet of typewriters and prefer to use the pica sizes for personal correspondence. I also tend toward the cursive or Vogue typefaces for those as well.

      In the US, a lot of stationers have pre-cut paper and envelopes for 6-3/8" x 8-1/2" paper which is a good size sheet for quick notes. My typewriter pen pal Tom Hanks' most recent letter to me was on a custom page of 7.125 x 10.25" and had space for design at the top and bottom with some reasonable space in the middle. If you do custom designs, be sure to order a box or two of plain stock to use as second, third, etc. pages behind your first page if you tend to write over your first page.

      Naturally custom designing your own can be fun as well, but get a few samples of the size and weight you want and try them out before ordering in quantity.

      Lenore Fenton can give you tips on making carbon copies of your letters if you want to keep them for your own files while sending out the originals: https://www.youtube.com/watch?v=JUJfCfqgsX0

      Searching r/typewriters for stationery, letterhead, paper, etc. might give you some ideas as well.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review)

      The weaknesses are in the clarity and resolution of the data that forms the basis of the model. In addition to whole embryo morphology that is used as evidence for convergent extension (CE) defects, two forms of data are presented, co-expression and IP, as well as a strong reliance on IF of exogenously expressed proteins. Thus, it is critical that both forms of evidence be very strong and clear, and this is where there are deficiencies; 1) For vast majority of experiments general morphology and LWR was used as evidence of effects on convergent extension movements rather than Keller explants or actual cell movements in the embryo. 2) The study would benefit from high or super resolution microscopy, since in many cases the differences in protein localization are not very pronounced. 3) The IP and Western analysis data often show subtle differences, and not apparent in some cases. 4) It is not clear how many biological repeats were performed or how and whether statistical analyses were performed. 

      (1) To more objectively assess the convergent extension phenotypes, we developed a Fiji macro to automatically quantify the LWR in various injected Xenopus embryos, as detailed in the Methods section. We acknowledge that a limitation in the current manuscript is how to link our mechanistic model at the molecular level with the actual cellular behavior during convergent extension, and we plan to perform cell biological studies in the future to elucidate the link;

      (2) We have repeated some of the imaging experiments in DMZ explants using a Zeiss LSM 900 confocal equipped with Airyscan2 detector that can increase the resolution to ~100 nm. The new data are in Suppl. Fig. 4, 9, 11, 16;

      (3) We have repeated all IP and western blots at least three times and provided quantification and statistical analyses;

      (4) We have added the information on biological repeats and statistical analyses in all figures and figure legends.

      Reviewer #2 (Public Review):

      The protein localization experiments in animal cap assays are for the most part convincing, but with the caveat that the authors assume that the proteins are acting within the same cell. As Fzd and Vangl2 are thought to localize to opposite cell ends in many contexts, can the authors be sure that the effects they observe are not due to trans interactions? 

      In our previous publication, we provided evidence that Vangl is necessary and sufficient to recruit Dvl to the plasma membrane within the same cell (Figure 3 in 10.1093/hmg/ddx095). In a more recent publication ( 10.1038/s41467-025-57658-0 ), we further elucidated a mechanism through which Dvl oligomerization switches its binding from Vangl to Fz, and determined that Dvl binding to Vangl and Fz are differentially mediated by its PDZ and DEP domain, respectively. In the current manuscript, we also performed co-IP experiment under various conditions to demonstrate binding between Dvl and Vangl. We feel that these evidences together provide a strong argument for our model where Vangl2 acts within the same cell to sequester Dvl from Fz.

      In regards to the Dvl patches induced by Wnt11 (Fig. 3 and Suppl. Fig. 9), we performed separate injection of EGFP- and mSc-tagged Dvl into adjacent blastomeres, and demonstrated that the Wnt11-induced patches arise from symmetrical accumulation of Dvl at contact of two neighboring cells (Suppl. Fig. 9a-c’). This scenario is different from epithelial PCP where Fz/Dvl and Vangl/Pk are asymmetrically accumulated at the contact between two adjacent cells.

      The authors propose a model whereby Vangl2 acts as an adaptor between Dvl and Ror, to first prevent ectopic activation of signaling, and then to relay Dvl to Fzd upon Wnt stimulation. This is based on the observation that Ror2 can be co-IPed with Vangl2 but not Dvl; and secondly that the distribution of Ror2 in membrane patches after Wnt11 stimulation is broader than that of Fzd7/Dvl, while Vangl2 localizes to the edges of these patches. The data for both these points is not wholly convincing. The co-IP of Ror2 and Vangl2 is very weak, and the input of Dvl into the same experiment is very low, so any direct interaction could have been missed. Secondly, the broader distribution of Ror2 in membrane patches is very subtle, and further analysis would be needed to firm up this conclusion. 

      (1) We repeated the co-IP experiment with Myc-tagged Vangl or Dvl. Using the same anti-Myc antibody and experimental condition (including the expression level of Vangl, Dvl and Ror2), we still found that Ror2 could be pulled down by Vangl but not Dvl (Suppl. Fig. 15b). Whereas this data confirms our previous conclusion, we acknowledge that a negative data does not fully exclude the possibility for direct biding between Ror and Dvl.

      (2) We re-analyzed the signal intensity of Dvl and Ror in Wnt11-induced patches. By quantifying the intensity ratio between Ror and Dvl along the patches, we found an increase over two folds at the border of the patches (Fig. 7j, bottom panel). We interpret this data to suggest that Ror is accumulated to a higher level than Dvl at the patch borders.     

      A final caveat to these experiments is that in the animal cap assays, loss of function and gain of function both cause convergence and extension defects, so any genetic interactions need to be treated with caution i.e. two injected factors enhancing a phenotype does not imply they act in the same direction in a pathway, in particular as there are both cis/trans and positive/negative feedbacks between the PCP proteins. 

      We agree with the reviewer that a difficulty in studying PCP/ non-canonical signaling is that both loss and gain of function of any its components can cause convergence and extension defects. Genetic interactions, especially synergistic interactions, should be interpreted with caution. But we do want to point out that, in a number of case, we were also able to demonstrate epistasis. For instance, we found that Dvl2 over-expression induced CE defects can be rescued by Pk over-expression (Fig. 1e and f), whereas Vangl/ Pk co-injection induced severe CE defects can be reciprocally rescued by Dvl2 over-expression (Fig. 1g). Likewise, we showed that Fz2/ Dvl2 co-injection induced CE defects can be rescued by wild-type Vangl2 but not Vangl2 RH mutant (Suppl. Fig. 6b), and Ror2 can rescue Vangl2 overexpression induced CE defect (Suppl. Fig. 14). Collectively, these functional interaction data consistently demonstrate an antagonism between Dvl/ Fz/ Ror2 and Vangl2/ Pk, which is correlated with our imaging and biochemical studies.

      As you can see from the reviews, the referees generally agree that your paper is a potentially valuable contribution to the field. Your observations are important because of the novel model based on the inhibitory feedback regulation between planar cell polarity (PCP) protein complexes. However, the reviewers also stated that the model is only partly supported by data because of insufficient clarity and missing controls in several experiments supporting the proposed model. The paper would be significantly improved if your conclusions are backed up by additional experimentation. Specifically, the referees wanted to see the reproducibility of the results shown in Figures 3, 4, 8, S3, S7, S12. 

      We hope that you are able to revise the paper along the lines suggested by the referees to increase the impact of your study on the current understanding of PCP signaling mechanisms. 

      We thank the reviewers for careful reading of our manuscript and for their constructive critiques and suggestions. We have repeated the animal cap studies in original Figures 3, 4, 8 and S3 with DMZ explants, and the new data are in Supplementary Fig. 9, 11, 16 and 4, respectively. We also repeated the biochemical studies in original Figure S 7and 12, and the new data are in Supplementary Fig. 8 and 15.

      Reviewer #1 (Recommendations For The Authors):

      Major points:(1) The author conducted an analysis of the subcellular localization of PCP core proteins, including Vangl2, Pk, Fz, and Dvl, within animal cap explants (ectodermal explants). To validate the model proposing that 'non-canonical Wnt induces Dvl to transition from Vangl to Fz, while PK inhibits this transition, and they function synergistically with Vangl to suppress Dvl during Convergent Extension (CE),' it is crucial to assess the subcellular localization of PCP core proteins in dorsal marginal zone (DMZ) cells, which are known to undergo CE. Notably, the overexpression of Wnt11 alone, as employed by the author, does not induce animal cap elongation. Therefore, the use of animal cap explants may not be sufficient to substantiate the model during Convergent Extension (CE). Indeed, previous knowledge indicates that Vangl2 and Pk localize to the anterior region in DMZ explants. However, the results presented in this manuscript appear to differ from this established understanding. Consequently, to provide more robust support for the proposed model, it is advisable to replicate the key experiments (Figures 3, 4, 8, and Figure S3) using DMZ explants. 

      We repeated the experiments in Figure 3, 4, 8 and Figure S3 with DMZ explant and the new data are in new Supplementary Fig. 9, 11, 16 and 4, respectively.In regards to “previous knowledge indicates that Vangl2 and Pk localize to the anterior region in DMZ explants”, we are aware Vangl/ Pk localization to the anterior cell cortex in neural epithelium from the studies by the Sokol and Wallingford labs, but are not aware of similar reports in DMZ explants. When we examined the localization of small amount of injected EGFP-mPk2 (0.1 ng mRNA) in DMZ explants, we saw a somewhat uniform distribution on the plasma membrane (Suppl. Fig. 4). In addition, in a related recent publication, we examined endogenous XVangl2 protein localization in activin induced animal cap explants that do undergo CE. What we observed was that whereas low level injected Dvl2 and Fz form clusters on the plasma member, endogenous XVangl2 remains uniformly distributed on the plasma membrane (Suppl. Fig. 3S-Z in 10.1038/s41467-025-57658-0 ). These observations may suggest potential differences of PCP protein localization during neural vs. mesodermal convergence and extension.

      (2) The author suggests that 'Vangl2 and Pk together synergistically disrupt Fz7-Dvl2 patches.' As shown in Figure 4 (panels J' to I'), it is evident that the co-expression of Pk and Vangl2 increases Fz7 endocytosis. Nevertheless, a significant amount of Fz7 still co-localizes with Dvl2. To strengthen the author's hypothesis, additional clear assay is required such as Fluorescence resonance energy transfer (FRET) assay. 

      We appreciate this valuable advice. Since none of the tagged Fz/ Dvl/ Vangl proteins we had were suitable for FRET, we made proteins tagged with mClover and mRuby2, which were reported as optimized FRET pairs. But in our hands mRuby2 seems to require very long time (~2 days) to mature and become detectable at room temperature, and is not suitable for our Xenopus experiments. We are in the process of establishing a luciferase based NanoBiT system to detect Fz-Dvl and Dvl-Vangl interactions in live cells and cell lysates, and will use it in future studies to investigate their interaction dynamics.

      For the current manuscript, we reason that a substantial reduction of Fz7-Dvl2 clusters with Vangl2/ Pk co-injection would still support our idea that Vangl2 and Pk act synergistically to sequester Dvl from Fz to prevent their clustering in response to non-canonical Wnt ligands.

      (3) The IP data is less clear and evident. A couple of examples are: a) Fig 2g where the authors report that the Vangl2 R177H variant reduced Vangl2 interaction with Pk and recruitment of Pk to the plasma membrane, but it appears that the variant interacts slightly better than WT Vangl2 with Pk. In Fig. S7a, the authors state that Pk overexpression can indeed significantly reduce Wnt11-induced dissociation of EGFP-Vangl2 and Flag-Dvl2 in the DMZ. However, there is a minimal impact when compared to the Wnt11 absent control. Based on the results presented in Fig S12a the authors indicate that Wnt11 reduces the association between Vangl2 and Dvl2, which can be discerned, but loss of Ror2 does not change this in any obvious way - but the authors indicate it does. In S12b, the authors have suggested that Ror and Dvl do not form a direct binding interaction. However, the interpretation of Figure S12b is not entirely convincing due to several issues. Notably, the expression levels of each protein appear inconsistent, the bands are not sufficiently clear, and there is the detection of three different tag proteins on a single blot. To strengthen the validity of these findings, it is advisable to repeat this experiment with improved quality. 

      We repeated all the co-IP and western blot analyses pointed out by the reviewer, and performed quantification and statistical analyses.

      Fig 2g had a mistake in the labeling and is replaced with new Figure 2g;

      Fig. S7a is replaced by new data in Supplementary Figure 8a and b;

      Fig. S12a and 12b are replaced by new data in Supplementary Figure 15a, a’ and b, respectively. In 15a and a’, we noticed a consistent decrease of Dvl2-Vangl2 co-IP in Xror2 morphant. The reason for this is not yet clear and will need further study in the future.

      Minor points: (1) In all the whole embryo injection assays examining morphology, no Western analysis is performed to show roughly equivalent and appropriate levels of the various proteins are being expressed. Differences will affect the data. 

      Although we did not do western analyses to examine the protein levels in various functional interaction assays, we did examine how co-expression of Vangl2, mPk2 or Dvl2 may impact each other’s protein levels in Supplementary Fig. 2, which did not reveal any significant change when co-injected in different combination.

      (2) The author's prior publication (Bimodal regulation of Dishevelled function by Vangl2 during morphogenesis, Hum Mol Genet. 2017) presented clear evidence of Vangl2 overexpression inducing Dvl2 membrane localization. However, Figure S4 in the current manuscript did not provide clear evidence of membrane localization. To strengthen the hypothesis that Vangl2-RH mutant also induces Dvl2 membrane localization, further comprehensive imaging analysis is needed. 

      We re-analyzed the imaging data and replaced old Figure S4 with a new Supplementary Fig. 5.

      (3) In Supplementary Figure 9, the authors propose that the overexpression of Vangl2/Pk induces Fz7 endocytosis, as indicated by its co-localization with FM4-64. However, it raises a question: how does the Fz7-GFP protein internalize into the cells without endocytosis, as seen in Figures S9a-c'? To enhance readers' understanding, a discussion addressing this point should be included. 

      We think that this might be a technical issue. As detailed in the Method section, we only incubated the embryos transiently with FM4-64 for 30 minutes, and the embryos were subsequently washed and dissected in 0.1X MMR without the dye. Therefore, only the Fz7-GFP protein endocytosed during the 30 minute-incubation would be labeled by FM-64, whereas that endocytosed before or after the incubation would not. Alternatively, the very few Fz7-GFP puncta occasionally observed in the absence of Vangl2/Pk overexpression could be vesicles trafficking to the plasma membrane.

      (4) Statistical analyses are absent for several results, including those in Figure 2f, Figure S4d, and Figure S7b. 

      We repeated these experiments and included statistical analyses. The new data are in Figure 2f, Supplementary Fig. 5d and Supplementary Fig. 8b.

      (5) This manuscript lacks any results regarding Ck1. Therefore, it is advisable to consider removing the discussion or mention of CK1. 

      We agree, and tune down the discussion on CK1 and removed CK1 from our model in Fig. 9.

      Reviewer #2 (Recommendations For The Authors):

      (1) In all the convergence and extension assays, the authors should report n numbers (i.e. number of animals), what statistical test is used, and what the error bars show. Ideally dot-plots would be used instead of bar charts as they give a better insight into the data distribution. It might be useful to give a section on the statistical analyses used in the M&M, including e.g. any power calculations carried out, as now required by many journals. 

      We have follow the advice to use dot-plots for all the quantification analyses in the manuscript. We include in the figure legends the statistical test used and what the error bars show. The number of embryos analyzed were included in each panel in the figures. We also provided more details in the Methods section on how the LWR quantification was carried out.

      (2) I think Figure 2g is wrongly labelled? FLAG bands are in all three lanes in the western blot, but not labelled as such in the schematic. 

      We corrected the schematic labeling in Figure 2g, and thank the reviewer for catching this mistake.

      (3) In Figure S7, the authors show that co-IP of Dvl and Vangl2 is reduced by Wnt11 and the effects of Wnt are blocked by Pk. Does Pk have any effect in the absence of Wnt? 

      We examined the effect of Pk over-expression on Dvl2-Vangl2 co-IP as advised, and did not see a significant impact in the absence of Wnt11 co-injection. The data is included in the new Supplementary Figure 8a. We interpret the data to suggest that “at least under the condition of our co-IP experiment, Pk may not directly impact the steady-state binding between Vangl and Dvl”.

      (4) In Figure 3, the authors show (as published previously) that Wnt11 induces patches of Dvl at the plasma membrane. It would be useful to see Dvl in the absence of Wnt and Vangl2/Dvl in the absence of Wnt. 

      Dvl is widely known as a cytoplasmic protein and its localization has been published by many labs over the past 20-30 years. In our recent publication (10.1038/s41467-025-57658-0 ), we also re-examined Dvl localization when injected at various dosages. So we did not feel it was necessary to show its localization in the absence of Wnt11 again, but included a reference to our prior publication. In regards to Vangl/Dvl distribution in the absence of Wnt11, the readers can see Suppl. Fig. 5b as an example, in addition to our previous publications referenced in the manuscript.

      (5) In the review figures, the difference in Fz7-GFP patch formation in d' and e' (vs e.g. a') is not very clear. Could the images be improved or (better) quantified in some way? 

      We assume that “review figures” refer to Figure 3 or 4? If so, we felt that Fz7-GFP patch formation was clear in Fig. 3d’, e’ or Fig. 4d’, e’. Nevertheless, we repeated these experiments in DMZ explants as advised by Reviewer 1, and additional examples of Fz7-EGFP patch formation can be seen in the new Suppl. Fig. 9d-f’ and Suppl. Fig. 11d-f’.

      (6) In Figure 6d, I'm concerned that the loss of flag-Dvl2 might occur via dephosphorylation in the IP reaction. Also the M&M don't include methodological details about buffers and whether phosphatase inhibitors were used. A compelling control would be anti-FLAG pulldown showing retention of phosphorylation. Also Figure 6f shows a reduced ratio of fast-to-slow migrating bands of Dvl with Vangl2/Pk - unless I have misunderstood, is this ratio the wrong way round? 

      We added co-IP buffer and protease inhibitor information in Methods.

      We agree that the concern about dephosphorylation during IP reaction is valid, and that direct pull down of Dvl to show the phosphorylated form is a compelling control. We therefore note that in Suppl. Fig. 8a and 15b, direct pull down of Flag-Dvl or Myc-Dvl (with anti-Flag or anti-Myc) did show the slower migrating, phosphorylated form. Additional examples in which Vangl only co-IP the faster migrating unphosphorylated Dvl include Suppl. Fig. 15a, and in a related paper we published recently (Fig. 3R and R’ in 10.1038/s41467-025-57658-0 ).

      Finally, we did wrongly label Figure 6f in the last submission, and the ratio should have been “slow/fast”. We have made the correction, and appreaicte the reviewer for the meticulousness in perusing our manuscript.

      (7) In Figure 7, what does Ror2 look like in the absence of Wnt11? 

      We included new Figure 7a-c to show that without Wnt11 co-injection, Ror2 is uniformly distributed on the plasma membrane.

      (8) Also in Figure 7, Ror2 patches are said to be slightly wider than Dvl2 patches "reminiscent of Vangl2" - I wouldn't describe them as being similar. Vangl2 shows a distinct dip in the center of the Dvl patches, Ror2 does not show a dip, and is only (at best) in a slightly wider patch, and I would want to see further examples to be convinced that the localization domain is reproducibly wider. The merge of many samples in 7d may actually be making the distribution harder to see and if the Xror2 and Dvl2 intensities were normalized I'm not sure how different the curves would appear. (i.e. the Xror2 curve looks like a flattened version of the Dvl2 curve). 

      We have added an additional panel in the new Figure 7j to compare the intensity ratio of Ror/ Dvl2 along the patches, and this analysis reveals an over two folds increase of the ratio at the border region. This quantification may make a more convincing argument that at the patch border region, Dvl is diminished whereas Ror2 accumulate with Vangl2. 

      (9) In Figure S12a, the authors suggest Wnt11 induced dissociation of Dvl from Vangl2 (by co-IP), and this is reduced after Ror2 MO. This would be more convincing with replicates and quantitation. 

      We have repeated this experiment with Vangl2 pull down and added quantification. The data is in the new Suppl. Fig. 15a.

      (10) In Figure S12b, the authors suggest Ror2 can co-IP Vangl2 but not Dvl. This is not very convincing, as the Dvl input band is very weak, and the Vangl2 co-IP band is very weak. 

      We repeated the co-IP experiment with Myc-tagged Vangl or Dvl. Using the same anti-Myc antibody and experimental condition (including the expression level of Vangl, Dvl and Ror2), we still found that Ror2 could be pulled down by Vangl but not Dvl (Suppl. Fig. 15b).

      (11) "Prickle" spelled "Prickel" in the abstract (and abbreviated to "PK" not "Pk" at one place in the abstract and several places in text) 

      We have corrected these typos.

      (12) Quite a lot of interesting observations are in supplemental figures. Normally it might be expected that extra data supporting a conclusion would be in supplemental, but here some of the supplemental data feels like it is more than simply additional evidence. For instance supplemental Figures 2 and 3 feel more than just supplemental (and Supplemental Figure 3 if merged with Figure 2 would make it easier for the reader). Moreover, for example, the description of the results in Figure 2 is punctuated by references to supplemental Figures 4 and 5 that contain key data to support the conclusions, which means the reader has to flick backwards and forwards from place to place in the manuscript to follow the argument. It is of course up to the authors, but in some cases putting supplemental data back into the main figures (for which there is no size or number limit) would increase clarity. 

      These are excellent points; in the resubmitted manuscript we have a total of 24 data figures, and we used 8 as main figures since we felt that they provide the most relevant and conclusive evidence to our model. We will consult the copy editors at eLife on how to arrange the rest as main vs. supporting figures when requesting publication as version of record.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their thoughtful comments and overall very supportive feedback.

      Reviewer #1 writes: "The study is very thorough and the experiments contain the appropriate controls. (...) The findings of the study can have relevance for human conditions involving disrupted mitochondrial dynamics, caused for example by mutations in mitofusins." Reviewer #2 writes: "The dataset is rich and the time-resolved approach strong." Reviewer #3 writes: "I admire the philosophy of the research, acknowledging an attempt to control for the many possible confounding influences. (...) This is a powerful and thoughtful study that provides a collection of new mechanistic insights into the link between physical and genetic properties of mitochondria in yeast."

      We address all points below. We have not yet updated our text and figures since we expect substantial additions from new experiments. But we have included Figure R1 with some additional analyses of existing data at the bottom of the manuscript.

      Reviewer1

      1.1 Statistical comparisons are missing throughout the manuscript (with the exception of Fig. 2c). Appropriate statistical tests, along with p-values, should be used and reported where different gorups are compared, for example (but not limited to) Fig. 3d and most panels of Fig. 4.

      We initially decided not to add too many extra labels to the already very busy plots, given that the magnitude of change mostly speaks for itself. However, we will try to find meaningful statistical tests together with a sensible graphical representation for all of the figures. For one example see Figure R1A.

      1.2. I do not agree with the use of Atp6 protein as a direct read-out of mtDNA content. While Atp6 protein levels will decrease with decreasing mtDNA content, the inverse is not necessarily true: decreased Atp6 protein levels do not necessarily indicate decreased mtDNA levels, because they could alternatively or additionally be caused by decreased transcription and/or translation. Therefore, please do not equate Atp6 protein levels to mtDNA levels, and instead rephrase the text referencing the Atp6 experiments in the Results and Discussion sections to measure "mtDNA expression" or "mt-encoded protein" or similar. For example, on p. 14 line 431 should read "mtDNA expression" rather than "decreased synthesis of mtDNA", and line 440 on the same page "mean mtDNA levels" should be "mtDNA expression" or similar.

      All three reviewers agree that using Atp6-NG as a direct proxy for mtDNA requires more validation, or at least rephrasing of the text. We agree that this is the most important point to address. We had previously tried using the mtDNA LacO array (Osman et al. 2015) to directly assess the amount of nucleoids per cell. However, the altered mitochondrial morphology of the Fzo1 depleted cells combined with the LacI-GFP which is still in mitochondria even when mtDNA is gone, increases the noise level to a point that we cannot interpret the signal. However, as this manuscript was in the submission process, the Schmoller lab (co-authors #2 and #7) adapted the HI-NESS system to label mtDNA in live yeast cells(Deng et al. 2025). This system promises much better signal to noise and we expect we can address all concerns regarding the actual count of nucleoids per cell. Should this unexpectedly fail for technical reasons, we will try to calibrate the Atp6-levels with DAPI staining at defined time points and will rephrase the text as the reviewer suggests.

      1.3. In Fig. 3, the authors use the fluorescence intensity of a mitochondrially-targeted mCardinal as a read-out of mitochondrial mass. Please provide evidence that this is not affected by MMP, either with relevant references or by control experiments (e.g. comparing it to N-acridine orange or other MMP-independent dyes or methods).

      Whether or not the import of any mitochondrial protein is dependent on the MMP depends largely on the signal sequence. The preSu9-signaling sequence was previously characterized as largely independent of the MMP compared to other presequences (Martin, Mahlke, and Pfanner 1991), which is why Vowinckel (Vowinckel et al. 2015) and others (Di Bartolomeo et al. 2020; Perić et al. 2016; Ebert et al. 2025) have previously used this as a neutral reference to the strongly MMP-dependent pre-Cox4 signal to estimate MMP. As one control in our own data, we consider that the population-averaged mitochondrial fluorescent signal Figure S3C stays constant in the first few hours, in agreement with the total averaged mitochondrial proteome (Fig R1E). As additional controls, we plan to compare the signal to an MMP independent dye as the reviewer suggests.

      1.4. In Fig. 2e-f, the authors use a promoter reporter with Neongreen to answer whether the reduced levels of the nuclear-encoded mitochondrial proteins Mrps5 and Qcr7 are due to decreased expression or to protein degradation, and find no evidence of degradation of the Neongreen reporter protein. However, subcellular localization might affect the availability of the protein to proteases. Although not absolutely required, it would be relevant to know if the Neongreen fusion protein is found in the same subcellular compartment as Mrps5 and Qcr7 at 0h and 9h after Fzo1 depletion.

      Here, it seems we need to explain the set-up and interpretation of the data better. The key point we are trying to make with the promoter-Neongreen construct is that the regulation is not mainly at the level of transcription. We are showing that the reduction in the levels of the actual protein (orange bars) is not (mainly) explained by a reduction in expression, since the promoter is similarly active at 0 and at 9 hours (grey bars). If expression from the promoter were strongly reduced, the Neongreen would be diluted with growth and would also decrease, but this is not the case. The fluorophore itself is just floating around in the cytosol and is not subject to the same post-translational regulation as Mrps5 and Qcr7, so there is no reason to expect degradation.

      1.5. Fzo1 depletion leads to a very rapid drop in MMP during the first hour of depletion. In the Discussion, can the authors speculate on the possible mechanism of this rapid MMP drop that occurs well before mtDNA or mt-encoded proteins are decreased in level?

      This is indeed an interesting point. We think there are likely three reasons causing this initial drop: Firstly, due to the fragmentation the mixing of mitochondrial content is disturbed and smaller fragments may have suboptimal stoichiometry of components (see also (Khan et al. 2024) who look at this in detail including the Fzo1 deletion); secondly, already fairly early, some mitochondrial fragments may not contain any mtDNA and therefore will be unable to synthesize ETC proteins; thirdly, altered morphological features like changes in the surface-to-volume ratios may play a role. Sadly, mechanistically following up on this is not possible with the tools in our hands and therefore outside of the scope of this manuscript. But we are happy to include these speculations in our discussion.

      1.6. In Fig. 2a, the mtDNA copy number of Fzo1-depleted cells is ca 1.3-fold of the control cells at the 0h timepoint. Why might this be? Is it an impact of one of the inducers? If so, we might be looking at the combination of two different processes when measuring copy number: one that is an induction caused by the inducer(s), and the other a consequence of Fzo1 depletion itself.

      We believe that this 30% increase is within the noise of the experiment rather than an effect of the induction. Since we normalize to t=0 uninduced, the first black data point does not have error bars, emphasizing this difference. None of the protein data suggests that there is an increase in mtDNA encoded proteins (see e.g. 2B, or Atp6 fluorescence data). In the planned HI-NESS experiment, we will see in our single cell data whether there is an actual increase in mtDNA upon TIR induction. Additionally, we will run a qPCR to carefully determine mtDNA levels of untreated wild-type cells, tetracycline treated wild-type cells and tetracycline induced TIR expressing cells to exclude effects of tetracycline as well as the expression of TIR on mtDNA.

      Minor comments:

      1.7. p. 3, line 71: "ten thousands of dividing cells.." should be "tens of thousands of dividing cells".

      Thank you, will correct.

      1.8.-p.4, line 116: please be even more clear with what the "depleted" cells and controls are treated with: are depleted cells treated with both inducers, and controls with neither?

      We will make this more clear. Depleted cells are treated with both inducers, the control cells are not. However, in Figure 1A and in S1 we do controls to show that inducing TIR per se or adding aTC per se does not change growth rate or mitochondrial morphology. We will make this more clear.

      1.9. -p.5, lines 147-148: the authors write "the rate with which the abundance of Cox2 and Var1 proteins decreases was similar to the rate of mtDNA loss" though the actual rate is not shown. Please calculate and show rates for these processes side by side to make comparison possible, or alternatively rephrase the statement.

      Indeed this was not phrased well. We will call it dynamics rather than rates.

      1.10. -Fig. 2d: changing the y-axis numbering to match those in panels a and b would facilitate comparisons.

      Makes sense, we will change this.

      1.11. Fig. 2e: it is recommended to label the western blot panels to indicate what protein is being imaged in each (Neongree,, Mrps5, Qcr7).

      We will adapt the labelling to make it more clear.

      1.12. -p.9, line 262: I suggest referencing Fig. 4e at the end of the first sentence for clarity.

      We will modify the sentence as suggested.

      1.13. -In the sections related to Fig. 3a and Fig. 5a as well as the connected supplemental data, the authors discuss both the median and the mean of mitochondrial mass and Atp6 protein, respectively. For purposes of clarity, I suggest decreasing the focus on the mean (that is provided only in the supplemental data) and focusing the text mainly on the median. The two show differing trends and it is very good that both are shown, but the clarity of the text can be improved by focusing more on the median where possible.

      We will check the phrasing and simplify.

      1.14. -p. 14, line 435: the statement that mt mass is maintained over the first 9h of depletion is only true for the mean mt mass, not for the median. Please make this clear or rephrase.

      We will check phrasing, make it more clear and also point out the extended proteomics data (see Fig R1), which corresponds to the mean of the populations

      1.15.-p.14, line 452: "mitofusions" should be "mitofusins".

      Thanks for catching this.

      Reviewer 2:

      2.1. While inducible TIR is used to reduce background, the manuscript should rigorously exclude auxin/TIR off-targets (growth, mitochondrial phenotypes, gene expression). Please include full matched controls: (plus minus)auxin, (plus minus)TIR, epitope tag alone, and a degron control on an unrelated mitochondrial membrane protein.

      We agree that rigorous controls are crucial for the interpretation of the results. However, we think we have already included most of the controls the reviewer is asking for, but we might have not pointed this out clearly enough. For example, in Fig 1A, we could make it more clear by adding more labels in which samples we added aTC, which is only described in the figure legend.

      Here is a list of all the controls:

      • Each depletion experiment is always matched with an experiment of the same strain without induction. So the genetic background as well as effects such as light exposure, time spent in the microfluidics systems, etc are controlled for.
      • Figure S1D shows that the growth rate is wildtype like in a strain containing either the AID tag or the TIR protein AND upon addition of both chemicals. It also shows that the final genetic background (AID-tag and TIR) also grows like wildtype if the inducers are not added. This conclusively shows that neither the tags/constructs nor the chemicals per se affect growth rate
      • In Figure S1C we show the mitochondrial morphology of the same controls. We will make sure to label them more consistently to match panel D, and include an actual wildtype and a FLAG-AID-Fzo1 strain without TIR treated with both aTC and 5-Ph-IAA as direct comparison
      • In figure 1A we compare the Fzo1 protein levels of a strain with and without TIR. We show that in absence of TIR, adding either aTC or Auxin does not change Fzo1 levels and that the levels are comparable in the strain that is able to deplete Fzo1 directly before addition of 5-Ph-IAA (after 2 h of induction of TIR through addition of tetracycline)
      • Additionally, in Figure S2C we show that two hours after adding aTC, the entire proteome does not change significantly apart from a strong induction of TIR. We can also make this more clear in the figure legend.
      • Additionally, we will run a qPCR to carefully determine mtDNA levels of untreated wild-type cells, tetracycline treated wild-type cells and tetracycline induced TIR expressing cells to exclude effects of tetracycline as well as the expression of TIR on mtDNA. (also in response to 1.6.) In summary, we think we have controlled sufficiently for all confounding parameters and most importantly showed that addition of either aTC or Auxin as well as the FLAG-AID tag per se does not disturb mitochondria or cell growth. We do not see what a degron control on an unrelated protein will tell us. Depending on the nature of the protein, it may or may not have a phenotype that may or may not be related to morphology changes etc.

      2.2. The Mitoloc preSu9 vs Cox4 import ratio is only a proxy of mitochondrial membrane potential (ΔΨm) and itself depends on mitochondrial mass, protein expression, matrix ATP, and import saturation. The authors need to calibrate ΔΨm with orthogonal dyes (TMRE/TMRM) and pharmacologic titrations (FCCP/antimycin/oligomycin) to generate a response curve; show that Mitoloc tracks dye-based ΔΨm across the relevant range and corrects for mass/photobleaching. Report single-cell ΔΨm vs mass residuals.

      We completely agree that the MitoLoc system is only a rough proxy for the actual membrane potential. That is why we make no quantitative claims on the absolute value or absolute difference between groups of cells. We also make very clear in Fig 3B what we are actually measuring and can emphasize again in the text that this is only a proxy. We agree that it is a good idea to compare MitoLoc values to TMRE staining as the reviewer suggests, we will do these experiments in depleted and control cells at different timepoints. Please note though that also dye staining has its caveats, especially in dynamic live cell experiments. TMRM for example is not compatible with the acidic pH 5 medium that is typically used for yeast and subjecting cells to washing steps and higher pH may change both morphology of mitochondria and the MMP, especially in cells that are already “stressed”. We prefer not to complete elaborate pharmacological titration experiments because firstly, this was extensively done in the original MitoLoc paper by the Ralser lab ((Vowinckel et al. 2015), cited 120 times); secondly, the value of the MMP is not the most critical claim of the manuscript. See also 3.12. Please note that in Figure S4D we had already plotted MMP vs mitochondrial concentration.

      2.3. To use Atp6-mNeon as a proxy for mtDNA is an assumption. Interpreting Atp6 intensity as "functional mtDNA" could be confounded by translation, turnover, or assembly. Please (i) report mtDNA copy number time courses (you have qPCR), nucleoid counts (DAPI/PicoGreen or TFAM/Abf2 tagging), and (ii) assess translation (e.g., 35S-labeling or puromycin proxies) and turnover (proteasome/AAA protease inhibition, mitophagy mutants -some data are alluded to- plus mRNA levels for mtDNA-encoded genes). This will support the "reduced synthesis" versus "increased degradation" conclusion.

      We agree with all three reviewers that Atp6 is only a proxy for mtDNA (Jakubke et al. 2021; Roussou et al. 2024) and the correlation should be checked more carefully. We will use the very recently established Hi-NESS system to follow nucleoids/ mtDNA during depletion experiments. See detailed reply to 1.2.

      (ii) in Figure 2C we inhibit mitochondrial translation and show that in this case control and depleted cells have the same level of Cox2, at least suggesting that degradation is not the key mechanism controlling the levels of mtDNA encoded proteins. We cannot do proteasome inhibitor assays since the nature of the AID-TIR systems requires an active proteasome. In figure S5C we show that the Atp6 depletion is similar in an atg32 deletion. This does not completely exclude a contribution of mitophagy to the observed phenotype, but does confirm that mitophagy is not the primary reason for cells becoming petite.

      2.4. The promoter-NeonGreen reporters argue against transcriptional down-regulation of nuclear OXPHOS. Please add mRNA (RT-qPCR/RNA-seq) for representative genes and a pulse-chase or degradation-pathway dependency (e.g., proteasome/mitophagy/autophagy mutants) to firmly assign active degradation. The authors need to normalize proteomics to mitochondrial mass (e.g., citrate synthase/porin) to separate organelle abundance from protein turnover.

      While we are happy to perform qPCR experiments for selected genes, a full RNA-seq experiment seems outside the scope of this study. As explained above, a proteasome inhibitor experiment is not possible in this set-up. Bulk mitophagy/autophagy seems unlikely to be the cause of the decrease of the nuclear-encoded OXPHOS proteins, since most other mitochondrial proteins do not decrease on average on population level in the first hours. This data is now plotted as additional figure (see below) and will be included in the supplementary of the revised manuscript (Fig R1E).

      2.5. Using preSu9-mCardinal intensity as "mitochondrial concentration" is sensitive to expression, import competence, and morphology/segmentation. The authors should provide validation that this metric tracks 3D volume across fragmentation states (e.g., correlation with mito-GFP volumetrics; detergent-free CS activity; TOMM20/Por1 immunoblot per cell).

      We agree that this is an important point and the co-authors discussed this point quite intensively. In figure S3A and B we show (using confocal data) that there is a very strong correlation between the total fluorescence signal and the 3D volume reconstruction. However, the slope of the correlation is different between tubular and fragmented mitochondria (compare panels A and B) and see figure legend. Since we are dealing with diffraction-limited objects it is likely that the 3D reconstruction is sensitive to morphology, especially if mitochondria are “clumping”. We therefore think that the total fluorescence signal is actually a better estimate of mitochondrial mass per cell than the 3D volume reconstruction (especially for our data obtained with a conventional epifluorescence microscope). The mean of the total mitochondrial fluorescence also better matches the population average mitochondrial proteome (Fig R1E). To consolidate this assumption, we will additionally compare our data to a strain with Tom70-Neongreen and to MMP independent dyes.

      Notably, since the morphology is similarly altered in mothers and buds this is of minor impact for our main point – the unequal distribution between mother and buds.

      2.6. The unequal mother-daughter distribution is compelling, but causality remains inferred. Test whether modulating inheritance machinery (actin cables/Myo2, Num1, Mmr1) or altering fission (Dnm1 inhibition) modifies segregation defects and rescues mtDNA/Atp6 decline. Complementation with Fzo1 re-expression at defined times would help order the phenotype cascade.

      We agree that rescue experiments would be very useful. We have some preliminary data for tether experiments, for example with Num1. The general problem is that the fragmented mitochondria clump together. We have not found a method to restore an equal distribution between mother and daughter cells. We will try to optimize the assay, but are not overly confident it will work. Mmr1 deletion aggravates the Fzo1 phenotype, likely also because the distribution becomes even more heterogeneous, but we have not rigorously analyzed this.

      We like the idea of the Fzo1 re-expression and will run such experiments. This will be especially powerful in combination with the new HI-NESS mtDNA reporter. We may be able to track exactly when cells reach the point-of-no return and become petite. This will also help connecting our mathematical model more directly to the data.

      2.7. The model is useful but should include parameter sensitivity (segregation variance, synthesis slopes, initial nucleoid number) and prospective validation (e.g., predict rescue upon partial restoration of synthesis or inheritance, then test experimentally).

      We will refine our model to include the to-be-measured nucleoids/mtDNA values. We will include a parameter sensitivity analysis with the updated model.

      Reviewer 3:

      3.1. About the use of Atp6 as a good proxy for mtDNA content. This is assumed from l285 onwards, based on a previous publication. As the link is fairly central to part of the paper's arguments, and the system in this study is being perturbed in several different ways, a stronger argument or demonstration that this link remains intact (and unchanged, as it is used in comparisons) would seem important.

      We agree, see 1.2.

      3.2. About confounding variables and processes. The study does an admirable job of being transparent and attempting to control for the many different influences involved in the physical-genetic link. But some remain less clearly unpacked, including some I think could be quite important. For example, there is a lot of focus on mito concentration -- but given the phenotypes are changing the sizes of cells, do concentration changes come from volume changes, mito changes, or both? In "ruling out" mitophagy -- a potentially important (and intuitive) influence, the argument is not presented as directly as it could be and it's not completely clear that it can in fact be ruled out in this way. There are a couple of other instances which I've put in the smaller points below.

      Thank you for acknowledging our efforts to show transparent and well-controlled experiments! We address each of the specific points below.

      3.3. full genus name when it first appears

      We will add the full name.

      3.4. I may be wrong here, but I thought the petite phenotype more classically arises from mtDNA deletion mutations, not loss? The way this is phrased implies that mtDNA loss is [always] the cause. Whether I'm wrong on that point or not, the petite phenotype should be described and referenced.

      We can expand the text and cite additional relevant papers. The term “petite” refers to any strain that is respiratory incompetent and leads to small colonies (not necessarily small cells!) (Seel et al. 2023). This can be mutations or gene loss (fragments) on the mtDNA (these are called cytoplasmic petite), or chemically induced loss of mtDNA (e.g. EtBr), or mutations of nuclear genes required for respiration (these are termed nuclear petite; some nuclear petites show loss of mtDNA in addition to the mutation in the nuclear genome) (Contamine and Picard 2000).

      3.5. para starting l59 -- should mention for context that mitochondria in (healthy, wildtype) yeast are generally much more fused than in other organisms

      ok.

      3.6. Fig 1C -- very odd choice of y-axis range! either start at zero or ensure that the data fill as much vertical space of the plot as possible

      True, this was probably some formatting relic. We will adapt the axis to fill the full space. Most of our axes start at 0, but that doesn’t make so much sense here, since we consider the solidity in the control as “baseline”.

      3.7. "wild-type like more tubular mitochondria" reads rather awkwardly. "more tubular mitochondria (as in the wild-type)"?

      Thank you, sounds better.

      3.8. l106 -- imaging artefacts? are mitos fragmenting because of photo stress? -- this is mentioned in l577-8 in the Methods, but the data from the growth rate and MMP comparison isn't given -- an SI figure would be helpful here. It would be reassuring to know that mito morphology wasn't changing in response to phototoxicity too.

      In the methods we just briefly point out that we have done all our “due diligence” controls to check that we do not generate phototoxicity, something that we highlight in the cited review. We do not explicitly have a figure for this, but figure S1A shows that the solidity of the mitochondrial network in control cells stays the same over 9 hours, even though these cells are exposed to the same cultivation and imaging regime as the depleted cells. We will also add a picture of control cells after 9 h. In S1B we show that control cells containing TIR but no AID tag treated with both chemicals imaged over 9 hours also show the same solidity (~mitochondrial morphology) as untreated control. Also, the doubling times of cells grown in our imaging system (Fig R1B) are very similar to the shake flask (Fig R1A). All in all, we are very confident that our imaging settings did not impact our reported phenotypes.

      3.9. para l146 -- so this suggests mtDNA-encoded proteins have a very rapid turnover, O(hours) -- is this known/reasonable?

      Reference (Christiano et al. 2014) suggests that respiratory chain proteins are shorter lived than the average yeast protein. However, based on Figure 2C we think the dynamics mostly speak for a dilution by growth.

      3.10. section l189 -- it's hard to reason fully about these statistics of mitochondrial concentration given that the petite phenotype is fundamentally affecting overall cell volume. can we have details on the cell size distribution in parallel with these results? to put it another way -- how does mitochondrial *amount* per cell change?

      This is a good point. We report mostly on mitochondrial “concentrations” because we think this is what the cell actually cares about (mitochondrial activity in relationship to cytosolic activity). But we will include additional graphs on mitochondrial amount as well as size distributions (Fig R1C, related to Fig 4F). We can already point out that the size distribution of the population does not change much in the first hours. The “petite” phenotype refers to small colonies on growth medium with limited supply of a fermentable carbon source, not to smaller size of single cells.

      3.11. l199 the mean in Fig S3C certainly does change -- it increases, clearly relative both to control and to its initial value. rather than sweeping this under the carpet we should look in more detail to understand it (a consequence of the increased skew of the distribution)?

      This relates somewhat to the previous point. The increase in average concentration is not due to an increased amount in the population, but due to the fact that it is the small buds that get a very high amount of the mitochondria which “exaggerates” the asymmetric/heterogenous distribution. This will be clarified by the figures we mention in the point above.

      3.12. para line 206 -- this doesn't make it clear whether your MMP signal is integrated over all mitochondria in the cell, or normalised by mitochondrial content? this matters quite a lot for the interpretation if the distributions of mitochondrial content are changing. reading on, this is even more important for para line 222. Reading further on, there is an equation on l612 that gives a definition, but it doesn't really clarify (apologies if I'm misunderstanding).

      For each cell, we basically calculate the relative mitochondrial enrichment of the MMP sensitive vs the MMP insensitive pre-sequence.

      So, MMP= (total intensity of mitochondrial pre-Cox4 Neongreen/ total intensity of mitochondrial pre-Su9 Cardinal) / (total cytosolic pre-Cox4 Neongreen/ total cytosolic pre-Su9 Cardinal).

      We calculate this value for each cell, but we do not have the optical resolution to calculate it for individual mitochondrial fragments.

      Both constructs are driven by the same strong promoter, so transcription of the fluorophore should never limit the uptake. Also, in Figure 3D we compare control and depleted cells with similar total mitochondrial concentration, so the difference must be due to a different import of the two fluorophores, see also Fig S4D. The calculated “MMP” value is of course only a crude proxy for the actual membrane potential in millivolts and we do not want to make any claims on absolute values or quantitative differences. But essentially what we are interested in is “mitochondrial health/activity” and we think the system is good at reporting this. See also 2.2.

      3.13. l230 -- a point of personal interest -- low mito concentrations are connected to low "function" (MMP) and give extended division times -- this is interestingly exactly the model needed to reproduce observations in HeLa cells (https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002416). That model went on to predict several aspects of downstream cellular behaviour -- it would be very interesting to see how compatible that picture (parameterised using HeLa observations) is with yeast!

      Thank you for pointing out your interesting paper, which we will include in our discussion. Another recent preprint about fission yeast (Chacko et al. 2025) also fits into this picture. Since you were kind enough to disclose your identity, we would be happy to discuss this further with you in person if we can maybe follow-up on this.

      3.14. l239 "less mitochondria" -- a bit tricky but I'd say "fewer mitochondria" or "less mitochondrial content"

      Thanks, we will think about how to best rephrase this, probably less mitochondrial content.

      3.15. Section l234 So here (and in Fig 4) the focus is on overall distributions of mitochondrial concentration in different cells (mother-to-be, mother, bud; gen 1, gen >1). But we've just seen that one effect of fzo1 is to broader the distribution of mitochondrial concentration across cells. Can't we look in more depth at the implications of this heterogeneity? For example in Fig 4F (which is cool) we look at the distribution of all fzo1 mothers-to-be, mothers, and buds. But this loses information about the provenance. For example, do mothers-to-be with extremely low mito concentrations just push everything to the bud, while mothers-to-be with high mito concentrations distribute things more evenly? It would seem very easy and very interesting to somehow subset the distribution of mothers-to-be by concentration and see how different subsets behave

      This is a good point. When analyzing the data, we pretty much plotted everything against everything and then chose the graphs that we think will best guide the reader through the story-line. We can make additional supplementary plots where we show the starting concentrations/amounts of the mother in relationship to the resulting split ratio at the end of the cycle (Fig R1D).

      3.16. l285 -- experimental design -- do we know that Atp6 will continue to be a good proxy for functional mtDNA in the face of the perturbations provided by Fzo1 depletion? Especially if there is impact on the expression of mitoribosomes, the relationship between mtDNA and Atp6 may look rather different in the mutant?

      This is actually our top-priority experiment now. We will use the HI-NESS system and possibly DAPI staining to make a more direct link to mtDNA/ nucleoid numbers, see 1.2.

      3.17. l290 -- ruled out mitophagy. This message could be much clearer. Comparing Fig S5C and Fig 3A side-by-side is a needlessly difficult task -- put Fig 3A into Fig S5. Then we see that when mitophagy is compromised, the distribution of mitochondrial concentration has a lower median and much lower upper quartile than in the mitophagy-equipped Fzo1 mutant? What is going on here? For a paper motivated by disentangling coupled mechanisms, this should be made clearer!

      Thanks for pointing this out. We can of course easily include the control in the corresponding figure. Compromising mitophagy is likely to generally affect mitochondrial health and turnover a little bit, independent of what is going on with Fzo1. The second evidence that speaks against large-scale mitophagy is the proteomics data: On population level the dynamics of the respiratory chain proteins are very different from those of other (nuclear encoded) mitochondrial proteins. We will add additional supplementary figures to make this more clear, see Fig R1E. Most mitochondrial proteins in the proteomics experiment stay constant in the first few hours, consistent with the imaging data showing that the mean mitochondrial content of the population does not change initially. This again highlights that it is the unequal distribution which is the problem and not massive degradation of mitochondria.

      3.18. With the Atp6 signal, how do we know that fluorescence from different cells is comparable? Buds will be smaller than mother cells for example, potentially leading to less occlusion of the fluorescent signal by other content in the cytoplasm

      This is of course a general problem that anyone faces doing quantitative fluorescence microscopy. From the technical side, we have done the best we could by taking a reasonable amount of z-slices and by choosing fluorophores that are in a range with little cellular background fluorescence (e.g. Neongreen is much better than GFP). From a practical standpoint, we are always comparing to the control, which is subject to the same technical limitations as the depleted cells and the cell sizes are very similar. So, even if we are systematically overestimating the Atp6 concentration in the bud by a few %, the difference to the control would still be qualitatively true. We therefore do not think that any of our conclusions are affected by this.

      3.19. l343 -- maintenance of mtDNA -- here the point about l285 (is the Atp6-mtDNA relationship the same in the Fzo1 mutant) is particularly important, as we're directly tying findings about the protein product to implications about the mtDNA

      We will carefully address this, see above.

      3.20. l367 -- on a first read this description of the model feels like lots of choices have been made without being fully justified. Why a log-normal distribution (when the fit to the data looks rather flawed); why the choice of 5 groups for nucleoid number (why not 3? or 8?); the process used for parameter fitting is very unclear (after reading the methods I think some of these values are read directly from the data, but the shapes of the distributions remain unexplained). l705 -- presumably the ratio was drawn from a log-normal distribution and then the corresponding nucleoid numbers were rounded to integers? the ratio itself wasn't rounded? (also l367) How were the log-normal distributions fitted to experiments (Figs. S7A,B)? Just by eye?

      We will update our model based on measured nucleoid counts and then explain more stringently the choices we make/ parameters we select.

      3.21. l711 by random selection -- just at random? ("selection" could be confusing) Overall, it feels like the model may be too complicated for what it needs to show. Either (a) the model should show qualitatively that unequal inheritance and reduced production leads to rapid loss -- which a much simpler model, probably just involving a couple of lines of algebra, could show. Or (b) the model should quantitatively reproduce the particular numerical observations from the experiments -- it's not totally clear that it does this (do the cell-cycle-based decay timescales in Fig 7 correspond to the hour-based decay timescales in other plots, for example). At the moment the model is at a (b) level of detail but it's only clear that it's reporting the (a) level of results.

      If the HI-NESS and Fzo1 re-addition experiments work as explained above, all parameters will have direct experimental data, and we should get much closer to (a).

      3.22. A lot of the discussion repeats the results; depending on editorial preferences some of this text could probably be pared back to focus on the literature connections and context.

      We will think about streamlining the discussion once some of the additional material alluded to above has been added.

      3.23. Data availability -- it looks like much of the data required to reproduce the results is not going to be made available. Images and proteomic data are promised, but the data associated with mitochondrial concentration and other features are not mentioned. For FAIR purposes all the data (including statistics from analysis of the images) should be published.

      We maybe didn’t phrase this clearly. All data will be made available. Where technically feasible, this will be directly accessible in a repository, otherwise by request to the corresponding author.

      On our OMERO server, we have deposited many TB of raw images as well as all the intermediate steps such as segmentation masks, and the csv files with all the extracted data for each cell (including background corrections etc). Additionally, we can include csvs with the data grouped in a way that we used to generate all the box blots etc. As of now, the OMERO data is unfortunately only available by requesting a personal guest login from our bioinformatics facility, but we were promised that with the next technical update there will be a public link available. The proteomics data and the model are already fully accessible. The raw western blot images with corresponding ponceau staining will be included with the final publication either as additional supplementary material or in whatever format matches the journal requirements.

      3.24 l660 -- can an overview of the EM protocol be given, to avoid having to buy the Mayer 2024 article?

      The cited paper is open access. But we can also include more details in our method section.

      References:

      Chacko, L. A., H. Nakaoka, R. Morris, W. Marshall, and V. Ananthanarayanan. 2025. 'Mitochondrial function regulates cell growth kinetics to actively maintain mitochondrial homeostasis', bioRxiv.

      Christiano, R., N. Nagaraj, F. Frohlich, and T. C. Walther. 2014. 'Global proteome turnover analyses of the Yeasts S. cerevisiae and S. pombe', Cell Rep, 9: 1959-65.

      Contamine, V., and M. Picard. 2000. 'Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast', Microbiol Mol Biol Rev, 64: 281-315.

      Deng, Jingti, Lucy Swift, Mashiat Zaman, Fatemeh Shahhosseini, Abhishek Sharma, Daniela Bureik, Francesco Padovani, Alissa Benedikt, Amit Jaiswal, Craig Brideau, Savraj Grewal, Kurt M. Schmoller, Pina Colarusso, and Timothy E. Shutt. 2025. 'A novel genetic fluorescent reporter to visualize mitochondrial nucleoids', bioRxiv: 2023.10.23.563667.

      Di Bartolomeo, F., C. Malina, K. Campbell, M. Mormino, J. Fuchs, E. Vorontsov, C. M. Gustafsson, and J. Nielsen. 2020. 'Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift', Proc Natl Acad Sci U S A, 117: 7524-35.

      Ebert, A. C., N. L. Hepowit, T. A. Martinez, H. Vollmer, H. L. Singkhek, K. D. Frazier, S. A. Kantejeva, M. R. Patel, and J. A. MacGurn. 2025. 'Sphingolipid metabolism drives mitochondria remodeling during aging and oxidative stress', bioRxiv.

      Jakubke, C., R. Roussou, A. Maiser, C. Schug, F. Thoma, R. Bunk, D. Horl, H. Leonhardt, P. Walter, T. Klecker, and C. Osman. 2021. 'Cristae-dependent quality control of the mitochondrial genome', Sci Adv, 7: eabi8886.

      Khan, Abdul Haseeb, Xuefang Gu, Rutvik J. Patel, Prabha Chuphal, Matheus P. Viana, Aidan I. Brown, Brian M. Zid, and Tatsuhisa Tsuboi. 2024. 'Mitochondrial protein heterogeneity stems from the stochastic nature of co-translational protein targeting in cell senescence', Nature Communications, 15: 8274.

      Martin, J., K. Mahlke, and N. Pfanner. 1991. 'Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences', J Biol Chem, 266: 18051-7.

      Osman, C., T. R. Noriega, V. Okreglak, J. C. Fung, and P. Walter. 2015. 'Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion', Proc Natl Acad Sci U S A, 112: E947-56.

      Perić, Matea, Peter Bou Dib, Sven Dennerlein, Marina Musa, Marina Rudan, Anita Lovrić, Andrea Nikolić, Ana Šarić, Sandra Sobočanec, Željka Mačak, Nuno Raimundo, and Anita Kriško. 2016. 'Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan', Scientific Reports, 6: 28751.

      Roussou, Rodaria, Dirk Metzler, Francesco Padovani, Felix Thoma, Rebecca Schwarz, Boris Shraiman, Kurt M. Schmoller, and Christof Osman. 2024. 'Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level', The EMBO Journal, 43: 5340-59-59.

      Seel, A., F. Padovani, M. Mayer, A. Finster, D. Bureik, F. Thoma, C. Osman, T. Klecker, and K. M. Schmoller. 2023. 'Regulation with cell size ensures mitochondrial DNA homeostasis during cell growth', Nat Struct Mol Biol, 30: 1549-60.

      Vowinckel, J., J. Hartl, R. Butler, and M. Ralser. 2015. 'MitoLoc: A method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells', Mitochondrion, 24: 77-86.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Dengler and colleagues use an AID-based acute depletion of Fzo1 in budding yeast, coupling microfluidics live imaging, single-cell quantification (>30k cells), proteomics, an mtDNA-encoded Atp6 reporter, and simple modeling to argue that fusion loss causes (i) rapid fragmentation and ΔΨm decline, (ii) progressive mtDNA/RC depletion, and (iii) unequal mother-daughter mitochondrial inheritance; together with a failure of compensatory synthesis, these changes drive petite formation. The time-resolved design is valuable, but several readouts are indirect, and some claims (particularly those regarding membrane potential, synthesis "failure," and causality) appear over-interpreted without additional controls.

      Major points

      1. While inducible TIR is used to reduce background, the manuscript should rigorously exclude auxin/TIR off-targets (growth, mitochondrial phenotypes, gene expression). Please include full matched controls: {plus minus}auxin, {plus minus}TIR, epitope tag alone, and a degron control on an unrelated mitochondrial membrane protein.
      2. The Mitoloc preSu9 vs Cox4 import ratio is only a proxy of mitochondrial membrane potential (ΔΨm) and itself depends on mitochondrial mass, protein expression, matrix ATP, and import saturation. The authors need to calibrate ΔΨm with orthogonal dyes (TMRE/TMRM) and pharmacologic titrations (FCCP/antimycin/oligomycin) to generate a response curve; show that Mitoloc tracks dye-based ΔΨm across the relevant range and corrects for mass/photobleaching. Report single-cell ΔΨm vs mass residuals.
      3. To use Atp6-mNeon as a proxy for mtDNA is an assumption. Interpreting Atp6 intensity as "functional mtDNA" could be confounded by translation, turnover, or assembly. Please (i) report mtDNA copy number time courses (you have qPCR), nucleoid counts (DAPI/PicoGreen or TFAM/Abf2 tagging), and (ii) assess translation (e.g., 35S-labeling or puromycin proxies) and turnover (proteasome/AAA protease inhibition, mitophagy mutants -some data are alluded to- plus mRNA levels for mtDNA-encoded genes). This will support the "reduced synthesis" versus "increased degradation" conclusion.
      4. The promoter-NeonGreen reporters argue against transcriptional down-regulation of nuclear OXPHOS. Please add mRNA (RT-qPCR/RNA-seq) for representative genes and a pulse-chase or degradation-pathway dependency (e.g., proteasome/mitophagy/autophagy mutants) to firmly assign active degradation. The authors need to normalize proteomics to mitochondrial mass (e.g., citrate synthase/porin) to separate organelle abundance from protein turnover.
      5. Using preSu9-mCardinal intensity as "mitochondrial concentration" is sensitive to expression, import competence, and morphology/segmentation. The authors should provide validation that this metric tracks 3D volume across fragmentation states (e.g., correlation with mito-GFP volumetrics; detergent-free CS activity; TOMM20/Por1 immunoblot per cell).
      6. The unequal mother-daughter distribution is compelling, but causality remains inferred. Test whether modulating inheritance machinery (actin cables/Myo2, Num1, Mmr1) or altering fission (Dnm1 inhibition) modifies segregation defects and rescues mtDNA/Atp6 decline. Complementation with Fzo1 re-expression at defined times would help order the phenotype cascade.
      7. The model is useful but should include parameter sensitivity (segregation variance, synthesis slopes, initial nucleoid number) and prospective validation (e.g., predict rescue upon partial restoration of synthesis or inheritance, then test experimentally).

      Significance

      The dataset is rich and the time-resolved approach strong, but key conclusions rely on indirect proxies and need orthogonal validation and at least one causal rescue experiment to avoid over-interpretation.

    1. And because our (digital) prototypes try to be used/validaded mainly by communities instead of by academic peers, we need to care about the practicalities of such prototypes and their insertion in the communities. In my experience, this practical insertion could happen via two complementary strategies: the encompassing one and embedding one. The encompassing strategy could be exemplified by the Smalltalk variants, like Pharo or GToolkit, with their OS and IDE rolled into one approach. Here, a single computing experience includes "everything" a community artifact could need: object networks acting as "app(s)"3, persistance, data formats, IDEs, graphical stack, debbugers and so on. The practicalities are related with the collapse of incidental complexity when the community has a single metatool to bridge their other tools and workflows. We use what I call "interstitial programming" to bridge socio-technical systems by changing what happens in the gaps/bridges between them, instead of changing them from inside. This was the approach I followed with Grafoscopio, since late 2014 and early 2015 until present day, with pretty good results and fluency, allowing us to make several prototypes and empowering practices convering diverse needs: from self (PDF/web) publishing, to civic tech and political oversight, community learning and memory, amont other themes (chosing needs and topics in resonance with the community is key in having this prototypes as living artifacts in such community). The embedding strategy could be exemplified by Lua and its variants, like YueScript. Here, an already existing tool/experience is extended from inside or by complementing and then replacing an existing tool/practice, and while this contrast the "interstitial" approach mentioned above, still shares the concern of dealing with needs felt in the community in its current workflows and tools. This is the strategy I plan to explore this year, particularly regarding the publishing workflows/formats of several local grassroots communities, and to compare with how I'll be implementing part of such ideas in Grafoscopio (keeping on with the encompassing strategy). While previously I thought in Fengari as my way to implement embeddability to increse agency in the (web) tools, the recent developments on hypermedia systems make me think that I can keep avoiding JavaScript4 and implement the strategy server side by reimagining TiddlyWiki in Lua+YueScript. Cardumem is the working name for such idea, and as explained in that link the intend is to provide a similar gentle learning curve between being a content creator and a functionality creator, that TiddlyWiki give us, while being able to generalize the concepts learnt while using and extending the wiki in its own functional DSL to other computing languages (for more details and links to the TW's community discussion visit the previos link). So, regarding the "Not Invented Here syndrome", the differences with TiddlyWiki are enough to justify why we need to invest all that work in Cardumem, as community and (inter)personal knowledge management is a core concern5 in the Grafoscopio community, to the point that we need to reinvent the wheel, for the contexts where the already existing ones don't work as we expect for our needs. While learning Lua and YueScript, I frequently miss a lot of the code liveness and the interactive documentation of the "Argumentative Driven Development" (ADD? 🤔) that I already enjoy within Grafoscopio over Pharo/GToolkit. So I thought that my first job would be to implement some kind of minimal notebook publishing on Lua, inpired by Clojure's Clerk6 and Julia's Pluto, but quite more static, at least as the begining (see Boostrapping a Lua notebook for more details). But finally a minimal Lua long comment + "markup tag" was good enough to have my documentation in the Lua files to postpone the idea, while exploring the HTML interactive interfaces provided by HTMX. Instead the design has been guided by the needs I have with my students/apprentices in my classes this semester at the university and future workshops in the hackerspace. And it has been a pretty fruitful design space/practice, where UI and functionality emerge organically, with the lessons I need to learn to ptovide the experience I need/want. There is still a long path to walk, but the initial advances are promising. Let's see how I walk the exploration map sketched here in this pendular movement from emcompassing to embedding strategies and from abstraction about the to concrete implementations. I will document my advances in the entries to come.

      La tecnología pensada para comunidades debe práctica y no solo teórica, y para lograrlo se pueden usar dos estrategias: la envolvente, que ofrece una herramienta integral como Grafoscopio, o la incrustada, que mejora las herramientas que la gente ya utiliza, como se muestra con Cardumem. La idea es encontrar que entre estas dos formas se alinee para que la tecnología llegue a las necesidades reales de una comunidad y no solo el entorno académico u operativo de la programación.

    1. This simple single plate protocol allows itself to a wide range of high-throughput research and development screening applications, ranging from streamlining protein production and identification of activity enhancing mutations, to ligand screening for basic research, biotechnological and drug discovery applications.

      This is a really interesting method using a peptide tag to target proteins to extracellular vesicles for ease of isolation in E. coli! I can think of lots of benefits and applications!

    2. As an illustration, we have developed a multiwell format in vitro assay that allows researchers to measure the activity of in-plate expressed and exported VNp-uricase protein (Figure 3), by following changes in 293 nm absorbance to monitor enzyme dependent breakdown of uric acid

      I'm guessing that you measured this in your initial paper, but might be worth mentioning here as well. Have you shown that the VNp tag doesn't affect enzyme activity, stability, folding?

    3. The VNp tag facilitates the export of recombinant proteins into extracellular membrane-bound vesicles, creating a microenvironment that enhances the solubility and stability of challenging proteins

      Very cool!

    1. Reviewer #3 (Public review):

      Summary

      This manuscript, from the developers of the novel DREADD-selective agonist DCZ (Nagai et al., 2020), utilizes a unique dataset where multiple PET scans in a large number of monkeys, including baseline scans before AAV injection, 30-120 days post-injection, and then periodically over the course of the prolonged experiments, were performed to access short- and long-term dynamics of DREADD expression in vivo, and to associate DREADD expression with the efficacy of manipulating the neuronal activity or behavior. The goal was to provide critical insights into practicality and design of multi-year studies using chemogenetics, and to elucidate factors affecting expression stability.

      Strengths are systematic quantitative assessment of the effects of both excitatory and inhibitory DREADDs, quantification of both the short-term and longer-term dynamics, a wide range of functional assessment approaches (behavior, electrophysiology, imaging), and assessment of factors affecting DREADD expression levels, such as serotype, promoter, titer (concentration), tag, and DREADD type.

      These finding will undoubtedly have a very significant impact on the rapidly growing, but still highly challenging field of primate chemogenetic manipulations. As such, the work represents an invaluable resource for the community.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Overall, the conclusions of the paper are mostly supported by the data but may be overstated in some cases, and some details are also missing or not easily recognizable within the figures. The provision of additional information and analyses would be valuable to the reader and may even benefit the authors' interpretation of the data. 

      We thank the reviewer for the thoughtful and constructive feedback. We are pleased that the reviewer found the overall conclusions of our paper to be well supported by the data, and we appreciate the suggestions for improving figure clarity and interpretive accuracy. Below, we address each point with corresponding revisions.

      The conclusion that DREADD expression gradually decreases after 1.5-2 years is only based on a select few of the subjects assessed; in Figure 2, it appears that only 3 hM4Di cases and 2 hM3Dq cases are assessed after the 2-year timepoint. The observed decline appears consistent within the hM4Di cases, but not for the hM3Dq cases (see Figure 2C: the AAV2.1-hSyn-hM3Dq-IRES-AcGFP line is increasing after 2 years.) 

      We agree that our interpretation should be stated more cautiously, given the limited number of cases assessed beyond the two-year timepoint. In the revised manuscript, we have clarified in the Results that the observed decline is based on a subset of animals. We have also included a text stating that while a consistent decline was observed in hM4Di-expressing monkeys, the trajectory for hM3Dq expression was more variable with at least one case showing an increased signal beyond two years.

      Revised Results section:

      Lines 140, “hM4Di expression levels remained stable at peak levels for approximately 1.5 years, followed by a gradual decline observed in one case after 2.5 years, and after approximately 3 years in the other two cases (Figure 2B, a and e/d, respectively). Compared with hM4Di expression, hM3Dq expression exhibited greater post-peak fluctuations. Nevertheless, it remained at ~70% of peak levels after about 1 year. This post-peak fluctuation was not significantly associated with the cumulative number of DREADD agonist injections (repeated-measures two-way ANOVA, main effect of activation times, F<sub>(1,6)</sub> = 5.745, P = 0.054). Beyond 2 years post-injection, expression declined to ~50% in one case, whereas another case showed an apparent increase (Figure 2C, c and m, respectively).”

      Given that individual differences may affect expression levels, it would be helpful to see additional labels on the graphs (or in the legends) indicating which subject and which region are being represented for each line and/or data point in Figure 1C, 2B, 2C, 5A, and 5B. Alternatively, for Figures 5A and B, an accompanying table listing this information would be sufficient. 

      We thank the reviewer for these helpful suggestions. In response, we have revised the relevant figures (Fig. 1C, 2B, 2C, and 5) as noted in the “Recommendations for the authors”, including simplifying visual encodings and improving labeling. We have also updated Table 2 to explicitly indicate the animal ID and brain regions associated with each data point shown in the figures.

      While the authors comment on several factors that may influence peak expression levels, including serotype, promoter, titer, tag, and DREADD type, they do not comment on the volume of injection. The range in volume used per region in this study is between 2 and 54 microliters, with larger volumes typically (but not always) being used for cortical regions like the OFC and dlPFC, and smaller volumes for subcortical regions like the amygdala and putamen. This may weaken the claim that there is no significant relationship between peak expression level and brain region, as volume may be considered a confounding variable. Additionally, because of the possibility that larger volumes of viral vectors may be more likely to induce an immune response, which the authors suggest as a potential influence on transgene expression, not including volume as a factor of interest seems to be an oversight. 

      We thank the reviewer for raising this important issue. We agree that injection volume could act as a confounding variable, particularly since larger volumes were used in only handheld cortical injections. This overlap makes it difficult to disentangle the effect of volume from those of brain region or injection method. Moreover, data points associated with these larger volumes also deviated when volume was included in the model.

      To address this, we performed a separate analysis restricted to injections delivered via microinjector, where a comparable volume range was used across cases. In this subset, we included injection volume as additional factor in the model and found that volume did not significantly impact peak expression levels. Instead, the presence of co-expressed protein tags remained a significant predictor, while viral titer no longer showed a significant effect. These updated results have replaced the originals in the revised Results section and in the new Figure 5. We have also revised the Discussion to reflect these updated findings.

      The authors conclude that vectors encoding co-expressed protein tags (such as HA) led to reduced peak expression levels, relative to vectors with an IRES-GFP sequence or with no such element at all. While interesting, this finding does not necessarily seem relevant for the efficacy of long-term expression and function, given that the authors show in Figures 1 and 2 that peak expression (as indicated by a change in binding potential relative to non-displaced radioligand, or ΔBPND) appears to taper off in all or most of the constructs assessed. The authors should take care to point out that the decline in peak expression should not be confused with the decline in longitudinal expression, as this is not clear in the discussion; i.e. the subheading, "Factors influencing DREADD expression," might be better written as, "Factors influencing peak DREADD expression," and subsequent wording in this section should specify that these particular data concern peak expression only. 

      We appreciate this important clarification. In response, we have revised the title to "Protein tags reduce peak DREADD expression levels" in the Results section and “Factors influencing peak DREADD expression levels” in the Discussion section. Additionally, we specified that our analysis focused on peak ΔBP<sub>ND</sub> values around 60 days post-injection. We have also explicitly distinguished these findings from the later-stage changes in expression seen in the longitudinal PET data in both the Results and Discussion sections.

      Reviewer #1 (Recommendations for the authors):

      (1) Will any of these datasets be made available to other researchers upon request?

      All data used to generate the figures have been made publicly available via our GitHub repository (https://github.com/minamimoto-lab/2024-Nagai-LongitudinalPET.git). This has been stated in the "Data availability" section in the revised manuscript.

      (2) Suggested modifications to figures:

      a) In Figures 2B and C, the inclusion of "serotype" as a separate legend with individual shapes seems superfluous, as the serotype is also listed as part of the colour-coded vector

      We agree that the serotype legend was redundant since this information is already included in the color-coded vector labels. In response, we have removed the serotype shape indicators and now represent the data using only vector-construct-based color coding for clarity in Figure 2B and C.

      b) In Figures 3A and B, it would be nice to see tics (representing agonist administration) for all subjects, not just the two that are exemplified in panels C-D and F-H. Perhaps grey tics for the non-exemplified subjects could be used.

      In response, we have included black and white ticks to indicate all agonist administration across all subjects in Figure 3A and B, with the type of agonist clearly specified. 

      c) In Figure 4C, a Nissl- stained section is said to demonstrate the absence of neuronal loss at the vector injection sites. However, if the neuronal loss is subtle or widespread, this might not be easily visualized by Nissl. I would suggest including an additional image from the same section, in a non-injected cortical area, to show there is no significant difference between the injected and non-injected region.

      To better demonstrate the absence of neuronal loss at the injection site, we have included an image from the contralateral, non-injected region of the same section for comparison (Fig. 4C).

      d) In Figure 5A: is it possible that the hM3Dq construct with a titer of 5×10^13 gc/ml is an outlier, relative to the other hM3Dq constructs used?

      We thank the reviewer for raising this important observation. To evaluate whether the high-titer constructs represented a statistical outlier that might artifactually influence the observed trends, we performed a permutation-based outlier analysis. This assessment identified this point in question, as well as one additional case (titer 4.6 x 10e13 gc/ml, #255, L_Put), as significant outlier relative to the distribution of the dataset.

      Accordingly, we excluded these two data points from the analysis. Importantly, this exclusion did not meaningfully alter the overall trend or the statistical conclusions—specifically, the significant effect of co-expressed protein tags on peak expression levels remain robust. We have updated the Methods section to describe this outlier handling and added a corresponding note in the figure legend.

      Reviewer #2 (Public review): 

      Weaknesses 

      This study is a meta-analysis of several experiments performed in one lab. The good side is that it combined a large amount of data that might not have been published individually; the downside is that all things were not planned and equated, creating a lot of unexplained variances in the data. This was yet judiciously used by the authors, but one might think that planned and organized multicentric experiments would provide more information and help test more parameters, including some related to inter-individual variability, and particular genetic constructs. 

      We thank the reviewer for bringing this important point to our attention. We fully acknowledge that the retrospective nature of our dataset—compiled from multiple studies conducted within a single laboratory—introduces variability related to differences in injection parameters and scanning timelines. While this reflects the practical realities and constraints of long-term NHP research, we agree that more standardized and prospectively designed studies would better control such source of variances. To address this, we have added the following statement to the "Technical consideration" section in Discussion:

      Lines 297, "This study included a retrospective analysis of datasets pooled from multiple studies conducted within a single laboratory, which inherently introduced variability across injection parameters and scan intervals. While such an approach reflects real-world practices in long-term NHP research, future studies, including multicenter efforts using harmonized protocols, will be valuable for systematically assessing inter-individual differences and optimizing key experimental parameters."

      Reviewer #2 (Recommendations for the authors):

      I just have a few minor points that might help improve the paper:

      (1) Figure 1C y-axis label: should add deltaBPnd in parentheses for clarity.

      We have added “ΔBP<sub>ND</sub>” to the y-axis label for clarity.

      The choice of a sigmoid curve is the simplest clear fit, but it doesn't really consider the presence of the peak described in the paper. Would there be a way to fit the dynamic including fitting the peak?

      We agree that using a simple sigmoid curve for modeling expression dynamics is a limitation. In response to this and a similar comment from Reviewer #3, we tested a double logistic function (as suggested) to see if it better represented the rise and decline pattern. However, as described below, the original simple sigmoid curve was a better fit for the data. We have included a discussion regarding this limitation of this analysis. See Reviewer #3 recommendations (2) for details.

      The colour scheme in Figure 1C should be changed to make things clearer, and maybe use another dimension (like dotted lines) to separate hM4Di from hM3Dq.

      We have improved the visual clarity of Figure 1C by modifying the color scheme to represent vector construct and using distinct line types (dashed for hM4Di and solid for hM3Dq data) to separate DREADD type.

      (2) Figure 2

      I don't understand how the referencing to 100 was made: was it by selecting the overall peak value or the peak value observed between 40 and 80 days? If the former then I can't see how some values are higher than the peak. If the second then it means some peak values occurred after 80 days and data are not completely re-aligned.

      We thank the reviewer for the opportunity to clarify this point. The normalization was based on the peak value observed between 40–80 days post-injection, as this window typically captured the peak expression phase in our dataset (see Figure 1). However, in some long-term cases where PET scans were limited during this period—e.g., with one scan performing at day 40—it is possible that the actual peak occurred later. Therefore, instances where ΔBP<sub>ND</sub> values slightly exceeded the reference peak at later time points likely reflect this sampling limitation. We have clarified this methodological detail in the revised Results section to improve transparency.

      The methods section mentions the use of CNO but this is not in the main paper which seems to state that only DCZ was used: the authors should clarify this

      Although DCZ was the primary agonist used, CNO and C21 were also used in a few animals (e.g., monkeys #153, #221, and #207) for behavioral assessments. We have clarified this in the Results section and revised Figure 3 to indicate the specific agonist used for each subject. Additionally, we have updated the Methods section to clearly specify the use and dosage of DCZ, CNO, and C21, to avoid any confusion regarding the experimental design.

      Reviewer #3 (Public review): 

      Minor weaknesses are related to a few instances of suboptimal phrasing, and some room for improvement in time course visualization and quantification. These would be easily addressed in a revision. <br /> These findings will undoubtedly have a very significant impact on the rapidly growing but still highly challenging field of primate chemogenetic manipulations. As such, the work represents an invaluable resource for the community.

      We thank the reviewer for the positive assessment of our manuscript and for the constructive suggestions. We address each comment in the following point-by-point responses and have revised the manuscript accordingly.

      Reviewer #3 (Recommendations for the authors):

      (1) Please clarify the reasoning was, behind restricting the analysis in Figure 1 only to 7 monkeys with subcortical AAV injection?

      We focused the analysis shown in Figure 1 on 7 monkeys with subcortical AAV injections who received comparative injection volumes. These data were primary part of vector test studies, allowing for repeated PET scans within 150 days post-injection. In contrast, monkeys with cortical injections—including larger volumes—were allocated to behavioral studies and therefore were not scanned as frequently during the early phase. We will clarify this rationale in the Results section.

      (2) Figure 1: Not sure if a simple sigmoid is the best model for these, mostly peaking and then descending somewhat, curves. I suggest testing a more complex model, for instance, double logistic function of a type f(t) = a + b/(1+exp(-c*(t-d))) - e/(1+exp(-g*(t-h))), with the first logistic term modeling the rise to peak, and the second term for partial decline and stabilization

      We appreciate the reviewer’s thoughtful suggestion to use a double logistic function to better model both the rising and declining phases of the expression curve. In response to this and similar comments from Reviewer #1, we tested the proposed model and found that, while it could capture the peak and subsequent decline, the resulting fit appeared less biologically plausible (See below). Moreover, model comparison using BIC favored the original simple sigmoid model (BIC = 61.1 vs. 62.9 for the simple and double logistic model, respectively). This information has been included in the revised figure legend for clarity.

      Given these results, we retained the original simple sigmoid function in the revised manuscript, as it provides a sufficient and interpretable approximation of the early expression trajectory—particularly the peak expression-time estimation, which was the main purpose of this analysis. We have updated the Methods section to clarify our modeling and rationale as follows:

      Lines 530, "To model the time course of DREADD expression, we used a single sigmoid function, referencing past in vivo fluorescent measurements (Diester et al., 2011). Curve fitting was performed using least squares minimization. For comparison, a double logistic function was also tested and evaluated using the Bayesian Information Criterion (BIC) to assess model fit."

      We also acknowledge that a more detailed understanding of post-peak expression changes will require additional PET measurements, particularly between 60- and 120-days post-injection, across a larger number of animals. We have included this point in the revised Discussion to highlight the need for future work focused on finer-grained modeling of expression decline:

      Lines 317, “Although we modeled the time course of DREADD expression using a single sigmoid function, PET data from several monkeys showed a modest decline following the peak. While the sigmoid model captured the early-phase dynamics and offered a reliable estimate of peak timing, additional PET scans—particularly between 60- and 120-days post-injection—will be essential to fully characterize the biological basis of the post-peak expression trajectories.”

      Author response image 1.<br />

      (3) Figure 2: It seems that the individual curves are for different monkeys, I counted 7 in B and 8 in C, why "across 11 monkeys"? Were there several monkeys both with hM4Diand hM3Dq? Does not look like that from Table 1. Generally, I would suggest associating specific animals from Tables 1 and 2 to the panels in Figures 1 and 2.

      Some animals received multiple vector types, leading to more curves than individual subjects. We have revised the figure legends and updated Table 2 to explicitly relate each curve with the specific animal and brain region.

      (4) I also propose plotting the average of (interpolated) curves across animals, to convey the main message of the figure more effectively.

      We agree that plotting the mean of the interpolated expression curves would help convey the group trend. We added averaged curves to Figure 2BC.

      (5) Similarly, in line 155 "We assessed data from 17 monkeys to evaluate ... Monkeys expressing hM4Di were assessed through behavioral testing (N = 11) and alterations in neuronal activity using electrophysiology (N = 2)..." - please explain how 17 is derived from 11, 2, 5 and 1. It is possible to glean from Table 1 that it is the calculation is 11 (including 2 with ephys) + 5 + 1 = 17, but it might appear as a mistake if one does not go deep into Table 1.

      We have clarified in both the text and Table 1 that some monkeys (e.g., #201 and #207) underwent both behavioral and electrophysiological assessments, resulting in the overlapping counts. Specifically, the dataset includes 11 monkeys for hM4Di-related behavior testing (two of which underwent electrophysiology testing), 5 monkeys assessed for hM3Dq with FDG-PET, and 1 monkey assessed for hM3Dq with electrophysiology, totaling 19 assessments across 17 monkeys. We have revised the Results section to make this distinction more explicit to avoid confusion, as follows:

      Lines 164, "Monkeys expressing hM4Di (N = 11) were assessed through behavioral testing, two of which also underwent electrophysiological assessment. Monkeys expressing hM3Dq (N = 6) were assessed for changes in glucose metabolism via [<sup>18</sup>F]FDG-PET (N = 5) or alterations in neuronal activity using electrophysiology (N = 1).”

      (6) Line 473: "These stock solutions were then diluted in saline to a final volume of 0.1 ml (2.5% DMSO in saline), achieving a dose of 0.1 ml/kg and 3 mg/kg for DCZ and CNO, respectively." Please clarify: the injection volume was always 0.1 ml? then it is not clear how the dose can be 0.1 ml/kg (for a several kg monkey), and why DCZ and CNO doses are described in ml/kg vs mg/kg?

      We thank the reviewer for pointing out this ambiguity. We apologize for the oversight and also acknowledge that we omitted mention of C21, which was used in a small number of cases. To address this, we have revised the “Administration of DREADD agonist” section of the Methods to clearly describe the preparation, the volume, and dosage for each agonist (DCZ, CNO, and C21) as follows:

      Lines 493, “Deschloroclozapine (DCZ; HY-42110, MedChemExpress) was the primary agonist used. DCZ was first dissolved in dimethyl sulfoxide (DMSO; FUJIFILM Wako Pure Chemical Corp.) and then diluted in saline to a final volume of 1 mL, with the final DMSO concentration adjusted to 2.5% or less. DCZ was administered intramuscularly at a dose of 0.1 mg/kg for hM4Di activation, and at 1–3 µg/kg for hM3Dq activation. For behavioral testing, DCZ was injected approximately 15 min before the start of the experiment unless otherwise noted. Fresh DCZ solutions were prepared daily.

      In a limited number of cases, clozapine-N-oxide (CNO; Toronto Research Chemicals) or Compound 21 (C21; Tocris) was used as an alternative DREADD agonist for some hM4Di experiments. Both compounds were dissolved in DMSO and then diluted in saline to a final volume of 2–3 mL, also maintaining DMSO concentrations below 2.5%. CNO and C21 were administered intravenously at doses of 3 mg/kg and 0.3 mg/kg, respectively.”

      (7) Figure 5A: What do regression lines represent? Do they show a simple linear regression (then please report statistics such as R-squared and p-values), or is it related to the linear model described in Table 3 (but then I am not sure how separate DREADDs can be plotted if they are one of the factors)?

      We thank the reviewer for the insightful question. In the original version of Figure 5A, the regression lines represented simple linear fits used to illustrate the relationship between viral titer and peak expression levels, based on our initial analysis in which titer appeared to have a significant effect without any notable interaction with other factors (such as DREADD type).

      However, after conducting a more detailed analysis that incorporated injection volume as an additional factor and excluded cortical injections and statistical outliers (as suggested by Reviewer #1), viral titer was no longer found to significantly predict peak expression levels. Consequently, we revised the figure to focus on the effect of reporter tag, which remained the most consistent and robust predictor in our model.

      In the updated Figure 5, we have removed the relationship between viral titer and expression level with regression lines.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      LRRK2 protein is familially linked to Parkinson's disease by the presence of several gene variants that all confer a gain-of-function effect on LRRK2 kinase activity. 

      The authors examine the effects of BDNF stimulation in immortalized neuron-like cells, cultured mouse primary neurons, hIPSC-derived neurons, and synaptosome preparations from the brain. They examine an LRRK2 regulatory phosphorylation residue, LRRK2 binding relationships, and measures of synaptic structure and function. 

      Strengths: 

      The study addresses an important research question: how does a PD-linked protein interact with other proteins, and contribute to responses to a well-characterized neuronal signalling pathway involved in the regulation of synaptic function and cell health? 

      They employ a range of good models and techniques to fairly convincingly demonstrate that BDNF stimulation alters LRRK2 phosphorylation and binding to many proteins. Some effects of BDNF stimulation appear impaired in (some of the) LRRK2 knock-out scenarios (but not all). A phosphoproteomic analysis of PD mutant Knock-in mouse brain synaptosomes is included. 

      We thank this Reviewer for pointing out the strengths of our work. 

      Weaknesses: 

      The data sets are disjointed, conclusions are sweeping, and not always in line with what the data is showing. Validation of 'omics' data is very light. Some inconsistencies with the major conclusions are ignored. Several of the assays employed (western blotting especially) are likely underpowered, findings key to their interpretation are addressed in only one or other of the several models employed, and supporting observations are lacking. 

      We appreciate the Reviewer’s overall evaluaVon. In this revised version, we have provided several novel results that strengthen the omics data and the mechanisVc experiments and make the conclusions in line with the data.

      As examples to aid reader interpretation: (a) pS935 LRRK2 seems to go up at 5 minutes but goes down below pre-stimulation levels after (at times when BDNF-induced phosphorylation of other known targets remains very high). This is ignored in favour of discussion/investigation of initial increases, and the fact that BDNF does many things (which might indirectly contribute to initial but unsustained changes to pLRRK2) is not addressed.  

      We thank the Reviewer for raising this important point, which we agree deserves additional investigation. Although phosphorylation does decrease below pre-stimulation levels, a reduction is also observed for ERK/AKT upon sustained exposure to BDNF in our experimental paradigm (figure 1F-G). This phenomenon is well known in response to a number of extracellular stimuli and can be explained by mechanisms related to cellular negative feedback regulation, receptor desensitization (e.g. phosphorylation or internalization), or cellular adaptation. The effect on pSer935, however, is peculiar as phosphorylation goes below the unstimulated level, as pointed by the reviewer. In contrast to ERK and AKT whose phosphorylation is almost absent under unstimulated conditions (Figure 1F-G), the stoichiometry of Ser935 phosphorylation under unstimulated conditions is high. This observation is consistent with MS determination of relative abundance of pSer935 (e.g. in whole brain LRRK2 is nearly 100% phosphorylated at Ser935, see Nirujogi et al., Biochem J 2021).  Thus we hypothesized that the modest increase in phosphorylation driven by BDNF likely reflects a saturation or ceiling effect, indicating that the phosphorylation level is already near its maximum under resting conditions. Prolonged BDNF stimulation would bring phosphorylation down below pre-stimulation levels, through negative feedback mechanisms (e.g. phosphatase activity) explained above. To test this hypothesis, we conducted an experiment in conditions where LRRK2 is pretreated for 90 minutes with MLi-2 inhibitor, to reduce basal phosphorylation of S935. After MLi-2 washout, we stimulated with BDNF at different time points. We used GFP-LRRK2 stable lines for this experiment, since the ceiling effect was particularly evident (Figure S1A) and this model has been used for the interactomic study. As shown below (and incorporated in Fig. S1B in the manuscript), LRRK2 responds robustly to BDNF stimulation both in terms of pSer935 and pRABs. Phosphorylation peaks at 5-15 mins, while it decreases to unstimulated levels at 60 and 180 minutes. Notably, while the peak of pSer935 at 5-15 mins is similar to the untreated condition (supporting that Ser935 is nearly saturated in unstimulated conditions), the phosphorylation of RABs during this time period exceeds unstimulated levels. These findings support the notion that, under basal conditions, RAB phosphorylation is far from saturation. The antibodies used to detect RAB phosphorylation are the following: RAB10 Abcam # ab230261 e RAB8 (pan RABs) Abcam # ab230260.

      Given the robust response of RAB10 phosphorylation upon BDNF stimulation, we further investigated RAB10 phosphorylation during BDNF stimulation in naïve SH-SY5Y cells. We confirmed that the increase in pSer935 is coupled to increase in pT73-RAB10. Also in this case, RAB10 phosphorylation does not go below the unstimulated level, which aligns with the  low pRAB10 stoichiometry in brain (Nirujogi et al., Biochem J 2021). This experiment adds the novel and exciting finding that BDNF stimulation increases LRRK2 kinase activity (RAB phosphorylation) in neuronal cells. 

      Note that new supplemental figure 1 now includes: A) a comparison of LRRK2 pS935 and total protein levels before and after RA differentiation; B) differentiated GFP-LRRK2 SH-SY5Y (unstimulated, BDNF, MLi-2, BDNF+MLi-2); C) the kinetic of BDNF response in differentiated GFP-LRRK2 SH-SY5Y.

      (b) Drebrin coIP itself looks like a very strong result, as does the increase after BDNF, but this was only demonstrated with a GFP over-expression construct despite several mouse and neuron models being employed elsewhere and available for copIP of endogenous LRRK2. Also, the coIP is only demonstrated in one direction. Similarly, the decrease in drebrin levels in mice is not assessed in the other model systems, coIP wasn't done, and mRNA transcripts are not quantified (even though others were). Drebrin phosphorylation state is not examined.  

      We appreciate the Reviewer suggestions and provided additional experimental evidence supporting the functional relevance of LRRK2-drebrin interaction.

      (1) As suggested, we performed qPCR and observed that 1 month-old KO midbrain and cortex express lower levels of Dbn1 as compared to WT brains (Figure 5G). This result is in agreement with the western blot data (Figure 5H). 

      (2)To further validate the physiological relevance of LRRK2-drebrin interaction we performed two experiments:

      i) Western blots looking at pSer935 and pRab8 (pan Rab) in Dbn1 WT and knockout brains. As reported and quantified in Figure 2I, we observed a significant decrease in pSer935 and a trend decrease in pRab8 in Dbn1 KO brains. This finding supports the notion that Drebrin forms a complex with LRRK2 that is important for its activity, e.g. upon BDNF stimulation. 

      ii) Reverse co-immunoprecipitation of YFP-drebrin full-length, N-terminal domain (1-256 aa) and C-terminal domain (256-649 aa) (plasmids kindly received from Professor Phillip R. Gordon-Weeks, Worth et al., J Cell Biol, 2013) with Flag-LRRK2 co-expressed in HEK293T cells. As shown in supplementary Fig. S2C, we confirm that YFP-drebrin binds LRRK2, with the Nterminal region of drebrin appearing to be the major contributor to this interaction. This result is important as the N-terminal region contains the ADF-H (actin-depolymerising factor homology) domain and a coil-coil region known to directly bind actin (Shirao et al., J Neurochem 2017; Koganezawa et al., Mol Cell Neurosci. 2017). Interestingly, both full-length Drebrin and its truncated C-terminal construct cause the same morphological changes in Factin, indicating that Drebrin-induced morphological changes in F-actin are mediated by its N-terminal domains rather than its intrinsically disordered C-terminal region (Shirao et al., J Neurochem, 2017; Koganezawa et al., Mol Cell Neurosci. 2017). Given the role of LRRK2 in actin-cytoskeletal dynamics and its binding with multiple actin-related protein binding (Fig. 2 and Meixner et al., Mol Cell Proteomics. 2011; Parisiadou and Cai, Commun Integr Biol 2010), these results suggest the possibility that LRRK2 controls actin dynamics by competing with drebrin binding to actin and open new avenues for futures studies.

      (3) To address the request for examining drebrin phosphorylation state, we decided to perform another phophoproteomic experiment, leveraging a parallel analysis incorporated in our latest manuscript (Chen et al., Mol Theraphy 2025). In this experiment, we isolated total striatal proteins from WT and G2019S KI mice and enriched the phospho-peptides. Unlike the experiment presented in Fig. 7, phosphopeptides were enriched from total striatal lysates rather than synaptosomal fractions, and phosphorylation levels were normalized to the corresponding total protein abundance. This approach was intended to avoid bias toward synaptic proteins, allowing for the analysis of a broader pool of proteins derived from a heterogeneous ensemble of cell types (neurons, glia, endothelial cells, pericytes etc.). We were pleased to find that this new experiment confirmed drebrin S339 as a differentially phosphorylated site, with a 3.7 fold higher abundance in G2019S Lrrk2 KI mice. The fact that this experiment evidenced an increased phosphorylation stoichiometry in G2019S mice rather than a decreased is likely due to the normalization of each peptide by its corresponding total protein. Gene ontology analysis of differentially phosphorylated proteins using stringent term size (<200 genes) showed post-synaptic spines and presynaptic active zones as enriched categories (Fig. 3F). A SynGO analysis confirms both pre and postsynaptic categories, with high significance for terms related to postsynaptic cytoskeleton (Fig. 3G). As pointed, this is particularly interesting as the starting material was whole striatal tissue – not synaptosomes as previously – indicating that most significant phosphorylation differences occur in synaptic compartments. This once again reinforces our hypothesis that LRRK2 has a prominent role in the synapse. Overall, we confirmed with an independent phosphoproteomic analysis that LRRK2 kinase activity influences the phosphorylation state of proteins related to synaptic function, particularly postsynaptic cytoskeleton. For clarity in data presentation, as mentioned by the Reviewers, we removed Figure 7 and incorporated this new analysis in figure 3, alongside the synaptic cluster analysis. 

      Altogether, three independent OMICs approaches – (i) experimental LRRK2 interactomics in neuronal cells, (ii) a literature-based LRRK2 synaptic/cytoskeletal interactor cluster, and (iii) a phospho-proteomic analysis of striatal proteins from G2019S KI mice (to model LRRK2 hyperactivity) – converge to synaptic actin-cytoskeleton as a key hub of LRRK2 neuronal function.

      (c) The large differences in the CRISPR KO cells in terms of BDNF responses are not seen in the primary neurons of KO mice, suggesting that other differences between the two might be responsible, rather than the lack of LRRK2 protein. 

      Considering that some variability is expected for these type of cultures and across different species, any difference in response magnitude and kinetics could be attributed to the levels of TrKB  and downstream components expressed by the two cell types. 

      We are confident that differentiated SH-SY5Y cells provide a reliable model for our study as we could translate the results obtained in SH-SY5Y cells in other models. However, to rule out the possibility that the more pronounced effect observed in SH-SY5Y KO cells as respect to Lrrk2 KO primary neurons was due to CRISPR off-target effect, we performed an off-target analysis. Specifically, we selected the first 8 putative off targets exhibiting a CDF (Cutting Frequency Determination) off-target-score >0.2. 

      As shown in supplemental file 1, sequence disruption was observed only in the LRRK2 ontarget site in LRRK2 KO SH-SY5Y cells, while the 8 off-target regions remained unchanged across the genotypes and relative to the reference sequence. 

      (d) No validation of hits in the G2019S mutant phosphoproteomics, and no other assays related to the rest of the paper/conclusions. Drebrin phosphorylation is different but unvalidated, or related to previous data sets beyond some discussion. The fact that LRRK2 binding occurs, and increases with BDNF stimulation, should be compared to its phosphorylation status and the effects of the G2019S mutation. 

      As illustrated in the response to point (b), we performed a new phosphoproteomics investigation – with total striatal lysates instead of striatal synaptosomes and normalization phospho-peptides over total proteins – and found that S339 phosphorylation increases when LRRK2 kinase activity increases (G2019S). To address the request of validating drebrin phosphorylation, the main limitation is that there are no available antibodies against Ser339. While we tried phos-Tag gels in striatal lysates, we could not detect any reliable and specific signal with the same drebrin antibody used for western blot (Thermo Fisher Scientific: MA120377) due to technical limitations of the phosTag method. We are confident that phosphorylation at S339 has a physiological relevance, as it was identified 67 times across multiple proteomic discovery studies and they are placed among the most frequently phosphorylated sites in drebrin (https://www.phosphosite.org/proteinAction.action?id=2675&showAllSites=true).

      To infer a possible role of this phosphorylation, we looked at the predicted pathogenicity of using AlphaMissense (Cheng et al., Science 2023). included as supplementary figure (Fig. S3), aminoacid substitutions within this site are predicted not to be pathogenic, also due to the low confidence of the AlphaFold structure. 

      Ser339 in human drebrin is located just before the proline-rich region (PP domain) of the protein. This region is situated between the actin-binding domains and the C-terminal Homerbinding sequences and plays a role in protein-protein interactions and cytoskeletal regulation (Worth et al., J Cell Biol, 2013). Of interest, this region was previously shown to be the interaction site of adafin (ADFN), a protein involved in multiple cytoskeletal-related processes, including synapse formation and function by regulating puncta adherentia junctions, presynaptic differentiation, and cadherin complex assembly, which are essential for hippocampal excitatory synapses, spine formation, and learning and memory processes (Beaudoin, G. M., 3rd et al., J Neurosci, 2013). Of note, adafin is in the list of LRRK2 interacting proteins (https://www.ebi.ac.uk/intact/home), supporting a possible functional relevance of LRRK2-mediated drebrin phosphorylation in adafin-drebrin complex formation. This has been discussed in the discussion section.

      The aim of this MS analysis in G2019S KI mice – now included in figure 3 – was to further validate the crucial role of LRRK2 kinase activity in the context of synaptic regulation, rather than to discover and characterize novel substrates. Consequently, Figure 7 has been eliminated. 

      Reviewer #2 (Public Review):  

      Taken as a whole, the data in the manuscript show that BDNF can regulate PD-associated kinase LRRK2 and that LRRK2 modifies the BDNF response. The chief strength is that the data provide a potential focal point for multiple observations across many labs. Since LRRK2 has emerged as a protein that is likely to be part of the pathology in both sporadic and LRRK2 PD, the findings will be of broad interest. At the same time, the data used to imply a causal throughline from BDNF to LRRK2 to synaptic function and actin cytoskeleton (as in the title) are mostly correlative and the presentation often extends beyond the data. This introduces unnecessary confusion. There are also many methodological details that are lacking or difficult to find. These issues can be addressed. 

      We appreciate the Reviewer’s positive feedback on our study. We also value the suggestion to present the data in a more streamlined and coherent way. In response, we have updated the title to better reflect our overall findings: “LRRK2 Regulates Synaptic Function through Modulation of Actin Cytoskeletal Dynamics.” Additionally, we have included several experiments that we believe enhance and unify the study.

      (1) The writing/interpretation gets ahead of the data in places and this was confusing. For example, the abstract highlights prior work showing that Ser935 LRRK2 phosphorylation changes LRRK2 localization, and Figure 1 shows that BDNF rapidly increases LRRK2 phosphorylation at this site. Subsequent figures highlight effects at synapses or with synaptic proteins. So is the assumption that LRRK2 is recruited to (or away from) synapses in response to BDNF? Figure 2H shows that LRRK2-drebrin interactions are enhanced in response to BDNF in retinoic acid-treated SH-SY5Y cells, but are synapses generated in these preps? How similar are these preps to the mouse and human cortical or mouse striatal neurons discussed in other parts of the paper (would it be anticipated that BDNF act similarly?) and how valid are SHSY5Y cells as a model for identifying synaptic proteins? Is drebrin localization to synapses (or its presence in synaptosomes) modified by BDNF treatment +/- LRRK2? Or do LRRK2 levels in synaptosomes change in response to BDNF? The presentation requires re-writing to stay within the constraints of the data or additional data should be added to more completely back up the logic. 

      We thank the Reviewer for the thorough suggestions and comments. We have extensively revised the text to accurately reflect our findings without overinterpreting. In particular, we agree with the Reviewer that differentiated SH-SY5Y cells are not  identical to primary mouse or human neurons; however both neuronal models respond to BDNF. Supporting our observations, it is known that SH-SY5Y cells respond to BDNF.  In fact, a common protocol for differentiating SH-SY5Y cells involve BDNF in combination with retinoic acid (Martin et al., Front Pharmacol, 2022; Kovalevich et al., Methods in mol bio, 2013). Additionally, it has been reported that SH-SY5Y cells can form functional synapses (Martin et al., Front Pharmacol, 2022). While we are aware that BDNF, drebrin or LRRK2 can also affect non-synaptic pathways, we focused on synapses when moved to mouse models since: (i) MS and phosphoMS identified several cytoskeletal proteins enriched at the synapse, (ii) we and others have previously reported a role for LRRK2 in governing synaptic and cytoskeletal related processes; (iii) the synapse is a critical site that becomes dysfunctional in the early  stages of PD. We have now clarified and adjusted the text as needed. We have also performed additional experiments to address the Reviewer’s concern:

      (1) “Is the assumption that LRRK2 is recruited to (or away from) synapses in response to BDNF”? This is a very important point. There is consensus in the field that detecting endogenous LRRK2 in brain slices or in primary neurons via immunofluorescence is very challenging with the commercially available  antibodies (Fernandez et al., J Parkinsons Dis, 2022). We established a method in our previous studies to detect LRRK2 biochemically in synaptosomes (Cirnaru et al., Front Mol Neurosci, 2014; Belluzzi et al., Mol Neurodegener., 2016). While these data indicate LRRK2 is present in the synaptic compartments, it would be quite challenging to apply this method to the present study. In fact, applying acute BDNF stimulation in vivo and then isolate synaptosomes is a complex experiment beyond the timeframe of the revision due to the need of mouse ethical approvals. However, this is definitely an intriguing angle to explore in the future.

      (2)“Is drebrin localization to synapses (or its presence in synaptosomes) modified by BDNF treatment +/- LRRK2?” To try and address this question, we adapted a previously published assay to measure drebrin exodus from dendritic spines. During calcium entry and LTP, drebrin exits dendritic spines and accumulates in the dendritic shafts and cell body (Koganezawa et al., 2017). This facilitates the reorganization of the actin cytoskeleton (Shirao et al., 2017). Given the known role of drebrin and its interaction with LRRK2, we hypothesized that LRRK2 loss might affect drebrin relocalization during spine maturation.

      To test this, we treated DIV14 primary cortical neurons from Lrrk2 WT and KO mice with BDNF for 5, 15, and 24 hours, then performed confocal imaging of drebrin localization (Author response image 1). Neurons were transfected at DIV4 with GFP (cell filler) and PSD95 (dendritic spines) for visualization, and endogenous drebrin was stained with an anti-drebrin antibody. We then measured drebrin's overlap with PSD95-positive puncta to track its localization at the spine.

      In Lrrk2 WT neurons, drebrin relocalized from spines after BDNF stimulation, peaking at 15 minutes and showing higher co-localization with PSD95 at 24 hours, indicating the spine remodeling occurred. In contrast, Lrrk2 KO neurons showed no drebrin exodus. These findings support the notion that LRRK2's interaction with drebrin is important for spine remodeling via BDNF. However, additional experiments with larger sample sizes are needed, which were not feasible within the revision timeframe (here n=2 experiments with independent neuronal preparations, n=4-7 neurons analyzed per experiment). Thus, we included the relevant figure as Author response image 1 but chose not to add it in the manuscript (figure 3).

      Author response image 1.

      Lrrk2 affects drebrin exodus from dendritic spines. After the exposure to BDNF for different times (5 minutes, 15 minutes and 24 hours), primary neurons from Lrrk2 WT and KO mice have been transfected with GFP and PSD95 and stained for endogenous drebrin at DIV4. The amount of drebrin localizing in dentritic spines outlined by PSD95 has been assessed at DIV14. The graph shows a pronounced decrease in drebrin content in WT neurons during short time treatments and an increase after 24 hours. KO neurons present no evident variations in drebrin localization upon BDNF stimulation. Scale bar: 4 μm.<br />

      (2) The experiments make use of multiple different kinds of preps. This makes it difficult at times to follow and interpret some of the experiments, and it would be of great benefit to more assertively insert "mouse" or "human" and cell type (cortical, glutamatergic, striatal, gabaergic) etc. 

      We thank the Reviewer for pointing this out. We have now more clearly specified the cell type and species identity throughout the text to improve clarity and interpretation.

      (3) Although BDNF induces quantitatively lower levels of ERK or Akt phosphorylation in LRRK2KO preps based on the graphs (Figure 4B, D), the western blot data in Figure 4C make clear that BDNF does not need LRRK2 to mediate either ERK or Akt activation in mouse cortical neurons and in 4A, ERK in SH-SY5Y cells. The presentation of the data in the results (and echoed in the discussion) writes of a "remarkably weaker response". The data in the blots demand more nuance. It seems that LRRK2 may potentiate a response to BDNF that in neurons is independent of LRRK2 kinase activity (as noted). This is more of a point of interpretation, but the words do not match the images.  

      We thank the Reviewer for pointing this out. We have rephrased our data  presentation to better convey  our findings. We were not surprised to find that loss of LRRK2 causes only a reduction of ERK and AKT activation upon BDNF rather than a complete loss. This is because these pathways are complex and redundant and are activated by a number of cellular effectors. The fact that LRRK2 is one among many players whose function can be compensated by other signaling molecules is also supported by the phenotype of Lrrk2 KO mice that is measurable at 1 month but disappears with adulthood (4 and 18 months) (figure 5).

      Moreover, we removed the sentence “Of note, 90 mins of Lrrk2 inhibition (MLi-2) prior to BDNF stimulation did not prevent phosphorylation of Akt and Erk1/2, suggesting that LRRK2 participates in BDNF-induced phosphorylation of Akt and Erk1/2 independently from its kinase activity but dependently from its ability to be phosphorylated at Ser935 (Fig. 4C-D and Fig. 1B-C)” since the MLi-2 treatment prior to BDNF stimulation was not quantified and our new data point to an involvement of LRRK2 kinase activity upon BDNF stimulation.

      (4) Figure 4F/G shows an increase in PSD95 puncta per unit length in response to BDNF in mouse cortical neurons. The data do not show spine induction/dendritic spine density/or spine morphogenesis as suggested in the accompanying text (page 8). Since the neurons are filled/express gfp, spine density could be added or spines having PSD95 puncta. However, the data as reported would be expected to reflect spine and shaft PSDs and could also include some nonsynaptic sites. 

      The Reviewer is right. We have rephrased the text to reflect an increase in postsynaptic density (PSD) sites, which may include both spine and shaft PSDs, as well as potential nonsynaptic sites.

      (5) Experimental details are missing that are needed to fully interpret the data. There are no electron microscopy methods outside of the figure legend. And for this and most other microscopy-based data, there are few to no descriptions of what cells/sites were sampled, how many sites were sampled, and how regions/cells were chosen. For some experiments (like Figure 5D), some detail is provided in the legend (20 segments from each mouse), but it is not clear how many neurons this represents, where in the striatum these neurons reside, etc. For confocal z-stacks, how thick are the optical sections and how thick is the stack? The methods suggest that data were analyzed as collapsed projections, but they cite Imaris, which usually uses volumes, so this is confusing. The guide (sgRNA) sequences that were used should be included. There is no mention of sex as a biological variable. 

      We thank the Reviewer for pointing out this missing information. We have now included:

      (1) EM methods (page 24)

      (2) Methods for ICC and confocal microscopy now incorporates the Z-stack thickness (0.5 μm x 6 = 3 μm) on page 23.

      (3) Methods for Golgi-Cox staining now incorporates the Z-stack thickness and number of neurons and segments per neuron analyzed. 

      (4) The sex of mice is mentioned in the material and methods (page 17): “Approximately equal numbers of males and females were used for every experiment”.

      (6) For Figures 1F, G, and E, how many experimental replicates are represented by blots that are shown? Graphs/statistics could be added to the supplement. For 1C and 1I, the ANOVA p-value should be added in the legend (in addition to the post hoc value provided). 

      The blots relative to figure 1F,G and E are representative of several blots (at least n=5). The same redouts are part of figure 4 where quantifications are provided. We added the ANOVA p-value in the legend for figure 1C, 1I and 1K.

      (7) Why choose 15 minutes of BDNF exposure for the mass spec experiments when the kinetics in Figure 1 show a peak at 5 mins?  

      This is an important point. We repeated the experiment in GFP-LRRK2 SH-SY5Y cells (figure S1C) and included the 15 min time point. In addition to confirming that pSer935 increases similarly at 5 and 15 minutes, we also observed an increase in RAB phosphorylation at these time points. As mentioned in our response to Reviewer’s 1, we pretreated with MLi-2 for 90 minutes in this experiment to reduce the high basal phosphorylation stoichiometry of pSer935. 

      (8) The schematic in Figure 6A suggests that iPSCs were plated, differentiated, and cultured until about day 70 when they were used for recordings. But the methods suggest they were differentiated and then cryopreserved at day 30, and then replated and cultured for 40 more days. Please clarify if day 70 reflects time after re-plating (30+70) or total time in culture (70). If the latter, please add some notes about re-differentiation, etc. 

      We thank the reviewer for providing further clarity on the iPSC methodology. In the submitted manuscript 70DIV represents the total time in vitro and the process involved a cryostorage event at 30DIV, with a thaw of the cells and a further 40 days of maturation before measurement.  We have adjusted the methods in both the text and figure (new schematic) to clarify this.  The cryopreservation step has been used in other iPSC methods to great effect (Drummond et al., Front Cell Dev Biol, 2020). Due to the complexity and length of the iPSC neuronal differentiation process, cryopreservation represents a useful method with which to shorten and enhance the ability to repeat experiments and reduce considerable variation between differentiations. User defined differences in culture conditions for each batch of neurons thawed can usefully be treated as a new and separate N compared to the next batch of neurons.

      (9) When Figures 6B and 6C are compared it appears that mEPSC frequency may increase earlier in the LRRK2KO preps than in the WT preps since the values appear to be similar to WT + BDNF. In this light, BDNF treatment may have reached a ceiling in the LRRK2KO neurons.

      We thank the reviewer for his/her comment and observations about the ceiling effects. It is indeed possible that the loss of LRRK2 and the application of BDNF could cause the same elevation in synaptic neurotransmission. In such a situation, the increased activity as a result of BDNF treatment would be masked by the increased activity  observed as a result of LRRK2 KO. To better visualize the difference between WT and KO cultures and the possible ceiling effect, we merged the data in one single graph.  

      (10) Schematic data in Figures 5A and C and Figures 5B and E are too small to read/see the data. 

      We thank the Reviewer for this suggestion. We have now enlarged figure 5A and moved the graph of figure 5D in supplemental figure S5, since this analysis of spine morphology is secondary to the one shown in figure 5C.

      Reviewer #1 (Recommendations For The Authors): 

      Please forgive any redundancy in the comments, I wanted to provide the authors with as much information as I had to explain my opinion. 

      Primary mouse cortical neurons at div14, 20% transient increase in S935 pLRRK2 5min after BDNF, which then declines by 30 minutes (below pre-stim levels, and maybe LRRK2 protein levels do also). 

      In differentiated SHSY5Y cells there is a large expected increase in pERK and pAKT that is sustained way above pre-stim for 60 minutes. There is a 50% initial increase in pLRRK2 (but the blot is not very clear and no double band in these cells), which then looks like reduced well below pre-stim by 30 & 60 minutes. 

      We thank the Reviewer for bring up this important point. We have extensively addressed this issue in the public review rebuttal. In essence, the phosphorylation of Ser935 is near saturation under unstimulated conditions, as evidenced by its high basal stoichiometry, whereas Rab phosphorylation is far from saturation, showing an increase upon BDNF stimulation before returning to baseline levels. This distinction highlights that while pSer935 exhibits a ceiling effect due to its near-maximal phosphorylation at rest, pRab responds dynamically to BDNF, indicating low basal phosphorylation and a significant capacity for increase. Figure 1 in the rebuttal summarizes the new data collected. 

      GFP-fused overexpressed LRRK2 coIPs with drebrin, and this is double following 15 min BDNF. Strong result.

      We thank the Reviewer.

      BDNF-induced pAKT signaling is greatly impaired, and pERK is somewhat impaired, in CRISPR LKO SHSY5Y cells. In mouse primaries, both AKT and Erk phosph is robustly increased and sustained over 60 minutes in WT and LKO. This might be initially less in LKO for Akt (hard to argue on a WB n of 3 with huge WT variability), regardless they are all roughly the same by 60 minutes and even look higher in LKO at 60. This seems like a big disconnect and suggests the impairment in the SHSy5Y cells might have more to do with the CRISPR process than the LRRK2. Were the cells sequenced for off-target CRISPR-induced modifications?  

      Following the Reviewer suggestion – and as discussed in the public review section - we performed an off-target analysis. Specifically, we selected the first 8 putative off targets exhibiting a CDF (Cutting Frequency Determination) off-target-score >0.2. As shown in supplemental file 1, sequence disruption was observed only in the LRRK2 on-target site in LRRK2 KO SH-SY5Y cells, while the 8 off-target regions remained unchanged across the genotypes and relative to the reference sequence.  

      No difference in the density of large PSD-95 puncta in dendrites of LKO primary relative to WT, and the small (10%) increase seen in WT after BDNF might be absent in LKO (it is not clear to me that this is absent in every culture rep, and the data is not highly convincing). This is also referred to as spinogenesis, which has not been quantified. Why not is confusing as they did use a GFP fill... 

      The Reviewer is right that spinogenesis is not the appropriate term for the process analyzed. We replaced “spinogenesis” with “morphological alternation of dendritic protrusions” or “synapse maturation” which is correlated with the number of PSD95 positive puncta (ElHusseini et al., Science, 2000) . 

      There is a difference in the percentage of dendritic protrusions classified as filopodia to more being classified as thin spines in LKO striatal neurons at 1 month, which is not seen at any other age, The WT filopodia seems to drop and thin spine percent rise to be similar to LKO at 4 months. This is taken as evidence for delayed maturation in LKO, but the data suggest the opposite. These authors previously published decreased spine and increased filopodia density at P15 in LKO. Now they show that filopodia density is decreased and thin spine density increased at one month. How is that shift from increased to decreased filopodia density in LKO (faster than WT from a larger initial point) evidence of impaired maturation? Again this seems accelerated? 

      We agree with the Reviewer that the initial interpretation was indeed confusing. To adhere closely to our data and avoid overinterpretation – as also suggested by Reviewer 2 – we revised  the text and moved figure 5D to supplementary materials. In essence, our data point out to alterations in the structural properties of dendritic protrusions in young KO mice, specifically a reduction in  their size (head width and neck height) and a decrease in postsynaptic density (PSD) length, as observed with TEM. These findings suggest that LRRK2 is involved in morphological processes during spine development. 

      Shank3 and PSD95 mRNA transcript levels were reduced in the LKO midbrain, only shank3 was reduced in the striatum and only PSD was reduced in the cortex. No changes to mRNA of BDNF-related transcripts. None of these mRNA changes protein-validated. Drebrin protein (where is drebrin mRNA?) levels are reduced in LKO at 1&4 but not clearly at 18 months (seems the most robust result but doesn't correlate with other measures, which here is basically a transient increase (1m) in thin striatal spines).  

      As illustrated before, we performed qPCR for Dbn1 and found that its expression is significantly reduced in the cortex and midbrain and non-significantly reduced in the striatum (1 months old mice, a different cohort as those used for the other analysis in figure 5).  

      24h BDNF increases the frequency of mEPSCs on hIPSC-derived cortical-like neurons, but not LKO, which is already high. There are no details of synapse number or anything for these cultures and compares 24h treatment. BDNF increases mEPSC frequency within minutes PMC3397209, and acute application while recording on cells may be much more informative (effects of BDNF directly, and no issues with cell-cell / culture variability). Calling mEPSC "spontaneous electrical activity" is not standard.  

      We thank the reviewer for this point. We provided information about synapse number (Bassoon/Homer colocalization) in supplementary figure S7. The lack of response of LRRK2 KO cultures in terms of mEPSC is likely due to increase release probability as the number of synapses does not change between the two genotypes. 

      The pattern of LRRK2 activation is very disconnected from that of BDNF signalling onto other kinases. Regarding pLRRK2, s935 is a non-autophosph site said to be required for LRRK2 enzymatic activity, that is mostly used in the field as a readout of successful LRRK2 inhibition, with some evidence that this site regulates LRRK2 subcellular localization (which might be more to do with whether or not it is p at 935 and therefor able to act as a kinase). 

      The authors imply BDNF is activating LRRK2, but really should have looked at other sites, such as the autophospho site 1292 and 'known' LRRK2 substrates like T73 pRab10 (or other e.g., pRab12) as evidence of LRRK2 activation. One can easily argue that the initial increase in pLRRK2 at this site is less consequential than the observation that BDNF silences LRRK2 activity based on p935 being sustained to being reduced after 5 minutes, and well below the prestim levels... not that BDNF activates LRRK2. 

      As described above, we have collected new data showing that BDNF stimulation increases LRRK2 kinase activity toward its physiological substrates Rab10 and Rab8 (using a panphospho-Rab antibody) (Figure 1 and Figure S1). Additionally, we have also extensively commented the ceiling effect of pS935.

      BDNF does a LOT. What happens to network activity in the neural cultures with BDNF application? Should go up immediately. Would increasing neural activity (i.e., through depolarization, forskolin, disinhibition, or something else without BDNF) give a similar 20% increase in pS935 LRRK2? Can this be additive, or occluded? This would have major implications for the conclusions that BDNF and pLRRK2 are tightly linked (as the title suggests).  

      These are very valuable observations; however, they fall outside the scope and timeframe of this study. We agree that future research should focus on gaining a deeper mechanistic understanding of how LRRK2 regulates synaptic activity, including vesicle release probability and postsynaptic spine maturation, independently of BDNF.

      Figures 1A & H "Western blot analysis revealed a rapid (5 mins) and transient increase of Ser935 phosphorylation after BDNF treatment (Fig. 1B and 1C). Of interest, BDNF failed to stimulate Ser935 phosphorylation when neurons were pretreated with the LRRK2 inhibitor MLi-2" . The first thing that stands out is that the pLRRK2 in WB is not very clear at all (although we appreciate it is 'a pig' to work with, I'd hope some replicates are clearer); besides that, the 20% increase only at 5min post-BDNF stimulation seems like a much less profound change than the reduction from base at 60 and more at 180 minutes (where total LRRK2 protein is also going down?). That the blot at 60 minutes in H is representative of a 30% reduction seems off... makes me wonder about the background subtraction in quantification (for this there is much less pLRRK2 and more total LRRK2 than at 0 or 5). LRRK2 (especially) and pLRRK2 seem very sketchy in H. Also, total LRRK2 appears to increase in the SHSY5Y cell not the neurons, and this seems even clearer in 2 H. 

      To better visualize the dynamics of pS935 variation relative to time=0, we presented the data as the difference between t=0 and t=x. It clearly shows that pSe935 goes below prestimulation levels, whereas pRab10 does not. The large difference in the initial stoichiometry of these two phosphorylation is extensively discussed above.

      That MLi2 eliminates pLRRK2 (and seems to reduce LRRK2 protein?) isn't surprising, but a 90min pretreatment with MLi-2 should be compared to MLi-2's vehicle alone (MLi-2 is notoriously insoluble and the majority of diluents have bioactive effects like changing activity)... especially if concluding increased pLRRK2 in response to BDNF is a crucial point (when comparing against effects on other protein modifications such as pAKT). This highlights a second point... the changes to pERK and pAKT are huge following BDNF (nothing to massive quantities), whereas pLRRK2 increases are 20-50% at best. This suggests a very modest effect of BDNF on LRRK in neurons, compared to the other kinases. I worry this might be less consequential than claimed. Change in S1 is also unlikely to be significant... 

      These comments have been thoroughly addressed in the previous responses. Regarding fig. S1, we added an additional experiment (Figure S1C) in GFP-LRRK2 cells showing robust activation of LRRK2 (pS935, pRabs) at the timepoint of MS (15 min).

      "As the yields of endogenous LRRK2 purification were insufficient for AP-MS/MS analysis, we generated polyclonal SH-SY5Y cells stably expressing GFP-LRRK2 wild-type or GFP control (Supplementary Fig. 1)" . I am concerned that much is being assumed regarding 'synaptic function' from SHSY5Y cells... also overexpressing GFP-LRRK2 and looking at its binding after BDNF isn't synaptic function.  

      We appreciate the reviewer’s comment. We would like to clarify that the interactors enriched upon BDNF stimulation predominantly fall into semantic categories related to the synapse and actin cytoskeleton. While this does not imply that these interactors are exclusively synaptic, it suggests that this tightly interconnected network likely plays a role in synaptic function. This interpretation is supported by several lines of evidence: (1) previous studies have demonstrated the relevance of this compartment to LRRK2 function; (2) our new phosphoproteomics data from striatal lysate highlight enrichment of synaptic categories; and (3) analysis of the latest GWAS gene list (134 genes) also indicates significant enrichment of synapse-related categories. Taken together, these findings justify further investigation into the role of LRRK2 in synaptic biology, as discussed extensively in the manuscript’s discussion section.

      Figure 2A isn't alluded to in text and supplemental table 1 isn't about LRRK2 binding, but mEPSCs. 

      We have added Figure 2A and added supplementary .xls table 1, which refers to the excel list of genes with modulated interaction upon BDNF (uploaded in the supplemental material).

      We added the extension .xls also for supplementary table 2 and 3. 

      Figure 2A is useless without some hits being named, and the donut plots in B add nothing beyond a statement that "35% of 'genes' (shouldn't this be proteins?) among the total 207 LRRK2 interactors were SynGO annotated" might as well [just] be the sentence in the text. 

      We have now included the names of the most significant hits, including cytoskeletal and translation-related proteins, as well as known LRRK2 interactors. We decided to retain the donut plots, as we believe they simplify data interpretation for the reader, reducing the need to jump back and forth between the figures and the text.

      Validation of drebrin binding in 2H is great... although only one of 8 named hits; could be increased to include some of the others. A concern alludes to my previous point... there is no appreciable LRRK2 in these cells until GFP-LRRK2 is overexpressed; is this addressed in the MS? Conclusions would be much stronger if bidirectional coIP of these binding candidates were shown with endogenous (GFP-ve) LRRK2 (primaries or hIPSCs, brain tissue?) 

      To address the Reviewer’s concerns to the best of our abilities, we have added a blot in Supplemental figure S1A showing how the expression levels of LRRK2 increase after RA differentiation. Moreover, we have included several new data further strengthening the functional link between LRRK2 and drebrin, including qPCR of Dbn1 in one-month old Lrrk2 KO brains, western blots of Lrrk2 and Rab in Dbn1 KO brains, and co-IP with drebrin N- and Cterm domains. 

      Figures 3 A-C are not informative beyond the text and D could be useful if proteins were annotated. 

      To avoid overcrowding, proteins were annotated in A and the same network structure reported for synaptic and actin-related interactors. 

      Figure 4. Is this now endogenous LRRK2 in the SHSY5Y cells? Again not much LRRK2 though, and no pLRRK shown. 

      We confirm that these are naïve SH-SY5Y cells differentiated with RA and LRRK2 is endogenous. We did not assess pS935 in this experiment, as the primary goal was to evaluate pAKT and pERK1/2 levels. To avoid signal saturation, we loaded less total protein (30 µg instead of the 80 µg typically required to detect pS935). pS935 levels were extensively assessed in Figure 1. This experimental detail has now been added in the material and methods section (page 18).

      In C (primary neurons) There is very little increase in pLRRK2 / LRRK2 at 5 mins, and any is much less profound a change than the reduction at 30 & 60 mins. I think this is interesting and may be a more substantial consequence of BDNF treatment than the small early increase. Any 5 min increase is gone by 30 and pLRRK2 is reduced after. This is a disconnect from the timing of all the other pProteins in this assay, yet pLRRK2 is supposed to be regulating the 'synaptic effects'? 

      The first part of the question has already been extensively addressed. Regarding the timing, one possibility is that LRRK2 is activated upstream of AKT and ERK1/2, a hypothesis supported by the reduced activation of AKT and ERK1/2 observed in LRRK2 KO cells, as discussed in the manuscript, and in MLi-2 treated cells (Author response image 2). Concerning the synaptic effects, it is well established that synaptic structural and functional plasticity occurs downstream of receptor activation and kinase signaling cascades. These changes can be mediated by both rapid mechanisms (e.g., mobilization of receptor-containing endosomes via the actin cytoskeleton) and slower processes involving gene transcription of immediate early genes (IEGs). Since structural and functional changes at the synapse generally manifest several hours after stimulation, we typically assessed synaptic activity and structure 24 hours post-stimulation.

      Akt Erk1&2 both go up rapidly after BDNF in WT, although Akt seems to come down with pLRRK2. If they aren't all the same Akt is probably the most different between LKO and WT but I am very concerned about an n=3 for wb, wb is semi-quantitative at best, and many more than three replicates should be assessed, especially if the argument is that the increases are quantitively different between WT v KO (huge variability in WT makes me think if this were done 10x it would all look same). Moreover, this isn't similar to the LKO primaries  "pulled pups" pooled presumably. 

      Despite some variability in the magnitude of the pAKT/pERK response in naïve SH-SY5Y cells, all three independent replicates consistently showed a reduced response in LRRK2 KO cells, yielding a highly significant result in the two-way ANOVA test. In contrast, the difference in response magnitude between WT and LRRK2 KO primary cultures was less pronounced, which justified repeating the experiments with n=9 replicates. We hope the Reviewer acknowledges the inherent variability often observed in western blot experiments, particularly when performed in a fully independent manner (different cultures and stimulations, independent blots).

      To further strengthen the conclusion that this effect is reproducible and dependent on LRRK2 kinase activity upstream of AKT and ERK, we probed the membranes in figure 1H with pAKT/total AKT and pERK/total ERK. All things considered and consistent with our hypothesis, MLi-2 significantly reduced BDNF-mediated AKT and ERK1/2 phosphorylation levels (Author response image 2). 

      Author response image 2.

      Western blot (same experiments as in figure 1) was performed using antibodies against phospho-Thr202/185 ERK1/2, total ERK1/2 and phospho-Ser473 AKT, total AKT protein levels Retinoic acid-differentiated SH-SY5Y cells stimulated with 100 ng/mL BDNF for 0, 5, 30, 60 mins. MLi-2 was used at 500 nM for 90 mins to inhibit LRRK2 kinase activity.

      G lack of KO effect seems to be skewed from one culture in the plot (grey). The scatter makes it hard to read, perhaps display the culture mean +/- BDNF with paired bars. The fact that one replicate may be changing things is suggested by the weirdly significant treatment effect and no genotype effect. Also, these are GFP-filled cells, the dendritic masks should be shown/explained, and I'm very surprised no one counted the number (or type?) of protrusions, especially as the text describes this assay (incorrectly) as spinogenesis... 

      As suggested by the Reviewer we have replotted the results as bar graphs. Regarding the number of protrusions, we initially counted the number of GFP+ puncta in the WT and did not find any difference (Author response image 3). Due to our imaging setup (confocal microscopy rather than super-resolution imaging and Imaris 3D reconstruction), we were unable to perform a fine morphometric analysis. However, this was not entirely unexpected, as BDNF is known to promote both the formation and maturation of dendritic spines. Therefore, we focused on quantifying PSD95+ puncta as a readout of mature postsynaptic compartments. While we acknowledge that we cannot definitively conclude that each PSD95+ punctum is synaptically connected to a presynaptic terminal, the data do indicate an increase in the number of PSD95+ structures following BDNF stimulation.

      Author response image 3.

      GFP+ puncta per unit of neurite length (µm) in DIV14 WT primary neurons untreated or upon 24 hour of BDNF treatment (100 ng/ml). No significant difference were observed (n=3).

      Figure 5. "Dendritic spine maturation is delayed in Lrrk2 knockout mice". The only significant change is at 1 month in KO which shows fewer filopodia and increased thin spines (50% vs wt). At 4 months the % of thin spines is increased to 60% in both... Filopodia also look like 4m in KO at 1m... How is that evidence for delayed maturation? If anything it suggests the KO spines are maturing faster. "the average neck height was 15% shorter and the average head width was 27% smaller, meaning that spines are smaller in Lrrk2 KO brains" - it seems odd to say this before saying that actually there are just MORE thin spines, the number of mature "mushroom' is same throughout, and the different percentage of thin comes from fewer filopodia. This central argument that maturation is delayed is not supported and could be backwards, at least according to this data. Similarly, the average PSD length is likely impacted by a preponderance of thin spines in KO... which if mature were fewer would make sense to say delayed KO maturation, but this isn't the case, it is the fewer filopodia (with no PSD) that change the numbers. See previous comments of the preceding manuscript. 

      We agree that thin spines, while often considered more immature, represent an intermediate stage in spine development. The data showing an increase in thin spines at 1 month in the KO mice, along with fewer filopodia, could suggest a faster stabilization of these spines, which might indeed be indicative of premature maturation rather than delayed maturation. This change in spine morphology may indicate that the dynamics of synaptic plasticity are affected. Regarding the PSD length, as the Reviewer pointed out, the increased presence of thin spines in KO might account for the observed changes in PSD measurements, as thin spines typically have smaller PSDs. This further reinforces the idea that the overall maturation process may be altered in the KO, but not necessarily delayed. 

      We rephrase the interpretation of these data, and moved figure 5D as supplemental figure S4.

      "To establish whether loss of Lrrk2 in young mice causes a reduction in dendritic spines size by influencing BDNF-TrkB expression" - there is no evidence of this.  

      We agree and reorganized the text, removing this sentence.  

      Shank and PSD95 mRNA changes being shown without protein adds very little. Why is drebrin RNA not shown? Also should be several housekeeping RNAs, not one (RPL27)? 

      We measured Dbn1 mRNA, which shows a significant reduction in midbrain and cortex. Moreover we have now normalized the transcript levels against the geometrical means of three housekeeping genes (RPL27, actin, and GAPDH) relative abundance.

      Drebrin levels being lower in KO seems to be the strongest result of the paper so far (shame no pLRRK2 or coIP of drebrin to back up the argument). DrebrinA KO mice have normal spines, what about haploinsufficient drebrin mice (LKO seem to have half derbrin, but only as youngsters?)  

      As extensively explained in the public review, we used Dbn1 KO mouse brains and were able to show reduced Lrrk2 activity.

      Figure 6. hIPSC-derived cortical neurons. The WT 'cortical' neurons have a very low mEPSC frequency at 0.2Hz relative to KO. Is this because they are more or less mature? What is the EPSC frequency of these cells at 30 and 90 days for comparison? Also, it is very very hard to infer anything about mEPSC frequency in the absence of estimates of cell number and more importantly synapse number. Furthermore, where are the details of cell measures such as capacitance, resistance, and quality control e.g., Ra? Table s1 seems redundant here, besides suggesting that the amplitude is higher in KO at base. 

      We agree that the developmental trajectory of iPSC-derived neurons is critical to accurately interpreting synaptic function and plasticity. In response, we have included additional data now presented in the supplementary figure S7 and summarize key findings below:

      At DIV50, both WT and LRRK2 KO neurons exhibit low basal mEPSC activity (~0.5 Hz) and no response to 24 h BDNF stimulation (50 ng/mL).

      At DIV70 WT neurons show very low basal activity (~0.2 Hz), which increases ~7.5-fold upon BDNF treatment (1.5 Hz; p < 0.001), and no change in synapse number. KO neurons display elevated basal activity (~1 Hz) similar to BDNF-treated WT neurons, with no further increase upon BDNF exposure (~1.3 Hz) and no change in synapse number.

      At DIV90, no significant effect of BDNF in both WT and KO, indicating a possible saturation of plastic responses. The lack of BDNF response at DIV90 may be due to endogenous BDNF production or culture-based saturation effects. While these factors warrant further investigation (e.g., ELISA, co-culture systems), they do not confound the key conclusions regarding the role of LRRK2 in synaptic development and plasticity:

      LRRK2 Enables BDNF-Responsive Synaptic Plasticity. In WT neurons, BDNF induces a significant increase in neurotransmitter release (mEPSC frequency) with no reduction in synapse number. This dissociation suggests BDNF promotes presynaptic functional potentiation. KO neurons fail to show changes in either synaptic function or structure in response to BDNF, indicating that LRRK2 is required for activity-dependent remodeling.

      LRRK2 Loss Accelerates Synaptic Maturation. At DIV70, KO neurons already exhibit high spontaneous synaptic activity equivalent to BDNF-stimulated WT neurons. This suggests that LRRK2 may act to suppress premature maturation and temporally gate BDNF responsiveness, aligning with the differences in maturation dynamics observed in KO mice (Figure 5).  

      As suggested by the reviewer we reported the measurement of resistance and capacitance for all DIV (Table 1, supplemental material). A reduction in capacitance was observed in WT neurons at DIV90, which may reflect changes in membrane complexity. However, this did not correlate with differences in synapse number and is unlikely to account for the observed differences in mEPSC frequency. To control for cell number between groups, cell count prior to plating was performed (80k/cm2; see also methods) on the non-dividing cells to keep cell number consistent.

      The presence of BDNF in WT seems to make them look like LKO, in the rest of the paper the suggestion is that the LKO lack a response to BDNF. Here it looks like it could be that BDNF signalling is saturated in LKO, or they are just very different at base and lack a response.

      Knowing which is important to the conclusions, and acute application (recording and BDNF wash-in) would be much more convincing.

      We agree with the Reviewer’s point that saturation of BDNF could influence the interpretation of the data if it were to occur. However, it is important to note that no BDNF exists in the media in base control and KO neuronal culture conditions. This is  different from other culture conditions and allows us to investigate the effects of  BDNF treatment. Thus, the increased mEPSC frequency observed in KO neurons compared to WT neurons is defined only by the deletion of the gene and not by other extrinsic factors which were kept consistent between the groups. The lack of response or change in mEPSC frequency in KO is proposed to be a compensatory mechanism due to the loss of LRRK2. Of Note, LRRK2 as a “synaptic break” has already been described (Beccano-Kelly et al., Hum Mol Gen, 2015). However, a comprehensive analysis of the underlying molecular mechanisms will  require future studies beyond  with the scope of this paper.

      "The LRRK2 kinase substrates Rabs are not present in the list of significant phosphopeptides, likely due to the low stoichiometry and/or abundance" Likely due to the fact mass spec does not get anywhere near everything. 

      We removed this sentence in light of the new phosphoproteomic analysis.

      Figure 7 is pretty stand-alone, and not validated in any way, hard to justify its inclusion?  

      As extensively explained we removed figure 7 and included the new phospho-MS as part of figure. 3

      Writing throughout shows a very selective and shallow use of the literature.  

      We extensively reviewed the citations.

      "while Lrrk1 transcript in this region is relatively stable during development" The authors reference a very old paper that barely shows any LRRK1 mRNA, and no protein. Others have shown that LRRK1 is essentially not present postnatally PMC2233633. This isn't even an argument the authors need to make. 

      We thank the reviewer and included this more appropriate citation. 

      Reviewer #2 (Recommendations For The Authors): 

      Cyfip1 (Fig 3A) is part of the WAVE complex (page 13). 

      We thank the reviewer and specified it.

      The discussion could be more focused. 

      We extensively revised the discussion to keep it more focused.

      Note that we updated the GO ontology analyses to reflect the updated information present in g:Profiler.

      References.

      Nirujogi, R. S., Tonelli, F., Taylor, M., Lis, P., Zimprich, A., Sammler, E., & Alessi, D. R. (2021). Development of a multiplexed targeted mass spectrometry assay for LRRK2phosphorylated Rabs and Ser910/Ser935 biomarker sites. The Biochemical journal, 478(2), 299–326. https://doi.org/10.1042/BCJ20200930

      Worth, D. C., Daly, C. N., Geraldo, S., Oozeer, F., & Gordon-Weeks, P. R. (2013). Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. The Journal of cell biology, 202(5), 793–806. https://doi.org/10.1083/jcb.201303005

      Shirao, T., Hanamura, K., Koganezawa, N., Ishizuka, Y., Yamazaki, H., & Sekino, Y. (2017). The role of drebrin in neurons. Journal of neurochemistry, 141(6), 819–834. https://doi.org/10.1111/jnc.13988

      Koganezawa, N., Hanamura, K., Sekino, Y., & Shirao, T. (2017). The role of drebrin in dendritic spines. Molecular and cellular neurosciences, 84, 85–92. https://doi.org/10.1016/j.mcn.2017.01.004

      Meixner, A., Boldt, K., Van Troys, M., Askenazi, M., Gloeckner, C. J., Bauer, M., Marto, J. A., Ampe, C., Kinkl, N., & Ueffing, M. (2011). A QUICK screen for Lrrk2 interaction partners--leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Molecular & cellular proteomics: MCP, 10(1), M110.001172. https://doi.org/10.1074/mcp.M110.001172

      Parisiadou, L., & Cai, H. (2010). LRRK2 function on actin and microtubule dynamics in Parkinson disease. Communicative & integrative biology, 3(5), 396–400. https://doi.org/10.4161/cib.3.5.12286

      Chen, C., Masotti, M., Shepard, N., Promes, V., Tombesi, G., Arango, D., Manzoni, C., Greggio, E., Hilfiker, S., Kozorovitskiy, Y., & Parisiadou, L. (2024). LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. bioRxiv : the preprint server for biology, 2024.06.06.597594. https://doi.org/10.1101/2024.06.06.597594

      Cheng, J., Novati, G., Pan, J., Bycroft, C., Žemgulytė, A., Applebaum, T., Pritzel, A.,Wong, L. H., Zielinski, M., Sargeant, T., Schneider, R. G., Senior, A. W., Jumper, J., Hassabis, D., Kohli, P., & Avsec, Ž. (2023). Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science (New York, N.Y.), 381(6664), eadg7492. https://doi.org/10.1126/science.adg7492

      Beaudoin, G. M., 3rd, Schofield, C. M., Nuwal, T., Zang, K., Ullian, E. M., Huang, B., & Reichardt, L. F. (2012). Afadin, a Ras/Rap effector that controls cadherin function, promotes spine and excitatory synapse density in the hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(1), 99–110. https://doi.org/10.1523/JNEUROSCI.4565-11.2012

      Fernández, B., Chittoor-Vinod, V. G., Kluss, J. H., Kelly, K., Bryant, N., Nguyen, A. P. T., Bukhari, S. A., Smith, N., Lara Ordóñez, A. J., Fdez, E., Chartier-Harlin, M. C., Montine, T. J., Wilson, M. A., Moore, D. J., West, A. B., Cookson, M. R., Nichols, R. J., & Hilfiker, S. (2022). Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. Journal of Parkinson's disease, 12(5), 1423–1447. https://doi.org/10.3233/JPD-213128

      Cirnaru, M. D., Marte, A., Belluzzi, E., Russo, I., Gabrielli, M., Longo, F., Arcuri, L., Murru, L., Bubacco, L., Matteoli, M., Fedele, E., Sala, C., Passafaro, M., Morari, M., Greggio, E., Onofri, F., & Piccoli, G. (2014). LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macromolecular complex. Frontiers in molecular neuroscience, 7, 49. https://doi.org/10.3389/fnmol.2014.00049

      Belluzzi, E., Gonnelli, A., Cirnaru, M. D., Marte, A., Plotegher, N., Russo, I., Civiero, L., Cogo, S., Carrion, M. P., Franchin, C., Arrigoni, G., Beltramini, M., Bubacco, L., Onofri, F., Piccoli, G., & Greggio, E. (2016). LRRK2 phosphorylates pre-synaptic Nethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Molecular neurodegeneration, 11, 1. https://doi.org/10.1186/s13024-015-0066-z

      Martin, E. R., Gandawijaya, J., & Oguro-Ando, A. (2022). A novel method for generating glutamatergic SH-SY5Y neuron-like cells utilizing B-27 supplement. Frontiers in pharmacology, 13, 943627. https://doi.org/10.3389/fphar.2022.943627

      Kovalevich, J., & Langford, D. (2013). Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods in molecular biology (Clifton, N.J.), 1078, 9–21. https://doi.org/10.1007/978-1-62703-640-5_2

      Drummond, N. J., Singh Dolt, K., Canham, M. A., Kilbride, P., Morris, G. J., & Kunath, T. (2020). Cryopreservation of Human Midbrain Dopaminergic Neural Progenitor Cells Poised for Neuronal Differentiation. Frontiers in cell and developmental biology, 8, 578907. https://doi.org/10.3389/fcell.2020.578907

      Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., & Greenberg, M. E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron, 20(4), 709–726. https://doi.org/10.1016/s0896-6273(00)810107

      El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A., & Bredt, D. S. (2000). PSD95 involvement in maturation of excitatory synapses. Science (New York, N.Y.), 290(5495), 1364–1368.

      Glebov OO, Cox S, Humphreys L, Burrone J. Neuronal activity controls transsynaptic geometry. Sci Rep. 2016 Mar 8;6:22703. doi: 10.1038/srep22703. Erratum in: Sci Rep. 2016 May 31;6:26422. doi: 10.1038/srep26422. PMID: 26951792; PMCID: PMC4782104.

      Beccano-Kelly DA, Volta M, Munsie LN, Paschall SA, Tatarnikov I, Co K, Chou P, Cao LP, Bergeron S, Mitchell E, Han H, Melrose HL, Tapia L, Raymond LA, Farrer MJ, Milnerwood AJ. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Hum Mol Genet. 2015 Mar 1;24(5):1336-49. doi: 10.1093/hmg/ddu543. Epub 2014 Oct 24. PMID: 25343991.

    1. reply to u/todddiskin at https://www.reddit.com/r/typewriters/comments/1nlodr0/how_do_you_use_your_machines/

      Some various recent uses:

      • I've got writing projects sitting in two different machines.
      • I use one on my primary desk for typing up notes on index cards, recipes, my commonplace "book", letters, and other personal correspondence.
      • I use a few of my portables on the porch in the mornings/evenings for journaling.
      • One machine in the hallway is for impromptu ideas and poetry and an occasional bit of typewriter art.
      • One machine near the kitchen is always gamed up for adding to the ever-growing shopping list.
      • I'll often get one out for scoring baseball games.
      • Participating in One Typed Page and One Typed Quote
      • Typing up notes in zoom calls - I've got a camera mount over a Royal KMG that has its own Zoom account so people can watch the notes typed in real time.
      • Labels for folders, index card dividers, and sticky labels.
      • Addressing envelopes.
      • Writing out checks.
      • Typecasting
      • Hiding a flask or two of bourbon (the Fold-A-Matic Remingtons are great for this)
      • Supplementing the nose of my bourbon and whisky collection.

      At the end of the day though, unless you're Paul Sheldon, typewriters are unitaskers and are designed to do one thing well: put text on paper. All the rest are just variations on the theme. 😁🤪☠️

      see also: https://www.reddit.com/r/typewriters/search/?q=typewriter+uses

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Desveaux et al. describe human mAbs targeting protein from the Pseudomonas aeruginosa T3SS, discovered by employing single cell B cell sorting from cystic fibrosis patients. The mAbs were directed at the proteins PscF and PcrV. They particularly focused on two mAbs binding the T3SS with the potential of blocking activity. The supplemented biochemical analysis was crystal structures of P3D6 Fab complex. They also compared the blocking activity with mAbs that were described in previous studies, using an assay that evaluated the toxin injection. They conducted mechanistic structure analysis and found that these mAbs might act through different mechanisms by preventing PcrV oligomerization and disrupting PcrVs scaffolding function.

      Strengths:

      The antibiotic resistance crisis requires the development of new solutions to treat infections caused by MDR bacteria. The development of antibacterial mAbs holds great potential. In that context, this report is important as it paves the way for the development of additional mAbs targeting various pathogens that harbor the T3SS. In this report, the authors present a comparative study of their discovered mAbs vs. a commercial mAb currently in clinical testing resulting in valuable data with applicative implications. The authors investigated the mechanism of action of the mAbs using advanced methods and assays for the characterization of antibody and antigen interaction, underlining the effort to determine the discovered mAbs suitability for downstream application.

      Weaknesses:

      Although the information presented in this manuscript is important, previous reports regarding other T3SS structures complexed with antibodies, reduce the novelty of this report. Nevertheless, we provide several comments that may help to improve the report. The structural analysis of the presented mAbs is incomplete and unfortunately, the authors did not address any developability assessment. With such vital information missing, it is unclear if the proposed antibodies are suited for diagnostic or therapeutic usage. This vastly reduces the importance of the possibly great potential of the authors' findings. Moreover, the structural information does not include the interacting regions on the mAb which may impede the optimization of the mAb if it is required to improve its affinity.

      As described in the manuscript (Fig. 6), our mAbs are markedly less effective in every in vitro T3SS inhibition assay than the mAbs recently described by Simonis et al. They are therefore very unlikely to outperform these mAbs in in vivo animal models of P. aeruginosa infection. Considering the high cost of animal experiments and ethical concerns-and in accordance with the Reduction principal of the 3Rs guidelines-we chose not to pursue in vivo experiments. Instead, we focused on leveraging the new isolated mAbs to investigate the mechanisms of action and structural features of anti-PcrV mAbs.

      Following the reviewer's suggestion, we have now added mAb interaction features into the structural data presented in the manuscript. However, based on the efficiency data, the structural analysis and the mechanistic insights presented, we do not consider further therapeutic use and optimization of our mAbs to be warranted.

      Reviewer #2 (Public review):

      Summary:

      Desveaux et al. performed Elisa and translocation assays to identify among 34 cystic fibrosis patients which ones produced antibodies against P. aeruginosa type three secretion system (T3SS). The authors were especially interested in antibodies against PcrV and PcsF, two key components of the T3SS. The authors leveraged their binding assays and flow cytometry to isolate individual B cells from the two most promising sera, and then obtained monoclonal antibodies for the proteins of interest. Among the tested monoclonal antibodies, P3D6 and P5B3 emerged as the best candidates due to their inhibitory effect on the ExoS-Bla translocation marker (with 24% and 94% inhibition, respectively). The authors then showed that P5B3 binds to the five most common variants of PcrV, while P3D6 seems to recognize only one variant. Furthermore, the authors showed that P3D6 inhibits translocon formation, measured as cell death of J774 macrophages. To get insights into the P3D6PcrV interaction, the authors defined the crystal structure of the P3D6-PcrV complex. Finally, the authors compared their new antibodies with two previous ones (i.e., MEDI3902 and 30-B8).

      Strengths:

      (1) The article is well written.

      (2) The authors used complementary assays to evaluate the protective effect of candidate monoclonal antibodies.

      (3) The authors offered crystal structure with insights into the P3D6 antibody-T3SS interaction (e.g., interactions with monomer vs pentamers).

      (4) The authors put their results in context by comparing their antibodies with respect to previous ones.

      Weaknesses:

      The authors used a similar workflow to the one previously reported in Simonis et al. 2023 (antibodies from cystic fibrosis patients that included B cell isolation, antibody-PcrV interaction modeling, etc.) but the authors do not clearly explain how their work and findings differentiate from previous work.   

      We employed a similar mAb isolation pipeline to that used by Simonis et al., beginning with the screening of a cohort of cystic fibrosis patients chronically infected with P. aeruginosa. As in Simonis et al., we isolated specific B cells using a recombinant PcrV bait, followed by single-cell PCR amplification of immunoglobulin genes. The main differences in methodology between the two studies are as follows: i) the use of individuals from different cohorts, and therefore having different Ab repertoires; ii) the nature of the screening assays, although in both cases the screening was focused on the inhibition of T3SS function; iii) the PcrV labeling strategy, with Simonis et al. employing direct labeling, whereas we used a biotinylated tag combined with streptavidin;

      The number of specific mAbs obtained and produced was higher in Simonis et al. (47 versus 9 in our study). They sorted B cells from three individuals compared to two in our work and possibly started with a larger amount of PBMCs per donor, which may account for the higher number of specific B cells and mAbs isolated. Considering that the strategies were overall very similar, the greater number of mAbs isolated in Simonis et al. likely explains, to a large extent, why they identified mAbs targeting different epitopes compared to ours, including highly potent mAbs that we did not recover. 

      Our modeling study, unlike that of Simonis et al., which relied on an AlphaFold prediction of the multimeric structure of P. aeruginosa PcrV, was based on the experimentally determined structure of the homologous Salmonella SipD pentamer, as described in the manuscript. Furthermore, we compared our mAb P3D6 not only with 30-B8 from Simonis et al., but also with MEDI3902. Finally, in contrast to the approach of Simonis et al., we used functional assays to investigate the differences in mechanisms of action among these mAbs, which target three distinct epitopes.

      (2) Although new antibodies against P. aeruginosa T3SS expand the potential space of antibodybased therapies, it is unclear if P3D6 or P5B3 are better than previous antibodies. In fact, in the discussion section authors suggested that the 30-B8 antibody seems to be the most effective of the tested antibodies.  

      As explained above and shown in the Results section (Figure 6), the 30-B8 mAb is markedly more effective at inhibiting T3SS activity in both in vitro assays used.

      (3) The authors should explain better which of the two antibodies they have discovered would be better suited for follow-up studies. It is confusing that the authors focused the last sections of the manuscript on P3D6 despite P3D6 having a much lower ExoS-Bla inhibition effect than P5B3 and the limitation in the PcrV variant that P3D6 seems to recognize. A better description of this comparison and the criteria to select among candidate antibodies would help readers identify the main messages of the paper. 

      The P3D6 mAb shows stronger inhibitory activity than P5B3 in the two assays used, as shown in Supplementary Figure 1. An error in the table in Figure 2B was corrected and this table now reflects the results presented in Supplementary Figure 1. 

      The final sections of the manuscript focus on P3D6, which is more potent than P5B3, and for which we successfully determined a co-crystal structure with PcrV*. All parallel attempts to obtain a structure of P5B3 in complex with PcrV* failed. The P3D6-PcrV* structure was used to analyze epitope recognition and mechanisms of action in comparison to previously described mAbs. As previously mentioned, we do not consider further studies aimed at therapeutic development and optimization of our mAbs to be justified given the current data. Therefore, we believe that the main message of the paper is adequately captured in the title.

      (4) This work could strongly benefit from two additional experiments:

      (a) In vivo experiments: experiments in animal models could offer a more comprehensive picture of the potential of the identified monoclonal antibodies. Additionally, this could help to answer a naïve question: why do the patients that have the antibodies still have chronic P. aeruginosa infections? 

      As explained above, the mAbs we isolated are significantly less potent than those described by Simonis et al., and are therefore unlikely to outperform the best anti-PcrV candidates in vivo. In light of the data, and considering ethical concerns related to animal use in research and budgetary constraints, we decided not to proceed with in vivo experiments.

      There are a number of reasons that may explain why patients with anti-PcrV Abs blocking the T3SS can still be chronically infected with Pa. First these Abs may be at limiting concentration, particularly in sites where Pa replicates, and thus unable to clear infection. in addition, it has been described that the T3SS is downregulated in chronic infection in cystic fibrosis patients. This suggests that a therapeutic intervention with T3SS inhibiting Abs may be more efficient if done early in cystic fibrosis patients to prevent colonization when Pa possesses an active T3SS. Finally, T3SS is not the only virulence mechanism employed by P. aeruginosa during infection. Indeed, multiple protein adhesins and polysaccharides are important factors facilitating the formation of bacterial biofilms that are crucial for establishing chronic persistent infection. In this regard, a combination of Abs targeting different factors on the P. aeruginosa surface may be needed to treat chronic infections.  

      (b) Multi-antibody T3SS assays (i.e., a combination of two or more monoclonal antibodies evaluated with the same assays used for characterization of single ones). This could explore the synergistic effects of combinatorial therapies that could address some of the limitations of individual antibodies. 

      Given the high potency of the Simonis mAbs and the mechanisms of action highlighted by our analysis, it is unlikely that our mAbs would synergize with those described by Simonis. Additionally, since our two mAbs cross-compete for binding, synergy between them is also improbable.

      Reviewer #1 (Recommendations for the authors):

      Line 166: How was the serum-IgG purified? (e.g., protein A, protein G). 

      Protein A purification was used, as now mentioned in the manuscript. Purified Igs were thus predominantly IgG1, IgG2 and IgG4, as indicated.

      (2) Line 196: When mentioning affinities, it is preferable to present in molar units. 

      To facilitate comparisons, Ab concentrations were presented in µg/mL as in Simonis et al.

      (3) Line 206: The author states that P3D6 displays significantly reduced ExoS-Bla injection (Figure 2B), but according to the presented table, ExoS-Bla inhibition was higher for P5B3. Additionally, when using "significantly", what was the statistical test that was used to evaluate the significance? Please clarify.

      We thank the reviewer for pointing out this inconsistency. Indeed, the names of P3D6 and P5B3 were exchanged when building the table related to Figure 2B. The corrected version of this figure is now presented in the new version of the manuscript. An ANOVA was performed to evaluate the significance of the observed difference (adjusted p-values < 0.001) and it is now mentioned in the figure caption.  

      (4) Line 215: "P3B3" typo.

      This was corrected.

      (5) Figure 3B: Could the author explain the higher level of ExoS-Bla injection when using VRCO1 antibody compared to no antibody.  

      A slightly higher level of the median is observed in the case of three variants out of five. However, this difference is not statistically significant (p-value > 0.05).

      (6) Supplement Figure 1: the presented grey area is not clear (is it the 95%CI?) and how was the IC50 calculated? With what model was it projected? Are the values for IC50 beyond the 100µg/mL mark a projection? It seems that projecting such greater values (such as the IC50 of over 400µg/mL for variant 5) is prone to high error probability.

      The grey area represents the 95% confidence interval (95% CI) and it is now mentioned in the figure caption. The IC50 and 95% CI were both inferred by the dose-response drc R package based on a three-parameters log-logistic model and it is now explained in the Materials & Methods section. The p-values for IC50 beyond the 100µg/mL were below 0.05 but we agree that such extrapolation should be considered with precaution (see below our response to comment number 7).

      (7) Line 227: The author describes that P5B3 has similar IC50 values towards variants 1-4, but the  IC50 towards variant 5 is substantially higher with 400µg/mL, albeit the only difference between variant 4 and 5 is the switch position 225 Arg -> Lys which are very similar in their properties. Please provide an explanation. 

      As explained in our response to comment number 6, we agree that the comparison of IC50 that are estimated to be close or higher than the highest experimental concentration is somehow speculative. Indeed, we performed further statistical analysis that showed no significant difference between the IC50 toward the five PcrV variants of mAb P5B3. In contrast, the difference between the IC50 of mAbs P5B3 and P3D6 toward variant 1 is statistically significant. This is now explained in the manuscript.

      (8) Line 233: Pore assembly: It is not clear how the data was normalized. The authors mention the methods normalization against the wildtype strain in the absence of antibodies, but did not elaborate clearly if the mutant strain has the same base cytotoxicity as the wild type. It would be helpful to show the level of cytotoxicity of the wild type compared to the mutant in the absence of antibodies to understand the baseline of cytotoxicity of both strains.  

      In these experiments we did not use the wild-type strain. As explained, the only strain that allows the measurement of pore formation by translocators PopB/PopD is the one lacking all effectors. All the experiments were done with this strain, and all the measurements were normalized accordingly. 

      (9) Figure 4: The explanation is redundant as it is clearly stated in the results. It would be better for the caption to describe the figure and leave interpretation to the results section. Overall, this comment is relevant to all figure captions, as it will reduce redundancy. My suggestion is to keep the figure caption as a road map to understand what is shown in the figure. For example, the Figure 4 caption should include that the concentration is presented in logarithmic scale, what is the dashed line, what is the grey area (what interval does it represent?), what each circle represents, and what is the regression model used? 

      Figure captions have been improved as suggested. 

      (10) Line 432: The authors apparently misquoted the original article describing the chimeric form PcrV* by describing the fusion of amino acids 1-17 and 136-249. I quote the original article by Tabor et al. "[...] we generated a truncated PcrV fragment (PcrVfrag) comprising PcrV amino acids 1-17 fused to amino acids 149-236 [...]". Additionally, how does the absence of amino acid 21 in the variant affect the conclusion? 

      Our construct was inspired by the one described in Tabor et al. but was not identical. We have therefore replaced "was constructed based on a construct by Tabor et al." for "whose design was inspired by the construct described in Tabor et al."

      Amino acid 21 is only absent in the construct used for crystallization experiments; all other experiments looking at Ab activity were performed with bacteria bearing full-length PcrV. The difference in P3D6 activity between variants V1 and V2-appears to be explained by the nature of the residue at position 225, according to the structural data, as explained now in more detail in the manuscript. Accordingly, the difference in efficiency of P3D6 against the V1 and V2  variants is explained by the residue at position 225, as both variants have the same residue at position 21. However, while the nature of the residue at position 225 appears to explain the absence of efficiency of the Ab for the variants studied, an impact of residue 21 could not be totally ruled out in putative variants with a Ser at 225 but different amino acids at 21.

      (11) Line 569: Missing word - ESRF stands for European Synchrotron Radiation Facility. 

      This has been corrected.

      (12) Line 268-269 (Figure 5A): The description of the alpha helices in relation to the figure is incomplete. Helices 2,3 and 5 are not indicated. 

      Indeed, since the structure is well-known and in the interest of visibility and simplicity, we only included the most relevant secondary structure features.

      (13) Line 271-272: It would be good to elaborate on the exact binding platform between LC and HC of the Fab and the residues on the PcrV side. For example, the author could apply the structure to PDBePISA (EMBL-EBI) which will provide details about the interface between the PcrV and the antibody. It is very interesting to learn what regions of the antibody are in charge of the binding, such as: is the H-CDR3 the major contributor of the binding or are other CDRs more involved? Additionally, in line 275 they state that the substitution of Ser 225 with Arg or Lys is consistent with the P3D6 insufficient binding. What contributed to this result on the antibodies side? 

      In order to address this question, we are now providing a LigPlot figure (supplementary Figure 3) in which specific interactions between PcrV* and the Fab are shown.

      (14) Line 291: It is unclear from what data the authors concluded that anti-PscF targets 3 distinct regions of PscF. 

      The data are shown in Supplementary Table 2, as mentioned in the manuscript. We have now modified the order of the anti-PcrV mAbs in the table to better illustrate the three identified epitope clusters (Sup table 2). Similarly, the anti-PscF mAbs appear to group into three clusters as P3G9 and P5E10 only compete with themselves, while mabs P3D6 and P5B3 compete with themselves and each other.

      (15) Line 315: It is preferable to introduce results in the results section instead of the discussion. 

      While preparing the manuscript, we initially included these results as a separate paragraph in the Results section, but ultimately chose the current format to improve flow and avoid redundancy.

      (16) Supplement Figure 2: What was the regression model used to evaluate IC50, and what is presented in the graph? What is the dashed line (see comment for Figure 4 above)? 

      The regression is based on a three-parameters log-logistic model and the light-colors area correspond to the 95% IC. The dashed lines visually represents 100% of ExoS-Bla injection. These information are now mentioned in the figure caption.

      (17) Figure 6B: It would be better to show an additional rotation of the PcrV bound by Fab 30-B8 that corresponds to the same as the one represented with Fab MEDI3092. This would clear up the differences in binding regions. Same for Fab P3D6. 

      Figure 6 already depicts two orientations. Despite the fact that we agree that additional orientations could be of interest, we believe that this would add unnecessary complexity to the figure, and would prefer to maintain the figure as is, if possible.

      (18) Line 356-358: The author proposes an experiment to support the suggested mechanism of P3D6, it would follow up with a bio-chemical analysis showing the prevention of PcrV oligomerization in its presence. 

      We understand the reviewers’ comment regarding the potential use of biochemical approaches to test our hypothesis. However, this not currently feasible as we have been unable to achieve in vitro oligomerization of PcrV alone, possibly due to the absence of other T3SS components, such as the polymerized PscF needle.

      (19) Line 456: Missing details about how the ELISA was conducted including temperature, how the antigen was absorbed, plate type, etc. 

      Experimental details have been added.

      (20) Line 460: Missing substrate used for alkaline phosphatase. 

      The nature of the substrate was added to the methods.

    1. Anchoring Bias

      You see a shirt on a clothing rack with an original price tag of $100 and a sale price tag of $60. Even if you wouldn't normally spend more than $40 on a shirt, the initial, higher price of $100 serves as an anchor, making the sale price of $60 seem like a great deal in comparison.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      “Alternative possibilities are discussed regarding the prior and likelihood of the model. Given that the second case study inspired the introduction of the zero-inflation likelihood, it is not clear how applicable the general methodology is to various datasets. If every unique dataset requires a tailored prior or likelihood to produce the best results, the methodology will not easily replace more traditional statistical analyses that can be applied in a straightforward manner. Furthermore, the differences between the results produced by the two Bayesian models in case study 2 are not discussed. In specific regions, the models provide conflicting results (e.g., regions MH, VPMpc, RCH, SCH, etc.), which are not addressed by the authors. A third case study would have provided further evidence for the generalizability of the methodology.”

      We hope in this paper to propose a ‘standard workflow’ for these data; this standard workflow uses the horseshoe prior and we propose that this is the approach used to describe cell count data instead of the better established, but to our thinking, inefficient, t-testing approach.

      The horseshoe prior is robust and allows a partially-pooled model to used while weighing-up the contribution of different data points. This is an analogue of excluding outliers and, in any analysis it is normal to investigate further if there are points being excluded as outliers. Often this reveals a particular challenge with the data, in the case of the data here, there are a lot of zeros, indicating that some samples should be excluded because the preparation failed to tag cells rather than because there were no cells to tag. This idea behind the ZIP example is to show that the Bayesian method can allow for this sort of further investigation and, indeed, as the reviewer notes this sort of extended analysis is often bespoke, tailored to the data.

      We have clearly failed to explain that the ‘standard workflow’ we propose replace the more traditional methods is the first one we describe, with the horseshoe prior; this produces better results on both datasets than the traditional approach. However, we also feel it is useful to show how a more tailored follow-on can be useful; we need to make it clear that this is intended as an illustration of an ‘optional extra’ rather than a part of the more straightforward ‘standard workflow’.

      To make this clearer we have made altered the text in several locations:

      • end of Introduction: added clarifying sentence “Here, our aim is to introduce a ‘standard’ Bayesian model for cell count data. We illustrate the application of this model to two datasets, one related to neural activation and the other to developmental lineage. For the second dataset, we also demonstrate a second example extension Bayesian model.”

      • Section Hierarchical modeling: “Our goal in both cases is to quantify group differences in the data. We present a ‘standard’ hierarchical model. This model reflects the experimental features common to cell count experiments and reflects the hierarchical structure of cell count data; the standard model is designed to deal robustly and efficiently with noise. On some occasions, to reflect a specific hypotheses, the structure of a particular experiment or an observed source of noise, this model can be further refined or changed to target the analysis. We will give an example of this for our second dataset.”

      • Section Horseshoe prior: “The alternative is via a flexible prior such as the horseshoe Carvalho et al., 2010; Piironen and Vehtari, 2017. This more generic option may be suitable as a default ‘standard’ approach in the typical case where outliers are poorly understood.”

      • Discussion: word ‘standard’ added to sentence: “Our standard workflow uses a horseshoe prior, along with the partial pooling, this allows our model to deal effectively with outliers.”

      • Discussion: modified sentence “The horseshoe prior model workflow we have exhibited here is intended as a standard approach.”

      Indeed, because the horseshoe prior deals robustly with outliers, whereas the ZIP is intended to model the outliers, any substantial difference between the two should be examined carefully. The referee is right to point out that we have not explained this in any detail and has helpfully listed a few brain regions were there are differences. This is useful, particularly since the examples listed illustrate in a useful way the opportunities and hazards this sort of data presents. To address this, we have added a new version of Figure 6 to the revised manuscript

      Previously Figure 6 showed two example brain regions: MPN and TMd. We have now added MH and SCH to the figure, and new text commenting on the insights the plots provide, both in the Results and Discussion.

      Reviewer #2 (Public review):

      “A clearer link between the experimental data and model-structure terminology would be a benefit to the non-expert reader.”

      This is a very good point and we are acutely aware through our own work how difficult it can be moving between fields with different research goals, different scientific cultures and different technical vocabularies. Just as it can be difficult translating from one language to another without losing nuance and meaning, it can be a real challenge finding technical terms that are useful for the non-expert reader while retaining the precision the application requires! In the long run, we hope that, just as some of the very specialized vocabulary that surrounds frequentist statistics has become familiar to to the working experimental scientists, the precise terminology involved in Bayesian modelling will become familiar and transparent. However, in advance of that day, we have included a glossary of terms at the end of the main text, and have made numerous small tweaks to make sure that link between data and model terminology is clearer and better explained.

      Reviewer #1 (Recommendations fro the authors):

      (1) “I would strongly recommend that the authors include more case studies in the manuscript, and address the qualitative differences between the different versions of the model.”

      We agree that our method will only become established when it is applied to more datasets, we hope to contribute to further analysis and we know other people are already using the approach on their own data. We do, however, feel that adding more datasets to this paper will make it longer and more complex; the plan, instead, is to use the method on novel datasets to test specific hypotheses, so that the results will include novel scientific findings as well as adding another illustration of the Bayesian approach applied to data that is already well studied.

      (2) “Figure 6 is not discussed in the main text.”

      We had discussed the results presented in Figure 6 in the second paragraph of the section “Case study two – Ontogeny of inhibitory interneurons of the mouse thalamus”, however the reviewer is right in that we did not directly refer to the Figure – this was an oversight. In any case, in the revised manuscript we present a new version of Figure 6 (in response to above comment), which is now explicitly cited in the text.

      Revised Figure 6: Example data and inferences highlighting model discrepancies. On the left under ‘data’: boxplots with medians and interquartile ranges for the raw data for four example brain regions. The shape of each point pairs left and right hemisphere readings in each of the five animals. On the right under ‘inference’: HDIs and confidence intervals are plotted. Purple is the Bayesian horseshoe model, pink is the Bayesian ZIP model, and orange is the sample mean. The Bayesian estimates are not strongly influenced by the zero-valued observations (MPN, SCH, TMd) or large-valued outliers (MH) and have means close to the data median. This explains the advantage of the Bayesian results over the confidence interval.

      Reviewer #2 (Recommendations from the authors):

      (1) “This is a generally well-written methodology paper that also provides the underlying code as a resource. As a reviewer outside both cell-count modelling and hierarchical-Bayesian approaches (though with a general interest in the topics) I found the method a little difficult to follow and would have liked to have been left with a better understanding of how the method is applied to the data. For example, in Figure 1 we are introduced to brain region count, animal count, and “items”. Then in the next line: pooling, model, structure, population and etc in subsequent lines. It is not clear what the subscripts (the pools?) are referring to: are they different regions R or animals N? These terms need to be better linked to the data and/or trimmed. Having said that, the later results look like a solid contribution to the field with a significant reduction in uncertainty from the Bayesian approach over the frequentist one. A future version of the manuscript, therefore, would benefit from greater precision of language as well as an economy and greater focus of terms linking the method to the biology. This is particularly the case around the exposition parts in Figure 1, Figure 2, and the “Hierarchical modelling” section.”

      This is another important point. We have now made numerous small changes to tighten up the text in the paper, in response to both this point and the next point.

      (2) “Language throughout could be sharpened. Subjectivity like “surprising outliers” could be removed and quirky grammar like “often small, ten is a typical” improved. There are also typos “an rate” etc that should be tidied up.”

      As per previous response, we have made numerous tweaks and small improvements and feel that the paper is stronger in this respect.

      (3) “Figure 1 caption. “It is a spectrum that depends” Is spectrum the right word here? Also, “thicker stroke” what does this refer to? Wasn’t immediately clear. In A, why is the whole animal within the R bracket that signifies brain regions, and then the brain regions are within the N bracket that signifies whole animals? Apart from the teal colouring, what are the other coloured regions in the image referring to? Improving this first figure would greatly help a reader unfamiliar with the context of the approach.”

      We have replaced the word “spectrum” with “continuum”. We have replaced “ Observed quantities have been highlighted with a thicker stroke in the graphical model.” with “The observed data quantities, y<sub>i</sub> to y<sub>n</sub>, are highlighted with a thick line in the model diagrams”. We have added the following text to describe the red and green lines in panel A: “green and red lines indicate regions labeled as damaged”.

      (4) “On P2 there is no discussion of priors when running through the advantage of the Bayesian approach. Is this a choice or an oversight? Priors do have a role in the later analysis.”

      A short additional paragraph has been added to the introduction outlining the advantage of having a prior, but also noting that the obligation to pick a prior can be intimidating and that suggesting priors is one of the contributions of our paper: “A Bayesian model also includes a set of probability distributions, referred to as the prior, which represent those beliefs it is reasonable to hold about the statistical model parameters before actually doing the experiment. The prior can be thought of as an advantage, it allows us to include in our analysis our understanding of the data based on previous experiments. The prior also makes explicit in a Bayesian model assumptions that are often implicit in other approaches. However, having to design priors is often considered a challenge and here we hope to make this more straightforward by suggesting priors that are suitable for this class of data.”

      (5) “On P4 more explanation would help greatly. Formulas like 23*10*4 or 50*6+50*4 are presented without explanation. What are the various numbers being multiplied? Regions, animals? Again, a clearer link between biological data and model structure would be advantageous.”

      We have now modified this line to clearly state the numbers’ sources: “The index i runs over the full set of samples, which in this case comprises 23 brain regions ×10 animals ×4 groups ≈920 datapoints in the first study, and 50 brain regions × 6 HET animals + 50 brain regions × 4 KO animals ≈500 datapoints in the second.”

      (6) “P6 and Results. Is it possible to show examples of the data set sampled from? Perhaps an image or two for the two experiments. Both Figures 4 and 5 as they currently are could be made slightly smaller to provide space for a small explanatory sub-panel. This would help ground the results.”

      This is a good idea. We have now added heatmap visualisations of both entire datasets to revised versions of Figures 4 and 5 (assuming that this is what the reviewer was suggesting).

    1. Reviewer #1 (Public review):

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

    2. Author response:

      Reviewer #1 (Public review)

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      We thank the reviewer for the detailed and accurate description of the data shown and its relevance to further our understanding of MPS assembly mechanism and function.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      We will consider the inclusion of live imaging experiments using the expressión of C-terminus-tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we will explore how to develop these experiments to generate data for inclusion in a revised submission.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      We don´t discard the presence of “nano beads” in these axons. It was recently suggested that the normal morphology of axons is indeed resembling “pearls-on-a-string” (Griswold et al., 2025), with “nano beads” separated by thin tubular "connectors" (also referred to as NSV, for non-synaptic varicosities). However, it is unlikely that the gap-patch pattern of beta2-spectrin can be attributed to such a morphology, given we used formaldehyde as fixative, and Griswold and colleagues show that the use of aldehyde-based fixatives do not preserve NSVs. We are able to see scattered axonal enlargements (“micro beads”), as we described in distal portions in Fig. 1C(C2) and E. However, the number, appearance and staining of these are not compatible with the gap-patch pattern in beta2-spectrin. Moreover, we would have expected to see these NSVs in our extensive STED imaging, yet we did not. We will discuss this further in the resubmission.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      Our stainings are for tubulin protein isoforms beta-III and alpha-II. That is, they would label microtubules, but free tubulin as well. The slight decrease in intensity for tubulin within gaps is indeed something to investigate, but we don´t interpret this as “patchy microtubules”. If the Reviewer refers to Fig. 2C-D, it is actually difficult to anticipate the slight decrease in intensity by the naked eye. To further support this, we will consider including stainings and quantitative analyses for microtubules in the resubmission. We are familiar with the use of permeabilizing conditions during fixation (in protocols known as “cytoskeletal fixation” to label microtubules (and not free tubulin).

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      We agree with the apparent discrepancy. However, one has to take into account that these axons are still elongating even at 2 weeks in culture. Hence, at any time point, there is a new axonal compartment recently added, and hence, with low beta2-spectrin and no MPS. Also, the dynamical evolution of the MPS has to take into account beta2-spectrin supply. If supply is somehow lower than a given threshold, it is expected that there will be more gaps, given the new, more distant parts of the axons have a lower supply of beta2-spectrin . To explore this formally, we are working on simulations of these multifactorial dynamic systems to better understand this, that together with key experimental observations would enhance our understanding into overall MPS assembly in growing axons. However, findings for this project will be the subject of another manuscript.

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      The results with the co-treatment with Latrunculin A and Staurosporine are indeed intriguing, and provide clear evidence that the gap-and-patch pattern arises from local assembly of the MPS, requiring new actin filaments. However, the fact that F-actin within the pre-formed MPS seems unaffected is not surprising. There are many different populations of F-actin in axons (i.e. MPS rings, longitudinal filaments, actin patches, actin trails). Latrunculin A affects filaments indirectly. The target of Latrunculin A is not actin filaments, but free monomers. It ultimately affects actin filaments as they end up losing monomers, and devoid of new monomers, filaments get shorter and eventually disappear. The drastic decrease in F-actin in our axons reflects that. The fact that F-actin in the MPS is preserved only speaks to the fact that these filaments are stable -if they are not losing monomers in the time frame of the treatment, the filament remains unaffected. We will support this with more observations and imaging and with a more extensive discussion summarizing the literature on the matter in the resubmission.

      On the other hand, the use of F-actin stabilizing drugs (like Jasplakinolide) would have a different effect. We will study how an experiment with these drugs could be informative of the process under investigation for the resubmission

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

      We agree with the reviewer's interpretation. A virtue of our experimental model and our interpretations of the observations in fixed cells is that it gives rise to informative questions such as the ones posed by the reviewer. As stated above, we will consider the inclusion of live imaging experiments using the expressión of C-terminus tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we think we can provide the evidence suggested.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Gazal et al. describe the presence of unique gaps and patches of BetaII-spectrin in medial sections of long human motor neuron axons. BII-spectrin, along with Alpha-spectrin, forms horizontal linkers between 180nm spaced F-actin rings in axons. These F-actin rings, along with the spectrin linkers, form membrane periodic structures (MPS) which are critical for the maintenance of the integrity, size, and function of axons. The primary goal of the authors was to address whether long motor axons, particularly those carrying familial mutations associated with the neurodegenerative disorder ALS, show defects in gaps and patches of BetaII-spectrin, ultimately leading to degradation of these neurons.

      We thank the reviewer for the detailed and accurate description of the data shown.

      Strengths:

      The experiments are well-designed, and the authors have used the right methods and cutting-edge techniques to address the questions in this manuscript. The use of human motor neurons and the use of motor neurons with different familial ALS mutations is a strength. The use of isogenic controls is a positive. The induction of gaps and patches by the kinase inhibitor staurosporine and their rescue by Latrunculin A is novel and well-executed. The use of biochemical assays to explore the role of calpains is appropriate and well-designed. The use of STED imaging to define the periodicity of MPS in the gaps and patches of spectrin is a strength.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      The primary weakness is the lack of rigorous evaluation to validate the proposed model of spectrin capture from the gaps into adjacent patches by the use of photobleaching and live imaging. Another point is the lack of investigation into how gaps and patches change in axons carrying the familial ALS mutations as they age, since 2 weeks is not a time point when neurodegeneration is expected to start.

      We will consider the inclusion of live imaging experiments using the expressión of tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we believe we can provide the evidence suggested. We don't discard the notion that axons carrying familial ALS mutations will show defects in MPS formation and/or stability when observed at longer culture times, or under culture conditions that promote neuronal aging (Guix et al., 2021). Thus, we will continue to work with these cells, but the goal of that project lies well beyond the primary message of the present manuscript, and we anticipate that the revised version will not include new data on this matter. 

      Reviewer #3 (Public review):

      Summary:

      Gazal et al present convincing evidence supporting a new model of MPS formation where a gap-and-patch MPS pattern coalesces laterally to give rise to a lattice covering the entire axon shaft.

      Strengths:

      (1) This is a very interesting study that supports a change in paradigm in the model of MPS lattice formation.

      (2) Knowledge on MPS organization is mainly derived from studies using rat hippocampal neurons. In the current manuscript, Gazal et al use human IPS-derived motor neurons, a highly relevant neuron type, to further the current knowledge on MPS biology.

      (3) The quality of the images provided, specifically of those involving super-resolution, is of a high standard. This adequately supports the conclusions of the authors.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      (1) The main concern raised by the manuscript is the assumption that staudosporine-induced gap and patch formation recapitulates the physiological assembly of gaps and patches of betaII-spectrin.

      We will further explore the inclusion of more measurements of other parameters and variables towards establishing whether these gaps-and-patches patterns are equivalent structures in control and staurosporine-treated cells. 

      (2) One technical challenge that limits a more compelling support of the new model of MPS formation is that fixed neurons are imaged, which precludes the observation of patch coalescence.

      As stated before regarding similar comments by other reviewers, we will consider the inclusion of live imaging experiments in the revised version of the manuscript.

      Nicolas Unsain, PhD, and Thomas Durcan, PhD.

      References

      Griswold, J.M., Bonilla-Quintana, M., Pepper, R. et al. Membrane mechanics dictate axonal pearls-on-a-string morphology and function. Nat Neurosci 28, 49–61 (2025). https://doi.org/10.1038/s41593-024-01813-1

      Guix F.X., Marrero Capitán A., Casadomé-Perales A., Palomares-Pérez .I, López Del Castillo I., Miguel V., Goedeke L., Martín M.G., Lamas S., Peinado H., Fernández-Hernando C., Dotti C.G. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021 Jun 28;4(8):e202101055. doi: 10.26508/lsa.202101055. Print 2021 Aug.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      Reviewing Editor Comments:

      We suggest that the authors add power estimates to assess whether the sample size is sufficient, given the strength and variability of the genetic instruments. It would also be helpful to present effect estimates for the tobacco instruments alone, to clarify their independent contribution and improve the interpretation of the joint models. In addition, the role of pleiotropy should be addressed more clearly, including which model is considered primary. Stratified analyses by smoking status are encouraged, as prior studies indicate that BMI-HNC associations may differ between smokers and non-smokers. Finally, the comparison with previous studies should be revised, as most reported null findings without accounting for tobacco instruments. If this study finds an association, it should not be framed as a replication

      We would like to highlight that post-hoc power calculations are often considered redundant since the statistical power estimated for an observed association is directly related to its p-value[1]. In other words, the uncertainty of the association is already reflected in its 95% confidence interval. However, we understand power calculations may still be of interest to the reader, so we have incorporated them in the revised manuscript. We have edited the text as follows (lines 151-155):“Consequently, we used the total R<sup>2</sup> values to examine the statistical power in our study[42]. However, we acknowledge that the value of post-hoc power calculations is limited, since the statistical power estimated for an observed association is already reflected in the 95% confidence interval presented alongside the point estimate[43].” We have also added supplementary figures 1 and 2.

      We can see that when using the latest HEADSpAcE data we were able to detect BMI-HNC ORs as small as 1.16 with 80% power, while the GAME-ON dataset only permitted the detection of ORs as small as 1.26 using the same BMI instruments (Figure B). We have explained these figures in the results section as follows (lines 257-263): “Using the BMI genetic instruments (total R<sup>2</sup>= 4.8%) and an α of 0.05, we had 80% statistical power to detect an OR as small as 1.16 for HNC risk (Supplementary Figure 1). For WHR (total R<sup>2</sup>= 3.1%) and WC (total R<sup>2</sup>= 4.4%), we could detect odds ratios (ORs) as small as 1.20 and 1.17, respectively. This is an improvement in terms of statistical power compared to the GAME-ON analysis published by Gormley et al.[28], for which there was 80% power to detect an OR as small as 1.26 using the same BMI genetic instruments (Supplementary Figure 2).”

      The reason we use inverse variance weighted (IVW) Mendelian randomization (MR) to obtain our main results rather than the pleiotropy-robust methods mentioned by the reviewer/editors (i.e., MR-Egger, weighted median and weighted mode) is that the former has greater statistical power than the latter[2]. Hence, instead of focussing on the statistical significance of the pleiotropy-robust analyses, we consider it is of more value to compare the consistency of the effect sizes and direction of the effect estimates across methods. Any evidence of such consistency increases our confidence in our main findings, since each method relies on different assumptions. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even though they are not equally powered. It is true that our results for the genetically predicted effects of body mass index (BMI) on the risk of head and neck cancer (HNC) differ across methods. This is precisely what led us to question the validity of our main finding (suggesting a positive effect of BMI on HNC risk). We have now clarified this in the methods section of the revised manuscript as advised. Lines 165-171:

      “Because the IVW method assumes all genetic variants are valid instruments[44], which is unlikely the case, three pleiotropy-robust two-sample MR methods (i.e., MR-Egger[45], weighted median[46] and weighted mode[47]) were used in sensitivity analyses. When the magnitude and direction of effect estimates are consistent across methods that rely on different assumptions, the main findings are more convincing. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even if they are not equally powered.”

      We understand that the reviewer/editors are concerned that we do not have a robust model to explore the role of tobacco consumption in the link between BMI and HNC. However, we have a different perspective on the matter. If indeed, the main IVW finding for BMI and HNC is due to pleiotropy (since some of the pleiotropy-robust methods suggest conflicting results), then the IVW multivariable MR method is a way to explore the potential source of this bias[3]. We were particularly interested in exploring the role of smoking in the observed association because smoking and adiposity are known to influence each other [4-9] and share a genetic basis[10, 11].

      We agree that it would be useful to present the univariable MR effect estimates for smoking behaviour and HNC risk along those obtained using multivariable MR. We have now included the univariable MR estimates for both smoking behaviour variables as a note under Supplementary Table 11 and in the manuscript (lines 316-318): “In univariable IVW MR, both CSI and SI were linked to an increased risk of HNC (CSI OR=4.47 per 1-SD higher CSI, 95%CI 3.31–6.03, p<0.001; SI OR=2.07 per 1-SD higher SI 95%CI 1.60–2.68, p<0.001) (Additional File 2: note in Supplementary Table 11).”

      We understand the appeal of conducting stratified MR analyses by smoking status. However, we anticipate such analyses would hinder the interpretation of our findings as they can induce collider bias which could spuriously lead to different effect estimates across strata[12, 13].

      We thank the reviewer/editors for their comment regarding the way we frame of our findings. We have now edited the discussion section to highlight our study results are different to those obtained in studies that do not account for smoking behaviour. Lines 398-401: “With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      Reviewer #1 (Recommendations for the authors):

      The authors do share a table of the percent variance explained of the different genetic instruments, which vary widely, and that table is very welcome because we can get some sense of their utility. The problem is that they don't translate that into a power estimate for the case-control study size that they use. They say that it is the biggest to date, which is good, but without some formal power estimate, it is not particularly reassuring. A framework for MR study power estimates was reported in PMID: 19174578, but that was using very simple MR constructs in use in 2009, and it isn't clear to me if that framework can be used here. That power paper suggests that weak genetic instruments need very large sample sizes, far larger than what is used in the current manuscript. I am unable to estimate the true strength of the instruments used here, and so I am unsure of whether power is an issue or not.

      We have now included power calculations in our manuscript to address the reviewer’s concerns. Nevertheless, as mentioned above, post-hoc power calculations are of limited value, as statistical power is already reflected in the uncertainty around the point estimates (the 95% confidence intervals). Hence, it is important to avoid drawing conclusions regarding the likelihood of true effects or false negatives based on these calculations.

      Although the hypothesis here is that smoking accounts for the apparent BMI association previously reported for HNC, it would have been preferable to see the estimates for their 2 genetic instruments for tobacco alone. The current results only show the BMI instruments alone and then with the tobacco instruments. I would like to see what the risk estimates are for the tobacco instrument alone, so that I can judge for myself what happens in the joint models. As presented, one can only do that for the BMI instruments.

      We thank the reviewer for this comment. The univariable IVW MR estimate of smoking initiation was OR=2.07 (95%CI 1.60 to 2.68, p<0.001), while the one for comprehensive smoking index was OR=4.47 (95%CI 3.31 to 6.03, p<0.001). We have included this information in the manuscript as requested (please see response to reviewing editor above).

      On line 319, they write that "We did not find evidence against bias due to correlated pleiotropy..." I find this difficult to parse, but I think it means that they should believe that correlated pleiotropy remains a problem. So again, they seem to see their primary model as compromised, and so do I. This limitation is again stated by the authors on lines 351-352.

      We apologise if the wording of the sentence was not easy to understand. When using the CAUSE method, we did not find evidence to reject the null hypothesis that the sharing (correlated pleiotropy) model fits the data at least as well as the causal model. In other words, our CAUSE finding and the inconsistencies observed across our other sensitivity analyses led us to believe that our main IVW MR estimate for BMI-HNC was likely biased by correlated pleiotropy. We believe it is important to explore the source of this bias, which is why we used multivariable MR to investigate the direct effect of BMI on HNC risk while accounting for smoking behaviour.

      In the following paragraphs (lines 358-369), the authors state that their findings are consistent with prior reports, but that doesn't seem to be the case if we take their primary BMI instrument as representing the outcome of this manuscript. Here, they find an association between the BMI instrument and HNC risk, but in each of the other papers they present the primary finding was null without the extensive model changes or the aim of accounting for tobacco with another instrument. I don't see that as replication.

      This is a good point. We have now edited the discussion of our manuscript to avoid giving the impression that our findings replicate those from studies that do not account for smoking behaviour in their analyses. We have edited lines 384-401 as follows:

      “Previous MR studies suggest adiposity does not influence HNC risk[27-29]. Gormley et al.[28] did not find a genetically predicted effect of adiposity on combined oral and oropharyngeal cancer when investigating either BMI (OR=0.89 per 1-SD, 95% CI 0.72–1.09, p=0.26), WHR (OR=0.98 per 1-SD, 95% CI 0.74–1.29, p=0.88) or waist circumference (OR=0.73 per 1-SD, 95% CI 0.52–1.02, p=0.07) as risk factors. Similarly, a large two-sample MR study by Vithayathil et al.[29] including 367,561 UK Biobank participants (of which 1,983 were HNC cases) found no link between BMI and HNC risk (OR=0.98 per 1-SD higher BMI, 95% CI 0.93–1.02, p=0.35). Larsson et al.[27] meta-analysed Vithayathil et al.’s[29] findings with results obtained using FinnGen data to increase the sample size even further (N=586,353, including 2,109 cases), but still did not find a genetically predicted effect of BMI on HNC risk (OR=0.96 per 1-SD higher BMI, 95% CI 0.77–1.19, p=0.69). With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      We also deleted part of a sentence in the discussion section, so lines 416-418 now look as follows: “An important strength of our study was that the HEADSpAcE consortium GWAS used had a large sample size which conferred more statistical power to detect effects of adiposity on HNC risk compared to previous MR analyses[27-29].”

      On lines 384-386 they note a strength is that this is the largest study to date, but I would reiterate that larger and more powerful does not equate to adequately powered.

      This is true. We have included power calculations in the manuscript as requested.

      It's well known that different HNC subsites have different etiologies, as they mention on lines 391-392, and it is implicit in their use of data on HPV positive and negative oropharyngeal cancer. They say that they did not find evidence for heterogeneity in this study, but that would only be true for the null BMI instrument. The effect sizes for their smoking instruments are strikingly different between the subsites.

      We agree and are sorry for the confusion we may have caused by the way we worded our findings. We have edited the text to clarify that the lack of subsite heterogeneity only applied to our results for BMI/WHC/WC-HNC risk. Lines 418-424 now read as follows:

      “Furthermore, the availability of data on more HNC subsites, including oropharyngeal cancers by HPV status, allowed us to investigate the relationship between adiposity and HNC risk in more detail than previous MR studies which limited their subsite analyses to oral cavity and overall oropharyngeal cancers[28, 68]. This is relevant because distinct HNC subsites are known to have different aetiologies[69], although we did not find evidence of heterogeneity across subsites in our analyses investigating the genetically predicted effects of BMI, WHR and WC on HNC risk.”

      Finally, the literature on mutational patterns gives us strong reason to believe that HNC caused by tobacco are biologically distinct from tumors not caused by tobacco. The authors report in the introduction that traditional observational studies of BMI and HNC have reported different findings in smokers versus never smokers, so I would assume there is a possibility that the BMI instrument could have different associations with tumors of the tobacco-induced phenotype and tumors with a non-tobacco induced phenotype. I would assume that authors have access to the data on self-reported tobacco use behavior, even if they can't separate these tumors by molecular types. Stratifying their analysis by tobacco users or not might reveal different results with the BMI instrument.

      We appreciate the reviewer’s comment. We agree that it would have been interesting to present stratified analyses by smoking status along our main findings. However, we decided against this because of the risk of inducing collider bias in our MR analyses i.e., where stratifying on smoking status may induce spurious associations between the adiposity instruments and confounding factors. Multivariable MR is considered a better way of investigating the direct effects of an exposure (adiposity) on an outcome (HNC) accounting for a third variable (smoking)[14], which is why we opted for this method instead.

      References:

      (1) Heinsberg LW, Weeks DE: Post hoc power is not informative. Genet Epidemiol 2022, 46(7):390-394.

      (2) Burgess S, Butterworth A, Thompson SG: Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37(7):658-665.

      (3) Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C et al: Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019, 4:186.

      (4) Morris RW, Taylor AE, Fluharty ME, Bjorngaard JH, Asvold BO, Elvestad Gabrielsen M, Campbell A, Marioni R, Kumari M, Korhonen T et al: Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium. BMJ Open 2015, 5(8):e008808.

      (5) Taylor AE, Morris RW, Fluharty ME, Bjorngaard JH, Asvold BO, Gabrielsen ME, Campbell A, Marioni R, Kumari M, Hallfors J et al: Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers. PLoS Genet 2014, 10(12):e1004799.

      (6) Taylor AE, Richmond RC, Palviainen T, Loukola A, Wootton RE, Kaprio J, Relton CL, Davey Smith G, Munafo MR: The effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization study. Hum Mol Genet 2019, 28(8):1322-1330.

      (7) Asvold BO, Bjorngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Smith GD, Romundstad PR: Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol 2014, 43(5):1458-1470.

      (8) Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, Martin RM: Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361:k1767.

      (9) Freathy RM, Kazeem GR, Morris RW, Johnson PC, Paternoster L, Ebrahim S, Hattersley AT, Hill A, Hingorani AD, Holst C et al: Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol 2011, 40(6):1617-1628.

      (10) Thorgeirsson TE, Gudbjartsson DF, Sulem P, Besenbacher S, Styrkarsdottir U, Thorleifsson G, Walters GB, Consortium TAG, Oxford GSKC, consortium E et al: A common biological basis of obesity and nicotine addiction. Transl Psychiatry 2013, 3(10):e308.

      (11) Wills AG, Hopfer C: Phenotypic and genetic relationship between BMI and cigarette smoking in a sample of UK adults. Addict Behav 2019, 89:98-103.

      (12) Coscia C, Gill D, Benitez R, Perez T, Malats N, Burgess S: Avoiding collider bias in Mendelian randomization when performing stratified analyses. Eur J Epidemiol 2022, 37(7):671-682.

      (13) Hamilton FW, Hughes DA, Lu T, Kutalik Z, Gkatzionis A, Tilling K, Hartwig FP, Davey Smith G: Non-linear Mendelian randomization: evaluation of effect modification in the residual and doubly-ranked methods with simulated and empirical examples. Eur J Epidemiol 2025.

      (14) Sanderson E, Davey Smith G, Windmeijer F, Bowden J: An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol 2019, 48(3):713-727.

    1. Reviewer #2 (Public review):

      This paper remarkably reveals the identification of plasma membrane repair proteins, revealing spatiotemporal cellular responses to plasma membrane damage. The study highlights a combination of sodium dodecyl sulfate (SDS) and lase for identifying and characterizing proteins involved in plasma membrane (PM) repair in Saccharomyces cerevisiae. From 80 PM, repair proteins that were identified, 72 of them were novel proteins. The use of both proteomic and microscopy approaches provided a spatiotemporal coordination of exocytosis and clathrin-mediated endocytosis (CME) during repair. Interestingly, the authors were able to demonstrate that exocytosis dominates early and CME later, with CME also playing an essential role in trafficking transmembrane-domain (TMD) containing repair proteins between the bud tip and the damage site.

      Weaknesses/limitations:

      (1) Why are the authors saying that Pkc1 is the best characterized repair protein? What is the evidence?

      (2) It is unclear why the authors decided on the C-terminal GFP-tagged library to continue with the laser damage assay, exclusively the C-terminal GFP-tagged library. Potentially, this could have missed N-terminal tag-dependent localizations and functions and may have excluded functionally important repair proteins.

      (3) The use of SDS and laser damage may bias toward proteins responsive to these specific stresses, potentially missing proteins involved in other forms of plasma membrane injuries, such as mechanical, osmotic, etc.). SDS stress is known to indirectly induce oxidative stress and heat-shock responses.

      (4) It is unclear what the scale bars of Figures 3, 5, and 6 are. These should be included in the figure legend.

      (5) Figure 4 should be organized to compare WT vs. mutant, which would emphasize the magnitude of impairment.

      (6) It would be interesting to expand on possible mechanisms for CME-mediated sorting and retargeting of TMD proteins, including a speculative model.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03094

      Corresponding author(s): Saurabh S. Kulkarni

      1. General Statements

      We thank the reviewers for their strong praise of the manuscript, highlighting its rigor, depth, and conceptual importance. They consistently described the study as a beautiful, fascinating, and conceptually strong piece of work that addresses a timely question in multiciliated cells. They also noted the high quality of the data, careful quantification, and the use of multiple genetic and pharmacological approaches, all of which improve the reproducibility and credibility of the findings. Importantly, they emphasized the novelty of discovering a direct mechanistic link between Piezo1-mediated mechanotransduction and Foxj1-driven transcriptional control of multiciliation, representing a significant breakthrough for both the cilia field and mechanobiology more broadly. Collectively, these strengths highlight the manuscript’s wide impact and make it highly suitable for publication in a high-impact journal.

      2. Description of the planned revisions

      Reviewer #1:


      There are two experiments that would significantly strengthen these claims.

      • First if their model is correct then even short term treatment with Yoda1 should induce the pathway and effect centriole numbers. While I appreciate the challenge of long term Yoda1 treatment its not clear to me why it would be needed if short term treatment is setting off the transcriptional cascade. Yoda is used throughout the paper to induce all the pathways but we don't know if it actually induces the phenotype. I think this should be addressed with either short term treatments or a dose response to find a dose that does not lead to skin pealing. It is hard to ignore this obvious deficiency.
      • Second, the model predicts that all of this is to regulate Foxj1 levels to regulate the subtle balance between cell size and centriole number. If this is correct, then the overexpression of Foxj1 should have a profound effect on centriole number in multiciliated cells. This is such an easy experiment that would validate many of the claims. RESPONSE:

      We recognize that the reviewer is asking us to test the sufficiency of the pathway with these comments: “If their model is correct, then they should be able to activate the pathway in one way or another to stimulate centriole number. This is a significant limitation to their overall model.” And “If this is correct, then the overexpression of Foxj1 should have a profound effect on centriole number in multiciliated cells.”

      To address reviewers’ suggestions, we will perform the following experiments.

      1. A brief exposure (15 and 30 mins) to Yoda1 and wait for 3 hours to examine changes in centriole amplification. This will avoid skin peeling from long-term exposure.
      2. A brief exposure to Yoda1 (15 mins) followed by a 30-minute wait period, and the cycle repeats a total of 4 times for a total of 3 hours to examine centriole amplification.
      3. The above two experiments will also be done in a constitutively active-Yap background to increase the probability that synergistic activation can lead to centriole amplification.
      4. Although Foxj1 is essential for multiciliogenesis, it is not sufficient to induce multiciliogenesis, as shown by multiple previous studies. Therefore, we do not expect overexpression of Foxj1 to have a profound effect on centriole number. While we will conduct the experiments because we truly want to address the suggestions and gain insight into the answers ourselves, we respectfully ask the Reviewer to consider the following responses to their concern.

      Yoda1 sufficiency: We agree that testing whether acute Yoda1 treatment can induce centriole amplification is an important question. We will conduct experiments with short-pulse and cyclic Yoda1 exposure, including in a constitutively active-YAP background (listed above), to address this possibility. However, several challenges complicate interpretation: (i) PIEZO1 adapts and desensitizes upon activation, (ii) transient signaling may be sufficient to cause secondary signaling but insufficient to drive stable transcriptional programs required for amplification, and (iii) centriole number is inherently variable, making modest effects difficult to resolve. However, we must recognize that failure to observe sufficiency under these conditions would not invalidate the model for two reasons: 1) absence of evidence is not evidence of absence, and thus, we may not have found the right experimental design. 2) PIEZO1–YAP is a necessary input but not sufficient on its own, as elaborated below. For both reasons, we are very careful about the interpretation of results in the manuscript, which shows that this pathway is necessary for centriole amplification using loss-of-function approaches.

      Foxj1 overexpression: Foxj1 is a well-established regulator essential for motile and multiciliogenesis across species (Xenopus, zebrafish, mouse). Loss of Foxj1 reduces cilia number in MCCs, but its activation alone does not have a profound effect on ciliogenesis/cilia number in MCCs. This is because Foxj1 is a part of a larger network essential for multiciliogenesis. This parallels the behavior of other transcriptional regulators, such as Myb, where loss of function impairs centriole amplification, but overexpression does not drive the formation of supernumerary centrioles. Both studies are seminal discoveries in the field of ciliogenesis, but they did not demonstrate the sufficiency of these molecules/pathways. Thus, our results, demonstrating that Foxj1 is necessary to induce tension-dependent centriole amplification, are significant, as the reviewer mentioned. The lack of Foxj1 sufficiency to induce centriole amplification is not a deficiency of the study, but rather evidence that Foxj1 is a part of a larger network essential for tension-dependent centriole amplification.

      Necessity versus sufficiency: We respectfully emphasize that sufficiency is not a prerequisite for demonstrating the significance of a pathway. Mechanochemical signaling is inherently complex, involving many mechanosensitive proteins and pathways. In our case, mechanical stretch increases centriole amplification, with PIEZO1–YAP signaling identified as a key mediator. However, we do not claim that PIEZO1–YAP alone is sufficient. Other pathways, including cadherin-mediated junctions, F-actin–myosin contractility, integrin–focal adhesion signaling, and nuclear mechanotransduction, likely contribute and may regulate unique downstream effectors that collectively promote centriole amplification. Therefore, PIEZO1–YAP should be regarded as one essential component within a larger network.


      __TIMELINE: __We will perform these additional proposed experiments. Since the first author, a postdoctoral researcher on this manuscript, has started a new job and will be coming in on weekends to complete the experiments, we estimate it will take approximately 2-3 months to finish them.


      Reviewer #2:

      1. Considering the Yap-piezo mechanism of action, the authors' logic for the selection of myb, foxj, plk4 and ccno as transcriptional targets is clear, but the HCR-derived signal and the differences seen in the yap morphants are not very strong, notwithstanding the statistical significance. There appear to be distinct subgroups within the treated populations (in Figure S6B, although these data seem quite different in Fig. 7H, so a comment on the technical differences might be helpful), so that the extent to which Yap1 regulates (Myb-)Foxj1 expression in MCCs is not clearly demonstrated by this experiment. Related to this point, it is unclear why 20-25% of the yap1/ piezo1 MO-treated embryos do not show a decline in FOXj1 in Fig. 6, given the qualitative nature of the scoring. Assuming the KD penetrance would vary on a cell-to-cell basis, rather than an embryo-to-embryo basis, this may suggest that there are additional relevant targets (some of which are discussed by the authors). Single-cell analysis might be a way to address this; however, this is not a trivial experiment, it might be sufficient to include a caveat in the text. Furthermore, the conclusion that Foxj1 regulates centriole amplification in a tension-dependent manner is well-supported by the data.

      RESPONSE: We appreciate the reviewer’s thoughtful observation. Differences in the expression of Foxj1 from experiment to experiment are possible due to a combination of factors, including heterogeneity in MCC development across embryos, slightly different embryonic stages, differences in embryo quality between fertilizations, and variability in morpholino delivery and knockdown penetrance, which can occur both across embryos and on a cell-to-cell basis within an embryo. We also note that technical aspects of HCR RNA-FISH, such as proteinase K treatment and washing steps, can affect signal intensity, potentially contributing to the appearance of distinct subgroups within treated populations.

      We agree that single-cell analysis would be a powerful way to dissect these differences, but as the reviewer notes, this is not a trivial experiment and is beyond the scope of the present study. We have therefore added clarifications in the text and discussion to acknowledge these sources of variability and to highlight the possibility of parallel pathways regulating foxj1 expression.

      ********************************************

      Controls for the knockdowns by the various MOs should be provided.

      RESPONSE: We appreciate the reviewer’s comment. The piezo1 MO has been previously established in Kulkarni et al. (2021). Additionally, the current manuscript includes MO control experiments for both erk2 and yap1, through KD at the 1-cell stage using the MO oligonucleotide, followed by mosaic-rescue with the respective WT RNA constructs (mCherry-ERK2 and yap1-GFP) and a nuclear tracer molecule such as H2B-RFP (Fig. 5, E-H, Fig. S5, C&D, Fig. 3, D-F). The mosaic-rescue is a robust experiment that provides an internal control within the same embryo, thereby avoiding differences that may arise due to embryo-to-embryo variability, embryo quality, or differences in fertilization batches. This approach also serves as a valuable tool for detecting cell-autonomous effects, providing a clear readout against uninjected neighboring cells, as the injected cells are labeled with a tracer. We will perform a similar mosaic-rescue experiment for the foxj1 MO.

      TIMELINE: We will conduct mosaic-rescue experiments for the foxj1 MO. We will need 1 month to complete the experiment.

      ********************************************

      __Minor comments:

      __

      Autocorrection of ERK1/2 or MEK1/2 pathways to 1/2 should be avoided. – We are unclear on this comment. Can reviewer please clarify what they mean.


      Reviewer # 3

      Major concerns

      1- The presented data do not yet establish a specific, direct pathway linking mechanotransduction to centriole number, because the molecular players tested (PIEZO1, Ca²⁺, PKC, ERK, YAP, Foxj1) are highly pleiotropic. As such, the observed centriole number phenotypes, and some of the major conclusions, could be indirect. It is therefore critical to test the specificity and causality of the proposed pathway. This could be done with the authors' own strategies and/or with the following potential approaches:

      • Genetic dependency and sufficiency tests: It could be shown that Yoda1 has no effect in PIEZO1 loss-of-function MCCs, and that wild-type PIEZO1, but not conductance-ad PIEZO1 pore mutants restores Yoda1 responsiveness across centriole number, pERK, and YAP readouts. For example, PIEZO1 C terminus was shown to govern Ca²⁺ influx and ERK1/2 activation. Comparing full length PIEZO1 with a C terminal deletion in MCC restricted rescue; loss of rescue of centriole amplification and ERK/YAP activation with the C terminal deletion can provide a genetics anchored specificity test beyond broad inhibitors.

      RESPONSE:

      • To address the reviewer’s concern, we will test whether Yoda1 affects ERK and Yap activation when Piezo1 is depleted. We appreciate the reviewer’s thoughtful suggestion to employ genetic rescue experiments with Piezo1 mutants. Unfortunately, these are not technically feasible in Xenopus, as the Piezo1 coding sequence is exceptionally large (~7.5 kb)____, and repeated attempts by our group to generate and express stable, translatable transcripts have been unsuccessful. To address genetic dependency and specificity despite these technical barriers, we have employed a combination of orthogonal strategies that together provide strong genetic and mechanistic evidence:

      • Mosaic loss-of-function experiments (Fig. 1) demonstrate that Piezo1 regulates centriole number in a cell-autonomous manner, ruling out global epithelial or indirect tissue-wide effects.

      • Pharmacological activation/inhibition with Piezo1-specific agonist (Yoda1) and inhibitors (GSMTx4, gadolinium) produced consistent phenotypes, including activation of downstream ERK and YAP readouts. Notably, Yoda1 is a Piezo-specific agonist, not a broad pharmacological agent.
      • Downstream pathway dissection (calcium chelation, PKC inhibition, ERK2 depletion, and YAP1 knockdown/rescue) consistently converges on the same phenotypes, reduced centriole amplification and altered Foxj1 expression, providing multiple independent lines of evidence that the Piezo1–Ca²⁺–PKC–ERK–YAP axis specifically controls centriole number.
      • Positive feedback regulation of Piezo1 expression by YAP/Foxj1 (Fig. 7) further strengthens the argument for a pathway-specific role rather than pleiotropic, indirect effects. Taken together, while full-length Piezo1 rescue experiments are technically not possible in Xenopus due to gene size constraints, our data employ state-of-the-art genetic, pharmacological, and orthogonal functional assays to rigorously test pathway specificity. These complementary approaches provide compelling evidence for the causal role of Piezo1-mediated mechanotransduction in centriole number control in MCCs.

      • Downstream bypass/rescue experiments: In PIEZO1 loss-of-function or BAPTA conditions, can enforcing MEK/ERK activation or YAP rescue centriole number defect? Conversely, can MEK inhibitors block Yoda1-induced effects.

      RESPONSE: We appreciate the reviewer’s insightful questions.

      • We will express CA Yap in the Piezo1 KD background to assess if we can rescue centriole number. We also note that the converse experiment has already been performed in our study: 1) PKC inhibition abolishes Yoda1-induced ERK phosphorylation and nuclear localization (Fig. 2), 2) both MEK inhibition and ERK2 depletion block Yoda1-induced Yap activation and nuclear entry (Figs. 4, S2). Thus, we have directly demonstrated that MEK inhibition prevents Yoda1-induced effects, satisfying this aspect of the reviewer’s concern.

      ********************************************

      2- Image quantification and analysis must be described in greater detail in the Methods section, as they are central to the major conclusions of the manuscript. For example, the authors should explain how nuclear, cytoplasmic, and centriole segmentation were performed, and how relative protein levels in the nucleus versus the cytoplasm (e.g., YAP, volume- or area-based) were quantified. Specifically, the thresholds and segmentation criteria applied to different cellular structures under various conditions, as well as the use of Imaris and other software, should be clearly detailed.

      RESPONSE: We will describe the methods in greater detail.

      ********************************************

      3- PIEZO1 mRNA was shown to incrase in a Foxj1 linked feedback loop. Does this increase translate into an increase in total protein levels?

      RESPONSE: If the reviewer is referring to Figure 7B, that is the Piezo1 antibody, so yes, the Piezo1 protein levels have increased.

      If the reviewer is referring to Figure 7C and D, we show that loss of Foxj1 leads to a reduction in Piezo1 mRNA expression.

      ********************************************

      4- Is the proposed signaling cascade active in mammalian multiciliated cells (e.g., airway epithelium). If possible, testing this by using one of the major players of the pathway as a readout such as as ERK phosphorylation, YAP nuclear localization in mammalian MCCs will reveal whether regulation of centriole number through this pathway is conserved and would strengthen the generality.


      RESPONSE: We agree with the reviewer that testing conservation of this pathway in mammalian MCCs is of great interest. Indeed, another group is currently investigating the role of Yap in the mammalian airway epithelium; in their temporally controlled Yap knockout model (the global Yap KO being embryonic lethal), they observed that Yap loss led to a reduction in centriole number. To avoid overlap and direct competition with this ongoing work, we chose to focus our efforts on Xenopus.

      Importantly, Xenopus has become a widely recognized and powerful system for MCC biology, enabling mechanistic dissection of centriole amplification and ciliogenesis. Several key discoveries in the field, including the identification of MCIDAS as a master regulator of MCC fate, were first made in Xenopus before being validated in mammals. Similarly, our study provides a mechanistic framework in Xenopus that can inform and guide ongoing studies in the mammalian airway.

      ********************************************

      5- Throughout the results section, there are multiple times where authors raised specific hypothesis about their data (e.g. foxj1 regulation of number control, apical actin/YAP). However, they have not tested them. These hypothesis are very exciting and if possible, testing experimentally, would strengthen the conclusions associated with them.

      RESPONSE: We are not sure what the reviewer means here by “authors raised specific hypothesis about their data (e.g., foxj1 regulation of number control, apical actin/YAP). However, they have not tested them”,

      BECAUSE:

      • Foxj1 regulation of centriole number: We demonstrate a clear reduction in centriole number upon Foxj1 depletion, and importantly, we extend this finding by showing that the reduction is tension-dependent (Fig. 6). We will perform a rescue assay to demonstrate the specificity.
      • Foxj1 and YAP: We never claimed that Foxj1 regulates YAP expression, and this is not part of our proposed model. Instead, our data show that Piezo1–ERK–YAP signaling regulates Foxj1
      • Foxj1 and apical actin: Foxj1 regulation of apical F-actin has already been established in prior work, and in our study, we clearly observe reduced apical actin intensity in Foxj1-depleted MCCs (Fig. 6). To further strengthen this conclusion, we will provide a quantitative analysis of apical actin intensity in Foxj1 morphants. ********************************************

      __TIMELINE: __We will perform these additional proposed experiments. Since the first author, a postdoc on this manuscript, has started a new job and will be coming in on weekends to finish the experiments, we estimate it will take approximately 2-3 months to complete them.

      Minor comments

      MCC vs non MCC identification (Fig. 1): Clarify how non MCCs were distinguished from MCCs (e.g. markers/criteria). – Can the reviewer please clarify which panel or panels? Or provide more specific text that needs to be changed.

      Add the Kintner group reference linking motile cilia number and centriole number in Xenopus MCCs.– Can the reviewer clarify where and which reference? Thank you.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      Reviewer 2

      Major comments:

      1. It should be clarified whether the immunoblots and the related quantitations in Figs. 2 and S2 are all from separate blots/ exposures. If so, they are not useful as controls, and these blots should be repeated with the relevant samples analyzed in parallel. Size markers and labels should be included (2B, 2G; S2B and S2G). An increase in total ERK would alter the interpretation of the increase in nuclear pERK in the IF experiments. RESPONSE: We thank the reviewer for raising this important point regarding clarification of the immunoblots. All experimental groups were analyzed in parallel with their corresponding controls. Because the primary antibodies for pERK and ERK were both raised in rabbit, we optimized our workflow to prevent protein loss during stripping and to ensure accurate visualization. Specifically, lysates from each experimental group were loaded in duplicate on the same gel, separated by a molecular weight ladder that served as a reference point. After transfer, the blot was cut along the ladder, and the two halves were processed in parallel: one probed with anti-pERK and the other with anti-ERK. This strategy ensured that all samples from a single experiment (e.g., Control and Yoda1-treated groups) were analyzed under identical conditions, with staining and imaging performed together at the same exposure. To enhance clarity, we have provided this data as __uncut, full-length __as Supplemental Figure 7 (Figure S7) in the revised revision.

      ********************************************

      Minor comments:

      1. Reference list should be checked for completeness; some citations lack journal/ volume/ page/ year details. – We have corrected the references.
      2. An 'overexposed' version of the image selected for centrioles in Figure 5F might be included with the Chibby-BFP at the same level as in the other figures. At present, the Yap KD cell in the image appears to have normal centrioles; this is potentially confusing, even though the authors clearly explain the matter in the text. – __We have added a new panel to Fig. 5F to avoid confusion.

      __ 3. It might be clearer to present injected/ uninjected in the same orientation in Fig. 6A and B. – __Unfortunately, that is not possible because the injected and uninjected sides are left and right, and they cannot be in the same orientation.

      __ 4. Figure 7B lacks the schematic described in the figure legend. – We have removed the Schematic sentence from the figure legend. That was an error on our side. Thank you for catching it.


      Reviewer 3


      1. Abstract: "how MCCs regulate centriole/cilia numbers remains a major knowledge gap" overstates the field; please soften to reflect recent advances (mechanics/apical area scaling; PIEZO1 implication). – We changed the text to “incompletely understood”.
      2. GsMTx4 rationale: State that GsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (including PIEZO1) and justify its use alongside Yoda1.– GsMTx4 was used in the previous manuscript, and its use was justified there. Here, we are only comparing the results. However, we have added a sentence describing what GSMTx4 is. We have also included a sentence explaining the use of Yoda1. “GsMTx4, a spider venom peptide used in our previous study, inhibits cationic mechanosensitive channels, including Piezo1.”

      “For this experiment, we used the Piezo1 channel-specific chemical agonist, Yoda1, to increase the sensitivity of Piezo1 and upregulate calcium entry into cells”

      Timeline statement: "Centriole amplification to migration and apical docking takes ~4-5 h (personal observation)" is not appropriate; either cite time lapse literature or include your own time lapse data.– We have added a reference that showed imaging for 2 hours, but it was not enough to capture the entire process from intercalation to maturation, so we also kept “personal observation” still in the manuscript. We are unaware of any study that has done time-lapse imaging for 4 hours to capture the entire process of centriole amplification.

      Redundancy: The description of Yoda1 as a channel specific agonist is repeated; keep only once.- Removed

      "WT yap1 GFP construct previously used by Dr. Lance Davidson ..." should move construct description to Methods and keep only the citation in Results.– We moved it to Methods.

      "(Unpublished data; Dr. Mahjoub)" should be removed unless data are shown.- Removed

      Replace "as shown previously in our eLife paper" with "as we previously showed or shown previously (Kulkarni et al., 2021)".– We have made the change.

      The two hypotheses for how Foxj1 could regulate number under tension (actin remodeling vs. transcriptional control of amplification genes) belong in the Discussion unless tested. Moreover, the part on the discussion on yap sequestration by apical actin and the two possibilities presented also should go do discussion. – We have moved both to the discussion section.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      Reviewer 3

      1- The hypothesis about the centriole pool of Piezo as the mechnosensor for centriole number regulation is very exciting and novel. Can localization controlled variants be used to test whether a centriole associated pool directly senses tension for number control (for example, centrosome targeted PIEZO1 via a PACT tag). Alternatively, broad cellular Ca sensors (GcaMP) or centrosome proximal Ca sensors (e.g., PACT GCaMP) can be used detect local calcium microdomains during tethering or Yoda1 treatment.

      RESPONSE: We appreciate the reviewer's curiosity and excitement; however, these experiments will not alter the conclusion of this paper and will be part of the next study, which aims to delve deeper into how different pools of Piezo1 at centrioles versus cell junctions function in MCCs. To that point, we had thought about these experiments. As mentioned earlier, the Piezo1 coding sequence is exceptionally large (~7.5 kb)____, and repeated attempts by our group to generate and express stable, translatable transcripts have been unsuccessful. Thus, the idea of centrosome-targeted PIEZO1 via a PACT is very exciting; however, it is not technically feasible. Beyond size, PIEZO1 is a trimeric, large plasma-membrane mechanosensitive channel that requires proper ER processing and bilayer incorporation. PACT localizes cargo to the centriole/pericentriolar material, not a membrane compartment; thus, a PACT-anchored PIEZO1 would be membrane-mismatched and almost certainly nonfunctional even if expressed/

      Second, Centrosome-proximal GCaMP (PACT-GCaMP) would show correlation, not causation. This experiment does not address the question “centriole pool of Piezo as the mechanosensor for centriole number regulation”. It will only show if the Ca2+ influx is happening at the basal bodies, but not whether and how that Ca2+ is essential for centriole amplification. For this purpose, we will need to find a way to block Ca2+ influx specifically at basal bodies, rather than junctions, which will require extensive controls.

      We do not claim that any specific Piezo1 or Ca2+ pool is critical for controlling centriole number and thus the suggested experiment would not alter the manuscript's conclusions. We therefore view the above as exciting future directions rather than prerequisites.

      ********************************************

      2- Because the proposed pathway is tension-sensing and YAP pathway is tightly linked to the actin cytoskeleton, the role of actin cysoskeleton in the proposed pathway should be tested directly. The authors mention different hypothesis around actin but has not tested them in the manuscript. For example, actin-depedent sequestration of Yap at the apical surface is intriguing. Does actin polymerization induced by drugs release Yap from the apical surface?

      RESPONSE: We would like to thank the reviewer for their suggestion. As per the reviewers' suggestion, we have moved this section to discussion, stating that “In the future, we plan to address this question by examining how Yap is sequestered by apical actin.”.

      However, we appreciate the reviewer’s enthusiasm and would like to share some experiments we are thinking/planning of to test the hypothesis.

      We plan to examine if the actin polymerization or contractility is responsible for Yap sequestration/release from the apical surface with the following experiments: 1) if the Yap is displaced by Jasplakinolide treatment, which stabilizes filamentous actin, 2) use of ROCK inhibitor to decrease contractility in the absence or presence of Yoda1, 3) Use genetic constructs such as Shroom3 to increase ROCK-mediated contractility to observe changes in Yap localization and dynamics.

      Although these experiments are interesting, they do not alter the conclusion of the current manuscript, and they represent future directions for our research.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This manuscript investigates how mechanical tension is transduced into centriole amplification in Xenopus multiciliated cells (MCCs). Building on prior work that centriole number scales with MCC apical area and that this scaling depends on PIEZO1, the study proposes that MCCs repurpose a canonical mechanochemical axis-PIEZO1 → Ca²⁺/PKC → ERK1/2 → YAP → Foxj1-to regulate centriole number rather than mitosis. The authors use tethered vs. untetheredanimal cap explants to modulate tissue tension, combine pharmacologic perturbations with genetic loss of function and rescue, quantititative image analysis and present a model in which tension gated PIEZO1 activates ERK/YAP, influences Foxj1, and tunes centriole number in MCCs.

      The manuscript tackles an important and timely problem with clear disease relevance. It major advance is their presented model that posits that post mitotic MCCs repurpose a canonical mechanotransduction module to regulate organelle number rather than proliferation. It is a conceptually strong study addressing an important problem with a clean mechanical paradigm. However, to support the central claim that centriole number control is a specific, direct consequence of the PIEZO1-Ca²⁺-ERK/YAP pathway within MCCs, the revision should establish specificity and causality and provide experimental data for some of the major conclusions as detailed below. Addressing these points are critical to support the mechanistic conclusions and impact.

      Major concerns:

      1) The presented data do not yet establish a specific, direct pathway linking mechanotransduction to centriole number, because the molecular players tested (PIEZO1, Ca²⁺, PKC, ERK, YAP, Foxj1) are highly pleiotropic. As such, the observed centriole number phenotypes, and some of the major conclusions, could be indirect. It is therefore critical to test the specificity and causality of the proposed pathway. This could be done with the authors' own strategies and/or with the following potential approaches:

      • Genetic dependency and sufficiency tests: It could be shown that Yoda1 has no effect in PIEZO1 loss-of-function MCCs, and that wild-type PIEZO1, but not conductance-dead PIEZO1 pore mutants restores Yoda1 responsiveness across centriole number, pERK, and YAP readouts. For example, PIEZO1 C terminus was shown to govern Ca²⁺ influx and ERK1/2 activation. Comparing full length PIEZO1 with a C terminal deletion in MCC restricted rescue; loss of rescue of centriole amplification and ERK/YAP activation with the C terminal deletion can provide a genetics anchored specificity test beyond broad inhibitors.

      • Downstream bypass/rescue experiments: In PIEZO1 loss-of-function or BAPTA conditions, can enforcing MEK/ERK activation or YAP rescue centriole number defect? Conversely, can MEK inhibitors block Yoda1-induced effects.

      2) The hypothesis about the centriole pool of Piezo as the mechnosensor for centriole number regulation is very exciting and novel. Can localization controlled variants be used to test whether a centriole associated pool directly senses tension for number control (for example, centrosome targeted PIEZO1 via a PACT tag). Alternatively, broad cellular Ca sensors (GcaMP) or centrosome proximal Ca sensors (e.g., PACT GCaMP) can be used detect local calcium microdomains during tethering or Yoda1 treatment.

      3) Because the proposed pathway is tension-sensing and YAP pathway is tightly linked to the actin cytoskeleton, the role of actin cysoskeleton in the proposed pathway should be tested directly. The authors mention different hypothesis around actin but has not tested them in the manuscript. For example, actin-depedent sequestration of Yap at the apical surface is intriguing. Does actin polymerization induced by drugs release Yap from the apical surface?

      4) Image quantification and analysis must be described in greater detail in the Methods section, as they are central to the major conclusions of the manuscript. For example, the authors should explain how nuclear, cytoplasmic, and centriole segmentation were performed, and how relative protein levels in the nucleus versus the cytoplasm (e.g., YAP, volume- or area-based) were quantified. Specifically, the thresholds and segmentation criteria applied to different cellular structures under various conditions, as well as the use of Imaris and other software, should be clearly detailed.

      5) PIEZO1 mRNA was shown to incrase in a Foxj1 linked feedback loop. Does this increase translate into an increase in total protein levels?

      6) Is the proposed signaling cascade active in mammalian multiciliated cells (e.g., airway epithelium). If possible, testing this by using one of the major players of the pathway as a readout such as as ERK phosphorylation, YAP nuclear localization in mammalian MCCs will reveal whether regulation of centriole number through this pathway is conserved and would strengthen the generality.

      7) Throughout the results section, there are multiple times where authors raised specific hypothesis about their data (e.g. foxj1 regulation of number control, apical actin/YAP). However, they have not tested them. These hypothesis are very exciting and if possible, testing experimentally, would strengthen the conclusions associated with them.

      Minor concerns:

      1) Abstract: "how MCCs regulate centriole/cilia numbers remains a major knowledge gap" overstates the field; please soften to reflect recent advances (mechanics/apical area scaling; PIEZO1 implication).

      2) MCC vs non MCC identification (Fig. 1): Clarify how non MCCs were distinguished from MCCs (e.g. markers/criteria).

      3) GsMTx4 rationale: State that GsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (including PIEZO1) and justify its use alongside Yoda1.

      4) Timeline statement: "Centriole amplification to migration and apical docking takes ~4-5 h (personal observation)" is not appropriate; either cite time lapse literature or include your own time lapse data.

      5) Redundancy: The description of Yoda1 as a channel specific agonist is repeated; keep only once.

      6) "WT yap1 GFP construct previously used by Dr. Lance Davidson ..." should move construct description to Methods and keep only the citation in Results.

      7) "(Unpublished data; Dr. Mahjoub)" should be removed unless data are shown.

      8) Add the Kintner group reference linking motile cilia number and centriole number in Xenopus MCCs.

      9) Replace "as shown previously in our eLife paper" with "as we previously showed or shown previously (Kulkarni et al., 2021)".

      10) The two hypotheses for how Foxj1 could regulate number under tension (actin remodeling vs. transcriptional control of amplification genes) belong in the Discussion unless tested. Moreover, the part on the discussion on yap sequestration by apical actin and the two possibilities presented also should go do discussion.

      Significance

      This manuscirpt dissects Piezo1-mediated mechanotransduction to regulation of centriole number in Xenopus multiciliated cells (MCCs) via Ca²⁺, ERK/YAP, and Foxj1. While Piezo1 and its downstream effectors have been implicated broadly in mechanosensation, cellular tension responses, and transcriptional regulation, their specific role in centriole nubmer control in MCCs has been unknown By integrating pharmacological manipulation, genetic perturbation, and functional readouts, the authors demonstrate that this pathway directly influences centriole number.

      The findings extend published knowledge in two main ways:

      (1) they connect a mechanosensitive ion channel to the transcriptional program governing Foxj1 expression and multiciliation, a mechanistic link not previously defined, and

      (2) they highlight the pleiotropic yet coordinated nature of Piezo1 signaling in organelle biogenesis. This work will be of broad interest to cell and developmental biologists studying ciliogenesis, epithelial differentiation, and mechanotransduction, as well as to biomedical researchers interested in multicilaited cells and ciliopathies. By situating a well-studied mechanosensor within the context of MCC biology, the study opens new directions for understanding how tissue-level forces shape organelle number control and function.

      At the same time, the impact of the study is weakened by concerns regarding the causability and specificity of the pathway, since the signaling components examined are highly pleiotropic and it remains challenging to separate direct effects on centriole number from broader cellular consequences. The causal relationships among Piezo1 activity, downstream signaling, and Foxj1 expression require stronger substantiation, and the extent to which this pathway operates in mammalian multiciliated cells remains an open question. Addressing these limitations would strengthen the robustness, generality, and translational relevance of the conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigated how the type-I interferon response (ISG) and antigen presentation (AP) pathways are repressed in luminal breast cancer cells and how this repression can be overcome. They found that a STING agonist can reactivate these pathways in breast cancer cells, but it also does so in normal cells, suggesting that this is not a good way to create a therapeutic window. Depletion of ADAR and inhibition of KDM5 also activate ISG and AP genes. The activation of ISG and AP genes is dependent on cGAS/STING and the JAK kinase. Interestingly, although both ADAR depletion and KDM5 inhibition activate ISG and AP genes, their effects on cell fitness are different. Furthermore, KDM5 inhibitor selectively activates ISG and AP genes in tumor cells but not normal cells, arguing that it may create a larger therapeutic window than the STING agonist. These results also suggest that KDM5 inhibition may activate ISG and AP genes in a way different from ADAR loss, and this process may affect tumor cell fitness independently of the activation of ISG and AP genes.

      The authors further showed that KDM5 inhibition increases R-loops and DNA damage in tumor cells, and XPF, a nuclease that cuts R-loops, is required for the activation of ISG and AP genes. Using H3K4me3 CUT&RUN, they found that KMD5 inhibition results in increased H3K4me3 not only at genes, but also at repetitive elements including SINE, LINE, LTR, telomeres, and centromeres. Using S9.6 CUT&TAG, they confirmed that R-loops are increased at SINE, LINE, and LTR repeated with increased H3K4me3. Together, the results of this study suggest that KMD5 inhibition leads to H3K4me3 and R-loop accumulation in repetitive elements, which induces DNA damage and cGAS/STING activation and subsequently activates AP genes. This provides an exciting approach to stimulate the anti-tumor immunity against breast tumors.

      KDM5 inhibition activates interferon and antigen presentation genes through R-loops.

      Strengths:

      A new approach to make breast tumors "hot" for anti-tumor immunity.

      Weaknesses:

      Future in vivo studies are needed to show the effects of KDM5 inhibitors on the immunotherapy responses of breast tumors.

      Comments on revised version:

      The authors have adequately addressed my comments.

    2. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers for their careful and positive assessment of our manuscript. Maybe our findings are best summarized in the model below, showing that KDM5 inhibition/loss mediates a viral mimicry and DNA damage response through the generation of R-loops in genomic repeats. This is a different mechanism from the more well studied double-stranded RNA-induced “viral mimicry” response. Our studies also suggest that KDM5 inhibition may have a larger therapeutic window than STING agonists, since KDM5 inhibition seemingly does not induce “viral mimicry” in normal breast epithelial cells. 

      Author response image 1.

      Model of viral mimicry activation. De-repression of repetitive elements may trigger dsRNA formation, which activates the RIG-1/MDA5 pathway, as well as PKR. Alternatively, derepression of these elements may induce transcription replication conflicts (TRCs), resulting in R-loop formation. R-loops can lead to DNA damage, and/or activate the cGAS/STING pathway. Both the MAVS pathway and the cGAS/STING pathway converge to activate type I interferon (IFN) responses, resulting in decreased cell fitness and/or increased immunogenicity.

      We do agree with the assessment that the study would be strengthened by in vivo studies. However, there are 4 different isoforms of KDM5 (3 in females), and existing KDM5specific inhibitors do not have adequate PK/PD properties for in vivo studies. We would also like to note that most mouse studies have not been proven to accurately predict immunotherapy responses in patients. Future studies in ex vivo tumor models would strengthen the clinical relevance of these studies. In the interim, we have added some normal macrophage studies in Figure S5 and an example of studies in normal T-cells below. Such studies will also be important to ensure that future KDM5 inhibitors do not have adverse effects on the immune system. Here, we observe that KDM5 inhibition appears to have neutral or slightly reduced T cell viability with KDM5 inhibition (Author response image 2a). However, KDM5 inhibition also results in increased CD107a expression in T-cells, indicative of a more cytotoxic phenotype (Author response image 2b). These studies suggest that KDM5 inhibitors do not have significant adverse effects on T cells or macrophages (figure S5) in the normal immune environment.

      Author response image 2.

      KDM5 inhibition does not have significant adverse effects on T-cells. a) Fold change proliferation of T-cells from 2 different human donors (left and right panels on graph) activated with 0.25ug/ml CD3 and treated with the indicated concentrations of C48 or a positive control (CBLB) compared to vehicle controls. b. FACS plots and histograms of CD107a surface expression (x-axis) versus forward scatter (FSC, y-axis) of T-cells from 2 different humans donors activated with 0.25ug/ml or 0.5mug/ml CD3 and treated with the indicated concentrations of C48.

      Specific comments and answers to Reviewer #1:

      We have added some additional analysis of data from other breast cancer cell lines to strengthen our points (Figure S2f, Figure S3e, Figure S4g-h, k.) We have also uploaded all the data to Geo with the following accession numbers :

      GSE296387: H3K4me3 CUT-and-Tag data

      GSE296584: S9.6 CUT-and-Tag data

      GSE296974: RNA-sequencing data

      Responses to Reviewer #1 (Recommendations for the authors):

      (1) We have not conducted genomic studies comparing KDM5 expression to retroelement activation status in the tumor data sets but recognize that this is important for future studies. Again, there are several KDM5 isoforms and looking at repeat expression in these larger data sets is complex. We have added some data correlating KDM5 expression with ISG signatures in Figure S3j-l as well as in the graph below (Author response image 3). The correlation with ISG and AP signatures is modest, but strongest for KDM5B and C in breast cancer data sets, consistent with our disruption data for these 2 isoforms. As mentioned above, we do agree that future studies of KDM5s along with a broader analysis of other epigenetic modifying enzymes over repeats in various cancer types will shed light on the role of histone modifying enzymes in suppressing “viral mimicry” in tumors.

      Author response image 3.

      Correlation between gene expression and IFN gene set GSVA scores in breast cancer cell lines. a) Pearson correlation score between gene expression and IFN signature (ISG) gene set variation analysis (GSVA) scores in breast cancer cell lines as reported in DepMap. Higher ranks indicate an inverse correlation between expression of the individual gene and the expression of the ISG gene set. Correlation ranks for KDM5A, B and C are highlighted. b) as in a), but comparing gene expression to antigen presentation (AP) GSVA scores.

      (2) We apologize for the mislabeling in figure 2B – has been corrected in the revised version.

      (3) We agree that blocking the cGAS/STING pathway, only partially rescues the ISREGFP and HLA-A, B, C phenotype in HCC1428 cells. We have added data (Figure S2f) showing that this rescue is stronger in MCF7 cells. It is possible that the MDA5/MAVS pathway may also contribute to activation of the Type I interferon response. However, we have data that MAVS plays a minor (if any) role in this context, as MAVS KO minimally decreases C48-induced ISRE-GFP activity and HLA-A, B, C surface expression in HCC1428 cells (added Figure S2g).

      Furthermore, there is no significant increase in dsRNA observed (using J2 antibody as a readout in immunofluorescence experiments) with C48 treatment as compared to 5’-azacytidine treatment or ADAR K/O (data not included). However, we have not performed MAVS/PKR K/O experiments to completely rule out the involvement of the dsRNA sensing pathways.

      (4) These experiments were performed in the operetta imaging system, rather than confocal imaging, and therefore we do not have such images. Quantification of RNaseH1-GFP in the whole cell is reported in the figure, as RNaseH1-GFP signal is increased in both the nucleus and the cytoplasm with C48 treatment. This is not unexpected, as our data suggest that R-loop formation occurs in repetitive regions of the genome that are de-repressed by KDM5 inhibition in the nucleus, and the RNA/DNA hybrids, generated from R-loops, may activate cGAS/STING pathway in the cytoplasm.

      (5) Disruption of siXPF and siXPG is relatively toxic in itself. Complete knockouts in breast cancer cells were not viable and we partially knocked down XPF using siRNA instead. We do agree that these kinds of rescue studies need to be expanded upon in future studies, but they served as further proof of the conclusions presented here.

      (6) We have provided all the data in Geo and alternative representations can be made.

      (7) Unfortunately, CUT-and-Tag experiments were not performed in cells expressing siXPF and therefore we cannot provide this data. However, XPF has been previously shown to be responsible for excising R-loops from the genome, rendering them detectable by cGAS/STING in the cytoplasm (Crossley et al, 2022, referenced in the current MS). Therefore, while we demonstrate that XPF knockdown attenuates type I IFN pathway activation upon KDM5 inhibition, it may not necessarily reduce R-loop formation in retroelements; it may just prevent their excision and downstream cGAS/STING activation. We do agree that CUT-and-Tag experiments in cells treated with siXPF versus siControl will have to be performed in the future to test this hypothesis.

      Responses to Reviewer #2 (Recommendations for the authors):

      (1) We have modified the text as well as the figure legend to state that this is a simplistic representation of the pathway in normal cells. As stated in the introduction, these pathways can be modified in tumors. The data presented suggest that the dsRNA pathway can be activated in all breast cancer cell lines tested, whereas more variation is observed in the activation of the STING pathway.  

      (2) The ADAR guides target ADAR 110 and p150 but not ADAR2. This has been clarified in the text.  

      (3) The guides have been renamed in the figure as the reviewer suggests.  

      (4) It has been shown by others that KDM5 can occupy the STING promoter (https://pubmed.ncbi.nlm.nih.gov/30080846/); which supports the reviewer’s suggestion that STING upregulation in HMECs may be due to increased H3K4me3 at the STING gene. However, we argue that STING upregulation is not sufficient to activate “viral mimicry” due to the absence of “tumor-specific R-loops” (due to an increase in TRC in tumor cells) in normal cells. It is interesting to note that the S9.6 signal in subtelomeric regions is increased in HMECS similar to what is observed in tumor cells. However, the S9.6 signal over other repeats is not (Author response image 4), suggesting that C48-induced increases over non-telomeric repeats are tumor specific. This suggests that the tumor-specific increases in R-loop formation, which lead to “viral mimicry” activation, are not driven by those formed in subtelomeric regions. Future studies will have to expand on these findings.

      Author response image 4.

      Percent of S9.6 reads that align to repetitive genome in HMEC cells. (a) % of total aligned S9.6 reads that map to subtelomeric region in HMEC cells treated with DMSO or 2.5 μM C48. (b) % of total aligned S9.6 reads that map to repetitive elements in general in HMEC cells treated as in a).

      (5) Clarity on R-loop quantification has been added to the figure legend as well as in the Materials and Methods section. Mean fluorescence intensity in the whole cell (this includes both nuclear and cytoplasmic signals) was quantified together and normalized to the number of DAPI-stained nuclei per well. As mentioned above all quantified in the Operetta imaging system.

      (6) We have added some data that shows that increases in H3K4me3 is observed in and around ISGs upon KDM5 inhibition (Figure S4f). However, without time course experiments it is difficult to assess whether these are direct effects of the KDM5 inhibitor or indirect effects from activation of Type I IFN (similarly to what has previously been reported with 5’-azacytidine induction of “viral mimicry”, https://pubmed.ncbi.nlm.nih.gov/26317465/).

      (7) We have previously included data showing that S9.6 reads in repeats that do not display C48-mediated increases in H3K4me3 also do not increase with C48 treatment (this is now Figure S4o). In addition, we have added some data showing that repeats with increased H3K4me3 and repeats with increased transcription upon C48 treatment also have increased S9.6 reads. Repeats that display both increases in H3K4me3 and mRNA expression have even greater increases in S9.6 signal compared to repeats that have increases in either one (Figure S4m-n). Taken together, this data suggest that KDM5 inhibition increases H3K4me3 in repeats, thereby allowing for their transcription, which can increase the probability of Transcription replication conflicts (TRC) and R-loop formation at such loci.

      (8) As mentioned earlier in this response, while we observe increased S9.6 reads in subtelomeric regions of HCC1428 cells upon KDM5 inhibition, we also observe this in normal HMEC cells. Since KDM5 inhibition does not induce viral mimicry in HMEC cells, this suggests that R-loops formed in subtelomeric regions do not dictate the response observed with C48 treatment in breast cancer cells.

      We hope that these answers to the reviewers comments as well as the additional data provided strengthens our findings.

  4. accessmedicine-mhmedical-com.libaccess.lib.mcmaster.ca accessmedicine-mhmedical-com.libaccess.lib.mcmaster.ca
    1. Both bind to bacteria, viruses, mycobacteria, and fungi, and enhance phagocytosis and the release of mediators of the immune response by macrophages

      surfactant A&D = innate immunity; tag pathogens for phagocytosis, enhance release of cytokines by macrophages surfactant B = helps arrange phospholipids into lamellar bodies; assist entry of phospholipids into surgace monolayer as alveolar expand during inspiration

    1. Reviewer #1 (Public review):

      Summary:

      The authors present a nanobody-based pulse-labeling system to track yeast NPCs. Transient expression of a nanobody targeting Nup84 (fused to NeonGreen or an affinity tag) permits selective visualization and biochemical capture of NPCs. Short induction effectively labels NPCs, and the resulting purifications match those from conventional Nup84 tagging. Crucially, when induction is repressed, dilution of the labeled pool through successive cell cycles allows the visualization of "old" NPCs (and potentially individual NPCs), providing a powerful view of NPC lifespan and turnover without permanently modifying a core scaffold protein.

      Strengths:

      (1) A brief expression pulse labels NPCs, and subsequent repression allows dilution-based tracking of older (and possibly single) NPCs over multiple cell cycles.

      (2) The affinity-purified complexes closely match known Nup84-associated proteins, indicating specificity and supporting utility for proteomics.

      Weaknesses:

      (1) Reliance on GAL induction introduces metabolic shifts (raffinose → galactose → glucose) that could subtly alter cell physiology or the kinetics of NPC assembly. Alternative induction systems (e.g., β-estradiol-responsive GAL4-ER-VP16) could be discussed as a way to avoid carbon-source changes.

      (2) While proteomics is solid, a comprehensive supplementary table listing all identified proteins (with enrichment and statistics) would enhance transparency.

      (3) Importantly, the authors note that the method is particularly useful "in conditions where direct tagging of Nup84 interferes with its function, while sub-stoichiometric nanobody binding does not." After this sentence, it would be valuable to add concrete examples, such as experiments examining NPC integrity in aging or stress conditions where epitope tags can exacerbate phenotypes. These examples will help readers identify situations in which this approach offers clear advantages.

    1. For $15.95 amonth, Chegg promised answers to homework questions in as little as 30 minutes

      I think ChatGPT is used so vastly because it's free. I remember Chegg, and never using it because of the price tag.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02879 Corresponding author(s): Matteo Allegretti; Alia dos Santos

      1. General Statements

      In this study, we investigated the effects of paclitaxel on both healthy and cancerous cells, focusing on alterations in nuclear architecture. Our novel findings show that:

      • Paclitaxel-induced microtubule reorganisation during interphase alters the perinuclear distribution of actin and vimentin. The formation of extensive microtubule bundles, in paclitaxel or following GFP-Tau overexpression, coincides with nuclear shape deformation, loss of regulation of nuclear envelope spacing, and alteration of the nuclear lamina.

      • Paclitaxel treatment reduces Lamin A/C protein levels via a SUN2-dependent mechanism. SUN2, which links the lamina to the cytoskeleton, undergoes ubiquitination and consequent degradation following paclitaxel exposure.

      • Lamin A/C expression, frequently dysregulated in cancer cells, is a key determinant of cellular sensitivity to, and recovery from, paclitaxel treatment.

      Collectively, our data support a model in which paclitaxel disrupts nuclear architecture through two mechanisms: (i) aberrant nuclear-cytoskeletal coupling during interphase, and (ii) multimicronucleation following defective mitotic exit. This represents an additional mode of action for paclitaxel beyond its well-established mechanism of mitotic arrest.

      We thank the reviewers for their time and constructive feedback. We have carefully considered all comments and have carried out a full revision. The updated manuscript now includes additional data showing:

      • Overexpression of microtubule-associated protein Tau causes similar nuclear aberration phenotypes to paclitaxel. This supports our hypothesis that increased microtubule bundling directly leads to nuclear disruption in paclitaxel during interphase.

      • Paclitaxel's effects on nuclear shape and Lamin A/C and SUN2 expression levels occur independently of cell division.

      • Reduced levels of Lamin A/C and SUN2 upon paclitaxel treatment occur at the protein level via ubiquitination of SUN2.

      • The effects of paclitaxel on the nucleus are conserved in breast cancer cells.

      Full Revision

      We have also edited our text and added further detail to clarify points raised by the reviewers. We believe that our revised manuscript is overall more complete, solid and compelling thanks to the reviewers' comments.

      1. Point-by-point description of the revisions

      Reviewer #1 Evidence, reproducibility and clarity

      This description of the down-regulation of the expression of lamin A/C upon treatment with paclitaxel and its sensitivity to SUN2 is quite interesting but still somehow preliminary. It is unclear whether this effect involves the regulation of gene expression, or of the stability of the proteins. How SUN2 mediates this effect is still unknown.

      We thank the reviewer for this valuable comment. To elucidate the mechanism behind the decrease in Lamin A/C and SUN2 levels, we have now performed several additional experiments. First, we performed RT-qPCR to quantify mRNA levels of these genes, relative to the housekeeping gene GAPDH (Supplementary Figure 3B and O). The levels of SUN2 and LMNA mRNA remained the same between control and paclitaxel-treated cells, indicating that this effect instead occurs at the protein level. We have also tested post-translational modifications as a potential regulatory mechanism for Lamin A/C and SUN2. In addition to the phosphorylation of Ser404 which we had already tested (Supplementary Figure 3C), we have now included additional Phos-tag gel and Western blotting data showing that the overall phosphorylation status of Lamin A/C is not affected by paclitaxel (Supplementary Figure 3E and F). We also pulled-down Lamin A/C from cell lysates and then Western blotted for polyubiquitin and acetyl-lysine, which showed that the ubiquitination and acetylation states of Lamin A/C are also not affected by paclitaxel (Supplementary Figure 3G-I). However, Western blots for polyubiquitin of SUN2 pulled down from cell lysates showed that paclitaxel treatment results in significant SUN2 ubiquitination (Figure 3M and N). Therefore, we propose that the downregulation of SUN2 following paclitaxel treatment occurs by ubiquitin-mediated proteolysis.

      The roles of free tubulins and polymerized microtubules, and thus the potential role of paclitaxel, need to be uncovered.

      We addressed this important point by using an alternative method to stabilise/bundle microtubules in interphase, namely by overexpressing GFP-Tau, as suggested by reviewer 2. Following GFP- Tau overexpression, large microtubule bundles were observed throughout the cytoplasm (Figure 4A), and this resulted in a significant decrease in nuclear solidity (Figure 4B). Furthermore, in cells where microtubule bundles extensively contacted the nucleus, the nuclear lamina became unevenly distributed and appeared patchy (Figure 4C). This supports our hypothesis that the aberrations to nuclear shape and Lamin A/C localisation in paclitaxel-treated cells are due to the presence of microtubules bundles surrounding the nucleus.

      The doses of paclitaxel at which occur the effects described in the paper are not fully consistent with all the conclusions. Most experiments have been done at 5 nM. However, at this dose the effect of lamin A/C over or down expression on the growth (differences in the slopes of the curves in Figure 4A) are not fully convincing and not fully consistent with the clear effect on viability as well (in addition, duration of treatments before assessing vialbility are not specified). At 1 nM, cell growth is reduced and the rescuing effect of lamin over-expression is much more clear (Fig 4A), and the nucleus deformation clear (Fig 2A) but this dose has no effect on lamin A/C expression (Fig 3C), which questions how lamins impact nucleus shape and cell survival. Cytoskeleton reorganisation in these conditions is not described although it could clarify the respective role of force production (suggested in figure 1) and nuclei resistance (shown in figure 2) in paclitaxel sensitivity.

      We thank the reviewer for raising this important point. We have addressed this by conducting additional repeats for the cell confluency measurements to increase the statistical power of our experiments (Figure 5A). Our data now show that GFP-lamin A/C had a statistically significant effect on rescuing cell growth at both 1 nM and 5 nM paclitaxel, while Lamin A/C knockdown exacerbated the inhibition of cell growth at 5 nM paclitaxel but not 1 nM paclitaxel (Figure 5A). In addition, we note that the duration of paclitaxel treatment before assessing viability was specified in the figure legend: "Bar graph comparing cell viability between wild-type (red), GFP-Lamin A/C overexpression (green), and Lamin A/C knockdown (blue) cells following 20 h incubation in 0, 1, 5, or 10 nM paclitaxel." We also repeated cell viability analysis after 48 h incubation in paclitaxel instead of 20 h to allow for a longer time for differences to take effect (Figure 5B).

      We also added figures showing the cytoskeletal reorganisation at both 1 and 10 nM in addition to 0 and 5 nM (Supplementary Figure 1A) showing that microtubule bundling and condensation of actin into puncta correlated with increased paclitaxel concentration. Vimentin colocalised well with microtubules at all concentrations.

      We have also included in our results section further clarification for the use of 5nM paclitaxel in this study. The new section reads as follows: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Finally, although the absence of role of mitotic arrest is clear from the data, the defective reorganisation of the nucleus after mitosis still suggest that the effect of paclitaxel is not independent of mitosis.

      We thank the reviewer for pointing out the need for clarification in the wording of our manuscript. We have reworded the title and relevant sections of our abstract, introduction, and discussion to make it clearer that the effects of paclitaxel on the nucleus are due to a combination of aberrant nuclear cytoskeletal coupling during interphase and multimicronucleation following mitotic slippage. We have also added additional data in support of the effect of paclitaxel on nuclear architecture during interphase. For this, we used serum-starved cells (which divide only very slowly such that the majority of cells do not pass through mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data confirmed that paclitaxel's effects on nuclear solidity, and Lamin A/C and SUN2 proteins levels can occur independently of cell division (Figure 2C; Figure 3H-J). Finally, when we overexpressed GFP-Tau (as discussed above) we observed similar aberrations to nuclear solidity and Lamin A/C localisation. This indicates that these effects occur due to microtubule bundling in interphase, especially as in our study GFP-Tau did not lead to multimicronucleation or appear to affect mitosis (Figure 4).

      Below are the main changes to the text regarding the interphase effect of paclitaxel:

      • Title: "Paclitaxel compromises nuclear integrity in interphase through SUN2-mediated cytoskeletal coupling"

      • Abstract: "Overall, our data supports nuclear architecture disruption, caused by both aberrant nuclear-cytoskeletal coupling during interphase and exit from defective mitosis, as an additional mechanism for paclitaxel beyond mitotic arrest."

      • Introduction: "Here we propose that cancer cells have increased vulnerability to paclitaxel both during interphase and following aberrant mitosis due to pre-existing defects in their NE and nuclear lamina."

      • Discussion: "Overall, our work builds on previous studies investigating loss of nuclear integrity as an anti-cancer mechanism of paclitaxel separate from mitotic arrest14,20,21. We propose that cancer cells show increased sensitivity to nuclear deformation induced by aberrant nuclear-cytoskeletal coupling and multimicronucleation following mitotic slippage. Therefore, we conclude that paclitaxel functions in interphase as well as mitosis, elucidating how slowly growing tumours are targeted."

      minor: a more thorough introduction of known data about dose response of cells in culture and in vivo would help understanding the range of concentrations used in this study.

      As mentioned above, we have now included additional information in our Results section to clarify our paclitaxel dose range: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Significance

      In this manuscript, Hale and colleagues describe the effect of paclitaxel on nucleus deformation and cell survival. They showed that 5nM of paclitaxel induces nucleus fragmentation, cytoskeleton reorganisation, reduced expression of LaminA/C and SUN2, and reduced cell growth and viability. They also showed that these effects could be at least partly compensated by the over-expression of lamin A/C. As fairly acknowledged by the authors, the induction of nuclear deformation in paclitaxel-treated cells, and the increased sensitivity to paclitaxel of cells expressing low level of lamin A/C are not novel (reference #14). Here the authors provided more details on the cytoskeleton changes and nuclear membrane deformation upon paclitaxel treatment. The effect of lamin A/C over and down expression on cell growth and survival are not fully convincing, as further discussed below. The most novel part is the observation that paclitaxel can induce the down-regulation of the expression of lamin A/C and that this effect is mediated by SUN2.

      We appreciate the reviewer's summary and thank them for their time. We believe our comprehensive revisions have addressed all comments, strengthening the manuscript and making it more robust and compelling.

      Reviewer #2 Evidence, reproducibility and clarity This study investigates the effects of the chemotherapeutic drug paclitaxel on nuclear-cytoskeletal coupling during interphase, claiming a novel mechanism for its anti-cancer activity. The study uses hTERT-immortalized human fibroblasts. After paclitaxel exposure, a suite of state- of-the-art imaging modalities visualizes changes in the cytoskeleton and nuclear architecture. These include STORM imaging and a large number of FIB-SEM tomograms.

      We thank the reviewer for the summary and for highlighting our efforts in using the latest imaging technical advances.

      Major comments:

      The authors make a major claim that in addition to the somewhat well-described mechanism of paclitaxel on mitosis, they have discovered 'an alternative, poorly characterised mechanism in interphase'.

      However, none of the data proves that the effects shown are independent of mitosis. To the contrary, measurements are presented 48 hours after paclitaxel treatment starts, after which it can be assumed that 100% of cells have completed at least one mitotic event. The appearance of micronuclei evidences this, as discussed by the authors shortly. It looks like most of the results shown are based on botched mitosis or, more specifically, errors on nuclear assembly upon exit from mitosis rather than a specific effect of paclitaxel on interphase. The readouts the authors show just happen to be measurements while the cells are in interphase.

      Alternative hypotheses are missing throughout the manuscript, and so are critical controls and interpretations.

      We thank the reviewer for highlighting the lack of clarity in our wording. We have revised the title, abstract and relevant sections of the introduction and discussion to clarify our message that the effects of paclitaxel on the nucleus arise from a combination of aberrant nuclear-cytoskeletal coupling during interphase and multimicronucleation following exit from defective mitosis. We have also included additional data where we used slow-dividing, serum-starved cells (under these conditions, the majority of cells do not undergo mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data show that even in these cells there is a clear effect of paclitaxel on nuclear solidity, and Lamin A/C and SUN2 protein levels, further supporting our hypothesis that these phenotypes can occur independently of cell division (Figure 2C; Figure 3H-J). Furthermore, we performed additional experiments where we used overexpression of GFP-Tau as an alternative method of stabilising microtubules in interphase and observed similar aberrations to nuclear solidity and Lamin A/C localisation. As GFP-Tau overexpression did not lead to micronucleation or appear to affect mitosis, these data support the hypothesis that nuclear aberrations occur due to microtubule bundling in interphase (Figure 4). We discuss these experiments in more detail below. Finally, we have reworded the introduction to better introduce alternative hypotheses and mechanisms for paclitaxel's activity.

      The authors claim that 'Previously, the anti-cancer activity of paclitaxel was thought to rely mostly on the activation of the mitotic checkpoint through disruption of microtubule dynamics, ultimately resulting in apoptosis.' The authors may have overlooked much of the existing literature on the topic, including many recent manuscripts from Xiang-Xi Xu's and another lab.

      We would like to note that the paper from Xiang-Xi Xu's lab (Smith et al, 2021) was cited in our original manuscript (reference 14 in both the original and revised manuscripts). We have now also included additional review articles from the Xiang-Xi Xu lab (PMID:36368286 20 and PMID: 35048083 21). Furthermore, we have clarified the wording in both the introduction and discussion to better reflect the current understanding of paclitaxel's mechanism and alternative hypotheses.

      The data, e.g. in Figure 1, does not hold up to the first alternative hypothesis, e.g. that paclitaxel stabilizes microtubules and that excessive mechanical bundling of microtubules induces major changes to cell shape and mechanical stress on the nucleus. Even the simplest controls for this effect (the application of an alternative MT stabilizing drug or the overexpression of an MT stabilizer, e.g., tau).

      We thank the reviewer for suggesting this control experiment using the microtubule stabiliser Tau. We have now included these experiments in the revised version of the manuscript (Figure 4). The overexpression of GFP-Tau supports our hypothesis that cytoskeletal reorganisation in paclitaxel exerts mechanical stress on the nucleus during interphase, resulting in nuclear deformation and aberrations to the nuclear lamina. In particular, GFP-Tau overexpression resulted in large microtubule bundles throughout the cytoplasm (Figure 4A). Notably, in cells where these bundles extensively contacted the nucleus, we observed a significant decrease in nuclear solidity (Figure 4B) accompanied by changes in nuclear lamina organisation, including a patchy lamina phenotype, similar to that induced by paclitaxel (Figure 4C).

      The focus on nuclear lamina seems somewhat arbitrary and adjacent to previously published work by other groups. What would happen if the authors stained for focal adhesion markers? There would probably be a major change in number and distribution. Would the authors conclude that paclitaxel exerts a specific effect on focal adhesions? Or would the conclusion be that microtubule stabilization and the following mechanical disruption induce pleiotropic effects in cells? Which effects are significant for paclitaxel function on cancer cells?

      We thank the reviewer for raising important points regarding the specificity of paclitaxel's effects. We agree that microtubule stabilisation can induce myriad cellular changes, including alterations to focal adhesions and other cytoskeletal components. Our focus on Lamin A/C and nuclear morphology is grounded both in the established clinical relevance of nuclear mechanics in cancer and builds on mechanistic work from other groups.

      Lamin A/C expression is commonly altered in cancer, and nuclear morphology is frequently used in cancer diagnosis35. Lamin A/C also plays a crucial role in regulating nuclear mechanics32 and, importantly, determines cell sensitivity to paclitaxel14. However, the mechanism by which Lamin A/C determines sensitivity of cancer cells to paclitaxel is unclear.

      Our data are consistent with Lamin A/C being a determinant of paclitaxel survival sensitivity. We also provide evidence that paclitaxel itself reduces Lamin A/C protein levels and disrupts its organisation at the nuclear envelope. We directly link these effects to microtubule bundling around the nucleus and degradation of force-sensing LINC component SUN2, highlighting the importance of nuclear architecture and mechanics to overall cellular function. Furthermore, we show that recovery from paclitaxel treatment depends on Lamin A/C expression levels. This has clinical relevance, as unlike cancer cells, healthy tissue with non-aberrant lamina would be able to selectively recover from paclitaxel treatment.

      Minor comments:

      While I understand the difficulty of the experiments and the effort the authors have put into producing FIB-SEM tomograms, I am not sure they are helping their study or adding anything beyond the light microscopy images. Some of the images may even be in the way, such as supplementary Figure 6, which lacks in quality, controls, and interpretation. Do I see a lot of mitochondria in that slice?

      We agree with the reviewer that Supplementary Figure 6 does not add significant value to the manuscript and thank the reviewer for pointing this out. We have removed it from the manuscript accordingly.

      I may have overlooked it, but has the number of cells from which lamellae have been produced been stated?

      We thank the reviewer for pointing out the missing information. For our cryo-ET experiments, we collected data from 9 lamellae from paclitaxel-treated cells and 6 lamellae from control cells, with each lamella derived from a single cell. This information has now been added to the figure legend (Figure 2F).

      Significance

      The significance of studying the effect of paclitaxel, the most successful chemotherapy drug, should be broad and of interest to basic researchers and clinicians.

      As outlined above, I believe that major concerns about the design and interpretation of the study hamper its significance and advancements.

      We appreciate the reviewer's concerns and have performed major revisions to strengthen the significance of our study. Specifically, we conducted two key sets of experiments to validate our original conclusions: serum starvation to control for the effects of cell division, and overexpression of the microtubule stabiliser Tau to demonstrate that paclitaxel can affect the nucleus via its microtubule bundling activity in interphase.

      By elucidating the mechanistic link between microtubule stabilisation and nuclear-cytoskeletal coupling, our findings contribute to our understanding of paclitaxel's multifaceted actions in cancer cells.

      My areas of expertise could be broadly defined as Cell Biology, Cytoskeleton, Microtubules, and Structural Biology.

      Reviewer #3 Evidence, reproducibility and clarity The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      We thank the reviewer for the positive feedback.

      Although similar ideas are published, which may be suitable to be cited? • Paclitaxel resistance related to nuclear envelope structural sturdiness. Smith ER, Wang JQ, Yang DH, Xu XX. Drug Resist Updat. 2022 Dec;65:100881. doi: 10.1016/j.drup.2022.100881. Epub 2022 Oct 15. PMID: 36368286 Review. • Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. Smith ER, Xu XX. J Cancer Biol. 2021;2(4):86-93. doi: 10.46439/cancerbiology.2.031. PMID: 35048083 Free PMC article.

      We thank the reviewer for bringing to our attention these important review articles. In our initial manuscript, we only cited the original paper (14, also reference 14 in the original manuscript). We have now included citations to the suggested publications (20,21).

      We would also like to emphasise how our manuscript distinguishes itself from the work of Smith et al.14,20,21:

      • Cell-type focus: In their study 14, Smith et al. examined the effect of paclitaxel on malignant ovarian cancer cells and proposed that paclitaxel's effects on the nucleus are limited to cancer cells. However, our data extends these findings by demonstrating paclitaxel's effects in both cancerous and non-cancerous backgrounds.

      • Cytoskeletal reorganisation: Smith et al. show reorganisation of microtubules in paclitaxel-treated cells14. Our data show re-organisation of other cytoskeletal components, including F-actin and vimentin.

      • Multimicronucleation: Smith et al. propose that paclitaxel-induced multimicronucleation occurs independently of cell division14. Although we observe progressive nuclear abnormalities during interphase over the course of paclitaxel treatment, our data do not support this conclusion; we find that multimicronucleation occurs only following mitosis.

      • Direct link between microtubule bundling and nuclear aberrations: We show that nuclear aberrations caused by paclitaxel during interphase (distinct from multimicronucleation) are directly linked to microtubule bundling around the nucleus, suggesting they result from mechanical disruption and altered force propagation.

      • Lamin A/C regulation: Consistent with Smith et al.14, we show that Lamin A/C depletion leads to increased sensitivity to paclitaxel treatment. However, we further demonstrate that paclitaxel itself leads to reduced levels of Lamin A/C and that this effect occurs independently of mitosis and is mediated via force-sensing LINC component SUN2. Upon SUN2 knockdown, Lamin A/C levels are no longer affected by paclitaxel treatment.

      • Recovery: Finally, our work reveals that cells expressing low levels of Lamin A/C recover less efficiently after paclitaxel removal. This might help explain how cancer cells could be more susceptible to paclitaxel.

      Only one cell line was used in all the experiments? "Human telomerase reverse transcriptase (hTERT) immortalised human fibroblasts" ? The cells used are not very relevant to cancer cells (carcinomas) that are treated with paclitaxel. It is not clear if the observations and conclusions will be able to be generalized to cancer cells.

      We thank the reviewer for this comment. Our initial study aimed to understand the effects of paclitaxel on nuclear architecture in non-aberrant backgrounds. To show that the observed effects of paclitaxel are also applicable to cancer cells, we have now repeated our main experiments using MDA-MB-231 human breast cancer cells (Supplementary Figure 1B; Supplementary Figure 3P-T). Similar to our findings in human fibroblasts, paclitaxel treatment of MDA-MB-231 led to cytoskeletal reorganisation (Supplementary Figure 1B), a decrease in nuclear solidity (Supplementary Figure 3P), aberrant (patchy) localisation of Lamin A/C (Supplementary Figure 3Q), and a reduction in Lamin A/C and SUN2 levels (Supplementary Figure 3R-T).

      "Fig. 1. (B) STORM imaging of α-tubulin immunofluorescence in cells fixed after 16 h incubation in control media or 5 nM paclitaxel. Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Scale bars = 10 μm." It needs explanation of what is meaning of the different color lines in the lower panels, just different filaments?

      We have added further detail to the figure legend for clarification: "Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Different colours distinguish individual α-tubulin clusters, representing individual microtubule filaments or filament bundles."

      Generally, the figures need additional description to be clear.

      We have added further clarification and detail to our figure legends.

      "Figure 3 - Paclitaxel results in aberrations to the nuclear lamina." The sentence seems not to be well constructed. "Paclitaxel treatment causes ..."?

      We changed this sentence to: "Figure 3 - Paclitaxel treatment results in aberrant organisation of the nuclear lamina and decreased Lamin A/C levels via SUN2."

      Lamin A and C levels are different in different images (Fig. 3B, H): some Lamin A is higher, and sometime Lamin C is higher? This may possibly due to culture condition or subtle difference in sample handling?.

      We thank the reviewer for pointing this out and we agree that the ratio of Lamin A to Lamin C can vary with culture conditions. To confirm that paclitaxel treatment reduces total Lamin A/C levels regardless of this ratio, we repeated the Western blot analysis in three additional biological replicates using cells in which Lamin C levels exceeded Lamin A levels. These experiments confirmed a comparable decrease in total Lamin A/C levels. Figure 3B and 3C have been updated accordingly.

      Also, the effect on Lamin A/C and SUN2 levels are not significant of robust.

      Decreased Lamin A/C and SUN2 levels following paclitaxel treatment were consistently seen across three or more biological repeats (Figure 3B-C), and this could be replicated in a different cell type (MDA-MB-231) (Supplementary Figure 3R-T). Furthermore, Western blotting results are consistent with the patchy Lamin A/C distribution observed using confocal and STORM following paclitaxel treatment (Figure 3A; Supplementary Figure 3A), where Lamin A/C appears to be absent from discrete areas of the lamina.

      Any mechanisms are speculated for the reason for the reduction?

      We have now included additional data which aims to shed light on the mechanism behind the decrease in Lamin A/C and SUN2 levels following paclitaxel treatment. We found that SUN2 is selectively degraded during paclitaxel treatment. Immunoprecipitation of SUN2 followed by Western blotting against Polyubiquitin C showed increased SUN2 ubiquitination in paclitaxel (Figure 3M and N). Furthermore, in our original manuscript, we showed that Lamina A/C levels remained unaltered during paclitaxel treatment in cells where SUN2 had been knocked down. We propose that changes in microtubule organisation affect force propagation to Lamin A/C specifically via SUN2 and that this leads to Lamina A/C removal and depletion. Future work will be needed to fully understand this mechanism.

      In addition to the findings described above, we report no significant changes in mRNA levels for LMNA or SUN2 in paclitaxel (Supplementary Figure 3B and O). Phos-tag gels followed by Western blotting analysis for Lamin A/C also did not detect changes to the overall phosphorylation status of Lamin A/C due to paclitaxel treatment. This is in agreement with our initial data showing no changes to Lamin A/C Ser 404 phosphorylation levels (Supplementary Figure 3E and F). Finally, Lamin A/C immunoprecipitation experiments followed by Western blotting for Polyubiquitin C and acetyl-lysine showed no significant changes in the ubiquitination and acetylation state of Lamin A/C in paclitaxel-treated cells (Supplementary Figure 3G-I).

      Also, the about 50% reduction in protein level is difficult to be convincing as an explanation of nuclear disruption.

      The nuclear lamina and LINC complex proteins play a critical role in regulating nuclear integrity, stiffness and mechanical responsiveness to external forces28,31-33,54,75, as well as in maintaining the nuclear intermembrane distance69,74. In particular, SUN-domain proteins physically bridge the nuclear lamina to the cytoskeleton through interactions with Nesprins, thereby preserving the perinuclear space distance30,69,74. Mutations in Lamins have been shown to disrupt chromatin organization, alter gene expression, and compromise nuclear structural integrity, and experiments with LMNA knockout cells reveal that nuclear mechanical fragility is closely coupled to nuclear deformation47. Furthermore, nuclear-cytoskeletal coupling is essential during processes such as cell migration, where cells undergo stretching and compression of the nucleus; weakening or loss of the lamina in such cases compromises cell movement47,73. In our work, we show that alterations to nuclear Lamin A/C and SUN2 by paclitaxel treatment coincide with nuclear deformations (Figure 2A-D, F, G; Figure 3A-D, F, G; Supplementary Figure 3A, P-T) and that these deformations are reversible following paclitaxel removal (Supplementary Figure 4B-D). Our experiments also demonstrate that Lamin A/C expression levels significantly influence cell growth, cell viability, and cell recovery in paclitaxel (Figure 5). Therefore, drawing on current literature and our results, we propose that, during interphase, paclitaxel induces severe nuclear aberrations through the combined effects of: i) increased cytoskeletal forces on the NE caused by microtubule bundling; ii) loss of ~50% Lamin A/C and SUN2; iii) reorganisation of nucleo-cytoskeletal components.

      Significance

      The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      The data may be improved to provide stronger support.

      Additional cell lines (of cancer or epithelial origin) may be repeated to confirm the generality of the observation and conclusions.?

      We thank the reviewer for the feedback and valuable suggestions. In response, we have included experiments using human breast cancer cell line MDA-MB-231 to further corroborate our findings and interpretations. We believe these additions have improved the clarity, robustness and impact of our manuscript, and we are grateful for the reviewer's contributions to its improvement.

    1. Author response:

      We thank the reviewers for their thoughtful and thorough consideration of the work. We appreciate the positive reception they give the work, and plan to address several of the comments with further experiments. To outline that work (and ensure that we are on the right track to addressing those concerns), we summarize the core concerns that prompt new experiments:

      (1) Does the YFP tag on the ACRs interfere with simultaneous GCaMP imaging of RubyACR-expressing cells and could bleaching of the YFP complicate interpretation of the experiments here?

      We will test whether 920 nm (2p) and 650 nm (1p) excitation cause YFP bleaching that interferes with interpretation of inhibitory calcium (i.e. GCaMP) signals. Because the YFP tag enhances opsin sensitivity, we prioritized these tagged RubyACRs for initial characterization. FLAG-tagged ACRs are in progress, but will take time to fully characterize. Considering that the RubyACR-EYFP versions work very well, and in many cases people will want the YFP tag, either for visualizing expression or to maximize sensitivity, we feel the current work is a valuable contribution on its own. Indeed several labs have already requested these lines.

      (2) Are the ACRs activated by two-photon illumination?

      We will examine GCaMP signals at increasing 2p intensities to determine whether imaging unintentionally activates RubyACRs, as well as whether 2p illumination could be used for intentional opsin activation.

      (3) How toxic is the expression of these opsins?

      We will update the quantification of toxicity in Table 1 to include all the drivers we used in this study. In fact the toxicity we observed was primarily with the vGlut driver, which was why that was the only information in the table. The other drivers we used did not appreciably reduce survival rate, but showing the one case where it did have a big effect left a strong and understandably inaccurate impression that toxicity was a big pitfall. We note that the widely used CSChrimson has similar % survival to the RubyACRs when expressed with these vGlut drivers.

      We also plan to examine whether ACR expression leads to cell-autonomous perturbations. We will determine whether expression leads to some frequency of neuronal cell death, and we will evaluate whether any morphological effects occur.

      We will also clarify in the Discussion that potential toxicity may be driver-specific (as it is here) and should be evaluated case-by-case by investigators using the tool.

      (4) Use functional imaging to confirm inhibition of the neurons used only for behavioral experiments (pIP10 & PPL1-γ1pedc)

      We will perform these imaging experiments. One caveat is that inhibition may not be readily detectable with GCaMP, as the resting calcium levels in pIP10 and PPL1-γ1pedc neurons may already be quite low. This differs from the non-spiking Mi1 neurons, where inhibition was clearly observed with GCaMP. For this reason, we consider the behavioral results stronger evidence of efficacy, but we agree that imaging could provide useful supporting evidence, recognizing that a negative result would be difficult to interpret.

      (5) Confirm that the GtACR1 will inhibit locomotion in the flybowl when activated with green light, its spectral peak.

      We will perform this benchmark experiment. Please note that our intention with this study was to find an effective red-light activated opto-inhibitor because these wavelengths are much less perturbing to behavior. In that respect, regardless of GtACR1’s performance with green light, the RubyACRs clearly provide important new tools for Drosophila behavioral neuroscience.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Review of the manuscript titled " Mycobacterial Metallophosphatase MmpE acts as a nucleomodulin to regulate host gene expression and promotes intracellular survival".

      The study provides an insightful characterization of the mycobacterial secreted effector protein MmpE, which translocates to the host nucleus and exhibits phosphatase activity. The study characterizes the nuclear localization signal sequences and residues critical for the phosphatase activity, both of which are required for intracellular survival.

      Strengths:

      (1) The study addresses the role of nucleomodulins, an understudied aspect in mycobacterial infections.

      (2) The authors employ a combination of biochemical and computational analyses along with in vitro and in vivo validations to characterize the role of MmpE.

      Weaknesses:

      (1) While the study establishes that the phosphatase activity of MmpE operates independently of its NLS, there is a clear gap in understanding how this phosphatase activity supports mycobacterial infection. The investigation lacks experimental data on specific substrates of MmpE or pathways influenced by this virulence factor.

      We thank the reviewer for this insightful comment and agree that identification of the substrate of MmpE is important to fully understand its role in mycobacterial infection.

      MmpE is a putative purple acid phosphatase (PAP) and a member of the metallophosphoesterase (MPE) superfamily. Enzymes in this family are known for their catalytic promiscuity and broad substrate specificity, acting on phosphomonoesters, phosphodiesters, and phosphotriesters (Matange et al., Biochem J., 2015). In bacteria, several characterized MPEs have been shown to hydrolyze substrates such as cyclic nucleotides (e.g., cAMP) (Keppetipola et al., J Biol Chem, 2008; Shenoy et al., J Mol Biol, 2007), nucleotide derivatives (e.g., AMP, UDP-glucose) (Innokentev et al., mBio, 2025), and pyrophosphate-containing compounds (e.g., Ap4A, UDP-DAGn) (Matange et al., Biochem J., 2015). Although the binding motif of MmpE has been identified, determining its physiological substrates remains challenging due to the low abundance and instability of potential metabolites, as well as the limited sensitivity and coverage of current metabolomic technologies in mycobacteria.

      (2) The study does not explore whether the phosphatase activity of MmpE is dependent on the NLS within macrophages, which would provide critical insights into its biological relevance in host cells. Conducting experiments with double knockout/mutant strains and comparing their intracellular survival with single mutants could elucidate these dependencies and further validate the significance of MmpE's dual functions.

      We thank the reviewer for the comment. In our study, we demonstrate that both the nuclear localization and phosphatase activity of MmpE are required for full virulence (Figure 3D–E). Importantly, deletion of the NLS motifs did not impair MmpE’s phosphatase activity in vitro (Figure 2F), indicating that its enzymatic function is structurally independent of its nuclear localization. These findings suggest that MmpE functions as a bifunctional protein, with distinct and non-overlapping roles for its nuclear trafficking and phosphatase activity. We have expanded on this point in the Discussion section “MmpE Functions as a Bifunctional Protein with Nuclear Localization and Phosphatase Activity”.

      (3) The study does not provide direct experimental validation of the MmpE deletion on lysosomal trafficking of the bacteria.

      We thank the reviewer for the comment. The role of Rv2577/MmpE in phagosome maturation has been demonstrated in M. tuberculosis, where its deletion increases colocalization with lysosomal markers such as LAMP-2 and LAMP-3 (Forrellad et al., Front Microbiol, 2020). In our study, we found that mmpE deletion in M. bovis BCG led to upregulation of lysosomal genes, including TFEB, LAMP1, LAMP2, and v-ATPase subunits, compared to the wild-type strain. These results suggest that MmpE may regulate lysosomal trafficking by interfering with phagosome–lysosome fusion.

      To further validate MmpE’s role in phagosome maturation, we will perform fluorescence colocalization assays in THP-1 macrophages infected with BCG/wt, ∆mmpE, complemented, and NLS-mutant strains. Co-staining with LAMP1 and LysoTracker will allow us to assess whether the ∆mmpE mutant is more efficiently trafficked to lysosomes.

      (4) The role of MmpE as a mycobacterial effector would be more relevant using virulent mycobacterial strains such as H37Rv.

      We thank the reviewer for the comment. Previously, the role of Rv2577/MmpE as a virulence factor has been demonstrated in M. tuberculosis CDC 1551, where its deletion significantly reduced bacterial replication in mouse lungs at 30 days post-infection (Forrellad et al., Front Microbiol, 2020). However, that study did not explore the underlying mechanism of MmpE function. In our work, we found that MmpE enhances M. bovis BCG survival in both macrophages (THP-1 and RAW264.7) and mice (Figure 2A-B, Figure 6A), consistent with its proposed role in virulence. To investigate the molecular mechanism by which MmpE promotes intracellular survival, we used M. bovis BCG as a biosafe surrogate and this model is widely accepted for studying mycobacterial pathogenesis (Wang et al., Nat Immunol, 2025; Wang et al., Nat Commun, 2017; Péan et al., Nat Commun, 2017).

      Reviewer #2 (Public review):

      Summary:

      In this paper, the authors have characterized Rv2577 as a Fe3+/Zn2+ -dependent metallophosphatase and a nucleomodulin protein. The authors have also identified His348 and Asn359 as critical residues for Fe3+ coordination. The authors show that the proteins encode for two nuclease localization signals. Using C-terminal Flag expression constructs, the authors have shown that the MmpE protein is secretory. The authors have prepared genetic deletion strains and show that MmpE is essential for intracellular survival of M. bovis BCG in THP-1 macrophages, RAW264.7 macrophages, and a mouse model of infection. The authors have also performed RNA-seq analysis to compare the transcriptional profiles of macrophages infected with wild-type and MmpE mutant strains. The relative levels of ~ 175 transcripts were altered in MmpE mutant-infected macrophages and the majority of these were associated with various immune and inflammatory signalling pathways. Using these deletion strains, the authors proposed that MmpE inhibits inflammatory gene expression by binding to the promoter region of a vitamin D receptor. The authors also showed that MmpE arrests phagosome maturation by regulating the expression of several lysosome-associated genes such as TFEB, LAMP1, LAMP2, etc. These findings reveal a sophisticated mechanism by which a bacterial effector protein manipulates gene transcription and promotes intracellular survival.

      Strength:

      The authors have used a combination of cell biology, microbiology, and transcriptomics to elucidate the mechanisms by which Rv2577 contributes to intracellular survival.

      Weakness:

      The authors should thoroughly check the mice data and show individual replicate values in bar graphs.

      We kindly appreciate the reviewer for the advice. We will update the relevant mice data in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript titled "Mycobacterial Metallophosphatase MmpE Acts as a Nucleomodulin to Regulate Host Gene Expression and Promote Intracellular Survival", Chen et al describe biochemical characterisation, localisation and potential functions of the gene using a genetic approach in M. bovis BCG and perform macrophage and mice infections to understand the roles of this potentially secreted protein in the host cell nucleus. The findings demonstrate the role of a secreted phosphatase of M. bovis BCG in shaping the transcriptional profile of infected macrophages, potentially through nuclear localisation and direct binding to transcriptional start sites, thereby regulating the inflammatory response to infection.

      Strengths:

      The authors demonstrate using a transient transfection method that MmpE when expressed as a GFP-tagged protein in HEK293T cells, exhibits nuclear localisation. The authors identify two NLS motifs that together are required for nuclear localisation of the protein. A deletion of the gene in M. bovis BCG results in poorer survival compared to the wild-type parent strain, which is also killed by macrophages. Relative to the WT strain-infected macrophages, macrophages infected with the ∆mmpE strain exhibited differential gene expression. Overexpression of the gene in HEK293T led to occupancy of the transcription start site of several genes, including the Vitamin D Receptor. Expression of VDR in THP1 macrophages was lower in the case of ∆mmpE infection compared to WT infection. This data supports the utility of the overexpression system in identifying potential target loci of MmpE using the HEK293T transfection model. The authors also demonstrate that the protein is a phosphatase, and the phosphatase activity of the protein is partially required for bacterial survival but not for the regulation of the VDR gene expression.

      Weaknesses:

      (1)   While the motifs can most certainly behave as NLSs, the overexpression of a mycobacterial protein in HEK293T cells can also result in artefacts of nuclear localisation. This is not unprecedented. Therefore, to prove that the protein is indeed secreted from BCG, and is able to elicit transcriptional changes during infection, I recommend that the authors (i) establish that the protein is indeed secreted into the host cell nucleus, and (ii) the NLS mutation prevents its localisation to the nucleus without disrupting its secretion.

      We kindly appreciate the reviewer for the advice and will include the relevant experiments in the revised manuscript. The localization of WT MmpE and the NLS mutated MmpE will be tested in the BCG infected macrophages.

      Demonstration that the protein is secreted: Supplementary Figure 3 - Immunoblotting should be performed for a cytosolic protein, also to rule out detection of proteins from lysis of dead cells. Also, for detecting proteins in the secreted fraction, it would be better to use Sauton's media without detergent, and grow the cultures without agitation or with gentle agitation. The method used by the authors is not a recommended protocol for obtaining the secreted fraction of mycobacteria.

      We agree with the reviewer and we will further validate the secretion of MmpE using the tested protocol.

      Demonstration that the protein localises to the host cell nucleus upon infection: Perform an infection followed by immunofluorescence to demonstrate that the endogenous protein of BCG can translocate to the host cell nucleus. This should be done for an NLS1-2 mutant expressing cell also.

      We will add this experiment in the revised manuscript.

      (2) In the RNA-seq analysis, the directionality of change of each of the reported pathways is not apparent in the way the data have been presented. For example, are genes in the cytokine-cytokine receptor interaction or TNF signalling pathway expressed more, or less in the ∆mmpE strain?

      We thank the reviewer for pointing this out and fully agree that conventional KEGG pathway enrichment diagrams do not convey the directionality of individual gene expression changes within each pathway. While KEGG enrichment analysis identifies pathways that are statistically overrepresented among differentially expressed genes, it does not indicate whether individual genes within those pathways are upregulated or downregulated.

      To address this, we re-analyzed the expression trends of DEGs within each significantly enriched KEGG pathway. The results show that key immune-related pathways, including cytokine–cytokine receptor interaction, TNF signaling, NF-κB signaling, and chemokine signaling, are collectively upregulated in THP-1 macrophages infected with ∆mmpE strain compared to those infected with the wild-type BCG strain. The full list of DEGs will be provided in the supplementary materials. The complete RNA-seq dataset has been deposited in the GEO database, and the accession number will be included in the revised manuscript.

      (3) Several of these pathways are affected as a result of infection, while others are not induced by BCG infection. For example, BCG infection does not, on its own, produce changes in IL1β levels. As the author s did not compare the uninfected macrophages as a control, it is difficult to interpret whether ∆mmpE induced higher expression than the WT strain, or simply did not induce a gene while the WT strain suppressed expression of a gene. This is particularly important because the strain is attenuated. Does the attenuation have anything to do with the ability of the protein to induce lysosomal pathway genes? Does induction of this pathway lead to attenuation of the strain? Similarly, for pathways that seem to be downregulated in the ∆mmpE strain compared to the WT strain, these might have been induced upon infection with the WT strain but not sufficiently by the ∆mmpE strain due to its attenuation/ lower bacterial burden.

      We thank the reviewer for the comment. We will update qRT-PCR data with the uninfected macrophages as a control in the revised manuscript.

      Wild-type Mycobacterium bovis BCG strain still has the function of inhibiting phagosome maturation (Branzk et al., Nat Immunol, 2014; Weng et al., Nat Commun, 2022). Forrellad et al. previously identified Rv2577/MmpE as a virulence factor in M. tuberculosis and disruption of the MmpE gene impairs the ability of M. tuberculosis to arrest phagosome maturation (Forrellad et al., Front Microbiol, 2020). In our study, transcriptomic and qRTPCR data (Figures 4C and G, S4C) show that deletion of mmpE in M. bovis BCG leads to upregulation of lysosomal biogenesis and acidification genes, including TFEB, LAMP1, and vATPase. To further validate MmpE’s role in phagosome maturation, we will perform fluorescence colocalization assays in THP-1 macrophages infected with BCG/wt, ∆mmpE, complemented, and NLS-mutant strains. Co-staining with LAMP1 and LysoTracker will assess whether the ∆mmpE mutant is more efficiently trafficked to lysosomes.

      Furthermore, CFU assays demonstrated that the ∆mmpE strain exhibits markedly reduced bacterial survival in both human THP-1 and murine RAW264.7 macrophages, as well as in mice, compared to the wild-type strain (Figures 4A and C, 6A). These findings suggest that the loss of MmpE compromises bacterial survival, likely due to enhanced lysosomal trafficking and acidification. This supports previous studies showing that increased lysosomal activity promotes mycobacterial clearance (Gutierrez et al., Cell, 2004; Pilli et al., Immunity, 2012).

      (4) CHIP-seq should be performed in THP1 macrophages, and not in HEK293T. Overexpression of a nuclear-localised protein in a non-relevant line is likely to lead to several transcriptional changes that do not inform us of the role of the gene as a transcriptional regulator during infection.

      We thank the reviewer for the comment. We performed ChIP-seq in HEK293T cells is based on the fact that this cell line is widely used in ChIP-based assays due to its high transfection efficiency, robust nuclear protein expression, and well-annotated genome (Lampe et al., Nat Biotechnol, 2024; Marasco et al., Cell, 2022). These features make HEK293T an ideal system for the initial identification of genome wide chromatin binding profiles of novel nuclear effectors such as MmpE.

      Furthermore, we validated the major observations in THP-1 macrophages, including (i) RNAseq of THP-1 cells infected with either WT BCG or ∆mmpE strains revealed significant transcriptional changes in immune and lysosomal pathways (Figure 4A); (ii) Integrated analysis of CUT&Tag and RNA-seq data identified 298 genes in infected THP-1 cells that exhibited both MmpE binding and corresponding expression changes. Among these, VDR was validated as a direct transcriptional target of MmpE using EMSA and ChIP-PCR (Figures 5E-J, S5D-F). Notably, the signaling pathways associated with MmpE-bound genes, including PI3K-Akt-mTOR signaling and lysosomal function, substantially overlap with those transcriptionally modulated in infected THP-1 macrophages (Figures 4B-G, S4B-C, S5C-D), further supporting the biological relevance of the ChIP-seq data obtained from HEK293T cells.

      (5) I would not expect to see such large inflammatory reactions persisting 56 days postinfection with M. bovis BCG. Is this something peculiar for an intratracheal infection with 1x107 bacilli? For images of animal tissue, the authors should provide images of the entire lung lobe with the zoomed-in image indicated as an inset.

      We thank the reviewer for the comment. The lung inflammation peaked at days 21–28 and had clearly subsided by day 56 across all groups (Figure 6B), consistent with the expected resolution of immune responses to an attenuated strain like M. bovis BCG. This temporal pattern is in line with previous studies using intravenous or intratracheal BCG vaccination in mice and macaques, which also demonstrated robust early immune activation followed by resolution over time (Smith et al., Nat Microbiol, 2025; Darrah et al., Nature, 2020).

      In this study, the infectious dose (1×10⁷ CFU intratracheally) was selected based on previous studies in which intratracheal delivery of 1×10⁷CFU produced consistent and measurable lung immune responses and pathology without causing overt illness or mortality (Xu et al., Sci Rep, 2017; Niroula et al., Sci Rep, 2025). We will provide whole-lung lobe images with zoomed-in insets in the revised manuscript.

      (6) For the qRT-PCR based validation, infections should be performed with the MmpEcomplemented strain in the same experiments as those for the WT and ∆mmpE strain so that they can be on the same graph, in the main manuscript file. Supplementary Figure 4 has three complementary strains. Again, the absence of the uninfected, WT, and∆mmpE infected condition makes interpretation of these data very difficult.

      We thank the reviewer for the comment. As suggested, we will conduct the qRT-PCR experiment including the uninfected, WT, ∆mmpE, Comp-MmpE, and the three complementary strains infecting THP-1 cells. The updated data will be provided in the revised manuscript.

      (7) The abstract mentions that MmpE represses the PI3K-Akt-mTOR pathway, which arrests phagosome maturation. There is not enough data in this manuscript in support of this claim. Supplementary Figure 5 does provide qRT-PCR validation of genes of this pathway, but the data do not indicate that higher expression of these pathways, whether by VDR repression or otherwise, is driving the growth restriction of the ∆mmpE strain.

      We thank the reviewer for the comment. The role of MmpE in phagosome maturation was previously characterized. Disruption of mmpE impairs the ability of M. tuberculosis to arrest lysosomal trafficking (Forrellad et al., Front Microbiol, 2020). In this study, we further found that MmpE suppresses the expression of key lysosomal genes, including TFEB, LAMP1, LAMP2, and ATPase subunits (Figure 4G), suggesting MmpE is involved in arresting phagosome maturation. As noted, the genes in the PI3K–Akt–mTOR pathway are upregulated in ∆mmpE-infected macrophages (Figure S5C).

      To functionally validate this, we will conduct two complementary experimental approaches:

      (i) Immunofluorescence assays: We will assess phagosome maturation and lysosomal fusion in THP-1 cells infected with BCG/wt, ∆mmpE, Comp-MmpE, and NLS mutant strains. Colocalization of intracellular bacteria with LAMP1 and LysoTracker will be quantified to determine whether the ∆mmpE strain is more efficiently trafficked to lysosomes.

      (ii) CFU assays: We will perform CFU assays in THP-1 cells infected with BCG/wt or ∆mmpE in the presence or absence of PI3K-Akt-mTOR pathway inhibitors (e.g., Dactolisib), to assess whether activation of this pathway contributes to the intracellular growth restriction observed in the ∆mmpE strain.

      (8) The relevance of the NLS and the phosphatase activity is not completely clear in the CFU assays and in the gene expression data. Firstly, there needs to be immunoblot data provided for the expression and secretion of the NLS-deficient and phosphatase mutants. Secondly, CFU data in Figure 3A, C, and E must consistently include both the WT and ∆mmpE strain.

      We thank the reviewer for the comment. We will provide immunoblot data for the expression and secretion of the NLS-deficient and phosphatase mutants. Additionally, we will revise Figure 3A, 3C, and 3E to consistently include both the WT and ΔmmpE strains in the CFU assays.

      Reference

      Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens Nat Immunol 15:1017-25.

      Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH 2nd, Hughes TK, Pokkali S, Swanson PA 2nd, Grant NL, Rodgers MA, Kamath M, Causgrove CM, Laddy DJ, Bonavia A, Casimiro D, Lin PL, Klein E, White AG, Scanga CA, Shalek AK, Roederer M, Flynn JL, Seder RA (2020) Prevention of tuberculosis in macaques after intravenous BCG immunization Nature 577:95-102.

      Forrellad MA, Blanco FC, Marrero Diaz de Villegas R, Vázquez CL, Yaneff A, García EA, Gutierrez MG, Durán R, Villarino A, Bigi F (2020) Rv2577 of Mycobacterium tuberculosis Is a virulence factor with dual phosphatase and phosphodiesterase functions Front Microbiol 11:570794.

      Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages Cell 119:753-66.

      Innokentev A, Sanchez AM, Monetti M, Schwer B, Shuman S (2025) Efn1 and Efn2 are extracellular 5'-nucleotidases induced during the fission yeast response to phosphate starvation mBio 16: e0299224.

      Keppetipola N, Shuman S (2008) A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity J Biol Chem 283:30942-9.

      Lampe GD, King RT, Halpin-Healy TS, Klompe SE, Hogan MI, Vo PLH, Tang S, Chavez A, Sternberg SH (2024) Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases Nat Biotechnol 42:87-98.

      Marasco LE, Dujardin G, Sousa-Luís R, Liu YH, Stigliano JN, Nomakuchi T, Proudfoot NJ, Krainer AR, Kornblihtt AR (2022) Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy Cell 185:2057-2070.e15.

      Matange N, Podobnik M, Visweswariah SS (2015) Metallophosphoesterases: structural fidelity with functional promiscuity Biochem J 467:201-16.

      Niroula N, Ghodasara P, Marreros N, Fuller B, Sanderson H, Zriba S, Walker S, Shury TK, Chen JM (2025) Orally administered live BCG and heat-inactivated Mycobacterium bovis protect bison against experimental bovine tuberculosis Sci Rep 15:3764.

      Péan CB, Schiebler M, Tan SW, Sharrock JA, Kierdorf K, Brown KP, Maserumule MC,

      Menezes S, Pilátová M, Bronda K, Guermonprez P, Stramer BM, Andres Floto R, Dionne MS (2017) Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection Nat Commun 8:14642.

      Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation Immunity 37:223-34.

      Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M (2007) Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis J Mol Biol 365:211-25.

      Smith AA, Su H, Wallach J, Liu Y, Maiello P, Borish HJ, Winchell C, Simonson AW, Lin PL, Rodgers M, Fillmore D, Sakal J, Lin K, Vinette V, Schnappinger D, Ehrt S, Flynn JL (2025) A BCG kill switch strain protects against Mycobacterium tuberculosis in mice and non-human primates with improved safety and immunogenicity Nat Microbiol 10:468-481.

      Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation Nat Commun 8:244.

      Wang J, Li BX, Ge PP, Li J, Wang Q, Gao GF, Qiu XB, Liu CH (2015) Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system Nat Immunol 16:237–245

      Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM (2022) Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria Nat Commun 13:5320.

      Xu X, Lu X, Dong X, Luo Y, Wang Q, Liu X, Fu J, Zhang Y, Zhu B, Ma X (2017) Effects of hMASP2 on the formation of BCG infection-induced granuloma in the lungs of BALB/c mice Sci Rep 7:2300.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work by Govorunova et al. identified three naturally blue-shifted channelrhodopsins (ChRs) from ancyromonads, namely AnsACR, FtACR, and NlCCR. The phylogenetic analysis places the ancyromonad ChRs in a distinct branch, highlighting their unique evolutionary origin and potential for novel applications in optogenetics. Further characterization revealed the spectral sensitivity, ionic selectivity, and kinetics of the newly discovered AnsACR, FtACR, and NlCCR. This study also offers valuable insights into the molecular mechanism underlying the function of these ChRs, including the roles of specific residues in the retinal-binding pocket. Finally, this study validated the functionality of these ChRs in both mouse brain slices (for AnsACR and FtACR) and in vivo in Caenorhabditis elegans (for AnsACR), demonstrating the versatility of these tools across different experimental systems.

      In summary, this work provides a potentially valuable addition to the optogenetic toolkit by identifying and characterizing novel blue-shifted ChRs with unique properties.

      Strengths:

      This study provides a thorough characterization of the biophysical properties of the ChRs and demonstrates the versatility of these tools in different ex vivo and in vivo experimental systems. The mutagenesis experiments also revealed the roles of key residues in the photoactive site that can affect the spectral and kinetic properties of the channel.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      While the novel ChRs identified in this work are spectrally blue-shifted, there still seems to be some spectral overlap with other optogenetic tools. The authors should provide more evidence to support the claim that they can be used for multiplex optogenetics and help potential end-users assess if they can be used together with other commonly applied ChRs. Additionally, further engineering or combination with other tools may be required to achieve truly orthogonal control in multiplexed experiments.

      To demonstrate the usefulness of ancyromonad ChRs for multiplex optogenetics as a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting ChR Chrimson and measured net photocurrent generated by this combination as a function of the wavelength. We found that it is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      In the C. elegans experiments, partial recovery of pharyngeal pumping was observed after prolonged illumination, indicating potential adaptation. This suggests that the effectiveness of these ChRs may be limited by cellular adaptation mechanisms, which could be a drawback in long-term experiments. A thorough discussion of this challenge in the application of optogenetics tools would prove very valuable to the readership.

      We added the following paragraph to the revised Discussion:

      “One possible explanation of the partial recovery of pharyngeal pumping that we observed after 15-s illumination, even at the highest tested irradiance, is continued attenuation of photocurrent during prolonged illumination (desensitization). However, the rate of AnsACR desensitization (Figure 1 – figure supplement 4A and Figure 1 – figure supplement 5A) is much faster than the rate of the pumping recovery, reducing the likelihood that desensitization is driving this phenomenon. Another possible reason for the observed adaptation is an increase in the cytoplasmic Cl<sup>-</sup> concentration owing to AnsACR activity and hence a breakdown of the Cl<sup>-</sup> gradient on the neuronal membrane. The C. elegans pharynx is innervated by 20 neurons, 10 of which are cholinergic (Pereira, Kratsios et al. 2015). A pair of MC neurons is the most important for regulation of pharyngeal pumping, but other pharyngeal cholinergic neurons, including I1, M2, and M4, also play a role (Trojanowski, Padovan-Merhar et al. 2014). Moreover, the pharyngeal muscles generate autonomous contractions in the presence of acetylcholine tonically released from the pharyngeal neurons (Trojanowski, Raizen et al. 2016). Given this complexity, further elucidation of pharyngeal pumping adaptation mechanisms is beyond the scope of this study.”

      Reviewer #2 (Public review):

      Summary:

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. They identify new opsins by scanning numerous databases for sequence homology to known opsins, focusing on anion opsins. The three opsins identified are uncommonly fast, potent, and are able to silence neuronal activity. The authors characterize numerous parameters of the opsins.

      Strengths:

      This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. The opsins AnsACR and FtACR are particularly notable, having extraordinarily fast onset kinetics that could have utility in many domains. Furthermore, the authors show that AnsACR is usable in multiphoton experiments having a peak photocurrent in a commonly used wavelength. Overall, the author's detailed measurements and characterization make for an important resource, both presenting new opsins that may be important for future experiments, and providing characterizations to expand our understanding of opsin biophysics in general.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      First, while the authors frequently reference GtACR1, a well-used anion opsin, there is no side-by-side data comparing these new opsins to the existing state-of-the-art. Such comparisons are very useful to adopt new opsins.

      GtACR1 exhibits the peak sensitivity at 515 nm and therefore is poorly suited for combination with red-shifted CCRs or fluorescent sensors, unlike blue-light-absorbing ancyromonad ACRs. Nevertheless, we conducted side-by-side comparison of ancyromonad ChRs, GtACR1 and GtACR2, the latter of which has the spectral maximum at 470 nm. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Next, multiphoton optogenetics is a promising emerging field in neuroscience, and I appreciate that the authors began to evaluate this approach with these opsins. However, a few additional comparisons are needed to establish the user viability of this approach, principally the photocurrent evoked using the 2p process, for given power densities. Comparison across the presented opsins and GtACR1 would allow readers to asses if these opsins are meaningfully activated by 2P.

      We carried out additional 2P experiments in ancyromonad ChRs, GtACR1 and GtACR2 and added their results to a new main-text Figure 6 and Figure 6 – figure supplement 1. We added the new section describing these results, “Two-photon excitation”, to the main text in the revision:

      “To determine the 2P activation range of AnsACR, FtACR, and NlCCR, we conducted raster scanning using a conventional 2P laser, varying the excitation wavelength between 800 and 1,080 nm (Figure 6 – figure supplement 1). All three ChRs generated detectable photocurrents with action spectra showing maximal responses at ~925 nm for AnsACR, 945 nm for FtACR, and 890 nm for NlCCR (Figure 6A). These wavelengths fall within the excitation range of common Ti:Sapphire lasers, which are widely used in neuroscience laboratories and can be tuned between ~700 nm and 1,020-1,300 nm. To assess desensitization, cells expressing AnsACR, FtACR, or NlCCR were illuminated at the respective peak wavelength of each ChR at 15 mW for 5 seconds. GtACR1 and GtACR2, previously used in 2P experiments (Forli, Vecchia et al. 2018, Mardinly, Oldenburg et al. 2018), were included for comparison. The normalized photocurrent traces recorded under these conditions are shown in Figure 6B-F. The absolute amplitudes of 2P photocurrents at the peak time and at the end of illumination are shown in Figure 6G and H, respectively. All five tested variants exhibited comparable levels of desensitization at the end of illumination (Figure 6I).”

      Reviewer #3 (Public review):

      Summary:

      The authors aimed to develop Channelrhodopsins (ChRs), light-gated ion channels, with high potency and blue action spectra for use in multicolor (multiplex) optogenetics applications. To achieve this, they performed a bioinformatics analysis to identify ChR homologues in several protist species, focusing on ChRs from ancyromonads, which exhibited the highest photocurrents and the most blue-shifted action spectra among the tested candidates. Within the ancyromonad clade, the authors identified two new anion-conducting ChRs and one cation-conducting ChR. These were characterized in detail using a combination of manual and automated patch-clamp electrophysiology, absorption spectroscopy, and flash photolysis. The authors also explored sequence features that may explain the blue-shifted action spectra and differences in ion selectivity among closely related ChRs.

      Strengths:

      A key strength of this study is the high-quality experimental data, which were obtained using well-established techniques such as manual patch-clamp and absorption spectroscopy, complemented by modern automated patch-clamp approaches. These data convincingly support most of the claims. The newly characterized ChRs expand the optogenetics toolkit and will be of significant interest to researchers working with microbial rhodopsins, those developing new optogenetic tools, as well as neuro- and cardioscientists employing optogenetic methods.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      This study does not exhibit major methodological weaknesses. The primary limitation of the study is that it includes only a limited number of comparisons to known ChRs, which makes it difficult to assess whether these newly discovered tools offer significant advantages over currently available options.

      We conducted side-by-side comparison of ancyromonad ChRs and GtACRs, wildly used for optical inhibition of neuronal activity. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Additionally, although the study aims to present ChRs suitable for multiplex optogenetics, the new ChRs were not tested in combination with other tools. A key requirement for multiplexed applications is not just spectral separation of the blue-shifted ChR from the red-shifted tool of interest but also sufficient sensitivity and potency under low blue-light conditions to avoid cross-activation of the respective red-shifted tool. Future work directly comparing these new ChRs with existing tools in optogenetic applications and further evaluating their multiplexing potential would help clarify their impact.

      As a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting CCR Chrimson and demonstrated that the net photocurrent generated by this combination is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      Reviewing Editor Comments:

      The reviewers suggest that direct comparison to GtACR1 is the most important step to make this work more useful to the community.

      We followed the Reviewers’ recommendations and carried out side-by-side comparison of ancyromonad ChRs and GtACR1 as well as GtACR2 (Figure 1E and F, Figure 1 – figure supplement 4, Figure 1 – figure supplement 5, and Figure 6). Note, however, that GtACR1’s spectral maximum is at 515 nm, which makes it poorly suitable for blue light excitation. Also, ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      Reviewer #1 (Recommendations for the authors):

      (1) The figure legend for Figure 2D-I appears to be incomplete. Please provide a detailed explanation of the panels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      (2) The meaning of the Vr shift (Y-axis in Figure 2H-I) should be clarified in the main text to aid reader understanding.

      In the revision, we added the phrase “which indicated higher relative permeability to NO<sub>3</sub> than to Cl<sup>-“</sup> to explain the meaning of the Vr shift upon replacement of Cl<sup>-</sup> with NO<sub>3</sub>-.

      (3) Adding statistical analysis for the peak and end photocurrent values in Figure 2D-F would strengthen the claim that there is minimal change in relative permeability during illumination.

      In the revision, we added the V<sub>r</sub> values for the peak photocurrent to Figure 2H-I, which already contained the V<sub>r</sub> values for the end photocurrent, and carried out a statistical analysis of their comparison. The following sentence was added to the text in the revision:

      “The V<sub>r</sub> values of the peak current and that at the end of illumination were not significantly different by the two-tailed Wilcoxon signed-rank test (Fig. 2G), indicating no change in the relative permeability during illumination.”

      (4) Figure 4H and I seem out of place in Figure 4, as the title suggests a focus on wild-proteins and AnsACR mutants. The authors could consider moving these panels to Figure 3 for better alignment with the content.

      As noted below, we changed the panel order in Figure 4 upon the Reviewer’s request. In particular, former Figure 4I is Figure 4C in the revision, and former Figure 4H is now panel C in Figure 3 – figure supplement 1 in the revision. We rearranged the corresponding section of the text (highlighted yellow in the manuscript).

      (5) The characterization section could be strengthened by including data on the pH sensitivity of FtACR, which is currently missing from the main figures.

      Upon the Reviewer’s request, we carried out pH titration of FtACR absorbance and added the results as Figure 4B in the revision.

      (6) The logic in Figure 4A-G appears somewhat disjointed. For example, Figure 4A shows pH sensitivity for WT AnsACR and the G86E mutant, while Figure 4 B-D shifts to WT AnsACR and the D226N mutant, and Figure 4E returns to the G86E mutant. Reorganizing or clarifying the flow would improve readability.

      We followed the Reviewer’s advice and changed the panel order in Figure 4. In the revised version, the upper row (panels A-C) shows the pH titration data of the three WTs, the middle row (panels D-F) shows analysis of the AnsACR_D226N mutant, and the lower row (panels G-I) shows analysis of the AnsACR_G88E mutant. We also rearranged accordingly the description of these panels in the text.

      (7) In Figure 5A, "NIACR" should likely be corrected to "NlCCR".

      We corrected the typo in the revision.

      (8) The statistical significance in Figure 6C and D is somewhat confusing. Clarifying which groups are being compared and using consistent symbols would improve interoperability.

      In the revision, we improved the figure panels and legend to clarify that the comparisons are between the dark and light stimulation groups within the same current injection.

      (9) The authors pointed out that at rest or when a small negative current was injected, the neurons expressing Cl- permeable ChRs could generate a single action potential at the beginning of photostimulation, as has been reported before. The authors could help by further discussing if and how this phenomenon would affect the applicability of such tools.

      We mentioned in the revised Discussion section that activation of ACRs in the axons could depolarize the axons and trigger synaptic transmission at the onset of light stimulation, and this undesired excitatory effect need to be taken into consideration when using ACRs.

      Reviewer #2 (Recommendations for the authors):

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. In general, I feel positively about this manuscript. It presents new potentially useful opsins and provides characterization that would enable its use. I have a few recommendations below, mostly centered around side-by-side comparisons to existing opsins.

      (1) My primary concern is that while there is a reference to GtACR1, a highly used opsin first described by this team, they do not present any of this data side by side.

      When evaluating opsins to use, it is important to compare them to the existing state of the art. As a potential user, I need to know where these opsins differ. Citing other papers does not solve this as, even within the same lab, subtle methodological differences or data plotting decisions can obscure important differences.

      As we explained in the response to the public comments, we carried out side-by-side comparison of ancyromonad ChRs and GtACRs as requested by the Reviewer. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5, added in the revision. However, we would like to emphasize a limited usefulness of such comparative analysis, as ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      (2) Multiphoton optogenetics is an emerging field of optogenetics, and it is admirable that the authors address it here. The authors should present more 2p characterization, so that it can be established if these new opsins are viable for use with 2P methods, the way GtACR1 is. The following would be very useful for 2P characterization:

      Photocurrents for a given power density, compared to GtACR1 and GtACR2.

      The new Figure 6 (B-F) added in the revision shows photocurrent traces recorded from the three ancyromonad ChRs and  two GtACRs upon 2P excitation of a given power density.

      Comparing NICCR and FtACR's wavelength specificity and photocurrent. If these opsins are too weak to create reasonable 2P spectra, this difference should be discussed.

      The new Figure 6A shows the 2P action spectra of all three ancyromonad ChRs.

      A Trace and calculated photocurrent kinetics to compare 1P and 2P. This need not be the flash-based absorption characterization of Figure 3, but a side-by-side photocurrent as in Figure 2.

      As mentioned above, photocurrent traces recorded from ancyromonad ChRs and GtACRs upon 2P excitation are shown in the new Figure 6 (B-F). However, direct comparison of the 2P data with the 1P data is not possible, as we used laser scanning illumination for the former and wild-field illumination for the latter.

      Characterization of desensitization. As the authors mention, many opsins undergo desensitization, presenting the ratio of peak photocurrent vs that at multiple time points (probably up to a few seconds) would provide evidence for how effectively these constructs could be used in different scenarios.

      We conducted a detailed analysis of desensitization under both 1P and 2P excitation. The new Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 show the data obtained under 1P excitation, and the new Figure 6 shows the data for 2P conditions.

      I have to admit, that by the end of the paper, I was getting confused as to which of the three original constructs had which property, and how that was changing with each mutation. I would suggest that a table summarizing each opsin and mutation with its onset and offset kinetics, peak wavelength, photocurrent, and ion selectivity would greatly increase the ability to select and use opsins in the future.

      In the revision, we added a table of the spectroscopic properties of all tested mutants as Supplementary File 2. This study did not aim to analyze other parameters listed by the Reviewer. We added the following sentence referring to this table to the main text:

      “Supplementary File 2 contains the λ values of the half-maximal amplitude of the long-wavelength slope of the spectrum, which can be estimated more accurately from the action spectra than the λ of the maximum.”

      It may be out of the scope of this manuscript, but if a soma localization sequence can be shown to remove the 'axonal spiking' (as described in line 441), this would be a significant addition to the paper.

      Our previous study (Messier et al., 2018, doi: 10.7554/eLife.38506) showed that a soma localization sequence can reduce, but not eliminate, the axonal spiking. We plan to test these new ACRs with the trafficking motifs in the future.

      NICCR appears to have the best photocurrents of all tested opsins in this paper. It seems odd that it was omitted from the mouse cortical neurons experiments.

      We have not included analysis of NlCCR behavior in neurons because we are preparing a separate manuscript on this ChR.

      Figure 6 would benefit from more gradation in the light powers used to silence and would benefit from comparison to GtACR. I suggest using a fixed current with a series of illumination intensities to see which of the three opsins (or GtACR) is most effective at silencing. At present, it looks binary, and a user cannot evaluate if any of these opsins would be better than what is already available.

      In the revision, we added the data comparing the light sensitivity of AnsACR and FtACR with previously identified GtACR1 and GtACR2 (new Figure 1E and F) to help users compare these ACRs. Although they are less sensitive to light comparing to GtACR1 and GtACR2, they could still be activated by commercially available light sources if the expression levels are similar. Less sensitive ACRs may have less unwanted activation when using with other optogenetic tools.

      Reviewer #3 (Recommendations for the authors):

      Suggested Improvements to Experiments, Data, or Analyses:

      (1) Line 25: "significantly exceeding those by previously known tools" and Line 408: "NlCCR is the most blue-shifted among ancyromonad ChRs and generates larger photocurrents than the earlier known CCRs with a similar absorption maximum." As noted in the public review, this statement applies only to a very specific subgroup of ChRs with spectral maxima below 450 nm. If the goal was to claim that NlCCR is a superior tool among a broader range of blue-light-activated ChRs, direct comparisons with state-of-the-art ChRs such as ChR2 T159C (Berndt et al., 2011), CatCh (Kleinlogel et al., 2014), CoChR (Klapoetke et al., 2014), CoChR-3M (Ganjawala et al., 2019), or XXM 2.0 (Ding et al., 2022) would be beneficial. If the goal was to demonstrate superiority among tools with spectra below 450 nm, I suggest explicitly stating this in the paper.

      The Reviewer correctly inferred that we emphasized the superiority of NlCCR among tools with similar spectral maxima, not all blue-light-activated ChRs available for neuronal photoexcitation, most of which exhibit absorption maxima at longer wavelengths. To clarify this, we added “with similar spectral maxima” to the sentence in the original Line 25. The sentence in Line 408 already contains this clarification: “with a similar absorption maximum”.

      (2) Lines 111-113: "The absorption spectra of the purified proteins were slightly blue-shifted from the respective photocurrent action spectra (Figure 1D), likely due to the presence of non-electrogenic cis-retinal-bound forms." I would be skeptical of this statement. The spectral shifts in NlCCR and AnsACR are small and may fall within the range of experimental error. The shift in FtACR is more apparent; however, if two forms coexist in purified protein, this should be reflected as two Gaussian peaks in the absorption spectrum (or at least as a broader total peak reflecting two states with close maxima and similar populations). On the contrary, the action spectrum appears to have two peaks, one potentially below 465 nm. Generally, neither spectrum appears significantly broader than a typical microbial rhodopsin spectrum. This question could be clarified by quantifying the widths of the absorption and action spectra or by overlaying them on the same axis. In my opinion, the two spectra seem very similar, and just appearance of the "bump" in the action spectum shifts the apparent maximum of the action spectrum to the red. If there were two states, then they should both be electrogenic, and the slight difference in spectra might be explained by something else (e.g. by a slight difference in the quantum yields of the two states).

      As the Reviewer suggested, in the revision we added a new figure (Figure 1 – figure supplement 2), showing the overlay of the absorption and action spectra of each ancyromonad ChR. This figure shows that the absorption spectra are wider than the action spectra (especially in AnsACR and FtACR), which confirms our interpretation (contribution of the non-electrogenic blue-shifted cis-retinal-bound forms to the absorption spectrum). Note that the presence of such forms explaining a blue shift of the absorption spectrum has been experimentally verified in HcKCR1 (doi: 10.1016/j.cell.2023.08.009; 10.1038/s41467-025-56491-9). Therefore, we revised the text as follows:

      “The absorption spectra of the purified proteins (Figure 1C) were slightly blue-shifted from the respective photocurrent action spectra (Figure 1 – figure supplement 3), likely due to the presence of non-electrogenic cis-retinal-bound forms. The presence of such forms, explaining the discrepancy between the absorption and the action spectra, was verified by HPLC in KCRs (Tajima et al. 2023, Morizumi et al., 2025).”

      (3) Lines 135-136: "The SyncroPatch enables unbiased estimation of the photocurrent amplitude because the cells are drawn into the wells without considering their tag fluorescence." While SyncroPatch does allow unbiased selection of patched cells, it does not account for the fraction of transfected cells. Without a method to exclude non-transfected cells, which are always present in transient transfections, the comparison of photocurrents may be affected by the proportion of untransfected cells, which could vary between constructs. To clarify whether the statistically significant difference in the Kolmogorov-Smirnov test could indicate that the fraction of transfected cells after 48-72h differs between constructs, I suggest analyzing only transfected cells or reporting fractions of transfected cells by each construct.

      The Reviewer correctly states that non-transfected cells are always present in transiently transfected cell populations. However, his/her suggestion to “exclude non-transfected cells” is not feasible in the absence of a criterion for such exclusion. As it is evident from our data, transient transfection results in a continuum of the amplitude values, and it is not possible to distinguish a small photocurrent from no photocurrent, considering the noise level. We would like, however, to emphasize that not excluding any cells provides an estimate of the overall potency of each ChR variant, which depends on both the fraction of transfected cells and their photocurrents. This approach mimics the conditions of in vivo experiments, when non-expressing cells also cannot be excluded.

      (4) Line 176: "AnsACR and FtACR photocurrents exhibited biphasic rise." The fastest characteristic time is very close to the typical resolution of a patch-clamp experiment (RC = 50 μs for a 10 pF cell with a 5 MΩ series resistance). Thus, I am skeptical that the faster time constant of the biphasic opening represents a protein-specific characteristic time. It may not be fully resolved by patch-clamp and could simply result from low-pass filtering of a specific cell. I suggest clarifying this for the reader.

      The Reviewer is right that the patch clamp setup acts as a lowpass filter. Earlier, we directly measured its time resolution (~15 μs) by recording the ultrafast (occurring on the ps time scale) charge movements related to the trans-cis isomerization (doi: 10.1111/php.12558). However, the lowpass filter of the setup can only slow the entire signal, but cannot lead to the appearance of a separate kinetic component (i.e. a monophasic process cannot become biphasic). Therefore, we believe that the biphasic photocurrent rise reflects biphasic channel opening rather than a measurement artifact. Two phases in the channel opening have also been detected in GtACR1 (doi: 10.1073/pnas.1513602112) and CrChR2 (10.1073/pnas.1818707116).

      (5) Line 516: "The forward LED current was 900 mA." It would be more informative to report the light intensity rather than the forward current, as many readers may not be familiar with the specific light output of the used LED modules at this forward current.

      We have added the light intensity value in the revision:

      “The forward LED current was 900 mA (which corresponded to the irradiance of ~2 mW mm<sup>-2</sup>)…”

      (6) Lines 402-403: "The NlCCR ... contains a neutral residue in the counterion position (Asp85 in BR), which is typical of all ACRs. Yet, NlCCR does not conduct anions, instead showing permeability to Na+." This is not atypical for CCRs and has been demonstrated in previous works of the authors (CtCCR in Govorunova et al. 2021, ChvCCR1 in Govorunova et al. 2022). What is unique is the absence of negatively charged residues in TM2, as noted later in the current study. However, the absence of negatively charged residues in TM2 appears to be rare for ACRs as well. Not as a strong point of criticism, but to enhance clarity, I suggest analyzing the frequency of carboxylate residues in TM2 of ACRs to determine whether the unique finding is relevant to ion selectivity or to another property.

      The Reviewer is correct that some CCRs lack a carboxylate residue in the D85 position, so this feature alone cannot be considered as a differentiating criterion. However, the complete absence of glutamates in TM2 is not rare in ACRs and is found, for example, in HfACR1 and CarACR2. We have discussed this issue in our earlier review (doi: 10.3389/fncel.2021.800313) and do not think that repeating this discussion in this manuscript is appropriate.

      Recommendations for Writing and Presentation:

      (1) Some figures contain incomplete or missing labels:

      Figure 2: Panels D to I lack labels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      Figure 3 - Figure Supplement 1: Missing explanations for each panel.

      In the revision, we changed the order of panes and explained all individual panels in the legend.

      Figure 5 - Figure Supplement 1: Missing explanations for each panel.

      No further explanation for individual panels in this Figure is needed because all panels show the action spectra of various mutants, the names of which are provided in the panels themselves. Repeating this information in the figure legend would be redundant.

      (2) In Figure 2, "sem" is written in lowercase, whereas "SEM" is capitalized in other figures. Standardizing the format would improve consistency.

      In the revision, we changed the font of the SEM abbreviation to the uppercase in all instances.

      (3) Line 20: "spectrally separated molecules must be found in nature." There is no proof that they cannot be developed synthetically; rather, it is just difficult. I suggest softening this statement, as the findings of this study, together with others, will probably allow designing molecules with specified spectral properties in the future.

      In the revision, we changed the cited sentence to the following:

      “Multiplex optogenetic applications require spectrally separated molecules, which are difficult to engineer without disrupting channel function”.

      (4) Line 216-219: "Acidification increased the amplitude of the fast current ~10-fold (Figure 4F) and shifted its Vr ~100 mV (Figure 3 - figure supplement 1D), as expected of passive proton transport. The number of charges transferred during the fast peak current was >2,000 times smaller than during the channel opening, from which we concluded that the fast current reflects the movement of the RSB proton." The claim about passive transport of the RSB proton should be clarified, as typically, passive transport is not limited to exactly one proton per photocycle, and the authors observe the increase in the fast photocurrents upon acidification.

      We thank the Reviewer for pointing out the confusing character of our description. To clarify the matter, we added a new photocurrent trace to Figure 4I in the revision recorded from AnsACR_G86E at 0 mV and pH 7.4. We have rewritten the corresponding section of Results as follows:

      “Its rise and decay τ corresponded to the rise and decay τ of the fast positive current recorded from AnsACR_G86E at 0 mV and neutral pH, superimposed on the fast negative current reflecting the chromophore isomerization (Figure 4I, upper black trace). We interpret this positive current as an intramolecular proton transfer to the mutagenetically introduced primary acceptor (Glu86), which was suppressed by negative voltage (Figure 4I, lower black trace). Acidification increased the amplitude of the fast negative current ~10-fold (Figure 4I, black arrow) and shifted its V<sub>r</sub> ~100 mV to more depolarized values (Figure 4 – figure supplement 2A). This can be explained by passive inward movement of the RSB proton along the large electrochemical gradient.”

      Minor Corrections:

      (1) Line 204: Missing bracket in "phases in the WT (Figure 4D."

      The quoted sentence was deleted during the revision.

      (2) Line 288: Typo-"This Ala is conserved" should probably be "This Met is conserved."

      We mean here the Ala four residues downstream from the first Ala. To avoid confusion, we changed the cited sentence to the following:

      “The Ala corresponding to BR’s Gly122 is also found in AnsACR and NlCCR (Figure 5A)…”

      (3) Lines 702-704: Missing Addgene plasmid IDs in "(plasmids #XXX and #YYY, respectively)."

      In the revision, we added the missing plasmid IDs.

  5. Aug 2025
    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Recommendations For The Authors):

      Comment 1: The authors need to do more to cite the prior work of others. CCL2 allelic expression imbalance tied to the rs13900 alleles was first reported by Johnson et al. (Pharmacogenet Genomics. 2008 Sep; 18(9): 781-791) and should be cited in the Introduction on line 128 next to the Pham 2012 reference. Also, in the Results section, line 142, please provide references for the statement "We and others have previously reported a perfect linkage disequilibrium between rs1024611 in the CCL2 cis-regulatory region and rs13900 in its 3′ UTR" since the linkage disequilibrium for these 2 SNPs is not reported in the ENSEMBL server for the 1000 genomes dataset. #

      We thank the reviewer for pointing out the omission regarding the citation of prior work. We acknowledge that Johnson et al. (2008) reported the association between rs13900 and CCL2 allelic expression imbalance based on Snapshot methodology while examining _cis-_acting variants of 42 candidate genes. To acknowledge these prior studies, we have cited the previous works of Johnson et al. (Johnson et al., 2008) along with Pham et al. (Pham et al., 2012) that linked rs13900 to CCL2 allelic expression imbalance. The text in the introduction section (Lines 128-130) has been updated to reflect the above-mentioned changes.

      “We and others have demonstrated AEI in CCL2 using rs13900 as a marker with the T allele showing a higher expression level relative to C allele (Johnson et al., 2008; Pham et al., 2012).”

      We have cited some previous studies that suggested strong linkage disequilibrium between rs1024611 and rs13900 within CCL2 gene, with D’=1 and R<sup>2</sup>=0.96 (Hubal et al., 2010; Intemann et al., 2011; Kasztelewicz et al., 2017; Pham et al., 2012) on Line 144. To address the concern regarding unreported linkage disequilibrium between rs1024611 and rs13900, we reviewed the pairwise linkage disequilibrium data by population in the ENSEMBL server for 1000 Genome dataset and confirm that the linkage disequilibrium (LD) between rs1024611 and rs13900 has been observed, with D’=1 and R<sup>2</sup>=0.92 to 1.0 in specific populations. We have included a table (Author response table 1) depicting pairwise LD between rs13900 and rs1024611 as reported in the ENSEMBL server for the 1000 genome dataset, a URL reference to the ENSEMBL server data.

      Author response table 1.

      Pairwise linkage disequilibrium data between rs13900 and rs1024611 by population reported in the ENSEMBL server for the 1000 genome dataset

      F. Variant, Focus Variant; R<sup>2</sup>, correlation between the pair loci; D’, difference between the observed and expected frequency of a given haplotype.

      URL: https://www.ensembl.org/Homo_sapiens/Variation/HighLD?db=core;r=17:34252269-34253269;v=rs1024611;vdb=variation;vf=959559590;second_variant_name=rs13900

      Comment 2: Certain details of the experimental protocols need to be further elaborated or clarified to contextualize the significance of the findings. For example, in the results line 184 the authors state "Using nascent RNA allows accurate determination of mRNA decay by eliminating the effects of preexisting mRNA." How does measuring nascent RNA enable the accurate determination of mRNA decay? Doesn't it measure allele-specific mRNA synthesis? Please elaborate, as this is a key result of the study. Can the authors provide a reference supporting this statement?

      It is worthwhile to mention that mRNA decay can be precisely measured by eliminating the effect of any preexisting mRNA. Metabolic labeling with 4-thiouridine allows exclusive capture of newly synthesized RNA which will allow quantification of RNA decay eliminating any interference from preexisting RNA. We agree that nascent RNA measurement primarily reflects synthesis rate rather than degradation. However, in conjugation with actinomycin-D based inhibition studies it can be exploited for accurate mRNA decay determination of the newly synthesized RNA (Russo et al., 2017). Therefore, our aim was to use the nascent RNA to study decay kinetics. The imbalance in the CCL2 allele expression does occur at the transcriptional level as seen in non-actinomycin-D treatment group (Figure 2C) although the impact of post-transcriptional mechanisms that alter transcripts stability cannot be ruled out. Therefore, we employed a novel approach that could assess both the synthesis and the degradation by combining actinomycin-D inhibition and nascent RNA capture in the same experimental setup. In the presence of actinomycin-D, we could detect much greater allelic difference in the expression levels of the rs13900T and C allele four-hour post-treatment, suggesting a role for post-transcriptional mechanisms in CCL2 AEI.

      “We have expanded the method section in the revised draft to include experimental details on capture of nascent RNA and subsequent downstream analysis” (Lines 553-563).

      Newly synthesized RNA was isolated using the Click-It Nascent RNA Capture Kit (Invitrogen, Cat No: C10365) following the manufacturer’s protocol. Peripheral blood mononuclear cells (PBMCs) or monocyte-derived macrophages (MDMs) obtained from heterozygous individuals were stimulated with lipopolysaccharide (LPS) for 3 hours in presence of 0.2 mM 5-ethynyl uridine (EU) (Jao and Salic, 2008; Paulsen et al., 2013). After the pulse, the culture medium was replaced with fresh growth medium devoid of EU. To assess RNA stability, actinomycin-D (5 µg/mL) was added, and samples were collected at 0, 1, 2, and 4 h post-treatment. The EU RNA was subjected to a click reaction that adds a biotin handle which was then captured by streptavidin beads. The captured RNA was used for cDNA synthesis (Superscript Vilo kit, Cat No: 11754250), PCR amplification, and allelic quantification.”

      Comment 3: Also, they next state that the assay was carried out using cells treated with actinomycin D (line 186). Doesn't actinomycin D block transcription? The original study by Jia et al 2008 in PNAS reported that low concentration of ActD (100 nM) blocked RNA pol I and higher concentration (2 uM) blocked RNA pol II. This or the study on which the InVitrogen kit is based should be cited. The concentration of actinomycin D used to treat the cells should be given. They report that the T allele transcript was more abundant than the C allele transcript in nascent RNA. Why doesn't that argue for a transcriptional mechanism rather than an RNA-stability mechanism? This result should be discussed in the Discussion.

      In our study, we used a concentration of 5 µg/mL (3.98 µM), which as noted by the reviewer can effectively inhibit RNA polymerase II (Pl II) activity. We have updated our manuscript to include details and cited the original work of (Jao and Salic, 2008; Paulsen et al., 2013), which thoroughly investigate the effect of various concentrations of ActD on RNA polymerase I and II (Line no 557). A discussion of the RNA stability mechanism is provided in the Result section (Lines 196-198).

      Comment 4: In their bioinformatics analysis of the allele-specific CCL2 mRNAs, they reported that the analysis obtained a score of 1e (line 214). What does that mean? Is it significant?

      We acknowledge that the notation “a score of 1e” was unclear and thank the reviewer for pointing it out. We have clarified its significance in the revised manuscript. The following text has been included in the result section (Line no 223)

      “The score of 1e was obtained using RBP-Var, a bioinformatics tool that scores variants involved in posttranscriptional interaction and regulation (Mao et al., 2016). Here, the annotation system rates the functional confidence of variants from category 1 to 6. While Category 1 is the most significant category and includes variants that are known to be expression quantitative trait loci (eQTLs), likely affecting RBP binding site, RNA secondary structure and expression, category 6 is assigned to minimal possibility to affect RBP binding. Additionally, subcategories provide further annotation ranging from the most informational variants (a) to the least informational variant (e). Reported 1e denotes that the variant has a motif for RBP binding. Although the employed scoring system is hierarchical from 1a to 1e, with decreasing confidence in the variant’s function. However, all the variants in category 1 are considered potentially functional to some degree.”

      Comment 5: In Figure 3A, why is the rare SNP rs181021073 shown? This SNP does not comeup anywhere else in the paper. For clarity, it should be removed from Figure 3A.

      We thank the reviewer for pointing out the error in Figure 3A and apologize for the oversight. We agree that the SNP rs1810210732 is not mentioned anywhere in the manuscript and its inclusion in Figure 3A may have caused confusion. We have removed this SNP from the revised figure.

      Comment 6: For the RNA EMSA results presented in Fig. 4C with recombinant ELAVL1 (HuR), there is clearly a loss of unbound T allele probe with increasing concentrations of the recombinant protein (without a concomitant increase in shifted complex). This suggests that the T allele probe is degraded or loses its fluorescent tag in the presence of recombinant HuR, whereas the C allele probe does not. The quantitation of the shifted complex presented in Fig. 4D as a percentage of bound and unbound probe is therefore artificially elevated for the T allele compared to the C allele. In fact, there seems to be little difference between the shifted complexes with the T and C allele probes. The authors should explain this difference in free probe levels.

      We appreciate the constructive critique of the reviewer regarding the RNA EMSA results in Fig. 4C. To address this, we repeated the experiments to analyze the differential binding of rs13900T/C allele bearing probes with increasing concentration of the recombinant HuR. No degradation/ loss of fluorescence tag for T allele was noted in presence of recombinant HuR in three independent experiments (Author response image 1). This indicates that both the probes with C or T allele show comparable stability and are not affected by increasing concentration of recombinant HuR. The apparent reduction in the unbound T allele probe in Figure 4C may be due to saturation at higher HuR concentration rather than degradation.

      Author response image 1.

      Differential binding and stability of oligoribonucleotide probes containing rs13900C or T alleles with recombinant HuR. (A) REMSA with labeled oligoribonucleotides containing either rs13900C or rs13900T and recombinant HuR at indicated concentrations. (B&C) Representative quantitative densitometric analysis of HuR binding to the oligoribonucleotides bearing rs13900 T or C. The signal in the bound fractions were normalized with the free probe. The figure represents data from three independent experiments (mean ± SEM).

      Comment 7: In the Methods section, concentrations and source of reagents should be given. For example, what was the bacterial origin of LPS and concentration? What concentration of actinomycin D? What was the source? Was it provided with the nascent RNA kit? In describing the riboprobes used for REMSA, please underline the allele in the sequences (lines 549 and 550).

      Thank you for your detailed feedback and suggestions regarding the Materials and Methods Section. We regret the oversight in providing detailed information on reagent concentrations and sources in the method section. We have now rectified this omission and have provided the necessary details and a summary of material/reagents used is presented as a supplementary table (Supplementary Table 4) to enable others to replicate our experiments accurately. Regarding the description of riboprobes for RNA Electrophoretic Mobility Shift Assay, we underlined and bold the allele in the sequences as suggested (Lines 603-604).

      Comment 8: For polysome profiling on line 603, please provide a protocol for the differentiation of primary macrophages from monocytes (please cite an original protocol, not a prior paper that does not give a detailed protocol).

      We agree with the reviewer’s comment and have included the following text for primary macrophage differentiation from monocytes in the method section cited the original protocol (Line 668).

      “Human monocytes were isolated from fresh blood as described earlier (Gavrilin et al., 2009) with slight modification. Briefly, peripheral blood mononuclear cells were isolated by density gradient centrifugation using Histopaque, followed by immunomagnetic negative selection using EasySep Human Monocyte isolation kit. A high purity level for CD14+ cells was consistently achieved (≥90%) through this procedure, as confirmed by flowcytometry. The purified monocytes were immediately used for macrophage differentiation by treating them with 50 ng/mL M-CSF (PeproTech) for 72 h and flow cytometric measurement of surface markers CD64+,

      CD206+, CD44 was used to confirm the differentiation”. This data is now shown in the new Supplementary Figure S6.

      Comment 9: In the legend of Figure 2, please replace "5 ug of actinomycin D" with the actual concentration used.

      We appreciate your attention to detail and thank you for pointing out the error in the legend of Figure 2. We regret the oversight and have made the suggested change (Line 739).

      Comment 10: In the Discussion, the authors cite the study of CCL2 mRNA stabilization by HuR in mice by Sasaki et al (lines 407-9). Is regulation of CCL2 mRNA by HuR in the mouse relevant to human studies?

      How conserved is the 3'UTR of mouse and human CCL2? Is the rs13900 variant located in a conserved region? How many putative HuR sites are found in the 3'UTR of human and mouse CCL2 3'UTR? Does HuR dimerize (see Pabis et al 2019, NAR)? This information could be added to the Discussion.

      Thank you for your valuable comment. We appreciate your suggestion to include information on the dimerization of HuR in our discussion. While reporting the overall structure and domain arrangement of HuR, Pabis et al. (2019) deciphered dimerization involving Trp261 in RRM3 as key requirement for functional activity of HuR in vitro. This finding provides additional context for understanding HuR’s role in regulating CCL2 expression. We have added the following few lines in the discussion (Lines 421-428) acknowledging HuR’s ability to dimerize and cite the relevant references.

      “HuR consists of three RNA recognition motifs (RRMs) that are highly conserved and canonical in nature (Ripin et al., 2019). In absence of RNA the three RRMs are flexibly linked but upon RNA binding they transition to a more compact arrangement. Mutational analysis revealed that HuR function is inseparably linked to RRM3 dimerization and RNA binding. Dimerization enables recognition of tandem AREs by dimeric HuR (Pabis et al., 2019) and explains how this protein family can regulate numerous targets found in pre-mRNAs, mature mRNAs, miRNAs and long noncoding RNAs.”

      We aligned the CCL2 3’UTR from five different mammalian species and found that the region flanking rs13900/ HuR binding site is relatively conserved (Author response image 2). Based on PAR-CLIP datasets there are four HuR binding regions in human CCL2 3’ UTR (Lebedeva et al., 2011). However, the region overlapping rs13900 seems to be predominantly involved in the CCL2 regulation (Fan et al., 2011). This information has been included in the discussion.

      Author response image 2.

      Cross-species alignment of the CCL2 3’UTR region flanking the rs13900 using homologous regions from 5 different mammals. (Hu, Human; CH, Chimps; MO, Mouse; RA, Rat; DO, Dog, rs13900 is shown within the brackets Y, pyrimidine)

      Reviewer #2 (Recommendations For The Authors):

      Comment 1: The supplemental figures need appropriate figure legends.

      We regret the oversight and thank the reviewer for bringing it to our attention. We have now included the figure legend for the supplemental figures in the revised manuscript.

      Comment 2: The data on LPS-induced CCL2 expression in PBMCs should be represented as a scatter plot with statistical significance to enhance clarity and interpretability.

      We thank the reviewer for this constructive suggestion. In the revised Figure 2A the induction of CCL2 expression by LPS in PBMCs obtained from 6 volunteers is represented as a scatter plot. We have also included individual data points in the updated figure and statistical significance to improve clarity and interpretability.

      Comment 3: The stability of CCL2 mRNA in control cells needs comparison with treated cells for context. The stability of a housekeeping gene (such as GAPDH or ACTB) should always be included as a control in actinomycin D experiments. Clarify the differential stability of rs13900C vs. rs13900T alleles.

      We used 18S to normalize data for the mRNA stability studies, as it is abundant and has been recommended for such studies, as it is relatively unaltered when compared to other housekeeping genes following Act D treatment in well-controlled studies (Barta et al., 2023). We also compared Ct values between the Act D-treated samples and the Act D-untreated samples in this study and found them to be comparable (Author response image 3).

      Author response image 3.

      Ct values of 18s rRNA in ACT-D and control samples in Fig 2.

      Comment 4: In the main text and the methods, the authors state that nascent RNA was obtained in the presence of actinomycin D and EU. However, actinomycin D blocks the transcription of nascent RNAs, therefore the findings in Figure 2C do not reflect nascent RNA

      Please see our response to Reviewer 1 Comment 2. We would like to emphasize that to assess the differential role of the rs13900 in nascent RNA decay we integrated nascent RNA labeling and transcriptional inhibition. Briefly, PBMC from a heterozygous individual were either unstimulated or stimulated with LPS and pulsed with 5-ethynyl uridine (0.2 mM) for 3 h and the media was replaced with EU free growth medium. RNA was obtained at 0,1, 2 and 4 h following actinomycin-D treatment (5 µg/mL) to assess the stability of nascent RNA.

      Comment 5: Figure 4A is not clearly described or labeled. What are lanes 2 and 6?

      Figure 4 has now been updated to clearly describe all the lanes. Lanes 2 and 6 represent the mobility shift seen following the incubation by whole cell extracts and oligonucleotide bearing rs13900C and rs13900T probes respectively.

      Comment 6: Figure 4C and Figure 4D: the charts in Figure 4D do not seem to reflect the changes in Figure 4C. How was the mean variant calculated? How do the authors explain the different quantities in unbound/free RNA in rs13900C compared to rs13900T?

      We appreciate the constructive critique of the reviewer regarding the RNA EMSA results in Fig. 4C. To address this, we repeated the experiments to analyze the differential binding of rs13900T/C probes with increasing concentration of the recombinant HuR. No degradation/ loss of fluorescence tag in presence of HuR was noted in case of T allele (Author response image 1). This indicates that both the C and T allele probes exhibit comparable stability and are not affected by increasing the concentration of recombinant HuR. The apparent reduction in the unbound T allele probe in Figure 4C may be due to saturation due to higher HuR concentration rather than degradation. Also please note under limiting HuR concentration (50µM) there is more binding of purified HuR by the T bearing oligoribonucleotide (compare lanes 2 & 6 in Author response image 1).

      Comment 7: Figure 5A does not look like an IP. The authors should show the heavy and light chains and clarify why there is co-precipitation of beta-actin with IgG and HuR. Also, they should include input samples. Figure 5B: given that in a traditional RIP the mRNA is not cross-linked and fragmented, any region of CCL2 mRNA would be amplified, not just the 3'UTR. In other words, Figure 5B can be valuable to show the enrichment of CCL2 mRNA in general, but not the enrichment of a specific region.

      We understand the reviewer’s concern on Figure 5A and 5B. Due to sample limitations we are unable to confirm these results using heavy and light chains antibodies. However, it is important to note that co-precipitation of β-actin with IgG and HuR can be due to its non-specific binding with protein G. In a recent study non-specific precipitation by protein G or A was reported for proteins such as p53, p65 and β-actin (Zeng et al., 2022). We are including a figure provided by MBL Life Sciences as the quality check document for their RIP Assay Kit (RN 1001) that was used in our study. It is evident from Author response image 4 that even pre-clearing the lysate may not remove the ubiquitously expressed proteins such as β-actin or GAPDH and they will persist as contaminants in pull-down samples. Hence the presence of β-actin in the IgG and HuR IP fractions may be due to non-specific interactions with the agarose beads.

      Author response image 4.

      MBL RIP-Assay Kit’s Quality Check. Quality check of immunoprecipitated endogenous PTBP1 expressed in Jurkat cells. Lane 1: Jurkat (WB positive cells), Lane 2: Jurkat + normal Rabbit IgG, Lane 3: Jurkat+ anti-PTBP1.

      We agree with the reviewer’s comments that traditional RIP without cross-linking and fragmentation allows amplification of any region of CCL2 mRNA. However, the upregulation of CCL2 gene expression in α-HuR immunoprecipitated samples indirectly reflects the enrichment of CCL2 mRNA associated with HuR. Moreover, 3’-UTR targeting primers were used for amplification to examine HuR binding at this region. We believe this approach ensures that the above enrichment specifically reflects HuR association with the 3’-UTR rather than other parts of the transcript.

      Comment 8: Construct Validation in Luciferase Assays (Figure 6): The authors need to confirm equal transfection amounts of constructs and show changes in luciferase mRNA levels. It would be better to use a dual luciferase construct for internal normalization.

      We would like to thank the reviewer for his concern and comments related to the luciferase reporter assay. As mentioned in the Methods equal transfection amount (0.5 µg) were used in our study (Line 658). We chose to normalize the reporter activity using total protein concentration instead of using a dual-reporter system to avoid crosstalk with co-transfected control plasmids. This is now included in the Materials and Method section (Lines 662-664). The optimized design of the LightSwitch Assay system used in our study allows a single assay design when a highly efficient transfection system is used (as recommended by the manufacturer). We verified the presence of the correct insert in the CCL2 Light Switch 3’UTR reporter constructs (Author response image 5). We also sequenced the vector backbone of both constructs to rule out any inadvertently added mutations.

      Author response image 5.

      Schematic of the Lightswitch 3’UTR vector. (A) Vector information. The vector contains a multiple cloning site (MCS) upstream of the Renilla Luciferase gene (RenSP). Human 3’UTR CCL2 is cloned into MCS downstream of the reporter gene and it becomes a part of a hybrid transcript that contains the luciferase coding sequence used to the UTR sequence of CCL2. Constructs containing rs13900C or rs13900T allele were generated using site-specific mutagenesis on CCL2 LightSwitch 3’UTR reporter. The constructs were validated by Sanger sequencing. (B&C) Sequence chromatograph of the constructs containing CCL2-3’UTR insert showing rs13900C and rs13900T respectively. The result confirms the fidelity of the constructs used in the reporter assay.

      Comment 9: Polysome Data Presentation: The authors should present the distribution of luciferase mRNA (rs13900T and rs13900C) in all fractions separately and include data on the translation of a control like ACTB or GAPDH.

      Since our assessment of CCL2 allele-specific enrichment in the polysome fractions from MDMs of heterozygous donors did not yield a consistent pattern for differential loading (Supplementary Table3), we used a 3’UTR reporter-based assays that estimated the impact of rs13900 T and C alleles on overall translational output (translatability). The translatability was calculated as luciferase activity normalized by luciferase mRNA levels after adjusting for protein and 18S rRNA using a previously reported method (Zhang et al., 2017). As the measurement of relative allele enrichment in polysome fractions was not included in our invitro reporter assays, it is not possible to present the distribution of luciferase mRNA in various fractions separately. Author response image 6 shows the proportion of CCL2 mRNA in different fractions corresponding to cytosolic, monosome and polysome fractions obtained from MDM lysates from heterozygous donors along with 18S rRNA quantification.

      Author response image 6.

      Determination of rs13900C/T allelic enrichment in polysome fractions and its effect on polysome loading. Polysome profile obtained by sucrose gradient centrifugation of macrophages before and after stimulation with LPS (1 µg/mL) for 3 h. (A&B) The CCL2 mRNA shifts from monosome-associated fractions to heavier polysomes following LPS stimulation, indicating increased translation efficiency. (C&D) In contrast, the distribution of 18S shows no significant shift due to LPS treatment. (mean ± SEM, n=4). The percentage of mRNA loading on polysome was calculated using ΔCT method (mean ± SEM, n=4). (E&F) CCL2 AEI measurement in polysomes of macrophages from heterozygous donors (n=2). Genomic and cDNA were subjected to Sanger sequencing and the peak height of both the alleles were used to determine the relative abundance of each allele.

      Comment 10: Please explain in detail how primary monocytes were transfected with siRNAs for more than 72 hours. Typically, primary monocytes are very hard to transfect, have a very limited lifespan in culture (around 48 hours), and show a high level of cell death upon transfection. If monocytes were differentiated from macrophages, explain in detail how it was done and provide supporting citations from the literature.

      We agree with the challenges associated with transfecting primary monocytes, including their limited lifespan in culture and susceptibility to cell death following transfection and apologize for not elaborating the method section on lentiviral transduction of primary macrophages. To overcome these limitations, we utilized monocytes undergoing differentiation into macrophages rather than fully differentiated macrophages for our experiments. Cells were transfected by slightly modifying the method described by Plaisance-Bonstaff et.al 2019 (Plaisance-Bonstaff et al., 2019). Briefly, monocytes were purified from PBMCs obtained from homozygous donors for rs13900 C or rs13900T by negative selection. Upon purification cells were resuspended in 24 well plates at a seeding density of 0.5 x10<sup>6</sup> cells per well and were further cultured in the medium supplemented with 50 ng/mL M-CSF (Fig S7 and Fig. S6). After 24 h, ready to use GFP-tagged pCMV6-HuR or CMV-null lentiviral particles (Amsbio, Cambridge, M.A) were transduced into 0.5 x10<sup>6</sup> cells in presence of polybrene (60 µg/mL) at a MOI of 1. The cells were processed for HuR and CCL2 expression 72 h after transduction after stimulation with LPS for 3 h. This data is now shown in new Supplementary Figure S7.

      Comment 11: The authors should prove the binding of HuR to the 3'UTR of CCL2 not only in vitro but also in cells. For this aim, a CLIP including RNA fragmentation followed by RT-PCR or sequencing would be more informative than a RIP. It would be helpful also to demonstrate the different binding to the 3'UTR variants (rs13900C vs. rs13900T).

      We thank the reviewer for his valuable suggestion on validating binding of HuR to the 3’UTR in cells. It is important to highlight that several independent datasets including CLIP have already demonstrated that HuR binds to the 3’UTR of CCL2 including the region spanning the rs13900 locus. We have summarized the relevant studies in a tabular form (Supplementary Table-2). We are unable to confirm these results in new experiments due to sample limitation. The already existing data and experimental evidence provided in this manuscript strongly suggest that HuR binds within the 3’UTR. Also, a previously published study (Fan et al, 2011) showed that only the first 125 bp of the CCL2 3’UTR that flanks rs13900 showed strong binding to HuR but not the CCL2 coding region or other regions of 3’UTR. This further suggests that the HuR binding to the CCL2 is localized to the 3’UTR that flanks rs13900. Please note that the primers used for amplification of the RIP material were 3’-UTR specific.

      Comment 12: To quantify nascent RNA, Figure 2C should be replaced by new experiments. To label nascent RNA, authors can perform a run on/run-off experiments only with EU, without actinomycin D. As aforementioned, ActD blocks the transcription of new RNA, therefore is not useful for studying nascent RNA.

      We thank the reviewer for the suggestion and would like to emphasize that while measuring the rs13900C/T allelic ratio in nascent RNA, the experimental setup included evaluating the AEI both in presence and absence of the transcriptional inhibitor actinomycin D. The data presented in Figure 2C shows that the AEI in presence of actinomycin D is amplified in comparison to non-actinomycin D treatment. This provides definitive evidence to our hypothesis that rs13900T confers greater stability to the CCL2 message. We apologize for the oversight of not mentioning non-ACT D treatment in the methods. Necessary changes have been made to the revised manuscript (Lines 553-63).

      Comment 13: The authors should also investigate the role of TIA1 as a potential RBP and explore the possibility that TIA1 may interact more with the C allele to suppress translation.

      Based on the existing studies, we highlighted the importance of RNA-binding proteins such as TIA1 and U2AF56 that may interact with CCL2 transcript (Lines 408-09). However, exploring TIA1 binding and its functional consequences are beyond the scope of the current study. We thank the reviewer for this comment and this aspect will be pursued in future studies.

      Comment 14: It would be informative if the authors included study limitations and potential clinical implications of these findings, particularly regarding therapeutic approaches targeting CCL2.

      We would like to inform the reviewer that the submitted manuscript included the limitations of our study. They were discussed at appropriate places and were not included as a separate section. For instance, Line 398 emphasizes the need for in-depth studies for association of rs13900 and canonical CCL2 transcript. The need for additional studies regarding SNP-induced structural changes in RNA and its implication for RBP accessibility was highlighted at Lines 417-419. The inconclusive results of differential loading of polysomes and the need to conduct further research on the impact of rs13900 on CCL2 translatability in primary cells (Lines 457-459). We noted at Lines 484-485 about our further studies exploring the differential binding of HuR to the other regions of CCL2 3’UTR.

      Multiple studies have indicated that functional interference of HuR as a novel therapeutic strategy, particularly in the context of cancer, inflammation, neurodegeneration, and autoimmune disorders. These approaches include inhibitors such as MS-444, KH-3, and CMLD-2 that disrupt the interaction between HuR and ARE elements or mRNAs of target genes involved in disease pathology (Chaudhary et al., 2023; Fattahi et al., 2022; Lang et al., 2017; Liu et al., 2020; Wang et al., 2019; Wei et al., 2024), offering a potential new avenue for disease treatment. Findings from our studies provide unique insights on regulation of CCL2 expression by both rs13900 and HuR. We strongly believe that the SNP rs13900 and HuR represent a new druggable target for M/M-mediated disorders such as inflammatory diseases, cancer, and cardiovascular diseases. The potential clinical implications have been discussed in the revised manuscript (Lines 487-494)

      References

      Barta, N., Ordog, N., Pantazi, V., Berzsenyi, I., Borsos, B.N., Majoros, H., Pahi, Z.G., Ujfaludi, Z., Pankotai, T., 2023. Identifying Suitable Reference Gene Candidates for Quantification of DNA Damage-Induced Cellular Responses in Human U2OS Cell Culture System. Biomolecules 13.

      Chaudhary, S., Appadurai, M.I., Maurya, S.K., Nallasamy, P., Marimuthu, S., Shah, A., Atri, P., Ramakanth, C.V., Lele, S.M., Seshacharyulu, P., Ponnusamy, M.P., Nasser, M.W., Ganti, A.K., Batra, S.K., Lakshmanan, I., 2023. MUC16 promotes triple-negative breast cancer lung metastasis by modulating RNA-binding protein ELAVL1/HUR. Breast Cancer Res 25, 25.

      Fan, J., Ishmael, F.T., Fang, X., Myers, A., Cheadle, C., Huang, S.K., Atasoy, U., Gorospe, M., Stellato, C., 2011. Chemokine transcripts as targets of the RNA-binding protein HuR in human airway epithelium. J Immunol 186, 2482-2494.

      Fattahi, F., Ellis, J.S., Sylvester, M., Bahleda, K., Hietanen, S., Correa, L., Lugogo, N.L., Atasoy, U., 2022. HuR-Targeted Inhibition Impairs Th2 Proinflammatory Responses in Asthmatic CD4(+) T Cells. J Immunol 208, 38-48.

      Hubal, M.J., Devaney, J.M., Hoffman, E.P., Zambraski, E.J., Gordish-Dressman, H., Kearns, A.K., Larkin, J.S., Adham, K., Patel, R.R., Clarkson, P.M., 2010. CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. J Appl Physiol (1985) 108, 1651-1658.

      Intemann, C.D., Thye, T., Forster, B., Owusu-Dabo, E., Gyapong, J., Horstmann, R.D., Meyer, C.G., 2011. MCP1 haplotypes associated with protection from pulmonary tuberculosis. BMC Genet 12, 34.

      Jao, C.Y., Salic, A., 2008. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci U S A 105, 15779-15784.

      Johnson, A.D., Zhang, Y., Papp, A.C., Pinsonneault, J.K., Lim, J.E., Saffen, D., Dai, Z., Wang, D., Sadee, W., 2008. Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: detection through allelic expression imbalance in human target tissues. Pharmacogenet Genomics 18, 781791.

      Kasztelewicz, B., Czech-Kowalska, J., Lipka, B., Milewska-Bobula, B., Borszewska-Kornacka, M.K., Romanska, J., Dzierzanowska-Fangrat, K., 2017. Cytokine gene polymorphism associations with congenital cytomegalovirus infection and sensorineural hearing loss. Eur J Clin Microbiol Infect Dis 36, 1811-1818. Lang, M., Berry, D., Passecker, K., Mesteri, I., Bhuju, S., Ebner, F., Sedlyarov, V., Evstatiev, R., Dammann, K., Loy, A., Kuzyk, O., Kovarik, P., Khare, V., Beibel, M., Roma, G., Meisner-Kober, N., Gasche, C., 2017. HuR Small-Molecule Inhibitor Elicits Differential Effects in Adenomatosis Polyposis and Colorectal Carcinogenesis. Cancer Res 77, 2424-2438.

      Lebedeva, S., Jens, M., Theil, K., Schwanhausser, B., Selbach, M., Landthaler, M., Rajewsky, N., 2011. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43, 340-352.

      Liu, S., Huang, Z., Tang, A., Wu, X., Aube, J., Xu, L., Xing, C., Huang, Y., 2020. Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis. Clin Sci (Lond) 134, 1433-1448.

      Mao, F., Xiao, L., Li, X., Liang, J., Teng, H., Cai, W., Sun, Z.S., 2016. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res 44, D154-163.

      Pabis, M., Popowicz, G.M., Stehle, R., Fernandez-Ramos, D., Asami, S., Warner, L., Garcia-Maurino, S.M., Schlundt, A., Martinez-Chantar, M.L., Diaz-Moreno, I., Sattler, M., 2019. HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. Nucleic Acids Res 47, 1011-1029.

      Paulsen, M.T., Veloso, A., Prasad, J., Bedi, K., Ljungman, E.A., Tsan, Y.C., Chang, C.W., Tarrier, B., Washburn, J.G., Lyons, R., Robinson, D.R., Kumar-Sinha, C., Wilson, T.E., Ljungman, M., 2013. Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response. Proc Natl Acad Sci U S A 110, 2240-2245.

      Pham, M.H., Bonello, G.B., Castiblanco, J., Le, T., Sigala, J., He, W., Mummidi, S., 2012. The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance. PLoS One 7, e49498.

      Plaisance-Bonstaff, K., Faia, C., Wyczechowska, D., Jeansonne, D., Vittori, C., Peruzzi, F., 2019. Isolation, Transfection, and Culture of Primary Human Monocytes. J Vis Exp.

      Ripin, N., Boudet, J., Duszczyk, M.M., Hinniger, A., Faller, M., Krepl, M., Gadi, A., Schneider, R.J., Sponer, J., Meisner-Kober, N.C., Allain, F.H., 2019. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc Natl Acad Sci U S A 116, 2935-2944.

      Russo, J., Heck, A.M., Wilusz, J., Wilusz, C.J., 2017. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods 120, 39-48.

      Wang, J., Hjelmeland, A.B., Nabors, L.B., King, P.H., 2019. Anti-cancer effects of the HuR inhibitor, MS-444, in malignant glioma cells. Cancer Biol Ther 20, 979-988.

      Wei, L., Kim, S.H., Armaly, A.M., Aube, J., Xu, L., Wu, X., 2024. RNA-binding protein HuR inhibition induces multiple programmed cell death in breast and prostate cancer. Cell Commun Signal 22, 580.

      Zeng, X., Zeng, W.H., Zhou, J., Liu, X.M., Huang, G., Zhu, H., Xiao, S., Zeng, Y., Cao, D., 2022. Removal of nonspecific binding proteins is required in co-immunoprecipitation with nuclear proteins. Biotechniques 73, 289-296.

      Zhang, X., Chen, X., Liu, Q., Zhang, S., Hu, W., 2017. Translation repression via modulation of the cytoplasmic poly(A)-binding protein in the inflammatory response. Elife 6.

    1. Author response:

      General Statements:

      The formation of three-dimensional tubes is a fundamental process in the development of organs and aberrant tube size leads to common diseases and congenital disorders, such as polycystic kidney disease, asthma, and lung hypoplasia. The apical (luminal) extracellular matrix (ECM) plays a critical role in epithelial tube morphogenesis during organ formation, but its composition and organization remain poorly understood. Using the Drosophila embryonic salivary gland as a model, we reveal a critical role for the PAPS Synthetase (Papss), an enzyme that synthesizes the universal sulfate donor PAPS, as a critical regulator of tube lumen expansion. Additionally, we identify two zona pellucida (ZP) domain proteins, Piopio (Pio) and Dumpy (Dpy) as key apical ECM components that provide mechanical support to maintain a uniform tube diameter.

      The apical ECM has a distinct composition compared to the basal ECM, featuring a diverse array of components. Many studies of the apical ECM have focused on the role of chitin and its modification, but the composition of the non-chitinous apical ECM and its role, and how modification of the apical ECM affects organogenesis remain elusive. The main findings of this manuscript are listed below.

      (1) Through a deficiency screen targeting ECM-modifying enzymes, we identify Papss as a key enzyme regulating luminal expansion during salivary gland morphogenesis. 

      (2) Our confocal and transmission electron microscopy analyses reveal that Papss mutants exhibit a disorganized apical membrane and condensed aECM, which are at least partially linked to disruptions in Golgi structures and intracellular trafficking. Papss is also essential for cell survival and basal ECM integrity, highlighting the role of sulfation in regulating both apical and basal ECM.

      (3) Salivary gland-specific overexpression of wild-type Papss rescues all defects in Papss mutants, but the catalytically inactive mutant form does not, suggesting that defects in sulfation are the underlying cause of the phenotypes.

      (4) We identify two ZP domain proteins, Piopio (Pio) and Dumpy (Dpy), as key components of the salivary gland aECM. In the absence of Papss, Pio is progressively lost from the aECM, while the Dpy-positive aECM structure is condensed and detaches from the apical membrane, resulting in a narrowed lumen. 

      (5) Mutations in pio or dpy, or in Notopleural (Np), which encodes a matriptase that cleaves Pio, cause the salivary gland lumen to develop alternating bulges and constrictions. Additionally, loss of pio results in loss of Dpy in the salivary gland lumen, suggesting that the Dpycontaining filamentous structures of the aECM is critical for maintaining luminal diameter, with Pio playing an essential role in organizing this structure.

      (6) We further reveal that the cleavage of the ZP domain of Pio by Np is critical for the role of Pio in organizing the aECM structure.

      Overall, our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining tube diameter. Mammals have two isoforms of Papss, Papss1 and Papss2. Papss1 shows ubiquitous expression, with higher levels in glandular cells and salivary duct cells, suggesting a high requirement for sulfation in these cell types. Papss2 shows a more restricted expression, such as in cartilage, and mutations in Papss2 have been associated with skeletal dysplasia in humans. Our analysis of the Drosophila Papss gene, a single ortholog of human Papss1 and Papss2, reveals its multiple roles during salivary gland development. We expect that these findings will provide valuable insights into the function of these enzymes in normal development and disease in humans. Our findings on the key role of two ZP proteins, Pio and Dpy, as major components of the salivary gland aECM also provide valuable information on the organization of the non-chitinous aECM during organ formation.

      We believe that our results will be of broad interest to many cell and developmental biologists studying organogenesis and the ECM, as well as those investigating the mechanisms underlying human diseases associated with conserved mutations.

      Point-by-point description of the revisions:

      We are delighted that all three reviewers were enthusiastic about the work. Their comments and suggestions have improved the paper. The details of the changes we have made in response to each reviewer’s comments are included in italicized text below.

      Reviewer #1 (Evidence, reproducibility and clarity):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      (1) The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K’). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      (2) The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed “normal, fully expanded” lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system. 

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E). 

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I’), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.  

      (3) Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      (4) A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy. 

      (5) Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I’). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      (6) A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManIIGFP signals. Standard colocalization analysis methods, such as Pearson’s correlation coefficient or Mander’s overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L’). 

      (7) I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed “filled” electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      (8) The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology. 

      (9) Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to “defective sulfation affects Golgi structures and multiple routes of intracellular trafficking”. 

      (10) DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      (11) WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. DpyYFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5figure supplement 2C. 

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly. 

      (12) Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to “constrictions” to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      (13) The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes? 

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H). 

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np. 

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT. 

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      (14) Minor:

      Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error.  It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      Minor comments

      (1) Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsm<sup>MI07716</sup> line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.  

      (2) The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      (3) TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      (4) The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.  

      Reviewer #2 (Significance):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      - This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I’) and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.  

      - A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed).

      This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila.

      Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130. 

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants–although this line was very sick and difficult to grow–showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss. 

      - A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a

      product recognized by WGA?

      For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We’re also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism’s proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant. 

      - Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      After cleavages by Np and furin, the Pio protein should have three fragments. The Nterminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals. 

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1’s comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I. 

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      -  What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That’s probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      - The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3. 

      - The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      - It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.   

      - The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a “C-terminal ZP domain”, which is a middle piece after furin + Np cleavages. 

      - The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. ☑️ peer.gos.ck-editor needs to set title so that annotations can show it

      currently it is done by manually adding a title tag in the source code for the document that is saved in Peergos

      where all the html and javascript encluses the source of the HTML document so the editor/capbiity gets loaded wwith the saved HTML content

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2025-03073

      Corresponding author(s): Shaul Yogev

      1. General Statements [optional]

      We kindly thank our reviewers for their enthusiasm, thoughtful feedback, and constructive suggestions on how to strengthen our manuscript. Below, we provide a point-by-point response to reviewer comments and outline the experiments we will do to address every concern that has been raised.

      2. Description of the planned revisions

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This interesting study uses an unbiased genetic screen in C. elegans to identify SAX-1/NDR kinase as a regulator of dendritic branch elimination. Loss of SAX-1 results in an excess branching phenotype that is striking and highly penetrant. The authors identify several additional regulators of branch elimination (SAX-2, MOB-1, RABI-1, RAB-11.2) by using a candidate genetic screen aimed at factors that interact physically or genetically with SAX-1. They propose that SAX-1 acts by promoting membrane retrieval based on the nature of these interactors and the results of an imaging-based in vivo assay for endocytic puncta.

      Major comments.

      1. My biggest concern is that the phenotypes are only observed in temperature-sensitive dauer-constitutive mutant backgrounds, and not in wild-type dauers. That is, wild-type animals exiting dauer do not require SAX-1 for dendrite elimination. While this does not undermine the importance of the results, it does require more explanation. The authors write that "the requirement for sax-1... relies on specific physiological states of the dauer stage," but I do not understand what this means. Are they saying that daf-7 and daf-2 dauers are in a different "physiological state" than wild-type dauers? In what way? What is the evidence for this? A more rigorous explanation is needed. We agree that this is puzzling, and we thank the reviewer for recognizing that this does not undermine the importance of the results. There is ample evidence that daf-2 and daf-7 differ from starvation-induced dauers. For example, a recent preprint finds that the transcriptomes of these two mutants at dauer cluster much closer to each other than to starvation-induced dauers (Corchado et al. 2024). Older work has noted other differences, such as the time the dauer entry decision is made (Swanson and Riddle 1981), the synchronicity of dauer exit, the ability to force dauer entry in daf-d mutants, as well as additional dauer-unrelated phenotypes (reviewed in Karp 2018). We agree with the reviewer that this merits further clarifications and will perform the experiments suggested by the reviewer below:

      To me, the simplest genetic explanation is that daf-7 and daf-2 are partially required for branch retraction in a manner redundant with sax-1, and the ts mutants are not fully wild-type at 15C. Thus, the sax-1 requirement is revealed only in these mutant backgrounds. Can the authors examine starvation-induced dauers of daf-7 or daf-2 raised continuously at 15C?

      We will do this experiment.

      daf-7 and daf-2 ts strains can form "partial dauers" that have a dauer-like appearance but are not SDS resistant. Could the difference between partial dauers and full dauers account for the difference in sax-1-dependence? The authors could use SDS selection of the daf-7 strain at 25C to ensure they are examining full dauers.

      We tested daf-7 mutants with 1% SDS when we set up the system – they are fully dauer at 25°C and are SDS sensitive after exit. We will repeat this important control with daf-7; sax-1 double mutants.

      The Bargmann lab has created a daf-2 FLP-OUT strain (ky1095ky1087) that allows cell-type-specific removal of daf-2. Could this be used to test for a cell-autonomous role of daf-2 in IL2Q related to branch elimination?

      We can attempt this experiment. However, since IL2 promoters turn on prior to dauer, the interpretation would not be straightforward – it would be hard to exclude that a cell autonomous defect in dauer entry does not account for the IL2 dauer exit phenotype, even if branching appears normal.

      These ideas are not a list of specific experiments the authors need to complete, rather they are meant to illustrate some possible approaches to the question. Whatever approach they use, it is important for them to more rigorously explain why SAX-1 is not required for branch removal in wild-type animals.

      We completely agree. We will carry out the 15°C experiment, examine morphological characteristics and test SDS resistance. In addition, we will test neuronal markers that differ between dauers and non-dauers to determine whether the mutants are full or partial dauers at the relevant timepoints.

      The SAX-2 localization (Fig. 4) and endocytosis assay (Fig. 6) results were not clear to me from the data shown. Overall a more rigorous analysis and presentation of the data would be important to make these conclusions convincing. This may involve refining the data presentation in the figures, modifying the claims (e.g., "we propose" vs "we find"), or saving some of the data to be more fully explored in a future paper. In my view, these figures are the biggest weak point of the manuscript and also are not important for the central conclusions (which are well supported and convincing), indeed these results are barely mentioned in the Abstract or last paragraph of Introduction.

      We agree that the analysis and presentation of Figures 4 and 6 need to be improved. The presentation has already been updated, and the figures are clearer now. In the revision, we will increase sample size to provide stronger conclusions, consolidate some of the analysis and further improve presentation. While we agree with the reviewer that conclusions from these figures are not as strong as those drawn from genetic experiments, they do complement and support the conclusions of those other figures.

      • In Fig. 4D, why is SAX-2 visible throughout the entire neuron and why is the "punctum" marked with an arrow also seen in the tagRFP channel? One gets the impression that some of the puncta may be background, bleed-through, or artifacts due to cell varicosities.

      There is no bleed-through: this is most evident by looking at the brightest signals in the cell body (now labelled with an asterisk in a zoomed-out image) and noting that they do not bleed between channels. In sax-1 mutants, the SAX-2::GFP puncta are very obvious and distinguishable from the tagRFP channel. In control, SAX-2::GFP is very faint in the dendrite, so we increased the contrast to allow visualization. The reviewer is correct that under these conditions, some puncta look like the cytosolic fill. In the revision, we will re-analyze the data and will not consider these as bona-fide SAX-2 puncta, but rather cytosolic SAX-2 that accumulates due to constrictions and varicosities in the dendrite.

      • Related to both Fig. 4 and Fig. 6, where does SAX-1 localize in IL2Q in dauer and post-dauer? Does its expression or localization change during branch retraction? Does it co-localize with SAX-2 or endocytic puncta?

      We generated an endogenously tagged sax-1 with a 7xspGFP11 tag; however, this was below detection in the IL2s. For the revisions, we can test an overexpressed cDNA construct.

      **Referee cross-commenting**

      I think we all touched on similar points. I wanted to follow up on Reviewer 3's comment, "Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults." I thought this was an excellent point. It made me wonder if that might explain why the defect is only seen in daf-7 and daf-2 mutant backgrounds - maybe these strains retain partial dauer traits even after exit. Is there a specific experiment that they could do? Did you have specific characteristics of dauer morphology in mind for them to check? (Ideally something in the nervous system that can be scored quantitatively.)

      Please see response to point #1 regarding experiments we will do to confirm the “dauer state” of daf-7 and daf-7; sax-1 double mutants.

      Reviewer #1 (Significance (Required)):

      A major strength of this work is the pioneering use of a novel system to study neuronal branch retraction. C. elegans has provided a powerful model for studying how dendrite branches form, but much less attention has been paid to how excess neuronal branches are removed. The post-dauer remodeling of IL2Q neurons provides an exciting and dramatic physiological example to explore this question.

      This paper is notable for taking the first steps towards developing this innovative model. It does exactly what is needed at the outset of a new exploration - a forward genetic screen to discover the main regulators of the process. Using a combination of classical and modern genetic approaches, the authors bootstrap their way to a sizeable list of factors and a solid understanding of the properties of this system, for example that retraction of higher vs lower order dendrites show different genetic requirements.

      We thank the reviewer for recognizing the novelty and significance of our work.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors establish C. elegans IL2 neurons as a system in which to study dendrite pruning. They use the system to perform a genetic screen for pruning regulators and find an allele of sax-1. Unexpectedly sax-1 is only required for post-dauer pruning in two different genetic backgrounds that induce dauer formation, but not starvation-induced dauer formation. Sax-1/NDR kinase reduction has previously been associated with increased outgrowth and branching in other systems, so this is a new role for this protein. However, the authors show that proteins that work with Sax-1 in other systems, like sax-2/fry, also play a role in this pathway. The genetic experiments are beautiful and the findings are all clearly explained and strongly supported. The authors also examine sax-2 localization, which localizes sax-1 in other systems, and show it in puncta in dendrites that increase with dauer exit, consistent with function at the time of pruning. They also show that membrane trafficking regulators associated with NDR kinases function in the same pathway here, hinting that endocytosis may play a role during pruning as in Drosophila. The link to endocytosis was a little weak (see Major point below). Overall, this study describes a new system to study pruning and identifies NDR/fry/Rabs as regulators of pruning during dauer exit. The work is very high quality and both the imaging and genetics are extremely well done.

      We thank the reviewer for their positive assessment of the manuscript.

      Major points

      1. The only place where there were any questions about the data was the last figure (6G and I). Here they use uptake of GFP secreted from muscle as a readout of endocytosis in IL2 neurons. They nicely show that more internalized puncta accumulate as animals exit dauer. The claim that this is reduced in sax-1 mutants doesn't seem to match the images shown well. In the image there are many more puncta in the GFP channel and much more accumulation of the RFP-tagged receptor everywhere. It seems like some additional analysis of this data is important to fully capture what is going on and whether this really represents an endocytic defect. We agree and will provide additional data in Figure 6. The specific discrepancy between the image and the quantification is because we showed a single focal plane rather than a projection. This does not capture all the puncta in a neurite. The current version shows a projection, making it evident that the mutants has fewer puncta compared to the control.

      Reviewer #2 (Significance (Required)):

      Neurite pruning is important in all animals with neurons. Genetic approaches have primarily been applied to the problem using Drosophila, so identifying a new model system in which to study it is an important step. Using this system, a pathway known to function in a different context is linked to pruning. Thus the study provides new insights into both pruning and this pathway.

      We thank the reviewer for the positive assessment of our study’s significance.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Summary: Figueroa-Delgado et al. use a C. elegans neuro plasticity model to examine how dendrites are eliminated upon recovery from the stress induced larval stage, dauer. The authors performed a mutagenesis screen to identify novel regulators of dendrite elimination and revealed some surprising results. Branch elimination mechanism varies between 2{degree sign}, 3{degree sign}, and 4{degree sign} branches. The NDR kinase, SAX-1 and it's interactors (SAX-2 and MOB-2) are required for elimination of second and third order branches but not fourth order branches. Interestingly they showed that branch elimination varies depending on the stimulus of dendrite outgrowth such that the NDR kinase is required for branch elimination after genetically inducing the dauer stage but is not required if dauers are produced through food deprivation. The authors go a step further to include a small candidate screen looking at various pathways of membrane remodeling and identify additional regulators of dendrite elimination related to membrane trafficking including RABI-1, RAB-8, RAB-10, and RAB-11.2.

      We thank the reviewer for their time and suggestions below

      Major comments:

      • While I find the data promising and exciting, several of the experiments have concerningly low sample sizes. Fig 3G, Fig 4G, Fig 5J and L, and Fig 6I all contain data sets that are fewer than 10 animals. Sample sizes should be stated specifically in the figure legends for all data represented in the graphs. We thank the reviewer for finding the data exciting. We agree that the sample sizes in some panels is low and will increase it in the revised version. Sample sizes are now specifically listed in the figure legends.

      • All statements based on data not shown should be amended to include the data as a supplemental figure or edited to omit the statement based on withheld data. We agree. Some “not shown” data are already added to the current version of the manuscript and the rest will be added to the fully revised version, or the statements will be omitted.

      • Rescue experiments (Fig 2J) should demonstrate failure to rescue from neighboring tissue types (hypodermis and muscle) to conclude cell autonomous rescue rather than a broadly acting factor. Thank you for the suggestion. We will use a hypodermal promoter and a muscle promoter driving SAX-1 cDNA expression to strengthen the claim of cell autonomy.

      • Fig 4 needs quantification of higher order branches and SAX-2 proximity to branch nodes as these are discussed in the text. We will add this quantification.

      Minor comments:

      • Fig 1C-F, It appears like the shy87 allele produces animals of significantly different body sizes. It would improve rigor to normalize the dendrite coverage to body size in the quantification. We do not see a biologically meaningful size difference between shy87 and control, it may be the specific image shown. We will confirm this by measuring animal size for the final revision.

      • Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults. This important point was also raised by Reviewer 1. We will test SDS sensitivity, morphological markers, and molecular markers to determine the dauer “state” of the mutants used in this study. The results will be included in the final revision.

      • The text references multiple transgenic lines tested in Fig 2I-J but only one line is shown. Additional lines were visually examined under a fluorescent compound microscope but not imaged or quantified. We will add this quantification to the final revision.

      • Fig 4F, Additional timepoints would enhance the sax-1 localization result and might provide insight into mechanism of action for sax-1. We will add the localization in post-dauer adults.

      • Fig 6I Control and sax-1(ky491) example images should be provided in the supplement. We will add these images to the final revision.

      **Referee cross-commenting**

      I agree that we shared many of the same concerns.

      There are several general assays for dauer characteristics that could be used here to determine if the post-dauer animals retain other characteristics of the dauer stage in addition to IL2 branches (SDS resistance, alae remodeling, pharyngeal bulb morphology, nictation behavior). The nictation behavior has been connected very nicely with IL2 neurons (Junho Lee's group). Additionally, FLP dendrites occupy the same space as the IL2 branches and outgrowth in post-dauers occurs in coordination with IL2 branch elimination - this might be another optional experiment, to check if FLP growth is impeded by persistent IL2 branches. All of these could be quantified similar to how the authors have already established with their IL2 model (FLP dendrite branches) or with a binary statistic.

      Please see responses to Reviewer 1 and 3 above for the list of experiments to determine whether the animals fail to completely enter or exit dauer.

      Reviewer #3 (Significance (Required)):

      SIGNIFICANCE ============ These results describe a new role for the NDR kinase complex in dendrite pruning that has clinical significance to our understanding of human brain development and human health concerns in which pruning is dysregulated, such as observed in the case of autism. The authors use an established neuro-plasticity, C. elegans model (Schroeder et al. 2013) which provides a tractable and reproduceable platform for discovering the mechanism of dendrite pruning. These results would influence future work in the fields of cell biology of the neuron and disease models of brain development.

      My expertise is in the field of C. elegans neuroscience and stress biology and have sufficient expertise to evaluate all aspects of this work.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1

      • In Fig. 4C, the distinction between puncta in the primary or higher-order dendrites is not clear to me, and several puncta that I would have scored as primary are marked as higher-order.

      We apologize for a mistake in the arrowhead color and overall presentation of this figure. It has been fixed in the current version.

      • Related to this, in Fig. 4B are the two arrows meant to be white as in the top panel, or yellow as in the bottom panel?

      We thank Reviewer #1 for their observation, and we apologize for our oversight. We fixed this in the current version.

      • In Fig. 4, where in the head are we looking? It would help to show a more low-magnification view of the entire cell.

      We added zoomed-out images and indicated where the zoomed in insets are taken from. We thank the reviewer for helping us improve the clarity of the data.

      • The main sax-1 phenotype is increased SAX-2 puncta in dauer, but the branch retraction defect is in post-dauers. How is this relevant to the phenotype?

      This is a very good point. The increase in SAX-2 puncta in sax-1 mutants is stronger during dauer-exit than in dauer, consistent with this being the time when SAX-1 functions. We agree that some earlier activity of SAX-1 cannot be excluded, and we do not assume that the effect on SAX-2 completely accounts for the pruning defects. This is now acknowledged in the text. However, given that both proteins function together in pruning, and given that the effect is strongest during dauer exit, we do believe that this data is informative and worth showing.


      • The number of SAX-2 puncta in sax-1 mutants decreases almost to normal in post dauers. Is there a correlation between the number of remaining branches and the number of SAX-2 puncta? That is, do the many wild-type animals with "excess" SAX-2 puncta also fail to retract branches?

      There is no correlation. In other words, the number of SAX-2 puncta does not instruct the extent of pruning. Please note the quantifications underestimate the number of SAX-2 puncta in the mutants, since they were only done on the primary dendrite. This is necessary because the mutant and control have different arbor size, so only branch order that can be appropriately compared are primary dendrites.

      • The control post-dauer data in Fig. 4F and 4H are identical (re-used data) but the corresponding control dauer data in Fig. 4F and 4G are different. What is going on here?

      We thank the reviewer for raising this point and apologize for the oversight in data presentation. In the revised manuscript, we now show all control and experimental data integrated into a single graph, ensuring that each dataset is represented accurately to provide a comparison between dauer and post dauer recovery conditions.


      • Why are sample sizes so small for both strains in Fig. 4G compared to Fig. 4F and 4H?

      We sincerely apologize for this mistake, some of the data was erroneously grouped in the original submission. The revised version contains an updated number of neurons, presented on the same graph, and in the final revision we will further increase sample size. We apologize again for this error.

      • In Fig. 6C, why are the tagRFP (blue) puncta larger than the neurite? Aren't these meant to represent vesicles inside the surrounding neurite? One gets the impression that this is bleed-through from the GFP channel.

      Based on EM, both an endocytic punctum and the diameter of the neuron are smaller than a single pixel. The apparent difference in size in fluorescence microscopy is because the puncta are brighter (they contain more membrane) and thus appear larger. In the current version, the improved presentation of the figure contains zoomed out images that clearly show that there is no bleed-through.

      • In Fig. 6E and 6F, why are there no tagRFP (blue) puncta? Is CD8 not endocytosed at all if it lacks the nanobody sequence? One would expect the tagRFP (blue) signal to be the same in both strains and simply to lack yellow if the nanobody is not present.

      CD8 lacks clear endocytosis motifs, which is why it is advantageous for labelling neurites and testing endocytosis when paired with an endocytic signal (Lee and Luo 1999; Kozik et al. 2010). Conversely, extracellular GFP binding to a membrane GFP antibody can induce endocytosis (for example, see (Tang et al., 2020)), likely by inducing clustering, although we are not familiar with work that explored the mechanism. In the updated version we included a rare example of an mCD8 punctum.

      • The authors report a decrease in endocytic events in sax-1, but qualitatively it looks like there are vastly more puncta inside the neuron in Fig. 6H than in 6G.

      We apologize for the presentation in the original version of Figure 6. This impression was because we showed single focal planes that only captured some of the signal. In the revised version we show projections, which makes it evident that there are fewer endocytic events in the mutant.

      • In Fig. 6E and 6H, why are there so many GFP (yellow) puncta outside the neuron? What are these structures and why are they absent in the strain with the nanobody?

      These puncta are secreted or muscle-associated GFP that has not been internalized by IL2Q neurons. They are present in all strains in this figure, this can be clearly seen in the zoomed-out images that have been added to the updated figure.

      • What is the large central blue structure in Fig. 6H - is this the soma? - and why are puncta in this region not counted?

      This is indeed the soma. In the updated version this can be clearly seen in the zoom-out. The large puncta in the soma were not counted because they may arise from the fusion of an unknown number of smaller puncta, and their precise number cannot be determined at the resolution of fluorescence microscopy.

      • minor: there is text reading "40-" in the bottom panel of Fig. 6H. It is visible when printed but not on screen - adjust levels in Photoshop to reveal it.

      We thank the reviewer for catching this oversight, it is now fixed.

      Minor points:

      1. At several points the authors emphasize the relationship of neurite remodeling to stress, e.g. Abstract and Discussion: "we adapted C. elegans IL2 sensory dendrites as a model [of...] stress-mediated dendrite pruning". It seems unnecessary and potentially misleading to treat this as a neuronal stress response. First, it conflates organismal and cellular stress - there is no reason to think that IL2 neurons are under cellular stress in dauer. In fact parasitic nematodes go through dauer-like stages as part of healthy development and probably have similar remodeling of IL2. Second, dendrite pruning occurs during dauer exit, which is the opposite of a stress response - it reflects a return to favorable conditions. We agree. We modified the abstract and discussion to avoid conflating organismal stress (the alleviation of which is relevant for triggering pruning) and cellular stress. Thank you for pointing this out.

      In Fig. 1A, C. elegans is shown going directly from L1 to dauer in response to unfavorable conditions, which is incorrect. Animals proceed through L2 (in many cases actually an alternative L2d pre-dauer) and then molt into dauer (an alternative L3 stage) after completing L2.

      We updated the schematic to include the L2d stage where commitment to dauer entry or resumption to reproductive development is made.

      In Fig. 1B, please check if it is correct that hypodermis contacts the pharynx basement membrane as drawn. The schematic in the top panel makes it look like there is a single secondary branch and the quaternary branches are similar in length to the primary dendrite. The schematic in the bottom panel makes it look like the entire neuron is a small fraction of the length of the pharynx. Could these be drawn closer to scale?

      The hypodermis does contact the pharynx basement membrane. We redrew the schematic for clarity.

      Reviewer #2

      For context, it might be helpful to know whether branching of other dendrites is increased in sax-1 mutants (as expected based on phenotypes in other animals) or decreased like IL2 neurons.

      We examined the branching pattern of PVD, a polymodal nociceptive neuron (new Supplemental Figure 3). We find no significant difference between control and sax-1 or sax-2 mutants, suggesting that these genes function in the context of pruning. Recent work (Zhao et al. 2022) confirms that sax-1 is not required for PVD branching.

      Minor:

      "shy87 mutant dauers showed a minor reduction in secondary and tertiary branches compared to control (Figure 1G). These results indicate that shy87 is specifically required for the elimination of dauer-generated dendrite branches." Maybe temper the specificity claim some as the reduction in branches is definitely there.

      We agree, the claim was tempered.

      "three complimentary approaches" should be complementary

      Thank you for noticing. We fixed this.

      "In control animals, SAX-2 was mostly concentrated in the cell body (data not shown)" It might be nice to include some overview images that show the cell body for completeness.

      We added zoomed-out images to the revised figure, thank you for the suggestion.

      Reviewer #3


      Minor comments:


      • Fig 1G-H, are shy87 second and third order branch counts statistically different between dauer and post dauer adults? This comparison would strengthen the claim that these order branches fail to eliminate all together rather than undergo a partial elimination. We added this to Figure S2. The shy87 mutants show a complete failure in eliminating secondary branches (i.e. no difference between dauer and post-dauer) and a strong but incomplete defect in eliminating tertiary branches.

      • Fig 4B-E Indicate branch order in the images, this is unclear and a point that is focused on in the text. Done.

      • Discussion of Fig 1G from the text claims that shy87 is specifically required for branch elimination yet the data shows significant defects in branch outgrowth as well. This raises the question, are the branches abnormally stabilized that results in early underdevelopment and late atrophy? Authors should acknowledge alternative hypotheses. We agree and will revise the text accordingly. The difference between shy87 and control dauers, while statistically significant, is relatively minor and can only be detected by careful quantification, it is not apparent from looking at the images (in contrast for example to rab-8 and rab-10 mutants, where we acknowledge in the text that their branching defects might affect subsequent pruning.

      • Authors reference a branch elimination process but don't outline what this would entail and where their results fit in. We apologize for being unclear. Given that sax-1 and sax-2 function together, one would intuitively expect to see SAX-2 being reduced in sax-1 mutants, yet the opposite is observed. On potential explanation is that SAX-1 does not directly control SAX-2 abundance, but that clearance of SAX-2 is part of the pruning process that both proteins regulate. This would explain the enrichment of SAX-2 in sax-1 mutants. However, additional models cannot be excluded, and we acknowledge this in the revised text.

      References:

      Corchado, Johnny Cruz, Abhishiktha Godthi, Kavinila Selvarasu, and Veena Prahlad. 2024. “Robustness and Variability in Caenorhabditis Elegans Dauer Gene Expression.” Preprint, bioRxiv, August 26. https://doi.org/10.1101/2024.08.15.608164.

      Karp, Xantha. 2018. “Working with Dauer Larvae.” WormBook, August 9, 1–19. https://doi.org/10.1895/wormbook.1.180.1.

      Kozik, Patrycja, Richard W Francis, Matthew N J Seaman, and Margaret S Robinson. 2010. “A Screen for Endocytic Motifs.” Traffic (Copenhagen, Denmark) 11 (6): 843–55. https://doi.org/10.1111/j.1600-0854.2010.01056.x.

      Lee, T., and L. Luo. 1999. “Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis.” Neuron 22 (3): 451–61.

      Swanson, M. M., and D. L. Riddle. 1981. “Critical Periods in the Development of the Caenorhabditis Elegans Dauer Larva.” Developmental Biology 84 (1): 27–40. https://doi.org/10.1016/0012-1606(81)90367-5.

      Tang, Rui, Christopher W Murray, Ian L Linde, et al. n.d. “A Versatile System to Record Cell-Cell Interactions.” eLife 9: e61080. https://doi.org/10.7554/eLife.61080.

      Zhao, Ting, Liying Guan, Xuehua Ma, Baohui Chen, Mei Ding, and Wei Zou. 2022. “The Cell Cortex-Localized Protein CHDP-1 Is Required for Dendritic Development and Transport in C. Elegans Neurons.” PLOS Genetics 18 (9): e1010381. https://doi.org/10.1371/journal.pgen.1010381.


      4. Description of analyses that authors prefer not to carry out

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The investigators undertook detailed characterization of a previously proposed membrane targeting sequence (MTS), a short N-terminal peptide, of the bactofilin BacA in Caulobacter crescentus. Using light microscopy, single molecule tracking, liposome binding assays, and molecular dynamics simulations, they provide data to suggest that this sequence indeed does function in membrane targeting and further conclude that membrane targeting is required for polymerization. While the membrane association data are reasonably convincing, there are no direct assays to assess polymerization and some assays used lack proper controls as detailed below. Since the MTS isn't required for bactofilin polymerization in other bacterial homologues, showing that membrane binding facilitates polymerization would be a significant advance for the field.

      We agree that additional experiments were required to consolidate our results and conclusions. Please see below for a description of the new data included in the revised version of the manuscript.

      Major concerns

      (1) This work claims that the N-termina MTS domain of BacA is required for polymerization, but they do not provide sufficient evidence that the ∆2-8 mutant or any of the other MTS variants actually do not polymerize (or form higher order structures). Bactofilins are known to form filaments, bundles of filaments, and lattice sheets in vitro and bundles of filaments have been observed in cells. Whether puncta or diffuse labeling represents different polymerized states or filaments vs. monomers has not been established. Microscopy shows mis-localization away from the stalk, but resolution is limited. Further experiments using higher resolution microscopy and TEM of purified protein would prove that the MTS is required for polymerization.

      We do not propose that the MTS is directly involved in the polymerization process and state this more clearly now in the Results and Discussion sections of the revised manuscript. To address this point, we performed transmission electron microscopy studies comparing the polymerization behavior of wild-type and mutant BacA variants. The results clearly show that the MTS-free BacA variant (∆2-8) forms polymers that are indistinguishable from those formed by the wild-type protein, when purified from an E. coli overproduction strain (new Figure 1–figure supplement 1). This finding is consistent with structural work showing that bactofilin polymerization is exclusively mediated by the conserved bactofilin domain (Deng et al, Nat Microbiol, 2019). However, at native expression levels, BacA only accumulates to ~200 molecules per cell (Kühn et al, EMBO J, 2006). Under these conditions, the MTS-mediated increase in the local concentration of BacA at the membrane surface and, potentially, steric constraints imposed by membrane curvature, may facilitate the polymerization process. This hypothesis has now been stated more clearly in the Results and Discussion sections.

      For polymer-forming proteins, defined localized signals are typically interpreted as slow-moving or stationary polymeric complexes. A diffuse localization, by contrast, suggests that a protein exists in a monomeric or, at most, (small) oligomeric state in which it diffuses rapidly within the cell and is thus no longer detected as distinct foci by widefield microscopy. Our single-molecule data show that BacA variants that are no longer able to interact with the membrane (as verified by cell fractionation studies and in vitro liposome binding assays) have a high diffusion rate, similar to that measured for the non-polymerizing and non-membrane-bound F130R variant. These results demonstrate that a defect in membrane binding strongly reduces the ability of BacA to form polymeric assemblies. To support this hypothesis, we have now repeated all single-particle tracking experiments and included mVenus as a freely diffusible reference protein. Our data confirm that the mobilities of the ∆2-8 and F130R variants are similar and approach those of free mVenus, supporting the idea that the deficiency to interact with the membrane prevents the formation of extended polymeric structures (which should show much lower mobilities). To underscore the relevance of membrane binding for BacA assembly, we have now included a new experiment, in which we used the PbpC membrane anchor (PbpC<sub>1-132</sub>-mcherry) to restore the recruitment of the ∆2-8 variant to the membrane (Figure 9 and Figure 9–figure supplement 1). The results obtained show that the ∆2-8 variant transitions from a diffuse localization to polar foci upon overproduction of PbpC<sub>1-132</sub>-mcherry. The polymerization-impaired F130R variant, by contrast, remains evenly distributed throughout the cytoplasm under all conditions. These findings further support the idea that polymerization and membrane-association are mutually interdependent processes.

      (2) Liposome binding data would be strengthened with TEM images to show BacA binding to liposomes. From this experiment, gross polymerization structures of MTS variants could also be characterized.

      We do not have the possibility to perform cryo-electron microscopy studies of liposomes bound to BacA. However, the results of the cell fractionation and liposome sedimentation assays clearly support a critical role of the MTS in membrane binding.

      (3) The use of the BacA F130R mutant throughout the study to probe the effect of polymerization on membrane binding is concerning as there is no evidence showing that this variant cannot polymerize. Looking through the papers the authors referenced, there was no evidence of an identical mutation in BacA that was shown to be depolymerized or any discussion in this study of how the F130R mutation might to analogous to polymerization-deficient variants in other bactofilins mentioned in these references.

      Residue F130 in the C-terminal polymerization interface of BacA is conserved among bactofilin homologs, although its absolute position in the protein sequence may vary, depending on the length of the N-terminal unstructured tail. The papers cited in our manuscript show that an exchange of this conserved phenylalanine residue abolishes polymer formation. Nevertheless, we agree that it is important to verify the polymerization defect of the F130R variant in the system under study. We have now included size-exclusion chromatography data showing that BacA-F130R forms a low-molecular-weight complex, whereas the wild-type protein largely elutes in the exclusion volume, indicating the formation of large, polymeric species (new Figure 1–figure supplement 1). In addition, we performed transmission electron microscopy analyses of BacA-F130R, which verified the absence of larger oligomers (new Figure 1–figure supplement 2).

      (4) Microscopy shows that a BacA variant lacking the native MTS regains the ability to form puncta, albeit mis-localized, in the cell when fused to a heterologous MTS from MreB. While this swap suggests a link between puncta formation and membrane binding the relationship between puncta and polymerization has not been established (see comment 1).

      We show that a BacA variant lacking the MTS (∆2-8) regains the ability to form membrane-associated foci when fused to the MTS of MreB. By contrast, a similar variant that additionally carries the F130R exchange (preventing its polymerization) shows a diffuse cytoplasmic localization. In addition, we show that the F130R exchange leads to a loss of membrane binding and to a considerable increase in the mobility of the variants carrying the MTS of E. coli MreB. As described above, we now provide additional data demonstrating that elevated levels of the PbpC membrane anchor can reinstate polar localization for the ∆2-8 variant, whereas it fails to do so for the polymerization-deficient F130R variant (Figure 9 and Figure 9–figure supplement 1). Together, these results support the hypothesis that membrane association and polymerization act synergistically to establish localized bactofilin assemblies at the stalked cell pole.

      (5) The authors provide no primary data for single molecule tracking. There is no tracking mapped onto microscopy images to show membrane localization or lack of localization in MTS deletion/ variants. A known soluble protein (e.g. unfused mVenus) and a known membrane bound protein would serve as valuable controls to interpret the data presented. It also is unclear why the authors chose to report molecular dynamics as mean squared displacement rather than mean squared displacement per unit time, and the number of localizations is not indicated. Extrapolating from the graph in figure 4 D for example, it looks like WT BacA-mVenus would have a mobility of 0.5 (0.02/0.04) micrometers squared per second which is approaching diffusive behavior. Further justification/details of their analysis method is needed. It's also not clear how one should interpret the finding that several of the double point mutants show higher displacement than deleting the entire MTS. These experiments as they stand don't account for any other cause of molecular behavior change and assume that a decrease in movement is synonymous with membrane binding.

      We now provide additional information on the single-particle analysis. A new supplemental figure now shows a mapping of single-particle tracks onto the cells in which they were recorded for all proteins analyzed (Figure 2–figure supplement 1). Due to the small size of C. crescentus, it is difficult to clearly differentiate between membrane-associated and cytoplasmic protein species. However, overall, slow-diffusing particles tend to be localized to the cell periphery, supporting the idea that membrane-associated particles form larger assemblies (apart from diffusing more slowly due to their membrane association). In addition, we have included a movie that shows the single-particle diffusion dynamics of all proteins in representative cells (Figure 2-video 1). Finally, we have included a table that gives an overview of the number of cells and tracks analyzed for all proteins investigated (Supplementary file 1). Figure 2A and 4D show the mean squared displacement as a function of time, which makes it possible to assess whether the particles observed move by normal, Brownian diffusion (which is the case here). We repeated the entire single-particle tracking analysis to verify the data obtained previously and obtained very similar results. Among the different mutant proteins, only the K4E-K7E variant consistently shows a higher mobility than the MTS-free ∆2-8 variant, with MSD values similar to that of free mVenus. The underlying reason remains unclear. However, we believe that an in-depth analysis of this phenomenon is beyond the scope of this paper. We re-confirmed the integrity of the construct encoding the K4E/K7E variant by DNA sequencing and once again verified the size and stability of the fusion protein by Western blot analysis, excluding artifacts due to errors during cloning and strain construction.

      We agree that the single-molecule tracking data alone are certainly not sufficient to draw firm conclusions on the relationship between membrane binding and protein mobility. However, they are consistent with the results of our other in vivo and in vitro analyses, which together indicate a clear correlation between the mobility of BacA and its ability to interact with the membrane and polymerize (processes that promote each other synergistically).

      (6) The experiments that map the interaction surface between the N-terminal unstructured region of PbpC and a specific part of the BacA bactofilin domain seem distinct from the main focus of the paper and the data somewhat preliminary. While the PbpC side has been probed by orthogonal approaches (mutation with localization in cells and affinity in vitro), the BacA region side has only been suggested by the deuterium exchange experiment and needs some kind of validation.

      The results of the HDX analysis per se are not preliminary and clearly show a change in the solvent accessibility of backbone amides in the C-terminal region in the bactofilin domain in the presence of the PbpC<sub>1-13</sub> peptide. However, we agree that additional experiments would be required to verify the binding site suggested by these data. We agree that further research is required to precisely map and verify the PbpC binding site. However, as this is not the main focus of the paper, we would like to proceed without conducting further experiments in this area.

      We now provide additional data showing that elevated levels of the PbpC membrane anchor are able to recruit the MTS-free BacA variant (∆2-8) to the cytoplasmic membrane and stimulate its assembly at the stalked pole (Figure 9). These results now integrate Figure 8 more effectively into the overall theme of the paper.

      Reviewer #2 (Public review):

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a common property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Strengths:

      These data significantly advance the understanding of the membrane binding determinants of bactofilins and thus their function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

      Thank you for this positive feedback.

      Weaknesses:

      The results are limited to protein localization and interaction, as there is no data on phenotypic effects. Therefore, the cell biological significance remains somewhat underrepresented.

      We agree that it is interesting to investigate the phenotypic effects caused by the reduced membrane binding activity of BacA variants with defects in the MTS. We have now included phenotypic analyses that shed light on the role of region C1 in the localization of PbpC and its function in stalk elongation under phosphate-limiting conditions (see below).

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      To address the missing estimation of biological relevance, some additional experiments may be carried out.

      For example, given that BacA localizes PbpC by direct interaction, one might expect an effect on stalk formation if BacA is unable to bind the membrane or to polymerize. The same applies to PbpC variants lacking the C1 region. As the mutant strains are available, these data are not difficult to obtain but would help to compare the effect of the deletions with previous data (e.g. Kühn et al.) even if the differences are small.

      We have now analyzed the effect of the removal of region C1 on the ability of mVenus-PbpC to promote stalk elongation in C. crescentus under phosphate starvation. Interestingly, our results show that the lack of the BacA-interaction motif impairs the recruitment of the fusion protein to the stalked pole, but it does not interfere with its stimulatory effect on stalk biogenesis. Thus, the polar localization of PbpC does not appear to be critical for its function in localized peptidoglycan synthesis at the stalk base. These results are now shown in Figure 8–Figure supplement 4. The results obtained may be explained by residual transient interactions of mVenus-PbpC with proteins other than BacA at the stalked pole. Notably, PbpC has also been implicated in the attachment of the stalk-specific protein StpX to components of the outer membrane at the stalk base. The polar localization of PbpC may therefore be primarily required to ensure proper StpX localization, consistent with previous work by Hughes et al. (Mol Microbiol, 2013) showing that StpX is partially mislocalized in a strain producing an N-terminally truncated PbpC variant that no longer localizes to the stalk base.

      We have also attempted to investigate the ability of the Δ2-8 and F130R variants of BacA-mVenus to promote stalk elongation under phosphate starvation. However, the levels of the WT, Δ2-8 and F130R proteins and their stabilities were dramatically different after prolonged incubation of the cells in phosphate-limited medium, so that it was not possible to draw any firm conclusions from the results obtained (not shown).

      In addition, the M23-like endopeptidase LdpA is proposed to be a client protein of BacA (in C. crescentus, Billini et al. 2018, and H. neptunium or R. rubrum, Pöhl et al. 2024). In H. neptunium, it is suggested that the interaction is mediated by a cytoplasmic peptide of LmdC reminiscent of PbpC. This should at least be commented on. It would be interesting to see, if LpdA in C. crescentus is also delocalized and if so, this could identify another client protein of BacA.

      We agree that it would be interesting to study the role of BacA in LdpA function. However, we have not yet succeeded in generating a stable fluorescent protein fusion to LdpA, which currently makes it impossible to study the interplay between these two proteins in vivo. The focus of the present paper is on the mode of interaction between bactofilins and the cytoplasmic membrane and on the mutual interdependence of membrane binding and bactofilin polymerization. Given that PbpC is so far the only verified interaction partner of BacA in C. crescentus, we would like to limit our analysis to this client protein.

      Further comments:

      L105: analyze --> analyzed

      Done.

      L169: Is there any reason why the MTS of E. coli MreB was doubled?

      Previous work has shown that two tandem copies of the N-terminal amphiphilic helix of E. coli MreB were required to partially target a heterologous fusion partner protein (GFP) to the cytoplasmic membrane of E. coli cells (Salje et al, 2011).

      Fig. S3:

      a) Please decide which tag was used (mNG or mVenus) and adapt the figure or legend accordingly.<br /> b) In the legend for panel (C), please describe how the relative amounts were calculated, as the fractions arithmetically cannot add to > 100%. I guess each band was densiometrically rated and independently normalized to the whole-cell signal?

      The fluorescent tag used was mNeonGreen, as indicated in the figure. We have now corrected the legend accordingly. Thank you for making us aware of the wrong labeling of the y-axis. We have now corrected the figure and describe the method used to calculate the plotted values in the legend.

      Legend of Fig 1b: It is not clear to me, to which part of panel B the somewhat cryptic LY... strain names belong. I suggest putting them either next to the images, to delete them, or at least to unify the layout (compare, e.g. to Fig S7). (I would delete the LY numbers and stay with the genes/mutations throughout. This is just a suggestion).

      These names indicate the strains analyzed in panel B, and we have now clarified this in the legend. It is more straightforward to label the images according to the mutations carried by the different strains. Nevertheless, we would like to keep the strain names in the legend, so that the material used for the analysis can be clearly identified.

      Fig. 2a: As some of the colors are difficult to distinguish, I suggest sorting the names in the legend within the graph according to the slope of the curves (e.g. K4E K7E (?) on top and WT being at the bottom).

      Thank you for this suggestion. We have now rearranged the labels as proposed.

      In the legend (L924), correct typo "panel C" to "panel B".

      Done.

      Fig. 3: In the legend, I suggest deleting the abbreviations "S" and "P" as they do not show up in the image. In line 929, I suggest adding: average "relative" amount... or even more precisely: "average relative signal intensities obtained..."

      We have removed the abbreviations and now state that the bars indicate the “average relative signal intensities” obtained for the different fractions.

      Fig 4d: same suggestion as for Fig. 2a.

      Done.

      Fig 8: In the legend (L978), delete 1x "the"

      Done.

      L258 and Fig. S5: The expression "To account for biases in the coverage of bacterial species" seems somewhat unclear. I suggest rephrasing and adding information from the M+M section here (e.g. from L593, if this is meant).

      We now state that this step in the analysis pipeline was performed “To avoid biases arising from the over-representation of certain bacterial species in UniProt”.

      I appreciate the outline of the workflow in panel (a) of Fig. S5. It would be even more useful when some more details about the applied criteria for filtering would be provided (e.g. concerning what is meant with "detailed taxonomic information" or "filter out closely related sequences". Does the latter mean that only one bactofilin sequence per species was used? (As quite many bacteria have more than one but similar bactofilins.)

      We removed sequences from species with unclear phylogeny (e.g. candidate species whose precise taxonomic position has not yet been determined). For many pathogenic species, numerous strains have been sequenced. To account for this bias, only one sequence from clusters of highly similar bactofilin sequences (>90% identity) was retained per species. This information has now been included in the diagram. It is true that many bacteria have more than one bactofilin homolog. However, the sequences of these proteins are typically quite different. For instance, the BacA and BacB from C. crescentus only share 52% identity. Therefore, our analysis does not systematically eliminate bactofilin paralogs that coexist in the same species.

      L281: Although likely, I am not sure if membrane binding has ever been shown for a bactofilin from these phyla. (See also L 380.) Is there an example? Otherwise, membrane binding may not be a property of these bactofilins.

      To our knowledge, the ability of bactofilins from these clades to interact with membranes has not been investigated to date. We agree that the absence of an MTS-like motif may indicate that they lack membrane binding activity, and we have now stated this possibility in the Results and Discussion.

      L285: See comment above concerning the M23-like peptidase LpdA. Although not yet directly shown for C. crescentus, it seems likely that BacACc does also localize this peptidase in addition to PbpC. I suggest rephrasing, e.g. "known" --> "shown"

      We now use the word “reported”.

      L295 and Fig S8: PbpC is ubiquitous. Which criteria/filters have been applied to select the shown sequences?

      C. crescentus PbpC is different from E. coli Pbp1C. It is characterized by distinctive, conserved N- and C-terminal tails and only found in C. crescentus and close relatives. The C. crescentus homolog of E. coli PbpC is called PbpZ (Yakhnina et al, J Bacteriol, 2013; Strobel et al, J Bacterol, 2014), whereas C. crescentus PbpC is related to E. coli PBP1A. We have now added this information to the text to avoid confusion.

      L311: may replace "assembly" by "polymerization"

      Done.

      L320: bactofilin --> bactofilin domain?

      Yes, this was supposed to read “bactofilin domain”. Thank you for spotting this issue.

      L324: The HDX analysis of BacA suggests that the exchange is slowed down in the presence of the PbpC peptide, which is indicative of a physical interaction between these two molecules. To corroborate the claim that BacA polymerization is critical for interaction with the peptide (resp. PbpC), this experiment should be carried out with the polymerization defective BacA version F130R.

      (Or tone this statement down, e.g. show --> suggest.)

      “suggest”

      L386: undergoes --> undergo

      Done.

      L391-400: This idea is tempting but the suggested mechanism then would be restricted to bactofilins of C. crescentus and close relatives. The bactofilin of Rhodomicrobium, for example, was shown to localize dynamically and not to stick to a positively curved membrane.

      In the vast majority of species investigated so far, bactofilins were found to associate with specifically curved membrane regions and to contribute to the establishment of membrane curvature. Unfortu­nately, the sequences of the three co-polymerizing bactofilin paralogs of R. vannielii DSM 166 studied by Richter et al (2023) have not been reported and the genome sequence of this strain is not publicly available. However, in related species with three bactofilin paralogs, only one paralog shows an MTS-like N-terminal peptide and another paralog typically contains an unusual cadherin-like domain of unknown function, as also reported for R. vannielii DSM 166. Therefore, the mechanism controlling the localization dynamics of bactofilins may be complex in the Rhodomicrobium lineage. Nevertheless, at native expression levels, the major bactofilin (BacA) of R. vannielii DSM 166 was shown to localize predominantly to the hyphal tips and the (incipient) bud necks, suggesting that regions of distinct membrane curvature could also play a role in its recruitment. We do not claim that all bactofilins recognize positive membrane curvature, which is clearly not the case. It rather appears as though the curvature preference of bactofilins varies depending on their specific function.

      L405-406: I agree that localization of BacA has been shown to be independent of PbpC. However, this does not generally preclude an effect on BacA localization by other "client" or interacting proteins. (See also comment above about the putative BacA interactor LpdA). I suggest either to corroborate or to change this statement from "client binding" to "PbpC binding".

      Thank you for pointing out the imprecision of this statement. We now conclude that “PbpC binding” is not critical for BacA assembly and positioning.

      Suppl. Fig. S11: In the legend, please correct the copy-paste mismatch (...VirB...).

      Done.

      L482: delete 1x "at"

      Done.

      L484: may be better "soluble and insoluble fractions"?

      We now describe the two fractions as “soluble and membrane-containing insoluble fractions” to make clear to all readers that membrane vesicles are found in the pellet after ultracentrifugation.

      L489-490: check spelling immunoglobulin – immuneglobulin

      Done.

      L500 and 504: º_C --> ºC

      Done.

      Suppl. file X (HDX data): please check the table headline, table should be included in Suppl. file 1

      We have now included a headline in this file (now Supplementary file 3).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      *The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community. *

      Thank you for your positive feedback.

      *There are several single-cell methodologies all claim to co-profile chromatin modifications and gene expression from the same individual cell, such as CoTECH, Paired-tag and others. Although T-ChIC employs pA-Mnase and IVT to obtain these modalities from single cells which are different, could the author provide some direct comparisons among all these technologies to see whether T-ChIC outperforms? *

      In a separate technical manuscript describing the application of T-ChIC in mouse cells (Zeller, Blotenburg et al 2024, bioRxiv, 2024.05. 09.593364), we have provided a direct comparison of data quality between T-ChIC and other single-cell methods for chromatin-RNA co-profiling (Please refer to Fig. 1C,D and Fig. S1D, E, of the preprint). We show that compared to other methods, T-ChIC is able to better preserve the expected biological relationship between the histone modifications and gene expression in single cells.

      *In current study, T-ChIC profiled H3K27me3 and H3K4me1 modifications, these data look great. How about other histone modifications (eg H3K9me3 and H3K36me3) and transcription factors? *

      While we haven't profiled these other modifications using T-ChIC in Zebrafish, we have previously published high quality data on these histone modifications using the sortChIC method, on which T-ChIC is based (Zeller, Yeung et al 2023). In our comparison, we find that histone modification profiles between T-ChIC and sortChIC are very similar (Fig. S1C in Zeller, Blotenburg et al 2024). Therefore the method is expected to work as well for the other histone marks.

      *T-ChIC can detect full length transcription from the same single cells, but in FigS3, the authors still used other published single cell transcriptomics to annotate the cell types, this seems unnecessary? *

      We used the published scRNA-seq dataset with a larger number of cells to homogenize our cell type labels with these datasets, but we also cross-referenced our cluster-specific marker genes with ZFIN and homogenized the cell type labels with ZFIN ontology. This way our annotation is in line with previous datasets but not biased by it. Due the relatively smaller size of our data, we didn't expect to identify unique, rare cell types, but our full-length total RNA assay helps us identify non-coding RNAs such as miRNA previously undetected in scRNA assays, which we have now highlighted in new figure S1c .

      *Throughout the manuscript, the authors found some interesting dynamics between chromatin state and gene expression during embryogenesis, independent approaches should be used to validate these findings, such as IHC staining or RNA ISH? *

      We appreciate that the ISH staining could be useful to validate the expression pattern of genes identified in this study. But to validate the relationships between the histone marks and gene expression, we need to combine these stainings with functional genomics experiments, such as PRC2-related knockouts. Due to their complexity, such experiments are beyond the scope of this manuscript (see also reply to reviewer #3, comment #4 for details).

      *In Fig2 and FigS4, the authors showed H3K27me3 cis spreading during development, this looks really interesting. Is this zebrafish specific? H3K27me3 ChIP-seq or CutTag data from mouse and/or human embryos should be reanalyzed and used to compare. The authors could speculate some possible mechanisms to explain this spreading pattern? *

      Thanks for the suggestion. In this revision, we have reanalysed a dataset of mouse ChIP-seq of H3K27me3 during mouse embryonic development by Xiang et al (Nature Genetics 2019) and find similar evidence of spreading of H3K27me3 signal from their pre-marked promoter regions at E5.5 epiblast upon differentiation (new Figure S4i). This observation, combined with the fact that the mechanism of pre-marking of promoters by PRC1-PRC2 interaction seems to be conserved between the two species (see (Hickey et al., 2022), (Mei et al., 2021) & (Chen et al., 2021)), suggests that the dynamics of H3K27me3 pattern establishment is conserved across vertebrates. But we think a high-resolution profiling via a method like T-ChIC would be more useful to demonstrate the dynamics of signal spreading during mouse embryonic development in the future. We have discussed this further in our revised manuscript.

      Reviewer #1 (Significance (Required)):

      *The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community. *

      Thank you very much for your supportive remarks.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      *Joint analysis of multiple modalities in single cells will provide a comprehensive view of cell fate states. In this manuscript, Bhardwaj et al developed a single-cell multi-omics assay, T-ChIC, to simultaneously capture histone modifications and full-length transcriptome and applied the method on early embryos of zebrafish. The authors observed a decoupled relationship between the chromatin modifications and gene expression at early developmental stages. The correlation becomes stronger as development proceeds, as genes are silenced by the cis-spreading of the repressive marker H3k27me3. Overall, the work is well performed, and the results are meaningful and interesting to readers in the epigenomic and embryonic development fields. There are some concerns before the manuscript is considered for publication. *

      We thank the reviewer for appreciating the quality of our study.

      *Major concerns: *

        • A major point of this study is to understand embryo development, especially gastrulation, with the power of scMulti-Omics assay. However, the current analysis didn't focus on deciphering the biology of gastrulation, i.e., lineage-specific pioneer factors that help to reform the chromatin landscape. The majority of the data analysis is based on the temporal dimension, but not the cell-type-specific dimension, which reduces the value of the single-cell assay. *

      We focused on the lineage-specific transcription factor activity during gastrulation in Figure 4 and S8 of the manuscript and discovered several interesting regulators active at this stage. During our analysis of the temporal dimension for the rest of the manuscript, we also classified the cells by their germ layer and "latent" developmental time by taking the full advantage of the single-cell nature of our data. Additionally, we have now added the cell-type-specific H3K27-demethylation results for 24hpf in response to your comment below. We hope that these results, together with our openly available dataset would demonstrate the advantage of the single-cell aspect of our dataset.

      1. *The cis-spreading of H3K27me3 with developmental time is interesting. Considering H3k27me3 could mark bivalent regions, especially in pluripotent cells, there must be some regions that have lost H3k27me3 signals during development. Therefore, it's confusing that the authors didn't find these regions (30% spreading, 70% stable). The authors should explain and discuss this issue. *

      Indeed we see that ~30% of the bins enriched in the pluripotent stage spread, while 70% do not seem to spread. In line with earlier observations(Hickey et al., 2022; Vastenhouw et al., 2010), we find that H3K27me3 is almost absent in the zygote and is still being accumulated until 24hpf and beyond. Therefore the majority of the sites in the genome still seem to be in the process of gaining H3K27me3 until 24hpf, explaining why we see mostly "spreading" and "stable" states. Considering most of these sites are at promoters and show signs of bivalency, we think that these sites are marked for activation or silencing at later stages. We have discussed this in the manuscript ("discussion"). However, in response to this and earlier comment, we went back and searched for genes that show H3K27-demethylation in the most mature cell types (at 24 hpf) in our data, and found a subset of genes that show K27 demethylation after acquiring them earlier. Interestingly, most of the top genes in this list are well-known as developmentally important for their corresponding cell types. We have added this new result and discussed it further in the manuscript (Fig. 2d,e, , Supplementary table 3).

      *Minors: *

        • The authors cited two scMulti-omics studies in the introduction, but there have been lots of single-cell multi-omics studies published recently. The authors should cite and consider them. *

      We have cited more single-cell chromatin and multiome studies focussed on early embryogenesis in the introduction now.

      *2. T-ChIC seems to have been presented in a previous paper (ref 15). Therefore, Fig. 1a is unnecessary to show. *

      Figure 1a. shows a summary of our Zebrafish TChIC workflow, which contains the unique sample multiplexing and sorting strategy to reduce batch effects, which was not applied in the original TChIC workflow. We have now clarified this in "Results".

      1. *It's better to show the percentage of cell numbers (30% vs 70%) for each heatmap in Figure 2C. *

      We have added the numbers to the corresponding legends.

      1. *Please double-check the citation of Fig. S4C, which may not relate to the conclusion of signal differences between lineages. *

      The citation seems to be correct (Fig. S4C supplements Fig. 2C, but shows mesodermal lineage cells) but the description of the legend was a bit misleading. We have clarified this now.

      *5. Figure 4C has not been cited or mentioned in the main text. Please check. *

      Thanks for pointing it out. We have cited it in Results now.

      Reviewer #2 (Significance (Required)):

      *Strengths: This work utilized a new single-cell multi-omics method and generated abundant epigenomics and transcriptomics datasets for cells covering multiple key developmental stages of zebrafish. *

      *Limitations: The data analysis was superficial and mainly focused on the correspondence between the two modalities. The discussion of developmental biology was limited. *

      *Advance: The zebrafish single-cell datasets are valuable. The T-ChIC method is new and interesting. *

      *The audience will be specialized and from basic research fields, such as developmental biology, epigenomics, bioinformatics, etc. *

      *I'm more specialized in the direction of single-cell epigenomics, gene regulation, 3D genomics, etc. *

      Thank you for your remarks.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      *This manuscript introduces T‑ChIC, a single‑cell multi‑omics workflow that jointly profiles full‑length transcripts and histone modifications (H3K27me3 and H3K4me1) and applies it to early zebrafish embryos (4-24 hpf). The study convincingly demonstrates that chromatin-transcription coupling strengthens during gastrulation and somitogenesis, that promoter‑anchored H3K27me3 spreads in cis to enforce developmental gene silencing, and that integrating TF chromatin status with expression can predict lineage‑specific activators and repressors. *

      *Major concerns *

      1. *Independent biological replicates are absent, so the authors should process at least one additional clutch of embryos for key stages (e.g., 6 hpf and 12 hpf) with T‑ChIC and demonstrate that the resulting data match the current dataset. *

      Thanks for pointing this out. We had, in fact, performed T-ChIC experiments in four rounds of biological replicates (independent clutch of embryos) and merged the data to create our resource. Although not all timepoints were profiled in each replicate, two timepoints (10 and 24hpf) are present in all four, and the celltype composition of these replicates from these 2 timepoints are very similar. We have added new plots in figure S2f and added (new) supplementary table (#1) to highlight the presence of biological replicates.

      2. *The TF‑activity regression model uses an arbitrary R² {greater than or equal to} 0.6 threshold; cross‑validated R² distributions, permutation‑based FDR control, and effect‑size confidence intervals are needed to justify this cut‑off. *

      Thank you for this suggestion. We did use 10-fold cross validation during training and obtained the R2 values of TF motifs from the independent test set as an unbiased estimate. However, the cutoff of R2 > 0.6 to select the TFs for classification was indeed arbitrary. In the revised version, we now report the FDR-adjusted p-values for these R2 estimates based on permutation tests, and select TFs with a cutoff of padj supplementary table #4 to include the p-values for all tested TFs. However, we see that our arbitrary cutoff of 0.6 was in fact, too stringent, and we can classify many more TFs based on the FDR cutoffs. We also updated our reported numbers in Fig. 4c to reflect this. Moreover, supplementary table #4 contains the complete list of TFs used in the analysis to allow others to choose their own cutoff.

      3. *Predicted TF functions lack empirical support, making it essential to test representative activators (e.g., Tbx16) and repressors (e.g., Zbtb16a) via CRISPRi or morpholino knock‑down and to measure target‑gene expression and H3K4me1 changes. *

      We agree that independent validation of the functions of our predicted TFs on target gene activity would be important. During this revision, we analysed recently published scRNA-seq data of Saunders et al. (2023) (Saunders et al., 2023), which includes CRISPR-mediated F0 knockouts of a couple of our predicted TFs, but the scRNAseq was performed at later stages (24hpf onward) compared to our H3K4me1 analysis (which was 4-12 hpf). Therefore, we saw off-target genes being affected in lineages where these TFs are clearly not expressed (attached Fig 1). We therefore didn't include these results in the manuscript. In future, we aim to systematically test the TFs predicted in our study with CRISPRi or similar experiments.

      4. *The study does not prove that H3K27me3 spreading causes silencing; embryos treated with an Ezh2 inhibitor or prc2 mutants should be re‑profiled by T‑ChIC to show loss of spreading along with gene re‑expression. *

      We appreciate the suggestion that indeed PRC2-disruption followed by T-ChIC or other forms of validation would be needed to confirm whether the H3K27me3 spreading is indeed causally linked to the silencing of the identified target genes. But performing this validation is complicated because of multiple reasons: 1) due to the EZH2 contribution from maternal RNA and the contradicting effects of various EZH2 zygotic mutations (depending on where the mutation occurs), the only properly validated PRC2-related mutant seems to be the maternal-zygotic mutant MZezh2, which requires germ cell transplantation (see Rougeot et al. 2019 (Rougeot et al., 2019)) , and San et al. 2019 (San et al., 2019) for details). The use of inhibitors have been described in other studies (den Broeder et al., 2020; Huang et al., 2021), but they do not show a validation of the H3K27me3 loss or a similar phenotype as the MZezh2 mutants, and can present unwanted side effects and toxicity at a high dose, affecting gene expression results. Moreover, in an attempt to validate, we performed our own trials with the EZH2 inhibitor (GSK123) and saw that this time window might be too short to see the effect within 24hpf (attached Fig. 2). Therefore, this validation is a more complex endeavor beyond the scope of this study. Nevertheless, our further analysis of H3K27me3 de-methylation on developmentally important genes (new Fig. 2e-f, Sup. table 3) adds more confidence that the polycomb repression plays an important role, and provides enough ground for future follow up studies.

      *Minor concerns *

      1. *Repressive chromatin coverage is limited, so profiling an additional silencing mark such as H3K9me3 or DNA methylation would clarify cooperation with H3K27me3 during development. *

      We agree that H3K27me3 alone would not be sufficient to fully understand the repressive chromatin state. Extension to other chromatin marks and DNA methylation would be the focus of our follow up works.

      *2. Computational transparency is incomplete; a supplementary table listing all trimming, mapping, and peak‑calling parameters (cutadapt, STAR/hisat2, MACS2, histoneHMM, etc.) should be provided. *

      As mentioned in the manuscript, we provide an open-source pre-processing pipeline "scChICflow" to perform all these steps (github.com/bhardwaj-lab/scChICflow). We have now also provided the configuration files on our zenodo repository (see below), which can simply be plugged into this pipeline together with the fastq files from GEO to obtain the processed dataset that we describe in the manuscript. Additionally, we have also clarified the peak calling and post-processing steps in the manuscript now.

      *3. Data‑ and code‑availability statements lack detail; the exact GEO accession release date, loom‑file contents, and a DOI‑tagged Zenodo archive of analysis scripts should be added. *

      We have now publicly released the .h5ad files with raw counts, normalized counts, and complete gene and cell-level metadata, along with signal tracks (bigwigs) and peaks on GEO. Additionally, we now also released the source datasets and notebooks (.Rmarkdown format) on Zenodo that can be used to replicate the figures in the manuscript, and updated our statements on "Data and code availability".

      *4. Minor editorial issues remain, such as replacing "critical" with "crucial" in the Abstract, adding software version numbers to figure legends, and correcting the SAMtools reference. *

      Thank you for spotting them. We have fixed these issues.

      Reviewer #3 (Significance (Required)):

      The method is technically innovative and the biological insights are valuable; however, several issues-mainly concerning experimental design, statistical rigor, and functional validation-must be addressed to solidify the conclusions.

      Thank you for your comments. We hope to have addressed your concerns in this revised version of our manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community.

      There are several single-cell methodologies all claim to co-profile chromatin modifications and gene expression from the same individual cell, such as CoTECH, Paired-tag and others. Although T-ChIC employs pA-Mnase and IVT to obtain these modalities from single cells which are different, could the author provide some direct comparisons among all these technologies to see whether T-ChIC outperforms?

      In current study, T-ChIC profiled H3K27me3 and H3K4me1 modifications, these data look great. How about other histone modifications (eg H3K9me3 and H3K36me3) and transcription factors?

      T-ChIC can detect full length transcription from the same single cells, but in FigS3, the authors still used other published single cell transcriptomics to annotate the cell types, this seems unnecessary?

      Throughout the manuscript, the authors found some interesting dynamics between chromatin state and gene expression during embryogenesis, independent approaches should be used to validate these findings, such as IHC staining or RNA ISH?

      In Fig2 and FigS4, the authors showed H3K27me3 cis spreading during development, this looks really interesting. Is this zebrafish specific? H3K27me3 ChIP-seq or CutTag data from mouse and/or human embryos should be reanalyzed and used to compare. The authors could speculate some possible mechanisms to explain this spreading pattern?

      Significance

      The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02879 Corresponding author(s): Matteo Allegretti; Alia dos Santos

      1. General Statements

      In this study, we investigated the effects of paclitaxel on both healthy and cancerous cells, focusing on alterations in nuclear architecture. Our novel findings show that:

      • Paclitaxel-induced microtubule reorganisation during interphase alters the perinuclear distribution of actin and vimentin. The formation of extensive microtubule bundles, in paclitaxel or following GFP-Tau overexpression, coincides with nuclear shape deformation, loss of regulation of nuclear envelope spacing, and alteration of the nuclear lamina.

      • Paclitaxel treatment reduces Lamin A/C protein levels via a SUN2-dependent mechanism. SUN2, which links the lamina to the cytoskeleton, undergoes ubiquitination and consequent degradation following paclitaxel exposure.

      • Lamin A/C expression, frequently dysregulated in cancer cells, is a key determinant of cellular sensitivity to, and recovery from, paclitaxel treatment.

      Collectively, our data support a model in which paclitaxel disrupts nuclear architecture through two mechanisms: (i) aberrant nuclear-cytoskeletal coupling during interphase, and (ii) multimicronucleation following defective mitotic exit. This represents an additional mode of action for paclitaxel beyond its well-established mechanism of mitotic arrest.

      We thank the reviewers for their time and constructive feedback. We have carefully considered all comments and have carried out a full revision. The updated manuscript now includes additional data showing:

      • Overexpression of microtubule-associated protein Tau causes similar nuclear aberration phenotypes to paclitaxel. This supports our hypothesis that increased microtubule bundling directly leads to nuclear disruption in paclitaxel during interphase.

      • Paclitaxel's effects on nuclear shape and Lamin A/C and SUN2 expression levels occur independently of cell division.

      • Reduced levels of Lamin A/C and SUN2 upon paclitaxel treatment occur at the protein level via ubiquitination of SUN2.

      • The effects of paclitaxel on the nucleus are conserved in breast cancer cells.

      Full Revision

      We have also edited our text and added further detail to clarify points raised by the reviewers. We believe that our revised manuscript is overall more complete, solid and compelling thanks to the reviewers' comments.

      1. Point-by-point description of the revisions

      Reviewer #1 Evidence, reproducibility and clarity

      This description of the down-regulation of the expression of lamin A/C upon treatment with paclitaxel and its sensitivity to SUN2 is quite interesting but still somehow preliminary. It is unclear whether this effect involves the regulation of gene expression, or of the stability of the proteins. How SUN2 mediates this effect is still unknown.

      We thank the reviewer for this valuable comment. To elucidate the mechanism behind the decrease in Lamin A/C and SUN2 levels, we have now performed several additional experiments. First, we performed RT-qPCR to quantify mRNA levels of these genes, relative to the housekeeping gene GAPDH (Supplementary Figure 3B and O). The levels of SUN2 and LMNA mRNA remained the same between control and paclitaxel-treated cells, indicating that this effect instead occurs at the protein level. We have also tested post-translational modifications as a potential regulatory mechanism for Lamin A/C and SUN2. In addition to the phosphorylation of Ser404 which we had already tested (Supplementary Figure 3C), we have now included additional Phos-tag gel and Western blotting data showing that the overall phosphorylation status of Lamin A/C is not affected by paclitaxel (Supplementary Figure 3E and F). We also pulled-down Lamin A/C from cell lysates and then Western blotted for polyubiquitin and acetyl-lysine, which showed that the ubiquitination and acetylation states of Lamin A/C are also not affected by paclitaxel (Supplementary Figure 3G-I). However, Western blots for polyubiquitin of SUN2 pulled down from cell lysates showed that paclitaxel treatment results in significant SUN2 ubiquitination (Figure 3M and N). Therefore, we propose that the downregulation of SUN2 following paclitaxel treatment occurs by ubiquitin-mediated proteolysis.

      The roles of free tubulins and polymerized microtubules, and thus the potential role of paclitaxel, need to be uncovered.

      We addressed this important point by using an alternative method to stabilise/bundle microtubules in interphase, namely by overexpressing GFP-Tau, as suggested by reviewer 2. Following GFP- Tau overexpression, large microtubule bundles were observed throughout the cytoplasm (Figure 4A), and this resulted in a significant decrease in nuclear solidity (Figure 4B). Furthermore, in cells where microtubule bundles extensively contacted the nucleus, the nuclear lamina became unevenly distributed and appeared patchy (Figure 4C). This supports our hypothesis that the aberrations to nuclear shape and Lamin A/C localisation in paclitaxel-treated cells are due to the presence of microtubules bundles surrounding the nucleus.

      The doses of paclitaxel at which occur the effects described in the paper are not fully consistent with all the conclusions. Most experiments have been done at 5 nM. However, at this dose the effect of lamin A/C over or down expression on the growth (differences in the slopes of the curves in Figure 4A) are not fully convincing and not fully consistent with the clear effect on viability as well (in addition, duration of treatments before assessing vialbility are not specified). At 1 nM, cell growth is reduced and the rescuing effect of lamin over-expression is much more clear (Fig 4A), and the nucleus deformation clear (Fig 2A) but this dose has no effect on lamin A/C expression (Fig 3C), which questions how lamins impact nucleus shape and cell survival. Cytoskeleton reorganisation in these conditions is not described although it could clarify the respective role of force production (suggested in figure 1) and nuclei resistance (shown in figure 2) in paclitaxel sensitivity.

      We thank the reviewer for raising this important point. We have addressed this by conducting additional repeats for the cell confluency measurements to increase the statistical power of our experiments (Figure 5A). Our data now show that GFP-lamin A/C had a statistically significant effect on rescuing cell growth at both 1 nM and 5 nM paclitaxel, while Lamin A/C knockdown exacerbated the inhibition of cell growth at 5 nM paclitaxel but not 1 nM paclitaxel (Figure 5A). In addition, we note that the duration of paclitaxel treatment before assessing viability was specified in the figure legend: "Bar graph comparing cell viability between wild-type (red), GFP-Lamin A/C overexpression (green), and Lamin A/C knockdown (blue) cells following 20 h incubation in 0, 1, 5, or 10 nM paclitaxel." We also repeated cell viability analysis after 48 h incubation in paclitaxel instead of 20 h to allow for a longer time for differences to take effect (Figure 5B).

      We also added figures showing the cytoskeletal reorganisation at both 1 and 10 nM in addition to 0 and 5 nM (Supplementary Figure 1A) showing that microtubule bundling and condensation of actin into puncta correlated with increased paclitaxel concentration. Vimentin colocalised well with microtubules at all concentrations.

      We have also included in our results section further clarification for the use of 5nM paclitaxel in this study. The new section reads as follows: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Finally, although the absence of role of mitotic arrest is clear from the data, the defective reorganisation of the nucleus after mitosis still suggest that the effect of paclitaxel is not independent of mitosis.

      We thank the reviewer for pointing out the need for clarification in the wording of our manuscript. We have reworded the title and relevant sections of our abstract, introduction, and discussion to make it clearer that the effects of paclitaxel on the nucleus are due to a combination of aberrant nuclear cytoskeletal coupling during interphase and multimicronucleation following mitotic slippage. We have also added additional data in support of the effect of paclitaxel on nuclear architecture during interphase. For this, we used serum-starved cells (which divide only very slowly such that the majority of cells do not pass through mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data confirmed that paclitaxel's effects on nuclear solidity, and Lamin A/C and SUN2 proteins levels can occur independently of cell division (Figure 2C; Figure 3H-J). Finally, when we overexpressed GFP-Tau (as discussed above) we observed similar aberrations to nuclear solidity and Lamin A/C localisation. This indicates that these effects occur due to microtubule bundling in interphase, especially as in our study GFP-Tau did not lead to multimicronucleation or appear to affect mitosis (Figure 4).

      Below are the main changes to the text regarding the interphase effect of paclitaxel:

      • Title: "Paclitaxel compromises nuclear integrity in interphase through SUN2-mediated cytoskeletal coupling"

      • Abstract: "Overall, our data supports nuclear architecture disruption, caused by both aberrant nuclear-cytoskeletal coupling during interphase and exit from defective mitosis, as an additional mechanism for paclitaxel beyond mitotic arrest."

      • Introduction: "Here we propose that cancer cells have increased vulnerability to paclitaxel both during interphase and following aberrant mitosis due to pre-existing defects in their NE and nuclear lamina."

      • Discussion: "Overall, our work builds on previous studies investigating loss of nuclear integrity as an anti-cancer mechanism of paclitaxel separate from mitotic arrest14,20,21. We propose that cancer cells show increased sensitivity to nuclear deformation induced by aberrant nuclear-cytoskeletal coupling and multimicronucleation following mitotic slippage. Therefore, we conclude that paclitaxel functions in interphase as well as mitosis, elucidating how slowly growing tumours are targeted."

      minor: a more thorough introduction of known data about dose response of cells in culture and in vivo would help understanding the range of concentrations used in this study.

      As mentioned above, we have now included additional information in our Results section to clarify our paclitaxel dose range: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Significance

      In this manuscript, Hale and colleagues describe the effect of paclitaxel on nucleus deformation and cell survival. They showed that 5nM of paclitaxel induces nucleus fragmentation, cytoskeleton reorganisation, reduced expression of LaminA/C and SUN2, and reduced cell growth and viability. They also showed that these effects could be at least partly compensated by the over-expression of lamin A/C. As fairly acknowledged by the authors, the induction of nuclear deformation in paclitaxel-treated cells, and the increased sensitivity to paclitaxel of cells expressing low level of lamin A/C are not novel (reference #14). Here the authors provided more details on the cytoskeleton changes and nuclear membrane deformation upon paclitaxel treatment. The effect of lamin A/C over and down expression on cell growth and survival are not fully convincing, as further discussed below. The most novel part is the observation that paclitaxel can induce the down-regulation of the expression of lamin A/C and that this effect is mediated by SUN2.

      We appreciate the reviewer's summary and thank them for their time. We believe our comprehensive revisions have addressed all comments, strengthening the manuscript and making it more robust and compelling.

      Reviewer #2 Evidence, reproducibility and clarity This study investigates the effects of the chemotherapeutic drug paclitaxel on nuclear-cytoskeletal coupling during interphase, claiming a novel mechanism for its anti-cancer activity. The study uses hTERT-immortalized human fibroblasts. After paclitaxel exposure, a suite of state- of-the-art imaging modalities visualizes changes in the cytoskeleton and nuclear architecture. These include STORM imaging and a large number of FIB-SEM tomograms.

      We thank the reviewer for the summary and for highlighting our efforts in using the latest imaging technical advances.

      Major comments:

      The authors make a major claim that in addition to the somewhat well-described mechanism of paclitaxel on mitosis, they have discovered 'an alternative, poorly characterised mechanism in interphase'.

      However, none of the data proves that the effects shown are independent of mitosis. To the contrary, measurements are presented 48 hours after paclitaxel treatment starts, after which it can be assumed that 100% of cells have completed at least one mitotic event. The appearance of micronuclei evidences this, as discussed by the authors shortly. It looks like most of the results shown are based on botched mitosis or, more specifically, errors on nuclear assembly upon exit from mitosis rather than a specific effect of paclitaxel on interphase. The readouts the authors show just happen to be measurements while the cells are in interphase.

      Alternative hypotheses are missing throughout the manuscript, and so are critical controls and interpretations.

      We thank the reviewer for highlighting the lack of clarity in our wording. We have revised the title, abstract and relevant sections of the introduction and discussion to clarify our message that the effects of paclitaxel on the nucleus arise from a combination of aberrant nuclear-cytoskeletal coupling during interphase and multimicronucleation following exit from defective mitosis. We have also included additional data where we used slow-dividing, serum-starved cells (under these conditions, the majority of cells do not undergo mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data show that even in these cells there is a clear effect of paclitaxel on nuclear solidity, and Lamin A/C and SUN2 protein levels, further supporting our hypothesis that these phenotypes can occur independently of cell division (Figure 2C; Figure 3H-J). Furthermore, we performed additional experiments where we used overexpression of GFP-Tau as an alternative method of stabilising microtubules in interphase and observed similar aberrations to nuclear solidity and Lamin A/C localisation. As GFP-Tau overexpression did not lead to micronucleation or appear to affect mitosis, these data support the hypothesis that nuclear aberrations occur due to microtubule bundling in interphase (Figure 4). We discuss these experiments in more detail below. Finally, we have reworded the introduction to better introduce alternative hypotheses and mechanisms for paclitaxel's activity.

      The authors claim that 'Previously, the anti-cancer activity of paclitaxel was thought to rely mostly on the activation of the mitotic checkpoint through disruption of microtubule dynamics, ultimately resulting in apoptosis.' The authors may have overlooked much of the existing literature on the topic, including many recent manuscripts from Xiang-Xi Xu's and another lab.

      We would like to note that the paper from Xiang-Xi Xu's lab (Smith et al, 2021) was cited in our original manuscript (reference 14 in both the original and revised manuscripts). We have now also included additional review articles from the Xiang-Xi Xu lab (PMID:36368286 20 and PMID: 35048083 21). Furthermore, we have clarified the wording in both the introduction and discussion to better reflect the current understanding of paclitaxel's mechanism and alternative hypotheses.

      The data, e.g. in Figure 1, does not hold up to the first alternative hypothesis, e.g. that paclitaxel stabilizes microtubules and that excessive mechanical bundling of microtubules induces major changes to cell shape and mechanical stress on the nucleus. Even the simplest controls for this effect (the application of an alternative MT stabilizing drug or the overexpression of an MT stabilizer, e.g., tau).

      We thank the reviewer for suggesting this control experiment using the microtubule stabiliser Tau. We have now included these experiments in the revised version of the manuscript (Figure 4). The overexpression of GFP-Tau supports our hypothesis that cytoskeletal reorganisation in paclitaxel exerts mechanical stress on the nucleus during interphase, resulting in nuclear deformation and aberrations to the nuclear lamina. In particular, GFP-Tau overexpression resulted in large microtubule bundles throughout the cytoplasm (Figure 4A). Notably, in cells where these bundles extensively contacted the nucleus, we observed a significant decrease in nuclear solidity (Figure 4B) accompanied by changes in nuclear lamina organisation, including a patchy lamina phenotype, similar to that induced by paclitaxel (Figure 4C).

      The focus on nuclear lamina seems somewhat arbitrary and adjacent to previously published work by other groups. What would happen if the authors stained for focal adhesion markers? There would probably be a major change in number and distribution. Would the authors conclude that paclitaxel exerts a specific effect on focal adhesions? Or would the conclusion be that microtubule stabilization and the following mechanical disruption induce pleiotropic effects in cells? Which effects are significant for paclitaxel function on cancer cells?

      We thank the reviewer for raising important points regarding the specificity of paclitaxel's effects. We agree that microtubule stabilisation can induce myriad cellular changes, including alterations to focal adhesions and other cytoskeletal components. Our focus on Lamin A/C and nuclear morphology is grounded both in the established clinical relevance of nuclear mechanics in cancer and builds on mechanistic work from other groups.

      Lamin A/C expression is commonly altered in cancer, and nuclear morphology is frequently used in cancer diagnosis35. Lamin A/C also plays a crucial role in regulating nuclear mechanics32 and, importantly, determines cell sensitivity to paclitaxel14. However, the mechanism by which Lamin A/C determines sensitivity of cancer cells to paclitaxel is unclear.

      Our data are consistent with Lamin A/C being a determinant of paclitaxel survival sensitivity. We also provide evidence that paclitaxel itself reduces Lamin A/C protein levels and disrupts its organisation at the nuclear envelope. We directly link these effects to microtubule bundling around the nucleus and degradation of force-sensing LINC component SUN2, highlighting the importance of nuclear architecture and mechanics to overall cellular function. Furthermore, we show that recovery from paclitaxel treatment depends on Lamin A/C expression levels. This has clinical relevance, as unlike cancer cells, healthy tissue with non-aberrant lamina would be able to selectively recover from paclitaxel treatment.

      Minor comments:

      While I understand the difficulty of the experiments and the effort the authors have put into producing FIB-SEM tomograms, I am not sure they are helping their study or adding anything beyond the light microscopy images. Some of the images may even be in the way, such as supplementary Figure 6, which lacks in quality, controls, and interpretation. Do I see a lot of mitochondria in that slice?

      We agree with the reviewer that Supplementary Figure 6 does not add significant value to the manuscript and thank the reviewer for pointing this out. We have removed it from the manuscript accordingly.

      I may have overlooked it, but has the number of cells from which lamellae have been produced been stated?

      We thank the reviewer for pointing out the missing information. For our cryo-ET experiments, we collected data from 9 lamellae from paclitaxel-treated cells and 6 lamellae from control cells, with each lamella derived from a single cell. This information has now been added to the figure legend (Figure 2F).

      Significance

      The significance of studying the effect of paclitaxel, the most successful chemotherapy drug, should be broad and of interest to basic researchers and clinicians.

      As outlined above, I believe that major concerns about the design and interpretation of the study hamper its significance and advancements.

      We appreciate the reviewer's concerns and have performed major revisions to strengthen the significance of our study. Specifically, we conducted two key sets of experiments to validate our original conclusions: serum starvation to control for the effects of cell division, and overexpression of the microtubule stabiliser Tau to demonstrate that paclitaxel can affect the nucleus via its microtubule bundling activity in interphase.

      By elucidating the mechanistic link between microtubule stabilisation and nuclear-cytoskeletal coupling, our findings contribute to our understanding of paclitaxel's multifaceted actions in cancer cells.

      My areas of expertise could be broadly defined as Cell Biology, Cytoskeleton, Microtubules, and Structural Biology.

      Reviewer #3 Evidence, reproducibility and clarity The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      We thank the reviewer for the positive feedback.

      Although similar ideas are published, which may be suitable to be cited? • Paclitaxel resistance related to nuclear envelope structural sturdiness. Smith ER, Wang JQ, Yang DH, Xu XX. Drug Resist Updat. 2022 Dec;65:100881. doi: 10.1016/j.drup.2022.100881. Epub 2022 Oct 15. PMID: 36368286 Review. • Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. Smith ER, Xu XX. J Cancer Biol. 2021;2(4):86-93. doi: 10.46439/cancerbiology.2.031. PMID: 35048083 Free PMC article.

      We thank the reviewer for bringing to our attention these important review articles. In our initial manuscript, we only cited the original paper (14, also reference 14 in the original manuscript). We have now included citations to the suggested publications (20,21).

      We would also like to emphasise how our manuscript distinguishes itself from the work of Smith et al.14,20,21:

      • Cell-type focus: In their study 14, Smith et al. examined the effect of paclitaxel on malignant ovarian cancer cells and proposed that paclitaxel's effects on the nucleus are limited to cancer cells. However, our data extends these findings by demonstrating paclitaxel's effects in both cancerous and non-cancerous backgrounds.

      • Cytoskeletal reorganisation: Smith et al. show reorganisation of microtubules in paclitaxel-treated cells14. Our data show re-organisation of other cytoskeletal components, including F-actin and vimentin.

      • Multimicronucleation: Smith et al. propose that paclitaxel-induced multimicronucleation occurs independently of cell division14. Although we observe progressive nuclear abnormalities during interphase over the course of paclitaxel treatment, our data do not support this conclusion; we find that multimicronucleation occurs only following mitosis.

      • Direct link between microtubule bundling and nuclear aberrations: We show that nuclear aberrations caused by paclitaxel during interphase (distinct from multimicronucleation) are directly linked to microtubule bundling around the nucleus, suggesting they result from mechanical disruption and altered force propagation.

      • Lamin A/C regulation: Consistent with Smith et al.14, we show that Lamin A/C depletion leads to increased sensitivity to paclitaxel treatment. However, we further demonstrate that paclitaxel itself leads to reduced levels of Lamin A/C and that this effect occurs independently of mitosis and is mediated via force-sensing LINC component SUN2. Upon SUN2 knockdown, Lamin A/C levels are no longer affected by paclitaxel treatment.

      • Recovery: Finally, our work reveals that cells expressing low levels of Lamin A/C recover less efficiently after paclitaxel removal. This might help explain how cancer cells could be more susceptible to paclitaxel.

      Only one cell line was used in all the experiments? "Human telomerase reverse transcriptase (hTERT) immortalised human fibroblasts" ? The cells used are not very relevant to cancer cells (carcinomas) that are treated with paclitaxel. It is not clear if the observations and conclusions will be able to be generalized to cancer cells.

      We thank the reviewer for this comment. Our initial study aimed to understand the effects of paclitaxel on nuclear architecture in non-aberrant backgrounds. To show that the observed effects of paclitaxel are also applicable to cancer cells, we have now repeated our main experiments using MDA-MB-231 human breast cancer cells (Supplementary Figure 1B; Supplementary Figure 3P-T). Similar to our findings in human fibroblasts, paclitaxel treatment of MDA-MB-231 led to cytoskeletal reorganisation (Supplementary Figure 1B), a decrease in nuclear solidity (Supplementary Figure 3P), aberrant (patchy) localisation of Lamin A/C (Supplementary Figure 3Q), and a reduction in Lamin A/C and SUN2 levels (Supplementary Figure 3R-T).

      "Fig. 1. (B) STORM imaging of α-tubulin immunofluorescence in cells fixed after 16 h incubation in control media or 5 nM paclitaxel. Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Scale bars = 10 μm." It needs explanation of what is meaning of the different color lines in the lower panels, just different filaments?

      We have added further detail to the figure legend for clarification: "Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Different colours distinguish individual α-tubulin clusters, representing individual microtubule filaments or filament bundles."

      Generally, the figures need additional description to be clear.

      We have added further clarification and detail to our figure legends.

      "Figure 3 - Paclitaxel results in aberrations to the nuclear lamina." The sentence seems not to be well constructed. "Paclitaxel treatment causes ..."?

      We changed this sentence to: "Figure 3 - Paclitaxel treatment results in aberrant organisation of the nuclear lamina and decreased Lamin A/C levels via SUN2."

      Lamin A and C levels are different in different images (Fig. 3B, H): some Lamin A is higher, and sometime Lamin C is higher? This may possibly due to culture condition or subtle difference in sample handling?.

      We thank the reviewer for pointing this out and we agree that the ratio of Lamin A to Lamin C can vary with culture conditions. To confirm that paclitaxel treatment reduces total Lamin A/C levels regardless of this ratio, we repeated the Western blot analysis in three additional biological replicates using cells in which Lamin C levels exceeded Lamin A levels. These experiments confirmed a comparable decrease in total Lamin A/C levels. Figure 3B and 3C have been updated accordingly.

      Also, the effect on Lamin A/C and SUN2 levels are not significant of robust.

      Decreased Lamin A/C and SUN2 levels following paclitaxel treatment were consistently seen across three or more biological repeats (Figure 3B-C), and this could be replicated in a different cell type (MDA-MB-231) (Supplementary Figure 3R-T). Furthermore, Western blotting results are consistent with the patchy Lamin A/C distribution observed using confocal and STORM following paclitaxel treatment (Figure 3A; Supplementary Figure 3A), where Lamin A/C appears to be absent from discrete areas of the lamina.

      Any mechanisms are speculated for the reason for the reduction?

      We have now included additional data which aims to shed light on the mechanism behind the decrease in Lamin A/C and SUN2 levels following paclitaxel treatment. We found that SUN2 is selectively degraded during paclitaxel treatment. Immunoprecipitation of SUN2 followed by Western blotting against Polyubiquitin C showed increased SUN2 ubiquitination in paclitaxel (Figure 3M and N). Furthermore, in our original manuscript, we showed that Lamina A/C levels remained unaltered during paclitaxel treatment in cells where SUN2 had been knocked down. We propose that changes in microtubule organisation affect force propagation to Lamin A/C specifically via SUN2 and that this leads to Lamina A/C removal and depletion. Future work will be needed to fully understand this mechanism.

      In addition to the findings described above, we report no significant changes in mRNA levels for LMNA or SUN2 in paclitaxel (Supplementary Figure 3B and O). Phos-tag gels followed by Western blotting analysis for Lamin A/C also did not detect changes to the overall phosphorylation status of Lamin A/C due to paclitaxel treatment. This is in agreement with our initial data showing no changes to Lamin A/C Ser 404 phosphorylation levels (Supplementary Figure 3E and F). Finally, Lamin A/C immunoprecipitation experiments followed by Western blotting for Polyubiquitin C and acetyl-lysine showed no significant changes in the ubiquitination and acetylation state of Lamin A/C in paclitaxel-treated cells (Supplementary Figure 3G-I).

      Also, the about 50% reduction in protein level is difficult to be convincing as an explanation of nuclear disruption.

      The nuclear lamina and LINC complex proteins play a critical role in regulating nuclear integrity, stiffness and mechanical responsiveness to external forces28,31-33,54,75, as well as in maintaining the nuclear intermembrane distance69,74. In particular, SUN-domain proteins physically bridge the nuclear lamina to the cytoskeleton through interactions with Nesprins, thereby preserving the perinuclear space distance30,69,74. Mutations in Lamins have been shown to disrupt chromatin organization, alter gene expression, and compromise nuclear structural integrity, and experiments with LMNA knockout cells reveal that nuclear mechanical fragility is closely coupled to nuclear deformation47. Furthermore, nuclear-cytoskeletal coupling is essential during processes such as cell migration, where cells undergo stretching and compression of the nucleus; weakening or loss of the lamina in such cases compromises cell movement47,73. In our work, we show that alterations to nuclear Lamin A/C and SUN2 by paclitaxel treatment coincide with nuclear deformations (Figure 2A-D, F, G; Figure 3A-D, F, G; Supplementary Figure 3A, P-T) and that these deformations are reversible following paclitaxel removal (Supplementary Figure 4B-D). Our experiments also demonstrate that Lamin A/C expression levels significantly influence cell growth, cell viability, and cell recovery in paclitaxel (Figure 5). Therefore, drawing on current literature and our results, we propose that, during interphase, paclitaxel induces severe nuclear aberrations through the combined effects of: i) increased cytoskeletal forces on the NE caused by microtubule bundling; ii) loss of ~50% Lamin A/C and SUN2; iii) reorganisation of nucleo-cytoskeletal components.

      Significance

      The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      The data may be improved to provide stronger support.

      Additional cell lines (of cancer or epithelial origin) may be repeated to confirm the generality of the observation and conclusions.?

      We thank the reviewer for the feedback and valuable suggestions. In response, we have included experiments using human breast cancer cell line MDA-MB-231 to further corroborate our findings and interpretations. We believe these additions have improved the clarity, robustness and impact of our manuscript, and we are grateful for the reviewer's contributions to its improvement.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Major concerns:

      (1) Is the direct binding of MCAK to the microtubule cap important for its in vivo function?

      a.The authors claim that their "study provides mechanistic insights into understanding the end-binding mechanism of MCAK". I respectfully disagree. My concern is that the paper offers limited insights into the physiological significance of direct end-binding for MCAK activity, even in vitro. The authors estimate that in the absence of other proteins in vitro, ~95% of MCAK molecules arrive at the tip by direct binding in the presence of ~ physiological ATP concentration (1 mM). In cells, however, the major end-binding pathway may be mediated by EB, with the direct binding pathway contributing little to none. This is a reasonable concern because the apparent dissociation constant measured by the authors shows that MCAK binding to microtubules in the presence of ATP is very weak (69 uM). This concern should be addressed by 1) calculating relative contributions of direct and EB-dependent pathways based on the affinities measured in this and other published papers and estimated intracellular concentrations. Although there are many unknowns about these interactions in cells, a modeling-based analysis may be revealing. 2) the recapitulation of these pathways using purifying proteins in vitro is also feasible. Ideally, some direct evidence should be provided, e.g. based on MCAK function-separating mutants (GDP-Pi tubulin binding vs. catalytic activity at the curled protofilaments) that contribution from the direct binding of MCAK to microtubule cap in EB presence is significant.

      We thank the reviewer for the thoughtful comments.

      (1) We think that the end-binding affinity of MCAK makes a significant contribution for its cellular functions. To elucidate this concept, we now use a simple model shown in Supplementary Appendix-2 (see pages 49-51, lines 1246-1316). In this model, we simplified MCAK and EB1 binding to microtubule ends by considering only these two proteins while neglecting other factors (e.g. XMAP215). Specifically, we considered two scenarios: one in which both proteins freely diffuse in the cytoplasm and another where MCAK is localized to specific cellular structures, such as the centrosome or centromere. Based on the modeling results, we argue that MCAK's functional impact at microtubule ends derives both from its intrinsic end-binding capacity and its ability to strengthen the EB1-mediated end association pathway.

      (2) We agree with the reviewer that MCAK exhibiting a lower end-binding affinity (69 µM) is indeed intriguing, as one might intuitively expect a stronger affinity, e.g. in the nanomolar range. Several factors may contribute to this observation. First, this could be partly due to the in vitro system employed, which may not perfectly replicate in vivo conditions, especially when considering cellular processes quantitatively. Variations in medium composition can significantly influence the binding state. For example, reducing salt concentration leads to a marked increase in MCAK’s binding affinity (Helenius et al., 2006; Maurer et al., 2011; McHugh et al., 2019). Additionally, while numerous binding events with short durations were detected, we excluded transient interactions from our analysis to facilitate quantification. This likely leads to an underestimation of the on-rate and, consequently, the binding affinity. Moreover, to minimize the interference of purification tags (His-tag), we ensured their complete removal during protein sample preparation. Previous studies reported that retaining the His-tag of MAPs affects the binding affinity to microtubules (Maurer et al., 2011; Zhu et al., 2009). Finally, a low affinity is not necessarily unexpected. Considering the microtubule end as a receptor with multiple binding sites for MCAK, the overall binding affinity is in the nanomolar range (260 nM). This does not necessarily contradict MCAK being a microtubule dynamics regulator as only a few MCAK molecules may suffice to induce microtubule catastrophe (as discussed on page 13, lines 408-441).

      (3) Ideally, we would search for mutants that specifically interfere with the binding of GDP-Pi-tubulin or the curled protofilaments. However, the mutant we tested significantly impacts the overall affinity of MCAK to microtubules (both end and lattice), making it challenging to isolate and discuss the function of MCAK with respect to the binding to GDP-Pi-tubulin alone. Additionally, we also think that the GDP-Pi-tubulin in the EB cap and the tubulin in the curved protofilaments may share structural similarities. For instance, the tubulin dimers in both states may be less compact compared to those in the lattice, which could explain why MCAK recognizes both simultaneously (Manka and Moores, 2018). However, this remains a conjecture, as there is currently no direct evidence to support it.

      b. As mentioned in the Discussion, preferential MCAK binding to tubulins near the MT tip may enhance MCAK targeting of terminal tubulins AFTER the MCAK has been "delivered" to the distal cap via the EB-dependent mechanism. This is a different targeting mechanism than the direct MCAK-binding. However, the measured binding affinity between MCAK and GMPCPP tubulins is so weak (69 uM), that this effect is also unlikely to have any impact because the binding events between MCAK and microtubule should be extremely rare. Without hard evidence, the arguments for this enhancement are very speculative.

      Please see our response to the comment No. 1. Additionally, we have revised our discussion to discuss the end-binding affinity of MCAK as well as its physiological relevance (please see page 13, lines 408-441; and see Supplementary Appendix-2 in pages 49-51, lines 1246-1316).

      (2) The authors do not provide sufficient justification and explanation for their investigation of the effects of different nucleotides in MCAK binding affinity. A clear summary of the nucleotide-dependent function of MCAK (introduction with references to prior affinity measurements and corresponding MCAK affinities), the justifications for this investigation, and what has been learned from using different nucleotides (discussion) should be provided. My take on these results is that by far the strongest effect on microtubule wall and tip binding is achieved by adding any adenosine, whereas differences between different nucleotides are relatively minor. Was this expected? What can be learned from the apparent similarity between ATP and AMPPNP effects in some assays (Fig 1E, 4C, etc) but not others (Fig 1D,F, etc)?

      We thank the reviewer for this suggestion. We have revised the manuscript accordingly, and below are the main points of our response

      (1) The experiment investigating the effects of different nucleotides on MCAK binding affinity was inspired by the previous studies demonstrating that kinesin-13 interactions with microtubules are highly dependent on their adenosine-bound states. For example, kinesin-13s tightly bind microtubules and prefer to form protofilament curls or rings with tubulin in the AMPPNP state, whereas kinesin-13s are considered to move along the microtubule lattice via one-dimensional diffusion in the ADP·Pi state (Asenjo et al., 2013; Benoit et al., 2018; Friel and Howard, 2011; Helenius et al., 2006). Based on these observations, we wondered whether MCAK's adenosine-bound states might similarly affect its binding preference for growing microtubule ends. We have made the motivation clear in the revised manuscript (please see page 7, lines 199-209).

      (2) Our main finding regarding the effects of nucleotides is that MCAK shows differential end-binding affinity and preference based on its nucleotide state. First, MCAK shows the greatest preference for growing microtubule ends in the ATP state, supporting the idea that diffusive MCAK (MCAK·ATP) can directly bind to growing microtubule ends. Second, MCAK·ATP also demonstrates a binding preference for GTPγS microtubules and the ends of GMPCPP microtubules. The similar trends in binding preference suggest that the affinity for GDP·Pi-tubulin and GTP-tubulin likely underpins MCAK’s preference for growing microtubule ends. To clarify these points, we have added further discussions in the manuscript (please see page 8, lines 230-233; page9, lines 258-270 and pages 13-14, lines 443-458).

      (3) It is not clear why the authors decided to use these specific mutant MCAK proteins to advance their arguments about the importance of direct tip binding. Both mutants are enzymatically inactive. Both show roughly similar tip interactions, with some (minor) differences. Without a clear understanding of what these mutants represent, the provided interpretations of the corresponding results are not convincing.

      We thank the reviewer for this comment. In the revised manuscript, we no longer draw conclusions about the importance of end-binding based on the mutant data. Instead, we think that the mutant data provide insights into the structural basis of the end-binding preference. Therefore, we have rewritten the results in this section to more accurately reflect these findings (please see page 10, lines 295-327).

      (4) GMPCPP microtubules are used in the current study to represent normal dynamic microtubule ends, based on some published studies. However, there is no consensus in the field regarding the structure of growing vs. GMPCPP-stabilized microtubule ends, which additionally may be sensitive to specific experimental conditions (buffers, temperature, age of microtubules, etc). To strengthen the authors' argument, Taxol-stabilized microtubules should be used as a control to test if the effects are specific. Additionally, the authors should consider the possibility that stronger MCAK binding to the ends of different types of microtubules may reflect MCAK-dependent depolymerization events on a very small scale (several tubulin rows). These nano-scale changes to tubulins and the microtubule end may lead to the accumulation of small tubulin-MCAK aggregates, as is seen with other MAPs and slowly depolymerizing microtubules. These effects for MCAK may also depend on specific nucleotides, further complicating the interpretation. This possibility should be addressed because it provides a different interpretation than presented in the manuscript.

      Regarding the two points raised here, our thoughts are as following

      (1) The end of GMPCPP-stabilized microtubules differs from that of growing microtubules, with the most obvious known difference being the absence of the region enriched in GDP-Pi-tubulin. We consider the end of GMPCPP microtubules as an analogue of the distal tip of growing microtubules, based on two key features: (1) curled protofilaments and (2) GMPCPP-tubulin, a close analogue of GTP-tubulin. Notably, both features are present at the ends of both GMPCPP-stabilized and growing microtubules. Moreover, we agree with the suggestion to use taxol-stabilized microtubules as a control. This would eliminate the second feature (absence of GTP-tubulin), allowing us to isolate the effect of the first feature. Therefore, we conducted this experiment, and our data showed that MCAK exhibits only a mild binding preference for the ends of taxol-stabilized microtubules, which is much less pronounced than for the ends of GMPCPP microtubules. This observation supports the idea that GMPCPP-stabilized ends closely resemble the growing ends of microtubules.

      (2) The reviewer suggested that stronger MCAK binding to the ends of different types of microtubules might reflect MCAK-dependent depolymerization events on a very small scale. This is an insightful possibility, which we had overlooked in the original manuscript. Fortunately, we performed the experiments at the single-molecule concentrations. Upon reviewing the raw data, we found that under ATP conditions, the binding events of MCAK were not cumulative (see Fig. X1 below) and showed no evidence of local accumulation of MCAK-tubulin aggregates.

      Author response image 1.

      The representative kymograph showing GFP-MCAK binding at the ends and lattice of GMPCPP microtubules in the presence of 1 mM ATP (10 nM GFP-MCAK), which corresponded to Fig. 5A. The arrow: the end-binding of MCAK. Vertical bar: 1 s; horizontal bar: 2 mm.

      (5) It would be helpful if the authors provided microtubule polymerization rates and catastrophe frequencies for assays with dynamic microtubules and MCAK in the presence of different nucleotides. The video recordings of microtubules under these conditions are already available to the authors, so it should not be difficult to provide these quantifications. They may reveal that microtubule ends are different (or not) under the examined conditions. It would also help to increase the overall credibility of this study by providing data that are easy to compare between different labs.

      We thank the reviewer for this suggestion. In the revised manuscript, we have provided data on the growth rates, which are similar across the different nucleotide states (Fig. s1). However, due to the short duration of our recordings (usually 5 minutes, but with a high frame rate, 10 fps), we did not observe many catastrophe events, which prevented us from quantifying catastrophe frequency using the current dataset. Since we measured the binding kinetics of MCAK during the growing phase of microtubules, the similar growth rates and microtubule end morphologies suggest that the microtubule ends are comparable across the different conditions.

      Reviewer #1 (Recommendations For The Authors):

      a. Please provide more details about how the microtubule-bound molecules were selected for analysis (include a description of scripts, selection criteria, and filters, if any). Fig 1A arrows do not provide sufficient information.

      We first measured the fluorescence intensity of each binding event. A probability distribution of these intensities was then constructed and fitted with a Gaussian function. A binding event was considered to correspond to a single molecule if its intensity fell within μ±2σ of the distribution. The details of the single-molecule screening process are now provided in the revised manuscript (see page17, lines 574-583).

      b. Evidence that MCAK is dimeric in solution should be provided (gel filtration results, controls for Figs1A - bleaching, or comparison with single GFP fluorophore).

      In the revised manuscript, we provide the gel filtration results of purified MCAK and other proteins used in this study. The elution volume of the peak for GFP-MCAK corresponded to a molecular weight range between 120 kDa (EB1-GFP dimer) and 260 kDa (XMAP215-GFP-his6), suggesting that GFP-MCAK exists as a dimer (~220 kDa) under experimental condition (please see Fig.s1 and page 5, lines 104-105). In addition, we also measured the fluorescence intensity of both MCAK<sup>sN+M</sup> and MCAK. MCAK<sup>sN+M</sup> is a monomeric mutant that contains the neck domain and motor domain (Wang et al., 2012). The average intensity of MCAK<sup>sN+M</sup> is 196 A.U., about 65% of that of MCAK (300 A.U.). These two measurements suggest that the purified MCAK used in this study exists dimers (see Fig. s1).

      c. Evidence that MCAK on microtubules represents single molecules should be provided (distribution of GFP brightness with controls - GFP imaged under identical conditions). Since assay buffers include detergent, which is not desirable, all controls should be done using the same assay conditions. The authors should rule out that their main results are detergent-sensitive.

      (1) Regarding if MCAK on microtubules represent single molecules: please refer to our responses to the two points above.

      (2) To rule out the effect of tween-20 (0.0001%, v/v), we performed additional control experiments. The results showed that it has no significant effect on microtubule-binding affinity of MCAK (see Figure below).

      Author response image 2.

      Tween-20 (0.0001%, v/v) has no significant effect on microtubule-binding affinity of MCAK. (A) The representative projection images of GFP-MCAK (5 nM) binding to taxol-stabled GDP microtubules in the presence of 1 mM AMPPNP with or without tween-20. The upper panel showed the results of the control experiments performed without MCAK. Scale bar: 5 mm. (B) Statistical quantification of the binding intensity of GFP-MCAK binding to GDP microtubules with or without tween-20 (53 microtubules from 3 assays and 70 microtubules from 3 assays, respectively). Data were presented as mean ± SEM. Statistical comparisons were performed using the two-tailed Mann-Whitney U test with Bonferroni correction, n.s., no significance.

      d. How did the authors plot single-molecule intensity distributions? I am confused as to why the intensity distribution for single molecules in Fig 1D and 2A looks so perfectly smooth, non-pixelated, and broader than expected for GFP wavelength. Please provide unprocessed original distributions, pixel size, and more details about how the distributions were processed.

      In the revised manuscript, we provided unprocessed original data in Fig. 1B and Fig. 2A. We thank the reviewer for pointing out this problem.

      e. Many quantifications are based on a limited number of microtubules and the number of molecules is not provided, starting from Fig 1D and down. Please provide detailed statistics and explain what is plotted (mean with SEM?) on each graph.

      We performed a thorough inspection of the manuscript and corrected the identified issues.

      f. Plots with averaged data should be supplemented with error bars and N should be provided in the legend. E.g. Fig 1C - average position of MT and peak positions.

      We agree with the reviewer. In the revised manuscript, we have made the changes accordingly (e.g. Fig. 2C).

      g. Detailed information should be provided about protein constructs used in this work including all tags. The use of truncated proteins or charged/bulky tags can modify protein-microtubule interactions.

      We agree with the reviewer. In the revised manuscript, we provide the information of all constructs (see Fig. s1 and the related descriptions in Methods, pages 15-16, lines 476-534).

      h. Line 515: We estimated that the accuracy of microtubule end tracking was ~6 nm by measuring the standard error of the distribution of the estimated error in the microtubule end position. - evidence should be provided using the conditions of this study, not the reference to the prior work by others.

      i. Line 520: We estimated that the accuracy of the measured position was ~2 nm by measuring the standard error of the fitting peak location". Please provide evidence.

      Point h-i: we now provide detailed descriptions of how to estimate tracking and measurement accuracy and error in our work. Please see pages 18-19, lines 626-645.

      j. Kymographs in Fig 5G are barely visible. Please provide single-channel greyscale images. What are the dim molecules diffusing on this microtubule?

      We have incorporated the changes suggested by the reviewer. We think that some of the dim signals may result from stochastic background noise, while others likely represent transient bindings of MCAK. The exposure time in our experiments was approximately 0.05 seconds; if the binding duration were shorter than this, the signal would be lower (i.e. the “dim” signals). It is important to note that in this study, we selected binding events lasting at least 2 consecutive frames, meaning transient binding events were not included. This point has been clarified in the Methods section (see page17, lines 573-583).

      k. Please provide a methods description for Fig 6. Did the buffer include 1 mM ATP? The presence of ATP would make these conditions more physiological. ATP concentration should be stated clearly in the main text or figure legend.

      The buffer contains ATP. In the revised manuscript, we have provided the methods for the experiments of microtubule dynamics assay, as well as the analysis of microtubule lifetimes and catastrophe frequency (see page 17, lines 561-572 and page 20, lines 685-690).

      l. Line 104: experiment was performed in BRB80 supplemented with 50 mM KCl and 1 mM ATP, providing a nearly physiological ion strength. Please provide a reference or add your calculations in Methods.

      We have provided references on page 5, lines 101-104 of our manuscript.

      m. What was the MCAK concentration in Figure 4? Did the microtubule shorten under any of these conditions?

      In these experiments, we used a very low concentration of MCAK and taxol-stabilized microtubules, so there’s no microtubule shortening observed here. ATP: 10 nM GFP-MCAK; AMPPNP: 1 nM GFP-MCAK; ADP: 10 nM GFP-MCAK; APO state: 0.1 nM GFP-MCAK.

      Other criticism:

      Text improvements are recommended in the Discussion. For example, line 348: Fourth, the loss of the binding preference.. suggests that the binding preference .. is required for the optimal .. preference.

      We thank the reviewer for pointing out this. In the revised manuscript, we conducted a thorough revision and review of the text.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Chen et al. investigate the localization of microtubule kinesin-13 MCAK to the microtubule ends. MCAK is a prominent microtubule depolymerase whose molecular mechanisms of action have been extensively studied by a number of labs over the last ~twenty years. Here, the authors use single-molecule approaches to investigate the precise localization of MCAK on growing microtubules and conclude that MCAK preferentially binds to a GDP-Pi-tubulin portion of the microtubule end. The conclusions are speculative and not well substantiated by the data, making the impact of the study in its current form rather limited. Specifically, greater effort should be made to define the region of MCAK binding on microtubule ends, as well as its structural characteristics. Given that MCAK has been previously shown to effectively tip-track growing microtubule ends through an established interaction with EB proteins, the physiological relevance of the present study is unclear. Finally, the manuscript does not cite or properly discuss a number of relevant literature references, the results of which should be directly compared and contrasted to those presented here.

      We thank the reviewer for the comments. As these suggestions are more thoroughly expressed in the following comments for authors, we will provide the responses in the corresponding sections, as shown below.

      Reviewer #2 (Recommendations For The Authors):

      Significant concerns:

      (1) Establishing the precise localization of MCAK wrt microtubule end is highly non-trivial. More details should be provided, including substantial supplementary data. In particular, the authors claim ~6 nm accuracy in microtubule end positioning - this should be substantiated by data showing individual overlaid microtubule end intensity profiles as well as fits with standard deviations etc. Furthermore, to conclude that MCAK binds behind XMAP215, the authors should look at the localization of the two proteins simultaneously, on the same microtubule end. Notably, EB binding profiles are well known to exponentially decay along the microtubule lattice - this is not very apparent from the presented data. If MCAK's autonomous binding pattern matches that of EB, we should be seeing an exponentially-decaying localization for MCAK as well? However, averaged MCAK signals seem to only be fitted to Gaussian. Note that the EB binding region (i.e. position and size of the EB comet) can be substantially modulated by increasing the microtubule growth rate - this can be easily accomplished by increasing tubulin concentrations or the addition of XMAP215 (e.g. see Maurer et al. Cur Bio 2014). Thus to establish that MCAK on its own binds the same region as EB, experiments that directly modulate the size and the position of this region should be added.

      (1) We thank the reviewer for this comment. Regarding the accuracy in microtubule end positioning, we now provide more details, and please see pages 18-19, lines 625-645 in the revised manuscript.

      (2) Regarding the relative localization of XMAP215 and MCAK, we performed additional experiments to record their colocalizations simultaneously, on the same microtubule end. Our results showed that MCAK predominantly binds behind XMAP215, with 14.5% appearing within the XMAP215’s binding region. Please see Fig. 2.D-E and lines 184-197 in the revised manuscript.

      (3) Regarding the exponential decay of the EB1 signal along microtubules, we observed that the position probability distribution measured in the present study follows a Gaussian distribution, and the expected exponential decay was not apparent. Since the exponential decay is thought to result from the time delay between tubulin polymerization and GTP hydrolysis, slower polymerization is expected to reduce this latency (Maurer et al., 2014). In our experiments, the growth rate was relatively low (~0.7 mm/min), much slower than the rate observed in cells, where the comet-shaped EB1 signal is most pronounced. The previous study has shown that the exponential decay of EB1 is more pronounced at growth rates exceeding 3 mm/min in vitro (Maurer et al., 2014). Therefore, we think that the relatively slow growth may account for the observed non-exponential decay distribution of the EB1 signals. The same reason may also explain the distribution of MCAK.

      (4) We agree with the reviewer’s suggestion that altering microtubule growth rate is a valid and effective approach to regulate the EB cap length. However, the conclusion that MCAK binds to the EB region is supported by three lines of evidence: (1) the localization of MCAK at the ends of microtubules, (2) new experimental data showing that MCAK binds to the proximal end of the XMAP215 site, and (3) the tendency of MCAK to bind GTPγS microtubules, similar to EB1. Based on these findings, we did not pursue additional experiments to modify the length of the EB cap.

      (2) Even if MCAK indeed binds behind XMAP215, there is no evidence that this region is defined by the GDP-Pi nucleotide state; it could still be curved protofilaments. GTPyS is an analogue of GTP - to what extent GTPyS microtubules exactly mimic the GDP-Pi-tubulin state remains controversial. Furthermore, nucleotide sensing for EB is thought to be achieved through its binding at the interface of four tubulin dimers. However MCAK's binding site is distinct, and it has been shown to recognize intradimer tubulin curvature. Thus it is not clear how MCAK would sense the nucleotide state. On the other hand, there is mounting evidence that the morphology of the growing microtubule end can be highly variable, and that curved protofilaments may be protruding off the growing ends for tens of nanometers or more, previously observed both by EM as well as by fluorescence (e.g. Mcintosh, Moores, Chretien, Odde, Gardner, Akhmanova, Hancock, Zanic labs). Thus, to establish that MCAK indeed localizes along the closed lattice, EM approaches should be used.

      First, we conducted additional experiments that demonstrate MCAK indeed binds behind XMAP215, supporting the conclusion that MCAK interacts with the EB cap (please see Fig. 2 in the revised manuscript). Second, our argument that MCAK preferentially binds to GDP-Pi tubulin is based on two observations: (1) the binding regions of MCAK overlap with those of EB1, and (2) MCAK preferentially binds to GTPγS microtubules, which are considered a close analogue of GDP-Pi tubulin. Third, understanding the structural basis of how MCAK senses the nucleotide state of tubulin is beyond the scope of the present study. However, inspired by the reviewer’s suggestion, we looked into the structure of the MCAK-tubulin complex. The L2 loop of MCAK makes direct contact with the interdimer interface (Trofimova et al., 2018; Wang et al., 2017), which could provide a structural basis for recognizing the changes induced by GTP hydrolysis. While this remains a hypothesis, it is certainly a promising direction for future research. Forth, we agree with the reviewer that an EM approach would be ideal for establishing that MCAK localizes along the closed lattice. However, this is not the focus of the current study. Instead, we argue that MCAK binds to the EB cap, where at least some lateral interactions are likely to have formed.

      (3) The physiological relevance of the study is rather questionable: MCAK has been previously established to be able to both diffuse along the microtubule lattice (e.g. Helenius et al.) as well as hitchhike on EBs (Gouveia et al.). Given the established localization of EBs to growing microtubule ends in cells, and apparently higher affinity of MCAK for EB vs. the microtubule end itself (although direct comparisons with the literature have not been reported here), the relevance of MCAK's autonomous binding to dynamic microtubule ends is dubious.

      We thank the reviewer for raising the importance of physiological relevance. Please refer to our response to the comment No.1 of reviewer 1. Briefly, we think that the end-binding affinity of MCAK makes a significant contribution for its cellular functions. To elucidate this concept, we now use a simple model shown in Supplementary Appendix-2 (see pages 49-51, lines 1246-1316). In this model, we simplified MCAK and EB1 binding to microtubule ends by considering only these two proteins while neglecting other factors (e.g. XMAP215). Specifically, we considered two scenarios: one in which both proteins freely diffuse in the cytoplasm and another where MCAK is localized to specific cellular structures, such as the centrosome or centromere. Based on the modeling results, we argue that MCAK's functional impact at microtubule ends derives both from its intrinsic end-binding capacity and its ability to strengthen the EB1-mediated end association pathway.

      (4) Finally, the study seriously lacks discussion of and comparison with the existing literature on this topic. There are major omissions in citing relevant literature, such as e.g. landmark study by Kinoshita et al. Science 2001. Several findings reported here directly contradict previous findings in the literature. Direct comparison with e.g. Gouveia et al findings, Helenius et al. findings, and others need to be included. For example, Gouveia et al reported that EB is necessary for MCAK plus-end-tracking in vitro (please see Figure 1 of their manuscript). The authors should discuss how they reconcile the differences in their findings when compared to this earlier study.

      We thank the reviewer for this helpful suggestion. In the revised manuscript, we have updated the text description and included comparative discussions with other relevant studies in the Discussion section. Specifically, we added comparisons with the research on XMAP215 in page 14, lines 459-472 (Barr and Gergely, 2008; Kinoshita et al., 2001; Tournebize et al., 2000). Additionally, we have compared our findings with those of Gouveia et al. and Helenius et al. regarding MCAK's preference for binding microtubule ends in page 6, lines 145-157 and page 13, 408-441, respectively (Gouveia et al., 2010; Helenius et al., 2006).

      Additional specific comments:

      Figure 1

      Gouveia et al. (Figure 1) reported that MCAK does not autonomously preferentially localize to growing tips. Specifically, Gouveia et al. found equal association rates of MCAK to both the lattice and the tip in the presence of EB3delT, an EB3 construct that does not directly interact with MCAK. How can these findings be reconciled with the results presented here?

      We are uncertain why there was no observed difference in the on-rates to the lattice and the end in the study by Gouveia et al. Even when considering only the known affinity of MCAK for curved protofilaments at the distal tip of growing microtubules, we would still expect to observe an end-binding preference. After carefully comparing the experimental conditions, we nevertheless identified some differences. First, we used a 160 nm tip size to calculate the on-rate (k<sub>on</sub>), whereas Gouveia et al. used a 450 nm tip. Using a longer tip size would naturally lead to a smaller(k<sub>on</sub>) value. Note that we chose 160 nm for several reasons: (i) a previous cryo-electron tomography study has elucidated that the sheet structures of dynamic microtubule ends have an average length of around 180 nm (Guesdon et al., 2016); (ii) Analysis of fluorescence signals at dynamic microtubule ends has demonstrated that the taper length at the microtubule end is less than 180 nm (Maurer et al., 2014); (iii) in the present study, we estimated that the length of MCAK's end-binding region is approximately 160 nm. Second, in Gouveia et al., single-molecule binding events were recorded in the presence of 75 nM EB3ΔT, which could potentially create a crowded environment at the tip, reducing MCAK binding. Third, as mentioned in our response to Reviewer 1, we took great care to minimize the interference from purification tags (e.g., His-tag) by ensuring their complete removal during protein preparation. Previous studies reported that retaining the His-tag of MAPs led to a significant increase in binding for microtubules (Maurer et al., 2011; Zhu et al., 2009). We believe that some of the factors mentioned above, or their combined effects, may account for the differences in these two observations.

      1C shows the decay of tubulin signal over several hundred nm - should show individual traces? How aligned? Doesn't this long decay suggest protruding protofilaments? (E.g. Odde/Gardner work).

      (1) In the revised manuscript, we now show individual traces (e.g. in Fig. 1B and Fig. 2A). The average trace for tubulin signal with standard deviation was shown in Fig. 2C.

      (2) The microtubule lattice was considered as a Gaussian wall and its end as a half-Gaussian in every frame. Use the peak position of the half-Gaussian of every frame to align and average microtubule end signals, during the dwell time. The average microtubule ends' half-Gaussion peak used as a reference to measure the intensity profile of individual single-molecule binding event in every frame (see page18, lines 607-624).

      (3) We think that the decay of tubulin signal results from the convolution of the tapered end structure and the point spread function. In the revised manuscript, we have updated the Figures to provide unprocessed original data in Fig. 1B and Fig. 2A.

      Please show absolute numbers of measurements in 1C (rather than normalized distribution only).

      In the revised manuscript, we have included the raw data for both tubulin and MCAK signals as part of the methods description. In Fig. 1, using normalized values allows for the simultaneous representation of microtubule and protein signals on a unified graph.

      How do the results in 1D-G compare with the previous literature? Particularly comparison of on-rates between this study and the Gouveia et al? Assuming 1 um = 1625 dimers, it appears that in the presence of EB3, the on-rate of MCAK to the tips reported in Gouveia et al. is an order of magnitude higher than reported here in the absence of EB3 (4.3 x 10E-4 vs. 2 x 10E-5). If so, and given the robust presence of EB proteins at growing microtubule ends in cells, this would invalidate the potential physiological relevance of the current study. Note that the dwell times measured in Gouveia et al. are also longer than those measured here.

      Note that in Gouveia et al, the concentration of mCherry-EB3 was 75 nM, about 187.5 times higher than that of MCAK (0.4 nM). The relative concentrations of these two proteins are not always the case in cells. Regarding the physiological relevance of the end-binding affinity of MCAK itself, please refer to our response to the point No.1 of Reviewer 1.

      Notably, Helenius et al reported a diffusion constant for MCAK of 0.38 um^2/s, which is more than an order of magnitude higher than reported here. The authors should comment on this!

      In the revised manuscript, we have provided an explanation for the difference in diffusion coefficient. Please see page 6, line 142-157. In short, low salt condition facilitates rapid diffusion of MCAK.

      Figure 2:

      This figure is critical and really depends on the analysis of the tubulin signal. Note significant variability in tubulin signal between presented examples in 2A. Also, while 2C looks qualitatively similar, there appears to be significant variability over the several hundred nm from the tip along the lattice. This is the crucial region; statistical significance testing should be presented. More detailed info, including SDs etc. is necessary.

      In the revised manuscript, we have provided raw data in Fig. 1B and Fig. 2A. Additionally, we have provided statistical analysis on the tubulin signals (Fig. 2C) and performed significance test. Please see page 5, lines 111-116 and page 7, lines 179-183 for detailed descriptions.

      Insights into the morphology of microtubule ends based on TIRF imaging have been previously gained in the literature, with reports of extended tip structures/protruding protofilaments (see e.g. Coombes et al. Cur Bio 2013, based on the methods of Demchouk et al. 2011). Such analysis should be performed here as well, if we are to conclude that nucleotide state alone, as opposed to the end morphology, specifies MCAK's tip localization.

      We appreciate the reviewer’s suggestion and agree that it provides a valid optical microscopy-based approach for estimating microtubule end morphology. However, this method did not establish a direct correlation between microtubule end morphology and tubulin nucleotide status. Therefore, we think that refining the measurement of microtubule end morphology will not necessarily provide more information to the understanding of tubulin nucleotide status at MCAK binding sites. Based on the available data in the present study, there are two main pieces of evidence supporting the idea that MCAK can sense tubulin nucleotide status: (1) the binding regions of MCAK and EB overlap significantly, and (2) MCAK shows a clear preference for binding to GTPγS microtubules, similar to EB1 (we provide a new control to support this, Fig. s4). Of course, we do not consider this to be a perfect set of evidence. As the reviewer has pointed out here and in other suggestions, future work should aim to further distinguish the nucleotide status of tubulin in the dynamic versus non-dynamic regions at the ends of microtubules, and to investigate the structural basis by which MCAK recognizes tubulin nucleotide status.

      EB comet profile should be clearly reproduced. MCAK should follow the comet profile.

      Please see our 3<sup>rd</sup> response to the point 1 of this reviewer.

      The conclusion that the MCAK binding region is larger than XMAP215 is not firm, based on the data presented. The authors state that 'the binding region of MCAK was longer than that of XMAP215'. What is the exact width of the region of the XMAP215 localization and how much longer is the MCAK end-binding region? Is this statistically significant?

      We have revised this part in the revised manuscript (page 6, lines 167-172). The position probability distributions of MCAK and XMAP215 were significantly different (K-S test, p< 10<sup>-5</sup>), and the binding region of MCAK (FWHM=185 nm) was significantly longer than that of XMAP215 (FWHM=123 nm).

      MCAK localization with AMPPNP should also be performed here. Even low concentrations of MCAK have been shown to induce microtubule catastrophe/end depolymerization. This will dramatically affect microtubule end morphology, and thus apparent positioning of MCAK at the end.

      In the end positioning experiment, we used a low concentration of MCAK (1 nM). Under this condition, microtubule dynamics remained unchanged, and the morphology of the microtubule ends was comparable across different conditions (with EB1, MCAK or XMAP215). Additionally, in the revised manuscript, we present a new experiment in which we recorded the localization of both MCAK and XMAP215 on the same microtubule. The results support the conclusion regarding their relative localization: most MCAK is found at the proximal end of the XMAP215 binding region, while approximately 15% of MCAK is located within the XMAP215 binding region. Please see Fig. 2D-E and page 7, lines 184-197 for the corresponding descriptions.

      Figure 3:

      For clearer presentation, projections showing two microtubule lattice types on the same image (in e.g. two different colors) should be shown first without MCAK, and then with MCAK.

      We thank the reviewer for this suggestion. We have adjusted the figure accordingly. Please see Fig. 4 in the revised manuscript.

      Please comment on absolute intensity values - scales seem to be incredibly variable.

      The fluorescence value presented here is the result of multiple images being summed. Therefore, the difference in absolute values is influenced not only by the binding affinity of MCAK in different states to microtubules, but also by the number of images used. In this analysis, we are not comparing MCAK in different states, but rather evaluating the binding ability of MCAK in the same state on different types of microtubules.

      Given that the authors conclude that MCAK binding mimics that of EB, EB intensity measurements and ratios on different lattice substrates should be performed as a positive control.

      We performed additional experiments with EB1, in the revised manuscript, we provide the data as a positive control (please see Fig. s4).

      Figure 4:

      MCAK-nucleotide dependence of GMPCPP microtubule-end binding has been previously established (see e.g. Helenius et al, others?) - what is new here? Need to discuss the literature. This would be more appropriate as a supplemental figure?

      In the present study, we reproduced the GMPCPP microtubule-end binding of MCAK in the AMPPNP state, as shown in several previous reports (Desai et al., 1999; Hertzer et al., 2006). Here, we also quantified the end to lattice binding preference, and our results showed that the nucleotide state-dependence shows the same trend as the binding preference of MCAK to the growing microtubule ends. Therefore, we prefer to keep this figure in the main text (Fig. 5).

      Figure 5:

      Please note that both MCAK mutants show an additional two orders of magnitude lower microtubule binding on-rates when compared to wt MCAK. This makes the analysis of preferential binding substrate for these mutants dubious.

      We agreed with this point. We have rewritten this part. Please see page 10, lines 295-327, in the revised manuscript.

      Figure 6:

      Combined effects of XMAP215 and XKCM1 (MCAK) have been previously explored in the landmark study by Kinoshita et al. Science 2001, which should be cited and discussed. Also note that Moriwaki et al. JCB 2016 explored the combined effects of XMA215 and MCAK - which should be discussed here and compared to the current results.

      We agree with the reviewer. We have revised the discussion on this part. Please see page 11, lines 329-342 and page 14, lines 459-472 in the revised manuscript.

      Please report quantification for growth rate and lifetime.

      In the revised manuscript, we provide all these data. Please see pages 11-12, lines 343-374.

      To obtain any new quantitative information on the combined effects of the two proteins, at the very minimum, the authors should perform a titration in protein concentration.

      We agree with the reviewer on this point. In our pilot experiments, we performed titration experiments to determine the appropriate concentrations of MCAK and XMAP215, respectively. We selected 50 nM for XMAP215, as it clearly enhances the growth rate and exhibits a mild promoting effect on catastrophe—two key effects of XMAP215 reported in previous studies (Brouhard et al., 2008; Farmer et al., 2021). Reducing the XMAP215 concentration eliminates the catastrophe-promoting effect, while increasing it would not much enhance the growth rate. For MCAK, we chose 20 nM, as it effectively promotes catastrophe; increasing the concentration beyond this point leads to no microtubule growth, at least in the MCAK-only condition. If there’s no microtubule growth, it would be difficult to quantify the parameters of microtubule dynamics, hindering a clear comparison of the combined versus individual effects. Therefore, we think that the concentrations used in this study are appropriate and representative. In the revised manuscript, we make this point clearer (see pages 11 and lines 329-342).

      Finally, the writing could be improved for overall clarity.

      We thank the reviewer for pointing out this. In the revised manuscript, we conducted a thorough revision and review of the text.

      Reviewer #3 (Public Review):

      The authors revisit an old question of how MCAK goes to microtubule ends, partially answered by many groups over the years. The authors seem to have omitted the literature on MCAK in the past 10-15 years. The novelty is limited due to what has previously been done on the question. Previous work showed MCAK targets to microtubule plus-ends in cells through association with EB proteins and Kif18b (work from Wordeman, Medema, Walczak, Welburn, Akhmanova) but none of their work is cited.

      We thank the reviewer for the suggestion. Some of the referenced work has already been cited in our manuscript, such as studies on the interaction between MCAK and EB1. However, other relevant literature had not been properly cited. In the revised manuscript, we have added further discussion on this topic in the context of existing findings. Please refer to pages 3-4, lines 68-85, and pages 13, lines 425-441.

      It is not obvious in the paper that these in vitro studies only reveal microtubule end targeting, rather than plus end targeting. MCAK diffuses on the lattice to both ends and its conformation and association with the lattice and ends has also been addressed by other groups-not cited here. I want to particularly highlight the work from Friel's lab where they identified a CDK phosphomimetic mutant close to helix4 which reduces the end preference of MCAK. This residue is very close to the one mutated in this study and is highly relevant because it is a site that is phosphorylated in vivo. This study and the mutant produced here suggest a charge-based recognition of the end of microtubules.

      Here the authors analyze this MCAK recognition of the lattice and microtubule ends, with different nucleotide states of MCAK and in the presence of different nucleotide states for the microtubule lattice. The main conclusion is that MCAK affinity for microtubules varies in the presence of different nucleotides (ATP and analogs) which was partially known already. How different nucleotide states of the microtubule lattice influence MCAK binding is novel. This information will be interesting to researchers working on the mechanism of motors and microtubules. However, there are some issues with some experiments. In the paper, the authors say they measure MCAK residency of growing end microtubules, but in the kymographs, the microtubules don't appear dynamic - in addition, in Figure 1A, MCAK is at microtubule ends and does not cause depolymerization. I would have expected to see depolymerization of the microtubule after MCAK targeting. The MCAK mutants are not well characterized. Do they still have ATPase activity? Are they folded? Can the authors also highlight T537 and discuss this?

      Finally, a few experiments are done with MCAK and XMAP215, after the authors say they have demonstrated the binding sites overlap. The data supporting this statement were not obvious and the conclusions that the effect of the two molecules are additive would argue against competing binding sites. Overall, while there are some interesting quantitative measurements of MCAK on microtubules - in particular in relation to the nucleotide state of the microtubule lattice - the insights into end-recognition are modest and do not address or discuss how it might happen in cells. Often the number of events is not recorded. Histograms with large SEM bars are presented, so it is hard to get a good idea of data distribution and robustness. Figures lack annotations. This compromises therefore their quantifications and conclusions. The discussion was hard to follow and needs streamlining, as well as putting their work in the context of what is known from other groups who produced work on this in the past few years.

      We thank the reviewer for the comments. Regarding the physiological relevance of the end-binding of MCAK itself, please refer to our response to the point No.1 of reviewer 1. Moreover, as we feel that other suggestions are more thoroughly expressed in the following comments for authors, we will provide the responses in the corresponding sections, as shown below.

      Reviewer #3 (Recommendations For The Authors):

      Why, on dynamic microtubules, is MCAK at microtubule plus ends and does not cause a catastrophe?

      At this concentration (10 nM MCAK with 16 mM tubulin in Fig. 1; 1 nM MCAK with 12 mM tubulin in Fig. 2), MCAK has little effect on microtubule dynamics in our experiments. Using TIRFM, we were able to observe individual MCAK binding events. Based on these observations, we think that in the current experimental condition, a single binding event of MCAK is insufficient to induce microtubule catastrophe; rather, it likely requires cumulative changes resulting from multiple binding events.

      Do the MCAK mutants still have ATPase activity?

      The ATPase activities of MCAK<sup>K525A</sup> and MCAK<sup>V298S</sup> are both reduced to about 1/3 of the wild-type (Fig. s6).

      The intensities of GFP are not all the same on the microtubule lattice (eg 1A). See blue and white arrowheads. The authors could be looking at multiple molecules of GFP-MCAK instead of single dimers. How do they account for this possibility?

      In the revised manuscript, we provide the gel filtration result of the purified MCAK, and the position of the peak corresponds to ~220 kDa, demonstrating that the purified MCAK in solution is dimeric (please see Fig.s1 and page 5, lines 101-103). We measured the fluorescence intensity of each binding event. A probability distribution of these intensities was then constructed and fitted with a Gaussian function. A binding event was considered to correspond to a single molecule if its intensity fell within μ±2σ of the distribution. The details of the single-molecule screening process are provided in the revised manuscript (see page 17, lines 574-583).

      In addition, we also measured the fluorescence intensity of both MCAK<sup>sN+M</sup> and MCAK. MCAK<sup>sN+M</sup> is a monomeric mutant that contains the neck domain and motor domain (Wang et al., 2012). The average intensity of MCAK<sup>sN+M</sup> is 196 A.U., about 65 % of that of MCAK (300 A.U.), suggesting that MCAK is a dimer (see Fig. s1). Moreover, we think that some of the dim signals may result from stochastic background noise, while others likely represent transient bindings of MCAK. The exposure time in our experiments was approximately 0.05 seconds; if the binding duration were shorter than this, the signal would be lower. It is important to note that in this study, we specifically selected binding events lasting at least 2 consecutive frames, meaning transient binding events were not included. This point has been clarified in the Methods section (see page 17, lines 568-569 and lines 574-583).

      Could the authors provide a kymograph of an MT growing, in the presence of MCAK+AMPPNP? Can MCAK track the cap?

      Under single-molecule conditions, we observed a single MCAK molecule briefly binding to the end of the microtubule. However, we did not record if MCAK at high concentrations could track microtubule ends under AMPPNP conditions.

      In the experiments in Figure 6, the authors should also show the localization of MCAK and XMAP215 at microtubule plus ends in their kymographs to show the two molecules overlap.

      Regarding the relative localization of XMAP215 and MCAK, we conducted additional experiments to record their colocalization simultaneously at the same microtubule end. Our results show that MCAK predominantly binds behind XMAP215, with 14.5% of MCAK binding within the XMAP215 binding region. Please see Fig. 2.D-E and page 7, lines 184-197 in the revised manuscript. However, we argue that the effects of XMAP215 and MCAK are additive, and their binding sites do not necessarily need to overlap for these effects to occur.

      The authors do not report what statistical tests are done in their graphs, and one concern is over error propagation of their data. Instead of bar graphs, showing the data points would be helpful.

      We have now shown all data points in the revised manuscript.

      MCAK+AMPPNP accumulates at microtubule ends. Appropriate quotes from previous work should be provided.

      We have made the revisions accordingly. Please see page 9, lines 273-276.

      Controls are missing. An SEC profile for all purified proteins should be presented. Also, the authors need to explain if they report the dimeric or monomeric concentration of MCAK, XMAP215, etc...

      We have provided the gel filtration result for all purified proteins in the revised manuscript (Fig.s1). Moreover, we now make it clear that the concentrations of MCAK and EB1 are monomeric concentration. Please see the legend for Fig. 1, line 893 in the revised manuscript.

      Figure 1: the microtubules don't look dynamic at all. This is also why the authors can record MCAK at microtubule ends, because their structure is not changing.

      The microtubules are dynamic, but they may appear non-dynamic due to the relatively slow growth rate and the high frame rate at which we are recording. We propose that individual binding events of MCAK induce structural changes at the nanoscopic or molecular scale, which are not detectable using TIRFM.

      I recommend the authors measure the Kon and Koff for single GFP-MCAK mutant molecules and provide the information alongside their normalized and averaged binding intensities of GFP-MCAK in Fig 5. Showing data points instead of bar graphs would be better.

      (1) We measured k<sub>on</sub> and dwell time for mutants at growing microtubule end. However, we did not perform single-molecule tracking for MCAK’s binding on stabilized microtubules. This is mainly because the superimposed signal on the stable microtubule already indicates the changes in the mutant's binding affinity to different microtubule structures, and moreover, the binding of the mutants is highly transient, making accurate single-molecule tracking and calculations difficult.

      (2) In the revised figure, we have included the data points in all plots.

      When discussing how Kinesin-13 interacts with the lattice, the authors should quote the papers that report the organization of full-length Kinesin-13 on tubulin heterodimers: Trofimova et al, 2018; McHugh et al 2019; Benoit et al, 2018. It would reinforce their model and account for the full-length protein, rather than just the motor domain.

      We thank the suggestion for the reviewer. In our manuscript, we have cited papers on full-length Kinesin-13 to discuss the interaction between MCAK and microtubule end-curved structure. Additionally, we have utilized the MCAK-tubulin crystal structure (PDB ID: 5MIO) in Fig. 6, as it depicts a human MCAK, which is consistent with the protein used in our study. This structure illustrates the interaction sites between MCAK and tubulin dimer, guiding our mutation studies on specific residues. Thus, we prefer to use the structure (PDB ID: 5MIO) in Fig.6.

      Figure 5A. What type of model is this? A PDB code is mentioned. Is this from an X-ray structure? If so, mention it.

      We have now included the structural information in the Figure legend (see page 37, lines 1045).

      Figure 5B. It is not possible to distinguish the different microtubule lattices (GTPyS, GDP, and GMPCPP). The experiment needs to be better labelled.

      We thank the reviewer for this comment. We have now rearranged the figure for better clarity (see Fig. 6).

      "Figure 5D: what are the statistical tests? I don't understand " The statistical comparisons were made versus the corresponding value of 848 GFP-MCAK".

      We have made this point clearer in the revised manuscript (see pages 38, line 1078-1080).

      What is the "EB cap"? This needs explaining.

      We provide this explanation for this, please see page 4, lines 87-89 in the revised manuscript.

      Work from Friel and co-workers showed MCAK T537E did not have depolymerizing activity and a reduced affinity for microtubule ends. The work of the authors should be discussed with respect to this previously published work.

      We thank the reviewer for this suggestion. In the revised manuscript, we have added discussions on this (see page 10, lines 303-307).

      The concentration of protein used in the assays is not always described.

      We have checked throughout the manuscript and made revisions accordingly.

      "Having revealed the novel binding sites of MCAK in dynamic microtubule ends " should be on "we wondered how MCAK may work ..with EB1". This is not addressed so should be removed. Instead, they can quote the work from Akhmanova's lab. Realistically this section should be rephrased as there are other plus-end targeting molecules that compete with MCAK, not just XMAP215 and EB1.

      We have rephrased this section as suggested by this reviewer to be more specific. Please see page 11, lines 329-342.

      What is AMPCPP?

      It should be “AMPPNP”

      Typos in Figure 5.

      Corrected

    1. The title of the article makes a simple striking claim about the state of the scientific literature with a numerical estimate of the proportion of “fake” articles. Yet, by contrast to this title, in the text of the article, Heathers is highly critical of his own work.

      James’ peer review of Heathers’ article

      James Heathers often mentions the limitations of his research thus “peer-reviewing” his own article to the extent that he admits that this work is “incomplete”, “unsystematic” and “far flung”.

      This work is too incomplete to support responsible meta-analysis, and research that could more accurately define this figure does not exist yet. ~1 in 7 papers being fake represents an existential threat to the scientific enterprise.”

      While this is highly unsystematic, it produced a substantially higher figure. Correspondents reliably estimated 1-5% of all papers contain fabricated data, and 2-10% contain falsified results.”

      These values are too disparate to meta-analyze responsibly, and support only the briefest form of numerical summary: n=12 papers return n=16 individual estimates; these have a median of 13.95%, and 9 out of 16 of these estimates are between 13.4% and 16.9%. Given this, a rough approximation is that for any given corpus of papers, 1 in 7 (i.e. 14.3%) contain errors consistent with faking in at least one identifiable element.”

      “The accumulation of papers collected here is, frankly, haphazard. It does not represent a mature body of literature. The papers use different methods of analyzing figures, data, or other features of scientific publications. They do not distinguish well between papers that have small problematic elements which are fake, or fake in their entirety. They analyze both small and large corpora of papers, which are in different areas of study and in journals of different scientific quality – and this greatly changes base rates;…”

      “As a consequence, it would be prudent to immediately reproduce the result presented here as a formal systematic review. It is possible further figures are available after an exhaustive search, and also that pre registered analytical assumptions would modify the estimations presented.”

      Heathers has also in an interview published in Retraction Watch (Chawla 2024) acknowledged pitfalls in this article such as:

      “Heathers said he decided to conduct his study as a meta-analysis because his figures are “far flung.””

      “They are a little bit from everywhere; it’s wildly nonsystematic as a piece of work,” he said.”

      “Heathers acknowledged those limitations but argued that he had to conduct the analysis with the data that exist. “If we waited for the resources necessary to be able to do really big systematic treatments of a problem like this within a specific area, I think we’d be waiting far too long,” he said. “This is crucially underfunded.”

      Built in opposition to Fanelli 2009, but it’s illogical

      Heathers states in the abstract that his article is “in opposition” to Fanelli’s 2009 PloS One article (Fanelli 2009), yet that opposition is illogical and artificially constructed since there is no contradiction between 2% of scientists self-reporting having taking part in fabrication or falsification and an eventual much higher proportion of “fake scientific outputs”. Like most of what is wrong with Heather’s article, this is in fact acknowledged by the author who notes that the 2% figure “leaves us with no estimate of how much scientific output is fake” (bias in self-reporting, possibility of prolific authors, etc).

      Fanelli 2009 is not cited in the way JH says it is cited

      Whilst the opposition discussed above is illogical, it could be that the 2% figure is mis-cited by others as representing an estimate of fake scientific outputs thus probably underestimating the extent of fraud. Heathers suggests that this may indeed be the case, but also contradicts himself about how (Fanelli 2009), or the 2% figure coming from that publication, is typically used.

      In one sentence, he writes that “the figure is overwhelmingly the salient cited fact in its 1513 citations” and that “this generally appears as some variant ofabout 2% of scientists admitted to have fabricated, falsified or modified data or results at least once” (Frank et al. 2023)

      whilst and in another sentence, he writes that “the typical phraseology used to express it – e.g. “the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare” (George 2016).

      Those two sentences cited by Heathers are fundamentally different, the first one accurately reports that the 2% figure relates to individuals self-reporting, whilst the second one appears to relate to the prevalence of misconducts in the literature itself. How Fanelli 2009 is cited in the literature is an empirical question that can be studied by looking at citation contexts beyond the two examples given by Heathers. Given that a central justification for Heathers’ piece appears to be the misuse of this 2% figure, we sought to test whether this was the case.

      A first surprise was that whilst the sentence attributed to (George 2016) can indeed be found in that publication (in the abstract), first it is not in a sentence citing (Fanelli 2009) nor the 2% figure, and, second, it is quoted selectively omitting a part of the sentence that nuances it considerably: “The evidence on prevalence is unreliable and fraught with definitional problems and with study design issues. Nevertheless, the evidence taken as a whole seems to suggest that cases of the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare but that other types of questionable research practices are quite common.” (Fanelli 2009) is discussed extensively by (George 2016), and some of the caveats, e.g. on self-reporting, are highlighted.

      To go beyond those two examples, we constructed a comprehensive corpus of citation contexts, defined as the textual environment surrounding a paper's citation, including several words or sentences before and after the citation (see Methods section below). 737 citation contexts could be analysed. Out of those, the vast majority (533, or 72%) did not cite the 2% figure. Instead, they often referred to this article as a general reference together with other articles to make a broad point, or, focused on other numbers in particular those related to questionable research practices (Bordignon, Said, and Levy 2024). The 28% (204) citation contexts that did mention the 2% figure did so accurately in the majority of cases: 83% (170) of those did mention that it was self-reporting by scientists whilst 17% (34) of those, or 5% of the total citation contexts analysed were either ambiguous or misleading in that they suggested or claimed that the 2% figure related to scientific outputs.

      Although the analysis above does not include all citation contexts, it is possible to conclude unambiguously that the 2% figure is not overwhelmingly the salient cited fact in relation to Fanelli 2009, and that when it is cited it is often accurately, i.e. as representing self-reporting by scientists. Whilst an exhaustive analysis is beyond the scope of this peer review, it is not uncommon to find in this corpus citations contexts that have an alarming tone about the seriousness of the problem of FFPs, e.g. “…a meta-analysis (Fanelli 2009) suggest that the few cases that do surface represent only the tip of a large iceberg." [DOI: 10.1177/0022034510384627]

      Thus, the rationale for Heathers’ study appears to be misguided. The supposed lack of attention for the very serious problem of FFPs is not due to a minimisation of the situation fueled by a misinterpretation of Fanelli 2009. Importantly, even if that was the case, an attempt to draw attention by claiming that 1 in 7 papers are fake, a claim which according to the author himself is not grounded in solid facts, is not how the scientific literature should be used.

      Methods for the construction of the corpus of citation contexts

      We used Semantic Scholar, an academic database encompassing over 200 million scholarly documents from diverse sources including publishers, data providers, and web crawlers. Using the specific paper identifier for Fanelli's 2009 publication (d9db67acc223c9bd9b8c1d4969dc105409c6dfef), we queried the Semantic Scholar API to retrieve available citation contexts. Citation contexts were extracted from the "contexts" field within the JSON response pages, (see technical specifications).

      The query looks like this: semanticscholar.org

      The broad coverage of Semantic Scholar does not imply that citation contexts are always retrieved. The Semantic Scholar API provided citation contexts for only 48% of the 1452 documents citing the paper. To get more, we identified open access papers among the remaining 52% citing papers, retrieved their PDF location and downloaded the files. We used Unpaywall API, which is a database to be queried with a DOI in order to get open access information about a document. The query looks like this.

      We downloaded 266 PDF files and converted them to text format using an online bulk PDF-to-text converter. These files were then processed using TXM, a specialized textual analysis tool. We used its concordancer function to identify the term "Fanelli" as a pivot term and check the reference being the good one (the 2009 paper in PlosOne). We did manual cleaning and appended the citation contexts to the previous corpus.

      Through this comprehensive methodology, we ultimately identified 824 citation contexts, representing 54% (784) of all documents citing Fanelli's 2009 paper. This corpus comprised 48% of contexts retrieved from Semantic Scholar and an additional 6% obtained through semi-manual extraction from open access documents. 87 of those contexts were excluded from the analysis for a range of reasons including: context too short to conclude, language neither English nor French (shared languages of the authors of this review), duplicate documents (e.g. preprints), etc, leaving us with 737 contexts. They were first classified manually in two categories, those mentioning the 2% figure and those which did not. Then, for the first category, they were further classified manually in two categories depending on whether the figure was appropriately assigned to self-reporting of researchers or rather misleadingly suggesting that the 2% applied to research outputs.

      Contributions

      Investigation: FB collected the citation contexts.<br /> Data curation and formal analysis: RL and MS<br /> Writing – review & editing: RL, MS and FB

      References

      Bordignon, Frederique, Maha Said, and Raphael Levy. 2024. “Citation Contexts of [How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data, DOI: 10.1371/Journal.Pone.0005738].” Zenodo. https://doi.org/10.5281/zenodo.14417422.

      Chawla, Dalmeet Singh. 2024. “1 in 7 Scientific Papers Is Fake, Suggests Study That Author Calls ‘Wildly Nonsystematic.’” Retraction Watch (blog). September 24, 2024. https://retractionwatch.com/2024/09/24/1-in-7-scientific-papers-is-fake-suggests-study-that-author-calls-wildly-nonsystematic/.

      Fanelli, Daniele. 2009. “How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data.” PLOS ONE 4 (5): e5738. https://doi.org/10.1371/journal.pone.0005738.

      Frank, Fabrice, Nans Florens, Gideon Meyerowitz-Katz, Jérôme Barriere, Éric Billy, Véronique Saada, Alexander Samuel, Jacques Robert, and Lonni Besançon. 2023. “Raising Concerns on Questionable Ethics Approvals - a Case Study of 456 Trials from the Institut Hospitalo-Universitaire Méditerranée Infection.” Research Integrity and Peer Review 8 (1): 9. https://doi.org/10.1186/s41073-023-00134-4.

      George, Stephen L. 2016. “Research Misconduct and Data Fraud in Clinical Trials: Prevalence and Causal Factors.” International Journal of Clinical Oncology 21 (1): 15–21. https://doi.org/10.1007/s10147-015-0887-3.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function. 

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on behavioral outcomes were not yet fully resolved. 

      We appreciate the reviewer’s thoughtful understanding and acknowledgment that the conceptual conclusion of asymmetric projections from the cortex to the striatum is well supported by our data. We also recognize the importance of further elucidating the extent of afferent overlap and the causal contributions of asymmetric corticostriatal inputs to behavioral outcomes. However, we respectfully note that current technical limitations pose significant challenges to addressing these questions with high precision.

      In response to the reviewer’s comments, we have now clarified the sample size, added proper analysis and elaborated on the experimental design to ensure that our conclusions are presented more transparently and are more accessible to the reader.

      After virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic. 

      Thank you for highlighting this point. As it lies at the core of our manuscript, we agree that it is essential to present it clearly and convincingly. As shown by the statistics (Fig. 2B-F), non-starter D1- and D2-SPNs appear to receive fewer projections from D1-projecting cortical neurons (Input D1-record D1, 0.63; Input D1-record D2, 0.40) compared to D2-projecting cortical neurons (Input D2 - record D1, 0.73; Input D2 -record D2, 0.79).

      While it is not technically feasible to quantify the number of infected cells in brain slices following electrophysiological recordings, we addressed this limitation by collecting data from multiple animals and restricting recordings to cells located within the injection sites. In Figure 2D, we used 7 mice in the D1-projecting to D1 EGFP(+) group, 8 mice in the D1-projecting to D2 EGFP(-) group, 10 mice in the D2-projecting to D2 EGFP(+) group, and 8 mice in the D2-projecting to D1 EGFP(-) group. In Figure 2G, the group sizes were as follows: 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group. In both panels, connection ratios were compared using Fisher’s exact test. Comparisons were then made across experimental groups. Furthermore, as detailed in our Methods section (page 20, line 399-401), we assessed cortical expression levels prior to performing whole-cell recordings. Taken together, these precautions help ensure that the calculated connection ratios are unlikely to be confounded by differences in infection efficiency.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences? 

      Thank you for bringing this concern to our attention. While optogenetic manipulation has become a widely adopted tool in functional studies of neural circuits, it remains subject to several technical limitations due to the nature of its implementation. Factors such as opsin expression efficiency, optic fiber placement, light intensity, stimulation spread, and other variables can all influence the specificity and extent of neuronal activation or inhibition. As such, rigorous experimental controls are essential when interpreting the outcomes of optogenetic experiments.

      In our study, we verified both the expression of channelrhodopsin in D1- or D2-projecting cortical neurons and the placement of the optic fiber following the completion of behavioral testing. To account for variability, we compared the behavioral effects of optogenetic stimulation within the same animals, stimulated versus non-stimulated conditions, as shown in Figures 3 and 4. Moreover, Figure S3 includes important controls that rule out the possibility that the behavioral effects observed were due to direct activation of D1- or D2-SPNs in striatum or to light alone in the cortex.

      An additional point worth emphasizing is that the behavioral effects observed in the open field and ICSS tests cannot be attributed to differences in the number of neurons activated. Specifically, activation of D1-projecting cortical neurons promoted locomotion in the open field, whereas activation of D2-projecting cortical neurons did not. However, in the ICSS test, activation of both D1- and D2-projecting cortical neurons reinforced lever pressing. Given that only D1-SPN activation, but not D2-SPN activation, supports ICSS behavior, these effects are unlikely to result merely from differences in the number of neurons recruited.

      This rationale underlies our use of multiple behavioral paradigms to examine the functions of D1- and D2-projecting cortical neurons. By assessing behavior across distinct tasks, we aimed to approach the question from multiple angles and reduce the likelihood of spurious or confounding effects influencing our interpretation.

      In general, the manuscript would also benefit from more clarity about the statistical comparisons that were made and sample sizes used to reach their conclusions.

      We thank the reviewer for the valuable suggestion to improve the manuscript. In response, we have made the following changes and provided additional clarification:

      (1) In Figure 2D, we used 7 mice in the D1-projecting to D1 EGFP(+) group, 8 mice in the D1-projecting to D2 EGFP(-) group, 10 mice in the D2-projecting to D2 EGFP(+) group, and 8 mice in the D2-projecting to D1 EGFP(-) group. In Figure 2G, the group sizes were as follows: 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group. In both panels, connection ratios were compared using Fisher’s exact test.

      (2) In Figure 3, we reanalyzed the data in panels O, P, R, and S using permutation tests to assess whether each individual group exhibited a significant ICSS learning effect. The figure legend has been revised accordingly as follows:

      (O-P) D1-SPN (red) but not D2-SPN stimulation (black) drives ICSS behavior in both the DMS (O: D1, n = 6, permutation test, slope = 1.5060, P = 0.0378; D2, n = 5, permutation test, slope = -0.2214, P = 0.1021; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0130) and the DLS (P: D1, n = 6, permutation test, slope = 28.1429, P = 0.0082; D2, n = 5, permutation test, slope = -0.3429, P = 0.0463; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0390). *, P < 0.05. (Q) Timeline of helper virus injections, rabies-ChR2 injections and optogenetic stimulation for ICSS behavior. (R-S) Optogenetic stimulation of the cortical neurons projecting to either D1- or D2-SPNs induces ICSS behavior in both the MCC (R: MCC-D1, n = 5, permutation test, Day1-Day7, slope = 2.5857, P = 0.0034; MCC-D2, n = 5, Day2-Day7, permutation test, slope = 1.4229, P = 0.0344; no significant effect on Day7, MCC-D1 vs. MCC-D2,  two-tailed Mann Whitney test, P = 0.9999) and the M1 (S: M1-D1, n = 5, permutation test, Day1-Day7, slope = 1.8214, P = 0.0259; M1-D2, n = 5, Day1-Day7, permutation test, slope = 1.8214, P = 0.0025; no significant effect on Day7, M1-D1 vs. M1-D2, two-tailed Mann Whitney test, P = 0.3810). n.s., not statistically significant.

      (3) In Figure 4, we have added a comparison against a theoretical percentage change of zero to better evaluate the net effect of each manipulation. The results showed that in Figure 4D, optogenetic stimulation of D1-projecting MCC neurons significantly increased the pressing rate, whereas stimulation of D2-projecting MCC neurons did not (MCC-D1: n = 8, one-sample two-tailed t-test, t = 2.814, P = 0.0131; MCC-D2: n = 7, t = 0.8481, P = 0.4117). In contrast, in Figure 4H, optogenetic stimulation of both D1- and D2-projecting M1 neurons significantly increased the sequence press rate (M1-D1: n = 6, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0046; M1-D2: n = 7, P = 0.0479).

      Reviewer #2 (Public Review):

      Summary: 

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs). 

      Strengths: 

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum.

      Thank you for your profound understanding and appreciation of our manuscript’s design and the methodologies employed. In the realm of neuroscience, quantifying synaptic connections is a formidable challenge. While the roles of the direct and indirect pathways in motor control have long been explored, the mechanism by which upstream cortical inputs govern these pathways remains shrouded in mystery at the circuitry level.

      In the ‘Go/No-Go’ model, the direct and indirect pathways operate antagonistically; in contrast, the ‘Co-activation’ model suggests that they work cooperatively to orchestrate movement. These distinct theories raise a compelling question: Do these two pathways receive inputs from the same upstream cortical neurons, or are they modulated by distinct subpopulations? Answering this question could provide vital clues as to whether these pathways collaborate or operate independently.

      Previous studies have revealed both differences and similarities in the cortical inputs to direct and indirect pathways at population level. However, our investigation delves deeper to understand how a singular cortical input simultaneously drives these pathways, or might it regulate one pathway through distinct subpopulations? To address this, we employed rabies virus–mediated retrograde tracing from D1- or D2-SPNs and recorded non-starter SPNs to determine if they receive the same inputs as the starter SPNs. This approach allowed us to calculate the connection ratio and estimate the probable connection properties.

      Weaknesses: 

      One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not.

      Thank you for raising this thoughtful concern. It is indeed not feasible to restrict ChR2 expression to a specific cortical region using the first-generation rabies-ChR2 system alone. A more refined approach would involve injecting Cre-dependent TVA and RG into the striatum of D1- or A2A-Cre mice, followed by rabies-Flp infection. Subsequently, a Flp-dependent ChR2 virus could be injected into the MCC or M1 to selectively label D1- or D2-projecting cortical neurons. This strategy would allow for more precise targeting and address many of the current limitations.

      However, a significant challenge lies in the cytotoxicity associated with rabies virus infection. Neuronal health begins to deteriorate substantially around 10 days post-infection, which provides an insufficient window for robust Flp-dependent ChR2 expression. We have tested several new rabies virus variants with extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, they did not perform effectively or suitably in the corticostriatal systems we examined.

      In our experimental design, the aim is to delineate the connectivity probabilities to D1 or D2-SPNs from cortical neurons. Our hypothesis considered includes the possibility that similar innervation patterns could occur across multiple cortical subregions, or that some subregions might show preferential input to D1-SPNs while others do not, or a combination of both scenarios. This leads us to perform a series behavior test that using optogenetic activation of the D1- or D2-projecting cortical populations to see which could be the case.

      In the cortical areas we examined, MCC and M1, during behavioral testing, there is consistency with our electrophysiological results. Specifically, when we stimulated the D1-projecting cortical neurons either in MCC or in M1, mice exhibited facilitated local motion in open field test, which is the same to the activation of D1 SPNs in the striatum along (MCC: Fig 3C & D vs. I; M1: Fig 3F & G vs. L). Conversely, stimulation of D2-projecting MCC or M1 cortical neurons resulted in behavioral effects that appeared to combine characteristics of both D1- and D2-SPNs activation in the striatum (MCC: Fig 3C & D vs. J; M1: Fig 3F & G vs. M). The similar results were observed in the ICSS test. Our interpretation of these results is that the activation of D1-projecting neurons in the cortex induces behavior changes akin to D1 neuron activation, while activation of D2-projecting neurons in the cortex leads to a combined effect of both D1 and D2 neuron activation. This suggests that at least some cortical regions, the ones we tested, follow the hypothesis we proposed.

      There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021).

      This is a valid concern regarding anatomical studies. Investigating cortico-striatal connectivity at the single-cell level remains technically challenging due to current methodological limitations. At present, we rely on rabies virus-mediated trans-synaptic retrograde tracing to identify D1- or D2-projecting cortical populations. This anatomical approach is coupled with ex vivo slice electrophysiology to assess the functional connectivity between these projection-defined cortical neurons and striatal SPNs. This enables us to quantify connection ratios, for example, the proportion of D1-projecting cortical neurons that functionally synapse onto non-starter D1-SPNs.

      To ensure the robustness of our conclusions, it is essential that both the starter cells and the recorded non-starter SPNs receive comparable topographical input from the cortex and other brain regions. Therefore, we carefully designed our experiments so that all recorded cells were located within the injection site, were mCherry-negative (i.e., non-starter cells), and were surrounded by ChR2-mCherry-positive neurons. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.

      These methodological details are also described in the section on ex vivo brain slice electrophysiology, specifically in the Methods section, lines 396–399:

      “D1-SPNs (eGFP-positive in D1-eGFP mice, or eGFP-negative in D2-eGFP mice) or D2-SPNs (eGFP-positive in D2-eGFP mice, or eGFP-negative in D1-eGFP mice) that were ChR2-mCherry-negative, but in the injection site and surrounded by cells expressing ChR2-mCherry were targeted for recording.”

      This experimental strategy was implemented to control for potential spatial biases and to enhance the interpretability of our connectivity measurements.

      A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls.

      Thank you for bringing this to our attention. A fluorophore-only control is indeed a valuable negative control, commonly used to rule out effects caused by light exposure independent of optogenetic manipulation. In this study, however, comparisons were made between light-on and light-off conditions within the same animal. This within-subject design, as employed in recent studies (Geddes et al., 2018; Zhu et al., 2025), is considered sufficient to isolate the effects of optogenetic manipulation.

      Furthermore, as shown in Figure S3, we conducted an additional control experiment in which optogenetic stimulation was applied to M1, while ensuring that ChR2 expression was restricted to the striatum via targeted viral infection. This approach serves as a functional equivalent to the control you suggested. Importantly, we observed no effects that could be attributed solely to light exposure, further supporting the conclusion that the observed outcomes in our main experiments are due to targeted optogenetic manipulation, rather than confounding effects of illumination.

      Lastly, by employing an in-animal comparison, measuring changes between stimulated and non-stimulated trials, we account for subject-specific variability and strengthen the interpretability of our findings.

      Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement.

      Thank you for bringing the study by Cui and colleagues to our attention. While that study has generated some controversy, other independent investigations have demonstrated that activation of D1-SPNs in DLS facilitates local motion and lever-press behaviors (Dong et al., 2025; Geddes et al., 2018; Kravitz et al., 2010).

      It is still worth to clarify. The differences in behavioral outcomes observed between our study and that of Cui et al. may be attributable to several methodological factors, including differences in both the stereotaxic targeting coordinates and the optical fiber specifications used for stimulation.

      Specifically, in our experiments, the dorsomedial striatum (DMS) was targeted at coordinates AP +0.5 mm, ML ±1.5 mm, DV –2.2 mm, and the DLS at AP +0.5 mm, ML ±2.5 mm, DV –2.2 mm. In contrast, Cui et al. targeted the DMS at AP +0.9 mm, ML ±1.4 mm, DV –3.0 mm and the DLS at AP +0.7 mm, ML ±2.3 mm, DV –3.0 mm. These coordinates correspond to sites that are slightly more rostral and ventral compared to our own. Even subtle differences in anatomical targeting can result in activation of distinct neuronal subpopulations, which may account for the differing behavioral effects observed during optogenetic stimulation.

      In addition, the optical fibers used in the two studies varied considerably. We employed fibers with a 200 µm core diameter and a numerical aperture (NA) of 0.37, whereas Cui et al. used fibers with a 250 µm core diameter and a higher NA of 0.66. The combination of a larger core and higher NA in their setup implies a broader spatial spread and deeper tissue penetration of light, likely resulting in activation of a larger neural volume. This expanded volume of stimulation may have engaged additional neural circuits not recruited in our experiments, further contributing to the divergent behavioral outcomes. Taken together, these differences in targeting and photostimulation parameters are likely key contributors to the distinct effects reported between the two studies.

      Reviewer #3 (Public Review): 

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points.

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below.

      Major:

      There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results.

      We thank the reviewer for raising these questions, which merit further discussion.

      Firstly, the primary aim of our study is to investigate the connectivity of the corticostriatal pathway. Given the current technical limitations, it is not feasible to trace all the striatal SPNs connected to a single cortical neuron. Therefore, we approached this from the opposite direction, starting from D1- or D2-SPNs to retrogradely label upstream cortical neurons, and then identifying their connected SPNs via functional synaptic recordings. To achieve this, we employed the only available transsynaptic retrograde method: rabies virus-mediated tracing. Because we crossed D1- or D2-GFP mice with D1- or A2A-Cre mice to identify SPN subtypes during electrophysiological recordings, the conventional rabies-GFP system could not be used to distinguish starter cells without conflicting with the GFP labeling of SPNs. To overcome this, we tagged ChR2 expression with mCherry. In this setup, we recorded from mCherry-negative D1- or D2-SPNs within the injection site and surrounded by mCherry-positive neurons. This ensures that the recorded neurons are topographically matched to the starter cell population and receive input from the same cortical regions. We acknowledge that TVA-only and ChR2-expressing cells are both mCherry-positive and therefore indistinguishable in our system. As such, mCherry-positive cells likely comprise a mixture of starter cells and TVA-only cells, representing a somewhat broader population than starter cells alone. Nevertheless, by restricting recordings to mCherry-negative SPNs within the injection site, it is ensured that our conclusions about functional connectivity remain valid and aligned with the primary objective of this study.

      Secondly, if rabies virus replication were significantly more efficient in D1-SPNs than in D2-SPNs, this would likely result in a higher observed connection probability in the D1-projecting group. However, we used consistent genetic strategies across all groups: D1-SPNs were defined as GFP-positive in D1-GFP mice and GFP-negative in D2-GFP mice, with D2-SPNs defined analogously. Recordings from both D1- and D2-SPNs were performed using the same methodology and under the same injection conditions within the same animals. This internal control helps mitigate the possibility that differential rabies infection efficiency biased our results.

      With these experimental safeguards in place, we found that 40% of D2-SPNs received input from D1-SPN-projecting cortical neurons, while 73% of D1-SPNs received input from D2-SPN-projecting cortical neurons. Although the ideal scenario would involve an even larger sample size to refine these estimates, the technical demands of post-rabies-infection electrophysiological recordings inherently limit throughput. Nonetheless, our approach represents the most feasible and accurate method currently available, and provides a significant advance in characterizing the functional connectivity within corticostriatal circuits.

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. The health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included.

      We understand and appreciate the reviewer’s concern regarding the potential cytotoxicity of rabies virus infection. Indeed, this is a critical consideration when interpreting functional connectivity data. We have tested several newer rabies virus variants reported to support extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, these variants did not perform reliably in the corticostriatal circuits we examined.

      Given these limitations, we relied on the rabies virus approach originally developed by Osakada et al. (Osakada et al., 2011), which demonstrated that neurons infected with rabies virus expressing ChR2 remain both viable and functional up to at least 10 days post-infection (Fig. 3, cited below). In our own experiments, we further validated the health and viability of cortical neurons, the presynaptic partners of SPNs, particularly around day 7 post-infection.

      To minimize the risk of viral toxicity, we performed ex vivo slice recordings within a conservative time window, between 4 and 8 days after infection, when the health of labeled neurons is well maintained. Moreover, the recorded SPNs were consistently mCherry-negative, indicating they were not directly infected by rabies virus, thus further reducing the likelihood of recording from compromised cells.

      Taken together, these steps help ensure that our synaptic recordings reflect genuine functional connectivity, rather than artifacts of viral toxicity. We hope this clarifies the rationale behind our experimental design.

      For the behavioral tests, including a naïve uninfected group and an AAV helper virus-only group as negative controls could be beneficial to isolate the specific impact of rabies virus infection. However, our primary focus is on the activation of selected presynaptic inputs to D1- or D2-SPNs by optogenetic method. Therefore, comparing stimulated versus non-stimulated trials within the same animal offers more direct and relevant results for our study objectives.

      It is also important to note that the ICSS test is particularly susceptible to the potential cytotoxic effects of rabies virus, as it spans a relatively extended period, from Day 4 to Day 12 post-infection. To mitigate this issue, we focused our analysis on the first 7 days of ICSS testing, thereby keeping the behavioral observations within 10 days post-rabies injection. This approach minimizes potential confounds from rabies-induced neurotoxicity while still capturing the relevant behavioral dynamics. Accordingly, we have revised Figure 3 and updated the statistical analyses to reflect this adjustment.

      The overall purity (e.g., EnvA-pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity.

      We agree that anatomical specificity is crucial for accurately labeling inputs to defined SPN populations in our study. The rabies virus strain employed here has been rigorously validated for its specificity in numerous previous studies from our group and others (Aoki et al., 2019; Klug et al., 2018; Osakada et al., 2011; Smith et al., 2016; Wall et al., 2013; Wickersham et al., 2007). For example, in a recent study by Aoki et al. (Aoki et al., 2019), we tested the same rabies virus strain by co-injecting the glycoprotein-deleted rabies virus and the TVA-expressing helper virus, without glycoprotein expressing AAV, into the SNr. As shown in Figure S1 (related to Figure 2), GFP expression was restricted to starter cells within the SNr, with no evidence of transsynaptic labeling in upstream regions such as the striatum, EPN, GPe, or STN (see panels F–H). These findings provide strong evidence that the rabies virus used in our experiments is properly pseudotyped and exhibits high specificity for starter cell labeling without off-target spread.

      We appreciate the reviewer’s emphasis on specificity, and we hope this clarification further supports the reliability of our anatomical tracing approach.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down.

      We agree with the reviewer that the thalamus is also a significant source of excitatory input to the striatum. However, current techniques do not allow for precise and exclusive labeling of upstream neurons in a given brain region, such as the cortex or thalamus. This technical limitation indeed makes it difficult to definitively determine whether inputs from these regions follow the same projection rules. Despite this, our findings show that stimulation of defined cortical populations, specifically, D1- or D2-projecting neurons in MCC and M1, elicits behavioral outcomes that closely mirror those observed in our ex vivo slice recordings, providing strong support for the cortical origin of the effects we observed.

      In our in vivo optogenetic experiments, we acknowledge that stimulating a specific cortical region may also activate axonal terminals from rabies-infected cortical or thalamic neurons. While somatic stimulation is generally more effective than terminal stimulation, we recognize the possibility that terminals on non-rabies-traced cortical neurons could be activated through presynaptic connections. To address this, we considered the finding of a previous study (Cruikshank et al., 2010), which demonstrated that while brief optogenetic stimulation (0.05 ms) of thalamo-cortical terminals can elicit few action potentials in postsynaptic cortical neurons, sustained terminal stimulation (500 ms) also results in only transient postsynaptic firing rather than prolonged activation (Fig. 3C, cited below). This suggests that cortical neurons exhibit only short-lived responses to continuous presynaptic stimulation of thalamic origin.

      In comparison, our behavioral paradigms employed prolonged optogenetic stimulation protocols- 20 Hz, 10 ms pulses for 15 s (open-field test), 1 s (ICSS), and 8 s (FR4/8)—which more closely resemble sustained stimulation conditions. Given these parameters, and the robust behavioral responses observed, it means that the effects are primarily mediated by activation of rabies-labeled, ChR2-expressing D1- or D2-projecting cortical neurons rather than indirect activation through thalamic input.

      We appreciate the reviewer’s valuable comment, and we have now incorporated this point into the revised manuscript (page 13, line 265 to 275) to more clearly address the potential contribution of thalamic inputs in our experimental design.

      The statements about specificity of connectivity are not well-founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results. 

      We sincerely thank the reviewer for the thoughtful comments and critical insights into our interpretation of connectivity data. These concerns are valid and provide an important opportunity to clarify and reinforce our experimental design and conclusions.

      Firstly, as described in our previous response, all patched neurons were carefully selected to be within the injection site and in close proximity to ChR2-mCherry-positive cells. Specifically, the estimated distance from each recorded neuron to the nearest starter cells did not exceed 100 µm. This design choice was made to minimize variability associated with spatial distance or heterogeneity in viral expression, thereby allowing for a more consistent sampling of putatively connected neurons.

      Secondly, quantifying both the number of starter and input neurons would, in principle, provide a more comprehensive picture of connectivity. However, given the technical limitations of the current approach particularly when combining rabies tracing with functional recordings it is not feasible to obtain such precise cell counts. Instead, we focused on connection ratios derived from targeted electrophysiological recordings, which offer a reliable and practical means of estimating connectivity within these defined circuits.

      Thirdly, regarding the potential influence of rabies-labeled neurons beyond the immediate recording site: while we acknowledge that rabies tracing labels a broad set of upstream neurons, our analysis was confined to a well-defined and localized area. The analogy we find helpful here is that of a spotlight - our recordings were restricted to the illuminated region directly under the beam, where the projection pattern is fixed and interpretable, regardless of what lies outside that area. Although we cannot fully account for all possible upstream connections, our methodology was designed to minimize variability and maintain consistency in the region of interest, which we believe supports the robustness of our conclusions in the ex vivo slice recording experiment.

      We hope this additional explanation addresses the reviewer’s concerns and helps clarify the rationale of our experimental strategy.

      The results in figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret.

      We apologize for any confusion and appreciate the opportunity to clarify this point. Our electrophysiological recordings demonstrated that D1-projecting cortical neurons preferentially innervate D1-SPNs in the striatum, whereas D2-projecting cortical neurons provide input to both D1- and D2-SPNs, without a clear preference. These synaptic connectivity patterns are further supported by our behavioral experiments: optogenetic stimulation of D1-projecting neurons in cortical areas such as MCC and M1 led to behavioral effects consistent with direct D1-SPN activation. In contrast, stimulation of D2-projecting cortical neurons produced behavioral outcomes that appeared to reflect a mixture of both D1- and D2-SPN activation.

      We acknowledge that interpreting negative behavioral findings poses inherent challenges, as it is difficult to distinguish between a true lack of effect and insufficient experimental manipulation. To mitigate this, we ensured that all animals included in the analysis exhibited appropriate viral expression and correctly placed optic fibers in the targeted regions. These controls help to confirm that the observed behavioral effects - or lack thereof - are indeed due to the activation of the intended neuronal populations rather than technical artifacts such as weak expression or fiber misplacement.

      As shown in Author response image 1 below, our verification of virus expression and fiber positioning confirms effective targeting in MCC and M1 of A2A-Cre mice. Therefore, we interpret the negative behavioral outcomes as meaningful consequences of specific neural circuit activation.

      Author response image 1.

      Confocal image from A2A-Cre mouse showing targeted optogenetic stimulation of D2-projecting cortical neurons in MCC or M1. ChR2-mCherry expression highlights D2-projecting neurons, selectively labeled via rabies-mediated tracing. Optic fiber placement is confirmed above the cortical region of interest. Image illustrates robust expression and anatomical specificity necessary for pathway-selective stimulation in behavioral assays.

      In light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in figure 4 - the inputs and putative downstream cells do not have the same effects. Given the potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments.

      We apologize for any confusion in our previous explanation. In our behavioral experiments, the primary objective was to determine whether activation of D1- or D2-projecting cortical neurons would produce behavioral outcomes distinct from those observed with pure D1 or D2 activation.

      Our findings show that stimulation of D1-projecting cortical neurons produced behavioral effects closely resembling those of selective D1 activation in both open field and ICSS tests. This is consistent with our slice recording data, which revealed that D1-projecting cortical neurons exhibit a higher connection probability with D1-SPNs than with D2-SPNs.

      In contrast, interpreting the effects of D2-projecting cortical neuron stimulation is inherently more nuanced. In the open field test, activation of these neurons did not significantly modulate local motion. This could reflect a balanced influence of D1 activation, which facilitates movement, and D2 activation, which suppresses it - resulting in a net neutral behavioral outcome. In the ICSS test, the absence of a strong reinforcement effect typically associated with D2 activation, combined with partial reinforcement likely due to concurrent D1 activation, suggests that stimulation of D2-projecting neurons produces a mixed behavioral signal. This outcome supports the interpretation that these neurons synapse onto both D1- and D2-SPNs, leading to a blended behavioral response that differs from selective D1 or D2 activation alone.

      Together, these two behavioral assays offer complementary perspectives, providing a more complete view of how projection-specific cortical inputs influence striatal output and behavior.

      In Figure 4 of the current manuscript (as cited below), we show that optogenetic activation of MCC neurons projecting to D1-SPNs facilitates sequence lever pressing, whereas activation of MCC neurons projecting to D2-SPNs does not induce significant behavioral changes. Conversely, activation of M1 neurons projecting to either D1- or D2-SPNs enhances lever pressing sequences. These observations align with our prior findings (Geddes et al., 2018; Jin et al., 2014), where we demonstrated that in the striatum, D1-SPN activation facilitates ongoing lever pressing, whereas D2-SPN activation is more involved in suppressing ongoing actions and promoting transitions between sub-sequences, shown in Fig. 4 from (Geddes et al., 2018; Jin et al., 2014) and Fig. 5K from (Jin et al., 2014) . Taken together, the facilitation of lever pressing by D1-projecting MCC and M1 neurons is consistent with their preferential connectivity to D1-SPNs and their established behavioral role.

      What is particularly intriguing, though admittedly more complex, is the behavioral divergence observed upon activation of D2-SPN-projecting cortical neurons. Activation of D2-projecting MCC neurons does not alter lever pressing, possibly reflecting a counterbalancing effect from concurrent D1- and D2-SPN activation. In contrast, stimulation of D2-projecting M1 neurons facilitates lever pressing, albeit less robustly than their D1-projecting counterparts. This discrepancy may reflect regional differences in striatal targets, DMS for MCC versus DLS for M1, as also supported by our open field test results. Furthermore, our recent findings (Zhang et al., 2025) show that synaptic strength from Cg to D2-SPNs is stronger than to D1-SPNs, whereas the M1 pathway exhibits the opposite pattern. These data suggest that beyond projection ratios, synaptic strength also shapes cortico-striatal functional output. Thus, stronger D2-SPN synapses in the DMS may offset D1-SPN activation during MCC-D2 stimulation, dampening lever pressing increase. Conversely, weaker D2 synapses in the DLS may permit M1-D2 projections to facilitate behavior more readily.

      In summary, the behavioral outcomes of our optogenetic manipulations support the proposed asymmetric cortico-striatal connectivity model. While the effects of D2-projecting neurons are not uniform, they reflect varying balances of D1 and D2-SPN influence, which further underscores the asymmetrical connections of cortical inputs to the striatum.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors): 

      (1) What are the sample sizes for Fig S2? Some trends that are listed as nonsignificant look like they may just be underpowered. Related to this point, S2C indicates that PPR is statistically similar in all conditions. The traces shown in Figure 2 suggest that PPR is quite different in "Input D1"- vs "Input D2" projections. If there is indeed no difference, the exemplar traces should be replaced with more representative ones to avoid confusion. 

      Thank you for your suggestion. The sample size reported in Figure S2 corresponds to the neurons identified as connected in Figure 2. The representative traces shown in Figure 2 were selected based on their close alignment with the amplitude statistics and are intended to reflect typical responses. Given this, it is appropriate to retain the current examples as they accurately illustrate the underlying data.

      (2) Previous studies have described that SPN-SPN collateral inhibition is also asymmetric, with D2->D1 SPN connectivity stronger than the other direction. While cortical inputs to D2-SPNs may also strongly innervate D1-SPNs, it would be helpful to speculate on how collateral inhibition may further shape the biases (or lack thereof) reported here. 

      This would indeed be an interesting topic to explore. SPN-SPN mutual inhibition and/or interneuron inhibition may also play a role in the functional organization and output of the striatum. In the present study, we focused on the primary layer of cortico-striatal connectivity to examine how cortical neurons selectively connect to the striatal direct and indirect pathways, as these pathways have been shown to have distinct yet cooperative functions. To achieve this, we applied a GABAA receptor inhibitor to isolate only excitatory synaptic currents in SPNs, yielding the relevant results.

      To investigate additional circuit organization involving SPN-SPN mutual inhibition, the current available technique would involve single-cell initiated rabies tracing. This approach would help identify the starter SPN and the upstream SPNs that provide input to the starter cell, thereby offering a clearer understanding of the local circuit.

      (3) In Fig 3N-S there are no stats confirming that optogenetic stimulation does indeed increase lever pressing in each group (though it obviously looks like it does). It would be helpful to add statistics for this comparison, in addition to the between-group comparisons that are shown. 

      We thank the reviewer for this thoughtful suggestion. To assess whether optogenetic stimulation increases lever pressing in each group shown in Figures 3O, 3P, 3R, and 3S, we employed a permutation test (10,000 permutations). This non-parametric statistical method does not rely on assumptions about the underlying data distribution and is particularly appropriate for our analysis given the relatively small sample sizes.

      Additionally, in response to Reviewer 3’s concern regarding the potential cytotoxicity of rabies virus affecting behavioral outcomes during in vivo optogenetic stimulation experiments, we focused our analysis on Days 1 through 7 of the ICSS test. This time window remains within 10 days post-rabies infection, a period during which previous studies have reported minimal cytopathic effects (Osakada et al., 2011).

      Accordingly, we have updated Figure 3N-S and revised the associated statistical analyses in the figure legend as follows:

      (O-P) D1-SPN (red) but not D2-SPN stimulation (black) drives ICSS behavior in both the DMS (O: D1, n = 6, permutation test, slope = 1.5060, P = 0.0378; D2, n = 5, permutation test, slope = -0.2214, P = 0.1021; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0130) and the DLS (P: D1, n = 6, permutation test, slope = 28.1429, P = 0.0082; D2, n = 5, permutation test, slope = -0.3429, P = 0.0463; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0390). *, P < 0.05. (Q) Timeline of helper virus injections, rabies-ChR2 injections and optogenetic stimulation for ICSS behavior. (R-S) Optogenetic stimulation of the cortical neurons projecting to either D1- or D2-SPNs induces ICSS behavior in both the MCC (R: MCC-D1, n = 5, permutation test, Day1-Day7, slope = 2.5857, P = 0.0034; MCC-D2, n = 5, Day2-Day7, permutation test, slope = 1.4229, P = 0.0344; no significant effect on Day7, MCC-D1 vs. MCC-D2,  two-tailed Mann Whitney test, P = 0.9999) and the M1 (S: M1-D1, n = 5, permutation test, Day1-Day7, slope = 1.8214, P = 0.0259; M1-D2, n = 5, Day1-Day7, permutation test, slope = 1.8214, P = 0.0025; no significant effect on Day7, M1-D1 vs. M1-D2, two-tailed Mann Whitney test, P = 0.3810). n.s., not statistically significant.

      We believe this updated analysis and additional context further strengthen the validity of our conclusions regarding the reinforcement effects.

      (4) Line 206: mice were trained for "a few more days" is not a very rigorous description. It would be helpful to state the range of additional days of training. 

      We thank the reviewer for the suggestion. In accordance with the Methods section, we have now specified the number of days, which is 4 days, in the main text (line 207).

      (5) In Fig 4D,H, the statistical comparison is relative modulation (% change) by stimulation of D1- vs D2- projecting inputs. Please show statistics comparing the effect of stimulation on lever presses for each individual condition. For example, is the effect of MCC-D2 stimulation in panel D negative or not significant? 

      Thank you for your suggestion. Below are the statistical results, which we have also incorporated into the figure legend for clarity. To assess the net effects of each manipulation, we compared the observed percentage changes with a theoretical value of zero.

      In Figure 4D, optogenetic stimulation of D1-projecting MCC neurons significantly increased the pressing rate (MCC-D1, n = 8, one-sample two-tailed t-test, t = 2.814, P = 0.0131), whereas stimulation of D2-projecting MCC neurons did not produce a significant effect (MCC-D2, n = 7, one-sample two-tailed t-test, t = 0.8481, P = 0.4117).

      In contrast, Figure 4H shows that optogenetic stimulation of both D1- and D2-projecting M1 neurons significantly increased the sequence press rate (M1-D1, n = 6, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0046; M1-D2, n = 7, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0479).

      These analyses help clarify the distinct behavioral effects of manipulating different corticostriatal projections.

      (6) Are data in Fig 1G-H from a D1- or A2a- cre mouse? 

      The data in Fig 1G-H are from a D1-Cre mouse.

      (7) In Fig S3 it looks like there may actually be an effect of 20Hz simulation of D2-SPNs. Though it probably doesn't affect the interpretation. 

      As indicated by the statistics, there is a slight, but not statistically significant, decrease in local motion when 20 Hz stimulation is delivered to the motor cortex with ChR2 expression in D2-SPNs in the striatum.

      Reviewer #2 (Recommendations For The Authors): 

      The rabies tracing is referred to on several occasions as "new" but the reference papers are from 2011, 2013, and 2018. It is unclear what is new about the system used in the paper and what new feature is relevant to the experiments that were performed. Either clarify or remove "new" terminology. 

      Thank you for bringing this to our attention. We have revised the relevant text accordingly at line 20 in the Abstract, line 31 in the In Brief, line 69 in the Introduction, line 83 in the Results, and line 226 in the Discussion to improve clarity and accuracy.

      In Figure 2 D and G, D1 eGFP (+) and D2 eGFP(-) are plotted separately. These are the same cell type; therefore it may work best to combine that data. This could also be done for 'input to D2- Record D2' in panel D as well as 'input D1-Record D2' and 'input D2-Record D1' in panel G. Combining the information in panel D and G and comparing all 4 conditions to each other would give a better understanding of the comparison of functional connectivity between cortical neurons and D1 and D2 SPNs. 

      We thank the reviewer for the thoughtful suggestion. While presenting single bars for each condition (e.g., ‘input D1 - record D1’) might improve visual simplicity, it would obscure an important aspect of our experimental design. Specifically, we aimed to highlight that the comparisons between D1- and D2-projecting neurons to D1 and D2 SPNs were counterbalanced within the same animals - not just across different groups. By showing both D1-eGFP(+) and D2-eGFP(-), or vice versa, within each group and at similar proportions, we provide a more complete picture of the internal control built into our design. This format helps ensure the audience that our conclusions are not biased by group-level differences, but are supported by within-subject comparisons. Therefore, that the current presentation better could serve to communicate the rigor and balance of our experimental approach.

      The findings in Figure 2 are stated as D1 projecting excitatory inputs have a higher probability of targeting D1 SPNs while D2 projecting excitatory inputs target both D1 SPNs and D2 SPNs. It may be more clear to say that some cortical neurons project specifically to D1 SPNs while other cortical neurons project to both D1 and D2 SPNs equally. A better summary diagram could also help with clarity. 

      Thank you for bringing this up. The data we present reflect the connection probabilities of D1- or D2-projecting cortical neurons to D1 or D2 SPNs. One possible interpretation is like the reviewer said that a subset of cortical neurons preferentially target D1 SPNs, while others exhibit more balanced projections to both D1 and D2 SPNs. However, we cannot rule out alternative explanations - for example, that some D2-projecting neurons preferentially target D2 SPNs, or that the observed differences arise from the overall proportions of D1- and D2-projecting cortical neurons connecting to each striatal subtype.

      There are multiple possible patterns of connectivity that could give rise to the observed differences in connection ratios. Based on our current data, we can confidently conclude the existence of asymmetric cortico-striatal projections to the direct and indirect pathways, but the precise nature of this asymmetry will require further investigation.

      Figure 4 introduces the FR8 task, but there are similar takeaways to the findings from Figure 3. Is there another justification for the FR8 task or interesting way of interpreting that data that could add richness to the manuscript?

      The FR8 task is a self-initiated operant sequence task that relies on motor learning mechanisms, whereas the open field test solely assesses spontaneous locomotion. Furthermore, the sequence task enables us to dissect the functional role of specific neuronal populations in the initiation, maintenance, and termination of sequential movements through closed-loop optogenetic manipulations integrated into the task design. These methodological advantages underscore the rationale for including Figure 4 in the manuscript, as it highlights the unique insights afforded by this experimental paradigm.

      I am somewhat surprised to see that D1-SPN stimulation in DLS gave the results in Figure 3 F and P, as mentioned in the public review. These contrast with some previous results (Cui et al, J Neurosci, 2021). Any explanation? Would be useful to speculate or compare parameters as this could have important implications for DLS function.

      Thank you for raising this point. While Cui’s study has generated some debate, several independent investigations have consistently demonstrated that stimulation of D1-SPNs in the dorsolateral striatum (DLS) facilitates local motion and lever-press behaviors (Dong et al., 2025; Geddes et al., 2018; Kravitz et al., 2010). These findings support the functional role of D1-SPNs in promoting movement and motivated actions.

      The differences in behavioral outcomes observed between our study and that of Cui et al. may stem from several methodological factors, particularly related to anatomical targeting and optical stimulation parameters.

      Specifically, our experiments targeted the DMS at AP +0.5 mm, ML ±1.5 mm, DV –2.2 mm, and the DLS at AP +0.5 mm, ML ±2.5 mm, DV –2.2 mm. In contrast, Cui’s study targeted the DMS at AP +0.9 mm, ML ±1.4 mm, DV –3.0 mm, and the DLS at AP +0.7 mm, ML ±2.3 mm, DV –3.0 mm. These differences indicate that their targeting was slightly more rostral and more ventral than ours, which could have led to stimulation of distinct neuronal populations within the striatum, potentially accounting for variations in behavioral effects observed during optogenetic activation.

      In addition, the optical fibers used in the two studies differed markedly. We employed optical fibers with a 200 µm core diameter and a numerical aperture (NA) of 0.37. Cui’s study used fibers with a larger core diameter (250 µm) and a higher NA (0.66), which would produce a broader spread and deeper penetration of light. This increased photostimulation volume may have recruited a more extensive network of neurons, possibly including off-target circuits, thus influencing the behavioral outcomes in a manner not seen in our more spatially constrained stimulation paradigm.

      Taken together, these methodological differences, both in anatomical targeting and optical stimulation parameters, likely contribute to the discrepancies in behavioral results observed between the two studies. Our findings, consistent with other independent reports, support the role of D1-SPNs in facilitating movement and reinforcement behaviors under more controlled and localized stimulation conditions.

      Reviewer #3 (Recommendations For The Authors): 

      Minor: 

      The authors repeatedly state that they are using a new rabies virus system, but the system has been in widespread use for 16 years, including in the exact circuits the authors are studying, for over a decade. I would not consider this new. 

      Thank you for bringing this to our attention. We have revised the relevant text accordingly at line 20 in the Abstract, line 31 in the In Brief, line 69 in the Introduction, line 83 in the Results, and line 226 in the Discussion to improve clarity and accuracy.

      Figure 2G, how many mice were used for recordings?

      In Fig. 2G, we used 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group.

      The amplitude of inputs was not reported in figure 2. This is important, as the strength of the connection matters. This is reported in Figure S2, but how exactly this relates to the presence or absence of connections should be made clearer.

      The amplitude data presented in Figure S2 summarize all recorded currents from confirmed connections, as detailed in the Methods section. A connection is defined by the presence of a detectable and reliable postsynaptic current with an onset latency of less than 10 ms following laser stimulation.

      Reference in the reply-to-review comments:

      Aoki, S., Smith, J.B., Li, H., Yen, X.Y., Igarashi, M., Coulon, P., Wickens, J.R., Ruigrok, T.J.H., and Jin, X. (2019). An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. Elife 8, e49995.

      Chatterjee, S., Sullivan, H.A., MacLennan, B.J., Xu, R., Hou, Y.Y., Lavin, T.K., Lea, N.E., Michalski, J.E., Babcock, K.R., Dietrich, S., et al. (2018). Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 21, 638-646.

      Cruikshank, S.J., Urabe, H., Nurmikko, A.V., and Connors, B.W. (2010). Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons. Neuron 65, 230-245.

      Dong, J., Wang, L.P., Sullivan, B.T., Sun, L.X., Smith, V.M.M., Chang, L.S., Ding, J.H., Le, W.D., Gerfen, C.R., and Cai, H.B. (2025). Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion. Nat Commun 16, 2710.

      Geddes, C.E., Li, H., and Jin, X. (2018). Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences. Cell 174, 32-43.

      Jin, L., Sullivan, H.A., Zhu, M., Lavin, T.K., Matsuyama, M., Fu, X., Lea, N.E., Xu, R., Hou, Y.Y., Rutigliani, L., et al. (2024). Long-term labeling and imaging of synaptically connected neuronal networks in vivo using double-deletion-mutant rabies viruses. Nat Neurosci 27, 373-383.

      Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17, 423-430.

      Klug, J.R., Engelhardt, M.D., Cadman, C.N., Li, H., Smith, J.B., Ayala, S., Williams, E.W., Hoffman, H., and Jin, X. (2018). Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. Elife 7, e35657.

      Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622-626.

      Osakada, F., Mori, T., Cetin, A.H., Marshel, J.H., Virgen, B., and Callaway, E.M. (2011). New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits. Neuron 71, 617-631.

      Smith, J.B., Klug, J.R., Ross, D.L., Howard, C.D., Hollon, N.G., Ko, V.I., Hoffman, H., Callaway, E.M., Gerfen, C.R., and Jin, X. (2016). Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix Compartments. Neuron 91, 1069-1084.

      Wall, N.R., De La Parra, M., Callaway, E.M., and Kreitzer, A.C. (2013). Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons. Neuron 79, 347-360.

      Wickersham, I.R., Lyon, D.C., Barnard, R.J.O., Mori, T., Finke, S., Conzelmann, K.K., Young, J.A.T., and Callaway, E.M. (2007). Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639-647.

      Zhang, B.B., Geddes, C.E., and Jin, X. (2025) Complementary corticostriatal circuits orchestrate action repetition and switching. Sci Adv, in press.

      Zhu, Z.G., Gong, R., Rodriguez, V., Quach, K.T., Chen, X.Y., and Sternson, S.M. (2025). Hedonic eating is controlled by dopamine neurons that oppose GLP-1R satiety. Science 387, eadt0773.

    2. Reviewer #1 (Public review):

      Summary:

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function.

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on some behavioral outcomes may be a bit overstated given technical limitations of the experiments.

      For example, after virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in some of the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences?

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      This is a revision of a manuscript previously submitted to Review Commons. The authors have partially addressed my comments, mainly by expanding the introduction and discussion sections. Sandy Schmid, a leading expert on the AP2 adaptor and CME, has been added as a co-corresponding author. The main message of the manuscript remains unchanged. Through overexpression of fluorescently tagged CCDC32, the authors propose that, in addition to its established role in AP2 assembly, CCDC32 also follows AP2 to the plasma membrane and regulates CCP maturation. The manuscript presents some interesting ideas, but there are still concerns regarding data inconsistencies and gaps in the evidence.

      With due respect, we would argue that a role for CCDC32 in AP2 assembly is hardly ‘established’.  Rather a single publication reporting its role as a co-chaperone for AAGAP appeared while our manuscript was under review.  We find some similar and some conflicting results, which are described in our revised manuscript.  However, in combination our two papers clearly show that CCDC32, a previously unrecognized endocytic accessory protein, deserves further study.

      (1) eGFP-CCDC32 was expressed at 5-10 times higher levels than endogenous CCDC32. This high expression can artificially drive CCDC32 to the cell surface via binding to the alpha appendage domain (AD)-an interaction that may not occur under physiological conditions.

      While we acknowledge that overexpression of eGFP-CCDC32 could result in artificially driving it to CCPs, we do not believe this is the case for the following reasons:

      i. The bulk of our studies (Figures 2-4) demonstrate the effects of siRNA knockdown on CCDC32 on CCP early stages of CME, and so it is likely that these functions require the presence of endogenous CCDC32 at nascent CCPs as detected with overexpressed eGFP-CCDC32 by TIRF imaging.

      ii. At these levels of overexpression eGFP-CCDC32 fully rescues the effects of siRNA KD of endogenous CCCDC32 of Tfn uptake and CCP dynamics (Figure 6F,G). If the protein was artificially recruited to the AP2 appendage domain, one would expect it to compete with the recruitment of other EAPS to CCPs and hence exhibit defects in CCP dynamics. Indeed, we see the opposite: CCPs that are positive for eGFP-CCDC32 show normal dynamics and maturation rates, while CCPs lacking eGFP-CCDC32 are short-lived and more likely to be aborted (Figure 1C).

      iii. We have identified two modes of binding of CCDC32 to AP2 adaptors: one is through canonical AP2-AD binding motifs, the second is through an a-helix in CCDC32 that, by modeling, docks only to the open conformation of AP2.  Overexpressed CCDC32 lacking this a-helix is not recruited to CCPs (Fig. 6 D,E), indicating that the canonical AP2 binding motifs are not sufficient to recruit CCDC32 to CCPs, even when overexpressed.

      (2) Which region of CCDC32 mediates alpha AD binding? Strangely, the only mutant tested in this work, Δ78-98, still binds AP2, but shifts to binding only mu and beta. If the authors claim that CCDC32 is recruited to mature AP2 via the alpha AD, then a mutant deficient in alpha AD binding should not bind AP2 at all. Such a mutant is critical for establish the model proposed in this work.

      We understand the reviewer’s confusion and thus devoted a paragraph in the discussion to this issue.  As revealed by AlphaFold 3.0 modeling (Figure S6) binding of CCDC32 to the alpha AD likely occurs via the 2 canonical AP2-AD binding motifs encoded in CCDC32. Given the highly divergent nature of AP2-AD binding motifs, we did not identify these motifs without the AlphaFold 3.0 modeling. While these interactions could be detected by GST-pull downs, they are apparently not of sufficient affinity to recruit CCDC32 to CCPs in cells. In the text, we now describe the a-helix we identified as being essential of CCP recruitment as ‘a’ AP2 binding site on CCDC32 rather than ‘the’ AP2 binding site.  Interestingly, and also discussed, Alphafold 3.0 identifies a highly predicted docking site on a-adaptin that is only accessible in the open, cargo-bound conformation of intact AP2.  This is also consistent with the inability of CCDC32(D78-99) to bind the a:µ2 hemi-complex in cell lysates.

      We agree that further structural studies on CCDC32’s interactions with AP2 and its targeting to CCPs will be of interest for future work.

      (3) The concept of hemicomplexes is introduced abruptly. What is the evidence that such hemicomplexes exist? If CCDC32 binds to hemicomplexes, this must occur in the cytosol, as only mature AP2 tetramers are recruited to the plasma membrane. The authors state that CCDC32 binds the AD of alpha but not beta, so how can the Δ78-98 mutant bind mu and beta?

      We introduced the concept of hemicomplexes based on our unexpected (and now explicitly stated as such) finding that the CCDC32(D78-99) mutant efficiently co-IPs with a b2:µ2 hemicomplex.  As stated, the efficiency of this pulldown suggests that the presumed stable AP2 heterotetramer must indeed exist in equilibrium between the two a:s2 and b2:µ2 hemicomplexes, such that CCDC32(D78-99) can sequester and efficiently co-IP with the b2:µ2 hemicomplex.  A previous study, now cited, had shown that the b2:µ2 hemicomplex could partially rescue null mutations of a in C. elegans (PMID: 23482940).  We do not know how CCDC32 binds to the b2:µ2 hemicomplex and we did not detect these interactions using AlphaFold 3.0. However, these interactions could be indirect and involve the AAGAB chaperone.  It is also likely, based on the results of Wan et al. (PMID: 39145939), that the binding is through the µ2 subunit rather than b2. As mentioned above, and in our Discussion, further studies are needed to define the complex and multi-faceted nature of CCDC32-AP2 interactions.

      (4) The reported ability of CCDC32 to pull down AP2 beta is puzzling. Beta is not found in the CCDC32 interactome in two independent studies using 293 and HCT116 cells (BioPlex). In addition, clathrin is also absent in the interactome of CCDC32, which is difficult to reconcile with a proposed role in CCPs. Can the authors detect CCDC32 binding to clathrin?

      Based on the studies of Wan et al. (PMID: 39145939), it is likely that CCDC32 binds to µ2, rather than to the b2 in the b2:µ2 hemicomplex.  As to clathrin being absent from the CCDC32 pull down, this is as expected since the interactions of clathrin even with AP2 are weak in solution (as shown in Figure 5C, clathrin is not detected in our AP2 pull down) so as not to have spontaneous assembly of clathrin coats in the cytosol. Rather these interactions are strengthened by both the reduction in dimensionality that occurs on the membrane and by avidity of multivalent interactions.  For example, Kirchausen reported that 2 AP2 complexes are required to recruit one clathrin triskelion to the PM.

      (5) Figure 5B appears unusual-is this a chimera?

      Figure 5B shows an internal insertion of the eGFP tag into an unstructured region in the AP2 hinge. As we have previously shown (PMID: 32657003), this construct, unique among other commonly used AP2 tags, is fully functional.  We have rearranged the text in the Figure legend to make this clearer.

      Figure 5C likely reflects a mixture of immature and mature AP2 adaptor complexes.

      This is possible, but mature heterotetramers are by far the dominant species, otherwise the 4 subunits would not be immuno-precipitated at near stoichiometric levels with the a subunit.  Near stoichiometric IP with antibodies to the a-AD have been shown by many others in many cell types. 

      (6) CCDC32 is reduced by about half in siRNA knockdown. Why not use CRISPR to completely eliminate CCDC32 expression?

      Fortuitously, partial knockdown was essential to reveal this second function of CCDC32, as we have emphasized in our Discussion.  Wan et al, used CRISPR to knockout CCDC32 and reveal its essential role as a AAGAB co-chaperone.  In the complete absence of CCDC32 mature AP2 complexes fail to form.  However, under our conditions of partial CCDC32 depletion, the expression of AP2 heterotetramers is unaffected revealing a second function of CCDC32 at early stages of CME.  We expect that the co-chaperone function of CCDC32 is catalytic, while its role in CME is more structural; hence the different concentration dependencies, the former being less sensitive to KD than the latter.  This is one reason that many researchers are turning to CRISPRi for whole genome perturbation studies as many proteins play multiple roles that can be masked in KO studies.

      Reviewer #2 (Public review):

      Yang et al. describes CCDC32 as a new clathrin mediated endocytosis (CME) accessory protein. The authors show that CCDC32 binds directly to AP2 via a small alpha helical region and cells depleted for this protein show defective CME. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome (CFNDS) disrupt the interaction of this protein to the AP2 complex. The results presented suggest that CCDC32 may act as both a chaperone (as recently published) and a structural component of the AP2 complex.

      Strengths:

      The conclusions presented are generally well supported by experimental data and the authors carefully point out the differences between their results and the results by Wan et al. (PNAS 2024).

      Weaknesses:

      The experiments regarding the role of CCDC32 in CFNDS still require some clarifications to make them clearer to scientists working on this disease. The authors fail to describe that the CCDC32 isoform they use in their studies is different from the one used when CFNDS patient mutations were described. This may create some confusion. Also, the authors did not discuss that the frame-shift mutations in patients may be leading to nonsense mediated decay.

      As requested we have more clearly described our construct with regard to the human mutations and added the possibility of NMD in the context of the human mutations.

      Reviewer #3 (Public review):

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. While interaction between CCDC32 and the alpha appendage domain of AP2 is clearly described, a discussion of potential association with other AP2 domains would be beneficial to understand the impact of CCDC32 in endocytosis.

      The reviewer is correct. That CCDC32 also interacts with other subunits of AP2, is evident from the findings of Wan et al. and by the fact that the CCDC32(D78-99) mutant efficiently co-IPs with the b2:µ2 hemicomplex.  We expanded our discussion around this point. CCDC32 remains an, as yet, poorly characterized, but we now believe very interesting EAP worth further study.

      Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, mimicking CFNDS mutations, is also addressed in this study and shown to have endocytic defects.

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) The authors must be clear about the differences between the CCDC32 isoform they used in their manuscript and the one used to describe the patient mutations. This could be done, for example, in the methods. This is essential for the capacity of other labs to reproduce, follow up and correctly cite these results.

      We have added this information to the Methods. 

      (2) I believe the authors have misunderstood what nonsense mediated decay is. NMD occurs at the mRNA level and requires a full genome context to occur (introns and exons). The fact that a mutant protein is expressed normally from a construct by no means prove that it does not happen. I believe that adding the possibility of NMD occurring would enrich the discussion.

      Thank you, we have now done more homework and have added this possibility into our discussion of the mutant phenotype.  However, if a robust NMD mechanism resulted in a complete loss of CCDC42 protein, then the essential co-chaperone function reported by Wan et al, would result in complete loss of AP2.  A more detailed characterization of the cellular phenotype of these mutations, including assessing the expression levels of AP2 would be informative.

      Reviewer #3 (Recommendations for the authors):

      - It is not clear what the authors mean by '~30s lifetime cohort' (line 159). They refer to Figure 2H, which shows the % of CCPs. Can the authors explain exactly what kind of tracks they used for this analysis, for example which lifetime variations were accepted? Do they refer to the cohorts in Figure S4? In Figure S4, the most frequent tracks have lifetimes < 20 s (in contrast to what is stated in the main text). Why was this cohort not used?

      The ‘30s cohort’ refers to CCPs with lifetimes between 25-35s which encompasses the most abundant species in control cells and CCDC32 KD cells, as shown by the probability curves in Figure 2H. Given the large number of CCPs analyzed we still have large numbers for our analyses n=5998 and 4418, for control and siRNA treated conditions, respectively.  Figure 2H shows the frequency of CCPs in cells treated with CCDC32 siRNA are shifted to shorter lifetimes. We have clarified this in the text.

      - Figure S1: It is now clear, why the mutant versions of CCDC32 are not detected in this western blot. However, data that show the resistance of these proteins to siCCDC32 is still missing (S1 A is in the absence of siCCSC32 I assume, as the legend suggests). A western blot using an anti-GFP antibody, as the one used in Figure S1, after siRNA knock-known would provide clarity.

      That these constructs all contain the same mutation in the siRNA target sequence gives us confidence that they are indeed resistant to siRNA.

      - Note that the anti-CCDC32 antibody does not detect the eGFP-CCDC32(∆78-98) as well as full-length and is unable to detect eGFP-CCDC32(1-54)'. This phrase should belong to Figure S1 (B), not (A)

      Corrected.

      - The immunoprecipitations of CCDC32 and its mutants with AP2 and its subunits are partially confusing. In Figure 5, the authors show that CCDC32 interacts specifically with the alpha-AD, but not with the beta-AD of AP2. In Figure 6B and C, on the other hand, Co-IPs are shown also with the beta and the mu domain of AP2. This is understandable in the context of the full AP2. However, when interaction with the alpha domain (and sigma) is abolished through mutation of helix 78-98, why would beta and mu still interact, when the beta-AD cannot interact with CCDC32 on its own. Are there interaction sites expected outside the ADs in the beta or mu domains?

      See responses to reviewer 1 above.  This result likely reflects the co-chaperone activity of CCDC32 as reported by Wan et al it likely due to their reported interactions of CCDC32 with the µ2 subnit of b2:µ2 hemicomplexes.

      - Figure S6 D, E and F: How much confidence do the authors have on the AlphaFold predictions? Have the same binding poses been obtained repeatedly by independent predictions?

      We provide, with a color scale, the confidence score for each interaction, which is very high (>90%). Of course, this is still a prediction that will need to be verified by further structural studies as we have stated.

    1. Reviewer #1 (Public review):

      Summary:

      The mechanism by which WNT signals are received and transduced into the cell has been the topic of extensive research. Cell surface levels of the WNT receptors of the FZD family are subject to tight control and it's well established that the transmembrane ubiquitin ligases ZNRF3 and RNF43 target FZDs for degradation and that proteins of the R-spondin family block this effect. This manuscript explores the role that WNT proteins play in receptor internalization, recycling and degradation, and the authors provide evidence that WNTs promote interactions of FZD with the ubiquitin ligases. Using cells mutant in all 3 DVL genes, the authors demonstrate that this effect of WNT on FZD is DVL-independent.

      Strengths:

      Overall, the data are of good quality and support the authors' hypothesis. Strengths of this study is the use of CRISPR-mutated cell lines to establish genetic requirements for the various components. The finding that FZD internalization and degradation is WNT dependent and does not involve DVL is novel.

      Weaknesses:

      A weakness of the work includes a heavy reliance on overexpression of FZD proteins. To detect endogenous FZDs, the authors have inserted a V5 tag into the endogenous gene, which may affect their activity(ies).

    2. Reviewer #2 (Public review):

      In this manuscript Luo et al uncover that the ZNRF3/RNF43 E3 ubiquitin ligases participate in the selective endocytosis and degradation of FZD5/8 receptors in response to Wnt stimulation. In my opinion there are three significant findings of this study: 1) Wnt proteins are required for ZNRF3/RNF43 mediated endocytosis and degradation of FZD receptors and this constitutes an important negative regulatory loop. 2) Wnt can induce FZD endocytosis in the absence of ZNRF3/RNF43 but this does not influence total or cell surface levels. 3) The ZNRF3/RNF43 substrate selectivity for FZD5/8 over the other 8 Frizzleds. Of course, many questions remain, and new ones emerge as it is often the case, but these findings challenge our dogmatic view on how the ZNRF3/RNF43 regulate Wnt signaling and emphasize their role in Wnt-dependent Frizzled endocytosis/degradation and beta-catenin signaling.

      This is an elegant study employing several CRISPR-edited cell lines to tag endogenous Frizzled receptors and to knockout ZNRF3/RNF43 and all three Dishevelled proteins. One major strength of the study is therefore the careful assessment of the roles of RNF43 and ZNFR3 in endogenous expression contexts. This is especially relevant since overexpression of membrane E3 ligases have been shown to ectopically degrade membrane proteins and could have blurred previous interpretations. A second strength is clarifying the role of Dishevelled proteins in FZD endocytosis. Indeed, although previous studies suggested that the Wnt-promoted interaction between FZD and RNF43/ZNFR3 was mediated through Dvl, the authors clearly show that this is not the case (using Dvl knockout cells and functional assays). Dvl proteins, on the other han,d are still required for ligand-independent FZD-endocytosis.

      The only weakness pertains to the difference in signaling outcome, comparing elevated signaling seen when FZD levels are upregulated following ZNFR3/RNF43 KO vs ectopic overexpression. Indeed, the authors suggest that in the absence of RNF43/ZNFR3 the receptors could be recycled back to the PM and thereby contribute to increased signaling seen in the mutant cells. This has not been directly demonstrated.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors):

      Because many conclusions are drawn from overexpression studies and from a single cell line (HEK293), it is unclear how general these effects are. In particular, one of the main claims put forth in this manuscript is that of specificity, namely, that FZD5/8, and none of the other FZDs, are uniquely involved in this internalization and degradation. While there are examples of similar specificities, many of these examples can be attributed to a particular cellular context. Without demonstrating that this FZD5/8 specificity is observed in multiple cell lines and contexts, this point remains unconvincing and questionable. One way to address this point of criticism is to omit the word "specifically" in the title and soften the language concerning this idea throughout the manuscript.

      We appreciate your valuable comments and suggestions. We have removed the word “specifically” from the title and softened the language concerning this idea throughout the manuscript. Moreover, we performed new experiments to show that Wnt3a/5a induces FZD5/8 endocytosis and degradation and that IWP-2 treatment increases the cell surface levels of FZD5/8 in cell lines other than 293A (Figure 1-Figure supplement 1 and Figure 2-Figure supplement 1). These results indicate that Wnt-induced FZD5/8 endocytosis and degradation are not cell specific.

      The starting point for these studies is a survey of all 10 FZDs, V5-tagged and overexpressed in HEK293 cells. Here, the authors observed a decline in cell surface levels of only FZD5 and 8 in response to Wnt3a and Wnt5a. As illustrated in the immunoblot (Fig 1B), several FZDs were poorly expressed, including FZD1, 3, 6 and 9, which calls into question that only FZD5 and 8 were affected. Furthermore, total levels of FZD8 don't diminish appreciably, as claimed by the authors, and only FZD5 shows a subtle decline upon WNT treatment. All of these experiments are performed with overexpressed V5-tagged FZD proteins or with endogenously V5-tagged (KI) proteins, and it is possible that overexpression or tagging lead to potentially artifactual observations. Examining the effects of WNTs on FZD protein localization and levels need to be done with endogenously expressed, non-tagged FZDs. In this context, it is somewhat puzzling that the authors don't show such an experiment using the pan- and FZD5/8-specific antibodies, which they use in multiple experiments throughout the manuscript. With these available tools it should be possible to examine FZD levels at the cell surface in response to Wnt3a and Wnt5a, ideally in multiple cell lines.

      We appreciate your valuable comments and suggestions. Figure 1B shows the results of the follow-up study shown in Figure 1A. As shown in Figure 1A, we used flow cytometry analysis to detect the cell surface levels of stably expressed FZDs and found that Wnt3a/5a specifically reduced the levels of FZD5/8 on the cell surface, suggesting that Wnt3a/5a induces FZD5/8 endocytosis. As shown in Figure 1B and C, we performed immunoblotting to examine whether Wnt3a/5a-induced FZD5/8 internalization resulted in FZD5/8 degradation. Notably, most FZDs exhibit two bands on immunoblots, as also suggested by other published studies, and the upper bands represent the mature form that is fully glycosylated and presented to the cell surface (see also new Figure 2L), whereas the lower bands represent the immature form. Our results clearly indicated that Wnt3a/5a treatment reduced the levels of the mature forms of both FZD5 and FZD8, although the immunoblotting signals of the mature form of FZD8 (upper bands) were relatively weak. The immunoblotting signals of the other FZDs varied, and some of them (including FZD1, -3, -6 and -9) were relatively weak; however, according to the results in Figure 1A, all of the FZDs were expressed and present on the cell surface.

      Commercially available FZD5/8 antibodies, including those used in published studies, cannot detect endogenous FZD5/8 or can only recognize immature FZD5 in our hands, which is why we have to use the CRISPR-CAS9-based KI technique to introduce a V5 tag to FZD5 and FZD7. Notably, in the overexpression experiments, the V5 tag is on the amino terminus, and in the KI experiments, the V5 tag is on the carboxyl terminus of FZDs, which may minimize the potential artificial effects of the V5 tag on the immunoblotting assays.

      The monoclonal antibodies used in this study, such as anti-pan-FZD, anti-FZD5/8, and anti-FZD4 antibodies, are neutralizing antibodies that can compete with Wnt ligands to bind to the FZD CRD. These antibodies have been successfully used to detect the surface levels of FZDs via flow cytometry assays. However, as the binding affinity of the Wnt-FZD CRD is comparable to the binding affinity of the antibody-FZD, we were cautious in using these antibodies to detect the cell surface levels of FZDs when the cells were treated with Wnt3a/5a CM, which contains relatively high concentrations of Wnt3a/5a. As shown in Author response image 1, Wnt3a or Wnt5a treatment dramatically reduced the endogenous cell surface level of FZD5/8, as detected by flow cytometry using the anti-FZD5/8 antibody. However, in another experiment, HEK293A cells were first incubated with cold Wnt3a or Wnt5a CM at 4°C to minimize endocytosis and then analyzed via flow cytometry using the anti-FZD5/8 antibody. The results showed that Wnt3a/5a incubation reduced the floe cytometry signals, suggesting that Wnt3a/5a binding to FZD5/8 might interfere with antibody-FZD5/8 binding, although we cannot exclude the possibility that Wnt3a/5a may induce FZD5/8 endocytosis at 4°C (Author response image 1).

      Author response image 1.

      (A) HEK293A cells were treated with control, Wnt3a or Wnt5a CM for 2 hours at 37°C in a humidified incubator and were analyzed via flow cytometry using the anti-FZD5/8 antibody.

      (B) HEK293A cells were incubated with control, Wnt3a or Wnt5a CM for 1 h at 4°C and analyzed by flow cytometry using the anti-FZD5/8 antibody.

       

      Several experiments rely on gene-edited clonal cell lines, including knockouts of FZD5/8, RNF43/ZNRF3, and DVL. Gene knockouts were confirmed by genomic DNA sequencing and, for DVL and FZD5/8, by loss of protein expression. While these KO lines are powerful tools to study gene function, there is a concern for clonal variability. Each cell line may have acquired additional changes as a result of gene editing. In addition, there may be compensatory changes in gene expression as a consequence of the loss of certain genes. For example, expression of other FZDs may increase in FZD5/8 DKO cells. To address this critique, the authors should show that re-expression of the knocked-out genes rescues the observed effect. This is done in some instances (Fig 5E, G, H) but not in other instances, such as with the DVL TKO (Fig. 3). Since the authors assert that DVL is important for FZD internalization in the absence of WNT, but not for FZD internalization in the presence of WNT, this particular rescue experiment is important. This is a potentially important finding and it should be confirmed by re-expression of DVL in the TKO line. As an alternative, conditional knockdown using Tet-inducible shRNA expression could address concerns for clonal variability.

      We appreciate your valuable comments and suggestions. We re-expressed DVL2 in DVLTKO cells stably expressing V5-linker-FZD5 or V5-linker-FZD7. As shown in Figure 3G-K, re-expression of DVL2 rescued the decreased Wnt-independent endocytosis of FZD5 and FZD7 caused by DVL1/2/3 knockout.

      Given the significant differences in signaling activity by Wnt3a and Wnt5a, it is somewhat surprising that all experiments shown in this manuscript do not identify distinguishing features between Wnt3a and Wnt5a. In addition, it is unclear why the authors switch between Wnt3a and Wnt5a. For example, Figures 1C, 3G-J, 4C-D only use Wnt5a. In contrast, Figures 6E and H use Wnt3a, most likely because b-catenin stabilization is examined, an effect generally not observed with Wnt5a. The choice of which Wnt is examined/used appears to be somewhat arbitrary and the authors never provide any explanations for these choices. In the end, this type of inconsistency becomes puzzling when the authors present, quite convincingly, in Figure 7, that both Wnt3a and 5a promote an interaction between FZD5/8 and RNF43 through proximity biotin labeling.

      Although Wnt3a and Wnt5a are significantly different in triggering intracellular signaling pathways, both bind FZD5/8 and induce FZD5/8 endocytosis and degradation similarly. When FZD5 is stably overexpressed, Wnt5a has slightly stronger effects on inducing FZD5 endocytosis and degradation, possibly because the Wnt5a concentration may be higher than the Wnt3a concentration in our CM, which is why we used Wnt5a CM in some experiments when V5-FZD5 was overexpressed. In the revised manuscript, we used both Wnt3a and Wnt5a CM in the experiments as you suggested, as shown in Figure 1C, 3G-K and Figure 4-Figure supplement 1.

      Minor Points:

      Figure 3G and I: it is curious that individual cells are shown in the "0 h" samples, while the "Con 1 h" and "Wnt5a 1 h" show multiple cells with several making direct contact with each other. This is notable because the V5 staining at sites of cell-cell contact are quite distinct and variable between control and Wnt5a-treated and WT versus DVL TKO cells. Also, sub-cellular localization of FZD5 (V5 tag) puncta is quite distinct between Con and Wnt5a: puncta in Wnt5a-treated cells appear to be more plasma membrane proximal than in Con cells. These points may be easy to address by showing images of cells that are more similar with respect to cell number and density for each condition.

      Thank you for your suggestions. We repeated these experiments and added Wnt3a treatment and adjusted the cell density. Images including an individual cell were selected for presentation.

      Figure 5E: the following statement is confusing/misleading: "Furthermore, reintroducing ZNRF3 or RNF43 into ZRDKO cells efficiently restored the increase in cytosolic β-catenin levels, whereas the expression of RNF130 or RNF150, two structurally similar transmembrane E3 ubiquitin ligases, did not (Fig. 5E)." First, reintroduction of ZNRF3 or RNF43 restores cytosolic b-catenin levels; it does not restore the increase in b-catenin. Second, the claim that RNF130 fails to have this effect is not substantiated since it is barely expressed.

      Thank you for your suggestions and comments. We reorganized the language to make the statement clearer. Notably, the expression level of RNF130 was relatively low compared with that of other E3 ligases, but RNF130 was expressed (Figure 5E darker exposure) and could reduce the cell surface levels of FZDs, as shown in Figure 5G.

      Reviewer #2 (Recommendations for the authors):

      (1) Given their results the authors conclude that upregulation of Frizzled on the plasma membrane is not sufficient to explain the stabilization of beta-catenin seen in the ZNRF3/RNF43 mutant cells. This interpretation is sound, and they suggest in the discussion that ZNRF3/RNF43-mediated ubiquitination could serve as a sorting signal to sort endocytosed FZD to lysosomes for degradation and that absence or inhibition of this process would promote FZD recycling. This should be relatively easy to test using surface biotinylation experiments and would considerably strengthen the manuscript.

      Thank you for your valuable suggestions and comments. We performed cell surface biotinylation experiments in HEK293A FZD5KI cells, as shown in Figure 2L. The results indicated that Wnt3a or Wnt5a treatment induced the degradation of FZD5 on the cell surface, which was antagonized by cotreatment with RSPO1. We did not perform a more detailed endocytosis/recycling biotinylation experiment that requires complex reversible biotinylation and multiple washing steps because HEK293A cells are fragile in culture and not easy to handle. Furthermore, the results shown in Figure 4 indicate that knockout of ZNRF3/RNF43 or RSPO1 significantly blocked the degradation of internalized FZD5 and reduced the colocalization of internalized FZD5 with lysosomal markers, suggesting that Wnt3a/5a induced lysosomal degradation of FZD5 in the presence of ZNRF3/RNF43 and that the internalized FZD5 was most likely recycled back to the cell surface when ZNRF3/RNF43 was knocked out or inhibited by RSPO1.

      (2) The authors show that the FZD5 CRD domain is required for endocytosis since a mutant FZD5 protein in which the CRD is removed does not undergo endocytosis. This is perhaps not surprising since this is the site of Wnt binding, but the authors show that a chimeric FZD5CRD-FZD4 receptor can confer Wnt-dependent endocytosis to an otherwise endocytosis incompetent FZD4 protein. Since the linker region between the CRD and the first TM differs between FZD5 and FZD4, it would be interesting to understand whether the CRD specifically or the overall arrangement (such as the spacing) is the most important determinant.

      Our results in Figure 1D-H clearly show that the CRD of FZD5 specifically is both necessary and sufficient for Wnt3a/5a-induced FZD5 endocytosis, as replacing the CRD alone in FZD5 with the CRD from either FZD4 or FZD7 completely abolished Wnt-induced endocytosis, whereas replacing the CRD alone in FZD4 or FZD7 with the FZD5 CRD alone could confer Wnt-induced endocytosis.

      (3) I find it surprising that only FZD5 and FZD8 appear to undergo endocytosis or be stabilized at the cell surface upon ZNRF3/RNF43 knockout. Is this consistent with previous literature? Is that a cell-specific feature? These findings should be tested in a different cell line, with possibly different relative levels of ZNRF3 and RNF43 expression.

      Thank you for your comments and suggestions. Our finding that ZNRF3/RNF43 specifically regulates FZD5/8 degradation is consistent with recent published studies in which FZD5 is required for the survival of RNF43-mutant PDAC or colorectal cancer cells (Nature Medicine, 2017, PMID: 27869803) and FZD5 is required for the maintenance of intestinal stem cells (Developmental Cell, 2024, PMID: 39579768 and 39579769), and in both cases, FZDs other than FZD5/8 are also expressed but not sufficient to compensate for the function of FZD5. The mechanism by which Wnt3a/5a specifically induces FZD5/8 endocytosis and degradation is currently unknown and needs to be explored in the future. We speculate that Wnt binding to FZD5/8 may recruit another protein on the cell surface to specifically facilitate FZD5/8 endocytosis. On the other hand, we cannot exclude the possibility that Wnts other than Wnt3a/5a may induce the endocytosis and degradation of FZDs other than FZD5/8 since there are 19 Wnts and 10 FZDs in humans. Notably, several previous studies have suggested that ZNRF3/RNF43 may regulate the endocytosis and degradation of all FZDs without selectivity (such as Nature, 2012, PMID: 22575959; Nature, 2012, PMID: 22895187; Mol Cell, 2015, PMID: 25891077). However, their conclusions were drawn mostly on the basis of overexpression studies. According to the results shown in Figure 5E-H, overexpressing a membrane-tethered E3 ligase (such as ZNRF3, RNF43, RNF130, or RNF150) may nonspecifically degrade FZD proteins on the cell surface.

      Furthermore, in the revised manuscript, we showed that Wnt3a/5a induced FZD5/8 endocytosis and degradation in multiple cell lines, including Huh7, U2OS, MCF7, and 769P cells (Figure 1-Figure supplement 1 and Figure 2-Figure supplement 1), suggesting that these phenomena are not specific to 293A cells.

      (4) If FZD7 is not a substrate of ZNRF3/RNF43 and therefore is not ubiquitinated and degraded, how do the authors reconcile that its overexpression does not lead to elevated cytosolic beta-catenin levels in Figure 5B?

      We are currently not sure of the mechanism underlying this result. Considering that most FZDs are expressed in 293A cells, we do not know how much of the mature form of overexpressed FZD7 was presented to the plasma membrane.

      (5) For Figure 5B, it would be interesting if the authors could evaluate whether overexpression of FZD5 in the ZNRF3/RNF43 double knockout lines would synergize and lead to further increase in cytosolic beta-catenin levels. As control if the substrate selectivity is clear FZD7 overexpression in that line should not do anything.

      Thank you for your suggestion. We performed these experiments as suggested, and the results indicated that overexpressing FZD5 further increased cytosolic beta-catenin levels in ZRDKO cells, whereas FZD7 had no effect (Figure 6D).

      (6) In Figure 6G, the authors need to show cytosolic levels of beta-catenin in the absence of Wnt in all cases.

      We did not add Wnt CM in this experiment. RSPO1 activity, which relies on endogenous Wnt, has been well documented in previous studies.

      (7) Since the authors show that DVL is not involved in the Wnt and ZRNF3-dependent endocytosis they should repeat the proximity biotinylation experiment in figure 7 in the DVL triple KO cells. This is an important experiment since previous studies showed that DVL was required for the ZRNF3/RNF43-mediated ubiqtuonation of FZD.

      Thank you for your valuable suggestions. As you suggested, we performed a proximity biotinylation experiment in DVL TKO cells, and the results showed that Wnt3a/5a could still induce the interaction of FZD5 and RNF43 in DVLTKO cells (Figure 7-figure supplement 1), suggesting that the Wnt-induced FZD5‒RNF43 interaction is DVL independent.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Gerken et al examined how neurons in the human medial temporal lobe respond to and potentially code dynamic movie content. They had 29 patients watch a long-form movie while neurons within their MTL were monitored using depth electrodes. They found that neurons throughout the region were responsive to the content of the movie. In particular, neurons showed significant responses to people, places, and to a lesser extent, movie cuts. Modeling with a neural network suggests that neural activity within the recorded regions was better at predicting the content of the movies as a population, as opposed to individual neural representations. Surprisingly, a subpopulation of unresponsive neurons performed better than the responsive neurons at decoding the movie content, further suggesting that while classically nonresponsive, these neurons nonetheless provided critical information about the content of the visual world. The authors conclude from these results that low-level visual features, such as scene cuts, may be coded at the neuronal level, but that semantic features rely on distributed population-level codes.

      Strengths:

      Overall, the manuscript presents an interesting and reasonable argument for their findings and conclusions. Additionally, the large number of patients and neurons that were recorded and analyzed makes this data set unique and potentially very powerful. On the whole, the manuscript was very well written, and as it is, presents an interesting and useful set of data about the intricacies of how dynamic naturalistic semantic information may be processed within the medial temporal lobe.

      We thank the reviewer for their comments on our manuscript and for describing the strengths of our presented work

      Weaknesses:

      There are a number of concerns I have based on some of the experimental and statistical methods employed that I feel would help to improve our understanding of the current data.

      In particular, the authors do not address the issue of superposed visual features very well throughout the manuscript. Previous research using naturalistic movies has shown that low-level visual features, particularly motion, are capable of driving much of the visual system (e.g, Bartels et al 2005; Bartels et al 2007; Huth et al 2012; Çukur et al 2013; Russ et al 2015; Nentwich et al 2023). In some of these papers, low-level features were regressed out to look at the influence of semantics, in others, the influence of low-level features was explicitly modeled. The current manuscript, for the most part, appears to ignore these features with the exception of scene cuts. Based on the previous evidence that low-level features continue to drive later cortical regions, it seems like including these as regressors of no interest or, more ideally, as additional variables, would help to determine how well MTL codes for semantic features over top of these lower-order variables.

      We thank the reviewer for this insightful comment and for the relevant literature regarding visual motion in not only the primary visual system but in cortical areas as well. While we agree that the inclusion of visual motion as a regressor of no interest or as an additional variable would be overall informative in determining if single neurons in the MTL are driven by this level of feature, we would argue that our analyses already provide some insight into its role and that only the parahippocampal cortical neurons would robustly track this feature.

      As noted by the reviewer, our model includes two features derived from visual motion: Camera Cuts (directly derived from frame-wise changes in pixel values)  and Scene Cuts (a subset of Camera Cuts restricted to changes in scene). As shown in Fig. 5a, decoding performance for these features was strongest in the parahippocampal cortex (~20%), compared to other MTL areas (~10%). While the entorhinal cortex also showed some performance for Scene Cuts (15%), we interpret this as being driven by the changes in location that define a scene, rather than by motion itself.

      These findings suggest that while motion features are tracked in the MTL, the effect may be most robust in the parahippocampal cortex. We believe that quantifying more complex 3D motion in a naturalistic stimulus like a full-length movie is a significant challenge that would likely require a dedicated study. We agree this is an interesting future research direction and will update the manuscript to highlight this for the reader.

      A few more minor points that would help to clarify the current results involve the selection of data for particular analyses. For some analyses, the authors chose to appropriately downsample their data sets to compare across variables. However, there are a few places where similar downsampling would be informative, but was not completed. In particular, the analyses for patients and regions may have a more informative comparison if the full population were downsampled to match the size of the population for each patient or region of interest. This could be done with the Monte Carlo sampling that is used in other analyses, thus providing a control for population size while still sampling the full population.

      We thank the reviewer for raising this important methodological point. The decision not to downsample the patient- and region-specific analyses was deliberate, and we appreciate the opportunity to clarify our rationale.

      Generally, we would like to emphasize that due to technical and ethical limitations of human single-neuron recordings, it is currently not possible to record large populations of neurons simultaneously in individual patients. The limited and variable number of recorded neurons per subject (Fig. S1) generally requires pooling neurons into a pseudo-populations for decoding, which is a well‐established standard in human single‐neuron studies (see e.g., (Jamali et al., 2021; Kamiński et al., 2017; Minxha et al., 2020; Rutishauser et al., 2015; Zheng et al., 2022)).

      For the patient-specific analysis, our primary goal was to show that no single patient's data could match the performance of the complete pseudo-population. Crucially, we found no direct relationship between the number of recorded neurons and decoding performance; patients with the most neurons (patients 4, 13) were not top performers, and those with the fewest (patients 11, 14) were not the worst (see Fig. 4). This indicates that neuron count was not the primary limiting factor and that downsampling would be unlikely to provide additional insight.

      Similarly, for the region-specific analysis, regions with larger neural populations did not systematically outperform those with fewer neurons (Fig. 5). Given the inherent sparseness of single-neuron data, we concluded that retaining the full dataset was more informative than excluding neurons simply to equalize population sizes.

      We agree that this methodological choice should be transparent and explicitly justified in the text. We will add an explanation to the revised manuscript to justify why this approach was taken and how it differs from the analysis in Fig. 6.

      Reviewer #2 (Public review):

      Summary:

      This study introduces an exciting dataset of single-unit responses in humans during a naturalistic and dynamic movie stimulus, with recordings from multiple regions within the medial temporal lobe. The authors use both a traditional firing-rate analysis as well as a sophisticated decoding analysis to connect these neural responses to the visual content of the movie, such as which character is currently on screen.

      Strengths:

      The results reveal some surprising similarities and differences between these two kinds of analyses. For visual transitions (such as camera angle cuts), the neurons identified in the traditional response analysis (looking for changes in firing rate of an individual neuron at a transition) were the most useful for doing population-level decoding of these cuts. Interestingly, this wasn't true for character decoding; excluding these "responsive" neurons largely did not impact population-level decoding, suggesting that the population representation is distributed and not well-captured by individual-neuron analyses.

      The methods and results are well-described both in the text and in the figures. This work could be an excellent starting point for further research on this topic to understand the complex representational dynamics of single neurons during naturalistic perception.

      We thank the reviewer for their feedback and for summarizing the results of our work.

      (1) I am unsure what the central scientific questions of this work are, and how the findings should impact our understanding of neural representations. Among the questions listed in the introduction is "Which brain regions are informative for specific stimulus categories?". This is a broad research area that has been addressed in many neuroimaging studies for decades, and it's not clear that the results tell us new information about region selectivity. "Is the relevant information distributed across the neuronal population?" is also a question with a long history of work in neuroscience about localist vs distributed representations, so I did not understand what specific claim was being made and tested here. Responses in individual neurons were found for all features across many regions (e.g., Table S1), but decodable information was also spread across the population.

      We thank the reviewer for this important point, which gets to the core of our study's contribution. While concepts like regional specificity are well-established from studies on the blood-flow level, their investigation at the single-neuron level in humans during naturalistic, dynamic stimulation remains a critical open question. The type of coding (sparse vs. distributed) on the other hand cannot be investigated with blood-flow studies as the technology lacks the spatial and temporal resolution.

      Our study addresses this gap directly. The exceptional temporal resolution of single-neuron recordings allows us to move beyond traditional paradigms and examine cellular-level dynamics as they unfold in neuronal response on a frame-by-frame basis to a more naturalistic and ecologically valid stimulus. It cannot be assumed that findings from other modalities or simplified stimuli will generalize to this context.

      To meet this challenge, we employed a dual analytical strategy: combining a classic single-unit approach with a machine learning-based population analysis. This allowed us to create a bridge between prior work and our more naturalistic data. A key result is that our findings are often consistent with the existing literature, which validates the generalizability of those principles. However, the differences we observe between these two analytical approaches are equally informative, providing new insights into how the brain processes continuous, real-world information.

      We will revise the introduction and discussion to more explicitly frame our work in this context, emphasizing the specific scientific question driving this study, while also highlighting the strengths of our experimental design and recording methods.

      (2) The character and indoor/outdoor labels seem fundamentally different from the scene/camera cut labels, and I was confused by the way that the cuts were put into the decoding framework. The decoding analyses took a 1600ms window around a frame of the video (despite labeling these as frame "onsets" like the feature onsets in the responsive-neuron analysis, I believe this is for any frame regardless of whether it is the onset of a feature), with the goal of predicting a binary label for that frame. Although this makes sense for the character and indoor/outdoor labels, which are a property of a specific frame, it is confusing for the cut labels since these are inherently about a change across frames. The way the authors handle this is by labeling frames as cuts if they are in the 520ms following a cut (there is no justification given for this specific value). Since the input to a decoder is 1600ms, this seems like a challenging decoding setup; the model must respond that an input is a "cut" if there is a cut-specific pattern present approximately in the middle of the window, but not if the pattern appears near the sides of the window. A more straightforward approach would be, for example, to try to discriminate between windows just after a cut versus windows during other parts of the video. It is also unclear how neurons "responsive" to cuts were defined, since the authors state that this was determined by looking for times when a feature was absent for 1000ms to continuously present for 1000ms, which would never happen for cuts (unless this definition was different for cuts?).

      We thank the reviewer for the valuable comment regarding specifically the cut labels. The choice to label frames that lie in a time window of 520ms following a cut as positive was selected based on prior research and is intended to include the response onsets across all regions within the MTL (Mormann et al., 2008). We agree that this explanation is currently missing from the manuscript, and we will add a brief clarification in the revised version.

      As correctly noted, the decoding analysis does not rely on feature onset but instead continuously decodes features throughout the entire movie. Thus, all frames are included, regardless of whether they correspond to a feature onset.

      Our treatment of cut labels as sustained events is a deliberate methodological choice. Neural responses to events like cuts often unfold over time, and by extending the label, we provide our LSTM network with the necessary temporal window to learn this evolving signature. This approach not only leverages the sequential processing strengths of the LSTM (Hochreiter et al., 1997) but also ensures a consistent analytical framework for both event-based (cuts) and state-based (character or location) features.

      (3) The architecture of the decoding model is interesting but needs more explanation. The data is preprocessed with "a linear layer of same size as the input" (is this a layer added to the LSTM that is also trained for classification, or a separate step?), and the number of linear layers after the LSTM is "adapted" for each label type (how many were used for each label?). The LSTM also gets to see data from 800 ms before and after the labeled frame, but usually LSTMs have internal parameters that are the same for all timesteps; can the model know when the "critical" central frame is being input versus the context, i.e., are the inputs temporally tagged in some way? This may not be a big issue for the character or location labels, which appear to be contiguous over long durations and therefore the same label would usually be present for all 1600ms, but this seems like a major issue for the cut labels since the window will include a mix of frames with opposite labels.

      We thank the reviewer for their insightful comments regarding the decoding architecture. The model consists of an LSTM followed by 1–3 linear readout layers, where the exact number of layers is treated as a hyperparameter and selected based on validation performance for each label type. The initial linear layer applied to the input is part of the trainable model and serves as a projection layer to transform the binned neural activity into a suitable feature space before feeding it into the LSTM. The model is trained in an end-to-end fashion on the classification task.

      Regarding temporal context, the model receives a 1600 ms window (800 ms before and after the labeled frame), and as correctly pointed out by the reviewer, LSTM parameters are shared across time steps. We do not explicitly tag the temporal position of the central frame within the sequence. While this may have limited impact for labels that persist over time (e.g., characters or locations), we agree this could pose a challenge for cut labels, which are more temporally localized.

      This is an important point, and we will clarify this limitation in the revised manuscript and consider incorporating positional encoding in future work to better guide the model’s focus within the temporal window. Additionally, we will add a data table, specifying the ranges of hyperparameters in our decoding networks. Hyperparameters were optimized for each feature and split individually, but we agree that some more details on how these parameters were chosen are important and we will provide a data table in our revised manuscript giving more insights into the ranges of hyperparameters.

      We thank the reviewer for this important point. We will clarify this limitation in the revised manuscript and note that positional encoding is a valuable direction to better guide the model’s focus within the temporal window. To improve methodological transparency, we will also add a supplementary table detailing the hyperparameter ranges used for our optimization process.

      (4) Because this is a naturalistic stimulus, some labels are very imbalanced ("Persons" appears in almost every frame), and the labels are correlated. The authors attempt to address the imbalance issue by oversampling the minority class during training, though it's not clear this is the right approach since the test data does not appear to be oversampled; for example, training the Persons decoder to label 50% of training frames as having people seems like it could lead to poor performance on a test set with nearly 100% Persons frames, versus a model trained to be biased toward the most common class. [...]

      We thank the reviewer for this critical and thoughtful comment. We agree that the imbalanced and correlated nature of labels in naturalistic stimuli is a key challenge.

      To address this, we follow a standard machine learning practice: oversampling is applied exclusively to the training data. This technique helps the model learn from underrepresented classes by creating more balanced training batches, thus preventing it from simply defaulting to the majority class. Crucially, the test set remains unaltered to ensure our evaluation reflects the model's true generalization performance on the natural data distribution.

      For the “Persons” feature, which appears in nearly all frames, defining a meaningful negative class is particularly challenging. The decoder must learn to identify subtle variations within a highly skewed distribution. Oversampling during training helps provide a more balanced learning signal, while keeping the test distribution intact ensures proper evaluation of generalization.

      The reviewer’s comment—that we are “training the Persons decoder to label 50% of training frames as having people”—may suggest that labels were modified. We want to emphasize this is not the case. Our oversampling strategy does not alter the labels; it simply increases the exposure of the rare, underrepresented class during training to ensure the model can learn its pattern despite its low frequency.

      We will revise the Methods section to describe this standard procedure more explicitly, clarifying that oversampling is a training-only strategy to mitigate class imbalance.

      (5) Are "responsive" neurons defined as only those showing firing increases at a feature onset, or would decreased activity also count as responsive? If only positive changes are labeled responsive, this would help explain how non-responsive neurons could be useful in a decoding analysis.

      We define responsive neurons as those showing increased firing rates at feature onset; we did not test for decreases in activity. We thank the reviewer for this valuable comment and will address this point in the revised manuscript by assessing responseness without a restriction on the direction of the firing rate.

      (6) Line 516 states that the scene cuts here are analogous to the hard boundaries in Zheng et al. (2022), but the hard boundaries are transitions between completely unrelated movies rather than scenes within the same movie. Previous work has found that within-movie and across-movie transitions may rely on different mechanisms, e.g., see Lee & Chen, 2022 (10.7554/eLife.73693).

      We thank the reviewer for pointing out this distinction and for including the relevant work from Lee & Chan (2022) which further contextualizes this distinction. Indeed, the hard boundaries defined in the cited paper differ slightly from ours. The study distinguishes between (1) hard boundaries—transitions between unrelated movies—and (2) soft boundaries—transitions between related events within the same movie. While our camera cuts resemble their soft boundaries, our scene cuts do not fully align with either category. We defined scene cuts to be more similar to the study’s hard boundaries, but we recognize this correspondence is not exact. We will clarify the distinctions between our scene cuts and the hard boundaries described in Zheng et al. (2022) in the revised manuscript, and will update our text to include the finding from Lee & Chan (2022).

      Reviewer #3 (Public review):

      This is an excellent, very interesting paper. There is a groundbreaking analysis of the data, going from typical picture presentation paradigms to more realistic conditions. I would like to ask the authors to consider a few points in the comments below.

      (1) From Figure 2, I understand that there are 7 neurons responding to the character Summer, but then in line 157, we learn that there are 46. Are the other 39 from other areas (not parahippocampal)? If this is the case, it would be important to see examples of these responses, as one of the main claims is that it is possible to decode as good or better with non-responsive compared to single responsive neurons, which is, in principle, surprising.

      We thank the reviewer for pointing out this ambiguity in the text. Yes, the other 39 units are responsive neurons from other areas. We will clarify to which neuronal sets the number of responsive neurons corresponds. We will also include response plots depicting the unit activity for the mentioned units.

      (2) Also in Figure 2, there seem to be relatively very few neurons responding to Summer (1.88%) and to outdoor scenes (1.07%). Is this significant? Isn't it also a bit surprising, particularly for outdoor scenes, considering a previous paper of Mormann showing many outdoor scene responses in this area? It would be nice if the authors could comment on this.

      We thank the reviewer for this insightful point. While a low response to the general 'outdoor scene' label seems surprising at first, our findings align with the established role of the parahippocampal cortex (PHC) in processing scenes and spatial layouts. In previous work using static images, each image introduces a new spatial context. In our movie stimulus, new spatial contexts specifically emerge at scene cuts. Accordingly, our data show a strong PHC response precisely at these moments. We will revise the discussion to emphasize this interpretation, highlighting the consistency with prior work.

      Regarding the first comment, we did not originally test if the proportion of the units is significant using e.g. a binomial test. We will include the results of a binomial test for each region and feature pair in the revised manuscript.

      (3) I was also surprised to see that there are many fewer responses to scene cuts (6.7%) compared to camera cuts (51%) because every scene cut involves a camera cut. Could this have been a result of the much larger number of camera cuts? (A way to test this would be to subsample the camera cuts.)

      The decrease in responsive units for scene cuts relative to camera cuts could indeed be due to the overall decrease in “trials” from one label to the other. To test this, we will follow the reviewer’s suggestion and perform tests using sets of randomly subsampled camera cuts and will include the results in the revised manuscript.

      (4) Line 201. The analysis of decoding on a per-patient basis is important, but it should be done on a per-session basis - i.e., considering only simultaneously recorded neurons, without any pooling. This is because pooling can overestimate decoding performances (see e.g. Quian Quiroga and Panzeri NRN 2009). If there was only one session per patient, then this should be called 'per-session' rather than 'per-patient' to make it clear that there was no pooling.

      The per-patient decoding was indeed also a per-session decoding, as each patient contributed only a single session to the dataset. We will make note of this explicitly in the text to resolve the ambiguity.

      (6) Lines 406-407. The claim that stimulus-selective responses to characters did not account for the decoding of the same character is very surprising. If I understood it correctly, the response criterion the authors used gives 'responsiveness' but not 'selectivity'. So, were people's responses selective (e.g., firing only to Summer) or non-selective (firing to a few characters)? This could explain why they didn't get good decoding results with responsive neurons. Again, it would be nice to see confusion matrices with the decoding of the characters. Another reason for this is that what are labelled as responsive neurons have relatively weak and variable responses.

      We thank the reviewer for pointing out the importance of selectivity in addition to responsiveness. Indeed, our response criterion does not take stimulus selectivity into account and exclusively measures increases in firing activity after feature onsets for a given feature irrespective of other features.

      We will adjust the text to reflect this shortcoming of the response-detection approach used here. To clarify the relationship between neural populations, we will add visualizations of the overlap of responsive neurons across labels for each subregion. These figures will be included in the revised manuscript.

      In our approach, we trained separate networks for each feature to effectively mitigate the issue of correlated feature labels within the dataset (see earlier discussion). While this strategy effectively deals with the correlated features, it precluded the generation of standard confusion matrices, as classification was performed independently for each feature.

      To directly assess the feature selectivity of responsive neurons, we will fit generalized linear models to predict their firing rates from the features. This approach will enable us to quantify their selectivity and compare it to that of the broader neuronal population.

      (7) Line 455. The claim that 500 neurons drive decoding performance is very subjective. 500 neurons gives a performance of 0.38, and 50 neurons gives 0.33.

      We agree with the reviewer that the phrasing is unclear. We will adjust our summary of this analysis as given in Line 455 to reflect that the logistic regression-derived neuronal rankings produce a subset which achieve comparable performance.

      (8) Lines 492-494. I disagree with the claim that "character decoding does not rely on individual cells, as removing neurons that responded strongly to character onset had little impact on performance". I have not seen strong responses to characters in the paper. In particular, the response to Summer in Figure 2 looks very variable and relatively weak. If there are stronger responses to characters, please show them to make a convincing argument. It is fine to argue that you can get information from the population, but in my view, there are no good single-cell responses (perhaps because the actors and the movie were unknown to the subjects) to make this claim. Also, an older paper (Quian Quiroga et al J. Neurophysiol. 2007) showed that the decoding of individual stimuli in a picture presentation paradigm was determined by the responsive neurons and that the non-responsive neurons did not add any information. The results here could be different due to the use of movies instead of picture presentations, but most likely due to the fact that, in the picture presentation paradigm, the pictures were of famous people for which there were strong single neuron responses, unlike with the relatively unknown persons in this paper.

      This is an important point and we thank the reviewer for highlighting a previous paradigm in which responsive neurons did drive decoding performance. Indeed, the fact that the movie, its characters and the corresponding actors were novel to patients could explain the disparity in decoding performance by way of weaker and more variable responses. We will include additional examples in the supplement of responses to features. Additionally, we will modify the text to emphasize the point that reliable decoding is possible even in the absence of a robust set of neuronal responses. It could indeed be the case that a decoder would place more weight on responsive units if they were present (as shown in the mentioned paper and in our decoding from visual transitions in the parahippocampal cortex).

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Cells need to adjust their gene expression pattern, including nutrient transporters and enzymes to process the available nutrient. How cells maintain the coordination between these processes is one of the most critical questions in biology. In this work authors elegantly combined a range of relevant experimental techniques, ranging from time-lapse microscopy, microfluidics, and mathematical modelling to address this question. Combining these methods, authors proposed a push-pull like mechanism, involving two pairs of repressors (Mth1, Std1 and Migs) in the glucose sensing network. In budding yeast there are multiple hexose transporter genes with varying affinity and transport rate. Authors postulated that on sensing glucose, cells switch between expressing high affinity glucose transporters (when extracellular glucose is low), and low affinity glucose transporters (in high extracellular glucose), and these processes are mediated by the pairs of repressors as mentioned earlier. Following the expressing patterns of fluorescently tagged hexose transporters and varying the extracellular glucose concentrations in media, authors proposed that pairs of repressors switch their activity depending on extracellular glucose level, and which is matched by the promoters of the hexose transporter genes to achieve optimality of glucose transport.

      This study is elegantly designed and addressed an interesting question. The mechanism (push-pull involving two pairs of repressors) is plausible and justified by the data. Authors also presented a mathematical model and made predictions, which are also verified. We will recommend the publication of this work with minor modifications.

      Major comments:

      This study is well designed and experiments performed accordingly. We have only minor comments for revision.

      Minor comments:

      1. Although authors covered a wide array of literature, but while discussing tradeoffs and nutrient sensing, it will be good to include bacterial growth law and related literature, and physiological level tradeoffs should be discussed. Moreover, authors vouched that the push-pull mechanism helps to circumvent the rate-affinity tradeoff of the transporter, whereas expressing genes to more precisely corelate with the extracellular glucose level brings out physiological optimality. This rate-affinity tradeoff and its physiological role should be discussed clearly.
      2. Authors described the ALCATRAS device in their previous publication, but for better clarity, a supplementary figure with schematic diagram and experimental plan should be included.
      3. Microscopic images of transporter expression pattern should be shown as kymographs in the supplementary, in this version of the manuscript plots from processed microscopy images are shown only.
      4. GFP was used to tag HXT1-7 as mentioned by the authors and expression of these genes are evaluated in separate experiments. We suggest including a schematic diagram describing the experimental design while using the microfluidic device and the experimental plan should be written in more detail in general. We found this part confusing. Did authors considered tagging two separate transporters with different fluorescent tag from either end of the affinity spectrum and showing the expression pattern in one experiment? Authors mentioned co expression of receptors at a particular glucose concentration over time, is this inferred from separate timelapse experiments? This need to be more clearly stated.
      5. Please mark the second phase of media glucose concentration in panel 1C, 1% glucose phase is marked, please mark the other phases for clarity.
      6. For the repressors to sense glucose and to initiate the push pull mechanism, there should be baseline glucose flux, which is not clearly mentioned in the manuscript. Authors mentioned that minimal intracellular glucose in absence of extracellular glucose and deployed a logistic function to increase intracellular glucose. The baseline glucose level is crucial, and authors should comment on this. Also, glucose mediated protection of HXT4 should be discussed in this context.
      7. Figure 3B and 3C, details of the error bars should be mentioned in the figure legend.

      Referee cross-commenting

      All other reviewers also identified this study insightful and interesting, similar to our comments. We also agree with the suggestions made by other reviewers. Suggested changes and modifications can be addressed within a month as mentioned by most of the reviewers. Excellent point raised by other reviewers on technicalities and addressing those points will improve the readability of this work even more.

      Significance

      General assessment:

      Use of innovative microfluidics platform to trap mother cells and following the gene expression pattern by fluorescence microscopy and combining the experimental approach with mathematical model are the strengths of this work. Whereas the proposed push-pull mechanism is not generalizable to other carbons. Model is merely used to fit the data, rather than making interesting predictions. Also how does the mechanism holds when cells are switched from other nutrient sources is also not clear in this work, which are the limitations of this work.

      Advance

      This work involves experimental technique and mathematical model to test the hypothesis. Use of custom-built microfluidics set up and live cell imaging to track gene expression levels in varying nutrient condition. This study links single cell level gene expression pattern to model and predict system level behavior. Nutrient sensing and subsequent rearrangement of gene regulatory network is an important question to address, and the proposed push-pull mechanism in this study adds up to the existing body of literature.

      Audience:

      This work is interdisciplinary and researchers across multiple fields will be interested in this work, including researchers interested in microbial nutrient sensing, systems biology, topology of gene regulatory network, metabolism, and general microbiology.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03083 Corresponding author(s): David Fay General Statements [optional] This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We greatly appreciate the input of the four reviewers, all of whom carried out a careful reading of our manuscript, provided useful suggestions for improvements, and were enthusiastic about the study including its thoroughness and utility to the field. Because the reviewers required no additional experiments, we were able to address their comments in writing.

      However, in response to a comment from reviewer #4 we decided to add an additional new biological finding to our study given that our functional validation of proximity labeling targets was not extensive. Namely, we now show that a missense mutation affecting BCC-1, one of the top NEKL-MLT interactors identified by our proximity labeling screen, is a causative mutation (together with catp-1) in a strain isolated through a forward genetic screen for suppressors of nekl molting defects (new Fig 9C). This finding, combined with our genetic enhancer tests, further strengthens the functional relevance of proteins identified though our proximity labeling approach and highlights the synergy of proteomics combined with classical genetics.

      Positive statements from reviewers include: Reviewer #1: Overall, this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner.

      Reviewer #2: The key conclusions are convincing, and the work is rigorous. The work provides a clear roadmap to reproducing the data. The experiments are adequately replicated, and statistical analysis is adequate... In many papers, TurboID seems very trivial but this paper clearly highlights the limitations and will be an invaluable resource for labs that want to get proximity labeling established in their labs.

      Reviewer #3: Overall, the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. ...This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system.

      Reviewer #4: Fay et al. present a solid, clear and comprehensive BioID-based proteomics study that takes into account and discusses decisive aspects for the (re)production and analysis of high-quality TurboID-based mass spectrometry data. Claims and conclusions are generally well and sufficiently supported by the presented data and illustrated with figures (throughout the text as well as with plenty of supplementary data)... Basic consideration and thoughts for the experimental design and MS data analysis are given in detail and can serve as another guideline for future studies.

      Based on these reviews and comments, we believe that our manuscript is suitable for publication in a high-impact journal. 1. Point-by-point description of the revisions This section is mandatory. Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript.

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      *Proximity labeling has become a powerful tool for defining protein interaction networks and has been utilized in a growing number of multicellular model systems. However, while such an approach can efficiently generate a list of potential interactors, knowledge of the most appropriate controls and standardized metrics to judge the quality of the data are lacking. The study by Fay systematically investigates these questions using the C. elegans NIMA kinase family members NEKL-2 and NEKL-2 and their known binding partners MLT-2, MLT-3 and MLT-4. The authors perform eight TurboID experiments each with multiple NEKL and MLT proteins and explore general metrics for assessing experimental outcomes as well as how each of the individual metrics correlates with one another. They also compare technical and biological replicates, explore strategies for identifying false positives and investigate a number of variations in the experimental approach, such as the use of N- versus C-terminal tags, depletion of endogenous biotinylated proteins, combining auxin-inducible degradation, and the use of gene ontology analysis to identify physiological interactors. Finally, the authors validate their findings by demonstrating that a number of the candidate identified functionally interact with NEKL-2 or components of the WASH complex. *

      Overall this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner. I really like this study (particularly because I plan to do a proximity labeling study of my own), but I did come away less than impressed with some of the analysis. This is a data-dense manuscript, and it appears to me that the authors tried to cover so much ground that in some cases very little insight was provided. For instance, the authors promote the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). However the authors do not provide any analysis to indicate one approach is better than the other. Likewise the combined use of auxin-induced degradation and proximity labeling is explored but there is very little to take away from these experiments. Despite these issues, I am very enthusiastic about the study as a whole. Below I list major and minor concerns.

      Major concerns * 1. My biggest issue with the manuscript is that a lot is made of the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). The authors perform experiments using DIA and DDA approaches but do not directly compare the outcomes. As a result there is really no way to know if one approach is better than the other. I would suggest the authors either perform the necessary analysis to compare the two approaches or tone down their promotion of DIA.* We agree and have scaled back any statements comparing DDA to DIA as our manuscript did not address this directly. We also now point out this caveat in our closing thoughts section, while referencing other studies that compared the two (lines 926-929). Our main point was to convey that DIA worked well for our proximity labeling studies but has seen little use by the model organism field. Surprising (to us), DIA was also considerably less expensive than DDA options.

      2. Line 75, The authors promote the use of data-independent acquisition (DIA) without defining what this approach is and how it differs from the more conventional data-dependent acquisition. As a non-mass spectroscopist, I found myself with lots of question concerning DIA, what it is and how it differs from DDA. I think it would really be helpful to expand the description of DIA and its comparison with DDA in the introduction. As non-mass-spectroscopists ourselves, we understand the reviewer's point. Because the paper is quite long, we were trying to avoid non-essential information. We have now added some information to explain some of the key differences between DDA and DIA. We have also included references for readers who may want to learn more. (lines 77-80)

      Minor concerns: * Line 92 typo. I believe the authors meant to say NEKL-2-MLT-2-MLT-4. * Corrected. (line 95)

      Line169. Is exogenous the correct word to use here? It suggests that you are talking about non-worm proteins, but I know you are not. Corrected. Changed to "Moreover, the detection of biotinylated proteins may be difficult if the bait-TurboID fusion is expressed at low levels..." (line 181).

      Line 177 typo (D) should be (C). Corrected. (line 1122)

      Figure 1C: Lucky Charms may sue you for infringement of their trademarked marshmallow treats. Thank you for picking up on this. The authors accept full responsibility for any resulting lawsuits.

      Figure 1D. The NEKL-2::TurboID band is indicated with a green triangle in the figure but the figure legend states that green triangles indicate mNG::TurboID control. I know this triangle is a shade off the triangle that indicates mNG::TurboID but it's really hard to see the difference. All of the differently colored triangles in panel F are unnecessary. I would either just pick one color for all non-control bait proteins or better yet, only use a triangle to point to bands that are not obvious. For instance I don't need the triangles that point to NEKL-2 -3 and -4 fusion proteins. These are just distracting. We understand the reviewer's point. We colored the triangles to match the colors used for the proteins in the figures. We have now added "bright green triangles with white outlines" (Fig 1 legend) to indicate the Pdpy-7::mNG::TurboID control" and changed triangles in the corresponding figures. Although we would be fine with removing or changing the triangles, we think that they may aid somewhat with clarity.

      Line: 316: Conceivably, another factor that could contribute to the counterintuitive upregulation of some proteins in the N2 samples is related to the fusion proteins that are being expressed in the TurboID lines. A partially functional bait protein (one with a level of activity similar to nekl-2(fd81) that may not result in an obvious phenotype) could directly or indirectly affect gene expression leading to lower levels of a subset of proteins in the TurboID samples. The same could be said for fusion proteins with a gain-of-function effect. This is an interesting idea, and we tested this possibility by looking for consistent overlap between N2-up proteins between biological replates of individual bait proteins. We now include a representative Venn diagram in S3C Fig to highlight this comparison. In summary, although we cannot rule out this possibility, our analysis did not support the widespread occurrence of this effect in our study. We also made certain that our statement regarding N2 up proteins was not too definitive. (lines 285-288)

      *Fig 3 B-E. I am a little confused how the data in these graphs is normalized. For instance, I would have expected that for NEKL-3 in panel B, that the normalized (log2) intensity value in N2 be set at 0 as it is for NEKL-2. Maybe I just don't have enough information on how these plots were generated. * The difference is that in the N2 sample, NEKL-3 was detected but NEKL-2 was not. The numbers themselves are assigned by the Spectronaut software used to quantify the DIA results but are not meaningful beyond indicating relative amounts (intensity values) of a given protein within an individual biological experiment. We've added some lines to the figure legend to make this clearer. (lines 1165-1169)

      *Figure 6C legend is not correct. * Corrected. (line 1214)

      Line 575: Figure reference should be Fig. S5G. The authors should check to make sure all references to supplemental figures include correct panel information. Corrected. (line 464) In addition, we have now gone through the manuscript and added panel numbers references where applicable. Note that the addition of a new supplemental file has shifted the numbering.

      Line 576. The authors reference a study by Artan and colleagues and report a weak correlation between their study and that of Artan. They reference figure S4 but it should be Fig S5H. Apologies and many thanks to the reviewer for catching these errors. (line 464)

      Line 652. The authors note that numerous proteins were present at substantially reduced levels in the mNG::TurboID samples and suggest that sticky proteins may have been outcompeted or otherwise excluded from beads incubated with the mNG::TurboID lysates. Why would sticky proteins only be a problem in these samples? The reasoning is not clear to me. The idea was that in the sample with very high levels of biotinylated proteins (mNG::TurboID), the surface of the beads might become saturated with high-affinity biotinylated proteins. This could prevent or out complete the binding of random proteins that are not biotinylated but nevertheless have some affinity to the beads ("sticky" proteins). We have reworded this section to make this clearer. (lines 546-550)

      Line 745: The term "bait overlaps" is a bit vague. Ultimately, I figured out what it meant but it was not immediately obvious. We have changed this to "overlap between baits" and made this section clearer. (line 624-628)

      *S7B Fig. Why is actin missing from the eluate? * In S7B we refer to the purified eluate as the "eluate", which may have caused some confusion. In other sections of the manuscript, we refer to the bead-bound proteins as the "purified eluate" (Figs 1 and 5). For the purified eluate a portion of the streptavidin beads are boiled in sample buffer to elute the bound proteins before running a western. Actin would not be expected in these samples because it's (presumably) not biotinylated in our samples and doesn't detectably bind the beads. This result was seen in all relevant westerns in S1 Data. For consistency, however, we've gone through all our files to make sure we consistently use the term "purified eluate" versus "eluate", which is less specific.

      L*ine 873: The authors state the extent of overlap in GO terms between the various experiments and provide percentages. I tried to extract this information from Figure 8C and came up with different values. For instance, in the case of Molecular Function, they state that they observed a 54% overlap between NEKL-2 and NEKL-3 but in the Venn diagram in Figure 8C I see that the NEKL-2 and NEKL-3 experiments had 71 (25+46) GO terms in common. Out of 98 GO terms for NEKL-2 or 104 for NEKL-3 the percentage I got is closer to 72. Am I analyzing this correctly? * Thanks for checking this. We believe our method for calculating the percent overlap is correct. In the case of NEKL-2/NEKL-3 overlap for Molecular Function, there are 131 total unique terms, of which 71 overlap, giving a 54% overlap. In the case of NEKL-2/NEKL-3 overlap for Biological Process, however, we made an error in arithmetic (415 unique, 239 overlap), such that the correct percentage is 58%, which we have corrected in the text.

      *Reviewer #1 (Significance (Required)): *

      *Overall this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner. I really like this study (particularly because I plan to do a proximity labeling study of my own), but I did come away less than impressed with some of the analysis. This is a data-dense manuscript, and it appears to me that the authors tried to cover so much ground that in some cases very little insight was provided. For instance, the authors promote the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). However the authors do not provide any analysis to indicate one approach is better than the other. Likewise the combined use of auxin-induced degradation and proximity labeling is explored but there is very little to take away from these experiments. Despite these issues, I am very enthusiastic about the study as a whole. *

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)): *

      *This study expanded the use of data-independent acquisition-mass spectrometry (DIA-MS) in TurboID proximity-labeling proteomics to identify novel interactors of NEKL-2, NEKL-3, MLT-2, MLT-3, and MLT-4 complexes in C. elegans. The authors described several useful metrics to evaluate the quality of TurboID experiments, such as using the percentage of upregulated genes, the percentage of proteins present only in bait-TurboID experiments as compared to N2 controls, and the percentage of endogenously biotinylated carboxylases as internal controls. Further, the authors introduced methodological variability across 23 TurboID experiments and evaluated any improvement to the resulting data, such as N-terminally tagging bait proteins with TurboID, depleting endogenous carboxylases, and auxin-inducible degradation of known complex members. Finally, this study identified the kinase folding chaperone CDC-37 and the WASH complex component DDL-2 as novel interactors with the NEKL-MLT complexes through an RNAi-based enhancer approach following their identification by TurboID. *

      Major comments: * The key conclusions are convincing, and the work is rigorous. The work provides a clear roadmap to reproducing the data. The experiments are adequately replicated, and statistical analysis is adequate. We only have minor comments.*

      Minor comments: * •In the western blot in Fig 1 why does the mNG::Turbo have two bands? * Thank you for point this out. To our knowledge this is a breakdown product that was especially prevalent in replicate 3 (also see S1 Data), which we chose to shown because all the NEKL-MLTs were clearly visible in this western. The expected size of the mNeonGreen::TurboID (including linker and tags) is ~68 kDa and our blots are roughly consistent those of Artan et al., (2001). This lower band was not evident in Exp 8. We have now included a statement in the figure legend to indicate that the upper band is the full-length protein whereas the lower band is likely to be a breakdown product (lines 1141-1142).

      •Fig 2B is difficult to parse as a reader. Columns labeled "Upreg," "Downreg," "TurboID only," "N2 only," "Filter-1," "Filter-2," and "Epi %" could be moved to Supplemental. Fold change vs N2 could be represented as a bar chart, allowing for trends between fold change and the metrics Upreg %, Turbo %, and Carboxylase % to be seen more clearly. Further, rows headed "Carboxylase depletion," "DDA," and "Auxin treated" could be presented as separate panels to better match the distinct points made in the text. After serious consideration we have made several changes including the addition of S2 Fig, which may provide readers with a better visual representation of the bait and prey fold changes observed in all our experiments. However, we feel that the detailed data embedded in Fig 2 is the most concise and accurate means by which to convey our full results and is key to our methodological conclusions. As such we did not want to relegate this information to a supplemental table. We note that this figure was not found to be problematic by other reviewers, although we do understand the points made by this reviewer.

      •Line 179: in vivo should be italicized Because journals differ in their stylistic practices, we are currently waiting before doing our final formatting. We did keep our use of Latin phrases consistently non-italicized in the draft.

      •Lines 215-217: The comparison between Western blot expression levels and prior fluorescent reporter levels is unclear. Could be reformatted to make it clearer that relative expression of the different NEKL-MLTs in this study is consistent with prior data. We reformatted this sentence to improve clarity. (lines 205-207)

      *•Lines 267-268: The final line of the passage is unclear and can be removed. * This sentence has been removed.

      •Lines 311-313: This study is able to use the recovery of bait and known interactor proteins as internal controls to determine the quality of each experiment, but this may not always be the case for other users' experiments. The authors should comment on how Upreg %, a value influenced by many factors, can actually be used as a quality check when a bait protein has no known interactors. We have added language to highlight this point. (lines 344-348)

      *•Line 702: There is a [new REF] that should be removed * As described above, we have now included this finding on bcc-1 as part of this manuscript (Fig 9C).

      •The approach used mixed stage animals, but some genes oscillate or are transiently expressed. Please discuss cost-benefit of mixed stage vs syncing. This is an important point. We have added a discussion on the benefits and drawbacks of using mixed stages to the discussion. (lines 901-911)

      *•Authors were working on hypodermally expressed proteins. It would be valuable to discuss what tissues are amenable to TurboID. Ie are the cases where there are few cells (anchor cell, glial sockets, etc) that it will be extremely challenging to perform this technique * We agree that certain tissues/proteins will not be amenable to proximity labeling. We believe that we have addressed this point together with the above comment throughout the manuscript and now on lines 936-940.

      •Authors mention approaches such as nanobodies, split Turbo. Based on their experiences it would be valuable to add Discussion on strengths and weaknesses of these approaches to guide folks considering TurboID and DIA-MS experiments in C. elegans Because we have not tested these methods, we feel that we cannot provide a great deal of insight into these alternate approaches. We mention and reference these methods in the introduction so that readers are aware of them.

      *Reviewer #2 (Significance (Required)): *

      •Advance in technique: This study expands the use cases of data-independent acquisition MS method (DIA-MS) in C. elegans, which fragments all ions independent of the initial MS1 data. The benefits of this approach include better reproducibility across technical replicates and better recovery of low abundance peptides, which are critical for advancing our ability to capture weak and transient interactions.

      •The use of DIA-MS in this study has improved our understanding of the partners of these NEKL-MLTs in membrane trafficking, molting, and cell adhesion within the epidermis.

      •In many papers, TurboID seems very trivial but this paper clearly highlights the limitations and will be an invaluable resource for labs that want to get proximity labeling established in their labs.

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)): *

      *Summary: *

      Fay and colleagues perform a series of proximity labeling experiments in C. elegans followed by thorough and rational analysis of the resulting biotinylated proteins identified by LC-MS/MS. The overall goals of the study are to evaluate different techniques and provide practical guidance on how to achieve success. The major takeaways are that integration of data-independent acquisition (DIA) along with comparison of endogenously tagged TurboID alleles to soluble TurboID expressed in the same tissue results in improved detection of bona-fide interactors and reduced numbers of false-positives.

      *Major comments: *

      Overall the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. I have no major concerns with the manuscript and focus primarily on improving the accessibility of this important contribution to the scientific community. As such, I suggest that the authors:

      1) Provide more explanation of and rationale for using DIA. This is not yet a standard technique and most basic biomedical scientists will be unaware of the jargon. As I expect many labs in the C. elegans community and beyond will be interested in the guidance provided in this manuscript, the introduction offers a great opportunity to bring the reader up to speed, as opposed to sending them to the complicated proteomics analysis literature. We have added some additional context (lines 77-80) as well as new references. We note that getting into the technical differences between DIA and DDA, beyond what we briefly mention, would take a substantial amount of space, may not be of interest to many readers, and can be found through standard internet and (sigh) AI-based searches.

      *2) Provide a better overview of the various protocols tested (Experiments 1-8). Maybe at the beginning of the results, and maybe with an accompanying schematic. As currently written, it is difficult to figure out details regarding how the experiments vary and why. * We have now added a short paragraph to better inform the reader at the front end regarding the major experiments. (lines 139-146).

      3) As to be expected, expression of TurboID tags at endogenous levels via low abundance proteins in a complex multicellular system results in somewhat weak signals that flirt with the limit of detection. Perhaps by combining tagged alleles within the same complex (NEKL-3/MLT-3 or NEKL-2/MLT-2/MLT-4) the signals could be boosted? Tandem tags, either on one end or multiple ends of proteins might help as well. As the authors point out, a benefit of tagging the two NEKL-MLT complexes is that there are strong loss-of-function phenotypes (lethal molting defects) to help evaluate whether a tagging strategy results in a non-functional complex. THESE EXPERIMENTS ARE OPTIONAL and might simply be discussed at the authors discretion. These are interesting ideas that we have now incorporated into our discussion. (lines 936-940)

      *Minor Comments: *

      *1) Figure 3A is cropped on the right. * Thank you for catching this. Corrected.

      *2) Better define [new REF] on line 702. * We have added new results (Fig 9C), obviating the need for this reference.

      ***Referee cross-comments** *

      Overall, I am in agreement with, and supportive of, the other reviewers' comments.

      *Reviewer #3 (Significance (Required)): *

      *Significance: *

      Proximity labeling is often proposed as a technique to determine interaction networks of proteins in vivo, but in practice it remains challenging for most labs to execute a successful experiment, especially within the context of multicellular model organisms. Fay and colleagues provide a much needed roadmap for how to best approach proximity labeling experiments in C. elegans that will likely apply to other model systems.

      They establish a rigorous approach by choosing to endogenously tag components of two essential NEKL-MLT complexes required for C. elegans molting. These complexes are relatively low abundance as they are only expressed in a single cell type, the hyp7 epidermal syncytium. In addition, as inactivation of any member of the complexes results in molting defects, they have a powerful selection for functional tags. Thus, they have set a high bar for themselves in order to discern whether a given variation on the experimental approach results in improved detection of interactors and fewer false positives.

      *Potential areas for improvement include lowering the expression level of the skin-specific soluble TurboID used to determine non-specific biotinylation events. This control results in much higher levels of biotinylation compared to the TurboID-tagged NEKL-MLT alleles and likely affects their analysis, which they openly admit. In addition, to reduce the high level of background biotinylation signals generated by endogenous carboxylases, they adopt a depletion strategy pioneered by other researchers but this does not offer major improvements in detection of specific signals. The source of these conflicting results remains to be determined. It is also curious that auxin-inducible degradation of components of the NEKL-MLT complexes did not robustly alter the resulting biotinylating capacity of other members. This approach should be evaluated in subsequent studies. Finally, as mentioned in Major Comment #3 (above), it would be interesting to see if combining TurboID tags within the same complex might improve signal-to-background ratios. *

      This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system. I am a cell biologist that uses a variety of genetic, molecular and biochemical approaches, mostly centered around C. elegans. I have used LC/MS-MS in our studies but have relatively little expertise in evaluating all aspects of proteomic pipelines.

      *Reviewer #4 (Evidence, reproducibility and clarity (Required)): *

      *Fay et al. describe an extensive proximity labeling BioID study in C. elegans with TurboID and DIA-LCMS analysis. They chose the NEKL-2/3 kinases and their known interactors MLT-2/3/4 as TurboID-fused bait proteins (C- and partially N-terminal fusions encoded from CRISPR-mediated genome edited genes). With eight biological replicates (and three to four technical replicates each) and with the unmodified wildtype or mNeonGreen-TurboID expressing worms as controls, a comprehensive dataset was generated. Although starting from quite different abundances of the bait-fusions within the cell lysates all bait proteins and known complex-binding partners were convincingly enriched with capturing streptavidin beads after only one hour of incubation with the lysate. This confirms the general applicability of TurboID-BioID approach in C. elegans. The BioID method typically gives rise to large proteomics datasets (up to more than thousand proteins identified after biotin capture) with several tens to hundreds enriched proteins (against negative control strains) as potential proteins that localize proximal to the bait-TurboID protein. However, substantial variations of candidates between biological replicates are frequently observed in BioID experiments. The authors scrutinized their dataset towards indicative metrics, filters and cutoffs in order to separate high-confidence from low-confidence candidates. With the workflow applied the authors melt down the number of candidates to 15 proteins that were grouped in four functional groups reasonably associated to NEKL-MLT function. *

      Successful BioID experiments depend on reliable enrichment quantification with mass spectrometry using control cell lines that require a carefully bait-tailored design. Those must adequately express TurboID controls matching the abundance of the bait-TurboID fusion protein and its biotinylation activity. After affinity capture, sample preparation and LCMS data acquisition there is no silver bullet towards the identification true bait neighbors. Fay et al. elaborately describe their considerations and workflow towards high-confidence candidates. The workflow considered (i) data analysis with Volcano plots to account for statistical reproducibility of biological replicates against negative controls, (ii) fraction of proteins only detected in the positive or negative controls thus evading the fold-enrichment quantification approach, (iii) evaluation of variations in carboxylase enrichment as a measure for variations in the general biotin capture quality between experiments, (iv) an assessment of technical reproducibility with scatter plots and Venn diagrams, (v) exclusion of potentially false positives, e.g. promiscuously biotinylated non-proximal proteins, through comparisons with control worms expressing a non-localized mNeonGreen-TurboID fusion protein, (vi) batch effects, (vii) the impact of endogenous biotinylated carboxylases through depletion, (viii) gene ontology analysis of enriched proteins, (ix) weighing data according to the quality of individual experiments according to the afore mentioned metrics, and finally (x) genetic interaction studies to functionally associate high-confidence candidates with the bait.

      *Major comments: *

      Fay et al. present a solid, clear and comprehensive BioID-based proteomics study that takes into account and discusses decisive aspects for the (re)production and analysis of high-quality TurboID-based mass spectrometry data. Claims and conclusions are generally well and sufficiently supported by the presented data and illustrated with figures (throughout the text as well as with plenty of supplementary data). However, although the authors claim to seek for substrates of the kinase complex they drew no further attention to the phosphorylation status of the captured proteins. Haven't the MS data been analyzed in this respect? Information regarding this issue would enhance the manuscript. Data generation and method description appear reproducible for readers. Also, the statistical analyses appear adequate. The authors should also consider to deposit their MS raw and analysis data in a public repository (e.g. PRIDE) for future reviewing processes and as reference data for readers and followers. Our raw MS data have been deposited by the Arkansas Proteomics Facility. I have followed up to ensure that they are publicly available.

      *Minor comments: *

      The authors should combine supplementary data files to reduce the number of single files readers have to deal with. We have combined these files as suggested.

      The authors should avoid the term "upregulation" or "increased biotinylation" when capture enrichment is meant. We agree with reviewer's point. We now use the terms enriched versus reduced or up versus down, depending on the context, and clearly define these terms. These changes have been incorporated throughout the manuscript.

      *Reviewer #4 (Significance (Required)): *

      The manuscript presents a robust BioID proteomics screening for co-localizing proteins of NEKL-2/3 kinases and their known interactors MLT-2/3/4. The ongoing validation of their functional interactions and whether the protein candidates reflect phosphorylation substrates or else remains elusive and is announced for upcoming manuscripts. The knowledge gain in terms of molecular mechanisms with NEKL-2/3 MLT-2/3/4 involvement in C. elegans is therefore limited to a table of - promising - interacting candidates that have to be studied further. Information about the phosphorylation status of the captured proteins from the MS data are not given. However, knowing the protein candidates will be of interest for groups working with these complexes (or the identified potentially interacting proteins) either in C. elegans or any other organism. Also, in-depth proteomics screenings with novel approaches such as BioID have to be established for individual organisms. For C. elegans there is only one prior BioID publication (Holzer et al. 2022). Many of the aspects discussed here have also been addressed earlier for BioIDs in other organisms and are not principally new. However, the presented study can be of conceptual interest for labs delving into or entangled with the BioID method in C. elegans or other organisms. The study addresses especially proteomics groups working on protein-protein interactions using proximity labeling/MS approaches. Basic consideration and thoughts for the experimental design and MS data analysis are given in detail and can serve as another guideline for future studies.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Fay and colleagues perform a series of proximity labeling experiments in C. elegans followed by thorough and rational analysis of the resulting biotinylated proteins identified by LC-MS/MS. The overall goals of the study are to evaluate different techniques and provide practical guidance on how to achieve success. The major takeaways are that integration of data-independent acquisition (DIA) along with comparison of endogenously tagged TurboID alleles to soluble TurboID expressed in the same tissue results in improved detection of bona-fide interactors and reduced numbers of false-positives.

      Major comments:

      Overall the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. I have no major concerns with the manuscript and focus primarily on improving the accessibility of this important contribution to the scientific community. As such, I suggest that the authors:

      1. Provide more explanation of and rationale for using DIA. This is not yet a standard technique and most basic biomedical scientists will be unaware of the jargon. As I expect many labs in the C. elegans community and beyond will be interested in the guidance provided in this manuscript, the introduction offers a great opportunity to bring the reader up to speed, as opposed to sending them to the complicated proteomics analysis literature.
      2. Provide a better overview of the various protocols tested (Experiments 1-8). Maybe at the beginning of the results, and maybe with an accompanying schematic. As currently written, it is difficult to figure out details regarding how the experiments vary and why.
      3. As to be expected, expression of TurboID tags at endogenous levels via low abundance proteins in a complex multicellular system results in somewhat weak signals that flirt with the limit of detection. Perhaps by combining tagged alleles within the same complex (NEKL-3/MLT-3 or NEKL-2/MLT-2/MLT-4) the signals could be boosted? Tandem tags, either on one end or multiple ends of proteins might help as well. As the authors point out, a benefit of tagging the two NEKL-MLT complexes is that there are strong loss-of-function phenotypes (lethal molting defects) to help evaluate whether a tagging strategy results in a non-functional complex. THESE EXPERIMENTS ARE OPTIONAL and might simply be discussed at the authors discretion.

      Minor Comments:

      1. Figure 3A is cropped on the right.
      2. Better define [new REF] on line 702.

      Referee cross-comments

      Overall, I am in agreement with, and supportive of, the other reviewers' comments.

      Significance

      Proximity labeling is often proposed as a technique to determine interaction networks of proteins in vivo, but in practice it remains challenging for most labs to execute a successful experiment, especially within the context of multicellular model organisms. Fay and colleagues provide a much needed roadmap for how to best approach proximity labeling experiments in C. elegans that will likely apply to other model systems.

      They establish a rigorous approach by choosing to endogenously tag components of two essential NEKL-MLT complexes required for C. elegans molting. These complexes are relatively low abundance as they are only expressed in a single cell type, the hyp7 epidermal syncytium. In addition, as inactivation of any member of the complexes results in molting defects, they have a powerful selection for functional tags. Thus, they have set a high bar for themselves in order to discern whether a given variation on the experimental approach results in improved detection of interactors and fewer false positives.

      Potential areas for improvement include lowering the expression level of the skin-specific soluble TurboID used to determine non-specific biotinylation events. This control results in much higher levels of biotinylation compared to the TurboID-tagged NEKL-MLT alleles and likely affects their analysis, which they openly admit. In addition, to reduce the high level of background biotinylation signals generated by endogenous carboxylases, they adopt a depletion strategy pioneered by other researchers but this does not offer major improvements in detection of specific signals. The source of these conflicting results remains to be determined. It is also curious that auxin-inducible degradation of components of the NEKL-MLT complexes did not robustly alter the resulting biotinylating capacity of other members. This approach should be evaluated in subsequent studies. Finally, as mentioned in Major Comment #3 (above), it would be interesting to see if combining TurboID tags within the same complex might improve signal-to-background ratios.

      This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system. I am a cell biologist that uses a variety of genetic, molecular and biochemical approaches, mostly centered around C. elegans. I have used LC/MS-MS in our studies but have relatively little expertise in evaluating all aspects of proteomic pipelines.

    1. I don't think I've seen a single person bring up the classism inherent in dictating gentlemanly manners.

      Here, or in general?

      I do think about this a lot. This is a nice, succinct way to put it. (Critique, though: "classism" is not the best way to put it. For better or worse, "privilege" is probably one of the best words we have for this. Separately: Since "privilege" became a staple of common rhetoric, I've mused a lot about trying to convince people to minimize the focus on "privilege" (to avoid the familiar kneejerk reactions from those hearing it who have associated it with overuse), with the intent to be to sway people instead by speaking about privilege without actually using the word "privilege" and speaking exclusively in terms of affordances*.)

      See: https://hypothes.is/a/TCB5zClKEeyrIOu9mp-5TA and tag:"privilege vs affordance". (NB: Hypothes.is doesn't linkify the tag in the preceding annotation correctly.)

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers for the constructive comments, which have improved the manuscript. In response to these comments, we have made the following major changes to the main text and reviewer response:

      (1) Added experimental and computational evidence to support the use of Cut&Tag to determine speckle location.

      (2) Performed new Transmission Electron Microscopy (TEM) experiments to visualize interchromatin granule clusters +/- speckle degradation.

      (3) Altered the text of the manuscript to remove qualitative statements and clarify effect sizes.

      (4) Performed new analyses of published whole genome bisulfite data from LIMe-Hi-C following DNMT1 inhibition to demonstrate that CpG methylation is lost at DNMT1i-specific gained CTCF sites.

      (5) Included citations for relevant literature throughout the text.

      These revisions in addition to others are described in the point-by-point response below.

      Reviewer #1 (Public review):

      Summary

      Roseman et al. use a new inhibitor of the maintenance DNA methyltransferase DNMT1 to probe the role of methylation on binding of the CTCF protein, which is known to be involved chromatin loop formation. As previous reported, and as expected based on our knowledge that CTCF binding is methylation-sensitive, the authors find that loss of methylation leads to additional CTCF binding sites and increased loop formation. By comparing novel loops with the binding of the pre-mRNA splicing factor SON, which localizes to the nuclear speckle compartment, they propose that these reactivated loops localize to near speckles. This behavior is dependent on CTCF whereas degradation of two speckle proteins does not affect CTCF binding or loop formation. The authors propose a model in which DNA methylation controls the association of genome regions with speckles via CTCF-mediated insulation.

      Strengths

      The strengths of the study are 1) the use of a new, specific DNMT1 inhibitor and 2) the observation that genes whose expression is sensitive to DNMT1 inhibition and dependent on CTCF (cluster 2) show higher association with SON than genes which are sensitive to DNMT1 inhibition but are CTCF insensitive, is in line with the authors' general model.

      Weaknesses

      There are a number of significant weaknesses that as a whole undermine many of the key conclusions, including the overall mechanistic model of a direct regulatory role of DNA methylation on CTCF-mediated speckle association of chromatin loops.

      We appreciate the reviewer’s constructive comments and address them point-by-point below.

      (1) The authors frequently make quasi-quantitative statements but do not actually provide the quantitative data, which they actually all have in hand. To give a few examples: "reactivated CTCF sites were largely methylated (p. 4/5), "many CTCF binding motifs enriched..." (p.5), "a large subset of reactivated peaks..."(p.5), "increase in strength upon DNMT1 inhibition" (p.5); "a greater total number....." (p.7). These statements are all made based on actual numbers and the authors should mention the numbers in the text to give an impression of the extent of these changes (see below) and to clarify what the qualitative terms like "largely", "many", "large", and "increase" mean. This is an issue throughout the manuscript and not limited to the above examples.

      Related to this issue, many of the comparisons which the authors interpret to show differences in behavior seem quite minor. For example, visual inspection suggests that the difference in loop strength shown in figure 1E is something like from 0 to 0.1 for K562 cells and a little less for KCT116 cells. What is a positive control here to give a sense of whether these minor changes are relevant. Another example is on p. 7, where the authors claim that CTCF partners of reactivated peaks tend to engage in a "greater number" of looping partners, but inspection of Figure 2A shows a very minor difference from maybe 7 to 7.5 partners. While a Mann-Whitney test may call this difference significant and give a significant P value, likely due to high sample number, it is questionable that this is a biologically relevant difference.

      We have amended the text to include actual values, instead of just qualitative statements. We have also moderated our claims in the text to note where effect sizes are more modest.

      The following literature examples can serve as positive controls for the effect sizes that we might expect when perturbing CTCF. Our observed effect sizes are largely in line with these expected magnitudes.

      https://pmc.ncbi.nlm.nih.gov/articles/PMC8386078/ Fig. 2E

      https://www.cell.com/cell-reports/pdf/S2211-1247(23)01674-1.pdf Fig. 3J,K

      https://academic.oup.com/nar/article/52/18/10934/7740592 Fig. S5D (CTCF binding only).

      (2) The data to support the central claim of localization of reactivated loops to speckles is not overly convincing. The overlap with SON Cut&Tag (figure 2F) is partial at best and although it is better with the publicly available TSA-seq data, the latter is less sensitive than Cut&Tag and more difficult to interpret. It would be helpful to validate these data with FISH experiments to directly demonstrate and measure the association of loops with speckles (see below).

      A recent publication we co-authored validated the use of speckle (SON) Cut&Run using FISH (Yu et al, NSMB 2025, doi: 10.1038/s41594-024-01465-6). This paper also supports a role of CTCF in positioning DNA near speckles. Unfortunately, the resolution of these FISH probes is in the realm of hundreds of kilobases. This was not an issue for Yu et. al., as they were looking at large-scale effects of CTCF degradation on positioning near speckles. However, FISH does not provide the resolution we need to look at more localized changes over methylation-specific peak sites.

      Instead, we use Cut&Tag to look at these high-resolution changes. In Figure 3C, we show that SON localizes to DNMT1i-specific peaks only upon DNMT1 inhibition. We further demonstrate that this interaction is dependent on CTCF. In response to reviewer comments, we have now also performed spike-in normalized Cut&Tag upon acute (6 hr) SON degradation to validate that our signal is also directly dependent on SON and not merely due to a bias toward open chromatin.

      Author response image 1.

      TSA-seq has been validated with FISH (Chen et. al., doi: 10.1083/jcb.201807108), Alexander et. Al 10.1016/j.molcel.2021.03.006) Fig 6. We include TSA-seq data where possible in our manuscript to support our claims.

      We also note that Fig 2F shows all CTCF peaks and loops, not just methylation-sensitive peaks and loops, to give a sense of the data. We apologize for any confusion and have clarified this in the figure legend.

      (3) It is not clear that the authors have indeed disrupted speckles from cells by degrading SON and SRRM2. Speckles contain a large number of proteins and considering their phase separated nature stronger evidence for their complete removal is needed. Note that the data published in ref 58 suffers from the same caveat.

      Based upon the reviewers’ feedback, we generated Tranmission electron microscopy (TEM) data to visualize nuclear speckles +/- degradation of SON and SRRM2 (DMSO and dTAG). We were able to detect Interchromatin Granules Clusters (ICGs) that are representative of nuclear speckles in the DMSO condition. However, even at baseline, we observed a large degree of cell-to-cell variability in these structures. In addition, we also observe potential structural changes in the distribution of heterochromatin upon speckle degradation. Consequently, we hesitate to make quantitative conclusions regarding loss of these nuclear bodies. In the interest of transparency, we have included representative raw images from both conditions for the reviewers’ consideration.

      We also note that in Ref 58 (Ilik et. Al., https://doi.org/10.7554/eLife.60579), the authors show diffusion of speckle client proteins RBM25, SRRM1, and PNN upon SON and SRRM2 depletion, further supporting speckle dissociation in these conditions.

      Author response image 2.

      Author response image 3.

      (4) The authors ascribe a direct regulatory role to DNA methylation in controlling the association of some CTCF-mediated loops to speckles (p. 20). However, an active regulatory role of speckle association has not been demonstrated and the observed data are equally explainable by a more parsimonious model in which DNA methylation regulates gene expression via looping and that the association with speckles is merely an indirect bystander effect of the activated genes because we know that active genes are generally associated with speckles. The proposed mechanism of a regulatory role of DNA methylation in controlling speckle association is not convincingly demonstrated by the data. As a consequence, the title of the paper is also misleading.

      While it is difficult to completely rule out indirect effects, we do not believe that the relationship between methylation-sensitive CTCF sites and speckles relies only on gene activity.

      We can partially decouple SON Cut&Tag signal from gene activation if we break down Figure 4D to look only at methylation-sensitive CTCF peaks on genes whose expression is unchanged upon DNMT1 inhibition (using thresholds from manuscript, P-adj > 0.05 and/or |log2(fold-change)| < 0.5). This analysis shows that many methylation-sensitive CTCF peaks on genes with unchanged expression still change speckle association upon DNMT1 inhibition. This result refutes the necessity of transcriptional activation to recruit speckles to CTCF.

      Author response image 4.

      We note the comparator upregulated gene set here is small (~20 genes with our stringent threshold for methylation-sensitive CTCF after 1 day DNMT1i treatment).

      However, we acknowledge that these effects cannot be completely disentangled. We previously included the statement “other features enriched near speckles, such as open chromatin, high GC content, and active gene expression, could instead contribute to increased CTCF binding and looping near speckles” in the discussion. In response to the reviewer’s comment, we have further tempered our statements on page 20/21 and also added a statement noting that DNA demethylation and gene activation cannot be fully disentangled. While we are also open to a title change, we are unsure which part of the title is problematic. 

      (5) As a minor point, the authors imply on p. 15 that ablation of speckles leads to misregulation of genes by altering transcription. This is not shown as the authors only measure RNA abundance, which may be affected by depletion of constitutive splicing factors, but not transcription. The authors would need to show direct effects on transcription.

      We agree, and we have changed this wording to say RNA abundance.

      Reviewer #2 (Public review):

      Summary:

      CTCF is one of the most well-characterized regulators of chromatin architecture in mammals. Given that CTCF is an essential protein, understanding how its binding is regulated is a very active area of research. It has been known for decades that CTCF is sensitive to 5-cystosine DNA methylation (5meC) in certain contexts. Moreover, at genomic imprints and in certain oncogenes, 5meC-mediated CTCF antagonism has very important gene regulatory implications. A number of labs (eg, Schubeler and Stamatoyannopoulos) have assessed the impact of DNA methylation on CTCF binding, but it is important to also interrogate the effect on chromatin organization (ie, looping). Here, Roseman and colleagues used a DNMT1 inhibitor in two established human cancer lines (HCT116 [colon] and K562 [leukemia]), and performed CTCF ChIPseq and HiChIP. They showed that "reactivated" CTCF sites-that is, bound in the absence of 5meC-are enriched in gene bodies, participate in many looping events, and intriguingly, appear associated with nuclear speckles. This last aspect suggests that these reactivated loops might play an important role in increased gene transcription. They showed a number of genes that are upregulated in the DNA hypomethylated state actually require CTCF binding, which is an important result.

      Strengths:

      Overall, I found the paper to be succinctly written and the data presented clearly. The relationship between CTCF binding in gene bodies and association with nuclear speckles is an interesting result. Another strong point of the paper was combining DNMT1 inhibition with CTCF degradation.

      Weaknesses:

      The most problematic aspect of this paper in my view is the insufficient evidence for the association of "reactivated" CTCF binding sites with nuclear speckles needs to be more diligently demonstrated (see Major Comment). One unfortunate aspect was that this paper neglected to discuss findings from our recent paper, wherein we also performed CTCF HiChIP in a DNA methylation mutant (Monteagudo-Sanchez et al., 2024 PMID: 39180406). It is true, this is a relatively recent publication, although the BioRxiv version has been available since fall 2023. I do not wish to accuse the authors of actively disregarding our study, but I do insist that they refer to it in a revised version. Moreover, there are a number of differences between the studies such that I find them more complementary rather than overlapping. To wit, the species (mouse vs human), the cell type (pluripotent vs human cancer), the use of a CTCF degron, and the conclusions of the paper (we did not make a link with nuclear speckles). Furthermore, we used a constitutive DNMT knockout which is not viable in most cell types (HCT116 cells being an exception), and in the discussion mentioned the advantage of using degron technology:

      "With high-resolution techniques, such as HiChIP or Micro-C (119-121), a degron system can be coupled with an assessment of the cis-regulatory interactome (118). Such techniques could be adapted for DNA methylation degrons (eg, DNMT1) in differentiated cell types in order to gauge the impact of 5meC on the 3D genome."

      The authors here used a DNMT1 inhibitor, which for intents and purposes, is akin to a DNMT1 degron, thus I was happy to see a study employ such a technique. A comparison between the findings from the two studies would strengthen the current manuscript, in addition to being more ethically responsible.

      We thank the reviewer for the helpful comments, which we address in the point-by-point response below. We sincerely apologize for this oversight in our references. We have included references to your paper in our revised manuscript. It is exciting to see these complementary results! We now include discussion of this work to contextualize the importance of methylation-sensitive CTCF sites and motivate our study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      To address the above points, the authors should:

      (1) Provide quantitative information in the text on all comparisons and justify that the small differences observed, albeit statistically significant, are biologically relevant. Inclusion of positive controls to give an indication of what types of changes can be expected would be helpful.

      We have added quantitative information to the text, as discussed in the response to public comments above.  We also provide literature evidence of expected effect sizes in that response.

      (2) Provide FISH data to a) validate the analysis of comparing looping patterns with SON Cut&Tag data as an indicator of physical association of loops with speckles and b) demonstrate by FISH increased association of some of the CTCF-dependent loops/genes (cluster 2) with speckles upon DNMT1 inhibition.

      Please see response to Reviewer 1 comment #2 above. Unfortunately, FISH will not provide the resolution we need for point a). We have confidence in our use of TSA-seq and Cut&Tag to study SON association with CTCF sites on a genome-wide scale, which would not be possible with individual FISH probes. Specifically, since the submission of our manuscript several other researchers (Yu et al, Nat. Struct. and Mol. Biol. 2025, Gholamalamdari et al eLife 2025) have leveraged CUT&RUN/CUT&TAG and TSA-seq to map speckle associated chromatin and have validated these methods with orthogonal imaging based approaches.

      (3) Demonstrate loss of speckles upon SON or SRRM2 by probing for other speckle components and ideally analysis by electron microscopy which should show loss of interchromatin granules.  

      We have performed TEM in K562 cells +/- SON/SRRM2 degradation. Please see response to Reviewer 1 comment #3. Specifically, interchromatin granule clusters are visible in the TEM images of the DMSO sample (see highlighted example above), however, given the heterogeneity of these structures and potential global alterations in heterochromatin that may be occurring following speckle loss, we refrained from making quantitative conclusions from this data. We instead include the raw images above.

      (4) The authors should either perform experiments to clearly show whether loop association is transcription dependent or whether association is merely a consequence of gene activation. Alternatively, they should tone down their model ascribing a direct regulatory role of methylation in control of loop association with speckles and also discuss other models. Unless the model is more clearly demonstrated, the title of the paper should be changed to reflect the uncertainty of the central conclusion.

      Please see response to Reviewer 1 comment #4 above.

      (5) The authors should either probe directly for the effect of speckle ablation on transcription or change their wording.

      We have changed our wording to RNA abundance.

      Reviewer #2 (Recommendations for the authors):

      Major:

      ⁃ There was no DNA methylation analysis after inhibitor treatment. Ideally, genome bisulfite sequencing should be performed to show that the DNMT1i-specific CTCF binding sites are indeed unmethylated. But at the very least, a quantitative method should be employed to show the extent to which 5meC levels decrease in the presence of the DNMT1 inhibitor

      Response: We have now included analysis of genome wide bisulfite information from LIMe-Hi-C (bisulfite Hi-C) in K562 following DNMT1i inhibition. Specifically, we leverage the CpG methylation readout and find that DNTM1i-specific CTCF sites are more methylated than non-responsive CTCF peaks at baseline. In addition, these sites show the greatest decrease in CpG methylation upon 3 days of DNMT1 inhibition. We include a figure detailing these analyses in the supplement (Fig S1E). In addition, we have added CpG methylation genome browser tracks to (Fig S1D). In terms of global change, we have found that 3 days of DNMT1 inhibitor treatment leads to a reduction in methylation to about ~1/4 the level at baseline.

      I am not convinced that CUT&Tag is the proper technique to assess SON binding. CUT&Tag only works under stringent conditions (high salt), and can be a problematic assay for non-histone proteins, which bind less well to chromatin. In our experience, even strong binders such as CTCF exhibit a depleted binding profile when compared to ChIP seq data. I would need to be strongly convinced that the analysis presented in figures 2F-J and S2 D-I simply do not represent ATAC signal (ie, default Tn5 activity). For example, SON ChIP Seq, CUT&Tag in the SON degron and/or ATAC seq could be performed. What worries me is that increased chromatin accessibility would also be associated with increased looping, so they have generated artifactual results that are consistent with their model.

      As the reviewer suggested, we have now performed spike-in normalized SON Cut&Tag with DNMT1 inhibition and 6 hours of SON/SRRM2 degradation in our speckle dTAG knockin cell line. These experiments confirm that the SON Cut&Tag signal we see is SON-dependent. If the signal was truly due to artifactual binding, gained peaks would be open irrespective of speckle binding, however we see a clear speckle dependence as this signal is much lower if SON is degraded.

      Author response image 5.

      Moreover, in our original Cut&Tag experiments, we did not enrich detectable DNA without using the SON antibody (see last 4 samples-IgG controls). This further suggests that our signal is SON-dependent.

      Author response image 6.

      Finally, we see good agreement between Cut&Tag and TSA-seq (Spearman R=0.82).  The agreement is particularly strong in the top quadrant, which is most relevant since this is where the non-zero signal is.

      Author response image 7.

      Minor points

      ⁃ Why are HCT116 cells more responsive to treatment than K562 cells? This is something that could be addressed with DNA methylation analysis, for example

      K562 is a broadly hypomethylated cell line (Siegenfeld et.al, 2022 https://doi.org/10.1038/s41467-022-31857-5 Fig S2A-C). Thus, there may be less dynamic range to lose methylation compared to HCT116.

      Our results are also consistent with previous results comparing DKO HCT116 and aza-treated K562 cells (Maurano 2015, http://dx.doi.org/10.1016/j.celrep.2015.07.024). They state “In K562 cells, 5-aza-CdR treatment resulted in weaker reactivation than in DKO cells…”  In addition, cell-type-specific responsiveness to DNA methyltransferase KO depending upon global CpG methylation levels, has also been observed in ES and EpiLC cells (Monteagudo-Sanchez et al., 2024), which we now comment on in the manuscript.

      ⁃ How many significant CTCF loops in DNMTi, compared to DMSO? It was unclear what the difference in raw totals is.

      We now include a supplemental table with the HiChIP loop information. We call similar numbers of raw loops comparing DNMT1i and DMSO, as only a small subset of loops is changing.

      ⁃ For the architectural stripes, it would be nice to see a representative example in the form of a contact plot. Is that possible to do with the hiChIP data?

      As described in our methods, we called architectural stripes using Stripenn (Yoon et al 2022) from LIMe-Hi-C data under DNMT1i conditions (Siegenfeld et al, 2022). Shown below is a representative example of a stripe in the form of a Hi-C contact map.

      Author response image 8.

      ⁃ Here 4-10x more DNMT1i-specific CTCF binding sites were observed than we saw in our study. What are thresholds? Could the thresholds for DNMT1i-specific peaks be defined more clearly? For what it's worth, we defined our DNMT KO-specific peaks as fold-change {greater than or equal to} 2, adjusted P< 0.05. The scatterplots (1B) indicate a lot of "small" peaks being called "reactivated."

      We called DNMT1i-specific peaks using HOMER getDifferentialPeaksReplicates function. We used foldchange >2 and padj <0.05. We further restricted these peaks to those that were not called in the DMSO condition. 

      ⁃ On this note, is "reactivated" the proper term? Reactivated with regards to what? A prior cell state? I think DNMT1i-specific is a safer descriptor.

      We chose this term based on prior literature (Maurano 2015 http://dx.doi.org/10.1016/j.celrep.2015.07.024, Spracklin 2023 https://doi.org/10.1038/s41594-022-00892-7) . However, we agree it is not very clear, so we’ve altered the text to say “DNMT1i-specific”. We thank the reviewer for suggesting this improved terminology.

      ⁃ It appears there is a relatively small enrichment for CTCF peaks (of any class) in intergenic regions. How were intergenic regions defined? For us, it is virtually half of the genome. We did some enrichment of DNMT KO-specific peaks in gene bodies (our Supplemental Figure 1C), but a substantial proportion were still intergenic.

      We defined intergenic peaks using HOMER’s annotatepeaks function, with the -gtf option using Ensembl gene annotations (v104). We used the standard annotatepeaks priority order, which is TSS > TTS> CDS Exons > 5’UTR exons >3’ UTR exons > Introns > Intergenic.

      Maurano et. al. 2015 (http://dx.doi.org/10.1016/j.celrep.2015.07.024) also found reduced representation of intergenic sites among demethylation-reactivated CTCF sites in their Fig S5A. We note this is not a perfect comparison because their data is displayed as a fraction of all intergenic peaks.

      ⁃ We also recently published a review on this subject: The impact of DNA methylation on CTCF-mediated 3D genome organization NSMB 2024 (PMID: 38499830) which could be cited if the authors choose.

      We have cited this relevant review.

    1. find out that I didn't have the whole picture, the problem was messier than it first appeared, and there were perfectly valid reasons for the code being that way

      I've tried using a hiking metaphor to describe a similar phenomenon (specifically, and perversely, as a preface when trying to explain second panel syndrome.

  6. Jul 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __We thank the reviewers for the supportive suggestions and comments. We have addressed all comments underneath the original text in red. As suggested, we added to line numbers to the text and use these numbers to refer to the changes made. __

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript is well written and presents solid data, most of which is statistically analyzed and sound. Given that the author's previous comprehensive publications on seipin organization and interactions, it might be beneficial (particularly in the title and abstract) to emphasize that this manuscript focuses on the metabolic regulation of lipid droplet assembly by Ldb16, to distinguish it from previous work. Perhaps one consideration, potentially interesting, involves changes in lipid droplet formation under the growth conditions used for galactose-mediated gene induction.

      We thank the reviewer for the supportive comments and suggestions.

      Comments: (1) Fig. 3 and 4. The galactose induction of lipid droplet biogenesis in are1∆/2∆ dga1∆ lro1∆ cells though activation of a GAL1 promoter fusion to DGA1 is a sound approach for regulating lipid droplet formation. Although unlikely, carbon sources can impact lipid droplet proliferation and (potentially interesting) metabolic changes under growth in non-fermentable carbon sources may impact lipid droplet biogenesis; in fact, oleate has significant effects (e.g. PMID: 21422231; PMID: 21820081). The GAL1 promoter is a very strong promoter and the overexpression of DGA1 via this heterologous promoter might itself cause unforeseen changes. Affirmation of the results using another induction system might be beneficial.

      We thank the reviewer for these suggestions. In this study we focused on the organisation of the yeast seipin complex during the process of LD formation. We chose to use galactose-based induction of Dga1 because this is a well-established and widely used assay in the field, extensively characterized by many groups over the years. The tight control it provides, enabling synchronous and rapid LD induction, makes it the method of choice for many researchers. Importantly, the LDs formed using this assay are morphologically normal and involve the same components as LDs formed under other conditions.

      Regarding the role of metabolism in LD formation, it is worth noting that galactose is metabolized by yeast primarily through fermentation, following its conversion to UDP-glucose. Therefore, its use does not involve drastic metabolic changes. The impact of metabolism in LD biogenesis is an interesting question but it falls beyond the scope of the current study.

      (2) Fig. 3B. Although only representative images are shown, the panel convincingly shows that lipid droplets do form upon galactose induction of DGA1 in are1∆/2∆ dga1∆ lro1∆ cells. However, it does not show to what extent. Are lipid droplets synthesized at WT levels? How many cells were counted? How many lipid droplets per cell? Is there a statistical difference with respect to WT cells?

      We did not assess these parameters in this study. The aim of the study was to assess the relations between components of the seipin complex with and without lipid droplets. For this purpose, inducing lipid droplet formation over a 4-hour period was sufficient to address that specific question. As mentioned above, LDs formed using this assay are morphologically normal and involve the same components as LDs formed under other conditions. This being said, it is known that prolonged overexpression of Dga1 (> 12hours) can lead to enlarged LDs.

      (3) Fig. 2D. It is not clear how standard deviation can be meaningfully applied to two data points, let alone providing a p-value. For some of these experiments, triplicate trials might provide a more robust statistical sampling.

      We thank the reviewer for this suggestion. We have added 2 more repeats to the Co-IP in figure 2.

      Reviewer #1 (Significance (Required)):

      Klug and Carvalho report on the lipid droplet architecture of the yeast seipin complex. Specifically, the mechanism of yeast seipin Sei1 binding to Ldo16 and the subsequent recruitment of Ldb45 is analyzed. These results follow from a recent publication (PMID: 34625558) from the same authors and aims to define a more precise role for the components of the seipin complex. Using photo-crosslinking, Ldo45 and Ldo16 interactions are analyzed in the context of lipid droplet assembly.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Klug and Carvalho apply a photo-crosslinking approach, which has been extensively used in the Carvalho group, to investigate the subunit interactions of the seipin complex in yeast. The authors apply this approach to further study possible changes within the seipin complex following induction of neutral lipid synthesis and lipid droplet (LD) formation. The authors propose that Ldo45 makes contact with Ldb16 and that the seipin complex subunits assemble even in the absence of LDs.

      Major comments:

      Overall, this is a focused and well-executed study on one of the fundamental structural components of LDs. The study addresses the subunit interactions of the seipin complex but does not look into their functional consequences, for example how the mutations on Ldb16 that affect its interaction with Ldo45, influence LD formation; similarly, the authors make the interesting observation that Ldo16 may be differentially affected by the lack of neutral lipids (Fig. 3A) but this observation is not explored.

      We thank the reviewer for this comment. The Ldb16 mutations analyzed in this study have been previously characterized by us (see Klug et al., 2021 – Figure 3) and exhibit a mild defect in lipid droplet (LD) formation. This phenotype is unlikely to result from impaired Ldo16/45 recruitment, as deletion of Ldo proteins causes only a very mild effect on LD formation (as shown in Teixeira et al., 2018 and Eisenberg-Bord et al., 2018).

      We agree that the differential effect on Ldo proteins by the absence of neutral lipids is particularly interesting. However, its exploration falls outside of the scope of the current study and should be thoroughly investigated in the future.

      1. For the crosslinking pull-downs (Fig. 1), it seems that the authors significantly overexpress (ADH1 promoter) the Ldb16 subunit that carries the various photoreactive amino acid residues, while keeping the other (tagged) seipin complex members at endogenous levels. Would not this imbalance affect the assembly of the complex and therefore the association of the different subunits with each other?

      We thank the reviewer for this comment. The in vivo site-specific crosslinking is highly sensitive methodology to detect protein-protein interactions in a position-dependent manner. However, one of the caveats of the approach is the low efficiency of amber stop codon suppression and BPA incorporation. To mitigate this limitation, we (and others) induce the expression of the amber-containing protein (in this case Ldb16) from a strong constitutive promoter such as ADH1. Therefore, despite using a strong promoter, the overall levels of LDB16 remain comparable to endogenous levels due to the inherently low efficiency of amber suppression. Moreover, it is known that when not bound to Sei1, Ldb16 is rapidly degraded in a proteasome dependent manner (Wang, C.W. 2014), further preventing its accumulation.

      Although the authors do show delta4 cells with no LDs (Fig. 3B, 0h), galactose-inducible systems in yeast are known to be leaky. Given that the authors' conclusion that the complex is "pre-assembled" irrespective of the addition of galactose, I think it would be important to confirm biochemically that there is no neutral lipid at time point 0. Alternatively, it may be better to simply compare wt vs dga1 lro1 or are1are2 mutants - there is no need for GAL induction since the authors look at one time point only.

      Among the various regulable promoters, GAL1 shows a superior level of control. For example, expression of essential genes from GAL1 promoter frequently leads to cell death in glucose containing media, a condition that represses GAL1 promoter. Having said this, we cannot exclude that minute amounts of DGA1 are expressed prior galactose induction. However, if this is the case, the resulting levels of TAG are insufficient to be detected by sensitive lipid dyes and to induce LDs, as noted by the reviewer. Therefore, we believe our conclusions remain valid. This is consistent that we use in the text, where we refer to LD formation rather than complete loss of neutral lipids. To make this absolutely clear we replaced the word “presence” to “abundance” in line 236.

      Lastly, we do not agree with the reviewer that using double mutants (are1/2 or dga1/lro1 mutants) would be sufficient since these mutations are not sufficient to abolish LD formation – a key aspect of this study. The GAL1 system allows us to monitor 2 time points in the same cells –no LDs (time 0h) and with LDs (Time 4h). The system proposed by the reviewer would only allow a snap shot of steady state levels in different cells rather than within the same cell culture.

      Some methodological issues could be better detailed. For example, which of the three delta4 strains was used to induce neutral lipid in Fig. 4B? How exactly were the quantifications in Fig. 4D performed (I assume they were done under non-saturating band intensity conditions, as for some residues it is difficult to conclude whether the blot aligns with the quantification results).

      We thank the reviewer for these comments. We have clarified the strain number in the figure legend of figure 4B (strain yPC12630).

      We have also added the following text in rows 437-441 in the methods section: “Reactive bands were detected by ECL (Western Lightning ECL Pro, Perkin Elmer #NEL121001EA), and visualized using an Amersham Imager 600 (GE Healthcare Life Sciences). Data quantification was performed using Image Studio software (Li-Cor) to measure line intensity under non saturating conditions.”

      "our findings support the notion that Ldo45 is important for early steps of LD formation as previously proposed" I find this statement confusing given that the authors claim that Ldo45 is already bound to the complex before LD formation.

      We thank the reviewer for raising this important point. We believe that our findings support previous hypotheses on the role of Ldo45. It has been suggested that Ldo45 is important for the early stages of lipid droplet (LD) formation (Teixeira et al., 2018; Eisenberg-Bord et al., 2018). As such, Ldo45 would need to be recruited to the seipin complex before or at the onset of LD formation. The observation that Ldo45 is present at the complex prior to LD formation provides strong support for its role in the initial steps of this process.

      To clarify this idea in the manuscript, we have revised the sentence on line 310 as follows:

      “Irrespective of the mechanism, our findings support the notion that Ldo45 plays a role in the early steps of LD formation, as previously proposed…”

      The model in Fig. 5 is essentially the same as the one shown in Fig. 1G.

      To aid the reader and avoid confusion, we intentionally used a similar color scheme throughout the manuscript. This may contribute to the perception that the figures are very similar. However, there are clear distinctions between them. In Figure 1G, we summarize our findings regarding the positioning of Ldo45 within the complex and note that we do not yet have data on Ldo16. Building upon these findings, in Figure 5 we speculate where Ldo16 might interact with Ldb16 and highlight that recruitment of both Ldo16 and Ldo45 increases with neutral lipid availability.

      Therefore, we believe that both figures serve distinct and complementary purposes, and that each is useful for communicating our overall message.

      Minor comments

      In the pull-downs in Fig. 2C, it seems that full-length Ldb16 is not enriched after the FLAG IP. What is the reason of this?

      We thank the reviewer for raising this interesting aspect. We do not know why this occurs, but it is clear that full length Ldb16 is not efficiently pulled down. We could speculate that this has to do with access to the FLAG moiety at the C terminus that may become inaccessible due to interactions or folding in the long unstructured C-terminus of Ldb16. This might explain why when we truncate the C terminus in the 1-133 mutant we achieve a more efficient IP.

      At the blots at Fig. 2C and 3A, the anti-Dpm1 Ab seems to recognize in the IP fractions a band labelled as non-specific, however this band is absent from the input.

      We thank the reviewer for raising this. This non-specific band is the light chain of the antibody used in the pull down that detaches from the matrix during elution – thus not found in the input. This is a common non-specific band that appears in Co-IP blots.

      Reviewer #2 (Significance (Required)):

      Regulation of seipin function is essential for proper LD biogenesis in eukaryotes, so this study addresses a fundamental question in the field. As stated above some functional analysis that goes beyond the biochemistry would be beneficial. There is some overlap with a recently published paper from the Wang group that also examines the assembly of seipin in yeast.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Klug and Carvalho investigates the interaction of the yeast seipin complex (Sei1 and Ldb16) with Ldo45 and Ldo16. Using a site-specific photocrosslinking approach, the authors map some residues of the seipin complex in contact Ldo45, demonstrating that Ldo45 likely binds to Ldb16 in the center of the Sei1-Ldb16 complex. They find that both Ldo45 and Ldo16 copurify with Ldb16. Complex assembly is demonstrated to occur independently of the presence of neutral lipids. An Ldb16 mutant, harbouring the transmembrane domain (1-133) but lacking the cytosolic region (previously shown to allow normal LD formation and still bind to Sei1) showed photocrosslinks with Ldo45, but not Ldo16. No crosslinks between Sei1 and either Ldo45 or Ldo16 were detected.

      Major: 1. Figure 2 shows CoIPs using different Ldb16 mutants/truncations to test for binding of Ldo45 and Ldo16. Both Ldo16 and Ldo45 copurify with full length Ldb16. Loss of the cytosolic part of Ldb16 strongly reduced binding of both Ldo45 and Ldo16, indicating that the TM-Helix-TM domain of Ldb16 (1-133) alone is not sufficient for proper binding of Ldo45 or Ldo16. The quantifications (2D and 2E) presented for this CoIP represent a n=2 with mean, standard deviation and statistics. To be a meaningful statistical analysis, the authors need to increase their n to at least n=3. In addition, they refer to the statistics they use here as "two-sided Fischer's T-test" in the respective Figure legend. To my knowledge, there is no such test, either it is Student's T-test or Fischer's exact test? Can the authors please clarify?

      We thank the reviewer for this comment and suggestions. We have now included 2 additional repeats for this experiment and the results essentially support our conclusion.

      The two-sided Fischer’s T-test is the name of the test in Graphpad- Prism. We wanted to acknowledge the test name so that the reader can trace the exact test we used in the program.

      1. Figure 2E shows the same data as 2D with different normalization to highlight the differences between binding to the domain 1-133 per se and binding to this domain when the linker helix is mutated. These mutations seem to cause a further decrease in binding of both Ldo45 and Ldo16. Still, effects are rather small, and the n=2 does not allow any meaningful statistical tests. To make this point, the authors should increase their sample number (at least n=3) to show that this difference is indeed meaningful and to allow statistical analysis.

      We thank the reviewer for this comment and suggestions. We have now included 2 additional repeats for this experiment and the results essentially support our conclusion.

      For Ldo16, no crosslinks were detected with Ldb16 TM-HelixTM domain (Figure 1). In line, CoIP demonstrated that the interaction between Ldo16 and Ldb16 was strongly reduced when the Ldb16 domain 1-133 was used for IP. Still, additional mutation of the linker helix in this 1-133 domain further reduced this interaction (to a similar extend as for Ldo45). Could the authors please clarify why the additional mutations in the linker helix region also decreased the binding of Ldo16, though the authors conclude from their crosslinking approach in Fig. 1 that Ldo16 does not interact with this region?

      We thank the reviewer for raising this point. Our negative crosslinking results for Ldo16 do not exclude the possibility of binding to that region; rather, they indicate that we were unable to detect Ldo16 there. Additionally, mutations in the linker helix may influence how Ldb16 interacts with seipin, including its positioning within the seipin ring and the membrane bilayer. These structural changes could, in turn, affect Ldo16 recruitment in ways that we do not fully understand.

      Similarly, also in 4D, a quantification with n=2 is presented, showing that some of the crosslinks are more prominently detectable when LD biogenesis is induced. The findings of this manuscript are completely based on results obtained with CoIP and photocrosslinking, and quantification of a sufficient n to allow statistical analysis will be essential.

      While we agree that additional experiments are useful for the Co-IP because of variability between experiments, this is less of a concern for the photocrosslinking experiments. In the case of photocrosslinking, we typically see much less variability and normally, for a given position, the effects are much more “black and white”- either there is a crosslink or not.

      Why is there nowhere a blot with crosslinked Ldb16 bands shown (but only non-crosslinked Ldb16, e.g. Fig. 1C)?

      We thank the reviewer for this comment. In all cases the amount of crosslinked product is very minor. This is particularly obvious in the case of Ldb16, where the non-crosslinked species dominates in the blots (as can be observed in figure S1B).

      Figure 3: The authors conclude that galactose-induced expression of either Dga1, Lro1 or Are1 in cells lacking all four enzymes for neutral lipid synthesis (quadruple deletion mutant) increases the levels of Ldb16. However, I do not see any difference on the FLAG-Ldb16 blot when comparing Ldb16 levels in the quadruple deletion mutant with or without Dga1, Lro1 or Are1, and no quantification is presented that might reveal very subtle differences not visible on the blot.

      We agree with the reviewer and modified the text to more accurately describe our results.

      OPTIONAL: Have the authors considered to assess which sites/domains of Ldo45 and Ldo16 are employed to bind to Ldb16?

      This is a logical next step that will be undertaken in a future study.

      Minor: 1. Page numbers would have been helpful to refer to specific text sections.

      Page numbers have been added

      1. Figure 3C: Unclear to me why the authors label a part of their immunoblot where they detected HA with OSW5?

      This was a mistake and has been corrected

      1. Figure 4D and corresponding figure legend could be improved in respect to labeling to clarify.

      we have added an X axis label and made extra clarifications in the legend

      1. Please correct his sentence: "These variants we expressed in cells where the other subunits of the Sei1 complex were epitope tagged to facilitate detection and expressed their endogenous loci."

      This sentence has been corrected

      Reviewer #3 (Significance (Required)):

      This is a short and interesting study completely based on UV-induced site-specific photocrosslinking and CoIPs that provides some new insights into the interaction surface between the Seipin complex and Ldo45 and the interaction between Ldo16 and Ldb16. Though in parts still premature, these findings will likely be of interest to the large community interested in lipid metabolism, expanding the role of Ldb16 from neutral lipid binding to regulator recruitment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Phytophathogens including fungal pathogens such as F. graminearum remain a major threat to agriculture and food security. Several agriculturally relevant fungicides including the potent Quinofumelin have been discovered to date, yet the mechanisms of their action and specific targets within the cell remain unclear. This paper sets out to contribute to addressing these outstanding questions.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The paper is generally well-written and provides convincing data to support their claims for the impact of Quinofumelin on fungal growth, the target of the drug, and the potential mechanism. Critically the authors identify an important pyrimidine pathway dihydroorotate dehydrogenase (DHODH) gene FgDHODHII in the pathway or mechanism of the drug from the prominent plant pathogen F. graminearum, confirming it as the target for Quinofumelin. The evidence is supported by transcriptomic, metabolomic as well as MST, SPR, molecular docking/structural biology analyses.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Whilst the study adds to our knowledge about this drug, it is, however, worth stating that previous reports (although in different organisms) by Higashimura et al., 2022 https://pmc.ncbi.nlm.nih.gov/articles/PMC9716045/ had already identified DHODH as the target for Quinofumelin and hence this knowledge is not new and hence the authors may want to tone down the claim that they discovered this mechanism and also give sufficient credit to the previous authors work at the start of the write-up in the introduction section rather than in passing as they did with reference 25? other specific recommendations to improve the text are provided in the recommendations for authors section below.

      We appreciate the reviewer's suggestion. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of previous work on quinofumelin by Higashimura et al., 2022 in the discussion section to more effectively contextualize their contributions. Moreover, we have made revisions and provided responses in accordance with the recommendations.

      Reviewer #2 (Public review):

      Summary:

      In the current study, the authors aim to identify the mode of action/molecular mechanism of characterized a fungicide, quinofumelin, and its biological impact on transcriptomics and metabolomics in Fusarium graminearum and other Fusarium species. Two sets of data were generated between quinofumelin and no treatment group, and differentially abundant transcripts and metabolites were identified. The authors further focused on uridine/uracil biosynthesis pathway, considering the significant up- and down-regulation observed in final metabolites and some of the genes in the pathways. Using a deletion mutant of one of the genes and in vitro biochemical assays, the authors concluded that quinofumelin binds to the dihydroorotate dehydrogenase.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      Omics datasets were leveraged to understand the physiological impact of quinofumelin, showing the intracellular impact of the fungicide. The characterization of FgDHODHII deletion strains with supplemented metabolites clearly showed the impact of the enzyme on fungal growth.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Some interpretation of results is not accurate and some experiments lack controls. The comparison between quinofumelin-treated deletion strains, in the presence of different metabolites didn't suggest the fungicide is FgDHODHII specific. A wild type is required in this experiment.

      Potential Impact: Confirming the target of quinofumelin may help understand its resistance mehchanism, and further development of other inhibitory molecules against the target.

      The manuscript would benefit more in explaining the study rationale if more background on previous characterization of this fungicide on Fusarium is given.

      We appreciate the reviewer's suggestion. Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil. In our previous study, quinofumelin not only exhibited excellent antifungal activity against the mycelial growth and spore germination of F. graminearum, but also inhibited the biosynthesis of deoxynivalenol (DON). We have added this part to the introduction section.

      Reviewer #3 (Public review):

      Summary:

      The manuscript shows the mechanism of action of quinofumelin, a novel fungicide, against the fungus Fusarium graminearum. Through omics analysis, phenotypic analysis, and in silico approaches, the role of quinofumelin in targeting DHODH is uncovered.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The phenotypic analysis and mutant generation are nice data and add to the role of metabolites in bypassing pyrimidine biosynthesis.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      The role of DHODH in this class of fungicides has been known and this data does not add any further significance to the field. The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      There is no mention of the other fungicide within this class ipflufenoquin, as there is ample data on this molecule.

      We appreciate the reviewer's suggestion. We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions. The information regarding action mechanism of ipflufenoquin against filamentous fungi was added in discussion section.

      Reviewer #1 (Recommendations for the authors):

      (1) Given that the DHODH gene had been identified as a target earlier, could the authors perform blast experiments with this gene instead and let us know the percentage similarity between the FgDHODHII gene and the Pyricularia oryzae class II DHODH gene in the report by Higashimura et al., 2022.

      BLAST experiment revealed that the percentage similarity between the FgDHODHII gene and the class II DHODH gene of P. oryzae was 55.41%. We have added the description ‘Additionally, the amino acid sequence of the FgDHODHII exhibits 55.41% similarity to that of DHODHII from Pyricularia oryzae, as previously reported (Higashimura et al., 2022)’ in section Results.

      (2) Abstract:

      The authors started abbreviating new terms e.g. DEG, DMP, etc but then all of a sudden stopped and introduced UMP with no full meaning of the abbreviation. Please give the full meaning of all abbreviations in the text, UMP, STC, RM, etc.

      We have provided the full meaning for all abbreviations as requested.

      (3) Introduction section:

      The introduction talks very little about the work of other groups on quinofumelin. Perhaps add this information in and reference them including the work of Higashimura et al., 2022 which has done quite significant work on this topic but is not even mentioned in the background

      We have added the work of other groups on quinofumelin in section introduction.

      (4) General statements:

      Please show a model of the pyrimidine pathway that quinofumelin attacks to make it easier for the reader to understand the context. They could just copy this from KEGG

      We have added the model (Fig. 7).

      (5) Line 186:

      The authors did a great job of demonstrating interactions with the Quinofumelin and went to lengths to perform MST, SPR, molecular docking, and structural biology analyses yet in the end provide no details about the specific amino acid residues involved in the interaction. I would suggest that site-directed mutagenesis studies be performed on FgDHODHII to identify specific amino acid residues that interact with Quinofumelin and show that their disruption weakens Quinofumelin interaction with FgDHODHII.

      Thank you for this insightful suggestion. We fully agree with the importance of elucidating the interaction mechanism. At present, we are conducting site-directed mutagenesis studies based on interaction sites from docking results and the mutation sites of FgDHODHII from the resistant mutants; however, due to the limitations in the accuracy of existing predictive models, this work remains ongoing. Additionally, we are undertaking co-crystallization experiments of FgDHODHII with quinofumelin to directly and precisely reveal their interaction pattern

      (6) Line 76:

      What is the reference or evidence for the statement 'In addition, quinofumelin exhibits no cross-resistance to currently extensively used fungicides, indicating its unique action target against phytopathogenic fungi.

      If two fungicides share the same mechanism of action, they will exhibit cross resistance. Previous studies have demonstrated that quinofumelin retains effective antifungal activity against fungal strains resistant to commercial fungicides, indicating that quinofumelin does not exhibit cross-resistance with other commercially available fungicides and possesses a novel mechanism of action. Additionally, we have added the relevant inference.

      (7) Line 80-82:

      Again, considering the work of previous authors, this target is not newly discovered. Please consider toning down this statement 'This newly discovered selective target for antimicrobial agents provides a valuable resource for the design and development of targeted pesticides.'

      We have rewritten the description of this sentence.

      (8) Line 138: If the authors have identified DHODH in experimental groups (I assume in F. graminearum), what was the exact locus tag or gene name in F. graminearum, and why not just continue with this gene you identified or what is the point of doing a blast again to find the gene if the DHODH gene if it already came up in your transcriptomic or metabolic studies? This unfortunately doesn't make sense but could be explained better.

      The information of FgDHODHII (gene ID: FGSG_09678) has been added. We have revised this part.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 40:

      Please add a reference.

      We have added the reference

      (2) Line 47:

      Please add a reference.

      We have added the reference.

      (3) Line 50:

      The lack of target diversity in existing fungicides doesn't necessarily serve as a reason for discovering new targets being more challenging than identifying new fungicides within existing categories, please consider adjusting the argument here. Instead, the authors can consider reasons for the lack of new targets in the field.

      We have revised the description.

      (4) Line 63:

      Please cite your source with the new technology.

      We have added the reference.

      (5) Line 68:

      What are you referring to for "targeted medicine", do you have a reference?

      We have revised the description and the reference.

      (6) Line 74:

      One of the papers referred to "quinoxyfen", what are the similarities and differences between the two? Please elaborate for the readership.

      Quinoxyfen, similar to quinofumelin, contains a quinoline ring structure. It inhibits mycelial growth by disrupting the MAP kinase signaling pathway in fungi (https://www.frac.info). In addition, quinoxyfen still exhibits excellent antifungal activity against the quinofumelin-resistant mutants (the findings from our group), indicating that action mechanism for quinofumelin and quinoxyfen differ.

      (7) Line 84:

      Please introduce why RNA-Seq was designed in the study first. What were the groups compared? How was the experiment set up? Without this background, it is hard to know why and how you did the experiment.

      According to your suggestions, we have added the description in Section Results. In addition, the experimental process was described in Section Materials and methods as follows: A total of 20 mL of YEPD medium containing 1 mL of conidia suspension (1×105 conidia/mL) was incubated with shaking (175 rpm/min) at 25°C. After 24 h, the medium was added with quinofumelin at a concentration of 1 μg/mL, while an equal amount of dimethyl sulfoxide was added as the control (CK). The incubation continued for another 48 h, followed by filtration and collection of hyphae. Carry out quantitative expression of genes, and then analyze the differences between groups based on the results of DESeq2 for quantitative expression.

      (8) Figures:

      The figure labeling is missing (Figures 1,2,3 etc). Please re-order your figure to match the text

      The figures have been inserted.

      (9) Line. 97:

      "Volcano plot" is a common plot to visualize DEGs, you can directly refer to the name.

      We have revised the description.

      (10) Figure 1d, 1e:

      Can you separate down- and up-regulated genes here? Does the count refer to gene number?

      The expression information for down- and up-regulated genes is presented in Figure 1a and 1b. However, these bubble plots do not distinguish down- and up-regulated genes. Instead, they only display the significant enrichment of differentially expressed genes in specific metabolic pathways. To more clearly represent the data, we have added the detailed counts of down- and up-regulated genes for each metabolic pathway in Supplementary Table S1 and S2. Here, the term "count" refers to differentially expressed genes that fall within a certain pathway.

      (11) Line 111:

      Again, no reasoning or description of why and how the experiment was done here.

      Based on the results of KEGG enrichment analysis, DEMs are associated with pathways such as thiamine metabolism, tryptophan metabolism, nitrogen metabolism, amino acid sugar and nucleotide sugar metabolism, pantothenic acid and CoA biosynthesis, and nucleotide sugar production compounds synthesis. To specifically investigate the metabolic pathways involved action mechanism of quinofumelin, we performed further metabolomic experiments. Therefore, we have added this description according the reviewer’s suggestions.

      (12) Figure 2a:

      It seems many more metabolites were reduced than increased. Is this expected? Due to the antifungal activity of this compound, how sick is the fungus upon treatment? A physiological study on F. graminearum (in a dose-dependent manner) should be done prior to the omics study. Why do you think there's a stark difference between positive and negative modes in terms of number of metabolites down- and up-regulated?

      Quinofumelin demonstrates exceptional antifungal activity against Fusarium graminearum. The results indicate that the number of reduced metabolites significantly exceeds the number of increased metabolites upon quinofumelin treatment. Mycelial growth is markedly inhibited under quinofumelin exposure. Prior to conducting omics studies, we performed a series of physiological and biochemical experiments (refer to Qian Xiu's dissertation https://paper.njau.edu.cn/openfile?dbid=72&objid=50_49_57_56_49_49&flag=free). Upon quinofumelin treatment, the number of down-regulated metabolites notably surpasses that of up-regulated metabolites compared to the control group. Based on the findings from the down-regulated metabolites, we conducted experiments by exogenously supplementing these metabolites under quinofumelin treatment to investigate whether mycelial growth could be restored. The results revealed that only the exogenous addition of uracil can restore mycelial growth impaired by quinofumelin.

      Quinofumelin exhibits an excellent antifungal activity against F. graminearum. At a concentration of 1 μg/mL, quinofumelin inhibits mycelial growth by up to 90%. This inhibitory effect indicates that life activities of F. graminearum are significantly disrupted by quinofumelin. Consequently, there is a marked difference in down- and up-regulated metabolites between quinofumelin-treated group and untreated control group. The detailed results were presented in Figures 1 and 2.

      (13) Figure 2e:

      This is a good analysis. To help represent the data more clearly, the authors can consider representing the expression using fold change with a p-value for each gene.

      To more clearly represent the data, we have incorporated the information on significant differences in metabolites in the de novo pyrimidine biosynthesis pathway, as affected by quinofumelin, in accordance with the reviewer’s suggestions.

      (14) Line 142:

      Please indicate fold change and p-value for statistical significance. Did you validate this by RT-qPCR?

      We validated the expression level of the DHODH gene under quinofumelin treatment using RT-qPCR. The results indicated that, upon treatment with the EC50 and EC90 concentrations of quinofumelin, the expression of the DHODH gene was significantly reduced by 11.91% and 33.77%, respectively (P<0.05). The corresponding results have been shown in Figure S4.

      (15) Line 145:

      It looks like uracil is the only metabolite differentially abundant in the samples - how did you conclude this whole pathway was impacted by the treatment?

      The experiments involving the exogenous supplementation of uracil revealed that the addition of uracil could restore mycelial growth inhibited by quinofumelin. Consequently, we infer that quinofumelin disrupts the de novo pyrimidine biosynthesis pathway. In addition, as uracil is the end product of the de novo pyrimidine biosynthesis pathway, the disruption of this pathway results in a reduction in uracil levels.

      (16) Figure 3:

      What sequence was used as the root of the tree? Why were the species chosen? Since the BLAST query was Homo sapiens sequence, would it be good to use that as the root?

      FgDHODHII sequence was used as the root of the tree. These selected fungal species represent significant plant-pathogenic fungi in agriculture production. According to your suggestion, we have removed the BLAST query of Homo sapiens in Figure 3.

      (17) Figure 4:

      How were the concentrations used to test chosen?

      Prior to this experiment, we carried out concentration-dependent exogenous supplementation experiments. The results indicated that 50 μg/mL of uracil can fully restore mycelial growth inhibited by quinofumelin. Consequently, we chose 50 μg/mL as the testing concentration.

      (18) Line 164:

      Why do you hypothesize supplementing dihydroorotate would restore resistance? The metabolite seemed accumulated in the treatment condition, whereas downstream metabolites were comparable or even depleted. The DHODH gene expression was suppressed. Would accumulation of dihydroorotate be associated with growth inhibition by quinofumelin? Please include the hypothesis and rationale for the experimental setup.

      DHODH regulates the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthesis pathway. The inhibition of DHODH by quinofumelin results in the accumulation of dihydroorotate and the depletion of the downstream metabolites, including UMP, uridine and uracil. Consequently, downstream metabolites were considered as positive controls, while upstream metabolite dihydroorotate served as a negative control. This design further demonstrates DHODH as action target of quinofumelin against F. graminearum. In addition, the accumulation of dihydroorotate is not associated with growth inhibition by quinofumelin; however, but the depletion of downstream metabolites in the de novo pyrimidine biosynthesis pathway is closely associated with growth inhibition by quinofumelin.

      (19) Line 168:

      I'm not sure if this conclusion is valid from your results in Figure 4 showing which metabolites restore growth.

      o minimize the potential influence of strain-specific effects, five strains were tested in the experiments shown in Figure 4. For each strain, the first row (first column) corresponds to control condition, while second row (first column) represents treatment with 1 μg/mL of quinofumelin, which completely inhibits mycelial growth. The second row (second column) for each strain represents the supplementation with 50 μg/mL of dihydroorotate fails to restore mycelial growth inhibited by quinofumelin. In contrast, the second row (third column, fourth column, fifth colomns) for each strain demonstrated that the supplementation of 50 μg/mL of UMP, uridine and uracil, respectively, can effectively restore mycelial growth inhibited by quinofumelin.

      (20) Figure 5a:

      The fact you saw growth of the deletion mutant means it's not lethal. However, the growth was severely inhibited.

      Our experimental results indicate that the growth of the deletion mutant is lethal. The mycelial growth observed originates from mycelial plugs that were not exposed to quinofumelin, rather than from the plates amended with quinofumelin.

      (21) Figure 5b:

      Would you expect different restoration of growth in the presence of quinofumelin vs. no treatment? The wild type control is missing here. Any conclusions about the relationship between quinofumelin, FgDHODHII, and other metabolites in the pathway?

      Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil.

      (22) Figure 6b:

      Lacking positive and negative controls (known binder and non-binder). What does the Kd (in comparison to other interactions) indicate in terms of binding strength?

      We tested the antifungal activities of publicly reported DHODH inhibitors (such as leflunomide and teriflunomide) against F. graminearum. The results showed that these inhibitors exhibited no significant inhibitory effects against the strain PH-1. Therefore, we lacked an effective chemical for use as a positive control in subsequent experiments. Biacore experiments offers detailed insights into molecular interactions between quinofumelin and DHODHII. As shown in Figure 6b, the left panel illustrates the time-dependent kinetic curve of quinofumelin binding to DHODHII. Within the first 60 s after quinofumelin was introduced onto the DHODHII surface, it bound to the immobilized DHODHII on the chip surface, with the response value increasing proportionally to the quinofumelin concentration. Following cessation of the injection at 60 s, quinofumelin spontaneously dissociated from the DHODHII surface, leading to a corresponding decrease in the response value. The data fitting curve presented on the right panel indicates that the affinity constant KD of quinofumelin for DHODHII is 6.606×10-6 M, which falls within the typical range of KD values (10-3 ~ 10-6 M) for protein-small molecule interaction patterns. A lower KD value indicates a stronger affinity; thus, quinofumelin exhibits strong binding affinity towards DHODHII.

      Reviewer #3 (Recommendations for the authors):

      The authors should add information about the other molecule within this class, ipflufenoquin, and what is known about it. There are already published data on its mode of action on DHODH and the role of pyrimidine biosynthesis.

      We have added the information regarding action mechanism of ipflufenoquin against filamentous fungi in discussion section.

      The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions.

      It is unclear how the protein model was established and this should be included. What species is the molecule from and how was it obtained? How are they different from Fusarium?

      The three-dimensional structural model of F. graminearum DHODHII protein, as predicted by AlphaFold, was obtained from the UniProt database. Additionally, a detailed description along with appropriate citations has been incorporated in the ‘Manuscript’ file.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript provides an initial characterization of three new missense variants of the PLCG1 gene associated with diverse disease phenotypes, utilizing a Drosophila model to investigate their molecular effects in vivo. Through the meticulous creation of genetic tools, the study assesses the small wing (sl) phenotype - the fly's ortholog of PLCG1 - across an array of phenotypes from longevity to behavior in both sl null mutants and variants. The findings indicate that the Drosophila PLCG1 ortholog displays aberrant functions. Notably, it is demonstrated that overexpression of both human and Drosophila PLCG1 variants in fly tissue leads to toxicity, underscoring their pathogenic potential in vivo.

      Strengths:

      The research effectively highlights the physiological significance of sl in Drosophila. In addition, the study establishes the in vivo toxicity of disease-associated variants of both human PLCG1 and Drosophila sl.

      Weaknesses:

      The study's limitations include the human PLCG1 transgene's inability to compensate for the Drosophila sl null mutant phenotype, suggesting potential functional divergence between the species. This discrepancy signals the need for additional exploration into the mechanistic nuances of PLCG1 variant pathogenesis, especially regarding their gain-of-function effects in vivo.

      Overall:

      The study offers compelling evidence for the pathogenicity of newly discovered disease-related PLCG1 variants, manifesting as toxicity in a Drosophila in vivo model, which substantiates the main claim by the authors. Nevertheless, a deeper inquiry into the specific in vivo mechanisms driving the toxicity caused by these variants in Drosophila could significantly enhance the study's impact.

      Reviewer #2 (Public Review):

      The manuscript by Ma et al. reports the identification of three unrelated people who are heterozygous for de novo missense variants in PLCG1, which encodes phospholipase C-gamma 1, a key signaling protein. These individuals present with partially overlapping phenotypes including hearing loss, ocular pathology, cardiac defects, abnormal brain imaging results, and immune defects. None of the patients present with all of the above phenotypes. PLCG1 has also been implicated as a possible driver for cell proliferation in cancer.

      The three missense variants found in the patients result in the following amino acid substitutions: His380Arg, Asp1019Gly, and Asp1165Gly. PLCG1 (and the closely related PLCG2) have a single Drosophila ortholog called small wing (sl). sl-null flies are viable but have small wings with ectopic wing veins and supernumerary photoreceptors in the eye. As all three amino acids affected in the patients are conserved in the fly protein, in this work Ma et al. tested whether they are pathogenic by expressing either reference or patient variant fly or human genes in Drosophila and determining the phenotypes produced by doing so.

      Expression in Drosophila of the variant forms of PLCG1 found in these three patients is toxic; highly so for Asp1019Gly and Asp1165Gly, much more modestly for His380Arg. Another variant, Asp1165His which was identified in lymphoma samples and shown by others to be hyperactive, was also found to be toxic in the Drosophila assays. However, a final variant, Ser1021Phe, identified by others in an individual with severe immune dysregulation, produced no phenotype upon expression in flies.

      Based on these results, the authors conclude that the PLCG1 variants found in patients are pathogenic, producing gain-of-function phenotypes through hyperactivity. In my view, the data supporting this conclusion are robust, despite the lack of a detectable phenotype with Ser1021Phe, and I have no concerns about the core experiments that comprise the paper.

      Figure 6, the last in the paper, provides information about PLCG1 structure and how the different variants would affect it. It shows that the His380, Asp1019, and Asp1165 all lie within catalytic domains or intramolecular interfaces and that variants in the latter two affect residues essential for autoinhibition. It also shows that Ser1021 falls outside the key interface occupied by Asp1019, but more could have been said about the potential effects of Ser1021Phe.

      Overall, I believe the authors fully achieved the aims of their study. The work will have a substantial impact because it reports the identification of novel disease-linked genes, and because it further demonstrates the high value of the Drosophila model for finding and understanding gene-disease linkages.

      Reviewer #3 (Public Review):

      Summary:

      The paper attempts to model the functional significance of variants of PLCG2 in a set of patients with variable clinical manifestations.

      Strengths:

      A study attempting to use the Drosophila system to test the function of variants reported from human patients.

      Weaknesses:

      Additional experiments are needed to shore up the claims in the paper. These are listed below.

      Major Comments:

      (1) Does the pLI/ missense constraint Z score prediction algorithm take into consideration whether the gene exhibits monoallelic or biallelic expression?

      To our knowledge, pLI and missense Z don't consider monoallelic or biallelic expression. Instead, they reflect sequence constraint and are calculated based on the observed versus expected variant frequencies in population databases.

      (2) Figure 1B: Include human PLCG2 in the alignment that displays the species-wide conserved variant residues.

      We have updated Figure 1B and incorporated the alignment of PLCG2.

      (3) Figure 4A:

      Given that

      (i) sl is predicted to be the fly ortholog for both mammalian PLCγ isozymes: PLCG1 and PLCG2 [Line 62]

      (ii) they are shown to have non-redundant roles in mammals [Line 71]

      (iii) reconstituting PLCG1 is highly toxic in flies, leading to increased lethality.

      This raises questions about whether sl mutant phenotypes are specifically caused by the absence of PLCG1 or PLCG2 functions in flies. Can hPLCG2 reconstitution in sl mutants be used as a negative control to rule out the possibility of the same?

      The studies about the non-redundant roles of PLCG1 and PLCG2 mainly concern the immune system.

      We have assessed the phenotypes in the sl<sup>T2A</sup>/Y; UAS-hPLCG2 flies. Expression of human PLCG2 in flies is also toxic and leads to severely reduced eclosion rate.

      We have updated the manuscript with these results, and included the eclosion rate of sl<sup>T2A</sup>/Y; UAS-hPLCG2 flies in the new Figure 4B.

      (4) Do slT2A/Y; UAS-PLCG1Reference flies survive when grown at 22{degree sign}C? Since transgenic fly expressing PLCG1 cDNA when driven under ubiquitous gal4s, Tubulin and Da, can result in viable progeny at 22{degree sign}C, the survival of slT2A/Y; UAS-PLCG1Reference should be possible.

      The eclosion rate of sl<sup>T2A</sup>/Y >PLCG1<sup>Reference</sup> flies at 22°C is slightly higher than at 25°C, but remains severely reduced compared to the UAS-Empty control. We have presented these results in the updated Figure S3.

      and similarly

      Does slT2A flies exhibit the phenotypes of (i) reduced eclosion rate (ii) reduced wing size and ectopic wing veins and (iii) extra R7 photoreceptor in the fly eye at 22{degree sign}C?

      The mutant phenotypes are still observed at 22 °C.

      If so, will it be possible to get a complete rescue of the slT2A mutant phenotypes with the hPLCG1 cDNA at 22{degree sign}C? This dataset is essential to establish Drosophila as an ideal model to study the PLCG1 de novo variants.

      Thank you for the suggestion. It is difficult to directly assess the rescue ability of the PLCG1 cDNAs due to the toxicity. However, our ectopic expression assays show that the variants are more toxic than the reference with variable severities, suggesting that the variants are deleterious.

      The ectopic expression strategy has been used to evaluate the consequence of genetic variants and has significantly contributed to the interpretation of their pathogenicity in many cases (reviewed in Her et al., Genome, 2024, PMID: 38412472).

      (5) Localisation and western blot assays to check if the introduction of the de novo mutations can have an impact on the sub-cellular targeting of the protein or protein stability respectively.

      Thank you for the suggestion.

      We expressed PLCG1 cDNAs in the larval salivary glands and performed antibody staining (rabbit anti-Human PLCG1; 1:100, Cell Signaling Technology, #5690). The larval salivary gland are composed of large columnar epithelia cells that are ideal for analyzing subcellular localization of proteins. The PLCG1 proteins are cytoplasmic and localize near the cell surface, with some enrichment in the plasma membrane region. The variant proteins are detected, and did not show significant difference in expression level or subcellular distribution compared to the reference. We did not include this data.

      (6) Analysing the nature of the reported gain of function (experimental proof for the same is missing in the manuscript) variants:

      Instead of directly showing the effect of introducing the de novo variant transgenes in the Drosophila model especially when the full-length PLCG1 is not able to completely rescue the slT2A phenotype;

      (i) Show that the gain-of-function variants can have an impact on the protein function or signalling via one of the three signalling outputs in the mammalian cell culture system: (i) inositol-1,4,5-trisphosphate production, (ii) intracellular Ca2+ release or (iii) increased phosphorylation of extracellular signal-related kinase, p65, and p38.

      We appreciate the reviewer’s suggestion. We utilized the CaLexA (calcium-dependent nuclear import of LexA) system (Masuyama et al., J Neurogenet, 2012, PMID: 22236090) to assess the intracellular Ca<sup>2+</sup> change associated with the expression of PLCG1 cDNAs in fly wing discs. The results show that, compared to the reference, expression of the D1019G or D1165G variants leads to elevated intracellular Ca<sup>2+</sup> levels, similar to the hyperactive S1021F and D1165H variants. However, the H380R or L597F variants did not show a detectable phenotype in this assay. These results suggest that D1019G and D1165G are hyperactive variants, whereas H380R and L597F variant are not, or their effect is too mild to be detected in this assay. We have updated the related sections in the manuscript and Figures 5A and S5.

      OR

      (ii) Run a molecular simulation to demonstrate how the protein's auto-inhibited state can be disrupted and basal lipase activity increased by introducing D1019G and D1165G, which destabilise the association between the C2 and cSH2 domains. The H380R variant may also exhibit characteristics similar to the previously documented H335A mutation which leaves the protein catalytically inactive as the residue is important to coordinate the incoming water molecule required for PIP2 hydrolysis.

      We utilized the DDMut platform, which predicts changes in the Gibbs Free Energy (ΔΔG) upon single and multiple point mutations (Zhou et al., Nucleic Acid Res, 2023, PMID: 37283042), to gain insight into the molecular dynamics changes of variants. The results are now presented in Figure S7.

      Additionally, we performed Molecular dynamics (MD) simulations. The results show that, similar to the hyperactive D1165H variant, the D1019G and D11656G variants exhibit increased disorganization, with a higher root mean square deviations (RMSD) compared to the reference PLCG1.The data are also presented in the updated Figure S7.

      (7) Clarify the reason for carrying out the wing-specific and eye-specific experiments using nub-gal4 and eyless-gal4 at 29˚C despite the high gal4 toxicity at this temperature.

      We used high temperature and high expression level to see if the mild H380R and L597F variants could show phenotypes in this condition.

      The toxicity of the two strong variants (D1019G and D1165G) has been consistently confirmed in multiple assays at different temperatures.

      (8) For the sake of completeness the authors should also report other variants identified in the genomes of these patients that could also contribute to the clinical features.

      Thank you!

      The additional variants and their potential contributions to the clinical features are listed and discussed in Table 1 and its legend.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript's significant contribution is tempered by a lack of comprehensive analysis using the generated genetic reagents in Drosophila. To enhance our understanding of the PLCG1 orthologs, I suggest the following:

      (1) A more detailed molecular analysis to distinguish the actions of sl variants from the wild-type could be very informative. For example, utilizing the HA-epitope tag within the current UAS-transgenes could reveal more about the cellular dynamics and abundance of these variants, potentially elucidating mechanisms beyond gain-of-function.

      We appreciate the reviewer’s suggestion. The UAS-sl cDNA constructs contain stop codon and do not express an HA-epitope tag. Alternatively, we utilized commercially available antibodies against human PLCG1 antibodies to assess the subcellular localization and protein stability by expressing the reference and variant PLCG1 cDNAs in Drosophila larval salivary glands. The reference proteins are cytoplasmic with some enrichment along the plasma membrane. However, we did not observe significant differences between the reference and variant proteins in this assay. We did not include this data.

      (2) I suggest further investigating the relative contributions of developmental processes and acute (Adult) effects on the sl-variant phenotypes observed. For example, employing systems that allow for precise temporal control of gene expression, such as the temperature-sensitive Gal80, could differentiate between these effects, shedding light on the mechanisms that affect longevity and locomotion. This knowledge would be vital for a deeper understanding of the corresponding human disorders and for developing therapeutic interventions.

      We appreciate the reviewer’s suggestion. We utilized Tub-GAL4, Tub-GAL80<sup>ts</sup> to drive the expression of sl wild-type or variant cDNAs, and performed temperature shifts after eclosion to induce expression of the cDNAs only in adult flies. The sl<sup>D1184G</sup> variant (corresponding to PLCG1<sup>D1165G</sup>) caused severely reduced lifespan and the flies mostly die within 10 days. The sl<sup>D1041G</sup> variant (corresponding to PLCG1<sup>D1019G</sup>) led to reduced longevity and locomotion. The sl<sup>H384R</sup> variant (corresponding to PLCG1<sup>H380R</sup>) showed only a mild effect on longevity and no significant effect on climbing ability. These results suggest that the two strong variants (sl<sup>D1041G<sup> and sl<sup>D1184G</sup>) contribute to both developmental and acute effects while the H384R variant mainly contributes to developmental stages.

      I also suggest a more refined analysis of overexpression toxicity. Rather than solely focusing on ubiquitous transgene expression, overexpressing transgene in endogenous pattern using sl-t2a-Gal4 may yield a more nuanced understanding of the pathogenic mechanisms of gain-of-function mutations, particularly in the pathogenesis associated with these variants exclusively located in the coding regions.

      We appreciate the reviewer’s suggestion. We therefore performed the experiments using sl<sup>T2A</sup> to drive overexpression ofPLCG1cDNAs in heterozygous female progeny with one copy of wild-type sl+ (sl<sup>T2A</sup>/ yw > UAS-cDNAs). In this context, expression of PLCG1<sup>Reference<sup>, PLCG1<sup>H380R</sup>orPLCG1<sup>L597F</sup> is viable whereas expression of PLCG1<sup>D1019G</sup> or PLCG1<sup>D1165G</sup> is lethal, suggesting that the PLCG1<sup>D1019G</sup> and PLCG1<sup>D1165G</sup> variants exert a strong dominant toxic effect while the PLCG1<sup>H380R</sup>and PLCG1<sup>L597F<sup> are comparatively milder. Similar patterns have been consistently observed in other ectopic expression assays with varying degrees of severity. These results are updated in the manuscript and figures.

      Reviewer #2 (Recommendations For The Authors):

      The work in the paper could be usefully extended by determining the effects of expressing His380Phe and His380Ala in flies. These variants suppress PLCG1 activity, so their phenotype, if any, would be predicted not to be the same as His380Arg. Determining this would add further strength to the conclusions of the paper.

      We thank the reviewer for the constructive suggestions! We have tested the enzymatic-dead H380A variant, which still exhibits toxicity when expressed in sl<sup>T2A</sup>/Y hemizygous flies, but it is not toxic in heterozygous females suggesting that the reduced eclosion rate is likely not directly associated with enzymatic activity. We have updated the manuscript and figures accordingly.

    1. The good part was the immediate visual feedback in a GUI editor where you couldn't break anything by forgetting to close an XML tag! And you didn't even have to know all the types to type in because you had a visible list of UI elements you could pick from
    1. Reviewer #1 (Public review):

      The objectives of this research are to understand how key selector transcription factors, Tal1, Gata2, Gata3, determine GABAergic vs glutamatergic neuron fate from the rhombencephalic V2 precursor domain and how their spatiotemporal expression is controlled by upstream regulators. Toward these goals, the authors have generated an impressive array of scRNA, scATAC-seq, and CUT&Tag datasets obtained from dissociated E12.5 ventral R1 dissections. The rV2 was subsetted with well-known markers. The authors use an extensive set of computational approaches to identify temporal patterns of chromatin accessibility, TF motif binding activities (footprints), gene expression and regulatory motifs at the different selector gene loci. These analyses are used to predict upstream regulators, candidate accessible CREs, and DNA binding motifs through which the selectors may be controlled in rV2 by upstream regulators. Further analyses predict auto- and cross-regulatory interactions for maintenance of selector expression and the downstream effectors of alternative transmitter identities controlled by the selectors. The authors have achieved their aim of making predictions about upstream and downstream selector TF regulatory networks; their conclusions and predictions are largely well supported. The work clearly illustrates the daunting gene regulatory complexity likely at play in controlling rV2 transmitter fate.

      This is data-rich study and a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators and motifs identified in the study. The strengths of this work are the overall high quality of the datasets and in depth analyses. Through its comprehensive data and predictions, it is likely to have impact in advancing the understanding of GABAergic vs glutamatergic neuron fate decisions. The authors present a "simplified" gene regulatory model. However, the model does not illustrate the complexity of potential stage-specific upstream TF interactions with Tal1 and Vsx2 selector genes uncovered in TF footprinting analyses. While this seems nearly impossible to achieve given the plethora of potential functional TF inputs, the authors should consider assembling a focussed model by selectively illustrating the most robust, evidence-backed upstream TF input predictions, which are considered the strongest candidates for future hypothesis-driven perturbation experiments. It seems Insm1, Sox4, E2f1, Ebf1 and Tead2 TFs might be the strongest upstream candidates for future testing of Tal1 activation given the extensive analyses of their spatiotemporal expression patterns relative to Tal1, presented in Fig 4.

    2. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The objective of this research is to understand how the expression of key selector transcription factors, Tal1, Gata2, Gata3, involved in GABAergic vs glutamatergic neuron fate from a single anterior hindbrain progenitor domain is transcriptionally controlled. With suitable scRNAseq, scATAC-seq, CUT&TAG, and footprinting datasets, the authors use an extensive set of computational approaches to identify putative regulatory elements and upstream transcription factors that may control selector TF expression. This data-rich study will be a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators identified in the study. The data are displayed in some of the main and supplemental figures in a way that makes it difficult to appreciate and understand the authors' presentation and interpretation of the data in the Results narrative. Primary images used for studying the timing and coexpression of putative upstream regulators, Insm1, E2f1, Ebf1, and Tead2 with Tal1 are difficult to interpret and do not convincingly support the authors' conclusions. There appears to be little overlap in the fluorescent labeling, and it is not clear whether the signals are located in the cell soma nucleus.

      Strengths:

      The main strength is that it is a data-rich compilation of putative upstream regulators of selector TFs that control GABAergic vs glutamatergic neuron fates in the brainstem. This resource now enables future perturbation-based hypothesis testing of the gene regulatory networks that help to build brain circuitry.

      We thank Reviewer #1 for the thoughtful assessment and recognition of the extensive datasets and computational approaches employed in our study. We appreciate the acknowledgment that our efforts in compiling data-rich resources for identifying putative regulators of key selector transcription factors (TFs)—Tal1, Gata2, and Gata3—are valuable for future hypothesis-driven research.

      Weaknesses:

      Some of the findings could be better displayed and discussed.

      We acknowledge the concerns raised regarding the clarity and interpretability of certain figures, particularly those related to expression analyses of candidate upstream regulators such as Insm1, E2f1, Ebf1, and Tead2 in relation to Tal1. We agree that clearer visualization and improved annotation of fluorescence signals are crucial to accurately support our conclusions. In our revised manuscript, we will enhance image clarity and clearly indicate sites of co-expression for Tal1 and its putative regulators, ensuring the results are more readily interpretable. Additionally, we will expand explanatory narratives within the figure legends to better align the figures with the results section.

      Reviewer #2 (Public review):

      Summary:

      In the manuscript, the authors seek to discover putative gene regulatory interactions underlying the lineage bifurcation process of neural progenitor cells in the embryonic mouse anterior brainstem into GABAergic and glutamatergic neuronal subtypes. The authors analyze single-cell RNA-seq and single-cell ATAC-seq datasets derived from the ventral rhombomere 1 of embryonic mouse brainstems to annotate cell types and make predictions or where TFs bind upstream and downstream of the effector TFs using computational methods. They add data on the genomic distributions of some of the key transcription factors and layer these onto the single-cell data to get a sense of the transcriptional dynamics.

      Strengths:

      The authors use a well-defined fate decision point from brainstem progenitors that can make two very different kinds of neurons. They already know the key TFs for selecting the neuronal type from genetic studies, so they focus their gene regulatory analysis squarely on the mechanisms that are immediately upstream and downstream of these key factors. The authors use a combination of single-cell and bulk sequencing data, prediction and validation, and computation.

      We also appreciate the thoughtful comments from Reviewer #2, highlighting the strengths of our approach in elucidating gene regulatory interactions that govern neuronal fate decisions in the embryonic mouse brainstem. We are pleased that our focus on a critical cell-fate decision point and the integration of diverse data modalities, combined with computational analyses, has been recognized as a key strength.

      Weaknesses:

      The study generates a lot of data about transcription factor binding sites, both predicted and validated, but the data are substantially descriptive. It remains challenging to understand how the integration of all these different TFs works together to switch terminal programs on and off.

      Reviewer #2 correctly points out that while our study provides extensive data on predicted and validated transcription factor binding sites, clearly illustrating how these factors collectively interact to regulate terminal neuronal differentiation programs remains challenging. We acknowledge the inherently descriptive nature of the current interpretation of our combined datasets.

      In our revision, we will clarify how the different data types support and corroborate one another, highlighting what we consider the most reliable observations of TF activity. Additionally, we will revise the discussion to address the challenges associated with interpreting the highly complex networks of interactions within the gene regulatory landscape.

      We sincerely thank both reviewers for their constructive feedback, which we believe will significantly enhance the quality and accessibility of our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The results in Figure 3 and several associated supplements are mainly a description/inventory of putative CREs some of which are backed to some extent by previous transgenic studies. But given the way the authors chose to display the transgenic data in the Supplements, it is difficult to fully appreciate how well the transgenic data provide functional support. Take, for example, the Tal +40kb feature that maps to a midbrain enhancer: where exactly does +40kb map to the enhancer region? Is Tal +40kb really about 1kb long? The legend in Supplemental Figure 6 makes it difficult to interpret the bar charts; what is the meaning of: features not linked to gene -Enh? Some of the authors' claims are not readily evident or are inscrutable. For example, Tal locus features accessible in all cell groups are not evident (Fig 2A,B). Other cCREs are said to closely correlate with selector expression for example, Tal +.7kb and +40kb. However, inspection of the data seems to indicate that the two cCREs have very different dynamics and only +40kb seems to correlate with the expression track above it. Some features are described redundantly such as the Gata2 +22 kb, +25.3 kb, and +32.8 kb cCREs above and below the Gata3 cCRE. What is meant by: The feature is accessible at 3' position early, and gains accessibility at 5' positions ... Detailed feature analysis later indicated the binding of Nkx6-1 and Ascl1 that are expressed in the rV2 neuronal progenitors, at 3' positions, and binding of Insm1 and Tal1 TFs that are activated in early precursors, at 5' positions (Figure 3C).

      To allow easier assessment of the overlap of the features described in this study in reference to the transgenic studies, we have added further information about the scATAC features, cCREs and previously published enhancers, as well as visual schematics of the feature-enhancer overlaps in the Supplementary table 4. The Supplementary Table 4 column contents are also now explained in detail in the table legend (under the table). We hope those changes make the feature descriptions clearer. To answer the reviewer's question about the Tal1+40kb enhancer, the length of the published enhancer element is 685 bp and the overlapping scATAC feature length is 2067 bp (Supplementary Table 3, sheet Tal1, row 103).

      The legend and the chart labelling in the Supplementary Figure 5 (formerly Supplementary figure 6) have been elaborated, and the shown categories explained more clearly.

      Regarding the features at the Tal1 locus, the text has been revised and the references to the features accessible in all cell groups were removed. These features showed differences in the intensity of signal but were accessible in all cell groups. As the accessibility of these features does not correlate with Tal1 expression, they are of less interest in the context of this paper.

      The gain in accessibility of the +0.7kb and +40 kb features correlates with the onset of Tal1 RNA expression. This is now more clearly stated in the text, as " For example, the gain in the accessibility of Tal1 cCREs at +0.7 and +40 kb correlated temporally with the expression of Tal1 mRNA (Figure 2B), strongly increasing in the earliest GABAergic precursors (GA1) and maintained at a lower level in the more mature GABAergic precursor groups (GA2-GA6), " (Results, page 4). The reviewer is right that the later dynamics of the +0.7 and +40 cCREs differ and this is now stated more clearly in the text (Results, page 5, last chapter).

      The repetition in the description of the Gata2 +22 kb, +25.3 kb, and +32.8 kb cCREs has been removed.

      The Tal1 +23 kb cCRE showed within-feature differences in accessibility signal. This is explained in the text on page 5, referring to the relevant figure 2A, showing the accessibility or scATAC signal in cell groups and the features labelled below, and 3C, showing the location of the Nkx6-1 and Ascl1 binding sites in this feature: "The Tal1 +23 kb cCRE contained two scATAC-seq peaks, having temporally different patterns of accessibility. The feature is accessible at 3' position early, and gains accessibility at 5' positions concomitant with GABAergic differentiation (Figure 2A, accessibility). Detailed feature analysis later indicated that the 3' end of this feature contains binding sites of Nkx6-1 and Ascl1 that are expressed in the rV2 neuronal progenitors, while the 5' end contains TF binding sites of Insm1 and Tal1 TFs that are activated in early precursors (described below, see Figure 3C)."

      (2) Supplementary Figure 3 is not presented in the Results.

      Essential parts of previous Supplementary Figure 3 have been incorporated into the Figure 4 and the previous Supplementary Figure omitted.

      (3) The significance of Figure 3 and the many related supplements is difficult to understand. A large number of footprints with wide-ranging scores, many very weak or unbound, are displayed in the various temporal cell groups in different epigenomic regions of Tal1 and Vsx2. The footprints for GA1 and Ga2 are combined despite Tal1 showing stronger expression in GA1 and stronger accessibility (Figure 2). Many possibilities are outlined in the Results for how the many different kinds of motifs in the cCREs might bind particular TFs to control downstream TF expression, but no experiments are performed to test any of the possibilities. How well do the TOBIAS footprints align with C&T peaks? How was C&T used to validate footprints? Are Gata2, 3, and Vsx2 known to control Tal1 expression from perturbation experiments?

      Figure 3 and related supplements present examples of the primary data and summarise the results of comprehensive analysis. The methods of identifying the selector TF regulatory features and the regulators are described in the Methods (Materials and Methods page 16). Briefly, the correlation between feature accessibility and selector TF RNA expression (assessed by the LinkPeaks score and p-value) were used to select features shown in the Figure 3.

      We are aware of differences in Tal1 expression and accessibility between GA1 and GA2. However, number of cells in GA2 was not high enough for reliable footprint calculations and therefore we opted for combining related groups throughout the rV2 lineage for footprinting.

      As suggested, CUT&Tag could be used to validate the footprinting results with some restrictions. In the revised manuscript, we included analysis of CUT&Tag peak location and footprints similarly to an earlier study (Eastman et al. 2025). In summary, we analysed whether CUT&Tag peaks overlap locations in which footprinting was also recognized and vice versa. Per each TF with CUT&Tag data we calculated a) Total number of CUT&Tag consensus peaks b) Total number of bound TFBS (footprints) c) Percentage of CUT&Tag overlapping bound TFBS d) Percentage of bound TFBS overlapping CUT&Tag. These results are shown in Supplementary Table 6 and in Supplementary figure 11 with analysis described in Methods (Materials and Methods, page 19). There is considerable overlap between CUT&Tag peaks and bound footprints, comparable to one shown in Eastman et al. 2025. However, these two methods are not assumed to be completely matching for several reasons: binding by related/redundant TFs, antigen masking in the TF complex, chromatin association without DNA binding, etc. In addition, some CUT&Tag peaks with unbound footprints could arise from non-rV2 cells that were part of the bulk CUT&Tag analysis but not of the scATAC footprint analysis.

      The evidence for cross-regulation of selector genes and the regulation of Tal1 by Gata2, Gata3 and Vsx2 is now discussed (Discussion, chapter Selector TFs directly autoregulate themselves and cross-regulate each other, page 12-13). The regulation of Tal1 expression by Vsx2 has, to our knowledge, not been earlier studied.

      (4) Figure 4 findings are problematic as the primary images seem uninterpretable and unconvincing in supporting the authors' claims. There is a lack of clear evidence in support of TF coexpression and that their expression precedes Tal1.

      Figure 4 has been entirely redrawn with higher resolution images and a more logical layout. In the revised Figure 4, only the most relevant ISH images are shown and arrowheads are added showing the colocalization of the mRNA in the cell cytoplasm. Next to the plots of RNA expression along the apical-basal axis of r1, an explanatory image of the quantification process is added (Figure 4D).

      (5) What was gained from also performing ChromVAR other than finding more potential regulators and do the results of the two kinds of analyses corroborate one another? What is a dual GATA:TAL BS?

      Our motivation for ChromVAR analysis is now more clearly stated in the text (Results, page 9): “In addition to the regulatory elements of GABAergic fate selectors, we wanted to understand the genome-wide TF activity during rV2 neuron differentiation. To this aim we applied ChromVAR (Schep et al., 2017)" Also, further explanation about the Tal1and Gata binding sites has been added in this chapter (Results, page 9).

      The dual GATA:Tal BS (TAL1.H12CORE.0.P.B) is a 19-bp motif that consists of an E-box and GATA sequence, and is likely bound by heteromeric Gata2-Tal1 TF complex, but may also be bound by Gata2, Gata3 or Tal1 TFs separately. The other TFBSs of Tal1 contain a strong E-box motif and showed either a lower activity (TAL1.H12CORE.1.P.B) or an earlier peak of activity in common precursors with a decline after differentiation (TAL1.H12CORE.2.P.B) (Results, page 9).

      (6) The way the data are displayed it is difficult to see how the C&T confirmed the binding of Ebf1 and Insm1, Tal1, Gata2, and Gata3 (Supplementary Figures 9-11). Are there strong footprints (scores) centered at these peaks? One can't assess this with the way the displays are organized in Figure 3. What is the importance of the H3K4me3 C&T? Replicate consistency, while very strong for some TFs, seems low for other TFs, e.g. Vsx2 C&T on Tal1 and Gata2. The overlaps do not appear very strong in Supplementary Figure 10. Panels are not letter labeled.

      We have added an analysis of footprint locations within the CUT&Tag peaks (Supplementary Figure 11). The Figure shows that the footprints are enriched at the middle regions of the CUT&Tag peaks, which is expected if TF binding at the footprinted TFBS site was causative for the CUT&Tag peaks.

      The aim of the Supplementary Figures 9-11 (Supplementary Figures 8-10 in the revised manuscript) was to show the quality and replicability of the CUT&Tag.

      The anti-H3K4me3 antibody, as well as the anti-IgG antibody, was used in CUT&Tag as part of experiment technical controls. A strong CUT&Tag signal was detected in all our CUT&Tag experiments with H3K4me3. The H3K4me3 signal was not used in downstream analyses.

      We have now labelled the H3K4me3 data more clearly as "positive controls" in the Supplementary Figure 8. The control samples are shown only on Supplementary Figure 8 and not in the revised Supplementary Figure 10, to avoid repetition. The corresponding figure legends have been modified accordingly.

      To show replicate consistency, the genome view showing the Vsx2 CUT&Tag signal at Gata2 gene has been replaced by a more representative region (Supplementary Figure 8, Vsx2). The Vsx2 CUT&Tag signal at the Gata2 locus is weak, explaining why the replicability may have seemed low based on that example.

      Panel labelling is added on Supplementary Figures S8, S9, S10.  

      (7) It would be illuminating to present 1-2 detailed examples of specific target genes fulfilling the multiple criteria outlined in Methods and Figure 6A.

      We now present examples of the supporting evidence used in the definition of selector gene target features and target genes. The new Supplementary Figure 12 shows an example gene Lmo1 that was identified as a target gene of Tal1, Gata2 and Gata3.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors perform CUT&Tag to ask whether Tal1 and other TFs indeed bind putative CREs computed. However, it is unclear whether some of the antibodies (such as Gata3, Vsx2, Insm1, Tead2, Ebf1) used are knock-out validated for CUT&Tag or a similar type of assay such as ChIP-seq and therefore whether the peaks called are specific. The authors should either provide specificity data for these or a reference that has these data. The Vsx2 signal in Figure S9 looks particularly unconvincing.

      Information about the target specificity of the antibodies can be found in previous studies or in the product information. The references to the studies have been now added in the Methods (Materials and Methods, CUT&Tag, pages 18-19). Some of the antibodies are indeed not yet validated for ChIP-seq, Cut-and-run or CUT&Tag. This is now clearly stated in the Materials and Methods (page 19): "The anti-Ebf1, anti-Tal1, anti-IgG and anti-H3K4me3 antibodies were tested on Cut-and-Run or ChIP-seq previously (Boller et al., 2016b; Courtial et al., 2012) and Cell Signalling product information). The anti-Gata2 and anti-Gata3 antibodies are ChIP-validated ((Ahluwalia et al., 2020a) and Abcam product information). There are no previous results on ChIP, ChIP-seq or CUT&Tag with the anti-Insm1, anti-Tead2 and anti-Vsx2 antibodies used here. The specificity and nuclear localization have been demonstrated in immunohistochemistry with anti-Vsx2 (Ahluwalia et al., 2020b) and anti-Tead2 (Biorbyt product information). We observed good correlation between replicates with anti-Insm1, similar to all antibodies used here, but its specificity to target was not specifically tested". We admit that specificity testing with knockout samples would increase confidence in our data. However, we have observed robust signals and good replicability in the CUT&Tag for the antibodies shown here.

      Vsx2 CUT&Tag signal at the loci previously shown in Supplementary Figure S9 (now Supplementary Figure 8) is weak, explaining why the replicability may seem low based on those examples. The genome view showing the Vsx2 CUT&Tag signal at Gata2 gene locus in Supplementary Figure 8 (previously Supplementary figure 9) has now been replaced by a view of Vsx2 locus that is more representative of the signal.

      (2) It is unclear why the authors chose to focus on the transcription factor genes described in line 626 as opposed to the many other putative TFs described in Figure 3/Supplementary Figure 8. This is the major challenge of the paper - the authors are trying to tell a very targeted story but they show a lot of different names of TFs and it is hard to follow which are most important.

      We agree with the reviewer that the process of selection of the genes of interest is not always transparent. We are aware that interpretations of a paper are based on the known functions of the putative regulatory TFs, however additional aspects of regulation could be revealed even if the biological functions of all the TFs were known. This is now stated in the Discussion “Caveats of the study” chapter. It would be relevant to study all identified candidate genes, but as often is the case, our possibilities were limited by the availability of materials (probes, antibodies), time, and financial resources. In the revised manuscript, we now briefly describe the biological processes related to the selected candidate regulatory TFs of the Tal1 gene (Results, page 8, "Pattern of expression of the putative regulators of Tal1 in the r1"). We hope this justifies the focus on them in our RNA co-expression analysis. The TFs analysed by RNAscope ISH are examples, which demonstrate alignment of the tissue expression patterns with the scRNA-seq data, suggesting that the dynamics of gene expression detected by scRNA-seq generally reflects the pattern of expression in the developing brainstem.

      (3) How is the RNA expression level in Figure 5B and 4D-L computed? These are the clusters defined by scATAC-seq. Is this an inferred RNA expression? This should be made more clear in the text.

      The charts in Figures 5B and 4G,H,I show inferred RNA expression. The Y-axis labels have now been corrected and include the term inferred’. RNA expression in the scATAC-seq cell clusters is inferred from the scRNA-seq cells after the integration of the datasets.

      (4) The convergence of the GABA TFs on a common set of target genes reminds me of a nice study from the Rubenstein lab PMID: 34921112 that looked at a set of TFs in cortical progenitors. This might be a good comparison study for the authors to use as a model to discuss the convergence data.

      We thank the reviewer for bringing this article to our attention. The article is now discussed in the manuscript (Discussion, page 11).

      (5) The data in Figure 4, the in-situ figure, needs significant work. First, the images especially B, F, and J appear to be of quite low resolution, so they are hard to see. It is unclear exactly what is being graphed in C, G, and K and it does not seem to match the text of the results section. Perhaps better labeling of the figure and a more thorough description will make it clear. It is not clear how D, H, and L were supposed to relate to the images - presumably, this is a case where cell type is spatially organized, but this was unclear in the text if this is known and it needs to be more clearly described. Overall, as currently presented this figure does not support the descriptions and conclusions in the text.

      Figure 4 has been entirely redrawn with higher resolution images and more logical layout. In the revised Figure 4, the ISH data and the quantification plots are better presented; arrows showing the colocalization of the mRNA in the cell cytoplasm were added; and an explanatory image of the quantification process is added on (D).

      Minor points

      (1) Helpful if the authors include scATAC-seq coverage plots for neuronal subtype markers in Figure 1/S1.

      We are unfortunately uncertain what is meant with this request. Subtype markers in Figure 1/S1 scATAC-seq based clusters are shown from inferred RNA expression, and therefore these marker expression plots do not have any coverage information available.

      (2) The authors in line 429 mention the testing of features within TADs. They should make it clear in the main text (although tadmap is mentioned in the methods) that this is a prediction made by aggregating HiC datasets.

      Good point and that this detail has been added to both page 3 and 16.

      (3) The authors should include a table with the phastcons output described between lines 511 and 521 in the main or supplementary figures.

      We have now clarified int the text that we did not recalculate any phastcons results, we merely used already published and available conservation score per nucleotide as provided by the original authors (Siepel et al. 2005). (Results, page 5: revised text is " To that aim, we used nucleotide conservation scores from UCSC (Siepel et al., 2005). We overlaid conservation information and scATAC-seq features to both validate feature definition as well as to provide corroborating evidence to recognize cCRE elements.")

      (4) It is very difficult to read the names of the transcription factor genes described in Figure 3B-D and Supplementary Figure 8 - it would be helpful to resize the text.

      The Figures 3B-D and Supplementary Figure 7 (former Supplementary figure 8) have been modified, removing unnecessary elements and increasing the size of text.

      (5) It is unclear what strain of mouse is used in the study - this should be mentioned in the methods.

      Outbred NMRI mouse strain was used in this study. Information about the mouse strain is added in Materials and Methods: scRNA-seq samples (page 14), scATAC-seq samples (page 15), RNAscope in situ hybridization (page 17) and CUT&Tag (page 18).

      (6) Text size in Figure 6 should be larger. R-T could be moved to a Supplementary Figure.

      The Figure 6 has been revised, making the charts clearer and the labels of charts larger. The Figure 6R-S have been replaced by Supplementary table 8 and the Figure 6T is now shown as a new Figure (Figure 7).

      Additional corrections in figures

      Figure 6 D,I,N had wrong y-axis scale. It has been corrected, though it does not have an effect on the interpretation of the data as Pos.link and Neg.link counts were compared to each other’s (ratio).

      On Figure 2B, the heatmap labels were shifted making it difficult to identify the feature name per row. This is now corrected.

    1. Reviewer #3 (Public review):

      Summary:

      The study explores the cellular and circuit features that distinguish dentate gyrus semilunar granule cells and granule cells activated during contextual memory formation. The authors tag memory and enriched environment-activated dentate granule cells and semilunar granule cells and show their reactivation in an appropriate context a week later. They perform patch clamp recordings from activated and surrounding neurons to understand the cellular driving of the selective activation of semilunar granule cells and granule cells. Authors perform dual patch clamp recordings from various pairs of labeled semilunar granule cells, labeled granule cells, unlabeled granule cells, and unlabeled semilunar granule cells. The sustained firing of semilunar granule cells explained their preferential activation. In addition, activated neurons received correlated inputs.

      Strengths:

      The authors confirmed the engram cell properties of activated semilunar granule cells and granule cells in two different paradigms, validating these findings using an enriched environment paradigm.

      The authors carefully separate semilunar granule cells from granule cells, using electrophysiology and morphology. Cell filling to confirm morphology further strengthens confidence.

      The dual patch recordings, which are technically challenging, are carefully performed, and the presence of synaptic activity is confirmed.

      The authors report that sEPSCs recorded from labelled sGCS are more frequent, higher in amplitude, and temporally correlated than their counterparts.

      The authors provide evidence that lateral inhibition is not playing a role in the selective activation of sGCs during contextual learning.

      Exclusive use of slice physiology limits some of these conclusions due to the shearing of connections during the slicing process.

    1. Reviewer #2 (Public review):

      In this manuscript, Mella et al. investigate the effect of GFP tagging on the localization and stability of the nuclear-localized tail-anchored (TA) protein Emerin. A previous study from this group demonstrated that C-terminally GFP-tagged Emerin traffics to the plasma membrane and is eventually targeted to lysosomes for degradation. It has been suggested that the C-terminal tagging of TA proteins may shift their insertion from the post-translational TRC/GET pathway to the co-translational SRP-mediated pathway. Consistent with this, the authors confirm that C-terminal GFP tagging causes Emerin to mislocalize to the plasma membrane and subsequently to lysosomes.

      In this study, they investigate the mechanism underlying this misrouting. By manipulating the cytosolic domain and the hydrophobicity of the transmembrane domain (TMD), the authors show that an ER retention sequence and increased TMD hydrophobicity contribute to Emerin's trafficking through the secretory pathway.

      This reviewer had previously raised the concern that the potential role of the GFP tag within the ER lumen in promoting secretory trafficking was not addressed. In the revised manuscript, the authors respond to this concern by examining the co-localization of Emerin-GFP with the ER exit site marker Sec31A. Their data show that the presence of the C-terminal GFP tag increases Emerin's propensity to engage ER exit sites, supporting the conclusion that GFP tagging promotes its entry into the secretory pathway.

    2. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors revisit the specific domains/signals required for the redirection of an inner nuclear membrane protein, emerin, to the secretory pathway. They find that epitope tagging influences protein fate, serving as a cautionary tale for how different visualisation methods are used. Multiple tags and lines of evidence are used, providing solid evidence for the altered fate of different constructs.

      Strengths:

      This is a thorough dissection of domains and properties that confer INM retention vs secretion to the PM/lysosome, and will serve the community well as a caution regarding the placement of tags and how this influences protein fate.

      Weaknesses:

      Biogenesis pathways are not explored experimentally: it would be interesting to know if the lysosomal pool arrives there via the secretory pathway (eg by engineering a glycosylation site into the lumenal domain) or by autophagy, where failed insertion products may accumulate in the cytoplasm and be degraded directly from cytoplasmic inclusions.

      This manuscript is a Research Advance that follows previous work that we published in eLife on this topic (Buchwalter et al., eLife 2019; PMID 31599721). In that prior publication, we showed that emerin-GFP arrives at the lysosome by secretion and exposure at the PM, followed by internalization. While we state these previous findings in this manuscript, we did not explicitly restate here how we came to that conclusion. In the 2019 study, we (i) engineered in a glycosylation site, which demonstrated that emerin-GFP receives complex, Endo H-resistant N-glycans, indicating passage through the Golgi; (ii) performed cell surface labeling, which confirmed that emerin accesses the PM; and interfered with (iii) the early secretory pathway using brefeldin A and with (iv) lysosomal function using bafilomycin A1. Further, we ruled out autophagy as a major contributor to emerin trafficking by treating cells with the PI3K inhibitor KU55933, which had no effect on emerin’s lysosomal delivery.

      It would be helpful if the topology of constructs could be directly demonstrated by pulse-labelling and protease protection. It's possible that there are mixed pools of both topologies that might complicate interpretation.

      We demonstrate that emerin’s TMD inserts in a tail-anchored orientation (C terminus in ER lumen) by appending a GFP tag to either the N or C terminus, followed by anti-GFP antibody labeling of unpermeabilized cells (Fig. 1G). This shows the preferred topology of emerin’s wild type TMD.

      As the reviewer points out, it is possible that our manipulations of the TMD sequence (Fig. 2D-E) alter its preferred topology of membrane insertion. We addressed this question by performing anti-GFP and anti-emerin antibody labeling of the less hydrophobic TMD mutant (EMD-TMDm-GFP) after selective permeabilization of the plasma membrane (Figure 2 supplement, panel F). If emerin biogenesis is normal, the GFP tag should face the ER lumen while the emerin antibody epitope should be cytosolic. If the fidelity of emerin’s membrane insertion is impaired, the GFP tag could be exposed to the cytosol (flipped orientation), which would be detected by anti-GFP labeling upon plasma membrane permeabilization. We find that the C-terminal GFP tag is completely inaccessible to antibody when the PM is selectively permeabilized with digitonin, but is readily detected when all intracellular membranes are permeabilized with Triton-X-100. These data confirm that mutating emerin’s TMD does not disrupt the protein’s membrane topology.

      Reviewer #2 (Public review):

      In this manuscript, Mella et al. investigate the effect of GFP tagging on the localization and stability of the nuclear-localized tail-anchored (TA) protein Emerin. A previous study from this group showed that C-terminally GFP-tagged Emerin protein traffics to the plasma membrane and reaches lysosomes for degradation. It is suggested that the C-terminal tagging of tail-anchored proteins shifts their insertion from the post-translational TRC/GET pathway to the co-translational SRP-mediated pathway. The authors of this paper found that C-terminal GFP tagging causes Emerin to localize to the plasma membrane and eventually reach lysosomes. They investigated the mechanism by which Emerin-GFP moves to the secretory pathway. By manipulating the cytosolic domain and the hydrophobicity of the transmembrane domain (TMD), the authors identify that an ER retention sequence and strong TMD hydrophobicity contribute to Emerin trafficking to the secretory pathway. Overall, the data are solid, and the knowledge will be useful to the field. However, the authors do not fully answer the question of why C-terminally GFP-tagged Emerin moves to the secretory pathway. Importantly, the authors did not consider the possible roles of GFP in the ER lumen influencing Emerin trafficking to the secretory pathway.

      Reviewer #2 (Recommendations for the authors):

      Major concerns:

      (1) The authors suggest that an ER retention sequence and high hydrophobicity of Emerin TMD contribute to its trafficking to the secretory pathway. However, these two features are also present in WT Emerin, which correctly localizes to the inner nuclear membrane. Additionally, the authors show that the ER retention sequence is normally obscured by the LEM domain. The key difference between WT Emerin and Emerin-GFP is the presence of GFP in the ER lumen. The authors missed investigating the role of GFP in the ER lumen in influencing Emerin trafficking to the secretory pathway. It is likely that COPII carrier vesicles capture GFP protein in the lumen as part of the bulk flow mechanism for transport to the Golgi compartment. The authors could easily test this by appending a KDEL sequence to the C-terminus of GFP; this should now redirect the protein to the nucleus.

      We agree with the reviewer’s point that the presence of lumenal GFP somehow promotes secretion of emerin from the ER, likely at the stage of enhancing its packaging into COPII vesicles. We struggle to think about how to interpret the KDEL tagging experiment that the reviewer proposes, as the KDEL receptor predominantly recycles soluble proteins from the Golgi to the ER, while emerin is a membrane protein; and we have shown that emerin already contains a putative COPI-interacting RRR recycling motif in its cytosolic domain.

      Nevertheless, we agree with the reviewer that it is worthwhile to test the possibility that addition of GFP to emerin’s C-terminus promotes capture by COPII vesicles. We have evaluated this question by performing temperature block experiments to cause cargo accumulation within stalled COPII-coated ER exit sites, then comparing the propensity of various untagged and tagged emerin variants to enrich in ER exit sites as judged by colocalization with the COPII subunit Sec31a. These data now appear in Figure 4 supplement 1. These experiments indicate that emerin-GFP samples ER exit sites significantly more than does untagged emerin. Further, the ER exit site enrichment of emerin-GFP is dampened by shortening emerin’s TMD. We do not see further enrichment of any emerin variant in ER exit sites when COPII vesicle budding is stalled by low temperature incubation, implying that emerin lacks any positive sorting signals that direct its selective enrichment in COPII vesicles. Altogether, these data indicate that both emerin’s long and hydrophobic TMD and the addition of a lumenal GFP tag increase emerin’s propensity to sample ER exit sites and undergo non-selective, “bulk flow” ER export.

      (2) The authors nicely demonstrate that the hydrophobicity of Emerin TMD plays a role in its secretory trafficking. I wonder if this feature may be beneficial for cells to degrade newly synthesized Emerin via the lysosomal pathway during mitosis, as the nuclear envelope breakdown may prevent the correct localization of newly synthesized Emerin. The authors could test Emerin localization during mitosis. Such findings could add to the physiological significance of their findings. At the minimum, they should discuss this possibility.

      We thank the reviewer for this insightful suggestion. It is attractive to speculate that secretory trafficking might enable lysosomal degradation of emerin during mitosis, when its lamin anchor has been depolymerized. However, we think it is unlikely that mitotic trafficking contributes significantly to the turnover flux of untagged emerin; if it did, we would expect to see higher steady state levels and/or slowed turnover of emerin mutants that cannot traffic to the lysosome. We did not observe this outcome. Instead, mutations that enhance (RA) or impair (TMDm) emerin trafficking had no effect on the untagged protein’s steady-state levels (Fig. 4G).

      Minor concerns:

      (1) On page 7, the authors note that "FLAG-RA construct was not poorly expressed relative to WR, in contrast with RA-GFP (Figures S3C, 2I)." The expression levels of these proteins cannot be compared across two different blots.

      We apologize for this confusion; we were implying two distinct comparisons to internal controls present on each blot. We have adjusted the text to read “FLAG-RA construct was not poorly expressed relative to FLAG-WT (Fig. S3C) in contrast to RA-GFP compared to WT-GFP (Fig. 2I).”

      (2) In the first paragraph of the discussion, the authors suggest that aromatic amino acids facilitate trafficking to lysosomes. However, they only replaced aromatic amino acids with alanine residues. If they want to make this claim, they should test other amino acids, particularly hydrophobic amino acids such as leucine.

      The reviewer may be inferring more import from our statement than we intended. We focused on these aromatic residues within the TMD because they contribute strongly to its overall hydrophobicity. Experimentally, we determined that nonconservative alanine substitutions of these aromatic residues inhibited trafficking. We do not state and do not intend to imply that the aromatic character of these residues specifically influences trafficking propensity, and we agree with the reviewer that to test such a question would require additional substitutions with non-aromatic hydrophobic amino acids.

      We realize that our phrasing may have been misleading by opening with discussion of the aromatic amino acids; in the revised discussion paragraph, we instead lead with discussion of TMD hydrophobicity, and then state how the specific substitutions we made affect trafficking.

      Reviewing Editor comments:

      While reviewer 1 did not provide any recommendations to the authors, I agree with this reviewer that the authors should validate the topology of their tagged proteins (at least for the one used to draw key conclusions). Given that Emerin is a tail-anchored protein, having a big GFP tag at the C-terminus could mess up ER insertion, causing the protein to take a wrong topology or even be mislocalized in the cytosol, particularly under overexpression conditions. In either case, it can be subject to quality control-dependent clearance via either autophagy, ERphagy, or ER-to-lysosome trafficking. I think that the authors should try a few straightforward experiments such as brefeldin A treatment or dominant negative Sar1 expression to test whether blocking conventional ER-to-Golgi trafficking affects lysosomal delivery of Emerin. I also think that the authors should discuss their findings in the context of the RESET pathway reported previously (PMID: 25083867). The ER stress-dependent trafficking of tagged Emerin to the PM and lysosomes appears to follow a similar trafficking pattern as RESET, although the authors did not demonstrate that Emerin traffic to lysosomes via the PM. In this regard, they should tone down their conclusion and discuss their findings in the context of the RESET pathway, which could serve as a model for their substrate.

      We agree that validating the topology of TMD mutants is important, and now include these experiments in the revised manuscript (please see our response to Reviewer 1 above).

      Please see our response to Reviewer 1’s public review; we previously determined that emerin-GFP undergoes ER-to-Golgi trafficking (see our 2019 study).

      We recognize the major parallels between our findings and the RESET pathway. In our 2019 study, we found that similarly to other RESET cargoes, emerin-GFP travels through the secretory pathway, is exposed at the PM, and is then internalized and delivered to lysosomes. We discussed these strong parallels to RESET in our 2019 study. In this revised manuscript, we now also point out the parallels between emerin trafficking and RESET and cite the 2014 study by Satpute-Krishnan and colleagues (PMID 25083867)

    1. Reviewer #2 (Public review):

      Summary:

      The authors developed a cell-type specific fluorescence-tagging approach using a CRISPR/Cas9 induced spilt-GFP reconstitution system to visualize endogenous Bruchpilot (BRP) clusters as presynaptic active zones (AZ) in specific cell types of the mushroom body (MB) in the adult Drosophila brain. This AZ profiling approach was implemented in a high-throughput quantification process, allowing for the comparison of synapse profiles within single cells, cell types, MB compartments, and between different individuals. The aim is to analyse in more detail neuronal connectivity and circuits in this centre of associative learning. These are notoriously difficult to investigate due to the density of cells and structures within a cell. The authors detect and characterize cell-type-specific differences in BRP-dependent profiling of presynapses in different compartments of the MB, while intracellular AZ distribution was found to be stereotyped. Next to the descriptive part characterizing various AZ profiles in the MB, the authors apply an associative learning assay and detect consequent AZ re-organisation.

      Strengths:

      The strength of this study lies in the outstanding resolution of synapse profiling in the extremely dense compartments of the MB. This detailed analysis will be the entry point for many future analyses of synapse diversity in connection with functional specificity to uncover the molecular mechanisms underlying learning and memory formation and neuronal network logics. Therefore, this approach is of high importance for the scientific community and a valuable tool to investigate and correlate AZ architecture and synapse function in the CNS.

      Weaknesses:

      The results and conclusions presented in this study are, in many aspects, well-supported by the data presented. To further support the key findings of the manuscript, additional controls, comments, and possibly broader functional analysis would be helpful. In particular:

      (1) All experiments in the study are based on spilt-GFP lines (BRP:GFP11 and UAS-GFP1-10). The Materials and Methods section does not contain any cloning strategy (gRNA, primer, PCR/sequencing validation, exact position of tag insertion, etc.) and only refers to a bioRxiv publication. It might be helpful to add a Materials and Methods section (at least for the BRP:GFP11 line). Additionally, as this is an on locus insertion the in BRP-ORF, it needs a general validation of this line, including controls (Western Blot and correlative antibody staining against BRP) showing that overall BRP expression is not compromised due to the GFP insertion and localizes as BRP in wild type flies, that flies are viable, have no defects in locomotion and learning and memory formation and MB morphology is not affected compared to wild type animals.

      (2) Several aspects of image acquisition and high-throughput quantification data analysis would benefit from a more detailed clarification.

      a) For BRP cluster segmentation it is stated in the Materials and Methods state, that intensity threshold and noise tolerance were "set" - this setting has a large effect on the quantification, and it should be specified and setting criteria named and justified (if set manually (how and why) or automatically (to what)). Additionally, if Pyhton was used for "Nearest Neigbor" analysis, the code should be made available within this manuscript; otherwise, it is difficult to judge the quality of this quantification step.

      b) To better evaluate the quality of both the imaging analysis and image presentation, it would be important to state, if presented and analysed images are deconvolved and if so, at least one proof of principle example of a comparison of original and deconvoluted file should be shown and quantified to show the impact of deconvolution on the output quality as this is central to this study.

      (3) The major part of this study focuses on the description and comparison of the divergent synapse parameters across cell-types in MB compartments, which is highly relevant and interesting. Yet it would be very interesting to connect this new method with functional aspects of the heterogeneous synapses. This is done in Figure 7 with an associative learning approach, which is, in part, not trivial to follow for the reader and would profit from a more comprehensive analysis.

      a) It would be important for the understanding and validation of the learning induced changes, if not (only) a ratio (of AZ density/local intensity) would be presented, but both values on their own, especially to allow a comparison to the quoted, previous AZ remodelling analysis quantifying BRP intensities (ref. 17, 18). It should be elucidated in more detail why only the ratio was presented here.

      b) The reason why a single instead of a dual odour conditioning was performed could be clarified and discussed (would that have the same effects?).

      c) Additionally, "controls" for the unpaired values - that is, in flies receiving neither shock nor odour - it would help to evaluate the unpaired control values in the different MB compartments.

      d) The temporal resolution of the effect is very interesting (Figure 7D), and at more time points, especially between 90 and 270 min, this might raise interesting results.

      e) Additionally, it would be very interesting and rewarding to have at least one additional assay, relating structure and function, e.g. on a molecular level by a correlative analysis of BRP and synaptic vesicles (by staining or co-expression of SV-protein markers) or calcium activity imaging or on a functional level by additional learning assays

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for providing us the opportunity to revise our manuscript titled “Identifying regulators of associative learning using a protein-labelling approach in C. elegans.” We appreciate the insightful feedback that we received to improve this work. In response, we have extensively revised the manuscript with the following changes: we have (1) clarified the criteria used for selecting candidate genes for behavioural testing, presenting additional data from ‘strong’ hits identified in multiple biological replicates (now testing 26 candidates, previously 17), (2) expanded our discussion of the functional relevance of validated hits, including providing new tissue-specific and neuron class-specific analyses, and (3) improved the presentation of our data, including visualising networks identified in the ‘learning proteome’, to better highlight the significance of our findings. We also substantially revised the text to indicate our attempts to address limitations related to background noise in the proteomic data and outlined potential refinements for future studies. All revisions are clearly marked in the manuscript in red font. A detailed, point-by-point response to each comment is provided below.

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Rahmani et al., utilize the TurboID method to characterize the global proteome changes in the worm's nervous system induced by a salt-based associative learning paradigm. Altogether, Rahmani et al., uncover 706 proteins that are tagged by the TurboID method specifically in samples extracted from worms that underwent the memory inducing protocol. Next, the authors conduct a gene enrichment analysis that implicates specific molecular pathways in salt-associative learning, such as MAP-kinase and cAMP-mediated pathways. The authors then screen a representative group of the hits from the proteome analysis. The authors find that mutants of candidate genes from the MAP-kinase pathway, namely dlk-1 and uev-3, do not affect the performance in the learning paradigm. Instead multiple acetylcholine signaling mutants significantly affected the performance in the associative memory assay, e.g., acc-1, acc-3, gar-1, and lgc-46. Finally, the authors demonstrate that the acetylcholine signaling mutants did not exhibit a phenotype in similar but different conditioning paradigms, such as aversive salt-conditioning or appetitive odor conditioning, suggesting their effect is specific to appetitive salt conditioning.

      Major comments:

      1. The statistical approach and analysis of the behavior assay: The authors use a 2-way ANOVA test which assumes normal distribution of the data. However, the chemotaxis index used in the study is bounded between -1 and 1, which prevents values near the boundaries to be normally distributed.

      Since most of the control data in this assay in this study is very close to 1, it strongly suggests that the CI data is not normally distributed and therefore 2-way ANOVA is expected to give skewed results.

      I am aware this is a common mistake and I also anticipate that most conclusions will still hold also under a more fitting statistical test.

      We appreciate the point raised by Reviewer 1 and understand the importance of performing the correct statistical tests.

      The statistical tests used in this study were chosen since parametric tests, particularly ANOVA tests to assess differences between multiple groups, are commonly used to assess behaviour in the C. elegans learning and memory field. Below is a summary of the tests used by studies that perform similar behavioural tests cited in this work, as examples:

      Table 1 | A summary for the statistical tests performed by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to (A) use parametric tests only or (B) performed either a parametric or non-parametric test on each chemotaxis assay dataset depending on whether the data passed a normality test. Listings for ANOVA tests are in bold to demonstrate their common use in the C. elegans learning and memory field.

      Reference

      Parametric test/s used in the reference

      Non-parametric test/s used in the reference

      Beets et al., 2020

      Two-way ANOVA

      None

      Hiroki & Iino 2022

      One-way ANOVA

      None

      Hiroki et al., 2022

      One-way ANOVA

      None

      Hukema et al., 2006

      T-tests

      None

      Hukema et al., Learn. Mem. 2008

      T-tests

      None

      Jang et al., 2019

      ANOVA

      None

      Kitazono et al., 2017

      Two-way ANOVA and t-tests

      None

      Lans et al., 2004

      One-way ANOVA

      None

      Lim et al., 2018

      Two-way ANOVA

      Wilcoxon rank sum test adjusted with the Benjamini–Hochberg method

      Lin et al., 2010

      Two-way or three-way ANOVA

      None

      Nagashima et al., 2019

      One-way ANOVA

      None

      Ohno et al., 2014

      None

      Sakai et al., 2017

      One-way ANOVA or t-tests

      None

      Stein & Murphy 2014

      Two-way ANOVA and t-tests

      None

      Tang et al., 2023

      One-way ANOVA or t-tests

      None

      Tomioka et al., 2006

      T tests

      None

      Watteyne et al., 2020

      One-way ANOVA

      Two-sided Kruskal–Wallis

      We note Reviewer 1's concern that this may stem from a common mistake. As stated, Two-way ANOVA generally relies on normally distributed data. We used GraphPad Prism to perform the Shapiro-Wilk normality test on our chemotaxis assay data as it is generally appropriate for sample sizes Table 2 | Shapiro-Wilk normality test results for chemotaxis assay data in Figure S8C. Chemotaxis assay data was generated to assess salt associative learning capacity for wild-type (WT) versus lgc-46(-) mutant C. elegans. Three experimental groups were prepared for each C. elegans strain (naïve, high-salt control, and trained). From top-to-bottom, the data below displays the ‘W’ value, ‘P value’, a binary yes/no for whether the data passes the Shapiro-Wilk normality test, and a ‘P value summary’ (ns = non-significant). W values measure the similarity between a normal distribution and the chemotaxis assay data. Data is considered normal in the Shapiro-Wilk normality test when a W value is near 1.0 and the null hypothesis is not rejected (i.e., P value > 0.05).*

      WT naïve

      WT high-salt control

      WT trained

      lgc-46 naïve

      lgc-46 high-salt control

      lgc-46 trained

      W

      0.9196

      0.9114

      0.8926

      0.8334

      0.8151

      0.8769

      P value

      0.5272

      0.4758

      0.3705

      0.1475

      0.1070

      0.2954

      Passed normality test (alpha=0.05)?

      Yes

      Yes

      Yes

      Yes

      Yes

      Yes

      P value summary

      ns

      ns

      ns

      ns

      ns

      ns

      The manuscript now includes the use of the Shapiro-Wilk normality test to assess chemotaxis assay data before using two-way ANOVA on page 51.

      Nevertheless an appropriate statistical analysis should be performed. Since I assume the authors would wish to take into consideration both the different conditions and biological repeats, I can suggest two options:

      • Using a Generalized linear mixed model, one can do with R software.
      • Using a custom bootstrapping approach. We thank Reviewer 1 for suggesting these two options. We carefully considered both approaches and consulted with the in-house statistician at our institution (Dr Pawel Skuza, Flinders University) for expert advice to guide our decision. In summary:

      • Generalised linear mixed models: Generalised linear mixed models (GLMMs) are generally most appropriate for nested/hierarchal data. However, our chemotaxis assay data does not exhibit such nesting. Each biological replicate (N) consists of three technical replicates, which are averaged to yield a single chemotaxis index per N. Our statistical comparisons are based solely on these averaged values across experimental groups, making GLMMs less applicable in this context.

      • __Bootstrapping: __Based on advice from our statistician, while bootstrapping can be a powerful tool, its effectiveness is limited when applied to datasets with a low number of biological replicates (N). Bootstrapping relies on resampling existing data to simulate additional observations, which may artificially inflate statistical power and potentially suggest significance where the biological effect size is minimal or not meaningful. Increasing the number of biological replicates to accommodate bootstrapping could introduce additional variability and compromise the interpretability of the results. The total number of assays, especially controls, varies quite a bit between the tested mutants. For example compare the acc-1 experiment in Figure 4.A., and gap-1 or rho-1 in Figure S4.A and D. It is hard to know the exact N of the controls, but I assume that for example, lowering the wild type control of acc-1 to equivalent to gap-1 would have made it non significant. Perhaps the best approach would be to conduct a power analysis, to know what N should be acquired for all samples.

      We thoroughly evaluated performing the power analysis: however, this is typically performed with the assumption that an N = 1 represents a singular individual/person. An N =1 in this study is one biological replicate that includes hundreds of worms, which is why it is not typically employed in our field for this type of behavioural test.

      Considering these factors, we have opted to continue using a two-way ANOVA for our statistical analysis. This choice aligns with recent publications that employ similar experimental designs and data structures. Crucially, we have verified that our data meet the assumptions of normality, addressing key concerns regarding the suitability of parametric testing. We believe this approach is sufficiently rigorous to support our main conclusions. This rationale is now outlined on page 51.

      To be fully transparent, our aim is to present differences between wild-type and mutant strains that are clearly visible in the graphical data, such that the choice of statistical test does not become a limiting factor in interpreting biological relevance. We hope this rationale is understandable, and we sincerely appreciate the reviewer’s comment and the opportunity to clarify our analytical approach.

      We hope that Reviewer 1 will appreciate these considerations as sufficient justification to retain the statistical tests used in the original manuscript. Nevertheless, to constructively address this comment, we have performed the following revisions:

      1. __Consistent number of biological replicates: __We performed additional biological replicates of the learning assay to confirm the behavioural phenotypes for the key candidates described (KIN-2 , F46H5.3, ACC-1, ACC-3, LGC-46). We chose N = 5 since most studies cited in this paper that perform similar behavioural tests do the same (see the table below). Table 3 | A summary for sample sizes generated by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to the sample sizes (N) below corresponding to biological replicates of chemotaxis assay data. N values are in bold when the study uses N ≤ 5.

      Reference

      N used in the study for chemotaxis assay data

      Beets et al., 2020

      8

      Hiroki & Iino 2022

      5-8

      Hiroki et al., 2022

      6-7

      Hukema et al., 2006

      ≥ 4

      Hukema et al., Learn. Mem. 2008

      ≥ 4

      Jang et al., 2019

      ≥ 4

      Kitazono et al., 2017

      ≥ 4

      Kauffman et al., 2010

      ≥ 3

      Kauffman et al., J. Vis. Exp. 2011

      ≥ 3

      Lans et al., 2004

      2

      Lim et al., 2018

      2-4

      Lin et al., 2010

      ≥ 4

      Nagashima et al., 2019

      ≥ 7

      Ohno et al., 2014

      ≥ 11

      Sakai et al., 2017

      ≥ 4

      Stein & Murphy 2014

      3-5

      Tang et al., 2023

      ≥ 9

      Watteyne et al., 2020

      ≥ 10

      __Grouped presentation of behavioural data: __We now present all behavioural data by grouping genotypes tested within the same biological replicate, including wild-type controls, rather than combining genotypes tested separately. This ensures that each graph displays data from genotypes sharing the same N, also an important consideration for performing parametric tests. Accordingly, we re-performed statistical analyses using this reduced Nfor relevant graphs. As anticipated, this rendered some comparisons non-significant. All statistical comparisons are clearly indicated on each graph. Improved clarity of figure legends: __We revised figure legends for __Figures 5, 6, S7, S8, & S9 to make clear how many biological replicates have been performed for each genotype by adding N numbers for each genotype in all figures.

      The authors use the phrasing "a non-significant trend", I find such claims uninterpretable and should be avoided. Examples: Page 16. Line 7 and Page 18, line 16.

      This is an important point. While we were not able to find the specific phrasing "a non-significant trend" from this comment in the original manuscript, we acknowledge that referring to a phenotype as both a trend and non-significant may confuse readers, which was originally stated in the manuscript in two locations.

      The main text has been revised on pages 27 & 28 when describing comparisons between trained groups between two C. elegans lines, by removing mentions of trends and retaining descriptions of non-significance.

      Neuron-specific analysis and rescue of mutants:

      Throughout the study the authors avoid focusing on specific neurons. This is understandable as the authors aim at a systems biology approach, however, in my view this limits the impact of the study. I am aware that the proteome changes analyzed in this study were extracted from a pan neuronally expressed TurboID. Yet, neuron-specific changes may nevertheless be found. For example, running the protein lists from Table S2, in the Gene enrichment tool of wormbase, I found, across several biological replicates, enrichment for the NSM, CAN and RIG neurons. A more careful analysis may uncover specific neurons that take part in this associative memory paradigm. In addition, analysis of the overlap in expression of the final gene list in different neurons, comparing them, looking for overlap and connectivity, would also help to direct towards specific circuits.

      This is an important and useful suggestion. We appreciate the benefit in exploring the data from this study from a neuron class-specific lens, in addition to the systems-level analyses already presented.

      The WormBase gene enrichment tool is indeed valuable for broad transcriptomic analyses (the findings from utilising this tool are now on page 16); however, its use of Anatomy Ontology (AO) terms also contains annotations from more abundant non-neuronal tissues in the worm. To strengthen our analysis and complement the Wormbase tool, we also used the CeNGEN database as suggested by Reviewer 3 Major Comment 1 (Taylor et al., 2021), which uses single cell RNA-Seq data to profile gene expression across the C. elegans nervous system. We input our learning proteome data into CeNGEN as a systemic analysis, identifying neurons highly represented by the learning proteome (on pages 16-20). To do this, we specifically compared genes/proteins from high-salt control worms and trained worms to identify potential neurons that may be involved in this learning paradigm. Briefly, we found:

      • WormBase gene enrichment tool: Enrichment for anatomy terms corresponding to specific interneurons (ADA, RIS, RIG), ventral nerve cord neurons, pharyngeal neurons (M1, M2, M5, I4), PVD sensory neurons, DD motor neurons, serotonergic NSM neurons, and CAN.
      • CeNGEN analysis: Representation of neurons previously implicated in associative learning (e.g., AVK interneurons, RIS interneurons, salt-sensing neuron ASEL, CEP & ADE dopaminergic neurons, and AIB interneurons), as well as neurons not previously studied in this context (pharyngeal neurons I3 & I6, polymodal neuron IL1, motor neuron DA9, and interneuron DVC). Methods are detailed on pages 50 & 51. These data are summarised in the revised manuscript as Table S7 & Figure 4.

      To further address the reviewer’s suggestion, we examined the overlap in expression patterns of the validated learning-associated genes acc-1, acc-3, lgc-46, kin-2, and F46H5.3 across the neuron classes above, using the CeNGEN database. This was done to explore potential neuron classes in which these regulators may act in to regulate learning. This analysis revealed both shared and distinct expression profiles, suggesting potential functional connectivity or co-regulation among subsets of neurons. To summarise, we found:

      • All five learning regulators are expressed in RIM interneurons and DB motor neurons.
      • KIN-2 and F46H5.3 share the same neuron expression profile and are present in many neurons, so they may play a general function within the nervous system to facilitate learning.
      • ACC-3 is expressed in three sensory neuron classes (ASE, CEP, & IL1).
      • In contrast, ACC-1 and LGC-46 are expressed in neuron classes (in brackets) implicated in gustatory or olfactory learning paradigms (AIB, AVK, NSM, RIG, & RIS) (Beets et al., 2012, Fadda et al., 2020, Wang et al., 2025, Zhou et al., 2023, Sato et al., 2021), neurons important for backward or forward locomotion (AVE, DA, DB, & VB) (Chalfie et al., 1985), and neuron classes for which their function is yet detailed in the literature (ADA, I4, M1, M2, & M5). These neurons form a potential neural circuit that may underlie this form of behavioural plasticity, which we now describe in the main text on pages 16-20 & 34-35 and summarise in Figure 4.

      OPTIONAL: A rescue of the phenotype of the mutants by re-expression of the gene is missing, this makes sure to avoid false-positive results coming from background mutations. For example, a pan neuronal or endogenous promoter rescue would help the authors to substantiate their claims, this can be done for the most promising genes. The ideal experiment would be a neuron-specific rescue but this can be saved for future works.

      We appreciate this suggestion and recognise its potential to strengthen our manuscript. In response, we made many attempts to generate pan-neuronal and endogenous promoter re-expression lines. However, we faced several technical issues in transgenic line generation, including poor survival following microinjection likely due to protein overexpression toxicity (e.g., C30G12.6, F46H5.3), and reduced animal viability for chemotaxis assays, potentially linked to transgene-related reproductive defects (e.g., ACC-1). As we have previously successfully generated dozens of transgenic lines in past work (e.g. Chew et al., Neuron 2018; Chew et al., Phil Trans B 2018; Gadenne/Chew et al., Life Science Alliance 2022), we believe the failure to produce most of these lines is not likely due to technical limitations. For transparency, these observations have been included in the discussion section of the manuscript on pages 39 & 40 as considerations for future troubleshooting.

      Fortunately, we were able to generate a pan-neuronal promoter line for KIN-2 that has been tested and included in the revised manuscript. This new data is shown in Figure 5B __and described on __pages 23 & 24. Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to reproduce the enhanced learning phenotype observed in kin-2(ce179) animals, confirming the role of KIN-2 in gustatory learning.

      To address the potential involvement of background mutations (also indicated by Reviewer 4 under ‘cross-commenting’), we have also performed experiments with backcrossed versions of several mutants. These experiments aimed to confirm that salt associative learning phenotypes are due to the expected mutation. Namely, we assessed kin-2(ce179) mutants that had been backcrossed previously by another laboratory, as well as C30G12.6(-) and F46H5.3(-) animals backcrossed in this study. Although not all backcrossed mutants retained their original phenotype (i.e., C30G12.6) (Figure 6D, a newly added figure), we found that backcrossed versions of KIN-2 and F46H5.3 both robustly showed enhanced learning (Figures 5A & 6B). This is described in the text on pages 23-26.

      __Minor comments: __

      1. Lack of clarity regarding the validation of the biotin tagging of the proteome. The authors show in Figure 1 that they validated that the combination of the transgene and biotin allows them to find more biotin-tagged proteins. However there is significant biotin background also in control samples as is common for this method. The authors mention they validated biotin tagging of all their experiments, but it was unclear in the text whether they validated it in comparison to no-biotin controls, and checked for the fold change difference.

      This is an important point: We validated our biotin tagging method prior to mass spectrometry by comparing ‘no biotin’ and ‘biotin’ groups. This is shown in Figure S1 in the revised manuscript, which includes a western blot comparing untreated and biotin treated animals that are non-transgenic or expressing TurboID. As expected, by comparing biotinylated protein signal for untreated and treated lanes within each line, biotin treatment increased the signal 1.30-fold for non-transgenic and 1.70-fold for TurboID C. elegans. This is described on __page 8 __of the revised manuscript.

      To clarify, for mass spectrometry experiments, we tested a no-TurboID (non-transgenic) control, but did not perform a no-biotin control. We included the following four groups: (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’, where trained versus control refers to whether ‘no salt’ was used as the conditioned stimulus or not, respectively (illustrated in Figure 1A). Due to the complexity of the learning assay (which involves multiple washes and handling steps, including a critical step where biotin is added during the conditioning period), and the need to collect sufficient numbers of worms for protein extraction (>3,000 worms per experimental group), adding ‘no-biotin’ controls would have doubled the number of experimental groups, which we considered unfeasible for practical reasons. This is explained on __pages 8 & 9 __of the revised manuscript.

      Also, it was unclear which exact samples were tested per replicate. In Page 9, Lines 17-18: "For all replicates, we determined that biotinylated proteins could be observed ...", But in Page 8, Line 24 : "We then isolated proteins from ... worms per group for both 'control' and 'trained' groups,... some of which were probed via western blotting to confirm the presence of biotinylated proteins".

      • Could the authors specify which samples were verified and clarify how?

      Thank you for pointing out these unclear statements: We have clarified the experimental groups used for mass spectrometry experiments as detailed in the response above on pages 8 &____ 9. In addition, western blots corresponding to each biological replicate of mass spectrometry data described in the main text on page 10 and have been added to the revised manuscript (as Figure S3). These western blots compare biotinylation signal for proteins extracted from (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’. These blots function to confirm that there were biotinylated proteins in TurboID samples, before enrichment by streptavidin-mediated pull-down for mass spectrometry.

      OPTIONAL: include the fold changes of biotinylated proteins of all the ones that were tested. Similar to Figure 1.C.

      This is an excellent suggestion. As recommended by the reviewer, we have included fold-changes for biotinylated protein levels between high-salt control and trained groups (on pages 9 & 10 for replicate #1 and in __Table S2 __for replicates #2-5). This was done by measuring protein levels in whole lanes for each experimental group per biological replicate within western blots (__Figure 1C __for replicate #1 and __Figure S3 __for replicates #2-5) of protein samples generated for mass spectrometry (N = 5).

      Figure 2 does not add much to the reader, it can be summarized in the text, as the fraction of proteins enriched for specific cellular compartments.

      • I would suggest to remove Figure 2 (originally written as figure 3) to text, or transfer it to the supplementry material.

      As noted in cross-comment response to Reviewer 4, there were typos in the original figure references, we have corrected them above. Essentially, this comment is referring to Figure 2.

      We appreciate this feedback from Reviewer 1. We agree that the original __Figure 2 __functions as a visual summary from analysis of the learning proteome at the subcellular compartment level. However, it also serves to highlight the following:

      • Representation for neuron-specific GO terms is relatively low, but even this small percentage represents entire protein-protein networks that are biologically meaningful, but that are difficult to adequately describe in the main text.
      • TurboID was expressed in neurons so this figure supports the relevance of the identified proteome to biological learning mechanisms.
      • Many of these candidates could not be assessed by learning assay using single mutants since related mutations are lethal or substantially affect locomotion. These networks therefore highlight the benefit in using strategies like TurboID to study learning. We have chosen to retain this figure, moving it to the supplementary material as Figure S4 in the revised manuscript, as suggested.

      • OPTIONAL- I would suggest the authors to mark in a pathway summary figure similar to Figure 3 (originally written as Figure 4) the results from the behavior assay of the genetic screen. This would allow the reader to better get the bigger picture and to connect to the systemic approach taken in Figures 2 and 3.

      We think this is a fantastic suggestion and thank Reviewer 1 for this input. In the revised manuscript, we have added Figure 7, which summarises the tested candidates that displayed an effect on learning, mapped onto potential molecular pathways derived from networks in the learning proteome. This figure provides a visual framework linking the behavioural outcomes to the network context. This is described in the main text on pages 32-33.

      Typo in Figure 3: the circle of PPM1: The blue right circle half is bigger than the left one.

      We thank the Reviewer for noticing this, the node size for PPM-1.A has been corrected in what is now Figure 2 in the revised work.

      Unclarity in the discussions. In the discussion Page 24, Line 14, the authors raise this question: "why are the proteins we identified not general learning regulators?. The phrasing and logic of the argumentation of the possible answers was hard to follow. - Can you clarify?

      We appreciate this feedback in terms of unclarity, as we strive to explain the data as clearly and transparently as possible. Our goal in this paragraph was to discuss why some candidates were seen to only affect salt associative learning, as opposed to showing effects in multiple learning paradigms (i.e., which we were defining as a ‘general learning regulator’). We have adjusted the wording in several places in this paragraph now on pages 36 & 37 to address this comment. We hope the rephrased paragraph provides sufficient rationalisation for the discussion regarding our selection strategy used to isolate our protein list of potential learning regulators, and its potential limitations.

      ***Cross-Commenting** *

      Firstly, we would like to express our appreciation for the opportunity for reviewers to cross-comment on feedback from other reviewers. We believe this is an excellent feature of the peer review process, and we are grateful to the reviewers for their thoughtful engagement and collaborative input.

      I would like to thank Reviewer #4 for the great cross comment summary, I find it accurate and helpful.

      I also would like to thank Reviewer #4 for spotting the typos in my minor comments, their page and figure numbers are the correct ones.

      We have corrected these typos in the relevant comments, and have responded to them accordingly.

      Small comment on common point 1 - My feeling is that it is challanging to do quantitative mass spectrometry, especially with TurboID. In general, the nature of MS data is that it hints towards a direction but a followup validation work is required in order to assess it. For example, I am not surprised that the fraction of repeats a hit appeared in does not predict well whether this hit would be validated behavioraly. Given these limitations, I find the authors' approach reasonable.

      We thank Reviewer 1 for this positive and thoughtful feedback. We also appreciate Reviewer 4’s comment regarding quantitative mass spectrometry and have addressed this in detail below (see response to Reviewer 4). However, we agree with Reviewer 1 that there are practical challenges to performing quantitative mass spectrometry with TurboID, primarily due to the enrichment for biotinylated proteins that is a key feature of the sample preparation process.

      Importantly, we whole-heartedly agree with Reviewer 1’s statement that “In general, the nature of MS data is that it hints towards a direction but a follow-up validation work is required in order to assess it”. This is the core of our approach: however, we appreciate that there are limitations to a qualitative ‘absent/present’ approach. We have addressed some of these limitations by clarifying the criteria used for selecting candidate genes, based additionally on the presence of the candidate in multiple biological replicates (categorised as ‘strong’ hits). Based on this method, we were able to validate the role of several novel learning regulators (Figures 5, 6, & S7). We sincerely hope that this manuscript can function as a direction for future research, as suggested by this Reviewer.

      I also would like to highlight this major comment from reviewer 4:

      "In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). "

      This threshold seems arbitrary to me too, and it requires the clarifications requested by reviewer 4.

      As detailed in our response to Reviewer 4, Major Comment 2, data were excluded only in rare cases, specifically when N2 worms failed to show strong salt attraction prior to training, or when trained N2 worms did not exhibit the expected behavioural difference compared to untrained controls – this can largely be attributed to clear contamination or over-population issues, which are visible prior to assessing CTX plates and counting chemotaxis indices.

      These criteria were initially established to provide an objective threshold for excluding biological replicates, particularly when planning to assay a large number of genetic mutants. However, after extensive testing across many replicates, we found that N2 worms (that were not starved, or not contaminated) consistently displayed the expected phenotype, rendering these thresholds unnecessary. We acknowledge that emphasizing these criteria may have been misleading, and have therefore removed them from page 50 in the revised manuscript to avoid confusion and ensure clarity.

      Reviewer #1 (Significance (Required)):

      This study does a great job to effectively utilize the TurboID technique to identify new pathways implicated in salt-associative learning in C. elegans. This technique was used in C. elegans before, but not in this context. The salt-associative memory induced proteome list is a valuable resource that will help future studies on associative memory in worms. Some of the implicated molecular pathways were found before to be involved in memory in worms like cAMP, as correctly referenced in the manuscript. The implication of the acetylcholine pathway is novel for C. elgeans, to the best of my knowledge. The finding that the uncovered genes are specifically required for salt associative memory and not for other memory assays is also interesting.

      However overall I find the impact of this study limited. The premise of this work is to use the Turbo-ID method to conduct a systems analysis of the proteomic changes. The work starts by conducting network analysis and gene enrichment which fit a systemic approach. However, since the authors find that ~30% of the tested hits affect the phenotype, and since only 17/706 proteins were assessed, it is challenging to draw conclusive broad systemic claims. Alternatively, the authors could have focused on the positive hits, and understand them better, find the specific circuits where these genes act. This could have increased the impact of the work. Since neither of these two options are satisfied, I view this work as solid, but not wide in its impact and therefore estimate the audience of this study would be more specialized.

      My expertise is in C. elegans behavior, genetics, and neuronal activity, programming and machine learning.

      We thank the Reviewer for these comments and appreciate the recognition of the value of the proteomic dataset and the identification of novel molecular pathways, including the acetylcholine pathway, as well as the specificity of the uncovered genes to salt-associative memory.

      Regarding the reviewer’s concern about the overall impact and scope of the study, we respectfully offer the following clarification. Our aim was to establish a systems-level approach for investigating learning-related proteomic changes using TurboID, and we acknowledge that only a subset of the identified proteins was experimentally tested (now 26/706 proteins in the revised manuscript). Although only five of the tested single gene mutants showed a robust learning phenotype in the revised work (after backcrossing, more stringent candidate selection, improved statistical analysis in addressing reviewer comments), our proteomic data provides us a unique opportunity to define these candidates within protein-protein networks (as illustrated in Figure 7). Importantly, our functional testing focused on single-gene mutants, which may not reveal phenotypes for genes that act redundantly (now mentioned on pages 28-30). This limitation is inherent to many genetic screens and highlights the value of our proteomic dataset, which enables the identification of broader protein-protein interaction networks and molecular pathways potentially involved in learning.

      To support this systems-level perspective, we have added Figure 7, which visually integrates the tested candidates into molecular pathways derived from the learning proteome for learning regulators KIN-2 and F46H5.3. We also emphasise more explicitly in the text (on pages 32-33) the value of our approach by highlighting the functional protein networks that can be derived from our proteomics dataset.

      We fully acknowledge that the use of TurboID across all neurons limits the resolution needed to pinpoint individual neuron contributions, and understand the benefit in further experiments to explore specific circuits. Many circuits required for salt sensing and salt-based learning are highly explored in the literature and defined explicitly (see Rahmani & Chew, 2021), so our intention was to complement the existing literature by exploring the protein-protein networks involved in learning, rather than on neuron-neuron connectivity. However, we recognise the benefit in integrating circuit-level analyses, given that our proteomic data suggests hundreds of candidates potentially involved in learning. While validating each of these candidates is beyond the scope of the current study, we have taken steps to suggest candidate neurons/circuits by incorporating tissue enrichment analyses and single-cell transcriptomic data (Table S7 & Figure 4). These additions highlight neuron classes of interest and suggest possible circuits relevant to learning.

      We hope this clarification helps convey the intended scope and contribution of our study. We also believe that the revisions made in response to Reviewer 1’s feedback have strengthened the manuscript and enhanced its significance within the field.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In this study by Rahmani in colleagues, the authors sought to define the "learning proteome" for a gustatory associative learning paradigm in C. elegans. Using a cytoplasmic TurboID expressed under the control of a pan-neuronal promoter, the authors labeled proteins during the training portion of the paradigm, followed by proteomics analysis. This approach revealed hundreds of proteins potentially involved in learning, which the authors describe using gene ontology and pathways analysis. The authors performed functional characterization of some of these genes for their requirement in learning using the same paradigm. They also compared the requirement for these genes across various learning paradigms, and found that most hits they characterized appear to be specifically required for the training paradigm used for generating the "learning proteome".

      Major Comments:

      1. The definition of a "hit" from the TurboID approach is does not appear stringent enough. According to the manuscript, a hit was defined as one unique peptide detected in a single biological replicate (out of 5), which could give rise to false positives. In figure S2, it is clear that there relatively little overlap between samples with regards to proteins detected between replicates, and while perhaps unintentional, presenting a single unique peptide appears to be an attempt to inflate the number of hits. Defining hits as present in more than one sample would be more rigorous. Changing the definition of hits would only require the time to re-list genes and change data presented in the manuscript accordingly. We thank Reviewer 2 for this valuable comment, and the following related suggestion. We agree with the statement that “Defining hits as present in more than one sample would be more rigorous”. Therefore, to address this comment, we have now separated candidates into two categories in Table 2 __in the revised manuscript: ‘__strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). However, we think these weaker candidates should still be included in the manuscript, considering we did observe relationships between these proteins and learning. For example, ACC-1, which influences salt associative learning in C. elegans, was detected in one replicate of mass spectrometry as a potential learning regulator (Figure S8A). We describe this classification in the main text on pages 21-22.

      We also agree with Reviewer 2 that the overlap between individual candidate hits is low between biological replicates; the inclusion of Figure S2 __in the original manuscript serves to highlight this limitation. However, it is also important to consider that there is notable overlap for whole molecular pathways between biological replicates of mass spectrometry data as shown in __Figure 2 __in the revised manuscript (this consideration is now mentioned on __pages 13-14). We have included Figure 3 to illustrate representation for two metabolic processes across several biological replicates normally indispensable to animal health, as an example to provide additional visual aid for the overlap between replicates of mass spectrometry. We provide this figure (described on pages 13 & 15) to demonstrate the strength of our approach in that it can detect candidates not easily assessable by conventional forward or reverse genetic screens.

      We also appreciate the opportunity to explain our approach. The criteria of “at least one unique peptide” was chosen based on a previous work for which we adapted for this manuscript (Prikas et al., 2020). It was not intended to inflate the number of hits but rather to ensure sensitivity in detecting low-abundance neuronal proteins. We have clarified this in our Methods (page 46).

      The "hits" that the authors chose to functionally characterize do not seem like strong candidate hits based on the proteomics data that they generated. Indeed, most of the hits are present in a single, or at most 2, biological replicate. It is unclear as to why the strongest hits were not characterized, which if mutant strains are publicly available, would not be a difficult experiment to perform.

      We thank the reviewer for this important suggestion. To address this, we have described two molecular pathways with multiple components that appear in more than one biological replicate of mass spectrometry data in Figure 3 (main text on page 13). In addition, we have included __Figures 6 & S7 __where 9 additional single mutants corresponding to candidates in three or more biological replicates of mass spectrometry were tested for salt associative learning. Briefly, we found the following (number of replicates that a protein was unique to TurboID trained animals is in brackets):

      • Novel arginine kinase F46H5.3 (4 replicates) displays an effect in both salt associative learning and salt aversive learning in the same direction (Figures 6A, 6B, & S9A, pages 31-32 & 37-38).
      • Worms with a mutation for armadillo-domain protein C30G12.6 (3 replicates) only displayed an enhanced learning phenotype when non-backcrossed, not backcrossed. This suggests the enhanced learning phenotype was caused by a background mutation (Figure 6, pages 24-25).
      • We did not observe an effect on salt associative learning when assessing mutations for the ciliogenesis protein IFT-139 (5 replicates), guanyl nucleotide factors AEX-3 or TAG-52 (3 replicates), p38/MAPK pathway interactor FSN-1 (3 replicates), IGCAM/RIG-4 (3 replicates), and acetylcholine components ACR-2 (4 replicates) and ELP-1 (3 replicates) (Figure S7, on pages 27-30). However, we note throughout the section for which these candidates are described that only single gene mutants were tested, meaning that genes that function in redundant or compensatory pathways may not exhibit a detectable phenotype. Because of the lack of strong evidence that these are indeed proteins regulated in the context of learning based on proteomics, including evidence of changes in the proteins (by imaging expression changes of fluorescent reporters or a biochemical approach), would increase confidence that these hits are genuine.

      We thank Reviewer 2 for this suggestion – we agree that it would have been ideal to have additional evidence suggesting that changes in candidate protein levels are associated directly with learning. Ideally, we would have explored this aspect further; however, as outlined in response to Reviewer 1 Major Comment 2 (OPTIONAL), this was not feasible within the scope of the current study due to several practical challenges. Specifically, we attempted to generate pan-neuronal and endogenous promoter rescue lines for several candidates, but encountered significant challenges, including poor survival post-microinjection (likely due to protein overexpression toxicity) and reduced viability for behavioural assays, potentially linked to transgene-related reproductive defects. This information is now described on pages 39 & 40 of the revised work.

      To address these limitations, we performed additional behavioural experiments where possible. We successfully generated a pan-neuronal promoter line for kin-2, which was tested and included in the revised manuscript (Figure 5B, pages 30 & 31). In addition, to confirm that observed learning phenotypes were due to the expected mutations and not background effects, we conducted experiments using backcrossed versions of several mutant lines as suggested by Reviewer 4 Cross Comment 3 (Figure 6, pages 23-24 & 24-26). Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to repeat the enhanced learning phenotype observed in backcrossed kin-2(ce179) animals, providing additional evidence that the identified hits are required for learning. We also confirmed that F46H5.3 modulates salt associative learning, given both non-backcrossed and backcrossed F46H5.3(-) mutants display a learning enhancement phenotype. The revised text now describes this data on the page numbers mentioned above.

      Minor Comments:

      1. The authors highlight that the proteins they discover seem to function uniquely in their gustatory associative paradigm, but this is not completely accurate. kin-2, which they characterize in figure 4, is required for positive butanone association (the authors even say as much in the manuscript) in Stein and Murphy, 2014. We appreciate this correction and thank the Reviewer for pointing this out. We have amended the wording appropriately on page 31 to clarify our meaning.

      2. “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      Reviewer #2 (Significance (Required)):

      • General Assessment: The approach used in this study is interesting and has the potential to further our knowledge about the molecular mechanisms of associative behaviors. Strengths of the study include the design with carefully thought out controls, and the premise of combining their proteomics with behavioral analysis to better understand the biological significance of their proteomics findings. However, the criteria for defining hits and prioritization of hits for behavioral characterizations were major wweaknesses of the paper.
      • Advance: There have been multiple transcriptomic studies in the worm looking at gene expression changes in the context of behavioral training (Lakhina et al., 2015, Freytag 2017). This study compliments and extends those studies, by examining how the proteome changes in a different training paradigm. This approach here could be employed for multiple different training paradigms, presenting a new technical advance for the field.
      • Audience: This paper would be of interest to the broader field of behavioral and molecular neuroscience. Though it uses an invertebrate system, many findings in the worm regarding learning and memory translate to higher organisms.
      • I am an expert in molecular and behavioral neuroscience in both vertebrate and invertebrate models, with experience in genetics and genomics approaches. We appreciate Reviewer 2’s thoughtful assessment and constructive feedback. In response to concerns regarding definition and prioritisation of hits, we have revised our approach as detailed above to place more consideration on ‘strong’ hits present in multiple biological replicates. We have also added new behavioural data for additional mutants that fall into this category (Figures 6 & S7). We hope these revisions strengthen our study and enhance its relevance to the behavioural/molecular neuroscience community.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In the manuscript titled "Identifying regulators of associative learning using a protein-labelling approach in C. elegans" the authors attempted to generate a snapshot of the proteomic changes that happen in the C. elegans nervous system during learning and memory formation. They employed the TurboID-based protein labeling method to identify the proteins that are uniquely found in samples that underwent training to associate no-salt with food, and consequently exhibited lower attraction to high salt in a chemotaxis assay. Using this system they obtained a list of target proteins that included proteins represented in molecular pathways previously implicated in associative learning. The authors then further validated some of the hits from the assay by testing single gene mutants for effects on learning and memory formation.

      Major Comments:

      In the discussion section, the authors comment on the sources of "background noise" in their data and ways to improve the specificity. They provide some analysis on this aspect in Supplementary figure S2. However, a better visualization of non-specificity in the sample could be a GO analysis of tissue-specificity, and presented as a pie chart as in Figure 2A. Non-neuronal proteins such as MYO-2 or MYO-3 repeatedly show up on the "TurboID trained" lists in several biological replicates (Tables S2 and S3). If a major fraction of the proteins after subtraction of control lists are non-specific, that increases the likelihood that the "hits" observed are by chance. This analysis should be presented in one of the main figures as it is essential for the reader to gauge the reliability of the experiment.

      We agree with this assessment and thank Reviewer 3 for this constructive suggestion. In response, we have now incorporated a comprehensive tissue-specific analysis of the learning proteome in the revised manuscript. Using the single neuron RNA-Seq database CeNGEN, we identified the proportion of neuronal vs non-neuronal proteins from each biological replicate of mass spectrometry data. Specifically, we present Table 1 __on page 17 (which we originally intended to include in the manuscript, but inadvertently left out), which shows that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons, supporting that the TurboID enzyme was able to target the neuronal proteome as expected. __Table 1 is now described in the main text of the revised work on page 16.

      In addition, we performed neuron-specific analyses using both the WormBase gene enrichment tool and the CeNGEN single-cell transcriptomic database, which we describe in detail on our response to Reviewer 1 Major Comment 2. To summarise, these analyses revealed enrichment of several neuron classes, including those previously implicated in associative learning (e.g., ASEL, AIB, RIS, AVK) as well as neurons not previously studied in this context (e.g., IL1, DA9, DVC) (summarised in Table S7). By examining expression overlap across neuron types, we identified shared and distinct profiles that suggest potential functional connectivity and candidate circuits underlying behavioural plasticity (Figure 4). Taken together, these data show that the proteins identified in our dataset are (1) neuronal and (2) expressed in neurons that are known to be required for learning. Methods are detailed on pages 50-51.

      Other than the above, the authors have provided sufficient details in their experimental and analysis procedures. They have performed appropriate controls, and their data has sufficient biological and technical replaictes for statistical analysis.

      We appreciate this positive feedback and thank the Reviewer for acknowledging the clarity of our experimental and analysis procedures.

      Minor Comments:

      There is an error in the first paragraph of the discussion, in the sentences discussing the learning effects in gar-1 mutant worms. The sentences in lines 12-16 on page 22 says that gar-1 mutants have improved salt-associative learning and defective salt-aversive learning, while in fact the data and figures state the opposite.

      We appreciate the Reviewer noting this discrepancy. As clarified in our response to Reviewer 1, Major Comment 1 above, we reanalysed the behavioural data to ensure consistency across genotypes by comparing only those tested within the same biological replicates (thus having the same N for all genotypes). Upon this reanalysis, we found that the previously reported phenotype for gar-1 mutants in salt-associative learning was not statistically different from wild-type controls. Therefore, we have removed references to GAR-1 from the manuscript.

      __Reviewer #3 (Significance (Required)): __Strengths and limitations: This study used neuron-specific TurboID expression with transient biotin exposure to capture a temporally restricted snapshot of the C. elegans nervous system proteome during salt-associative learning. This is an elegant method to identify proteins temporally specific to a certain condition. However, there are several limitations in the way the experiments and analyses were performed which affect the reliability of the data. As the authors themselves have noted in the discussion, background noise is a major issue and several steps could be taken to improve the noise at the experimental or analysis steps (use of integrated C. elegans lines to ensure uniformity of samples, flow cytometry to isolate neurons, quantitative mass spec to detect fold change vs. strict presence/absence). Advance: Several studies have demonstrated the use of proximity labeling to map the interactome by using a bait protein fusion. In fact, expressing TurboID not fused to a bait protein is often used as a negative control in proximity labeling experiments. However, this study demonstrates the use of free TurboID molecules to acquire a global snapshot of the proteome under a given condition. Audience: Even with the significant limitations, this study is specifically of interest to researchers interested in understanding learning and memory formation. Broadly, the methods used in this study could be modified to gain insights into the proteomic profiles at other transient developmental stages. The reviewer's field of expertise: Cell biology of C. elegans neurons.

      We thank the reviewer for their thoughtful evaluation of our work. We appreciate the recognition of the novelty and potential of using neuron-specific TurboID to capture a temporally restricted snapshot of the C. elegans nervous system proteome during learning. We agree that this approach offers a unique opportunity to identify proteins associated with specific behavioural states in future studies.

      We also appreciate the reviewer’s comments regarding limitations in experimental and analytical design. In revising the manuscript, we have taken several steps to address these concerns and improve the clarity, rigour, and interpretability of our data. Specifically:

      • We now provide a frequency-based representation of proteomic hits (Table 2), which helps clarify how candidate proteins were selected and highlights differences between trained and control groups.
      • We have added neuron-specific enrichment analyses using both WormBase and CenGEN databases (Table S7 & Figure 4), which help identify candidate neurons and potential circuits involved in learning (methods on pages 50-51).
      • We have clarified the rationale for using qualitative proteomics in the context of TurboID, in addition to acknowledging the challenges of integrating quantitative mass spectrometry with biotin-based enrichment (page 39). Additional methods for improving sample purity, such as using integrated lines or FACS-enrichment of neurons, could further refine this approach in future studies. For transparency, we did attempt to integrate the TurboID transgenic line to improve the strength and consistency of biotinylation signals. However, despite four rounds of backcrossing, this line exhibited unexpected phenotypes, including a failure to respond reliably to the established training protocol. As a result, we were unable to include it in the current study. Nonetheless, we believe our current approach provides a valuable proof-of-concept and lays the groundwork for future refinement. By addressing the major concerns of peer reviewers, we believe our study makes a significant and impactful contribution by demonstrating the feasibility of using TurboID to capture learning-induced proteomic changes in the nervous system. The identification of novel learning-related mutants, including those involved in acetylcholine signalling and cAMP pathways, provides new directions for future research into the molecular and circuit-level mechanisms of behavioural plasticity.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this manuscript, authors used a learning paradigm in C. elegans; when worms were fed in a saltless plate, its chemotaxis to salt is greatly reduced. To identify learning-related proteins, authors employed nervous system-specific transcriptome analysis to compare whole proteins in neurons between high-salt-fed animals and saltless-fed animals. Authors identified "learning-specific genes" which are observed only after saltless feeding. They categorized these proteins by GO analyses and pathway analyses, and further stepped forward to test mutants in selected genes identified by the proteome analysis. They find several mutants that are defective or hyper-proficient for learning, including acc-1/3 and lgc-46 acetylcholine receptors, gar-1 acetylcholine receptor GPCR, glna-3 glutaminase involved in glutamate biosynthesis, and kin-2, a cAMP pathway gene. These mutants were not previously reported to have abnormality in the learning paradigm.

      Major comments:

      1) There are problems in the data processing and presentation of the proteomics data in the current manuscript which deteriorates the utility of the data. First, as the authors discuss (page 24, lines 5-12), the current approach does not consider amount of the peptides. Authors state that their current approach is "conservative", because some of the proteins may be present in both control and learned samples but in different amounts. This reviewer has a concern in the opposite way: some of the identified proteins may be pseudo-positive artifacts caused by the analytical noise. The problem is that authors included peptides that are "present" in "TurboID, trained" sample but "absent" in the "Non-Tg, trained" and "TurboID, control" samples in any one of the biological replicates, to identify "learning proteome" (706 proteins, page 8, last line - page 9, line 8; page 32, line 21-22). The word "present" implies that they included even peptides whose amounts are just above the detection threshold, which is subject to random noise caused by the detector or during sample collection and preparation processes. This consideration is partly supported by the fact that only a small fraction of the proteins are common between biological replicates (honestly and respectably shown in Figure S2). Because of this problem, there is no statistical estimate of the identity in "learning proteome" in the current manuscript. Therefore, the presentation style in Tables S2 and S3 are not very useful for readers, especially because authors already subtracted proteins identified in Non-Tg samples, which must also suffer from stochastic noise. I suggest either quantifying the MS/MS signal, or if authors need to stick to the "present"/"absent" description of the MS/MS data, use the number of appearances in biological replicates of each protein as estimate of the quantity of each protein. For example, found in 2 replicates in "TurboID, learned" and in 0 replicates in "Non-Tg, trained". One can apply statistics to these counts. This said, I would like to stress that proteins related to acquisition of memory may be very rare, especially because learning-related changes likely occur in a small subset of neurons. Therefore, 1 time vs 0 time may be still important, as well as something like 5 times vs 1 time. In summary, quantitative description of the proteomics results is desired.

      We thank the reviewer for these valuable comments and suggestions.

      We acknowledge that quantitative proteomics would provide beneficial information; however, as also indicated by Reviewer 1 (in cross-comment), it is practically challenging to perform with TurboID. We have included discussion of potential future experiments involving quantitative mass spectrometry, as well as a comprehensive discussion of some of the limitations of our approach as summarised by this Reviewer, in the Discussion section (page 39). However, we note that our qualitative approach also provides beneficial knowledge, such as the identification of functional protein networks acting within biological pathways previously implicated in learning (Figure 2), and novel learning regulators ACC-1/3, LGC-46, and F46H5.3.

      We agree with the assessment that the frequency of occurrence for each candidate we test per biological replicate is useful to disclose in the manuscript as a proxy for quantification. This was also highlighted by Reviewer 2 (Major Comment 1). As detailed above in response to R2, we have now separated candidates into two categories: ‘strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). We have also added behavioural data after testing 9 of these strong candidates in Figures 6 & S7.

      We have also added Table 2 to the revised manuscript, which summarises the frequency-based representation of the proteomics results, as suggested. This is described on pages 22-23. Briefly, this shows the range of candidates further explored using single mutant testing. Specifically, this data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates, providing a clearer view of how proteomic frequency informed our selection for functional testing.

      2) There is another problem in the treatment of the behavioural data. In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). How were these values determined? One common example for judging a data point as an outlier is > mean + 1.5, 2 or 3 SD, or Thank you for pointing this out. As mentioned by both Reviewer 1 and Reviewer 4, the original manuscript states the following: “Data was excluded for salt associative learning experiments when wild-type N2 displayed (1) an average CI ≤ 0.6499 for naïve or control groups and/or (2) an average CI either 0.5499 for trained groups.”

      To clarify, we only excluded experiments in rare cases where N2 worms did not display robust high salt attraction before training, or where trained N2 did not display the expected behavioural difference compared to untrained or high-salt control N2. These anomalies were typically attributable to clear contamination or starvation issues that could clearly be observed prior to counting chemotaxis indices on CTX plates.

      We established these exclusion criteria in advance of conducting multiple learning assays to ensure an objective threshold for identifying and excluding assays affected by these rare but observable issues. However, these criteria were later found to be unnecessary, as N2 worms robustly displayed the expected untrained and trained phenotypes for salt associative learning when not compromised by starvation or contamination.

      We understand that the original criteria may have appeared to introduce arbitrary bias in data selection. To address this concern, we have removed these criteria from the revised manuscript from page 50.

      Minor comments:

      1) Related to Major comments 1), the successful effect of neuron-specific TurboID procedure was not evaluated. Authors obtained both TurboID and Non-Tg proteome data. Do they see enrichment of neuron-specific proteins? This can be easily tested, for example by using the list of neuron-specific genes by Kaletsky et al. (http://dx.doi.org/10.1038/nature16483 or http://dx.doi.org/10.1371/journal.pgen.1007559), or referring to the CenGEN data.

      We thank this Reviewer for this helpful suggestion, which was echoed by Reviewer 3 (Major Comment 1). As indicated in the response to R3 above, the revised manuscript now includes Table 1 as a tissue-specific analysis of the learning proteome, using the single neuron RNA-Seq database CeNGEN to identify the proportion of neuronal proteins from each biological replicate of mass spectrometry data. Generally, we observed a range of 87-95% of proteins corresponded to genes from the CeNGEN database that had been detected in neurons, providing evidence that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 is now described in the main text of the revised work on pages 16 & 17.

      2) The behavioural paradigm needs to be described accurately. Page 5, line 16-17, "C. elegans normally have a mild attraction towards higher salt concentration": in fact, C. elegans raised on NGM plates, which include approximately 50mM of NaCl, is attracted to around 50mM of NaCl (Kunitomo et al., Luo et al.) but not 100-200 mM.

      We thank the Reviewer for pointing this out. We agree that clarification is necessary. The revised text reads as follows on page 5: “C. elegans are typically grown in the presence of salt (usually ~ 50 mM) and display an attraction toward this concentration when assayed for chemotaxis behaviour on a salt gradient (Kunitomo et al., 2013, Luo et al., 2014). Training/conditioning with ‘no salt + food’ partially attenuates this attraction (group referred to ‘trained’).”

      Authors call this assay "salt associative learning", which refers to the fact that worms associate salt concentration (CS) and either presence or absence of food (appetitive or aversive US) during conditioning (Kunitomo et al., Luo et al., Nagashima et al.) but they are looking at only association with presence of food, and for proteome analysis they only change the CS (NaCl concentration, as discussed in Discussion, p24, lines 4-5). It is better to attempt to avoid confusion to the readers in general.

      Thank you Reviewer 4 for highlighting this clarity issue. We clarify our definition of “salt associative learning” for the purpose of this study in the revised manuscript on page 6 with the following text:

      “Similar behavioural paradigms involving pairings between salt/no salt and food/no food have been previously described in the literature (Nagashima et al. 2019). Here, learning experiments were performed by conditioning worms with either ‘no salt + food’ (referred to as ‘salt associative learning’) or ‘salt + no food’ (called ‘salt aversive learning’).”

      3) page 32, line 23: the wording "excluding" is obscure and misleading because the elo-6 gene was included in the analysis.

      We appreciate this Reviewer for pointing out this misleading comment, which was unintentional. We have now removed it from the text (on page 21).

      4) Typo at page 24, line 18: "that ACC-1" -> "than ACC-1".

      This has been corrected (on page 37).

      5) Reference. In "LEO, T. H. T. et al.", given and sir names are flipped for all authors. Also, the paper has been formally published (http://dx.doi.org/10.1016/j.cub.2023.07.041).

      We appreciate the Reviewer drawing our attention to this – the reference has been corrected and updated.

      I would like to express my modest cross comments on the reviews:

      1) Many of the reviewers comment on the shortage in the quantitative nature of the proteome analysis, so it seems to be a consensus.

      Thank you Reviewer 4 for this feedback. We appreciate the benefit in performing quantitative mass spectrometry, in that it provides an additional way to parse molecular mechanisms in a biological process (e.g., fold-changes in protein expression induced by learning). However, we note that quantitative mass spectrometry is challenging to integrate with TurboID due to the requirement to enrich for biotinylated peptides during sample processing (we now mention this on page 39). Nevertheless, it would be exciting to see this approach performed in a future study.

      To address the limitations of our original qualitative approach and enhance the clarity and utility of our dataset, we have made the following revisions in the manuscript:

      • Candidate selection criteria: We now clearly define how candidates were selected for functional testing, based on their frequency across biological replicates. Specifically, “strong candidates” were detected in three or more replicates, while “weak candidates” appeared in two or fewer.
      • Frequency-based representation (_Table 2_):__We appreciate the suggestion by Reviewer 4 (Major Comment 1) to quantify differences between high-salt control and trained groups. We now provide the frequency-based representation of the candidates tested in this study within our proteomics data in __Table 2. This data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates We hope these additions help clarify our approach and demonstrate the value of the dataset, even within the constraints of qualitative proteomics.

      2) Also, tissue- or cell-specificity of the identified proteins were commonly discussed. In reviewer #3's first Major comment, appearance of non-neuronal protein in the list was pointed out, which collaborate with my (#4 reviewer's) question on successful identification of neuronal proteins by this method. On the other hand, reviewer #1 pointed out subset neuron-specific proteins in the list. Obviously, these issues need to be systematically described by the authors.

      We agree with Reviewer 4 that these analyses provide a critical angle of analysis that is not explored in the original manuscript.

      Tissue analysis (Reviewer 3 Major Comment 1): We have used the single neuron RNA-Seq database CeNGEN, to identify that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons. These findings support that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 provides this information as is now described in the main text of the revised work on page 16.

      __Neuron class analyses (Reviewer 1 Major Comment 2): __In response, we have used the suggested Wormbase gene enrichment tool and CeNGEN. We specifically input proteins from the learning proteome into Wormbase, after filtering for proteins unique to TurboID trained animals. For CeNGEN, we compared genes/proteins from control worms and trained worms to identify potential neurons that may be involved in this learning paradigm.

      Briefly, we found highlight a range of neuron classes known in learning (e.g., RIS interneurons), cells that affect behaviour but have not been explored in learning (e.g., IL1 polymodal neurons), and neurons for which their function/s are unknown (e.g., pharyngeal neuron I3). Corresponding text for this new analysis has been added on pages 16-20, with a new table and figure added to illustrate these findings (Table S7 & Figure 4). Methods are detailed on pages 50-51.

      3) Given reviewer #1's OPTIONAL Major comment, as an expert of behavioral assays in C. elegans, I would like to comment based on my experience that mutants received from Caenorhabditis Genetics Center or other labs often lose the phenotype after outcrossing by the wild type, indicating that a side mutation was responsible for the observed behavioral phenotype. Therefore, outcrossing may be helpful and easier than rescue experiments, though the latter are of course more accurate.

      Thank you for this suggestion. To address the potential involvement of background mutations, we have done experiments with backcrossed versions of mutants tested where possible, as shown in Figure 6. We found that F46H5.3(-) mutants maintained enhanced learning capacity after backcrossing with wild type, compared to their non-backcrossed mutant line. This was in contrast to C30G12.6(-) animals which lost their enhanced learning phenotype following backcrossing using wild type worms. This is described in the text on pages 24-26.

      4) Just let me clarify the first Minor comment by reviewer #2. Authors described that the kin-2 mutant has abnormality in "salt associative learning" and "salt aversive learning", according to authors' terminology. In this comment by reviewer #2, "gustatory associative learning" probably refers to both of these assays.

      Reviewer 4 is correct. We have amended the wording appropriately on page 31 to clarify our meaning to address Reviewer 2’s comment.

      • “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      5) There seem to be several typos in reviewer #1's Minor comments.

      "In Page 9, Lines 17-18" -> "Page 8, Lines 17-18".

      "Page 8, Line 24" -> "Page 7, Line 24".

      "I would suggest to remove figure 3" -> "I would suggest to remove figure 2"

      "summary figure similar to Figure 4" -> "summary figure similar to Figure 3"

      "In the discussion Page 24, Line 14" -> "In the discussion Page 23, Line 14"

      (I note that because a top page was inserted in the "merged" file but not in art file for review, there is a shift between authors' page numbers and pdf page numbers in the former.)

      It would be nice if reviewer #1 can confirm on these because I might be wrong.

      We appreciate Reviewer 4 noting this, and can confirm that these are the correct references (as indicated by Reviewer 1 in their cross-comments)

      Reviewer #4 (Significance (Required)):

      1) Total neural proteome analysis has not been conducted before for learning-induced changes, though transcriptome analysis has been performed for odor learning (Lakhina et al., http://dx.doi.org/10.1016/j.neuron.2014.12.029). This guarantees the novelty of this manuscript, because for some genes, protein levels may change even though mRNA levels remain the same. We note an example in which a proteome analysis utilizing TurboID, though not the comparison between trained/control, has led to finding of learning related proteins (Hiroki et al., http://dx.doi.org/10.1038/s41467-022-30279-7). As described in the Major comments 1) in the previous section, improvement of data presentation will be necessary to substantiate this novelty.

      We appreciate this thoughtful feedback. We agree that while the neuronal transcriptome has been explored in Lakhina et al., 2015 for C. elegans in the context of memory, our study represents the first to examine learning-induced changes in the total neuronal proteome. We particularly agree with the statement that “for some genes, protein levels may change even though mRNA levels remain the same”. This is essential rationale that we now discuss on page 42.

      Additionally, we acknowledge the relevance of the study by Hiroki et al., 2022, which used TurboID to identify learning-related proteins, though not in a trained versus control comparison. Our work builds on this by directly comparing trained and control conditions, thereby offering new insights into the proteomic landscape of learning. This is now clarified on page 36.

      To substantiate the novelty and significance of our approach, we have revised the data presentation throughout the manuscript, including clearer candidate selection criteria, frequency-based representation of proteomic hits (Table 2), and neuron-specific enrichment analyses (Table S7 & Figure 4). We hope these improvements help convey the unique contribution of our study to the field.

      2) Authors found six mutants that have abnormality in the salt learning (Fig. 4). These genes have not been described to have the abnormality, providing novel knowledge to the readers, especially those who work on C. elegans behavioural plasticity. Especially, involvement of acetylcholine neurotransmission has not been addressed. Although site of action (neurons involved) has not been tested in this manuscript, it will open the venue to further determine the way in which acetylcholine receptors, cAMP pathway etc. influences the learning process.

      Thank you Reviewer 4, for this encouraging feedback. To further strengthen the study and expand its relevance, we have tested additional mutants in response to Reviewer 3’s comments, as shown in Figures 6 & S7. These results provide even more candidate genes and pathways for future exploration, enhancing the significance and impact of our study.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all the reviewers for their helpful and constructive comments and for their time.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      Summary: Dady et al have developed fluorescent reporters to enable live imaging of cell behaviour and morphology in human pluripotent stem cell lines (PSCs). These reporters target 3 main features, the plasma membrane, nucleus and cytoskeleton. Reporter PSCs have been generated using a piggyBac transposon-mediated stable integration strategy, using a hyperactive piggyBac transposase (HyPBase). The same constructs were also used for mosaic labelling of cells within 2D cultures using lipofectamine transfection.

      The reporters used are tagged with either eGFP or mKate2 (far red) and tag the plasma membrane (pm) via the addition of a 20 amino-acid sequence from rat GAP-43 to the N-terminus of the fluorescent protein, the nucleus via Histone 2B with a laser-mediated photo-conversion option (H2B-mEos3.2), and the cytoskeleton via F-Tractin. In total, the authors produced lines with the following:

      • pm-mKate2 (far red) • pm-eGFP (green) • H2B-mEos3.2 (green to red) • F-tractin-mKate2 (far red) • H2B-mEos3.2 and pm-mKate2 (green to red, plus far red)

      The cell lines used to generate these were the human embryonic stem cell line H9 and human induced pluripotent cell line ChiPS4. The constructs were also used to label cells in a mosaic fashion, using lipofectamine transfection of the original cell lines once they had formed neural rosettes.

      Using these cells, Dady et al then performed live imaging in vitro of human spinal cord rosettes and assessed cell behaviour. In particular they analysed mitotic cleavage planes and apical positioning of neural progenitor cells (NPCs), and assessed actin dynamics within these cells. They showed a slowing of the cell cycle length after the initial expansion phase, an increase in the rate of asymmetric division of these NPCs, and abscission of the apical membrane during these divisions. The F-tractin reporter showed enrichment at the basal nuclear membrane during these cell divisions, suggested to help prevent basal chromosome displacement during mitosis.

      Major comments: The data presented are convincing and could be strengthened by the following additions and clarifications:*

      1. How long do the fluorescent reports take to be visible when transfected via lipofectamine? How efficiently are they expressed? And what concentrations were tested to enable the mosaic expression presented? * We followed the manufacturer’s instructions for Lipofectamine 3000 transfection, using the protocol recommended for set up for a 6 wells plate. We detected fluorescence the following morning ~16h. We did not assess earlier time points or optimise efficiency as we observed the mosaic pattern of expression we set out to achieve, with small groups of labelled cells and single cells as shown in Figure 3 and movies 2 and 3. This information and the detailed protocol provided below are now included in the Methods section “Labelling individual cells in human spinal cord rosettes by lipofection”.

      Manufacturer’s instructions for Lipofectamine 3000 transfection (6 well plate):

      • 1 tube containing 125 ul of Opti-MEM and 7.5 ul of Lipofectamine 3000
      • 1 tube containing 250 ul of Opti-MEM with 5 ug of DNA (total mix DNAs of 2 ug/ul) and P3000 Reagent
      • Add diluted DNA to diluted Lipofectamine 3000 (Ratio 1:1) and incubate for 10 to 15 min at Room Temperature.
      • 20 ul of DNA-Lipid complex was added to neural rosettes growing in 8 well IBIDI dishes (20 ul/well).
      • The ratio of DNA (PiggyBac plasmid) and HypBase transposase was kept at 5:1 (for a final concentration of 2ug/ul).
      • Cells in IBIDI dishes were left to develop in a sterile incubator overnight and mosaic fluorescence was observed the following morning (~16h post-lipofection).

      • Will these cell lines and constructs be made publicly available after publication?*

      The cell lines can be made available: for those reporters made in the H9 WiCell line an MTA will first have to be signed between the requesting PI and WiCell and permission for us to share the line(s) confirmed by WiCell; similarly, for reporters in ChiPS4 line an MTA will first need to be signed between the requesting PI and Cellartis/TakaraBio Europe. We will need to make a charge to cover costs. Constructs will be deposited with Addgene.

      • Were the H9 and ChiPS4 lines characterised after the reporters were added to show they still proliferate/differentiate as they did prior to the reporter integration*?

      In the Results we make clear that all lines created are polyclonal, with exception of a pm-eGFP ChiPS4 line, which is a monoclonal line (lines 145-150). We do not have direct data measuring cell proliferation but collected cell passaging data for all the reporter lines. This showed that they grow to similar densities at each passage compared to the parental line (this metadata is now provided as Supplementary data 1 and is cited in the Methods, line 348).

      As a proof of principle for this approach, we created one monoclonal line from a polyclonal line ChIPS4-pm-eGFP. The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers (immunocytochemistry data Figure S4), and the ability to differentiate into 3 germ layers (qPCR Supplementary data 1). This information is already cited in the Methods (Lines 358-362).

      • Can the novel actin dynamics described be quantified? How many cells imaged show these novel dynamics?* Some of this quantification data was already reported in the paper (in figure 4 legend and in the Methods); we have now updated this and provide the detailed metadata in an Excel spread sheet, Supplementary data 4 (cited in the Methods, line 489)

      Minor comments: 1. Some images in the figures and supplemental movies are low in resolution, for example the DAPI in Fig 4B, making it hard to distinguish individual cells. Please increase this.

      We consider the DAPI labelling in Figure 4b to be clear, however, we wonder whether the reviewer was expecting to also see this combined with the other markers. We have therefore now provided these merged additional images in a revised Figure 4.

      • Please show a merge of Phalloidin and F-Tractin in Fig4, this will help the colocalization to be fully appreciated.*

      This has now been provided in revised Figure 4B.

      • Some additional annotation on the supplemental movies would be useful to indicate to the **reader exactly what cell to follow. *

      We have added indicative arrows to the movies, and note that more detailed labelling of the series of still images from these movies are provided in the main figures (Figures 3D and 4E & F).

      *Reviewer #1 (Significance (Required)):

      Human neurogenesis is currently poorly understood compared to many model systems used, yet key differences have already been identified between the human and the mouse, prompting the need for further investigation of human neural development. A major reason that human neurogenesis has been difficult to study is a lack of tools to enable cell morphology and behaviours to be analysed in real time.

      The reporters and reporter PSC lines generated by Dady et al will allow many of these cell characteristics to be observed using live imaging. For example, the morphology of neural progenitors during and after cell divisions, how the apical and basal processes and membranes are divided, and how the actin cytoskeleton helps to regulate these processes.

      *Importantly, PSC lines can be very heterogeneous, making generating reporter lines costly and time intensive. The use of these reporters with lipofectamine transfection, for a mosaic labelling, allows the visualisation of the plasma membrane, nucleus and cytoskeleton in any human PSC/NPC line, or even in human tissue cultures, without the need to generate each specific reporter line, making it a valuable tool for many labs in the field.

      We strongly agree with this final point; this is a major reason for our study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):*

      The manuscript describes the generation of novel lines of human pluripotent stem cells bearing fluorescent reporters, engineered through piggyBac transposon-mediated integration. The cells are differentiated into neuronal organoids, allowing to capture cellular behaviors associated to cell division. A replating protocol allows the observation of aging neurons by reducing the thickness of the tissue thereby facilitating live imaging. The authors also leverage the transposon technology to create mosaically-labelled organoids which allows visualizing aspects of neuronal delamination, notably cytoskeleton dynamics. They discover an undescribed pattern of F-actin enrichment at the basal nuclear membrane prior to nuclear envelope breakdown.

      L104-109: "Moreover, the transposon system obviates drawbacks of directly engineering endogenous proteins...". Despite the risk of endogenous protein dysfunction, directly tagging allows the full regulation of gene expression (including the promoter, the enhancers and other regulatory regions rather than a strong constitutive promoter such as CAG). In addition, the number of copies integrated and the genomic regions are variable with PB, which does not reflect the endogenous expression. This could be rephrased by nuancing the advantages and drawbacks of each approach. The PiggyBac method is easier and faster, but it results in overexpression of a tagged protein that will be expressed since the hESC state and might not reflect the expression dynamics of the endogenous protein.* We agree and have now revised this in the Introduction L109-118.

      *L124-126: "To monitor cell shape and dynamics we used a plasma membrane (pm) localized protein tagged with eGFP or mKate2 (pm-eGFP or pm-mKate2)." Could the authors provide more details and a reference on the palmitoylated rat peptide use to force membrane expression? *

      This information, including the peptide sequence, is provided in the Methods (L330-331), we have now added a reference addressing its role in membrane localisation PMID: 2918027.

      L132-133: " Finally, to observe actin cytoskeletal dynamics we selected F-tractin, for its minimal impact on cytoskeletal homeostasis".

      A recent JCB paper (https://doi.org/10.1083/jcb.202409192) suggests that "F-tractin alters actin organization and impairs cell migration when expressed at high levels". Whether the overexpression of F-tractin in hESC using a CAG promoter reflects the physiological F-actin dynamics and/or if the high levels could lead to an alteration of cell behavior should be addressed or at least discussed. The paper we cite in this sentence (Belin et al 2014) evaluates F-tractin expression against other approaches to labelling and monitoring the actin cytoskeleton and concludes that in comparison F-tractin has minimal impact.

      We do appreciate that expression above the endogenous level has the potential to alter cell behaviour and have revised the paper to more explicitly acknowledge this: in the Introduction (L109-112), and in the Discussion/conclusion (L289-293) where we now note the recent advances reported in Shatskiy et al. 2025 PMID: 39928047.

      “A further potential limitation of this approach is that over-expression driven by the CAG promoter might not reflect physiological protein dynamics and/or alter cell behaviour; for example, high levels of F-Tractin can impair cell migration and induce actin bundling, interestingly, this can now be minimised by removing the N-terminal region (Shatskiy et al 2025)”.

      L146-147: "...to generate polyclonal cell lines selected for expression of easily detectable (medium level) fluorescence for live imaging studies". What are the criteria used to define medium level? Number of copies integrated into the genome? Or levels by FACS during clone selection?

      To clarify, all the lines presented here are polyclonal, except for one clonal line, pm-eGFP in ChiPS4. The numbers of copies integrated may vary from cell to cell in polyclonal lines. In this study, we selected cells for all lines with a FACS gate and this data is presented in Figure S1 (see line 147).

      L260-263: "Efficient stable integration and moderate expression levels were achieved by optimising, i) the quantity and ratio of piggyBac plasmids and transposase and ii) subsequent FACS to exclude high expressing cells, as well as iii) transfection methods, including temporally defined lipofection in hiPSC-derived tissues." The ration 5:1 is classically used for PB Transposase delivery, however there is still high variability in the number of copies integration. Lipofection in derived tissues has been shown to be challenging. Could the authors should provide quantitative data regarding the efficiency of their approaches, notably the level of mosaicism one could expect?

      We provide quantitative data for the efficiency of transfection using nucleoporation assays (FACS data presented in Supplementary figure S1), which shows more than 80-90% efficiency for eGFP in 82.82% of cells, mKate2 in 92.74% of cells, and H2B-mEos3 22.75% of cells, while 13.79% of cells co-expressed pm-Kate and H2B-mEos3.2. No comparative data regarding the efficiency of the tissue Lipofection assay was collected: our goal was to label single/small numbers of cells in order to monitor individual cell behaviours, and this “inefficient labelling” was readily achieved following the manufacturer’s instructions (please see response to Review 1 point 1), further details are now provided in the Methods.

      L191-194: "We further wished to monitor sub-cellular behaviour within the developing neuroepithelium. To achieve this, we devised a strategy to target a mosaic of cells in established neural rosettes using lipofection. PiggyBac constructs and HyPBase transposase were transfected into D8/D9 human spinal cord neural progenitors using lipofectamine (Felgner, et al., 1987)(Fig. 3A)." The mosaicism is not an all or nothing in this method but also leads to variations in expression levels among the positive cells. The protocol for lipofection could be better detailed to allow easy reproduction by other teams, and its expected efficiency should be discussed. It would be interesting to explore the relationship between individual cells phenotype and expression levels. Please see response to Reviewer 1 point 1 above for more detailed lipofection protocol which generated mosaic expression, this is now also included in the Methods. We agree that investigating the relationship between individual cell phenotypes and expression levels would be interesting, but we think this is beyond the scope of this paper.

      Additional comments: -Did the authors perform karyotyping of the hPSCs prior to use in the differentiation protocol?

      As these are polyclonal lines, we did not undertake karyotyping. This could be done for the one monoclonal line described here (pm-eGFP ChiPS4 line): we lack funds for commercial options, but we are exploring other possibilities.

      -Were pluripotency assays performed after reporter lines generation?

      These were carried out for the clonal pm-eGFP ChiPS4 line (lines 145-150). The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers by IF (Figure S4), and the ability to differentiate into 3 germ layers by qPCR (Supplementary data 2). This information is provided in the Methods (Lines 358-362).

      *-Did the authors measure the cell proliferation rate in H2B-overexpressing cells and controls? Since H2B plays an important role in cytokinesis, it could interfere in cell division when H2B is overexpressed (see doi: 10.3390/cells8111391). *

      We did not directly measure cell division when H2B is over-expressed. However, we assessed cell -passaging time of all the transfected cell lines. This showed that they grow to similar densities at each passage compared to the parental line (this is now provided as Supplementary data 1 and is cited in the Methods, line 348). We also found no difference between apical visiting time of progenitors in spinal cord rosettes expressing pm-eGFP or H2B-mEoS3.2, further supporting the conclusion that levels of H2B-mEoS3.2 expression achieved in this line did not interfere with cell division (metadata provided in Supplementary data 3).

      The authors should provide data concerning the efficiency of expression of the distinct markers after electroporation. This is provided in Supplementary Figure S1 (FACS data) and detailed above for this reviewer.

      *At Fig 1C, the schematic representation describes clone selection, however in the methods it is stated (L348-349): "Sorted cells expressing medium levels of fluorescence were expanded and frozen then representative lots of each polyclonal cell line...". There is some confusion regarding which experiments were performed using polyclonal medium-level mixed populations or monoclonal populations. *

      We apologise for any confusion and have revised the Figure 1C schematic to indicate that cells can be selected to either make polyclonal lines or clonal lines.

      *Reviewer #2 (Significance (Required)):

      The study provides novel tools, as well as elements regarding neuroepithelium biology. It is well conducted and written, and the quality of images is excellent. It reads more as a resource paper in its current version, since the observation regarding neural cell division and delamination are interesting but not deeply explored, so this review will focus on those technical aspects rather than the novelty of the biological findings.

      This study would be of interests for researchers in stem cells and organoids, developmental biology, and neurosciences.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In the manuscript, "Engineering fluorescent reporters in human pluripotent cells and strategies for live imaging human neurogenesis" the authors Dady et al. describe the adaptation of a recent advancement in transposase technology (HyPBase) as a method to integrate live reporters in human pluripotent stem cells. They show that these florescent reporters paired with new imaging strategies can be used to confirm the existence cellular behaviour described in other species such as the interkinetic nuclear migration (IKNM) of dividing progenitors in neural tube development. Finally, they demonstrate that this live imaging system is also able to discover novel biology by identifying previously undescribed actin polymerization at the basal nuclear surface of cortical progenitors undergoing cell division. Overall, the study presents two examples in which this adapted tool will aid in live-imaging studies of cellular biology.

      Major Concerns: 1. This work needs more controls to properly demonstrate claims that their engineering strategy provides an advancement to current Piggyback methods. Their HyPBase strategy needs to be compared and quantified in terms of efficiency with other methods to support their claims (increased detection and reduced phototoxicity).*

      We do not make specific claims for our experiments with respect to the superiority of HyPBase strategy. Our comments on this approach referred to by the reviewer here are in the Introduction (L 94-103), are supported by the literature (e.g. more stable gene expression than native piggyBac or the Tc1/mariner transposase Sleeping Beauty (Doherty, et al., 2012, Yusa, et al., 2011) and serve to explain our selection of HyPBase for our experiments. We make a case for using HyPBase as opposed to another transposase and although it would be interesting to compare efficiencies, this comment does not specify what “other methods” might be informative.

      2.Throughout the manuscript more quantification is needed of the results. How many rosettes were examined? Were all the reported cells within one rosette? Were there differences between rosettes? This should be done for both the spinal and cortical differentiations.

      The reviewer appears to have missed this information – we placed detailed quantifications in the figure legends (numbers of independent experiments and rosettes) and in the Methods in a specific section on Quantification of cell behaviour (L465-486), rather than in the main text. These has since been further updated and we now also provide additional metadata in the form of Excel spreadsheets for quantifications and analyses made for both spinal cord and cortical rosettes (Supplementary data 3 and 4 respectively).

      Minor Comments: 1. Line 246 needs quantification shown in figures of the statements made. Specifically, how many cells were measured to get this number?

      This information was provided in the figure 4 legend and we have since added numbers to these data; we were able to monitor 169 divisions in 21 rosettes; 154/166 divisions had vertical cleavage planes (symmetric) and 12/166 had horizontal cleavage planes (asymmetric).

      These detailed observations were made in two independent experiments, along with observations of basal nuclear membrane F-Tractin localisation. This is noted in figure 4 legend, Methods and detailed metadata is provided in Supplementary data 4.

      2.How many cells in the cortical rosettes had the enriched actin at the basal nuclear surface?

      We confidently observed basal nuclear membrane F-Tractin enrichment in 141/146 divisions, for the remaining 20 cases (166-146), we could not tell whether F-Tractin is enriched or not at the basal nuclear membrane either because of low expression levels or because the basal nuclear membrane was out of focus at NEB. In 5 cases, we did not see the basal nuclear enrichment despite sufficient F-Tractin expression levels and the nucleus being in focus. We have updated the Fig4 legend excluding the non-analysable cases and see detailed metadata is provided in Supplementary data 4.

      *Reviewer #3 (Significance (Required)):

      General Assessment: This manuscript makes a very minor advancement in the field of stem cell engineering and developmental biology, but one that is worthy of publication with a few edits.

      Advance: While PiggyBac reporters are widely used in stem cell engineering, Dady et al. demonstrate a new workflow using HyPBase which would be beneficial to the field. However, to increase this benefit, much more description and quantification of the methods would be needed. The biological advances of this manuscript are also very minor, but interesting as most of them confirm that human neural rosettes mimic many of the observed cell behaviours seen in animal models. Along these lines is the actin dynamics observation in cortical rosettes is interesting, but a preliminary observation and in need of follow up experiments.

      Audience: Regardless, this technique would be of interest to the wider field of stem cell engineering.

      My Expertise: Human Stem Cell Engineering, Neural Tube Development*

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      Dady et al have developed fluorescent reporters to enable live imaging of cell behaviour and morphology in human pluripotent stem cell lines (PSCs). These reporters target 3 main features, the plasma membrane, nucleus and cytoskeleton. Reporter PSCs have been generated using a piggyBac transposon-mediated stable integration strategy, using a hyperactive piggyBac transposase (HyPBase). The same constructs were also used for mosaic labelling of cells within 2D cultures using lipofectamine transfection.

      The reporters used are tagged with either eGFP or mKate2 (far red) and tag the plasma membrane (pm) via the addition of a 20 amino-acid sequence from rat GAP-43 to the N-terminus of the fluorescent protein, the nucleus via Histone 2B with a laser-mediated photo-conversion option (H2B-mEos3.2), and the cytoskeleton via F-Tractin. In total, the authors produced lines with the following:

      • pm-mKate2 (far red)
      • pm-eGFP (green)
      • H2B-mEos3.2 (green to red)
      • F-tractin-mKate2 (far red)
      • H2B-mEos3.2 and pm-mKate2 (green to red, plus far red)

      The cell lines used to generate these were the human embryonic stem cell line H9 and human induced pluripotent cell line ChiPS4. The constructs were also used to label cells in a mosaic fashion, using lipofectamine transfection of the original cell lines once they had formed neural rosettes.

      Using these cells, Dady et al then performed live imaging in vitro of human spinal cord rosettes and assessed cell behaviour. In particular they analysed mitotic cleavage planes and apical positioning of neural progenitor cells (NPCs), and assessed actin dynamics within these cells. They showed a slowing of the cell cycle length after the initial expansion phase, an increase in the rate of asymmetric division of these NPCs, and abscission of the apical membrane during these divisions. The F-tractin reporter showed enrichment at the basal nuclear membrane during these cell divisions, suggested to help prevent basal chromosome displacement during mitosis.

      Major comments:

      The data presented are convincing and could be strengthened by the following additions and clarifications: 1. How long do the fluorescent reports take to be visible when transfected via lipofectamine? How efficiently are they expressed? And what concentrations were tested to enable the mosaic expression presented? 2. Will these cell lines and constructs be made publicly available after publication? 3. Were the H9 and ChiPS4 lines characterised after the reporters were added to show they still proliferate/differentiate as they did prior to the reporter integration? 4. Can the novel actin dynamics described be quantified? How many cells imaged show these novel dynamics?

      Minor comments:

      1. Some images in the figures and supplemental movies are low in resolution, for example the DAPI in Fig 4B, making it hard to distinguish individual cells. Please increase this.
      2. Please show a merge of Phallodin and F-Tractin in Fig4, this will help the colocalization to be fully appreciated.
      3. Some additional annotation on the supplemental movies would be useful to indicate to the reader exactly what cell to follow.

      Significance

      Human neurogenesis is currently poorly understood compared to many model systems used, yet key differences have already been identified between the human and the mouse, prompting the need for further investigation of human neural development. A major reason that human neurogenesis has been difficult to study is a lack of tools to enable cell morphology and behaviours to be analysed in real time.

      The reporters and reporter PSC lines generated by Dady et al will allow many of these cell characteristics to be observed using live imaging. For example, the morphology of neural progenitors during and after cell divisions, how the apical and basal processes and membranes are divided, and how the actin cytoskeleton helps to regulate these processes.

      Importantly, PSC lines can be very heterogeneous, making generating reporter lines costly and time intensive. The use of these reporters with lipofectamine transfection, for a mosaic labelling, allows the visualisation of the plasma membrane, nucleus and cytoskeleton in any human PSC/NPC line, or even in human tissue cultures, without the need to generate each specific reporter line, making it a valuable tool for many labs in the field.

    1. Zwei Ex-Soldaten rechnen ab: So schlecht steht es um Deutschland wirklich

      https://www.youtube.com/watch?v=kOWDBy4fbqs

      Der Kipp-Punkt kommt, wenn die Kassen leer sind‼️ Dann gehen uns unsere Fachkräfte an die Gurgel‼️

      selbstjustiz und revolution, das ist das einzige was hilft, alles andere ist zeitverschwendung.

      4:51 Die Polizisten haben Angst, die Bürger haben Angst und das ist ja auch das Problem. Machst du jetzt irgendwas? Die sind ja nicht blöd, die kriegen deine Daten raus über die Staatsanwaltschaft, und dann auf einmal kriegst du Hausbesuche. Dasselbe Problem haben die Richter, dasselbe haben die Anwälte. Massive Einschüchterung, zumindest wenn es um Clankriminalität geht. Keiner traut sich mehr, was, also Deutschland hat fertig. Wir sind im Kriegszustand. nur hat es bis jetzt uns nur keiner gesagt.

      8:05 Das Problem ist auch mit diesen Einschüchterungen, das ist eine Form der Propaganda. Man weiß, man kann gegen die Leute nichts machen, also schüchtert man sie ein. Weil dann sozusagen, oh, eine Hausdurchsuchung links oder rechts von einen. Es wird juristisch nichts passieren, aber was passiert sozial? Was passiert mit den Job? Also, bestrafe einen und züchtige Hunderte. Das ist ein reines Abschreckungsmittel, was eigentlich in diktatorischen Gefilden normalerweise angewendet wird, aber anscheinend ist unsere Politik so weit, dass sie in die Enge getrieben ist, sich von der Realität verabschiedet haben, um jetzt sozusagen auf, ich nenn es mal "alte Methoden" zurückgreift, um dort einfach an der Macht zu bleiben.

      8:42 Weil das wissen wir, sei es die NGO Geschichten, sei es die vielen Skandale, die Masse wahrscheinlich von vielen vielen Amsträgern, die müssten wahrscheinlich auch im Knast landen. Ja, nur das kann man natürlich schön verheimlichen, indem man die Medien auf seiner Seite hat, die Richter, die alle auch politisch irgendwo ihre Pässe haben, ihre Parteibücher, und auf der anderen Seite mit den Medien. Also alles so ein Schornstein-Effekt, alle nutzen sich gegenseitig, und geben sich auch gegenseitig Autorität.

      11:04 Vorsorgen kann bis zu einem gewissen Grad ja wirklich jeder, ne? Ja, und es geht auch nicht immer um materielle Sachen. Körperlich, Geist, Netzwerk, Austauschen. Alleine bist du in der Krise nichts. Egal, was du für ein Background hast, egal wie gut du bewaffnet bist, egal wie viel Essen du hast, jeder ist Mal krank oder müde oder angeschlagen oder verletzt. Man braucht eine Schichtfähigkeit. Man braucht vor allem spezialisierte Leute, die verschiedene Fähigkeiten machen können, sich ergänzen können als Team. Ja, was ursprünglich eigentlich so die Volksseele war. Das ist ja durch die Atomisierung, ist auch wieder so eine so eine Technik, ist ja das ausgetrieben worden, ne? Oder Entwurzelungstechniken. Damit ist natürlich die Bevölkerung komplett sozusagen, jeder gegen jeden, und nur noch Ellenbogengesellschaft, und dass man eigentlich zusammen gehört, auch dieses links und rechts, grün gegen sonst was, oben gegen unten, das sind alles Techniken, nur um eigentlich "die da oben", sage ich mal, zu schützen, dass das Volk nicht ein irgendwo vorgeht. Und du hast gefragt, wie lange geht's noch? Es geht so lange, wie wir uns das gefallen lassen, und irgendwann, irgendwann stehen Leute auf und sagen, jetzt reicht's.

      12:10 Aber dieser Kippppunkt muss noch kommen, das ist das Problem an der deutschen Seele, ja, bei den Südländern ist es eher so eine Art "Tauziehen", sagt man in der Psychologie. Also, wenn sozusagen eine Reaktion kommt, Druck von Regierung, neue Steuern, dann wird direkt reagiert. Bei den Deutschen oder den, ich nenn es mal den Norddeuropäern, das ist eher so ein "Kipppunkt", da passiert nichts, passiert nichts, irgendwann reicht's und dann schnappt das um, und dann ist natürlich gleich wieder Volleskalation. Aber dieser Punkt ist noch nicht da. Wir haben noch Trinken, es gibt noch Bier, es kommt noch Fußball im Fernsehen.

      13:42 190.000 zusätzliche Arbeitslose mehr als im selben Zeitpunkt im Jahr davor, aber 6,2% Arbeitslosenquote. Aber sind wir mal ehrlich, das ist ja nicht die Wahrheit. Die Wahrheit ist ja, wie viele sind in Maßnahmen, wie viele gehen im vorzeitigen Ruhstand, wenn man ehrlich ist, kann man das ja mindestens verdoppeln. Und dann hast du natürlich von den zusätzlichen Beamten, die geschaffen werden, sei es in Berlin, sei es aber auf kommunaler Ebene, ich kriege das bei mir auf kommunale Ebene mit, wie viele Menschen dort verbeamtet werden, die in der Verwaltung sitzen. Ist für mich immer unbegreiflich, weiß du. Also Beamte brauchst du maximal Richter, Staatsanwälte, Polizisten. Brauchst du keine Lehrer als Beamter in meinen Augen. Ist völliger Nonsens.

      14:23 Aber es bläht sich halt komplett auf, dieser Wasserkopf, und diejenigen, die hier tatsächlich produktiv noch sind, die werden immer weniger, die werden immer mehr zur Kasse gebeten. Was habe ich mich gestern und heute mit Unternehmen unterhalten, die einfach die Schnauze voll haben und sagen, ich mach nicht mehr, ich hau ab, ihr könnt mich alle mal, und dann stehen wir da. Dann hast du eine extrem linke Bewegung. Ich glaube, gestern waren es ernsthaft die Linken in den Umfragen bei 16%, wo ich mir denke, sag mal, seid ihr alle nicht mehr ganz dicht oder was? Du kannst ja ne linke Einstellung haben. Die linke Einstellung endet für mich da, wenn man irgendwie das, weiß du, "Deutschland verrecke", "Alerta Alerta", die ganze Nummer, die ich da von morgens bis abends von irgendwelchen wirklich dummen Menschen höre, die aber auf meine Kosten leben, die vom Sozialstaat leben. Was glauben die denn, wo das herkommt?

      19:42 Die sind nicht alle blöd. Das Problem ist, vielen fehlen die Fakten, vielen fehlen sachliche neutrale Fakten. Alles was, sei es über öffentlich-rechtlichen Rundfunk ist, oder über Fernsehen, Radio, sonst was, durchläuft mindestens fünf Filter. Also fünf Filter von "hier ist die Explosion", hier ist die Primärquelle, und ehe wir das sehen, lesen oder sonst was, muss es mindestens durch fünf Filter durchgehen, teilweise auch sechs oder sieben Filter, und somit ist natürlich klar, die Leute können bloß auf der Datenlage, die die bekommen, eine eine Reaktion bzw. eine Lagefeststellung, eine Entscheidung treffen. Wenn aber die Rohdaten nur Lügen sind, und die das aber nicht wissen, dann können die einfach das nicht machen. Die denken wirklich vielleicht "aus bestem Wissen und Gewissen wähle ich jetzt das", oder mache ich jetzt das, oder "die sind böse und die sind gut". Aber woher ziehen die ihre Daten? Ja, und das sind so die Sachen. Einfach mehr hinterfragen, mehr selber nachdenken. Am Ende wird man selber drauf kommen, ne? Es ist es ist nicht so komplex, nur dadurch dass jeder arbeiten ist, keine Zeit hat. Ja, und wenn er dann abends kaputt nach 10 Stunden Arbeit, vor allem die Selbständigen, das ja dann eher Halbzeit, dann fällt man nur noch ins Bett oder auf Sofa, schaut Netflix, trinkt nen Wein und dann dann fängt der nächste Tag wieder vor los, also diese Narkotisierung durch viele Informationen und aber auch Überschwemmung mit 1000 Fake News und Desinformation, dadurch können die Leute leider, muss man sagen, gar nicht so richtig das urteilen. Das ist das Problem. Diese, beim NLP heißt das ja "unbewusste Inkompetenz". Ja, sie wissen gar nicht, dass die dumm sind bzw. wissen gar nicht, dass denen irgendwas fehlt. Dazu müssten die sozusagen erstmal die richtigen Fragen stellen, um eine "bewusste Inkompetenz". "Oh, hier habe ich eine Lücke." Ja, deswegen sage ich immer, vielfältig informieren. Es es reicht heutzutage nicht einfach nur um 19 Uhr die Glotze anzumachen.

      23:59 Also ich kann bloß das wiederholen, was einige Polizeipräsidenten zu mir gesagt haben, und da ging's ja einmal hier um das Beispiel Frankfurt, was sie gesagt hatten, dass die komplette Polizei und auch Bundeswehr nicht in der Lage wäre, allein gegen die Frankfurter Gangster und die Kriminellen anzugehen. Also das Gegenüber hat viel mehr Waffen, Munition, viel mehr Manpower. Von allen Behörden, die ich jemals getroffen und gesehen habe, seit 2004, sagen alle dasselbe. Sobald es kracht, nehmen Sie ihre Dienstwaffe und gehen nach Hause. Also, es ist kaum einer da, und auch viele Dienststellen sind schon infiltriert [Graue Wölfe, Bozkurt]. Auch da sind schon viele, ich sag mal, aus den Clans aus den Gangbereichen mit drin, die gezielt reingebracht wurden.

      26:42 Jeder, der sich mit dieser ganzen Situation mal intensiv befasst hat, weiß das. In Deutschland denken da kaum Menschen drüber nach. Die Naivität in diesem Land ist bemerkenswert. Ich habe in meinem letzten Video das von dem Delta Force Operator eingespielt, weil er, wie er gesagt hat, die Brutalität bei unseren Menschen, und die sind ja in diesem Land, das sind nicht alle, ja, aber es sind genügend mit eingesickert, die vom islamischen Staat kommen, und so weiter. Und wenn die dann die "Leutnante" sind, sage ich mal, auf der Straße, du hast das letztes mal gesagt, da werden viele folgen, da werden viele mitmachen.

      27:23 Ich habe eine Rede von dem ehemaligen Chef der Kommando Spezialkräfte, General Günzel, gehört, der gesagt hat, der Mensch ist von Natur aus schlecht und brutal. Geht es aber um religiöse Gründe, ist die Brutalität in keinster Weise in Worte zu fassen. "Dieses Bemühen um eine humane Kriegführung, wenn dieses Wort erlaubt ist, fiel jedoch regelmäßig und ironischerweise immer dann sofort wieder in sich zusammen, wenn das Volk im Namen Gottes zu den Waffen gerufen wurde. Glaubenskriege und Kreuzzüge waren die mit Abstand grausamsten der Menschheitsgeschichte."

      28:52 Die iranische Führung hat jetzt offiziell den heiligen Krieg erklärt gegen Israel und Amerika.

      29:36 Wann geht's hier richtig los? Wenn sozusagen der Heilige Krieg, also zwischen Christen und Juden gegen Muslime bzw. Muslime gegen die Christen und Juden, dann wird es hier verdammt eng.

      33:26 Lass uns den Menschen noch ein bisschen Hoffnung machen. Dass es knallen wird, das ist klar. Aber wahrscheinlich brauchen wir so ein "Reinigungsgewitter" wie Marc Friedrich, ich habe mit dem auch gestern noch so ein Interview gemacht, ganz interessant, der beschrieben. Es geht immer in Zyklen, alle 80 Jahre, und ich glaube er hat einfach recht. Ja und wir sind jetzt einfach dran. Die Frage ist, wie schlimm wird's? Die Frage ist, wie kommen wir da durch, und dann wie kommen wir auch schnell wieder nach oben? Weil wirtschaftlich ist ist hat Deutschland fertig. Hat Deutschland wirklich fertig. Das ist einfach wahr. Und das das kommt auch nicht zurück. Die Firmen, die weg sind, kommen kommen nicht wieder. Die Facharbeiter, die weg sind, kommen nicht wieder. Und ich glaube ja, da hat das, was Marc Friedrich wahrscheinlich gemeint hat, ist "das Prinzip der vier Generation" [good times create weak men…], was einfach wiederkehrend in der Geschichte der Menschheit immer wieder da ist. Und ja, ich glaube, wir brauchen es, und ich hoffe einfach noch, dass ein bisschen Restfunke, sage ich mal, unsere Ahnen irgendwie in uns drin ist, zwischen Dichtern, Denkern und auch Kämpfern. Ja, die German waren ist nicht unbedingt nur Leute, die da ganze Zeit Gedichte geschrieben haben. Ja, also auch das Wehrhafte, hoffe ich, dass das irgendwann mal wieder zurückkommt, und dann werden wir das sehen. Also, ich denke, wir zwei sehen uns dann irgendwann mal auf der Straße wieder, an der Seite von denjenigen, die Schutz brauchen. Ja, aber ich weiß nicht, wer sonst noch da ist. Das das ist genau der Punkt. Einige Kämpfer gibt es in diesem Land noch, und ich weiß, wenn wir uns auf der Straße treffen sollten, dass ich mich auf dich verlassen kann. Mein Lieber, grüß bitte alle deine Mitstreiter, weil es gibt noch genügend in diesem Land, die dieses Land lieben und nicht zum Kotzen finden ("Warum bist denn du heute hier? - Alerta Alerta!") und Deutschland nicht den Tod wünschen ("Deutschland verrecke") und von daher glaube ich schon, dass wir am Ende irgendwie wieder vernünftig vorgehen können, mein Lieber. Vielen Dank, Andre.

      35:22 "Glaubenskriege und Kreuzzüge waren die mit Abstand grausamsten der Menschheitsgeschichte. Denn hier kämpfte man ja nicht mehr gegen einen, wenn auch feindlich gesonnenen, aber doch immerhin menschlichen Gegner. Hier kämpfte man gegen den Leibhaftigen mit seinem gesamten höllischen Anhang. Hier ging es nicht mehr um irdische Güter, um Land, Macht oder Interessen. Hier ging es um das Wort und die Werke des wahren Gottes. Nicht um Sieg oder Niederlage, sondern um die Ausrottung des Bösen schlechthin. Und da aber natürlich auch jedes Mittel recht, denn wer mit Gott im Bunde war, der konnte ja nichts Unrechtes tun."

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for the GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Comments on latest version:

      The authors have attempted to address my initial concerns with additional experiments and refutations. Unfortunately, my concerns, especially my specific comments 1-3, remain unaddressed. The present manuscript is descriptive and fails to describe the molecular mechanism by which Sakura exerts its function in the germline. Nevertheless, this reviewer acknowledges that the observed defects in sakura mutant ovaries and the possible physiological significance of the Sakura-Out interaction are worth sharing with the research community, as they may lay the groundwork for future research in functional analysis.

      We thank the reviewer for valuable comments. We would like to investigate the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (named it sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. In this revised manuscript, the authors further investigated whether Sakura affects the function of Orb, a binding partner they identified, in deubiquitinase activity when Orb interacts with Bam.

      We appreciate the authors' efforts to address all our comments. While these revisions have greatly improved the clarity of certain sections, some of the concerns remain unclear, while details mentioned in the responses about these studies should be incorporated in the manuscript. Specifically, the manuscript still lacks the demonstration that Sakura co-localizes with Orb/Bam despite having the means for staining and visualization. This would bring insight into the selective binding of Orb with Bam vs. Sakura perhaps at different stages of oogenesis. Such analyses would allow for more specific conclusions, further alluding to the underlying mechanism, rather than the general observations currently presented.

      This elaborate study will be embraced by both germline-focused scientists and the developmental biology community.

      We thank the reviewer for valuable comments. We believe that the author meant Otu, not Orb, for the binding partner of Sakura that we identified. We would like to investigate the colocalization of Sakura with other proteins including Otu and the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field.

      Comments on latest version:

      With these revisions, the authors have addressed my main concerns.

      We thank the reviewer for valuable comments.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      The manuscript is much improved based on the changes made upon recommendations from the reviewers.

      Though most of our comments have been addressed, we have a few more we wish to recommend. For previous points we made, we replied with further clarification for the authors.

      Figure 1

      (1) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      • Previous Fig1B (sakura mRNA expression level) is now Fig S2, not S1. Please make this data as Fig S1.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      (2) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      • The labels on lanes for Stages 12-13 and Stage 14, still only say "chambers", not "egg chambers". Also there is no Stage 1-3 egg chamber. More accurately, the label should be "Germarium - Stage 11 egg chambers".

      We updated the lables on lanes as suggested by the reviewer.

      (3) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakuranull phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      • Please put this info into the Methods section.

      We added this info into the Methods section.

      (4) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      • Please add this detail into the manuscript.

      We added this info into the Methods section.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer's point. We think using numbers, not %, makes more sense.

      • Having a different 'n' number for each experiment does not allow one to compare anything except numbers of the egg chambers. This must be normalized.

      We still don’t agree with the reviewer. In Fig 5D, we are showing the numbers of stage 14 oocytes per fly (= per a pair of ovaries). ‘n’ is the number of flies (= number of a pair of ovaries) examined. We now clarified this in the figure legend. Different ‘n’ number does not prevent us from comparing the numbers of stage 14 oocytes per fly. Therefore, we would like to show as it is now.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      • Please add this information to the manuscript.

      We added this info into the Methods section.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      • Current Fig S1 should go to Fig 7, to better understand the relationship between pMad and Bam expression.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      Figure 9C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      • Please add this info to the Methods section.

      We added this info into the Methods section.

      Figure 10- Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer's points. In our study, even for the full-length proteins. We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      • Based on your binding studies, we would expect them to colocalize in the egg chamber, and since there are antibodies and a GFP-line available, it would be important to demonstrate that via visualization.

      As we wrote in the response and now in the manuscript, our antibodies are not best for immunostaining. We will try to optimize the experimental conditions in the future studies.

    1. Reviewer #2 (Public review):

      In this manuscript, Ross and Miscik et. al described the phenotypic discrepancies between F0 zebrafish mosaic mutant ("CRISPants") and morpholino knockdown (Morphant) embryos versus a set of 5 different loss-of-function (LOF) stable mutants in one particular gene involved in hepatic stellate cells development: podxl. While transient LOF and mosaic mutants induced a decrease of hepatic stellate cells number stable LOF zebrafish did not. The authors analyzed the molecular causes of these phenotypic differences and concluded that LOF mutants are genetically compensated through the upregulation of the expression of many genes. Additionally, they ruled out other better-known and described mechanisms such as the expression of redundant genes, protein feedback loops, or transcriptional adaptation.

      While the manuscript is clearly written and conclusions are, in general, properly supported, there are some aspects that need to be further clarified and studied.

      (1) It would be convenient to apply a method to better quantify potential loss-of-function mutations in the CRISPants. Doing this it can be known not only percentage of mutations in those embryos but also what fraction of them are actually generating an out-of-frame mutation likely driving gene loss of function (since deletions of 3-6 nucleotides removing 1-2 aminoacid/s will likely not have an impact in protein activity, unless that this/these 1-2 aminoacid/s is/are essential for the protein activity). With this, the authors can also correlate phenotype penetrance with the level of loss-of-function when quantifying embryo phenotypes that can help to support their conclusions.

      (2) It is unclear that 4.93 ng of morpholino per embryo is totally safe. The amount of morpholino causing undesired effects can differ depending on the morpholino used. I would suggest performing some sanity check experiments to demonstrate that morpholino KD is not triggering other molecular outcomes, such as upregulation of p53 or innate immune response.

      (3) Although the authors made a set of controls to demonstrate the specificity of the CRISPant phenotypes, I believe that a rescue experiment could be beneficial to support their conclusions. Injecting an mRNA with podxl ORF (ideally with a tag to follow protein levels up) together with the induction of CRISPants could be a robust manner to demonstrate the specificity of the approach. A rescue experiment with morphants would also be good to have, although these are a bit more complicated, to ultimately demonstrate the specificity of the approach.

      (4) In lines 314-316, the authors speculate on a correlation between decreased HSC and Podxl levels. It would be interesting to actually test this hypothesis and perform RT-qPCR upon CRISPant induction or, even better and if antibodies are available, western blot analysis.

      (5) Similarly, in lines 337-338 and 342-344, the authors discuss that it could be possible that genes near to podxl locus could be upregulated in the mutants. Since they already have a transcriptomic done, this seems an easy analysis to do that can address their own hypothesis.

      (6) Figures 4 and 5 would be easier to follow if panels B-F included what mutants are (beyond having them in the figure legend). Moreover, would it be more accurate and appropriate if the authors group all three WT and mutant data per panel instead of showing individual fish? Representing technical replicates does not demonstrate in vivo variability, which is actually meaningful in this context. Then, statistical analysis can be done between WT and mutant per panel and per set of primers using these three independent 3-month-old zebrafish.

    2. Author response:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Ross, Miscik, and others describes an intriguing series of observations made when investigating the requirement for podxl during hepatic development in zebrafish. Podxl morphants and CRISPants display a reduced number of hepatic stellate cells (HSCs), while mutants are either phenotypically wild type or display an increased number of HSCs.

      The absence of observable phenotypes in genetic mutants could indeed be attributed to genetic compensation, as the authors postulate. However, in my opinion, the evidence provided in the manuscript at this point is insufficient to draw a firm conclusion. Furthermore, the opposite phenotype observed in the two deletion mutants is not readily explainable by genetic compensation and invokes additional mechanisms.

      Major concerns:

      (1) Considering discrepancies in phenotypes, the phenotypes observed in podxl morphants and CRISPants need to be more thoroughly validated. To generate morphants, authors use "well characterized and validated ATG Morpholino" (lines 373-374). However, published morphants, in addition to kidney malformations, display gross developmental defects including pericardial edema, yolk sack extension abnormalities, and body curvature at 2-3 dpf (reference 7 / PMID: 24224085). Were these gross developmental defects observed in the knockdown experiments performed in this paper? If yes, is it possible that the liver phenotype observed at 5 dpf is, to some extent, secondary to these preceding abnormalities? If not, why were they not observed? Did kidney malformations reproduce? On the CRISPant side, were these gross developmental defects also observed in sgRNA#1 and sgRNA#2 CRISPants? Considering that morphants and CRISPants show very similar effects on HSC development and assuming other phenotypes are specific as well, they would be expected to occur at similar frequencies. It would be helpful if full-size images of all relevant morphant and CRISPant embryos were displayed, as is done for tyr CRISPant in Figure S2. Finally, it is very important to thoroughly quantify the efficacy of podxl sgRNA#1 and sgRNA#2 in CRISPants. The HRMA data provided in Figure S1 is not quantitative in terms of the fraction of alleles with indels. Figure S3 indicates a very broad range of efficacies, averaging out at ~62% (line 100). Assuming random distribution of indels among cells and that even in-frame indels result in complete loss of function (possible for sgRNA#1 due to targeting the signal sequence), only ~38% (.62*.62) of all cells will be mutated bi-allelically. That does not seem sufficient to reliably induce loss-of-function phenotypes. My guess is that the capillary electrophoresis method used in Figure S3 underestimates the efficiency of mutagenesis, and that much higher mutagenesis rates would be observed if mutagenesis were assessed by amplicon sequencing (ideally NGS but Sanger followed by deconvolution analysis would suffice). This would strengthen the claim that CRISPant phenotypes are specific.

      The reviewer points out some excellent caveats regarding the morphant experiments. We agree that at least some of the effects of the podxl morpholino may be related to its effects on kidney development and/or gross developmental defects that impede liver development. Because of these limitations, we focused our experiments on analysis of CRISPant and mutant phenotypes, including showing that podxl (Ex1(p)_Ex7Δ) mutants are resistant to CRISPant effects on HSC number when injected with sgRNA#1. We did not observe any gross morphologic defects in podxl CRISPants. Liver size was not significantly altered in podxl CRISPants (Figure 2A). We will add brightfield images of podxl CRISPant larvae to the supplemental data for the revised manuscript.

      We agree with the reviewer that HRMA is not quantitative with respect to the fraction of alleles with indels and that capillary electrophoresis likely underestimates mutagenesis efficiency. Nonetheless, even with 100% mutation efficiency, podxl CRISPant knockdown, like most CRISPR knockdowns, would not represent complete loss of function:  ~1/3 of alleles will contain in-frame mutations and likely retain at least some gene function, so ~1/3*1/3 = 1/9 of cells will have no out-of-frame indels and contain two copies of at least partially functional podxl and ~2/3*2/3 = 4/9 of cells will have one out-of-frame indel and one copy of at least partially functional podxl. Thus, the decreased HSCs we observe with podxl CRISPant likely represents a partial loss-of-function phenotype in any case.

      (2) In addition to confidence in morphant and CRISPant phenotypes, the authors' claim of genetic compensation rests on the observation that podxl (Ex1(p)_Ex7Δ) mutants are resistant to CRISPant effect when injected with sgRNA#1 (Figure 3L). Considering the issues raised in the paragraph above, this is insufficient. There is a very straightforward way to address both concerns, though. The described podxl(-194_Ex7Δ) and podxl(-319_ex1(p)Δ) deletions remove the binding site for the ATG morpholino. Therefore, deletion mutants should be refractive to the Morpholino (specificity assessment recommended in PMID: 29049395, see also PMID: 32958829). Furthermore, both deletion mutants should be refractive to sgRNA#1 CRISPant phenotypes, with the first being refractive to sgRNA#2 as well.

      The reviewer proposes elegant experiments to address the specificity of the morpholino. For the revision, we plan to perform additional morpholino studies, including morpholino injections of podxl mutants and assessment of tp53 and other immune response/cellular stress pathway genes in podxl morphants.

      Reviewer #2 (Public review):

      In this manuscript, Ross and Miscik et. al described the phenotypic discrepancies between F0 zebrafish mosaic mutant ("CRISPants") and morpholino knockdown (Morphant) embryos versus a set of 5 different loss-of-function (LOF) stable mutants in one particular gene involved in hepatic stellate cells development: podxl. While transient LOF and mosaic mutants induced a decrease of hepatic stellate cells number stable LOF zebrafish did not. The authors analyzed the molecular causes of these phenotypic differences and concluded that LOF mutants are genetically compensated through the upregulation of the expression of many genes. Additionally, they ruled out other better-known and described mechanisms such as the expression of redundant genes, protein feedback loops, or transcriptional adaptation.

      While the manuscript is clearly written and conclusions are, in general, properly supported, there are some aspects that need to be further clarified and studied.

      (1) It would be convenient to apply a method to better quantify potential loss-of-function mutations in the CRISPants. Doing this it can be known not only percentage of mutations in those embryos but also what fraction of them are actually generating an out-of-frame mutation likely driving gene loss of function (since deletions of 3-6 nucleotides removing 1-2 aminoacid/s will likely not have an impact in protein activity, unless that this/these 1-2 aminoacid/s is/are essential for the protein activity). With this, the authors can also correlate phenotype penetrance with the level of loss-of-function when quantifying embryo phenotypes that can help to support their conclusions.

      Reviewer #2 raises an excellent point that is similar to Reviewer #1’s first concern. Please see our response above. In general, we agree that correlating phenotype penetrance with level of loss-of-function is a very good way to support conclusions regarding specificity in knockdown experiments. Unfortunately, because the phenotype we are examining (HSC number) has a relatively large standard deviation even in control/wildtype larvae (for example, 63 ± 19 (mean ± standard deviation) HSCs per liver in uninjected control siblings in Figure 1) it would be technically very difficult to do this experiment for podxl.

      (2) It is unclear that 4.93 ng of morpholino per embryo is totally safe. The amount of morpholino causing undesired effects can differ depending on the morpholino used. I would suggest performing some sanity check experiments to demonstrate that morpholino KD is not triggering other molecular outcomes, such as upregulation of p53 or innate immune response.

      Reviewer #2 raises an excellent point that is similar to Reviewer #1’s second concern. Please see our response above. We acknowledge that some of the effects of the podxl morpholino may be non-specific. To address this concern in the revised manuscript, we plan to perform additional morpholino studies, including morpholino injections of podxl mutants and assessment of tp53 and other immune response/cellular stress pathway genes in podxl morphants.

      (3) Although the authors made a set of controls to demonstrate the specificity of the CRISPant phenotypes, I believe that a rescue experiment could be beneficial to support their conclusions. Injecting an mRNA with podxl ORF (ideally with a tag to follow protein levels up) together with the induction of CRISPants could be a robust manner to demonstrate the specificity of the approach. A rescue experiment with morphants would also be good to have, although these are a bit more complicated, to ultimately demonstrate the specificity of the approach.

      (4) In lines 314-316, the authors speculate on a correlation between decreased HSC and Podxl levels. It would be interesting to actually test this hypothesis and perform RT-qPCR upon CRISPant induction or, even better and if antibodies are available, western blot analysis.

      We appreciate the reviewer’s acknowledgement of the controls we performed to demonstrate the specificity of the CRISPant phenotypes. The proposed experiments (rescue, assessment of Podxl levels) would help bolster our conclusions but are technically difficult due to the relatively large standard deviation for the HSC number phenotype even in wildtype larvae and the lack of well-characterized zebrafish antibodies against Podxl.

      (5) Similarly, in lines 337-338 and 342-344, the authors discuss that it could be possible that genes near to podxl locus could be upregulated in the mutants. Since they already have a transcriptomic done, this seems an easy analysis to do that can address their own hypothesis.

      Thank you for this suggestion. We were referring in these sections to genes that are near the podxl locus with respect to three-dimensional chromatin structure; such genes would not necessarily be near the podxl locus on chromosome 4. We will clarify the text in this paragraph for the revised manuscript. At the same time, we will examine our transcriptomic data to check expression of mkln1, cyb5r3, and other nearby genes on chromosome 4 as suggested and include this analysis in the revised manuscript.

      (6) Figures 4 and 5 would be easier to follow if panels B-F included what mutants are (beyond having them in the figure legend). Moreover, would it be more accurate and appropriate if the authors group all three WT and mutant data per panel instead of showing individual fish? Representing technical replicates does not demonstrate in vivo variability, which is actually meaningful in this context. Then, statistical analysis can be done between WT and mutant per panel and per set of primers using these three independent 3-month-old zebrafish.

      Thank you for this suggestion. We will modify these figures to clarify our results.

      Reviewer #3 (Public review):

      Summary:

      Ross et al. show that knockdown of zebrafish podocalyxin-like (podxl) by CRISPR/Cas or morpholino injection decreased the number of hepatic stellate cells (HSC). The authors then generated 5 different mutant alleles representing a range of lesions, including premature stop codons, in-frame deletion of the transmembrane domain, and deletions of the promoter region encompassing the transcription start site. However, unlike their knockdown experiment, HSC numbers did not decrease in podxl mutants; in fact, for two of the mutant alleles, the number of HSCs increased compared to the control. Injection of podxl CRISPR/Cas constructs into these mutants had no effect on HSC number, suggesting that the knockdown phenotype is not due to off-target effects but instead that the mutants are somehow compensating for the loss of podxl. The authors then present multiple lines of evidence suggesting that compensation is not exclusively due to transcriptional adaptation - evidence of mRNA instability and nonsense-mediated decay was observed in some but all mutants; expression of the related gene endoglycan (endo) was unchanged in the mutants and endo knockdown had no effect on HSC numbers; and, expression profiling by RNA sequencing did not reveal changes in other genes that share sequence similarity with podxl. Instead, their RNA-seq data showed hundreds of differentially expressed genes, especially ECM-related genes, suggesting that compensation in podxl mutants is complex and multi-genic.

      Strengths:

      The data presented is impressively thorough, especially in its characterization of the 5 different podxl alleles and exploration of whether these mutants exhibit transcriptional adaptation.

      Thank you very much for appreciating the hard work that went into this manuscript.

      Weaknesses:

      RNA sequencing expression profiling was done on adult livers. However, compensation of HSC numbers is apparent by 6 dpf, suggesting compensatory mechanisms would be active at larval or even embryonic stages. Although possible, it's not clear that any compensatory changes in gene expression would persist to adulthood.

      This reviewer makes an excellent point. Our finding that the largest changes in gene expression were in extracellular matrix (ECM) genes and ECM modulation is a major function of HSCs supports the hypothesis that genetic compensation is occurring in adults. Nonetheless, we agree that compensatory changes in adults may not fully reflect the compensatory changes during development, so it would bolster the conclusions of the paper to perform the RNA sequencing and qPCR experiments on zebrafish larval livers.

      We tried very hard to do this experiment proposed by Reviewer #3. In our hands, obtaining sufficient high-quality RNA for robust gene expression analysis typically requires pooling of ~10-15 larval livers. These larvae need to be obtained from a heterozygous in-cross in order to have matched wildtype sibling controls. Livers must be dissected from freshly euthanized (not fixed) zebrafish. Thus, this experiment requires genotyping live, individual larvae from a small amount of tissue (without sacrificing the larvae) before dissecting and pooling the livers. Unfortunately we were unable to confidently and reproducibly genotype individual live podxl larvae with these small amounts of tissue despite trying multiple approaches. Therefore we were not able to perform gene expression analysis on podxl mutant larval livers.

  7. Jun 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision Plan

      June 28, 2025

      Manuscript number: RC-2025-02982

      Corresponding author(s): Babita Madan, Nathan Harmston, David Virshup

      General Statements In Wnt signaling, the relative contributions of ‘canonical (β-catenin dependent) and non- canonical (β-catenin independent) signaling remains unclear. Here, we exploited a unique and highly robust in vivo system to study this. Our study is therefore the first comprehensive analysis of the β-catenin independent arm of the Wnt signaling pathway in a cancer model and illustrates how a combination of cis-regulatory elements can determine Wnt-dependent gene regulation.

      We are very pleased with the reviews; it appears we communicated our goal and our findings clearly, and in general the reviewers felt the study provided important information, was well planned and the results were “crystal clear”.

      While more experiments could strengthen and extend the results, we feel our results are already very robust due to the use of multiple replicates in the in vivo system.

      The Virshup lab in Singapore closed July 1, 2025 and so additional wet lab studies are not feasible.

      1. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      Below we address the points raised by the reviewers:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The article has the merit of addressing a yet-unsolved question in the field (if beta-catenin can also repress genes) that only a limited number of studies has tried to tackle, and provides useful datasets for the community. The system employed is elegant, and the PORCN-inhibition bypassed by a ____constitutively active beta-catenin is clean and ingenious. The manuscript is clearly written.

      We thank the reviewers for their kind comments on the importance of the data. Our orthotopic model provides the opportunity to exploit robust Wnt regulated gene expression in a more responsive microenvironment than can be achieved in cell culture and simple flank xenograft models.

      Here we propose a series of thoughts and comments that, if addressed, would in our opinion improve the study and its description.

      1) We wonder why a xenograft model is necessary to induce a robust WNT response in these cells.

      The authors describe this set-up as a strength, as it is supposed to provide physiological relevance, yet it is not clear to us why this is the case.

      We welcome the opportunity to expand on our choice of an orthotopic xenograft model. It has been long established that cancer cells behave differently in different in vivo locations (Killion et al., 1998). Building on this, we confirmed this in our system that identical pancreatic cancer cells treated with the same PORCN inhibitor had very different responses in vitro, in the flank and in their orthotopic environment (Madan et al., 2018). To quote from our prior paper, “Looking only at genes decreasing more than 1.5-fold at 56 hours, we would have missed 817/1867 (44%) genes using a subcutaneous or 939/1867 (50%) using an in vitro model. Thus, the overall response to Wnt inhibition was reduced in the subcutaneous model and further blunted in vitro. An orthotopic model more accurately represents real biology.

      The reason for this is presumably the very different orthotopic microenvironment, including tissue appropriate stroma-tumor, vascular-tumor, lymphatic-tumor, and humoral interactions.

      Moreover, as the authors homogenize the tumour to perform bulk RNA-seq, we wonder whether they are not only sequencing mRNA from the cancer cells but also from infiltrating immune cells and/or from the surrounding connective tissue.

      In experiments generating RNA-seq data from xenograft models, the resulting sequences can originate from either human (graft) or mouse (host). In order to account for this, following standard practice, we filtered reads prior to alignment using Xenome (Conway et al., 2012). We have added additional text to the methods to highlight this step in our pipeline.

      2) If, as the established view implies, Wnt/beta-catenin only leads to gene activation, pathway

      inhibition would free up the transcriptional machinery - there is evidence that some of its constituents are rate-limiting. The free machinery could now activate some other genes: the net effect observed would be their increased transcription upon Wnt inhibition, irrespective of beta-catenin's presence. Could this be considered as an alternative explanation for the genes that go up in both control and bcat4A lines upon ETC-159 administration? This, we think, is in part corroborated by the absence of enrichment of biological pathways in this group of genes. The genes that are beta-catenin-dependent and downregulated (D&R) are obviously not affected by this alternative explanation.

      This is an interesting suggestion, and we will incorporate this thought into our discussion of potential mechanisms.

      3) The authors mention that HPAF-II are Wnt addicted. Do they die upon ETC-159 administration, and is this effect rescued by exogenous WNT addition?

      We and several others have previously reported that Wnt-addicted cells differentiate and/or senesce upon Wnt withdrawal in vivo but not in vitro. This is related to the broader changes in gene expression in the orthotopic tumors. The effect of PORCN inhibition has been demonstrated by us and others and is rescued by Wnt addition, downstream activation of Wnt signaling by e.g. APC mutation, and, as we show here, stabilized β-catenin.

      4) Line 120: the authors write about Figure 1C: "This demonstrates that the growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling." The opposite is true: control cells require WNT and form less colony with ETC159, while β-cat4A are independent from Wnt secretion.

      We appreciate the reviewer pointing out our mis-statement. This error has now been corrected in the revised manuscript.

      5) Lines 226-229: "The β-catenin independent repressed genes were notably enriched for motifs bound by homeobox factors including GSC2, POU6F2, and MSGN1. This finding aligns with the known role of non-canonical Wnt signaling in embryonic development" This statement assumes that target genes, or at least the beta-catenin independent ones, are conserved across tissues, including developing organs. This contrasts with the view that target genes in addition to the usual suspects (e.g., AXIN2, SP5 etc.) are modulated tissue-specifically - a view that the authors (and in fact, these reviewers) appear to support in their introduction.

      We agree with the reviewer that a majority of Wnt-regulated genes are tissue specific. Indeed, the β-catenin independent Wnt-repressed genes may also be tissue specific. In other tissues, we speculate that other β-catenin independent Wnt-repressed genes may also have homeobox factor binding sites as well and so the general concept remains valid. We do not have sufficient data in other tissues to resolve this issue.

      7) The luciferase and mutagenesis work presented in Figure 5 are crystal-clear. One important aspect that remains to be clarified is whether beta-catenin and/or TCF7L2 directly bind to the NRE sites. Or do the authors hypothesize that another factor binds here? We suggest the authors to show TCF7L2 binding tracks at the NRE/WRE motifs in the main figures.

      A major question of the reviewers was, can we provide additional evidence that the NRE is bound by LEF/TCF family members. Our initial analysis of more datasets indicates TCF7L2 peaks are enriched on NREs in Wnt-β-catenin responsive cell lines like HCT116 and PANC1. These analyses appear to further support the model that the NRE binds TCF7L2, but we fully agree these analyses can neither prove nor disprove the model.

      In our revision, we will analyze additional cut and run datasets as suggested and look at the HEPG2 datasets suggested by reviewer 1. We are concerned about tissue specificity as some of the genes are not expressed in e.g. HEPG2 or HEK293 cells where datasets are available. However, our data continues to support a functional role for the NRE in the modulation of β-catenin regulated genes. The best analysis would be more ChIP-Seq or Cut and Run assays on tissues, not cells, but these studies are beyond what we can do.

      What about other TCF/LEFs and beta-catenin? Are there relevant datasets that could be explored to test whether all these bind here during Wnt activation?

      As above, We will analyze additional ChIP and Cut & Run datasets to address this question looking at β-catenin and other LEF/TCF family members. We also reflect on the fact that ChIP-Seq does not necessarily imply that the targeted factor (e.g.,TCF7L2) is bound in the target site in all the cells.

      The repression might be mediated by beta-catenin partnering with other factors that bind the NRE even by competing with TCF7L2.

      We appreciate the insightful comments and now incorporate this into our discussion.

      8) In general, while we greatly appreciate the github page to replicate the analysis, we feel that the methods' description is lacking, both concerning analytical details (e.g., the cutoff used for MACS2 peak calling) or basic experimental planning (e.g, how the luciferase assays were performed).

      We thank reviewers for the suggestions and will add further details regarding the analysis

      and experimental planning in the method sections.

      9) The paper might benefit from the addition of quality metrics on the RNA-seq. Interesting for example would be to see a PCA analysis - as a more unbiased approach - rather than the kmeans clustering.

      We have this data and will add it to the revised manuscript.

      10) It seems that in Figure 3A the clusters are mislabelled as compared to Figure 3B and Figure 1. Here the repressor clusters are labelled DR5, DR6 and DN7 whereas in the rest of the paper they are labelled DR1, DR2 and DN1.

      Thank you for pointing out this issue. This has now been corrected in Figure 3.

      11) The siCTNNB1 in Figure 5E is described to be a significant effect in the text whereas in Figure 5E this has a p value of 0.075.

      Thank you for pointing out the p value did not cross the 0.05 threshold. We have modified the text to remove the word ‘significant’.

      12) Line 396: 'Here we confirm and extend the identification of a TCF-dependent negative regulatory element (NRE), where beta-catenin interacts with TCF to repress gene expression'. We suggest caution in stating that beta-catenin and TCF directly repress gene expression by binding to NRE. In the current state the authors do not show that TCF & beta-catenin bind to these elements. See our previous point 7.

      We appreciate the suggestion of the reviewers. We will be more cautious in our interpretation.

      Further suggestions - or food for thoughts:

      13) A frequently asked question in the field concerns the off-target effects of CHIR treatment as opposed to exposure to WNT ligands. CHIR treatment - in parallel to bcat4A overexpression - would allow the authors to delineate WNT independent effects of CHIR treatment and settle this debate.

      We thank the reviewers for suggesting this interesting experiment to sort out the non- Wnt effects of GSK3 inhibition. Such a study would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      14) We think that Figure 4C could be strengthened by adding more public TCF-related datasets (e.g., from ENCODE) to confirm the observation across datasets from different laboratories. In particular, the HEPG2 could possibly be improved as there is an excellent TCF7L2 dataset available by ENCODE.

      Many more datasets are easily searchable through: https://www.factorbook.org/.

      As above, we will analyze the HEPG2 dataset. We plan on updating Fig 4 with data from analysis from different datasets such as (Blauwkamp et al., 2008; Zambanini et al., 2022).

      15) The authors show that there is no specific spacing between NREs and WREs. This implies that it is not likely that TCF7L2 recognizes both at the same time through the C-clamp. Do the authors think that there might be a pattern discernible when comparing the location of WRE and NRE in relation to the TCF7L2 ChIP-seq peak summit? This would allow inferring whether TCF7L2 more likely directly binds the WRE (presumably) and if the NRE is bound by a cofactor.

      This is an interesting suggestion and we will conduct this analysis as suggested on available datasets (as the result may be different in different tissue types with varying degrees of Wnt/β-catenin signaling).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Overall, the study provides a solid framework for understanding noncanonical transcriptional ____outputs of Wnt signaling in a cancer context. The majority of the conclusions are well supported by the data. However, there are a few substantive points that require clarification before the manuscript is ready for publication.

      Major Comments

      The authors' central claim-that their findings represent a comprehensive analysis of the β-catenin- independent arm of Wnt signaling and uncover a "cis-regulatory grammar" governing Wnt-dependent gene activation versus repression-is overstated based on the presented data.

      We appreciate the reviewers concern and will temper our language.

      Specifically:

      • Figure 3B identifies TF-binding motifs enriched among different Wnt-responsive gene clusters, but the authors only functionally investigate the role of NRE in β-catenin-dependent repression, particularly in the context of TCF motif interaction.

      • To support a broader claim regarding cis-regulatory grammar, additional analyses are required:

      o What is the distribution of NREs across all clusters? Are they exclusive to β-catenin-dependent repressed clusters, or more broadly present?

      The distribution of the NREs is a statistically significant enrichment; they are observed in the repressed clusters more frequently than expected by chance alone, but they are present elsewhere as well. We have tempered our language around the cis-regulatory grammar.

      o Do NREs interact with other enriched motifs beyond TCF? Is this interaction specific to repression or also involved in activation?

      This is an interesting question beyond the scope of this analysis. Our dataset uses multiple interventions; The NREs may interact with other motifs but we would need more transcriptional analysis data with biological intervention to assess this.

      o A more comprehensive analysis of cis-element combinations is needed to draw conclusions about their collective influence on gene regulation across clusters.

      We agree; This would be a great question if we had TCF binding data in our orthotopic xenograft model. It’s a dataset we do not have, nor do we have the resources to pursue this.

      Other important clarifications:

      • The use of the term "wild-type" to describe HPAF-II cells is potentially misleading. These cells are not genetically wild-type and harbor multiple oncogenic alterations.

      Thank you for pointing this out. We will use the word “parental” in the text

      • The manuscript does not clearly present the kinetics of Wnt target downregulation upon ETC-159 treatment of HPAF-II cells. Understanding whether repression mirrors activation dynamics (e.g., delay or persistence of Wnt effects) is essential to interpreting the system's temporal behavior.

      We previously addressed the temporal dynamics of activation and repression in our more comprehensive time course papers (Harmston et al., 2020; Madan et al., 2018); there are differences in the dynamics that are difficult to tease out in this new dataset as the density of time points is less. Having said that, we will compare the time course and annotate the sets of genes identified in this current study with the data from our original study to provide more information on the temporal dynamics of this system.

      Minor Comment

      • The statement in Figure 1C (lines 119-120) that "growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling" is inconsistent with the data. As the β-cat4A allele encodes a constitutively active form of β-catenin, Wnts should not be required. Please revise this conclusion for clarity.

      We thank the reviewers for pointing out this mis-statement. We have corrected this.

      Reviewer #2 (Significance (Required)):

      This study offers a systematic classification of Wnt-responsive gene expression dynamics, differentiating between β-catenin-dependent and -independent mechanisms. The insights into temporal expression patterns and the potential role of the NRE element in transcriptional repression add depth to our understanding of Wnt signaling. These findings have relevance for developmental biology, stem cell biology, and cancer research-particularly in understanding how Wnt-mediated repression may influence tumor progression and therapeutic response.

      Nice review; thank you.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      … The work advances understanding of Wnt mediated repression via cis regulatory grammar.

      Major Concerns

      1) Statistical thresholds and clustering - The criteria for classifying β catenin-dependent versus - independent genes rely on FDR cutoffs above or below 0.1. If the more stringent cutoff of 0.05 was used, how many genes would still be considered Wnt regulated?

      We can readily address this in a revised manuscript.

      2) Validation of selected β catenin-dependent and -independent Wnt target genes - While the authors identify β catenin-dependent and -independent Wnt target genes (4 selected genes from different clusters in Fig.2), RT-qPCR based validation of Axin2 has been performed in Fig. S3. Authors should also validate other 3 genes as well.

      We had considered performing qPCR to re-validate some of our gene-expression changes but qPCR analyses is intrinsically more error prone than RNAseq, and we believe the literature shows that qPCR from the same samples will not add any extra utility. Previous studies that have examined this question have reported excellent correlation between the RNAseq and pPCR (Asmann et al., 2009; Griffith et al., 2010; Wu et al., 2014).

      3) NRE mechanistic insight - The most important contribution of this manuscript is the extension of the importance of the NRE motif in Wnt regulated enhancers. But the mutagenesis data provided is insufficient to conclusively nail down that the NREs are responsible for the repression. The effects in the synthetic reporters in Fig. 4D are small - it's not clear that there is much activity in the MimRep to be repressed by the NREs. The data in Fig. 5 is a better context to test the importance of the NREs, but the authors use deletion analysis which is too imprecise and settle for single nucleotide mutants in individual NREs in the ABHD11-AS1 reporter. In the Axin2 report, they mutate sequences outside of the NRE. It's too inconsistent. They should mutate 3 or 4 positions within the NRE in BOTH motifs in the context of the ABHD11-AS1 reporter. Same for the Axin2 reporter.

      We feel our analysis, coupled with the Kim paper (Kim et al., 2017), support the role of the NRE. We agree that more data is always desirable, but in our current circumstances are we cannot add additional wetlab experiments.

      Regarding Figure 4D, this is a synthetic system lacking the endogenous elements in the promoter. We agree with the reviewer that the effect is small but we would also like to point out that adding the well-established 2WRE in front of the MinRep increased the transcription activity to 1.5 fold, which is of similar magnitude change of the 2NRE deceasing the transcriptional activity 1/1.5 = 0.6.

      In Kim et al, it was shown that mutating the 11st nucleotide of the NRE motif showed the strongest effect, so we followed their lead in only mutated the 11st nucleotide in ABHD11- AS1 NRE.

      As for the putative NRE sequence present in AXIN2 promoter, its downstream sequence is polyT (__GTGTTTTTTTT__TTTTTTTTTT), if we only mutate 11st nucleotide to G/C, we could create similar sequence to NRE, so we mutated sequences outside of the NRE to fully disrupt it.

      4) Even if the mutagenesis is done more completely, the results simply replicate that of the Goentoro group. In Kim et al 2017, they provide suggestive (not convincing) evidence that TCFs directly bind to the NRE. The authors of this manuscript should explore that in more detail, e.g., can purified TCF bind to the NRE sequence? Can the authors design experiments to directly test whether beta-catenin is acting through the NRE - their data currently only demonstrates that the NRE provide a negative input to the reporters - that's an important mechanistic difference.

      We point out that our minimal reporter studies with the NRE showed a repressive effect in HCT116 (colorectal cancer cells with stabilized β-catenin) but not HT1080 (sarcoma cells with low Wnt) supporting the importance of β-catenin acting through the NRE (Figs. 4D, 4E).

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and culture-based ChIP assays would be of some value, the best study should be done in vivo where the system is most robust. We are not in a position to do these studies, but we will add in a discussion of this as a limitation of the current study.

      5) In vertebrates, some TCFs are more repressive than others and TLEs have been implicated in repressive. Exploring these factors in the context of the NRE would increase the value of this story.

      This is an interesting idea but beyond the scope of the current manuscript. It is likely this would be dependent on tissue specific expression, local expression levels, and local binding of co-factors. As we look at other TCF members in other datasets we may be able to address this. Further wetlab experiments are beyond the scope of this work.

      **Referees cross-commenting**

      I respectfully disagree that the luciferase assays are sufficient. Using deletion analysis to understand the function of specific binding sites is insufficient and the more specific mutations of NREs are incomplete. Regarding this paper extending our knowledge of direct transcriptional repression by Wnt/bcat signaling, I don't agree that it adds much - there are numerous datasets where Wnt signaling activates and represses genes - the trick is determining whether any of the repressed genes are the result and direct regulation by TCF/bcat. They don't explore that. The main finding is an extension of the work by Lea Goentoro on the importance of the NRE motif, but they don't address whether TCF directly associates with this sequence. Goentoro argued in the 2017 paper that it does, but that data is unconvincing to me. Can purified TCF bind the NRE? Without that information (done carefully) this manuscript is very limited.

      We respectfully disagree with the reviewer regarding the contribution of this manuscript. There are certainly many datasets looking at Wnt-regulated genes in tissue culture, but these cell-based studies are underpowered to really understand Wnt biology. There are only two papers, ours and Cantú’s, that address Wnt repressed genes in any depth. No prior papers have differentiated β-catenin dependent from β-catenin independent genes before, and certainly not in an orthotopic animal model.

      A major impact of our study is the finding that only 10% of Wnt regulated genes are independent of β-catenin, at least in pancreatic cancer. We feel this is a major contribution. We further add to this analysis by re-enforcing/extend the prior evidence on the NRE in humans (and correct the motif sequence!) for Wnt-repressed genes. Our data supports the fine-tuning of the Wnt/β-catenin regulated genes by a cis-regulatory grammar.

      Reviewer #3 (Significance (Required)):

      Overall, this study advances our understanding of the dual roles of Wnt signaling in gene activation and repression, highlighting the role of the NRE motif. But this is an extension of the original NRE paper (Kim et al 2017) with no mechanistic advance beyond that original work. The transcriptomics in the first part of the manuscript have some value, but similar data sets already exist.

      We respectfully but strongly disagree with the reviewer. First, our work examines the NRE in a large-scale in vivo transcriptome dataset, significantly extending the candidate gene approach of Kim et al. Secondly, we disagree with the comment that “similar data sets already exist.” Indeed, reviewer 1 (C. Cantú) specifically pointed out we had addressed an “yet-unsolved question in the field” on whether and how β-catenin repressed genes.

      __3. __Description of the revisions that have already been incorporated in the transferred manuscript

      To date we have only corrected several typographical errors.

      1. Description of analyses that authors prefer not to carry out

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and cell culture-based ChIP assays would be of some modest value, they have already been done in vitro by Kim et al. (Kim et al., 2017) and the best next study should be done in vivo in Wnt-responsive cancers or tissues where the biology is most robust (Madan et al., 2018) . We are not in a position to do these studies, but we will add this into the discussion as a limitation of the current study. We also acknowledge that the NRE may interact with other currently unidentified factors.

      Reviewer 1 asked about considering experiments to determine non-Wnt effects of GSK3 inhibitors like CHIR. Such a study, while interesting, would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      Finally, we note that the Virshup lab at Duke-NUS Medical School in Singapore, where these in vivo studies were performed, has closed as of July 1, 2025 and the various lab members have moved on to new adventures. Because of this, we are unable to undertake new wet-lab studies.

      Thank you for your consideration,

      For the authors,

      David Virshup

      References:

      Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI,

      Poland GA, Wieben ED, Kocher J-PA. 2009. 3’ tag digital gene expression profiling of human

      brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom 10:531–

      1. doi:10.1186/1471-2164-10-531

      Blauwkamp TA, Chang MV, Cadigan KM. 2008. Novel TCF-binding sites specify transcriptional

      repression by Wnt signalling. The EMBO Journal 27:1436–1446. doi:10.1038/emboj.2008.80

      Conway T, Wazny J, Bromage A, Tymms M, Sooraj D, Williams ED, Beresford-Smith B. 2012.

      Xenome—a tool for classifying reads from xenograft samples. Bioinformatics 28:i172–i178.

      doi:10.1093/bioinformatics/bts236

      Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, Tang MJ, Hou

      Y-C, Pugh TJ, Robertson G, Chittaranjan S, Ally A, Asano JK, Chan SY, Li HI, McDonald H,

      Teague K, Zhao Y, Zeng T, Delaney A, Hirst M, Morin GB, Jones SJM, Tai IT, Marra MA.

      1. Alternative expression analysis by RNA sequencing. Nat Methods 7:843–847.

      doi:10.1038/nmeth.1503

      Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM, Madan B. 2020.

      Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway.

      Cancer Res 81:464–475. doi:10.1158/0008-5472.can-20-2129

      Killion JJ, Radinsky R, Fidler IJ. 1998. Orthotopic models are necessary to predict therapy of

      transplantable tumors in mice. Cancer metastasis reviews 17:279–284.

      Kim K, Cho J, Hilzinger TS, Nunns H, Liu A, Ryba BE, Goentoro L. 2017. Two-Element

      Transcriptional Regulation in the Canonical Wnt Pathway. Current Biology 27:2357-2364.e5.

      doi:10.1016/j.cub.2017.06.037

      Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E, Virshup DM. 2018. Temporal

      dynamics of Wnt-dependent transcriptome reveals an oncogenic Wnt/MYC/ribosome axis. J

      Clin Invest 128:5620–5633. doi:10.1172/jci122383

      Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL,

      Sim S, Clarke MF, Quake SR. 2014. Quantitative assessment of single-cell RNA-sequencing

      methods. Nat Methods 11:41–46. doi:10.1038/nmeth.2694

      Zambanini G, Nordin A, Jonasson M, Pagella P, Cantù C. 2022. A new cut&run low volume-

      urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/b-catenin tissue-

      specific genomic targets. Development 149. doi:10.1242/dev.201124

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      1. The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K'). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed "normal, fully expanded" lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system.

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E).

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I'), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.

      Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion to more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy.

      Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I'). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManII-GFP signals. Standard colocalization analysis methods, such as Pearson's correlation coefficient or Mander's overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L').

      I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed "filled" electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      1. The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology.

      Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to "defective sulfation affects Golgi structures and multiple routes of intracellular trafficking".

      DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. Dpy-YFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5-figure supplement 2C.

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly.

      Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to "constrictions" to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes?

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H).

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np.

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT.

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      Minor: Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error. It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance (Required)):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      minor comments 1. Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsmMI07716 line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.

      The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.

      Reviewer #2 (Significance (Required)):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      • This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I') and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.

      • A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed). This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila. Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130.

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants-although this line was very sick and difficult to grow-showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss.

      • A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a product recognized by WGA? For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We're also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism's proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant.

      • Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      After cleavages by Np and furin, the Pio protein should have three fragments. The N-terminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals.

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1's comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      • What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That's probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      • The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3.

      • The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      • It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.

      • The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a "C-terminal ZP domain", which is a middle piece after furin + Np cleavages.

      • The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance (Required)):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript by Walter-McNeill, Kruglyak, and team, the authors provide solid evidence of another toxin-antidote (TA) system in C. elegans. Generally, TA systems involve selfish and linked genetic elements, one encoding a toxin that kills progeny inheriting it, unless an antidote (the second element) is also present. Currently, only two TA systems have been characterized in this species, pointing to the importance of identifying new instances of such systems to understand their transmission dynamics, prevalence, and functions in shaping worm populations.

      Strengths:

      This novel TA system (mll-1/smll-1) was identified on LGV in wild C. elegans isolates from the Hawaiian islands, by crossing divergent strains and observing allele frequency distortions by high-throughput genome sequencing after 10 generations. These allele frequency distortions were subsequently confirmed in another set of crosses with a separate divergent strain, and crosses of heterozygous males or hermaphrodites resulted in a pattern of L1 lethality in progeny (with a rod arrest phenotype) that suggested the maternal transmission of this TA system from the XZ1516 genetic background. By elegantly combining the use of near-isogenic lines, CRISPR editing to generate knock-outs, and a transgene rescue of the antidote gene, the authors identified the genes encoding the toxin and the antidote, which they refer to as mll-1 and smll-1. Moreover, the specific mll-1 isoform responsible for the production of the toxin was identified and mll-1 transcripts were observed by FISH in early and late embryos, as well as in larvae. Inducible expression of the toxin in various strains resulted in larval arrest and rod phenotypes. The authors then characterized the genetic variation of 550 wild isolates at the toxin/antidote region on LGV and distinguished three clades: (1) one with the conserved TA system, (2) one having lost the toxin and retaining a mostly functional antidote, and (3) one having lost the antidote and retaining a divergent yet coding toxin (this includes the reference strain Bristol N2, in which the homologous toxin gene has acquired mutations and is known as B0250.8). Further, the authors show that this region is under positive selection. These data are compelling and provide very strong evidence of a new TA system in this species.

      Weaknesses:

      The question remained as to how one clade, including N2, could retain the toxin gene but not possess a functional antidote. In the second part of the manuscript, the authors hypothesized that small RNA targeting (RNAi) of the toxin transcript could provide the necessary repression to allow worms to survive without the antidote. Through a meta-analysis of multiple small RNA datasets from the literature, the authors found evidence to support this idea, in which the toxin transcript is targeted by 22G siRNAs whose biogenesis is dependent on the Mutator foci protein, MUT-16. They note that from previous studies, mut-16 null mutants displayed a varied penetrance of larval arrest. In their own hands, mut-16 mutants displayed 15% varied larval arrest and 2% rod phenotypes. In an attempt to link B0250.8 to mut-16/siRNAs, they made a double mutant and examined body length as a proxy for developmental stage. Here, they observed a partial rescue of the mut-16 size defect by B0250.8 mutation. Finally, the authors also highlight data from further meta-analysis, which predicts the recognition of B0250.8 by several piRNAs. Also based on existing data from the literature, the authors link loss of Piwi (PRG-1), which binds piRNAs, to a depletion of 22G-RNAs targeting B0250.8 and an upregulation of B0250.8 expression in gonads, suggesting that piRNAs are the primary small RNAs that target B0250.8 for downregulation. The data in this portion of the manuscript are intriguing, but somewhat preliminary and incomplete, as they are based on little primary experimentation and a collection of different datasets (which have been acquired by slightly different methods in most cases). This portion of the study would require subsequent experimentation to firmly establish this mechanistic link. For example, to be able to claim that "the N2 toxin allele has acquired mutations that enable piRNA binding to initiate MUT-16-dependent 22G small RNA amplification that targets the transcript for degradation" the identified piRNA sites should be mutated and protein and transcript levels analysed in wild-type and in the strain with mutated piRNA sites. At a minimum, the protein levels in wild-type and mut-16, prg-1, and/or wago-1 mutants should be measured by western blot and/or by live imaging (introducing a GFP or some other tag to the endogenous protein via CRISPR editing) to show that the toxin is not accumulated as a protein in wt, but increases in levels in these mutants. mRNA levels in Figure S5A suggest there is still some expression of the B0250.8 transcript in a wild-type situation.

    1. NATIONAL DISASTER RISKFINANCING FRAMEWORKAND IMPLEMENTATION PLAN

      Hi Colleagues!

      Highlight any part of the text to leave a comment, question, or insight. You can also reply to others’ annotations.

      Tag your comments if needed, e.g., #question, #suggestion to help us filter key themes later.

      Let’s use this space to: Clarify content Share reflections and experiences Suggest collaboration opportunities

    1. we used a very high level um uh commu communication that this build an I here and like any good intelligence it has a multiscale hierarchical control where it took care of all of the downstream molecular um details.

      for - example - importance of multiscale hierarchical intelligence and control - Michael Levin - high level instruction is issued and the multiscale structure ensures that all the lower level details are executed - like a software function call

      new plexmark - person assigned to each comment in multiplayer conversational environment - have a way to - detect then - discriminate and finally - tag - each sequentially different conversant' s comments in the conversation - This will help with Indyweb provenance by attributing the person with each sentence

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon.

      The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.

      To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.

      Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells than in DNMT1 KO alone.

      Strengths:

      The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.

      Weaknesses:

      Suggestions for refinement:

      The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants a more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells?

      The transcriptome analysis of DNMT1 KO cells showed hundreds of deregulated genes upon DNMT1 ablation. As expected, the majority were up-regulated and gene ontology analysis revealed that among the strongest up-regulated genes were gene clusters with functions in “regulation of transcription from RNA polymerase II promoter” and “cell differentiation” and genes encoding proteins with KRAB domains. In addition, the de novo methyltransferases DNMT3A and DNMT3B were up-regulated in DNMT1 KO cells suggesting the set-up of compensatory mechanisms in these cells. We will include this data set in the revised version of the manuscript.

      Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1.

      We have previously discovered that conditional deletion of the maintenance DNA methyltransferase DNMT1 in the murine epidermis results not only in the up-regulation of mobile elements, such as IAPs but also the induced expression of L1TD1 ((Beck et al, 2021), Suppl. Table 1 and Author response image 1). Similary, L1TD1 expression was induced by treatment of primary human keratinocytes or squamous cell carcinoma cells with the DNMT inhibitor aza-deoxycytidine (Author response image 2 and 3). These finding are in accordance with the observation that inhibition of DNA methyltransferase activity by azadeoxycytidine in human non-small cell lung cancer cells (NSCLCs) results in upregulation of L1TD1 (Altenberger et al, 2017). Our interest in L1TD1 was further fueled by reports on a potential function of L1TD1 as prognostic tumor marker. We will include this information in the revised manuscript.

      Author response image 1.

      RT-qPCR of L1TD1 expression in cultured murine control and Dnmt1 Δ/Δker keratinocytes. mRNA levels of L1td1 were analyzed in keratinocytes isolated at P5 from conditional Dnmt1 knockout mice (Beck et al., 2021). Hprt expression was used for normalization of mRNA levels and wildtype control was set to 1. Data represent means ±s.d. with n=4. **P < 0.01 (paired t-test).

      Author response image 2.

      RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2-deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. **P < 0.01 (paired t-test).

      Author response image 3.

      Induced L1TD1 expression upon DNMT inhibition in squamous cell carcinoma cell lines SCC9 and SCCO12. Cells were treated with 5-aza-2-deoxycidine for 24 hours, 48 hours or 6 days. (A) Western blot analysis of L1TD1 protein levels using beta-actin as loading control. (B) Indirect immunofluorescence microscopy analysis of L1TD1 expression in SCC9 cells. Nuclear DNA was stained with DAPI. Scale bar: 10 µm. (C) RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. P < 0.05, *P < 0.01 (paired t-test).

      The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transposition-positive colonies? Further exploration of this phenomenon would be intriguing.

      This is an important point and we were aware of this potential problem. Therefore, we calibrated the retrotransposition assay by transfection with a blasticidin resistance gene vector to take into account potential differences in cell viability and blasticidin sensitivity. Thus, the observed reduction in L1 retrotransposition efficiency is not an indirect effect of reduced cell viability.

      Based on previous studies with hESCs, it is likely that, in addition to its role in retrotransposition, L1TD1 has additional functions in the regulation of cell proliferation and differentiation. L1TD1 might therefore attenuate the effect of DNMT1 loss in KO cells generating an intermediate phenotype (as pointed out by Reviewer 2) and simultaneous loss of both L1TD1 and DNMT1 results in more pronounced effects on cell viability.

      Reviewer #2 (Public Review):

      In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:  

      Reviewer #1 (Public Review): 

      Summary: 

      In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon. 

      The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.  

      To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.  

      Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells than in DNMT1 KO alone.  

      Strengths: 

      The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.  

      Weaknesses: 

      Suggestions for refinement:  

      The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants a more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells? 

      This is an excellent suggestion. We have gene expression data on WT versus DNMT1 KO HAP1 cells and have included them now as Suppl. Figure S1. The  transcriptome analysis of DNMT1 KO cells showed hundreds of deregulated genes upon DNMT1 ablation. As expected, the majority were up-regulated and gene ontology analysis revealed that among the strongest up-regulated genes were gene clusters with functions in “regulation of transcription from RNA polymerase II promoter” and “cell differentiation” and genes encoding proteins with KRAB domains. In addition, the de novo methyltransferases DNMT3A and DNMT3B were up-regulated in DNMT1 KO cells suggesting the set-up of compensatory mechanisms in these cells. 

      Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1. 

      We have previously discovered that conditional deletion of the maintenance DNA methyltransferase DNMT1 in the murine epidermis results not only in the up-regulation of mobile elements, such as IAPs but also the induced expression of L1TD1 ([1], Suppl. Table 1 and Author response image 1). Similary, L1TD1 expression was induced by treatment of primary human keratinocytes or squamous cell carcinoma cells with the DNMT inhibitor azadeoxycytidine (Author response images 2 and 3). These findings are in accordance with the observation  that inhibition of DNA methyltransferase activity by aza-deoxycytidine in human non-small cell lung cancer cells (NSCLCs) results in up-regulation of L1TD1 [2]. Our interest in L1TD1 was further fueled by reports on a potential function of L1TD1 as prognostic tumor marker. We have included this information in the last paragraph of the Introduction in the revised manuscript.

      Author response image 1. RT-qPCR of L1TD1 expression in cultured murine control and Dnmt1 Δ/Δker keratinocytes. mRNA levels of L1td1 were analyzed in keratinocytes isolated at P5 from conditional Dnmt1 knockout mice [1]. Hprt expression was used for normalization of mRNA levels and wildtype control was set to 1. Data represent means ±s.d. with n=4. **P < 0.01 (paired t-test). 

      Author response image 2. RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2-deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. **P < 0.01 (paired t-test).

      Author response image 3. Induced L1TD1 expression upon DNMT inhibition in squamous cell carcinoma cell lines SCC9 and SCCO12. Cells were treated with 5-aza-2-deoxycidine for 24 hours, 48 hours or 6 days. (A) Western blot analysis of L1TD1 protein levels using beta-actin as loading control. (B) Indirect immunofluorescence microscopy analysis of L1TD1 expression in SCC9 cells. Nuclear DNA was stained with DAPI. Scale bar: 10 µm. (C)  RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. *P < 0.05, **P < 0.01 (paired t-test).

      The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transposition-positive colonies? Further exploration of this phenomenon would be intriguing. 

      This is an important point and we were aware of this potential problem. Therefore, we calibrated the retrotransposition assay by transfection with a blasticidin resistance gene vector to take into account potential differences in cell viability and blasticidin sensitivity. Thus, the observed reduction in L1 retrotransposition efficiency is not an indirect effect of reduced cell viability. We have added a corresponding clarification in the Results section on page 8, last paragraph. 

      Based on previous studies with hESCs and germ cell tumors [3], it is likely that, in addition to its role in retrotransposition, L1TD1 has further functions in the regulation of cell proliferation and differentiation. L1TD1 might therefore attenuate the effect of DNMT1 loss in KO cells generating an intermediate phenotype (as pointed out by Reviewer 2) and simultaneous loss of both L1TD1 and DNMT1 results in more pronounced effects on cell viability. This is in agreement with the observation that a subset of L1TD1 associated transcripts encode proteins involved in the control of cell division and cell cycle. It is possible that subtle changes in the expression of these protein that were not detected in our mass spectrometry approach contribute to the antiproliferative effect of L1TD1 depletion as discussed in the Discussion section of the revised manuscript. 

      Reviewer #2 (Public Review):           

      In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.   

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):        

      Major 

      (1) The study only used one knockout (KO) cell line generated by CRISPR/Cas9. Considering the possibility of an off-target effect, I suggest the authors attempt one or both of these suggestions. 

      A) Generate or acquire a similar DMNT1 deletion that uses distinct sgRNAs, so that the likelihood of off-targets is negligible. A few simple experiments such as qRT-PCR would be sufficient to suggest the same phenotype.  

      B) Confirm the DNMT1 depletion also by siRNA/ASO KD to phenocopy the KO effect.  (2) In addition to the strategies to demonstrate reproducibility, a rescue experiment restoring DNMT1 to the KO or KD cells would be more convincing. (Partial rescue would suffice in this case, as exact endogenous expression levels may be hard to replicate). 

      We have undertook several approaches to study the effect of DNMT1 loss or inactivation: As described above, we have generated a conditional KO mouse with ablation of DNMT1 in the epidermis. DNMT1-deficient keratinocytes isolated from these mice show a significant increase in L1TD1 expression.  In addition, treatment of primary human keratinocytes and two squamous cell carcinoma cell lines with the DNMT inhibitor aza-deoxycytidine led to upregulation of L1TD1 expression. Thus, the derepression of L1TD1 upon loss of DNMT1 expression or activity is not a clonal effect. Also, the spectrum of RNAs identified in RIP experiments as L1TD1-associated transcripts in HAP1 DNMT1 KO cells showed a strong overlap with the RNAs isolated by a related yet different method in human embryonic stem cells. When it comes to the effect of L1TD1 on L1-1 retrotranspostion, a recent study has reported a similar effect of L1TD1 upon overexpression in HeLa cells [4].  

      All of these points together help to convince us that our findings with HAP1 DNMT KO are in agreement with results obtained in various other cell systems and are therefore not due to off-target effects. With that in mind, we would pursue the suggestion of Reviewer 1 to analyze the effects of DNA hypomethylation upon DNMT1 ablation.

      (3) As stated in the introduction, L1TD1 and ORF1p share "sequence resemblance" (Martin 2006). Is the L1TD1 antibody specific or do we see L1 ORF1p if Fig 1C were uncropped?  (6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).  

      This is a relevant question. We are convinced that the L1TD1 antibody does not crossreact with L1 ORF1p for the following reasons: Firstly, the antibody does not recognize L1 ORF1p (40 kDa) in the  uncropped Western blot for Figure 1C (Author response image 4A). Secondly, the L1TD1 antibody gives only background signals in DKO cells in the  indirect immunofluorescence experiment shown in Figure 1E of the manuscript. 

      Thirdly, the immunogene sequence of L1TD1 that determines the specificity of the antibody was checked in the antibody data sheet from Sigma Aldrich. The corresponding epitope is not present in the L1 ORF1p sequence. Finally, we have shown that the ORF1p antibody does not cross-react with L1TD1 (Author response image 4B).

      Author response image 4. (A) Uncropped L1TD1 Western blot shown in Figure 1C. An unspecific band is indicated by an asterisk. (B) Westernblot analysis of WT, KO and DKO cells with L1 ORF1p antibody.

      (4) In abstract (P2), the authors mentioned that L1TD1 works as an RNA chaperone, but in the result section (P13), they showed that L1TD1 associates with L1 ORF1p in an RNAindependent manner. Those conclusions appear contradictory. Clarification or revision is required. 

      Our findings that both proteins bind L1 RNA, and that L1TD1 interacts with ORF1p are compatible with a scenario where L1TD1/ORF1p heteromultimers bind to L1 RNA. The additional presence of L1TD1 might thereby enhance the RNA chaperone function of ORF1p. This model is visualized now in Suppl. Figure S7C. 

      (5) Figure 2C fold enrichment for L1TD1 and ARMC1 is a bit difficult to fully appreciate. A 100 to 200-fold enrichment does not seem physiological. This appears to be a "divide by zero" type of result, as the CT for these genes was likely near 40 or undetectable. Another qRT-PCRbased approach (absolute quantification) would be a more revealing experiment. 

      This is the validation of the RIP experiments and the presentation mode is specifically developed for quantification of RIP assays (Sigma Aldrich RIP-qRT-PCR: Data Analysis Calculation Shell). The unspecific binding of the transcript in the absence of L1TD1 in DNMT1/L1TD1 DKO cells is set to 1 and the value in KO cells represents the specific binding relative the unspecific binding. The calculation also corrects for potential differences in the abundance of the respective transcript in the two cell lines. This is not a physiological value but the quantification of specific binding of transcripts to L1TD1. GAPDH as negative control shows no enrichment, whereas specifically associated transcripts show strong enrichement. We have explained the details of RIPqRT-PCR evaluation in Materials and Methods (page 14) and the legend of Figure 2C in the revised manuscript.       

      (6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).            

      See response to (3).  

      (7) Figure S4A and S4B: There appear to be a few unusual aspects of these figures that should be pointed out and addressed. First, there doesn't seem to be any ORF1p in the Input (if there is, the exposure is too low). Second, there might be some L1TD1 in the DKO (lane 2) and lane 3. This could be non-specific, but the size is concerning. Overexposure would help see this.

      The ORF1p IP gives rise to strong ORF1p signals in the immunoprecipitated complexes even after short exposure. Under these contions ORF1p is hardly detectable in the input. Regarding the faint band in DKO HAP1 cells, this might be due to a technical problem during Western blot loading. Therefore, the input samples were loaded again on a Western blot and analyzed for the presence of ORF1p, L1TD1 and beta-actin (as loading control) and shown as separate panel in Suppl. Figure S4A. 

      (8) Figure S4C: This is related to our previous concerns involving antibody cross-reactivity. Figure 3E partially addresses this, where it looks like the L1TD1 "speckles" outnumber the ORF1p puncta, but overlap with all of them. This might be consistent with the antibody crossreacting. The western blot (Figure 3C) suggests an upregulation of ORF1p by at least 2-3x in the DKO, but the IF image in 3E is hard to tell if this is the case (slightly more signal, but fewer foci). Can you return to the images and confirm the contrast are comparable? Can you massively overexpose the red channel in 3E to see if there is residual overlap? 

      In Figure 3E the L1TD1 antibody gives no signal in DNMT1/L1TD1 DKO cells confirming that it does not recognize ORF1p. In agreement with the Western blot in Figure 3C the L1 ORF1p signal in Figure 3E is stronger in DKO cells. In DNMT1 KO cells the L1 ORF1p antibody does not recognize all L1TD1 speckles. This result is in agreement with the Western blot shown above in Figure R4B and indicates that the L1 ORF1p antibody does not recognize the L1TD1 protein. The contrast is comparable and after overexposure there are still L1TD1 specific speckles. This might be due to differences in abundance of the two proteins.

      (9) The choice of ARMC1 and YY2 is unclear. What are the criteria for the selection?

      ARMC1 was one of the top hits in a pilot RIP-seq experiment (IP versus input and IP versus  IgG IP). In the actual RIP-seq experiment with DKO HAP1 cells instead of IgG IP as a negative control, we found ARMC1 as an enriched hit, although it was not among the top 5 hits. The results from the 2nd RIP-seq further confirmed the validity of ARMC1 as an L1TD1-interacting transcript. YY2 was of potential biological relevance as an L1TD1 target due to the fact that it is a processed pseudogene originating from YY1 mRNA as a result of retrotransposition. This is mentioned on page 6 of the revised manuscript.

      (10) (P16) L1 is the only protein-coding transposon that is active in humans. This is perhaps too generalized of a statement as written. Other examples are readily found in the literature. Please clarify.  

      We will tone down this statement in the revised manuscript. 

      (11) In both the abstract and last sentence in the discussion section (P17), embryogenesis is mentioned, but this is not addressed at all in the manuscript. Please refrain from implying normal biological functions based on the results of this study unless appropriate samples are used to support them.

      Much of the published data on L1TD1 function are related to embryonic stem cells [3-7]. Therefore, it is important to discuss our findings in the context of previous reports.

      (12) Figure 3E: The format of Figures 1A and 3E are internally inconsistent. Please present similar data/images in a cohesive way throughout the manuscript.  

      We show now consistent IF Figures in the revised manuscript.

      Minor: 

      (1) Intro:           

      - Is L1Td1 in mice and Humans? How "conserved" is it and does this suggest function?  

      Murine and human L1TD1 proteins share 44% identity on the amino acid level and it was suggested that the corresponding genes were under positive selection during evolution with functions in transposon control and maintenance of pluripotency [8].  

      - Why HAP1? (Haploid?) The importance of this cell line is not clear.          

      HAP1 is a nearly haploid human cancer cell line derived from the KBM-7 chronic myelogenous leukemia (CML) cell line [9, 10]. Due to its haploidy is perfectly suited and widely used for loss-of-function screens and gene editing. After gene editing  cells can be used in the nearly haploid or in the diploid state. We usually perform all experiments with diploid HAP1 cell lines.  Importantly, in contrast to other human tumor cell lines, this cell line tolerates ablation of DNMT1. We have included a corresponding explanation in the revised manuscript on page 5, first paragraph.

      - Global methylation status in DNMT1 KO? (Methylations near L1 insertions, for example?) 

      The HAP1 DNMT1 KO cell line with a 20 bp deletion in exon 4 used in our study was validated in the study by Smits et al. [11]. The authors report a significant reduction in overall DNA methylation. However, we are not aware of a DNA methylome study on this cell line. We show now data on the methylation of L1 elements in HAP1 cells and upon DNMT1 deletion in the revised manuscript in Suppl. Figure S1B.

      (2) Figure 1:  

      - Figure 1C. Why is LMNB used instead of Actin (Fig1D)?  

      We show now beta-actin as loading control in the revised manuscript.  

      - Figure 1G shows increased Caspase 3 in KO, while the matching sentence in the result section skips over this. It might be more accurate to mention this and suggest that the single KO has perhaps an intermediate phenotype (Figure 1F shows a slight but not significant trend). 

      We fully agree with the reviewer and have changed the sentence on page 6, 2nd paragraph accordingly.  

      - Would 96 hrs trend closer to significance? An interpretation is that L1TD1 loss could speed up this negative consequence. 

      We thank the reviewer for the suggestion. We have performed a time course experiment with 6 biological replicas for each time point up to 96 hours and found significant changes in the viability upon loss of DNMT1 and again significant reduction in viability upon additional loss of L1TD1 (shown in Figure 1F). These data suggest that as expexted loss of DNMT1 leads to significant reduction viability and that additional ablation of L1TD1 further enhances this effect.

      - What are the "stringent conditions" used to remove non-specific binders and artifacts (negative control subtraction?) 

      Yes, we considered only hits from both analyses, L1TD1 IP in KO versus input and L1TD1 IP in KO versus L1TD1 IP in DKO. This is now explained in more detail in the revised manuscript on page 6, 3rd paragraph.  

      (3) Figure 2:  

      - Figure 2A is a bit too small to read when printed. 

      We have changed this in the revised manuscript.

      - Since WT and DKO lack detectable L1TD1, would you expect any difference in RIP-Seq results between these two?

      Due to the lack of DNMT1 and the resulting DNA hypomethylation, DKO cells are more similar to KO cells than WT cells with respect to the expressed transcripts.

      - Legend says selected dots are in green (it appears blue to me). 

      We have changed this in the revised manuscript.           

      - Would you recover L1 ORF1p and its binding partners in the KO? (Is the antibody specific in the absence of L1TD1 or can it recognize L1?) I noticed an increase in ORF1p in the KO in Figure 3C.  

      Thank you for the suggestion. Yes, L1 ORF1p shows slightly increased expression in the proteome analysis and we have marked the corresponding dot in the Volcano plot (Figure 3A).

      - Should the figure panel reference near the (Rosspopoff & Trono) reference instead be Sup S1C as well? Otherwise, I don't think S1C is mentioned at all. 

      - What are the red vs. green dots in 2D? Can you highlight ERV and ALU with different colors? 

      We added the reference to Suppl. Figure S1C (now S3C) in the revised manuscript. In Figure 2D L1 elements are highlighted in green, ERV elements in yellow, and other associated transposon transcripts in red.     

      - Which L1 subfamily from Figure 2D is represented in the qRT-PCR in 2E "LINE-1"? Do the primers match a specific L1 subfamily? If so, which? 

      We used primers specific for the human L1.2 subfamily. 

      - Pulling down SINE element transcripts makes some sense, as many insertions "borrow" L1 sequences for non-autonomous retro transposition, but can you speculate as to why ERVs are recovered? There should be essentially no overlap in sequence. 

      In the L1TD1 evolution paper [8], a potential link between L1TD1 and ERV elements was discussed: 

      "Alternatively, L1TD1 in sigmodonts could play a role in genome defense against another element active in these genomes. Indeed, the sigmodontine rodents have a highly active family of ERVs, the mysTR elements [46]. Expansion of this family preceded the death of L1s, but these elements are very active, with 3500 to 7000 species-specific insertions in the L1-extinct species examined [47]. This recent ERV amplification in Sigmodontinae contrasts with the megabats (where L1TD1 has been lost in many species); there are apparently no highly active DNA or RNA elements in megabats [48]. If L1TD1 can suppress retroelements other than L1s, this could explain why the gene is retained in sigmodontine rodents but not in megabats." 

      Furthermore, Jin et al. report the binding of L1TD1 to repetitive sequences in transcripts [12]. It is possible that some of these sequences are also present in ERV RNAs.

      - Is S2B a screenshot? (the red underline). 

      No, it is a Powerpoint figure, and we have removed the red underline.

      (4) Figure 3: 

      - Text refers to Figure 3B as a western blot. Figure 3B shows a volcano plot. This is likely 3C but would still be out of order (3A>3C>3B referencing). I think this error is repeated in the last result section. 

      - Figure and legends fail to mention what gene was used for ddCT method (actin, gapdh, etc.). 

      - In general, the supplemental legends feel underwritten and could benefit from additional explanations. (Main figures are appropriate but please double-check that all statistical tests have been mentioned correctly).

      Thank you for pointing this out. We have corrected these errors in the revised manuscript.

      (5) Discussion: 

      -Aluy connection is interesting. Is there an "Alu retrotransposition reporter assay" to test whether L1TD1 enhances this as well? 

      Thank you for the suggestion. There is indeed an Alu retrotransposition reporter assay reported be Dewannieux et al. [13]. The assay is based on a Neo selection marker. We have previously tested a Neo selection-based L1 retrotransposition reporter assay, but this system failed to properly work in HAP1 cells, therefore we switched to a blasticidinbased L1 retrotransposition reporter assay. A corresponding blasticidin-based Alu retrotransposition reporter assay might be interesting for future studies (mentioned in the Discussion, page 11 paragraph 4 of the revised manuscript.

      (6) Material and Methods       : 

      - The number of typos in the materials and methods is too numerous to list. Instead, please refer to the next section that broadly describes the issues seen throughout the manuscript. 

      Writing style  

      (1) Keep a consistent style throughout the manuscript: for example, L1 or LINE-1 (also L1 ORF1p or LINE-1 ORF1p); per or "/"; knockout or knock-out; min or minute; 3 times or three times; media or medium. Additionally, as TE naming conventions are not uniform, it is important to maintain internal consistency so as to not accidentally establish an imprecise version. 

      (2) There's a period between "et al" and the comma, and "et al." should be italic. 

      (3) The authors should explain what the key jargon is when it is first used in the manuscript, such as "retrotransposon" and "retrotransposition".    

      (4) The authors should show the full spelling of some acronyms when they use it for the first time, such as RNA Immunoprecipitation (RIP).  

      (5) Use a space between numbers and alphabets, such as 5 µg.  

      (6) 2.0 × 105 cells, that's not an "x".  

      (7) Numbers in the reference section are lacking (hard to parse).  

      (8) In general, there are a significant number of typos in this draft which at times becomes distracting. For example, (P3) Introduction: Yet, co-option of TEs thorough (not thorough, it should be through) evolution has created so-called domesticated genes beneficial to the gene network in a wide range of organisms. Please carefully revise the entire manuscript for these minor issues that collectively erode the quality of this submission.  

      Thank you for pointing out these mistakes. We have corrected them in the revised manuscript. A native speaker from our research group has carefully checked the paper. In summary, we have added Supplementary Figure S7C and have changed Figures 1C, 1E, 1F, 2A, 2D, 3A, 4B, S3A-D, S4B and S6A based on these comments. 

      REFERENCES

      (1) Beck, M.A., et al., DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J, 2021. 40(22): p. e108234.

      (2) Altenberger, C., et al., SPAG6 and L1TD1 are transcriptionally regulated by DNA methylation in non-small cell lung cancers. Mol Cancer, 2017. 16(1): p. 1.

      (3) Narva, E., et al., RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells, 2012. 30(3): p. 452-60.

      (4) Jin, S.W., et al., Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res, 2024. 52(6): p. 3310-3326.

      (5) Emani, M.R., et al., The L1TD1 protein interactome reveals the importance of posttranscriptional regulation in human pluripotency. Stem Cell Reports, 2015. 4(3): p. 519-28.

      (6) Santos, M.C., et al., Embryonic Stem Cell-Related Protein L1TD1 Is Required for Cell Viability, Neurosphere Formation, and Chemoresistance in Medulloblastoma. Stem Cells Dev, 2015. 24(22): p. 2700-8.

      (7) Wong, R.C., et al., L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS One, 2011. 6(4): p. e19355.

      (8) McLaughlin, R.N., Jr., et al., Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency. PLoS Genet, 2014. 10(9): p. e1004531.

      (9) Andersson, B.S., et al., Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genet Cytogenet, 1987. 24(2): p. 335-43.

      (10) Carette, J.E., et al., Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature, 2011. 477(7364): p. 340-3.

      (11) Smits, A.H., et al., Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods, 2019. 16(11): p. 1087-1093.

      (12) Jin, S.W., et al., Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res, 2024.

      (13) Dewannieux, M., C. Esnault, and T. Heidmann, LINE-mediated retrotransposition of marked Alu sequences. Nat Genet, 2003. 35(1): p. 41-8.

    1. 对于检测模型,有标注框的是正样本,无标注信息的是负样本,日常工作需要对正负样本进行拆分,需要支持按文本信息划分(可能原始数据集自带,也可能数据清洗标注后有tag)

      目的和上面的不一样

    2. 日常工作中需要对原始数据集进行BMK和Training的划分,需要支持按文本信息划分(可能原始数据集自带,也可能数据清洗标注后有tag),及设置划分比例

      自带的标记,按比例,数据清洗的标记 数据处理和数据集管理逻辑明确

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reply to Public Reviews:

      Reply to Reviewer #1:

      This is a carefully performed and well-documented study to indicate that the FUS protein interacts with the GGGGCC repeat sequence in Drosophila fly models, and the mechanism appears to include modulating the repeat structure and mitigating RAN translation. They suggest FUS, as well as a number of other G-quadruplex binding RNA proteins, are RNA chaperones, meaning they can alter the structure of the expanded repeat sequence to modulate its biological activities.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are very happy to see the reviewer for highly appreciating our manuscript.

      1. Overall this is a nicely done study with nice quantitation. It remains somewhat unclear from the data and discussions in exactly what way the authors mean that FUS is an RNA chaperone: is FUS changing the structure of the repeat or does FUS binding prevent it from folding into alternative in vivo structure?

      Response: We appreciate the reviewer’s constructive comments. Indeed, we showed that FUS changes the higher-order structures of GGGGCC [G4C2] repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation in vivo. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #2:

      Fuijino et al. provide interesting data describing the RNA-binding protein, FUS, for its ability to bind the RNA produced from the hexanucleotide repeat expansion of GGGGCC (G4C2). This binding correlates with reductions in the production of toxic dipeptides and reductions in toxic phenotypes seen in (G4C2)30+ expressing Drosophila. Both FUS and G4C2 repeats of >25 are associated with ALS/FTD spectrum disorders. Thus, these data are important for increasing our understanding of potential interactions between multiple disease genes. However, further validation of some aspects of the provided data is needed, especially the expression data.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript and also for her/his important comments that helped to strengthen our manuscript.

      Some points to consider when reading the work:

      1. The broadly expressed GMR-GAL4 driver leads to variable tissue loss in different genotypes, potentially confounding downstream analyses dependent on viable tissue/mRNA levels.

      Response: We thank the reviewer for this constructive comment. In the RT-qPCR experiments (Figures 1E, 3C, 4G, 6D and Figure 1—figure supplement 1C), the amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue, to avoid potential confounding derived from the difference in tissue viability between genotypes, as the reviewer pointed out. To clarify this process, we have made the following change to the revised manuscript.

      (1) On page 30, line 548-550, the sentence “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts in the same sample” was changed to “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue to avoid potential confounding derived from the difference in tissue viability between genotypes”.

      2. The relationship between FUS and foci formation is unclear and should be interpreted carefully.

      Response: We appreciate the reviewer’s important comment. We apologize for the lack of clarity. We showed the relationship between FUS and RNA foci formation in our C9-ALS/FTD fly, that is, FUS suppresses RNA foci formation (Figures 3A and 3B), and knockdown of endogenous caz, a Drosophila homologue of FUS, enhanced it conversely (Figures 4E and 4F). We consider that FUS suppresses RNA foci formation through altering RNA structures and preventing aggregation of misfolded G4C2 repeat RNA as an RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #3:

      In this manuscript Fujino and colleagues used C9-ALS/FTD fly models to demonstrate that FUS modulates the structure of (G4C2) repeat RNA as an RNA chaperone, and regulates RAN translation, resulting in the suppression of neurodegeneration in C9-ALS/FTD. They also confirmed that FUS preferentially binds to and modulates the G-quadruplex structure of (G4C2) repeat RNA, followed by the suppression of RAN translation. The potential significance of these findings is high since C9ORF72 repeat expansion is the most common genetic cause of ALS/FTD, especially in Caucasian populations and the DPR proteins have been considered the major cause of the neurodegenerations.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are grateful to the reviewer for the insightful comments, which were very helpful for us to improve the manuscript.

      1. While the effect of RBP as an RNA chaperone on (G4C2) repeat expansion is supposed to be dose-dependent according to (G4C2)n RNA expression, the first experiment of the screening for RBPs in C9-ALS/FTD flies lacks this concept. It is uncertain if the RBPs of the groups "suppression (weak)" and "no effect" were less or no ability of RNA chaperone or if the expression of the RBP was not sufficient, and if the RBPs of the group "enhancement" exacerbated the toxicity derived from (G4C2)89 RNA or the expression of the RBP was excessive. The optimal dose of any RBPs that bind to (G4C2) repeats may be able to neutralize the toxicity without the reduction of (G4C2)n RNA.

      Response: We appreciate the reviewer’s constructive comments. We employed the site-directed transgenesis for the establishment of RBP fly lines, to ensure the equivalent expression levels of the inserted transgenes. We also evaluated the toxic effects of overexpressed RBPs themselves by crossbreeding with control EGFP flies, showing in Figure 1A. To clarify them, we have made the following changes to the revised manuscript.

      (1) On page 8, line 166-168, the sentence “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and their different roles in RNA metabolism.” was changed to “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and the different toxicity of overexpressed RBPs themselves.”.

      (2) On page 29, line 519-522, the sentence “By employing site-specific transgenesis using the pUASTattB vector, each transgene was inserted into the same locus of the genome, and was expected to be expressed at the equivalent levels.” was added.

      2. In relation to issue 1, the rescue effect of FUS on the fly expressing (G4C2)89 (FUS-4) in Figure 4-figure supplement 1 seems weaker than the other flies expressing both FUS and (G4C2)89 in Figure 1 and Figure 1-figure supplement 2. The expression level of both FUS protein and (G4C2)89 RNA in each line is important from the viewpoint of therapeutic strategy for C9-ALS/FTD.

      Response: We appreciate the reviewer’s important comment. The FUS-4 transgene is expected to be expressed at the equivalent level to the FUS-3 transgene, since they are inserted into the same locus of the genome by the site-directed transgenesis. Thus, we suppose that the weaker suppressive effect of FUS-4 coexpression on G4C2 repeat-induced eye degeneration can be attributed to the C-terminal FLAG tag that is fused to FUS protein expressed in FUS-4 fly line. Since the caz fly expresses caz protein also fused to FLAG tag at the C-terminus, we used this FUS-4 fly line to directly compare the effect of caz on G4C2 repeat-induced toxicity to that of FUS.

      3. While hallmarks of C9ORF72 are the presence of DPRs and the repeat-containing RNA foci, the loss of function of C9ORF72 is also considered to somehow contribute to neurodegeneration. It is unclear if FUS reduces not only the DPRs but also the protein expression of C9ORF72 itself.

      Response: We thank the reviewer for this comment. We agree that not only DPRs, but also toxic repeat RNA and the loss-of-function of C9ORF72 jointly contribute to the pathomechanisms of C9-ALS/FTD. Since Drosophila has no homolog corresponding to the human C9orf72 gene, the effect of FUS on C9orf72 expression cannot be assessed. Our fly models are useful for evaluating gain-of-toxic pathomechanisms such as RNA foci formation and RAN translation, and the association between FUS and loss-of function of C9ORF72 is beyond the scope of this study.

      4. In Figure 5E-F, it cannot be distinguished whether FUS binds to GGGGCC repeats or the 5' flanking region. The same experiment should be done by using FUS-RRMmut to elucidate whether FUS binding is the major mechanism for this translational control. Authors should show that FUS binding to long GGGGCC repeats is important for RAN translation.

      Response: We would like to thank the reviewer for these insightful comments. Following the reviewer’s suggestion, we perform in vitro translation assay again using FUS-RRMmut, which loses the binding ability to G4C2 repeat RNA as evident by the filter binding assay (Figure 5A), instead of BSA. The results are shown in the figures of Western blot analysis below. The addition of FUS to the translation system suppressed the expression levels of GA-Myc efficiently, whereas that of FUS-RRMmut did not. FUS decreased the expression level of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity. These results suggest that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA.

      Unfortunately, RAN translation from short G4C2 repeat RNA was not investigated in our translation system, although the previous study reported the low efficacy of RAN translation from short G4C2 repeat RNA (Green et al., 2017).

      Author response image 1.

      (A) Western blot analysis of the GA-Myc protein in the samples from in vitro translation. (B) Quantification of the GA-Myc protein levels.

      We have made the following changes to the revised manuscript.

      (1) Figure 5F was replaced to new Figures 5F and 5G.

      (2) On page 14-15, line 326-330, the sentence “Notably, the addition of FUS to this system decreased the expression level of GA-Myc in a dose-dependent manner, whereas the addition of the control bovine serum albumin (BSA) did not (Figure 5F).” was changed to “Notably, upon the addition to this translation system, FUS suppressed RAN translation efficiently, whereas FUS-RRMmut did not. FUS decreased the expression levels of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity (Figure 5F and 5G).”.

      (3) On page 15, line 330-332, the sentence “Taken together, these results indicate that FUS suppresses RAN translation from G4C2 repeat RNA in vitro as an RNA chaperone.” was changed to “Taken together, these results indicate that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA as an RNA chaperone.”.

      (4) On page 37, line 720-723, the sentence “For preparation of the FUS protein, the human FUS (WT) gene flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS.” was changed to “For preparation of the FUS proteins, the human FUS (WT) and FUS-RRMmut genes flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS and pUAST- FUS-RRMmut, respectively.”.

      (5) On page 41, line 816-819, the sentence “FUS or BSA at each concentration (10, 100, and 1,000 nM) was added for translation in the lysate.” was changed to “FUS or FUS-RRMmut at each concentration (10, 100, 200, 400, and 1,000 nM) was preincubated with mRNA for 10 min to facilitate the interaction between FUS protein and G4C2 repeat RNA, and added for translation in the lysate.”.

      5. It is not possible to conclude, as the authors have, that G-quadruplex-targeting RBPs are generally important for RAN translation (Figure 6), without showing whether RBPs that do not affect (G4C2)89 RNA levels lead to decreased DPR protein level or RNA foci.

      Response: We appreciate the reviewer’s critical comment. Following the suggestion by the reviewer, we evaluate the effect of these G-quadruplex-targeting RBPs on RAN translation. We additionally performed immunohistochemistry of the eye imaginal discs of fly larvae expressing (G4C2)89 and these G-quadruplex-targeting RBPs. As shown in the figures of immunohistochemistry below, we found that coexpression of EWSR1, DDX3X, DDX5, and DDX17 significantly decreased the number of poly(GA) aggregates. The results suggest that these G-quadruplex-targeting RBPs regulate RAN translation as well as FUS.

      Author response image 2.

      (A) Immunohistochemistry of poly(GA) in the eye imaginal discs of fly larvae expressing (G4C2)89 and the indicated G-quadruplex-targeting RBPs. (B) Quantification of the number of poly(GA) aggregates.

      We have made the following changes to the revised manuscript.

      (1) Figures 6E and 6F were added.

      (2) On page 6-7, line 135-137, the sentence “In addition, other G-quadruplex-targeting RBPs also suppressed G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.” was changed to “In addition, other G-quadruplex-targeting RBPs also suppressed RAN translation and G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.”.

      (3) On page 15, line 344-346, the sentence “As expected, these RBPs also decreased the number of poly(GA) aggregates in the eye imaginal discs (Figures 6E and 6F).” was added.

      (4) On page 15, line 346-347, the sentence “Their effects on G4C2 repeat-induced toxicity and repeat RNA expression were consistent with those of FUS.” was changed to “Their effects on G4C2 repeat-induced toxicity, repeat RNA expression, and RAN translation were consistent with those of FUS.”

      (5) On page 16, line 355-357, the sentence “Thus, some G-quadruplex-targeting RBPs regulate G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.” was changed to “Thus, some G-quadruplex-targeting RBPs regulate RAN translation and G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.”

      (6) On page 19, line 417-421, the sentence “We further found that G-quadruplex-targeting RNA helicases, including DDX3X, DDX5, and DDX17, which are known to bind to G4C2 repeat RNA (Cooper-Knock et al., 2014; Haeusler et al., 2014; Mori et al., 2013a; Xu et al., 2013), also alleviate G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.” was changed to “We further found that G-quadruplex-targeting RNA helicases, … ,also suppress RAN translation and G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.”.

      Reply to Recommendations For The Authors:

      1) It is not clear from the start that the flies they generated with the repeat have an artificial vs human intronic sequence ahead of the repeat. It would be nice if they presented somewhere the entire sequence of the insert. The reason being that it seems they also tested flies with the human intronic sequence, and the effect may not be as strong (line 234). In any case, in the future, with a new understanding of RAN translation, it would be nice to compare different transgenes, and so as much transparency as possible would be helpful regarding sequences. Can they include these data?

      Response: We thank the editors and reviewers for this comment. We apologize for the lack of clarity. We used artificially synthesized G4C2 repeat sequences when generating constructs for (G4C2)n transgenic flies, so these constructs do not contain human intronic sequence ahead of the G4C2 repeat in the C9orf72 gene, as explained in the Materials and Methods section. To clarify the difference between our C9-ALS/FTD fly models and LDS-(G4C2)44GR-GFP fly model (Goodman et al., 2019), we have made the following change to the revised manuscript.

      (1) Schema of the LDS-(G4C2)44GR-GFP construct was presented in Figure 3—figure supplement 1.

      Furthermore, to maintain transparency of the study, we have provided the entire sequence of the insert as the following source file.

      (2) The artificial sequences inserted in the pUAST vector for generation of the (G4C2)n flies were presented in Figure 1—figure supplement 1—source data 1.

      2) It is really nice how they quantitated everything and showed individual data points.

      Response: We thank the editors and reviewers for appreciating our data analysis method. All individual data points and statistical analyses are summarized in source data files.

      3) So when they call FUS an RNA chaperone, are they simply meaning it is changing the structure of the repeat, or could it just be interacting with the repeat to coat the repeat and prevent it from folding into whatever in vivo structures? Can they speculate on why some RNA chaperones lead to presumed decay of the repeat and others do not? Can they discuss these points in the discussion? Detailed mechanistic understanding of RNA chaperones that ultimately promote decay of the repeat might be of highly significant therapeutic benefit.

      Response: We appreciate these critical comments. Indeed, we showed that FUS changes the higher-order structures of G4C2 repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Besides these RNA chaperones, we observed the expression of IGF2BP1, hnRNPA2B1, DHX9, and DHX36 decreased G4C2 repeat RNA expression levels. In addition, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). We speculate these RBPs could be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA. To clarify these interpretations, we revised the manuscript as follows.

      (3) On page 18, line 392-398, the sentences “Similarly, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). Interestingly, these RBPs have been reported to be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA.” was added.

      4) What is the level of the G4C2 repeat when they knock down caz? Is it possible that knockdown impacts the expression level of the repeat? Can they show this (or did they and I miss it)?

      Response: We thank the editors and reviewers for this comment. The expression levels of G4C2 repeat RNA in (G4C2)89 flies were not altered by the knockdown of caz, as shown in Figure 4G.

      5) A puzzling point is that FUS is supposed to be nuclear, so where is FUS in the brain in their lines? They suggest it modulates RAN translation, and presumably, that is in the cytoplasm. Is FUS when overexpressed now in part in the cytoplasm? Is the repeat dragging it into the cytoplasm? Can they address this in the discussion? If FUS is never found in vivo in the cytoplasm, then it raises the point that the impact they find of FUS on RAN translation might not reflect an in vivo situation with normal levels of FUS.

      Response: We appreciate these important comments. We agree with the editors and reviewers that FUS is mainly localized in the nucleus. However, FUS is known as a nucleocytoplasmic shuttling RBP that can transport RNA into the cytoplasm. Indeed, FUS is reported to facilitate transport of actin-stabilizing protein mRNAs to function in the cytoplasm (Fujii et al., 2005). Thus, we consider that FUS binds to G4C2 repeat RNA in the cytoplasm and suppresses RAN translation in this study.

      6) When they are using 2 copies of the driver and repeat, are they also using 2 copies of FUS? These are quite high levels of transgenes.

      Response: We thank the editors and reviewers for this comment. We used only 1 copy of FUS when using 2 copies of GMR-Gal4 driver. Full genotypes of the fly lines used in all experiments are described in Supplementary file 1.

      7) In Figure5-S1, FUS colocalizing with (G4C2)RNA is not clear. High-magnification images are recommended.

      Response: We appreciate this constructive comment on the figure. Following the suggestion, high-magnification images are added in Figure 5—figure supplement 1.

      8) I also suggest that the last sentence of the Discussion be revised as follows: Thus, our findings contribute not only to the elucidation of C9-ALS/FTD, but also to the elucidation of the repeat-associated pathogenic mechanisms underlying a broader range of neurodegenerative and neuropsychiatric disorders than previously thought, and it will advance the development of potential therapies for these diseases.

      Response: We appreciate this recommendation. We have made the following change based on the suggested sentence.

      (1) On page 20-21, line 455-459, “Thus, our findings contribute not only towards the elucidation of repeat-associated pathogenic mechanisms underlying a wider range of neuropsychiatric diseases than previously thought, but also towards the development of potential therapies for these diseases.” was changed to “Thus, our findings contribute to the elucidation of the repeat-associated pathogenic mechanisms underlying not only C9-ALS/FTD, but also a broader range of neuromuscular and neuropsychiatric diseases than previously thought, and will advance the development of potential therapies for these diseases.”.

      Authors’ comment on previous eLife assessment:

      We thank the editors and reviewers for appreciating our study. We mainly evaluated the function of human FUS protein on RAN translation and G4C2 repeat-induced toxicity using Drosophila expressing human FUS in vivo, and the recombinant human FUS protein in vitro. To validate that FUS functions as an endogenous regulator of RAN translation, we additionally evaluated the function of Drosophila caz protein as well. We are afraid that the first sentence of the eLife assessment, that is, “This important study demonstrates that the Drosophila FUS protein, the human homolog of which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …” is somewhat misleading. We would be happy if you modify this sentence like “This important study demonstrates that the human FUS protein, which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable study investigates how the neural representation of individual finger movements changes during the early period of sequence learning. By combining a new method for extracting features from human magnetoencephalography data and decoding analyses, the authors provide incomplete evidence of an early, swift change in the brain regions correlated with sequence learning, including a set of previously unreported frontal cortical regions. The addition of more control analyses to rule out that head movement artefacts influence the findings, and to further explain the proposal of offline contextualization during short rest periods as the basis for improvement performance would strengthen the manuscript.

      We appreciate the Editorial assessment on our paper’s strengths and novelty. We have implemented additional control analyses to show that neither task-related eye movements nor increasing overlap of finger movements during learning account for our findings, which are that contextualized neural representations in a network of bilateral frontoparietal brain regions actively contribute to skill learning. Importantly, we carried out additional analyses showing that contextualization develops predominantly during rest intervals.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study addresses the issue of rapid skill learning and whether individual sequence elements (here: finger presses) are differentially represented in human MEG data. The authors use a decoding approach to classify individual finger elements and accomplish an accuracy of around 94%. A relevant finding is that the neural representations of individual finger elements dynamically change over the course of learning. This would be highly relevant for any attempts to develop better brain machine interfaces - one now can decode individual elements within a sequence with high precision, but these representations are not static but develop over the course of learning.

      Strengths:

      The work follows a large body of work from the same group on the behavioural and neural foundations of sequence learning. The behavioural task is well established and neatly designed to allow for tracking learning and how individual sequence elements contribute. The inclusion of short offline rest periods between learning epochs has been influential because it has revealed that a lot, if not most of the gains in behaviour (ie speed of finger movements) occur in these socalled micro-offline rest periods. The authors use a range of new decoding techniques, and exhaustively interrogate their data in different ways, using different decoding approaches. Regardless of the approach, impressively high decoding accuracies are observed, but when using a hybrid approach that combines the MEG data in different ways, the authors observe decoding accuracies of individual sequence elements from the MEG data of up to 94%.

      We have previously showed that neural replay of MEG activity representing the practiced skill was prominent during rest intervals of early learning, and that the replay density correlated with micro-offline gains (Buch et al., 2021). These findings are consistent with recent reports (from two different research groups) that hippocampal ripple density increases during these inter-practice rest periods, and predict offline learning gains (Chen et al., 2024; Sjøgård et al., 2024). However, decoder performance in our earlier work (Buch et al., 2021) left room for improvement. Here, we reported a strategy to improve decoding accuracy that could benefit future studies of neural replay or BCI using MEG.

      Weaknesses:

      There are a few concerns which the authors may well be able to resolve. These are not weaknesses as such, but factors that would be helpful to address as these concern potential contributions to the results that one would like to rule out. Regarding the decoding results shown in Figure 2 etc, a concern is that within individual frequency bands, the highest accuracy seems to be within frequencies that match the rate of keypresses. This is a general concern when relating movement to brain activity, so is not specific to decoding as done here. As far as reported, there was no specific restraint to the arm or shoulder, and even then it is conceivable that small head movements would correlate highly with the vigor of individual finger movements. This concern is supported by the highest contribution in decoding accuracy being in middle frontal regions - midline structures that would be specifically sensitive to movement artefacts and don't seem to come to mind as key structures for very simple sequential keypress tasks such as this - and the overall pattern is remarkably symmetrical (despite being a unimanual finger task) and spatially broad. This issue may well be matching the time course of learning, as the vigor and speed of finger presses will also influence the degree to which the arm/shoulder and head move. This is not to say that useful information is contained within either of the frequencies or broadband data. But it raises the question of whether a lot is dominated by movement "artefacts" and one may get a more specific answer if removing any such contributions.

      Reviewer #1 expresses concern that the combination of the low-frequency narrow-band decoder results, and the bilateral middle frontal regions displaying the highest average intra-parcel decoding performance across subjects is suggestive that the decoding results could be driven by head movement or other artefacts.

      Head movement artefacts are highly unlikely to contribute meaningfully to our results for the following reasons. First, in addition to ICA denoising, all “recordings were visually inspected and marked to denoise segments containing other large amplitude artifacts due to movements” (see Methods). Second, the response pad was positioned in a manner that minimized wrist, arm or more proximal body movements during the task. Third, while online monitoring of head position was not performed for this study, it was assessed at the beginning and at the end of each recording. The head was restrained with an inflatable air bladder, and head movement between the beginning and end of each scan did not exceed 5mm for all participants included in the study.

      The Reviewer states a concern that “it is conceivable that small head movements would correlate highly with the vigor of individual finger movements”. We agree that despite the steps taken above, it is possible that minor head movements could still contribute to some remaining variance in the MEG data in our study. However, such correlations between small head movements and finger movements could only meaningfully contribute to decoding performance if: (A) they were consistent and pervasive throughout the recording (which might not be the case if the head movements were related to movement vigor and vigor changed over time); and (B) they systematically varied between different finger movements, and also between the same finger movement performed at different sequence locations (see 5-class decoding performance in Figure 4B). The possibility of any head movement artefacts meeting all these conditions is unlikely. Alternatively, for this task design a much more likely confound could be the contribution of eye movement artefacts to the decoder performance (an issue raised by Reviewer #3 in the comments below).

      Remember from Figure 1A in the manuscript that an asterisk marks the current position in the sequence and is updated at each keypress. Since participants make very few performance errors, the position of the asterisk on the display is highly correlated with the keypress being made in the sequence. Thus, it is possible that if participants are attending to the visual feedback provided on the display, they may generate eye movements that are systematically related to the task. Since we did record eye movements simultaneously with the MEG recordings (EyeLink 1000 Plus; Fs = 600 Hz), we were able to perform a control analysis to address this question. For each keypress event during trials in which no errors occurred (which is the same time-point that the asterisk position is updated), we extracted three features related to eye movements: 1) the gaze position at the time of asterisk position update (triggered by a KeyDown event), 2) the gaze position 150ms later, and 3) the peak velocity of the eye movement between the two positions. We then constructed a classifier from these features with the aim of predicting the location of the asterisk (ordinal positions 1-5) on the display. As shown in the confusion matrix below (Author response image 1), the classifier failed to perform above chance levels (overall cross-validated accuracy = 0.21817):

      Author response image 1.

      Confusion matrix showing that three eye movement features fail to predict asterisk position on the task display above chance levels (Fold 1 test accuracy = 0.21718; Fold 2 test accuracy = 0.22023; Fold 3 test accuracy = 0.21859; Fold 4 test accuracy = 0.22113; Fold 5 test accuracy = 0.21373; Overall cross-validated accuracy = 0.2181). Since the ordinal position of the asterisk on the display is highly correlated with the ordinal position of individual keypresses in the sequence, this analysis provides strong evidence that keypress decoding performance from MEG features is not explained by systematic relationships between finger movement behavior and eye movements (i.e. – behavioral artefacts) (end of figure legend).

      Remember that the task display does not provide explicit feedback related to performance, only information about the present position in the sequence. Thus, it is possible that participants did not actively attend to the feedback. In fact, inspection of the eye position data revealed that on majority of trials, participants displayed random-walk-like gaze patterns around a central fixation point located near the center of the screen. Thus, participants did not attend to the asterisk position on the display, but instead intrinsically generated the action sequence. A similar realworld example would be manually inputting a long password into a secure online application. In this case, one intrinsically generates the sequence from memory and receives similar feedback about the password sequence position (also provided as asterisks) as provided in the study task – feedback which is typically ignored by the user.

      The minimal participant engagement with the visual task display observed in this study highlights another important point – that the behavior in explicit sequence learning motor tasks is highly generative in nature rather than reactive to stimulus cues as in the serial reaction time task (SRTT). This is a crucial difference that must be carefully considered when designing investigations and comparing findings across studies.

      We observed that initial keypress decoding accuracy was predominantly driven by contralateral primary sensorimotor cortex in the initial practice trials before transitioning to bilateral frontoparietal regions by trials 11 or 12 as performance gains plateaued. The contribution of contralateral primary sensorimotor areas to early skill learning has been extensively reported in humans and non-human animals.(Buch et al., 2021; Classen et al., 1998; Karni et al., 1995; Kleim et al., 1998) Similarly, the increased involvement of bilateral frontal and parietal regions to decoding during early skill learning in the non-dominant hand is well known. Enhanced bilateral activation in both frontal and parietal cortex during skill learning has been extensively reported (Doyon et al., 2002; Grafton et al., 1992; Hardwick et al., 2013; Kennerley et al., 2004; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001), and appears to be even more prominent during early fine motor skill learning in the non-dominant hand (Lee et al., 2019; Sawamura et al., 2019). The frontal regions identified in these studies are known to play crucial roles in executive control (Battaglia-Mayer & Caminiti, 2019), motor planning (Toni, Thoenissen, et al., 2001), and working memory (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001; Wolpert et al., 1998) processes, while the same parietal regions are known to integrate multimodal sensory feedback and support visuomotor transformations (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001; Wolpert et al., 1998), in addition to working memory (Grover et al., 2022). Thus, it is not surprising that these regions increasingly contribute to decoding as subjects internalize the sequential task. We now include a statement reflecting these considerations in the revised Discussion.

      A somewhat related point is this: when combining voxel and parcel space, a concern is whether a degree of circularity may have contributed to the improved accuracy of the combined data, because it seems to use the same MEG signals twice - the voxels most contributing are also those contributing most to a parcel being identified as relevant, as parcels reflect the average of voxels within a boundary. In this context, I struggled to understand the explanation given, ie that the improved accuracy of the hybrid model may be due to "lower spatially resolved whole-brain and higher spatially resolved regional activity patterns".

      We disagree with the Reviewer’s assertion that the construction of the hybrid-space decoder is circular for the following reasons. First, the base feature set for the hybrid-space decoder constructed for all participants includes whole-brain spatial patterns of MEG source activity averaged within parcels. As stated in the manuscript, these 148 inter-parcel features reflect “lower spatially resolved whole-brain activity patterns” or global brain dynamics. We then independently test how well spatial patterns of MEG source activity for all voxels distributed within individual parcels can decode keypress actions. Again, the testing of these intra-parcel spatial patterns, intended to capture “higher spatially resolved regional brain activity patterns”, is completely independent from one another and independent from the weighting of individual inter-parcel features. These intra-parcel features could, for example, provide additional information about muscle activation patterns or the task environment. These approximately 1150 intra-parcel voxels (on average, within the total number varying between subjects) are then combined with the 148 inter-parcel features to construct the final hybrid-space decoder. In fact, this varied spatial filter approach shares some similarities to the construction of convolutional neural networks (CNNs) used to perform object recognition in image classification applications (Srinivas et al., 2016). One could also view this hybrid-space decoding approach as a spatial analogue to common timefrequency based analyses such as theta-gamma phase amplitude coupling (θ/γ PAC), which assess interactions between two or more narrow-band spectral features derived from the same time-series data (Lisman & Jensen, 2013).

      We directly tested this hypothesis – that spatially overlapping intra- and inter-parcel features portray different information – by constructing an alternative hybrid-space decoder (Hybrid<sub>Alt</sub>) that excluded average inter-parcel features which spatially overlapped with intra-parcel voxel features, and comparing the performance to the decoder used in the manuscript (Hybrid<sub>Orig</sub>). The prediction was that if the overlapping parcel contained similar information to the more spatially resolved voxel patterns, then removing the parcel features (n=8) from the decoding analysis should not impact performance. In fact, despite making up less than 1% of the overall input feature space, removing those parcels resulted in a significant drop in overall performance greater than 2% (78.15% ± 7.03% SD for Hybrid<sub>Orig</sub> vs. 75.49% ± 7.17% for Hybrid<sub>Alt</sub>; Wilcoxon signed rank test, z = 3.7410, p = 1.8326e-04; Author response image 2).

      Author response image 2.

      Comparison of decoding performances with two different hybrid approaches. Hybrid<sub>Alt</sub>: Intra-parcel voxel-space features of top ranked parcels and inter-parcel features of remaining parcels. Hybrid<sub>Orig</sub>: Voxel-space features of top ranked parcels and whole-brain parcel-space features (i.e. – the version used in the manuscript). Dots represent decoding accuracy for individual subjects. Dashed lines indicate the trend in performance change across participants. Note, that Hybrid<sub>Orig</sub> (the approach used in our manuscript) significantly outperforms the Hybrid<sub>Alt</sub> approach, indicating that the excluded parcel features provide unique information compared to the spatially overlapping intra-parcel voxel patterns (end of figure legend).

      Firstly, there will be a relatively high degree of spatial contiguity among voxels because of the nature of the signal measured, i.e. nearby individual voxels are unlikely to be independent. Secondly, the voxel data gives a somewhat misleading sense of precision; the inversion can be set up to give an estimate for each voxel, but there will not just be dependence among adjacent voxels, but also substantial variation in the sensitivity and confidence with which activity can be projected to different parts of the brain. Midline and deeper structures come to mind, where the inversion will be more problematic than for regions along the dorsal convexity of the brain, and a concern is that in those midline structures, the highest decoding accuracy is seen.

      We agree with the Reviewer that some inter-parcel features representing neighboring (or spatially contiguous) voxels are likely to be correlated, an important confound in connectivity analyses (Colclough et al., 2015; Colclough et al., 2016), not performed in our investigation.

      In our study, correlations between adjacent voxels effectively reduce the dimensionality of the input feature space. However, as long as there are multiple groups of correlated voxels within each parcel (i.e. – the rank is greater than 1), the intra-parcel spatial patterns could meaningfully contribute to the decoder performance, as shown by the following results:

      First, we obtained higher decoding accuracy with voxel-space features (74.51% ± 7.34% SD) compared to parcel space features (68.77% ± 7.6%; Figure 3B), indicating individual voxels carry more information in decoding the keypresses than the averaged voxel-space features or parcel space features. Second, individual voxels within a parcel showed varying feature importance scores in decoding keypresses (Author response image 3). This finding shows that correlated voxels form mini subclusters that are much smaller spatially than the parcel they reside within.

      Author response image 3.:

      Feature importance score of individual voxels in decoding keypresses: MRMR was used to rank the individual voxel space features in decoding keypresses and the min-max normalized MRMR score was mapped to a structural brain surface. Note that individual voxels within a parcel showed different contribution to decoding (end of figure legend).

      Some of these concerns could be addressed by recording head movement (with enough precision) to regress out these contributions. The authors state that head movement was monitored with 3 fiducials, and their time courses ought to provide a way to deal with this issue. The ICA procedure may not have sufficiently dealt with removing movement-related problems, but one could eg relate individual components that were identified to the keypresses as another means for checking. An alternative could be to focus on frequency ranges above the movement frequencies. The accuracy for those still seems impressive and may provide a slightly more biologically plausible assessment.

      We have already addressed the issue of movement related artefacts in the first response above. With respect to a focus on frequency ranges above movement frequencies, the Reviewer states the “accuracy for those still seems impressive and may provide a slightly more biologically plausible assessment”. First, it is important to note that cortical delta-band oscillations measured with local field potentials (LFPs) in macaques is known to contain important information related to end-effector kinematics (Bansal et al., 2011; Mollazadeh et al., 2011) muscle activation patterns (Flint et al., 2012) and temporal sequencing (Churchland et al., 2012) during skilled reaching and grasping actions. Thus, there is a substantial body of evidence that low-frequency neural oscillatory activity in this range contains important information about the skill learning behavior investigated in the present study. Second, our own data shows (which the Reviewer also points out) that significant information related to the skill learning behavior is also present in higher frequency bands (see Figure 2A and Figure 3—figure supplement 1). As we pointed out in our earlier response to questions about the hybrid space decoder architecture (see above), it is likely that different, yet complimentary, information is encoded across different temporal frequencies (just as it is encoded across different spatial frequencies) (Heusser et al., 2016). Again, this interpretation is supported by our data as the highest performing classifiers in all cases (when holding all parameters constant) were always constructed from broadband input MEG data (Figure 2A and Figure 3—figure supplement 1).

      One question concerns the interpretation of the results shown in Figure 4. They imply that during the course of learning, entirely different brain networks underpin the behaviour. Not only that, but they also include regions that would seem rather unexpected to be key nodes for learning and expressing relatively simple finger sequences, such as here. What then is the biological plausibility of these results? The authors seem to circumnavigate this issue by moving into a distance metric that captures the (neural network) changes over the course of learning, but the discussion seems detached from which regions are actually involved; or they offer a rather broad discussion of the anatomical regions identified here, eg in the context of LFOs, where they merely refer to "frontoparietal regions".

      The Reviewer notes the shift in brain networks driving keypress decoding performance between trials 1, 11 and 36 as shown in Figure 4A. The Reviewer questions whether these shifts in brain network states underpinning the skill are biologically plausible, as well as the likelihood that bilateral superior and middle frontal and parietal cortex are important nodes within these networks.

      First, previous fMRI work in humans assessed changes in functional connectivity patterns while participants performed a similar sequence learning task to our present study (Bassett et al., 2011). Using a dynamic network analysis approach, Bassett et al. showed that flexibility in the composition of individual network modules (i.e. – changes in functional brain region membership of orthogonal brain networks) is up-regulated in novel learning environments and explains differences in learning rates across individuals. Thus, consistent with our findings, it is likely that functional brain networks rapidly reconfigure during early learning of novel sequential motor skills.

      Second, frontoparietal network activity is known to support motor memory encoding during early learning (Albouy et al., 2013; Albouy et al., 2012). For example, reactivation events in the posterior parietal (Qin et al., 1997) and medial prefrontal (Euston et al., 2007; Molle & Born, 2009) cortex (MPFC) have been temporally linked to hippocampal replay, and are posited to support memory consolidation across several memory domains (Frankland & Bontempi, 2005), including motor sequence learning (Albouy et al., 2015; Buch et al., 2021; F. Jacobacci et al., 2020). Further, synchronized interactions between MPFC and hippocampus are more prominent during early as opposed to later learning stages (Albouy et al., 2013; Gais et al., 2007; Sterpenich et al., 2009), perhaps reflecting “redistribution of hippocampal memories to MPFC” (Albouy et al., 2013). MPFC contributes to very early memory formation by learning association between contexts, locations, events and adaptive responses during rapid learning (Euston et al., 2012). Consistently, coupling between hippocampus and MPFC has been shown during initial memory encoding and during subsequent rest (van Kesteren et al., 2010; van Kesteren et al., 2012). Importantly, MPFC activity during initial memory encoding predicts subsequent recall (Wagner et al., 1998). Thus, the spatial map required to encode a motor sequence memory may be “built under the supervision of the prefrontal cortex” (Albouy et al., 2012), also engaged in the development of an abstract representation of the sequence (Ashe et al., 2006). In more abstract terms, the prefrontal, premotor and parietal cortices support novice performance “by deploying attentional and control processes” (Doyon et al., 2009; Hikosaka et al., 2002; Penhune & Steele, 2012) required during early learning (Doyon et al., 2009; Hikosaka et al., 2002; Penhune & Steele, 2012). The dorsolateral prefrontal cortex DLPFC specifically is thought to engage in goal selection and sequence monitoring during early skill practice (Schendan et al., 2003), all consistent with the schema model of declarative memory in which prefrontal cortices play an important role in encoding (Morris, 2006; Tse et al., 2007). Thus, several prefrontal and frontoparietal regions contributing to long term learning (Berlot et al., 2020) are also engaged in early stages of encoding. Altogether, there is strong biological support for the involvement of bilateral prefrontal and frontoparietal regions to decoding during early skill learning. We now address this issue in the revised manuscript.

      If I understand correctly, the offline neural representation analysis is in essence the comparison of the last keypress vs the first keypress of the next sequence. In that sense, the activity during offline rest periods is actually not considered. This makes the nomenclature somewhat confusing. While it matches the behavioural analysis, having only key presses one can't do it in any other way, but here the authors actually do have recordings of brain activity during offline rest. So at the very least calling it offline neural representation is misleading to this reviewer because what is compared is activity during the last and during the next keypress, not activity during offline periods. But it also seems a missed opportunity - the authors argue that most of the relevant learning occurs during offline rest periods, yet there is no attempt to actually test whether activity during this period can be useful for the questions at hand here.

      We agree with the Reviewer that our previous “offline neural representation” nomenclature could be misinterpreted. In the revised manuscript we refer to this difference as the “offline neural representational change”. Please, note that our previous work did link offline neural activity (i.e. – 16-22 Hz beta power (Bonstrup et al., 2019) and neural replay density (Buch et al., 2021) during inter-practice rest periods) to observed micro-offline gains.

      Reviewer #2 (Public review):

      Summary

      Dash et al. asked whether and how the neural representation of individual finger movements is "contextualized" within a trained sequence during the very early period of sequential skill learning by using decoding of MEG signal. Specifically, they assessed whether/how the same finger presses (pressing index finger) embedded in the different ordinal positions of a practiced sequence (4-1-3-2-4; here, the numbers 1 through 4 correspond to the little through the index fingers of the non-dominant left hand) change their representation (MEG feature). They did this by computing either the decoding accuracy of the index finger at the ordinal positions 1 vs. 5 (index_OP1 vs index_OP5) or pattern distance between index_OP1 vs. index_OP5 at each training trial and found that both the decoding accuracy and the pattern distance progressively increase over the course of learning trials. More interestingly, they also computed the pattern distance for index_OP5 for the last execution of a practice trial vs. index_OP1 for the first execution in the next practice trial (i.e., across the rest period). This "off-line" distance was significantly larger than the "on-line" distance, which was computed within practice trials and predicted micro-offline skill gain. Based on these results, the authors conclude that the differentiation of representation for the identical movement embedded in different positions of a sequential skill ("contextualization") primarily occurs during early skill learning, especially during rest, consistent with the recent theory of the "micro-offline learning" proposed by the authors' group. I think this is an important and timely topic for the field of motor learning and beyond.

      Strengths

      The specific strengths of the current work are as follows. First, the use of temporally rich neural information (MEG signal) has a large advantage over previous studies testing sequential representations using fMRI. This allowed the authors to examine the earliest period (= the first few minutes of training) of skill learning with finer temporal resolution. Second, through the optimization of MEG feature extraction, the current study achieved extremely high decoding accuracy (approx. 94%) compared to previous works. As claimed by the authors, this is one of the strengths of the paper (but see my comments). Third, although some potential refinement might be needed, comparing "online" and "offline" pattern distance is a neat idea.

      Weaknesses

      Along with the strengths I raised above, the paper has some weaknesses. First, the pursuit of high decoding accuracy, especially the choice of time points and window length (i.e., 200 msec window starting from 0 msec from key press onset), casts a shadow on the interpretation of the main result. Currently, it is unclear whether the decoding results simply reflect behavioral change or true underlying neural change. As shown in the behavioral data, the key press speed reached 3~4 presses per second already at around the end of the early learning period (11th trial), which means inter-press intervals become as short as 250-330 msec. Thus, in almost more than 60% of training period data, the time window for MEG feature extraction (200 msec) spans around 60% of the inter-press intervals. Considering that the preparation/cueing of subsequent presses starts ahead of the actual press (e.g., Kornysheva et al., 2019) and/or potential online planning (e.g., Ariani and Diedrichsen, 2019), the decoder likely has captured these future press information as well as the signal related to the current key press, independent of the formation of genuine sequential representation (e.g., "contextualization" of individual press). This may also explain the gradual increase in decoding accuracy or pattern distance between index_OP1 vs. index_OP5 (Figure 4C and 5A), which co-occurred with performance improvement, as shorter inter-press intervals are more favorable for the dissociating the two index finger presses followed by different finger presses. The compromised decoding accuracies for the control sequences can be explained in similar logic. Therefore, more careful consideration and elaborated discussion seem necessary when trying to both achieve high-performance decoding and assess early skill learning, as it can impact all the subsequent analyses.

      The Reviewer raises the possibility that (given the windowing parameters used in the present study) an increase in “contextualization” with learning could simply reflect faster typing speeds as opposed to an actual change in the underlying neural representation.

      We now include a new control analysis that addresses this issue as well as additional re-examination of previously reported results with respect to this issue – all of which are inconsistent with this alternative explanation that “contextualization” reflects a change in mixing of keypress related MEG features as opposed to a change in the underlying representations themselves. As correct sequences are generated at higher and higher speeds over training, MEG activity patterns related to the planning, execution, evaluation and memory of individual keypresses overlap more in time. Thus, increased overlap between the “4” and “1” keypresses (at the start of the sequence) and “2” and “4” keypresses (at the end of the sequence) could artefactually increase contextualization distances even if the underlying neural representations for the individual keypresses remain unchanged. One must also keep in mind that since participants repeat the sequence multiple times within the same trial, a majority of the index finger keypresses are performed adjacent to one another (i.e. - the “4-4” transition marking the end of one sequence and the beginning of the next). Thus, increased overlap between consecutive index finger keypresses as typing speed increased should increase their similarity and mask contextualization related changes to the underlying neural representations.

      We addressed this question by conducting a new multivariate regression analysis to directly assess whether the neural representation distance score could be predicted by the 4-1, 2-4 and 4-4 keypress transition times observed for each complete correct sequence (both predictor and response variables were z-score normalized within-subject). The results of this analysis also affirmed that the possible alternative explanation that contextualization effects are simple reflections of increased mixing is not supported by the data (Adjusted R<sup>2</sup> = 0.00431; F = 5.62). We now include this new negative control analysis in the revised manuscript.

      We also re-examined our previously reported classification results with respect to this issue. We reasoned that if mixing effects reflecting the ordinal sequence structure is an important driver of the contextualization finding, these effects should be observable in the distribution of decoder misclassifications. For example, “4” keypresses would be more likely to be misclassified as “1” or “2” keypresses (or vice versa) than as “3” keypresses. The confusion matrices presented in Figures 3C and 4B and Figure 3—figure supplement 3A display a distribution of misclassifications that is inconsistent with an alternative mixing effect explanation of contextualization.

      Based upon the increased overlap between adjacent index finger keypresses (i.e. – “4-4” transition), we also reasoned that the decoder tasked with separating individual index finger keypresses into two distinct classes based upon sequence position, should show decreased performance as typing speed increases. However, Figure 4C in our manuscript shows that this is not the case. The 2-class hybrid classifier actually displays improved classification performance over early practice trials despite greater temporal overlap. Again, this is inconsistent with the idea that the contextualization effect simply reflects increased mixing of individual keypress features.

      In summary, both re-examination of previously reported data and new control analyses all converged on the idea that the proximity between keypresses does not explain contextualization.

      We do agree with the Reviewer that the naturalistic, generative, self-paced task employed in the present study results in overlapping brain processes related to planning, execution, evaluation and memory of the action sequence. We also agree that there are several tradeoffs to consider in the construction of the classifiers depending on the study aim. Given our aim of optimizing keypress decoder accuracy in the present study, the set of trade-offs resulted in representations reflecting more the latter three processes, and less so the planning component. Whether separate decoders can be constructed to tease apart the representations or networks supporting these overlapping processes is an important future direction of research in this area. For example, work presently underway in our lab constrains the selection of windowing parameters in a manner that allows individual classifiers to be temporally linked to specific planning, execution, evaluation or memory-related processes to discern which brain networks are involved and how they adaptively reorganize with learning. Results from the present study (Figure 4—figure supplement 2) showing hybrid-space decoder prediction accuracies exceeding 74% for temporal windows spanning as little as 25ms and located up to 100ms prior to the KeyDown event strongly support the feasibility of such an approach.

      Related to the above point, testing only one particular sequence (4-1-3-2-4), aside from the control ones, limits the generalizability of the finding. This also may have contributed to the extremely high decoding accuracy reported in the current study.

      The Reviewer raises a question about the generalizability of the decoder accuracy reported in our study. Fortunately, a comparison between decoder performances on Day 1 and Day 2 datasets does provide insight into this issue. As the Reviewer points out, the classifiers in this study were trained and tested on keypresses performed while practicing a specific sequence (4-1-3-2-4). The study was designed this way as to avoid the impact of interference effects on learning dynamics. The cross-validated performance of classifiers on MEG data collected within the same session was 90.47% overall accuracy (4-class; Figure 3C). We then tested classifier performance on data collected during a separate MEG session conducted approximately 24 hours later (Day 2; see Figure 3 — figure supplement 3). We observed a reduction in overall accuracy rate to 87.11% when tested on MEG data recorded while participants performed the same learned sequence, and 79.44% when they performed several previously unpracticed sequences. Both changes in accuracy are important with regards to the generalizability of our findings. First, 87.11% performance accuracy for the trained sequence data on Day 2 (a reduction of only 3.36%) indicates that the hybrid-space decoder performance is robust over multiple MEG sessions, and thus, robust to variations in SNR across the MEG sensor array caused by small differences in head position between scans. This indicates a substantial advantage over sensor-space decoding approaches. Furthermore, when tested on data from unpracticed sequences, overall performance dropped an additional 7.67%. This difference reflects the performance bias of the classifier for the trained sequence, possibly caused by high-order sequence structure being incorporated into the feature weights. In the future, it will be important to understand in more detail how random or repeated keypress sequence training data impacts overall decoder performance and generalization. We strongly agree with the Reviewer that the issue of generalizability is extremely important and have added a new paragraph to the Discussion in the revised manuscript highlighting the strengths and weaknesses of our study with respect to this issue.

      In terms of clinical BCI, one of the potential relevance of the study, as claimed by the authors, it is not clear that the specific time window chosen in the current study (up to 200 msec since key press onset) is really useful. In most cases, clinical BCI would target neural signals with no overt movement execution due to patients' inability to move (e.g., Hochberg et al., 2012). Given the time window, the surprisingly high performance of the current decoder may result from sensory feedback and/or planning of subsequent movement, which may not always be available in the clinical BCI context. Of course, the decoding accuracy is still much higher than chance even when using signal before the key press (as shown in Figure 4 Supplement 2), but it is not immediately clear to me that the authors relate their high decoding accuracy based on post-movement signal to clinical BCI settings.

      The Reviewer questions the relevance of the specific window parameters used in the present study for clinical BCI applications, particularly for paretic patients who are unable to produce finger movements or for whom afferent sensory feedback is no longer intact. We strongly agree with the Reviewer that any intended clinical application must carefully consider the specific input feature constraints dictated by the clinical cohort, and in turn impose appropriate and complimentary constraints on classifier parameters that may differ from the ones used in the present study. We now highlight this issue in the Discussion of the revised manuscript and relate our present findings to published clinical BCI work within this context.

      One of the important and fascinating claims of the current study is that the "contextualization" of individual finger movements in a trained sequence specifically occurs during short rest periods in very early skill learning, echoing the recent theory of micro-offline learning proposed by the authors' group. Here, I think two points need to be clarified. First, the concept of "contextualization" is kept somewhat blurry throughout the text. It is only at the later part of the Discussion (around line #330 on page 13) that some potential mechanism for the "contextualization" is provided as "what-and-where" binding. Still, it is unclear what "contextualization" actually is in the current data, as the MEG signal analyzed is extracted from 0-200 msec after the keypress. If one thinks something is contextualizing an action, that contextualization should come earlier than the action itself.

      The Reviewer requests that we: 1) more clearly define our use of the term “contextualization” and 2) provide the rationale for assessing it over a 200ms window aligned to the KeyDown event. This choice of window parameters means that the MEG activity used in our analysis was coincident with, rather than preceding, the actual keypresses. We define contextualization as the differentiation of representation for the identical movement embedded in different positions of a sequential skill. That is, representations of individual action elements progressively incorporate information about their relationship to the overall sequence structure as the skill is learned. We agree with the Reviewer that this can be appropriately interpreted as “what-and-where” binding. We now incorporate this definition in the Introduction of the revised manuscript as requested.

      The window parameters for optimizing accurate decoding individual finger movements were determined using a grid search of the parameter space (a sliding window of variable width between 25-350 ms with 25 ms increments variably aligned from 0 to +100ms with 10ms increments relative to the KeyDown event). This approach generated 140 different temporal windows for each keypress for each participant, with the final parameter selection determined through comparison of the resulting performance between each decoder. Importantly, the decision to optimize for decoding accuracy placed an emphasis on keypress representations characterized by the most consistent and robust features shared across subjects, which in turn maximize statistical power in detecting common learning-related changes. In this case, the optimal window encompassed a 200ms epoch aligned to the KeyDown event (t<sub>0</sub> = 0 ms). We then asked if the representations (i.e. – spatial patterns of combined parcel- and voxel-space activity) of the same digit at two different sequence positions changed with practice within this optimal decoding window. Of course, our findings do not rule out the possibility that contextualization can also be found before or even after this time window, as we did not directly address this issue in the present study. Future work in our lab, as pointed out above, are investigating contextualization within different time windows tailored specifically for assessing sequence skill action planning, execution, evaluation and memory processes.

      The second point is that the result provided by the authors is not yet convincing enough to support the claim that "contextualization" occurs during rest. In the original analysis, the authors presented the statistical significance regarding the correlation between the "offline" pattern differentiation and micro-offline skill gain (Figure 5. Supplement 1), as well as the larger "offline" distance than "online" distance (Figure 5B). However, this analysis looks like regressing two variables (monotonically) increasing as a function of the trial. Although some information in this analysis, such as what the independent/dependent variables were or how individual subjects were treated, was missing in the Methods, getting a statistically significant slope seems unsurprising in such a situation. Also, curiously, the same quantitative evidence was not provided for its "online" counterpart, and the authors only briefly mentioned in the text that there was no significant correlation between them. It may be true looking at the data in Figure 5A as the online representation distance looks less monotonically changing, but the classification accuracy presented in Figure 4C, which should reflect similar representational distance, shows a more monotonic increase up to the 11th trial. Further, the ways the "online" and "offline" representation distance was estimated seem to make them not directly comparable. While the "online" distance was computed using all the correct press data within each 10 sec of execution, the "offline" distance is basically computed by only two presses (i.e., the last index_OP5 vs. the first index_OP1 separated by 10 sec of rest). Theoretically, the distance between the neural activity patterns for temporally closer events tends to be closer than that between the patterns for temporally far-apart events. It would be fairer to use the distance between the first index_OP1 vs. the last index_OP5 within an execution period for "online" distance, as well.

      The Reviewer suggests that the current data is not enough to show that contextualization occurs during rest and raises two important concerns: 1) the relationship between online contextualization and micro-online gains is not shown, and 2) the online distance was calculated differently from its offline counterpart (i.e. - instead of calculating the distance between last Index<sub>OP5</sub> and first Index<sub>OP1</sub> from a single trial, the distance was calculated for each sequence within a trial and then averaged).

      We addressed the first concern by performing individual subject correlations between 1) contextualization changes during rest intervals and micro-offline gains; 2) contextualization changes during practice trials and micro-online gains, and 3) contextualization changes during practice trials and micro-offline gains (Figure 5 – figure supplement 4). We then statistically compared the resulting correlation coefficient distributions and found that within-subject correlations for contextualization changes during rest intervals and micro-offline gains were significantly higher than online contextualization and micro-online gains (t = 3.2827, p = 0.0015) and online contextualization and micro-offline gains (t = 3.7021, p = 5.3013e-04). These results are consistent with our interpretation that micro-offline gains are supported by contextualization changes during the inter-practice rest periods.

      With respect to the second concern, we agree with the Reviewer that one limitation of the analysis comparing online versus offline changes in contextualization as presented in the original manuscript, is that it does not eliminate the possibility that any differences could simply be explained by the passage of time (which is smaller for the online analysis compared to the offline analysis). The Reviewer suggests an approach that addresses this issue, which we have now carried out. When quantifying online changes in contextualization from the first Index<sub>OP1</sub> the last Index<sub>OP5</sub> keypress in the same trial we observed no learning-related trend (Figure 5 – figure supplement 5, right panel). Importantly, offline distances were significantly larger than online distances regardless of the measurement approach and neither predicted online learning (Figure 5 – figure supplement 6).

      A related concern regarding the control analysis, where individual values for max speed and the degree of online contextualization were compared (Figure 5 Supplement 3), is whether the individual difference is meaningful. If I understood correctly, the optimization of the decoding process (temporal window, feature inclusion/reduction, decoder, etc.) was performed for individual participants, and the same feature extraction was also employed for the analysis of representation distance (i.e., contextualization). If this is the case, the distances are individually differently calculated and they may need to be normalized relative to some stable reference (e.g., 1 vs. 4 or average distance within the control sequence presses) before comparison across the individuals.

      The Reviewer makes a good point here. We have now implemented the suggested normalization procedure in the analysis provided in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      One goal of this paper is to introduce a new approach for highly accurate decoding of finger movements from human magnetoencephalography data via dimension reduction of a "multiscale, hybrid" feature space. Following this decoding approach, the authors aim to show that early skill learning involves "contextualization" of the neural coding of individual movements, relative to their position in a sequence of consecutive movements. Furthermore, they aim to show that this "contextualization" develops primarily during short rest periods interspersed with skill training and correlates with a performance metric which the authors interpret as an indicator of offline learning.

      Strengths:

      A clear strength of the paper is the innovative decoding approach, which achieves impressive decoding accuracies via dimension reduction of a "multi-scale, hybrid space". This hybrid-space approach follows the neurobiologically plausible idea of the concurrent distribution of neural coding across local circuits as well as large-scale networks. A further strength of the study is the large number of tested dimension reduction techniques and classifiers (though the manuscript reveals little about the comparison of the latter).

      We appreciate the Reviewer’s comments regarding the paper’s strengths.

      A simple control analysis based on shuffled class labels could lend further support to this complex decoding approach. As a control analysis that completely rules out any source of overfitting, the authors could test the decoder after shuffling class labels. Following such shuffling, decoding accuracies should drop to chance level for all decoding approaches, including the optimized decoder. This would also provide an estimate of actual chance-level performance (which is informative over and beyond the theoretical chance level). Furthermore, currently, the manuscript does not explain the huge drop in decoding accuracies for the voxel-space decoding (Figure 3B). Finally, the authors' approach to cortical parcellation raises questions regarding the information carried by varying dipole orientations within a parcel (which currently seems to be ignored?) and the implementation of the mean-flipping method (given that there are two dimensions - space and time - what do the authors refer to when they talk about the sign of the "average source", line 477?).

      The Reviewer recommends that we: 1) conduct an additional control analysis on classifier performance using shuffled class labels, 2) provide a more detailed explanation regarding the drop in decoding accuracies for the voxel-space decoding following LDA dimensionality reduction (see Fig 3B), and 3) provide additional details on how problems related to dipole solution orientations were addressed in the present study.

      In relation to the first point, we have now implemented a random shuffling approach as a control for the classification analyses. The results of this analysis indicated that the chance level accuracy was 22.12% (± SD 9.1%) for individual keypress decoding (4-class classification), and 18.41% (± SD 7.4%) for individual sequence item decoding (5-class classification), irrespective of the input feature set or the type of decoder used. Thus, the decoding accuracy observed with the final model was substantially higher than these chance levels.

      Second, please note that the dimensionality of the voxel-space feature set is very high (i.e. – 15684). LDA attempts to map the input features onto a much smaller dimensional space (number of classes – 1; e.g. – 3 dimensions, for 4-class keypress decoding). Given the very high dimension of the voxel-space input features in this case, the resulting mapping exhibits reduced accuracy. Despite this general consideration, please refer to Figure 3—figure supplement 3, where we observe improvement in voxel-space decoder performance when utilizing alternative dimensionality reduction techniques.

      The decoders constructed in the present study assess the average spatial patterns across time (as defined by the windowing procedure) in the input feature space. We now provide additional details in the Methods of the revised manuscript pertaining to the parcellation procedure and how the sign ambiguity problem was addressed in our analysis.

      Weaknesses:

      A clear weakness of the paper lies in the authors' conclusions regarding "contextualization". Several potential confounds, described below, question the neurobiological implications proposed by the authors and provide a simpler explanation of the results. Furthermore, the paper follows the assumption that short breaks result in offline skill learning, while recent evidence, described below, casts doubt on this assumption.

      We thank the Reviewer for giving us the opportunity to address these issues in detail (see below).

      The authors interpret the ordinal position information captured by their decoding approach as a reflection of neural coding dedicated to the local context of a movement (Figure 4). One way to dissociate ordinal position information from information about the moving effectors is to train a classifier on one sequence and test the classifier on other sequences that require the same movements, but in different positions (Kornysheva et al., 2019). In the present study, however, participants trained to repeat a single sequence (4-1-3-2-4). As a result, ordinal position information is potentially confounded by the fixed finger transitions around each of the two critical positions (first and fifth press). Across consecutive correct sequences, the first keypress in a given sequence was always preceded by a movement of the index finger (=last movement of the preceding sequence), and followed by a little finger movement. The last keypress, on the other hand, was always preceded by a ring finger movement, and followed by an index finger movement (=first movement of the next sequence). Figure 4 - Supplement 2 shows that finger identity can be decoded with high accuracy (>70%) across a large time window around the time of the key press, up to at least +/-100 ms (and likely beyond, given that decoding accuracy is still high at the boundaries of the window depicted in that figure). This time window approaches the keypress transition times in this study. Given that distinct finger transitions characterized the first and fifth keypress, the classifier could thus rely on persistent (or "lingering") information from the preceding finger movement, and/or "preparatory" information about the subsequent finger movement, in order to dissociate the first and fifth keypress. Currently, the manuscript provides no evidence that the context information captured by the decoding approach is more than a by-product of temporally extended, and therefore overlapping, but independent neural representations of consecutive keypresses that are executed in close temporal proximity - rather than a neural representation dedicated to context.

      Such temporal overlap of consecutive, independent finger representations may also account for the dynamics of "ordinal coding"/"contextualization", i.e., the increase in 2-class decoding accuracy, across Day 1 (Figure 4C). As learning progresses, both tapping speed and the consistency of keypress transition times increase (Figure 1), i.e., consecutive keypresses are closer in time, and more consistently so. As a result, information related to a given keypress is increasingly overlapping in time with information related to the preceding and subsequent keypresses. The authors seem to argue that their regression analysis in Figure 5 - Figure Supplement 3 speaks against any influence of tapping speed on "ordinal coding" (even though that argument is not made explicitly in the manuscript). However, Figure 5 - Figure Supplement 3 shows inter-individual differences in a between-subject analysis (across trials, as in panel A, or separately for each trial, as in panel B), and, therefore, says little about the within-subject dynamics of "ordinal coding" across the experiment. A regression of trial-by-trial "ordinal coding" on trial-by-trial tapping speed (either within-subject or at a group-level, after averaging across subjects) could address this issue. Given the highly similar dynamics of "ordinal coding" on the one hand (Figure 4C), and tapping speed on the other hand (Figure 1B), I would expect a strong relationship between the two in the suggested within-subject (or group-level) regression. Furthermore, learning should increase the number of (consecutively) correct sequences, and, thus, the consistency of finger transitions. Therefore, the increase in 2-class decoding accuracy may simply reflect an increasing overlap in time of increasingly consistent information from consecutive keypresses, which allows the classifier to dissociate the first and fifth keypress more reliably as learning progresses, simply based on the characteristic finger transitions associated with each. In other words, given that the physical context of a given keypress changes as learning progresses - keypresses move closer together in time and are more consistently correct - it seems problematic to conclude that the mental representation of that context changes. To draw that conclusion, the physical context should remain stable (or any changes to the physical context should be controlled for).

      The issues raised by Reviewer #3 here are similar to two issues raised by Reviewer #2 above. We agree they must both be carefully considered in any evaluation of our findings.

      As both Reviewers pointed out, the classifiers in this study were trained and tested on keypresses performed while practicing a specific sequence (4-1-3-2-4). The study was designed this way as to avoid the impact of interference effects on learning dynamics. The cross-validated performance of classifiers on MEG data collected within the same session was 90.47% overall accuracy (4class; Figure 3C). We then tested classifier performance on data collected during a separate MEG session conducted approximately 24 hours later (Day 2; see Figure 3—supplement 3). We observed a reduction in overall accuracy rate to 87.11% when tested on MEG data recorded while participants performed the same learned sequence, and 79.44% when they performed several previously unpracticed sequences. This classification performance difference of 7.67% when tested on the Day 2 data could reflect the performance bias of the classifier for the trained sequence, possibly caused by mixed information from temporally close keypresses being incorporated into the feature weights.

      Along these same lines, both Reviewers also raise the possibility that an increase in “ordinal coding/contextualization” with learning could simply reflect an increase in this mixing effect caused by faster typing speeds as opposed to an actual change in the underlying neural representation. The basic idea is that as correct sequences are generated at higher and higher speeds over training, MEG activity patterns related to the planning, execution, evaluation and memory of individual keypresses overlap more in time. Thus, increased overlap between the “4” and “1” keypresses (at the start of the sequence) and “2” and “4” keypresses (at the end of the sequence) could artefactually increase contextualization distances even if the underlying neural representations for the individual keypresses remain unchanged (assuming this mixing of representations is used by the classifier to differentially tag each index finger press). If this were the case, it follows that such mixing effects reflecting the ordinal sequence structure would also be observable in the distribution of decoder misclassifications. For example, “4” keypresses would be more likely to be misclassified as “1” or “2” keypresses (or vice versa) than as “3” keypresses. The confusion matrices presented in Figures 3C and 4B and Figure 3—figure supplement 3A in the previously submitted manuscript do not show this trend in the distribution of misclassifications across the four fingers.

      Following this logic, it’s also possible that if the ordinal coding is largely driven by this mixing effect, the increased overlap between consecutive index finger keypresses during the 4-4 transition marking the end of one sequence and the beginning of the next one could actually mask contextualization-related changes to the underlying neural representations and make them harder to detect. In this case, a decoder tasked with separating individual index finger keypresses into two distinct classes based upon sequence position might show decreased performance with learning as adjacent keypresses overlapped in time with each other to an increasing extent. However, Figure 4C in our previously submitted manuscript does not support this possibility, as the 2-class hybrid classifier displays improved classification performance over early practice trials despite greater temporal overlap.

      As noted in the above reply to Reviewer #2, we also conducted a new multivariate regression analysis to directly assess whether the neural representation distance score could be predicted by the 4-1, 2-4 and 4-4 keypress transition times observed for each complete correct sequence (both predictor and response variables were z-score normalized within-subject). The results of this analysis affirmed that the possible alternative explanation put forward by the Reviewer is not supported by our data (Adjusted R<sup>2</sup> = 0.00431; F = 5.62). We now include this new negative control analysis result in the revised manuscript.

      Finally, the Reviewer hints that one way to address this issue would be to compare MEG responses before and after learning for sequences typed at a fixed speed. However, given that the speed-accuracy trade-off should improve with learning, a comparison between unlearned and learned skill states would dictate that the skill be evaluated at a very low fixed speed. Essentially, such a design presents the problem that the post-training test is evaluating the representation in the unlearned behavioral state that is not representative of the acquired skill. Thus, this approach would miss most learning effects on a task in which speed is the main learning metrics.

      A similar difference in physical context may explain why neural representation distances ("differentiation") differ between rest and practice (Figure 5). The authors define "offline differentiation" by comparing the hybrid space features of the last index finger movement of a trial (ordinal position 5) and the first index finger movement of the next trial (ordinal position 1). However, the latter is not only the first movement in the sequence but also the very first movement in that trial (at least in trials that started with a correct sequence), i.e., not preceded by any recent movement. In contrast, the last index finger of the last correct sequence in the preceding trial includes the characteristic finger transition from the fourth to the fifth movement. Thus, there is more overlapping information arising from the consistent, neighbouring keypresses for the last index finger movement, compared to the first index finger movement of the next trial. A strong difference (larger neural representation distance) between these two movements is, therefore, not surprising, given the task design, and this difference is also expected to increase with learning, given the increase in tapping speed, and the consequent stronger overlap in representations for consecutive keypresses. Furthermore, initiating a new sequence involves pre-planning, while ongoing practice relies on online planning (Ariani et al., eNeuro 2021), i.e., two mental operations that are dissociable at the level of neural representation (Ariani et al., bioRxiv 2023).

      The Reviewer argues that the comparison of last finger movement of a trial and the first in the next trial are performed in different circumstances and contexts. This is an important point and one we tend to agree with. For this task, the first sequence in a practice trial is pre-planned before the first keypress is performed. This occurs in a somewhat different context from the sequence iterations that follow, which involve temporally overlapping planning, execution and evaluation processes. The Reviewer is concerned about a difference in the temporal mixing effect issue raised above between the first and last keypresses performed in a trial. Please, note that since neural representations of individual actions are competitively queued during the pre-planning period in a manner that reflects the ordinal structure of the learned sequence (Kornysheva et al., 2019), mixing effects are most likely present also for the first keypress in a trial.

      Separately, the Reviewer suggests that contextualization during early learning may reflect preplanning or online planning. This is an interesting proposal. Given the decoding time-window used in this investigation, we cannot dissect separate contributions of planning, memory and sensory feedback to contextualization. Taking advantage of the superior temporal resolution of MEG relative to fMRI tools, work under way in our lab is investigating decoding time-windows more appropriate to address each of these questions.

      Given these differences in the physical context and associated mental processes, it is not surprising that "offline differentiation", as defined here, is more pronounced than "online differentiation". For the latter, the authors compared movements that were better matched regarding the presence of consistent preceding and subsequent keypresses (online differentiation was defined as the mean difference between all first vs. last index finger movements during practice). It is unclear why the authors did not follow a similar definition for "online differentiation" as for "micro-online gains" (and, indeed, a definition that is more consistent with their definition of "offline differentiation"), i.e., the difference between the first index finger movement of the first correct sequence during practice, and the last index finger of the last correct sequence. While these two movements are, again, not matched for the presence of neighbouring keypresses (see the argument above), this mismatch would at least be the same across "offline differentiation" and "online differentiation", so they would be more comparable.

      This is the same point made earlier by Reviewer #2, and we agree with this assessment. As stated in the response to Reviewer #2 above, we have now carried out quantification of online contextualization using this approach and included it in the revised manuscript. We thank the Reviewer for this suggestion.

      A further complication in interpreting the results regarding "contextualization" stems from the visual feedback that participants received during the task. Each keypress generated an asterisk shown above the string on the screen, irrespective of whether the keypress was correct or incorrect. As a result, incorrect (e.g., additional, or missing) keypresses could shift the phase of the visual feedback string (of asterisks) relative to the ordinal position of the current movement in the sequence (e.g., the fifth movement in the sequence could coincide with the presentation of any asterisk in the string, from the first to the fifth). Given that more incorrect keypresses are expected at the start of the experiment, compared to later stages, the consistency in visual feedback position, relative to the ordinal position of the movement in the sequence, increased across the experiment. A better differentiation between the first and the fifth movement with learning could, therefore, simply reflect better decoding of the more consistent visual feedback, based either on the feedback-induced brain response, or feedback-induced eye movements (the study did not include eye tracking). It is not clear why the authors introduced this complicated visual feedback in their task, besides consistency with their previous studies.

      We strongly agree with the Reviewer that eye movements related to task engagement are important to rule out as a potential driver of the decoding accuracy or contextualizaton effect. We address this issue above in response to a question raised by Reviewer #1 about the impact of movement related artefacts on our findings.

      First, the assumption the Reviewer makes here about the distribution of errors in this task is incorrect. On average across subjects, 2.32% ± 1.48% (mean ± SD) of all keypresses performed were errors, which were evenly distributed across the four possible keypress responses. While errors increased progressively over practice trials, they did so in proportion to the increase in correct keypresses, so that the overall ratio of correct-to-incorrect keypresses remained stable over the training session. Thus, the Reviewer’s assumptions that there is a higher relative frequency of errors in early trials, and a resulting systematic trend phase shift differences between the visual display updates (i.e. – a change in asterisk position above the displayed sequence) and the keypress performed is not substantiated by the data. To the contrary, the asterisk position on the display and the keypress being executed remained highly correlated over the entire training session. We now include a statement about the frequency and distribution of errors in the revised manuscript.

      Given this high correlation, we firmly agree with the Reviewer that the issue of eye movement related artefacts is still an important one to address. Fortunately, we did collect eye movement data during the MEG recordings so were able to investigate this. As detailed in the response to Reviewer #1 above, we found that gaze positions and eye-movement velocity time-locked to visual display updates (i.e. – a change in asterisk position above the displayed sequence) did not reflect the asterisk location above chance levels (Overall cross-validated accuracy = 0.21817; see Author response image 1). Furthermore, an inspection of the eye position data revealed that most participants on most trials displayed random walk gaze patterns around a center fixation point, indicating that participants did not attend to the asterisk position on the display. This is consistent with intrinsic generation of the action sequence, and congruent with the fact that the display does not provide explicit feedback related to performance. As pointed out above, a similar real-world example would be manually inputting a long password into a secure online application. In this case, one intrinsically generates the sequence from memory and receives similar feedback about the password sequence position (also provided as asterisks), which is typically ignored by the user.

      The minimal participant engagement with the visual display in this explicit sequence learning motor task (which is highly generative in nature) contrasts markedly with behavior observed when reactive responses to stimulus cues are needed in the serial reaction time task (SRTT). This is a crucial difference that must be carefully considered when comparing findings across studies using the two sequence learning tasks.

      The authors report a significant correlation between "offline differentiation" and cumulative microoffline gains. However, it would be more informative to correlate trial-by-trial changes in each of the two variables. This would address the question of whether there is a trial-by-trial relation between the degree of "contextualization" and the amount of micro-offline gains - are performance changes (micro-offline gains) less pronounced across rest periods for which the change in "contextualization" is relatively low? Furthermore, is the relationship between micro-offline gains and "offline differentiation" significantly stronger than the relationship between micro-offline gains and "online differentiation"?

      In response to a similar issue raised above by Reviewer #2, we now include new analyses comparing correlation magnitudes between (1) “online differentiation” vs micro-online gains, (2) “online differentiation” vs micro-offline gains and (3) “offline differentiation” and micro-offline gains (see Figure 5 – figure supplement  4, 5 and 6). These new analyses and results have been added to the revised manuscript. Once again, we thank both Reviewers for this suggestion.

      The authors follow the assumption that micro-offline gains reflect offline learning.

      We disagree with this statement. The original (Bonstrup et al., 2019) paper clearly states that micro-offline gains do not necessarily reflect offline learning in some cases and must be carefully interpreted based upon the behavioral context within which they are observed. Further, the paper lays out the conditions under which one can have confidence that micro-offline gains reflect offline learning. In fact, the excellent meta-analysis of (Pan & Rickard, 2015), which re-interprets the benefits of sleep in overnight skill consolidation from a “reactive inhibition” perspective, was a crucial resource in the experimental design of our initial study (Bonstrup et al., 2019), as well as in all our subsequent work. Pan & Rickard state:

      “Empirically, reactive inhibition refers to performance worsening that can accumulate during a period of continuous training (Hull, 1943 . It tends to dissipate, at least in part, when brief breaks are inserted between blocks of training. If there are multiple performance-break cycles over a training session, as in the motor sequence literature, performance can exhibit a scalloped effect, worsening during each uninterrupted performance block but improving across blocks(Brawn et al., 2010; Rickard et al., 2008 . Rickard, Cai, Rieth, Jones, and Ard (2008 and Brawn, Fenn, Nusbaum, and Margoliash (2010 (Brawn et al., 2010; Rickard et al., 2008 demonstrated highly robust scalloped reactive inhibition effects using the commonly employed 30 s–30 s performance break cycle, as shown for Rickard et al.’s (2008 massed practice sleep group in Figure 2. The scalloped effect is evident for that group after the first few 30 s blocks of each session. The absence of the scalloped effect during the first few blocks of training in the massed group suggests that rapid learning during that period masks any reactive inhibition effect.”

      Crucially, Pan & Rickard make several concrete recommendations for reducing the impact of the reactive inhibition confound on offline learning studies. One of these recommendations was to reduce practice times to 10s (most prior sequence learning studies up until that point had employed 30s long practice trials). They state:

      “The traditional design involving 30 s-30 s performance break cycles should be abandoned given the evidence that it results in a reactive inhibition confound, and alternative designs with reduced performance duration per block used instead (Pan & Rickard, 2015 . One promising possibility is to switch to 10 s performance durations for each performance-break cycle Instead (Pan & Rickard, 2015 . That design appears sufficient to eliminate at least the majority of the reactive inhibition effect (Brawn et al., 2010; Rickard et al., 2008 .”

      We mindfully incorporated recommendations from (Pan & Rickard, 2015) into our own study designs including 1) utilizing 10s practice trials and 2) constraining our analysis of micro-offline gains to early learning trials (where performance monotonically increases and 95% of overall performance gains occur), which are prior to the emergence of the “scalloped” performance dynamics that are strongly linked to reactive inhibition effects.

      However, there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level.

      We strongly disagree with the Reviewer’s assertion that “there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level.” The initial (Bonstrup et al., 2019) report was followed up by a large online crowd-sourcing study (Bonstrup et al., 2020). This second (and much larger) study provided several additional important findings supporting our interpretation of micro-offline gains in cases where the important behavioral conditions clarified above were met (see Author response image 4 below for further details on these conditions).

      Author response image 4.

      This Figure shows that micro-offline gains o ser ed in learning and nonlearning contexts are attri uted to different underl ing causes. Micro-offline and online changes relative to overall trial-by-trial learning. This figure is based on data from (Bonstrup et al., 2019). During early learning, micro-offline gains (red bars) closely track trial-by-trial performance gains (green line with open circle markers), with minimal contribution from micro-online gains (blue bars). The stated conclusion in Bönstrup et al. (2019) is that micro-offline gains only during this Early Learning stage reflect rapid memory consolidation (see also (Bonstrup et al., 2020)). After early learning, about practice trial 11, skill plateaus. This plateau skill period is characterized by a striking emergence of coupled (and relatively stable) micro-online drops and micro-offline increases. Bönstrup et al. (2019) as well as others in the literature (Brooks et al., 2024; Gupta & Rickard, 2022; Florencia Jacobacci et al., 2020), argue that micro-offline gains during the plateau period likely reflect recovery from inhibitory performance factors such as reactive inhibition or fatigue, and thus must be excluded from analyses relating micro-offline gains to skill learning. The Non-repeating groups in Experiments 3 and 4 from Das et al. (2024) suffer from a lack of consideration of these known confounds (end of Fig legend).

      Evidence documented in that paper (Bonstrup et al., 2020) showed that micro-offline gains during early skill learning were: 1) replicable and generalized to subjects learning the task in their daily living environment (n=389); 2) equivalent when significantly shortening practice period duration, thus confirming that they are not a result of recovery from performance fatigue (n=118); 3) reduced (along with learning rates) by retroactive interference applied immediately after each practice period relative to interference applied after passage of time (n=373), indicating stabilization of the motor memory at a microscale of several seconds consistent with rapid consolidation; and 4) not modified by random termination of the practice periods, ruling out a contribution of predictive motor slowing (N = 71) (Bonstrup et al., 2020). Altogether, our findings were strongly consistent with the interpretation that micro-offline gains reflect memory consolidation supporting early skill learning. This is precisely the portion of the learning curve (Pan & Rickard, 2015) refer to when they state “…rapid learning during that period masks any reactive inhibition effect”.

      This interpretation is further supported by brain imaging evidence linking known memory-related networks and consolidation mechanisms to micro-offline gains. First, we reported that the density of fast hippocampo-neocortical skill memory replay events increases approximately three-fold during early learning inter-practice rest periods with the density explaining differences in the magnitude of micro-offline gains across subjects (Buch et al., 2021). Second, Jacobacci et al. (2020) independently reproduced our original behavioral findings and reported BOLD fMRI changes in the hippocampus and precuneus (regions also identified in our MEG study (Buch et al., 2021)) linked to micro-offline gains during early skill learning. These functional changes were coupled with rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that operates during rest periods of early learning undergoes structural plasticity over several minutes following practice (Deleglise et al., 2023). Crucial to this point, Chen et al. (2024) and Sjøgård et al (2024) provided direct evidence from intracranial EEG in humans linking sharp-wave ripple density during rest periods (which are known markers for neural replay (Buzsaki, 2015)) in the human hippocampus (80-120 Hz) to micro-offline gains during early skill learning.

      Thus, there is now substantial converging evidence in humans across different indirect noninvasive and direct invasive recording techniques linking hippocampal activity, neural replay dynamics and offline performance gains in skill learning.

      On the contrary, recent evidence questions this interpretation (Gupta & Rickard, npj Sci Learn 2022; Gupta & Rickard, Sci Rep 2024; Das et al., bioRxiv 2024). Instead, there is evidence that micro-offline gains are transient performance benefits that emerge when participants train with breaks, compared to participants who train without breaks, however, these benefits vanish within seconds after training if both groups of participants perform under comparable conditions (Das et al., bioRxiv 2024).

      The recent work of (Gupta & Rickard, 2022, 2024) does not present any data that directly opposes our finding that early skill learning (Bonstrup et al., 2019) is expressed as micro-offline gains during rest breaks. These studies are an extension of the Rickard et al (2008) paper that employed a massed (30s practice followed by 30s breaks) vs spaced (10s practice followed by 10s breaks) experimental design to assess if recovery from reactive inhibition effects could account for performance gains measured after several minutes or hours. Gupta & Rickard (2022) added two additional groups (30s practice/10s break and 10s practice/10s break as used in the work from our group). The primary aim of the study was to assess whether it was more likely that changes in performance when retested 5 minutes after skill training (consisting of 12 practice trials for the massed groups and 36 practice trials for the spaced groups) had ended reflected memory consolidation effects or recovery from reactive inhibition effects. The Gupta & Rickard (2024) follow-up paper employed a similar design with the primary difference being that participants performed a fixed number of sequences on each trial as opposed to trials lasting a fixed duration. This was done to facilitate the fitting of a quantitative statistical model to the data.

      To reiterate, neither study included any analysis of micro-online or micro-offline gains and did not include any comparison focused on skill gains during early learning trials (only at retest 5 min later). Instead, Gupta & Rickard (2022), reported evidence for reactive inhibition effects for all groups over much longer training periods than early learning. In fact, we reported the same findings for trials following the early learning period in our original 2019 paper (Bonstrup et al., 2019) (Author response image 4). Please, note that we also reported that cumulative microoffline gains over early learning did not correlate with overnight offline consolidation measured 24 hours later (Bonstrup et al., 2019) (see the Results section and further elaboration in the Discussion). We interpreted these findings as indicative that the mechanisms underlying offline gains over the micro-scale of seconds during early skill learning versus over minutes or hours very likely differ.

      In the recent preprint from (Das et al., 2024), the authors make the strong claim that “micro-offline gains during early learning do not reflect offline learning” which is not supported by their own data. The authors hypothesize that if “micro-offline gains represent offline learning, participants should reach higher skill levels when training with breaks, compared to training without breaks”. The study utilizes a spaced vs. massed practice groups between-subjects design inspired by the reactive inhibition work from Rickard and others to test this hypothesis.

      Crucially, their design incorporates only a small fraction of the training used in other investigations to evaluate early skill learning (Bonstrup et al., 2020; Bonstrup et al., 2019; Brooks et al., 2024; Buch et al., 2021; Deleglise et al., 2023; F. Jacobacci et al., 2020; Mylonas et al., 2024). A direct comparison between the practice schedule designs for the spaced and massed groups in Das et al., and the training schedule all participants experienced in the original Bönstrup et al. (2019) paper highlights this issue as well as several others (Author response image 5):

      Author response image 5.

      This figure shows (A) Comparison of Das et al. Spaced & Massed group training session designs, and the training session design from the original (Bonstrup et al., 2019) paper. Similar to the approach taken by Das et al., all practice is visualized as 10-second practice trials with a variable number (either 0, 1 or 30) of 10-second-long inter-practice rest intervals to allow for direct comparisons between designs. The two key takeaways from this comparison are that (1) the intervention differences (i.e. – practice schedules) between the Massed and Spaced groups from the Das et al. report are extremely small (less than 12% of the overall session schedule) (gaps in the red shaded area) and (2) the overall amount of practice is much less than compared to the design from the original Bönstrup report (Bonstrup et al., 2019) (which has been utilized in several subsequent studies). (B) Group-level learning curve data from Bönstrup et al. (2019) (Bonstrup et al., 2019) is used to estimate the performance range accounted for by the equivalent periods covering Test 1, Training 1 and Test 2 from Das et al (2024). Note that the intervention in the Das et al. study is limited to a period covering less than 50% of the overall learning range (end of figure legend).

      Participants in the original (Bonstrup et al., 2019) experienced 157.14% more practice time and 46.97% less inter-practice rest time than the Spaced group in the Das et al. study (Author response image 5). Thus, the overall amount of practice and rest differ substantially between studies, with much more limited training occurring for participants in Das et al.

      In addition, the training interventions (i.e. – the practice schedule differences between the Spaced and Massed groups) were designed in a manner that minimized any chance of effectively testing their hypothesis. First, the interventions were applied over an extremely short period relative to the length of the total training session (5% and 12% of the total training session for Massed and Spaced groups, respectively; see gaps in the red shaded area in Author response image 5). Second, the intervention was applied during a period in which only half of the known total learning occurs. Specifically, we know from Bönstrup et al. (2019) that only 46.57% of the total performance gains occur in the practice interval covered by Das et al Training 1 intervention. Thus, early skill learning as evaluated by multiple groups (Bonstrup et al., 2020; Bonstrup et al., 2019; Brooks et al., 2024; Buch et al., 2021; Deleglise et al., 2023; F. Jacobacci et al., 2020; Mylonas et al., 2024), is in the Das et al experiment amputated to about half.

      Furthermore, a substantial amount of learning takes place during Das et al’s Test 1 and Test 2 periods (32.49% of total gains combined). The fact that substantial learning is known to occur over both the Test 1 (18.06%) and Test 2 (14.43%) intervals presents a fundamental problem described by Pan and Rickard (Pan & Rickard, 2015). They reported that averaging over intervals where substantial performance gains occur (i.e. – performance is not stable) inject crucial artefacts into analyses of skill learning:

      “A large amount of averaging has the advantage of yielding more precise estimates of each subject’s pretest and posttest scores and hence more statistical power to detect a performance gain. However, calculation of gain scores using that strategy runs the risk that learning that occurs during the pretest and (or posttest periods (i.e., online learning is incorporated into the gain score (Rickard et al., 2008; Robertson et al., 2004 .”

      The above statement indicates that the Test 1 and Test 2 performance scores from Das et al. (2024) are substantially contaminated by the learning rate within these intervals. This is particularly problematic if the intervention design results in different Test 2 learning rates between the two groups. This in fact, is apparent in their data (Figure 1C,E of the Das et al., 2024 preprint) as the Test 2 learning rate for the Spaced group is negative (indicating a unique interference effect observable only for this group). Specifically, the Massed group continues to show an increase in performance during Test 2 and 4 relative to the last 10 seconds of practice during Training 1 and 2, respectively, while the Spaced group displays a marked decrease. This post-training performance decrease for the Spaced group is in stark contrast to the monotonic performance increases observed for both groups at all other time-points. One possible cause could be related to the structure of the Test intervals, which include 20 seconds of uninterrupted practice. For the Spaced group, this effectively is a switch to a Massed practice environment (i.e., two 10-secondlong practice trials merged into one long trial), which interferes with greater Training 1 interval gains observed for the Space group. Interestingly, when statistical comparisons between the groups are made at the time-points when the intervention is present (Figure 1E) then the stated hypothesis, “If micro-offline gains represent offline learning, participants should reach higher skill levels when training with breaks, compared to training without breaks”, is confirmed.

      In summary, the experimental design and analyses used by Das et al does not contradict the view that early skill learning is expressed as micro-offline gains during rest breaks. The data presented by Gupta and Rickard (2022, 2024) and Das et al. (2024) is in many ways more confirmatory of the constraints employed by our group and others with respect to experimental design, analysis and interpretation of study findings, rather than contradictory. Still, it does highlight a limitation of the current micro-online/offline framework, which was originally only intended to be applied to early skill learning over spaced practice schedules when reactive inhibition effects are minimized (Bonstrup et al., 2019; Pan & Rickard, 2015). Extrapolation of this current framework to postplateau performance periods, longer timespans, or non-learning situations (e.g. – the Nonrepeating groups from Das et al. (2024)), when reactive inhibition plays a more substantive role, is not warranted. Ultimately, it will be important to develop new paradigms allowing one to independently estimate the different coincident or antagonistic features (e.g. - memory consolidation, planning, working memory and reactive inhibition) contributing to micro-online and micro-offline gains during and after early skill learning within a unifying framework.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) I found Figure 2B too small to be useful, as the actual elements of the cells are very hard to read.

      We have removed the grid colormap panel (top-right) from Figure 2B. All of this colormap data is actually a subset of data presented in Figure 2 – figure supplement 1, so can still be found there.

      Reviewer #2 (Recommendations for the authors):

      (1) Related to the first point in my concerns, I would suggest the authors compare decoding accuracy between correct presses followed by correct vs. incorrect presses. This would clarify if the decoder is actually taking the MEG signal for subsequent press into account. I would also suggest the authors use pre-movement MEG features and post-movement features with shorter windows and compare each result with the results for the original post-movement MEG feature with a longer window.

      The present study does not contain enough errors to perform the analysis proposed by the Reviewer. As noted above, we did re-examine our data and now report a new control regression analysis, all of which indicate that the proximity between keypresses does not explain contextualization effects.

      (2) I was several times confused by the author's use of "neural representation of an action" or "sequence action representations" in understanding whether these terms refer to representation on the level of whole-brain, region (as defined by the specific parcellation used), or voxels. In fact, what is submitted to the decoder is some complicated whole-brain MEG feature (i.e., the "neural representation"), which is a hybrid of voxel and parcel features that is further dimension-reduced and not immediately interpretable. Clarifying this point early in the text and possibly using some more sensible terms, such as adding "brain-wise" before the "sequence action representation", would be the most helpful for the readers.

      We now clarified this terminology in the revised manuscript.

      (3) Although comparing many different ways in feature selection/reduction, time window selection, and decoder types is undoubtedly a meticulous work, the current version of the manuscript seems still lacking some explanation about the details of these methodological choices, like which decoding method was actually used to report the accuracy, whether or not different decoding methods were chosen for individual participants' data, how training data was selected (is it all of the correct presses in Day 1 data?), whether the frequency power or signal amplitude was used, and so on. I would highly appreciate these additional details in the Methods section.

      The reported accuracies were based on linear discriminant analysis classifier. A comparison of different decoders (Figure 3 – figure supplement 4) shows LDA was the optimal choice.

      Whether or not different decoding methods were chosen for individual participants' data

      We selected the same decoder (LDA) performance to report the final accuracy.

      How training data was selected (is it all of the correct presses in Day 1 data?),

      Decoder training was conducted as a randomized split of the data (all correct keypresses of Day 1) into training (90%) and test (10%) samples for 8 iterations.

      Whether the frequency power or signal amplitude was used

      Signal amplitude was used for feature calculation.

      (4) In terms of the Methods, please consider adding some references about the 'F1 score', the 'feature importance score,' and the 'MRMR-based feature ranking,' as the main readers of the current paper would not be from the machine learning community. Also, why did the LDA dimensionality reduction reduce accuracy specifically for the voxel feature?

      We have now added the following statements to the Methods section that provide more detailed descriptions and references for these metrics:

      “The F1 score, defined as the harmonic mean of the precision (percentage of true predictions that are actually true positive) and recall (percentage of true positives that were correctly predicted as true) scores, was used as a comprehensive metric for all one-versus-all keypress state decoders to assess class-wise performance that accounts for both false-positive and false-negative prediction tendencies [REF]. A weighted mean F1 score was then computed across all classes to assess the overall prediction performance of the multi-class model.”

      and

      “Feature Importance Scores

      The relative contribution of source-space voxels and parcels to decoding performance (i.e. – feature importance score) was calculated using minimum redundant maximum relevance (MRMR) and highlighted in topography plots. MRMR, an approach that combines both relevance and redundancy metrics, ranked individual features based upon their significance to the target variable (i.e. – keypress state identity) prediction accuracy and their non-redundancy with other features.”

      As stated in the Reviewer responses above, the dimensionality of the voxel-space feature set is very high (i.e. – 15684). LDA attempts to map the input features onto a much smaller dimensional space (number of classes-1; e.g. – 3 dimensions for 4-class keypress decoding). It is likely that the reduction in accuracy observed only for the voxel-space feature was due to the loss of relevant information during the mapping process that resulted in reduced accuracy. This reduction in accuracy for voxel-space decoding was specific to LDA. Figure 3—figure supplement 3 shows that voxel-space decoder performance actually improved when utilizing alternative dimensionality reduction techniques.

      (5) Paragraph 9, lines #139-142: "Notably, decoding associated with index finger keypresses (executed at two different ordinal positions in the sequence) exhibited the highest number of misclassifications of all digits (N = 141 or 47.5% of all decoding errors; Figure 3C), raising the hypothesis that the same action could be differentially represented when executed at different learning state or sequence context locations."

      This does not seem to be a fair comparison, as the index finger appears twice as many as the other fingers do in the sequence. To claim this, proper statistical analysis needs to be done taking this difference into account.

      We thank the Reviewer for bringing this issue to our attention. We have now corrected this comparison to evaluate relative false negative and false positive rates between individual keypress state decoders, and have revised this statement in the manuscript as follows:

      “Notably, decoding of index finger keypresses (executed at two different ordinal positions in the sequence) exhibited the highest false negative (0.116 per keypress) and false positive (0.043 per keypress) misclassification rates compared with all other digits (false negative rate range = [0.067 0.114]; false positive rate range = [0.020 0.037]; Figure 3C), raising the hypothesis that the same action could be differentially represented when executed within different contexts (i.e. - different learning states or sequence locations).”

      (6) Finally, the authors could consider acknowledging in the Discussion that the contribution of micro-offline learning to genuine skill learning is still under debate (e.g., Gupta and Rickard, 2023; 2024; Das et al., bioRxiv, 2024).

      We have added a paragraph in the Discussion that addresses this point.

      Reviewer #3 (Recommendations for the authors):

      In addition to the additional analyses suggested in the public review, I have the following suggestions/questions:

      (1) Given that the authors introduce a new decoding approach, it would be very helpful for readers to see a distribution of window sizes and window onsets eventually used across individuals, at least for the optimized decoder.

      We have now included a new supplemental figure (Figure 4 – figure Supplement 2) that provides this information.

      (2) Please explain in detail how you arrived at the (interpolated?) group-level plot shown in Figure 1B, starting from the discrete single-trial keypress transition times. Also, please specify what the shading shows.

      Instantaneous correct sequence speed (skill measure) was quantified as the inverse of time (in seconds) required to complete a single iteration of a correctly generated full 5-item sequence. Individual keypress responses were labeled as members of correct sequences if they occurred within a 5-item response pattern matching any possible circular shifts of the 5-item sequence displayed on the monitor (41324). This approach allowed us to quantify a measure of skill within each practice trial at the resolution of individual keypresses. The dark line indicates the group mean performance dynamics for each trial. The shaded region indicates the 95% confidence limit of the mean (see Methods).

      (3) Similarly, please explain how you arrived at the group-level plot shown in Figure 1C. What are the different colored lines (rows) within each trial? How exactly did the authors reach the conclusion that KTT variability stabilizes by trial 6?

      Figure 1C provides additional information to the correct sequence speed measure above, as it also tracks individual transition speed composition over learning. Figure 1C, thus, represents both changes in overall correct sequence speed dynamics (indicated by the overall narrowing of the horizontal speed lines moving from top to bottom) and the underlying composition of the individual transition patterns within and across trials. The coloring of the lines is a shading convention used to discriminate between different keypress transitions. These curves were sampled with 1ms resolution, as in Figure 1B. Addressing the underlying keypress transition patterns requires within-subject normalization before averaging across subjects. The distribution of KTTs was normalized to the median correct sequence time for each participant and centered on the mid-point for each full sequence iteration during early learning.

      (4) Maybe I missed it, but it was not clear to me which of the tested classifiers was eventually used. Or was that individualized as well? More generally, a comparison of the different classifiers would be helpful, similar to the comparison of dimension reduction techniques.

      We have now included a new supplemental figure that provides this information.

      (5) Please add df and effect sizes to all statistics.

      Done.

      (6) Please explain in more detail your power calculation.

      The study was powered to determine the minimum sample size needed to detect a significant change in skill performance following training using a one-sample t-test (two-sided; alpha = 0.05; 95% statistical power; Cohen’s D effect size = 0.8115 calculated from previously acquired data in our lab). The calculated minimum sample size was 22. The included study sample size (n = 27) exceeded this minimum.

      This information is now included in the revised manuscript.

      (7) The cut-off for the high-pass filter is unusually high and seems risky in terms of potential signal distortions (de Cheveigne, Neuron 2019). Why did the authors choose such a high cut-off?

      The 1Hz high-pass cut-off frequency for the 1-150Hz band-pass filter applied to the continuous raw MEG data during preprocessing has been used in multiple previous MEG publications (Barratt et al., 2018; Brookes et al., 2012; Higgins et al., 2021; Seedat et al., 2020; Vidaurre et al., 2018).

      (8) "Furthermore, the magnitude of offline contextualization predicted skill gains while online contextualization did not", lines 336/337 - where is that analysis?

      Additional details pertaining to this analysis are now provided in the Results section (Figure 5 – figure supplement 4).

      (9) How were feature importance scores computed?

      We have now added a new subheading in the Methods section with a more detailed description of how feature importance scores were computed.

      (10)  Please add x and y ticks plus tick labels to Figure 5 - Figure Supplement 3, panel A

      Done

      (11) Line 369, what does "comparable" mean in this context?

      The sentence in the “Study Participants” part of the Methods section referred to here has now been revised for clarity.

      (12) In lines 496/497, please specify what t=0 means (KeyDown event, I guess?).

      Yes, the KeyDown event occurs at t = 0. This has now been clarified in the revised manuscript.

      (13) Please specify consistent boundaries between alpha- and beta-bands (they are currently not consistent in the Results vs. Methods (14/15 Hz or 15/16 Hz)).

      We thank the Reviewer for alerting us to this discrepancy caused by a typographic error in the Methods. We have now corrected this so that the alpha (8-14 Hz) and beta-band (15-24 Hz) frequency limits are described consistently throughout the revised manuscript.

      References

      Albouy, G., Fogel, S., King, B. R., Laventure, S., Benali, H., Karni, A., Carrier, J., Robertson, E. M., & Doyon, J. (2015). Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. Neuroimage, 108, 423-434. https://doi.org/10.1016/j.neuroimage.2014.12.049

      Albouy, G., King, B. R., Maquet, P., & Doyon, J. (2013). Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 23(11), 985-1004. https://doi.org/10.1002/hipo.22183 Albouy, G., Sterpenich, V., Vandewalle, G., Darsaud, A., Gais, S., Rauchs, G., Desseilles, M., Boly, M., Dang-Vu, T., Balteau, E., Degueldre, C., Phillips, C., Luxen, A., & Maquet, P. (2012). Neural correlates of performance variability during motor sequence acquisition. NeuroImage, 60(1), 324-331. https://doi.org/10.1016/j.neuroimage.2011.12.049

      Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annu Rev Neurosci, 25, 189-220. https://doi.org/10.1146/annurev.neuro.25.112701.142922 112701.142922 [pii]

      Ashe, J., Lungu, O. V., Basford, A. T., & Lu, X. (2006). Cortical control of motor sequences. Curr Opin Neurobiol, 16(2), 213-221. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=16563734

      Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W., & Donoghue, J. P. (2011). Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J Neurophysiol, 105(4), 1603-1619. https://doi.org/10.1152/jn.00532.2010

      Barratt, E. L., Francis, S. T., Morris, P. G., & Brookes, M. J. (2018). Mapping the topological organisation of beta oscillations in motor cortex using MEG. NeuroImage, 181, 831-844. https://doi.org/10.1016/j.neuroimage.2018.06.041

      Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S A, 108(18), 7641-7646. https://doi.org/10.1073/pnas.1018985108

      Battaglia-Mayer, A., & Caminiti, R. (2019). Corticocortical Systems Underlying High-Order Motor Control. J Neurosci, 39(23), 4404-4421. https://doi.org/10.1523/JNEUROSCI.2094-18.2019

      Berlot, E., Popp, N. J., & Diedrichsen, J. (2020). A critical re-evaluation of fMRI signatures of motor sequence learning. Elife, 9. https://doi.org/10.7554/eLife.55241

      Bonstrup, M., Iturrate, I., Hebart, M. N., Censor, N., & Cohen, L. G. (2020). Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data. NPJ Sci Learn, 5, 7. https://doi.org/10.1038/s41539-020-0066-9

      Bonstrup, M., Iturrate, I., Thompson, R., Cruciani, G., Censor, N., & Cohen, L. G. (2019). A Rapid Form of Offline Consolidation in Skill Learning. Curr Biol, 29(8), 1346-1351 e1344. https://doi.org/10.1016/j.cub.2019.02.049

      Brawn, T. P., Fenn, K. M., Nusbaum, H. C., & Margoliash, D. (2010). Consolidating the effects of waking and sleep on motor-sequence learning. J Neurosci, 30(42), 13977-13982. https://doi.org/10.1523/JNEUROSCI.3295-10.2010

      Brookes, M. J., Woolrich, M. W., & Barnes, G. R. (2012). Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage, 63(2), 910-920. https://doi.org/10.1016/j.neuroimage.2012.03.048

      Brooks, E., Wallis, S., Hendrikse, J., & Coxon, J. (2024). Micro-consolidation occurs when learning an implicit motor sequence, but is not influenced by HIIT exercise. NPJ Sci Learn, 9(1), 23. https://doi.org/10.1038/s41539-024-00238-6

      Buch, E. R., Claudino, L., Quentin, R., Bonstrup, M., & Cohen, L. G. (2021). Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Rep, 35(10), 109193. https://doi.org/10.1016/j.celrep.2021.109193

      Buneo, C. A., & Andersen, R. A. (2006). The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44(13), 2594-2606. https://doi.org/10.1016/j.neuropsychologia.2005.10.011

      Buzsaki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073-1188. https://doi.org/10.1002/hipo.22488

      Chen, P.-C., Stritzelberger, J., Walther, K., Hamer, H., & Staresina, B. P. (2024). Hippocampal ripples during offline periods predict human motor sequence learning. bioRxiv, 2024.2010.2006.614680. https://doi.org/10.1101/2024.10.06.614680

      Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51-56. https://doi.org/10.1038/nature11129

      Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol, 79(2), 1117-1123. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=9463469

      Colclough, G. L., Brookes, M. J., Smith, S. M., & Woolrich, M. W. (2015). A symmetric multivariate leakage correction for MEG connectomes. NeuroImage, 117, 439-448. https://doi.org/10.1016/j.neuroimage.2015.03.071

      Colclough, G. L., Woolrich, M. W., Tewarie, P. K., Brookes, M. J., Quinn, A. J., & Smith, S. M. (2016). How reliable are MEG resting-state connectivity metrics? NeuroImage, 138, 284-293. https://doi.org/10.1016/j.neuroimage.2016.05.070

      Das, A., Karagiorgis, A., Diedrichsen, J., Stenner, M.-P., & Azanon, E. (2024). “Micro-offline gains” convey no benefit for motor skill learning. bioRxiv, 2024.2007.2011.602795. https://doi.org/10.1101/2024.07.11.602795

      Deleglise, A., Donnelly-Kehoe, P. A., Yeffal, A., Jacobacci, F., Jovicich, J., Amaro, E., Jr., Armony, J. L., Doyon, J., & Della-Maggiore, V. (2023). Human motor sequence learning drives transient changes in network topology and hippocampal connectivity early during memory consolidation. Cereb Cortex, 33(10), 6120-6131. https://doi.org/10.1093/cercor/bhac489

      Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. [Review]. Behavioural brain research, 199(1), 61-75. https://doi.org/10.1016/j.bbr.2008.11.012

      Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A, 99(2), 1017-1022. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=11805340

      Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057-1070. https://doi.org/10.1016/j.neuron.2012.12.002

      Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science, 318(5853), 1147-1150. https://doi.org/10.1126/science.1148979

      Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E., & Slutzky, M. W. (2012). Local field potentials allow accurate decoding of muscle activity. J Neurophysiol, 108(1), 18-24. https://doi.org/10.1152/jn.00832.2011

      Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nat Rev Neurosci, 6(2), 119-130. https://doi.org/10.1038/nrn1607

      Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., & Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A, 104(47), 1877818783. https://doi.org/10.1073/pnas.0705454104

      Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S., & Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci, 12(7), 2542-2548.

      Grover, S., Wen, W., Viswanathan, V., Gill, C. T., & Reinhart, R. M. G. (2022). Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci, 25(9), 1237-1246. https://doi.org/10.1038/s41593-022-01132-3

      Gupta, M. W., & Rickard, T. C. (2022). Dissipation of reactive inhibition is sufficient to explain post-rest improvements in motor sequence learning. NPJ Sci Learn, 7(1), 25. https://doi.org/10.1038/s41539-022-00140-z

      Gupta, M. W., & Rickard, T. C. (2024). Comparison of online, offline, and hybrid hypotheses of motor sequence learning using a quantitative model that incorporate reactive inhibition. Sci Rep, 14(1), 4661. https://doi.org/10.1038/s41598-024-52726-9

      Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative metaanalysis and review of motor learning in the human brain. NeuroImage, 67, 283-297. https://doi.org/10.1016/j.neuroimage.2012.11.020

      Heusser, A. C., Poeppel, D., Ezzyat, Y., & Davachi, L. (2016). Episodic sequence memory is supported by a theta-gamma phase code. Nat Neurosci, 19(10), 1374-1380. https://doi.org/10.1038/nn.4374

      Higgins, C., Liu, Y., Vidaurre, D., Kurth-Nelson, Z., Dolan, R., Behrens, T., & Woolrich, M. (2021). Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron, 109(5), 882-893 e887. https://doi.org/10.1016/j.neuron.2020.12.007

      Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Curr Opin Neurobiol, 12(2), 217-222. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=12015240

      Jacobacci, F., Armony, J. L., Yeffal, A., Lerner, G., Amaro, E., Jr., Jovicich, J., Doyon, J., & Della-Maggiore, V. (2020). Rapid hippocampal plasticity supports motor sequence learning. Proc Natl Acad Sci U S A, 117(38), 23898-23903. https://doi.org/10.1073/pnas.2009576117

      Jacobacci, F., Armony, J. L., Yeffal, A., Lerner, G., Amaro Jr, E., Jovicich, J., Doyon, J., & DellaMaggiore, V. (2020). Rapid hippocampal plasticity supports motor sequence learning.

      Proceedings of the National Academy of Sciences, 117(38), 23898-23903. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155-158. https://doi.org/10.1038/377155a0

      Kennerley, S. W., Sakai, K., & Rushworth, M. F. (2004). Organization of action sequences and the role of the pre-SMA. J Neurophysiol, 91(2), 978-993. https://doi.org/10.1152/jn.00651.2003 00651.2003 [pii]

      Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol, 80, 3321-3325.

      Kornysheva, K., Bush, D., Meyer, S. S., Sadnicka, A., Barnes, G., & Burgess, N. (2019). Neural Competitive Queuing of Ordinal Structure Underlies Skilled Sequential Action. Neuron, 101(6), 1166-1180 e1163. https://doi.org/10.1016/j.neuron.2019.01.018

      Lee, S. H., Jin, S. H., & An, J. (2019). The difference in cortical activation pattern for complex motor skills: A functional near- infrared spectroscopy study. Sci Rep, 9(1), 14066. https://doi.org/10.1038/s41598-019-50644-9

      Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 1002-1016. https://doi.org/10.1016/j.neuron.2013.03.007

      Mollazadeh, M., Aggarwal, V., Davidson, A. G., Law, A. J., Thakor, N. V., & Schieber, M. H. (2011). Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements. J Neurosci, 31(43), 15531-15543. https://doi.org/10.1523/JNEUROSCI.2999-11.2011

      Molle, M., & Born, J. (2009). Hippocampus whispering in deep sleep to prefrontal cortex--for good memories? Neuron, 61(4), 496-498. https://doi.org/10.1016/j.neuron.2009.02.002

      Morris, R. G. M. (2006). Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. [Review]. The European journal of neuroscience, 23(11), 2829-2846. https://doi.org/10.1111/j.1460-9568.2006.04888.x

      Mylonas, D., Schapiro, A. C., Verfaellie, M., Baxter, B., Vangel, M., Stickgold, R., & Manoach, D. S. (2024). Maintenance of Procedural Motor Memory across Brief Rest Periods Requires the Hippocampus. J Neurosci, 44(14). https://doi.org/10.1523/JNEUROSCI.1839-23.2024

      Pan, S. C., & Rickard, T. C. (2015). Sleep and motor learning: Is there room for consolidation? Psychol Bull, 141(4), 812-834. https://doi.org/10.1037/bul0000009

      Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res., 226(2), 579-591. https://doi.org/10.1016/j.bbr.2011.09.044

      Qin, Y. L., McNaughton, B. L., Skaggs, W. E., & Barnes, C. A. (1997). Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci, 352(1360), 1525-1533. https://doi.org/10.1098/rstb.1997.0139

      Rickard, T. C., Cai, D. J., Rieth, C. A., Jones, J., & Ard, M. C. (2008). Sleep does not enhance motor sequence learning. J Exp Psychol Learn Mem Cogn, 34(4), 834-842. https://doi.org/10.1037/0278-7393.34.4.834

      Robertson, E. M., Pascual-Leone, A., & Miall, R. C. (2004). Current concepts in procedural consolidation. Nat Rev Neurosci, 5(7), 576-582. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=15208699

      Sawamura, D., Sakuraba, S., Suzuki, Y., Asano, M., Yoshida, S., Honke, T., Kimura, M., Iwase, Y., Horimoto, Y., Yoshida, K., & Sakai, S. (2019). Acquisition of chopstick-operation skills with the non-dominant hand and concomitant changes in brain activity. Sci Rep, 9(1), 20397. https://doi.org/10.1038/s41598-019-56956-0

      Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025. https://doi.org/10.1016/s0896-6273(03)00123-5

      Seedat, Z. A., Quinn, A. J., Vidaurre, D., Liuzzi, L., Gascoyne, L. E., Hunt, B. A. E., O'Neill, G. C., Pakenham, D. O., Mullinger, K. J., Morris, P. G., Woolrich, M. W., & Brookes, M. J. (2020). The role of transient spectral 'bursts' in functional connectivity: A magnetoencephalography study. NeuroImage, 209, 116537. https://doi.org/10.1016/j.neuroimage.2020.116537

      Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277, 821-824.

      Sjøgård, M., Baxter, B., Mylonas, D., Driscoll, B., Kwok, K., Tolosa, A., Thompson, M., Stickgold, R., Vangel, M., Chu, C., & Manoach, D. S. (2024). Hippocampal ripples mediate motor learning during brief rest breaks in humans. bioRxiv. https://doi.org/10.1101/2024.05.02.592200

      Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S. S., & Babu, R. V. (2016). A Taxonomy of Deep Convolutional Neural Nets for Computer Vision [Technology Report]. Frontiers in Robotics and AI, 2. https://doi.org/10.3389/frobt.2015.00036

      Sterpenich, V., Albouy, G., Darsaud, A., Schmidt, C., Vandewalle, G., Dang Vu, T. T., Desseilles, M., Phillips, C., Degueldre, C., Balteau, E., Collette, F., Luxen, A., & Maquet, P. (2009). Sleep promotes the neural reorganization of remote emotional memory. J Neurosci, 29(16), 5143-5152. https://doi.org/10.1523/JNEUROSCI.0561-09.2009

      Toni, I., Ramnani, N., Josephs, O., Ashburner, J., & Passingham, R. E. (2001). Learning arbitrary visuomotor associations: temporal dynamic of brain activity. Neuroimage, 14(5), 10481057. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=11697936

      Toni, I., Thoenissen, D., & Zilles, K. (2001). Movement preparation and motor intention. NeuroImage, 14(1 Pt 2), S110-117. https://doi.org/10.1006/nimg.2001.0841

      Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., Witter, M. P., & Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76-82. https://doi.org/10.1126/science.1135935

      van Kesteren, M. T., Fernandez, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schemadependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci U S A, 107(16), 7550-7555. https://doi.org/10.1073/pnas.0914892107

      van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends Neurosci, 35(4), 211-219. https://doi.org/10.1016/j.tins.2012.02.001

      Vidaurre, D., Hunt, L. T., Quinn, A. J., Hunt, B. A. E., Brookes, M. J., Nobre, A. C., & Woolrich, M. W. (2018). Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat Commun, 9(1), 2987. https://doi.org/10.1038/s41467-01805316-z

      Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., Rosen, B. R., & Buckner, R. L. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. [Comment]. Science (New York, N.Y.), 281(5380), 1188-1191. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9712582 &retmode=ref&cmd=prlinks

      Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci, 1(6), 529-533. https://doi.org/10.1038/2245

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors present a novel CRISPR/Cas9-based genetic tool for the dopamine receptor dop1R2. Based on the known function of the receptor in learning and memory, they tested the efficacy of the genetic tool by knocking out the receptor specifically in mushroom body neurons. The data suggest that dop1R2 is necessary for longer-lasting memories through its action on ⍺/ß and ⍺'/ß' neurons but is dispensable for short-term memory and thus in ɣ neurons. The experiments impressively demonstrate the value of such a genetic tool and illustrate the specific function of the receptor in subpopulations of KCs for longer-term memories. The data presented in this manuscript are significant.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript examines the role of the dopamine receptor, Dop1R2, in memory formation. This receptor has complex roles in supporting different stages of memory, and the neural mechanisms for these functions are poorly understood. The authors are able to localize Dop1R2 function to the vertical lobes of the mushroom body, revealing a role in later (presumably middle-term) aversive and appetitive memory. In general, the experimental design is rigorous, and statistics are appropriately applied. While the manuscript provides a useful tool, it would be strengthened further by additional mechanistic studies that build on the rich literature examining the roles of dopamine signaling in memory formation. The claim that Dop1R2 is involved in memory formation is strongly supported by the data presented, and this manuscript adds to a growing literature revealing that dopamine is a critical regulator of olfactory memory. However, the manuscript does not necessarily extend much beyond our understanding of Dop1R2 in memory formation, and future work will be needed to fully characterize this reagent and define the role of Dop1R2 in memory.

      Strengths:

      (1) The FRT lines generated provide a novel tool for temporal and spatially precise manipulation of Dop1R2 function. This tool will be valuable to study the role of Dop1R2 in memory and other behaviors potentially regulated by this gene.

      (2) Given the highly conserved role of Dop1R2 in memory and other processes, these findings have a high potential to translate to vertebrate species.

      Weaknesses:

      (1) The authors state Dop1R2 associates with two different G-proteins. It would be useful to know which one is mediating the loss of aversive and appetitive memory in Dop1R2 knockout flies.

      We thank you for the insightful comment. We agree that it would be very useful to know which G-proteins are transmitting Dop1R2 signaling. To that extent, we examined single-cell transcriptomics data to check the level of co-expression of Dop1R2 with G-proteins that are of interest to us. (Figure 1 S1)

      Lines 312-325

      “Some RNA binding proteins and Immediate early genes help maintain identities of Mushroom body cells and are regulators of local transcription and translation (de Queiroz et al., 2025; Raun et al., 2025). So, the availability of different G-proteins may change in different lobes and during different phases of memory. The G-protein via which GPCRs signal, may depend on the pool of available G-proteins in the cell/sub-cellular region (Hermans, 2003)., Therefore, Dop1R2 may signal via different G-proteins in different compartments of the Mushroom body and also different compartments of the neuron. We looked at Gαo and Gαq as they are known to have roles in learning and forgetting (Ferris et al., 2006; Himmelreich et al., 2017). We found that Dop1R2 co-expresses more frequently with Gαo than with Gαq (Figure 1 S1). While there is evidence for Dop1R2 to act via Gαq (Himmelreich et al., 2017). It is difficult to determine whether this interaction is exclusive, or if Dop1R2 can also be coupled to other G-proteins. It will be interesting to determine the breadth of G-proteins that are involved in Dop1R2 signaling.”

      (2) It would be interesting to examine 24hr aversive memory, in addition to 24hr appetitive memory.

      This is indeed an important point and we agree that it will complete the assessment of temporally distinct memory traces. We therefore performed the Aversive LTM experiments and include them in the results.

      Lines 208-228

      “24h memory is impaired by loss of Dop1R2

      Next, we wanted to see if later memory forms are also affected. One cycle of reward training is sufficient to create LTM (Krashes & Waddell, 2008), while for aversive memory, 5-6 cycles of electroshock-trainings are required to obtain robust long-term memory scores (Tully et al., 1994). So, we looked at both, 24h aversive and appetitive memory. For aversive LTM, the flies were tested on the Y-Maze apparatus as described in (Mohandasan et al., (2022).

      Flipping out Dop1R2 in the whole MB causes a reduced 24h memory performance (Figure 4A, E). No phenotype was observed when Ddop1R2 was flipped out in the γ-lobe (Figure 4B, F). However, similar to 2h memory, loss of Ddop1R2 in the α/β-lobes (Figure 4C, G) or the α’/β’-lobes (Figure 4D, H) causes a reduction in memory performance. Thus, Dop1R2 seems to be involved in aversive and appetitive LTM in the α/β-lobes and the α’/β’-lobes.

      Previous studies have shown mutation in the Dop1R2 receptor leads to improvement in LTM when a single shock training paradigm is used (Berry et al., 2012). As we found that it disrupts LTM, we wanted to verify if the absence of Dop1R2 outside the MB is what leads to an improvement in memory. To that extent, we tested panneuronal flip-out of Dop1R2 flies for 6hr and 24hr memory upon single shock using the elav-Gal4 driver. We found that it did not improve memory at both time points (Figure 4 S1). Confirming that flipping out Dop1R2 panneuronally does not improve LTM (Figure 4 S1C) and highlighting its irrelevance in memory outside the MB.”

      (3) The manuscript would be strengthened by added functional analysis. What are the DANs that signal through Dop1R. How do these knockouts impact MBONs?

      We thank you for this question. We indeed agree that it is a highly relevand and open question, how distinct DANs signal via distinct Dopamine receptors. Our work here uniquely focusses on Dop1R2 within the MB. We aim to investigate other DopRs and the connection between DANs in the future using similar approaches.

      (4) Also in Figure 2, the lobe-specific knockouts might be moved to supplemental since there is no effect. Instead, consider moving the control sensory tests into the main figure.

      We thank you for this suggestion and understand that in Figure 2 no significant difference is seen. However, we have emphasized in the text that the results from the supplementary figures are just to confirm that the modifications made at the Dop1R2 locus did not alter its normal function.

      Lines 156-162

      “We wanted to see if flipping out Dop1R2 in the MB affects memory acquisition and STM by using classical olfactory conditioning. In short, a group of flies is presented with an odor coupled to an electric shock (aversive) or sugar (appetitive) followed by a second odor without stimulus. For assessing their memory, flies can freely choose between the odors either directly after training (STM) or at a later timepoint.

      To ensure that the introduced genetic changes to the Dop1R2 locus do not interfere with behavior we first checked the sensory responses of that line”

      (5) Can the single-cell atlas data be used to narrow down the cell types in the vertical lobes that express Dop1R2? Is it all or just a subset?

      This is indeed an interesting question, and we thank you for mentioning it. To address this as best as we could, we analyzed the single cell transcriptomic data from (Davie et al., 2018) and presented it in Figure 1 S1.

      Reviewer #3 (Public Review):

      Summary:

      Kaldun et al. investigated the role of Dopamine Receptor Dop1R2 in different types and stages of olfactory associative memory in Drosophila melanogaster. Dop1R2 is a type 1 Dopamine receptor that can act both through Gs-cAMP and Gq-ERCa2+ pathways. The authors first developed a very useful tool, where tissue-specific knock-out mutants can be generated, using Crispr/Cas9 technology in combination with the powerful Gal4/UAS gene-expression toolkit, very common in fruit flies.

      They direct the K.O. mutation to intrinsic neurons of the main associative memory centre fly brain-the mushroom body (MB). There are three main types of MB-neurons, or Kenyon cells, according to their axonal projections: a/b; a'/b', and g neurons.

      Kaldun et al. found that flies lacking dop1R2 all over the MB displayed impaired appetitive middle-term (2h) and long-term (24h) memory, whereas appetitive short-term memory remained intact. Knocking-out dop1R2 in the three MB neuron subtypes also impaired middle-term, but not short-term, aversive memory.

      These memory defects were recapitulated when the loss of the dop1R2 gene was restricted to either a/b or a'/b', but not when the loss of the gene was restricted to g neurons, showcasing a compartmentalized role of Dop1R2 in specific neuronal subtypes of the main memory centre of the fly brain for the expression of middle and long-term memories.

      Strengths:

      (1) The conclusions of this paper are very well supported by the data, and the authors systematically addressed the requirement of a very interesting type of dopamine receptor in both appetitive and aversive memories. These findings are important for the fields of learning and memory and dopaminergic neuromodulation among others. The evidence in the literature so far was generated in different labs, each using different tools (mutants, RNAi knockdowns driven in different developmental stages...), different time points (short, middle, and long-term memory), different types of memories (Anesthesia resistant, which is a type of protein synthesis independent consolidated memory; anesthesia sensitive, which is a type of protein synthesis-dependent consolidated memory; aversive memory; appetitive memory...) and different behavioral paradigms. A study like this one allows for direct comparison of the results, and generalized observations.

      (2) Additionally, Kaldun and collaborators addressed the requirement of different types of Kenyon cells, that have been classically involved in different memory stages: g KCs for memory acquisition and a/b or a'/b' for later memory phases. This systematical approach has not been performed before.

      (3) Importantly, the authors of this paper produced a tool to generate tissue-specific knock-out mutants of dop1R2. Although this is not the first time that the requirement of this gene in different memory phases has been studied, the tools used here represent the most sophisticated genetic approach to induce a loss of function phenotypes exclusively in MB neurons.

      Weaknesses:

      (1) Although the paper does have important strengths, the main weakness of this work is that the advancement in the field could be considered incremental: the main findings of the manuscript had been reported before by several groups, using tissue-specific conditional knockdowns through interference RNAi. The requirement of Dop1R2 in MB for middle-term and long-term memories has been shown both for appetitive (Musso et al 2015, Sun et al 2020) and aversive associations (Plaçais et al 2017).

      Thank you for this comment. We believe that the main takeaway from the paper is the elegant tool we developed, to study the role of Dop1R2 in fruit flies by effectively flipping it out spatio-temporally. Additionally, we studied its role in all types of olfactory associative memory to establish it as a robust tool that can be used for further research in place of RNAi knockouts which are shown to be less efficient in insects as mentioned in the texts in line 394-398.

      “The genetic tool we generated here to study the role of the Dop1R2 dopamine receptor in cells of interest, is not only a good substitute for RNAi knockouts, which are known to be less efficient in insects (Joga et al., 2016), but also provides versatile possibilities as it can be used in combination with the powerful genetic tools of Drosophila.”

      (2) The approach used here to genetically modify memory neurons is not temporally restricted. Considering the role of dopamine in the correct development of the nervous system, one must consider the possible effects that this manipulation can have in the establishment of memory circuits. However, previous studies addressing this question restricted the manipulation of Dop1R2 expression to adulthood, leading to the same findings than the ones reported in this paper for both aversive and appetitive memories, which solidifies the findings of this paper.

      We thank you for this comment and we agree that it would be important to show a temporally restricted effect of Dop1R2 knockout. To assess this and rule out potential developmental defects we decided to restrict the knockout to the post-eclosion stage and to include these results.

      Lines 230-250

      “Developmental defects are ruled out in a temporally restricted Dop1R2 conditional knockout.

      To exclude developmental defects in the MB caused by flip-out of Dop1R2, we stained fly brains with a FasII antibody. Compared to genetic controls, flies lacking Dop1R2 in the mushroom body had unaltered lobes (Figure 4 S2C).

      Regardless, we wanted to control for developmental defects leading to memory loss in flip-out flies. So, we generated a Gal80ts-containing line, enabling the temporal control of Dop1R2 knockout in the entire mushroom body (MB). Given that the half-life of the receptor remains unknown, we assessed both aversive short-term memory (STM) and long-term memory (LTM) to determine whether post-eclosion ablation of Dop1R2 in the MB produced differences compared to our previously tested line, in which Dop1R2 was constitutively knocked out from fertilization. To achieve this, flies were maintained at 18°C until eclosion and subsequently shifted to 30°C for five to seven days. On the fifth day, training was conducted, followed by memory testing. Our results indicate that aversive STM was not significantly impaired in Dop1R2-deficient MBs compared to control flies (Figure 4 S3), consistent with our previous findings (Figure 2). However, aversive LTM was significantly impaired relative to control lines (Figure 4 S3), which also aligned with prior observations. These findings strongly indicate that memory loss caused by Dop1R2 flip-out is not due to developmental defects.”

      (3) The authors state that they aim to resolve disparities of findings in the field regarding the specific role of Dop1R2 in memory, offering a potent tool to generate mutants and addressing systematically their effects on different types of memory. Their results support the role of this receptor in the expression of long-term memories, however in the experiments performed here do not address temporal resolution of the genetic manipulations that could bring light into the mechanisms of action of Dop1R2 in memory. Several hypotheses have been proposed, from stabilization of memory, effects on forgetting, or integration of sequences of events (sensory experiences and dopamine release).

      We thank you for this comment. We agree that it would be interesting to dissect the memory stages by knocking out the receptor selectively in some of them (encoding, consolidation, retrieval). However, our tool irreversibly flips out Dop1R2 preventing us from investigating the receptor’s role in retrieval. Our results show that the receptor is dispensable for STM formation (Figure 2, Figure 4 Supplement 3), suggesting that it is not involved in encoding new information. On the other hand, it is instead involved in consolidation and/or retrieval of long-term and middle-term memories (Figure 3, Figure 4, Figure 5B).

      Overall, the authors generated a very useful tool to study dopamine neuromodulation in any given circuit when used in combination with the powerful genetic toolkit available in Drosophila. The reports in this paper confirmed a previously described role of Dop1R2 in the expression of aversive and appetitive LTM and mapped these effects to two specific types of memory neurons in the fly brain, previously implicated in the expression and consolidation of long-term associative memories.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) On the first view, the results shown here are different from studies published earlier, while in the same line with others (e.g. Sun et al, for appetitive 24h memories). For example, Berry et al showed that the loss of dop1R2 impairs immediate memory, while memory scores are enhanced 3h, 6h, and 24h after training. Further, they showed data that shock avoidance, at least for higher shock intensities, is reduced in mutant (damb) flies. All in all, this favors how important it is to improve the genetic tools for tissue-specific manipulation. Despite the authors nicely discussing their data with respect to the previous studies, I wondered whether it would be suitable to use the new tool and knock out dop1R2 panneuronally to see whether the obtained data match the results published by Berry et al.. Further, as stated in line 105ff: "As these studies used different learning assays - aversive and appetitive respectively as well as different methods, it is unclear if Dop1R2 has different functions for the different reinforcement stimulus" I wondered why the authors tested aversive and appetitive learning for STM and 2h memory, but only appetitive memory for 24h.

      Thank you for this comment. To that extent, as mentioned above in response to reviewer #2, we included in the results the aversive LTM experiment (Figure 4). Moreover, we performed experiments along the line of Berry et al. using our tool as shown in Figure 4 S1. Our results support that Dop1R2 is required for LTM, rather than to promote forgetting.

      (2) Line 165ff: I can´t find any of the supplementary data mentioned here. Please add the corresponding figures.

      Thank you for pointing this out. In that line we don’t refer to any supplementary data, but to the Figure 1F, showing the absence of the HA-tag in our MB knock-out line. We have clarified this in the text (lines 151-153)

      (3) I can't imagine that the scale bar in Figure 1D-F is correct. I would also like to suggest to show a more detailed analysis of the expression pattern. For example, both anterior and posterior views would be appropriate, perhaps including the VNC. This would allow the expression pattern obtained with this novel tool to be better compared with previously published results. Also, in relation to my comment above (1), it may help to understand the functional differences with previous studies, especially as the authors themselves state that the receptor is "mainly" expressed in the mushroom body (line 99). It would be interesting to see where else it is expressed (if so). This would also be interesting for the panneuronal knockdown experiment suggested under (1). If the receptor is indeed expressed outside the mushroom body, this may explain the differences to Berry et al.

      Thank you for noting this, there was indeed a mistake in the scale bar which we now fixed. Since with our HA-tag immunostaining we could not detect any noticeable signal outside of the MB, we decided to analyze previously existing single cell transcriptomics data that showed expression of the receptor in 7.99% of cells in the VNC and in 13.8% of cells outside the MB (lines 98-100) confirming its sparse expression in the nervous system. The lack of detection of these cells is likely due to the sparse and low expression of the protein. The HA-tag allows to detect the endogenous level of the locus (it is possible that a Gal4/UAS amplification of the signal might allow to detect these cells).

      Regarding the panneuronal knockout, we decided to try to replicate the experiment shown in Berry et al. in Figure 4 S1 and found that Dop1R2 is required for LTM.

      (4) Related to learning data shown in Figures 2-4, the authors should show statistical differences between all groups obtained in the ANOVA + PostHoc tests. Currently, only an asterisk is placed above the experimental group, which does not adequately reflect the statistical differences between the groups. In addition, I would like to suggest adding statistical tests to the chance level as it may be interesting to know whether, for example, scores of knockout flies in 3C and 3D are different from the chance level.

      Many thanks for this correction, we agree with the fact that the way significance scores were shown was not informative enough. We fixed the point by now showing significance between all the control groups and the experimental ones. We also inserted the chance level results in the figure legends.

      (5) Unfortunately, the manuscript has some typing errors, so I would like to ask the authors to check the manuscript again carefully.

      Some Examples:

      Line 31: the the

      Line 56: G-Protein

      Line 64: c-AMP

      Line 68: Dopamine

      Line 70: G-Protein (It alternates between G-protein and G-Protein)

      Line 76: References are formatted incorrectly

      Line 126: Ha-Tag (It alternates between Ha and HA)

      Line 248: missing space before the bracket...is often found

      Thank you for noticing these errors, we have now corrected the spelling throughout the manuscript.

      (6) In the figures the axes are labelled Preference Index (Pref"I"). In the methods, however, the calculation formula is defined as "PREF".

      We thank you for drawing attention to this. To avoid confusion, we changed the definition in the methods section so that it could be clear and coherent (“Memory tests” paragraph in the methods section).

      “PREF = ((N<sub>arm1</sub> - N<sub>arm2</sub>) 100) / N<sub>total</sub> the two preference indices were calculated from the two reciprocal experiments. The average of these two PREFs gives a learning index (LI). LI = (PREF<sub>1</sub> + PREF<sub>2</sub>) / 2.

      In case of all Long-term Aversive memory experiments, Y-Maze protocol was adapted to test flies 24 hours post training. Testing using the Y-Maze was done following the protocol as described in (Mohandasan et al., 2022) where flies were loaded at the bottom of 20-minutes odorized 3D-printed Y-Mazes from where they would climb up to a choice point and choose between the two odors. The learning index was then calculated after counting the flies in each odorized vial as follows: LI = ((N<sub>CS-</sub> - N<sub>CS+</sub>) 100) / N<sub>total</sub>. Where NCS- and NCS+ are the number of flies that were found trapped in the untrained and trained odor tube respectively.

      Reviewer #2 (Recommendations For The Authors):

      (1) In Figures 2 and 3, the legends running two different subfigures is confusing. Would be helpful to find a different way to present.

      Thank you for your suggestion. We modified how we present legends, placing them vertically so that it is clearer.

      (2) Use additional drivers to verify middle and long-term memory phenotypes.

      We agree that it would be interesting to see the role of Dop1R2 in other neurons. To that extent, we looked at long term aversive memory in flies where the receptor was panneuronaly flipped out, and did not find evidence that suggested involvement of Dop1R2 in memory processes outside the MB. (Figure 4 S1)

      (3) Additional discussion of genetic background for fly lines would be helpful.

      Thank you for your advice. We have mentioned the genetic background of flies in the key resources table of the methods sections. Additionally, we also included further explanation on how the lines were created and their genetic background (see “Fly Husbandry” paragraph in the methods section).

      “UAS-flp;;Dop1R2 cko flies and Gal4;Dop1R2<sup>cko</sup> flies were crossed back with ;;Dop<sup>cko</sup> flies to obtain appropriate genetic controls which were heterozygous for UAS and Gal4 but not Dop1R2<sup>cko</sup>.”

      Reviewer #3 (Recommendations For The Authors):

      Line 109 states that to resolve the problem a tool is developed to knock down Dop1R2 in s spatial and temporal specific manner- while I agree that this is within the potential of the tool, there is no temporal control of the flipase action in this study; at least I cannot find references to the use of target/gene switch to control stages of development or different memory phases. However the version available for download is missing supplementary information, so I did not have access to supplementary figures and tables.

      Thank you for the comment, as mentioned before it would be great to be able to dissect the memory phases. We show in lines 232 – 250 and Figure 4 S3 that the temporally restricted flip-out to the post-eclosion life stage gave us coherent results with the previous findings, ruling out potential developmental defects.

      In relation to my comment on the possible developmental effects of the loss of the gene, Figure 1F could showcase an underdeveloped g lobe when looking at the lobe profiles. I understand this is not within the scope of the figure, but maybe a different z projection can be provided to confirm there are no obvious anatomical alterations due to the loss of the receptor.

      We understand the doubt about the correct development of the MB and we thank you for your insightful comment. To that extent we decided to perform a FasII immunostaining that could show us the MB in the different lines (Figure 4 S2) and it appears that there are no notable differences in the lobes development in our knockout line.

      It seems that the obvious missing piece of the puzzle would be to address the effects of knocking out Dop1R2 in aversive LTM. The idea of systematically addressing different types of memory at different time points and in different KCs is the most attractive aspect of this study beyond the technical sophistication, and it feels that the aim of the study is not delivered without that component.

      We agree and we thank you for the clarification. As mentioned above in response to Reviewer #2, we decided to test aversive LTM as described in lines –208-228, Figure 4, Figure 4 S1.

      Some statements of the discussion seem too vague, and I think could benefit from editing:

      Line 284 "however other receptors could use Gq and mediate forgetting"- does this refer to other dopamine receptors? Other neuromodulators? Examples?

      Thank you for pointing this out. We Agree and therefore decided to omit this line.

      Line 289 "using a space training protocol and a Dop1R2 line" - this refers to RNAi lines, but it should be stated clearly.

      That is correct, we thank you for bringing attention to this and clarified it in the manuscript.

      –Lines 329-330

      “Interestingly, using a spaced training protocol and a Dop1R2 RNAi knockout line another study showed impaired LTM (Placais et al., 2017).”

      The paragraph starting in line 305 could be re-written to improve clarity and flow. Some statements seem disconnected and require specific citations. For example "In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways and the internal state of the animal...". This is not accurate. Berry et al 2012 report enhanced LTM performance in dop1R2 mutants whereas Plaçais et al 2017 report LTM defects in Dop1R2 knock-downs, but these different findings do not seem to rely on different internal states or signaling pathways. Maybe further elaboration can help the reader understand this speculation.

      We agree and we thank you for this advice. We decided to add additional details and citations to validate our speculation

      Lines 350-353

      “In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways. The signaling pathway that is activated further depends on the available pool of secondary messengers in the cell (Hermans, 2003) which may be regulated by the internal state of the animal.”

      "...for reward memory formation, loss of Dop1R2 seems to impair memory", this seems redundant at this point, as it has been discussed in detail, however, citations should be provided in any case (Musso 2015, Sun 2020)

      Thank you for noting this. We recognize the redundancy and decided to exclude the line.

      Finally, it would be useful to additionally refer to the anatomical terminology when introducing neuron names; for example MBON MVP2 (MBON-g1pedc>a/b), etc.

      Thank you for this suggestion. We understand the importance of anatomical terminologies for the neurons. Therefore, we included them when we introduce neurons in the paper.

      We thank you for your observations. We recognize their value, so we have made appropriate changes in the discussion to sound less vague and more comprehensive.

    1. Reviewer #1 (Public review):

      Summary:<br /> This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.<br /> They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are corepressed than coactivated by BMP signaling and PRDM16 and focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:<br /> Understanding context-dependent response to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      Main weakness of the experimental setup:<br /> (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels is very different from endogenous levels (as explicitly shown in Supp. Fig. 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo. Although the authors combine in vitro and in vivo evidence on the role of PRDM16 as a co-factor for MBP signaling and verified that BMP induces quiescence in their NSC model in a PRDM16-dependent manner, this experimental setup remains a weakness and likely affects the results of the various genomics experiments.

      Other experimental weaknesses that make the evidence less convincing:

      (1) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.) The authors acknowledged this problem in their rebuttal, stating that they were unable to overexpress PRDM16 in KO cells.

      (2) The authors show in Fig.2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. This appears inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Fig.1C. The authors explained in their rebuttal that the Ttr protein levels are not detectable in the NSCs with antibodies but the effect is still visible at the level of mRNA. The dramatic difference in protein expression is curious.

    2. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.

      They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are co-repressed than co-activated by BMP signaling and PRDM16. They focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:

      Understanding context-dependent responses to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      We thank the reviewer for the thoughtful summary and positive feedback. We appreciate the recognition of our integrative in vivo and in vitro approach. We're glad the reviewer found our findings on context-dependent gene regulation and developmental signaling valuable.

      Main weaknesses of the experimental setup:

      (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels are very different from endogenous levels (as explicitly shown in Supplementary Figure 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo.

      We acknowledge that our in vitro experiments may not ideally replicate the in vivo situation, a common limitation of such experiments, our primary aim was to explore the molecular relationship between PRDM16 and BMP signaling in gene regulation. Such molecular investigations are challenging to conduct using in vivo tissues. In vitro NSCs treated with BMP4 has been used a model to investigate NSC proliferation and quiescence, drawing on previous studies (e.g., Helena Mira, 2010; Marlen Knobloch, 2017). Crucially, to ensure the relevance of our in vitro findings to the in vivo context, we confirmed that cultured cells could indeed be induced into quiescence by BMP4, and this induction necessitated the presence of PRDM16. Furthermore, upon identifying target genes co-regulated by PRDM16 and SMADs, we validated PRDM16's regulatory role on a subset of these genes in the developing Choroid Plexus (ChP) (Fig. 7 and Suppl.Fig7-8). Only by combining evidence from both in vitro and in vivo experiments could we confidently conclude that PRDM16 serves as an essential co-factor for BMP signaling in restricting NSC proliferation.

      (2) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.)

      We agree that Prdm16 KO cells carrying the Prdm16-expressing vector would be a good comparison with those with KO_vector. However, despite more than 10 attempts with various optimization conditions, we were unable to establish a viable cell line after infecting Prdm16 KO cells with the Prdm16-expressing vector. The overall survival rate for primary NSCs after viral infection is low, and we observed that KO cells were particularly sensitive to infection treatment when the viral vector was large (the Prdm16 ORF is more than 3kb).

      As an alternative oo assess vector effects, we instead included two other control cell lines, wt and KO cells infected with the 3xNLS_Flag-tag viral vector, and presented the results in supplementary Fig 2.  When we compared the responses of the four lines — wt, KO, wt infected with the Flag vector, KO infected with the Flag vector — to the addition and removal of BMP4, we confirmed that the viral infection itself has no significant impacts on the responses of these cells to these treatments regarding changes in cell proliferation and Ttr induction.

      Given that wt cells and the KO cells, with or without viral backbone infection behave quite similarly in terms of cell proliferation, we speculate that even if we were successful in obtaining a cell line with Prdm16-expressing vector in the KO cells, it may not exhibit substantial differences compared to wt cells infected with Prdm16-expressing vector.

      Other experimental weaknesses that make the evidence less convincing:

      (1) The authors show in Figure 2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. Does this appear inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Figure1C?

      The reviwer’s point is that there was no significant increase in Ttr expression in Prdm16_KO cells after BMP4 treatment (Fig. 2E), but there remained residule Ttr mRNA signals in the Prdm16 mutant ChP (Fig. 1C). We think the difference lies in the measuable level of Ttr expression between that induced by BMP4 in NSC culture and that in the ChP. This is based on our immunostaining expreriment in which we tried to detect Ttr using a Ttr antibody. This antibody could not detect the Ttr protein in BMP4-treated Prdm16_expressing NSCs but clearly showed Ttr signal in the wt ChP. This means that although Ttr expression can be significantly increased by BMP4 in vitro to a level measurable by RT-qPCR, its absolute quantity even in the Prdm16_expressing condition is much lower compared to that in vivo. Our results in Fig 1C and Fig 2E, as well as Fig 7B, all consistently showed that Prdm16 depletion significantly reduced Ttr expression in in vitro and in vivo.

      (2) Figure 3: The authors use H3K4me3 to measure gene activity. This is however, very indirect, with bulk RNA-seq providing the most direct readout and polymerase binding (ChIP-seq) another more direct readout. Transcription can be regulated without expected changes in histone methylation, see e.g. papers from Josh Brickman. They verify their H3K4me3 predictions with qPCR for a select number of genes, all related to the kinetochore, but it is not clear why these genes were picked, and one could worry whether these are representative.

      H3K4me3 has widely been used as an indicator of active transcription and is a mark for cell identity genes. And it has been demonstrated that H3K4me3 has a direct function in regulating transciption at the step of RNApolII pausing release. As stated in the text, there are advantages and disadvantages of using H3K4me3 compared to using RNA-seq. RNA-seq profiles all gene products, which are affected by transcription and RNA stability and turnover. In contrast, H3K4me3 levels at gene promoter reflects transcriptional activity. In our case, we aimed to identify differential gene expression between proliferation and quiescence states. The transition between these two states is fast and dynamic. RNA-seq may not be able to identify functionally relevant genes but more likely produces false positive and negative results. Therefore, we chose H3K4me3 profiling.

      We agree that transcription may change without histone methylation changes. This may cause an under-estimation of the number of changed genes between the conditions. 

      We validated 7 out of 31 genes (Wnt7b, Id3, Mybl2, Spc24, Spc25, Ndc80 and Nuf2). We chose these genes based on two critira: 1) their function is implicated in cell proliferation and cell-cycle regulation based on gene ontology analysis; 2) their gene products are detectable in the developing ChP based on the scRNA-seq data. Three of these genes (Wnt7b, Id3, Mybl2) are not related to the kinetochore. We now clarify this description in the revised text.

      (3) Line 256: The overlap of 31 genes between 184 BMP-repressed genes and 240 PRDM16-repressed genes seems quite small.

      This result indicates that in addition to co-repressing cell-cycle genes, BMP and PRDM16 have independent fucntions. For example, it was reported that BMP regulates neuronal and astrocyte differentiation (Katada, S. 2021), while our previous work demonstrated that Prdm16 controls temporal identity of NSCs (He, L. 2021).

      (4) The Wnt7b H3K4me3 track in Fig. 3G is not discussed in the text but it shows H3K4me3 high in _KO and low in _E regardless of BMP4. This seems to contradict the heatmap of H3K4me3 in Figure 3E which shows H3K4me3 high in _E no BMP4 and low in _E BMP4 while omitting _KO no BMP4. Meanwhile CDKN1A, the other gene shown in 3G, is missing from 3E.

      The track in Fig 3G shows the absolute signal of H3K4me3 after mapping the sequencing reads to the genome and normaliz them to library size. Compare the signal in Prdm16_E with BMP4 and that in Prdm16_E without BMP4, the one with BMP4 has a lower peak. The same trend can be seen for the pair of Prdm16_KO cells with or without BMP4.  The heatmap in Fig. 3E shows the relative level of H3K4me3 in three conditions. The Prdm16_E cells with BMP4 has the lowest level, while the other two conditions (Prdm16_KO with BMP4 and Prdm16_E without BMP4) display higher levels. These two graphs show a consistent trend of H3K4me3 changes at the Wnt7b promoter across these conditions. Figure 3E only includes genes that are co-repressed by PRDM16 and BMP. CDKN1A’s H3K4me3 signals are consistent between the conditions, and thus it is not a PRDM16- or BMP-regulated gene. We use it as a negative control. 

      (5) The authors use PRDM16 CUT&TAG on dissected dorsal midline tissues to determine if their 31 identified PRDM16-BMP4 co-repressed genes are regulated directly by PRDM16 in vivo. By manual inspection, they find that "most" of these show a PRDM16 peak. How many is most? If using the same parameters for determining peaks, how many genes in an appropriately chosen negative control set of genes would show peaks? Can the authors rigorously establish the statistical significance of this observation? And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.

      In our text, we indicated the genes containing PRDM16 binding peaks in the figures and described them as “Text in black in Fig. 6A and Supplementary Fig. 5A”. We will add the precise number “25 of these genes” in the main text to clarify it. We used BMP-only repressed 184-31 =153 genes (excluding PRDM16-BMP4 co-repressed) as a negative control set of genes. By computationally determine the nearest TSS to a PRDM16 peak, we identified 24/31 co-repressed genes and 84/153 BMP-only-repressed genes, containing PRDM16 peaks in the E12.5 ChP data. Fisher’s Exact Test comparing the proportions yields the P-value = 0.015.

      We are confused with the second part of the comment “And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.” If the reviewer meant why we didn’t sequence the material from sequential-ChIP or validate more taget genes, the reason is the limitation of the material. Sequential ChIP requires a large quantity of the antibodies, and yields little material barely sufficient for a few qPCR after the second round of IP. This yielded amount was far below the minimum required for library construction. The PRDM16 antibody was a gift, and the quantity we have was very limited. We made a lot of efforts to optimize all available commercial antibodies in ChIP and Cut&Tag, but none of them worked in these assays.

      (6) In comparing RNA in situ between WT and PRDM16 KO in Figure 7, the authors state they use the Wnt2b signal to identify the border between CH and neocortex. However, the Wnt2b signal is shown in grey and it is impossible for this reviewer to see clear Wnt2b expression or where the boundaries are in Figure 7A. The authors also do not show where they placed the boundaries in their analysis. Furthermore, Figure 7B only shows insets for one of the regions being compared making it difficult to see differences from the other region. Finally, the authors do not show an example of their spot segmentation to judge whether their spot counting is reliable. Overall, this makes it difficult to judge whether the quantification in Figure 7C can be trusted.

      In the revised manuscript we have included an individal channel of Wnt2b and mark the boundaries. We also provide full-view images and examples of spot segmentation in the new supplementary figure 8. 

      (7) The correlation between mKi67 and Axin2 in Figure 7 is interesting but does not convincingly show that Wnt downstream of PRDM16 and BMP is responsible for the increased proliferation in PRDM16 mutants.

      We agree that this result (the correlation between mKi67 and Axin2) alone only suggests that Wnt signaling is related to the proliferation defect in the Prdm16 mutant, and does not necessarily mean that Wnt is downstream of PRDM16 and BMP. Our concolusion is backed up by two additional lines of evidences:  the Cut&Tag data in which PRDM16 binds to regulatory regions of Wnt7b and Wnt3a; BMP and PRDM16 co-repress Wnt7b in vitro.

      An ideal result is that down-regulating Wnt signaling in Prdm16 mutant can rescue Prdm16 mutant phenotype. Such an experiment is technically challenging. Wnt plays diverse and essential roles in NSC regulation, and one would need to use a celltype-and stage-specific tool to down-regulate Wnt in the background of Prdm16 mutation. Moreover, Wnt genes are not the only targets regulated by PRDM16 in these cells, and downregulating Wnt may not be sufficient to rescue the phenotype. 

      Weaknesses of the presentation:

      Overall, the manuscript is not easy to read. This can cause confusion.

      We have revised the text to improve clarity.

      Reviewer #1 (Recommendations for the authors):

      (1) Overall, the manuscript is not easy to read. Here are some causes of confusion for which the presentation could be cleaned up:

      We are grateful for the reviewer’s suggestion. In the revised manuscript, we have made efforts to improve the clarity of the text.

      (a) Part of the first section is confusing in that some statements seem contradictory, in particular:

      "there is no overall patterning defect of ChP and CH in the Prdm16 mutant" (line 125)

      "Prdm16 depletion disrupted the transition from neural progenitors into ChP epithelia" (line 144)

      It would be helpful if the authors could reformulate this more clearly.

      We modified the text to clarify that while the BMP-patterned domain is not affected, the transition of NSCs into ChP epithelial cells is compromised in the Prdm16 mutant.

      (b) Flag_PRDM16, PRDM16_expressing, PRDM16_E, PRDM16 OE all seem to refer to the same PRDM16 overexpressing cells, which is very confusing. The authors should use consistent naming. Moreover, it would be good if they renamed these all to PRDM16_OE to indicate expression is not endogenous but driven by a constitutive promoter.

      We appreciate the comment and agree that the use of multiple terms to refer to the same PRDM16-overexpressing condition was confusing. Our original intention in using Prdm16_E was to distinguish cells expressing PRDM16 from the two other groups: wild-type cells and Prdm16_KO cells, which both lack PRDM16 protein expression. However, we acknowledge that Prdm16_E could be misinterpreted as indicating expression from the endogenous Prdm16 promoter. To avoid this confusion and ensure consistency, we have now standardized the terminology and refer to this condition as Prdm16_OE, indicating Flag-tagged PRDM16 expression driven by a constitutive promoter.

      (c) Line 179 states "generated a cell line by infecting Prdm16_KO cells with the same viral vector, expressing 3xNSL_Flag". Do the authors mean 3xNLS_Flag_Prdm16, so these are the Prdm16_KO_E cells by the notation suggested above? Or is this a control vector with Flag only? The following paragraph refers to Supplementary Figure 2C-F where the same construct is called KO_CDH, suggesting this was an empty CDH vector, without Flag, or Prdm16. This is confusing.

      We appreciate the reviewer’s careful reading and helpful comment. We acknowledge the confusion caused by the inconsistent terminology. To clarify: in line 179, we intended to describe an attempt to generate a Prdm16_KO cell line expressing 3xNLS_Flag_Prdm16, not a control vector with Flag only. However, despite repeated attempts, we were unable to establish this line due to low viral efficiency and the vulnerability of Prdm16_KO cells to infection with the large construct. Therefore, these cells were not included in the subsequent analyses.

      The term KO_CDH refers to Prdm16_KO cells infected with the empty CDH control vector, which lacks both Flag and Prdm16. This is the line used in the experiments shown in Supplementary Fig. 2C–F. We have revised the text throughout the manuscript to ensure consistent use of terminology and to avoid this confusion.

      (2) The introductory statements on lines 53-54 could use more references.

      Thanks for the suggestion. We have now included more references.

      (3) It would be helpful if all structures described in the introduction and first section were annotated in Figure 1, or otherwise, if a cartoon were included. For example, the cortical hem, and fourth ventricle.

      Thanks for the suggestion. We have now indicated the structures, ChP, CH and the fourth ventricle, in the images in Figure 1 and Supplementary Figure 1.

      (4) In line 115, "as previously shown.." - to keep the paper self-contained a figure illustrating the genetics of the KO allele would be helpful.

      Thanks for the suggestion. We have now included an illustration of the Prdm16 cGT allele in Figure 1B.

      (5) In Figure 1D as costain for a ChP marker would be helpful because it is hard to identify morphologically in the Prdm16 KO.

      Appoligize for the unclarity. The KO allele contains a b-geo reporter driven by Prdm16 endogenous promoter. The samples were co-stained for EdU, b-Gal and DAPI. To distingquish the ChP domain from the CH, we used the presence of b b-Gal as a marker. We indicated this in the figure legend, but now have also clarified this in the revised text.

      (6) The details in Figure 1E are hard to see, a zoomed-in inset would help.

      A zoomed-in inset is now included in the figure.

      (7) Supplementary Figure 2A does not convincingly show that PRDM16 protein is undetectable since endogenous expression may be very low compared to the overexpression PRDM16_E cells so if the contrast is scaled together it could appear black like the KO.

      We appreciate the reviewer’s point and have carefully considered this concern. We concluded that PRDM16 protein is effectively undetectable in cultured wild-type NSCs based on direct comparison with brain tissue. Both cultured NSCs and brain sections were processed under similar immunostaining and imaging conditions. While PRDM16 showed robust and specific nuclear localization in embryonic brain sections (Fig. 1B and Supplementary Fig. 1A), only a small subset of cultured NSCs exhibited PRDM16 signal, primarily in the cytoplasm (middle panel of Fig. 2A). This stark contrast supports our conclusion that endogenous PRDM16 protein is either absent or significantly downregulated in vitro. Because of this limitation, we turned to over-expressing Prdm16 in NSC culture using a constitutive promoter. 

      (9) Line 182 "Following the washout step" - no such step had been described, maybe replace by "After washout of BMP".

      Yes, we have revised the text.

      (8) Line 214: "indicating a modest level" - what defines modest? Compared to what? Why is a few thousand moderate rather than low? Does it go to zero with inhibitors for pathways?

      Here a modest level means a lower level than to that after adding BMP4. To clarify this, we revised the description to “indicating endogenous levels of …”

      (9) The way qPCR data are displayed makes it difficult to appreciate the magnitude of changes, e.g. in Supplementary Figure 2B where a gap is introduced on the scale. Displaying log fold change / relative CT values would be more informative.

      We used a segmented Y-axis in Supplementary Figure 2B because the Prdm16 overexpression samples exhibited much higher experssion levels compared to other conditions. In response to this suggestion, we explored alternative ways to present the result, including ploting log-transformed values and log fold changes. However, these methods did not enhance the clarity of the differences – in fact, log scaling made the magnitude of change appear less apparent. To address this, we now present the overexpression samples in a separate graph, thereby eliminating the need for a broken Y-axis and improving the overall readability of the data.

      (10) Writing out "3 days" instead of 3D in Figure 2A would improve clarity. It would be good if the used time interval is repeated in other figures throughout the paper so it is still clear the comparison is between 0 and 3 days.

      We have changed “3D” to “3 days”. All BMP4 treatments in this study were 3 days.

      (11) Line 290: "we found that over 50% of SMAD4 and pSMAD1/5/8 binding peaks were consistent in Prdm16_E and Prdm16_KO cells, indicating that deletion of Prdm16 does not affect the general genomic binding ability of these proteins" - this only makes sense to state with appropriate controls because 50% seems like a big difference, what is the sample to sample variability for the same condition? Moreover, the next paragraph seems to contradict this, ending with "This result suggests that SMAD binding to these sites depends on PRDM16". The authors should probably clarify the writing.

      We appreciate the reviwer’s comment and agree that clarification was needed. Our point was that SMAD4 and pSMAD1/5/8 retain the ability to bind DNA broadly in the Prdm16 KO cells, with more than half of the original binding sites still occupied. This suggests that deletion of Prdm16 does not globally impair SMAD genomic binding. Howerever, our primary interest lies in the subset of sites that show differential by SMAD binding between wt and Prdm16 KO conditions, as thse are likely to be PRDM16-dependent. 

      In the following paragraph, we focused specifically on describing SMAD and PRDM16 co-bound sites. At these loci, SMAD4 and pSMAD1/5/8 showed reduced enrichment in the absence of PRDM16, suggesting PRDM16 facilitates SMAD binding at these particular regions. We have revised the text in the manuscript to more clearly distinguish between global SMAD binding and PRDM16-dependent sites.

      (12) Much more convincing than ChIP-qPCR for c-FOS for two loci in Figures 5F-G would be a global analysis of c-FOS ChIP-seq data.

      We agree that a global c-FOS ChIP-seq analysis would provide a more comprehensive view of c-FOS binding patterns. However, the primary focus of this study is the interaction between BMP signaling and PRDM16. The enrichment of AP-1 motifs at ectopic SMAD4 binding sites was an unexpected finding, which we validated using c-FOS ChIP-qPCR at selected loci. While a genome-wide analysis would be valuable, it falls beyond the current scope. We agree that future studies exploring the interplay among SMAD4/pSMAD, PRDM16, and AP-1 will be important and informative.

      (13) Figure 6A is hard to read. A heatmap would make it much easier to see differences in expression. Furthermore, if the point is to see the difference between ChP and CH, why not combine the different subclusters belonging to those structures? Finally, why are there 28 genes total when it is said the authors are evaluating a list of 31 genes and also displaying 6 genes that are not expressed (so the difference isn't that unexpressed genes are omitted)?

      For the scRNA-seq data, we chose violin plots because they display both gene expression levels and the number of cells that express each gene. However, we agree that the labels in Figure 6A were too small and difficult to read. We have revised the figure by increasing the font size and moved genes with low expression to  Supplementary Figure 5A. Figure 6A includes 17 more highly expressed genes together with three markers, and  Supplementary Figure 5A contains 13 lowly expressed genes. One gene Mrtfb is missing in the scRNA-seq data and thus not included. We have revised the description of the result in the main text and figure legends.

      Reviewer #2 (Public review):

      Summary:

      This article investigates the role of PRDM16 in regulating cell proliferation and differentiation during choroid plexus (ChP) development in mice. The study finds that PRDM16 acts as a corepressor in the BMP signaling pathway, which is crucial for ChP formation.

      The key findings of the study are:

      (1) PRDM16 promotes cell cycle exit in neural epithelial cells at the ChP primordium.

      (2) PRDM16 and BMP signaling work together to induce neural stem cell (NSC) quiescence in vitro.

      (3) BMP signaling and PRDM16 cooperatively repress proliferation genes.

      (4) PRDM16 assists genomic binding of SMAD4 and pSMAD1/5/8.

      (5) Genes co-regulated by SMADs and PRDM16 in NSCs are repressed in the developing ChP.

      (6) PRDM16 represses Wnt7b and Wnt activity in the developing ChP.

      (7) Levels of Wnt activity correlate with cell proliferation in the developing ChP and CH.

      In summary, this study identifies PRDM16 as a key regulator of the balance between BMP and Wnt signaling during ChP development. PRDM16 facilitates the repressive function of BMP signaling on cell proliferation while simultaneously suppressing Wnt signaling. This interplay between signaling pathways and PRDM16 is essential for the proper specification and differentiation of ChP epithelial cells. This study provides new insights into the molecular mechanisms governing ChP development and may have implications for understanding the pathogenesis of ChP tumors and other related diseases.

      Strengths:

      (1) Combining in vitro and in vivo experiments to provide a comprehensive understanding of PRDM16 function in ChP development.

      (2) Uses of a variety of techniques, including immunostaining, RNA in situ hybridization, RT-qPCR, CUT&Tag, ChIP-seq, and SCRINSHOT.

      (3) Identifying a novel role for PRDM16 in regulating the balance between BMP and Wnt signaling.

      (4) Providing a mechanistic explanation for how PRDM16 enhances the repressive function of BMP signaling. The identification of SMAD palindromic motifs as preferred binding sites for the SMAD/PRDM16 complex suggests a specific mechanism for PRDM16-mediated gene repression.

      (5) Highlighting the potential clinical relevance of PRDM16 in the context of ChP tumors and other related diseases. By demonstrating the crucial role of PRDM16 in controlling ChP development, the study suggests that dysregulation of PRDM16 may contribute to the pathogenesis of these conditions.

      We thank the reviewer for the thorough and thoughtful summary of our study. We’re glad the key findings and significance of our work were clearly conveyed, particularly regarding the role of PRDM16 in coordinating BMP and Wnt signaling during ChP development. We also appreciate the recognition of our integrated approach and the potential implications for understanding ChP-related diseases.

      Weaknesses:

      (1) Limited investigation of the mechanism controlling PRDM16 protein stability and nuclear localization in vivo. The study observed that PRDM16 protein became nearly undetectable in NSCs cultured in vitro, despite high mRNA levels. While the authors speculate that post-translational modifications might regulate PRDM16 in NSCs similar to brown adipocytes, further investigation is needed to confirm this and understand the precise mechanism controlling PRDM16 protein levels in vivo.

      While mechansims controlling PRDM16 protein stability and nuclear localization in the developing brain are interesting, the scope of this paper is revealing the function of PRDM16 in the choroid plexus and its interaction with BMP signaling. We will be happy to pursuit this direction in our next study.

      (2) Reliance on overexpression of PRDM16 in NSC cultures. To study PRDM16 function in vitro, the authors used a lentiviral construct to constitutively express PRDM16 in NSCs. While this approach allowed them to overcome the issue of low PRDM16 protein levels in vitro, it is important to consider that overexpressing PRDM16 may not fully recapitulate its physiological role in regulating gene expression and cell behavior.

      As stated above, we acknowledge that findings from cultured NSCs may not directly apply to ChP cells in vivo. We are cautious with our statements. The cell culture work was aimed to identify potential mechanisms by which PRDM16 and SMADs interact to regulate gene expression and target genes co-regulated by these factors. We expect that not all targets from cell culture are regulated by PRDM16 and SMADs in the ChP, so we validated expression changes of several target genes in the developing ChP and now included the new data in Fig. 7 and Supplementary Fig. 7. Out of the 31 genes identified from cultured cells, four cell cycle regulators including Wnt7b, Id3, Spc24/25/nuf2 and Mybl2, showed de-repression in Prdm16 mutant ChP. These genes can be relevant downstream genes in the ChP, and other target genes may be cortical NSC-specific or less dependent on Prdm16 in vivo.

      (3) Lack of direct evidence for AP1 as the co-factor responsible for SMAD relocation in the absence of PRDM16. While the study identified the AP1 motif as enriched in SMAD binding sites in Prdm16 knockout cells, they only provided ChIP-qPCR validation for c-FOS binding at two specific loci (Wnt7b and Id3). Further investigation is needed to confirm the direct interaction between AP1 and SMAD proteins in the absence of PRDM16 and to rule out other potential co-factors.

      We agree that the finding of the AP1 motif enriched at the PRDM16 and SMAD co-binding regions in Prdm16 KO cells can only indirectly suggest AP1 as a co-factor for SMAD relocation. That’s why we used ChIP-qPCR to examine the presence of C-fos at these sites. Although we only validated two targets, the result confirms that C-fos binds to the sites only in the Prdm16 KO cells but not Prdm16_expressing cells, suggesting AP1 is a co-factor.  Our results cannot rule out the presence of other co-factors.

      Reviewer #2 (Recommendations for the authors):

      Minor typo: [7, page 3] "sicne" should be "since".

      We appreciate the reviewer’s careful reading. We have now corrected the typo and revised some part of the text to improve clarity.

      Reviewer #3 (Public review):

      Summary:

      Bone morphogenetic protein (BMP) signaling instructs multiple processes during development including cell proliferation and differentiation. The authors set out to understand the role of PRDM16 in these various functions of BMP signaling. They find that PRDM16 and BMP co-operate to repress stem cell proliferation by regulating the genomic distribution of BMP pathway transcription factors. They additionally show that PRDM16 impacts choroid plexus epithelial cell specification. The authors provide evidence for a regulatory circuit (constituting of BMP, PRDM16, and Wnt) that influences stem cell proliferation/differentiation.

      Strengths:

      I find the topics studied by the authors in this study of general interest to the field, the experiments well-controlled and the analysis in the paper sound.

      We thank the reviewer for their positive feedback and thoughtful summary. We appreciate the recognition of our efforts to define the role of PRDM16 in BMP signaling and stem cell regulation, as well as the soundness of our experimental design and analysis.

      Weaknesses:

      I have no major scientific concerns. I have some minor recommendations that will help improve the paper (regarding the discussion).

      We have revised the discussion according to the suggestions.

      Reviewer #3 (Recommendations for the authors):

      Specific minor recommendations:

      Page 18. Line 526: In a footnote, the authors point out a recent report which in parallel was investigating the link between PRDM16 and SMAD4. There is substantial non-overlap between these two papers. To aid the reader, I would encourage the authors to discuss that paper in the discussion section of the manuscript itself, highlighting any similarities/differences in the topic/results.

      Thanks for the suggestion. We now included the comparison in the discussion. One conclusion between our study and this publication is consistent, that PRDM16 functions as a co-repressor of SMAD4. However, the mechanims are different. Our data suggests a model in which PRDM16 facilitates SMAD4/pSMAD binding to repress proliferation genes under high BMP conditions. However, the other report suggests that SMAD4 steadily binds to Prdm16 promoter and switches regulatory functions depending on the co-factors. Together with PRDM16, SMAD4 represses gene expression, while with SMAD3 in response to high levels of TGF-b1, it activates gene expression. These differences could be due to different signaling (BMP versus TGF-b), contexts (NSCs versus Pancreatic cancers) etc.

      Page 3. Line 65: typo 'since'

      We appreciate the reviewer’s careful reading. We have now corrected the typo and revised the text to improve clarity.

    1. Perform oral prophylaxis procedure using nonfluoridated and oil less prophylaxis pastes.• Clean and wash the teeth with water. Isolate to prevent any contamination from salivaor gingival crevicular fluid• Apply acid etchant in the form of gel for 15 to 30 seconds. Deciduous teeth requirelonger time for etching than permanent teeth because of the presence of aprismaticenamel in deciduous teeth• Wash the etchant continuously for 10 to 15 seconds• Note the appearance of a properly etched surface. It should give a frosty whiteappearance on drying• If any sort of contamination occurs, repeat the procedure• Now apply bonding agent and low viscosity monomers over the etched enamel surface.Generally, bonding agents contain Bis-GMA or UDMA with TEGDMA added to lower theviscosity of the bonding agent. The bonding agents due to their low viscosity, rapidly wetand penetrate the clean, dried, conditioned enamel into the microspaces forming resintags. The resin tags which form between enamel prisms are known as Macrotags.

      ① Perform oral prophylaxis procedure using nonfluoridated and oil less prophylaxis pastes. ① Florürsüz ve yağsız profilaksi patları kullanarak ağız hijyen uygulaması yapın.

      ② Clean and wash the teeth with water. Isolate to prevent any contamination from saliva or gingival crevicular fluid ② Dişleri suyla temizleyip yıkayın. Tükürük veya diş eti oluğu sıvısından gelebilecek bulaşmaları önlemek için izolasyon sağlayın.

      ③ Apply acid etchant in the form of gel for 15 to 30 seconds. Deciduous teeth require longer time for etching than permanent teeth because of the presence of aprismatic enamel in deciduous teeth ③ Asit ajanı jel formunda 15 ila 30 saniye süreyle uygulayın. Süt dişlerinde aprismatik mine bulunduğu için, daimi dişlere göre daha uzun süre asitlenmeleri gerekir.

      ④ Wash the etchant continuously for 10 to 15 seconds ④ Asit ajanı sürekli şekilde 10 ila 15 saniye boyunca yıkayın.

      ⑤ Note the appearance of a properly etched surface. It should give a frosty white appearance on drying ⑤ Uygun şekilde asitlenmiş yüzeyin görünümüne dikkat edin. Kuruduğunda buzlu beyaz bir görünüm vermelidir.

      ⑥ If any sort of contamination occurs, repeat the procedure ⑥ Herhangi bir kontaminasyon meydana gelirse işlemi tekrarlayın.

      ⑦ Now apply bonding agent and low viscosity monomers over the etched enamel surface. ⑦ Şimdi, asitlenmiş mine yüzeyine bağlayıcı ajan ve düşük viskoziteli monomerleri uygulayın.

      ⑧ Generally, bonding agents contain Bis-GMA or UDMA with TEGDMA added to lower the viscosity of the bonding agent. ⑧ Genellikle bağlayıcı ajanlar, viskoziteyi azaltmak için TEGDMA ile birlikte Bis-GMA veya UDMA içerir.

      ⑨ The bonding agents due to their low viscosity, rapidly wet and penetrate the clean, dried, conditioned enamel into the microspaces forming resin tags. ⑨ Bağlayıcı ajanlar düşük viskoziteleri nedeniyle temizlenmiş, kurutulmuş ve hazırlanmış mineyi hızla ıslatır ve mikro boşluklara nüfuz ederek rezin çıkıntılar (resin tag) oluştururlar.

      ⑩ The resin tags which form between enamel prisms are known as Macrotags. ⑩ Mine prizmaları arasında oluşan rezin çıkıntılara makrotag (macrotag) adı verilir.

    Annotators

    1. Author response:

      Our response aims to address the following:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      We would like to highlight that post-hoc power calculations are often considered redundant since the statistical power estimated for an observed association is directly related to its p-value[1]. In other words, the uncertainty of the association is already reflected in its 95% confidence interval. However, we understand power calculations may still be of interest to the reader, so we will incorporate them in the revised manuscript.

      The reason we use inverse variance weighted (IVW) Mendelian randomization (MR) to obtain our main results rather than the pleiotropy-robust methods mentioned by the reviewer/editors (i.e., MR-Egger, weighted median and weighted mode) is that the former has greater statistical power than the latter[2]. Hence, instead of focussing on the statistical significance of the pleiotropy-robust analyses, we consider it is of more value to compare the consistency of the effect sizes and direction of the effect estimates across methods. Any evidence of such consistency increases our confidence in our main findings, since each method relies on different assumptions. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even though they are not equally powered. It is true that our results for the genetically predicted effects of body mass index (BMI) on the risk of head and neck cancer (HNC) differ across methods. This is precisely what led us to question the validity of our main finding (suggesting a positive effect of BMI on HNC risk). We will clarify this in the discussion section of the revised manuscript as advised.

      We understand that the reviewer/editors are concerned that we do not have a robust model to explore the role of tobacco consumption in the link between BMI and HNC. However, we have a different perspective on the matter. If indeed, the main IVW finding for BMI and HNC is due to pleiotropy (since some of the pleiotropy-robust methods suggest conflicting results), then the IVW multivariable MR method is a way to explore the potential source of this bias[3]. We were particularly interested in exploring the role of smoking in the observed association because smoking and adiposity are known to influence each other [4-9] and share a genetic basis[10, 11].

      References:

      (1) Heinsberg LW, Weeks DE: Post hoc power is not informative. Genet Epidemiol 2022, 46(7):390-394.

      (2) Burgess S, Butterworth A, Thompson SG: Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37(7):658-665.

      (3) Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C et al: Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019, 4:186.

      (4) Morris RW, Taylor AE, Fluharty ME, Bjorngaard JH, Asvold BO, Elvestad Gabrielsen M, Campbell A, Marioni R, Kumari M, Korhonen T et al: Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium. BMJ Open 2015, 5(8):e008808.

      (5) Taylor AE, Morris RW, Fluharty ME, Bjorngaard JH, Asvold BO, Gabrielsen ME, Campbell A, Marioni R, Kumari M, Hallfors J et al: Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers. PLoS Genet 2014, 10(12):e1004799.

      (6) Taylor AE, Richmond RC, Palviainen T, Loukola A, Wootton RE, Kaprio J, Relton CL, Davey Smith G, Munafo MR: The effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization study. Hum Mol Genet 2019, 28(8):1322-1330.

      (7) Asvold BO, Bjorngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Smith GD, Romundstad PR: Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol 2014, 43(5):1458-1470.

      (8) Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, Martin RM: Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361:k1767.

      (9) Freathy RM, Kazeem GR, Morris RW, Johnson PC, Paternoster L, Ebrahim S, Hattersley AT, Hill A, Hingorani AD, Holst C et al: Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol 2011, 40(6):1617-1628.

      (10) Thorgeirsson TE, Gudbjartsson DF, Sulem P, Besenbacher S, Styrkarsdottir U, Thorleifsson G, Walters GB, Consortium TAG, Oxford GSKC, consortium E et al: A common biological basis of obesity and nicotine addiction. Transl Psychiatry 2013, 3(10):e308.

      (11) Wills AG, Hopfer C: Phenotypic and genetic relationship between BMI and cigarette smoking in a sample of UK adults. Addict Behav 2019, 89:98-103.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In Sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled.

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (and named it Sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in Sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through the modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. Given Sakura's role in pMad expression, it would be insightful to investigate whether overexpression of Mad or pMad could mitigate these phenotypic defects (UAS-Mad line is available at Bloomington Drosophila Stock Center).

      As suggested reviewer 1, we tested whether overexpression of Mad could rescue or mitigate the loss of sakura phenotypic defects, by using nos-Gal4-VP16 > UASp-Mad-GFP in the background of sakura<sup>null</sup>. As shown in Fig S11, we did not observe any mitigation of defects.

      Then, we also tested whether expressing a constitutive active form of Tkv, by using UAS-Dcr2, NGT-Gal4 > UASp-tkv.Q235D in the background of sakura<sup>RNAi</sup>. As shown in Fig S12, we did not observe any mitigation of defects by this approach either.

      A major concern is the overstated role of Sakura in regulating Orb. The data does not reveal mislocalized Orb; rather, a mislocalized oocyte and cytoskeletal breakdown, which may be secondary consequences of defects in oocyte polarity and structure rather than direct misregulation of Orb. The conclusion that Sakura is necessary for Orb localization is not supported by the data. Orb still localizes to the oocyte until about stage 6. In the later stage, it looks like the cytoskeleton is broken down and the oocyte is not positioned properly, however, there is still Orb localization in the ~8-stage egg chamber in the oocyte. This phenotype points towards a defect in the transport of Orb and possibly all other factors that need to localize to the oocyte due to cytoskeletal breakdown, not Orb regulation directly. While this result is very interesting it needs further evaluation on the underlying mechanism. For example, the decrease in E-cadherin levels leads to a similar phenotype and Bam is known to regulate E-cadherin expression. Is Bam expressed in these later knockdowns?

      We examined Bam and DE-Cadherin expression in later RNAi knockdowns driven by ToskGal4. As shown in Fig S9, Bam was not expressed in these later knockdowns compared with controls. DE-Cadherin staining suggested a disorganized structure in late-stage egg chambers.

      We agree that we overstated a role of Sakura in regulating Orb in the initial manuscript. We changed the text to avoid overstating.

      The manuscript would benefit from a more balanced interpretation of the data concerning Sakura's role in Orb regulation. Furthermore, a more expanded discussion on Sakura's potential role in pMad regulation is needed. For example, since Otu and Bam are involved in translational regulation, do the authors think that Mad is not translated and therefore it is the reason for less pMad? Currently the discussion presents just a summary of the results and not an extension of possible interpretation discussed in context of present literature.

      We changed the text to avoid overstating a role of Sakura in regulating Orb localization.

      Based on our newly added results showing that transgenic overexpression of Mad could not rescue or mitigate the phenotypic defects of sakura<sup>null</sup> mutant (Fig S11), we do not think the reason for less pMad is less translation of Mad.

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field. However, there are some weaknesses and I would recommend that they address the comments in the Recommendations for the authors section below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      General Comments:

      (1) The gene nomenclature: As mentioned in the text, Sakura means cherry blossom and is one of the national flowers of Japan. I am not sure whether the phenotype of the CG14545 mutant is related to Sakura or not. I would like to suggest the authors reconsider the naming.

      The striking phenotype of sakura mutant­ is tumorous and germless ovarioles. The tumorous phenotype, exhibiting lots of round fusome in germarium visualized by anti-Hts staining, looks like cherry blossom blooming to us. Also, the germless phenotype reminds us falling of the cherry blossom, especially considering that the ratio of tumorous phenotype decreases and that of germless decreases over fly age. Furthermore, “Sakura” symbolizes birth and renewal in Japanese culture (the last author of this manuscript is Japanese). Our findings indicated that the gene sakura is involved in regulation of renewal and differentiation of GSCs (which leads to birth). These are the reasons for the naming, which we would like to keep.

      (2) In many of the microscopic photographs in the figures, especially for the merged confocal images, the resolution looks low, and the images appear blurred, making it difficult to judge the authors' claims. Also, the Alpha Fold structure in Figure 10A requires higher contrast images. The magnification of the images is often inadequate (e.g. Figures 3A, 3B, 5E, 7A, etc). The authors should take high-magnification images separately for the germarium and several different stages of the egg chambers and lay out the figures.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      Specific Comments

      (1) How Sakura can cooperate with Otu remains unanswered. Sakura does not regulate deubiquitinase activity in vitro. Both sakura and otu appear to be involved in the Dpp-Smad signaling pathway and in the spatial control of Bam expression in the germarium, whereas Otu has been reported to act in concert with Bam to deubiquitinate and stabilize Cyc A for proper cystoblast differentiation. Therefore, it is plausible that the stabilization of Cyc A in the Sakura mutant is an indirect consequence of Bam misexpression and independent of the Sakura-Otu interaction. The authors may need to provide much deeper insight into the mechanism by which Sakura plays roles in these seemingly separable steps to orchestrate germ cell maintenance and differentiation during early oogenesis.

      Yes, it is possible that the stabilization of CycA in the sakura mutant is an indirect consequence of Bam misexpression and independent of the Sakura-Otu interaction. To test the significance and role of the Sakura-Otu interaction, we have attempted to identify Sakura point mutants that lose interaction with Otu. If such point mutants were successfully obtained, we were planning to test if their transgene expression could rescue the phenotypes of sakura mutant as the wild-type transgene did. However, after designing and testing the interaction of over 30 point mutants with Otu, we could not obtain such mutant version of Sakura yet. We will continue making efforts, but it is beyond the scope of the current study. We hope to address this important point in future studies.

      (2) Figure 3A and Figure 4: The authors show that piRNA production is abolished in Sakura KO ovaries. It is known that piRNA amplification (the ping-pong cycle) occurs in the Vasa-positive perinuclear nuage in nurse cells. Is the nuage normally formed in the absence of Sakura? The authors provide high-magnification images in the germarium expressing Vas-GFP. How does Sakura, and possibly Out, contribute to piRNA production? Are the defects a direct or indirect consequence of the loss of Sakura?

      We provided higher magnification images of germarium expressing Vasa-EGFP in sakura mutant background (Fig 3A and 3B). The nuage formation does not seem to be dysregulated in sakura mutant. Currently, we do not know if the piRNA defects are direct or indirect consequence of the loss of Sakura. This question cannot be answered easily. We hope to address this in future studies.

      (3) Figure 7 and Figure 12: The authors showed that Dpp-Smad signaling was abolished in Sakura KO germline cells. The same defects were also observed in otu mutant ovaries (Figure 12B). How does the Sakura-Otu axis contribute to the Dpp-Smad pathway in the germline?

      As we mentioned in the response to comment (1), we attempted to test the significance and role of the Sakura-Otu interaction, including in the Dpp-Smad pathway in the germline, but we have not yet been able to obtain loss-of-interaction mutant(s) of Sakura. We hope to address this in future studies.

      (4) Figure 9 and Fig 10: The authors raised antibodies against both Sakura and Otu, but their specificities were not provided. For Western blot data, the authors should provide whole gel images as source data files. Also, the authors argue that the Otu band they observed corresponds to the 98-kDa isoform (lines 302-304). The molecular weight on the Western blot alone would be insufficient to support this argument.

      When we submitted the initial manuscript, we also submitted original, uncropped, and unmodified whole Western blot images for all gel images to the eLife journal, as requested. We did the same for this revised submission. I believe eLife makes all those files available for downloading to readers.

      In the newly added Fig S13B, we used very young 2-5 hours ovaries and 3-7 days ovaries. 2-5 days ovaries contain only mostly pre-differentiated germ cells. Older ovaries (3-7 days in our case here) contain all 14 stages of oogenesis and later stages predominate in whole ovary lysates.

      As reported in previous literature (Sass et al. 1995), we detected a higher abundance of the 104 kDa Otu isoform than the 98 kDa isoform in from 2-5 hours ovaries and predominantly the 98 kDa isoform in 3-7 days ovaries (Fig S13B). These results confirmed that the major Otu isoform we detected in Western blot, all of which uses old ovaries except for the 2-5 hours ovaries in Fig S13B, is the 98 kDa isoform.

      (5) Otu has been reported to regulate ovo and Sxl in the female germline. Is Sakura involved in their regulation?

      We examined sxl alternative splicing pattern in sakura mutant ovaries. As shown in Fig S6, we detected the male-specific isoform of sxl RNA and a reduced level of the female-specific sxl isoform in sakura mutant ovaries. Thus Sakura seems to be involved in sxl splicing in the female germline, while further studies will be needed to understand whether Sakura has a direct or indirect role here.

      (6) Lines 443-447: The GSC loss phenotype in piwi mutant ovaries is thought to occur in a somatic cell-autonomous manner: both piwi-mutant germline clones and germline-specific piwi knockdown do not show the GSC-loss phenotype. In contrast, the authors provide compelling evidence that Sakura functions in the germline. Therefore, the Piwi-mediated GSC maintenance pathway is likely to be independent of the Sakura-Otu axis.

      We changed the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      Overall, this is a cleanly written manuscript, with some sentences/sections that are confusing the way they are constructed (i.e. Line 37-38, 334, section on Flp/FRT experiments).

      We rewrote those sections to avoid confusion.

      Comment for all merged image data: the quality of the merged images is very poor - the individual channels are better but should also be reprocessed for more resolved image data sets. Also, it would be helpful to have boundaries drawn in an individual panel to identify the regions of the germarium, as cartooned in Figure S1A (which should be brought into Figure 1) F-actin or Vsg staining would have helped throughout the manuscript to enhance the visualization of described phenotypes.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      We outlined the germarium in Fig 1E.

      We brought the former FigS1 into Fig 1A.

      We provided Phalloidin (F-Actin) staining images in Fig S7.

      All p-values seem off. I recommend running the data through the student t-test again.

      We used the student t-test to calculate p-values and confirmed that they are correct. We don’t understand why the reviewer thinks all p-values seem off.

      In the original manuscript, as we mentioned in each figure legends, we used asterisk (*) to indicate p-value <0.05, without distinguishing whether it’s <0.001, <0.01< or <0.05.

      Probably reviewer 2 is suggesting us to use ***, **, and *, to indicate p-value of <0.001, <0.01, and <0.05, respectively? If so, we now followed reviewer2’s suggestions.

      Figure 1

      (1) Within the text, C is mentioned before A.

      We updated the text and now we mentioned Fig 1A before Fig 1C.

      (2) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      (3) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      (4) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakura<sup>null</sup> phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      (5) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      (6) Line 95 "as shown below" is not clear that it's referencing panel D.

      We now referenced Fig 1D.

      (7) Re: Figures 1 E and F. There is no mention of Hts or Vasa proteins in the text.<br /> "Sakura-EGFP was not expressed in somatic cells such as terminal filament, cap cells, escort cells, or follicle cells (Figure 1E). In the egg chamber, Sakura-EGFP was detected in the cytoplasm of nurse cells and was enriched in developing oocytes (Figure 1F)". Outline these areas or label these structures/sites in the images. The color of Merge labels is confusing as the blue is not easily seen.

      We mentioned Hts and Vasa in the text. We labeled the structures/sites in the images and updated the color labeling.

      Figure 2

      (1) Entire figure is not essential to be a main figure, but rather supplemental.

      We don’t agree with the reviewer. We think that the female fertility assay data, where sakura null mutant exhibits strikingly strong phenotype, which was completely rescued by our Sakura-EGFP transgene, is very important data and we would like to present them in a main figure.

      (2) 2A- one star (*) significance does not seem correct for the presented values between 0 and 100+.

      In the original manuscript, as we mentioned in each figure legends, we used asterisk (*) to indicate p-value <0.05, without distinguishing whether it’s <0.001, <0.01< or <0.05.

      Probably reviewer 2 is suggesting us to use ***, **, and *, to indicate p-value of <0.001, <0.01, and <0.05, respectively? If so, we now followed reviewer2’s suggestions.

      (3) 2C images are extremely low quality. Should be presented as bigger panels.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images. We also presented as bigger panels.

      Figure 3

      (1) "We observed that some sakura<sup>null</sup> /null ovarioles were devoid of germ cells ("germless"), while others retained germ cells (Fig 3A)" What is described is, that it is hard to see. Must have a zoomed-in panel.

      We provided zoomed-in panels in Fig 3B

      (2) C - The control doesn't seem to match. Must zoom in.

      We provided matched control and also zoomed in.

      (3) For clarity, separate the tumorous and germless images.

      In the new image, only one tumorous and one germless ovarioles are shown with clear labeling and outline, for clarity.

      (4) Use arrows to help clearly indicate the changes that occur. As they are presented, they are difficult to see.

      We updated all the panels to enhance clarity.

      (5) Line 158 seems like a strong statement since it could be indirect.

      We softened the statement.

      Figure 4

      (1) Line 188-189 - Conclusion is an overstatement.

      We softened the statement.

      (2) Is the piRNA reduction due to a change in transcription? Or a direct effect by Sakura?

      We do not know the answers to these questions. We hope to address these in future studies.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer’s point. We think using numbers, not %, makes more sense.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      (3) In Line 218 there's an extra parenthesis after the PGC acronym.

      We corrected the error.

      (4) TOsk-Gal4 fly is not in the Methods section.

      We mentioned TOsk-Gal4 in the Methods.

      Figure 6:

      (1) The FLP-FRT section must be rewritten.

      We rewrote the FLP-FRT section.

      (2) A - include statistics.

      We included statistics using the chi-square test.

      (3) B - is not recalled in the Results text.

      We referred Fig 6B in the text.

      (4) Line 232 references Figure 3, but not a specific panel.

      We referred Fig 3A, 3C, 3D, and 3E, in the text.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      (1) There should be CycA expression in the control during the first 4 divisions.

      Yes, there is CycA expression observed in the control during the first 4 divisions, while it’s much weaker than in sakura<sup>null</sup> clone.

      (2) Helpful to add the dotted lines to delineate (A) as well.

      We added a dotted outline for germarium in Fig 7A.

      (3) Line 263 CycA is miswritten as CyA.

      We corrected the typo.

      Figure 9

      (1) Otu antibody control?

      We validated Otu antibody in newly added Fig 10C and Fig S13A.

      (2) Which Sakura-EGFP line was used? sakura het. or null background? This isn't mentioned in the text, nor legend.

      We used Sakura-EGFP in the background of sakura[+/+]. We added this information in the methods and figure legend.

      (3) C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti-Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      Figure 10

      (1) A- The resolution of images of the ribbon protein structure is poor.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      (2) A table summarizing the interactions between domains would help bring clarity to the data presented.

      We added a table summarizing the fragment interaction results.

      (3) Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer’s points. In our study, even for the full-length proteins.

      We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      Figure 12

      (1) A - control and RNAi lines do not match.

      We provided matched images.

      (2) In general, since for Sakura, only its binding to Otu was identified and since they phenocopy each other, doesn't most of the characterization of Sakura just look at Otu phenotypes? Does Sakura knockdown affect Otu localization or expression level (and vice versa)?

      We tested this by Western (Fig S15) and IF (Fig 12). Sakura knockdown did not decrease Otu protein level, and Otu knockdown did not decrease Sakura protein level (Fig S15). In sakura<sup>null</sup> clone, Otu level was not notably affected (Fig 12). In sakura<sup>null</sup> clone, Otu lost its localization to the posterior position within egg chambers.

      Figure S6

      (1) It is Luciferase, not Lucifarase.

      We corrected the typo.

      Reviewer #3 (Recommendations for the authors):

      (1) It is interesting that germless and tumorous phenotypes coexist in the same population of flies. Additional consideration of these essentially opposite phenotypes would significantly strengthen the study. For example, do they co-exist within the same fly and are the tumorous ovarioles present in newly eclosed flies or do they develop with age? The data in Figure 8 show that bam knockdown partially suppresses the germless phenotype. What effect does it have on the tumorous phenotype? Is transposon expression involved in either phenotype? Do Sakura mutant germline stem cell clones overgrow relative to wild-type cells in the same ovariole? Does sakura RNAi driven by NGT-Gal4 only cause germless ovaries or does it also cause tumorous phenotypes? What happens if the knockdown of Sakura is restricted to adulthood with a Gal80ts? It may not be necessary to answer all of these questions, but more insight into how these two phenotypes can be caused by loss of sakura would be helpful.

      We performed new experiments to answer these questions.

      do they co-exist within the same fly and are the tumorous ovarioles present in newly eclosed flies or do they develop with age?

      Tumorous and germless ovarioles coexist in the same fly (in the same ovary). Tumorous ovarioles are present in very young (0-1 day old) flies, including newly eclosed (Fig S5). The ratio of germless ovarioles increases and that of tumorous ovarioles decreases with age (Fig S5).

      The data in Figure 8 show that bam knockdown partially suppresses the germless phenotype. What effect does it have on the tumorous phenotype?

      bam knockdown effect on tumorous phenotype is shown in Fig S10. bam knockdown increased the ratio of tumorous ovarioles and the number of GSC-like cells.

      Is transposon expression involved in either phenotype?

      Since our transposon-piRNA reporter uses germline-specific nos promoter, it is expressed only in germ line cells, so we cannot examine in germless ovarioles.

      Do Sakura mutant germline stem cell clones overgrow relative to wild-type cells in the same ovariole?

      Yes, Sakura mutant GSC clones overgrow. Please compare Fig 6C and Fig S8.

      Does sakura RNAi driven by NGT-Gal4 only cause germless ovaries or does it also cause tumorous phenotypes?

      Fig S10 and Fig S12 show the ovariole phenotypes of sakura RNAi driven by NGT-Gal4. It causes both germless and tumorous phenotypes.

      What happens if the knockdown of Sakura is restricted to adulthood with a Gal80ts?

      Our mosaic clone was induced at the adult stage, so we already have data of adulthood-specific loss of function. Gal80ts does not work well with nos-Gal4.

      (2) The idea that the excessive bam expression in tumorous ovaries is due to a failure of bam repression by dpp signaling is not well-supported by the data. Dpp signaling is activated in a very narrow region immediately adjacent to the niche but the images in Figure 7A show bam expression in cells that are very far away from the niche. Thus, it seems more likely to be due to a failure to turn bam expression off at the 16-cell stage than to a failure to keep it off in the niche region. To determine whether bam repression in the niche region is impaired, it would be important to examine cells adjacent to the niche directly at a higher magnification than is shown in Figure 7A.

      We provided higher magnification images of cells adjacent to the niche in new Fig 7A.

      We found that cells adjacent to the niche also express Bam-GFP.

      That said, we agree with the reviewer. A failure to turn bam expression off at the 16-cell stage may be an additional or even a main cause of bam misexpression in sakura mutant. We added this in the Discussion.

      (3) In addition, several minor comments should be addressed:

      a. Does anti-Sakura work for immunofluorescence?

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies.

      b. Please provide insets to show the phenotypes indicated by the different color stars in Figure 3C more clearly.

      We provided new, higher-magnification images to show the phenotypes more clearly.

      c. Please indicate the frequency of the expression patterns shown in Figure 4D (do all ovarioles in each genotype show those patterns or is there variable penetrance?).

      We indicated the frequency.

      d. An image showing TOskGal4 driving a fluorophore should be provided so that readers can see which cells express Gal4 with this driver combination.

      It has been already done in the paper ElMaghraby et al, GENETICS, 2022, 220(1), iyab179, so we did not repeat the same experiment.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Contractile Injection Systems (CIS) are versatile machines that can form pores in membranes or deliver effectors. They can act extra or intracellularly. When intracellular they are positioned to face the exterior of the cell and hence should be anchored to the cell envelope. The authors previously reported the characterization of a CIS in Streptomyces coelicolor, including significant information on the architecture of the apparatus. However, how the tubular structure is attached to the envelope was not investigated. Here they provide a wealth of evidence to demonstrate that a specific gene within the CIS gene cluster, cisA, encodes a membrane protein that anchors the CIS to the envelope. More specifically, they show that:

      - CisA is not required for assembly of the structure but is important for proper contraction and CIS-mediated cell death

      - CisA is associated to the membrane (fluorescence microscopy, cell fractionation) through a transmembrane segment (lacZ-phoA topology fusions in E. coli)

      - Structural prediction of interaction between CisA and a CIS baseplate component<br /> - In addition they provide a high-resolution model structure of the >750-polypeptide Streptomyces CIS in its extended conformation, revealing new details of this fascinating machine, notably in the baseplate and cap complexes.

      All the experiments are well controlled including trans-complemented of all tested phenotypes.

      One important information we miss is the oligomeric state of CisA.

      Thank you for this suggestion. We now provide information on the potential oligomeric state of CisA. We performed further AlphaFold3 modelling of CisA using an increasing number of CisA protomers (1 to 8). We ran predictions for the configuration using the sequence of the well-folded C-terminal CisA domain (amino acids 285-468), which includes the transmembrane domain and the conserved domain that shares similarities to carbohydrate-degrading domains. The obtained confidence scores (mean values for pTM=0.73, ipTM=0.7, n=5) indicate that CisA can assemble into a pentamer and that this oligomerization is mediated through the interaction of the C-terminal solute-binding like superfamily domain.

      We have added this information to the revised manuscript (Fig. 3b/c) and further discuss the possible implications of CisA oligomerization for its proposed mode of action.

      While it would have been great to test the interaction between CisA and Cis11, to perform cryo-electron microscopy assays of detergent-extracted CIS structures to maintain the interaction with CisA, I believe that the toxicity of CisA upon overexpression or upon expression in E. coli render these studies difficult and will require a significant amount of time and optimization to be performed. It is worth mentioning that this study is of significant novelty in the CIS field because, except for Type VI secretion systems, very few membrane proteins or complexes responsible for CIS attachment have been identified and studied.

      We thank this reviewer for their highly supportive and positive comments on our manuscript and we are grateful for their recognition of the novelty of our study, particularly in the context of membrane proteins and complexes involved in CIS attachment.

      We agree that further experimental evidence on direct interaction between CisA and Cis11 would have strengthened our model on CisA function. However, as noted by this reviewer, this additional work is technically challenging and currently beyond the scope of this study.

      Reviewer #2 (Public review):

      Summary:

      The overall question that is addressed in this study is how the S. coelicolor contractile injection system (CISSc) works and affects both cell viability and differentiation, which it has been implicated to do in previous work from this group and others. The CISSc system has been enigmatic in the sense that it is free-floating in the cytoplasm in an extended form and is seen in contracted conformation (i.e. after having been triggered) mainly in dead and partially lysed cells, suggesting involvement in some kind of regulated cell death. So, how do the structure and function of the CISSc system compare to those of related CIS from other bacteria, does it interact with the cytoplasmic membrane, how does it do that, and is the membrane interaction involved in the suggested role in stress-induced, regulated cell death? The authors address these questions by investigating the role of a membrane protein, CisA, that is encoded by a gene in the CIS gene cluster in S. coelicolor. Further, they analyse the structure of the assembled CISSc, purified from the cytoplasm of S. coelicolor, using single-particle cryo-electron microscopy.

      Strengths:

      The beautiful visualisation of the CIS system both by cryo-electron tomography of intact bacterial cells and by single-particle electron microscopy of purified CIS assemblies are clearly the strengths of the paper, both in terms of methods and results. Further, the paper provides genetic evidence that the membrane protein CisA is required for the contraction of the CISSc assemblies that are seen in partially lysed or ghost cells of the wild type. The conclusion that CisA is a transmembrane protein and the inferred membrane topology are well supported by experimental data. The cryo-EM data suggest that CisA is not a stable part of the extended form of the CISSc assemblies. These findings raise the question of what CisA does.

      We thank Reviewer #2 for the overall positive evaluation of our manuscript and the constructive criticism.

      Weaknesses:

      The investigations of the role of CisA in function, membrane interaction, and triggering of contraction of CIS assemblies, are important parts of the paper and are highlighted in the title. However, the experimental data provided to answer these questions appear partially incomplete and not as conclusive as one would expect.

      We acknowledge that some aspects of our work remain unanswered. We are currently unable to conduct additional experiments because the two leading postdoctoral researchers on this project have moved on to new positions. We currently don’t have the extra manpower with a similar skill set to pick up the project.

      The stress-induced loss of viability is only monitored with one method: an in vivo assay where cytoplasmic sfGFP signal is compared to FM5-95 membrane stain. Addition of a sublethal level of nisin lead to loss of sfGFP signal in individual hyphae in the WT, but not in the cisA mutant (similarly to what was previously reported for a CIS-negative mutant). Technically, this experiment and the example images that are shown give rise to some concern. Only individual hyphal fragments are shown that do not look like healthy and growing S. coelicolor hyphae. Under the stated growth conditions, S. coelicolor strains would normally have grown as dense hyphal pellets. It is therefore surprising that only these unbranched hyphal fragments are shown in Fig. 4ab.

      We thank this Reviewer for their thoughtful criticism regarding the viability assays and the data presented in Figure 4. We acknowledge the importance of ensuring that the presented images reflect the physiological state of S. coelicolor under the stated growth conditions and recognize that hyphal fragments shown in Figure 4 do not fully capture the typical morphology of S. coelicolor. As pointed out by this reviewer, S. coelicolor grows in large hyphal clumps when cultured in liquid media, making the quantification of fluorescence intensities in hyphae expressing cytoplasmic GFP or stained with the membrane dye FM5-95 particularly challenging. To improve the image analysis and quantification of GFP and FM5-95-fluorescent intensities across the three S. coelicolor strains (wildtype, cisA deletion mutant and the complemented cisA mutant), we vortexed the cell samples before imaging to break up hyphal clumps, increasing hyphal fragments. The hyphae shown in our images were selected as representative examples across three biological replicates.

      Further, S. coelicolor would likely be in a stationary phase when grown 48 h in the rich medium that is stated, giving rise to concern about the physiological state of the hyphae that were used for the viability assay. It would be valuable to know whether actively growing mycelium is affected in the same way by the nisin treatment, and also whether the cell death effect could be detected by other methods.

      The reasoning behind growing S. coelicolor for 48 h before performing the fluorescence-based viability assay was that we (DOI: 10.1038/s41564-023-01341-x ) and others (e.g.: DOI: 10.1038/s41467-023-37087-7 ) previously showed that the levels of CIS particles peak at the transition from vegetative to reproductive/stationary growth, thus indicating that CIS activity is highest during this growth stage. The obtained results in this manuscript are consistent with previous results, in which we showed a similar effect on the viability of wildtype versus cis-deficient S. coelicolor strains (DOI: 10.1038/s41564-023-01341-x ) using nisin, the protonophore CCCP and UV radiation. The results presented in this study and our previous study are based on biological triplicate experiments and appropriate controls. Furthermore, our results are in agreement with the findings reported in a complementary study by Vladimirov et al. (DOI: 10.1038/s41467-023-37087-7 ) that used a different approach (SYTO9/PI staining of hyphal pellets) to demonstrate that CIS-deficient mutants exhibit decreased hyphal death.

      Taken together, we believe that the results obtained from our fluorescence-based viability assay provide strong experimental evidence that functional CIS mediate hyphal cell death in response to exogenous stress.

      The model presented in Fig. 5 suggests that stress leads to a CisA-dependent attachment of CIS assemblies to the cytoplasmic membrane, and then triggering of contraction, leading to cell death. This model makes testable predictions that have not been challenged experimentally. Given that sublethal doses of nisin seem to trigger cell death, there appear to be possibilities to monitor whether activation of the system (via CisA?) indeed leads to at least temporally increased interaction of CIS with the membrane.

      We thank this reviewer for their suggestions on how to test our model further. This is a challenging experiment because we do not know the exact dynamics of how nisin stress is perceived and transmitted to CisA and CIS particles.

      In an attempt to address this point, we have performed co-immunoprecipitation experiments using S. coelicolor cells that produced CisA-FLAG as bait, and which were treated with a sub-lethal nisin concentration for 0/15/45 min.  Mass spectrometry analysis of co-eluted peptides did not show the presence of CIS-associated peptides at the analyzed timepoints. While we cannot exclude the possibility that our experimental assay requires further optimization to successfully demonstrate a CisA-CIS interaction (e.g. optimization of the use of detergents to improve the solubilization of CisA from Streptomyces membrane, which is currently not an established method), an alternative and equally valid hypothesis is that the interaction between CIS particles and CisA is transient and therefore difficult to capture. We would like to mention, however, that we did detect CisA peptides in crude purifications of CIS particles from nisin-stressed cells (Supplementary Table 2, manuscript: line 301/302), supporting our proposed model that CisA can associate with CIS particles in vivo.

      Further, would not the model predict that stress leads to an increased number of contracted CIS assemblies in the cytoplasm? No clear difference in length of the isolated assemblies if Fig. S7 is seen between untreated and nisin-exposed cells, and also no difference between assemblies from WT and cisA mutant hyphae.

      The reviewer is correct that there is no clear difference in length in the isolated CIS particles shown in Figure S7. This is in line with our results, which show that CisA is not required for the correct assembly of CIS particles and their ability to contract in the presence and absence of nisin treatment. The purpose of Figure S7 was to support this statement. We would like to note that the particles shown in Figure S7 were purified from cell lysates using a crude sheath preparation protocol, during which CIS particles generally contract irrespective of the presence or absence of CisA. Thus, we cannot comment on whether there is an increased number of contracted CIS assemblies in the cytoplasm of nisin-exposed cells. To answer this point, we would need to acquire additional cryo-electron tomograms (cyroET) of the different strains treated with nisin. CryoET is an extremely time and labor-intensive task and given that we currently don’t know the exact dynamics of the CIS-CisA interaction following exogenous stress, we believe this experiment is beyond the scope of this work.

      The interaction of CisA with the CIS assembly is critical for the model but is only supported by Alphafold modelling, predicting interaction between cytoplasmic parts of CisA and Cis11 protein in the baseplate wedge. An experimental demonstration of this interaction would have strengthened the conclusions.

      We agree that direct experimental evidence of this interaction would have further strengthened the conclusions of our study, and we have extensively tried to provide additional experimental evidence. Unfortunately, because of the toxicity of cisA expression in E. coli and the possibly transient nature of the interaction under the experimental conditions used, we were unable to confirm this interaction by biochemical or biophysical techniques, such as co-purification or bacterial two-hybrid assays. Despite these technical challenges, we believe that the AlphaFold predictions provided a valuable hypothesis about the role of CisA in firing and the function of CIS particles in S. coelicolor.

      The cisA mutant showed a similarly accelerated sporulation as was previously reported for CIS-negative strains, which supports the conclusion that CisA is required for function of CISSc. But the results do not add any new insights into how CIS/CisA affects the progression of the developmental life cycle and whether this effect has anything to do with the regulated cell death that is caused by CIS. The same applies to the effect on secondary metabolite production, with no further mechanistic insights added, except reporting similar effects of CIS and CisA inactivations.

      Thank you for your feedback on this aspect of the manuscript. We would like to note that the main focus of this study was to provide further insight into how CIS contraction and firing are mediated in Streptomyces. We used the analysis of accelerated sporulation and secondary metabolite production as a readout to directly assess the functionality of CIS in the presence or absence of CisA and to complement the in situ cryoET data. In summary, our data significantly expand our knowledge of CIS function and firing in Streptomyces and suggest a model in which CisA plays an essential role in mediating the interaction of CIS particles with the membrane, which is required for CIS-mediated cell death. We discuss this model in more detail in the revised manuscript (Line 274-283).

      We agree that we still don’t fully understand the full nature of the signals that trigger CIS contraction, but we do know that the production of CIS is an integral part of the Streptomyces multicellular life cycle as demonstrated by two independent previous studies by us and others (DOI: 10.1038/s41564-023-01341-x and DOI: 10.1038/s41467-023-37087-7 ).

      We further speculate that the assembly and CisA-dependent firing of Streptomyces CIS particles could present a molecular mechanism to dismantle part of the vegetative mycelium. This form of “regulated cell death” could provide two key benefits: (1) to prevent the spread of local cellular damage to the rest of mycelium and (2) to provide additional nutrients for the rest of the mycelium to delay the terminal differentiation into spores, which in turn also affects the production of secondary metabolites.

      Concluding remarks:

      The work will be of interest to anyone interested in contractile injection systems, T6SS, or similar machineries, as well for people working on the biology of streptomycetes. There is also a potential impact of the work in the understanding of how such molecular machineries could have been co-opted during evolution to become a mechanism for regulated cell death. However, this latter aspect remains still poorly understood. Even though this paper adds excellent new structural insights and identifies a putative membrane anchor, it remains elusive how the Streptomyces CIS may lead to cell death. It is also unclear what the advantage would be to trigger death of hyphal compartments in response to stress, as well as how such cell death may impact (or accelerate) the developmental progression. Finally, it is inescapable to wonder whether the Streptomyces CIS could have any role in protection against phage infection.

      We thank Reviewer #2 for the overall supportive assessment of our work. We will briefly discuss functional CIS's impact on Streptomyces development in the revised manuscript. We previously tested if Streptomyces could defend against phages but have not found any experimental evidence to support this idea (unpublished data). The analysis of phage defense mechanisms is an underdeveloped area in Streptomyces research, partly due to the currently limited availability of a diverse phage panel.

      Reviewer #3 (Public review):

      Summary:

      In this work, Casu et al. have reported the characterization of a previously uncharacterized membrane protein CisA encoded in a non-canonical contractile injection system of Streptomyces coelicolor, CISSc, which is a cytosolic CISs significantly distinct from both intracellular membrane-anchored T6SSs and extracellular CISs. The authors have presented the first high-resolution structure of extended CISSc structure. It revealed important structural insights in this conformational state. To further explore how CISSc interacted with cytoplasmic membrane, they further set out to investigate CisA that was previously hypothesized to be the membrane adaptor. However, the structure revealed that it was not associated with CISSc. Using fluorescence microscope and cell fractionation assay, the authors verified that CisA is indeed a membrane-associated protein. They further determined experimentally that CisA had a cytosolic N-terminal domain and a periplasmic C-terminus. The functional analysis of cisA mutant revealed that it is not required for CISSc assembly but is essential for the contraction, as a result, the deletion significantly affects CISSc-mediated cell death upon stress, timely differentiation, as well as secondary metabolite production. Although the work did not resolve the mechanistic detail how CisA interacts with CISSc structure, it provides solid data and a strong foundation for future investigation toward understanding the mechanism of CISSc contraction, and potentially, the relation between the membrane association of CISSc, the sheath contraction and the cell death.

      Strengths:

      The paper is well-structured, and the conclusion of the study is supported by solid data and careful data interpretation was presented. The authors provided strong evidence on (1) the high-resolution structure of extended CISSc determined by cryo-EM, and the subsequent comparison with known eCIS structures, which sheds light on both its similarity and different features from other subtypes of eCISs in detail; (2) the topological features of CisA using fluorescence microscopic analysis, cell fractionation and PhoA-LacZα reporter assays, (3) functions of CisA in CISSc-mediated cell death and secondary metabolite production, likely via the regulation of sheath contraction.

      Weaknesses:

      (1) The data presented are not sufficient to provide mechanistic details of CisA-mediated CISSc contraction, as authors are not able to experimentally demonstrate the direct interaction between CisA with baseplate complex of CISSc (hypothesized to be via Cis11 by structural modeling), since they could not express cisA in E. coli due to its potential toxicity. Therefore, there is a lack of biochemical analysis of direct interaction between CisA and baseplate wedge. In addition, there is no direct evidence showing that CisA is responsible for tethering CISSc to the membrane upon stress, and the spatial and temporal relation between membrane association and contraction remains unclear. Further investigation will be needed to address these questions in future.

      We thank Reviewer #3 for the supportive evaluation and constructive feedback of our study in the non-public review. We appreciate the recognition of the technical limitations of experimentally demonstrating a direct interaction between CisA and CIS baseplate complex, and we agree that further investigations in the future will hopefully provide a full mechanistic understanding of the spatiotemporal interaction of CisA and CIS particular and the subsequent CIS firing.

      To further improve the manuscript, we will revise the text and clarify figures and figure legends as suggested in the non-public review.

      Discussion:

      Overall, the work provides a valuable contribution to our understanding on the structure of a much less understood subtype of CISs, which is unique compared to both membrane-anchored T6SSs and host-membrane targeting eCISs. Importantly, the work serves as a good foundation to further investigate how the sheath contraction works here. The work contributes to expanding our understanding of the diverse CIS superfamilies.

      Thank you.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      - Magnification of the potential CisA-Cis11 model, with side chains at the interface, should be shown in Supplementary Figures 9/10 to help the reader appreciates the intercation between the two subunits.

      Done. A zoomed-in view of the relevant side chains at the CisA-Cis11 interface has been added to Supplementary Figure 9e. For clarity, we decided not to highlight these residues in Supplementary Figure 10 because they are identical to those in Figure 9e.

      - A model where CisA is positionned onto the baseplate (by merging the CisA-Cis11 model and the baseplate structure) will also be informative for the reader.

      We agree that such a presentation would be helpful to visualize the proposed CisA-Cis11 interaction. However, the Cis11 residues predicted to bind CisA are buried in our cryoEM single-particle structure of the elongated Streptomyces CIS. This is not surprising, as the structure is based on a previously established non-contractile CIS mutant variant (PMCID: PMC10066040), which means we were only able to capture one specific configuration of the baseplate complex in the current work. This baseplate configuration is most likely structurally distinct from the baseplate configuration in contracted CIS particles. A similar observation was also reported for the baseplate complex of eCIS particles from Algoriphagus machipongonesis (PMCID: PMC8894135 ).  

      We speculate that in Streptomyces, initial non-specific contacts between CisA and cytoplasmic CIS particles induce a rearrangement of baseplate components, resulting in the exposure of the relevant Cis11 residues, which in turn facilitates a transient interaction between CisA and Cis11. This interaction then leads to additional conformational changes within the baseplate complex, triggering sheath contraction and CIS firing.

      We believe that a transient binding step is a crucial part of the activation process, contributing to the dynamic nature of the system.

      - Providing information on the oligomeric state of CisA will strenghten the manuscript. Authors may consider having blue-native gel analysis of CisA-3xFLAG extracted from Streptomyces or E. coli membranes, or in vivo chemical cross-linking coupled to SDS-PAGE analyses. In case these quite straightforward experiments are not possible, the authors may consider providing AF3 models of various CisA multimers.

      Thank you for these suggestions. Unfortunately, we currently don’t have the capability to conduct additional experiments. However, we have performed additional AF3 modelling to explore potential different configurations of CisA. The results of these analyses suggest that CisA can assemble into a pentamer (see also Response to reviewer 1). We speculate that CisA may exist in different oligomeric states and that membrane-localized CisA monomers oligomerize into a larger protein complex in response to a cellular or extracellular (e.g. nisin) signal, which could then directly or indirectly interact with CIS particles in the cytoplasm to facilitate their recruitment to the membrane and CIS firing. Such a stress-dependent conformational change of CisA could also be a safety mechanism to prevent accidental interaction of CisA with CIS particles and CIS firing.

      We now show the AF model for the predicted CisA pentamer in Figure 3b/c and discuss the potential implications of the different CisA configurations in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      - The quantification of contracted versus extended CIS assemblies in the cytoplasm is only presented for the tomograms from the cisA mutant (graph in Fig. S2d). However, there are no data for the WT and complemented mutant to compare with. It would help to add such data, or at least refer to the previous quantification done for the WT in the previous paper. Further, would it be possible to illustrate the difference by measuring lengths of CIS assemblies and plot length distributions (assuming the extended ones are long and contracted are short)?

      Thank you for your suggestions. We have included the results from our previous quantification of CIS assembly states observed in the WT in the revised manuscript (lines 106–110).

      In the acquired tomograms of CIS particles observed in intact and dead hyphae, we consistently observed only two CIS conformations: the fully extended state (average length of 233 nm, diameter of 18 nm) and the fully contracted state (average length of 124 nm, diameter of 23 nm). We have added this information to the revised manuscript (lines 112-114).

      - The Western blot in Fig. 3d, top panel, contains additional bands that are not mentioned. Are they non-specific bands? Absent in disA mutant? It would help if it was clarified in the legend what they are.

      Correct, these additional bands are unspecific bands, which are also visible in the lysate and soluble fraction of wild-type sample (negative control, no FLAG-tagged protein). We have now labelled these bands in the figure and clarified the figure legend.

      - Fig. S8a needs improvement. It was not possible to clearly see the stated effect of disA deletion on secondary metabolite production in these photos.

      We agree and have removed figure panel S8a from the manuscript. The quantification of total actinorhodin production shown in Figure S8b convincingly shows a significantly reduction of actinorhodin production in the cisA deletion mutant compared to the wildtype and the complement mutant.

      - It is not an important point, but the paragraph in lines 109-116 appears more like a re-iteration of the Introduction than Results.

      We agree. We have removed the highlighted text from the Results section and added some of the information to the introduction.

      - Line 206 appears to have a typo. Should it not be WT instead of WT cisA?

      Correct. This is a typo which has been fixed. Thank you.

      - At the end of the Discussion, it is suggested that a stepwise mechanism of recruiting CIS to the membrane and then triggering firing would prevent unwanted activation and self-inflicted death. Since both steps appear to be dependent in DisA, it would be good to more clearly spell out how such a stepwise mechanism would work and how it could prevent spontaneous and erroneous firing of the system.

      Thank you for this suggestion. We have revised the text to clarify the proposed stepwise mechanism. Based on additional structural modeling, we propose that the conserved extra-cytoplasmic domain of CisA may play a role in sensing stress signals. Binding of a ‘stress-associated molecule’ could induce a conformational change in CisA, a hypothesis supported by: (1) Foldseek protein structure searches, which suggest that the conserved C-terminal CisA domain resembles substrate/solute-binding proteins, and (2) AlphaFold3 models predicting that CisA can form a pentamer via its putative substrate-binding domain. This suggests that a transition from CisA monomers to pentamers in response to stress may serve as a key checkpoint, activating CisA and facilitating the recruitment of CIS assemblies to the membrane, either directly or indirectly. Conversely, in the absence of a stress signal, CisA is likely to remain in its monomeric (resting) form, incapable of triggering CIS firing. We have revised the discussion to explain the proposed model in more detail.

      We recognize that this model poses many testable hypotheses that we currently cannot test but aim to address in the future.

      Reviewer #3 (Recommendations for the authors):

      There are a few concerns potentially worth addressing to strengthen the study or for future investigation.

      (1) It would be worth considering moving the first part of the result ('CisA is required for CISSc contraction in situ') after presenting the structure of extended CISSc, and combining it with the last part of the result section ('CisA is essential for the cellular function of CISSc'), as both parts describe the functional characterization of CisA.

      We appreciate the reviewer’s suggestion but have chosen to retain the current order of the results. As this manuscript focuses on the role of CisA, we believe that first establishing a functional link between CisA and CIS contraction provides essential context and motivation for the study.

      (2) Line 169: it is not clear to me if the fusion of CisA with mCherry is functional (if it complements the native CisA). Moreover, it was not shown if its localization changes under nisin stress or in the strain with non-contractile CISSc.

      We have not tested if the CisA-mCherry fusion is fully functional. While we cannot exclude the possibility that the activity of this protein fusion is compromised in vivo, we believe that the described accumulation of CisA-mCherry at the membrane is accurate. This conclusion is further supported by the results obtained from protein fractionation experiments and the membrane topology assay (Figure 3).

      We did not examine if the localization of CisA-mCherry changes in CIS mutant strains under nisin-stress, but this is something we will follow up on in the future.

      (3) In ref 18, the previous work from the same team presented a functional fluorescent fusion of Cis2 (sheath), thus, it will be interesting to see if (i) Cis2 localization and dynamics is affected by the absence of CisA under normal and stressed conditions; (ii) if Cis2 shows any co-localization with CisA under normal and especially stressed conditions, and potentially, its timing correlation to ghost cell formation by time-lapse imaging of both fusions.

      We thank this reviewer for the suggestions, and we plan to address these questions in the future.

      (4) Line 261: it was hypothesized by authors that the cytosolic portion of CisA was required for interacting with Cis11. While it was not possible to verify the direct interaction at current state, a S. coelicolor mutant lacking this cytosolic domain may be of help to indirectly test the hypothesis. Moreover, it would be interesting to see if the cytosolic region alone is enough to induce the contraction upon stress (by removing the TM-C region). If so, whether it leads to cell death, or if it is insufficient to cause cell death without membrane association despite the sheath contraction. If not, it would suggest that membrane association occurs before contraction.

      These are really great suggestions and if we had the manpower and resources, we would have performed these experiments. We plan to follow up on these questions in the future.

      However, additional structural modelling of CisA indicates that CisA may exist in different configurations (see response to Reviewer #1 and #2), a monomeric and/or a pentameric configuration. In these structural models (revised Figure 3), CisA oligomerization is mediated by the annotated periplasmic solute-binding domain. It is conceivable that CisA oligomerization (e.g. in response to a stress signal) presents a critical checkpoint that results in a conformational change within CisA monomers that subsequently drives CisA oligomerization into a configuration primed to interact with CIS particles. We would therefore speculate that the expression of just the cytoplasmic CisA domain may not be sufficient for CIS contraction and cell death.

      (5) Line 263: as it was not possible to express full-length cisA in E. coli, making it difficult to assess the interaction between CisA and Cis11, it may be worth considering expressing the cytosolic portion of CisA (ΔTM-C) instead of full-length CisA, or alternatively performing a co-immunoprecipitation assay of CisA (i.e., with an affinity tag) from S. coelicolor cultures under stressed conditions. However, I am aware that these may be beyond the scope of this work but can be considered for future investigation in general.

      Thank you for your suggestions and your understanding that some of this work is beyond the scope of this work. We have performed CisA-FLAG co-immunoprecipitation experiments from S. coelicolor cultures that were treated with nisin for 0/15/45 min. However, mass spectrometry analysis of co-eluted peptides did not show the presence of CIS-associated peptides at the analysed timepoints. While we cannot exclude technical issues with our assays that resulted in an inefficient solubilization of CisA from Streptomyces membranes, an alternative hypothesis is that the interaction between CIS particles and CisA is very transient and therefore difficult to capture. We would like to mention, however, that we did detect CisA peptides in crude purifications of CIS particles from nisin-stressed cells (Supplementary Table 2, manuscript: line 301/302), supporting our proposed model that CisA can associate with CIS particles in vivo.

      Minor points:

      (1) I will suggest moving Supplementary Fig 2d with control quantification of WT strain and complementation strain (similar to Fig 3g from ref 18) to the main Fig 1, as the quantitative representation with better comparison without going back and forth to ref 18.

      Thank you for your suggestion. Instead of moving Supplementary Fig. 2d to the main figure, we have added additional information in lines 106–110 to discuss the previous quantification of CIS assembly states in the WT, as described in our earlier work. We believe this approach allows readers to easily reference our established quantification without compromising the flow of the main figures.

      (2) Line 52/785: as work of Ref 12 has recently been published DOI: 10.1126/sciadv.adp7088, the reference should be updated accordingly.

      This reference has been updated. Thank you.

      (3) A brief description of key differences between contracted (ref 18) and extended sheath structure will be a good addition for a broader audience.

      Thank you for this suggestion. We have added more information on lines 178–180.

      (4) Fig 3d: it is not clear how well the samples from different fractions were normalized in amount (volume and cell density), but there was an inconsistency in the amount of CisA-Flag in lysate, vs. soluble and membrane fractions (total protein amount combined from soluble fraction and membrane fraction together seemed to be more than in the lysate, while in theory it should be more or less equal; and the amount of WhiA from WT seemed to be less than from the CisA-Flag strain). In the method section, it was mentioned that 'The final pellet was dissolved in 1/10 of the initial volume with wash buffer (no urea). Equi-volume amounts of fractions were mixed with 2x SDS sample buffer and analyzed by immunoblotting.' But it is still not clear whether equivalent amounts (normalized to the same OD for example) were used and if we could directly compare. A brief clarification in the legend of how samples were prepared is needed.

      The samples were normalized by first using the same volume of starting material (similar culture density and incubation period for each strain) and by loading equal volumes of each fraction for analysis. After fractionation, equi-volume amounts of the soluble and membrane protein fractions were mixed with 2× SDS sample buffer and subjected to immunoblotting, ensuring a consistent basis for comparison between samples. We have revised the figure legend and Material and Method sections to make this clear.

      We agree that the amount of CisA-3xFLAG appears slightly lower in the “Lysate” fraction compared to the “Membrane” fraction in Figure 3d (now Fig. 3f). However, this does not affect the overall conclusion of this experiment, showing that CisA-3xFLAG is clearly enriched in the membrane fraction.

      For reference, please find below the uncropped version of this Western blot image. Based on the signal of the unspecific bands, we would like to argue that equal amounts of samples obtained from the WT control strain (no FLAG epitope present) and a strain producing CisA-3xFLAG were loaded for each of the fractions. When we revisited this data, we noted that the protein size marker was wrong. This has been fixed.

      Author response image 1.

      (5) Fig. 4f: statistical analysis is missing.

      The missing statistical analysis has been added to this figure and figure legend.

    1. Author response:

      (1) General Statements

      As you will see in our attached rebuttal to the reviewers, we have added several new experiments and revised manuscript to fully address their concerns.

      (2) Point-by-point description of the revisions

      Reviewer #1:

      Evidence, reproducibility and clarity

      Summary:

      The manuscript by Yang et al. describes a new CME accessory protein. CCDC32 has been previously suggested to interact with AP2 and in the present work the authors confirm this interaction and show that it is a bona fide CME regulator. In agreement with its interaction with AP2, CCDC32 recruitment to CCPs mirrors the accumulation of clathrin. Knockdown of CCDC32 reduces the amount of productive CCPs, suggestive of a stabilisation role in early clathrin assemblies. Immunoprecipitation experiments mapped the interaction of CCDC42 to the α-appendage of the AP2 complex α-subunit. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome disrupt the interaction of this protein to the AP2 complex. The manuscript is well written and the conclusions regarding the role of CCDC32 in CME are supported by good quality data. As detailed below, a few improvements/clarifications are needed to reinforce some of the conclusions, especially the ones regarding CFNDS.

      We thank the referee for their positive comments. In light of a recently published paper describing CCDC32 as a co-chaperone required for AP2 assembly (Wan et al., PNAS, 2024, see reviewer 2), we have added several additional experiments to address all concerns and consequently gained further insight into CCDC32-AP2 interactions and the important dual role of CCDC32 in regulating CME. 

      Major comments:

      (1) Why did the protein could just be visualized at CCPs after knockdown of the endogenous protein? This is highly unusual, especially on stable cell lines. Could this be that the tag is interfering with the expressed protein function rendering it incapable of outcompeting the endogenous? Does this points to a regulated recruitment?

      The reviewer is correct, this would be unusual; however, it is not the case. We misspoke in the text (although the figure legend was correct) these experiments were performed without siRNA knockdown and we can indeed detect eGFP-CCDC32 being recruited to CCPs in the presence of endogenous protein. Nonetheless, we repeated the experiment to be certain (see Author response image 1).  

      Author response image 1.

      Cohort-averaged fluorescence intensity traces of CCPs (marked with mRuby-CLCa) and CCP-enriched eGFPCCDC32(FL).

      (2) The disease mutation used in the paper does not correspond to the truncation found in patients. The authors use an 1-54 truncation, but the patients described in Harel et al. have frame shifts at the positions 19 (Thr19Tyrfs*12) and 64 (Glu64Glyfs*12), while the patient described in Abdalla et al. have the deletion of two introns, leading to a frameshift around amino acid 90. Moreover, to be precisely test the function of these disease mutations, one would need to add the extra amino acids generated by the frame shift. For example, as denoted in the mutation description in Harel et al., the frameshift at position 19 changes the Threonine 19 to a Tyrosine and ads a run of 12 extra amino acids (Thr19Tyrfs*12).

      The label of the disease mutant p.(Thr19Tyrfs12) and p.(Glu64Glyfs12) is based on a 194aa polypeptide version of CCDC32 initiated at a nonconventional start site that contains a 9 aa peptide (VRGSCLRFQ) upstream of the N-terminus we show. Thus, we are indeed using the appropriate mutation site (see: https://www.uniprot.org/uniprotkb/Q9BV29/entry). The reviewer is correct that we have not included the extra 12 aa in our construct; however as these residues are not present in the other CFNDS mutants, we think it unlikely that they contribute to the disease phenotype.  Rather, as neither of the clinically observed mutations contain the 78-98 aa sequence required for AP2 binding and CME function, we are confident that this defect contributed to the disease. Thus, we are including the data on the CCDC32(1-54) mutant, as we believe these results provide a valuable physiological context to our studies. 

      (3) The frameshift caused by the CFNDS mutations (especially the one studied) will likely lead to nonsense mediated RNA decay (NMD). The frameshift is well within the rules where NMD generally kicks in. Therefore, I am unsure about the functional insights of expressing a diseaserelated protein which is likely not present in patients.

      We thank the reviewer for bringing up this concern. However, as shown in new Figure S1, the mutant protein is expressed at comparable levels as the WT, suggesting that NMD is not occurring.

      (4) Coiled coils generally form stable dimers. The typically hydrophobic core of these structures is not suitable for transient interactions. This complicates the interpretation of the results regarding the role of this region as the place where the interaction to AP2 occurs. If the coiled coil holds a stable CCDC32 dimer, disrupting this dimer could reduce the affinity to AP2 (by reduced avidity) to the actual binding site. A construct with an orthogonal dimeriser or a pulldown of the delta78-98 protein with of the GST AP2a-AD could be a good way to sort this issue.

      We were unable to model a stable dimer (or other oligomer) of this protein with high confidence using Alphafold 3.0. Moreover, we were unable to detect endogenous CCDC32 coimmunoprecipitating with eGFP-CCDC32 (Fig. S6C). Thus, we believe that the moniker, based solely on the alpha-helical content of the protein is a misnomer.  We have explained this in the main text.

      Minor comments:

      (1) The authors interchangeably use the term "flat CCPs" and "flat clathrin lattices". While these are indeed related, flat clathrin lattices have been also used to refer to "clathrin plaques". To avoid confusion, I suggest sticking to the term "flat CCPs" to refer to the CCPs which are in their early stages of maturation.

      Agreed. Thank you for the suggestion. We have renamed these structures flat clathrin assemblies, as they do not acquire the curvature needed to classify them as pits, and do not grow to the size that would classify then as plaques. 

      Significance

      General assessment:

      CME drives the internalisation of hundreds of receptors and surface proteins in practically all tissues, making it an essential process for various physiological processes. This versatility comes at the cost of a large number of molecular players and regulators. To understand this complexity, unravelling all the components of this process is vital. The manuscript by Yang et al. gives an important contribution to this effort as it describes a new CME regulator, CCDC32, which acts directly at the main CME adaptor AP2. The link to disease is interesting, but the authors need to refine their experiments. The requirement for endogenous knockdown for recruitment of the tagged CCDC32 is unusual and requires further exploration.

      Advance:

      The increased frequency of abortive events presented by CCDC32 knockdown cells is very interesting, as it hints to an active mechanism that regulates the stabilisation and growth of clathrin coated pits. The exact way clathrin coated pits are stabilised is still an open question in the field.

      Audience:

      This is a basic research manuscript. However, given the essential role of CME in physiology and the growing number of CME players involved in disease, this manuscript can reach broader audiences.

      We thank the referee for recognizing the ‘interesting’ advances our studies have made and for considering these studies as ‘an important contribution’ to ‘an essential process for various physiological processes’ and able ‘to reach broader audiences’. We have addressed and reconciled the reviewer’s concerns in our revised manuscript. 

      Field of expertise of the reviewer:

      Clathrin mediated endocytosis, cell biology, microscopy, biochemistry.

      Reviewer #2:

      Evidence, reproducibility and clarity

      In this manuscript, the authors demonstrate that CCDC32 regulates clathrin-mediated endocytosis (CME). Some of the findings are consistent with a recent report by Wan et al. (2024 PNAS), such as the observation that CCDC32 depletion reduces transferrin uptake and diminishes the formation of clathrin-coated pits. The primary function of CCDC32 is to regulate AP2 assembly, and its depletion leads to AP2 degradation. However, this study did not examine AP2 expression levels. CCDC32 may bind to the appendage domain of AP2 alpha, but it also binds to the core domain of AP2 alpha.

      We thank the reviewer for drawing our attention to the Wan et al. paper, that appeared while this work was under review.  However, our in vivo data are not fully consistent with the report from Wan et al. The discrepancies reveal a dual function of CCDC32 in CME that was masked by complete knockout vs siRNA knockdown of the protein, and also likely affected by the position of the GFP-tag (C- vs N-terminal) on this small protein. Thus:

      -  Contrary to Wan et al., we do not detect any loss of AP2 expression (see new Figure S3A-B) upon siRNA knockdown. Most likely the ~40% residual CCDC32 present after siRNA knockdown is sufficient to fulfill its catalytic chaperone function but not its structural role in regulating CME beyond the AP2 assembly step.  

      - Contrary to Wan et al., we have shown that CCDC32 indeed interacts with intact AP2 complex (Figure S3C and 6B,C) showing that all 4 subunits of the AP2 complex co-IP with full length eGFP-CCDC32. Interestingly, whereas the full length CCDC32 pulls down the intact AP2 complex, co-IP of the ∆78-98 mutant retains its ability to pull down the β2-µ2 hemicomplex, its interactions with α:σ2 are severely reduced.  While this result is consistent with the report of Wan et al that CCDC32 binds to the α:σ2 hemi-complex, it also suggests that the interactions between CCDC32 and AP2 are more complex and will require further studies.

      - Contrary to Wan et al., we provide strong evidence that CCDC32 is recruited to CCPs. Interestingly, modeling with AlphaFold 3.0 identifies a highly probably interaction between alpha helices encoded by residues 66-91 on CCDC32 and residues 418-438 on α. The latter are masked by µ2-C in the closed confirmation of the AP2 core, but exposed in the open confirmation triggered by cargo binding, suggesting that CCDC32 might only bind to membrane-bound AP2.

      Thus, our findings are indeed novel and indicate striking multifunctional roles for CCDC32 in CME, making the protein well worth further study. 

      (1) Besides its role in AP2 assembly, CCDC32 may potentially have another function on the membrane. However, there is no direct evidence showing that CCDC32 associates with the plasma membrane.

      We disagree, our data clearly shows that CCDC32 is recruited to CCPs (Fig. 1B) and that CCPs that fail to recruit CCDC32 are short-lived and likely abortive (Fig. 1C). Wan et al. did not observe any colocalization of C-terminally tagged CCDC32 to CCPs, whereas we detect recruitment of our N-terminally tagged construct, which we also show is functional (Fig. 6F).  Further, we have demonstrated the importance of the C-terminal region of CCDC32 in membrane association (see new Fig. S7).  Thus, we speculate that a C-terminally tagged CCDC32 might not be fully functional. Indeed, SIM images of the C-terminally-tagged CCDC32 in Wan et al., show large (~100 nm) structures in the cytosol, which may reflect aggregation. 

      (2) CCDC32 binds to multiple regions on AP2, including the core domain. It is important to distinguish the functional roles of these different binding sites.

      We have localized the AP2-ear binding region to residues 78-99 and shown these to be critical for the functions we have identified. As described above we now include data that are complementary to those of Wan et al. However, our data also clearly points to additional binding modalities. We agree that it will be important and map these additional interactions and identify their functional roles, but this is beyond the scope of this paper.  

      (3) AP2 expression levels should be examined in CCDC32 depleted cells. If AP2 is gone, it is not surprising that clathrin-coated pits are defective.

      Agreed and we have confirmed this by western blotting (Figure S3A-B) and detect no reduction in levels of any of the AP2 subunits in CCDC32 siRNA knockdown cells. As stated above this could be due to residual CCDC32 present in the siRNA KD vs the CRISPR-mediated gene KO.

      (4) If the authors aim to establish a secondary function for CCDC32, they need to thoroughly discuss the known chaperone function of CCDC32 and consider whether and how CCDC32 regulates a downstream step in CME.

      Agreed. We have described the Wan et al paper, which came out while our manuscript was in review, in our Introduction.  As described above, there are areas of agreement and of discrepancies, which are thoroughly documented and discussed throughout the revised manuscript.  

      (5) The quality of Figure 1A is very low, making it difficult to assess the localization and quantify the data.

      The low signal:noise in Fig. 1A the reviewer is concerned about is due to a diffuse distribution of CCDC32 on the inner surface of the plasma membrane. We now, more explicitly describe this binding, which we believe reflects a specific interaction mediated by the C-terminus of CCDC32; thus the degree of diffuse membrane binding we observe follows: eGFP-CCDC32(FL)> eGFPCCDC32(∆78-98)>eGFP-CCDC32(1-54)~eGFP/background (see new Fig. S7). Importantly, the colocalization of CCDC32 at CCPs is confirmed by the dynamic imaging of CCPs (Fig 1B).

      (6) In Figure 6, why aren't AP2 mu and sigma subunits shown?

      Agreed. Not being aware of CCDC32’s possible dual role as a chaperone, we had assumed that the AP2 complex was intact.  We have now added this data in Figure 6 B,C and Fig. S3C, as discussed above. 

      Page 5, top, this sentence is confusing: "their surface area (~17 x 10 nm<sup>2</sup>) remains significantly less than that required for the average 100 nm diameter CCV (~3.2 x 103 nm<sup>2</sup>)."

      Thank you for the criticism. We have clarified the sentence and corrected a typo, which would definitely be confusing.  The section now reads,  “While the flat CCSs we detected in CCDC32 knockdown cells were significantly larger than in control cells (Fig. 4D, mean diameter of 147 nm vs. 127 nm, respectively), they are much smaller than typical long-lived flat clathrin lattices (d≥300 nm)(Grove et al., 2014). Indeed, the surface area of the flat CCSs that accumulate in CCDC32 KD cells (mean ~1.69 x 10<sup>4</sup> nm<sup>2</sup>) remains significantly less than the surface area of an average 100 nm diameter CCV (~3.14 x 10<sup>4</sup> nm<sup>2</sup>). Thus, we refer to these structures as ‘flat clathrin assemblies’ because they are neither curved ‘pits’ nor large ‘lattices’. Rather, the flat clathrin assemblies represent early, likely defective, intermediates in CCP formation.” 

      Significance

      Overall, while this work presents some interesting ideas, it remains unclear whether CCDC32 regulates AP2 beyond the assembly step.

      Our responses above argue that we have indeed established that CCDC32 regulates AP2 beyond the assembly step. We have also identified several discrepancies between our findings and those reported by Wan et al., most notably binding between CCDC32 and mature AP2 complexes and the AP2-dependent recruitment of CCDC32 to CCPs.  It is possible that these discrepancies may be due to the position of the GFP tag (ours is N-terminal, theirs is C-terminal; we show that the N-terminal tagged CCDC32 rescues the knockdown phenotype, while Wan et al., do not provide evidence for functionality of the C-terminal construct). 

      Reviewer #3: 

      Evidence, reproducibility and clarity (Required): 

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, known to play a role in CFNDS, is also addressed in this study and shown to have endocytic defects.

      We thank the reviewer for their positive remarks regarding the quality of our data and the strength of our conclusions.  

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2, whereby the following major and minor points remain to be addressed: 

      - The authors show that CCDC32 depletion leads to the formation of brighter and static clathrin coated structures (Figure 2), but that these were only prevalent to 7.8% and masked the 'normal' dynamic CCPs. At the same time, the authors show that the absence of CCDC32 induces pits with shorter life times (Figure 1 and Figure 2), the 'majority' of the pits.

      Clarification is needed as to how the authors arrive at these conclusions and these numbers. The authors should also provide (and visualize) the corresponding statistics. The same statement is made again later on in the manuscript, where the authors explain their electron microscopy data. Was the number derived from there? 

      These points are critical to understanding CCDC32's role in endocytosis and is key to understanding the model presented in Figure 8. The numbers of how many pits accumulate in flat lattices versus normal endocytosis progression and the actual time scales could be included in this model and would make the figure much stronger. 

      Thank you for these comments.  We understand the paradox between the visual impression and the reality of our dynamic measurements. We have been visually misled by this in previous work (Chen et al., 2020), which emphasizes the importance of unbiased image analysis afforded to us through the well-documented cmeAnalysis pipeline, developed by us (Aguet et al., 2013) and now used by many others (e.g. (He et al., 2020)). 

      The % of static structures was not derived from electron microscopy data, but quantified using cmeAnalysis, which automatedly provides the lifetime distribution of CCPs. We have now clarified this in the manuscript and added a histogram (Fig. S4) quantifying the fraction of CCPs in lifetime cohorts  <20s, 21-60s, 61-100s, 101-150s and >150s (static). 

      - In relation to the above point, the statistics of Figure 2E-G and the analysis leading there should also be explained in more detail: For example, what are the individual points in the plot (also in Figures 6G and 7G)? The authors should also use a few phrases to explain software they use, for example DASC, in the main text. 

      Each point in these bar graphs represents a movie, where n≥12. These details have been added to the respective figure legend. We have also added a brief description of DASC analysis in the text. 

      -  There are several questions related to the knock-down experiments that need to be addressed:

      Firstly, knock-down of CCDC32 does not seem to be very strong (Figure S2B). Can the level of knock-down be quantified? 

      We have now quantified the KD efficiency. It is ~60%. This turns out to be fortuitous (see responses to reviewer 2), as a recent publication, which came out after we completed our study, has shown by CRISPR-mediated knockout, that CCD32 also plays an essential chaperone function required for AP2 assembly.  We do not see any reduction in AP2 levels or its complex formation under our conditions (see new Supplemental Figure S3), which suggests that the effects of CCDC32 on CCP dynamics are more sensitive to CCDC32 concentration than its roles as a chaperone. Our phenotypes would have been masked by more efficient depletion of CCDC32.  

      In page 6 it is indicated that the eGFP-CCDC32(1-54) and eGFP-CCDC32(∆78-98) constructs are siRNA-resistant. However in Fig S2B, these proteins do not show any signal in the western blot, so it is not clear if they are expressed or simply not detected by the antibody. The presence of these proteins after silencing endogenous CCDC32 needs to be confirmed to support Figures 6 and Figures 7, which critically rely on the presence of the CCDC32 mutants. 

      Unfortunately, the C-terminally truncated CCDC32 proteins are not detected because they lack the antibody epitope, indeed even the ∆78-98 deletion is poorly detected (compare the GFP blot in new S1A with the anti-CCDC32 blot in S1B).  However, these constructs contain the same siRNA-resistance mutation as the full length protein. That they are expressed and siRNA resistant can be seen in Fig. S2A (now Fig. S1A) blotting for GFP.

      In Figures 6 and 7, siRNA knock-down of CCDC32 is only indicated for sub-figures F to G. Is this really the case? If not, the authors should clarify. The siRNA knock-down in Figure 1 is also only mentioned in the text, not in the figure legend. The authors should pay attention to make their figure legends easy to understand and unambiguous. 

      No, it is not the case.  Thank you for pointing out the uncertainty. We have added these details to the Figure legends and checked all Figure legends to ensure that they clearly describe the data shown.  

      - It is not exactly clear how the curves in Figure 3C (lower panel) on the invagination depth were obtained. Can the authors clarify this a bit more? For example, what are kT and kE in Figure 3A? What is I0? And how did the authors derive the logarithmic function used to quantify the invagination depth? In the main text, the authors say that the traces were 'logarithmically transformed'. This is not a technical term. The authors should refer to the actual equation used in the figure. 

      This analysis was developed by the Kirchhausen lab (Saffarian and Kirchhausen, 2008). We have added these details and reference them in the Figure legend and in the text. We also now use the more accurate descriptor ‘log-transformed’.

      - In the discussion, the claim 'The resulting dysregulation of AP2 inhibits CME, which further results in the development of CFNDS.' is maybe a bit too strong of a statement. Firstly, because the authors show themselves that CME is perturbed, but by no means inhibited. Secondly, the molecular link to CFNDS remains unclear. Even though CCDC32 mutants seem to be responsible for CFNDS and one of the mutant has been shown in this study to have a defect in endocytosis and AP2 binding, a direct link between CCDC32's function in endocytosis and CFNDS remains elusive. The authors should thus provide a more balanced discussion on this topic. 

      We have modified and softened our conclusions, which now read that the phenotypes we see likely “contribute to” rather than “cause” the disease.

      - In Figure S1, the authors annotate the presence of a coiled-coil domain, which they also use later on in the manuscript to generate mutations. Could the authors specify (and cite) where and how this coiled-coil domain has been identified? Is this predicted helix indeed a coiled-coil domain, or just a helix, as indicated by the authors in the discussion?

      See response to Reviewer 1, point 4.  We have changed this wording to alpha-helix. The ‘coiled-coil’ reference is historical and unlikely a true reflection of CCDC32 structure. AlphaFold 3.0 predictions were unable to identify with certainly any coiled-coil structures, even if we modelled potential dimers or trimers; and we find no evidence of dimerization of CCDC32 in vivo. We have clarified this in the text.

      Minor comments

      - In general, a more detailed explanation of the microscopy techniques used and the information they report would be beneficial to provide access to the article also to non-expert readers in the field. This concerns particularly the analysis methods used, for example: 

      How were the cohort-averaged fluorescence intensity and lifetime traces obtained? 

      How do the tools cmeAnalysis and DASC work? A brief explanation would be helpful. 

      We have expanded Methods to add these details, and also described them in the main text. 

      - The axis label of Figure 2B is not quite clear. What does 'TfnR uptake % of surface bound' mean? Maybe the authors could explain this in more detail in the figure legend? Is the drop in uptake efficiency also accessible by visual inspection of the images? It would be interesting to see that. 

      This is a standard measure of CME efficiency. 'TfnR uptake % of surface bound' = Internalized TfnR/Surface bound TfnR. Again, images may be misleading as defects in CME lead to increased levels of TfnR on the cell surface, which in turn would result in more Tfn uptake even if the rate of CME is decreased.

      - Figure 4: How is the occupancy of CCPs in the plasma membrane measured? What are the criteria used to divide CCSs into Flat, Dome or Sphere categories? 

      We have expanded Methods to add these details. Based on the degree of invagination, the shapes of CCSs were classified as either: flat CCSs with no obvious invagination; dome-shaped CCSs that had a hemispherical or less invaginated shape with visible edges of the clathrin lattice; and spherical CCSs that had a round shape with the invisible edges of clathrin lattice in 2D projection images. In most cases, the shapes were obvious in 2D PREM images. In uncertain cases, the degree of CCS invagination was determined using images tilted at ±10–20 degrees. The area of CCSs were measured using ImageJ and used for the calculation of the CCS occupancy on the plasma membrane.

      - Figure 5B: Can the authors explain, where exactly the GFP was engineered into AP2 alpha? This construct does not seem to be explained in the methods section. 

      We have added this information. The construct, which corresponds to an insertion of GFP into the flexible hinge region of AP2, at aa649, was first described by (Mino et al., 2020) and shown to be fully functional.  This information has been added to the Methods section.

      - Figure S1B: The authors should indicate the colour code used for the structural model.

      We have expanded our structural modeling using AlphaFold 3.0 in light of the recent publication suggesting the CCDC32 interacts with the µ2 subunit and does not bind full length AP2. These results are described in the text. The color coding now reflects certainty values given by AlphaFold 3.0 (Fig. S6B, D). 

      - The list of primers referred to in the materials and methods section does not exist. There is a Table S1, but this contains different data. The actual Table S1 is not referenced in the main text. This should be done. 

      We apologize for this error. We have now added this information in Table S2.

      Significance (Required):

      In this study, the authors analyse a so-far poorly understood endocytic accessory protein, CCDC32, and its implication for endocytosis. The experimental tool set used, allowing to quantify CCP dynamics and invagination is clearly a strength of the article that allows assessing the impact of an accessory protein towards the endocytic uptake mechanism, which is normally very robust towards mutations. Only through this detailed analysis of endocytosis progression could the authors detect clear differences in the presence and absence of CCDC32 and its mutants. If the above points are successfully addressed, the study will provide very interesting and highly relevant work allowing a better understanding of the early phases in CME with implication for disease. 

      The study is thus of potential interest to an audience interested in CME, in disease and its molecular reasons, as well as for readers interested in intrinsically disordered proteins to a certain extent, claiming thus a relatively broad audience. The presented results may initiate further studies of the so-far poorly understood and less well known accessory protein CCDC32.

      We thank the reviewer for their positive comments on the significance of our findings and the importance of our detailed phenotypic analysis made possible by quantitative live cell microscopy. We also believe that our new structural modeling of CCDC32 and our findings of complex and extensive interactions with AP2 make the reviewers point regarding intrinsically disordered proteins even more interesting and relevant to a broad audience.  We trust that our revisions indeed address the reviewer’s concerns. 

      The field of expertise of the reviewer is structural biology, biochemistry and clathrin mediated endocytosis. Expertise in cell biology is rather superficial.

      References:

      Aguet, F., Costin N. Antonescu, M. Mettlen, Sandra L. Schmid, and G. Danuser. 2013. Advances in Analysis of Low Signal-to-Noise Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint. Developmental Cell. 26:279-291.

      Chen, Z., R.E. Mino, M. Mettlen, P. Michaely, M. Bhave, D.K. Reed, and S.L. Schmid. 2020. Wbox2: A clathrin terminal domain–derived peptide inhibitor of clathrin-mediated endocytosis. Journal of Cell Biology. 219.

      Grove, J., D.J. Metcalf, A.E. Knight, S.T. Wavre-Shapton, T. Sun, E.D. Protonotarios, L.D. Griffin, J. Lippincott-Schwartz, and M. Marsh. 2014. Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell. 25:3581-3594.

      He, K., E. Song, S. Upadhyayula, S. Dang, R. Gaudin, W. Skillern, K. Bu, B.R. Capraro, I. Rapoport, I. Kusters, M. Ma, and T. Kirchhausen. 2020. Dynamics of Auxilin 1 and GAK in clathrinmediated traffic. J Cell Biol. 219.

      Mino, R.E., Z. Chen, M. Mettlen, and S.L. Schmid. 2020. An internally eGFP-tagged α-adaptin is a fully functional and improved fiduciary marker for clathrin-coated pit dynamics. Traffic. 21:603-616.

      Saffarian, S., and T. Kirchhausen. 2008. Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys J. 94:23332342.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      In their manuscript de las Mercedes Carro et al investigated the role of Ago proteins during spermatogenesis by producing a triple knockout of Ago 1, 3 and 4. They first describe the pattern of expression of each protein and of Ago2 during the differentiation of male germ cells, then they describe the spermatogenesis phenotype of triple knockout males, study gene deregulation by scRNA seq and identify novel interacting proteins by co-IP mass spectrometry, in particular BRG1/SMARCA4, a chromatin remodeling factor and ATF2 a transcription factor. The main message is that Ago3 and 4 are involved in the regulation of XY gene silencing during meiosis, and also in the control of autosomal gene expression during meiosis. Overall the manuscript is well written, the topic, very interesting and the experiments, well-executed. However, there are some parts of the methodology and data interpretation that are unclear (see below).

      Major comments

      1= Please clarify how the triple KO was obtained, and if it is constitutive or specific to the male germline. In the result section a Cre (which cre?) is mentioned but it is not mentioned in the M&M. On Figure S1, a MICER VECTOR is shown instead of a deletion, but nothing is explained in the text nor legend. Could the authors provide more details in the results section as well as in the M&M ? This is essential to fully interpret the results obtained for this KO line, and to compare its phenotype to other lines (such as lines 184-9 Comparison of triple KO phenotype with that of Ago4 KO). Also, if it is a constitutive KO, the authors should mention if they observed other phenotypes in triple KO mice since AGO proteins are not only expressed in the male germline.

      Response: We apologize for omitting this vital information. We have now incorporated a more detailed description of how the Ago413 mutant was created in the results and M&M sections (line 120 and 686 respectively).

      As mentioned in the manuscript, Ago4, Ago1 and Ago3 are widely expressed in mammalian somatic tissues. Mutations or deletions of these genes does not disrupt development; however, there is limited research on the impact of these mutations in mammalian models in vivo. In humans, mutations in Ago1 and Ago3 genes are associated with neurological disorders, autism and intellectual disability (Tokita, M.J.,et al. 2015- doi: 10.1038/ejhg.2014.202., Sakaguchi et al. 2019- doi: 10.1016/j.ejmg.2018.09.004, Schalk et al 2021- doi: 10.1136/jmedgenet-2021-107751). In mouse, global deletion of Ago1 and Ago3 simultaneously was shown to increase mice susceptibility to influenza virus through impaired inflammation responses (Van Stry et al 2012- doi.org/10.1128/jvi.05303-11). Studies performed in female Ago413 mutants (the same mutant line used herein) have shown that knockout mice present postnatal growth retardation with elevated circulating leukocytes (Guidi et al 2023- doi: 10.1016/j.celrep.2023.113515). Other studies of double conditional knockout of Ago1 and Ago3 in the skin associated the loss of these Argonautes with decreased weight of the offspring and severe skin morphogenesis defects (Wang et al 2012- doi: 10.1101/gad.182758.111). In our study, we did not observe major somatic or overt behavioral phenotypes, and we did not observe statistical differences in body weights of null males compared to WT as shown in figure below.

      2= The paragraph corresponding to G2/M analysis is unclear to me. Why was this analysis performed? What does the heatmap show in Figure S4? What is G2/M score? (Fig 2D). Lines 219-220, do the authors mean that Pachytene cells are in a cell phase equivalent to G2/M? All this paragraph and associated figures require more explanation to clarify the method and interpretation.

      __Response: __We have modified the methods to include more information about how the cell cycle scoring used in Figures 2D and S4 were calculated and will add more information regarding the interpretation of these figures.

      3= I have concerns regarding Fig2G: to be convincing the analysis needs to be performed on several replicates, and, it is essential to compare tubules of the same stage - which does not seem to be the case. This does not appear to be the case. Besides, co (immunofluorescent) staining with markers of different cell types should be shown to demonstrate the earlier expression of some markers and their colocalization with markers of the earlier stages.

      __Response: __We agree with the Reviewer. New images with staged tubules will be added to the analysis of Figure 2G.

      4= one important question that I think the authors should discuss regarding their scRNAseq: clusters are defined using well characterized markers. But Ago triple KO appears to alter the timing of expression of genes... could this deregulation affects the interperetation of scRNAseq clusters and results?

      __Response: __We thank the reviewer for this suggestion and agree that including this information is important. We expect that, at most, this dysregulation impacts the edges of these clusters slightly. Given that marker genes that have been used to define cell types in these data are consistently expressed between the knockout and wildtype mice (see Figure S4A), we do not think that the cells in these clusters have different identities, just dysregulated expression programs. We have added the relevant sentence to the discussion, and will include additional supplemental figure panels to document this point more comprehensively.

      5= XY gene deregulation is mentioned throughout the result section but only X chromosome genes seem to have been investigated.... Even the gene content of the Y is highly repetitive, it would be very interesting to show the level of expression of Y single copy and Y multicopy genes in a figure 3 panel.

      __Response: __We agree with the reviewer that including analysis of Y-linked genes is important. We will add a supplemental figure which includes the Y:Autosome ratio and differential expression analysis.

      6= Can the authors elaborate on the observation that X gene upregulation is visible in the KO before MSCI; that is in lept/zygotene clusters (and in spermatogonia, if the difference visible in 3A is significant?)

      Response: We do see that X gene expression is upregulated before pachynema. Previous scRNA-seq studies that have looked at MCSI have seen that silencing of genes on the X and Y chromosomes starts before the cell clusters that are defined as pachynema, though silencing is not fully completed until pachynema. We have clarified this point in the manuscript.

      7 = miRNA analysis: could the authors indicate if X encoded miRNA were identified and found deregulated? Because Ago4 has been shown to lead to a downregulation of miRNA, among which many X encoded. It is therefore puzzling to see that the triple KO does not recapitulate this observation. Were the analyses performed differently in the present study and in Ago4 KO study?

      __Response: __The analysis identifying downregulation of miRNA in the original Ago4 mutant analysis was conducted relative to total small RNA expression. Amongst those altered miRNA families in the Ago4 mutants, we demonstrated both upregulation and downregulation of miRNA. We agree that confirming a similar global downregulation of miRNA counts compared to other small RNAs is important. Therefore, in a revised manuscript, we will add this information to the miRNA analysis section, especially highlighting the X chromosome-associated miRNAs, as well as whether the ratios between other small RNA classes change.

      8 = The last results paragraph would also benefit from some additional information. It is not clear why the authors focused on enhancers and did not investigate promoters (or maybe they were but it's unclear). Which regions (size and location from TSS) were investigated for motif enrichment analyses? To what correspond the "transcriptional regulatory regions previously identified using dREG" mentioned in the M&M? I understand it's based on a previous article, but more info in the present manuscript would be useful.

      Response: We thank the reviewer for this suggestion. The regions that were used for motif enrichment will be included as a supplementary information in the fully revised manuscript. We have also clarified in the methods that these transcriptional regulatory regions were downloaded from GEO and obtained from previous ChRO-seq data (from GEO) analysis. These data are run through the dREG pipeline that identifies regions predicted to contain transcription start sites, which include promoters and enhancers.

      Minor comments

      1) In the introduction: The sentence "Ago1 is not expressed in the germline from the spermatogonia stage onwards allowing us to use this model to study the roles of Ago4 and Ago3 in spermatogenesis." is misleading because Ago1 is expressed at least in spermatogonia; It would be more precise to write "after spermatogonia stage" and rephrase the sentence. Otherwise it is surprising to see AGO1 protein in testis lysate and it is not in line with the scRNA seq shown in figure 2.

      __Response: __We agree with the Reviewers suggestion and have edited the sentence on line 100. This sentence now reads "Ago1 is not expressed in the germline after the spermatogonia stage allowing us to use this model to study the roles of Ago4 and Ago3 in spermatogenesis".

      2) Could the authors precise if AGO proteins are expressed in other tissues? In somatic testicular cells?

      __Response: __Expression patterns of mammalian AGOs have been described in somatic and testicular tissues for the mouse by Gonzales-Gonzales et al (2008) by qPCR. They found that Ago2 is expressed in all the somatic tissues analyzed (brain, spleen, heart, muscle and lung) as well as the testis, with the highest expression in brain and lowest in heart. Ago1 is highly expressed in spleen compared to all the tissues analyzed, while Ago3 and Ago4 showed highest expression in testis and brain. Within somatic tissues of the testis, the four argonautes are expressed in Sertoli cells, however, Ago1,3 and 4 expression is very low compared to Ago2, with the latter showing a 10-fold higher transcript level. We have included a sentence with this information in the introduction in line 89.

      3) Pattern of expression: How do the authors explain that AGO3 disappears at the diplotene stage and reappears in spermatids?

      __Response: __ Single cell RNAseq data in the germline shows reduced transcript for Ago3 from the Pachytene stage onwards, suggesting minimal if any new transcription in round spermatids. We hypothesize that the AGO3 protein present in the round spermatid stage is cytoplasmic, presumably coming from the pool of AGO3 in the chromatoid body, a cytoplasmic structure with functional association with the nucleus in round spermatids (Kotaja et al, 2003 doi: 10.1073/pnas.05093331).

      4) It would be useful to show the timing of expression of AGO 1 to 4 throughout spermatogenesis in the first paragraph of the article. Maybe the authors could present data from fig2B earlier?

      Response: We understand the Reviewers concern, however, given that Ago expression throughout spermatogenesis was obtained from scRNA seq, we consider that this data should be presented after introducing the Ago413 knockout and the scRNA seq experiment. As Ago1-4 expression was also described in an earlier manuscript by Gonzales-Gonzales et al in the mouse male germline, and our data aligns with this report, we included a sentence about these previous findings in the earlier results section.

      5) Line 190: please modify the sentence "reveal no differences in cellular architecture of the seminiferous tubules when compared to wild-type males" to " reveal no gross differences..." since even without quantification of the different cell types it is visible that KO seminiferous tubules are different from WT tubules.

      __Response: __We agree with the reviewer, and we modified line 190 (now 173) as suggested. Grossly, seminiferous tubules from Ago413 null males contain the same cell types as in wild type tubules, including spermatozoa. However, our studies show that the number and quality of germ cells is compromised in knockouts, as shown by sperm counts and TUNEL staining.

      6) TUNEL analysis: please stage the tubules to determine the stage(s) at which apoptosis is the most predominant.

      __Response: __We have complied with the reviewer suggestion. Figure 1G now shows staged seminiferous tubules, and we have replaced the wild type image for one where the staged tubules match the knockout image.

      7) Figure S4B does not show an increase of cells at Pachytene stage but at Lepto/zygotene stage (as well as an increase of spermatogonia). Please comment this discrepancy with results shown in Fig2.

      __Response: __Figures 2 and S4 show distribution of cells in different substages of spermatogenesis and prophase I measured with very different methods: a cytological approach using chromosome spreads cells vs a transcriptomic approach that involves clustering of cells. We attribute the differences in cell type distribution to differences in the sensitivity of the methods to identify each cell type and therefore identify differences between the number of cells for each group. Moreover, our scRNA-seq data groups the leptotene and zygotene stages together, while the cytological approach allows for separation of these two sub-stages. Importantly, both results show that Ago413 spermatocytes are progressing slower from pachynema into diplonema and/or are dying after pachynema, as stated in line 194 in our manuscript.

      8) Fig5H and 5I are not mentioned in the result section. Also, it would be useful to label them with "all chromosomes" and "XY" to differentiate them easily

      __Response: __We apologize for the omission and have now cited Figures 5H and 5I in the manuscript (line 453). We have added the suggested labels.

      9) Line 530 "data provide further evidence for a functional association between AGO-dependent small RNAs and heterochromatin formation, maintenance and/or silencing." Please rephrase, the present article does not really show that AGO nuclear role depends on small RNAs.

      __Response____: __We agree with the reviewer that these data do not directly show a dependence on small RNAs. As our identified localization of AGO proteins to the pericentric heterochromatin coincides with localization of DICER shown previously by Yadav and collaborators (2020, doi: 10.1093/nar/gkaa460), we do believe that our data further implicates small RNAs in the silencing of heterochromatin. Yadav et al shows that DICER localizes to pericentromeric heterochromatin and processes major satellite transcripts into small RNAs in mouse spermatocytes, and cKO germ cells have reduced localization of SUV39H2 and H3K9me3 to the pericentromeric heterochromatin. Given the colocalization of both small RNA producing machinery and AGOs at pericentromeric heterochromatin, the AGOs may bind these small RNAs, and the statement in line 530 refers to how our results provide evidence for the involvement of other RNAi machinery in the silencing of pericentromeric heterochromatin investigated by Yadav et al which likely includes small RNAs.

      To clarify this point, we have modified the text accordingly.

      10) Line 1256: replace "cite here " by appropriate reference

      __Response: __The reference was added to line 1256.

      11) Please use SMARCA4 instead of BRG1 name as it is its official name.

      __Response: __We have replaced BRG1 with SMARCA4 in the text and figures.

      Figures:

      Figure 1: Are the pictures shown for Ago3-tagged and floxed from the same stages ? The leptotene stage in 1A looks like a zygotene, while some pachytene/diplotene stage pictures do not look alike.

      __Response: __New representative images have been added to figure 1 to match the same substages across the figure.

      Figure 1D, please label the Y scale properly (testis weight related to body weight)

      __Response: __We have fixed this.

      FigS1: Please comment the presence of non-specific bands in the figure legend

      __Response: __We have added a sentence in Figure S1 Legend.

      Fig 2E and F, please indicate on the figure (in addition to its legend), what are the X and Y axes respectively to facilitate its reading.

      __Response: __X and Y axes are now labelled in Figure 2E and F.

      2F: please use an easier abbreviation for Spermatocyte than Sp (which could spermatogonia, sperm etc..) such as Scyte I ? (same comment for Fig 3C)

      Response: The abbreviation for spermatocyte was changed from Sp to Scyte I in Figures 2 and 3.

      Overall, for all figures showing GSEA analyses, could the authors explain what a High positive NES and a High negative NES mean in the results section?

      Response: Thank you for this suggestion. We have added this information where the GSEA score of the cell markers is initially introduced.

      Significance

      Ago proteins are known for their roles in post transcriptional gene regulation via small RNA mediated cleavage of mRNA, which takes places in the cytoplasm. Some Ago proteins have been shown to be also located in the nucleus suggesting other non-canonical roles. It is the case of Ago4 which has been shown to localize to the transcriptionally silenced sex chromosomes (called sex body) of the spermatocyte nucleus, where it contributes to regulate their silencing (Modzelewski et al 2012). Interestingly, Ago4 knockout leads to Ago3 upregulation, including on the sex body indicating that Ago3 and Ago4 are involved in the same nuclear process. In their manuscript, de las Mercedes Carro et al., investigate the consequences of loss of both Ago3 and Ago4 in the male germline by the production of a triple knockout of Ago1, 3 and 4 in the mouse. With this model, the authors describe the role of Ago3 and Ago4 during spermatogenesis and show that they are involved in sex chromosome gene repression in spermatocytes and in round spermatids, as well as in the control of autosomal meiotic gene expression. Triple KO males have impaired meiosis and spermiogenesis, with fewer and abnormal spermatozoa resulting in reduced fertility. Since Ago1 male germline expression is restricted to pre-meiotic germ cells, it is not expected to contribute to the meiotic and postmeiotic phenotypes observed in the triple KO. The strengths of the study are i) the thorough analyses of mRNA expression at the single cell level, and in purified spermatocytes and spermatids (bulk RNAseq), ii) the identification of novel nuclear partners of AGO3/4 relevant for their described nuclear role: ATF2, which they show to also co-localize with the sex body, and BRG1/SMARCA4, a SWI/SNF chromatin remodeler. The main limitation of the study is the lack of information in the method regarding the production of the triple KO, as well as some aspects of the transcriptome and motif analyses. It is also surprising to see that the triple KO does not recapitulate the miRNA deregulation observed in Ago4 KO. The characterization of a non-canonical role of AGO3/4 in male germ cells will certainly influence researchers of the field, and also interest a broader audience studying Argonaute proteins and gene regulation at transcriptional and posttranscriptional levels.

      Reviewer #2

      Evidence, reproducibility and clarity

      In the manuscript titled "Argonaute proteins regulate the timing of the spermatogenic transcriptional program" by Carro et al., the authors present their findings on how Argonaute proteins regulate spermatogenic development. They utilize a mouse model featuring a deletion of the gene cluster on chromosome 4 that contains Ago1, Ago3, and Ago4 to investigate the cumulative roles of AGO3 and AGO4 in spermatogenic cells. The authors characterize the distribution of AGO proteins and their effects on key meiotic milestones such as synapsis, recombination, meiotic transcriptional regulation, and meiotic sex chromosome inactivation (MSCI). They analyze stage-specific transcriptomes in spermatogenic cells using single-cell and bulk RNA sequencing and determine the interactome of AGO3 and AGO4 through mass spectrometry to examine how AGO proteins may regulate gene expression in these cells during meiotic and post-meiotic development. The authors conclude that both AGO3 and AGO4 are essential for regulating the overall gene expression program in spermatogenic cells and specifically modulate MSCI to repress sex-linked genes in pachytene spermatocytes, which may be partially mediated by the proper distribution of DNA damage repair factors. Additionally, AGO3 is suggested to interact with the chromatin remodeler SWI/SNF factor BRG1, facilitating its removal from the sex-chromatin to enable the repression of sex-linked genes during MSCI.

      Major Comments: 1. The study utilized a triple knockout mouse model to determine the effect of AGO3 on spermatogenesis, following up on their previous report about the role of AGO4 in spermatogenesis, which resulted from an upregulation of AGO3 in Ago4-/- spermatocytes. However, the results are more difficult to interpret and ascertain the role of AGO3 in these cells, given the absence of any observable phenotype from Ago3 interruption. AGO4 regulates sex body formation, meiotic sex chromosome inactivation (MSCI), and miRNA production in spermatocytes, all of which were noted in the absence of both AGO3 and AGO4, with only an increased incidence of cells containing abnormal RNAPII at the sex chromosomes. It will be necessary to characterize how AGO3 regulates spermatogenic development, including meiotic progression and the regulation of the meiotic transcriptome, and compare these findings with the current observations to determine if the proposed mechanism involving AGO3, BRG1, and possibly AP2 is relevant in this context.

      __Response: __While we agree with Reviewer that a single Ago3 knockout will help understand distinct roles of AGO3 and AGO4 in spermatogenesis, the time and resources required to generate a new mouse model are substantial. The analysis included in this current manuscript has already taken over seven years, and with the lengthy production of a new single mutant mouse, validation of the new mouse, and then final analysis, we would be looking at another 3-5 years of analysis. In the current funding climate, and with strong concerns over ensuring reduction in utilization of laboratory mice, we consider this request to be far in excess of what is required to move this important story forward.

      The Ago413-/- mouse model has allowed us to associate a nuclear role of Argonaute proteins with a strong reproductive phenotype in the mouse germline. Given the redundancy between Ago3 and Ago4, it is likely that a single Ago3 knockout would have a mild phenotype just like the Ago4 KO. All this said, we agree with the reviewer that analysis of an Ago3 knockout mouse is a valuable next step, just not within this chapter of the story.

      1. Does Ago413-/- mice recapitulate the early meiotic entry phenotype observed in Ago4-/- mice? If not, could it be possible that AGO3 promotes meiotic entry, given its strong mRNA expression in spermatogonia according to the scRNAseq data (Fig. 2B)

      Response: Our scRNA-seq data shows strong expression of Ago3 in spermatogonia, as mentioned by the Reviewer. Analysis of cell cycle marker expression also shows that the transcriptomic profile of spermatogonia is altered, with higher levels of transcripts corresponding to the later G2/M stages (Figure 2D). Moreover, Ago413 knockouts present an increase in the number of spermatogonial stem cells (Supplementary Figure S4B). However, this cluster represents a pool of quiescent and mitotically active cells entering meiosis, therefore interpretation of these data might be challenging. While specific experiments could be conducted to answer this question, this is outside of the scope of our manuscript. The manuscript as it stands is already rather large, and a full analysis of meiotic entry dynamics would dilute the core message relating to chromatin regulation in the sex body.

      1. The authors suggested that the removal of BRG1 by AGO3 is necessary during sex body formation and the eventual establishment of MSCI. However, the BAF complex subunit ARID1A has been shown to facilitate MSCI by regulating promoter accessibility. It will be interesting to determine how BRG1 distribution changes across the genome in the absence of AGO proteins and how that correlates with alterations in sex-linked gene expression.

      __Response: __We agree that changes in BRG1 distribution across the genome would be very interesting to identify. However, in this work we show that BRG1/SMARCA4 protein changes its localization in the sex body very rapidly between early to late pachynema. These two substages are only discernable by immunofluorescence using synaptonemal complex markers, as there are currently no available techniques to enrich for these subfractions. Therefore, study of genome occupancy of BRG1 in these specific substages by techniques such as CUT&Tag are not currently possible. However, we are currently working on new methods to distinguish these cell populations and hope eventually to use these purification strategies to perform the studies suggested by this reviewer. Alternatively, the hope is that single cell CUT&Tag methods will become more reliable, and will enable us to address these questions. Both of these options are not currently available to us. The studies by Menon et al (2024-doi:10.7554/eLife.88024.5) provide strong evidence to support that ARID1A is needed to reduce promoter accessibility of XY silenced genes in prophase I through modulation of H3.3 distribution. However, this mechanism and our identification of the removal of BRG1 between early and late pachytema are not inconsistent with one another, as either SMARCA4 or SMARCA2 can associate with ARID1A as part of the cBAF complex, and ARID1A is also not in all forms of the BAF complex which BRG1 are in. The difference between our results and those seen in Menon et al likely indicate that there are multiple forms of the BAF complex which are differentially regulated during MSCI and play different roles in silencing transcription. Further studies of specific BAF subunits are needed to elucidate how different flavors of the BAF complex act at specific genomic locations and meiotic time points.

      1. The observations presented in this manuscript (Fig. 1D, 2C, 3D, and 4) suggest a haploinsufficiency of the deleted locus in spermatogenic development. How does this compare with the ablation of either Ago3 or Ago4? Please explain.

      Response: Our previous studies in single Ago4 knockouts did not present a heterozygous phenotype (Modzelewski et al 2012, doi: 10.1016/j.devcel.2012.07.003, data not shown). Triple Ago413 knockouts show a much stronger fertility phenotype than single Ago4 knockout. Testis weight of Ago413 homozygous null present a 30% reduction while heterozygous mice show a 15% reduction (Figure 1D), comparable to the 13% reduction previously observed in Ago4-/- males. Sperm counts of Ago413 null and heterozygous males are reduced by 60% and 39% compared to wild type (Figure 1E), respectively, whereas Ago4 null mice have a milder phenotype, with only a 22% reduction in sperm counts. At the MSCI level, both homozygous and heterozygous Ago413 mutant spermatocytes show a similar increase in pachytene spermatocytes with increased RNA pol II ingression into the sex body with respect to wild-type of 35% and 30%, respectively. Ago4 single knockouts show an almost 18% increase in Pol II ingression when compared to wild type. These comparisons are now included in our manuscript in lines 170, 172 and 288. A milder phenotype of the Ago4 knockout and haploinsufficiency in triple Ago413 knockouts but not in Ago4 single knockouts is likely a consequence of the overlapping functions of Ago3 and Ago4 in mammals (and/or overexpression of Ago3 in Ago4 knockouts). In the context of their role in RISC, Wang et al (doi: 10.1101/gad.182758.111) studied the effects of single and double conditional knockouts for Ago1 and Ago2 in miRNA-mediated silencing. They discovered that the interaction between miRNAs and AGOs is highly correlated with the abundance of each AGO protein, and only double knockouts presented an observable phenotype.

      Minor Comments: Based on the interactome analysis, it was argued that AGO3 and AGO4 may function separately. Please discuss how AGO3 might compensate for AGO4 (Line 109).

      Response: We hypothesize that the combined function of AGO3 and AGO4 is needed for proper sex chromosome inactivation during meiosis. We base this hypothesis on the facts that (i) both proteins localize to the sex body in pachytene spermatocytes, (ii) loss of Ago4 leads to upregulation of Ago3, and (iii) the MSCI phenotype of Ago413 knockout mice is much stronger than the single Ago4 knockout (see above). However, AGO3 and AGO4 might not induce silencing through the same mechanism or pathway. In this work, we observed that their temporal expression in prophase I is different; while AGO3 protein seems to disappear by the diplotene stage, AGO4 is present in the sex body of these cells. Moreover, the proteomic analysis revealed a very low number of common interactors, an observation which could support the idea of AGO3 and AGO4 acting by different (albeit perhaps related) mechanisms to achieve MSCI. It is also possible that common interactors were not identified in our proteomic analysis due to the low abundance of AGO3 and AGO4 in the germ cells, limiting the resolution of the proteomics analysis (note that in order to visualize AGO proteins in WB experiments, at least 60 μg of enriched germ cell lysate must be loaded per lane). Moreover, given the difficulty in obtaining enough isolated pachytene and diplotene spermatocytes to perform immunoprecipitation experiments, we performed IP experiments in whole germ cell lysates, which limits the interpretation of our analysis. If AGO3 and AGO4 protein interactors overlap, then AGO3 would directly substitute for AGO4 leading to silencing in single Ago4 knockouts. However, if AGO3 and AGO4 work together through different, complementary mechanisms, then Ago4 mutant mice likely compensates loss of Ago4 by upregulation of Ago3along with specific interactors of the given pathway. We have added a sentence addressing this matter in line 411 of the results section and lines 506 and 513 of the discussion in the revised manuscript.

      In Line 221, it is unclear what is meant by 'cell cycle transcripts'. Does this refer to meiotic transcripts? It is also important to discuss the relevance of the G2/M cell cycle marker genes at later stages of meiotic prophase.

      Response: Thank you for this suggestion. We have changed the relevant text to remove redundancies and include more information. We agree that considering the importance of these genes across meiotic prophase is needed, as cells which are in the dividing stage will already have produced the proteins necessary for division. These cells likely correspond to the diplotene/M cluster cells that have a lower G2/M score, potentially causing the bimodal distribution seen in Figure 2D. We have added a sentence addressing this to the manuscript.

      While identified as a common interactor of both AGO3 and AGO4 in lines 440-445, HNRNPD is not listed among AGO4 interactors in Table S6. Please correct or explain this discrepancy.

      Response: HNRPD was originally identified as an AGO4 interactor using a less strict criteria than the one used in our manuscript: we required consistent enrichment in at least two rounds of IP MS experiments. This reference to HNRNPD was a mistake, given that HNRPD was only enriched in one of our three replicates. Thus, we apologize and have removed the sentence in lines 440-445.

      It is unclear whether wild-type cell lysate or lysate containing FLAG-tagged AGO3 was used for BRG1 immunoprecipitation, and which antibody was used to detect AGO3 in the BRG1 IP sample. A co-IP experiment demonstrating interaction between BRG1 and wild-type AGO3 would be ideal in this context. Furthermore, co-localization by IF would be beneficial to determine the subcellular localization and the cell stages the interaction may be occurring. Additionally, co-IP and Western blot methodologies should be included in the methods section.

      __Response: __MYC-FLAG tagged AGO3 protein lysates were used for BRG1 Co-Immunoprecipitation, along with an anti MYC antibody to detect AGO3. This is now detailed in the Methods section of our revised manuscript (line 1133).

      Regarding BRG1 and AGO3 colocalization by IF, we can confidently show that both AGO3 and BRG1 localize to the sex chromosomes in early pachynema by comparing BRG1/SYCP3 and FLAG-AGO3/SYCP3 stained spreads. We were not able to show colocalization simultaneously on the same cells, given the lack of appropriate antibodies. Our anti FLAG antibody is raised in mouse, while anti BRG1 is raised in rabbit, therefore a non-rabbit, non-mouse anti SYCP3 would be needed to identify prophase I substages, and our lab does not possess such a validated antibody. However, we now have access to a multiplexing kit that allows to use same-species antibodies for immunofluorescence and we can perform these experiments for a revised manuscript.

      __Response: __The methods section now includes description of co-IP methodologies (line 1132). Western Blot methodologies are explained in lane 718, under the "Immunoblotting" title.

      In line 599, it is unclear what is meant by 'persistence of sex chromosome de-repression'. Please correct or clarify this.

      Response: This sentence has been changed and reads: "The persistence of sex chromosome gene expression".

      If possible, please add an illustration to summarize the findings together.

      Response: We thank the reviewer for this suggestion, and have now added this in Figure 6

      Significance

      Overall, this study enhances the understanding of gene expression regulation by AGO proteins during spermatogenesis. Several approaches, including functional, histological, and molecular characterization of the triple knockout phenotype, were instrumental in elucidating the role of AGO proteins in MSCI and meiotic as well as postmeiotic gene regulation. The main limitation of the study is that it is challenging to appreciate the role of AGO3 in addition to the previously published role of AGO4 without the inclusion of necessary control groups. Furthermore, the mechanism of action for AGO proteins in meiotic gene regulation was left relatively unexplored. This study presents new findings that will be significant for the research community interested in gene regulation, chromatin biology, and reproductive biology with the above suggestions considered.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      The authors characterize a CRISPR-Cas9 mouse mutant that targets 3 genes that encode AGO family proteins, 2 of which are expressed during spermatogenesis (AGO3 and AGO4) and one that is said is not expressed, AGO1. This mouse mutant showed that AGO3 and AGO4 both contribute to spermatogenesis success as the "Ago413" mutation gave rise to an additive reduction in testis weight, due to spermatocyte apoptosis, and reduction in sperm count. Furthermore, they use insertion mouse mutants for Ago3 and Ago2 that express tagged versions of their corresponding proteins, which they use in combination with pan-AGO antibodies and Ago mutants to show differential expression and localization properties of AGO2, AGO3, and AGO4 (and the absence of AGO1) during spermatogenesis with a particular focus on meiotic prophase. They perform single-cell RNAseq and intricate analyses to demonstrate a change in distribution of meiotic stages in Ago413 mutants, and the overall cell cycle in spermatogonia and spermatocytes is altered. This analysis shows that the mutation leads to an inability to downregulate prior spermatogonia/spermatocyte stage transcripts in a timely manner. On the other hand, later-stage spermatocytes are abnormally expressing spermiogenesis genes. Similar to the Ago4 mutant previously characterized MSCI is disrupted. The authors also show that AGO3 has different interaction partners compared to AGO4 and focus their final assessment on a novel interaction partner of AGO3, BRG1. They show that this factor, which is involved in chromatin remodeling, is aberrantly localized to the sex body during meiotic prophase and diplonema. As BRG1 is involved in open chromatin, it is proposed that AGO3 restricts BRG1 (and related proteins) from the XY chromosome to ensure MSCI. Overall, this paper is very well constructed with mechanistic insights that make this a very impactful contribution to the research community. Major Comments:

      1. The abstract contains "Ago413-/- mouse" without any explanation of what that is. The abstract needs to be a stand-alone document that does not require any referencing for context.

      Response: We have included a sentence describing Ago413 in line 27

      Figure 2C. - The significance bars are confusing as they appear to overlap strangely.

      Response: We have modified this figure and now present the significance bars are on top of the data points.

      On line 235, the authors state that "we first identified the top non-overlapping upregulated genes for Ago413+/+ germ cells in each cluster. Why did the authors not also select down-regulated genes in each cluster to perform a similar analysis?

      __Response: __Thank you for this question. As our goal was to identify genes that are markers of the transcriptional program in each cell type, we used only uniquely upregulated genes for each cluster. Genes that are downregulated for a cluster may be indicative of the transcription in several other cell types, which is not easily interpretable. For a revised manuscript, we will perform this analysis to determine if there is any specific alterations in these downregulated genes.

      Their Ago413 mutant characterization does a good job of assessing meiotic prophase and spermatozoa. However, their assessment of the stages in between these is lacking (meiotic divisions and spermiogenesis).

      Response: We understand the reviewer's concern, however, it is not usual to study stages between the first meiotic division and spermiogenesis because meiosis II is so rapid and thus we lack tools to dissect it. In general, any defect that impacts meiosis I (and particularly prophase I) leads to cell death during prophase I or at metaphase I due to strictly adhered checkpoints that eradicate defective cells. Thus, the increased TUNEL staining in prophase I indicates to us that defective cells are cleared before exit from meiosis I, and those cells progressing to the spermatid stage are "normal" for meiosis II progression. For these cells that did complete meiosis I and progressed normally through meiosis II, we analyzed their spermiogenic outcome extensively (see section entitled "Post-meiotic spermatids from Ago413-/- males exhibit defective spermiogenesis and poor spermatozoa function"). This section included extensive sperm morphology, sperm motility and sperm fertility through in vitro fertilization assays. That said, we have added a sentence on line 268 to explain the transit through meiosis II.

      The discovery of the interaction between BRG1 and AGO3 is exciting. They should assess BRG1 localization in later sub-stages, including late diplonema and diakinesis.

      __Response: __BRG1(SMARCA4) was analyzed throughout prophase I, as shown in image 5G, including quantification of fluorescence intensity included the analysis of diplonema (5H-I). However, diakinesis was not included here since there was no observable signal of BRG1 in these cells. We have explained this in lines 459.

      ATF2 should have been assessed in more detail, as was done for BRG1 in Figure 5.

      __Response: __We agree with the Reviewer, however, staining of chromosome spreads with the anti ATF2 antibody was not possible in our hands after several attempts and changes in staining conditions. However, as staining of sections was successful, we showed localization of ATF2 on spermatocytes by co staining sections with SYCP3 and ATF2.

      Reviewer #3 (Significance (Required)): Overall, this paper is very well constructed with mechanistic insights, as described in my reviewer comments, that make this a very impactful contribution to the research community.

    1. For example n∑i=1xiyi=x1y1+x2y2+…+xnyn,(10.8)(10.8)∑i=1nxiyi=x1y1+x2y2+…+xnyn,\begin{equation} \sum^n_{i=1}x_iy_i = x_1y_1 + x_2y_2 + \ldots + x_ny_n, \tag{10.8} \end{equation} which, following PEMDAS, we recognize multiplication of xixix_i and yiyiy_i should come before the summation.

      This isn't a sentence. Is it supposed to be?

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors have used full-length single-cell sequencing on a sorted population of human fetal retina to delineate expression patterns associated with the progression of progenitors to rod and cone photoreceptors. They find that rod and cone precursors contain a mix of rod/cone determinants, with a bias in both amounts and isoform balance likely deciding the ultimate cell fate. Markers of early rod/cone hybrids are clarified, and a gradient of lncRNAs is uncovered in maturing cones. Comparison of early rods and cones exposes an enriched MYCN regulon, as well as expression of SYK, which may contribute to tumor initiation in RB1 deficient cone precursors.

      Strengths:

      (1) The insight into how cone and rod transcripts are mixed together at first is important and clarifies a long-standing notion in the field.

      (2) The discovery of distinct active vs inactive mRNA isoforms for rod and cone determinants is crucial to understanding how cells make the decision to form one or the other cell type. This is only really possible with full-length scRNAseq analysis.

      (3) New markers of subpopulations are also uncovered, such as CHRNA1 in rod/cone hybrids that seem to give rise to either rods or cones.

      (4) Regulon analyses provide insight into key transcription factor programs linked to rod or cone fates.

      (5) The gradient of lncRNAs in maturing cones is novel, and while the functional significance is unclear, it opens up a new line of questioning around photoreceptor maturation.

      (6) The finding that SYK mRNA is naturally expressed in cone precursors is novel, as previously it was assumed that SYK expression required epigenetic rewiring in tumors.

      We thank the reviewer for describing the study’s strengths, reflecting the major conclusions of the initially submitted manuscript.  However, based on new analyses – including the requested analyses of other scRNA-seq datasets, our revision clarifies that:

      -  related to point (1), cone and rod transcripts do not appear to be mixed together at first (i.e., in immediately post-mitotic immature cone and rod precursors) but appear to be coexpressed in subsequent cone and rod precursor stages; and 

      - related to point (3), CHRNA1 appears to mark immature cone precursors that are distinct from the maturing cone and rod precursors that co-express cone- and rod-related RNAs (despite the similar UMAP positions of the two populations in our dataset). 

      Weaknesses:

      (1) The writing is very difficult to follow. The nomenclature is confusing and there are contradictory statements that need to be clarified.

      (2) The drug data is not enough to conclude that SYK inhibition is sufficient to prevent the division of RB1 null cone precursors. Drugs are never completely specific so validation is critical to make the conclusion drawn in the paper.

      We thank the reviewer for noting these important issues. Accordingly, in the revised manuscript:

      (1) We improve the writing and clarify the nomenclature and contradictory statements, particularly those noted in the Reviewer’s Recommendations for Authors. 

      (2) We scale back claims related to the role of SYK in the cone precursor response to RB1 loss, with wording changes in the Abstract, Results, and Discussion, which now recognize that the inhibitor studies only support the possibility that cone-intrinsic SYK expression contributes to retinoblastoma initiation, as detailed in our responses to Reviewer’s Recommendations for Authors. We agree and now mention that genetic perturbation of SYK is required to prove its role.  

      Reviewer #2 (Public review):

      Summary:

      The authors used deep full-length single-cell sequencing to study human photoreceptor development, with a particular emphasis on the characteristics of photoreceptors that may contribute to retinoblastoma.

      Strengths:

      This single-cell study captures gene regulation in photoreceptors across different developmental stages, defining post-mitotic cone and rod populations by highlighting their unique gene expression profiles through analyses such as RNA velocity and SCENIC. By leveraging fulllength sequencing data, the study identifies differentially expressed isoforms of NRL and THRB in L/M cone and rod precursors, illustrating the dynamic gene regulation involved in photoreceptor fate commitment. Additionally, the authors performed high-resolution clustering to explore markers defining developing photoreceptors across the fovea and peripheral retina, particularly characterizing SYK's role in the proliferative response of cones in the RB loss background. The study provides an in-depth analysis of developing human photoreceptors, with the authors conducting thorough analyses using full-length single-cell RNA sequencing. The strength of the study lies in its design, which integrates single-cell full-length RNA-seq, longread RNA-seq, and follow-up histological and functional experiments to provide compelling evidence supporting their conclusions. The model of cell type-dependent splicing for NRL and THRB is particularly intriguing. Moreover, the potential involvement of the SYK and MYC pathways with RB in cone progenitor cells aligns with previous literature, offering additional insights into RB development.

      We thank the reviewer for summarizing the main findings and noting the compelling support for the conclusions, the intriguing cell type-dependent splicing of rod and cone lineage factors, and the insights into retinoblastoma development.  

      Weaknesses:

      The manuscript feels somewhat unfocused, with a lack of a strong connection between the analysis of developing photoreceptors, which constitutes the bulk of the manuscript, and the discussion on retinoblastoma. Additionally, given the recent publication of several single-cell studies on the developing human retina, it is important for the authors to cross-validate their findings and adjust their statements where appropriate.

      We agree that the manuscript covers a range of topics resulting from the full-length scRNAseq analyses and concur that some studies of developing photoreceptors were not well connected to retinoblastoma. However, we also note that the connection to retinoblastoma is emphasized in several places in the Introduction and throughout the manuscript and was a significant motivation for pursuing the analyses. We suggest that it was valuable to highlight how deep, fulllength scRNA-seq of developing retina provides insights into retinoblastoma, including i) the similar biased expression of NRL transcript isoforms in cone precursors and RB tumors, ii) the cone precursors’ co-expression of rod- and cone-related genes such as NR2E3 and GNAT2, which may explain similar co-expression in RB cells, and iii) the expression of  SYK in early cones and RB cells.  While the earlier version had mainly highlighted point (iii), the revised Discussion further refers to points (i) and (ii) as described further in the response to the Reviewer’s Recommendations for Authors. 

      We address the Reviewer’s request to cross-validate our findings with those of other single-cell studies of developing human retina by relating the different photoreceptor-related cell populations identified in our study to those characterized by Zuo et al (PMID 39117640), which was specifically highlighted by the reviewer and is especially useful for such cross-validation given the extraordinarily large ~ 220,000 cell dataset covering a wide range of retinal ages (pcw 8–23) and spatiotemporally stratified by macular or peripheral retina location. Relevant analyses of the Zuo et al dataset are shown in Supplementary Figures S3G-H, S10B, S11A-F, and S13A,B. 

      Reviewer #3 (Public review):

      Summary:

      The authors use high-depth, full-length scRNA-Seq analysis of fetal human retina to identify novel regulators of photoreceptor specification and retinoblastoma progression.

      Strengths:

      The use of high-depth, full-length scRNA-Seq to identify functionally important alternatively spliced variants of transcription factors controlling photoreceptor subtype specification, and identification of SYK as a potential mediator of RB1-dependent cell cycle reentry in immature cone photoreceptors.

      Human developing fetal retinal tissue samples were collected between 13-19 gestational weeks and this provides a substantially higher depth of sequencing coverage, thereby identifying both rare transcripts and alternative splice forms, and thereby representing an important advance over previous droplet-based scRNA-Seq studies of human retinal development.

      Weaknesses:

      The weaknesses identified are relatively minor. This is a technically strong and thorough study, that is broadly useful to investigators studying retinal development and retinoblastoma.

      We thank the reviewer for describing the strengths of the study. Our revision addresses the concerns raised separately in the Reviewer’s Recommendations for Authors, as detailed in the responses below.  

      Recommendations for the authors:

      Reviewing Editor Comments:

      The reviewers have completed their reviews. Generally, they note that your work is important and that the evidence is generally convincing. The reviewers are in general agreement that the paper adds to the field. The findings of rod/cone fate determination at a very early stage are intriguing. Generally, the paper would benefit from clarifications in the writing and figures. Experimentally, the paper would benefit from validation of the drug data, for example using RNAi or another assay. Alternatively, the authors could note the caveats of the drug experiments and describe how they could be improved. In terms of analysis, the paper would be improved by additional comparisons of the authors' data to previously published datasets.

      We thank the reviewing editor for this summary. As described in the individual reviewer responses, we clarify the writing and figures and provide comparisons to previously published datasets (in particular, the large snRNA-seq dataset of Zuo et al., 2024 (PMID 39117640).  With regard to the drug (i.e., SYK inhibitor) studies, we opted to provide caveats and describe the need for genetic approaches to validate the role of SYK, owing to the infeasibility of completing genetic perturbation experiments in the appropriate timeframe.  We are grateful for the opportunity to present our findings with appropriate caveats. 

      Reviewer #1 (Recommendations for the authors):

      Shayler cell sort human progenitor/rod/cone populations then full-length single cell RNAseq to expose features that distinguish paths towards rods or cones. They initially distinguish progenitors (RPCs), immature photoreceptor precursors (iPRPs), long/medium wavelength (LM) cones, late-LM cones, short wavelength (S) cones, early rods (ER) and late rods (LR), which exhibit distinct transcription factor regulons (Figures 1, 2). These data expose expected and novel enriched genes, and support the notion that S cones are a default state lacking expression of rod (NRL) or cone (THRB) determinants but retaining expression of generic photoreceptor drivers (CRX/OTX2/NEUROD1 regulons). They identify changes in regulon activity, such as increasing NRL activity from iPRP to ER to LR, but decreasing from iPRP to cones, or increasing RAX/ISL2/THRB regulon activity from iPRP to LM cones, but decreasing from iPRP to S cones or rods.

      They report co-expression of rod/cone determinants in LM and ER clusters, and the ratios are in the expected directions (NRLTHRB or RXRG in ER). A novel insight from the FL seq is that there are differing variants generated in each cell population. Full-length NRL (FL-NRL) predominates in the rod path, whereas truncated NRL (Tr-NRL) does so in the cone path, then similar (but opposite) findings are presented for THRB (Fig 3, 4), whereas isoforms are not a feature of RXRG expression, just the higher expression in cones.

      The authors then further subcluster and perform RNA velocity to uncover decision points in the tree (Figure 5). They identify two photoreceptor precursor streams, the Transitional Rods (TRs) that provide one source for rod maturation and (reusing the name from the initial clustering) iPRPs that form cones, but also provide a second route to rods. TR cells closest to RPCs (immediately post-mitotic) have higher levels of the rod determinant NR2E3 and NRL, whereas the higher resolution iPRPs near RPCs lack NR2E3 and have higher levels of ONECUT1, THRB, and GNAT2, a cone bias. These distinct rod-biased TR and cone-biased high-resolution iPRPs were not evident in published scRNAseq with 3′ end-counting (i.e. not FL seq). Regulon analysis confirmed higher NRL activity in TR cells, with higher THRB activity in highresolution iPRP cells.

      Many of the more mature high-resolution iPRPs show combinations of rod (GNAT1, NR2E3) and cone (GNAT2, THRB) paths as well as both NRL and THRB regulons, but with a bias towards cone-ness (Figure 6). Combined FISH/immunofluorescence in fetal retina uncovers cone-biased RXRG-protein-high/NR2E3-protein-absent cone-fated cells that nevertheless expressed NR2E3 mRNA. Thus early cone-biased iPRP cells express rod gene mRNA, implying a rod-cone hybrid in early photoreceptor development. The authors refer to these as "bridge region iPRP cells".

      In Figure 7, they identify CHRNA1 as the most specific marker of these bridge cells (overlapping with ATOH7 and DLL3, previously linked to cone-biased precursors), and FISH shows it is expressed in rod-biased NRL protein-positive and cone-biased RXRG proteinpositive cones at fetal week 12.

      Figure 8 outlines the graded expression of various lncRNAs during cone maturation, a novel pattern.

      Finally (Figure 9), the authors identify differential genes expressed in early rods (ER cluster from Figure 1) vs early cones (LM cluster, excluding the most mature opsin+ cells), revealing high levels of MYCN targets in cones. They also find SYK expression in cones. SYK was previously linked to retinoblastoma, so intrinsic expression may predispose cone precursors to transformation upon RB loss. They finish by showing that a SYK inhibitor blocks the proliferation of dividing RB1 knockdown cone precursors in the human fetal retina.

      Overall, the authors have uncovered interesting patterns of biased expression in cone/rod developmental paths, especially relating to the isoform differences for NRL and THRB which add a new layer to our understanding of this fate choice. The analyses also imply that very soon after RPCs exit the cell cycle, they generate post-mitotic precursors biased towards a rod or cone fate, that carry varying proportions of mixed rod/cone determinants and other rod/cone marker genes. They also introduce new markers that may tag key populations of cells that precede the final rod/cone choice (e.g. CHRNA1), catalogue a new lncRNA gradient in cone maturation, and provide insight into potential genes that may contribute to retinoblastoma initiation, like SYK, due to intrinsic expression in cone precursors. However, as detailed below, the text needs to be improved considerably, and overinterpretations need to be moderated, removed, or tested more rigorously with extra data.

      Major Comments

      The manuscript is very difficult to follow. The nomenclature is at times torturous, and the description of hybrid rod/cone hybrid cells is confusing in many aspects.

      (1) A single term, iPRP, is used to refer to an initial low-resolution cluster, and then to a subset of that cluster later in the paper.

      We agree that using immature photoreceptor precursor (iPRP) for both high-resolution and lowresolution clusters was confusing. We kept this name for the low-resolution cluster (which includes both immature cone and immature rod precursors), renamed the high-resolution iPRP cluster immature cone precursors (iCPs). and renamed their transitional rod (TR) counterparts immature rod precursors (iRPs). These designations are based on 

      - the biased expression of THRB, ONECUT1, and the THRB regulon in iCPs (Fig. 5D,E);

      - the biased expression of NRL, NR2E3, and NRL regulon iRPs (Fig. 5D,E);

      - the partially distinct iCP and iRP UMAP positions (Figure 5C); and 

      - the evidence of similar immature cone versus rod precursor populations in the Zuo et al 3’ snRNA-seq dataset, as noted below and described in two new paragraphs starting at the bottom of p. 12.

      (2) To complicate matters further, the reader needs to understand the subset within the iPRP referred to as bridge cells, and we are told at one point that the earliest iPRPs lack NR2E3, then that they later co-express NR2E3, and while the authors may be referring to protein and RNA, it serves to further confuse an already difficult to follow distinction. I had to read and re-read the iPRP data many times, but it never really became totally clear.

      We agree that the description of the high-resolution iPRP (now “iCP”) subsets was unclear, although our further analyses of a large 3’ snRNA-seq dataset in Figure S11 support the impression given in the original manuscript that the earliest iCPs lack NR2E3 and then later coexpress NR2E3 while the earliest iRPs lack THRB and then later express THRB. As described in new text in the Two post-mitotic immature photoreceptor precursor populations section (starting on line 7 of p. 13): 

      When considering only the main cone and rod precursor UMAP regions, early (pcw 8 – 13) cone precursors expressed THRB and lacked NR2E3 (Figure S11D,E, blue arrows), while early (pcw 10 – 15) rod precursors expressed NR2E3 and lacked THRB (Figure S11D,E, red arrows), similar to RPC-localized iCPs and iRPs in our study (Figure 5D).

      Next, as summarized in new text in the Early cone and rod precursors with rod- and conerelated RNA co-expression section (new paragraph at top of p. 16): 

      Thus, a 3’ snRNA-seq analysis confirmed the initial production of immature photoreceptor precursors with either L/M cone-precursor-specific THRB or rod-precursor-specific NR2E3 expression, followed by lower-level co-expression of their counterparts, NR2E3 in cone precursors and THRB in rod precursors. However, in the Zuo et al. analyses, the co-expression was first observed in well-separated UMAP regions, as opposed to a region that bridges the early cone and early rod populations in our UMAP plots. These findings are consistent with the notion that cone- and rod-related RNA co-expression begins in already fate-determined cone and rod precursors, and that such precursors aberrantly intermixed in our UMAP bridge region due to their insufficient representation in our dataset.  

      Importantly, and as noted in our ‘Public response’ to Reviewer 1, “CHRNA1 appears to mark immature cone precursors that are distinct from the maturing cone and rod precursors that coexpress cone- and rod-related RNAs (despite the similar UMAP positions of the two populations in our dataset).” In support of this notion, the immature cone precursors expressing CHRNA1  and other  populations did not overlap in UMAP space in the Zuo et al dataset. We hope the new text cited above along with other changes will significantly clarify the observations.

      (3) The term "cone/rod precursor" shows up late in the paper (page 12), but it was clear (was it not?) much earlier in this manuscript that cone and rod genes are co-expressed because of the coexpressed NRL and THRB isoforms in Figures 3/4.

      We thank the reviewer for noting that the differential NRL and THRB isoform expression already implies that cone and rod genes are co-expressed. However, as we now state, the co-expression of RNAs encoding an additional cone marker (GNAT2) and rod markers (GNAT1, NR2E3) was 

      “suggestive of a proposed hybrid cone/rod precursor state more extensive than implied by the coexpression of different THRB and NRL isoforms” (first paragraph of “Early cone and rod …” section on p. 14; new text underlined). 

      (4) The (incorrect) impression given later in the manuscript is that the rod/cone transcript mixture applies to just a subset of the iPRP cells, or maybe just the bridge cells (writing is not clear), but actually, neither of those is correct as the more abundant and more mature LM and ER populations analyzed earlier coexpress NRL and THRB mRNAs (Figures 2, 3). Overall, the authors need to vastly improve the writing, simplify/clarify the nomenclature, and better label figures to match the text and help the reader follow more easily and clearly. As it stands, it is, at best, obtuse, and at worst, totally confusing.

      We thank the reviewer for bringing the extent of the confusing terminology and wording to our attention. We revised the terminology (as in our response to point 1) and extensively revised the text.  We also performed similar analyses of the Zuo et al. data (as described in more detail in our response to Reviewer 2), which clarifies the distinct status of cells with the “rod/cone transcript mixture” and cells co-expressing early cone and rod precursor markers.  

      To more clearly describe data related to cells with rod- and cone-related RNA co-expression, we divided the former Figure 6 into two figures, with Figure 6 now showing the cone- and rodrelated RNA co-expression inferred from scRNA-seq and Figure 7 showing GNAT2 and NR2E3 co-expression in FISH analyses of human retina plus a new schematic in the new panel 7E.

      To separate the conceptually distinct analyses of cone and rod related RNA co-expression and the expression of early photoreceptor precursor markers (which were both found in the so-called bridge region – yet now recognized to be different subpopulations), we separated the analyses of the early photoreceptor precursor markers to form a new section, “Developmental expression of photoreceptor precursor markers and fate determinants,” starting on p. 16. 

      Additionally, we further review the findings and their implications in four revised Discussion paragraphs starting at the bottom of p. 23).

      (5) The data showing that overexpressing Tr-NRL in murine NIH3T3 fibroblasts blocks FL-NRL function is presented at the end of page 7 and in Figure 3G. Subsequent analysis two paragraphs and two figures later (end page 8, Figure 5C + supp figs) reveal that Tr-NRL protein is not detectable in retinoblastoma cells which derive from cone precursors cells and express Tr-NRL mRNA, and the protein is also not detected upon lentiviral expression of Tr-NRL in human fetal retinal explants, suggesting it is unstable or not translated. It would be preferable to have the 3T3 data and retinoblastoma/explant data juxtaposed. E.g. they could present the latter, then show the 3T3 that even if it were expressed (e.g. briefly) it would interfere with FL-NRL. The current order and spacing are somewhat confusing.

      We thank the reviewer for this suggestion and moved the description of the luciferase assays to follow the retinoblastoma and explant data and switched the order of Figure panels 3G and 3H.  

      (6) On page 15, regarding early rod vs early cone gene expression, the authors state: "although MYCN mRNA was not detected....", yet on the volcano plot in Figure S14A MYCN is one of the marked genes that is higher in cones than rods, meaning it was detected, and a couple of sentences later: "Concordantly, the LM cluster had increased MYCN RNA". The text is thus confusing.

      With respect, we note that the original text read, “although MYC RNA was not detected,” which related to a statement in the previous sentence that the gene ontology analysis identified “MYC targets.” However, given that this distinction is subtle and may be difficult for readers to recognize, we revised the text (now on p. 19) to more clearly describe expression of MYCN (but not MYC) as follows:

      “The upregulation of MYC target genes was of interest given that many MYC target genes are also targets of MYCN, that MYCN protein is highly expressed in maturing (ARR3+) cone precursors but not in NRL+ rods (Figure 10A), and that MYCN is critical to the cone precursor proliferative response to pRB loss8–10.  Indeed, whereas MYC RNA was not detected, the LM cone cluster had increased MYCN RNA …”

      (7) The authors state that the SYK drug is "highly specific". They provide no evidence, but no drug is 100% specific, and it is possible that off-target hits are important for the drug phenotype. This data should be removed or validated by co-targeting the SYK gene along with RB1.

      We agree that our data only show the potential for SYK to contribute to the cone proliferative response; however, we believe the inhibitor study retains value in that a negative result (no effect of the SYK inhibitor) would disprove its potential involvement. To reflect this, we changed wording related to this experiment as follows:

      In the Abstract, we changed:

      (1) “SYK, which contributed to the early cone precursors’ proliferative response to RB1 loss” To: “SYK, which was implicated in the early cone precursors’ proliferative response to RB1 loss.”  

      (2) “These findings reveal … and a role for early cone-precursor-intrinsic SYK expression.” To:  “These findings reveal … and suggest a role for early cone-precursor-intrinsic SYK expression.”

      In the last paragraph of the Results, we changed:

      (1) “To determine if SYK contributes…” To:  “To determine if SYK might contribute…”

      (2) “the highly specific SYK inhibitor” To:  “the selective SYK inhibitor”  

      (3)  “indicating that cone precursor intrinsic SYK activity is critical to the proliferative response” To: “consistent with the notion that cone precursor intrinsic SYK activity contributes to the proliferative response.”

      In the Results, we added a final sentence: 

      “However, given potential SYK inhibitor off-target effects, validation of the role of SYK in retinoblastoma initiation will require genetic ablation studies.”

      In the Discussion (2nd-to-last paragraph), we changed: 

      “SYK inhibition impaired pRB-depleted cone precursor cell cycle entry, implying that native SYK expression rather than de novo induction contributes to the cone precursors’ initial proliferation.” To: “…the pRB-depleted cone precursors’ sensitivity to a SYK inhibitor suggests that native SYK expression rather than de novo induction contributes to the cone precursors’ initial proliferation, although genetic ablation of SYK is needed to confirm this notion.” In the Discussion last sentence, we changed:

      “enabled the identification of developmental stage-specific cone precursor features that underlie retinoblastoma predisposition.” To: “enabled the identification of developmental stage-specific cone precursor features that are associated with the cone precursors’ predisposition to form retinoblastoma tumors.”

      Minor/Typos

      Figure 7 legend, H should be D.

      We corrected the figure legend (now related to Figure 8).

      Reviewer #2 (Recommendations for the authors):

      (1) The author should take advantage of recently published human fetal retina data, such as PMID:39117640, which includes a larger dataset of cells that could help validate the findings. Consequently, statements like "To our knowledge, this is the first indication of two immediately post-mitotic photoreceptor precursor populations with cone versus rod-biased gene expression" may need to be revised.

      We thank the reviewer for noting the evidence of distinct immediately post-mitotic rod and cone populations published by others after we submitted our manuscript. In response, we omitted the sentence mentioned and extensively cross-checked our results including:

      - comparison of our early versus late cone and rod maturation states to the cone and rod precursor versus cone and rod states identified by Zuo et al (new paragraph on the top half of p. 6 and new figure panels S3G,H);

      - detection of distinct immediately post-mitotic versus later cone and rod precursor populations (two new paragraphs on pp. 12-13 and new Figures S10B and S11A-E); 

      - identification of cone and rod precursor populations that co-express cone and rod marker genes (two new paragraphs starting at the bottom of p. 15 and new Figures S11D-F);

      - comparison of expression patterns of immature cone precursor (iCP) marker genes in our and the Zuo et al dataset (new paragraph on top half of p. 17 and new Figure S13).

      We also compare the cell states discerned in our study and the Zuo et al. study in a new Discussion paragraph (bottom of p. 23) and new Figure S17.

      (2) The data generated comes from dissociated cells, which inherently lack spatial context. Additionally, it is unclear whether the dataset represents a pool of retinas from multiple developmental stages, and if so, whether the developmental stage is known for each cell profiled. If this information is available, the authors should examine the distribution of developmental stages on the UMAP and trajectory analysis as part of the quality control process. 

      We thank the reviewer for highlighting the importance of spatial context and developmental stage. 

      Related to whether the dataset represents a pool of retinae from multiple developmental stages, the different cell numbers examined at each time point are indicated in Figure S1A. To draw the readers’ attention to this detail, Figure S1A is now cited in the first sentence of the Results. 

      Related to the age-related cell distributions in UMAP plots, the distribution of cells from each retina and age was (and is) shown in Fig. S1F. In addition, we now highlight the age distributions by segregating the FW13, FW15-17, and FW17-18-19 UMAP positions in the new Figure 1C. We describe the rod temporal changes in a new sentence at the top of  p. 5:

      “Few rods were detected at FW13, whereas both early and late rods were detected from FW15-19 (Figure 1C), corroborating prior reports [15,20].”  

      We describe the cone temporal changes and note the likely greater discrimination of cell state changes that would be afforded by separately analyzing macula versus peripheral retina at each age in a new sentence at the bottom of p. 5:

      “L/M cone precursors from different age retinae occupied different UMAP regions, suggesting age-related differences in L/M cone precursor maturation (Figure 1C).”

      Moreover, they should assess whether different developmental stages impact gene expression and isoform ratios. It is well established that cone and rod progenitors typically emerge at different developmental times and in distinct regions of the retina, with minimal physical overlap. Grouping progenitor cells based solely on their UMAP positioning may lead to an oversimplified interpretation of the data.

      (2a) We agree that different developmental stages may impact gene expression and isoform ratios, and evaluated stages primarily based on established Louvain clustering rather than UMAP position. However, we also used UMAP position to segregate so-called RPC-localized and nonRPC-localized iCPs and iRPs, as well as to characterize the bridge region iCP sub-populations. In the revision, we examine whether cell groups defined by UMAP positions helped to identify transcriptomically distinct populations and further examine the spatiotemporal gene expression patterns of the same genes in the Zuo et al. 3’ snRNA-seq dataset. 

      (2b) Related to analyses of immediately post-mitotic iRPs and iCPs, the new Figure S10A expanded the violin plots first shown in Figure 5D to compare gene expression in RPC-localized versus non-RPC-localized iCPs and iRPs and subsequent cone and rod precursor clusters (also presented in response to Reviewer 3). The new Figure S10C, shows a similar analysis of UMAP region-specific regulon activities. These figures support the idea that there are only subtle UMAP region-related differences in the expression of the selected gene and regulons. 

      To further evaluate early cone and rod precursors, we compared expression patterns in our cluster- and UMAP-defined cell groups to those of the spatiotemporally defined cell groups in the Zuo et al. 3’ snRNA-seq study. The results revealed similar expression timing of the genes examined, although the cluster assignments of a subset of cells were brought into question, especially the assigned rod precursors at pcw 10 and 13, as shown in new Figures S10B (grey columns) and S11, and as described in two new paragraphs starting near the bottom of p.12. 

      (2c) Related to analyses of iCPs in the so-called bridge region, our analyses of the Zuo et al dataset helped distinguish early cone and rod precursor populations (expressing early markers such as ATOH7 and CHRNA1) from the later stages exhibiting rod- and cone-related gene coexpression, which had intermixed in the UMAP bridge region in our dataset. Further parsing of early cone precursor marker spatiotemporal expression revealed intriguing differences as now described in the second half of a new paragraph at the top of p. 17, as follows:

      “Also, different iCP markers had different spatiotemporal expression: CHRNA1 and ATOH7 were most prominent in peripheral retina with ATOH7 strongest at pcw 10 and CHRNA1 strongest at pcw 13; CTC-378H22.2 was prominently expressed from pcw 10-13 in both the macula and the periphery; and DLL3 and ONECUT1 showed the earliest, strongest, and broadest expression (Figure S13B). The distinct patterns suggest spatiotemporally distinct roles for these factors in cone precursor differentiation.”

      (3) I would commend the authors for performing a validation experiment via RNA in situ to validate some of the findings. However, drawing conclusions from analyzing a small number of cells can still be dangerous. Furthermore, it is not entirely clear how the subclustering is done. Some cells change cell type identities in the high-resolution plot. For example, some iPRP cells from the low-resolution plots in Figure 1 are assigned as TR in high-resolution plots in Figure 5.

      The authors should provide justification on the identifies of RPC localized iPRP and TR.

      Comparison of their data with other publicly available data should strengthen their annotation

      We agree that drawing conclusions from scRNA-seq or in situ hybridization analysis of a small number of cells can be dangerous and have followed the reviewer’s suggestion to compare our data with other publicly available data, focusing on the 3’ snRNA-seq of Zuo et al. given its large size and extensive annotation. Our analysis of  the Zuo et al. dataset helped clarify cell identities by segregating cone and rod precursors with similar gene expression properties in distinct UMAP regions. However, we noted that the clustering of early cone and rod precursors likely gave numerous mis-assigned cells (as noted in response 2b above and shown in the new Figure S11). It would appear that insights may be derived from the combination of relatively shallow sequencing of a high number of cells and deep sequencing of substantially fewer cells. 

      Related to how subclustering was done, the Methods state, “A nearest-neighbors graph was constructed from the PCA embedding and clusters were identified using a Louvain algorithm at low and high resolutions (0.4 and 1.6)[70],” citing the Blondel et al reference for the Louvain clustering algorithm used in the Seurat package.  To clarify this, the results text was revised such that it now indicates the levels used to cluster at low resolution (0.4, p. 4, 2nd paragraph) and at high resolution (1.6, top of p. 11) .

      Related to the assignment of some iPRP cells from the low-resolution plots in Figure 1 to the TR cluster (now called the ‘iRP’ ‘cluster) in the high-resolution plots in Figure 5, we suggest that this is consistent with Louvain clustering, which does not follow a single dendrogram hierarchy. 

      The justification for referring to these groups as RPC-localized iCPs and iRPs relates to their biased gene and regulon expression in Fig. 5D and 5E, as stated on p. 12: 

      “In the RPC-localized region, iCPs had higher ONECUT1, THRB, and GNAT2, whereas iRPs trended towards higher NRL and NR2E3 (p= 0.19, p=0.054, respectively).”

      (4) Late-stage LM5 cluster Figure 9 is not defined anywhere in previous figures, in which LM clusters only range from 1 to 4. The inconsistency in cluster identification should be addressed.

      We revised the text related to this as follows: 

      “Indeed, our scRNA-seq analyses revealed that SYK RNA expression increased from the iCP stage through cluster LM4, in contrast to its minimal expression in rods (Figure 10E).  Moreover, SYK expression was abolished in the five-cell group with properties of late maturing cones (characterized in Figure 1E), here displayed separately from the other LM4 cells and designated LM5 (Figure 10E).”  (p. 19-20)

      (5) Syk inhibitor has been shown to be involved in RB cell survival in previous studies. The manuscript seems to abruptly make the connection between the single-cell data to RB in the last figure. The title and abstract should not distract from the bulk of the manuscript focusing on the rod and cone development, or the manuscript should make more connection to retinoblastoma.

      We appreciate the reviewer’s concern that the title may seem to over-emphasize the connection to retinoblastoma based solely on the SYK inhibitor studies. However, we suggest the title also emphasizes the identification and characterization of early human photoreceptor states, per se, and that there are a number of important connections beyond the SYK studies that could warrant the mention of cell-state-specific retinoblastoma-related features in the title.

      Most importantly, a prior concern with the cone cell-of-origin theory was that retinoblastoma cells express RNAs thought to mark retinal cell types other than cones, especially rods. The evidence presented here, that cone precursors also express the rod-related genes helps resolve this issue. The issue is noted numerous times in the manuscript, as follows:  

      In the Introduction, we write:

      “However, retinoblastoma cells also express rod lineage factor NRL RNAs, which – along with other evidence – suggested a heretofore unexplained connection between rod gene expression and retinoblastoma development[12,13]. Improved discrimination of early photoreceptor states is needed to determine if co-expression of rod- and cone-related genes is adopted during tumorigenesis or reflects the co-expression of such genes in the retinoblastoma cell of origin.” (bottom, p. 2) And: 

      “In this study, we sought to further define the transcriptomic underpinnings of human  photoreceptor development and their relationship to retinoblastoma tumorigenesis.” (last paragraph, p. 3)

      The Discussion also alluded to this issue and in the revised Discussion, we aimed to make the connection clearer.  We previously ended the 3rd-to-last paragraph with,  

      “iPRP [now iCP] and early LM cone precursors’ expression of NR2E3 and NRL RNAs suggest that their presence in retinoblastomas[12,13] reflects their normal expression in the L/M cone precursor cells of origin.” 

      We now separate and elaborate on this point in a new paragraph as follows: 

      “Our characterization of cone and rod-related RNA co-expression may help resolve questions about the retinoblastoma cell of origin. Past studies suggested that retinoblastoma cells co-express RNAs associated with rods, cones, or other retinal cells due to a loss of lineage fidelity[12]. However, the early L/M cone precursors’ expression of NR2E3 and NRL RNAs suggest that their presence in retinoblastomas[12,13] reflects their normal expression in the L/M cone precursor cells of origin. This idea is further supported by the retinoblastoma cells’ preferential expression of cone-enriched NRL transcript isoforms (Figure S5B).” (middle of p. 24) Based on the above, we elected to retain the title.  

      Minor comments:

      (1) It is difficult to see the orange and magenta colors in the Fig 3E RNA-FISH image. The colors should be changed, or the contrast threshold needs to be adjusted to make the puncta stand out more.

      We re-assigned colors, with red for FL-NRL puncta and green for Tr-NRL puncta. 

      (2) Figure 5C on page 8 should be corrected to Supplementary Figure 5C.

      We thank the reviewer for noting this error and changed the figure citation.

      Reviewer #3 (Recommendations for the authors):

      (1) Minor concerns

      a. Abbreviation of some words needs to be included, example: FW. 

      We now provide abbreviation definitions for FW and others throughout the manuscript.  

      b. Cat # does not matches with the 'key resource table' for many reagents/kits. Some examples are: CD133-PE mentioned on Page # 22 on # 71, SMART-Seq V4 Ultra Low Input RNA Kit and SMARTer Ultra Low RNA Kit for the Fluidigm C1 Sytem on Page # 22 on # 77, Nextera XT DNA Library preparation kit on Page # 23 on # 77.

      We thank the reviewer for noting these discrepancies. We have now checked all catalog numbers and made corrections as needed.

      c. Cat # and brand name of few reagents & kits is missing and not mentioned either in methods or in key resource table or both. Eg: FBS, Insulin, Glutamine, Penicillin, Streptomycin, HBSS, Quant-iT PicoGreen dsDNA assay, Nextera XT DNA LibraryPreparation Kit, 5' PCR Primer II A with CloneAmp HiFi PCR Premix. 

      Catalog numbers and brand names are now provided for the tissue culture and related reagents within the methods text and for kits in the Key Resources Table. Additional descriptions of the primers used for re-amplification and RACE were added to the Methods (p. 28-29).

      d. Spell and grammar check is needed throughout the manuscript is needed. Example. In Page # 46 RXRγlo is misspelled as RXRlo.

      Spelling and grammar checks were reviewed.

      (2) Methods & Key Resource table.

      a. In Page # 21, IRB# needs to be stated.      

      The IRB protocols have been added, now at top of p. 26.

      b. In Page # 21, Did the authors dissociate retinae in ice-cold phosphate-buffered saline or papain?   

      The relevant sentence was corrected to “dissected while submerged in ice-cold phosphatebuffered saline (PBS) and dissociated as described10.” ( p. 26)

      c. In Page # 21, How did the authors count or enumerate the cell count? Provide the details.

      We now state, “… a 10 µl volume was combined with 10 µl trypan blue and counted using a hemocytometer” (top of p. 27)

      d. Why did the authors choose to specifically use only 8 cells for cDNA preparation in Page # 22? State the reason and provide the details.

      The reasons for using 8 cells (to prevent evaporation and to manually transfer one slide-worth of droplets to one strip of PCR tubes) and additional single cell collection details are now provided as follows (new text underlined): 

      “Single cells were sorted on a BD FACSAria I at 4°C using 100 µm nozzle in single-cell mode into each of eight 1.2 µl lysis buffer droplets on parafilm-covered glass slides, with droplets positioned over pre-defined marks … .  Upon collection of eight cells per slide, droplets were transferred to individual low-retention PCR tubes (eight tubes per strip) (Bioplastics K69901, B57801) pre-cooled on ice to minimize evaporation. The process was repeated with a fresh piece of parafilm for up to 12 rounds to collect 96 cells). (p. 27, new text underlined)

      e. Key resource table does not include several resources used in this study. Example - NR2E3 antibody.

      We added the NR2E3 antibody and checked for other omissions.

      (3) Results & Figures & Figure Legends

      a. Regulon-defined RPC and photoreceptor precursor states

      i. On page # 4, 1 paragraph - Clarify the sentence 'Exclusion of all cells with <100,000 cells read and 18 cells.........Emsembl transcripts inferred'. Did the authors use 18 cells or 18FW retinae? 

      The sentence was changed to:

      “After sequencing, we excluded all cells with <100,000 read counts and 18 cells expressing one or more markers of retinal ganglion, amacrine, and/or horizontal cells (POU4F1, POU4F2, POU4F3, TFAP2A, TFAP2B, ISL1) and concurrently lacking photoreceptor lineage marker OTX2. This yielded 794 single cells with averages of 3,750,417 uniquely aligned reads, 8,278 genes detected, and 20,343 Ensembl transcripts inferred (Figure S1A-C).” (p. 4, new words underlined)

      To clarify that 18 retinae were used, the first sentence of the Results was revised as follows:

      “To interrogate transcriptomic changes during human photoreceptor development, dissociated RPCs and photoreceptor precursors were FACS-enriched from 18 retinae, ages FW13-19 …” (p. 4).

      Why did the authors 'exclude cells lacking photoreceptor lineage marker OTX2' from analysis especially when the purpose here was to choose photoreceptor precursor states & further results in the next paragraph clearly state that 5 clusters were comprised of cells with OTX2 and CRX expression. This is confusing.

      We apologize for the imprecise diction. We divided the evidently confusing sentence into two sentences to more clearly indicate that we removed cells that did not express OTX2, as in the first response to the previous question.

      ii. In Page # 5, the authors reported the number of cell populations (363 large and 5 distal) identified in the THRB+ L/M-cone cluster. What were the # of cell populations identified in the remaining 5 clusters of the UMAP space?

      We added the cell numbers in each group to Fig. 1B. We corrected the large LM group to 366 cells (p. 5) and note 371 LM cells , which includes the five distal cells, in Figure 1B.

      b. Differential expression of NRL and THRB isoforms in rod and cone precursors

      i. In Figure 3B, the authors compare and show the presence of 5 different NRL isoforms for all the 6 clusters that were defined in 3A. However, in the results, the ENST# of just 2 highly assigned transcript isoforms is given. What are the annotated names of the three other isoforms which are shown in 3B? Please explain in the Results.

      As requested, we now annotate the remaining isoforms as encoding full-length or truncated NRL in Fig. 3B and show isoform structures in new Supplementary Figure S4B.  We also refer to each transcript isoform in the Results (p. 7, last paragraph) and similarly evaluate all isoforms in RB31 cells (Fig. S5B).

      ii. What does the Mean FPM in the y-axis of Fig 3C refer to?

      Mean FPM represents mean read counts (fragments per million, FPM) for each position across Ensembl NRL exons for each cluster, as now stated in the 6th line of the Fig. 3 legend.

      iii. A clear explanation of the results for Figures 3E-3F is missing.

      We revised the text to more clearly describe the experiment as follows:

      “The cone cells’ higher proportional expression of Tr-NRL first exon sequences was validated by RNA fluorescence in situ hybridization (FISH) of FW16 fetal retina in which NRL immunofluorescence was used to identify rod precursors, RXRg immunofluorescence was used to identify cone precursors, and FISH probes specific to truncated Tr-NRL exon 1T or FL-NRL exons 1 and 2 were used to assess Tr-NRL and FL-NRL expression (Figure 3E,F).” (p. 8, new text underlined).

      c. Two post-mitotic photoreceptor precursor populations

      i. Although deep-sequencing and SCENIC analysis clarified the identities of four RPC-localized clusters as MG, RPC, and iPRP indicative of cone-bias and TR indicative of rod-bias. It would be interesting to see the discriminating determinant between the TR and ER by SCENIC and deep-sequencing gene expression violin/box plots.

      We agree it is of interest to see the discriminating determinant between the TR [now termed iRP] and ER clusters by SCENIC and deep-sequencing gene expression violin/box plots. We now provide this information for selected genes and regulons of interest in the new Supplementary Figures S10A and S10C, along with a similar comparison between the prior high-resolution iPRP (now termed iCP) cluster and the first high-resolution LM cluster, LM1, as described for gene expression on p. 12:

      “Notably, THRB and GNAT2 expression did not significantly change while ONECUT1 declined in the subsequent non-RPC-localized iCP and LM1 stages, whereas NR2E3 and NRL dramatically increased on transitioning to the ER state (Figure S10A).”

      And as described for regulon activities on pp. 13-14:

      “Finally, activities of the cone-specific THRB and ISL2 regulons, the rod-specific NRL regulon, and the pan-photoreceptor LHX3, OTX2, CRX, and NEUROD1 regulons increased to varying extents on transitioning from the immature iCP or iRP states to the early-maturing LM1 or ER states (Figure 10C).”

      We also show expression of the same genes for spatiotemporally grouped cells from the Zuo et al. dataset in the new Figure S10B, which displays a similar pattern (apart from the possibly mixed pcw 10 and pcw13 designated rod precursors).

      d. Early cone precursors with cone- and rod-related RNA expression

      i. On page #12, the last paragraph where the authors explain the multiplex RNA FISH results of RXRγ and NR2E3 by citing Figure S8E. However, in Fig S8E, the authors used NRL to identify the rods. Please clarify which one of the rod markers was used to perform RNA FISH?

      Figure S8E (where NRL was used as a rod marker) was cited to remind readers that RXRg has low expression in rods and high expression in cones, rather than to describe the results of this multiplex FISH section. To avoid confusion on this point, Figure S8E is now cited using “(as earlier shown in Figure S8E).” With this issue clarified, we expect the markers used in the FISH + IF analysis will be clear from the revised explanation, 

      “… we examined GNAT2 and NR2E3 RNA co-expression in RXRg+ cone precursors in the outermost NBL and in RXRg+ rod precursors in the middle NBL … .” (p. 14-15).

      To provide further clarity, we provide a diagram of the FISH probes, protein markers, and expression patterns in the new Figure 7E.

      ii. The Y-axis of Fig 6G-6H needs to be labelled.

      The axes have been re-labeled from “Nb of cells” to “Number of RXRg+ outermost NBL cells in each region” (original Fig. 6G, now Fig. 7C) and “Number of RXRg+ middle NBL cells in each region” (original Fig. 6H, now Fig. 7D).

      iii. The legends of Figures 6G and 6H are unclear. In the Figure 6G legend, the authors indicate 'all cells are NR2E3 protein-'. Does that imply the yellow and green bars alone? Similarly, clarify the Figure 6H legend, what does the dark and light magenta refer to? What does the light magenta color referring to NR2E3+/ NR2E3- and the dark magenta color referring to NR2E3+/ NR2E3+ indicate? 

      We regret the insufficient clarity. We revised the Fig. 6G (now Fig. 7C) key, which now reads

      “All outermost NBL cells are NR2E3 protein-negative.”  We added to the figure legend for panel 7C,D “(n.b., italics are used for RNAs, non-italics for proteins).”  The new scheme in Figure 7E shows the RNAs in italics proteins in non-italics. We hope these changes will clarify when RNA or protein are represented in each histogram category.

      Overall, the results (on page # 13) reflecting Figures 6E-6H & Figure S11 are confusing and difficult to understand. Clear descriptions and explanations are needed.

      We revised this results section described in the paragraph now spanning p. 14:

      -  We now refer to the bar colors in Figures 7C and 7D that support each statement. 

      -  We provide an illustration of the findings in Figure 7E.

      iv. Previously published literature has shown that cells of the inner NBL are RXRγ+ ganglion cells. So, how were these RXRγ+ ganglion cells in the inner NBL discriminated during multiplex RNA FISH (in Fig 6E-6H and in Fig S11)?

      We thank the reviewer for requesting this clarification. We agree that “inner NBL” is the incorrect term for the region in which we examined RXRg+ photoreceptor precursors, as this could include RXRγ+ nascent RGCs. We now clarify that 

      “we examined GNAT2 and NR2E3 RNA co-expression in RXRg+ cone precursors in the outermost NBL and in RXRg+ rod precursors in the middle NBL … .”  (p. 14-15) We further state, 

      “Limiting our analysis to the outer and middle NBL allowed us to disregard RXRγ+ retinal ganglion cells in the retinal ganglion cell layer or inner NBL (top of p. 15)”

      Figure 7E is provided to further aid the reader in understanding the positions examined, and the legend states “RXRg+ retinal ganglion cells in the inner NBL and ganglion cell layer not shown. 

      v. In Figure 6E, what marker does each color cell correspond to?

      In this figure (now panel 7A), we declined to provide the color key since the image is not sufficiently enlarged to visualize the IF and FISH signals. The figure is provided solely to document the regions analyzed and readers are now referred to “see Figure S12 for IF + FISH images” (2nd line, p. 15), where the marker colors are indicated.

      vi. In Figure S11 & 6E, Protein and RNA transcript color of NR2E3, GNAT2 are hard to distinguish. Usage of other colors is recommended.  

      We appreciate the reviewer’s concern related to the colors (in the now redesignated Figure S12 and 7A); however, we feel this issue is largely mitigated by our use of arrows to point to the cells needed to illustrate the proposed concepts in Figure S12B. All quantitation was performed by examining each color channel separately to ensure correct attribution, which is now mentioned in the Methods (2nd-to-last line of Quantitation of FISH section, p. 35).

      vii. 

      With due respect, we suggest that labeling each box (now in Figure 8B) makes the figure rather busy and difficult to infer the main point, which is that boxed regions were examined at various distanced from the center (denoted by the “C” and “0 mm”) with distances periodically indicated. We suggest the addition of such markers would not improve and might worsen the figure for most readers.    

      e. An early L/M cone trajectory marked by successive lncRNA expression

      i. In Figure 8C - color-coded labelling of LM1-4 clusters is recommended.

      We note Fig. 8C (now 9C) is intended to use color to display the pseudotemporal positions of each cell. We recognize that an additional plot with the pseudotime line imposed on LM subcluster colors could provide some insights, yet we are unaware of available software for this and are unable to develop such software at present. To enable readers to obtain a visual impression of the pseudotime vs subcluster positions, we now refer the reader to Figure 5A in the revised figure legend, as follows:  (“The pseudotime trajectory may be related to LM1-LM4 subcluster distributions in Figure 5A.”).

      ii. In Figure 8G - what does the horizontal color-coded bar below the lncRNAs name refer to? These bars are similar in all four graphs of the 8G figure.

      As stated in the Fig. 8G (now 9G) legend, “Colored bars mark lncRNA expression regions as described in the text.”  We revised the text to more clearly identify the color code. (p. 18-19)   

      f. Cone intrinsic SYK contributions to the proliferative response to pRB loss

      i. In Fig 9F - The expression of ARR3+ cells (indicated by the green arrow in FW18) is poorly or rarely seen in the peripheral retina.

      We thank the reviewer for finding this oversight. In panel 9F (now 10F), we removed the green arrows from the cells in the periphery, which are ARR3- due to the immaturity of cones in this region. 

      ii. In Figure 9F - Did the authors stain the FW16 retina with ARR3?

      Unfortunately, we did not stain the FW16 retina for ARR3 in this instance.

      iii. Inclusion of DAPI staining for Fig 9F is recommended to justify the ONL & INL in the images.

      We regret that we are unable to merge the DAPI in this instance due to the way in which the original staining was imaged.  A more detailed analysis corroborating and extending the current results is in progress. 

      iv. Immunostaining images for Figure 9G are missing & are required to be included. What does shSCR in Fig 9G refer to?

      We now provide representative immunostaining images below the panel (now 10G). The legend was updated: “Bottom: Example of Ki67, YFP, and RXRg co-immunostaining with DAPI+ nuclei (yellow outlines). Arrows: Ki67+, YFP+, RXRg+ nuclei.”  The revised legend now notes that shSCR refers to the scrambled control shRNA.

      v. For Figure 9H - Is the presence and loss of SYK activity consistent with all the subpopulations (S & LM) of early maturing and matured cones?

      We appreciate the reviewer’s question and interest (relating to the redesignated Figure 10H); however, we have not yet completed a comprehensive evaluation of SYK expression in all the subpopulations (S & LM) of early maturing and matured cones and will reserve such data for a subsequent study. We suggest that this information is not critical to the study’s major conclusions.

      vi. Figure 9A is not explained in the results. Why were MYCN proteins assessed along with ARR3 and NRL? What does this imply?

      We thank the reviewer for noting that this figure (now Figure 10A) was not clearly described. 

      As per the response to Reviewer 1, point 6 , the text now states,  

      “The upregulation of MYC target genes was of interest given that many MYC target genes are also MYCN targets, that MYCN protein is highly expressed in maturing (ARR3+) cone precursors but not in NRL+ rods (Figure 10A), and that MYCN is critical to the cone precursor proliferative response to pRB loss [8–10].” (middle, p. 19, new text underlined).

      Hence, the figure demonstrates the cone cell specificity of high MYCN protein.  This is further noted in the Fig. 10a legend: “A. Immunofluorescent staining shows high MYCN in ARR3+ cones but not in NRL+ rods in FW18 retina.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      First, the authors would like to thank the reviewers and editors for their thoughtful comments. The comments were used to guide our revision, which is substantially improved over our initial submission. We have addressed all comments in our responses below, through a combination of clarification, new analyses and new experimental data.

      Reviewer #1 (Public Review):

      In this manuscript, the authors identified and characterized the five C-terminus repeats and a 14aa acidic tail of the mouse Dux protein. They found that repeat 3&5, but not other repeats, contribute to transcriptional activation when combined with the 14aa tail. Importantly, they were able to narrow done to a 6 aa region that can distinguish "active" repeats from "inactive" repeats. Using proximal labeling proteomics, the authors identified candidate proteins that are implicated in Dux-mediated gene activation. They were able to showcase that the C-terminal repeat 3 binds to some proteins, including Smarcc1, a component of SWI/SNF (BAF) complex. In addition, by overexpressing different Dux variants, the authors characterized how repeats in different combinations, with or without the 14aa tail, contribute to Dux binding, H3K9ac, chromatin accessibility, and transcription. In general, the data is of high quality and convincing. The identification of the functionally important two C-terminal repeats and the 6 aa tail is enlightening. The work shined light on the mechanism of DUX function.

      A few major comments that the authors may want to address to further improve the work:

      We thank the reviewer for their efforts and constructive comments, which have guided our revisions.

      1) The summary table for the Dux domain construct characteristics in Fig. 6a could be more accurate. For example, C3+14 clearly showed moderate weaker Dux binding and H3K9ac enrichment in Fig 3c and 3e. However, this is not illustrated in Fig. 6a. The authors may consider applying statistical tests to more precisely determine how the different Dux constructs contribute to DNA binding (Fig. 3c), H3K9ac enrichment (Fig. 3e), Smarcc1 binding (Fig. 5e), and ATAC-seq signal (Fig. 5f).

      We thank the reviewer for this comment, and agree that there were some modest differences in construct characteristics that were not captured in the Summary Table (6a). To better reflect the differences between constructs, we added additional dynamic range to our depiction/scoring, and believe that the new scoring system provides sufficient qualitative range to capture the difference without imposing a statistical approach.

      2) Another concern is that exogenous overexpressed Dux was used throughout the experiments. The authors may consider validating some of the protein-protein interactions using spontaneous or induced 2CLCs (where Dux is expressed).

      We agree that it would be helpful to determine endogenous DUX interaction with our BioID candidates. Here, we attempted co-IPs for endogenous DUX protein with the DUX antibody and were unsuccessful, which indicated that the DUX antibody is useful for detection but not efficient in the primary IP. This is why we utilized the mCherry tag for DUX IP experiments, which worked exceptionally well.

      3) It could be technically challenging, but the authors may consider to validate Dux and Smarcc1 interaction in a biologically more relevant context such as mouse 2-cell embryos where both proteins are expressed. Whether Smarcc1 binding will be dramatically reduced at 4-cell embryos due to loss of Dux expression?

      While we agree that it would be interesting to validate the in vivo interaction of DUX and SMARCC1 in the early embryo, it is not technically feasible for us to conduct the experiment, as the IP would require thousands of two-cell embryos, and we have the issue of poor co-IP quality with the DUX antibody.

      Reviewer #2 (Public Review):

      In this manuscript, Smith et al. delineated novel mechanistic insights into the structure-function relationships of the C-terminal repeat domains within the mouse DUX protein. Specifically, they identified and characterised the transcriptionally active repeat domains, and narrowed down to a critical 6aa region that is required for interacting with key transcription and chromatin regulators. The authors further showed how the DUX active repeats collaborate with the C-terminal acidic tail to facilitate chromatin opening and transcriptional activation at DUX genomic targets.

      Although this study attempts to provide mechanistic insights into how DUX4 works, the authors will need to perform a number of additional experiments and controls to bolster their claims, as well as provide detailed analyses and clarifications.

      We thank this reviewer for their constructive comments, and have conducted several new analyses, additional experiments and clarifications – which have strengthened the manuscript in several locations. Highlights include a statistical approach to the similarity of mouse repeats to themselves and to orthologs (Figure S1d) and clarified interpretations, a wider dynamic range to better reflect changes in DUX construct behaviors (Figure 6a), and additional data on construct behavior, including ‘inactive’ constructs (e.g C1+14aa in Figure 1a,d, new ATAC-seq in Figure S1g), and active constructs such as C3+C5+14aa and C3+C514aa (in Figure S1b).

      Reviewer #3 (Public Review):

      Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.

      By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.

      The experiments are of high quality, with appropriate controls, thus providing a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).

      A critical question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function on activation (and thus may have been selected for under an "adaptationist" paradigm), it is also possible that they are simply the result of Jacobian evolutionary bricolage (tinkering) that happens to work in mice. The finding that Dux itself is not essential, in fact appears to be redundant (or cooperates with) the OBOX4 factor, in addition to the absence of these repeats in the DUX protein of all other mammals (as pointed out by the authors), might indeed argue for the second, perhaps less attractive possibility.

      In summary, while the present work provides a valuable resource for future study of Dux and its interactors, it fails, however, to tell a compelling story that could link the obtained data together.

      We appreciated the reviewer’s views regarding the high quality of the work and our generation of an important dataset of DUX interactors. We also appreciate the comments provided to improve the work, and have performed and included in the revised version a set of clarifications, additional analyses and additional experiments that have served to reinforce our main points and provide additional mechanistic links. We also agree that more remains to be done to understand the function and evolution of repeats C1, C2 and C4.

      Reviewer #1 (Recommendations For The Authors):

      1) For immuno-blots, authors may indicate the expected bands to help readers better understand the results.

      Agreed, and we have included the predicted molecular weight of proteins in the Figure Legends. We note that our work shows that the C-terminal domains confer anomalous migration in SDS-PAGE.

      2) Fig. 5b, a blot missing for the mCherry group?

      Figure 5b is a volcano blot, so we believe the reviewer is referring to Figure 5d, which is a coimmunoprecipitation experiment between SMARCC1 and mCherry-tagged DUX constructs. However, we are unsure of the comment as an anti mCherry sample is present in that panel.

      3) Line 99-100, Fig. S1d, it seems that repeat2, but not repeat3, is more similar to human DUX4 C-terminal region.

      This comment and one by another reviewer have prompted us to re-examine the similarities of the DUX repeats, and we have new analyses (Figure S1d) and an alternative framing in the manuscript as a result. We have expanded on this in our response to Reviewer #2, point #1 – and direct the reviewer there for our expanded treatment.

      4) There are a few references are misplaced. For example, line 48, the studies that reported the role of Dux in inducing 2CLCs should be from Hendrickson et al., 2017, De Iaco et al., 2017, and Whiddon et al., 2017. The authors may want to double check all references.

      Thanks for pointing these out. These issues have been corrected in the manuscript.

      5) In the materials & methods section, a few potential errors are noticed. For example, concentrations of PD0325901 and CHIR99021 in mESC medium appear ~1000-fold higher than standards.

      Thanks – corrected.

      Reviewer #2 (Recommendations For The Authors):

      Major Points

      1) Line 99 - The authors claimed that the "human DUX4 C-terminal region is most similar to the 3rd repeat of mouse DUX", but based on Supp. Fig. 1d, the human DUX4 C-term should be most similar to the 2nd repeat of mouse DUX. If this is indeed the case, it will undermine the rest of this study, since the authors claim that the 3rd repeat is transcriptionally active, whereas the 2nd repeat is transcriptionally inactive, and the bulk of this study largely focused on how the active repeats, not the inactive repeats, are critical in recruiting key transcriptional and chromatin regulators to induce the embryonic gene expression program.

      We thank the reviewer for their comments here. Since submission,and as mentioned above for reviewer #1 we have revisited the issue of similarity of the DUX4 C-terminal region to the mouse C-terminal repeats, with a BLAST-based approach that is more rigorous and informed by statistics – which is in Author response table 1 and now in the manuscript as Figure S1d, and has affected our interpretation. Our prior work involved a simple % identity comparison table and we now appreciate that some of the similarity analyses did not meet statistical significance, and therefore we are unable to draw certain conclusions. We make the appropriate modifications in the text. For example, we no longer state that the DUX4 C-terminus appears to be most similar to mouse repeats 3 and 5. This does not affect the main conclusions of the paper regarding interactions of the C-terminus with chromatin-related proteins, only our speculation on which repeat might have represented the original single repeat in the mouse – an issue we think of some interest, but did not rise to the level of mentioning in the original or current abstract.

      Author response table 1.

      Parameters: PAM250 matrix. Gap costs of existence: 15 and extension: 3. Numbers represent e-value of each pairwise comparison

      *No significant similarities found (>0.05).

      2) In Supp Fig 1d, it seems that the rat DUX4 C-terminal region is most similar to the 4th repeat of mouse DUX, which according to the author is supposedly transcriptionally inactive. This weakens the authors justification that the 3rd or 5th repeat is likely the "parental repeat for the other four", and further echoes my concern in point 1 where the human DUX4 C-term is most similar to the 2nd (inactive) repeat of mouse DUX.

      The reviewer’s point is well taken and is addressed in point #1 above.

      3) In Fig. 1d, the authors showed that DUX4-containing C3 and C5, but lacking acidic tail, can promote MERVL::GFP expression, albeit to a slightly lower extent compared to FL. However, in Fig. 2b, C3 or C5 alone (lacking acidic tail) completely failed to promote MERVL::GFP expression. However, in the presence of the acidic tail, both versions were able to promote MERVL::GFP expression, similar to that of FL. The latter would suggest that it is the acidic tail that is crucial for MERVL::GFP expression, and this does not quite agree with Fig 1b, where C12345 (lacking acidic tail) was able to promote MERVL::GFP expression. Although C12345 did not activate MERVL to a similar level as FL, it is clearly proficient, compared to C3 or C5 alone (lacking acidic tail) where there is no increase in MERVL at all. Additional constructs will be helpful to clarify these points. For example, 'C3+C5 minus acidic tail' and 'HD1+HD2+acidic tail only' constructs.

      We agree that constructs such as those mentioned would add to the work. First, we have done the additional construct HD1+HD2+14aa tail, which is presented as ΔC12345+14aa in Figure 2a and in S2a. Additionally, we performed experiments on the requested C3+C5+14aa and C3+C5Δ14aa (see samples 6 and 7 in Author response image 1, which are now included in Supplemental Figure 2b). The results reinforce our hypothesis of an additive effect toward DUX target gene activation by increasing C-terminal repeats and including the 14aa tail.

      Author response image 1.

      4) Related to the above, the flow cytometry data for the MERVL::GFP reporter as presented in Figures 1 and 2, as well as in Supp. Fig. 2, show a considerably large difference in the %GFP|mCherry for the FL construct, ranging from ~6-26%. This makes it difficult to convince the reader which of the different DUX domain constructs cannot or can partially induce GFP|mCherry signal when compared to FL, and hence it is tough to definitively ascertain the exact contribution of each of the 5 C-terminal repeats with high confidence, as it appears that there exists a significant amount of variability in this MERVL::GFP reporter system. The authors need to address this issue since this is their primary method to elucidate the transcriptional activity of each of the mouse DUX repeat domains.

      We note that with the Dux-/- cell lines we used throughout the timeline of the study, the percent of %GFP|mCherry expression progressively and slowly decreased – possibly due to slow/modest epigenetic silencing of the reporter. However, we always used the full-length DUX construct to establish the dynamic range. We emphasize that the relative differences between constructs over multiple cell line replicates remained relatively consistent. However, we elected to show absolute values in each experiment, rather than simply normalizing the full-length to 100% and showing relative.

      5) Lines 140-142 - The authors claimed that the functional difference between the transcriptionally active and inactive repeats could be narrowed down to a "6aa region which is conserved between repeats C3 and C5, but not conserved in C1, C2 and C4". Assuming the 6aa sequence is DPLELF, why does C1C3a elicit almost twice the intensity of GFP|mCherry signal compared to C3C1c, despite both constructs having the exact same 6aa sequence?

      Indeed, C1C3a and C3C1c both containing the ‘active’ DPL sequence but having different relative levels of %GFP|mCherry. This is consistent with these sequences having a positive role in DUX target gene regulation – but likely in combination with other other regions which potentiate its affect, possibly through interacting proteins or post-translational modifications.

      Why does DPLEPL (the intermediate C3C1b construct) induce a similar extent of GFP|mCherry signal as the FL construct, even though the former includes 3aa from a transcriptionally inactive repeat? In contrast, GSLELF (the other intermediate C1C3b construct) that also includes 3aa from a transcriptionally inactive repeat is almost completely deficient in inducing any GFP|mCherry signal. Why is that so? Is DPL the most crucial sequence? It will be important to mutate these 3 (or the above 6) residues on FL DUX4 to examine if its transcriptional activity is abolished.

      These are interesting points. DPL does appear to be the most important region in the mouse DUX repeats. However, DPL is not shared in the C-terminus of human DUX4. Notably, the DUX4 C-terminus is sufficient to activate the mouse MERVL::GFP reporter when cloned to mouse homeodomains (see Author response image 2, second sample) and other DUX target genes (initially published in Whiddon et al. 2017). One clear possibility is that the DPL region is helping to coordinate the additive effects of multiple DUX repeats, which only exist in the mouse protein.

      Author response image 2.

      6) Line 154 - The intermediate DUX domain construct C1C3b occupied a different position on the PCA plot from the C1C3c construct that does not contain any of the critical 6aa sequence, as shown in Fig. 2e. However, both these constructs appear to be similarly deficient in inducing any GFP|mCherry signal, as seen in Fig. 2c. Why is that so?

      The PCA plot assesses the impact on the whole transcriptome and not just the MERVL::GFP reporter, suggesting the 3aa region has transcriptional effects on the genome beyond what is detected in the MERVL::GFP reporter.

      7) To strengthen the claim that "Chromatin alterations at DUX bindings sites require a transcriptionally active DUX repeat", the authors should also perform CUT&Tag for constructs containing transcriptionally inactive DUX repeats (e.g. C1+14aa), and show that such constructs fail to occupy DUX binding sites, as well as are deficient in H3K9ac accumulation.

      This is a good comment. We elected to control this with constructs containing or lacking an active repeat. Although we have not pursued this by CUT&TAG, we have examined the impact of DUX constructs with inactive repeats (including the requested C1+14aa, new Figure S1g) by ATAC-seq (see #12, ATAC-seq section, below), and observe no chromatin opening, suggesting that the lack of transcriptional activity is rooted in the inability to open chromatin.

      8) It would be good if the authors could also include CUT&Tag data for some of the C1C3 chimeric constructs that were used in Fig. 2, since the authors argued that the minimal 6aa region is sufficient to activate many of the DUX target genes. This would also strengthen the authors’ case that the transcriptionally active, not inactive, repeats are critical for binding at DUX binding sites and ensuring H3K9ac occupancy.

      We agree that these would be helpful, and have examined the inactive repeats in transcription and ATAC-seq formats during revision (new data in Figures 1d and S1g), but not yet the CUT&TAG format.

      9) Line 213 - "SMARCA4" should have been "SMARCA5"? Based on Fig. 4d, SMARCA5 is picked up in the BirA*-DUX interactome, not SMARCA4.

      Thanks – corrected.

      10) Lines 250-252 - The authors compared the active BirA-C3 against the inactive BirA-C1 to elucidate the interactome of the transcriptionally active C3 repeat, as illustrated in Fig. 5c. They found 12 proteins more enriched in C1 and 154 proteins in C3. This information should be presented clearly as a separate tab in Supp Table 2. What are the proteins common to both constructs, i.e. enriched to a similar extent? Do they include chromatin remodellers too? Although the authors sought to identify differential interactors between the 2 constructs, it is also meaningful to perform 2 separate comparisons - active BirA-C3 against BirA alone control, and inactive BirA-C1 against BirA alone control - like in Fig. 4d, so as to more accurately define whether the active C3 repeat, and not the inactive C1 repeat, interacts with proteins involved in chromatin remodeling.

      We thank the reviewer for this comment, and we have modified the manuscript by adding a second sheet in Supplementary Table 2 including the results for enriched proteins in BirA-C1 vs. C3. Additionally, due to limitations of annotation between BirA alone and BirA*-C3 being sequenced in different mass spectrometry experiments, it is difficult to quantitatively compare the two datasets with pairwise comparisons.

      11) Fig 5d: The authors mentioned in the legend that endogenous IP was performed for SMARCC1. However, in line 266, they stated Flag-tagged SMARCC1. Is SMARCC1 overexpressed? The reciprocal IP should also be presented. More importantly, C1 constructs (e.g. C1+14aa and C1Δ14aa) should also be included.

      To clarify, Figure 4e used exogenously overexpressed FLAG-SMARCC1 in HEK-293T cells to confirm the results of the full-length DUX BioID experiment. Figure 5d was performed with overexpressed DUX construct, but involved endogenous SMARCC1 in mESCs. This has now been made clearer in the revised manuscript.

      12) For both the SMARCC1 CUT&Tag and ATAC-seq experiments shown in Figures 5e and 5f respectively, the authors need to include DUX derivatives that contain transcriptionally inactive repeats with and without the 14aa acidic tail, i.e. C1+14aa and C1Δ14aa, and show that these constructs prevent the binding/recruitment of SMARCC1 to DUX genomic targets, and correspondingly display a decrease in chromatin accessibility. Only then can they assert the requirement of the transcriptionally active repeat domains for proper DUX protein interaction, occupancy and target activation.

      We agree that examination of an inactive repeat in certain approaches would improve the manuscript. Importantly, we have now included C1+14 in our ATAC-seq experiments, and in Author response image 3 two individual replicates, which constitute a new Figure S1g. Compared to the transcriptionally active DUX constructs, which see opening at DUX binding sites, we do not see chromatin opening at DUX binding sites with transcriptionally inactive C1+14.

      Author response image 3.

      13) To prove that DUX-interactors are important for embryonic gene expression, it will be important to perform loss of function studies. For instance, will the knockdown/knockout of SMARCC1 in cells expressing the active DUX repeat(s) lead to a loss of DUX target gene occupancy and activation?

      We agree that it would be interesting to better understand SMARCC1 cooperation with DUX function in the embryo, but we believe this is beyond the scope of this paper.

      Minor Points

      1) Lines 124-126 - What is the reason/rationale for why the authors used one linker (GGGGS2) for constructs with a single internal deletion, but 2 different linkers (GGGGS2 and GAGAS2) for constructs with 2 internal deletions?

      With Gibson cloning, there are homology overhang arms for each PCR amplicon that are required to be specific for each overlap. Additionally, each PCR amplicon needs to be specific enough from one another so that all inserts (up to 5 in this manuscript) are included and oriented in the right order. The linker sequences were included in the homology arm overlaps, so the nucleotide sequences for each linker needed to be specific enough to include all inserts. This is a general rule to Gibson cloning. Additionally, both GGGGS2 and GAGAS2 are common linker sequences used in molecular biology and the amino acids structures are similar to one another, suggesting there is no functional difference between linkers.

      2) Line 704 - 705: In the figure legend, the authors stated that 'Constructs with a single black line have the linker GGGGS2 and constructs with two black lines have linkers with GGGGS2 and GAGAS2, respectively.'. This was not obvious in the figures.

      Constructs used for flow and genomics experiments that are depicted in Figure 2, Supplementary Figure 2, Figure 3, Figure 4, and Figure 5 have depicted black lines where deletions are present. Where these deletions are present, there are linkers in order to preserve spacing and mobility for the protein.

      3) Line 160 - Clusters #1 and #2 are likely written in the wrong order. It should have been "activating the majority of DUX targets in cluster #2, not cluster #1" and "failed to activate those in cluster #1, not cluster #2", based on the RNA-seq heatmap in Fig. 2f.

      We thank the reviewer for this comment, and the error has been corrected in the manuscript.

      4) Line 188 - Delete the word "of" in the following sentence fragment: "DUX binding sites correlating with the of transcriptional".

      Thanks – corrected.

      5) Line 191 - Delete the word "aids" in the following sentence fragment: "important for conferring H3K9ac aids at bound".

      Thanks – corrected.

      6) Line 711 - "C1-C3 a,b,d" should be "C1-C3 a,b,c".

      Thanks – corrected.

      7) Lines 711-712 - The colors "pink to blue" and "blue to pink" are likely written in the wrong order. Based on Fig. 2c, the blue to pink bar graphs should represent C1-C3 a,b,c in that order, and likewise the pink to blue bar graphs should represent C3-C1 a,b,c in that order.

      Thanks – corrected.

      8) There is an overload of data presented in Fig. 2c, such that it is difficult to follow which part of the figure represents each data segment as written in the figure legend. It is recommended that the data presented here is split into 2 sub-figures.

      Figure 2c has a supporting figure in Supplementary Figure 2b. While there is both a graphical depiction of the constructions and the data both in the main panel of Figure 2C, we have depicted it as so to be as clear as possible for the reader to interpret the complexity and presentence of amino acids in each of the constructs.

      9) Line 717 - "following" is misspelt.

      Thanks – corrected.

      10) Lines 720-721 - "(Top)" and "(Bottom)" should be replaced with "(Left)" and "(Right)", as the 2 bar graphs presented in Fig. 2d are placed side by side to each other, not on the top and bottom.

      Thanks – corrected.

      11) Lines 725 and 839 - "Principle" is misspelt. It should be "Principal".

      Thanks – corrected.

      12) In Figures 3d and 3e, the sample labeled "C3+14_1" should be re-labeled to "C3+14", in accordance with the other sub-figures. Additionally, for the sake of consistency, "aa" should be appended to the relevant constructs, e.g. "C3+14aa" and "C3Δ14aa".

      Thanks – corrected.

      13) Line 773 - Were the DUX domain constructs over-expressed for 12hr (as written in the figure legend) or 18hr (as labeled in Fig. 5d)?

      Thanks – corrected.

      14) Related to minor point 19 above, is there a reason/rationale for why some of the experiments used 12hr over-expression of DUX domain constructs (e.g. for CUT&TAG in Fig. 3), whereas in other experiments 18hr over-expression was chosen instead (e.g. flow cytometry for MERVL::GFP reporter in Figures 1 and 2, and co-IP validations of BirA*-DUX interactions in Fig. 4)?

      Thanks for the opportunity to explain. In this work, experiments that reported on proteins that are translated following DUX gene activation (e.g. MERVL:GFP via flow) were done at 18hr to allow for enough time for transcription and translation of GFP (or other DUX target genes). For experiments that report on the impact of DUX on chromatin and transcription, such as RNA-seq, CUT&Tag, and ATAC-seq, we induced DUX domain constructs for 12 hours.

      15) Line 804 - "ΔHDs" is missing between "C2345+14aa" and "ΔHD1".

      Thanks – corrected.

      16) In Fig. 5c, "Chromatin remodelers" is misspelt.

      Thanks – corrected.

      17) There is no reference in the manuscript to the proposed model that is presented in Fig. 6b.

      Thanks – corrected.

      Reviewer #3 (Recommendations For The Authors):

      Given the uncertainty of the function of the Dux peptide repeats in mice, could it not also be possible that the underlying repeated nature of the (coding) DNA? That is, could these DNA repeats exert a regulatory function on Dux transcription itself (also given the dire consequences of misregulated DUX4 expression as seen in FSHD, for example).

      Yes, it remains possible that the internal coding repeats within Dux are playing a role in locus regulation, and might be interesting to examine. However, we consider this question as being outside the scope of the current paper.

      Finally, it would be interesting to know whether these repeats are, in fact, present in all mouse species. Already no longer present in rat, do they exist, or not, in more "distant" mice, e.g. M. caroli?

      Determining whether all mouse strains contain C-terminal repeats in DUX is a question we also considered. However, Dux and its orthologs are present in long and very complex repeat arrays that are not present in the sequencing data or annotation in other mouse strains. Therefore, we are not unable to answer this question from existing sequencing data. Answering would require a considerable genome sequencing and bioinformatics effort, or alternatively a considerable effort aimed at cloning ortholog cDNAs from 2-cell embryos.

      Minor points:

      line 169: here it seems, in fact, that the 'inactive' C2, C4 repeats are more similar to each other (my calculation: 91 and 96% identity at the protein and DNA level, respectively) than the active C3 and C5 repeats (82 and 89% identity, resp.), the outlier being C1.

      Thanks for this comment, which was mentioned by other reviewers as well and has been addressed through new statistical analyses and interpretation (see new Figure S1d).

      line 191: I'm not sure this sentence parses correctly ("...14AA tail is important for conferring H3K9Ac aids at bound sites...")

      We thank the reviewer for this comment, and we have corrected the sentence in the manuscript.

    1. For this, N-terminal GST-tag or C-terminal GFP-tag TRPV1 was transiently transfected into human embryonic kidney (HEK) 293 cells.

      This is a very intriguing idea linking TRPV1-mediated calpain activation to downregulation of TRPV1! While your engineered HEK and CHO cell systems work well, can you perform this assay in more biologically relevant cells, such as DRGs, or cells more closely related to neurons, like keratinocytes, and examine endogenous proteins?

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      While very positive towards our manuscript, this reviewer also points out three suggestions for improvement.

      Overall, there are not many weaknesses. The main one I noticed is with the lipidomic analysis shown in Figs 3C, 7C, S1 and S3. While these data are an essential part of the analysis and provide strong evidence for the conclusions of the study, it is unfortunate that the methods used did not enable the distinction between two 18:1 isomers. These two isomers of 18:1 are important in C. elegans biology, because one is a substrate for FAT-2 (18:1n-9, oleic acid) and the other is not (18:1n-7, cis vaccenic acid). Although rarer in mammals, cisvaccenic acid is the most abundant fatty acid in C. elegans and is likely the most important structural MUFA. The measurement of these two isomers is not essential for the conclusions of the study, but the manuscript should include a comment about the abundance of oleic vs vaccenic acid in C. elegans (authors can find this information, even in the fat-2 mutant, in other publications of C. elegans fatty acid composition). Otherwise, readers who are not familiar with C. elegans might assume the 18:1 that is reported is likely to be mainly oleic acid, as is common in mammals.

      Excellent point. As suggested by the reviewer, we now include a clarification of this in the text: "Consistent with previous publications [10], the levels of 18:1 fatty acids were greatly increased in the fat-2(wa17) mutant. It is important to note that the majority of these 18:1 fatty acids is likely 18:1n7 (vaccenic acid) and not 18:1n9 (OA) [10,23], which is the substrate of FAT-2; the lipid analysis methods used here are not able to distinguish between the two 18:1 species."

      The title could be less specific; it might be confusing to readers to include the allele name in the title.

      We thank the reviewer for the suggestion, and we have now modified the title:

      "Forward Genetics In C. elegans Reveals Genetic Adaptations To Polyunsaturated Fatty Acid Deficiency"

      There are two errors in the pathway depicted in Figure 1A. The16:0-16:1 desaturation can be performed by FAT-5, FAT-6, and FAT-7. The 18:0-18:1 desaturation can only be performed by FAT-6 and FAT-7.

      We thank the reviewer for pointing out this mistake. The pathway in Fig. 1A has been corrected.

      Reviewer #2:

      This reviewer was also very positive towards our manuscript but also pointed out several suggestions for additional experiments or changes to the manuscript.

      Major recommendations

      (1) To conclude that membrane rigidification is not the major cause of defects associated with fat-2 mutations, the authors need to show that fluidity is rescued by their treatments (oleic acid or NP-40). I honestly doubt that it is the case, as oleic acid is already abundant in fat-2 mutants. It is possible that the treatments, which are effective in rescuing fluidity in paqr-2 mutants, do not have the same effects in fat-2 mutants.

      The reviewer raises an important point. In an effort to address this, we have now performed a FRAP study on fat-2(wa17) mutants with/without NP40 as a fluidizing agent (with wild-type and paqr-2 mutants as controls). The new data, now included as Fig. 2J, shows that NP40 did improve the fluidity of the intestinal cell membrane in the fat-2(wa17) mutant, though not to the same degree as in the paqr-2 mutant. This is now cited in the text as follows:

      "However, cultivating the fat-2(wa17) mutant in the presence of the non-ionic detergent NP40, which improves the growth of the paqr-2(tm3410) mutant [17], did not suppress the poor growth phenotype of the fat-2(wa17) mutant even though it did improve membrane fluidity as measured using FRAP (Fig. 2I-J). Similarly, supplementing the fat-2(wa17) mutant with the MUFA oleic acid (OA, 18:1), which also suppresses paqr-2(tm3410) phenotypes [17], did not suppress the poor growth phenotype of the fat-2(wa17) mutant (Fig 2K)."

      (2) It is not validated experimentally that the mutations converge into FTN-2 repression. This can be verified by analyzing mRNA or protein expression of FTN-2 in the egl-9 and hif-1 mutants obtained in the screening.

      Our manuscript does lean on several publications that previously established the HIF-1 pathway in C. elegans. Additionally, we now added a qPCR experiment showing that the newly isolated hif-1(et69) allele indeed suppresses the expression of ftn-2. This was an especially valuable experiment since the hif-1(et69) is proposed to act as a gain-of-function allele that would constitutively suppress ftn-2 expression. This new result is included as Fig. 6C and mentioned in the text:

      "Inhibition of egl-9 promotes HIF-1 activity [41], which we here verified for the egl-9(et60) allele using western blots (Fig 6A). Additionally, we found by qPCR that ftn-2 mRNA levels are as expected reduced by the proposed gain-of-function hif-1(et69) allele (Fig 6C). We conclude that the egl-9 and hif-1 suppressor mutations likely converge on inhibiting ftn-2 and thus act similarly to the ftn-2 loss-of-function alleles."

      (3) In the hif-1(et69) and ftn-2(et68) mutants, the rescues in lipid composition seem to be minor, with eicosapentaenoic acid (EPA) levels remaining low. The ftn-2 mutant data is especially concerning, as it suggests that egl-9 mutants rescue lipid composition via distinct mechanisms not including ftn-2 suppression. I suggest that the authors test the minimal doses of linoleic acid or EPA required to rescue fat-2 mutants and perform lipidomics to test which is the degree of EPA restoration that is needed. If a low level of restoration is sufficient, the hif-1 and ftn-2 mutants might indeed rescue phenotypes via a restoration of EPA levels. Otherwise, other mechanisms have to be considered.

      In line with the above issue, the low level or EPA restoration in hif-1 and ftn-2 mutants raise the possibility that the mutations rescue fat-2 mutants downstream of lipid changes. The reduction in HIF-1 levels in fat-2 mutants also suggest that lipid changes affect HIF-1 expression. Thus, the "impossibility to genetically compensate PUFA deficiency" might be wrong. The above experiment would answer to this point too.

      The reviewer is entirely correct to consider alternative explanations. In the lipidomics in Fig 3, we see that fat-2(wa17) worms on NGM have only ~1.5-2%mol EPA in phosphatidylcholines. When treated with 2 mM LA, the levels of EPA rise to ~10%mol, still below the ~ 25% observed in N2 but perhaps this is sufficient cause for restoring fat-2(wa17) health. Similarly, the hif-1(et69) and ftn-2(et68) mutant alleles elevate EPA levels to 5- 7% in fat-2(wa17). Thus, we have a correlation where a significant increase in EPA, obtained either through LA supplementation or through suppressor mutations (e.g. egl-9 (et60), hif-1(et69) or ftn-2(et68)), is associated with improved growth and health of the fat-2(wa17) mutant. However, correlation is of course not proof. The suggested experiment to titrate EPA to its lowest fat-2(wa17) rescuing levels and then perform lipidomics analysis was not possible in a reasonable time frame during this revision. However, preliminary experiments showed that even 25 μM LA (most of which will be converted to EPA by the worms) is enough to rescue the fat-2(wa17) or null mutant (Author response image 1), suggesting that even tiny amounts (much below the >250 μM used in our article) bring great benefits.

      Author response image 1.

      Nevertheless, we now acknowledge in the discussion that alternative explanations exist:

      "Other mechanisms are also possible. For example, mutations in the HIF-1 pathway could somehow reduce EPA turnover rates in the fat-2(wa17) mutant and allow its levels to rise above an essential threshold. This hypothesis is consistent with the observation that the suppressors can rescue both the fat-2(wa17) mutant and fat-2 RNAi-treated worms but not the fat-2 null mutant. It is even possible, though deemed unlikely, that the fat-2(wa17) suppressors act by compensating for the PUFA shortage via some undefined separate process downstream of the lipid changes and that they only indirectly result in elevated EPA levels."

      Additionally, another possible mechanism of action of the fat-2(wa17) suppressors could have been that they all cause upregulation of the FAT-2 protein. We have now explored this possibility using Western blots and found that this is an unlikely mechanism. This is presented in Fig. 6D-E and S3C-D, mentioned in the text as follows:

      "We also used Western blots to evaluate the abundance of the FAT-2 protein expressed from endogenous wild-type or mutant loci but to which a HA tag was fused using CRISPR/Cas9. We found that the FAT-2::HA levels are severely reduced when the locus contains the S101F substitution present in the wa17 allele, but restored close to wild-type levels by the fat2(et65) suppressor mutation (Fig 6D-E, S3C-D Fig). The levels of FAT-2 in the HIF-1 pathway suppressors varied between experiments, with the suppressors sometimes restoring FAT-2 levels and sometimes not even when the worms were growing well (Fig 6D-E, S3C-D Fig). The fat-2(wa17) suppressors, except for the intragenic fat-2 alleles, likely do not act by increasing FAT-2 protein levels."

      (4) It should be tested how Fe2+ levels are changed in the mutants, and how effective the ferric ammonium citrate treatment is. The authors might use a ftn-1::GFP reporter for this purpose.

      We did obtain a strain carrying the ftn-1::GFP reporter but could not generate conclusive data with it. In particular, we saw no increase in fluorescence in fat-2(wa17) worms carrying suppressor mutations. However, we also found that even FAC treatment that rescue the fat2(wa17) mutant did not result in a measurable increased GFP levels suggesting that the reporter is not sensitive enough.

      Minor comments

      (1) I think that putting Figure 6A in Figure 5 would be helpful for the readers, so that they understand that the mutations converge in the same pathway.

      This is now done.

      (2) Page 3: While it is clear that paqr-2 regulates lipid composition, I believe that it remains unclear if it "promote the production and incorporation of PUFAs into phospholipids to restore membrane homeostasis".

      A reference was missing to support that statement. Ruiz et al. (2023) is now cited for this (ref. 7).

      (3) C. elegans is extremely rich in EPA (see for example DOI: 10.3390/jcm5020019), but the lipidomics data in this study rather suggest that oleic acid is predominant. I recommend to check why this discrepancy occurs.

      OA (18:1n9) makes up only ~2%, but vaccenic acid (18:1n7) is ~21% in WT worms, EPA is slightly less at ~19% (Watts et al. 2002). These match with our lipidomics results although we cannot distinguish between 18:1n9 and n7. See also answer to Reviewer #1, comment 1.

      (4) Abstract: The authors write that mammals do not synthesize PUFAs, which is almost correct, but they still produce the PUFA mead acid. Thus, the statement is not completely right.

      Didn't know that! From literature, it is our understanding that mammals synthesize mead acid during FA deficiency but not in normal conditions, so they are not regularly producing mead acid. We have now updated the introduction:

      "An exception to this exists during severe essential fatty acid deficiency when mammals can synthesize mead acid (20:3n9), though this is not a common occurrence [11]"

      (5) Page 10: Eicosanoids are C20 lipid mediators, thus those produced from docosahexaenoic acid are not eicosanoids. Correct the statement.

      We thank the reviewer for pointing this out. We now write:

      " EPA and DHA, being long chain PUFAs should have similar fluidizing effects on membrane properties (though in vitro experiments challenge this view [78]), and both can serve as precursors of eicosanoids or docosanoids, particularly inflammatory ones [79]."

      (6) Page 7: "hif-1(et69) is similarly able to suppress fat-2(wa17) when ftn-2 is knocked out" I am not sure that the data agrees with this statement, and it is unclear what we can conclude from such observation.

      Fig. 2D shows that ftn-2(et68) suppresses fat-2(wa17) even in the presence of a hif-1(ok2654) null allele, showing that no HIF-1 function is required once ftn-2 is mutated. Conversely, Fig S2E shows that combining both the hif-1(et69) and the ftn-2(ok404) null allele also suppresses fat-2(wa17) (the worms do not fully reach N2 length, but they are significantly longer and were fertile adults); this is merely the expected outcome if the pathway converges on loss of ftn-2 function, though other interpretations could be possible from this experiment alone.

      (7) S3 Fig: in panel B, is the last column ftn-2;egl-9 mutant? I would imagine that it is ftn2;fat-2.

      We thank the reviewer for pointing this out. This has been corrected.

      (8) Fig 6B, how many times has been this experiment done?

      With these exact conditions (6h and 20h hypoxia) and order of strains the blot was done once, but the blot overall was done 5 times. We now added another replicate in Fig. S3A.

      Note also that a few minor modifications have been made throughout the text, which can be seen in the Word file with tracked changes.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Hussain and collaborators aims at deciphering the microtubule-dependent ribbon formation in zebrafish hair cells. By using confocal imaging, pharmacology tools, and zebrafish mutants, the group of Katie Kindt convincingly demonstrated that ribbon, the organelle that concentrates glutamate-filled vesicles at the hair cell synapse, originates from the fusion of precursors that move along the microtubule network. This study goes hand in hand with a complementary paper (Voorn et al.) showing similar results in mouse hair cells.

      Strengths:

      This study clearly tracked the dynamics of the microtubules, and those of the microtubule-associated ribbons and demonstrated fusion ribbon events. In addition, the authors have identified the critical role of kinesin Kif1aa in the fusion events. The results are compelling and the images and movies are magnificent.

      Weaknesses:

      The lack of functional data regarding the role of Kif1aa. Although it is difficult to probe and interpret the behavior of zebrafish after nocodazole treatment, I wonder whether deletion of kif1aa in hair cells may result in a functional deficit that could be easily tested in zebrafish?

      We have examined functional deficits in kif1aa mutants in another paper that was recently accepted: David et al. 2024. https://pubmed.ncbi.nlm.nih.gov/39373584/

      In David et al., we found that in addition to a subtle role in ribbon fusion during development, Kif1aa plays a major role in enriching glutamate-filled synaptic vesicles at the presynaptic active zone of mature hair cells. In kif1aa mutants, synaptic vesicles are no longer enriched at the hair cell base, and there is a reduction in the number of synaptic vesicles associated with presynaptic ribbons. Further, we demonstrated that kif1aa mutants also have functional defects including reductions in spontaneous vesicle release (from hair cells) and evoked postsynaptic calcium responses. Behaviorally, kif1aa mutants exhibit impaired rheotaxis, indicating defects in the lateral-line system and an inability to accurately detect water flow. Because our current paper focuses on microtubule-associated ribbon movement and dynamics early in hair-cell development, we have only discussed the effects of Kif1aa directly related to ribbon dynamics during this time window. In our revision, we have referenced this recent work. Currently it is challenging to disentangle how the subtle defects in ribbon formation in kif1aa mutants contribute to the defects we observe in ribbon-synapse function.

      Added to results:

      “Recent work in our lab using this mutant has shown that Kif1aa is responsible for enriching glutamate-filled vesicles at the base of hair cells. In addition this work demonstrated that loss of Kif1aa results in functional defects in mature hair cells including a reduction in evoked post-synaptic calcium responses (David et al., 2024). We hypothesized that Kif1aa may also be playing an earlier role in ribbon formation.”

      Impact:

      The synaptogenesis in the auditory sensory cell remains still elusive. Here, this study indicates that the formation of the synaptic organelle is a dynamic process involving the fusion of presynaptic elements. This study will undoubtedly boost a new line of research aimed at identifying the specific molecular determinants that target ribbon precursors to the synapse and govern the fusion process.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors set out to resolve a long-standing mystery in the field of sensory biology - how large, presynaptic bodies called "ribbon synapses" migrate to the basolateral end of hair cells. The ribbon synapse is found in sensory hair cells and photoreceptors, and is a critical structural feature of a readily-releasable pool of glutamate that excites postsynaptic afferent neurons. For decades, we have known these structures exist, but the mechanisms that control how ribbon synapses coalesce at the bottom of hair cells are not well understood. The authors addressed this question by leveraging the highly-tractable zebrafish lateral line neuromast, which exhibits a small number of visible hair cells, easily observed in time-lapse imaging. The approach combined genetics, pharmacological manipulations, high-resolution imaging, and careful quantifications. The manuscript commences with a developmental time course of ribbon synapse development, characterizing both immature and mature ribbon bodies (defined by position in the hair cell, apical vs. basal). Next, the authors show convincing (and frankly mesmerizing) imaging data of plus end-directed microtubule trafficking toward the basal end of the hair cells, and data highlighting the directed motion of ribbon bodies. The authors then use a series of pharmacological and genetic manipulations showing the role of microtubule stability and one particular kinesin (Kif1aa) in the transport and fusion of ribbon bodies, which is presumably a prerequisite for hair cell synaptic transmission. The data suggest that microtubules and their stability are necessary for normal numbers of mature ribbons and that Kif1aa is likely required for fusion events associated with ribbon maturation. Overall, the data provide a new and interesting story on ribbon synapse dynamics.

      Strengths:

      (1) The manuscript offers a comprehensive Introduction and Discussion sections that will inform generalists and specialists.

      (2) The use of Airyscan imaging in living samples to view and measure microtubule and ribbon dynamics in vivo represents a strength. With rigorous quantification and thoughtful analyses, the authors generate datasets often only obtained in cultured cells or more diminutive animal models (e.g., C. elegans).

      (3) The number of biological replicates and the statistical analyses are strong. The combination of pharmacology and genetic manipulations also represents strong rigor.

      (4) One of the most important strengths is that the manuscript and data spur on other questions - namely, do (or how do) ribbon bodies attach to Kinesin proteins? Also, and as noted in the Discussion, do hair cell activity and subsequent intracellular calcium rises facilitate ribbon transport/fusion?

      These are important strengths and as stated we are currently investigating what other kinesins and adaptors and adaptor’s transport ribbons. We have ongoing work examining how hair-cell activity impacts ribbon fusion and transport!

      Weaknesses:

      (1) Neither the data or the Discussion address a direct or indirect link between Kinesins and ribbon bodies. Showing Kif1aa protein in proximity to the ribbon bodies would add strength.

      This is a great point. Previous immunohistochemistry work in mice demonstrated that ribbons and Kif1a colocalize in mouse hair cells (Michanski et al, 2019). Unfortunately, the antibody used in study work did not work in zebrafish. To further investigate this interaction, we also attempted to create a transgenic line expressing a fluorescently tagged Kif1aa to directly visualize its association with ribbons in vivo. At present, we were unable to detect transient expression of Kif1aa-GFP or establish a transgenic line using this approach. While we will continue to work towards understanding whether Kif1aa and ribbons colocalize in live hair cells, currently this goal is beyond the scope of this paper. In our revision we discuss this caveat.

      Added to discussion:

      “In addition, it will be useful to visualize these kinesins by fluorescently tagging them in live hair cells to observe whether they associate with ribbons.”

      (2) Neither the data or Discussion address the functional consequences of loss of Kif1aa or ribbon transport. Presumably, both manipulations would reduce afferent excitation.

      Excellent point. Please see the response above to Reviewer #1 public response weaknesses.

      (3) It is unknown whether the drug treatments or genetic manipulations are specific to hair cells, so we can't know for certain whether any phenotypic defects are secondary.

      This is correct and a caveat of our Kif1aa and drug experiments. In our recently published work, we confirmed that Kif1aa is expressed in hair cells and neurons, while kif1ab is present just is neurons. Therefore, it is likely that the ribbon formation defects in kif1aa mutants are restricted to hair cells. We added this expression information to our results:

      “ScRNA-seq in zebrafish has demonstrated widespread co-expression of kif1ab and kif1aa mRNA in the nervous system. Additionally, both scRNA-seq and fluorescent in situ hybridization have revealed that pLL hair cells exclusively express kif1aa mRNA (David et al., 2024; Lush et al., 2019; Sur et al., 2023).”

      Non-hair cell effects are a real concern in our pharmacology experiments. To mitigate this in our pharmacological experiments, we have performed drug treatments at 3 different timescales: long-term (overnight), short-term (4 hr) and fast (30 min) treatments. The fast experiments were done after 30 min nocodazole drug treatment, and after this treatment we observed reduced directional motion and fusions. This fast drug treatment should not incur any long-term changes or developmental defects as hair-cell development occurs over 12-16 hrs. However, we acknowledge that drug treatments could have secondary phenotypic effects or effects that are not hair-cell specific. In our revision, we discuss these issues.

      Added to discussion:

      “Another important consideration is the potential off-target effects of nocodazole. Even at non-cytotoxic doses, nocodazole toxicity may impact ribbons and synapses independently of its effects on microtubules. While this is less of a concern in the short- and medium-term experiments (30-70 min and 4 hr), long-term treatments (16 hrs) could introduce confounding effects. Additionally, nocodazole treatment is not hair cell-specific and could disrupt microtubule organization within afferent terminals as well. Thus, the reduction in ribbon-synapse formation following prolonged nocodazole treatment may result from microtubule disruption in hair cells, afferent terminals, or a combination of the two.”

      Reviewer #3 (Public Review):

      Summary:

      The manuscript uses live imaging to study the role of microtubules in the movement of ribeye aggregates in neuromast hair cells in zebrafish. The main findings are that

      (1) Ribeye aggregates, assumed to be ribbon precursors, move in a directed motion toward the active zone;

      (2) Disruption of microtubules and kif1aa increases the number of ribeye aggregates and decreases the number of mature synapses.

      The evidence for point 2 is compelling, while the evidence for point 1 is less convincing. In particular, the directed motion conclusion is dependent upon fitting of mean squared displacement that can be prone to error and variance to do stochasticity, which is not accounted for in the analysis. Only a small subset of the aggregates meet this criteria and one wonders whether the focus on this subset misses the bigger picture of what is happening with the majority of spots.

      Strengths:

      (1) The effects of Kif1aa removal and nocodozole on ribbon precursor number and size are convincing and novel.

      (2) The live imaging of Ribeye aggregate dynamics provides interesting insight into ribbon formation. The movies showing the fusion of ribeye spots are convincing and the demonstrated effects of nocodozole and kif1aa removal on the frequency of these events is novel.

      (3) The effect of nocodozole and kif1aa removal on precursor fusion is novel and interesting.

      (4) The quality of the data is extremely high and the results are interesting.

      Weaknesses:

      (1) To image ribeye aggregates, the investigators overexpressed Ribeye-a TAGRFP under the control of a MyoVI promoter. While it is understandable why they chose to do the experiments this way, expression is not under the same transcriptional regulation as the native protein, and some caution is warranted in drawing some conclusions. For example, the reduction in the number of puncta with maturity may partially reflect the regulation of the MyoVI promoter with hair cell maturity. Similarly, it is unknown whether overexpression has the potential to saturate binding sites (for example motors), which could influence mobility.

      We agree that overexpression of transgenes under using a non-endogenous promoter in transgenic lines is an important consideration. Ideally, we would do these experiments with endogenously expressed fluorescent proteins under a native promoter. However, this was not technically possible for us. The decrease in precursors is likely not due to regulation by the myo6a promoter. Although the myo6a promoter comes on early in hair cell development, the promoter only gets stronger as the hair cells mature. This would lead to a continued increase rather than a decrease in puncta numbers with development.

      Protein tags such as tagRFP always have the caveat of impacting protein function. This is in partly why we complemented our live imaging with analyses in fixed tissue without transgenes (kif1aa mutants and nocodazole/taxol treatments).

      In our revision, we did perform an immunolabel on myo6b:riba-tagRFP transgenic fish and found that Riba-tagRFP expression did not impact ribbon synapse numbers or ribbon size. This analysis argues that the transgene is expressed at a level that does not impact ribbon synapses. This data is summarized in Figure 1-S1.

      Added to the results:

      “Although this latter transgene expresses Riba-TagRFP under a non-endogenous promoter, neither the tag nor the promoter ultimately impacts cell numbers, synapse counts, or ribbon size (Figure 1-S1A-E).”

      Added to methods:

      Tg(myo6b:ctbp2a-TagRFP)<sup>idc11Tg</sup> reliably labels mature ribbons, similar to a pan-CTBP immunolabel at 5 dpf (Figure 1-S1B). This transgenic line does not alter the number of hair cells or complete synapses per hair cell (Figure 1-S1A-D). In addition, myo6b:ctbp2a-TagRFP does not alter the size of ribbons (Figure 1-S1E).”

      (2) The examples of punctae colocalizing with microtubules look clear (Figures 1 F-G), but the presentation is anecdotal. It would be better and more informative, if quantified.

      We did attempt a co-localization analysis between microtubules and ribbons but did not move forward with it due to several issues:

      (1) Hair cells have an extremely crowded environment, especially since the nucleus occupies the majority of the cell. All proteins are pushed together in the small space surrounding the nucleus and ultimately, we found that co-localization analyses were not meaningful because the distances were too small.

      (2) We also attempted to segment microtubules in these images and quantify how many ribbons were associated with microtubules, but 3D microtubule segmentation was not accurate in hair cells due to highly varying filament intensities, filament dynamics and the presence of diffuse cytoplasmic tubulin signal.

      Because of these challenges we concluded the best evidence of ribbon-microtubule association is through visualization of ribbons and their association with microtubules over time (in our timelapses). We see that ribbons localize to microtubules in all our timelapses, including the examples shown (Movies S2-S10). The only instance of ribbon dissociation it when ribbons switch from one filament to another. We did not observe free-floating ribbons in our study.

      (3) It appears that any directed transport may be rare. Simply having an alpha >1 is not sufficient to declare movement to be directed (motor-driven transport typically has an alpha approaching 2). Due to the randomness of a random walk and errors in fits in imperfect data will yield some spread in movement driven by Brownian motion. Many of the tracks in Figure 3H look as though they might be reasonably fit by a straight line (i.e. alpha = 1).

      (4) The "directed motion" shown here does not really resemble motor-driven transport observed in other systems (axonal transport, for example) even in the subset that has been picked out as examples here. While the role of microtubules and kif1aa in synapse maturation is strong, it seems likely that this role may be something non-canonical (which would be interesting).

      Yes, it is true, that directed transport of ribbon precursors is relatively rare. Only a small subset of the ribbon precursors moves directionally (α > 1, 20 %) or have a displacement distance > 1 µm (36 %) during the time windows we are imaging. The majority of the ribbons are stationary. To emphasize this result we have added bar graphs to Figure 3I,K to illustrate this result and state the numbers behind this result more clearly.

      “Upon quantification, 20.2 % of ribbon tracks show α > 1, indicative of directional motion, but the majority of ribbon tracks (79.8 %) show α < 1, indicating confinement on microtubules (Figure 3I, n = 10 neuromasts, 40 hair cells, and 203 tracks).

      To provide a more comprehensive analysis of precursor movement, we also examined displacement distance (Figure 3J). Here, as an additional measure of directed motion, we calculated the percent of tracks with a cumulative displacement > 1 µm. We found 35.6 % of tracks had a displacement > 1 µm (Figure 3K; n = 10 neuromasts, 40 hair cells, and 203 tracks).”

      We cannot say for certain what is happening with the stationary ribbons, but our hypothesis is that these ribbons eventually exhibit directed motion sufficient to reach the active zone. This idea is supported by the fact that we see ribbons that are stationary begin movement, and ribbons that are moving come to a stop during the acquisition of our timelapses (Movies S4 and S5). It is possible that ribbons that are stationary may not have enough motors attached, or there may be a ‘seeding’ phase where Ribeye aggregates are condensing on the ribbon.

      We also reexamined our MSD a values as the a values we observed in hair cells were lower than those seen canonical motor-driven transport (where a approaches 2). One reason for this difference may arise from the dynamic microtubule network in developing hair cells, which could affect directional ribbon movement. In our revision we plotted the distribution of a values which confirmed that in control hair cells, the majority of the a values we see are typically less than 2 (Figure 7-S1A). Interestingly we also compared the distribution a values between control and taxol-treated hair cells, where the microtubule network is more stable, and found that the distribution shifted towards higher a values (Figure 7-S1A). We also plotted only ‘directional’ tracks (with a > 1) and observed significantly higher a values in taxol-treated hair cells (Figure 7-S1B). This is an interesting result which indicates that although the proportion of directional tracks (with a > 1) is not significantly different between control and taxol-treated hair cells (which could be limited by the number of motor/adapter proteins), the ribbons that move directionally do so with greater velocities when the microtubules are more stable. This supports our idea that the stability of the microtubule network could be why ribbon movement does not resemble canonical motor transport. This analysis is presented as a new figure (Figure 7-S1A-B) and is referred to in the text in the results and the discussion.

      Results:

      “Interestingly, when we examined the distribution of α values, we observed that taxol treatment shifted the overall distribution towards higher α a values (Figure 7-S1A). In addition, when we plotted only tracks with directional motion (α > 1), we found significantly higher α values in hair cells treated with taxol compared to controls (Figure 7-S1B). This indicates that in taxol-treated hair cells, where the microtubule network is stabilized, ribbons with directional motion have higher velocities.”

      Discussion:

      “Our findings indicate that ribbons and precursors show directed motion indicative of motor-mediated transport (Figure 3 and 7). While a subset of ribbons moves directionally with α values > 1, canonical motor-driven transport in other systems, such as axonal transport, can achieve even higher α values approaching 2 (Bellotti et al., 2021; Corradi et al., 2020). We suggest that relatively lower α values arise from the highly dynamic nature of microtubules in hair cells. In axons, microtubules form stable, linear tracks that allow kinesins to transport cargo with high velocity. In contrast, the microtubule network in hair cells is highly dynamic, particularly near the cell base. Within a single time frame (50-100 s), we observe continuous movement and branching of these networks. This dynamic behavior adds complexity to ribbon motion, leading to frequent stalling, filament switching, and reversals in direction. As a result, ribbon transport appears less directional than the movement of traditional motor cargoes along stable axonal filaments, resulting in lower α values compared to canonical motor-mediated transport. Notably, treatment with taxol, which stabilizes microtubules, increased α values to levels closer to those observed in canonical motor-driven transport (Figure 7-S1). This finding supports the idea that the relatively lower α values in hair cells are a consequence of a more dynamic microtubule network. Overall, this dynamic network gives rise to a slower, non-canonical mode of transport.”

      (5) The effect of acute treatment with nocodozole on microtubules in movie 7 and Figure 6 is not obvious to me and it is clear that whatever effect it has on microtubules is incomplete.

      When using nocodazole, we worked to optimize the concentration of the drug to minimize cytotoxicity, while still being effective. While the more stable filaments at the cell apex remain largely intact after nocodazole treatment, there are almost no filaments at the hair cell base, which is different from the wild-type hair cells. In addition, nocodazole-treated hair cells have more cytoplasmic YFP-tubulin signal compared to wild type. We have clarified this in our results. To better illustrate the effect of nocodazole and taxol we have also added additional side-view images of hair cells expressing YFP-tubulin (Figure 4-S1F-G), that highlight cytoplasmic YFP-tubulin and long, stabilized microtubules after 3-4 hr treatment with nocodazole and taxol respectively. In these images we also point out microtubules at the apical region of hair cells that are very stable and do not completely destabilize with nocodazole treatment at concentrations that are tolerable to hair cells.

      “We verified the effectiveness of our in vivo pharmacological treatments using either 500 nM nocodazole or 25 µM taxol by imaging microtubule dynamics in pLL hair cells (myo6b:YFP-tubulin). After a 30-min pharmacological treatment, we used Airyscan confocal microscopy to acquire timelapses of YFP-tubulin (3 µm z-stacks, every 50-100 s for 30-70 min, Movie S8). Compared to controls, 500 nM nocodazole destabilized microtubules (presence of depolymerized YFP-tubulin in the cytosol, see arrows in Figure 4-S1F-G) and 25 µM taxol dramatically stabilized microtubules (indicated by long, rigid microtubules, see arrowheads in Figure 4-S1F,H) in pLL hair cells. We did still observe a subset of apical microtubules after nocodazole treatment, indicating that this population is particularly stable (see asterisks in Figure 4-S1F-H).”

      To further address concerns about verifying the efficacy of nocodazole and taxol treatment on microtubules, we added a quantification of our immunostaining data comparing the mean acetylated-a-tubulin intensities between control, nocodazole and taxol-treated hair cells. Our results show that nocodazole treatment reduces the mean acetylated-a-tubulin intensity in hair cells. This is included as a new figure (Figure 4-S1D-E) and this result is referred to in the text. To better illustrate the effect of nocodazole and taxol we have also added additional side-view images of hair cells after overnight treatment with nocodazole and taxol (Figure 4-S1A-C).

      “After a 16-hr treatment with 250 nM nocodazole we observed a decrease in acetylated-a-tubulin label (qualitative examples: Figure 4A,C, Figure 4-S1A-B). Quantification revealed significantly less mean acetylated-a-tubulin label in hair cells after nocodazole treatment (Figure 4-S1D). Less acetylated-a-tubulin label indicates that our nocodazole treatment successfully destabilized microtubules.”

      “Qualitatively more acetylated-a-tubulin label was observed after treatment, indicating that our taxol treatment successfully stabilized microtubules (qualitative examples: Figure 4-S1A,C). Quantification revealed an overall increase in mean acetylated-a-tubulin label in hair cells after taxol treatment, but this increase did not reach significance (Figure 4-S1E).”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The manuscript is fairly dense. For instance, some information is repeated (page 3 ribbon synapses form along a condensed timeline in zebrafish hair cells: 12-18 hrs, and on .page 5. These hair cells form 3-4 ribbon synapses in just 12-18 hrs). Perhaps, the authors could condense some of the ideas? The introduction could be shortened.

      We have eliminated this repeated text in our revision. We have shortened the introduction 1275 to 1038 words (with references)

      (2) The mechanosensory structure on page 5 is not defined for readers outside the field.

      Great point, we have added addition information to define this structure in the results:

      “We staged hair cells based on the development of the apical, mechanosensory hair bundle. The hair bundle is composed of actin-based stereocilia and a tubulin-based kinocilium. We used the height of the kinocilium (see schematic in Figure 1B), the tallest part of the hair bundle, to estimate the developmental stage of hair cells as described previously…”

      (3) Figure 1E is quite interesting but I'd rather show Figure S1 B/C as they provide statistics. In addition, the authors define 4 stages : early, intermediate, late, and mature for counting but provide only 3 panels for representative examples by mixing late/mature.

      We were torn about which ribbon quantification graph to show. Ultimately, we decided to keep the summary data in Figure 1E. This is primarily because the supplementary Figure will be adjacent to the main Figure in the Elife format, and the statistics will be easy to find and view.

      Figure 1 now provides a representative image for both late and mature hair cells.

      (4.) The ribbon that jumps from one microtubule to another one is eye-catching. Can the authors provide any statistics on this (e.g. percentage)?

      Good point. In our revision, we have added quantification for these events. We observe 2.8 switching events per neuromast during our fast timelapses. This information is now in the text and is also shown in a graph in Figure 3-S1D.

      “Third, we often observed that precursors switched association between neighboring microtubules (2.8 switching events per neuromast, n= 10 neuromasts; Figure 3-S1C-D, Movie S7).”

      (5) With regard to acetyl-a-tub immunocytochemistry, I would suggest obtaining a profile of the fluorescence intensity on a horizontal plane (at the apical part and at the base).

      (6) Same issue with microtubule destruction by nocodazole. Can the authors provide fluorescence intensity measurements to convince readers of microtubule disruption for long and short-term application.

      Regarding quantification of microtubule disruption using nocodazole and taxol. We did attempt to create profiles of the acetylated tubulin or YFP-tubulin label along horizontal planes at the apex and base, but the amount variability among cells and the angle of the cell in the images made this type of display and quantification challenging. In our revision we as stated above in our response to Reviewer #1’s public comment, we have added representative side-view images to show the disruptions to microtubules more clearly after short and long-term drug experiments (Figure 4-S1A-C, F-H). In addition, we quantified the reduction in acetylated tubulin label after overnight treatment with nocodazole and found the signal was significantly reduced (Figure 3-S1D-E). Unfortunately, we were unable to do a similar quantification due to the variability in YFP-tubulin intensity due to variations in mounting. The following text has been added to the results:

      “Quantification revealed significantly less mean acetylated-a-tubulin label in hair cells after nocodazole treatment (Figure 4-S1D).”

      “Quantification revealed an overall increase in mean acetylated-a-tubulin label in hair cells after taxol treatment, but this increase did not reach significance (Figure 4-S1A,C,E).”

      (7) It is a bit difficult to understand that the long-term (overnight) microtubule destabilization leads to a reduction in the number of synapses (Figure 4F) whereas short-term (30 min) microtubule destabilization leads to the opposite phenotype with an increased number of ribbons (Figure 6G). Are these ribbons still synaptic in short-term experiments? What is the size of the ribbons in the short-term experiments? Alternatively, could the reduction in synapse number upon long-term application of nocodazole be a side-effect of the toxicity within the hair cell?

      Agreed-this is a bit confusing. In our revision, we have changed our analyses, so the comparisons are more similar between the short- and long-term experiments–we examined the number of ribbons and precursor per cells (apical and basal) in both experiments (Changed the panel in Figure 4G, Figure 4-S2G and Figure 5G). In our live experiments we cannot be sure that ribbons are synaptic as we do not have a postsynaptic co-label. Also, we are unable to reliably quantify ribbon and precursor size in our live images due to variability in mounting. We have changed the text to clarify as follows:

      Results:

      “In each developing cell, we quantified the total number of Riba-TagRFP puncta (apical and basal) before and after each treatment. In our control samples we observed on average no change in the number of Riba-TagRFP puncta per cell (Figure 6G). Interestingly, we observed that nocodazole treatment led to a significant increase in the total number of Riba-TagRFP puncta after 3-4 hrs (Figure 6G). This result is similar to our overnight nocodazole experiments in fixed samples, where we also observed an increase in the number of ribbons and precursors per hair cell. In contrast to our 3-4 hr nocodazole treatment, similar to controls, taxol treatment did not alter the total number of Riba-TagRFP puncta over 3-4 hrs (Figure 6G). Overall, our overnight and 3-4 hr pharmacology experiments demonstrate that microtubule destabilization has a more significant impact on ribbon numbers compared to microtubule stabilization.”

      Discussion:

      “Ribbons and microtubules may interact during development to promote fusion, to form larger ribbons. Disrupting microtubules could interfere with this process, preventing ribbon maturation. Consistent with this, short-term (3-4 hr) and long-term (overnight) nocodazole increased ribbon and precursor numbers (Figure 6AG; Figure 4G), suggesting reduced fusion. Long-term treatment (overnight) resulted in a shift toward smaller ribbons (Figure 4H-I), and ultimately fewer complete synapses (Figure 4F).”

      Nocodazole toxicity: in response to Reviewer # 2’s public comment we have added the following text in our discussion:

      Discussion:

      “Another important consideration is the potential off-target effects of nocodazole. Even at non-cytotoxic doses, nocodazole toxicity may impact ribbons and synapses independently of its effects on microtubules. While this is less of a concern in the short- and medium-term experiments (30 min to 4 hr), long-term treatments (16 hrs) could introduce confounding effects. Additionally, nocodazole treatment is not hair cell-specific and could disrupt microtubule organization within afferent terminals as well. Thus, the reduction in ribbon-synapse formation following prolonged nocodazole treatment may result from microtubule disruption in hair cells, afferent terminals, or a combination of the two.”

      (8) Does ribbon motion depend on size or location?

      It is challenging to reliability quantify the actual area of precursors in our live samples, as there is variability in mounting and precursors are quite small. But we did examine the location of ribbon precursors (using tracks > 1 µm as these tracks can easily be linked to cell location in Imaris) with motion in the cell. We found evidence of ribbons with tracks > 1 µm throughout the cell, both above and below the nucleus. This is now plotted in Figure 3M. We have also added the following test to the results:

      “In addition, we examined the location of precursors within the cell that exhibited displacements > 1 µm. We found that 38.9 % of these tracks were located above the nucleus, while 61.1 % were located below the nucleus (Figure 3M).”

      Although this is not an area or size measurement, this result suggests that both smaller precursors that are more apical, and larger precursors/ribbons that are more basal all show motion.

      (9) The fusion event needs to be analyzed in further detail: when one ribbon precursor fuses with another one, is there an increase in size or intensity (this should follow the law of mass conservation)? This is important to support the abstract sentence "ribbon precursors can fuse together on microtubules to form larger ribbons".

      As mentioned above it is challenging accurately estimate the absolute size or intensity of ribbon precursors in our live preparation. But we did examine whether there is a relative increase in area after ribbon fuse. We have plotted the change in area (within the same samples) for the two fusion events in shown in Figure 8-S1A-B. In these examples, the area of the puncta after fusion is larger than either of the two precursors that fuse. Although the areas are not additive, these plots do provide some evidence that fusion does act to form larger ribbons. To accompany these plots, we have added the following text to the results:

      “Although we could not accurately measure the areas of precursors before and after fusion, we observed that the relative area resulting from the fusion of two smaller precursors was greater than that of either precursor alone. This increase in area suggests that precursor fusion may serve as a mechanism for generating larger ribbons (see examples: Figure 8-S1A-B).”

      Because we were unable to provide more accurate evidence of precursor fusion resulting in larger ribbons, we have removed this statement from our abstract and lessened our claims elsewhere in the manuscript.

      (10) The title in Figure 8 is a bit confusing. If fusion events reflect ribbon precursors fusion, it is obvious it depends on ribbon precursors. I'd like to replace this title with something like "microtubules and kif1aa are required for fusion events"

      We have changed the figure title as suggested, good idea.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 1C. The purple/magenta colors are hard to distinguish.

      We have made the magenta color much lighter in the Figure 1C to make it easier to distinguish purple and magenta.

      (2) There are places where some words are unnecessarily hyphenated. Examples: live-imaging and hair-cell in the abstract, time-course in the results.

      In our revision, we have done our best to remove unnecessary hyphens, including the ones pointed out here.

      (3) Figure 4H and elsewhere - what is "area of Ribeye puncta?" Related, I think, in the Discussion the authors refer to "ribbon volume" on line 484. But they never measured ribbon volume so this needs to be clarified.

      We have done best to clarify what is meant by area of Ribeye puncta in the results and the methods:

      Results:

      “We also observed that the average of individual Ribeyeb puncta (from 2D max-projected images) was significantly reduced compared to controls (Figure 4H). Further, the relative frequency of individual Ribeyeb puncta with smaller areas was higher in nocodazole treated hair cells compared to controls (Figure 4I).”

      Methods:

      “To quantify the area of each ribbon and precursor, images were processed in a FIJI ‘IJMacro_AIRYSCAN_simple3dSeg_ribbons only.ijm’ as previously described (Wong et al., 2019). Here each Airyscan z-stack was max-projected. A threshold was applied to each image, followed by segmentation to delineate individual Ribeyeb/CTBP puncta. The watershed function was used to separate adjacent puncta. A list of 2D objects of individual ROIs (minimum size filter of 0.002 μm2) was created to measure the 2D areas of each Ribeyeb/CTBP puncta.”

      We did refer to ribbon volume once in the discussion, but volume is not reflected in our analyses, so we have removed this mention of volume.

      (4) More validation data showing gene/protein removal for the crispants would be helpful.

      Great suggestion. As this is a relatively new method, we have created a figure that outlines how we genotype each individual crispant animal analyzed in our study Figure 6-S1. In the methods we have also added the following information:

      “fPCR fragments were run on a genetic analyzer (Applied Biosystems, 3500XL) using LIZ500 (Applied Biosystems, 4322682) as a dye standard. Analysis of this fPCR revealed an average peak height of 4740 a.u. in wild type, and an average peak height of 126 a.u. in kif1aa F0 crispants (Figure 6-S1). Any kif1aa F0 crispant without robust genomic cutting or a peak height > 500 a.u. was not included in our analyses.”

      Reviewer #3 (Recommendations For The Authors):

      Lines 208-209--should refer to the movie in the text.

      Movie S1 is now referenced here.

      It would be helpful if the authors could analyze and quantify the effect of nocodozole and taxol on microtubules (movie 7).

      See responses above to Reviewer #1’s similar request.

      Figure 7 caption says "500 mM" nocodozole.

      Thank you, we have changed the caption to 500 nM.

      One problem with the MSD analysis is that it is dependent upon fits of individual tracks that lead to inaccuracies in assigning diffusive, restricted, and directed motion. The authors might be able to get around these problems by looking at the ensemble averages of all the tracks and seeing how they change with the various treatments. Even if the effect is on a subset of ribeye spots, it would be reassuring to see significant effects that did not rely upon fitting.

      We are hesitant to average the MSD tracks as not all tracks have the same number of time steps (ribbon moving in and out of the z-stack during the timelapse). This makes it challenging for us to look at the ensembles of all averages accurately, especially for the duration of the timelapse. This is the main reason why added another analysis, displacements > 1µm as another readout of directional motion, a measure that does not rely upon fitting.

      The abstract states that directed movement is toward the synapse. The only real evidence for this is a statement in the results: "Of the tracks that showed directional motion, while the majority move to the cell base, we found that 21.2 % of ribbon tracks moved apically." A clearer demonstration of this would be to do the analysis of Figure 2G for the ribeye aggregates.

      If was not possible to do the same analysis to ribbon tracks that we did for the EB3-GFP analysis in Figure 2. In Figure 2 we did a 2D tracking analysis and measured the relative angles in 2D. In contrast, the ribbon tracking was done in 3D in Imaris not possible to get angles in the same way. Further the MSD analysis was outside of Imaris, making it extremely difficult to link ribbon trajectories to the 3D cellular landscape in Imaris. Instead, we examined the direction of the 3D vectors in Imaris with tracks > 1µm and determined the direction of the motion (apical, basal or undetermined). For clarity, this data is now included as a bar graph in Figure 3L. In our results, we have clarified the results of this analysis:

      “To provide a more comprehensive analysis of precursor movement, we also examined displacement distance (Figure 3J). Here, as an additional measure of directed motion, we calculated the percent of tracks with a cumulative displacement > 1 µm. We found 35.6 % of tracks had a displacement > 1 µm (Figure 3K; n = 10 neuromasts, 40 hair cells and 203 tracks). Of the tracks with displacement > 1 µm, the majority of ribbon tracks (45.8 %) moved to the cell base, but we also found a subset of ribbon tracks (20.8 %) that moved apically (33.4 % moved in an undetermined direction) (Figure 3L).”

      Some more detail about the F0 crispants should be provided. In particular, what degree of cutting was observed and what was the criteria for robust cutting?

      See our response to Reviewer 2 and the newly created Figure 6-S1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Several concerns are raised from the current study.

      1) Previous studies showed that iTregs generated in vitro from culturing naïve T cells with TGF-b are intrinsically unstable and prone to losing Foxp3 expression due to lack of DNA demethylation in the enhancer region of the Foxp3 locus (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). It is known that removing TGF-b from the culture media leads to rapid loss of Foxp3 expression. In the current study, TGF-b was not added to the media during iTreg restimulation, therefore, the primary cause for iTreg instability should be the lack of the positive signal provided by TGF-b. NFAT signal is secondary at best in this culturing condition.

      In restimulation, void of TGFb is necessary to cause iTreg instability. Otherwise, the setup is similar to the iTreg-inducing environment (Author response image 1). On the other hand, the ultimate goal of this study is to provide a scenario that bears some resemblance of clinical treatment, where TGFb may not be available. The reviewer is correct in stating that TGFb is essential for iTreg stability, we are studying the role played by NFAT in iTreg instability in vitro, and possibly in potential clinical use of iTreg .

      Author response image 1.

      Restimulation with TGFb will persist iTreg inducing environment, resulting in less pronounced instability. Sorted Foxp3-GFP+ iTregs were rested for 1d, and then rested or restimulated in the presence of TGF-β for 2 d. Percentages of Foxp3+ cells were analyzed by intracellular staining of Foxp3 after 2 d.

      2) It is not clear whether the NFAT pathway is unique in accelerating the loss of Foxp3 expression upon iTreg restimulation. It is also possible that enhancing T cell activation in general could promote iTreg instability. The authors could explore blocking T cell activation by inhibiting other critical pathways, such as NF-kb and c-Jun/c-Fos, to see if a similar effect could be achieved compared to CsA treatment.

      We thank the reviewer for this suggestion. We performed this experiment according to see extent of the role that NFAT plays, or whether other major pathways are involved. As Author response image 2 shows, solely inhibiting NFAT effectively rescued the instability of iTreg. The inhibition of NFkB (BAY 11-7082), c-Jun (SP600125), or a c-Jun/c-Fos complex (T5224) had no discernable effect, or in one case, possibly further reduction in stability. These results may indicate that NFAT plays a crucial and special role in TCR activation, which leads to iTreg instability. Other pathways, as far as how this experiment is designed, do not appear to be significantly involved.

      Author response image 2.

      Comparing effects of NFAT, NF-kB and c-Jun/c-Fos inhibitors on iTreg instability. Sorted Foxp3-GFP+ iTregs were rested for 1d, then restimulated by anti-CD3 and CD28 in the presence of listed inhibitors. Percentages of Foxp3+ cells were analyzed by intracellular staining after 2d restimulation.

      3) The authors linked chromatin accessibility and increased expression of T helper cell genes to the loss of Foxp3 expression and iTreg instability. However, it is not clear how the former can lead to the latter. It is also not clear whether NFAT binds directly to the Foxp3 locus in the restimulated iTregs and inhibits Foxp3 expression.

      T helper gene activation is likely to cause instability in iTregs by secreting more inflammatory cytokines, as shown in Figure Q9, for example, IL-21 secretion. Further investigation is needed to understand how these genes contribute to Foxp3 gene instability exactly. With our limited insight, there may be two possibilities. 1. IL-21 directly affects Foxp3 through its impact on certain inflammation-related transcription factors (TFs). 2. There could be an indirect relationship where NFAT has a greater tendency to bind to those inflammatory TFs when iTreg instability appears, promoting the upregulation of these Th genes like in activated T cells, while being less likely to bind to SMAD and Foxp3, representing a competitive behavior. We at the moment cannot comprehend the intricacies that lead to the differential effects on T helper genes and Treg related genes.

      With that said, we have previously attempted to explore the direct effect of NFAT on Foxp3 gene locus. Foxp3 transcription in iTregs primarily relies on histone modifications such as H3K4me3 (Tone et al., 2008; Lu et al., 2011) rather than DNA demethylation (Ohkura et al., 2012; Hilbrands et al., 2016). Previous studies have reported that NFAT and SMAD3 can together promote the histone acetylation of Foxp3 genes (Tone et al., 2008). In our previous set of experiments, we simultaneously obtained information of NFAT binding sites and H3K4me3. In Foxp3 locus, we observed a decreasing trend in NFAT binding to the CNS3 region of Foxp3 in restimulated iTregs compared to resting iTregs (Author response image 3). Additionally, the H3K4me3 modification in the CNS3 region of Foxp3 decreased upon iTreg restimulation, but inhibiting NFAT nuclear translocation with CsA could maintain this modification at its original level (Author response image 3).

      Author response image 3.

      The NFAT binding and histone modification on Foxp3 gene locus. Genome track visualization of NFAT binding profiles and H3K4me3 profiles in Foxp3 CNS3 locus in two batches of dataset.

      Based on these preliminary explorations, it is concluded that NFAT can directly bind to the Foxp3 locus, and it appears that NFAT decreases upon restimulation, resulting in a decrease in H3K4me3, ultimately leading to the close association of NFAT and Foxp3 instability. However, due to limited sample replicates, these data need to be verified for more solid conclusions. We speculate that during the induction of iTregs, NFAT may recruit histone-modifying enzymes to open the Foxp3 CNS3 region, and this effect is synergistic with SMAD. When instability occurs upon restimulation, NFAT binding to Foxp3 weakens due to the absence of SMAD's assistance, subsequently reducing the recruitment of histone modifications enzyme and ultimately inhibiting Foxp3 transcription.

      Reviewer #2 (Public Review):

      (1) Some concerns about data processing and statistic analysis.

      The authors did not provide sufficient information on statistical data analysis; e.g. lack of detailed descriptions about

      -the precise numbers of technical/biological replicates of each experiment

      -the method of how the authors analyze data of multiple comparisons... Student t-test alone is generally insufficient to compare multiple groups; e.g. figure 1.

      These inappropriate data handlings are ruining the evidence level of the precious findings.

      We thank the reviewer for pointing out this important aspect. In the figure legend, numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n. Student’s t test was used for comparing statistical significance between two groups. In this manuscript, all calculations of significant differences were based on comparisons between two groups. There were no multiple conditions compared simultaneously within a single group, and thus, no other calculation methods were used.

      (2) Untransparent data production; e.g. the method of Motif enrichment analysis was not provided. Thus, we should wait for the author's correction to fully evaluate the significance and reliability of the present study.

      Per this reviewer’s request, we have provided detailed descriptions of the data analysis for Fig 5, including both the method section and the Figure legend, as presented below:

      “The peaks annotations were performed with the “annotatePeak” function in the R package ChIPseeker (Yu et al, 2015).

      The plot of Cut&Tag signals over a set of genomic regions were calculated by using “computeMatrix” function in deepTools and plotted by using “plotHeatmap” and “plotProfile” functions in deepTools. The motif enrichment analysis was performed by using the "findMotifsGenome.pl" command in HOMER with default parameters.

      The motif occurrences in each peak were identified by using FIMO (MEME suite v5.0.4) with the following settings: a first-order Markov background model, a P value cutoff of 10-4, and PWMs from the mouse HOCOMOCO motif database (v11).”

      Additionally, we have also supplemented the method section with further details on the analysis of RNA-seq and ATAC-seq data.

      (3) Lack of evidence in human cells. I wonder whether human PBMC-derived iTreg cells are similarly regulated.

      This is a rather complicated issue, human T cells express FoxP3 upon TCR stimulation (PNAS, 103(17): 6659–6664), whose function is likely to protect T cells from activation induced cell death, and does not offer Treg like properties. In contrast in mice, FoxP3 can be used as an indicator of Treg. Currently, this is not a definitive marker for Treg in human, our FoxP3 based readouts do not apply. Nevertheless, we have now investigated whether inhibiting calcium signaling or NFAT could enhance the stability of human iTreg. As shown in Author response image 4, we found that the proportion of Foxp3-expressing cells did not show significant changes across the different conditions, while the MFI analysis revealed that CsA-treated iTreg exhibited higher Foxp3 expression levels compared to both restimulated iTreg and rest iTreg. However, CM4620 had no significant effect on Foxp3 stability, consistent with the observation of its limited efficacy in suppressing human iTreg long term activation. In summary, our results suggest that inhibiting NFAT signaling through CsA treatment can help maintain higher levels of Foxp3 expression in human iTreg.

      Author response image 4.

      Effect of inhibiting NFAT and calcium on human iTreg stability. Human naïve CD4 cells from PBMC were subjected to a two-week induction process to generate human iTreg. Subsequently, human iTreg were restimulated for 2 days with dynabeads followed by 2 days of rest in the prescence of CsA and CM-4620. Four days later, percentages of Foxp3+ cells and Foxp3 mean fluorescence intensity (MFI) were analyzed by intracellular staining.

      (4) NFAT regulation did not explain all of the differences between iTregs and nTregs, as the authors mentioned as a limitation. Also, it is still an open question whether NFAT can directly modulate the chromatin configuration on the effector-type gene loci, or whether NFAT exploits pre-existing open chromatin due to the incomplete conversion of Treg-type chromatin landscape in iTreg cells. The authors did not fully demonstrate that the distinct pattern of chromatin regional accessibility found in iTreg cells is the direct cause of an effector-type gene expression.

      To our surprise, the inhibition of NFkB (BAY 11-7082), c-Jun (SP600125), and the c-Jun/c-Fos complex (T5224) resulted in minimal alterations, as shown in Fig Q1. This seems to argue that NFAT may play a more special role in events leading iTreg instability.

      We hypothesize that NFAT takes advantage of pre-existing open chromatin state due to the incomplete conversion of chromatin landscape in iTreg cells. Because iTreg cells, after induction, already exhibit inherent chromatin instability, with highly-open inflammatory genes. Furthermore, when iTreg cells were restimulated, the subsequent change in chromatin accessibility was relatively limited and not rescued by NFAT inhibitor treatment (Author response image 5). Therefore, in the case of iTreg cells, we propose that NFAT exploits the easy access of those inflammatory genes, leading to rapid destabilization of iTreg cells in the short term.

      In contrast, tTreg cells possess a relatively stable chromatin structure in the beginning, it would be interesting to investigate whether NFAT or calcium signaling could disrupt chromatin accessibility during the activation or expansion of tTreg cells. It is possible that NFAT might cause the loss of the originally established demethylation map and open up inflammatory loci, thereby inducing a shift in gene transcriptional profiles, equally leading to instability.

      Author response image 5.

      Chromatin accessibility of Rest, Retimulated, CsA/ORAIinh treated restimulated iTreg. PCA visualization of chromatin accessibility profiles of different cell types. Color indicates cell type.

      To establish a direct relationship between gene locus accessibility and its overexpression, a controlled experimental approach can be employed. One such method involves precise manipulation of the accessibility of a specific genomic locus using CRISPR-mediated epigenetic modifications at targeted loci. Subsequently, the impact of this manipulation on the expression level of the target gene can be precisely examined. By conducting these experiments, it will be possible to determine whether the augmented gene accessibility directly causes the observed gene overexpression.

      Reviewer #1 (Recommendations For The Authors):

      1) It might be helpful to add TGF-b to the iTreg restimulation culture to remove the influence of the lack of TGF-b from the equation, and measure the influence of SOCE/NFAT on iTreg instability.

      Please refer to Author response image 1.

      2) Alternatively, authors can also culture iTreg cells with TGF-b for 2 weeks when they undergo epigenetic changes and become more stabilized (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). At this point, the stabilized iTregs can be used to measure the influence of SOCE/NFAT on iTreg instability.

      In the study conducted by Polansky, it was observed in Figure 1 that prolonged exposure to TGF-β fails to induce stable Foxp3 expression and demethylation of the Treg-specific demethylated region (TSDR). Based on this finding, we could consider exploring alternative approaches to obtain a more stabilized iTreg population. One such approach could be isolating Foxp3+helios-Nrp1- iTreg cells directly from the peripheral in vivo, which are also known as pTregs. Generally, pTreg cells generated in vivo tend to be more stable compared to iTreg cells induced in vitro, and they already exhibit partial demethylation of the Treg signature, as shown in Fig 6C (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). Investigating the role of NFAT and calcium signaling in pTreg cells would provide further insights into the additional roles of NFAT in Treg phenotypical transitions, particularly its role in chromatin accessibility.

      3) In Figure 3, NFAT binding to the inflammatory genes in iTreg cells was even stronger than in activated T conventional cells. This is possibly due to Tconv cells being stimulated only once while iTregs were restimulated. A fair comparison should be conducted with restimulated activated conventional T cells.

      Figure 3 demonstrates the accessibility of inflammatory gene loci, rather than NFAT binding. Comparing restimulated Tconvs with restimulated iTreg cells is indeed a valuable suggestion, as their activation state and polarization in iTreg directions could lead to distinct chromatin accessibility. Although one is activated long term regularly and the other is activated long term under iTreg polarization, it is highly likely that the chromatin state of both activated Tconvs and iTreg cells is highly open, especially in terms of the accessibility of inflammatory genes. This may provide us with a new perspective to understand iTreg cells, but will unlikely affect our central conclusion.

      4) In the in vivo experiment in Figure 6, a control condition without OVA immunization should be included as a baseline.

      We have performed this experiment in the absence of OVA, as depicted in Author response image 6. In the absence of OVA immunization, both WT-ORAI and DN-ORAI iTreg exhibited substantial stability, although DN-ORAI demonstrated a slightly less stable trend. Upon activation with 40ug and 100ug of OVA, DN-ORAI iTreg demonstrated enhanced stability than WT-ORAI iTreg, maintaining a higher proportion of Foxp3 expression.

      Author response image 6.

      Stability of DN-ORAI iTreg in vivo with or without OVA immunization. WT-ORAI/DN-ORAI-GFP+-transfected CD45.2+ Foxp3-RFP+ OT-II iTregs were transferred i.v. into CD45.1 mice. Recipients were left or immunized with OVA323-339 in Alum adjuvant. On day 5, mLN were harvested and analyzed for Foxp3 expression by intracellular staining.

      Reviewer #2 (Recommendations For The Authors):

      Major

      Some concerns about the data processing and statistic analysis, as mentioned in the public review. In the figure legend, what does it mean e.g. n=3, N=3? Technical triplicate experiments? Three mice? Independently-performed three experiments? The authors should define it at least in the "Statistical analysis" in the method section otherwise the readers cannot determine the reason why they mainly use SEM for the data description.

      Moreover, in some cases, the number of experiments was not sure; e.g., Fig.1B, Fig. 5.

      How did the authors analyze data including multiple comparisons? Student t-test alone is generally insufficient to compare multiple groups; e.g. figure 1.

      We thank the reviewer for pointing out this omission. Now, in the figure legend, numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n. For Fig. 1B, N=2, and for Fig 5, we have acquired NFAT Cut&Tag data for 2 times, N=2. Student’s t test was used for comparing statistical significance between two groups. In this manuscript, all calculations of significant differences were based on comparisons between two groups. There were no multiple conditions compared simultaneously within a single group, and thus, no other calculation methods were involved apart from the Student's t-test.

      In Figure 1A, the difference in suppressiveness seemed subtle. Data collection of multiple doses of Tconv:Treg ratio will enhance the reliability of such kind of analysis.

      We have now attempted the suppression assay with varying Treg:Tconv ratios and observed that the suppressive effect of iTreg was more obvious than that of tTreg when co-cultured at a 1:1 ratio with Tconv cells. However, as the cell number of tTreg and iTreg decreased, the inhibitory effects converged.

      Author response image 7.

      Compare multiple dose of Tconv:Treg ratio in suppression function CFSE-labelled OT-II T cells were stimulated with OVA-pulsed DC, then different number of Foxp3-GFP+ iTregs and tTregs were added to the culture to suppress the OT-II proliferation. After 4 days, CFSE dilution were analyzed. Left, Representative histograms of CFSE in divided Tconvs. Right, graph for the percentage of divided Tconvs.

      In Figure 3F, to which group did the shaded peaks belong? In this context, the authors should focus on "Activation Region" peaks (open chromatin signature in both TcAct & iTreg defined in Fig. 4D) but I did not find the peak in the focusing DNA regions in TcAct (e.g. the shaded regions in IL-4 loci). The clear attribution of the peaks to the heatmap will enhance the visibility and understanding of readers.

      We have selected some typical peaks that belong to Fig 3D. These genes encompass some T-cell activation-associated transcription factors, such as Irf4, Atf3, as well as multiple members of the Tnf family including Lta, Tnfsf4, Tnfsf8, and Tnfsf14. Additionally, genes related to inflammation such as Il12rb2, Il9, and Gzmc are included. These genes show elevated accessibility upon T-cell activation, partially open in activated nTreg cells, referred to as the "Activation Region." They collectively exhibit high accessibility in iTreg cells, which may contribute to their instability.

      Author response image 8.

      Chromatin accessibility of some “Activation Region”. Genomic track showing chromatin accessibility of Irf4, Atf3, Lta, Tnfsf8, Tnfsf4, Tnsfsf14, Il12rb2, Il9, Gzmc in activated Tconv and iTreg.

      In Figure 4A/S4A, the information on cell death will help the understanding of readers because the sustained SOCE is associated with cell survival as shown in Fig. S2. The authors can discuss the relationships between cell death and Foxp3 retention, which potentially leads to a further interesting question; e.g. the selective/resistance to activation-induced cell death as the identity of Treg cells.

      As shown in Author response image 9, activated iTreg cells indeed exhibit a certain degree of cell death compared to resting iTreg cells. The inhibition of NFAT by CsA enhances the survival rate of iTreg cells, but the inhibition of ORAI by CM-4620 leads to more severe cell death. The cell death induced by CsA and CM-4620 is not consistent, indicating that there may not be a direct proportional relationship between cell death and the expression of Foxp3 and Treg identity.

      Author response image 9.

      Relationship of cell death and Foxp3 stability in restimulated iTregs. Sorted Foxp3-GFP+ iTregs were rested for 1d, then restimulated by anti-CD3 and CD28 in the presence of CsA or CM-4620. After 2d restimulation, live cell percentage were analyzed by staining of Live/Dead fixable Aqua, and percentages of Foxp3+ cells were analyzed by intracellular staining of Foxp3. Upper, live cell percentage of iTregs. Lower, percentages of Foxp3 in iTregs.

      In Figure 5, the information for the data interpretation was insufficient.

      We have provided detailed descriptions of the data analysis for Fig 5, including both the method section and the Figure legend, as presented below:

      “The peaks annotations were performed with the “annotatePeak” function in the R package ChIPseeker (Yu et al, 2015). The plot of Cut&Tag signals over a set of genomic regions were calculated by using “computeMatrix” function in deepTools and plotted by using “plotHeatmap” and “plotProfile” functions in deepTools. The motif enrichment analysis was performed by using the "findMotifsGenome.pl" command in HOMER with default parameters. The motif occurrences in each peak were identified by using FIMO (MEME suite v5.0.4) with the following settings: a first-order Markov background model, a P value cutoff of 10-4, and PWMs from the mouse HOCOMOCO motif database (v11).”

      Additionally, we have also supplemented the method section with further details on the analysis of RNA-seq and ATAC-seq data.

      The correlation between the open chromatin status of the gene loci described in Fig.5E and the expression at mRNA level? e.g.; Do iTreg-Act cells produce a higher level of IL-21 than nTreg-act? The analysis in Fig.5F-G should be performed in parallel with nTreg cells to emphasize the distinct NFAT-chromatin regulation in iTreg cells.

      We have now compared the secretion levels of IL-21 in tTreg and iTreg upon activation and treated with CsA by ELISA. As shown in Author response image 10, tTreg did not secrete IL-21 regardless of activation status (undetectable), while iTreg did not secrete IL-21 at resting state but exhibited IL-21 secretion after 48 h of activation. Moreover, the secretion of IL-21 was inhibited by CsA and CM-4620 treatment. This observation aligns with our earlier findings where we observed nuclear binding of NFAT to gene loci of these cytokines, enhancing their expression and pushing iTreg unstable under inflammatory conditions. These findings further underscore the likelihood that the inhibition of calcium and NFAT signaling might contribute to the stabilization of iTreg by suppressing the secretion of inflammatory cytokines.

      Author response image 10.

      IL-21 secretion in tTreg and iTreg upon activation. iTregs and tTregs were sorted and restimulated with anti-CD3 and anti-CD28 antibodies, in the presence of CsA and CM-4620. Cell culture supernatant were harvested after 2 d restimulation and IL-21 secretion was analyzed by ELISA.

      Performing a parallel comparison of NFAT activity between tTreg and iTreg cells was initially part of our experimental plan. However, it proved challenging in practice, as we encountered difficulties in efficiently infecting tTreg cells with NFAT-flag. Consequently, we could not obtain a sufficient number of tTreg cells for conducting Cut&Tag experiments.

      Based on our observations, we speculate that there might be substantial differences in the accessibility of genes in tTreg cells, leading to considerable variations in the repertoire of genes available for NFAT to regulate. As a result, we expect significant differences in the nuclear localization and activity of NFAT between iTreg and tTreg cells.

      In Figure 6C, what does the FCM plot between Foxp3-CFSE look like?

      The authors can discuss the mechanism of ORAI-DN-mediated through such analysis; e.g. the possibility that selective proliferation defect by ORAI-DN in Foxp3- cells led to an increased percentage of Foxp3, not only just unstable transcription of Foxp3.

      This is an in vitro experiment to assess the suppressive effect of iTreg on Tconv proliferation. Therefore, CFSE is used to stain Tconv cells, but not iTreg cells, so we did not detect proliferation feature of iTreg.

      Minor

      Confusing terminology of "tTreg" at line 47, etc. "natural Treg" contains both thymic-derived Treg and periphery-derived Treg cells. (A Abbas et al. Nat Immunol. 2013)

      We have now changed the designation to tTreg at line 47. tTreg refers to thymus-derived regulatory T cells, while nTreg includes both tTreg and pTreg. However, it is important to note that the Treg cells used in our study were isolated from the spleen of 2-4-month-old Foxp3-GFP or Foxp3-RFP mice. The CD4+ T cells were first enriched using the CD4 Isolation kit, and the FACSAriaII was utilized to collect CD4+ Foxp3-GFP/RFP+ Treg cells. Subsequently, Helios and Nrp-1 staining revealed that the majority of these cells were nTreg, with only approximately 6% being pTreg. Overall, we consider the cells we used as tTreg.

      In all FCM analyses, the authors should clarify how to detect Foxp3 expression; Foxp3-GFP/Foxp3-RFP/Intracellular staining like Figure S5A (but not specified in the other FCM plots)

      All Foxp3 expressions in the article were assessed using intracellular staining, as described in the methods section, and we have added specific descriptions to each figure legend. The reason for employing intracellular staining is that we used Foxp3-IRES-GFP mice, where GFP and Foxp3 are not fused into a single protein, existing as separate proteins after expression. Therefore, during induction, the appearance of GFP protein might potentially represent the presence of Foxp3. However, in cases of Foxp3 instability, the degradation of GFP protein may not be entirely synchronized with that of Foxp3 protein, making GFP an unreliable indicator of Foxp3 expression levels. As a result, for the purification of pure iTreg cells, we used Foxp3-GFP/RFP fluorescence, while for observing instability, we employed intranuclear staining of Foxp3.

      In Figure 6B, the captions were lacking in the two graphs on the right side

      The two restimulation conditions, 0.125+0.25 and 0.25+0.5, have been added into Fig 6B right side.

      In Figure S2, the annotation of the x-y axis was missing.

      Added.

      Lack of reference at line 292.

      Reference 42-46 were added.

      In the method section, the authors should note the further product information of antibodies and reagents to enhance reproducibility and transparency. Making a list that clarifies the suppliers, Ab clone, product IDs, etc. is encouraged. The authors did not specify the supplier of recombinant proteins and which type of TGF-beta (TGF-beta 1, 2, or 3?).

      A detailed description of the mice, antibodies, Peptide recombinant protein, commercial kit, and software has been provided and incorporated into the methods section.

      In the method section, the authors should clarify which Foxp3-reporter strain. There are many strains of Foxp3-reporter mice in the world. In line 373, is the "FoxP3-IRES-GFP transgenic mice" true? Knock-in strain or BAC-transgene?

      This mouse is a gift from Hai Qi Lab in Tsinghua University. They acquired this mouse strain from Jackson Laboratory, and the strain name is B6.Cg-Foxp3tm2Tch/J, Strain #:006772. An IRES-EGFP-SV40 poly A sequence was inserted immediately downstream of the endogenous Foxp3 translational stop codon, but upstream of the endogenous polyA signal, generating a bicistronic locus encoding both Foxp3 and EGFP.

      The age of mice used in the experiments should be specified, and confusing words such as "young" should not be used in any method descriptions; e.g. line 405.

      The detailed mouse age has been added in the methods section. “To prepare Tconv, tTreg and iTreg for experiments, spleen was isolated from 2-4-month-old Foxp3-GFP mice for Tconv and tTreg sorting, and 6-week-old mice for iTreg induction.”

      The method of how the original ATAC-seq/Cut & Tag data were generated was not described in the method section.

      Added in method section.

      The reference section was incomplete, and the style was not unified. e.g.; ref 7, 24, 25, 26 ... I gave up checking all.

      The style of ref 7, 22, 24, 26, 28, 31, 33, 35 were modified.

      Changes in manuscript:

      Author Name: “Huiyun Lv” to “Huiyun Lyu”.

      Fig 1A was updated according to Reviwer 2’s suggestion.

      Fig S3E and associated description was added according to Reviwer 2’s suggestion.

      Fig S4C and associated description was added according to Reviwer 1’s suggestion.

      Fig 5H and associated description was added according to Reviwer 2’s suggestion.

      Fig 6D were updated according to Reviwer 1’s suggestion.

      Fig 2D was corrected, the labels for gapdh and actin in the iTreg panel were inadvertently switched. The mistake has been rectified, and the original gel image will be provided.

      Fig 2A and Fig 4A was updated.

      The style of Fig 6B and Fig S2A was modified.

      Method:

      Mice: FoxP3-IRES-GFP with more description.

      Flow Cytometry sorting and FACS: the detailed mouse age has been added. RNA-seq analysis, ATAC-sequencing, ATAC-seq analysis, Cut&Tag assay, Cut&Tag data analysis: more description was added.

      Statistical analysis: “Numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n.” were added.

      Reference: Ref 42-46 and 49-52 were added. The style of ref 7, 22, 24, 26, 28, 31, 33, 35 were corrected.

      A detailed description of the mice, antibodies, Peptide recombinant protein, commercial kit, and software has been provided.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In their manuscript, Yu et al. describe the chemotactic gradient formation for CCL5 bound to - i.e. released from - glycosaminoglycans. The authors provide evidence for phase separation as the driving mechanism behind chemotactic gradient formation. A conclusion towards a general principle behind the finding cannot be drawn since the work focuses on one chemokine only, which is particularly prone to glycan-induced oligomerisation.

      Strengths:

      The principle of phase separation as a driving force behind and thus as an analytical tool for investigating protein interactions with strongly charged biomolecules was originally introduced for protein-nucleic acid interactions. Yu et al. have applied this in their work for the first time for chemokine-heparan sulfate interactions. This opens a novel way to investigate chemokine-glycosaminoglycan interactions in general.

      Response: Thanks for the encouragement of the reviewer.

      Weaknesses:

      As mentioned above, one of the weaknesses of the current work is the exemplification of the phase separation principle by applying it only to CCL5-heparan sulfate interactions. CCL5 is known to form higher oligomers/aggregates in the presence of glycosaminoglycans, much more than other chemokines. It would therefore have been very interesting to see, if similar results in vitro, in situ, and in vivo could have been obtained by other chemokines of the same class (e.g. CCL2) or another class (like CXCL8).

      Response: We share the reviewer’s opinion that to investigate more molecules/cytokines that interact with heparan sulfate in the system should be of interesting. We expect that researchers in the field will adapt the concept to continue the studies on additional molecules. Nevertheless, our earlier study has demonstrated that bFGF was enriched to its receptor and triggered signaling transduction through phase separation with heparan sulfate (PMID: 35236856; doi: 10.1038/s41467-022-28765-z), which supports the concept that phase separation with heparan sulfate on the cell surface may be a common mechanism for heparan sulfate binding proteins. The comment of the reviewer that phase separation is related to oligomerization is demonstrated in (Figure 1—figure supplement 2C and D), showing that the more easily aggregated mutant, A22K-CCL5, does not undergo phase separation.

      In addition, the authors have used variously labelled CCL5 (like with the organic dye Cy3 or with EGFP) for various reasons (detection and immobilisation). In the view of this reviewer, it would have been necessary to show that all the labelled chemokines yield identical/similar molecular characteristics as the unlabelled wildtype chemokine (such as heparan sulfate binding and chemotaxis). It is well known that labelling proteins either by chemical tags or by fusion to GFPs can lead to manifestly different molecular and functional characteristics.

      Response: We agree with the reviewer that labeling may lead to altered property of a protein, thus, we have compared chemotactic activity of CCL5 and CCL5-EGFP (Figure 2—figure supplement 1). To further verify this, we performed additional experiment to compare chemotactic activity between CCL5 and Cy3-CCL5 (see Author response image 1). For the convenience of readers, we have combined the original Figure 2—figure supplement 1 with the new data (Figure R1), which replaced original Figure 2—figure supplement 1.

      Author response image 1.

      Chemotactic function of CCL5-EGFP and CCL5-Cy3. Cy3-Labeled CCL5 has similar activity as CCL5, 50 nM CCL5 or CCL5-Cy3 were added to the lower chamber of the Transwell. THP-1 cells were added to upper chambers. Data are mean ± s.d. n=3. P values were determined by unpaired two-tailed t-tests. NS, Not Significant.

      Reviewer #2 (Public Review):

      Although the study by Xiaolin Yu et al is largely limited to in vitro data, the results of this study convincingly improve our current understanding of leukocyte migration.

      (1) The conclusions of the paper are mostly supported by the data although some clarification is warranted concerning the exact CCL5 forms (without or with a fluorescent label or His-tag) and amounts/concentrations that were used in the individual experiments. This is important since it is known that modification of CCL5 at the N-terminus affects the interactions of CCL5 with the GPCRs CCR1, CCR3, and CCR5 and random labeling using monosuccinimidyl esters (as done by the authors with Cy-3) is targeting lysines. Since lysines are important for the GAG-binding properties of CCL5, knowledge of the number and location of the Cy-3 labels on CCL5 is important information for the interpretation of the experimental results with the fluorescently labeled CCL5. Was the His-tag attached to the N- or C-terminus of CCL5? Indicate this for each individual experiment and consider/discuss also potential effects of the modifications on CCL5 in the results and discussion sections.

      Response: We agree with the reviewer that labeling may lead to altered property of a protein, thus, we have compared chemotactic activity of CCL5 and CCL5-EGFP (Figure 2—figure supplement 1). To further verify this, we performed additional experiment to compare chemotactic activity between CCL5 and Cy3-CCL5 (see Author response image 1). For the convenience of readers, we have combined the original Figure 2—figure supplement 1 with the new data (Author response image 1), which replaced original Figure 2—figure supplement 1.

      The His-tag is attached to the C-terminus of CCL5, in consideration of the potential impact on the N-terminus.

      (2) In general, the authors appear to use high concentrations of CCL5 in their experiments. The reason for this is not clear. Is it because of the effects of the labels on the activity of the protein? In most biological tests (e.g. chemotaxis assays), unmodified CCL5 is active already at low nM concentrations.

      Response: We agree with the reviewer that the CCL5 concentrations used in our experiments were higher than reported chemotaxis assays and also higher than physiological levels in normal human plasma. In fact, we have performed experiments with lower concentration of CCL5, where the effect of LLPS was not seen though the chemotactic activity of the cytokine was detected. Thus, LLPS-associated chemotactic activity may represent a scenario of acute inflammatory condition when the inflammatory cytokines can increase significantly.

      (3) For the statistical analyses of the results, the authors use t-tests. Was it confirmed that data follow a normal distribution prior to using the t-test? If not a non-parametric test should be used and it may affect the conclusions of some experiments.

      Response: We thank the reviewer for pointing out this issue. As shown in Author response table 1, The Shapiro-Wilk normality test showed that only two control groups (CCL5 and 44AANA47-CCL5+CHO K1) in Figure 3 did not conform to the normal distribution. The error was caused by using microculture to count and calculate when there were very few cells in the microculture. For these two groups, we re-counted 100 μL culture medium to calculate the number of cells. The results were consistent with the positive distribution and significantly different from the experimental group (Author response image 3). The original data for the number of cells chemoattractant by 500 nM CCL5 was revised from 0, 247, 247 to 247, 123, 370 and 500 nM 44AANA47 +CHO-K1 was revised from 1111, 1111, 98 to 740, 494, 617. The revised data does not affect the conclusion.

      Author response table 1.

      Table R1 Shapiro-Wilk test results of statistical data in the manuscript

      Author response image 3.

      Quantification of THP-1collected from the lower chamber. Data are mean ± s.d. n=3. P values were determined by unpaired two-tailed t-tests.

      Recommendations for the authors:

      Reviewer #1:

      See the weaknesses section of the Public Review. In addition, the authors should discuss the X-ray structure of CCL5 in complex with a heparin disaccharide in comparison with their docked structure of CCL5 and a heparin tetrasaccharide.

      Response: Our study, in fact, is strongly influenced by the report (Shaw, Johnson et al., 2004) that heparin disaccharide interaction with CCL5, which is highlighted in the text (page5, line100-102).

      Reviewer #2:

      (1) Clearly indicate in the results section and figure legends (also for the supplementary figures) which form and concentration of CCL5 is used.

      Response: The relevant missing information is indicated across the manuscript.

      (2) Clearly indicate which GAG was used. Was it heparin or heparan sulfate and what was the length (e.g. average molecular mass if known) or source (company?)?

      Response: Relevant information is added in the section “Materials and Methods.

      (3) Line 181: What do you mean exactly with "tiny amounts"?

      Response: “tiny amounts” means 400 transfected cells. This is described in the section of Materials and Methods. It is now also indicated in the text and legend to the figure.

      (4) Lines 216-217: This is a very general statement without a link to the presented data. No combination of chemokines is used, in vivo testing is limited (and I agree very difficult). You may consider deleting this sentence (certainly as an opening sentence for the Discussion).

      Response: We appreciate very much for the thoughtful suggestion of the reviewer. This sentence is deleted in the revised manuscript.

      (5) Why was 5h used for the in vitro chemotaxis assay? This is extremely long for an assay with THP-1 cells.

      Response: We apologize for the unclear description. The 5 hr includes 1 hr pre- incubation of CCL5 with the cells enable to form phase separation. After transferring the cells into the upper chamber, the actual chemotactic assay was 4 hr. This is clarified in the Materials and Methods section and the legend to each figure.

      (6) Define "Sec" in Sec-CCL5-EGFP and "Dil" in the legend of Figure 4.

      Response: The Sec-CCL5-EGFP should be “CCL5-EGFP’’, which has now been corrected. Dil is a cell membrane red fluorescent probe, which is now defined.

      (7) Why are different cell concentrations used in the experiment described in Figure 5?

      Response: The samples were from three volunteers who exhibited substantially different concentrations of cells in the blood. The experiment was designed using same amount of blood, so we did not normalize the number of the cell used for the experiment. Regardless of the difference in cell numbers, all three samples showed the same trend.

      (8) Check the text for some typos: examples are on line 83 "ratio of CCL5"; line 142 "established cell lines"; line 196 "peripheral blood mononuclear cells"; line 224 "to mediate"; line 226 "bind"; line 247 "to form a gradient"; line 248 "of the glycocalyx"; line 343 and 346 "tetrasaccharide"; line 409-410 "wild-type"; line 543 "on the surface of CHO-K1 and CHO-677"; line 568 "white".

      Response: Thanks for the careful reading. The typo errors are corrected and Manuscript was carefully read by colleagues.

  8. May 2025
    1. Reviewer #3 (Public review):

      Summary

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation to the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network, constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience.

      Strengths

      Adaptive optics imaging of murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is a benefit for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used: a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. This model would potentially allow for controlling the size, depth and severity of the laser injury opening interesting avenues for future study.

      The time-course, 2D and 3D spatial activation pattern of microglial activation are striking and provide an unprecedented view of the retinal response to mild injury.

      Editor's note: The authors have addressed all the previous concerns raised by the reviewers.

    2. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #2 (Public review):

      Summary:

      This study uses in vivo multimodal high-resolution imaging to track how microglia and neutrophils respond to light-induced retinal injury from soon after injury to 2 months post-injury. The in vivo imaging finding was subsequently verified by ex vivo study. The results suggest that despite the highly active microglia at the injury site, neutrophils were not recruited in response to acute light-induced retinal injury.

      Strengths:

      An extremely thorough examination of the cellular-level immune activity at the injury site. In vivo imaging observations being verified using ex vivo techniques is a strong plus.

      Thank you!

      Weaknesses:

      This paper is extremely long, and in the perspective of this reviewer, needs to be better organized. Update: Modifications have been made throughout, which has made the manuscript easier to follow.

      Thank you!

      Study weakness: though the finding prompts more questions and future studies, the findings discussed in this paper is potentially important for us to understand how the immune cells respond differently to different severity level of injury. The study also demonstrated an imaging technology which may help us better understand cellular activity in living tissue during earlier time points.

      We agree that AOSLO has much to offer and this represents some of the earliest reports of its kind.  

      Comments on revisions:

      I appreciate the thorough clarification and re-organization by the authors, and the messages in the manuscript are now more apparent. I recommend also briefly discussing limitations/future improvements in the discussion or conclusion.

      We have added a section to the discussion entitled “Limitations and future improvements”, please see lines 665 – 677.

      Reviewer #3 (Public review):

      Summary

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation to the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network, constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience.

      Strengths

      Adaptive optics imaging of murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is a benefit for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      Thank you!

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used, a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      Thank you!

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. This model would potentially allow for controlling the size, depth and severity of the laser injury opening interesting avenues for future study.

      Thank you!

      The time-course, 2D and 3D spatial activation pattern of microglial activation are striking and provide an unprecedented view of the retinal response to mild injury.

      We agree that this more complete spatial and temporal evaluation made possible by in vivo imaging is novel.

      Weaknesses

      Generalization of the (lack of) neutrophil response to photoreceptor loss - there is ample evidence in literature that neutrophils are heavily recruited in response to severe retinal damage that includes photoreceptor loss. Why the same was not observed here in this article remains an open question. One could hypothesize that neutrophil recruitment might indeed occur under conditions that are more in line with the more extreme damage models, for example, with a stronger and global ablation (substantially more photoreceptor loss over a larger area). This parameter space is unwieldy and sufficiently large to address the question conclusively in the current article, i.e. how much photoreceptor loss leads to neutrophil recruitment? By the same token, the strong and general conclusion in the title - Photoreceptor loss does not recruit neutrophils - cannot be made until an exhaustive exploration be made of the same parameter space. A scaling back may help here, to reflect the specific, mild form of laser damage explored here, for instance - Mild photoreceptor loss does not recruit neutrophils despite...

      We are striving for clarity and accuracy in our title without adding too many qualifiers.  At present, we feel that the title as submitted is consistent and aligned with the central finding of our manuscript.  The nuance that the reviewer points to is elaborated in the body of the manuscript and we hope the general readership appreciates the same level of detail as appreciated by reviewer #3.

      EIU model - The EIU model was used as a positive control for neutrophil extravasation. Prior work with flow cytometry has shown a substantial increase in neutrophil counts in the EIU model. Yet, in all, the entire article shows exactly 2 examples in vivo and 3 ex vivo (Figure 7) of extravasated neutrophils from the EIU model (n = 2 mice). The general conclusion made about neutrophil recruitment (or lack thereof) is built partly upon this positive control experiment. But these limited examples, especially in the case where literature reports a preponderance of extravasated neutrophils, raise a question on the paradigm(s) used to evaluate this effect in the mild laser damage model.

      This is a helpful suggestion. We agree that readers should see more evidence of the positive control. Therefore we have now included two more supplementary files that show that there is a strong neutrophil response to EIU.  In Figure 7 – supplementary figure 1, we show many Ly-6G-positive neutrophils in the retina seen with histology at the 24 hour time point. In Figure 7 – video 3, we show massive Catchup-positive neutrophil presence in vivo at 24hrs as well.  This aligns with our positive control and also the literature.

      Overall, the strengths outweigh the weaknesses, provided the conclusions/interpretations are reconsidered.

      With the added clarification about the magnitude of the neutrophil response in EIU, we feel that the conclusions presented in the manuscript as-is are valid and appropriate.

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      The authors are applauded for embracing the reviewers' feedback and making substantial revisions. Some minor comments below:

      The weakness noted in the public review encourages the authors to reconsider the interpretations drawn based on the results. One would have expected to see far more examples of extravasated neutrophils from the EIU model. That this was not seen weakens the neutrophil recruitment claim substantially. Even without this claim, the methods, laser damage model, time-course and spatial activation pattern of microglial activation are all striking and unprecedented. So, as stated in the public review, the strengths do indeed outweigh the weaknesses once the neutrophil claim is softened.

      We address this in the response above. A strong neutrophil response was observed to EIU. This was confirmed with both histology and in vivo imaging.

      This was alluded to by Reviewer 1 in the prior review - at times, there is an overemphasis on imaging technology that distracts from the scientific questions. The imaging is undoubtedly cutting-edge but also documented in prior work by the authors. Any efforts to reduce or balance the emphasis would help with the general flow.

      Given that these discoveries are made possible partly through new technology, we prefer to keep the details of the innovation in the current manuscript. Given the exceptionally large readership of eLife, we feel some description of the AOSLO imaging is warranted in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer 1 (Public review):

      Summary:

      Gene transfer agent (GTA) from Bartonella is a fascinating chimeric GTA that evolved from the domestication of two phages. Not much is known about how the expression of the BaGTA is regulated. In this manuscript, Korotaev et al noted the structural similarity between BrrG (a protein encoded by the ror locus of BaGTA) to a well-known transcriptional anti-termination factor, 21Q, from phage P21. This sparked the investigation into the possibility that BaGTA cluster is also regulated by anti-termination. Using a suite of cell biology, genetics, and genome-wide techniques (ChIP-seq), Korotaev et al convincingly showed that this is most likely the case. The findings offer the first insight into the regulation of GTA cluster (and GTA-mediated gene transfer) particularly in this pathogen Bartonella. Note that anti-termination is a well-known/studied mechanism of transcriptional control. Anti-termination is a very common mechanism for gene expression control of prophages, phages, bacterial gene clusters, and other GTAs, so in this sense, the impact of the findings in this study here is limited to Bartonella.

      Strengths:

      Convincing results that overall support the main claim of the manuscript.

      Weaknesses:

      A few important controls are missing.

      We sincerely appreciate reviewer #1's positive assessment of our manuscript. In response to the concern regarding control samples/experiments, we have addressed this issue in our revision, by providing data of the replicates of our experiments. We acknowledge that antitermination is a well-established mechanism of expression control in bacteria, including bacterial gene clusters, phages, prophages, and at least one other GTA. As reviewer #2 also noted, our study presents a unique example of phage co-domestication, where antitermination integrates both phage remnants at the regulatory level. We have emphasized this original aspect more clearly in the revised manuscript.

      Reviewer 1 (Recommendations for the authors):

      (1) Provide Rsmd and DALI scores to show how similar the AlphaFold-predicted structures of BrrG are to other anti-termination factors. This should be done for Fig1B and also for Suppl. Fig 1 to support the claim that BrrG, GafA, GafZ, Q21 share structural features.

      In the revised manuscript we provide Rsmd and DALI scores in the supplementary Fig. 1A (Suppl. Fig. 1A). In Suppl. Fig. 1B we further include a heatmap of similiarity values.

      (2) Throughout the manuscript, flow cytometry data of gfp expression was used and shown as single replicate. Korotaev et al wrote in the legends that error bars are shown (that is not true for e.g. Figs. 3, 4, and 5). It is difficult for reviewers/readers to gauge how reliable are their experiments.

      In the revised manuscript we show all replicates for the flow cytometry histograms.

      For Fig. 2C, all replicates are provided in Suppl. Fig. 3.

      For Fig. 3B, all replicates are provided in Suppl. Fig. 4.

      For Fig. 4B, all replicates are provided in Suppl. Fig. 5.

      For Fig. 5B, all replicates are provided in Suppl. Fig. 6.

      (3) I am unsure how ChIP-seq in Fig. 2A was performed (with anti-FLAG or anti-HA antibodies? I cannot tell from the Materials & Methods). More importantly, I did not see the control for this ChIP-seq experiment. If a FLAG-tagged BrrG was used for ChIP-seq, then a WT non-tagged version should be used as a negative control (not sequencing INPUT DNA), this is especially important for anti-terminator that can co-travel with RNA polymerase. Please also report the number of replicates for ChIP-seq experiments.

      Fig. 2A presents the coverage plot from the ChIP-Seq of ∆brrG +pPtet:3xFLAG-brrG (N’ in green). As anticipated by the referee, we had used ∆brrG +pTet:brrG (untagged) as control (grey). Each strain was tested in a single replicate. The C-terminal tag produced results similar to the untagged version, suggesting it is non-functional. All tested tags are shown in Supplementary Figure 2.

      (4) Korotaev et al mentioned that BrrG binds to DNA (as well as to RNA polymerase). With the availability of existing ChIP-seq data, the authors should be able to locate the DNA-binding element of BrrG, this additional information will be useful to the community.

      We identified a putative binding site of BrrG using our ChIP-Seq data. The putative binding site is indicated in Fig. 2D of the revised manuscript.

      (5) Mutational experiments to break the potential hairpin structure are required to strengthen the claim that this putative hairpin is the potential transcriptional terminator.

      We did not claim the identified hairpin is a confirmed terminator, but proposed it as a candidate. We agree with the referee that the suggested experiment would be necessary to definitively establish its function. However, our main objective was to show that BrrG acts as a processive terminator, which we demonstrated by replacing the putative terminator with a well-characterized synthetic one that BrrG successfully bypassed. Therefore, we chose not to perform the proposed experiment and have accordingly softened our conclusions regarding the hairpin’s potential terminator function.

      Reviewer 2 (Public review):

      Summary:

      In this study, the authors identified and characterized a regulatory mechanism based on transcriptional anti-termination that connects the two gene clusters, capsid and run-off replication (ROR) locus, of the bipartite Bartonella gene transfer agent (GTA). Among genes essential for GTA functionality identified in a previous transposon sequencing project, they found a potential antiterminatior of phage origin within the ROR locus. They employed fluorescence reporter and gene transfer assays of overexpression and knockout strains in combination with ChiPSeq and promoter-fusions to convincingly show that this protein indeed acts as an antiterminator counteracting attenuation of the capsid gene cluster expression.

      Impact on the field:

      The results provide valuable insights into the evolution of the chimeric BaGTA, a unique example of phage co-domestication by bacteria. A similar system found in the other broadly studied Rhodobacterales/Caulobacterales GTA family suggests that antitermination could be a general mechanism for GTA control.

      Strengths:

      Results of the selected and carefully designed experiments support the main conclusions.

      Weaknesses:

      It remains open why overexpression of the antiterminator does not increase the gene transfer frequency.

      We are grateful for reviewer #2's thoughtful and encouraging feedback on our manuscript. The reviewer raises an important question about why overexpression of the antiterminator does not increase gene transfer frequency. While we acknowledge this point, we consider it beyond the scope of the current study. Our findings clearly demonstrate that the antiterminator induces capsid component expression in a large proportion of cells. However, the fact that this expression plateaus at high levels rather than exhibiting a transient peak, as seen in the wild type, suggests that antiterminators do not regulate GTA particle release via lysis. We are actively investigating this further through additional experiments, which we plan to publish separately from this study.

      Reviewer 2 (Recommendations for the authors):

      (1) The authors wrote "GTAs are not self-transmitting because the DNA packaging capacity of a GTA particle is too small to package the entire gene cluster encoding it" (page 3). I thought that at least the Bartonella capsid gene cluster should be self-transmissible within the 14 kb packaged DNA (https://doi.org/10.1371/journal.pgen.1003393, https://doi.org/10.1371/journal.pgen.1000546). This was also concluded by Lang et al (https://doi.org/10.1146/annurev-virology-101416-041624). In this case the presented results would have important implications. As the gene cluster and the anti-terminator required for its expression are separated on the chromosome, it would not be possible to transfer an active GTA gene cluster, although the DNA coding for the genes required for making the packaging agent itself, theoretically fits into a BaGTA particle. Could the authors comment on that? I think it would be helpful to add the sizes of the different gene clusters and the distance between them in Fig. 2A. The ROR amplified region spans 500kb, is the capsid gene cluster within this region?

      We thank the reviewer for bringing up this interesting point. The ror gene cluster, which encodes the antiterminator BrrG, is approximately 9.2 kb in size and could feasibly be packaged in its entirety into a GTA particle. In contrast, the bgt cluster (capsid cluster) is approximately 20 kb in size —exceeding the packaging limit of GTA particles—and is separated from the bgt cluster by approximately 35 kb. Consequently, if the ror cluster is transferred via a GTA particle into a recipient host that does not encode the bgt gene cluster, the ror cluster would not be expressed.

      We added the sizes of the gene clusters to Fig. 1A.

      (2) Another side-note regarding the introduction: On page three the authors write: "GTAs encode bacteriophage-like particles and in contrast to phages transfer random pieces of host bacterial DNA". While packaging is not specific, certain biases in the packaging frequency are observed in both studied GTA families. For Bartonella this is ROR. In the two GTA-producing strains D. shibae and C. crescentus origin and terminus of replication are not packaged and certain regions are overrepresented (https://doi.org/10.1093/gbe/evy005, https://doi.org/10.1371/journal.pbio.3001790). Furthermore, D. shibae plasmids are not packaged but chromids are. I think the term "random" does not properly describe these observations. I would suggest using "not specific" instead.

      We thank the reviewer for this suggestion and adjusted the wording on p. 3 accordingly.

      (3) Page 5: Remove "To address this". It is not needed as you already state "To test this hypothesis" in the previous sentence.

      We adjusted the working on p.5 accordingly.

      (4) I think the manuscript would greatly benefit from a summary figure to visualize the Q-like antiterminator-dependent regulatory circuit for GTA control and its four components described on pages 15 and 16.

      We thank the reviewer for this valuable suggestion. We included a summary figure (Fig. 6) in the discussion section of the revised manuscript.

      (5) Page 17: It might be worth noting that GafA is highly conserved along GTAs in Rhodobacterales (https://doi.org/10.3389/fmicb.2021.662907) and so is probably regulatory integration into the ctrA network (https://doi.org/10.3389/fmicb.2019.00803). It's an old mechanism. It would be also interesting to know if it is a common feature of the two archetypical GTAs that the regulator is not part of the cluster itself.

      We agree with the reviewer’s comments and have revised the wording to state that GafA is highly conserved.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the authors aim to understand why decision formation during behavioural tasks is distributed across multiple brain areas. They hypothesize that multiple areas are used in order to implement an information bottleneck (IB). Using neural activity recorded from monkey DLPFC and PMd performing a 2-AFC task, they show that DLPFC represents various task variables (decision, color, target configuration), while downstream PMd primarily represents decision information. Since decision information is the only information needed to make a decision, the authors point out that PMd has a minimal sufficient representation (as expected from an IB). They then train 3-area RNNs on the same task and show that activity in the first and third areas resemble the neural representations of DLPFC and PMd, respectively. In order to propose a mechanism, they analyse the RNN and find that area 3 ends up with primarily decision information because feedforward connections between areas primarily propagate decision information.

      The paper addresses a deep, normative question, namely why task information is distributed across several areas.

      Overall, it reads well and the analysis is well done and mostly correct (see below for some comments). My major problem with the paper is that I do not see that it actually provides an answer to the question posed (why is information distributed across areas?). I find that the core problem is that the information bottleneck method, which is evoked throughout the paper, is simply a generic compression method.

      Being a generic compressor, the IB does not make any statements about how a particular compression should be distributed across brain areas - see major points (1) and (2).

      If I ignore the reference to the information bottleneck and the question of why pieces of information are distributed, I still see a more mechanistic study that proposes a neural mechanism of how decisions are formed, in the tradition of RNN-modelling of neural activity as in Mante et al 2013. Seen through this more limited sense, the present study succeeds at pointing out a good model-data match, and I could support a publication along those lines. I point out some suggestions for improvement below.

      We thank the reviewer for their comments, feedback and suggestions. We are glad to hear you support the good model-data match for this manuscript.  With your helpful comments, we have clarified the connections to the information bottleneck principle and also contrasted it against the information maximization principle (the InfoMax principle), an alternative hypothesis. We elaborate on these issues in response to your points below, particularly major points (1) and (2). We also address all your other comments below.

      Major points

      (1) It seems to me that the author's use of the IB is based on the reasoning that deep neural networks form decisions by passing task information through a series of transformations/layers/areas and that these deep nets have been shown to implement an IB. Furthermore, these transformations are also loosely motivated by the data processing inequality.

      On Major Point 1 and these following subpoints, we first want to make a high-level statement before delving into a detailed response to your points as it relates to the information bottleneck (IB). We hope this high-level statement will provide helpful context for the rest of our point-by-point responses. 

      We want to be clear that we draw on the information bottleneck (IB) principle as a general principle to explain why cortical representations differ by brain area. The IB principle, as applied to cortex, is only stating that a minimal sufficient representation to perform the task is formed in cortex, not how it is formed. The alternative hypothesis to the IB is that brain areas do not form minimal sufficient representations. For example, the InfoMax principle states that each brain area stores information about all inputs (even if they’re not necessary to perform the task). InfoMax isn’t unreasonable: it’s possible that storing as much information about the inputs, even in downstream areas, can support flexible computation and InfoMax also supports redundancy in cortical areas. Indeed, many studies claim that action choice related signals are in many cortical areas, which may reflect evidence of an InfoMax principle in action for areas upstream of PMd.

      While we observe an IB in deep neural networks and cortex in our perceptual decision-making task, we stress that its emergence across multiple areas is an empirical result. At the same time, multiple areas producing an IB makes intuitive sense: due to the data processing inequality, successive transformations typically decrease the information in a representation (especially when, e.g., in neural networks, every activation passes through the Relu function, which is not bijective). Multiple areas are therefore a sufficient and even ‘natural’ way to implement an IB, but multiple areas are not necessary for an IB. That we observe an IB in deep neural networks and cortex emerge through multi-area computation is empirical, and, contrasting InfoMax, we believe it is an important result of this paper. 

      Nevertheless, your incisive comments have helped us to update the manuscript that when we talk about the IB, we should be clear that the alternative hypothesis is non-minimal representations, a prominent example of which is the InfoMax principle. We have now significantly revised our introduction to avoid this confusion. We hope this provides helpful context for our point-by-point replies, below.

      However, assuming as a given that deep neural networks implement an IB does not mean that an IB can only be implemented through a deep neural network. In fact, IBs could be performed with a single transformation just as well. More formally, a task associates stimuli (X) with required responses (Y), and the IB principle states that X should be mapped to a representation Z, such that I(X;Z) is minimal and I(Y,Z) is maximal. Importantly, the form of the map Z=f(X) is not constrained by the IB. In other words, the IB does not impose that there needs to be a series of transformations. I therefore do not see how the IB by itself makes any statement about the distribution of information across various brain areas.

      We agree with you that an IB can be implemented in a single transformation. We wish to be clear that we do not intend to argue necessity: that multiple areas are the only way to form minimal sufficient representations. Rather, multiple areas are sufficient to induce minimal sufficient representations, and moreover, they are a natural and reasonably simple way to do so. By ‘natural,’ we mean that minimal sufficient representations empirically arise in systems with multiple areas (more than 2), including deep neural networks and the cortex at least for our task and simulations. For example, we did not see minimal sufficient representations in 1- or 2-area RNNs, but we did see them emerge in RNNs with 3 areas or more. One potential reason for this result is that sequential transformations through multiple areas can never increase information about the input; it can only maintain or reduce information due to the data processing inequality.

      Our finding that multiple areas facilitate IBs in the brain is therefore an empirical result: like in deep neural networks, we observe the brain has minimal sufficient representations that emerge in output areas (PMd), even as an area upstream (DLPFC) is not minimal. While the IB makes a statement that this minimal sufficient representation emerges, to your point, the fact that it emerges over multiple areas is not a part of the IB – as you have pointed out, the IB doesn’t state where or how the information is discarded, only that it is discarded. Our RNN modeling later proposes one potential mechanism for how it is discarded. We updated the manuscript introduction to make these points:

      “An empirical observation from Machine Learning is that deep neural networks tend to form minimal sufficient representations in the last layers. Although multi-layer computation is not necessary for an IB, they provide a sufficient and even “natural” way to form an IB. A representation z = f(x) cannot contain more information than the input x itself due to the data processing inequality[19]. Thus, adding additional layers typically results in representations that contain less information about the input.”

      And later in the introduction:

      “Consistent with these predictions of the IB principle, we found that DLPFC has information about the color, target configuration, and direction. In contrast, PMd had a minimal sufficient representation of the direction choice. Our recordings therefore identified a cortical IB. However, we emphasize the IB does not tell us where or how the minimal sufficient representation is formed. Instead, only our empirical results implicate DLPFC-PMd in an IB computation. Further, to propose a mechanism for how this IB is formed, we trained a multi-area RNN to perform this task. We found that the RNN faithfully reproduced DLPFC and PMd activity, enabling us to propose a mechanism for how cortex uses multiple areas to compute a minimal sufficient representation.”

      In the context of our work, we want to be clear the IB makes these predictions:

      Prediction 1: There exists a downstream area of cortex that has a minimal and sufficient representation to perform a task (i.e.,. I(X;Z) is minimal while preserving task information so that I(Z;Y) is approximately equal to  I(X;Y)). We identify PMd as an area with a minimal sufficient representation in our perceptual-decision-making task. 

      Prediction 2 (corollary if Prediction 1 is true): There exists an upstream brain area that contains more input information than the minimal sufficient area. We identify DLPFC as an upstream area relative to PMd, which indeed has more input information than downstream PMd in our perceptual decision-making task. 

      Note: as you raise in other points, it could have been possible that the IB is implemented early on, e.g., in either the parietal cortex (dorsal stream) or inferotemporal cortex (ventral stream), so that DLPFC and PMd both contained minimal sufficient representations. The fact that it doesn’t is entirely an empirical result from our data. If DLPFC had minimal sufficient representations for the perceptual decision making task, we would have needed to record in other regions to identify brain areas that are consistent with Prediction 2. But, empirically, we found that DLPFC has more input information relative to PMd, and therefore the DLPFC-PMd connection is implicated in the IB process.

      What is the alternative hypothesis to the IB? We want to emphasize: it isn’t single-area computation. It’s that the cortex does not form minimal sufficient representations. For example, an alternative hypothesis (“InfoMax”) would be for all engaged brain areas to form representations that retain all input information. One reason this could be beneficial is because each brain area could support a variety of downstream tasks. In this scenario, PMd would not be minimal, invalidating Prediction 1. However, this is not supported by our empirical observations of the representations in PMd, which has a minimal sufficient representation of the task. We updated our introduction to make this clear:

      “But cortex may not necessarily implement an IB. The alternative hypothesis to IB is that the cortex does not form minimal sufficient representations. One manifestation of this alternative hypothesis is the “InfoMax” principle, where downstream representations are not minimal but rather contain maximal input information22. This means information about task inputs not required to perform the task are present in downstream output areas. Two potential benefits of an InfoMax principle are (1) to increase redundancy in cortical areas and thereby provide fault tolerance, and (2) for each area to support a wide variety of tasks and thereby improve the ability of brain areas to guide many different behaviors. In contrast to InfoMax, the IB principle makes two testable predictions about cortical representations. Prediction 1: there exists a downstream area of cortex that has a minimal and sufficient representation to perform a task (i.e., I(X; Z) is minimal while preserving task information so that I(Z; Y) ≈ I(X; Y)). Prediction 2 (corollary if Prediction 1 is true): there exists an upstream area of cortex that has more task information than the minimal sufficient area.”

      Your review helped us realize we should have been clearer in explaining that these are the key predictions of the IB principle tested in our paper. We also realized we should be much clearer that these predictions aren’t trivial or expected, and there is an alternative hypothesis. We have re-written the introduction of our paper to highlight that the key prediction of the IB is minimal sufficient representations for the task, in contrast to the alternative hypothesis of InfoMax.

      A related problem is that the authors really only evoke the IB to explain the representation in PMd: Fig 2 shows that PMd is almost only showing decision information, and thus one can call this a minimal sufficient representation of the decision (although ignoring substantial condition independent activity).

      However, there is no IB prediction about what the representation of DLPFC should look like.

      Consequently, there is no IB prediction about how information should be distributed across DLPFC and PMd.

      We agree: the IB doesn’t tell us how information is distributed, only that there is a transformation that eventually makes PMd minimal. The fact that we find input information in DLPFC reflects that this computation occurs across areas, and is an empirical characterization of this IB in that DLPFC has direction, color and context information while PMd has primarily direction information. To be clear: only our empirical recordings verified that the DLPFC-PMd circuit is involved in the IB. As described above, if not, we would have recorded even further upstream to identify an inter-areal connection implicated in the IB.

      We updated the text to clearly state that the IB predicts that an upstream area’s activity should contain more information about the task inputs. We now explicitly describe this in the introduction, copy and pasted again here for convenience.

      “In contrast to InfoMax, the IB principle makes two testable predictions about cortical representations. Prediction 1: there exists a downstream area of cortex that has a minimal and sufficient representation to perform a task (i.e., I(X; Z) is minimal while preserving task information so that I(Z; Y) ≈ I(X; Y)). Prediction 2 (corollary if Prediction 1 is true): there exists an upstream area of cortex that has more task information than the minimal sufficient area.

      Consistent with the predictions of the IB principle, we found that DLPFC has information about the color, target configuration, and direction. In contrast, PMd had a minimal sufficient representation of the direction choice. Our recordings therefore identified a cortical IB. However, we emphasize the IB does not tell us where or how the minimal sufficient representation is formed. Instead, only our empirical results implicate DLPFC-PMd in an IB computation Further, to propose a mechanism for how this IB is formed, we trained a multi-area RNN to perform this task.”  

      The only way we knew DLPFC was not minimal was through our experiments. Please also note that the IB principle does not describe how information could be lost between areas or layers, whereas our RNN simulations show that this may occur through preferential propagation of task-relevant information with respect to the inter-area connections.  

      (2) Now the authors could change their argument and state that what is really needed is an IB with the additional assumption that transformations go through a feedforward network. However, even in this case, I am not sure I understand the need for distributing information in this task. In fact, in both the data and the network model, there is a nice linear readout of the decision information in dPFC (data) or area 1 (network model). Accordingly, the decision readout could occur at this stage already, and there is absolutely no need to tag on another area (PMd, area 2+3).

      Similarly, I noticed that the authors consider 2,3, and 4-area models, but they do not consider a 1-area model. It is not clear why the 1-area model is not considered. Given that e.g. Mante et al, 2013, manage to fit a 1-area model to a task of similar complexity, I would a priori assume that a 1-area RNN would do just as well in solving this task.

      While decision information could indeed be read out in Area 1 in our multi-area model, we were interested in understanding how the network converged to a PMd-like representation (minimal sufficient) for solving this task. Empirically, we only observed a match between our model representations and animal cortical representations during this task when considering multiple areas. Given that we empirically observed that our downstream area had a minimal sufficient representation, our multi-area model allowed how this minimal sufficient representation emerged (through preferential propagation of task-relevant information).

      We also analyzed single-area networks in our initial manuscript, though we could have highlighted these analyses more clearly to be sure they were not overlooked. We are clearer in this revision that we did consider a 1-area network (results in our Fig 5). While a single-area RNN can indeed solve this task, the single area model had all task information present in the representation, and did not match the representations in DLPFC or PMd. It would therefore not allow us to understand how the network converged to a PMd-like representation (minimal sufficient) for solving this task. We updated the schematic in Fig 5 to add in the single-area network (which may have caused the confusion).

      We have added an additional paragraph commenting on this in the discussion. We also added an additional supplementary figure with the PCs of the single area RNN (Fig S15). We highlight that single area RNNs do not resemble PMd activity because they contain strong color and context information. 

      In the discussion:

      “We also found it was possible to solve this task with single area RNNs, although they did not resemble PMd (Figure S15) since it did not form a minimal sufficient representation. Rather, for our RNN simulations, we found that the following components were sufficient to induce minimal sufficient representations: (1) RNNs with at least 3 areas, following Dale’s law (independent of the ratio of feedforward to feedback connections).”

      I think there are two more general problems with the author's approach. First, transformations or hierarchical representations are usually evoked to get information into the right format in a pure feedforward network. An RNN can be seen as an infinitely deep feedforward network, so even a single RNN has, at least in theory, and in contrast to feedforward layers, the power to do arbitrarily complex transformations. Second, the information coming into the network here (color + target) is a classical xor-task. While this task cannot be solved by a perceptron (=single neuron), it also is not that complex either, at least compared to, e.g., the task of distinguishing cats from dogs based on an incoming image in pixel format.

      An RNN can be viewed as an infinitely deep feedforward network in time. However, we wish to clarify two things. First, our task runs for a fixed amount of time, and therefore this RNN in practice is not infinitely deep in time. Second, if it were to perform an IB operation in time, we would expect to see color discriminability decrease as a function of time. Indeed, we considered this as a mechanism (recurrent attenuation, Figure 4a), but as we show in Supplementary Figure S9, we do not observe it to be the case that discriminability decreases through time. This is equivalent to a dynamical mechanism that removes color through successive transformations in time, which our analyses reject (Fig 4). We therefore rule out that an IB is implemented through time via an RNN’s recurrent computation (viewed as feedforward in time). Rather, as we show, the IB comes primarily through inter-areal connections between RNN areas. We clarified that our dynamical hypothesis is equivalent to rejecting the feedforward-in-time filtering hypothesis in the Results: 

      “We first tested the hypothesis that the RNN IB is implemented primarily by recurrent dynamics (left side of Fig. 4a). These recurrent dynamics can be equivalently interpreted as the RNN implementing a feedforward neural network in time.”  

      The reviewer is correct that the task is a classical XOR task and not as complex as e.g., computer vision classification. That said, our related work has looked at IBs for computer vision tasks and found them in deep feedforward networks (Kleinman et al., ICLR 2021). Even though the task is relatively straightforward, we believe it is appropriate for our conclusions because it does not have a trivial minimal sufficient representation: a minimal sufficient representation for XOR must contain only target, but not color or target configuration information. This can only be solved via a nonlinear computation. In this manner, we favor this task because it is relatively simple, and the minimal sufficient representations are interpretable, while at the same time not being so trivially simple (the minimal sufficient representations require nonlinearity to compute).  

      Finally, we want to note that this decision-making task is a logical and straightforward way to add complexity to classical animal decision-making tasks, where stimulus evidence and the behavioral report are frequently correlated. In tasks such as these, it may be challenging to untangle stimulus and behavioral variables, making it impossible to determine if an area like premotor cortex represents only behavior rather than stimulus. However, our task decorrelates both the stimulus and the behaviors. 

      (3) I am convinced of the author's argument that the RNN reproduces key features of the neural data. However, there are some points where the analysis should be improved.

      (a) It seems that dPCA was applied without regularization. Since dPCA can overfit the data, proper regularization is important, so that one can judge, e.g., whether the components of Fig.2g,h are significant, or whether the differences between DLPFC and PMd are significant.

      We note that the dPCA codebase optimizes the regularization hyperparameter through cross-validation and requires single-trial firing rates for all neurons, i.e., data matrices of the form (n_Neurons x Color x Choice x Time x n_Trials), which are unavailable for our data. We recognized that you are fundamentally asking whether differences are significant or not. We therefore believe it is possible to address this through a statistical test, described further below. 

      In order to test whether the differences of variance explained by task variables between DLPFC and PMd are significant, we performed a shuffle test. For this test, we randomly sampled 500 units from the DLPFC dataset and 500 units from the PMd dataset. We then used dPCA to measure the variance explained by target configuration, color choice, and reach direction (e.g., Var<sup>True</sup><sub>DLPFC,Color</sub>, Var<sup>True</sup><sub>PMd,Color</sub>).

      To test if this variance was significant, we performed the following shuffle test. We combined the PMd and DLPFC dataset into a pool of 1000 units and then randomly selected 500 units from this pool to create a surrogate PMd dataset and used the remaining 500 units as a surrogate DLPFC dataset. We then again performed dPCA on these surrogate datasets and estimated the variance for the various task variables (e.g., Var<sub>ShuffledDLPFC,Color</sub>  ,Var<sub>ShuffledPMd,Color</sub>).

      We repeated this process for 100 times and estimated a sampling distribution for the true difference in variance between DLPFC and PMd for various task variables (e.g., Var<sup>True</sup><sub>DLPFC,Color</sub> - Var<sup>True</sup><sub>PMd,Color</sub>). At the same time, we estimated the distribution of the variance difference between surrogate PMd and DLPFC dataset for various task variables (e.g., Var<sub>ShuffleDLPFC,Color</sub> - Var<sub>ShufflePMd,Color</sub>). 

      We defined a p-value as the number of shuffles in which the difference in variance was higher than the median of the true difference and divided it by 100. Note, for resampling and shuffle tests with n shuffles/bootstraps, the lowest theoretical p-value is given as 2/n, even in the case that no shuffle was higher than the median of the true distribution. Thus, the differences were statistically significant (p < 0.02) for color and target configuration but not for direction (p=0.72). These results are reported in Figure S6 and show both the true sampling distribution and the shuffled sampling distributions.

      (b) I would have assumed that the analyses performed on the neural data were identical to the ones performed on the RNN data. However, it looked to me like that was not the case. For instance, dPCA of the neural data is done by restretching randomly timed trials to a median trial. It seemed that this restretching was not performed on the RNN. Maybe that is just an oversight, but it should be clarified. Moreover, the decoding analyses used SVC for the neural data, but a neural-net-based approach for the RNN data. Why the differences?

      Thanks for bringing up these points. We want to clarify that we did include SVM decoding for the multi-area network in the appendix (Fig. S4), and the conclusions are the same. Moreover, in previous work, we also found that training with a linear decoder led to analogous conclusions (Fig. 11 of Kleinman et al, NeurIPS 2021).  As we had a larger amount of trials for the RNN than the monkey, we wanted to allow a more expressive decoder for the RNN, though this choice does not affect our conclusions. We clarified the text to reflect that we did use an SVM decoder.

      “We also found analogous conclusions when using an SVM decoder (Fig. S4).”

      dPCA analysis requires trials of equal length. For the RNN, this is straightforward to generate because we can set the delay lengths to be equal during inference (although the RNN was trained on various length trials and can perform various length trials). Animals must have varying delay periods, or else they will learn the timing of the task and anticipate epoch changes. Because animal trial lengths were therefore different, their trials had to be restretched. We clarified this in the Methods.

      “For analyses of the RNN, we fixed the timing of trials, obviating the need to to restretch trial lengths. Note that while at inference, we generated RNN trials with equal length, the RNN was trained with varying delay periods.” 

      (4) The RNN seems to fit the data quite nicely, so that is interesting. At the same time, the fit seems somewhat serendipitous, or at least, I did not get a good sense of what was needed to make the RNN fit the data. The authors did go to great lengths to fit various network models and turn several knobs on the fit. However, at least to me, there are a few (obvious) knobs that were not tested.

      First, as already mentioned above, why not try to fit a single-area model? I would expect that a single area model could also learn the task - after all, that is what Mante et al did in their 2013 paper and the author's task does not seem any more complex than the task by Mante and colleagues.

      Thank you for bringing up this point. As mentioned in response to your prior point, we did analyze a single-area RNN (Fig. 5d). We updated the schematic to clarify that we analyzed a single area network. Moreover, we also added a supplementary figure to qualitatively visualize the PCs of the single area network (Fig. S15). While a single area network can solve the task, it does not allow us to study how representations change across areas, nor did it empirically resemble our neural recordings. Single-area networks contain significant color, context, and direction information. They therefore do not form minimal representations and do not resemble PMd activity.

      Second, I noticed that the networks fitted are always feedforward-dominated. What happens when feedforward and feedback connections are on an equal footing? Do we still find that only the decision information propagates to the next area? Quite generally, when it comes to attenuating information that is fed into the network (e.g. color), then that is much easier done through feedforward connections (where it can be done in a single pass, through proper alignment or misalignment of the feedforward synapses) than through recurrent connections (where you need to actively cancel the incoming information). So it seems to me that the reason the attenuation occurs in the inter-area connections could simply be because the odds are a priori stacked against recurrent connections. In the real brain, of course, there is no clear evidence that feedforward connections dominate over feedback connections anatomically.

      We want to clarify that we did pick feedforward and feedback connections based on the following macaque atlas, reference 27 in our manuscript: 

      Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L., Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M. A., Sallet, J., Gamanut, R., Huissoud, C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z., … Kennedy, H. (2014). A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cerebral Cortex , 24(1), 17–36.

      We therefore believe there is evidence for more feedforward than feedback connections. Nevertheless, as stated in response to your next point below, we ran a simulation where feedback and feedforward connectivity were matched.

      More generally, it would be useful to clarify what exactly is sufficient:

      (a) the information distribution occurs in any RNN, i.e., also in one-area RNNs

      (b) the information distribution occurs when there are several, sparsely connected areas

      (c) the information distribution occurs when there are feedforward-dominated connections between areas

      We better clarify what exactly is sufficient. 

      - We trained single-area RNNs and found that these RNNs contained color information; additionally two area RNNs also contained color information in the last area (Fig 5d). 

      - We indeed found that the minimal sufficient representations emerged when we had several areas, with Dale’s law constraint on the connectivity. When we had even sparser connections, without Dale’s law, there was significantly more color information, even at 1% feedforward connections; Fig 5a.

      - When we matched the percentage of feedforward and feedback connections with Dale’s law constraint on the connectivity (10% feedforward and 10% feedback), we also observed minimal sufficient representations (Fig S9). 

      Together, we found that minimal sufficient representations emerged when we had several areas (3 or greater), with Dale’s law constraint on the connectivity, independent of the ratio of feedforward/feedback connections. We thank the reviewer for raising this point about the space of constraints leading to minimal sufficient representations in the late area. We clarified this in the Discussion.

      “We also found it was possible to solve this task with single area RNNs, although they did not resemble PMd (Figure S15) since it did not form a minimal sufficient representation. Rather, for our RNN simulations, we found that the following components were sufficient to induce minimal sufficient representations: RNNs with at least 3 areas, following Dale’s law (independent of the ratio of feedforward to feedback connections).”

      Thank you for your helpful and constructive comments!

      Reviewer #2 (Public Review):

      Kleinman and colleagues conducted an analysis of two datasets, one recorded from DLPFC in one monkey and the other from PMD in two monkeys. They also performed similar analyses on trained RNNs with various architectures.

      The study revealed four main findings. (1) All task variables (color coherence, target configuration, and choice direction) were found to be encoded in DLPFC. (2) PMD, an area downstream of PFC, only encoded choice direction. (3) These empirical findings align with the celebrated 'information bottleneck principle,' which suggests that FF networks progressively filter out task-irrelevant information. (4) Moreover, similar results were observed in RNNs with three modules.

      We thank the reviewer for their comments, feedback and suggestions, which we address below.

      While the analyses supporting results 1 and 2 were convincing and robust, I have some concerns and recommendations regarding findings 3 and 4, which I will elaborate on below. It is important to note that findings 2 and 4 had already been reported in a previous publication by the same authors (ref. 43).

      Note the NeurIPS paper only had PMd data and did not contain any DLPFC data. That manuscript made predictions about representations and dynamics upstream of PMd, and subsequent experiments reported in this manuscript validated these predictions. Importantly, this manuscript observes an information bottleneck between DLPFC and PMd.

      Major recommendation/comments:

      The interpretation of the empirical findings regarding the communication subspace in relation to the information bottleneck theory is very interesting and novel. However, it may be a stretch to apply this interpretation directly to PFC-PMd, as was done with early vs. late areas of a FF neural network.

      In the RNN simulations, the main finding indicates that a network with three or more modules lacks information about the stimulus in the third or subsequent modules. The authors draw a direct analogy between monkey PFC and PMd and Modules 1 and 3 of the RNNs, respectively. However, considering the model's architecture, it seems more appropriate to map Area 1 to regions upstream of PFC, such as the visual cortex, since Area 1 receives visual stimuli. Moreover, both PFC and PMd are deep within the brain hierarchy, suggesting a more natural mapping to later areas. This contradicts the CCA analysis in Figure 3e. It is recommended to either remap the areas or provide further support for the current mapping choice.

      We updated the Introduction to better clarify the predictions of the information bottleneck (IB) principle. In particular, the IB principle predicts that later areas should have minimal sufficient representations of task information, whereas upstream areas should have more information. In PMd, we observed a minimal sufficient representation of task information during the decision-making task. In DLPFC, we observed more task information, particularly more information about the target colors and the target configuration.

      In terms of the exact map between areas, we do not believe or intend to claim the DLPFC is the first area implicated in the sensorimotor transformation during our perceptual decision-making task. Rather, DLPFC best matches Area 1 of our model. It is important to note that we abstracted our task so that the first area of our model received checkerboard coherence and target configuration as input (and hence did not need to transform task visual inputs). Indeed, in Figure 1d we hypothesize that the early visual areas should contain additional information, which we do not model directly in this work. Future work could model RNNs to take in an image or video input of the task stimulus. In this case, it would be interesting to assess if earlier areas resemble visual cortical areas. We updated the results, where we first present the RNN, to state the inputs explicitly and be clear the inputs are not images or videos of the checkerboard task.

      “The RNN input was 4D representing the target configuration and checkerboard signed coherence, while the RNN output was 2D, representing decision variables for a left and right reach (see Methods).”

      Another reason that we mapped Area 1 to DLPFC is because anatomical, physiological and lesion studies suggest that DLPFC receives inputs from both the dorsal and ventral stream (Romanski, et, al, 2007; Hoshi, et al, 2006; Wilson, at al, 1993). The dorsal stream originates from the occipital lobe, passes through the posterior parietal cortex, to DLPFC, which carries visuospatial information of the object. The ventral stream originates from the occipital lobe, passes through the inferior temporal cortex, ventrolateral prefrontal cortex to DLPFC, which encodes the identity of the object, including color and texture. In our RNN simulation, Area 1 receives processed inputs of the task: target configuration and the evidence for each color in the checkerboard. Target configuration contains information of the spatial location of the targets, which represents the inputs from the dorsal stream, while evidence for each color by analogy is the input from the ventral stream. Purely visual areas would not fit this dual input from both the dorsal and ventral stream. A potential alternative candidate would be the parietal cortex which is largely part of the dorsal stream and is thought to have modest color inputs (although there is some shape and color selectivity in areas such as LIP, e.g., work from Sereno et al.). On balance given the strong inputs from both the dorsal and ventral stream, we believe Area 1 maps better on to DLPFC than earlier visual areas.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Line 35/36: Please specify the type of nuisance that the representation is robust to. I guess this refers to small changes in the inputs, not to changes in the representation itself.

      Indeed it refers to input variability unrelated to the task. We clarified the text.

      (2) For reference, it would be nice to have a tick for the event "Targets on" in Fig.2c.

      In this plot, the PSTHs are aligned to the checkerboard onset. Because there is a variable time between target and checkerboard onset, there is a trial-by-trial difference of when the target was turned on, so there is no single place on the x-axis where we could place a “Targets on” tick. In response to this point, we generated a plot with both targets on and check on alignment, with a break in the middle, shown in Supplementary Figure S5. 

      (3) It would strengthen the comparison between neural data and RNN if the DPCA components of the RNN areas were shown, as they are shown in Fig.2g,h for the neural data.

      We include the PSTHs plotted onto the dPCA components here for Area 1 of the exemplar network. Dashed lines indicate a left reach, while solid lines indicate a right reach, and the color corresponds to the color of the selected target. As expected, we find that the dPCA components capture the separation between components. We emphasize that the trajectory paths along the decoder axes are not particularly meaningful to interpret, except to demonstrate whether variables can be decoded or not (as in Fig 2g,h, comparing DLPFC and PMd). The decoder axes of dPCA are not constrained in any way, in contrast to the readout (encoder) axis (see Methods). This is why our manuscript focuses on analyzing the readout axes. However, if the reviewer strongly prefers these plots to be put in the manuscript, we will add them.   

      Author response image 1.

      (4) The session-by-session decode analysis presented in Fig.2i suggests that DLPFC has mostly direction information while in Area 1 target information is on top, as suggested by Fig.3g. An additional decoding analysis on trial averaged neural data, i.e. a figure for neural data analogous to Fig.3g,h, would allow for a more straightforward and direct comparison between RNN and neural data. 

      We first clarify that we did not decode trial-averaged neural data for either recorded neural data or RNNs. In Fig 3g, h (for the RNN) all decoding was performed on single trial data and then averaged. We have revised the main manuscript to make this clear. Because of this, the mean accuracies we reported for DLPFC and PMd in the text are therefore computed in the same way as the mean accuracies presented in Fig 3g, h. We believe this likely addresses your concern: i.e., the mean decode accuracies presented for both neural data and the RNN were computed the same way. 

      If the above paragraph did not address your concern, we also wish to be clear that we presented the neural data as histograms, rather than a mean with standard error, because we found that accuracies were highly variable depending on electrode insertion location. For example, some insertions in DLPFC achieved chance-levels of decoding performance for color and target configuration. For this reason, we prefer to keep the histogram as it shows more information than reporting the mean, which we report in the main text. However, if the reviewer strongly prefers us to make a bar plot of these means, we will add them.

      (5) Line 129 mentions an analysis of single trials. But in Fig.2i,j sessions are analyzed. Please clarify.

      For each session, we decode from single trials and then average these decoding accuracies, leading to a per-session average decoding accuracy. Note that for each session, we record from different neurons. In the text, we also report the average over the sessions. We clarified this in the text and Methods.

      (6) Fig.4c,f show how color and direction axes align with the potent subspaces. We assume that the target axis was omitted here because it highly aligns with the color axis, yet we note that this was not pointed out explicitly.

      You are correct, and we revised the text to point this out explicitly.

      “We quantified how the color and direction axis were aligned with these potent and null spaces of the intra-areal recurrent dynamics matrix of Area 1 ($\W^1_{rec}$). We did not include the target configuration axis for simplicity, since it highly aligns with the color axis for this network.”

      (7) The caption of Fig.4c reads: "Projections onto the potent space of the intra-areal dynamics for each area." Yet, they only show area 1 in Fig.4c, and the rest in a supplement figure. Please refer properly.

      Thank you for pointing this out. We updated the text to reference the supplementary figure.

      (8) Line 300: "We found the direction axis was more aligned with the potent space and the color axis was more aligned with the null space." They rather show that the color axis is as aligned to the potent space as a random vector, but nothing about the alignments with the null space. Contrarily, on line 379 they write "...with the important difference that color information isn't preferentially projected to a nullspace...". Please clarify.

      Thank you for pointing this out. We clarified the text to read: “We found the direction axis was more aligned with the potent space”. The text then describes that the color axis is aligned like a random vector: “In contrast, the color axis was aligned to a random vector.”

      (9) Line 313: 'unconstrained' networks are mentioned. What constraints are implied there, Dale's law? Please define and clarify.

      Indeed, the constraint refers to Dale’s law constraints. We clarified the text: “Further, we found that W<sub>21</sub> in unconstrained 3 area networks (i.e., without Dale's law constraints) had significantly reduced…”

      (10) Line 355 mentions a 'feedforward bottleneck'. What does this exactly mean? No E-I feedforward connections, or...? Please define and clarify.

      This refers to sparser connections between areas than within an area, as well as a smaller fraction of E-I connections. We clarified the text to read:

      “Together, these results suggest  that a connection bottleneck in the form of neurophysiological architecture constraints (i.e., sparser connections between areas than within an area, as well as a smaller fraction of E-I connections) was the key design choice leading to RNNs with minimal color representations and consistent with the information bottleneck principle.”

      (11) Fig.5c is supposedly without feedforward connections, but it looks like the plot depicts these connections (i.e. identical to Fig.5b).

      In Figure 5, we are varying the E to I connectivity in panel B, and the E-E connectivity in panel C. We vary the feedback connections in Supp Fig. S12. We updated the caption accordingly. 

      (12) For reference, it would be nice to have the parameters of the exemplar network indicated in the panels of Fig.5.

      We updated the caption to reference the parameter configuration in Table 1 of the Appendix.

      (13) Line 659: incomplete sentence

      Thank you for pointing this out. We removed this incomplete sentence.

      (14) In the methods section "Decoding and Mutual information for RNNs" a linear neural net decoder as well as a nonlinear neural net decoder are described, yet it was unclear which one was used in the end.

      We used the nonlinear network, and clarified the text accordingly. We obtained consistent conclusions using a linear network, but did not include these results in the text. (These are reported in Fig. 11 of Kleinman et al, 2021). Moreover, we also obtain consistent results by using an SVM decoder in Fig. S4 for our exemplar parameter configuration.

      (15) In the discussion, the paragraph starting from line 410 introduces a new set of results along with the benefits of minimal representations. This should go to the results section.

      We prefer to leave this as a discussion, since the task was potentially too simplistic to generate a clear conclusion on this matter. We believe this remains a discussion point for further investigation.

      (16) Fig S5: hard to parse. Show some arrows for trajectories (a) (d) is pretty mysterious: where do I see the slow dynamics?

      Slow points are denoted by crosses, which forms an approximate line attractor. We clarified this in the caption.

      Reviewer #2 (Recommendations For The Authors):

      Minor recommendations (not ordered by importance)

      (1) Be more explicit that the recordings come from different monkeys and are not simultaneously recorded. For instance, say 'recordings from PFC or PMD'. Say early on that PMD recordings come from two monkeys and that PFC recordings come from 1 of those monkeys. Furthermore, I would highlight which datasets are novel and which are not. For instance, I believe the PFC dataset is a previously unpublished dataset and should be highlighted as such.

      We added: “The PMd data was previously described in a study by Chandrasekaran and colleagues” to the main text which clarifies that the PMd data was previously recorded and has been analyzed in other studies.

      (2) I personally feel that talking about 'optimal', as is done in the abstract, is a bit of a stretch for this simple task.

      In using the terminology “optimal,” we are following the convention of IB literature that optimal representations are sufficient and minimal. The term “optimal” therefore is task-specific; every task will have its own optimal representation. We clarify in the text that this definition comes from Machine Learning and Information Theory, stating:

      “The IB principle defines an optimal representation as a representation that is minimal and sufficient for a task or set of tasks.”

      In this way, we take an information-theoretic view for describing multi-area representations. This view was satisfactory for explaining and reconciling the multi-area recordings and simulations for this task, and we think it is helpful to provide a normative perspective for explaining the differences in cortical representations by brain area. Even though the task is simple, it still allows us to study how sensory/perceptual information is represented, and well as how choice-related information is being represented.

      (3) It is mentioned (and even highlighted) in the abstract that we don't know why the brain distributes computations. I agree with that statement, but I don't think this manuscript answers that question. Relatedly, the introduction mentions robustness as one reason why the brain would distribute computations, but then raises the question of whether there is 'also a computational benefit for distributing computations across multiple areas'. Isn't the latter (robustness) a clear 'computational benefit'?

      We decided to keep the word “why” in the abstract, because this is a generally true statement (it is unclear why the brain distributes computation) that we wish to convey succinctly, pointing to the importance of studying this relatively grand question (which could only be fully answered by many studies over decades). We consider this the setting of our work. However, to avoid confusion that we are trying to give a full answer to this question, we are now more precise in the first paragraph of our introduction as to the particular questions we ask that will take a step towards this question. In particular, the first paragraph now asks these questions, which we answer in our study.

      “For example, is all stimuli and decision-related information present in all brain areas, or do the cortical representations differ depending on their processing stage? If the representations differ, are there general principles that can explain why the cortical representations differ by brain area?”

      We also removed the language on robustness, as we agree it was confusing. Thank you for these suggestions. 

      (4) Figure 2e and Fig. 3d, left, do not look very similar. I suggest zooming in or rotating Figure 2 to highlight the similarities. Consider generating a baseline CCA correlation using some sort of data shuffle to highlight the differences.

      The main point of the trajectories is to demonstrate that both Area 1 and DLPFC represent both color and direction. We now clarify this in the manuscript. However, we do not intend for these two plots to be a rigorous comparison of similarity. Rather, we quantify similarity using CCA and our decoding analysis. We also better emphasize the relative values of the CCA, rather than the absolute values.

      (5) Line 152: 'For this analysis, we restricted it to sessions with significant decode accuracy with a session considered to have a significant decodability for a variable if the true accuracy was above the 99th percentile of the shuffled accuracy for a session.' Why? Sounds fishy, especially if one is building a case on 'non-decodability'. I would either not do it or better justify it.

      The reason to choose only sessions with significant decoding accuracy is that we consider those sessions to be the sessions containing information of task variables. In response to this comment, we also now generate a plot with all recording sessions in Supplementary Figure S7. We modified the manuscript accordingly.

      “For this analysis, we restricted it to sessions with significant decode accuracy with a session considered to have a significant decodability for a variable if the true accuracy was above the 99th percentile of the shuffled accuracy for a session. This is because these sessions contain information about task variables. However, we also present the same analyses using all sessions in Fig. S7.”

      (6) Line 232: 'The RNN therefore models many aspects of our physiological data and is therefore'. Many seems a stretch?

      We changed “many” to “key.”

      (7) The illustration in Fig. 4B is very hard to understand, I recommend removing it.

      We are unsure what this refers to, as Figure 4B represents data of axis overlaps and is not an illustration. 

      (8) At some point the authors use IB instead of information bottleneck (eg line 288), I would not do it.

      We now clearly write that IB is an abbreviation of Information Bottleneck the first time it is introduced.  

      (9) Fig. 5 caption is insufficient to understand it. Text in the main document does not help. I would move most part of this figure, or at least F, to supplementary. Instead, I would move the results in S11 and S10 to the main document.

      We clarified the caption to summarize the key points. It now reads: 

      “Overall, neurophysiological architecture constraints in the form of multiple areas, sparser connections between areas than within an area, as well as a smaller fraction of E-I connections lead to a minimal color representation in the last area.”

      (10) Line 355: 'Together, these results suggest that a connection bottleneck in the form of neurophysiological architecture constraints was the key design choice leading to RNNs with minimal color representations and consistent with the information bottleneck principle.' The authors show convincingly that increased sparsity leads to the removal of irrelevant information. There is an alternative model of the communication subspace hypothesis that uses low-rank matrices, instead of sparse, to implement said bottlenecks (https://www.biorxiv.org/content/10.1101/2022.07.21.500962v2)

      We thank the reviewer for pointing us to this very nice paper. Indeed, a low-rank connectivity matrix is another mechanism to limit the amount of information that is passed to subsequent areas. In fact, the low-rank matrix forms a hard-version of our observations as we found that task-relevant information was preferentially propagated along the top singular mode of the inter-areal connectivity matrix. In our paper we observed this tendency naturally emerges through training with neurophysiological architecture constraints. In the paper, for the multi-area RNN, they hand-engineered the multi-area network, whereas our network is trained. We added this reference to our discussion. 

      Thank you for your helpful and constructive comments.

    1. CH and CN

      This seems mostly due to the methylcellulose, correct? I'm wondering if there is a way to determine the actual number of anchor points in the liposome? Perhaps some staining against the His tag? It might be interesting to see where deformations lie in relation to clusters of anchor points.

    2. F-actin is 1.4 μM

      Do you also have the Kd of untagged actinin for F-actin? It could be nice to know if the tag has any impact on binding. I'm also curious if the membrane tethered actinin has a different affinity for actin filaments compared to free-floating actinin.

    1. WWF-Pacific / Tom Vierus

      This image lacks a descriptive alt tag. According to the WCAG guidelines and our course, this makes the content inaccessible to users relying on screen readers, a violation of the Perceivable principle.

    1. Leisure's opportunity cost skyrockets. When an hour of work generates what once took days, rest becomes luxury taxed by your own conscience. Every pause carries an invisible price tag that flickers in your peripheral vision.Productivity breeds new demand. Like efficient engines creating new energy uses, AI can create entirely new work categories and expectations.Competition intensifies. The game theory is unforgiving: when everyone can produce 10x more, the baseline resets, leaving us all running faster just to stay in place.

      Consequences

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Kito et al follow up on previous work that identified Drosophila GCL as a mitotic substrate recognition subunit of a CUL3-RING ubiquitin ligase (CRL3) complex.

      Here they characterize mutants of the human ortholog of GCL, GMCL1, that disrupt the interaction with CUL3 (GMCL1E142K) and that lack the substrate interaction domain (GMCL1 BBO). Immunoprecipitation followed by mass spectrometry identified 9 proteins that interacted with wild-type FLAG-GMCL1 and GMCL1 EK but not GMCL1 BBO. These proteins included 53BP1, which plays a well-characterized role in double-strand break repair but also functions in a USP28-p53-53BP1 "mitotic stopwatch" complex that arrests the cell cycle after a substantially prolonged mitosis. Consistent with the IP-MS results, FLAG-GMCL1 immunoprecipitated 53BP1. Depletion of GMCL1 during mitotic arrest increased protein levels of 53BP1, and this could be rescued by wild-type GMCL1 but not the E142K mutant or a R433A mutant that failed to immunoprecipitate 53BP1.

      Using a publicly available dataset, the authors identified a relatively small subset of cell lines with high levels of GMCL1 mRNA that were resistant to the taxanes paclitaxel, cabazitaxel, and docetaxel. This type of analysis is confounded by the fact that paclitaxel and other microtubule poisons accumulate to substantially different levels in various cell lines (DOI: 10.1073/pnas.90.20.9552 , DOI: 10.1091/mbc.10.4.947 ), so careful follow-up experiments are required to validate results. The correlation between increased GMCL1 mRNA and taxane resistance was not observed in lung cancer cell lines. The authors propose this was because nearly half of lung cancers harbor p53 mutations, and lung cancer cell lines with wild-type but not mutant p53 showed the correlation between increased GMCL1 mRNA and taxane resistance. However, the other cancer cell types in which they report increased GMCL1 expression correlates with taxane sensitivity also have high rates of p53 mutation. Furthermore, p53 status does not predict taxane response in patients (DOI: 10.1002/1097-0142(20000815)89:4<769::aid-cncr8>3.0.co;2-6 , DOI: 10.1002/(SICI)1097-0142(19960915)78:6<1203::AID-CNCR6>3.0.CO;2-A , PMID: 10955790).

      The authors then depleted GMCL1 and reported that it increased apoptosis in two cell lines with wild-type p53 (MCF7 and U2OS) due to activation of the mitotic stopwatch. This is surprising because the mitotic stopwatch paper they cite (DOI: 10.1126/science.add9528 ) reported that U2OS cells have an inactive stopwatch and that activation of the stopwatch results in cell cycle arrest rather than apoptosis in most cell types, including MCF7. Beyond this, it has recently been shown that the level of taxanes and other microtubule poisons achieved in patient tumors is too low to induce mitotic arrest (DOI: 10.1126/scitranslmed.3007965 , DOI: 10.1126/scitranslmed.abd4811 , DOI: 10.1371/journal.pbio.3002339 ), raising concerns about the relevance of prolonged mitosis to paclitaxel response in cancer. The findings here demonstrating that GMCL1 mediates degradation of 53BP1 during mitotic arrest are solid and of interest to cell biologists, but it is unclear that these findings are relevant to paclitaxel response in patients.

      Strengths:

      This study identified 53BP1 as a target of CRL3GMCL1-mediated degradation during mitotic arrest. AlphaFold3 predictions of the binding interface, followed by mutational analysis, identified mutants of each protein (GMCL1 R433A and 53BP1 IEDI1422-1425AAAA) that disrupted their interaction. Knock-in of a FLAG tag into the C-terminus of GMCL1 in HCT116 cells, followed by FLAG immunoprecipitation, confirmed that endogenous GMCL1 interacts with endogenous CUL3 and 53BP1 during mitotic arrest.

      Weaknesses:

      The clinical relevance of the study is overinterpreted. The authors have not taken relevant data about the clinical mechanism of taxanes into account. Supraphysiologic doses of microtubule poisons cause mitotic arrest and can activate the mitotic stopwatch. However, in physiologic concentrations of clinically useful microtubule poisons, cells proceed through mitosis and divide their chromosomes on mitotic spindles that are at least transiently multipolar. Though these low concentrations may result in a brief mitotic delay, it is substantially shorter than the arrest caused by high concentrations of microtubule poisons, and the one mimicked here by 16 hours of 0.4 mg/mL nocodazole, which is not used clinically and does not induce multipolar spindles. Resistance to mitotic arrest occurs through different mechanisms than resistance to multipolar spindles. No evidence is presented in the current version of the manuscript that GMCL1 affects cellular response to clinically relevant doses of paclitaxel.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Mackie and colleagues compare chemosensory preferences between C. elegans and P. pacificus, and the cellular and molecular mechanisms underlying them. The nematodes have overlapping and distinct preferences for different salts. Although P. pacificus lacks the lsy-6 miRNA important for establishing asymmetry of the left/right ASE salt-sensing neurons in C. elegans, the authors find that P. pacificus ASE homologs achieve molecular (receptor expression) and functional (calcium response) asymmetry by alternative means. This work contributes an important comparison of how these two nematodes sense salts and highlights that evolution can find different ways to establish asymmetry in small nervous systems to optimize the processing of chemosensory cues in the environment.

      Strengths:

      The authors use clear and established methods to record the response of neurons to chemosensory cues. They were able to show clearly that ASEL/R are functionally asymmetric in P. pacificus, and combined with genetic perturbation establish a role for che-1-dependent gcy-22.3 in in the asymmetric response to NH<sub>4</sub>Cl.

      Weaknesses:

      The mechanism of lsy-6-independent establishment of ASEL/R asymmetry in P. pacificus remains uncharacterized.

      We thank the reviewer for recognizing the novel contributions of our work in revealing the existence of alternative pathways for establishing neuronal lateral asymmetry without the lsy-6 miRNA in a divergent nematode species. We are certainly encouraged now to search for genetic factors that alter the exclusive asymmetric expression of gcy-22.3.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Mackie et al. investigate gustatory behavior and the neural basis of gustation in the predatory nematode Pristionchus pacificus. First, they show that the behavioral preferences of P. pacificus for gustatory cues differ from those reported for C. elegans. Next, they investigate the molecular mechanisms of salt sensing in P. pacificus. They show that although the C. elegans transcription factor gene che-1 is expressed specifically in the ASE neurons, the P. pacificus che-1 gene is expressed in the Ppa-ASE and Ppa-AFD neurons. Moreover, che-1 plays a less critical role in salt chemotaxis in P. pacificus than C. elegans. Chemogenetic silencing of Ppa-ASE and Ppa-AFD neurons results in more severe chemotaxis defects. The authors then use calcium imaging to show that both Ppa-ASE and Ppa-AFD neurons respond to salt stimuli. Calcium imaging experiments also reveal that the left and right Ppa-ASE neurons respond differently to salts, despite the fact that P. pacificus lacks lsy-6, a microRNA that is important for ASE left/right asymmetry in C. elegans. Finally, the authors show that the receptor guanylate cyclase gene Ppa-gcy-23.3 is expressed in the right Ppa-ASE neuron (Ppa-ASER) but not the left Ppa-ASE neuron (Ppa-ASEL) and is required for some of the gustatory responses of Ppa-ASER, further confirming that the Ppa-ASE neurons are asymmetric and suggesting that Ppa-GCY-23.3 is a gustatory receptor. Overall, this work provides insight into the evolution of gustation across nematode species. It illustrates how sensory neuron response properties and molecular mechanisms of cell fate determination can evolve to mediate species-specific behaviors. However, the paper would be greatly strengthened by a direct comparison of calcium responses to gustatory cues in C. elegans and P. pacificus, since the comparison currently relies entirely on published data for C. elegans, where the imaging parameters likely differ. In addition, the conclusions regarding Ppa-AFD neuron function would benefit from additional confirmation of AFD neuron identity. Finally, how prior salt exposure influences gustatory behavior and neural activity in P. pacificus is not discussed.

      Strengths:

      (1) This study provides exciting new insights into how gustatory behaviors and mechanisms differ in nematode species with different lifestyles and ecological niches. The results from salt chemotaxis experiments suggest that P. pacificus shows distinct gustatory preferences from C. elegans. Calcium imaging from Ppa-ASE neurons suggests that the response properties of the ASE neurons differ between the two species. In addition, an analysis of the expression and function of the transcription factor Ppa-che-1 reveals that mechanisms of ASE cell fate determination differ in C. elegans and P. pacificus, although the ASE neurons play a critical role in salt sensing in both species. Thus, the authors identify several differences in gustatory system development and function across nematode species.

      (2) This is the first calcium imaging study of P. pacificus, and it offers some of the first insights into the evolution of gustatory neuron function across nematode species.

      (3) This study addresses the mechanisms that lead to left/right asymmetry in nematodes. It reveals that the ASER and ASEL neurons differ in their response properties, but this asymmetry is achieved by molecular mechanisms that are at least partly distinct from those that operate in C. elegans. Notably, ASEL/R asymmetry in P. pacificus is achieved despite the lack of a P. pacificus lsy-6 homolog.

      Weaknesses:

      (1) The authors observe only weak attraction of C. elegans to NaCl. These results raise the question of whether the weak attraction observed is the result of the prior salt environment experienced by the worms. More generally, this study does not address how prior exposure to gustatory cues shapes gustatory responses in P. pacificus. Is salt sensing in P. pacificus subject to the same type of experience-dependent modulation as salt sensing in C. elegans?

      We tested if starving animals in the presence of a certain salt will result in those animals avoiding it. However, under our experimental conditions we were unable to detect experiencedependent modulation either in P. pacificus or in C. elegans.

      Author response image 1.

      (2) A key finding of this paper is that the Ppa-CHE-1 transcription factor is expressed in the PpaAFD neurons as well as the Ppa-ASE neurons, despite the fact that Ce-CHE-1 is expressed specifically in Ce-ASE. However, additional verification of Ppa-AFD neuron identity is required. Based on the image shown in the manuscript, it is difficult to unequivocally identify the second pair of CHE-1-positive head neurons as the Ppa-AFD neurons. Ppa-AFD neuron identity could be verified by confocal imaging of the CHE-1-positive neurons, co-expression of Ppa-che1p::GFP with a likely AFD reporter, thermotaxis assays with Ppa-che-1 mutants, and/or calcium imaging from the putative Ppa-AFD neurons.

      In the revised manuscript, we provide additional and, we believe, conclusive evidence for our correct identification of Ppa-AFD neuron being another CHE-1 expressing neuron. Specifically, we have constructed and characterized 2 independent reporter strains of Ppa-ttx-1, a putative homolog of the AFD terminal selector in C. elegans. There are two pairs of ttx-1p::rfp expressing amphid neurons. The anterior neuronal pair have finger-like endings that are unique for AFD neurons compared to the dendritic endings of the 11 other amphid neuron pairs (no neuron type has a wing morphology in P. pacificus). Their cell bodies are detected in the newly tagged TTX-1::ALFA strain that co-localize with the anterior pair of che-1::gfp-expressing amphid neurons (n=15, J2-Adult).

      We note that the identity of the posterior pair of amphid neurons differs between the ttx-1p::rfp promoter fusion reporter and TTX-1::ALFA strains– the ttx-1p::rfp posterior amphid pair overlaps with the gcy-22.3p::gfp reporter (ASER) but the TTX-1::ALFA posterior amphid pair do not overlap with the posterior pair of che-1::gfp-expressing amphid neurons (n=15). Given that there are 4 splice forms detected by RNAseq (Transcriptome Assembly Trinity, 2016; www.pristionchus.org), this discrepancy between the Ppa-ttx-1 promoter fusion reporter and the endogenous expression of the Ppa-TTX-1 C-terminally tagged to the only splice form containing Exon 18 (ppa_stranded_DN30925_c0_g1_i5, the most 3’ exon) may be due to differential expression of different splice variants in AFD, ASE, and another unidentified amphid neuron types.  

      Although we also made reporter strains of two putative AFD markers, Ppa-gcy-8.1 (PPA24212)p::gfp; csuEx101 and Ppa-gcy-8.2 (PPA41407)p::gfp; csuEx100, neither reporter showed neuronal expression.

      (3) Loss of Ppa-che-1 causes a less severe phenotype than loss of Ce-che-1. However, the loss of Ppa-che-1::RFP expression in ASE but not AFD raises the question of whether there might be additional start sites in the Ppa-che-1 gene downstream of the mutation sites. It would be helpful to know whether there are multiple isoforms of Ppa-che-1, and if so, whether the exon with the introduced frameshift is present in all isoforms and results in complete loss of Ppa-CHE-1 protein.

      According to www.pristionchus.org (Transcriptome Assembly Trinity), there is only a single detectable splice form by RNAseq. Once we have a Ppa-AFD-specific marker, we would be able to determine how much of the AFD terminal effector identify (e.g. expression of gcy-8 paralogs) is effected by the loss of Ppa-che-1 function.

      (4) The authors show that silencing Ppa-ASE has a dramatic effect on salt chemotaxis behavior. However, these data lack control with histamine-treated wild-type animals, with the result that the phenotype of Ppa-ASE-silenced animals could result from exposure to histamine dihydrochloride. This is an especially important control in the context of salt sensing, where histamine dihydrochloride could alter behavioral responses to other salts.

      We have inadvertently left out this important control. Because the HisCl1 transgene is on a randomly segregating transgene array, we have scored worms with and without the transgene expressing the co-injection marker (Ppa-egl-20p::rfp, a marker in the tail) to show that the presence of the transgene is necessary for the histamine-dependent knockdown of NH<sub>4</sub>Br attraction. This control is added as Figure S2.

      (5) The calcium imaging data in the paper suggest that the Ppa-ASE and Ce-ASE neurons respond differently to salt solutions. However, to make this point, a direct comparison of calcium responses in C. elegans and P. pacificus using the same calcium indicator is required. By relying on previously published C. elegans data, it is difficult to know how differences in growth conditions or imaging conditions affect ASE responses. In addition, the paper would be strengthened by additional quantitative analysis of the calcium imaging data. For example, the paper states that 25 mM NH<sub>4</sub>Cl evokes a greater response in ASEL than 250 mM NH<sub>4</sub>Cl, but a quantitative comparison of the maximum responses to the two stimuli is not shown.

      We understand that side-by-side comparisons with C. elegans using the same calcium indicator would lend more credence to the differences we observed in P. pacificus versus published findings in C. elegans from the past decades, but are not currently in a position to conduct these experiments in parallel.

      (6) It would be helpful to examine, or at least discuss, the other P. pacificus paralogs of Ce-gcy22. Are they expressed in Ppa-ASER? How similar are the different paralogs? Additional discussion of the Ppa-gcy-22 gene expansion in P. pacificus would be especially helpful with respect to understanding the relatively minor phenotype of the Ppa-gcy-22.3 mutants.

      In P. pacificus, there are 5 gcy-22-like paralogs and 3 gcy-7-like paralogs, which together form a subclade that is clearly distinct from the 1-1 Cel-gcy-22, Cel-gcy-5, and Cel-gcy-7 orthologs in a phylogenetic tree containing all rGCs in P. pacificus, C. elegans, and C. briggssae (Hong et al, eLife, 2019). In Ortiz et al (2006 and 2009), Cel-gcy-22 stands out from other ASER-type gcy genes (gcy-1, gcy-4, gcy-5) in being located on a separate chromosome (Chr. V) as well as in having a wider range of defects in chemoattraction towards salt ions. Given that the 5 P. pacificus gcy-22-like paralogs are located on 3 separate chromosomes without clear synteny to their C. elegans counterparts, it is likely that the gcy-22 paralogs emerged from independent and repeated gene duplication events after the separation of these Caenorhabditis and Pristionchus lineages. Our reporter strains for two other P. pacificus gcy-22-like paralogs either did not exhibit expression in amphid neurons (Ppa-gcy-22.1p::GFP, ) or exhibited expression in multiple neuron types in addition to a putative ASE neuron (Ppa-gcy-22.4p::GFP). We have expanded the discussion on the other P. pacificus gcy-22 paralogs.

      (7) The calcium imaging data from Ppa-ASE is quite variable. It would be helpful to discuss this variability. It would also be helpful to clarify how the ASEL and ASER neurons are being conclusively identified during calcium imaging.

      For each animal, the orientation of the nose and vulva were recorded and used as a guide to determine the ventral and dorsal sides of the worm, and subsequently, the left and right sides of the worm. Accounting for the plane of focus of the neuron pairs as viewed through the microscope, it was then determined whether the imaged neuron was the worm’s left or right neuron of each pair. We added this explanation to the Methods.

      (8) More information about how the animals were treated prior to calcium imaging would be helpful. In particular, were they exposed to salt solutions prior to imaging? In addition, the animals are in an M9 buffer during imaging - does this affect calcium responses in Ppa-ASE and Ppa-AFD? More information about salt exposure, and how this affects neuron responses, would be very helpful.

      Prior to calcium imaging, animals were picked from their cultivation plates (using an eyelash pick to minimize bacteria transfer) and placed in loading solution (M9 buffer with 0.1% Tween20 and 1.5 mM tetramisole hydrochloride, as indicated in the Method) to immobilize the animals until they were visibly completely immobilized.

      (9) In Figure 6, the authors say that Ppa-gcy-22.3::GFP expression is absent in the Ppa-che1(ot5012) mutant. However, based on the figure, it looks like there is some expression remaining. Is there a residual expression of Ppa-gcy-22.3::GFP in ASE or possibly ectopic expression in AFD? Does Ppa-che-1 regulate rGC expression in AFD? It would be helpful to address the role of Ppa-che-1 in AFD neuron differentiation.

      In Figure 6C, the green signal is autofluorescence in the gut, and there is no GFP expression detected in any of the 55 che-1(-) animals we examined. We are currently developing AFDspecific rGC markers (gcy-8 homologs) to be able to examine the role of Ppa-CHE-1 in regulating AFD identity.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Abstract: 'how does sensory diversity prevail within this neuronal constraint?' - could be clearer as 'numerical constraint' or 'neuron number constraint'.

      We have clarified this passage as ‘…constraint in neuron number’.

      (2) 'Sensory neurons in the Pristionchus pacificus' - should get rid of the 'the'.

      We have removed the ‘the’.

      (3) Figure 2: We have had some good results with the ALFA tag using a similar approach (tagging endogenous loci using CRISPR). I'm not sure if it is a Pristionchus thing, or if it is a result of our different protocols, but our staining appears stronger with less background. We use an adaptation of the Finney-Ruvkin protocol, which includes MeOH in the primary fixation with PFA, and overcomes the cuticle barrier with some LN2 cracking, DTT, then H2O2. No collagenase. If you haven't tested it already it might be worth comparing the next time you have a need for immunostaining.

      We appreciate this suggestion. Our staining protocol uses paraformaldehyde fixation. We observed consistent and clear staining in only 4 neurons in CHE-1::ALFA animals but more background signals from TTX-1::ALFA in Figure 2I-J in that could benefit from improved immunostaining protocol.

      (4) Page 6: 'By crossing the che-1 reporter transgene into a che-1 mutant background (see below), we also found that che-1 autoregulates its own expression (Figure 2F), as it does in C. elegans' - it took me some effort to understand this. It might make it easier for future readers if this is explained more clearly.

      We understand this confusion and have changed the wording along with a supporting table with a more detailed account of che-1p::RFP expression in both ASE and AFD neurons in wildtype and che-1(-) backgrounds in the Results.

      (5) Line numbers would make it easier for reviewers to reference the text.

      We have added line numbers.

      (6) Page 7: is 250mM NH<sub>4</sub>Cl an ecologically relevant concentration? When does off-target/nonspecific activation of odorant receptors become an issue? Some discussion of this could help readers assess the relevance of the salt concentrations used.

      This is a great question but one that is difficult to reconcile between experimental conditions that often use 2.5M salt as point-source to establish salt gradients versus ecologically relevant concentrations that are very heterogenous in salinity. Efforts to show C. elegans can tolerate similar levels of salinity between 0.20-0.30 M without adverse effects have been recorded previously (Hu et al., Analytica Chimica Acta 2015; Mah et al. Expedition 2017).

      (7) It would be nice for readers to have a short orientation to the ecological relevance of the different salts - e.g. why Pristionchus has a particular taste for ammonium salts.

      Pristionchus species are entomophilic and most frequently found to be associated with beetles in a necromenic manner. Insect cadavers could thus represent sources of ammonium in the soil. Additionally, ammonium salts could represent a biological signature of other nematodes that the predatory morphs of P. pacificus could interpret as prey. We have added the possible ecological relevance of ammonium salts into the Discussion.

      (8) Page 11: 'multiple P. pacificus che-1p::GCaMP strains did not exhibit sufficient basal fluorescence to allow for image tracking and direct comparison'. 500ms exposure to get enough signal from RCaMP is slow, but based on the figures it still seems enough to capture things. If image tracking was the issue, then using GCaMP6s with SL2-RFP or similar in conjunction with a beam splitter enables tracking when the GCaMP signal is low. Might be an option for the future.

      These are very helpful suggestions and we hope to eventually develop an improved che1p::GCaMP strain for future studies.

      (9) Sometimes C. elegans genes are referred to as 'C. elegans [gene name]' and sometimes 'Cel [gene name]'. Should be consistent. Same with Pristionchus.

      We have now combed through and corrected the inconsistencies in nomenclature.

      (10) Pg 12 - '...supports the likelihood that AFD receives inputs, possibly neuropeptidergic, from other amphid neurons' - the neuropeptidergic part could do with some justification.

      Because the AFD neurons are not exposed directly to the environment through the amphid channel like the ASE and other amphid neurons, the calcium responses to salts detected in the AFD likely originate from sensory neurons connected to the AFD. However, because there is no synaptic connection from other amphid neurons to the AFD neurons in P. pacificus (unlike in C. elegans; Hong et al, eLife, 2019), it is likely that neuropeptides connect other sensory neurons to the AFDs. To avoid unnecessary confusion, we have removed “possibly neuropeptidergic.”

      (11) Pg16: the link to the Hallam lab codon adaptor has a space in the middle. Also, the paper should be cited along with the web address (Bryant and Hallam, 2021).

      We have now added the proper link, plus in-text citation. https://hallemlab.shinyapps.io/Wild_Worm_Codon_Adapter/ (Bryant and Hallem, 2021)

      Full citation:

      Astra S Bryant, Elissa A Hallem, The Wild Worm Codon Adapter: a web tool for automated codon adaptation of transgenes for expression in non-Caenorhabditis nematodes, G3 Genes|Genomes|Genetics, Volume 11, Issue 7, July 2021, jkab146, https://doi.org/10.1093/g3journal/jkab146

      Reviewer #2 (Recommendations for the authors):

      (1) In Figure 1, the legend states that the population tested was "J4/L4 larvae and young adult hermaphrodites," whereas in the main text, the population was described as "adult hermaphrodites." Please clarify which ages were tested.

      We have tested J4-Adult stage hermaphrodites and have made the appropriate corrections in the text.

      (2) The authors state that "in contrast to C. elegans, we find that P. pacificus is only moderately and weakly attracted to NaCl and LiCl, respectively." However, this statement does not reflect the data shown in Figure 1, where there is no significant difference between C. elegans and P. pacificus - both species show at most weak attraction to NaCl.

      Although there is no statistically significant difference in NaCl attraction between P. pacificus and C. elegans, NaCl attraction in P. pacificus is significantly lower than its attraction to all 3 ammonium salts when compared to C. elegans. We have rephrased this statement as relative differences in the Results and updated the Figure legend.

      (3) In Figure 1, the comparisons between C. elegans and P. pacificus should be made using a two-way ANOVA rather than multiple t-tests. Also, the sample sizes should be stated (so the reader does not need to count the circles) and the error bars should be defined.

      We performed the 2-way ANOVA to detect differences between C. elegans and P. pacificus for the same salt and between salts within each species. We also indicated the sample size on the figure and defined the error bars.

      Significance:

      For comparisons of different salt responses within the same species:

      - For C. elegans, NH<sub>4</sub>Br vs NH<sub>4</sub>Cl (**p<0.01), NH<sub>4</sub>Cl vs NH<sub>4</sub>I (* p<0.05), and NH<sub>4</sub>Cl vs NaCl (* p<0.05). All other comparisons are not significant.

      - For P. pacificus, all salts showed (****p<0.0001) when compared to NaAc and to NH<sub>4</sub>Ac, except for NH<sub>4</sub>Ac and NaAc compared to each other (ns). Also, NH<sub>4</sub>Cl showed (*p<0.05) and NH<sub>4</sub>I showed (***p<0.001) when compared with LiCl and NaCl. All other comparisons are not significant.

      For comparisons of salt responses between different species (N2 vs PS312):

      - NH<sub>4</sub>I and LiCl (*p<0.05); NaAc and NH<sub>4</sub>Ac (****p<0.0001)

      (4) It might be worth doing a power analysis on the data in Figure 3B. If the data are underpowered, this might explain why there is a difference in NH<sub>4</sub>Br response with one of the null mutants but not the other.

      For responses to NH<sub>4</sub>Cl, since both che-1 mutants (rather than just one) showed significant difference compared to wildtype, we conducted a power analysis based on the effect size of that difference (~1.2; large). Given this effect size, the sample size for future experiments should be 12 (ANOVA).

      For responses to NH<sub>4</sub>Br and given the effect size of the difference seen between wildtype (PS312) and ot5012 (~0.8; large), the sample size for future experiments should be 18 (ANOVA) for a power value of 0.8. Therefore, it is possible that the sample size of 12 for the current experiment was too small to detect a possible difference between the ot5013 alleles and wildtype.

      (5) It would be helpful to discuss why silencing Ppa-ASE might result in a switch from attractive to repulsive responses to some of the tested gustatory cues.

      For similar assays using Ppa-odr-3p::HisCl1, increasing histamine concentration led to decreasing C.I. for a given odorant (myristate, a P. pacificus-specific attractant). It is likely that the amount of histamine treatment for knockdown to zero (i.e. without a valence change) will differ depending on the attractant.

      (6) The statistical tests used in Figure 3 are not stated.

      Figure 3 used Two-way ANOVA with Dunnett’s post hoc test. We have now added the test in the figure legend.

      (7) It would be helpful to examine the responses of ASER to the full salt panel in the Ppa-gcy-22.3 vs. wild-type backgrounds.

      We understand that future experiments examining neuron responses to the full salt panel for wildtype and gcy-22.3 mutants would provide further information about the salts and specific ions associated with the GCY-22.3 receptor. However, we have tested a broader range of salts (although not yet the full panel) for behavioral assays in wildtype vs gcy-22.3 mutants, which we have included as part of an added Figure 8.

      (8) The controls shown in Figure S1 may not be adequate. Ideally, the same sample size would be used for the control, allowing differences between control worms and experimental worms to be quantified.

      Although we had not conducted an equal number of negative controls using green light without salt stimuli due to resource constraints (6 control vs ~10-19 test), we provided individual recordings with stimuli to show that conditions we interpreted as having responses rarely showed responses resembling the negative controls. Similarly, those we interpreted as having no responses to stimuli mostly resembled the no-stimuli controls (e.g. WT to 25 mM NH<sub>4</sub>Cl, gcy22.3 mutant to 250 mM NH<sub>4</sub>Cl).

      (9) An osmolarity control would be helpful for the calcium imaging experiments.

      We acknowledge that future calcium imaging experiments featuring different salt concentrations could benefit from osmolarity controls.

      (10) In Figure S7, more information about the microfluidic chip design is needed.

      The chip design features a U-shaped worm trap to facilitate loading the worm head-first, with a tapered opening to ensure the worm fits snugly and will not slide too far forward during recording. The outer two chip channels hold buffer solution and can be switched open (ON) or closed (OFF) by the Valvebank. The inner two chip channels hold experimental solutions. The inner channel closer to the worm trap holds the control solution, and the inner channel farther from the worm trap holds the stimulant solution.

      We have added an image of the chip in Figure S7 and further description in the legend.

      (11) Throughout the manuscript, the discussion of the salt stimuli focuses on the salts more than the ions. More discussion of which ions are eliciting responses (both behavioral and neuronal responses) would be helpful.

      In Figure 7, the gcy-22.3 defect resulted in a statistically significant reduction in response only towards NH<sub>4</sub>Cl but not towards NaCl, which suggests ASER is the primary neuron detecting NH<sub>4</sub><sup>+</sup> ions. To extend the description of the gcy-22.3 mutant defects to other ions, we have added a Figure 8: chemotaxis on various salt backgrounds. We found only a mild increase in attraction towards NH<sub>4</sub><sup>+</sup> by both gcy-22.3 mutant alleles, but wild-type in their responses toward Cl<sup>-</sup>, Na<sup>+</sup>, or I<sup>-</sup>. The switch in the direction of change between the behavioral (enhanced) and calcium imaging result (reduced) suggests the behavioral response to ammonium ions likely involves additional receptors and neurons.

      Minor comments:

      (1) The full species name of "C. elegans" should be written out upon first use.

      We have added ‘Caenorhabditis elegans’ to its first mention.

      (2) In the legend of Figure 1, "N2" should not be in italics.

      We have made the correction.

      (3) The "che-1" gene should be in lowercase, even when it is at the start of the sentence.

      We have made the correction.

      (4) Throughout the manuscript, "HisCl" should be "HisCl1."

      We have made these corrections to ‘HisCl1’.

      (5) Figure 3A would benefit from more context, such as the format seen in Figure 7A. It would also help to have more information in the legend (e.g., blue boxes are exons, etc.).

      (6) "Since NH<sub>4</sub>I sensation is affected by silencing of che-1(+) neurons but is unaffected in che-1 mutants, ASE differentiation may be more greatly impacted by the silencing of ASE than by the loss of che-1": I don't think this is exactly what the authors mean. I would say, "ASE function may be more greatly impacted...".

      We have changed ‘differentiation’ to ‘function’ in this passage.

      (7) In Figure 7F-G, the AFD neurons are referred to as AFD in the figure title but AM12 in the graph. This is confusing.

      Thank you for noticing this oversight. We have corrected “AM12” to “AFD”.

      (8) In Figure 7, the legend suggests that comparisons within the same genotype were analyzed. I do not see these comparisons in the figure. In which cases were comparisons within the same genotype made?

      Correct, we performed additional tests between ON and OFF states within the same genotypes (WT and mutant) but did not find significant differences. To avoid unnecessary confusion, we have removed this sentence.

      (9) The nomenclature used for the transgenic animals is unconventional. For example, normally the calcium imaging line would be listed as csuEx93[Ppa-che-1p::optRCaMP] instead of Ppache-1p::optRCaMP(csuEx93).

      We have made these corrections to the nomenclature.

      (10) Figure S6 appears to come out of order. Also, it would be nice to have more of a legend for this figure. The format of the figure could also be improved for clarity.

      We have corrected Figure S6 (now S8) and added more information to the legend.

      (11) Methods section, Chemotaxis assays: "Most assays lasted ~3.5 hours at room temperature in line with the speed of P. pacificus without food..." It's not clear what this means. Does it take the worms 3.5 hours to crawl across the surface of the plate?

      Correct, P. pacificus requires 3-4 hours to crawl across the surface of the plate, which is the standard time for chemotaxis assays for some odors and all salts. We have added this clarification to the Methods.

    1. 3:43 wir haben jetzt den Beginn der Massenarbeitlosigkeit, und das war in jeder einzelnen Revolution immer die allerwichtigste Komponente, weil wenn die Leute nichts mehr zu essen haben und sich auch nicht mehr ihr Netflix Abo leisten können, dann gehen sie auf die Straße. diese Rekordsarbeitslosigkeit, das wird das Todesurteil der neuen Regierung sein, und ab jetzt geht es Berg ab, vor allem es ist ja auch kein Ende in Sicht, jeden Tag haben wir neue Schocknachrichten.

      7:29 und deswegen könnte man jetzt sagen, naja die werden schon nicht auf die Straße gehen, die bekommen ja schließlich Bürgergeld und Sozialhilfe, aber nichts da, wie vorher gesagt implodiert jetzt ja gerade alles gleichzeitig, also auch der ganze Staatshaushalt, weil immer mehr Arbeitslose bedeutet auch weniger Steuereinnahmen und immer mehr Sozialkosten, und mit der Geschwindigkeit wie es gerade ansteigt ist das irgendwann nicht mehr zu bezahlen. und wenn unsere "Goldstücke" dann irgendwann kein Geld mehr bekommen dann geht's richtig Ramba Zamba.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Comments

      Reviewer 1

      (1) Despite the well-established role of Netrin-1 and UNC5C axon guidance during embryonic commissural axons, it remains unclear which cell type(s) express Netrin-1 or UNC5C in the dopaminergic axons and their targets. For instance, the data in Figure 1F-G and Figure 2 are quite confusing. Does Netrin-1 or UNC5C express in all cell types or only dopamine-positive neurons in these two mouse models? It will also be important to provide quantitative assessments of UNC5C expression in dopaminergic axons at different ages.

      Netrin-1 is a secreted protein and in this manuscript we did not examine what cell types express Netrin-1. This question is not the focus of the study and we consider it irrelevant to the main issue we are addressing, which is where in the forebrain regions we examined Netrin-1+ cells are present. As per the reviewer’s request we include below images showing Netrin-1 protein and Netrin-1 mRNA expression in the forebrain. In Figure 1 below, we show a high magnification immunofluorescent image of a coronal forebrain section showing Netrin-1 protein expression.

      Author response image 1.

      This confocal microscope image shows immunofluorescent staining for Netrin-1 (green) localized around cell nuclei (stained by DAPI in blue). This image was taken from a coronal section of the lateral septum of an adult male mouse. Scale bar = 20µm

      In Figures 2 and 3 below we show low and high magnification images from an RNAscope experiment confirming that cells in the forebrain regions examined express Netrin-1 mRNA.

      Author response image 2.

      This confocal microscope image of a coronal brain section of the medial prefrontal cortex of an adult male mouse shows Netrin-1 mRNA expression (green) and cell nuclei (DAPI, blue). Brain regions are as follows: Cg1: Anterior cingulate cortex 1, DP: dorsopeduncular cortex, fmi: forceps minor of the corpus callosum, IL: Infralimbic Cortex, PrL: Prelimbic Cortex

      Author response image 3.

      A higher resolution image from the same sample as in Figure 2 shows Netrin-1 mRNA (green) and cell nuclei (DAPI; blue). DP = dorsopeduncular cortex

      Regarding UNC5c, this receptor homologue is expressed by dopamine neurons in the rodent ventral tegmental area (Daubaras et al., 2014; Manitt et al., 2010; Phillips et al., 2022). This does not preclude UNC5c expression in other cell types. UNC5c receptors are ubiquitously expressed in the brain throughout development, performing many different developmental functions (Kim and Ackerman, 2011; Murcia-Belmonte et al., 2019; Srivatsa et al., 2014). In this study we are interested in UNC5c expression by dopamine neurons, and particularly by their axons projecting to the nucleus accumbens. We therefore used immunofluorescent staining in the nucleus accumbens, showing UNC5 expression in TH+ axons. This work adds to the study by Manitt et al., 2010, which examined UNC5 expression in the VTA. Manitt et al. used Western blotting to demonstrate that UNC5 expression in VTA dopamine neurons increases during adolescence, as can be seen in the following figure:

      References:

      Daubaras M, Bo GD, Flores C. 2014. Target-dependent expression of the netrin-1 receptor, UNC5C, in projection neurons of the ventral tegmental area. Neuroscience 260:36–46. doi:10.1016/j.neuroscience.2013.12.007

      Kim D, Ackerman SL. 2011. The UNC5C Netrin Receptor Regulates Dorsal Guidance of Mouse Hindbrain Axons. J Neurosci 31:2167–2179. doi:10.1523/jneurosci.5254-10.20110.2011

      Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C. 2010. Peri-Pubertal Emergence of UNC-5 Homologue Expression by Dopamine Neurons in Rodents. PLoS ONE 5:e11463-14. doi:10.1371/journal.pone.0011463

      Murcia-Belmonte V, Coca Y, Vegar C, Negueruela S, Romero C de J, Valiño AJ, Sala S, DaSilva R, Kania A, Borrell V, Martinez LM, Erskine L, Herrera E. 2019. A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Current Biology 29:1149-1160.e4. doi:10.1016/j.cub.2019.02.052

      Phillips RA, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, Day JJ. 2022. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Reports 39:110616. doi:10.1016/j.celrep.2022.110616

      Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo A-L, Ackerman SL, Richards LJ, Tarabykin V. 2014. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun 5:3708. doi:10.1038/ncomms4708

      (2) Figure 1 used shRNA to knockdown Netrin-1 in the Septum and these mice were subjected to behavioral testing. These results, again, are not supported by any valid data that the knockdown approach actually worked in dopaminergic axons. It is also unclear whether knocking down Netrin-1 in the septum will re-route dopaminergic axons or lead to cell death in the dopaminergic neurons in the substantia nigra pars compacta?

      First we want to clarify and emphasize, that our knockdown approach was not designed to knock down Netrin-1 in dopamine neurons or their axons. Our goal was to knock down Netrin-1 expression in cells expressing this guidance cue gene in the dorsal peduncular cortex.

      We have previously established the efficacy of the shRNA Netrin-1 knockdown virus used in this experiment for reducing the expression of Netrin-1 (Cuesta et al., 2020). The shRNA reduces Netrin-1 levels in vitro and in vivo.

      We agree that our experiments do not address the fate of the dopamine axons that are misrouted away from the medial prefrontal cortex. This research is ongoing, and we have now added a note regarding this to our manuscript.

      Our current hypothesis, based on experiments being conducted as part of another line of research in the lab, is that these axons are rerouted to a different brain region which they then ectopically innervate. In these experiments we are finding that male mice exposed to tetrahydrocannabinol in adolescence show reduced dopamine innervation in the medial prefrontal cortex in adulthood but increased dopamine input in the orbitofrontal cortex. In addition, these mice show increased action impulsivity in the Go/No-Go task in adulthood (Capolicchio et al., Society for Neuroscience 2023 Abstracts)

      References:

      Capolicchio T., Hernandez, G., Dube, E., Estrada, K., Giroux, M., Flores, C. (2023) Divergent outcomes of delta 9 - tetrahydrocannabinol in adolescence on dopamine and cognitive development in male and female mice. Society for Neuroscience, Washington, DC, United States [abstract].

      Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. 2020. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers Cell Dev Biology 8:487. doi:10.3389/fcell.2020.00487

      (3) Another issue with Figure1J. It is unclear whether the viruses were injected into a WT mouse model or into a Cre-mouse model driven by a promoter specifically expresses in dorsal peduncular cortex? The authors should provide evidence that Netrin-1 mRNA and proteins are indeed significantly reduced. The authors should address the anatomic results of the area of virus diffusion to confirm the virus specifically infected the cells in dorsal peduncular cortex.

      All the virus knockdown experiments were conducted in wild type mice, we added this information to Figure 1k.

      The efficacy of the shRNA in knocking down Netrin-1 was demonstrated by Cuesta et al. (2020) both in vitro and in vivo, as we show in our response to the reviewer’s previous comment above.

      We also now provide anatomical images demonstrating the localization of the injection and area of virus diffusion in the mouse forebrain. In Author response image 4 below the area of virus diffusion is visible as green fluorescent signal.

      Author response image 4.

      Fluorescent microscopy image of a mouse forebrain demonstrating the localization of the injection of a virus to knock down Netrin-1. The location of the virus is in green, while cell nuclei are in blue (DAPI). Abbreviations: DP: dorsopeduncular cortex IL: infralimbic cortex

      References:

      Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. 2020. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers Cell Dev Biology 8:487. doi:10.3389/fcell.2020.00487

      (4) The authors need to provide information regarding the efficiency and duration of knocking down. For instance, in Figure 1K, the mice were tested after 53 days post injection, can the virus activity in the brain last for such a long time?

      In our study we are interested in the role of Netrin-1 expression in the guidance of dopamine axons from the nucleus accumbens to the medial prefrontal cortex. The critical window for these axons leaving the nucleus accumbens and growing to the cortex is early adolescence (Reynolds et al., 2018b). This is why we injected the virus at the onset of adolescence, at postnatal day 21. As dopamine axons grow from the nucleus accumbens to the prefrontal cortex, they pass through the dorsal peduncular cortex. We disrupted Netrin-1 expression at this point along their route to determine whether it is the Netrin-1 present along their route that guides these axons to the prefrontal cortex. We hypothesized that the shRNA Netrin-1 virus would disrupt the growth of the dopamine axons, reducing the number of axons that reach the prefrontal cortex and therefore the number of axons that innervate this region in adulthood.

      We conducted our behavioural tests during adulthood, after the critical window during which dopamine axon growth occurs, so as to observe the enduring behavioral consequences of this misrouting. This experimental approach is designed for the shRNa Netrin-1 virus to be expressed in cells in the dorsopeduncular cortex when the dopamine axons are growing, during adolescence.

      References:

      Capolicchio T., Hernandez, G., Dube, E., Estrada, K., Giroux, M., Flores, C. (2023) Divergent outcomes of delta 9 - tetrahydrocannabinol in adolescence on dopamine and cognitive development in male and female mice. Society for Neuroscience, Washington, DC, United States [abstract].

      Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette M-P, Arvanitogiannis A, Flores C. 2018b. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral cortex 29:3676–3686. doi:10.1093/cercor/bhy247

      (5) In Figure 1N-Q, silencing Netrin-1 results in less DA axons targeting to infralimbic cortex, but why the Netrin-1 knocking down mice revealed the improved behavior?

      This is indeed an intriguing finding, and we have now added a mention of it to our manuscript. We have demonstrated that misrouting dopamine axons away from the medial prefrontal cortex during adolescence alters behaviour, but why this improves their action impulsivity ability is something currently unknown to us. One potential answer is that the dopamine axons are misrouted to a different brain region that is also involved in controlling impulsive behaviour, perhaps the dorsal striatum (Kim and Im, 2019) or the orbital prefrontal cortex (Jonker et al., 2015).

      We would also like to note that we are finding that other manipulations that appear to reroute dopamine axons to unintended targets can lead to reduced action impulsivity as measured using the Go No Go task. As we mentioned above, current experiments in the lab, which are part of a different line of research, are showing that male mice exposed to tetrahydrocannabinol in adolescence show reduced dopamine innervation in the medial prefrontal cortex in adulthood, but increased dopamine input in the orbitofrontal cortex. In addition, these mice show increased action impulsivity in the Go/No-Go task in adulthood (Capolicchio et al., Society for Neuroscience 2023 Abstracts)

      References

      Capolicchio T., Hernandez, G., Dube, E., Estrada, K., Giroux, M., Flores, C. (2023) Divergent outcomes of delta 9 - tetrahydrocannabinol in adolescence on dopamine and cognitive development in male and female mice. Society for Neuroscience, Washington, DC, United States [abstract].

      Jonker FA, Jonker C, Scheltens P, Scherder EJA. 2015. The role of the orbitofrontal cortex in cognition and behavior. Rev Neurosci 26:1–11. doi:10.1515/revneuro2014-0043 Kim B, Im H. 2019. The role of the dorsal striatum in choice impulsivity. Ann N York Acad Sci 1451:92–111. doi:10.1111/nyas.13961

      (6) What is the effect of knocking down UNC5C on dopamine axons guidance to the cortex?

      We have found that mice that are heterozygous for a nonsense Unc5c mutation, and as a result have reduced levels of UNC5c protein, show reduced amphetamine-induced locomotion and stereotypy (Auger et al., 2013). In the same manuscript we show that this effect only emerges during adolescence, in concert with the growth of dopamine axons to the prefrontal cortex. This is indirect but strong evidence that UNC5c receptors are necessary for correct adolescent dopamine axon development.

      References

      Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. 2013. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. European Journal of Neuroscience 38:2853–2863. doi:10.1111/ejn.12270

      (7) In Figures 2-4, the authors only showed the amount of DA axons and UNC5C in NAcc. However, it remains unclear whether these experiments also impact the projections of dopaminergic axons to other brain regions, critical for the behavioral phenotypes. What about other brain regions such as prefrontal cortex? Do the projection of DA axons and UNC5c level in cortex have similar pattern to those in NAcc?

      UNC5c receptors are expressed throughout development and are involved in many developmental processes (Kim and Ackerman, 2011; Murcia-Belmonte et al., 2019; Srivatsa et al., 2014). We cannot say whether the pattern we observe here is unique to the nucleus accumbens, but it is certainly not universal throughout the brain.

      The brain region we focus on in our manuscript, in addition to the nucleus accumbens, is the medial prefrontal cortex. Close and thorough examination of the prefrontal cortices of adult mice revealed practically no UNC5c expression by dopamine axons. However, we did observe very rare cases of dopamine axons expressing UNC5c. It is not clear whether these rare cases are present before or during adolescence.

      Below is a representative set of images of this observation, which is now also included as Supplementary Figure 4:

      Author response image 5.

      Expression of UNC5c protein in the medial prefrontal cortex of an adult male mouse. Low (A) and high (B) magnification images demonstrate that there is little UNC5c expression in dopamine axons in the medial prefrontal cortex. Here we identify dopamine axons by immunofluorescent staining for tyrosine hydroxylase (TH, see our response to comment #9 regarding the specificity of the TH antibody for dopamine axons in the prefrontal cortex). This figure is also included as Supplementary Figure 4 in the manuscript. Abbreviations: fmi: forceps minor of the corpus callosum, mPFC: medial prefrontal cortex.

      References:

      Kim D, Ackerman SL. 2011. The UNC5C Netrin Receptor Regulates Dorsal Guidance of Mouse Hindbrain Axons. J Neurosci 31:2167–2179. doi:10.1523/jneurosci.5254- 10.20110.2011

      Murcia-Belmonte V, Coca Y, Vegar C, Negueruela S, Romero C de J, Valiño AJ, Sala S, DaSilva R, Kania A, Borrell V, Martinez LM, Erskine L, Herrera E. 2019. A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Current Biology 29:1149-1160.e4. doi:10.1016/j.cub.2019.02.052

      Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo A-L, Ackerman SL, Richards LJ, Tarabykin V. 2014. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun 5:3708. doi:10.1038/ncomms4708

      (8) Can overexpression of UNC5c or Netrin-1 in male winter hamsters mimic the observations in summer hamsters? Or overexpression of UNC5c in female summer hamsters to mimic the winter hamster? This would be helpful to confirm the causal role of UNC5C in guiding DA axons during adolescence.

      This is an excellent question. We are very interested in both increasing and decreasing UNC5c expression in hamster dopamine axons to see if we can directly manipulate summer hamsters into winter hamsters and vice versa. We are currently exploring virus-based approaches to design these experiments and are excited for results in this area.

      (9) The entire study relied on using tyrosine hydroxylase (TH) as a marker for dopaminergic axons. However, the expression of TH (either by IHC or IF) can be influenced by other environmental factors, that could alter the expression of TH at the cellular level.

      This is an excellent point that we now carefully address in our methods by adding the following:

      In this study we pay great attention to the morphology and localization of the fibres from which we quantify varicosities to avoid counting any fibres stained with TH antibodies that are not dopamine fibres. The fibres that we examine and that are labelled by the TH antibody show features indistinguishable from the classic features of cortical dopamine axons in rodents (Berger et al., 1974; 1983; Van Eden et al., 1987; Manitt et al., 2011), namely they are thin fibres with irregularly-spaced varicosities, are densely packed in the nucleus accumbens, sparsely present only in the deep layers of the prefrontal cortex, and are not regularly oriented in relation to the pial surface. This is in contrast to rodent norepinephrine fibres, which are smooth or beaded in appearance, relatively thick with regularly spaced varicosities, increase in density towards the shallow cortical layers, and are in large part oriented either parallel or perpendicular to the pial surface (Berger et al., 1974; Levitt and Moore, 1979; Berger et al., 1983; Miner et al., 2003). Furthermore, previous studies in rodents have noted that only norepinephrine cell bodies are detectable using immunofluorescence for TH, not norepinephrine processes (Pickel et al., 1975; Verney et al., 1982; Miner et al., 2003), and we did not observe any norepinephrine-like fibres.

      Furthermore, we are not aware of any other processes in the forebrain that are known to be immunopositive for TH under any environmental conditions.

      To reduce confusion, we have replaced the abbreviation for dopamine – DA – with TH in the relevant panels in Figures 1, 2, 3, and 4 to clarify exactly what is represented in these images. As can be seen in these images, fluorescent green labelling is present only in axons, which is to be expected of dopamine labelling in these forebrain regions.

      References:

      Berger B, Tassin JP, Blanc G, Moyne MA, Thierry AM (1974) Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res 81:332–337.

      Berger B, Verney C, Gay M, Vigny A (1983) Immunocytochemical Characterization of the Dopaminergic and Noradrenergic Innervation of the Rat Neocortex During Early Ontogeny. In: Proceedings of the 9th Meeting of the International Neurobiology Society, pp 263–267 Progress in Brain Research. Elsevier.

      Levitt P, Moore RY (1979) Development of the noradrenergic innervation of neocortex. Brain Res 162:243–259.

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C (2011) The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394.

      Miner LH, Schroeter S, Blakely RD, Sesack SR (2003) Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J Comp Neurol 466:478–494.

      Pickel VM, Joh TH, Field PM, Becker CG, Reis DJ (1975) Cellular localization of tyrosine hydroxylase by immunohistochemistry. J Histochem Cytochem 23:1–12.

      Van Eden CG, Hoorneman EM, Buijs RM, Matthijssen MA, Geffard M, Uylings HBM (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neurosci 22:849–862.

      Verney C, Berger B, Adrien J, Vigny A, Gay M (1982) Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using anti-tyrosine hydroxylase antibodies. Dev Brain Res 5:41–52.

      (10) Are Netrin-1/UNC5C the only signal guiding dopamine axon during adolescence? Are there other neuronal circuits involved in this process?

      Our intention for this study was to examine the role of Netrin-1 and its receptor UNC5C specifically, but we do not suggest that they are the only molecules to play a role. The process of guiding growing dopamine axons during adolescence is likely complex and we expect other guidance mechanisms to also be involved. From our previous work we know that the Netrin-1 receptor DCC is critical in this process (Hoops and Flores, 2017; Reynolds et al., 2023). Several other molecules have been identified in Netrin-1/DCC signaling processes that control corpus callosum development and there is every possibility that the same or similar molecules may be important in guiding dopamine axons (Schlienger et al., 2023).

      References:

      Hoops D, Flores C. 2017. Making Dopamine Connections in Adolescence. Trends in Neurosciences 1–11. doi:10.1016/j.tins.2017.09.004

      Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau L-É, Kolb B, Day JJ, Flores C. 2023. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 14:4035. doi:10.1038/s41467-023-39665-1

      Schlienger S, Yam PT, Balekoglu N, Ducuing H, Michaud J-F, Makihara S, Kramer DK, Chen B, Fasano A, Berardelli A, Hamdan FF, Rouleau GA, Srour M, Charron F. 2023. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control. Sci Adv 9:eadd5501. doi:10.1126/sciadv.add5501

      (11) Finally, despite the authors' claim that the dopaminergic axon project is sensitive to the duration of daylight in the hamster, they never provided definitive evidence to support this hypothesis.

      By “definitive evidence” we think that the reviewer is requesting a single statistical model including measures from both the summer and winter groups. Such a model would provide a probability estimate of whether dopamine axon growth is sensitive to daylight duration. Therefore, we ran these models, one for male hamsters and one for female hamsters.

      In both sexes we find a significant effect of daylength on dopamine innervation, interacting with age. Male age by daylength interaction: F = 6.383, p = 0.00242. Female age by daylength interaction: F = 21.872, p = 1.97 x 10-9. The full statistical analysis is available as a supplement to this letter (Response_Letter_Stats_Details.docx).

      Reviewer 3

      (1) Fig 1 A and B don't appear to be the same section level.

      The reviewer is correct that Fig 1B is anterior to Fig 1A. We have changed Figure 1A to match the section level of Figure 1B.

      (2) Fig 1C. It is not clear that these axons are crossing from the shell of the NAC.

      We have added a dashed line to Figure 1C to highlight the boundary of the nucleus accumbens, which hopefully emphasizes that there are fibres crossing the boundary. We also include here an enlarged image of this panel:

      Author response image 6.

      An enlarged image of Figure1c in the manuscript. The nucleus accumbens (left of the dotted line) is densely packed with TH+ axons (in green). Some of these TH+ axons can be observed extending from the nucleus accumbens medially towards a region containing dorsally oriented TH+ fibres (white arrows).

      (3) Fig 1. Measuring width of the bundle is an odd way to measure DA axon numbers. First the width could be changing during adult for various reasons including change in brain size. Second, I wouldn't consider these axons in a traditional bundle. Third, could DA axon counts be provided, rather than these proxy measures.

      With regards to potential changes in brain size, we agree that this could have potentially explained the increased width of the dopamine axon pathway. That is why it was important for us to use stereology to measure the density of dopamine axons within the pathway. If the width increased but no new axons grew along the pathway, we would have seen a decrease in axon density from adolescence to adulthood. Instead, our results show that the density of axons remained constant.

      We agree with the reviewer that the dopamine axons do not form a traditional “bundle”. Therefore, throughout the manuscript we now avoid using the term bundle.

      Although we cannot count every single axon, an accurate estimate of this number can be obtained using stereology, an unbiassed method for efficiently quantifying large, irregularly distributed objects. We used stereology to count TH+ axons in an unbiased subset of the total area occupied by these axons. Unbiased stereology is the gold-standard technique for estimating populations of anatomical objects, such as axons, that are so numerous that it would be impractical or impossible to measure every single one. Here and elsewhere we generally provide results as densities and areas of occupancy (Reynolds et al., 2022). To avoid confusion, we now clarify that we are counting the width of the area that dopamine axons occupy (rather than the dopamine axon “bundle”).

      References:

      Reynolds LM, Pantoja-Urbán AH, MacGowan D, Manitt C, Nouel D, Flores C. 2022. Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods 31–63. doi:10.1007/978-1-0716-2799-0_2

      (4) TH in the cortex could also be of noradrenergic origin. This needs to be ruled out to score DA axons

      This is the same comment as Reviewer 1 #9. Please see our response below, which we have also added to our methods:

      In this study we pay great attention to the morphology and localization of the fibres from which we quantify varicosities to avoid counting any fibres stained with TH antibodies that are not dopamine fibres. The fibres that we examine and that are labelled by the TH antibody show features indistinguishable from the classic features of cortical dopamine axons in rodents (Berger et al., 1974; 1983; Van Eden et al., 1987; Manitt et al., 2011), namely they are thin fibres with irregularly-spaced varicosities, are densely packed in the nucleus accumbens, sparsely present only in the deep layers of the prefrontal cortex, and are not regularly oriented in relation to the pial surface. This is in contrast to rodent norepinephrine fibres, which are smooth or beaded in appearance, relatively thick with regularly spaced varicosities, increase in density towards the shallow cortical layers, and are in large part oriented either parallel or perpendicular to the pial surface (Berger et al., 1974; Levitt and Moore, 1979; Berger et al., 1983; Miner et al., 2003). Furthermore, previous studies in rodents have noted that only norepinephrine cell bodies are detectable using immunofluorescence for TH, not norepinephrine processes (Pickel et al., 1975; Verney et al., 1982; Miner et al., 2003), and we did not observe any norepinephrine-like fibres.

      References:

      Berger B, Tassin JP, Blanc G, Moyne MA, Thierry AM (1974) Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res 81:332–337.

      Berger B, Verney C, Gay M, Vigny A (1983) Immunocytochemical Characterization of the Dopaminergic and Noradrenergic Innervation of the Rat Neocortex During Early Ontogeny. In: Proceedings of the 9th Meeting of the International Neurobiology Society, pp 263–267 Progress in Brain Research. Elsevier.

      Levitt P, Moore RY (1979) Development of the noradrenergic innervation of neocortex. Brain Res 162:243–259.

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C (2011) The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394.

      Miner LH, Schroeter S, Blakely RD, Sesack SR (2003) Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J Comp Neurol 466:478–494.

      Pickel VM, Joh TH, Field PM, Becker CG, Reis DJ (1975) Cellular localization of tyrosine hydroxylase by immunohistochemistry. J Histochem Cytochem 23:1–12.

      Van Eden CG, Hoorneman EM, Buijs RM, Matthijssen MA, Geffard M, Uylings HBM (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neurosci 22:849–862.

      Verney C, Berger B, Adrien J, Vigny A, Gay M (1982) Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using anti-tyrosine hydroxylase antibodies. Dev Brain Res 5:41–52.

      (5) Netrin staining should be provided with NeuN + DAPI; its not clear these are all cell bodies. An in situ of Netrin would help as well.

      A similar comment was raised by Reviewer 1 in point #1. Please see below the immunofluorescent and RNA scope images showing expression of Netrin-1 protein and mRNA in the forebrain.

      Author response image 7.

      This confocal microscope image shows immunofluorescent staining for Netrin-1 (green) localized around cell nuclei (stained by DAPI in blue). This image was taken from a coronal section of the lateral septum of an adult male mouse. Scale bar = 20µm

      Author response image 8.

      This confocal microscope image of a coronal brain section of the medial prefrontal cortex of an adult male mouse shows Netrin-1 mRNA expression (green) and cell nuclei (DAPI, blue). RNAscope was used to generate this image. Brain regions are as follows: Cg1: Anterior cingulate cortex 1, DP: dorsopeduncular cortex, IL: Infralimbic Cortex, PrL: Prelimbic Cortex, fmi: forceps minor of the corpus callosum

      Author response image 9.

      A higher resolution image from the same sample as in Figure 2 shows Netrin-1 mRNA (green) and cell nuclei (DAPI; blue). DP = dorsopeduncular cortex

      (6) The Netrin knockdown needs validation. How strong was the knockdown etc?

      This comment was also raised by Reviewer 1 #1.

      We have previously established the efficacy of the shRNA Netrin-1 knockdown virus used in this experiment for reducing the expression of Netrin-1 (Cuesta et al., 2020). The shRNA reduces Netrin-1 levels in vitro and in vivo.

      References:

      Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. 2020. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers Cell Dev Biology 8:487. doi:10.3389/fcell.2020.00487

      (7) If the conclusion that knocking down Netrin in cortex decreases DA innervation of the IL, how can that be reconciled with Netrin-Unc repulsion.

      This is an intriguing question and one that we are in the planning stages of addressing with new experiments.

      Although we do not have a mechanistic answered for how a repulsive receptor helps guide these axons, we would like to note that previous indirect evidence from a study by our group also suggests that reducing UNC5c signaling in dopamine axons in adolescence increases dopamine innervation to the prefrontal cortex (Auger et al, 2013).

      References

      Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. 2013. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. European Journal of Neuroscience 38:2853–2863. doi:10.1111/ejn.12270

      (8) The behavioral phenotype in Fig 1 is interesting, but its not clear if its related to DA axons/signaling. IN general, no evidence in this paper is provided for the role of DA in the adolescent behaviors described.

      We agree with the reviewer that the behaviours we describe in adult mice are complex and are likely to involve several neurotransmitter systems. However, there is ample evidence for the role of dopamine signaling in cognitive control behaviours (Bari and Robbins, 2013; Eagle et al., 2008; Ott et al., 2023) and our published work has shown that alterations in the growth of dopamine axons to the prefrontal cortex leads to changes in impulse control as measured via the Go/No-Go task in adulthood (Reynolds et al., 2023, 2018a; Vassilev et al., 2021).

      The other adolescent behaviour we examined was risk-like taking behaviour in male and female hamsters (Figures 4 and 5), as a means of characterizing maturation in this behavior over time. We decided not to use the Go/No-Go task because as far as we know, this has never been employed in Siberian Hamsters and it will be difficult to implement. Instead, we chose the light/dark box paradigm, which requires no training and is ideal for charting behavioural changes over short time periods. Indeed, risk-like taking behavior in rodents and in humans changes from adolescence to adulthood paralleling changes in prefrontal cortex development, including the gradual input of dopamine axons to this region.

      References:

      Bari A, Robbins TW. 2013. Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in neurobiology 108:44–79. doi:10.1016/j.pneurobio.2013.06.005

      Eagle DM, Bari A, Robbins TW. 2008. The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199:439–456. doi:10.1007/s00213-008-1127-6

      Ott T, Stein AM, Nieder A. 2023. Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons. Nat Commun 14:7537. doi:10.1038/s41467-023-43271-6

      Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau L-É, Kolb B, Day JJ, Flores C. 2023. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 14:4035. doi:10.1038/s41467-023-39665-1

      Reynolds LM, Pokinko M, Torres-Berrío A, Cuesta S, Lambert LC, Pellitero EDC, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C. 2018a. DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biological psychiatry 83:181–192. doi:10.1016/j.biopsych.2017.06.009

      Vassilev P, Pantoja-Urban AH, Giroux M, Nouel D, Hernandez G, Orsini T, Flores C. 2021. Unique effects of social defeat stress in adolescent male mice on the Netrin-1/DCC pathway, prefrontal cortex dopamine and cognition (Social stress in adolescent vs. adult male mice). Eneuro ENEURO.0045-21.2021. doi:10.1523/eneuro.0045-21.2021

      (9) Fig2 - boxes should be drawn on the NAc diagram to indicate sampled regions. Some quantification of Unc5c would be useful. Also, some validation of the Unc5c antibody would be nice.

      The images presented were taken medial to the anterior commissure and we have edited Figure 2 to show this. However, we did not notice any intra-accumbens variation, including between the core and the shell. Therefore, the images are representative of what was observed throughout the entire nucleus accumbens.

      To quantify UNC5c in the accumbens we conducted a Western blot experiment in male mice at different ages. A one-way ANOVA analyzing band intensity (relative to the 15-day-old average band intensity) as the response variable and age as the predictor variable showed a significant effect of age (F=5.615, p=0.01). Posthoc analysis revealed that 15-day-old mice have less UNC5c in the nucleus accumbens compared to 21- and 35-day-old mice.

      Author response image 10.

      The graph depicts the results of a Western blot experiment of UNC5c protein levels in the nucleus accumbens of male mice at postnatal days 15, 21 or 35 and reveals a significant increase in protein levels at the onset adolescence.

      Our methods for this Western blot were as follows: Samples were prepared as previously (Torres-Berrío et al., 2017). Briefly, mice were sacrificed by live decapitation and brains were flash frozen in heptane on dry ice for 10 seconds. Frozen brains were mounted in a cryomicrotome and two 500um sections were collected for the nucleus accumbens, corresponding to plates 14 and 18 of the Paxinos mouse brain atlas. Two tissue core samples were collected per section, one for each side of the brain, using a 15-gauge tissue corer (Fine surgical tools Cat no. NC9128328) and ejected in a microtube on dry ice. The tissue samples were homogenized in 100ul of standard radioimmunoprecipitation assay buffer using a handheld electric tissue homogenizer. The samples were clarified by centrifugation at 4C at a speed of 15000g for 30 minutes. Protein concentration was quantified using a bicinchoninic acid assay kit (Pierce BCA protein assay kit, Cat no.PI23225) and denatured with standard Laemmli buffer for 5 minutes at 70C. 10ug of protein per sample was loaded and run by SDS-PAGE gel electrophoresis in a Mini-PROTEAN system (Bio-Rad) on an 8% acrylamide gel by stacking for 30 minutes at 60V and resolving for 1.5 hours at 130V. The proteins were transferred to a nitrocellulose membrane for 1 hour at 100V in standard transfer buffer on ice. The membranes were blocked using 5% bovine serum albumin dissolved in tris-buffered saline with Tween 20 and probed with primary (UNC5c, Abcam Cat. no ab302924) and HRP-conjugated secondary antibodies for 1 hour. a-tubulin was probed and used as loading control. The probed membranes were resolved using SuperSignal West Pico PLUS chemiluminescent substrate (ThermoFisher Cat no.34579) in a ChemiDoc MP Imaging system (Bio-Rad). Band intensity was quantified using the ChemiDoc software and all ages were normalized to the P15 age group average.

      Validation of the UNC5c antibody was performed in the lab of Dr. Liu, from whom it was kindly provided. Briefly, in the validation study the authors showed that the anti-UNC5C antibody can detect endogenous UNC5C expression and the level of UNC5C is dramatically reduced after UNC5C knockdown. The antibody can also detect the tagged-UNC5C protein in several cell lines, which was confirmed by a tag antibody (Purohit et al., 2012; Shao et al., 2017).

      References:

      Purohit AA, Li W, Qu C, Dwyer T, Shao Q, Guan K-L, Liu G. 2012. Down Syndrome Cell Adhesion Molecule (DSCAM) Associates with Uncoordinated-5C (UNC5C) in Netrin-1mediated Growth Cone Collapse. The Journal of biological chemistry 287:27126–27138. doi:10.1074/jbc.m112.340174

      Shao Q, Yang T, Huang H, Alarmanazi F, Liu G. 2017. Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules Mediates Netrin-1 Repulsion. J Neurosci 37:5620–5633. doi:10.1523/jneurosci.2617-16.2017

      (10) "In adolescence, dopamine neurons begin to express the repulsive Netrin-1 receptor UNC5C, and reduction in UNC5C expression appears to cause growth of mesolimbic dopamine axons to the prefrontal cortex".....This is confusing. Figure 2 shows a developmental increase in UNc5c not a decrease. So when is the "reduction in Unc5c expression" occurring?

      We apologize for the mistake in this sentence. We have corrected the relevant passage in our manuscript as follows:

      In adolescence, dopamine neurons begin to express the repulsive Netrin-1 receptor UNC5C, particularly when mesolimbic and mesocortical dopamine projections segregate in the nucleus accumbens (Manitt et al., 2010; Reynolds et al., 2018a). In contrast, dopamine axons in the prefrontal cortex do not express UNC5c except in very rare cases (Supplementary Figure 4). In adult male mice with Unc5c haploinsufficiency, there appears to be ectopic growth of mesolimbic dopamine axons to the prefrontal cortex (Auger et al., 2013). This miswiring is associated with alterations in prefrontal cortex-dependent behaviours (Auger et al., 2013).

      References:

      Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. 2013. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. European Journal of Neuroscience 38:2853–2863. doi:10.1111/ejn.12270

      Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C. 2010. Peri-Pubertal Emergence of UNC-5 Homologue Expression by Dopamine Neurons in Rodents. PLoS ONE 5:e11463-14. doi:10.1371/journal.pone.0011463

      Reynolds LM, Pokinko M, Torres-Berrío A, Cuesta S, Lambert LC, Pellitero EDC, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C. 2018a. DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biological psychiatry 83:181–192. doi:10.1016/j.biopsych.2017.06.009

      (11) In Fig 3, a statistical comparison should be made between summer male and winter male, to justify the conclusions that the winter males have delayed DA innervation.

      This analysis was also suggested by Reviewer 1, #11. Here is our response:

      We analyzed the summer and winter data together in ANOVAs separately for males and females. In both sexes we find a significant effect of daylength on dopamine innervation, interacting with age. Male age by daylength interaction: F = 6.383, p = 0.00242. Female age by daylength interaction: F = 21.872, p = 1.97 x 10-9. The full statistical analysis is available as a supplement to this letter (Response_Letter_Stats_Details.docx).

      (12) Should axon length also be measured here (Fig 3)? It is not clear why the authors have switched to varicosity density. Also, a box should be drawn in the NAC cartoon to indicate the region that was sampled.

      It is untenable to quantify axon length in the prefrontal cortex as we cannot distinguish independent axons. Rather, they are “tangled”; they twist and turn in a multitude of directions as they make contact with various dendrites. Furthermore, they branch extensively. It would therefore be impossible to accurately quantify the number of axons. Using unbiased stereology to quantify varicosities is a valid, well-characterized and straightforward alternative (Reynolds et al., 2022).

      References:

      Reynolds LM, Pantoja-Urbán AH, MacGowan D, Manitt C, Nouel D, Flores C. 2022. Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods 31–63. doi:10.1007/978-1-0716-2799-0_2

      (13) In Fig 3, Unc5c should be quantified to bolster the interesting finding that Unc5c expression dynamics are different between summer and winter hamsters. Unc5c mRNA experiments would also be important to see if similar changes are observed at the transcript level.

      We agree that it would be very interesting to see how UNC5c mRNA and protein levels change over time in summer and winter hamsters, both in males, as the reviewer suggests here, and in females. We are working on conducting these experiments in hamsters as part of a broader expansion of our research in this area. These experiments will require a lengthy amount of time and at this point we feel that they are beyond the scope of this manuscript.

      (14) Fig 4. The peak in exploratory behavior in winter females is counterintuitive and needs to be better discussed. IN general, the light dark behavior seems quite variable.

      This is indeed a very interesting finding, which we have expanded upon in our manuscript as follows:

      When raised under a winter-mimicking daylength, hamsters of either sex show a protracted peak in risk taking. In males, it is delayed beyond 80 days old, but the delay is substantially less in females. This is a counterintuitive finding considering that dopamine development in winter females appears to be accelerated. Our interpretation of this finding is that the timing of the risk-taking peak in females may reflect a balance between different adolescent developmental processes. The fact that dopamine axon growth is accelerated does not imply that all adolescent maturational processes are accelerated. Some may be delayed, for example those that induce axon pruning in the cortex. The timing of the risk-taking peak in winter female hamsters may therefore reflect the amalgamation of developmental processes that are advanced with those that are delayed – producing a behavioural effect that is timed somewhere in the middle. Disentangling the effects of different developmental processes on behaviour will require further experiments in hamsters, including the direct manipulation of dopamine activity in the nucleus accumbens and prefrontal cortex.

      Full Reference List

      Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. 2013. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. European Journal of Neuroscience 38:2853–2863. doi:10.1111/ejn.12270

      Bari A, Robbins TW. 2013. Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in neurobiology 108:44–79. doi:10.1016/j.pneurobio.2013.06.005

      Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. 2020. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers Cell Dev Biology 8:487. doi:10.3389/fcell.2020.00487

      Daubaras M, Bo GD, Flores C. 2014. Target-dependent expression of the netrin-1 receptor, UNC5C, in projection neurons of the ventral tegmental area. Neuroscience 260:36–46. doi:10.1016/j.neuroscience.2013.12.007

      Eagle DM, Bari A, Robbins TW. 2008. The neuropsychopharmacology of action inhibition: crossspecies translation of the stop-signal and go/no-go tasks. Psychopharmacology 199:439– 456. doi:10.1007/s00213-008-1127-6

      Hoops D, Flores C. 2017. Making Dopamine Connections in Adolescence. Trends in Neurosciences 1–11. doi:10.1016/j.tins.2017.09.004

      Jonker FA, Jonker C, Scheltens P, Scherder EJA. 2015. The role of the orbitofrontal cortex in cognition and behavior. Rev Neurosci 26:1–11. doi:10.1515/revneuro-2014-0043

      Kim B, Im H. 2019. The role of the dorsal striatum in choice impulsivity. Ann N York Acad Sci 1451:92–111. doi:10.1111/nyas.13961

      Kim D, Ackerman SL. 2011. The UNC5C Netrin Receptor Regulates Dorsal Guidance of Mouse Hindbrain Axons. J Neurosci 31:2167–2179. doi:10.1523/jneurosci.5254-10.2011

      Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C. 2010. Peri-Pubertal Emergence of UNC-5 Homologue Expression by Dopamine Neurons in Rodents. PLoS ONE 5:e11463-14. doi:10.1371/journal.pone.0011463

      Murcia-Belmonte V, Coca Y, Vegar C, Negueruela S, Romero C de J, Valiño AJ, Sala S, DaSilva R, Kania A, Borrell V, Martinez LM, Erskine L, Herrera E. 2019. A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Current Biology 29:1149-1160.e4. doi:10.1016/j.cub.2019.02.052

      Ott T, Stein AM, Nieder A. 2023. Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons. Nat Commun 14:7537. doi:10.1038/s41467-023-43271-6

      Phillips RA, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, Day JJ. 2022. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Reports 39:110616. doi:10.1016/j.celrep.2022.110616

      Purohit AA, Li W, Qu C, Dwyer T, Shao Q, Guan K-L, Liu G. 2012. Down Syndrome Cell Adhesion Molecule (DSCAM) Associates with Uncoordinated-5C (UNC5C) in Netrin-1-mediated Growth Cone Collapse. The Journal of biological chemistry 287:27126–27138. doi:10.1074/jbc.m112.340174

      Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau L-É, Kolb B, Day JJ, Flores C. 2023. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 14:4035. doi:10.1038/s41467-023-39665-1

      Reynolds LM, Pantoja-Urbán AH, MacGowan D, Manitt C, Nouel D, Flores C. 2022. Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods 31–63. doi:10.1007/978-1-0716-2799-0_2

      Reynolds LM, Pokinko M, Torres-Berrío A, Cuesta S, Lambert LC, Pellitero EDC, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C. 2018a. DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biological psychiatry 83:181–192. doi:10.1016/j.biopsych.2017.06.009

      Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette M-P, Arvanitogiannis A, Flores C. 2018b. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral cortex 29:3676–3686. doi:10.1093/cercor/bhy247

      Schlienger S, Yam PT, Balekoglu N, Ducuing H, Michaud J-F, Makihara S, Kramer DK, Chen B, Fasano A, Berardelli A, Hamdan FF, Rouleau GA, Srour M, Charron F. 2023. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control. Sci Adv 9:eadd5501. doi:10.1126/sciadv.add5501

      Shao Q, Yang T, Huang H, Alarmanazi F, Liu G. 2017. Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules Mediates Netrin-1 Repulsion. J Neurosci 37:5620–5633. doi:10.1523/jneurosci.2617-16.2017

      Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo A-L, Ackerman SL, Richards LJ, Tarabykin V. 2014. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun 5:3708. doi:10.1038/ncomms4708

      Torres-Berrío A, Lopez JP, Bagot RC, Nouel D, Dal-Bo G, Cuesta S, Zhu L, Manitt C, Eng C, Cooper HM, Storch K-F, Turecki G, Nestler EJ, Flores C. 2017. DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218. Biological psychiatry 81:306–315. doi:10.1016/j.biopsych.2016.08.017

      Vassilev P, Pantoja-Urban AH, Giroux M, Nouel D, Hernandez G, Orsini T, Flores C. 2021. Unique effects of social defeat stress in adolescent male mice on the Netrin-1/DCC pathway, prefrontal cortex dopamine and cognition (Social stress in adolescent vs. adult male mice). Eneuro ENEURO.0045-21.2021. doi:10.1523/eneuro.0045-21.2021

      Private Comments

      Reviewer #1

      (12) The language should be improved. Some expression is confusing (line178-179). Also some spelling errors (eg. Figure 1M).

      We have removed the word “Already” to make the sentence in lines 178-179 clearer, however we cannot find a spelling error in Figure 1M or its caption. We have further edited the manuscript for clarity and flow.

      Reviewer #2

      (1) The authors claim to have revealed how the 'timing of adolescence is programmed in the brain'. While their findings certainly shed light on molecular, circuit and behavioral processes that are unique to adolescence, their claim may be an overstatement. I suggest they refine this statement to discuss more specifically the processes they observed in the brain and animal behavior, rather than adolescence itself.

      We agree with the reviewer and have revised the manuscript to specify that we are referring to the timing of specific developmental processes that occur in the adolescent brain, not adolescence overall.

      (2) Along the same lines, the authors should also include a more substantiative discussion of how they selected their ages for investigation (for both mice and hamsters), For mice, their definition of adolescence (P21) is earlier than some (e.g. Spear L.P., Neurosci. and Beh. Reviews, 2000).

      There are certainly differences of opinion between researchers as to the precise definition of adolescence and the period it encompasses. Spear, 2000, provides one excellent discussion of the challenges related to identifying adolescence across species. This work gives specific ages only for rats, not mice (as we use here), and characterizes post-natal days 28-42 as being the conservative age range of “peak” adolescence (page 419, paragraph 1). Immediately thereafter the review states that the full adolescent period is longer than this, and it could encompass post-natal days 20-55 (page 419, paragraph 2).

      We have added the following statement to our methods:

      There is no universally accepted way to define the precise onset of adolescence. Therefore, there is no clear-cut boundary to define adolescent onset in rodents (Spear, 2000). Puberty can be more sharply defined, and puberty and adolescence overlap in time, but the terms are not interchangeable. Puberty is the onset of sexual maturation, while adolescence is a more diffuse period marked by the gradual transition from a juvenile state to independence. We, and others, suggest that adolescence in rodents spans from weaning (postnatal day 21) until adulthood, which we take to start on postnatal day 60 (Reynolds and Flores, 2021). We refer to “early adolescence” as the first two weeks postweaning (postnatal days 21-34). These ranges encompass discrete DA developmental periods (Kalsbeek et al., 1988; Manitt et al., 2011; Reynolds et al., 2018a), vulnerability to drug effects on DA circuitry (Hammerslag and Gulley, 2014; Reynolds et al., 2018a), and distinct behavioral characteristics (Adriani and Laviola, 2004; Makinodan et al., 2012; Schneider, 2013; Wheeler et al., 2013).

      References:

      Adriani W, Laviola G. 2004. Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 15:341–352. doi:10.1097/00008877-200409000-00005

      Hammerslag LR, Gulley JM. 2014. Age and sex differences in reward behavior in adolescent and adult rats. Dev Psychobiol 56:611–621. doi:10.1002/dev.21127

      Hoops D, Flores C. 2017. Making Dopamine Connections in Adolescence. Trends in Neurosciences 1–11. doi:10.1016/j.tins.2017.09.004

      Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HBM. 1988. Development of the Dopaminergic Innervation in the Prefrontal Cortex of the Rat. The Journal of Comparative Neurology 269:58–72. doi:10.1002/cne.902690105

      Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experiencedependent oligodendrocyte maturation and myelination. Science 337:1357–1360. doi:10.1126/science.1220845

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C. 2011. The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394. doi:10.1523/jneurosci.0606-11.2011

      Reynolds LM, Flores C. 2021. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuit 15:735625. doi:10.3389/fncir.2021.735625

      Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette MP, Arvanitogiannis A, Flores C. 2018. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral cortex 29:3676–3686. doi:10.1093/cercor/bhy247

      Schneider M. 2013. Adolescence as a vulnerable period to alter rodent behavior. Cell and tissue research 354:99–106. Doi:10.1007/s00441-013-1581-2

      Spear LP. 2000. Neurobehavioral Changes in Adolescence. Current directions in psychological science 9:111–114. doi:10.1111/1467-8721.00072

      Wheeler AL, Lerch JP, Chakravarty MM, Friedel M, Sled JG, Fletcher PJ, Josselyn SA, Frankland PW. 2013. Adolescent Cocaine Exposure Causes Enduring Macroscale Changes in Mouse Brain Structure. J Neurosci 33:1797–1803. doi:10.1523/jneurosci.3830-12.2013

      (3) Figure 1 - the conclusions hinge on the Netrin-1 staining, as shown in panel G, but the cells are difficult to see. It would be helpful to provide clearer, more zoomed images so readers can better assess the staining. Since Netrin-1 expression reduces dramatically after P4 and they had to use antigen retrieval to see signal, it would be helpful to show some images from additional brain regions and ages to see if expression levels follow predicted patterns. For instance, based on the allen brain atlas, it seems that around P21, there should be high levels of Netrin-1 in the cerebellum, but low levels in the cortex. These would be nice controls to demonstrate the specificity and sensitivity of the antibody in older tissue.

      We do not study the cerebellum and have never stained this region; doing so now would require generating additional tissue and we’re not sure it would add enough to the information provided to be worthwhile. Note that we have stained the forebrain for Netrin-1 previously, providing broad staining of many brain regions (Manitt et al., 2011)

      References:

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C. 2011. The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394. doi:10.1523/jneurosci.0606-11.2011

      (4) Figure 3 - Because mice tend to avoid brightly-lit spaces, the light/dark box is more commonly used as a measure of anxiety-like behavior than purely exploratory behavior (including in the paper they cited). It is important to address this possibility in their discussion of their findings. To bolster their conclusions about the coincidence of circuit and behavioral changes in adolescent hamsters, it would be useful to add an additional measure of exploratory behaviors (e.g. hole board).

      Regarding the light/dark box test, this is an excellent point. We prefer the term “risk taking” to “anxiety-like” and now use the former term in our manuscript. Furthermore, our interest in the behaviour is purely to chart the development of adolescent behaviour across our treatment groups, not to study a particular emotional state. Regardless of the specific emotion or emotions governing the light/dark box behaviour, it is an ideal test for charting adolescent shifts in behaviour as it is well-characterized in this respect, as we discuss in our manuscript.

      (5) Supplementary Figure 4,5 The authors defined puberty onset using uterine and testes weights in hamsters. While the weights appear to be different for summer and winter hamsters, there were no statistical comparison. Please add statistical analyses to bolster claims about puberty start times. Also, as many studies use vaginal opening to define puberty onset, it would be helpful to discuss how these measurements typically align and cite relevant literature that described use of uterine weights. Also, Supplementary Figures 4 and 5 were mis-cited as Supp. Fig. 2 in the text (e.g. line 317 and others).

      These are great suggestions. We have added statistical analyses to Supplementary Figures 5 and 6 and provided Vaginal Opening data as Supplementary Figure 7. The statistical analyses confirm that all three characters are delayed in winter hamsters compared to summer hamsters.

      We have also added the following references to the manuscript:

      Darrow JM, Davis FC, Elliott JA, Stetson MH, Turek FW, Menaker M. 1980. Influence of Photoperiod on Reproductive Development in the Golden Hamster. Biol Reprod 22:443–450. doi:10.1095/biolreprod22.3.443

      Ebling FJP. 1994. Photoperiodic Differences during Development in the Dwarf Hamsters Phodopus sungorus and Phodopus campbelli. Gen Comp Endocrinol 95:475–482. doi:10.1006/gcen.1994.1147

      Timonin ME, Place NJ, Wanderi E, Wynne-Edwards KE. 2006. Phodopus campbelli detect reduced photoperiod during development but, unlike Phodopus sungorus, retain functional reproductive physiology. Reproduction 132:661–670. doi:10.1530/rep.1.00019

      (6) The font in many figure panels is small and hard to read (e.g. 1A,D,E,H,I,L...). Please increase the size for legibility.

      We have increased the font size of our figure text throughout the manuscript.

      Reviewer #3

      (15) Fig 1 C,D. Clarify the units of the y axis

      We have now fixed this.

      Full Reference List

      Adriani W, Laviola G. 2004. Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 15:341–352. doi:10.1097/00008877-200409000-00005

      Hammerslag LR, Gulley JM. 2014. Age and sex differences in reward behavior in adolescent and adult rats. Dev Psychobiol 56:611–621. doi:10.1002/dev.21127

      Hoops D, Flores C. 2017. Making Dopamine Connections in Adolescence. Trends in Neurosciences 1–11. doi:10.1016/j.tins.2017.09.004

      Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HBM. 1988. Development of the Dopaminergic Innervation in the Prefrontal Cortex of the Rat. The Journal of Comparative Neurology 269:58–72. doi:10.1002/cne.902690105

      Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experiencedependent oligodendrocyte maturation and myelination. Science 337:1357–1360. doi:10.1126/science.1220845

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C. 2011. The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394. doi:10.1523/jneurosci.0606-11.2011

      Reynolds LM, Flores C. 2021. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuit 15:735625. doi:10.3389/fncir.2021.735625 Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette M-P, Arvanitogiannis A, Flores C. 2018. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral cortex 29:3676–3686. doi:10.1093/cercor/bhy247

      Schneider M. 2013. Adolescence as a vulnerable period to alter rodent behavior. Cell and tissue research 354:99–106. doi:10.1007/s00441-013-1581-2

      Spear LP. 2000. Neurobehavioral Changes in Adolescence. Current directions in psychological science 9:111–114. doi:10.1111/1467-8721.00072

      Wheeler AL, Lerch JP, Chakravarty MM, Friedel M, Sled JG, Fletcher PJ, Josselyn SA, Frankland PW. 2013. Adolescent Cocaine Exposure Causes Enduring Macroscale Changes in Mouse Brain Structure. J Neurosci 33:1797–1803. doi:10.1523/jneurosci.3830-12.2013

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study combines a range of advanced ultrastructural imaging approaches to define the unusual endosomal system of African trypanosomes. Compelling images show that instead of a distinct set of compartments, the endosome of these protists comprises a continuous system of membranes with functionally distinct subdomains as defined by canonical markers of early, late and recycling endosomes. The findings suggest that the endocytic system of bloodstream stages has evolved to facilitate the extraordinarily high rates of membrane turnover needed to remove immune complexes and survive in the blood, which is of interest to anyone studying infectious diseases.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Bloodstream stages of the parasitic protist, Trypanosoma brucei, exhibit very high rates of constitutive endocytosis, which is needed to recycle the surface coat of Variant Surface Glycoproteins (VSGs) and remove surface immune complexes. While many studies have shown that the endo-lysosomal systems of T. brucei BF stages contain canonical domains, as defined by classical Rab markers, it has remained unclear whether these protists have evolved additional adaptations/mechanisms for sustaining these very high rates of membrane transport and protein sorting. The authors have addressed this question by reconstructing the 3D ultrastructure and functional domains of the T. brucei BF endosome membrane system using advanced electron tomography and super-resolution microscopy approaches. Their studies reveal that, unusually, the BF endosome network comprises a continuous system of cisternae and tubules that contain overlapping functional subdomains. It is proposed that a continuous membrane system allows higher rates of protein cargo segregation, sorting and recycling than can otherwise occur when transport between compartments is mediated by membrane vesicles or other fusion events.

      Strengths:

      The study is a technical tour-de-force using a combination of electron tomography, super-resolution/expansion microscopy, immune-EM of cryo-sections to define the 3D structures and connectivity of different endocytic compartments. The images are very clear and generally support the central conclusion that functionally distinct endocytic domains occur within a dynamic and continuous endosome network in BF stages.

      Weaknesses:

      The authors suggest that this dynamic endocytic network may also fulfil many of the functions of the Golgi TGN and that the latter may be absent in these stages. Although plausible, this comment needs further experimental support. For example, have the authors attempted to localize canonical makers of the TGN (e.g. GRIP proteins) in T. brucei BF and/or shown that exocytic carriers bud directly from the endosomes?

      We agree with the criticism and have shortened the discussion accordingly and clearly marked it as speculation. However, we do not want to completely abandon our hypothesis.

      The paragraph now reads:

      Lines 740 – 751:

      “Interestingly, we did not find any structural evidence of vesicular retrograde transport to the Golgi. Instead, the endosomal ‘highways’ extended throughout the posterior volume of the trypanosomes approaching the trans-Golgi interface. It is highly plausible that this region represents the convergence point where endocytic and biosynthetic membrane trafficking pathways merge. A comparable merging of endocytic and biosynthetic functions has been described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019). As we could not find structural evidence for the existence of a TGN we tentatively propose that trypanosomes may have shifted the central orchestrating function of the TGN as a sorting hub at the crossroads of biosynthetic and recycling pathways to the endosome. Although this is a speculative scenario, it is experimentally testable.”

      Furthermore, we removed the lines 51 - 52, which included the suggestion of the TGN as a master regulator, from the abstract.

      Reviewer #2 (Public Review):

      The authors suggest that the African trypanosome endomembrane system has unusual organisation, in that the entire system is a single reticulated structure. It is not clear if this is thought to extend to the lysosome or MVB. There is also a suggestion that this unusual morphology serves as a trans-(post)Golgi network rather than the more canonical arrangement.

      The work is based around very high-quality light and electron microscopy, as well as utilising several marker proteins, Rab5A, 11 and 7. These are deemed as markers for early endosomes, recycling endosomes and late or pre-lysosomes. The images are mostly of high quality but some inconsistencies in the interpretation, appearance of structures and some rather sweeping assumptions make this less easy to accept. Two perhaps major issues are claims to label the entire endosomal apparatus with a single marker protein, which is hard to accept as certainly this reviewer does not really even know where the limits to the endosomal network reside and where these interface with other structures. There are several additional compartments that have been defined by Rob proteins as well, and which are not even mentioned. Overall I am unconvinced that the authors have demonstrated the main things they claim.<br /> The endomembrane system in bloodstream form T. brucei is clearly delimited. Compared to mammalian cells it is tidy and confined to the posterior part of the spindleshaped cell. The endoplasmic reticulum is linked to one side of the longitudinal cell axis, marked by the attached flagellum, while the mitochondrion locates to the opposite side. Glycosomes are easily identifiable as spheres, as are acidocalcisomes, which are smaller than glycosomes and – in electron micrographs – are characterized by high electron density. All these organelles extend beyond the nucleus, which is not the case for the endosomal compartment, the lysosome and the Golgi. The vesicles found in the posterior half of the trypanosome cell are quantitatively identifiable as COP1, CCVI or CCVII vesicles, or exocytic carriers. The lysosome has a higher degree of morphological plasticity, but this is not topic of the present work. Thus, the endomembrane system in T. brucei is comparatively well structured and delimited, which is why we have chosen trypanosomes as cell biological model.

      We have published EP1::GFP as marker for the endosome system and flagellar pocket back in 2004. We have defined the fluid phase volume of the trypanosome endosome in papers published between 2002 and 2007. This work was not intended to represent the entirety of RAB proteins. We were only interested in 3 canonical markers for endosome subtypes. We do not claim anything that is not experimentally tested, we have clearly labelled our hypotheses as such, and we do not make sweeping assumptions.

      The approaches taken are state-of-the-art but not novel, and because of the difficulty in fully addressing the central tenet, I am not sure how much of an impact this will have beyond the trypanosome field. For certain this is limited to workers in the direct area and is not a generalisable finding.

      To the best of our knowledge, there is no published research that has employed 3D Tokuyasu or expansion microscopy (ExM) to label endosomes. The key takeaway from our study, which is the concept that "endosomes are continuous in trypanosomes" certainly is novel. We are not aware of any other report that has demonstrated this aspect.

      The doubts formulated by the reviewer regarding the impact of our work beyond the field of trypanosomes are not timely. Indeed, our results, and those of others, show that the conclusions drawn from work with just a few model organisms is not generalisable. We are finally on the verge of a new cell biology that considers the plethora of evolutionary solutions beyond ophistokonts. We believe that this message should be widely acknowledged and considered. And we are certainly not the only ones who are convinced that the term "general relevance" is unscientific and should no longer be used in biology.

      Reviewer #3 (Public Review):

      Summary:

      As clearly highlighted by the authors, a key plank in the ability of trypanosomes to evade the mammalian host’s immune system is its high rate of endocytosis. This rapid turnover of its surface enables the trypanosome to ‘clean’ its surface removing antibodies and other immune effectors that are subsequently degraded. The high rate of endocytosis is likely reflected in the organisati’n and layout of the endosomal system in these parasites. Here, Link et al., sought to address this question using a range of light and three-dimensional electron microscopy approaches to define the endosomal organisation in this parasite.

      Before this study, the vast majority of our information about the make-up of the trypanosome endosomal system was from thin-section electron microscopy and immunofluorescence studies, which did not provide the necessary resolution and 3D information to address this issue. Therefore, it was not known how the different structures observed by EM were related. Link et al., have taken advantage of the advances in technology and used an impressive combination of approaches at the LM and EM level to study the endosomal system in these parasites. This innovative combination has now shown the interconnected-ness of this network and demonstrated that there are no ‘classical’ compartments within the endosomal system, with instead different regions of the network enriched in different protein markers (Rab5a, Rab7, Rab11).

      Strengths:

      This is a generally well-written and clear manuscript, with the data well-presented supporting the majority of the conclusions of the authors. The authors use an impressive range of approaches to address the organisation of the endosomal system and the development of these methods for use in trypanosomes will be of use to the wider parasitology community.

      I appreciate their inclusion of how they used a range of different light microscopy approaches even though for instance the dSTORM approach did not turn out to be as effective as hoped. The authors have clearly demonstrated that trypanosomes have a large interconnected endosomal network, without defined compartments and instead show enrichment for specific Rabs within this network.

      Weaknesses:

      My concerns are:

      i) There is no evidence for functional compartmentalisation. The classical markers of different endosomal compartments do not fully overlap but there is no evidence to show a region enriched in one or other of these proteins has that specific function. The authors should temper their conclusions about this point.

      The reviewer is right in stating that Rab-presence does not necessarily mean Rabfunction. However, this assumption is as old as the Rab literature. That is why we have focused on the 3 most prominent endosomal marker proteins. We report that for endosome function you do not necessarily need separate membrane compartments. This is backed by our experiments.

      ii) The quality of the electron microscopy work is very high but there is a general lack of numbers. For example, how many tomograms were examined? How often were fenestrated sheets seen? Can the authors provide more information about how frequent these observations were?

      The fenestrated sheets can be seen in the majority of the 37 tomograms recorded of the posterior volume of the parasites. Furthermore, we have randomly generated several hundred tiled (= very large) electron micrographs of bloodstream form trypanosomes for unbiased analyses of endomembranes. In these 2D-datasets the “footprint” of the fenestrated flat and circular cisternae is frequently detectable in the posterior cell area.

      We now have included the corresponding numbers in all EM figure legends.

      iii) The EM work always focussed on cells which had been processed before fixing. Now, I understand this was important to enable tracers to be used. However, given the dynamic nature of the system these processing steps and feeding experiments may have affected the endosomal organisation. Given their knowledge of the system now, the authors should fix some cells directly in culture to observe whether the organisation of the endosome aligns with their conclusions here.

      This is a valid criticism; however, it is the cell culture that provides an artificial environment. As for a possible effect of cell harvesting by centrifugation on the integrity and functionality of the endosome system, we consider this very unlikely for one simple reason. The mechanical forces acting in and on the parasites as they circulate in the extremely crowded and confined environment of the mammalian bloodstream are obviously much higher than the centrifugal forces involved in cell preparation. This becomes particularly clear when one considers that the mass of the particle to be centrifuged determines the actual force exerted by the g-forces. Nevertheless, the proposed experiment is a good control, although much more complex than proposed, since tomography is a challenging technique. We have performed the suggested experiment and acquired tomograms of unprocessed cells. The corresponding data is now included as supplementary movie 2, 3 and 4. We refer to it in lines 202 – 206: To investigate potential impacts of processing steps (cargo uptake, centrifugation, washing) on endosomal organization, we directly fixed cells in the cell culture flask, embedded them in Epon, and conducted tomography. The resulting tomograms revealed endosomal organization consistent with that observed in cells fixed after processing (see Supplementary movie 2, 3, and 4).

      We furthermore thank the reviewer for the experiment suggestion in the acknowledgments.

      iv) The discussion needs to be revamped. At the moment it is just another run through of the results and does not take an overview of the results presenting an integrated view. Moreover, it contains reference to data that was not presented in the results.

      We have improved the discussion accordingly.

      Recommendations for the authors:

      The reviewers concurred about the high calibre of the work and the importance of the findings.

      They raised some issues and made some suggestions to improve the paper without additional experiments - key issues include

      (1) Better referencing of the trypanosome endocytosis/ lysosomal trafficking literature.

      The literature, especially the experimental and quantitative work, is very limited. We now provide a more complete set of references. However, we would like to mention that we had cited a recent review that critically references the trypanosome literature with emphasis on the extensive work done with mammalian cells and yeast.

      (2) Moving the dSTORM data that detracts from otherwise strong data in a supplementary figure.

      We have done this.

      (3) Removal of the conclusion that the continuous endosome fulfils the functions of TGN, without further evidence.

      As stated above, this was not a conclusion in our paper, but rather a speculation, which we have now more clearly marked as such. Lines 740 to 751 now read:

      “Interestingly, we did not find any structural evidence of vesicular retrograde transport to the Golgi. Instead, the endosomal ‘highways’ extended throughout the posterior volume of the trypanosomes approaching the trans-Golgi interface. It is highly plausible that this region represents the convergence point where endocytic and biosynthetic membrane trafficking pathways merge. A comparable merging of endocytic and biosynthetic functions was already described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019). As we could not find structural evidence for the existence of a TGN we tentatively propose that trypanosomes may have shifted the central orchestrating function of the TGN as a sorting hub at the crossroads of biosynthetic and recycling pathways to the endosome. Although this is a speculative scenario, it is experimentally testable.”

      (4) Broader discussion linking their findings to other examples of organelle maturation in eukaryotes (e.g cisternal maturation of the Golgi)

      We have improved the discussion accordingly.

      Reviewer #1 (Recommendations For The Authors):

      What are the multi-vesicular vesicles that surround the marked endosomal compartments in Fig 1. Do they become labelled with fluid phase markers with longer incubations (e.g late endosome/ lysosomal)?

      The function of MVBs in trypanosomes is still far from being clear. They are filled with fluid phase cargo, especially ferritin, but are devoid of VSG. Hence it is likely that MVBs are part of the lysosomal compartment. In fact, this part of the endomembrane system is highly dynamic. MVBs can be physically connected to the lysosome or can form elongated structures. The surprising dynamics of the trypanosome lysosome will be published elsewhere.

      Figure 2. The compartments labelled with EP1::Halo are very poorly defined due to the low levels of expression of the reporter protein and/or sensitivity of detection of the Halo tag. Based on these images, it would be hard to conclude whether the endosome network is continuous or not. In this respect, it is unclear why the authors didn't use EP1-GFP for these analyses? Given the other data that provides more compelling evidence for a single continuous compartment, I would suggest removing Fig 2A.

      We have used EP1::GFP to label the entire endosome system (Engstler and Boshart, 2004). Unfortunately, GFP is not suited for dSTORM imaging. By creating the EP1::Halo cell line, we were able to utilize the most prominent dSTORM fluorescent dye, Alexa 647. This was not primarily done to generate super resolution images, but rather to measure the dynamics of the GPI-anchored, luminal protein EP with single molecule precision. The results from this study will be published separately. But we agree with the reviewer and have relocated the dSTORM data to the supplementary material.

      The observation that Rab5a/7 can be detected in the lumen of lysosome is interesting. Mechanistically, this presumably occurs by invagination of the limiting membrane of the lysosome. Is there any evidence that similar invagination of cytoplasmic markers occurs throughout or in subdomains of the endocytic network (possibly indicative of a 'late endosome' domain)?

      So far, we have not observed this. The structure of the lysosome and the membrane influx from the endosome are currently being investigated.

      The authors note that continuity of functionally distinct membrane compartments in the secretory/endocytic pathways has been reported in other protists (e.g T. cruzi). A particular example that could be noted is the endo-lysosomal system of Dictyostelium discoideum which mediates the continuous degradation and eventual expulsion of undigested material.

      We tried to include this in the discussion but ultimately decided against it because the Dictyostelium system cannot be easily compared to the trypanosome endosome.

      Reviewer #2 (Recommendations For The Authors):

      Abstract

      Not sure that 'common' is the correct term here. Frequent, near-universal..... it would be true that endocytosis is common across most eukaryotes.

      We have changed the sentence to “common process observed in most eukaryotes” (line 33).

      Immune evasion - the parasite does not escape the immune system, but does successfully avoid its impact, at least at the population level.

      We have replaced the word “escape” with “evasion” (line 35).

      The third sentence needs to follow on correctly from the second. Also, more than Igs are internalised and potentially part of immune evasion, such as C3, Factor H, ApoL1 etcetera.

      We believe that there may be a misunderstanding here. The process of endocytic uptake and lysosomal degradation has so far only been demonstrated in the context of VSGbound antibodies, which is why we only refer to this. Of course, the immune system comprises a wide range of proteins and effector molecules, all of which could be involved in immune evasion.

      I do not follow the logic that the high flux through the endocytic system in trypanosomes precludes distinct compartmentalisation - one could imagine a system where a lot of steps become optimised for example. This idea needs expanding on if it is correct.

      Membrane transport by vesicle transfer between several separate membrane compartments would be slower than the measured rate of membrane flux.

      Again I am not sure 'efficient' on line 40. It is fast, but how do you measure efficiency? Speed and efficiency are not the same thing.

      We have replaced the word “efficient” with “fast” (line 42).

      The basis for suggesting endosomes as a TGN is unclear. Given that there are AP complexes, retromer, exocyst and other factors that are part of the TGN or at least post-G differentiation of pathways in canonical systems, this seems a step too far. There really is no evidence in the rest of the MS that seems to support this.

      Yes, we agree and have clarified the discussion accordingly. We have not completely removed the discussion on the TGN but have labelled it more clearly as speculation.

      I am aware I am being pedantic here, but overall the abstract seems to provide an impression of greater novelty than may be the case and makes several very bold claims that I cannot see as fully valid.

      We are not aware of any claim in the summary that we have not substantiated with experiments, or any hypothesis that we have not explained.

      Moreover, the concept of fused or multifunctional endosomes (or even other endomembrane compartments) is old, and has been demonstrated in metazoan cells and yeast. The concept of rigid (in terms of composition) compartments really has been rejected by most folks with maturation, recycling and domain structures already well-established models and concepts.

      We agree that the (transient) presence of multiple Rab proteins decorating endosomes has been demonstrated in various cell types. This finding formed the basis for the endosomal maturation model in mammals and yeast, which has replaced the previous rigid compartment model.

      However, we do not appreciate attempts to question the originality of our study by claiming that similar observations have been made in metazoans or yeast. This is simply wrong. There are no reports of a functionally structured, continuous, single and large endosome in any other system. The only membrane system that might be similar was described in the American parasite Trypanosoma cruzi, however, without the use of endosome markers or any functional analysis. We refer to this study in the discussion.

      In summary, the maturation model falls short in explaining the intricacies of the membrane system we have uncovered in trypanosomes. Therefore, one plausible interpretation of our data is that the overall architecture of the trypanosome endosomes represents an adaptation that enables the remarkable speed of plasma membrane recycling observed in these parasites. In our view, both our findings and their interpretation are novel and worth reporting. Again, modern cell biology should recognize that evolution has developed many solutions for similar processes in cells, about whose diversity we have learned almost nothing because of our reductionist view. A remarkable example of this are the Picozoa, tiny bipartite eukaryotes that pack the entire nutritional apparatus into one pouch and the main organelles with the locomotor system into the other. Another one is the “extreme” cell biology of many protozoan parasites such as Giardia, Toxpoplasma or Trypanosoma.

      Higher plants have been well characterised, especially at the level of Rab/Arf proteins and adaptins.

      We now mention plant endosomes in our brief discussion of the trypanosome TGN. Lines 744 – 747:

      “A comparable merging of endocytic and biosynthetic functions was already described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019).”

      The level of self-citing in the introduction is irritating and unscholarly. I have no qualms with crediting the authors with their own excellent contributions, but work from Dacks, Bangs, Field and others seems to be selectively ignored, with an awkward use of the authors' own publications. Diversity between organisms for example has been a mainstay of the Dacks lab output, Rab proteins and others from Field and work on exocytosis and late endosomal systems from Bangs. These efforts and contributions surely deserve some recognition?

      This is an original article and not a review. For a comprehensive overview the reviewer might read our recent overview article on exo- and endocytic pathways in trypanosomes, in which we have extensively cited the work of Mark Field, Jay Bangs and Joel Dacks. In the present manuscript, we have cited all papers that touch on our results or are otherwise important for a thorough understanding of our hypotheses. We do not believe that this approach is unscientific, but rather improves the readability of the manuscript. Nevertheless, we have now cited additional work.

      For the uninitiated, the posterior/anterior axis of the trypanosome cell as well as any other specific features should be defined.

      In lines 102 - 110 we wrote:

      “This process of antibody clearance is driven by hydrodynamic drag forces resulting from the continuous directional movement of trypanosomes (Engstler et al., 2007). The VSG-antibody complexes on the cell surface are dragged against the swimming direction of the parasite and accumulate at the posterior pole of the cell. This region harbours an invagination in the plasma membrane known as the flagellar pocket (FP) (Gull, 2003; Overath et al., 1997). The FP, which marks the origin of the single attached flagellum, is the exclusive site for endo- and exocytosis in trypanosomes (Gull, 2003; Overath et al., 1997). Consequently, the accumulation of VSG-antibody complexes occurs precisely in the area of bulk membrane uptake.”

      We think this sufficiently introduces the cell body axes.

      I don't understand the comment concerning microtubule association. In mammalian cells, such association is well established, but compartments still do not display precise positioning. This likely then has nothing to do with the microtubule association differences.

      We have clarified this in the text (lines 192 – 199). There is no report of cytoplasmic microtubules in trypanosomes. All microtubules appear to be either subpellicular or within the flagellum. To maintain the structure and position of the endosomal apparatus, they should be associated either with subpellicular microtubules, as is the case with the endoplasmic reticulum, or with the more enigmatic actomyosin system of the parasites. We have been working on the latter possibility and intend to publish a follow-up paper to the present manuscript.

      The inability to move past the nucleus is a poor explanation. These compartments are dynamic. Even the nucleus does interesting things in trypanosomes and squeezes past structures during development in the tsetse fly.

      The distance between the nucleus and the microtubule cytoskeleton remains relatively constant even in parasites that squeeze through microfluidic channels. This is not unexpected as the nucleus can be highly deformed. A structure the size of the endosome will not be able to physically pass behind the nucleus without losing its integrity. In fact, the recycling apparatus is never found in the anterior part of the trypanosome, most probably because the flagellar pocket is located at the posterior cell pole.

      L253 What is the evidence that EP1 labels the entire FP and endosomes? This may be extensive, but this claim requires rather more evidence. This is again suggested at l263. Again, please forgive me for being pedantic, but this is an overstatement unless supported by evidence that would be incredibly difficult to obtain. This is even sort of acknowledged on l271 in the context of non-uniform labelling. This comes again in l336.

      The evidence that EP1 labels the entire FP and endosomes is presented here: Engstler and Boshart, 2004; 10.1101/gad.323404).

      Perhaps I should refrain from comments on the dangers of expansion microscopy, or asking what has actually been gained here. Oddly, the conclusion on l290 is a fair statement that I am happy with.

      An in-depth discussion regarding the advantages and disadvantages of expansion microscopy is beyond the manuscript's intended scope. Our approach involved utilizing various imaging techniques to confirm the validity of our findings. We appreciate that our concluding sentence is pleasing.

      F2 - The data in panel A seem quite poor to me. I also do not really understand why the DAPI stain in the first and second columns fails to coincide or why the kinetoplast is so diffuse in the second row. The labelling for EP1 presents as very small puncta, and hence is not evidence for a continuum. What is the arrow in A IV top? The data in panel B are certainly more in line with prior art, albeit that there is considerable heterogeneity in the labelling and of the FP for example. Again, I cannot really see this as evidence for continuity. There are gaps.... Albeit I accept that labelling of such structures is unlikely to ever be homogenous.

      We agree that the dSTORM data represents the least robust aspect of the findings we have presented, and we concur with relocating it to the supplementary material.

      F3 - Rather apparent, and specifically for Rab7, that there is differential representation - for example, Cell 4 presents a single Rab7 structure while the remaining examples demonstrate more extensive labelling. Again, I am content that these are highly dynamic strictures but this needs to be addressed at some level and commented upon. If the claim is for continuity, the dynamics observed here suggest the usual; some level of obvious overlap of organellar markers, but the representation in F3 is clever but not sure what I am looking at. Moreover, the title of the figure is nothing new. What is also a bit odd is that the extent of the Rab7 signal, and to some extent the other two Rabs used, is rather variable, which makes this unclear to me as to what is being detected. Given that the Rab proteins may be defining microdomains or regions, I would also expect a region of unique straining as well as the common areas. This needs to at least be discussed.

      The differences in the representation result from the dynamics of the labelled structures. Therefore, we have selected different cells to provide examples of what the labelling can look like. We now mention this in the results section.

      The overlap of the different Rab signals was perhaps to be expected, but we now have demonstrated it experimentally. Importantly, we performed a rigorous quantification by calculating the volume overlaps and the Pearson correlation coefficients.

      In previous studies the data were presented as maximal intensity projections, which inherently lack the complete 3D information.

      We found that Rab proteins define microdomains and that there are regions of unique staining as well as common areas, as shown in Figure 3. The volumes do not completely overlap. This is now more clearly stated in lines 315 – 319:

      “These objects showed areas of unique staining as well as partially overlapping regions. The pairwise colocalization of different endosomal markers is shown in Figure 3 A, XI - XIII and 3 B. The different cells in Figure 3 B were selected to represent the dynamic nature of the labelled structures. Consequently, the selected cells provide a variety of examples of how the labelling can appear.”

      This had already been stated in lines 331 – 336:

      “In summary, the quantitative colocalization analyses revealed that on the one hand, the endosomal system features a high degree of connectivity, with considerable overlap of endosomal marker regions, and on the other hand, TbRab5A, TbRab7, and TbRab11 also demarcate separated regions in that system. These results can be interpreted as evidence of a continuous endosomal membrane system harbouring functional subdomains, with a limited amount of potentially separated early, late or recycling endosomes.”

      F4-6 - Fabulous images. But a couple of issues here; first, as the authors point out, there is distance between the gold and the antigen. So, this of course also works in the z-plane as well as the x/y-planes and some of the gold may well be associated with membraneous figures that are out of the plane, which would indicate an absence of colinearity on one specific membrane. Secondly, in several instances, we have Rab7 essentially mixed with Rab11 or Rab5 positive membrane. While data are data and should be accepted, this is difficult to reconcile when, at least to some level, Rab7 is a marker for a late-endosomal structure and where the presence of degradative activity could reside. As division of function is, I assume, the major reason for intracellular compartmentalisation, such a level of admixture is hard to rationalise. A continuum is one thing but the data here seem to be suggesting something else, i.e. almost complete admixture.

      We are grateful for the positive feedback regarding the image quality. It is true that the "linkage error," representing the distance between the gold and the antigen, also functions to some extent in the z-axis. However, it's important to note that the zdimension of the section in these Figures is 55 nm. Nevertheless, it's interesting to observe that membranes, which may not be visible within the section itself but likely the corresponding Rab antigen, is discernible in Figure 4C (indicated by arrows).

      We have clarified this in lines 397 – 400:

      “Consequently, gold particles located further away may represent cytoplasmic TbRab proteins or, as the “linkage error” can also occur in the z-plane, correspond to membranes that are not visible within the 55 nm thickness of the cryosection (Figure 4, panel C, arrows). “

      The coexistence of different Rabs is most likely concentrated in regions where transitions between different functions are likely. Our focus was primarily on imaging membranes labelled with two markers. We wanted to show that the prevailing model of separate compartments in the trypanosome literature is not correct.

      F7 - Not sure what this adds beyond what was published by Grunfelder.

      First, this figure is an important control that links our results to published work (Grünfelder et al. (2003)). Second, we include double staining of cargo with Rab5, Rab7, and Rab11, whereas Grünfelder focused only on Rab11. Therefore, our data is original and of such high quality that it warrants a main figure.

      F8 - and l583. This is odd as the claim is 'proof' which in science is a hard thing to claim (and this is definitely not at a six sigma level of certainty, as used by the physics community). However, I am seeing structures in the tomograms which are not contiguous - there are gaps here between the individual features (Green in the figure).

      We have replaced the term "proof". It is important to note that the structures in individual tomograms cannot all be completely continuous because the sections are limited to a thickness of 250 nm. Therefore, it is likely that they have more connectivity above and below the imaged section. Nevertheless, we believe that the quality of the tomograms is satisfactory, considering that 3D Tokuyasu is a very demanding technique and the production of serial Tokuyasu tomograms is not feasible in practice.

      Discussion - Too long and the self-citing of four papers from the corresponding author to the exclusion of much prior work is again noted, with concerns about this as described above. Moreover, at least four additional Rab proteins are known associated with the trypanosome endosomal system, 4, 5B, 21 and 28. These have been completely ignored.

      We have outlined our position on referencing in original articles above. We also explained why we focused on the key marker proteins associated with early (Rab5), late (Rab7) and recycling endosomes (Rab11). We did not ignore the other Rabs, we just did not include them in the present study.

      Overall this is disappointing. I had expected a more robust analysis, with a clearer discussion and placement in context. I am not fully convinced that what we have here is as extreme as claimed, or that we have a substantial advance. There is nothing here that is mechanistic or the identification of a new set of gene products, process or function.

      We do not think that this is constructive feedback.

      This MS suggests that the endosomal system of African trypanosomes is a continuum of membrane structures rather than representing a set of distinct compartments. A combination of light and electron microscopy methods are used in support. The basic contention is very challenging to prove, and I'm not convinced that this has been. Furthermore, I am also unclear as to the significance of such an organisation; this seems not really addressed.

      We acknowledge and respect varying viewpoints, but we hold a differing perspective in this matter. We are convinced that the data decisively supports our interpretation. May future work support or refute our hypothesis.

      Reviewer #3 (Recommendations For The Authors):

      Line 81 - delete 's

      Done.

      Generally, the introduction was very well written and clearly summarised our current understanding but the paragraph beginning line 134 felt out of place and repeated some of the work mentioned earlier.

      We have removed this paragraph.

      For the EM analysis throughout quantification would be useful as highlighted in the public review. How many tomograms were examined, and how often were types of structures seen? I understand the sample size is often small but this would help the reader appreciate the diversity of structures seen.

      We have included the numbers.

      Following on from this how were the cells chosen for tomogram analysis? For example, the dividing cell in 1D has palisades associating with the new pocket - is this commonly seen? Does this reflect something happening in dividing cells. This point about endosomal division was picked up in the discussion but there was little about in the main results.

      This issue is undoubtedly inherent to the method itself, and we have made efforts to mitigate it by generating a series of tomograms recorded randomly. We have refrained from delving deeper into the intricacies of the cell cycle in this manuscript, as we believe that it warrants a separate paper.

      As the authors prosecute, the co-localisation analysis highlights the variable nature of the endosome and the overlap of different markers. When looking at the LM analysis, I was struck by the variability in the size and number of labelled structures in the different cells. For example, in 3A Rab7 is 2 blobs but in 3B Cell 1 it is 4/5 blobs. Is this just a reflection of the increase in the endosome during the cell cycle?

      The variability in representation is a direct consequence of the dynamic nature of the labelled structures. For this reason, we deliberately selected different cells to represent examples of how the labelling can look like. We have decided not to mention the dynamics of the endosome during the cell cycle. This will be the subject of a further report.

      Moreover, Rab 11 looks to be the marker covering the greatest volume of the endosomal system - is this true? I think there's more analysis of this data that could be done to try and get more information about the relative volumes etc of the different markers that haven't been drawn out. The focus here is on the co-localisation.

      Precisely because we recognize the importance of this point, we intend to turn our attention to the cell cycle in a separate publication.

      I appreciate that it is an awful lot of work to perform the immuno-EM and the data is of good quality but in the text, there could be a greater effort to tie this to the LM data. For example, from the Rab11 staining in LM you would expect this marker to be the most extensive across the networks - is this reflected in the EM?

      For the immuno-EM there were no numbers, the authors had measured the position of the gold but what was the proportion of gold that was in/near membranes for each marker? This would help the reader understand both the number of particles seen and the enrichment of the different regions.

      Our original intent was to perform a thorough quantification (using stereology) of the immuno-EM data. However, we later realized that the necessary random imaging approach is not suitable for Tokuyasu sections of trypanosomes. In short, the cells are too far apart, and the cell sections are only occasionally cut so that the endosomal membranes are sufficiently visible. Nevertheless, we continue to strive to generate more quantitative data using conventional immuno-EM.

      The innovative combination of Tokuyasu tomograms with immuno-EM was great. I noted though that there was a lack of fenestration in these models. Does this reflect the angle of the model or the processing of these samples?

      We are grateful to the referee, as we have asked ourselves the same question. However, we do not attribute the apparent lack of fenestration to the viewing angle, since we did not find fenestration in any of the Tokuyasu tomograms. Our suspicion is more directed towards a methodological problem. In the Tokuyasu workflow, all structures are mainly fixed with aldehydes. As a result, lipids are only effectively fixed through their association with membrane proteins. We suggest that the fenestration may not be visible because the corresponding lipids may have been lost due to incomplete fixation.

      We now clearly state this in the lines 563 – 568.

      “Interestingly, these tomograms did not exhibit the fenestration pattern identified in conventional electron tomography. We suspect that this is due to methodological reasons. The Tokuyasu procedure uses only aldehydes to fix all structures. Consequently, effective fixation of lipids occurs only through their association with membrane proteins. Thus, the lack of visible fenestration is likely due to possible loss of lipids during incomplete fixation.”

      The discussion needs to be reworked. Throughout it contains references to results not in the main results section such as supplementary movie 2 (line 735). The explicit references to the data and figures felt odd and more suited to the results rather than the discussion. Currently, each result is discussed individually in turn and more effort needs to be made to integrate the results from this analysis here but also with previous work and the data from other organisms, which at the moment sits in a standalone section at the end of the discussion.

      We have improved the discussion and removed the previous supplementary movies 2 and 3. Supplementary movie 1 is now mentioned in the results section.

      Line 693 - There was an interesting point about dividing cells describing the maintenance of endosomes next to the old pocket. Does that mean there was no endosome by the new pocket and if so where is this data in the manuscript? This point relates back to my question about how cells were chosen for analysis - how many dividing cells were examined by tomography?

      The fate of endosomes during the cell cycle is not the subject of this paper. In this manuscript we only show only one dividing cell using tomography. An in-depth analysis focusing on what happens during the cell cycle will be published separately.

      Line 729 - I'm unclear how this represents a polarization of function in the flagellar pocket. The pocket I presume is included within the endosomal system for this analysis but there was no specific mention of it in the results and no marker of each position to help define any specialisation. From the results, I thought the focus was on endosomal co-localisation of the different markers. If the authors are thinking about specialisation of the pocket this paper from Mark Field shows there is evidence for the exocyst to be distributed over the entire surface of the pocket, which is relevant to the discussion here. Boehm, C.M. et al. (2017) The trypanosome exocyst: a conserved structure revealing a new role in endocytosis. PLoS Pathog. 13, e1006063

      We have formulated our statement more cautiously. However, we are convinced that membrane exchange cannot physically work without functional polarization of the pocket. We know that Rab11, for example, is not evenly distributed on the pocket. By the way, in Boehm et al. (2017) the exocyst is not shown to cover the entire pocket (as shown in Supplementary Video 1).

      We now refer to Boehm et al. (Lines 700 – 703):

      “Boehm et al (2017) report that in the flagellar pocket endocytic and exocytic sites are in close proximity but do not overlap. We further suggest that the fusion of EXCs with the flagellar pocket membrane and clathrin-mediated endocytosis take place on different sites of the pocket. This disparity explains the lower colocalization between TbRab11 and TbRab5A.”

      Line 735 - link to data not previously mentioned I think. When I looked at this data I couldn't find a key to explain what all the different colours related to.

      We have removed the previous supplementary movies 2 and 3. We now reference supplementary movie 1 in the results section.

    1. Grappling with Grendel. To God I am thankful To be suffered to see thee safe from thy journey.

      Annotation by: Samuel Godinho CC License: CC- BY-NC Tag: #SP2025-LIT211

      I find the religious tension within the poem to be very interesting. The narrator and Beowulf frequently reference God and divine justice, but the poem still upholds Paganism and pagan ideals like fate and blood vengeance. This also shows the transitional period in which it was written, showing a cultural tug of war with the merging of old beliefs and emerging Christian values. The original poem shows many pagan values but once it was transcribed and translated it took on more Christian characteristics. This is an example of how religious values influenced this text.

    2. When my earth-joys were over, thou wouldst evermore serve me In stead of a father; my faithful thanemen, My trusty retainers, protect thou and care for, Fall I in battle: and, Hrothgar belovèd,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Hall’s translation is from the 1800s, so it uses older and fancier words to describe Beowulf and how his characteristics make him a hero. Gummere’s translation is from the early 1900s and is easier to read using more of modern texts and descriptions. These differences show how ideas of heroism and masculinity can change over time, even though Beowulf is always a strong, brave hero.

    3. Beowulf spake, Ecgtheow’s son: “Recall now, oh, famous kinsman of Healfdene, Prince very prudent, now to part I am ready, Gold-friend of earlmen, what erst we agreed on

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Beowulf as a brave and respectful hero, but Hall’s version is more poetic, which makes Beowulf seem like a legendary figure. Gummere’s version is simpler and makes Beowulf seem more like a real person narrating the story. Both connect to gender politics by highlighting how a hero must be strong but also respectful.

    4. Beowulf spake, Ecgtheow’s son: “Recall now, oh, famous kinsman of Healfdene,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Beowulf is shown as a respectful hero where we can see here how he talks to the king to get approval before taking action. This shows male characteristics that are liked such as polite, honarable and being loyal. These connect to political gender as it emphasizes the qualities of traditional male characteristics.

    1. Renewal for children under 15 ½Submit your renewal application online

      These two headings and generally all other headings on the page are using appropriate HTML tags to signify their semantic order and flow on the page. "Renewal for children under 15 and 1/2" is using an h2 tag while the sub-heading "Submit your renewal application online" is using an appropriate semantically correct h3 tag, which was found on inspection using dev tools. This allows screen readers to properly parse the page and also gives proper visual indication that one is a heading and the other is a sub-heading. This corresponds to the principle of "perceivable" because information is clearly being presented to users in a way they can perceive whether via the screen reader correctly parsing the text, or by visually with clear visual differences indicating the semantics and order of the content.

    2. Learn how to renew an Ontario health card. You need a valid card to get coverage through the Ontario Health Insurance Plan (OHIP).

      (Reference to the image to the right of this text) The image of the Ontario Health Card on the top of the page has an alt attribute (inspected using dev tools) less than 125 characters that reads "Ontario health card" which is concise and describes the image. (Screen readers will detect it is an img tag and say something along the lines of "image of" and then read the alt attribute text). This corresponds to the web accesibility principle of "robust" as the descriptive and concise alt attribute allows the image to be interpreted by a wide variety of assistive technologies.

    1. Joseph’s life is a series of highs and lows — literally and figuratively. In his father’s house, Joseph is the favored son: “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). Joseph likely also has this status because he is the eldest child of Jacob’s favorite (deceased) wife, Rachel. To demonstrate this preference, Jacob gifts Joseph with the famous kitonet passim, translated as both a garment with long sleeves, or a fine woolen tunic. (Commentators extrapolate that it had stripes of different colors.) This preferential treatment from their father elicits much jealousy from Joseph’s 10 older brothers.

      Annotation about josey's favoritism towards him by his father. Author: David Sanchez CC License: CC BY-NC Tag: #SP2025-Lit211

      The story of Joseph in the book of Genesis shows us some of the aspects that marked the present and future of his life. The book of Genesis tells us about the favoritism and devotion that his father Jacob always had towards him, being the favorite son of 12 brothers. “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). This favoritism towards Joseph on the part of Jacob was because Joseph was the firstborn of the woman that Jacob had loved the most, who was Rachel. As a sign of his love and affection, Jacob gave him a colorful tonic (ketones passim), which symbolized a gesture of favoritism towards Joseph and aroused the anger and fury of his brothers. These texts show us how favoritism towards certain members of a family is something bad and unnecessary, even for the beneficiary who in this case was Joseph, because this blatant favoritism on the part of Jacob was what somehow caused Joseph to be sold by his brothers to the Ishmaelites, thus causing a very tragic situation for Jacob's family.

      References: The Holy Bible: New Revised Standard Version. Genesis 37:3.

      Roth, Elana. “The Story of Joseph.” My Jewish Learning, 20 June 2023, www.myjewishlearning.com/article/the-story-of-joseph/.

    2. Joseph’s life is a series of highs and lows — literally and figuratively. In his father’s house, Joseph is the favored son: “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). Joseph likely also has this status because he is the eldest child of Jacob’s favorite (deceased) wife, Rachel. To demonstrate this preference, Jacob gifts Joseph with the famous kitonet passim, translated as both a garment with long sleeves, or a fine woolen tunic. (Commentators extrapolate that it had stripes of different colors.) This preferential treatment from their father elicits much jealousy from Joseph’s 10 older brothers.

      Annotation about josey's favoritism towards him by his father. Author: David Sanchez CC License: CC BY-NC Tag: #SP2025-Lit211

      The story of Joseph in the book of Genesis shows us some of the aspects that marked the present and future of his life. The book of Genesis tells us about the favoritism and devotion that his father Jacob always had towards him, being the favorite son of 12 brothers. “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). This favoritism towards Joseph on the part of Jacob was because Joseph was the firstborn of the woman that Jacob had loved the most, who was Rachel. As a sign of his love and affection, Jacob gave him a colorful tonic (ketones passim), which symbolized a gesture of favoritism towards Joseph and aroused the anger and fury of his brothers. These texts show us how favoritism towards certain members of a family is something bad and unnecessary, even for the beneficiary who in this case was Joseph, because this blatant favoritism on the part of Jacob was what somehow caused Joseph to be sold by his brothers to the Ishmaelites, thus causing a very tragic situation for Jacob's family.

      References: The Holy Bible: New Revised Standard Version. Genesis 37:3.

      Roth, Elana. “The Story of Joseph.” My Jewish Learning, 20 June 2023, www.myjewishlearning.com/article/the-story-of-joseph/.

    1. You may have come across the tag "BURNBABY" in connection with the LM powered flight software. That was us. We might not have been out on the streets, but we did listen to the news, and the two biggest news stories were Viet Nam and Black Power, the latter including H. Rap Brown and his exhortations to 'Burn Baby, Burn' -- this was 1967, after all.

      Not the Magnificent Montgue

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02887

      Corresponding author(s): Philippe Bastin

      1. General Statements [optional]

      • *

      We thank the reviewers for their constructive suggestions. We are delighted to see that they appreciated our work and its interest for the broad cell biology community, as well as the potential impact of the inducible expression of tagged tubulin as a new tool to investigate microtubule assembly at large.

      We are now providing a full revision that contains two major modifications and that addresses all the minor points detailed below. The two major modifications are:

      • A simplification and a shortening of the text as requested by reviewers 1 and 3
      • The addition of a new experiment evaluating the role of the locking protein CEP164C to gain insight into the mechanism, as suggested by reviewers 1 and 2 Briefly, CEP164C is a protein localised to the transition fibres (structures that dock the basal body of the flagellum to the membrane) of only the old flagellum. Its depletion leads to an excessive elongation of the old flagellum and the production of a shorter new flagellum, suggesting competition between the two flagella for tubulin incorporation (Atkins et al., 2021). In the new figure 5, we have expressed tagged tubulin in the CEP164CRNAi cell line and formally demonstrated simultaneous incorporation in both flagella. Unexpectedly, the new flagellum incorporated more tubulin than the old one, suggesting a bias of tubulin targeting in favour of the new flagellum and the existence of additional contributors to the Grow-and-Lock model.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1

      Evidence, reproducibility and clarity

      The manuscript by Daniel Abbühl on "A novel approach to tagging tubulin reveals MT assembly dynamics of the axoneme in Trypanosoma brucei" uses an innnovative approach to label tubulin, which allows the authors to unveil new mechanisms in flagellar length regulation.

      The manuscript is very nice and will be very interesting for the cell biology community and therefore should be accepted. In some parts it becames a bit complex with all the models and complex phrasing, I wonder whether the text could be simplified to be more appealing. I have a few minor comments:

      We agree that some of the explanations are lengthy and complex. We have simplified the explanations and hopefully made the models more accessible. Complexity comes from the fact that trypanosomes do not have a synchronized cell cycle.

      -From the model the authors show in Figure 8- there should be a way of pulsing the cells in G1 for a short amount of time -2 hours- and getting both flagella tips labelled. But the authors seem to require longer labelling to get that result. This should be better explained.

      We are not quite sure what is meant here with both flagella as in G1-phase, all cells are mono-flagellated. We do see mono-flagellated cells with a labelled tip after 2 hours, both with the HALO-tag or the Ty-1-tubulin system.

      In regard to bi-flagellate cells, we believe that incorporation in the OF happened at the beginning of G1-phase when the cell was mono-flagellated. If tubulin is present at that point, it will be incorporated at the tip. This cell then approaches the end of G1-phase and starts to initiate NF assembly. Since tagged tubulin is already present it will be incorporated along the whole length of the NF.

      A short induction of 2h would not suffice as it wouldn't cover the duration of the G1-phase and the initiation of a NF (duration of G1-phase is ~4h). We attempted to explain this in Fig. 4 and reworked the text to make this clearer.

      -Why do some cells not express the construct? Weren´t they all selected?

      We never managed to get a cell line where inducible expression is present in 100% of cells. Here, around 95% of cells were positive for Ty-1-tubulin after 24h of induction. Non-expression is not a phenomenon restricted to this tubulin cell line but also observed with other ectopically expressed proteins (e.g. Sunter et al. JCS 2015, Bastin et al. MCB 1999). All these cell lines represent clonal populations and are resistant to antibiotic treatment, however not all cells express the respective protein. For each experiment where we believed the number of expressing cells matter (for example the washout), we quantified in how many cells Ty-1-tubulin was present in the cell body microtubules.

      -"The linear regression line in Fig. 3C was corrected by subtracting 45 minutes from each timepoint due to the previously reported delay between addition of tetracycline and the expression of the respective protein". However, in the authors data the delay may amount to one hour (western analysis- S4). Shouldn´t they use their data.

      Indeed, the western blot shows expression after 1-hour, however we did not take a 45-minute timepoint, so we don't know if the protein was detectable at that time. In addition, IFA is more sensitive than western blot. We cannot say exactly when the average cell starts to express the induced protein.

      -Fig 3: To measure the timepoints of flagella growth, wouldn´t it be better to do it with NF that started to grow before induction, rather than starting to grow after induction, to be sure that the timing of incorporation is fully accounted for?

      We indeed did consider only NFs, which started to grow before induction, as suggested by the reviewer. In the revised version the description of the experiment can be found on page 9 line 22 - 28.

      -Although it is not the focus of the manuscript it would have been very interesting to use the CEP164C mutant to see whether it would change the dynamics of incorporation and fully test their model and discussion.

      This is a great suggestion, so we performed some experiments to address this issue. When CEP164C was knocked down before Ty-1-tubulin expression, integration is seen at the distal tip of both NF and OF. This is coherent with the idea of removal of the locking protein from the OF. However, lengths of the green segments in NF and OF do not have the same length (NF ~6 µm, OF ~2 µm), which indicates that CEP164C might not be the only protein involved in regulating flagellum length. A new figure explaining this experiment was added (Fig. 5, Fig. S6). We believe this data provides novel insight on the locking mechanism and strengthens the manuscript.

      -In some parts of the manuscript/supplemental material the authors say they insert the Ty-1- tag one aminoacid after the acetylated lysine- other parts they say two aminoacids after- this should be consistent.

      We thank the reviewer for spotting these mistakes, we have changed the text accordingly.

      -Fig. S1: 'Binding epitope of the TAT-1 antibody is highlighted in red'. There is no highlighting in red in this figure?

      This sentence was removed.

      -Fig. S2: Western blots are not very clear. What is the 'X' present in the C (first lane)? Weight of markers should be shown also in S4.

      Molecular weight markers have been added. X is an empty lane, we have now indicated this in the figure legend.

      -Fig 5: 'C: Frequency of bi-flagellated cells grouped by the different types of' The authors didn't finish the sentence.

      Previous Fig. 5 is now Fig. 6. Sentence has been completed. "Frequency of bi-flagellated cells grouped by different types of old flagella"

      -Fig. S7: The 'B' is missing in both picture and legend.

      This has been added


      Significance

      This study advances our knowledge of flagellar length regulation and maintenance. Moreover, the tools designed in this work will be very useful for the cell biology community in general.


      Reviewer #2

      Evidence, reproducibility and clarity

      Summary: The length of the old flagellum of Trypanosome is constant during G1 phase as well as during cell cycle progression when the new flagellum is assembled. The authors have previously proposed a "Grow and Lock" model for the flagellar length control in which no flagellar building blocks are incorporated. To test this hypothesis, the authors used a tagging strategy for alpha-tubulin and tracking its incorporation. The authors showed that the new flagellum incorporates new tubulins, as is expected. For the mature flagellum, tubulins are incorporated at the flagellar tip and only when the cells start to assemble the new flagellum. Thus, it shows that old flagellum is stable but not completely locked for the incorporation of tubulins.

      Major comments: The study is methodologically rigorous, integrating fluorescence microscopy, biochemical approaches, and proteomic analyses to validate the functionality of the tagged tubulin. The use of both inducible expression and endogenous protein tagging (HaloTag) strengthens the conclusions. This study has supported the "Grow-and-Lock" model" that the authors previously proposed. In addition, they have revealed that the stability of the old flagellum is temporally controlled.

      The data showed that brief incorporation of tubulins at the tip of the old flagellum occurs when the cells start to form the new flagellum. I thought the assembly of the new flagellum occurs during the cell division. However, in the abstract, it says that "The restriction is lifted briefly after the bi-flagellated cell has divided." Is my understanding wrong?

      We believe incorporation at the tip of the "OF" occurred after the cell has divided, when the OF daughter is mono-flagellated. It happens before this daughter cells starts assembling its new flagellum is formed. Of course, when looking at biflagellated cells, the NF as well as the tip of the OF will be green, but our data supports that incorporation happened in G1-phase and not during the biflagellated stage as the lock seals the OF before the NF emerges. To clarify on terminology: The bi-flagellate stage begins when basal bodies are duplicated, shortly after the beginning of S-phase and ends with cytokinesis. This means G1-phase and the mono-flagellated stage are nearly the same (Woodward and Gull, JCS1990) and occupy ~40% of the cell cycle.

      P12, "The cartoon in Fig. 5A illustrates the progression of the cells in scenario 2 (Fig. 4A) over the duration of one cell cycle (~9 hours)" I thought that one cell cycle should start with cell with only one flagellum, followed by assembly of a new flagellum during cell division, the cell then divides when the new flagellum is almost completely assembled. If my understanding is correct, perhaps the cartoon should be modified accordingly.

      Indeed, the cell cycle starts with a cell in G1-phase. Here, we have chosen the initiation of a NF assembly as our starting point because we focused the investigation on bi-flagellated cells. We have now illustrated the cell cycle (adapted from Woodward and Gull 1990) and when cells are biflagellated in Fig. 6A (revised version).

      Minor comments:

      1) Several references are not correctly formatted. P3: (Flavin and Slaughter, 1974) (Rosenbaum 1969). P10, (Sherwin et al., 1987)(Sheriff et al., 2014) 2) In several places there are no space between the number and the unit. For eample, P3, 9 - 24µm/h. 7, 1μg/m; P8, 50kDa; P9, 1M; 8-9h; P11, 2.9µm/h and etc. 3) P11, Flagella were extracted. I thought the cells were extracted.

      Thank you for pointing these out, we have changed these in the text.


      Significance

      Cilia and eukaryotic flagella are considered dynamic structures in which the flagellar components especially tubulins under constant turnovers even in steady state. This work demonstrates that in Trypanosome the stable old flagellum is temporally controlled for tubulin turnovers, suggesting a tight regulation of microtubule dynamics. Future elucidation of the regulatory mechanism will be more interesting. This work will be interesting to the field of cilia and microtubules. In addition, the new technique used for tracking tubulins will also be interesting.

      I am an expert on ciliary biology.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      This study seeks to investigate the mechanism by which the length of an eukaryotic cilium is set and maintained in a constant state. The flagellated protist Trypanosoma brucei serves as the study model and the authors take advantage of the genetic tools that allow precise modification and tagging of flagellar proteins and they build on prior knowledge about the well-characterised flagellar assembly cycle, which allows tracking the assembly of a new flagellum alongside an existing old one in the course of one cell cycle. The group of Bastin has previously reported a very interesting "Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes" and this current manuscript provides a test of this model, and a refinement. Key to this is an advance in technique, reported here, namely expression of an epitope tagged version of alpha tubulin. The epitope is inserted in an internal loop, which apparently for the first time provides a traceable tubulin that is reliably incorporated into the cytoskeleton (subpellicular array, spindle and cilium). Expressing an inducible version of this Ty-1-tubulin allows for a set of experiments that measure the place and timing of tubulin incorporation into cilia. The results are largely confirmatory of previous findings (incorporation exclusively into the new flagellum, at the distal end, linear growth rate that matches previous estimates). Examination of tubulin incorporation patterns then reveal additional information about the old flagellum: evidence from Ty-1-tubulin labelling, corroborated by incorporation patterns of another ciliary protein (RSP 4/6) suggest that the "lock" on the old flagellum is relieved for short periods after cell division, leading to a refined model presented in Figure 8.

      Major comments:

      This study provides an elegant test of the grow-and-lock model and the major conclusions are supported by the data. I have no major concerns.

      Minor comments:

      There are several minor points that could be addressed to make the manuscript easier to follow (and adding line numbers to the manuscript would help with reviewing).

      The introduction is quite long. Some of the well-established background information on the T. brucei cell cycle could be shortened. If the paper is intended for a broader audience, it would be valuable instead to cite studies that have succeeded in tagging tubulin and tracing its incorporation in other cilia. Could the Ty-1-tubulin approach be relevant more broadly or are simpler methods already established?

      The introduction has been shortened, we now also cite two published studies that tracked tubulin integration in Chlamydomonas and C. elegans respectively.

      On p.6 the rationale for endogenous tagging was to "reduce the risk of artifacts portentially due to untimely expression or unnatural protein levels". However most of the experiments were done with ectopically expressed inducible Ty-1-tubulin. For the experiments it is crucial to use an inducible system but the authors may wish to comment why the risk of artifacts was no longer a concern.

      The reasoning here was that in case the Ty-1-tubulin would not have been incorporated into MTs, we could have attributed it solely to the presence of the tag and no other factors, but this was not the case. This therefore allowed us to move to the inducible expression system.

      On p.7 / Fig S2A-B there appears to be a mistake in the presentation. Spindles are mentioned in the text - I can't see any in the figure. Fig S2A and B both show cytoskeletons, but the text suggests only B is about cytoskeletons. None of the blot shows BB2 staining of different cell fractions, contrary to statements in the text. The letter codes in the panel (T, C, D) don't match the codes in the legend (T, P, S).

      We thank the reviewer for spotting the mistakes. A panel with the spindle was added in Fig. S2. We did not stain fraction blots of the in-situ tagged cell lines with BB2. However, this was done with the inducible cell line and is shown in Fig. 1D. Letter code in the legend was adapted to match the figure.

      Figure 1. The evidence for incorporation into spindles is not strong. The structure indicated by the arrive could be a spindle but it's not very clear. There is a great example of a labelled spindle only in figure S5A. Here, at the start, it would be good to show a panel of cells in successive cell cycle stages (best, whole cells and cytoskeletons) to clearly show the structures that are labelled with Ty-1-tubulin.

      The current Fig. 1B (Fig. 1A before) depicts whole cells of an induced and a non-induced culture; we show whole cells to provide a complete picture of tubulin integration. A panel with detergent extracted cytoskeletons from the in situ tagged cell line has been added to Fig. 1A. We chose to show cytoskeletons or isolated flagella instead of whole cells because (1) the flagella are easier to see and (2) it formally demonstrates that tagged tubulin is incorporated in MTs.

      In general, tubulin labelling of the spindle was more consistently observed in whole cells as we did not use spindle preserving extraction buffers when preparing cytoskeletons. However, we did observe clear spindles in cytoskeletons as well (see Fig. S5 for example). The same was observed for the beta-tubulin specific KMX1 antibody in the past which is the gold standard to visualize the spindle (Sasse and Gull JCS1988). Regardless, a panel depicting spindle progression through mitosis using staining of Ty-1-tubulin has been added in Fig. S2 (The panel is a mix of whole cells and cytoskeletons).

      On p.8 (end of first paragraph) there is reference to cell cycle analyses, but no data is shown. Also on p.8, please clarify what the evidence is that "a fraction of cells did not respond to tetracycline". The fact that they remain unstained by Ty-1-tubulin is not in itself evidence they did not respond to tetracycline.

      We did not show the cell cycle data as it was similar to non-induced and does not provide any new information in our opinion. Hence, the sentence has been removed.

      The reviewer is correct that we do not have evidence that these cells did not respond to tetracycline. Some cells remained completely devoid of Ty-1-tubulin even after multiple days of induction. This was typically between 5-10% of cells. In experiments where the exact number is important, we counted the amount of "non-expressers" in whole cells.

      Figure S4A. The blot for the soluble fraction is not of great quality. I don't see how the conclusion was reached that the Ty-1-tubulin bands were faint.

      The blot of the soluble fraction that was stained with BB2 had to be exposed a lot longer compared to the blot stained with TAT-1. The soluble blots were repeated with the same result (lots of background noise when using BB2, a clear blot with TAT-1). In the TAT-1 blot only the endogenous tubulin band is clearly visible, with some very faint signal above corresponding to the Ty-1-tubulin. Soluble Ty-1-tubulin with BB2 or TAT-1 is visible in Fig. 1D after longer inductions.

      On p.11, it would be interesting to compare measured elongation rates with previously measured estimates for flagellum growth, comparing the growth rates, and relating them to cell cycle times in the corresponding experiments (which vary slightly between labs and studies).

      We attempted to address this in the discussion by comparing our experiments to the assembly rate measured with the PFR as reporter (Bastin et al. 1999). We could mention the corresponding doubling times in correlation to how many cells are bi-flagellated, but this was only done with the Ty-1-tubulin cell line and not with the PFR. In our experiments the average doubling time was ~9 hours with 52% of cells being bi-flagellated. This was measured with FTZC (marker of the transition zone at the base of the flagellum) and Mab25 (marker of the axoneme of the flagellum) which will lead to a slight underestimate of the real number of bi-flagellated cells, as the NF is initially very close which makes it difficult to notice/differentiate from the old one.

      Figure S6. I find the presentation of this figure confusing. It should be revised with clearer labelling of "cell cycle 1", "cell cycle 2", and the precise meaning of "type 3" should be clarified. There are two instances of "type 1" in the drawing, but one of these seems to fulfil the criteria of "type 3" (OF 1-4µm).

      We agree with the reviewer and therefore decided to remove this figure. We also considered the comments of the other two reviewers about complexity of the manuscript and changed the text of figure 5 to make it more approachable. This includes a simpler explanation for the expected amounts of flagella.

      Figure 7. In panel A, the absence of label at the NF distal end is not total, a purple line is still visible. Was any quantitation attempted (signal intensity, changes in length of labelled fragments over time?). Minimally, say how many cells were analysed for the numbers in panels D and E, and how many times this experiment was done.

      We agree with the reviewer that the decrease in the TMR signal in the NF of the cell in the original Fig. 7A (currently Fig. 8A) is gradual and not abrupt. Similarly to the Ty-1-tubulin experiments where the tagged protein becomes progressively more available (increasing intensity), the intensity of TMR-ligand becomes progressively less abundant (gradually decreasing intensity) as new (not TMR labelled) protein gets synthesized during the period of NF construction, progressively diluting the initially fully labeled population of RSP4/6. The slope of the gradient may differ between axonemal constituents, as it reflects the kinetics of protein synthesis, degradation, its incorporation into the axoneme, as well as the size of the soluble protein pool in the cytosol. We classify this type of signal as gradients, as opposed to the sharp decrease. At initial times after TMR-ligand washout (e.g. 4 hours in Fig. 8C), this long gradient is observed at the distal end of NFs and in some uniflagellated cells (NF-inheriting daughters). The distal ends of OFs in these experiments (if not fully labelled) display a sharp decrease, as do frequent uniflagellated cells, likely OF-inheriting daughters. The existence of these two different patterns demonstrates that two different mechanisms are responsible for incorporation of fresh RSP4/6 into the NF and OF axoneme, respectively. While incorporation into the NF is gradual, incorporation into the distal region of the OF is stepwise (restricted in time). Numbers of cells quantified for the table in Fig. 8 have been added. The NFs and OFs displaying the patterns of the gradient and sharp decrease, respectively, were observed in multiple experiments.

      Reviewer #3 (Significance (Required)):

      • General assessment: strengths and limitations

      Strengths: Trypanosoma brucei is a powerful model system in which to ask detailed questions about the assembly dynamics and hierarchy of microtubule-based cytoskeletal structures in general and cilia in particular. This elegant and well-designed study overcomes a previous technical limitation by allowing for the direct labelling of alpha tubulin, one of the main building blocks of the ciliary axoneme. The study sets out to test a specific hypothesis (grow-and-lock model) and provides evidence in support, leading to a refined model for cilia length regulation in trypanosomes.

      Limitations: With this system, visualisation of new tubulin incorporation requires de novo synthesis. There is a time lag between inducing expression of Ty-1-tubulin with tetracycline and being able to visualize the tagged proteins that needs to be taken into consideration. This time lag was estimated based on previous studies and the relatively quick appearance of Ty-1-tubulin on Western blots (within hours). This inevitably creates a situation where levels of tagged tubulin change rapidly, creating gradients of signal intensity (and variations in levels) that lead to some uncertainty in estimations of length of labelled microtubule fragments. Furhtermore, the epitope label is not compatible with live cell imaging, restricting analyses to fixed cells. The Ty-1-tubulin data is well ducmented; the RSP4/6 data appear to corroborate these findings but are less extensively documented.

      • Advance: The results succeed in integrating several recent findings from different research groups into a refined coherent model about cilia length regulation in trypanosomes. The tubulin tagging method could be gainfully transferred to other systems (although the state of the field in tubulin tagging in other systems is not clearly laid out in the paper).

      This paper could be of interest to a broad cell biology community interested in cilia and cytoskeletal dynamics.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript by Daniel Abbühl on "A novel approach to tagging tubulin reveals MT assembly dynamics of the axoneme in Trypanosoma brucei" uses an innnovative approach to label tubulin, which allows the authors to unveil new mechanisms in flagellar length regulation.

      The manuscript is very nice and will be very interesting for the cell biology community and therefore should be accepted. In some parts it becames a bit complex with all the models and complex phrasing, I wonder whether the text could be simplified to be more appealing. I have a few minor comments:

      • From the model the authors show in Figure 8- there should be a way of pulsing the cells in G1 for a short amount of time -2 hours- and getting both flagella tips labelled. But the authors seem to require longer labelling to get that result. This should be better explained.
      • Why do some cells not express the construct? Weren´t they all selected?
      • "The linear regression line in Fig. 3C was corrected by subtracting 45 minutes from each timepoint due to the previously reported delay between addition of tetracycline and the expression of the respective protein". However, in the authors data the delay may amount to one hour (western analysis- S4). Shouldn´t they use their data.
      • Fig 3: To measure the timepoints of flagella growth, wouldn´t it be better to do it with NF that started to grow before induction, rather than starting to grow after induction, to be sure that the timing of incorporation is fully accounted for?
      • Although it is not the focus of the manuscript it would have been very interesting to use the CEP164C mutant to see whether it would change the dynamics of incorporation and fully test their model and discussion.
      • In some parts of the manuscript/supplemental material the authors say they insert the Ty-1- tag one aminoacid after the acetylated lysine- other parts they say two aminoacids after- this should be consistent.
      • Fig. S1: 'Binding epitope of the TAT-1 antibody is highlighted in red'. There is no highlighting in red in this figure?
      • Fig. S2: Western blots are not very clear. What is the 'X' present in the C (first lane)? Weight of markers should be shown also in S4.
      • Fig 5: 'C: Frequency of bi-flagellated cells grouped by the different types of' The authors didn't finish the sentence.
      • Fig. S7: The 'B' is missing in both picture and legend.

      Significance

      This study advances our knowledge of flagellar length regulation and maintenance. Moreover the tools designed in this work will be very useful for the cell biology community in general.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study focuses on characterizing a previously identified gene, encoding the secreted protein Ppe1, that may play a role in rice infection by the blast fungus Magnaporthe oryzae. Magnaporthe oryzae is a hemibiotrophic fungus that infects living host cells before causing disease. Infection begins with the development of a specialized infection cell, the appressorium, on the host leaf surface. The appressorium generates enormous internal turgor that acts on a thin penetration peg at the appressorial base, forcing it through the leaf cuticle. Once through this barrier, the peg elaborates into bulbous invasive hyphae that colonizes the first infected cell before moving to neighboring cells via plasmodesmata. During this initial biotrophic growth stage, invasive hyphae invaginate the host plasma membrane, which surrounds growing hyphae as the extra-invasive hyphae membrane (EIHM). To avoid detection, the fungus secretes apoplastic effectors into the EIHM matrix via the conventional ER-Golgi secretion pathway. The fungus also forms a plant-derived structure called the biotrophic interfacial complex (BIC) that receives cytoplasmic effectors through an unconventional secretion route before they are delivered into the host cell. Together, these secreted effector proteins act to evade or suppress host innate immune responses. Here the authors contribute to our understanding of M. oryzae infection biology by showing how Ppe1, which localizes to both the appressorial penetration peg and to the appressorial-like transpressoria associated with invasive hyphal movements into adjacent cells, maximizes host cell penetration and disease development and is thus a novel contributor to rice blast disease.

      We sincerely appreciate the reviewer’s thoughtful evaluation of our work. We are grateful for your recognition of Ppe1 as a novel contributor to M. oryzae infection biology and your insightful summary of its spatio-temporal localization and functional importance in host penetration. We also appreciate devoting your time to provide us with constructive feedback, which greatly strengthens our manuscript.

      Strengths:

      A major goal of M. oryzae research is to understand how the fungus causes disease, either by determining the physiological underpinnings of the fungal infection cycle or by identifying effectors and their host targets. Such new knowledge may point the way to novel mitigation strategies. Here, the authors make an interesting discovery that bridges both fungal physiology and effector biology research by showing how a secreted protein Ppe1, initially considered an effector with potential host targets, associates with its own penetration peg (and transpressoria) to facilitate host invasion. In a previous study, the authors had identified a small family of small secreted proteins that may function as effectors. Here they suggest Ppe1 (and, later in the manuscript, Ppe2/3/5) localizes outside the penetration peg when appressoria develops on surfaces that permit penetration, but not on artificial hard surfaces that prevent peg penetration. Deleting the PPE1 gene reduced (although did not abolish) penetration, and a fraction of those that penetrated developed invasive hyphae that were reduced in growth compared to WT. Using fluorescent markers, the authors show that Ppe1 forms a ring underneath appressoria, likely where the peg emerges, which remained after invasive hyphae had developed. The ring structure is smaller than the width of the appressorium and also lies within the septin ring known to form during peg development. This so-called penetration ring also formed at the transpressorial penetration point as invasive hyphae moved to adjacent cells. This structure is novel, and required for optimum penetration during infection. Furthermore, Ppe1, which carries a functional signal peptide, may form on the periphery of the peg, together suggesting it is secreted and associated with the peg to facilitate penetration. Staining with aniline blue also suggests Ppe1 is outside the peg. Together, the strength of the work lies in identifying a novel appressorial penetration ring structure required for full virulence.

      We are deeply grateful to the reviewer for the clear understanding and insightful evaluation of our work. Your recognition of the novel contribution and scientific merit of our study is both encouraging and motivating. We sincerely appreciate the time, expertise and constructive feedback dedicated to reviewing our manuscript, as the comments have been instrumental in enhancing the quality of this work.

      Weaknesses:

      The main weakness of the paper is that, although Ppe1 is associated with the peg and optimizes penetration, the function of Ppe1 is not known. The work starts off considering Ppe1 a secreted effector, then a facilitator of penetration by associating with the peg, but what role it plays here is only often speculated about. For example, the authors consider at various times that it may have a structural role, a signaling role orchestrating invasive hyphae development, or a tethering role between the peg and the invaginated host plasma membrane (called throughout the host cytoplasmic membrane, a novel term that is not explained). However, more effort should be expended to determine which of these alternative roles is the most likely. Otherwise, as it stands, the paper describes an interesting phenomenon (the appressorial ring) but provides no understanding of its function.

      We sincerely appreciate the reviewer’s comments. We have revised "host cytoplasmic membrane" to "host plasma membrane" throughout the manuscript for consistency. To further investigate the role of the Ppe1 in the interaction between M. oryzae and rice, we overexpressed PPE1 in rice ZH11. A pCXUN-SP-GFP-Ppe1 vector containing a signal peptide and an N-terminal GFP tag was constructed (pCXUN-SP-GFP-Ppe1), and 35 GFP-PPE1-OX plants (T0) were subsequently obtained through Agrobacterium-mediated rice transformation. Subsequently, PCR and qRT-PCR validation were performed on the T0 transgenic plants. The PCR results showed that the inserted plasmid could be amplified from the genomic DNA extracted from the leaves of all the resulting T0 plants (Author response image 1A). qRT-PCR results indicated that most T0 transgenic plants could transcriptionally express PPE1 (Author response image 1B). T0 plants with higher expression levels were selected for western blot analysis, which confirmed the presence of GFP-Ppe1 bands of the expected size (Author response image 1C). To further explore the targets of Ppe1 in rice, the leaf sheaths of T0 plants were inoculated with M. oryzae strain Guy11. Total proteins were extracted at 24 hours post-inoculation (hpi) and subjected to immunoprecipitation using GFP magnetic beads. Silver staining revealed more interacting protein bands in T0 plants compared to ZH11 and GFP-OX controls (Author response image 1D). These samples were then analyzed by mass spectrometry in which 331 rice proteins that potentially interact with Ppe1 were identified (Author response image 1E). Subsequently, yeast two-hybrid assays were performed on 13 putative interacting proteins with higher coverage, but no interaction was detected between Ppe1 and these proteins (Author response image 1F-G). Considering that the identification and functional validation of interacting proteins is a labor-intensive and time-consuming endeavor, we will focus our future efforts on in-depth studies of Ppe1's function in rice.

      Author response image 1.

      Screening of Ppe1 candidate targets in rice. (A) The determination of GFP-PPE1 construct in transgenic rice. (B) The expression of PPE1 transgenic rice (T0) was verified by qRT-PCR. (C) Western blot analysis of Ppe1 expression in transgenic rice. (D) Rapid silver staining for detection of the purified proteins captured by the GFP-beads. (E) Venn diagram comparing the number of proteins captured in the different samples. (F) Identity of the potential targets of Ppe1 in rice. (G) Yeast two-hybrid assay showing negative interaction of Ppe1 with rice candidate proteins.

      The inability to nail down the function of Ppe1 likely stems from two underlying assumptions with weak support. Firstly, the authors assume that Ppe1 is secreted and associated with the peg to form a penetration ring between the plant cell wall and cytoplasm membrane. However, the authors do not demonstrate it is secreted (for instance by blocking Ppe1 secretion and its association with the peg using brefeldin A).

      To investigate the secretion pathway of Ppe1 in M. oryzae, we determined the inhibitory effects of Brefeldin A (BFA) on conventional ER-to-Golgi secretion in fungi as suggested by the reviewer. We inoculated rice leaf sheaths with conidia suspensions from the Ppe1-mCherry and PBV591 strains (containing a Pwl2-mCherry-NLS and Bas4-GFP co-expressing constructs) and treated them with BFA. We found that, even after exposure to BFA for 5 to 11 hours, the Ppe1-mCherry still formed its characteristic ring conformation (Author response image 2). Similarly, in the BFA-treated samples, the cytoplasmic effector Pwl2-mCherry accumulated at the BIC, while the apoplastic effector Bas4-GFP was retained in the invasive hyphae (Author response image 2). These results indicate that Ppe1 is not secreted through the conventional ER-Golgi secretion pathway.

      Author response image 2.

      The secretion of Ppe1 is not affected by BFA treatment. (A) and (B) The Ppe1-mCherry fluorescent signal was still observed both in the presence and absence of BFA. (C) Following BFA treatment, the secretion of the apoplastic effector Bas4-GFP was blocked while that of the cytoplasmic effector Pwl2-mCherry was not affected. The rice leaf sheath tissue was inoculated with 50 μg/mL BFA (0.1% DMSO) at 17 hpi. Images were captured at 22 hpi for A and 28 hpi for B and C. Scale bars = 10 µm.

      Also, they do not sufficiently show that Ppe1 localizes on the periphery of the peg. This is because confocal microscopy is not powerful enough to see the peg. The association they are seeing (for example in Figure 4) shows localization to the bottom of the appressorium and around the primary hyphae, but the peg cannot be seen. Here, the authors will need to use SEM, perhaps in conjunction with gold labeling of Ppe1, to show it is associating with the peg and, indeed, is external to the peg (rather than internal, as a structural role in peg rigidity might predict). It would also be interesting to repeat the microscopy in Figure 4C but at much earlier time points, just as the peg is penetrating but before invasive hyphae have developed - Where is Ppe1 then? Finally, the authors speculate, but do not show, that Ppe1 anchors penetration pegs on the plant cytoplasm membrane. Doing so may require FM4-64 staining, as used in Figure 2 of Kankanala et al, 2007 (DOI: 10.1105/tpc.106.046300), to show connections between Ppe1 and host membranes. Note that the authors also do not show that the penetration ring is a platform for effector delivery, as speculated in the Discussion.

      We sincerely appreciate the reviewer's valuable suggestion regarding SEM with immunogold labeling to precisely visualize Ppe1's association with penetration peg. While we fully acknowledge this would be an excellent approach, after consulting several experts in the field, we realized that the specialized equipment and technical expertise required for fungal immunogold-SEM are currently unavailable to us. We sincerely hope that the reviewer will understand this technical limitation.

      To further strengthen our evidence for the role of Ppe1's in anchoring penetration peg to the plant plasma membrane, we provided new co-localization images of Ppe1 and penetration peg (Fig. S7). At 16 hours post-inoculation (hpi), when the penetration peg was just forming and prior to the development of invasive hyphae, the Ppe1-mCherry fluorescence forms a tight ring-like structure closely associated with the base of the appressorium. As at 23 hpi, the circular Ppe1-mCherry signal was still detectable beneath the appressorium, and around the penetration peg which differentiated into the primary invasive hyphae. Furthermore, we obtained 3D images of the strain expressing both Ppe1-mCherry and Lifeact-GFP during primary invasive hyphal development. The results revealed that Ppe1 forms a ring-like structure that remains anchored to the penetration peg during fungal invasion (Fig. S6).

      We also conducted FM4-64 staining experiment as recommended by the reviewer. Although the experiment provided valuable insights, we found that the resolution was insufficient to precisely delineate the spatial relationship between Ppe1 and host membranes at the penetration peg (Author response image 3). To optimize this colocalization, we tested the localization between Ppe1-mCherry ring and rice plasma membrane marker GFP-OsPIP2 (Fig. S8). These new results provide compelling complementary evidence supporting our conclusion that Ppe1 functions extracellularly at the host-pathogen interface. We hope these additional data will help address the reviewer's concerns regarding Ppe1's localization.

      Author response image 3.

      FM4-64-stained rice leaf sheath inoculated with M. oryzae strain expressing Ppe1-GFP. Ppe1-GFP ring was positioned above the primary invasive hyphae. Scale bar = 5 µm.

      Secondly, the authors assume Ppe1 is required for host infection due to its association with the peg. However, its role in infection is minor. The majority of appressoria produced by the mutant strain penetrate host cells and elaborate invasive hyphae, and lesion sizes are only marginally reduced compared to WT (in fact, the lesion density of the 70-15 WT strain itself seems reduced compared to what would be expected from this strain). The authors did not analyze the lesions for spores to confirm that the mutant strains were non-pathogenic (non-pathogenic mutants sometimes form small pinprick-like lesions that do not sporulate). Thus, the pathogenicity phenotype of the knockout mutant is weak, which could contribute to the inability to accurately define the molecular and cellular function of Ppe1.

      We appreciate the reviewer’s comments. To ensure the reliability of our findings, we conducted spray inoculation experiments with multiple independent repeats. Our results consistently demonstrated that deletion of the PPE1 gene significantly attenuates the virulence of M. oryzae. Further analysis of lesion development and sporulation in the Δ_ppe1_ mutant revealed that it retains the ability to produce conidia. To validate these observations, we generated a PPE1 knockout in the wild-type reference strain Guy11. Similarly, we observed a significant decrease in the pathogenicity of the Δ_ppe1_ mutants generated from the wild-type Guy11 strain compared to Guy11 in the spray assay (Fig S2). These results collectively indicate the importance of Ppe1 in the pathogenicity of M. oryzae to rice.

      In summary, it is important that the role of Ppe1 in infection be determined.

      Reviewer #2 (Public review):

      The article focuses on the study of Magnaporthe oryzae, the fungal pathogen responsible for rice blast disease, which poses a significant threat to global food security. The research delves into the infection mechanisms of the pathogen, particularly the role of penetration pegs and the formation of a penetration ring in the invasion process. The study highlights the persistent localization of Ppe1 and its homologs to the penetration ring, suggesting its function as a structural feature that facilitates the transition of penetration pegs into invasive hyphae. The article provides a thorough examination of the infection process of M. oryzae, from the attachment of conidia to the development of appressoria and the formation of invasive hyphae. The discovery of the penetration ring as a structural element that aids in the invasion process is a significant contribution to the understanding of plant-pathogen interactions. The experimental methods are well-documented, allowing for reproducibility and validation of the results.

      We sincerely appreciate the thoughtful and insightful evaluation of our work. Thank you for recognizing the significance of our findings regarding the penetration ring and the functional role of Ppe1 during host invasion.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Line 48: "after appressorium- or transpressorium-mediated penetration of plant cell wall" - transpressoria do not penetrate the plant cell wall.

      Thank you for your valuable suggestion. For improved clarity, we have rephrased the sentence as follows: In this study, we showed that a penetration ring is formed by penetration pegs after appressorium-mediated penetration of plant cell wall.

      Line 143: "approximately 25% of the 143 appressoria formed by the Δppe1 mutant had no penetration peg" - It is not possible to see the penetration peg by confocal microscopy.

      Thank you for your valuable suggestion. We have revised the sentence as follows: In contrast, approximately 25% of the appressoria formed by the Δ_ppe1_ mutant had no penetration.

      Line 159: "inner cycle" -should be inner circle?

      We gratefully acknowledge the reviewer's careful reading. The typographical error has been corrected throughout the revised manuscript.

      Line 255: "These results indicate that initiation of penetration peg formation is necessary for the formation of the penetration ring." Actually, more precisely, they indicate that penetration is necessary.

      We appreciate this suggestion and have revised the text to be more concise: These results indicate that penetration is necessary for the formation of the penetration ring.

      Line 282: "unlike subcellular localizations of other effectors"- is this an effector if no plant targets are known?

      We appreciate this suggestion and have revised the text as follows: unlike subcellular localizations of Bas4, Slp1, Pwl2, and AvrPiz-t.

      Line 299: "it may function as a novel physical structure for anchoring penetration pegs on the surface of plant cytoplasm membrane after cell wall penetration" - an interaction with the plant plasma membrane was not shown and this is speculative.

      We have provided new evidence to show the spatial positioning of Ppe1-mCherry ring with the rice plasma membrane (see figure S8)

      Line 301: "It is also possible that this penetration ring functions as a collar or landmark that is associated with the differentiation of penetration pegs (on the surface of cytoplasm membrane) into primary invasive hyphae enveloped in the EIHM cytoplasm membrane (Figure 7)." The alternative conclusions for Ppe1 function, either interacting with host membranes or acting as a developmental landmark, need to be resolved here.

      We appreciate this suggestion and have revised the text as follows: It is also possible that this penetration ring functions as a collar that is associated with the differentiation of penetration pegs into primary invasive hyphae enveloped in the EIHM (Figure 7).

      Line 317: "is likely a structural feature or component for signaling the transition of penetration pegs to invasive hyphae",- if the authors think Ppe1 has these roles, why do they refer to Ppe1 as an effector?

      Many thanks for these comments. We have revised this and refer to Ppe1 as a secreted protein throughout the revised manuscript.

      Line 337: "After the penetration of plant cell wall, the penetration ring may not only function as a physical structure but also serve as an initial effector secretion site for the release of specific effectors to overcome plant immunity in early infection stages"- which is it? Also, no evidence is provided to suggest it is a platform for effector secretion.

      We sincerely appreciate your valuable suggestion. We have revised this sentence as follows: After the penetration of plant cell wall, the penetration ring may not only function as a physical structure but also serve as a secretion site for the release of specific proteins to overcome plant immunity during the early infection stages.

      Reviewer #2 (Recommendations for the authors):

      (1) While the study suggests the penetration ring as a structural feature, it remains unclear whether it also serves as a secretion site for effectors. Further exploration of this aspect would strengthen the conclusions.

      We thank the reviewer for this useful suggestion. In this study, we demonstrated that Ppe1 proteins form a distinct penetration ring structure at the site where the penetration peg contacts the plant plasma membrane prior to differentiation into primary invasive hyphae (Figs. 2 and 7). Thus, we reasoned that penetration ring may function as a novel physical structure. Notably, additional Ppe family members (Ppe2, Ppe3, and Ppe5) were also found to localize to this penetration ring (Fig. 6B), suggesting that it also serves as a secretion site for releasing proteins. To test whether Ppe1 and Ppe2 label to the same site, we analyzed the colocalization between Ppe1-GFP and Ppe2-mCherry. The results showed that Ppe1-GFP and Ppe2-mCherry are well colocalized (Author response image 4). This study primarily focuses on the discovery and characterization of the penetration ring. The potential role of this structure in effector translocation will be investigated in future studies.

      Author response image 4.

      Ppe1 co-localizes with Ppe2 at the penetration ring in M. oryzae. Line graphs were generated at the directions pointed by the white arrows. Scale bar = 2μm.

      (2) The article could benefit from a discussion on the broader implications of these findings for developing resistant crop varieties or new fungicidal strategies.

      We have incorporated this discussion as suggested (lines 358-360).

      (3) What is the significance of the formation of the penetration ring in the pathogenicity of the rice blast fungus? Or, how does it assist the fungus in its infection process?

      Our findings have several significant implications. First, we believe that the discovery of the penetration ring as a novel physical structure associated with the differentiation of invasive hyphae represents a breakthrough in plant-pathogen interactions that will be of interest to fungal biologists, pathologists and plant biologists. Secondly, our study presents new role of the peg as a specialized platform for secretory protein deployment, in addition to its commonly known role as a physical penetration tool for the pathogen. Thirdly, we identify Ppe1 as a potential molecular target for controlling the devastating rice blast disease, as Ppe homologs are absent in plants and mammals. We have incorporated this discussion in the revised manuscript (lines 354-362).

    1. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me. For even in the race of gods this feeling finds a home, even pleasure at the honour men pay them. And the truth of this I soon will show; for that son of Theseus, born of the Amazon, Hippolytus, whom holy Pittheus taught, alone of all the dwellers in this land of Troezen, calls me vilest of the deities. Love he scorns, and, as for marriage, will none of it; but Artemis, daughter of Zeus, sister of Phoebus, he doth honour, counting her the chief of goddesses, and ever through the greenwood, attendant on his virgin goddess, he clears the earth of wild beasts with his fleet hounds, enjoying the comradeship of one too high for mortal ken. 'Tis not this I grudge him, no! why should I? But for his sins against me

      Annotation by: [Your Full Name] CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Aphrodite talks in a super fancy way here. She talks and acts like a queen to make herself sound more powerful. This is because she’s a goddess, and in Greek plays, gods were always shown as being really important. The way she talks is all about showing off her power. She says she can help people who respect her or destroy people who don’t. This kind of serious, dramatic language is normal for Greek gods in plays because it makes them seem way bigger and more important than normal people.

    2. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: In this quote, Aphrodite declares her vast influence over both mortals and gods, emphasizing that she rewards those who honor her and punishes those who don't. This showcases her as a powerful female deity who demands respect and can control the fates of individuals. Her power over love and desire contrasts with Hippolytus' self-control and rejection of passion, highlighting the different ways power is portrayed in the play.

    3. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Aphrodite talks about how powerful she is. She controls love and desire everywhere, and she makes it clear that if people respect her, she will help them. But if they ignore her or disrespect her, she will punish them. This shows that even though she is a goddess of love, she is not just kind and gentle but that she can also be dangerous if people make her angry. This makes her a really powerful female character in the story because she can control people’s feelings and lives.

    1. I honor those who reverence my power, but I lay low all those who think proud thoughts against me. For in the gods as well one finds this trait: they enjoy receiving honor from mortals.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Aphrodite talks about how she rewards people who respect her but punishes anyone who disrespects her. This shows how powerful she is because everyone has to listen to her, even though she’s a goddess of love. It also shows how women, especially goddesses, were expected to be respected but could also be blamed if something went wrong.

    1. He waswise, lie saw mysteries and knew secret things, he brought us a tale of the daysbefore the flood.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Kovacs’ version is written in modern and clear English, which makes it easy to understand and focuses on Gilgamesh’s journey. Sandars’ version is written in a more poetic style, making him look like a hero. These two styles show how translators can change the way we see a character, depending on whether they want him to look like a brave man or a famous hero.

    2. e went on a long journey, was weary, worn-out with labour,returning he rested, he engraved on a stone the whole story

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Gilgamesh as a hero, but they focus on different things. Kovacs’ version shows him as someone who goes on a tough journey and learns a lot, while Sandars’ version makes him look like a famous legend whose story should be told to everyone. This connects to gender politics because it shows two ways of being a "great man", first is about bravery and wisdom, and the other is about being remembered.

    3. WILL proclaim to the world the deeds of Gilgamesh. This was the man to whomall things were known; this was the king who knew the countries of the world. He waswise, lie saw mysteries and knew secret things, he brought us a tale of the daysbefore the flood. He went on a long journey, was weary, worn-out with labour,returning he rested, he engraved on a stone the whole story.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Gilgamesh is shown as a hero who had come back from a journey and shares his stories from these adventures. This connects to gender politics because it shows how men were expected to be strong leaders who were remembered for their work and achievements.

    1. He went on a distant journey, pushing himself to exhaustion,but then was brought to peace

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Kovacs’ version is written in modern and clear English, which makes it easy to understand and focuses on Gilgamesh’s journey. Sandars’ version is written in a more poetic style, making him look like a hero. These two styles show how translators can change the way we see a character, depending on whether they want him to look like a brave man or a famous hero.

    2. He carved on a stone stela all of his toils,and built the wall of Uruk-Haven,the wall of the sacred Eanna Temple, the holy sanctuary

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Gilgamesh as a hero, but they focus on different things. Kovacs’ version shows him as someone who goes on a tough journey and learns a lot, while Sandars’ version makes him look like a famous legend whose story should be told to everyone. This connects to gender politics because it shows two ways of being a "great man", first is about bravery and wisdom, and the other is about being remembered.

    3. He saw the Secret, discovered the Hidden,he brought information of (the time) before the Flood.He went on a distant journey, pushing himself to exhaustion,but then was brought to peace

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211 In this version, Gilgamesh is shown as a hero who goes on a long journey, learns a lot, and brings back stories from the past. This makes him look like the a good hero where he has characteristics of someone who is brave, curious, and always trying to learn more. This connects to gender politics because it shows how men were expected to be strong, adventurous, and wise.

    1. “This was my thought, when my thanes and I bent to the ocean and entered our boat, that I would work the will of your people fully, or fighting fall in death, in fiend’s gripe fast. I am firm to do an earl’s brave deed, or end the days of this life of mine in the mead-hall here.”

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Hall’s translation is from the 1800s, so it uses older and fancier words to describe Beowulf and how his characteristics make him a hero. Gummere’s translation is from the early 1900s and is easier to read using more of modern texts and descriptions. These differences show how ideas of heroism and masculinity can change over time, even though Beowulf is always a strong, brave hero.

    2. I would work the will of your people fully, or fighting fall in death,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Beowulf as a brave and respectful hero, but Hall’s version is more poetic, which makes Beowulf seem like a legendary figure. Gummere’s version is simpler and makes Beowulf seem more like a real person narrating the story. Both connect to gender politics by highlighting how a hero must be strong but also respectful.

    3. This was my thought, when my thanes and I bent to the ocean and entered our boat, that I would work the will of your people fully, or fighting fall in death,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Beowulf shows his bravery by talking about how he and his men sailed across the sea to help Hrothgar and his people, knowing that they might die. This is a big part of gender politics because it shows the traditional idea of masculinity of being strong, fearless, and willing to sacrifice yourself for honor.

    1. multitude of dreams at night

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Potter's version is more descriptive in her feelings of her son's departure. It shows more of an emotional side of the story. Smyth's version tells the story like a book where it does not show as much emotion and gets to the point. These two stories show how different emotions can be shown of the same character based on different writing.

    2. I have been haunted by a multitude of dreams at night since the time when my son, having despatched his army, departed with intent to lay waste the land of the Ionians. But never yet have I beheld so distinct a vision [180] as that of the last night. This I will describe to you.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Atossa being upset, but in different ways. In Potter’s version, she’s emotional and scared, which makes her seem vulnerable. In Smyth’s version, she’s more controlled, which makes her look strong.

    3. I have been haunted by a multitude of dreams at night since the time when my son, having despatched his army, departed with intent to lay waste the land of the Ionians.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: This version of Atossa is different. She’s still worried, but instead of showing it publicly, she keeps her feelings inside. She instead tells us about the dreams she has about her son. This connects to the view of women as she is showing us a different version of her being more strong as she isn't showing her emotions publically but has dreams instead.

    1. Haunting my dreams, how plainly did you show

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Potter's version is more descriptive in her feelings of her son's departure. It shows more of an emotional side of the story. Smyth's version tells the story like a book where it does not show as much emotion and gets to the point. These two stories show how different emotions can be shown of the same character based on different writing.

    2. Ah me, what sorrows for our ruin'd host Oppress my soul! Ye visions of the night

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Atossa is emotional as she talks about nightmares that keep haunting her, and it shows how worried she is for her son and the Persian army. It shows a traditional view of women that show emotions as she shows her emotions of sad, fear, anxious, etc when it comes to her son and the people.

    3. Ah me, what sorrows for our ruin'd host Oppress my soul! Ye visions of the night Haunting my dreams, how plainly did you show These ills!-You set them in too fair a light.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Atossa being upset, but in different ways. In Potter’s version, she’s emotional and scared, which makes her seem vulnerable. In Smyth’s version, she’s more controlled, which makes her look strong.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study puts forth the model that under IFN-B stimulation, liquid-phase WTAP coordinates with the transcription factor STAT1 to recruit MTC to the promoter region of interferon-stimulated genes (ISGs), mediating the installation of m<sup>6</sup>A on newly synthesized ISG mRNAs. This model is supported by strong evidence that the phosphorylation state of WTAP, regulated by PPP4, is regulated by IFN-B stimulation, and that this results in interactions between WTAP, the m<sup>6</sup>A methyltransferase complex, and STAT1, a transcription factor that mediates activation of ISGs. This was demonstrated via a combination of microscopy, immunoprecipitations, m<sup>6</sup>A sequencing, and ChIP. These experiments converge on a set of experiments that nicely demonstrate that IFN-B stimulation increases the interaction between WTAP, METTL3, and STAT1, that this interaction is lost with the knockdown of WTAP (even in the presence of IFN-B), and that this IFN-B stimulation also induces METTL3-ISG interactions.

      Strengths:

      The evidence for the IFN-B stimulated interaction between METTL3 and STAT1, mediated by WTAP, is quite strong. Removal of WTAP in this system seems to be sufficient to reduce these interactions and the concomitant m<sup>6</sup>A methylation of ISGs. The conclusion that the phosphorylation state of WTAP is important in this process is also quite well supported.

      Weaknesses:

      The evidence that the above mechanism is fundamentally driven by different phase-separated pools of WTAP (regulated by its phosphorylation state) is weaker. These experiments rely relatively heavily on the treatment of cells with 1,6-hexanediol, which has been shown to have some off-target effects on phosphatases and kinases (PMID 33814344).

      Given that the model invoked in this study depends on the phosphorylation (or lack thereof) of WTAP, this is a particularly relevant concern.

      We are grateful for the reviewer’s positive comment and constructive feedback. 1,6-hexanediol (hex) was considered an inhibitor of hydrophobic interaction, thereby capable of dissolving protein phase separation condensates. Hex (5%-10% w/v) was still widely used to explore the phase separation characteristic and function on various protein, including some phosphorylated proteins such as pHSF1, or kinases such as NEMO1-3. Since hydrophobic interactions involved in various types of protein-protein interaction, the off-target effects of hex were inevitable. It has been reported that hex impaired RNA polymerase II CTD-specific phosphatase and kinase activity at 5% concentration4, which led to the reviewer’s concern. In response to this concern, we investigated the phosphorylation level of WTAP under hex concentration gradient treatment. Surprisingly, we found that both 2% and 5% hex maintained the PPP4c-mediated dephosphorylation level of WTAP but still led to the dissolution of WTAP LLPS condensates (Figure 5-figure supplement 1H; Author response image 1), indicating that hex dispersed WTAP phase separation in a phosphorylation-independent manner. Consistent with our findings, Ge et al. used 10% hex to dissolve WTAP phase separation condensates5. Additionally, we found the phosphorylation level of STAT1 was not affected by both 2% and 5% hex, revealing the off-target and impairment function of hex on kinases or phosphatases might not be universal (Figure 5-figure supplement 1H). Collectively, since the 5% hex we used did not influence the de-phosphorylation event of WTAP, function of WTAP LLPS mediating interaction between methylation complex and STAT1 revealed by our results was independent from its phosphorylation status.

      Author response image 1.

      mCherry-WTAP-rescued HeLa cells were treated with 10 ng/mL IFN-β together with or without 2% or 5% hex and 20 μg/mL digitonin for 1 hour or left untreated. Phase separation of mCherry-WTAP was observed through confocal microscopy. The number of WTAP condensates that diameter over 0.4 μm of n = 20 cells were counted through ImageJ and shown. Scale bars indicated 10 μm. All error bars, mean values ± SD, P-values were determined by unpaired two-tailed Student’s t-test of n = 20 cells in (B). For (A), similar results were obtained for three independent biological experiments.

      Related to this point, it is also interesting (and potentially concerning for the proposed model) that the initial region of WTAP that was predicted to be disordered is in fact not the region that the authors demonstrate is important for the different phase-separated states.

      A considerable number of proteins undergo phase separation via interactions between intrinsically disordered regions (IDRs). IDR contains more charged and polar amino acids to present multiple weakly interacting elements, while lacking hydrophobic amino acids to show flexible conformations6. In our study, we used PLAAC websites (http://plaac.wi.mit.edu/) to predict IDR domain of WTAP, and a fragment (234-249 amino acids) was predicted as prion-like domain (PLD). However, deletion of this fragment failed to abolish the phase separation properties of WTAP, which might be the main confusion to reviewers. To explain this issue, we checked the WTAP structure (within part of MTC complex) from protein data bank (https://www.rcsb.org/structure/7VF2) and found that the prediction of IDR has been renewed due to the update of different algorithm. IDR of WTAP expanded to 245-396 amino acids, encompassing the entire CTD region. Our results demonstrate that the CTD was critical for WTAP LLPS, as CTD deficiency significantly inhibited the formation of liquid condensates both in vitro and in cells. Also, phosphorylation sites on CTD were important for the phase transition of WTAP. These observations highlight the phosphorylation status on CTD region as a key driving force of phase separation, consistent with the established role of IDR in regulating LLPS. We have revised our description on WTAP IDR in our article following the reviewers’ suggestion.

      Taking all the data together, it is also not clear to me that one has to invoke phase separation in the proposed mechanism.

      In this article, we observed that WTAP underwent phase transition during virus infection and IFN-β treatment, and proposed a novel mechanism whereby post translational modification (PTM)-driven WTAP LLPS was required for the m<sup>6</sup>A modification of ISG mRNAs. To verify the hypothesis, we first demonstrated the relationship between PTM and phase separation of WTAP. We constructed WTAP 5ST-D and 5ST-A mutant to mimic WTAP phosphorylation and dephosphorylation status respectively, and figured out that dephosphorylated WTAP underwent LLPS. We also found that PPP4 was the main phosphatase to regulate WTAP dephosphorylation. To further investigation, we introduced the potent PPP4 inhibitor, fostriecin. Consistent with our findings in PPP4 deficient model, fostriecin treatment significantly inhibited the IFN-β-induced dephosphorylation of WTAP and disrupted its LLPS condensates, indicating that PPP4 was the key phosphatase recruited by IFN-β to regulate WTAP, confirming that PTM governs WTAP LLPS dynamics (Figure 2-figure supplement 1C and H). Furthermore, fostriecin-induced impairment of WTAP phosphorylation and phase separation correlated with reduced m<sup>6</sup>A modification level and elevated ISGs expression level (Figure 4C and Figure 4-figure supplement 1E). These findings together emphasized that dephosphorylation is required for WTAP LLPS.

      As for the function of WTAP LLPS, we assumed that WTAP might undergo LLPS to sequester STAT1 together with m<sup>6</sup>A methyltransferase complex (MTC) for mediating m<sup>6</sup>A deposition on ISG mRNAs co-transcriptionally under IFN-β stimulation. Given that hex dissolved WTAP LLPS condensates without affecting dephosphorylation status (Figure 5-figure supplement 1H; Author response image 1), various experiments we performed previously actually confirmed the critical role of WTAP LLPS during m<sup>6</sup>A modification (Figure 4A), as well as the mechanism that WTAP phase separation enhanced the interaction between MTC and STAT1 (Figure 5E-F). Subsequent to reviewer’s comments, more experiments were conducted for further validation. We found the WTAP liquid condensates formed by wild type (WT) WTAP or WTAP 5ST-A mutant (which mimics dephosphorylated-WTAP) could be dissembled by hex, which also led to the impairment of the interaction between STAT1, METTL3 and WTAP (Figure 5-figure supplement 1E). In addition, in vitro experiments demonstrated that hex treatment significantly disrupted the interaction between recombinant GFP-STAT1 and mCherry-WTAP which expressed in the E. coli system (Figure 5F and Figure 5-figure supplement 1G). Notably, this prokaryotic expression system lacks endogenous phosphorylation machinery, resulting in non-phosphorylated mCherry-WTAP. For further validation, we performed the interaction of WTAP WT or 5ST-A with the promoter regions of ISG as well as the m<sup>6</sup>A modification of ISG mRNAs were attenuated by WTAP LLPS dissolution (Figure 4E and Figure 6E). These findings together revealed that WTAP LLPS were the critical mediators of the STAT1-MTC interactions, ISG promoter regions binding and the co-transcription m<sup>6</sup>A modification.

      Collectively, our results demonstrated that IFN-β treatment recruited PPP4c to dephosphorylate WTAP, thereby driving the formation of WTAP liquid condensates which were essential for facilitating STAT1-MTC interaction and m<sup>6</sup>A deposition, subsequently mediated ISG expression. Since we revealed a strong association between PTM-regulated WTAP phase transition and its m<sup>6</sup>A modification function, WTAP LLPS was a novel and functionally distinct mechanism that must be reckoned with in this study.

      Author response image 2.

      Wild type (WT) WTAP or 5ST-A mutant-rescued WTAP<sup>sgRNA</sup> THP-1-derived macrophages are stimulated with or without with 10 ng/mL IFN-β together followed with 2% or 5% 1,6-hexanediol (hex) and 20 μg/mL digitonin for 1 hour or left untreated. antibody and imaged using confocal microscope. Scale bars indicated 10 μm.

      Reviewer #2 (Public review):

      In this study, Cai and colleagues investigate how one component of the m<sup>6</sup>A methyltransferase complex, the WTAP protein, responds to IFNb stimulation. They find that viral infection or IFNb stimulation induces the transition of WTAP from aggregates to liquid droplets through dephosphorylation by PPP4. This process affects the m<sup>6</sup>A modification levels of ISG mRNAs and modulates their stability. In addition, the WTAP droplets interact with the transcription factor STAT1 to recruit the methyltransferase complex to ISG promoters and enhance m<sup>6</sup>A modification during transcription. The investigation dives into a previously unexplored area of how viral infection or IFNb stimulation affects m<sup>6</sup>A modification on ISGs. The observation that WTAP undergoes a phase transition is significant in our understanding of the mechanisms underlying m<sup>6</sup>A's function in immunity. However, there are still key gaps that should be addressed to fully accept the model presented.

      Major points:

      (1) More detailed analyses on the effects of WTAP sgRNA on the m<sup>6</sup>A modification of ISGs:

      a. A comprehensive summary of the ISGs, including the percentage of ISGs that are m<sup>6</sup>A-modified. merip-isg percentage

      b. The distribution of m<sup>6</sup>A modification across the ISGs. Topology

      c. A comparison of the m<sup>6</sup>A modification distribution in ISGs with non-ISGs. Topology

      In addition, since the authors propose a novel mechanism where the interaction between phosphorylated STAT1 and WTAP directs the MTC to the promoter regions of ISGs to facilitate co-transcriptional m<sup>6</sup>A modification, it is critical to analyze whether the m<sup>6</sup>A modification distribution holds true in the data.

      We appreciate the reviewer’s summary of our manuscript and the constructive assessment. We have conducted the related analysis accordingly to present the m<sup>6</sup>A modification in ISGs in our model as reviewers suggested. Our results showed that about 64.29% of core ISGs were m<sup>6</sup>A modified under IFN-β stimulation (Figure 3-figure supplement 1B; Figure 3G), which was consistent with the similar percentage in previous studies[7,8]. The m<sup>6</sup>A distribution of the ISGs transcripts including IFIT1, IFIT2, OAS1 and OAS2 was validated (Figure 3-figure supplement 1H).

      Generally, m<sup>6</sup>A deposition preferentially located in the vicinity of stop codon, while m<sup>6</sup>A modification was highly dynamic under different cellular condition. However, we compared the topology of m<sup>6</sup>A deposition of ISGs with non-ISGs, and found that m<sup>6</sup>A modification of ISG mRNAs showed higher preference of coding sequences (CDS) localization compared to global m<sup>6</sup>A deposition (Figure 3H). Similarly, various researches uncovered the m<sup>6</sup>A deposition regulated by co-transcriptionally m<sup>6</sup>A modification preferred to locate in the CDS [9-11]. Since our results of m<sup>6</sup>A modification distribution of ISGs was consistent with the co-transcriptional m<sup>6</sup>A modification characteristics, we believed that our hypothesis and results were correlated and consistent.

      (2) Since a key part of the model includes the cytosol-localized STAT1 protein undergoing phosphorylation to translocate to the nucleus to mediate gene expression, the authors should focus on the interaction between phosphorylated STAT1 and WTAP in Figure 4, rather than the unphosphorylated STAT1. Only phosphorylated STAT1 localizes to the nucleus, so the presence of pSTAT1 in the immunoprecipitate is critical for establishing a functional link between STAT1 activation and its interaction with WTAP.

      Thank you for the constructive comments. As we showed in Figure 4, we found the enhanced interaction between phase-separated WTAP and the nuclear-translocated STAT1 which were phosphorylated under IFN-β stimulation, indicating the importance of phosphorylation of STAT1. We repeated the immunoprecipitation experiments to clarify the function of pSTAT1 in WTAP interaction. Our results showed that IFN-β stimulation induced the interaction of WTAP with both pSTAT1 and STAT1 (Figure 5-figure supplement 1C), indicating that most of the WTAP-associated STAT1 was phosphorylated. Taken together, our data proved that LLPS WTAP bound with nuclear-translocated pSTAT1 under IFN-β stimulation.

      (3) The authors should include pSTAT1 ChIP-seq and WTAP ChIP-seq on IFNb-treated samples in Figure 5 to allow for a comprehensive and unbiased genomic analysis for comparing the overlaps of peaks from both ChIP-seq datasets. These results should further support their hypothesis that WTAP interacts with pSTAT1 to enhance m<sup>6</sup>A modifications on ISGs.

      Thank you for raising this thoughtful comment. In this study, MeRIP-seq and RNA-seq along with immunoprecipitation and immunofluorescence experiments supported that phase transition of WTAP enhanced its interaction to pSTAT1, thus mediating ISGs m<sup>6</sup>A modification and expression by enhancing its interaction with nuclear-translocated pSTAT1 during virus infection and IFN-β stimulation. However, how WTAP-mediated m<sup>6</sup>A modification was related to STAT1-mediated transcription remained unclear. Several researches have revealed the recruitment of m<sup>6</sup>A methyltransferase complex (MTC) to transcription start sites (TSS) of coding genes and R-loop structure by interacting with transcriptional factors STAT5B, SMAD2/3, DNA helicase DDX21, indicating the engagement of MTC mediated m<sup>6</sup>A modification on nascent transcripts at the very beginning of transcription [11-13]. These researches inspired us that phase-separated WTAP could be recruited to the ISG promoter regions via interacting with nuclear-translocated pSTAT1. To validate this mechanism, we have conducted ChIP-qPCR experiments targeting STAT1 and WTAP, revealed that IFN-β induced the comparable recruitment dynamics of both STAT1 and WTAP to ISG promoter regions (Figure 6A-B). Notably, STAT1 deficiency significantly abolished the bindings between WTAP and ISG promoter regions (Figure 6C). These findings established nuclear-translocated STAT1-dependent recruitment of phase separated WTAP and ISG promoter region, substantiated our hypothesis within the current study. We totally agree that ChIP-seq data will be more supportive to explore the mechanism in depth. We will continuously focus on the whole genome chromatin distribution of WTAP and explore more functional effect of transcriptional factor-dependent WTAP-promoter regions interaction in the future.

      Minor points:

      (1) Since IFNb is primarily known for modulating biological processes through gene transcription, it would be informative if the authors discussed the mechanism of how IFNb would induce the interaction between WTAP and PPP4.

      Protein phosphatase 4 (PPP4) is a multi-subunit serine/threonine phosphatase complex that participates in diverse biologic process, including DDR, cell cycle progression, and apoptosis[14]. Several signaling pathway such as NF-κB and mTOR signaling, can be regulated by PPP4. Previous research showed that deficiency of PPP4 enhanced IFN-β downstream signaling and ISGs expression, which was consistent with our findings that knockdown of PPP4C impaired WTAP-mediated m<sup>6</sup>A modification, enhanced the ISGs expression[15,16]. Since there was no significant enhancement in PPP4 expression level during 0-3 hours of IFN-β stimulation in our results, we explored the PTM that may influence the protein-protein interaction, such as ubiquitination. Intriguingly, we found the ubiquitination level of PPP4 was enhanced after IFN-β stimulation, which may affect the interaction between PPP4 and WTAP (Author response image 3). Further investigation between PPP4 and WTAP will be conducted in our future study.

      Author response image 3.

      HEK 293T transfected with HA-ubiquitin (HA-Ub) and Flag-PPP4 were treated with 10 ng/mL IFN-β or left untreated. Whole cell lysate (WCL) was collected and immunoprecipitation (IP) experiment using anti-Flag antibody was performed, followed with immunoblot. Similar results were obtained for three independent biological experiments.

      (2) The authors should include mCherry alone controls in Figure 1D to demonstrate that mCherry does not contribute to the phase separation of WTAP. Does mCherry have or lack a PLD?

      According to the crystal structure of mCherry protein in protein structure database RCSB-PDB, mCherry protein presents as a β-barrel protein, with no IDRs or multivalent interaction domains including PLD, indicating that mCherry protein has no capability to undergo phase separation. This characteristic makes it a suitable protein to tag and trace the localization or expression levels of proteins, and a negative control for protein phase separation studies. As the reviewer suggested, we include mCherry alone controls in the revised version (Figure 1D).

      (3) The authors should clarify the immunoprecipitation assays in the methods. For example, the labeling in Figure 2A suggests that antibodies against WTAP and pan-p were used for two immunoprecipitations. Is that accurate?

      Due to the lack of phosphorylated-WTAP antibody, the detection of phosphorylation of WTAP was conducted by WTAP-antibody-mediated immunoprecipitation. We conducted immunoprecipitation to pull-down WTAP protein by WTAP antibody, then used antibody against phosphoserine/threonine/tyrosine (pan-p) to detect the phosphorylation level of WTAP. To avoid the misunderstanding, we have modified the description from pan-p to pWTAP (pan-p) in figures and revised the figure legends.

      (4) The authors should include overall m<sup>6</sup>A modification levels quantified of GFP<sup>sgRNA</sup> and WTAP<sup>sgRNA</sup> cells, either by mass spectrometry (preferably) or dot blot.

      We thank reviewer for raising these useful suggestions. As we showed in Figure 3F and J-K, the m<sup>6</sup>A modification event and degradation of ISG mRNAs were significantly depleted in WTAP<sup>sgRNA</sup> cell lines, indicating that function of WTAP was deficient. Thus, we used the WTAP<sup>sgRNA</sup> #2 cell line to perform most of our experiment. Furthermore, we also found 46.4% of global m<sup>6</sup>A modification was decreased in WTAP<sup>sgRNA</sup> THP-1 cells than that of control cells with or without IFN-β stimulation (Author response image 4), further validating that level of m<sup>6</sup>A modification was significantly affected in WTAP<sup>sgRNA</sup> cells. Taken together, our data confirmed that m<sup>6</sup>A methyltransferase activity was efficiently inhibited in our WTAP<sup>sgRNA</sup> cells.

      Author response image 4.

      Control (GFP<sup>sgRNA</sup>) and WTAP<sup>sgRNA</sup> #2 THP-1-derived macrophages were treated with 10 ng/mL IFN-β for 4 hours. Global m<sup>6</sup>A level was detected and quantified through ELISA assays. All error bars, mean values ± SEM, P-values were determined by two-way ANOVA test independent biological experiments.

      Reviewer #3 (Public review):

      Summary:

      This study presents a valuable finding on the mechanism used by WTAP to modulate the IFN-β stimulation. It describes the phase transition of WTAP driven by IFN-β-induced dephosphorylation. The evidence supporting the claims of the authors is solid, although major analysis and controls would strengthen the impact of the findings. Additionally, more attention to the figure design and to the text would help the reader to understand the major findings.

      Strength:

      The key finding is the revelation that WTAP undergoes phase separation during virus infection or IFN-β treatment. The authors conducted a series of precise experiments to uncover the mechanism behind WTAP phase separation and identified the regulatory role of 5 phosphorylation sites. They also succeeded in pinpointing the phosphatase involved.

      Weaknesses:

      However, as the authors acknowledge, it is already widely known in the field that IFN and viral infection regulate m<sup>6</sup>A mRNAs and ISGs. Therefore, a more detailed discussion could help the reader interpret the obtained findings in light of previous research.

      We are grateful for the positive comments and the unbiased advice by the reviewer. To interpret our findings in previous research, we have revised the manuscript carefully and added more detailed discussion on ISG mRNAs m<sup>6</sup>A modification during virus infection or IFN stimulation.

      It is well-known that protein concentration drives phase separation events. Similarly, previous studies and some of the figures presented by the authors show an increase in WTAP expression upon IFN treatment. The authors do not discuss the contribution of WTAP expression levels to the phase separation event observed upon IFN treatment. Similarly, METTL3 and METTL14, as well as other proteins of the MTC are upregulated upon IFN treatment. How does the MTC protein concentration contribute to the observed phase separation event?

      We thank reviewer for pointing out the importance of the concentration dependent phase transition. Previously, Ge et al. discovered that expression level of WTAP was up-regulated during LPS stimulation, thereby promoting WTAP phase separation ability and m<sup>6</sup>A modification, indicating that WTAP concentration indeed affects the phase separation event. In our article, we have generated the phase diagram with different concentration of recombinant mCherry-WTAP in vitro (Figure 1-figure supplement 1C). For in cells experiments, we constructed the TRE-mCherry-WTAP HeLa cells in which the expression of mCherry-WTAP was induced by doxycycline (Dox) in a dose-dependent manner (Author response image 5A). We detected the LLPS of mCherry-WTAP at different concentrations by increasing the doses of Dox, and found that WTAP automatically underwent LLPS only in an artificially high expression level (Author response image 5B). However, the cells we used to detect the WTAP phase separation in our article was mCherry-WTAP-rescued HeLa cells, in which mCherry-WTAP was introduced in WTAP<sup>sgRNA</sup> HeLa cells to stably express mCherry-WTAP. We had adjusted and verified the mCherry-WTAP expression level precisely to make the protein abundance similar to endogenous WTAP in wild type (WT) HeLa cells (Author response image 5C). We also repeated the IFN-β stimulation experiments and found no significant increase of WTAP protein level (Figure 5-figure supplement 1A). These findings indicated the phase separation of WTAP in our article was not artificially induced due to the extremely high protein expression level.

      MTC protein expression level was crucial for m<sup>6</sup>A modification during virus infection event. Rubio et al. and Winkler et al. revealed that WTAP, METTL3 and METTL14 were up-regulated after 24 hours of HCMV infection[8,17]. Recently, Ge et al. proposed that WTAP protein was degraded after 12 hours of VSV and HSV stimulation5,18. However, these studies only focused on the virus infection event, how the MTC protein expression change after direct IFN-β stimulation was still unclear. Our study investigated the transition change of WTAP under IFNβ stimulation in a short time, we detected the expression level of MTC proteins within 6 hours of IFN-β treatment, and found no significant enhancement of WTAP, METTL3 or METTL14 protein level and mRNA level (Figure 5-figure supplement 1B and Figure 5-figure supplement 1A;). Our in vitro experiments showed that introducing CFP-METTL3 protein have no significant influence on WTAP phase separation (Figure 4H). Additionally, we performed in cells experiments and found that increased expression of METTL3 had no effect on WTAP phase separation event (Author response image 5D). Taken together, WTAP phase separation can be promoted by dramatically increased concentration of WTAP both in vitro and in cells, but the phase separation of WTAP under IFN-β stimulation in our study was not related with the expression level of MTC proteins.

      Author response image 5.

      (A) Immunoblot analysis of the expression of mCherry-WTAP in TRE-mCherry-WTAP HeLa cells treated with different doses of doxycycline (Dox). Protein level of mCherry-WTAP was quantified and normalized to β-actin of n=3 independent biological experiments. Results were obtained for three independent biological experiments. (B) Phase separation diagram of mCherry-WTAP in TRE-mCherry-WTAP HeLa cells treated with different doses of Dox were observed through confocal microscopy. Representative images for three independent biological experiments were shown in b while number of WTAP condensates that diameter over 0.4 μm of n=80 cells were counted and shown as medium with interquartile range. Dotted white lines indicated the location of nucleus. Scale bars indicated 10 μm. (C) Immunoblot analysis of the expression of endogenous WTAP in wildtype (WT) HeLa cells and mCherry-WTAP-rescued WTAP<sup>sgRNA</sup> HeLa cells. (D) mCherry-WTAP-rescued HeLa cells were transfected with 0, 200 or 400 ng of Flag-METTL3, followed with 10 ng/mL IFN-β for 1 hour or left untreated (UT). Phase separation of mCherry-WTAP was observed through confocal microscopy. The number of WTAP condensates that diameter over 0.4 μm of n = 20 cells were counted through ImageJ and shown. Representative images of n=20 cells were shown. All error bars, mean values ± SD were determined by unpaired two-tailed Student’s t-test of n = 3 independent biological experiments in (A). For (A, C), similar results were obtained for three independent biological experiments.

      How is PP4 related to the IFN signaling cascade?

      Both reviewer #2 and reviewer #3 raised a similar point on the relationship between PPP4 and IFN signaling. In short, protein phosphatase 4 (PPP4) participates in diverse biologic process, including DDR, cell cycle progression and apoptosis14 and several signaling pathway. Previous research showed that deficiency of PPP4 enhanced IFN-β downstream signaling and ISGs expression, which was consistent with our findings that knockdown of PPP4C impaired WTAP-mediated m<sup>6</sup>A modification, and enhanced the ISGs expression[15,16]. Since there was no significant enhancement in PPP4C expression level during 0-3 hours of IFN-β stimulation in our results, we tried to explore the post-translation modification which may influence the protein-protein interaction, such as ubiquitination. Intriguingly, we found the ubiquitination level of PPP4 was enhanced after IFN-β stimulation, which may affect the interaction between PPP4 and WTAP (Author response image 4). Investigation between PPP4 and WTAP will be conducted in our further study (also see minor points 1 of reviewer#2).

      In general, it is very confusing to talk about WTAP KO as WTAPgRNA.

      As we describe above, all WTAP-deficient THP-1 cells were generated using the CRISPR-Cas9 system with WTAP-specific sgRNA, and used bulk cells instead of the monoclonal knockout cell for further experiments. Since monoclonal knockout cells were not obtained, we refer it as WTAP<sup>sgRNA</sup> THP-1 cells rather than WTAP-KO THP-1 cells. We confirmed that WTAP expression was efficiently knocked down in WTAP<sup>sgRNA</sup> THP-1 cells, and the m<sup>6</sup>A modification level was significantly impaired (Figure 3I, Figure 3-figure supplement 1A and Author response image 4), which was suitable for mechanism investigation.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Related to the points raised in 'weaknesses' above, if the authors want to claim that this mechanism is reliant on WTAP phase-separated states, additional controls should be done to demonstrate this. Based on the available data it seems that it is just as likely that the phosphorylation state of WTAP is mediating interactions with other factors and/or altering its subcellular localization, which may or may not be related to phase separation.

      We are grateful for the constructive suggestions. As we showed in , Figure 5-figure supplement 1H; Author response image 1 along with the explanation above, 5% hex dispersed the phase separation condensates of WTAP without affecting its phosphorylation status, proving the interaction between STAT1 and methylation complex impaired by hex was depended on WTAP LLPS but not its phosphorylation status (Figure 5E-H). To further confirmed the recruitment of WTAP LLPS on ISG promoter region, we performed the immunoprecipitation and ChIP-qPCR experiments of wild type (WT) WTAP, 5ST-D and 5ST-A rescued THP-1 cells. Our results uncovered the interaction between de-phosphorylated-mimic WTAP mutant and STAT1, and its binding ability with ISG promoter regions were depleted by hex without affecting its phosphorylation status (Author response image 2, Figure 5-figure supplement 1 F, Figure 6E). Taken together, we identified the de-phosphorylation event that regulated phase transition of WTAP during IFN-β stimulation, and proposed that LLPS of WTAP mediated by dephosphorylation was the key mechanism to bind with STAT1 and mediate the m<sup>6</sup>A modification on ISG mRNAs.

      Reviewer #2 (Recommendations for the authors):

      The author order is different for the main text and the supplementary file.

      Thank you for pointing out this mistake. We have corrected it in our revised version.

      Reviewer #3 (Recommendations for the authors):

      Signaling molecules? Do you mean RNA or protein post-translational modification?

      Thank you for pointing out this problem. In this sentence, we mean the post-translational modification of signaling proteins. We have corrected this mistake in our revised version.

      Line 145: Do you mean Figure 1C?

      We have corrected it in our revised version.

      Line 214: Are the cells KO for WTAP? Do you mean CRISPR KO? In general, it is easier to present WTAPgRNA as WTAPKO.

      Thank you for the constructive suggestion. As we explained above, in this project, all WTAP-deficient THP-1 cells were generated using the CRISPR-Cas9 system with WTAP-specific sgRNA, and used bulk cells instead of the monoclonal knockout cells. We confirmed that WTAP expression was efficiently knocked down in WTAP<sup>sgRNA</sup> THP-1 cells, and the m<sup>6</sup>A modification level was significantly impaired (Figure 3I, Figure3-figure supplement 1A and Author response image 4). Since monoclonal knockout cells were not obtained, we refer it as WTAP<sup>sgRNA</sup> THP-1 cells rather than WTAP-KO THP-1 cells.

      Line 221: WTAP KO has no effect on the expression level of transcription factors?

      Thank you for pointing out the uncritical expression. We have corrected this in our revised version.

      Figure 3C: I would suggest removing the tracks and showing the expression levels in TPMs.

      According to the reviewer’s suggestion, we have analyzed the results and showed the ISGs expression levels in fold change of TPMs (Figure 3D).

      Figure 4C: It seems that the IP efficiency from METTL3 is lower in WTAP KO cells. That may impact the author's conclusions.

      We have repeated the immunoprecipitation experiments of METTL3 and confirmed the immunoprecipitation (IP) efficiency from METTL3 had no difference between WTAP<sup>sgRNA</sup> cells and the control cells (Figure 5C).

      I would suggest performing an IP of WTAP with the 5StoA mutation to confirm the missing interaction with WTAP.

      According to the reviewer’s suggestion, we investigated the interaction between STAT1 and WTAP in WT cells and WTAP 5ST-A-rescued THP-1 cells. Our results showed that interaction between STAT1, METTL3 and WTAP were enhanced with WTAP 5ST-A mutation, which was depleted by hex treatment (Figure 5-figure supplement 1E). Thus, the interaction of WTAP WT or 5ST-A with the promoter regions of ISG were attenuated by WTAP LLPS dissolution (Figure 6E). Taken together, the interaction between STAT1 and MTC were relied on LLPS of WTAP.

      In the graphical abstract, it is confusing to represent WTAP as a line. All other proteins are presented as circles. It is easy to confuse WTAP protein with an RNA. Additionally, m<sup>6</sup>A is too big in size. It should be smaller than a protein.

      We thank the reviewer for raising this suggestion. We have modified the graphical abstract to avoid the confusion in our revised version (Figure 6F).

      References

      (1) Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K.M., Bennett, R.E., Dujardin, S., Laskowski, P.R., MacKenzie, D., Kamath, T., Commins, C., et al. (2018). Tau protein liquid-liquid phase separation can initiate tau aggregation. The EMBO journal 37. 10.15252/embj.201798049.

      (2) Lu, Y., Wu, T., Gutman, O., Lu, H., Zhou, Q., Henis, Y.I., and Luo, K. (2020). Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol 22, 453-464. 10.1038/s41556-020-0485-0.

      (3) Zhang, H., Shao, S., Zeng, Y., Wang, X., Qin, Y., Ren, Q., Xiang, S., Wang, Y., Xiao, J., and Sun, Y. (2022). Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat Cell Biol 24, 340-352. 10.1038/s41556-022-00846-7.

      (4) Duster, R., Kaltheuner, I.H., Schmitz, M., and Geyer, M. (2021). 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities. J Biol Chem 296, 100260. 10.1016/j.jbc.2021.100260.

      (5) Ge, Y., Chen, R., Ling, T., Liu, B., Huang, J., Cheng, Y., Lin, Y., Chen, H., Xie, X., Xia, G., et al. (2024). Elevated WTAP promotes hyperinflammation by increasing m<sup>6</sup>A modification in inflammatory disease models. J Clin Invest 134. 10.1172/JCI177932.

      (6) Hou, S., Hu, J., Yu, Z., Li, D., Liu, C., and Zhang, Y. (2024). Machine learning predictor PSPire screens for phase-separating proteins lacking intrinsically disordered regions. Nat Commun 15, 2147. 10.1038/s41467-024-46445-y.

      (7) McFadden, M.J., McIntyre, A.B.R., Mourelatos, H., Abell, N.S., Gokhale, N.S., Ipas, H., Xhemalce, B., Mason, C.E., and Horner, S.M. (2021). Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine. Cell Rep 34, 108798. 10.1016/j.celrep.2021.108798.

      (8) Winkler, R., Gillis, E., Lasman, L., Safra, M., Geula, S., Soyris, C., Nachshon, A., Tai-Schmiedel, J., Friedman, N., Le-Trilling, V.T.K., et al. (2019). m(6)A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20, 173-182. 10.1038/s41590-018-0275-z.

      (9) Li, Y., Xia, L., Tan, K., Ye, X., Zuo, Z., Li, M., Xiao, R., Wang, Z., Liu, X., Deng, M., et al. (2020). N(6)-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 52, 870-877. 10.1038/s41588-020-0677-3.

      (10) Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B.S., Sun, M., Chen, Z., Deng, X., Xiao, G., Auer, F., et al. (2019). Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567, 414-419. 10.1038/s41586-019-1016-7.

      (11) Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millan-Zambrano, G., Robson, S.C., Aspris, D., Migliori, V., Bannister, A.J., Han, N., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552, 126-131. 10.1038/nature24678.

      (12) Hao, J.D., Liu, Q.L., Liu, M.X., Yang, X., Wang, L.M., Su, S.Y., Xiao, W., Zhang, M.Q., Zhang, Y.C., Zhang, L., et al. (2024). DDX21 mediates co-transcriptional RNA m(6)A modification to promote transcription termination and genome stability. Mol Cell 84, 1711-1726 e1711. 10.1016/j.molcel.2024.03.006.

      (13) Bhattarai, P.Y., Kim, G., Lim, S.C., and Choi, H.S. (2024). METTL3-STAT5B interaction facilitates the co-transcriptional m(6)A modification of mRNA to promote breast tumorigenesis. Cancer Lett 603, 217215. 10.1016/j.canlet.2024.217215.

      (14) Dong, M.Z., Ouyang, Y.C., Gao, S.C., Ma, X.S., Hou, Y., Schatten, H., Wang, Z.B., and Sun, Q.Y. (2022). PPP4C facilitates homologous recombination DNA repair by dephosphorylating PLK1 during early embryo development. Development 149. 10.1242/dev.200351.

      (15) Zhan, Z., Cao, H., Xie, X., Yang, L., Zhang, P., Chen, Y., Fan, H., Liu, Z., and Liu, X. (2015). Phosphatase PP4 Negatively Regulates Type I IFN Production and Antiviral Innate Immunity by Dephosphorylating and Deactivating TBK1. J Immunol 195, 3849-3857. 10.4049/jimmunol.1403083.

      (16) Raja, R., Wu, C., Bassoy, E.Y., Rubino, T.E., Jr., Utagawa, E.C., Magtibay, P.M., Butler, K.A., and Curtis, M. (2022). PP4 inhibition sensitizes ovarian cancer to NK cell-mediated cytotoxicity via STAT1 activation and inflammatory signaling. J Immunother Cancer 10. 10.1136/jitc-2022-005026.

      (17) Rubio, R.M., Depledge, D.P., Bianco, C., Thompson, L., and Mohr, I. (2018). RNA m(6) A modification enzymes shape innate responses to DNA by regulating interferon beta. Genes Dev 32, 1472-1484. 10.1101/gad.319475.118.

      (18) Ge, Y., Ling, T., Wang, Y., Jia, X., Xie, X., Chen, R., Chen, S., Yuan, S., and Xu, A. (2021). Degradation of WTAP blocks antiviral responses by reducing the m(6) A levels of IRF3 and IFNAR1 mRNA. EMBO Rep 22, e52101. 10.15252/embr.202052101.

    1. eLife Assessment

      TDP-43 mislocalization is a key feature of some neurodegenerative diseases, but cellular models are lacking. The authors endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs, followed by expression of an intrabody-NES that targeted GFP to the cytosol. They convincingly report physical mislocalization and functional depletion of TDP-43, as measured by microscopy and RNAseq. This method will be valuable to investigators studying the biological consequences of TDP-43 mislocalization and the methodology is in line with the current state-of-the-art.

    2. Reviewer #2 (Public review):

      Summary:

      TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain of function and loss of function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:

      A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the author see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:

      The method and supporting data have some limitations.

      • Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example, phase separation properties and functions within complex ribonucleoprotein complexes. The authors show that normal splicing function of GFP-TDP-43 is maintained, suggesting that physiology is largely preserved, but other functions and properties of TDP-43 that were not directly tested could be altered.

      • Potential differences in splicing and micro RNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown and can differ in different batches of experiments, thus it is difficult to asses whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance or batch effects.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Nuclear depletion and cytoplasmic mislocalization/aggregation of the DNA and RNA binding protein TDP-43 are pathological hallmarks of multiple neurodegenerative diseases. Prior work has demonstrated that depletion of TDP-43 from the nucleus leads to alterations in transcription and splicing. Conversely, cytoplasmic mislocalization/aggregation can contribute to toxicity by impairing mRNA transport and translation as well as miRNA dysregulation. However, to date, models of TDP-43 proteinopathy rely on artificial knockdown- or overexpression-based systems to evaluate either nuclear loss or cytoplasmic gain of function events independently. Few model systems authentically reproduce both nuclear depletion and cytoplasmic miscloalization/aggregation events. In this manuscript, the authors generate novel iPSC-based reagents to manipulate the localization of endogenous TDP-43. This is a valuable resource for the field to study pathological consequences of TDP-43 proteinopathy in a more endogenous and authentic setting. However, in the current manuscript, there are a number of weaknesses that should be addressed to further validate the ability of this model to replicate human disease pathology and demonstrate utility for future studies.

      Strengths:

      The primary strength of this paper is the development of a novel in vitro tool.

      Weaknesses:

      There are a number of weaknesses detailed below that should be addressed to thoroughly validate these new reagents as more authentic models of TDP-43 proteinopathy and demonstrate their utility for future investigations.

      (1) The authors should include images of their engineered TDP-43-GFP iPSC line to demonstrate TDP-43 localization without the addition of any nanobodies (perhaps immediately prior to addition of nanobodies). Additionally, it is unclear whether simply adding a GFP tag to endogenous TDP-43 impact its normal function (nuclear-cytoplasmic shuttling, regulation of transcription and splicing, mRNA transport etc).

      We have included images of the untransduced day 20 MNs derived from the engineered TDP43-GFP iPSC lines and the unedited line (Supplementary Fig. 1B).

      We acknowledge the reviewer’s concern about the potential impact of the GFP tag on TDP43's normal function. To address this, we have validated the functionality of TDP43 by assessing the inclusion of cryptic exons in highly sensitive targets such as UNC13A and STMN2, both of which are known to be directly regulated by TDP43.

      We compared MNs derived from the unedited parent line with the TDP43-GFP MNs prior to nanobody addition. As measured by qPCR, cryptic exon inclusion in UNC13A and STMN2 was not observed in the unedited or edited TDP43-GFP MNs (Supplementary Fig.1C), confirming that the tagging does not induce splicing defects by itself. The cryptic exon inclusion in UNC13A and STMN2 were only observed in TDP43-GFP MNs expressing the NES nanobody (Supplementary Fig. 2D). These findings were further supported by our next-generation sequencing data, which also showed that cryptic exon inclusion was specific to the TDP43 mislocalization condition (Supplementary Fig.3 and 4).

      Thus, we have strong evidence that the GFP-tagged TDP43 behaves similarly to the wild-type protein and does not interfere with its function in our model.

      (2) Can the authors explain why there is a significant discrepancy in time points selected for nanobody transduction and immunostaining or cell lysis throughout Figure 1 and 2? This makes interpretation and overall assessment of the model challenging.

      For the phenotypic data shown in Fig.1, we added the AAVs at day 18 or 20 and analyzed the cells at day 40. For the phosphorylated TDP43 western blot (revised Fig. 3D), cells were treated with doxycycline at day 20 to induce nanobody expression and samples were harvested at day 40. Thus, cells were harvested between days 20 or 22 after adding the nanobodies. The onset of transgene expression when using AAVs in neurons typically display slow kinetics. We observed TDP43 mislocalization in less than 50% of the neurons after 7 days post-transduction that peaked at 10-12 days after addition of the nanobodies, when more than 80% of the cells displayed TDP43 mislocalization. Hence, we do not believe that a two-day difference significantly alters the interpretation of the data.

      The decision to harvest neurons at day 30 for the qPCR data was taken to investigate whether the splicing changes seen at day 40 from the transcriptomics analysis can be detected well before the phenotypes observed at day 40.

      (3) The authors should further characterize their TDP-43 puncta. TDP-43 immunostaining is typically punctate so it is unclear if the puncta observed are physiologic or pathologic based on the analyses carried out in the current version of this manuscript. Additionally, do these puncta co-localize with stress granule markers or RNA transport granule markers? Are these puncta phosphorylated (which may be more reminiscent of end-stage pathologic observations in humans)?

      We have tried immunostaining neurons for phosphorylated TDP43. However, our immunostaining attempts were unsuccessful. Depending on the antibody, we either saw no signal (antibody from Cosmo Bio, TIP-PTD-M01A) or even the control neurons displayed detectable phosphorylation within the nucleus (antibody from Proteintech 22309-1-AP). Consequently, we performed western blot analysis using an antibody from Cosmo Bio, (TIP-PTD-M01A) that clearly shows hyperphosphorylation of TDP43 in whole cell lysates (Fig. 3D, E). Hence, we have referred to these structures as puncta and not aggregates (Page 4).

      To assess co-localization of the puncta with stress granules, we immunostained for the stress granule marker G3BP1. This was done in MNs that were treated with sodium arsenite (SA) or PBS as a control. In the PBS treated control MN cultures, TDP43 mislocalization alone did not induce stress granule formation. G3BP1+ stress granules were only observed following SA stress (0.5 mM, 60 minutes). Further, only a subset of TDP43 puncta overlapped with these stress granules (Supplementary Fig. 7) (Page 6).

      (4) The authors should include multiple time points in their evaluation of TDP-43 loss of function events and aggregation. Does loss of function get worse over time? Is there a time course by which RNA misprocessing events emerge or does everything happen all at once? Does aggregation get worse over time? Do these neurons die at any point as a result of TDP-43 proteinopathy?

      We agree that a time course to analyze TDP43 mislocalization and its consequences would be ideal. However, the mislocalization of TDP43 across neurons is not a coordinated process. At each given time instance, neurons display varying levels of TDP43 mislocalization. Answering the questions raised by the reviewer would require tracking individual neurons in real time in a controlled environment over weeks. Unfortunately, we currently do not have the hardware to run these experiments. However, we do observe increased levels of cleaved caspase 3 in MNs expressing the NES nanobody, indicating that these neurons indeed undergo apoptosis by day 40 (Fig.1).

      We have, however, analyzed changes in splicing using qPCR for 12 genes over a time course starting as early as 4 hours after inducing mislocalization. We detect time-dependent cryptic splicing events in all genes as early as 8 hours after doxycycline addition, coinciding with the appearance TDP43 mislocalization (Fig. 4A, B).

      (5) Can the authors please comment on whether or not their model is "tunable"? In real human disease, not every neuron displays complete nuclear depletion of TDP-43. Instead there is often a gradient of neurons with differing magnitudes of nuclear TDP-43 loss. Additionally, very few neurons (5-10%) harbor cytoplasmic TDP-43 aggregates at end-stage disease. These are all important considerations when developing a novel authentic and endogenous model of TDP-43 proteinopathy which the current manuscript fails to address.

      As shown in Fig .1, the neurons expressing the NES-nanobody display a wide range of mislocalization as assessed by the % of nuclear TDP43 present. By titrating the amount of AAVs added to the culture, the model can be tuned to achieve a wide gradient of TDP43 mislocalization.

      We calculated the size and percentage of neurons displaying TDP43 puncta. The size and the number of aggregates varies across the neurons that display TDP43 mislocalization. Around 50% of the neurons displayed small (1  um<sup>2</sup>) puncta while large puncta (> 5  um<sup>2</sup>) were observed in <10% of the cells, similar to observations in patient tissue (Fig. 1F).

      Reviewer #2 (Public Review):

      Summary:

      TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain-of-function and loss-of-function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC-derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:

      A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the authors see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:

      The method and supporting data have limitations in its current form, outlined below, and in its current form the findings are rather preliminary.

      (1) Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example phase separation properties and functions within complex ribonucleoprotein complexes. In addition, alternative isoforms of TDP-43 (e.g. "short" TDP-43, would not be GFP tagged and therefore these species would not be directly manipulatable or visualizable with the tools currently employed in the manuscript.

      With reference to our answer above, we have confirmed using qPCR and RNA-seq analysis that adding a GFP tag to the C-terminus of TDP43 does not result in an appreciable loss of functionality. We do not observe any cryptic exon inclusion in STMN2 and UNC13A. Cryptic exon inclusion in these genes, especially STMN2, has been recognized as a very sensitive indicator of TDP43 loss of function (Supplementary Fig 1C, Supplementary 2D, Fig. 3, Fig.4)

      We acknowledge that truncated alternatively spliced versions of TDP43 will lose the GFP-tag and cannot be manipulated with our system. Since our GFP tag is positioned on the C-terminus, our system cannot manipulate these truncated fragments as the tag is lost in these isoforms. But these isoforms, if present, should be detectable using the Proteintech antibody against total TDP43, which recognizes N-terminal TDP43 epitopes. However, western blot analysis, even 20 days after inducing TDP43 mislocalization, showed no truncated fragments. This suggests that TDP43 mislocalization alone is insufficient to generate significant levels of truncated isoforms. We have added this section to the Limitations paragraph (page 9).

      (2) The data regarding potential mislocalization of endogenous TDP-43 in the heterozygous TDP-43-GFP lines is especially intriguing and important, yet very little characterization was done. Does untagged TDP-43 co-aggregate with the tagged TDP-43? Is localization of TDP-43 immunostaining the same as the GFP signal in these cells?

      The purpose of the heterozygous experiments was to see whether mislocalized TDP43 could potentially trap the untagged TDP43. If this was not the case, we would have seen a maximum of 50% of the TDP43 signal mislocalized to the cytoplasm. The fact that a sizeable proportion of cells had significantly higher levels of TDP43 loss from the nucleus, indicates that mislocalized TDP43 can indeed trap the untagged protein fraction. We used GFP immunostaining to identify the tagged TDP43 while an antibody against the endogenous TDP43 protein was used to detect total TDP43 levels. In the cells that show near complete loss of nuclear TDP43, the total TDP43 signal coincides with the GFP (tagged TDP43) signal. We are unable to distinguish the untagged fraction selectively as we do not have an antibody that can detect this directly.  

      But we agree with the reviewer that these observations need further detailed follow-up that we are unable to provide currently. Hence, we have removed this figure from the manuscript.

      (3) The experiments in which dox was used to induce the nanobody-NES, then dox withdrawn to study potential longer-lasting or self-perpetuating inductions of aggregation is potentially interesting. However, the nanobody was only measured at the RNA level. We know that protein half lives can be very long in neurons, and therefore residual nanobody could be present at these delayed time points. The key measurement to make would be at the protein level of the nanobody if any conclusions are be made from this experiment.

      The reviewer has highlighted an important point. To address this issue, we tagged the nanobodies with a V5 tag that allowed us to directly measure nanobody levels within cells. After Dox withdrawal, we indeed observed significant expression of the nanobody within cells even after two weeks of Dox withdrawal. Extending the time point to three weeks allowed complete loss of the nanobody in most neurons. However, in contrast to our observations at two weeks, this was accompanied by a reversal of TDP43 mislocalization in these neurons at three weeks (Fig. 5).

      Surprisingly, in less than 10% of the neurons, we observed >80% of the total TDP43 still mislocalized to the cytoplasm, despite nearly undetectable levels of the nanobody. Super-resolution microscopy further revealed persistent cytoplasmic TDP43 in these neurons that did not overlap with residual nanobody signal. This suggests that in these neurons, the nanobody was no longer required to maintain TDP43 mislocalization (Fig. 5, page 7)

      (4) Potential differences in splicing and microRNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown, thus it is difficult to assess whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance.

      This a fair point. It is possible that microRNA dysregulation might require a greater loss of nuclear TDP43 and maybe more resilient to TDP43 loss as compared to splicing. We have acknowledged this in the discussion section (page 9).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) It would be helpful to include nuclear vs cytoplasmic ratios of TDP-43 instead of simply "% nuclear TDP-43"

      We have used % nuclear TDP43 as these values have biologically meaningful upper and lower bounds, which makes it easier to compare across experiments. We found that using a ratio of nuclear vs cytoplasmic TDP43 intensities displayed higher variability and a wider range.

      We have re-labelled the y-axis as “% Nuclear TD43 / soma TDP43” to make our quantification clearer. The conversion from % nuclear TDP43 to N/C is straightforward. If the % nuclear TDP43 is X, then the N/C ratio can be calculated as X / (100-X). For example, a % nuclear TDP43 of 80% would amount to an N/C ratio of 80/20 = 4.

      (2) The axis descriptions in Figure 1D are very unclear. While this is described better in the figure legend, it would be beneficial to have a more descriptive y-axis title in the figure (which may mean increasing the number of graphs).

      Axis descriptions and figures changed as recommended.

      (3) In Figure 1, the time points at which iPSNs were transduced with nanobody and/or fixed for immunostaining is somewhat inconsistent across all panels. This hinders interpretation of the figure as a whole. The authors should use same transduction and immunostaining time points for consistency or demonstrate that the same phenotype is observed regardless of transduction and immunostaining day as long as the time in between (time of nano body expression) is consistent. Subsequently, in Figure 2, a different set of time points is used.

      Please see our response in the public comments above

      (4) In Figure 1, please show individual data points for each independent differentiation to demonstrate the level of reproducibility from batch to batch.

      Data points have been shown per replicate (Supplementary Fig. 2)

      We have refined our approach for phenotypic analysis to improve consistency across different clones. Previously, we set thresholds on % nuclear TDP43 to distinguish MNs with nuclear versus mislocalized TDP43. This was done by ranking all cells based on % nuclear TDP43 and applying quantile-based thresholds—designating the top 25% as control and the bottom 25% as mislocalized, ensuring equal number of cells per category. However, we observed significant variability in thresholds across clones. For instance, the E8 clone had thresholds of 96% and 29%, while the E5 clone had 93% and 40%.

      To address this, we reanalysed the data using a standardized three-bin approach:

      (1) Control: MNs expressing the control nanobody.

      (2) Low-Moderate Mislocalization: MNs expressing the NES nanobody with > 40% nuclear TDP43.

      (3) Severe Mislocalization: MNs expressing the NES nanobody with < 40% nuclear TDP43.

      This approach ensured a more reliable comparison of TDP43 mislocalization effects across experiments. The conclusions remain the same.

      (5) In Figure 2, please show individual data points.

      Data points for all the qPCR analyses in the paper have been included as a supplementary text file.

      (6) In Figure 3, please show individual data points.

      Data points for the western blot data have been included as a supplementary data file.

      All other comments are within the public review.

      Reviewer #2 (Recommendations For The Authors):

      (1) In general more robust quantification of many of the described phenotypes are necessary. In particular, no apparent quantification of cytosolic mislocalization was performed in Figure 1, or quantification of mislocalization of Figure 3F. It is unclear in the western blot in Fig 1G if TDP-43 signal were normalized to total protein, and of note it seems that expression of the intrabody-NES reduced total proteins in the western blots that were shown. No quantification or measurement of the insoluble material was done or shown.

      We have quantified cytosolic mislocalization of TDP43 (Fig. 1C). The y-axis indicates the total TDP43 signal observed in the nucleus as a percentage of the total signal observed in the soma (including the nucleus). This value has the advantage of ranging between 100% (perfectly nuclear) to 0% (complete nuclear loss). The boxplots indicate that expression of the NES-nanobody results in a range of cytosolic mislocalization with a median value around 40% of the TDP43 remaining in the nucleus.

      Western blot data in previous Fig. 1G was normalized to alpha-tubulin. We were unable to get a good signal for the insoluble fraction. From the alpha-tubulin alone, it cannot be concluded that NES-nanobody results in a decrease in total protein levels. In the revised western blot for phosphorylated TDP43 (Fig. 3D, E), we have quantified total and phosphorylated TDP43. Here, we observe a six-fold increase in the levels of phosphorylated TDP43 without a significant change in total TDP43 protein levels.

      To avoid potential mis-interpretation of our results, we have now removed the previous Fig. 1G.

      (2) Additional images of nearly all microscopy data at higher magnifications would be required to better evaluate TDP-43 localization. Ideally including images for each channel in addition to merged images, and especially for key figures such as Figure 1B, 3B, 3F.

      Better images have been provided.

      (3) No control images were shown for Figure 1F and 3F. It is unclear what the bright punctate spots of cytoplasmic TDP-43 GFP signal represent. Are these true aggregates? If so, additional characterization would be required before such conclusions can be made, beyond the relatively superficial western blot analysis that was done in Figure 1.

      Control images have now been provided (Figure 1E). As we mentioned above, immunostaining analysis to characterize whether the aggregates are phosphorylated failed to provide a clear signal. However, we have now confirmed that the mislocalized TDP43 is indeed hyper-phosphorylated (Figure 3D, E). We have acknowledged this in the main text, and have referred to these as puncta reminiscent of aggregates (Page 4, Page 6).

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors set out to explore the role of upstream open reading frames (uORFs) in stabilizing protein levels during Drosophila development and evolution. By utilizing a modified ICIER model for ribosome translation simulations and conducting experimental validations in Drosophila species, the study investigates how uORFs buffer translational variability of downstream coding sequences. The findings reveal that uORFs significantly reduce translational variability, which contributes to gene expression stability across different biological contexts and evolutionary timeframes.

      We thank the reviewer for carefully reading our manuscript and providing thoughtful and constructive feedback. We believe the manuscript has been significantly improved by incorporating your suggestions. Please find our detailed responses and corresponding revisions below.

      Strengths:

      (1) The study introduces a sophisticated adaptation of the ICIER model, enabling detailed simulation of ribosomal traffic and its implications for translation efficiency.

      (2) The integration of computational predictions with empirical data through knockout experiments and translatome analysis in Drosophila provides a compelling validation of the model's predictions.

      (3) By demonstrating the evolutionary conservation of uORFs' buffering effects, the study provides insights that are likely applicable to a wide range of eukaryotes.

      We appreciate your positive feedback and thoughtful summary of the strengths of our study.

      Weaknesses:

      (1) Although the study is technically sound, it does not clearly articulate the mechanisms through which uORFs buffer translational variability. A clearer hypothesis detailing the potential molecular interactions or regulatory pathways by which uORFs influence translational stability would enhance the comprehension and impact of the findings.

      Thanks for your constructive comments. In the Discussion section of our previous submission (Original Lines 470-489), we proposed that uORFs function as “molecular dams” to smooth out fluctuations in ribosomal flow toward downstream CDS regions, primarily via mechanisms involving ribosome collision and dissociation. To further address your concern, we have expanded the Discussion and included a new model figure (Fig. 9) to more clearly articulate the potential biological and mechanistic basis by which translating 80S ribosomes may induce the dissociation of 40S ribosomes. The revised section (Lines 540–557) now reads:

      “Ribosome slowdown or stalling on mRNA due to rare codons [56,96-98] or nascent blocking peptides [99-102] frequently triggers ribosome collisions genome-wide [103-105]. Such collisions, especially among elongating 80S ribosomes, often activate ribosome quality control (RQC) pathways that recognize collision interfaces on the 40S subunit, leading to ribosomal subunit dissociation and degradation [106-108]. In mammals, ZNF598 specifically identifies collided ribosomes to initiate ubiquitin-dependent protein and mRNA quality control pathways [109-113]. Analogously, yeast employs Hel2-mediated ubiquitination of uS10, initiating dissociation via the RQC-trigger complex (RQT) [114]. Furthermore, the human RQT (hRQT) complex recognizes ubiquitinated ribosomes and induces subunit dissociation similarly to yeast RQT [115]. However, transient ribosome collisions can evade RQC by promoting resumed elongation through mechanical force provided by trailing ribosomes, thereby mitigating stalling [116]. Beyond 80S collisions, evidence increasingly highlights a distinct collision type involving scanning 40S subunits or pre-initiation (43S) complexes. Recently, an initiation RQC pathway (iRQC) targeting the small ribosomal subunit (40S) has been described, particularly involving collisions between scanning 43S complexes or between stalled 43S and elongating 80S ribosomes (Figure 9B) [117,118]. During iRQC, E3 ubiquitin ligase RNF10 ubiquitinates uS3 and uS5 proteins, resulting in 40S degradation [118]. This mechanism aligns closely with our ICIER model, proposing collision-driven 43S dissociation in the 5' UTRs. Future studies exploring these mechanisms in greater detail will clarify how uORFs modulate translational regulation through buffering effects.”

      (2) The study could be further improved by a discussion regarding the evolutionary selection of uORFs. Specifically, it would be beneficial to explore whether uORFs are favored evolutionarily primarily for their role in reducing translation efficiency or for their capability to stabilize translation variability. Such a discussion would provide deeper insights into the evolutionary dynamics and functional significance of uORFs in genetic regulation.

      Thank you for this insightful suggestion. We agree that understanding whether uORFs are evolutionarily favored for their role in translational repression or for their capacity to buffer translational variability is a compelling and unresolved question. Our study suggests that translational buffering, rather than translational repression alone, can also drive evolutionary selection favoring uORFs, although it remains challenging to empirically disentangle these functions due to their inherent linkage. We have expanded the discussion in the revised manuscript to address this point in more detail (Lines 494-513), which is reproduced as follows:

      “Previous studies have shown that a significant fraction of fixed uORFs in the populations of D. melanogaster and humans were driven by positive Darwinian selection 63,67, suggesting active maintenance through adaptive evolution rather than purely neutral or deleterious processes. While uORFs have traditionally been recognized for their capacity to attenuate translation of downstream CDSs, accumulating evidence now underscores their critical role in stabilizing gene expression under fluctuating cellular and environmental conditions [43,55,56]. Whether the favored evolutionary selection of uORFs acts primarily through their role in translational repression or translational buffering remains a compelling yet unresolved question, as these two functions are inherently linked. Indeed, highly conserved uORFs tend to be translated at higher levels, resulting not only in stronger inhibition of CDS translation [34,45,67] but also in a more pronounced buffering effect, as demonstrated in this study. This buffering capacity of uORFs potentially provides selective advantages by reducing fluctuations in protein synthesis, thus minimizing gene-expression noise and enhancing cellular homeostasis. This suggests that selection may favor uORFs that contribute to translational robustness, a hypothesis supported by findings in yeast and mammals showing that uORFs are significantly enriched in stressresponse genes and control the translation of certain master regulators of stress responses [41,42,94,95]. Our study suggests that translational buffering, rather than translational repression alone, can also drive evolutionary selection favoring uORFs, although it remains challenging to empirically disentangle these functions. Future comparative genomic analyses, coupled with experimental approaches such as ribosome profiling and functional mutagenesis, will be crucial in elucidating the precise evolutionary forces driving uORF conservation and adaptation.”

      Reviewer #2 (Public review):

      uORFs, short open reading frames located in the 5' UTR, are pervasive in genomes. However, their roles in maintaining protein abundance are not clear. In this study, the authors propose that uORFs act as "molecular dam", limiting the fluctuation of the translation of downstream coding sequences. First, they performed in silico simulations using an improved ICIER model, and demonstrated that uORF translation reduces CDS translational variability, with buffering capacity increasing in proportion to uORF efficiency, length, and number. Next, they analzed the translatome between two related Drosophila species, revealing that genes with uORFs exhibit smaller fluctuations in translation between the two species and across different developmental stages within the same specify. Moreover, they identified that bicoid, a critical gene for Drosophila development, contains a uORF with substantial changes in translation efficiency. Deleting this uORF in Drosophila melanogaster significantly affected its gene expression, hatching rates, and survival under stress condition. Lastly, by leveraging public Ribo-seq data, the authors showed that the buffering effect of uORFs is also evident between primates and within human populations. Collectively, the study advances our understanding of how uORFs regulate the translation of downstream coding sequences at the genome-wide scale, as well as during development and evolution.

      The conclusions of this paper are mostly well supported by data, but some definitions and data analysis need to be clarified and extended.

      We thank the reviewer for the thoughtful and constructive review. Your summary accurately captures the key findings of our study. We have carefully addressed all your concerns in the revised manuscript, and we believe it has been significantly improved based on your valuable input.

      (1) There are two definitions of translation efficiency (TE) in the manuscript: one refers to the number of 80S ribosomes that complete translation at the stop codon of a CDS within a given time interval, while the other is calculated based on Ribo-seq and mRNA-seq data (as described on Page 7, line 209). To avoid potential misunderstandings, please use distinct terms to differentiate these two definitions.

      Thank you for highlighting this important point, and we apologize for the confusion. The two definitions of translation efficiency (TE) in our manuscript arise from methodological differences between simulation and experimental analyses. To clarify, in the revised manuscript, we use “translation rate” in the context of simulations to describe the number of 80S ribosomes completing translation at the CDS stop codon per unit time. We retain the conventional “translation efficiency (TE)” for Ribo-seq–based measurements. 

      In this revised manuscript, we have added a more detailed explanation of TE in the revised manuscript (Lines 202–206), which now reads:

      “For each sample, we followed established procedures [62-66] to calculate the translational efficiency (TE) for each feature (CDS or uORF). TE serves as a proxy for the translation rate at which ribosomes translate mRNA into proteins, typically quantified by comparing the density of ribosome-protected mRNA fragment (RPF) to the mRNA abundance for that feature (see Materials and Methods).”

      (2) Page 7, line 209: "The translational efficiencies (TEs) of the conserved uORFs were highly correlated between the two species across all developmental stages and tissues examined, with Spearman correlation coefficients ranging from 0.478 to 0.573 (Fig. 2A)." However, the authors did not analyze the correlation of translation efficiency of conserved CDSs between the two species, and compare this correlation to the correlation between the TEs of CDSs. These analyzes will further support the authors conclusion regarding the role of conserved uORFs in translation regulation.

      In the revised manuscript, we have incorporated a comparison of translational efficiency (TE) correlations for conserved CDSs between the two species. We found that CDSs exhibit significantly higher interspecific TE correlations than uORFs, with Spearman’s rho ranging from 0.588 to 0.806. This suggests that uORFs tend to show greater variability in TE than CDSs, consistent with our model in which uORFs buffer fluctuations in downstream CDS translation. The updated results were included in the revised manuscript (Lines 223-227) as follows:

      “In contrast, TE of CDSs exhibited a significantly higher correlation between the two species in the corresponding samples compared to that of uORFs, with Spearman’s rho ranging from 0.588 to 0.806 (P = 0.002, Wilcoxon signed-rank test; Figure 2A). This observation is consistent with our simulation results, which indicate that uORFs experience greater translational fluctuations than their downstream CDSs.”

      (3) Page 8, line 217: "Among genes with multiple uORFs, one uORF generally emerged as dominant, displaying a higher TE than the others within the same gene (Fig. 2C)." The basis for determining dominance among uORFs is not explained and this lack of clarification undermines the interpretation of these findings.

      Thank you for pointing this out. We apologize for the confusion. In our study, a “dominant” uORF is defined as the one with the highest translation efficiency (TE) among all uORFs within the same gene. This designation is based solely on TE, which we consider a key metric for uORF activity, as it directly reflects translational output and potential regulatory impact. We have revised the manuscript to clarify this definition (Lines 232–244), now stating:

      “Among genes with multiple uORFs, we defined the uORF with the highest TE as the dominant uORF for that gene, as TE is one of the most relevant metrics for assessing uORF function 45,67…… These results suggest that genes with multiple uORFs tend to retain the same dominant uORF across developmental stages, indicating that the dominant uORFs may serve as the key translational regulator of the downstream CDS.

      (4) According to the simulation, the translation of uORFs should exhibit greater variability than that of CDSs. However, the authors observed significantly fewer uORFs with significant TE changes compared to CDSs. This discrepancy may be due to lower sequencing depth resulting in fewer reads mapped to uORFs. Therefore, the authors may compare this variability specifically among highly expressed genes.

      Thank you for this thoughtful observation. We agree that the lower proportion of uORFs showing significant TE changes compared to CDSs, as reported in Table 1, appears inconsistent with our conclusion that uORFs exhibit greater translational variability. However, this discrepancy is largely attributable to differences in sequencing depth and feature length—uORFs are generally much shorter and more weakly expressed than CDSs, resulting in fewer mapped reads and reduced statistical power (Figure S18A).

      To address this issue, we first followed your suggestion and restricted our analysis to genes with both mRNA and RPF RPKM values above the 50th percentile in D. melanogaster and D. simulans. While this filtering increased the total proportion of features with significant TE changes (due to improved read coverage), the proportion of significant uORFs still remained lower than that of CDSs (Table R1). This suggests that even among highly expressed genes, the disparity in read counts between uORFs and CDSs persists (Figure S18B), and thus the issue is not fully resolved.

      To better capture biological relevance, we compared the absolute values of log2(TE changes) between D. melanogaster and D. simulans for uORFs and their corresponding CDSs. Across all samples, uORFs consistently exhibit larger TE shifts than their downstream CDSs, supporting our model that uORFs act as translational buffers (Figure 3B).

      We have made relevant changes to report the new analysis in this revised manuscript. Specifically, in our original submission, we stated this observation with the sentence “The smaller number of uORFs showing significant TE changes compared to CDSs between D. melanogaster and D. simulans likely reflects their shorter length and reduced statistical power, rather than indicating that uORFs are less variable in translation than CDSs.” To make this point clearer, in the revised version (Lines 275-284), we rephrased this sentence which read as follows: 

      “Note that due to their shorter length and generally lower TE, uORFs had considerably lower read counts than CDSs, limiting the statistical power to detect significant interspecific TE differences for uORFs. This trend consistently holds whether analyzing all expressed uORFs (Figure S18A) or only highly expressed genes (Figure S18B). Thus, the fewer uORFs showing significant TE divergence likely reflects lower read counts and statistical sensitivity rather than reduced translational variability relative to CDSs. In fact, the absolute values of log2(fold change) of TE for uORFs between D. melanogaster and D. simulans were significantly greater than those observed for corresponding CDSs across all samples (P < 0.001, Wilcoxon signed-rank test; Figure 3B), suggesting that the magnitude of

      TE changes in CDSs is generally smaller than that in uORFs, due to the buffering effect of uORF.”

      Author response table 1.

      Proportion of uORFs and CDSs with significant TE changes before and after selecting HEGs

      (5) If possible, the author may need to use antibodies against bicoid to test the effect of ATG deletion on bicoid expression, particularly under different developmental stages or growth conditions.

      According to the authors' conclusions, the deletion mutant should exhibit greater variability in bicoid protein abundance. This experiment could provide strong support for the proposed mechanisms.

      Thank you for this excellent suggestion. We fully agree that testing Bcd protein levels across developmental stages or stress conditions using antibodies would be a strong validation of our model, which predicts greater variability in Bcd protein abundance upon uORF deletion.

      In fact, we attempted such experiments in both wild-type and mutant backgrounds. However, we encountered substantial difficulties in obtaining a reliable anti-Bcd antibody. Some Bcd antibodies referenced in the published literature were homemade and often shared among research groups as gifts [1-3] and some commercially available antibodies cited in previous studies are no longer supplied by vendors [4-6]. We managed to obtain a custom-made antibody from Professor Feng Liu, but unfortunately, it produced inconsistent and unsatisfactory results. Despite considerable effort—including during the COVID-19 pandemic—we were unable to identify a reagent suitable for robust and reproducible detection of Bcd protein.

      As an alternative, we used sucrose gradient fractionation followed by qPCR to directly measure the translation efficiency of bicoid in vivo. We believe this approach offers a clear and quantitative readout of translational activity, and it avoids potential confounding from protein degradation, which may vary across conditions and developmental stages. Nonetheless, we recognize the value of antibody-based validation and will pursue this direction in future work if reliable antibodies become available. We have added this limitation to the revised Discussion section (Lines 563–568) as follows:

      “We demonstrated that the bcd uORF represses CDS translation using sucrose gradient fractionation followed by qPCR—an approach that directly measures translation efficiency while minimizing confounding from RNA/protein degradation. However, detecting Bcd protein levels with antibodies across developmental stages or conditions in the mutants and wild-type controls would provide an even stronger validation of our model and should be explored in future studies.”

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors):

      (1) The authors should provide a more detailed explanation for the modifications made to the ICIER model. Specifically, an explanation of the biological or mechanistic rationale behind the ability of the 80S ribosome to cause upstream 40S ribosomes to dissociate from mRNA would help clarify this aspect of the model.

      Thank you for this suggestion. In the original submission, we described our modifications to the ICIER model in the section titled “An extended ICIER model for quantifying uORF buffering in CDS translation” (Lines 88-124 of the revised manuscript). 

      To further clarify the biological rationale behind this mechanism, we have now included a conceptual model figure (Figure 9) illustrating mechanistically how uORF translation can buffer downstream translation within a single mRNA molecule. Additionally, we expanded the Discussion to summarize the current understanding of how collisions between translating 80S ribosomes and scanning 40S subunits may lead to dissociation, referencing known initial ribosome quality control (iRQC) pathways. These revisions provide a clearer mechanistic framework for interpreting the buffering effects modeled in our simulations. The relevant part is reproduced from Discussion (Lines 540-557) which reads as follows:

      “Ribosome slowdown or stalling on mRNA due to rare codons [56,96-98] or nascent blocking peptides [99-102] frequently triggers ribosome collisions genome-wide [103-105]. Such collisions, especially among elongating 80S ribosomes, often activate ribosome quality control (RQC) pathways that recognize collision interfaces on the 40S subunit, leading to ribosomal subunit dissociation and degradation [106-108]. In mammals, ZNF598 specifically identifies collided ribosomes to initiate ubiquitin-dependent protein and mRNA quality control pathways [109-113]. Analogously, yeast employs Hel2-mediated ubiquitination of uS10, initiating dissociation via the RQC-trigger complex (RQT) [114]. Furthermore, the human RQT (hRQT) complex recognizes ubiquitinated ribosomes and induces subunit dissociation similarly to yeast RQT [115]. However, transient ribosome collisions can evade RQC by promoting resumed elongation through mechanical force provided by trailing ribosomes, thereby mitigating stalling [116]. Beyond 80S collisions, evidence increasingly highlights a distinct collision type involving scanning 40S subunits or pre-initiation (43S) complexes. Recently, an initiation RQC pathway (iRQC) targeting the small ribosomal subunit (40S) has been described, particularly involving collisions between scanning 43S complexes or between stalled 43S and elongating 80S ribosomes (Figure 9B) [117,118]. During iRQC, E3 ubiquitin ligase RNF10 ubiquitinates uS3 and uS5 proteins, resulting in 40S degradation [118]. This mechanism aligns closely with our ICIER model, proposing collision-driven 43S dissociation in the 5' UTRs. Future studies exploring these mechanisms in greater detail will clarify how uORFs modulate translational regulation through buffering effects.”

      (2) The figure legend references Figure 5C; however, this figure appears to be missing from the document.

      We apologize for the oversight. The missing panel previously referred to as Figure 5C has now been incorporated into the revised Figure 6A. The figure and its corresponding legend have been corrected accordingly in the updated manuscript.

      Reviewer #2 (Recommendations for the authors):

      This is an important study that enhances our understanding of the roles of uORFs in translational regulation. In addition to the suggestions provided in the public review, the following minor points should be addressed before publication in eLife:

      (1) Page 7, line 207: "We identified 18,412 canonical uORFs shared between the two species (referred to as conserved uORFs hereafter)." The term "canonical uORFs" requires clarification. Does this refer to uORFs with specific sequence features, conservation, or another defining characteristic?

      Thank you for pointing this out. We apologize for the lack of clarity. In our study, a canonical uORF is defined as an open reading frame (ORF) that initiates with a canonical AUG start codon located in the 5′ untranslated region (UTR) and terminates with a stop codon (UAA, UAG, or UGA) within the same mRNA. Conservation of uORFs is defined solely based on the presence of AUG start codons at orthologous positions in the 5′ UTR across species, regardless of differences in the stop codon.

      To clarify this definition, we have revised the sentence as follows (Lines 213-219): “We focused on canonical uORFs that initiate with an ATG start codon in the 5′ UTR and terminate with a stop codon (TAA, TAG, or TGA). Because the ATG start codon is the defining feature of a canonical uORF and tends to be more conserved than its downstream sequence [67], we defined uORF conservation based on the presence of the ATG start codon in the 5′ UTR of D. melanogaster and its orthologous positions in D. simulans, regardless of differences in the stop codon. Using this criterion, we identified 18,412 canonical uORFs with conserved start codons between the two species.”

      (2) Page 8, line 227: "Furthermore, the dominant uORFs showed a higher proportion of conserved uATGs than the other translated uORFs." There appears to be a typographical error. Should "other uATGs" instead read "other uORFs"?

      Thank you for pointing this out. As we addressed in response to your previous concern, in this study, we defined uORF conservation primarily based on the presence of their start codon (uATG) both in D. melanogaster and the orthologous sites of D. simulans, as the start codon is the defining feature of a uORF and tends to be more conserved than the remaining sequence, as demonstrated in our previous study [7]. We used the term “conserved uATGs” to reflect this definition and believe it accurately conveys the intended meaning in this context.

      (3) Page 8, line 240: "uORFs exhibited a significant positive correlation with the TE of their downstream CDSs in all samples analyzed (P < 0.001, Spearman's correlation)." A Spearman's rho of 0.11 or 0.21 may not practically represent a "significant" positive correlation. Consider rephrasing this as "a positive correlation."

      Thank you for the suggestion. We have revised the sentence in the manuscript to read (Lines 257-259): “uORFs exhibited a modest, yet statistically significant, positive correlation with the TE of their downstream CDSs across all samples analyzed (P < 0.001, Spearman’s correlation).”

      (4) Page 9, line 269: The analysis of interspecific TE changes between uORFs and their corresponding CDSs is a crucial piece of evidence supporting the authors' conclusions. Presenting this analysis as part of the figures, rather than in "Table 1," would improve clarity and accessibility.

      Thank you for this suggestion. In Table 1, we originally presented the number of uORFs and CDSs that showed significant differences in TE between D. melanogaster and D. simulans during various developmental stages. One key point we aimed to emphasize was that, although TE changes in uORFs and their downstream CDSs are positively correlated, there is a notable difference in the magnitude of these changes. To better convey this, we have summarized the core findings of Table 1 in graphical form.

      In Figure 3B of the revised version, we compared the absolute values of interspecific TE changes between CDS and uORF, showing that CDSs consistently exhibit smaller shifts than their upstream uORFs. This result further supports the translational buffering effect of uORFs on downstream CDS expression. We have included the updated results in the revised manuscript (Lines 281-284) as follows:

      “In fact, the absolute values of log2(fold change) of TE for uORFs between D. melanogaster and D. simulans was significantly greater than that observed for corresponding CDSs across all samples (P < 0.001, Wilcoxon signed-rank test; Figure 3B), suggesting that the magnitude of TE changes in CDSs is generally smaller than that in uORFs, due to the buffering effect of uORF.”

      (5) Page 9, line 279: The phrase "dominantly translated" needs clarification. Does it refer to Figure 2C, where one uORF is dominantly translated within a gene, or does it mean that the uORF's translation is higher than that of its corresponding CDS?

      We apologize for the obscurity. The phrase "dominantly translated" means one uORF with the highest TE compared to other uORFs within a gene. We have rephrased the relevant sentence in the revised version (Lines 299-304), which now reads:

      “To investigate how the conservation level and translation patterns of uORFs influence their buffering capacity on CDS translation, we categorized genes expressed in each pair of samples into three classes:

      Class I, genes with conserved uORFs that are dominantly translated (i.e., exhibiting the highest TE among all uORFs within the same gene) in both Drosophila species; Class II, genes with conserved uORFs that are translated in both species but not dominantly translated in at least one; and Class III, the remaining expressed genes.”

      (6) The sequencing data and analysis code should be made publicly available before publication to ensure transparency and reproducibility.

      Thank you for this suggestion. As described in the Data availability section, all deepsequencing data generated in this study, including single-ended mRNA-Seq and Ribo-Seq data of 10 developmental stages and tissues of Drosophila simulans and paired-end mRNA-Seq data of 0-2 h, 26 h, 6-12 h, and 12-24 h Drosophila melanogaster embryos, were deposited in the China National Genomics Data Center Genome Sequence Archive (GSA) under accession numbers CRA003198, CRA007425, and CRA007426. The mRNA-Seq and Ribo-Seq data for the different developmental stages and tissues of Drosophila melanogaster were published in our previous paper [8] and were deposited in the Sequence Read Archive (SRA) under accession number SRP067542.

      All original code has been deposited on GitHub: https://github.com/lujlab/uORF_buffer; https://github.com/lujlab/Buffer_eLife2025.

      Response reference

      (1) Li, X.Y., MacArthur, S., Bourgon, R., Nix, D., Pollard, D.A., Iyer, V.N., Hechmer, A., Simirenko, L., Stapleton, M., Luengo Hendriks, C.L., et al. (2008). Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6, e27. 10.1371/journal.pbio.0060027.

      (2) Horner, V.L., Czank, A., Jang, J.K., Singh, N., Williams, B.C., Puro, J., Kubli, E., Hanes, S.D., McKim, K.S., Wolfner, M.F., and Goldberg, M.L. (2006). The Drosophila calcipressin sarah is required for several aspects of egg activation. Curr Biol 16, 1441-1446. 10.1016/j.cub.2006.06.024.

      (3) Lee, K.M., Linskens, A.M., and Doe, C.Q. (2022). Hunchback activates Bicoid in Pair1 neurons to regulate synapse number and locomotor circuit function. Curr Biol 32, 2430-2441 e2433. 10.1016/j.cub.2022.04.025.

      (4) Wharton, T.H., Nomie, K.J., and Wharton, R.P. (2018). No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo. PLoS One 13, e0194865. 10.1371/journal.pone.0194865.

      (5) Wang, J., Zhang, S., Lu, H., and Xu, H. (2022). Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction. Nat Commun 13, 2714. 10.1038/s41467-022-30315-6.

      (6) Xu, H., Sepulveda, L.A., Figard, L., Sokac, A.M., and Golding, I. (2015). Combining protein and mRNA quantification to decipher transcriptional regulation. Nat Methods 12, 739-742. 10.1038/nmeth.3446.

      (7) Zhang, H., Wang, Y., Wu, X., Tang, X., Wu, C., and Lu, J. (2021). Determinants of genomewide distribution and evolution of uORFs in eukaryotes. Nat Commun 12, 1076. 10.1038/s41467-021-21394-y.

      (8) Zhang, H., Dou, S., He, F., Luo, J., Wei, L., and Lu, J. (2018). Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biol 16, e2003903. 10.1371/journal.pbio.2003903.

    1. Reviewer #1 (Public review):

      Summary:

      Wang et al. identify Hamlet, a PR-containing transcription factor, as a master regulator of reproductive development in Drosophila. Specifically, the fusion between the gonad and genital disc that is necessary for development of a continuous testes and seminal vesicle tissue essential for fertility. To do so, the authors generate novel Hamlet null mutants by CRISPR/Cas9 gene editing and characterize the morphological, physiological, and gene expression changes of the mutants using immunofluorescence, RNA-seq, cut-tag, and in-situ analysis. Thus, Hamlet is discovered to regulate a unique expression program, which includes Wnt2 and Tl, that is necessary for testis development and fertility.

      Strengths:

      This is a rigorous and comprehensive study that identifies the Hamlet dependent gene expression program mediating reproductive development in Drosophila. The Hamlet transcription targets are further characterized by Gal4/UAS-RNAi confirming their role in reproductive development. Finally, the study points to a role for Wnt2 and Tl as well as other Hamlet transcriptionally regulated genes in epithelial tissue fusion.

      Weaknesses:

      None noted.

    2. Reviewer #2 (Public review):

      Strengths:

      Wang and colleagues successfully uncovered an important function of the Drosophila PRDM16/PRDM3 homolog Hamlet (Ham) - a PR domain containing transcription factor with known roles in the nervous system in Drosophila. To do so, they generated and analyzed new mutants lacking the PR domain, and also employed diverse preexisting tools. In doing so, they made a fascinating discovery: They found that PR-domain containing isoforms of ham are crucial in the intriguing development of the fly genital tract. Wang and colleagues found three distinct roles of Ham: (1) Specifying the position of the testis terminal epithelium within the testis, (2) allowing normal shaping and growth of the anlagen of the seminal vesicles and paragonia and (3) enabling the crucial epithelial fusion between the seminal vesicle and the testis terminal epithelium. The mutant blocks fusion even if the parts are positioned correctly. The last finding is especially important, as there are few models allowing one to dissect the molecular underpinnings of heterotypic epithelial fusion in development. Their data suggest that they found a master regulator of this collective cell behavior. Further, they identified some of the cell biological players downstream of Ham, like for example E-Cadherin and Crumbs. In a holistic approach, they performed RNAseq and intersected them with the CUT&TAG-method, to find a comprehensive list of downstream factors directly regulated by Ham. Their function in the fusion process was validated by a tissue-specific RNAi screen. Meticulously, Wang and colleagues performed multiplexed in situ hybridization and analyzed different mutants, to gain a first understanding of the most important downstream-pathways they characterized - which are Wnt2 and Toll.

      This study pioneers a completely new system. It is a model for exploring a process crucial in morphogenesis across animal species, yet not well-understood. Wang and colleagues not only identified a crucial regulator of heterotypic epithelial fusion but took on the considerable effort of meticulously pinning down functionally important downstream effectors by using many state-of-the-art methods. This is especially impressive, as dissection of pupal genital discs before epithelial fusion is a time-consuming and difficult task. This promising work will be the foundation future studies build on, to further elucidate how this epithelial fusion works, for example on a cell biological and biomechanical level.

      Weaknesses:

      The developing testis-genital disc system has many moving parts. Myotube migration was previously shown to be crucial for testis shape. This means, that there is the potential of non-tissue autonomous defects upon knockdown of genes in the genital disc or the terminal epithelium, affecting myotube behavior which in turn affects epithelial fusion, as myotubes might create the first "bridge" bringing the two epithelia together. Nevertheless, this is outside the scope of this work and could be addressed in the future.

    3. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      Summary: 

      Wang et al. identify Hamlet, a PR-containing transcription factor, as a master regulator of reproductive development in Drosophila. Specifically, the fusion between the gonad and genital disc is necessary for the development of continuous testes and seminal vesicle tissue essential for fertility. To do this, the authors generate novel Hamlet null mutants by CRISPR/Cas9 gene editing and characterize the morphological, physiological, and gene expression changes of the mutants using immunofluorescence, RNA-seq, cut-tag, and in-situ analysis. Thus, Hamlet is discovered to regulate a unique expression program, which includes Wnt2 and Tl, that is necessary for testis development and fertility. 

      Strengths: 

      This is a rigorous and comprehensive study that identifies the Hamlet-dependent gene expression program mediating reproductive development in Drosophila. The Hamlet transcription targets are further characterized by Gal4/UAS-RNAi confirming their role in reproductive development. Finally, the study points to a role for Wnt2 and Tl as well as other Hamlet transcriptionally regulated genes in epithelial tissue fusion. 

      We appreciate that the reviewer thinks our study is rigorous.

      Weaknesses: 

      The image resolution and presentation of figures is a major issue in this study. As a nonexpert, it is nearly impossible to see the morphological changes as described in the results. Quantification of all cell biological phenotypes is also lacking therefore reducing the impact of this study to those familiar with tissue fusion events in Drosophila development. 

      In the revised version, we have improved the image presentation and resolution. For all the images with more than two channels, we included single-channel images, changed the green color to lime and the red to magenta, highlighted the testis (TE) and seminal vescicles to make morphological changes more visible.  

      We had quantification for marker gene expression in the original version, and now also included quantification for cell biological phenotypes which are generally with 100% penetrance.  

      Reviewer #2 (Public review): 

      Strengths: 

      Wang and colleagues successfully uncovered an important function of the Drosophila PRDM16/PRDM3 homolog Hamlet (Ham) - a PR domain-containing transcription factor with known roles in the nervous system in Drosophila. To do so, they generated and analyzed new mutants lacking the PR domain, and also employed diverse preexisting tools. In doing so, they made a fascinating discovery: They found that PR-domain containing isoforms of ham are crucial in the intriguing development of the fly genital tract. Wang and colleagues found three distinct roles of Ham: (1) specifying the position of the testis terminal epithelium within the testis, (2) allowing normal shaping and growth of the anlagen of the seminal vesicles and paragonia and (3) enabling the crucial epithelial fusion between the seminal vesicle and the testis terminal epithelium. The mutant blocks fusion even if the parts are positioned correctly. The last finding is especially important, as there are few models allowing one to dissect the molecular underpinnings of heterotypic epithelial fusion in development. Their data suggest that they found a master regulator of this collective cell behavior. Further, they identified some of the cell biological players downstream of Ham, like for example E-Cadherin and Crumbs. In a holistic approach, they performed RNAseq and intersected them with the CUT&TAG-method, to find a comprehensive list of downstream factors directly regulated by Ham. Their function in the fusion process was validated by a tissue-specific RNAi screen. Meticulously, Wang and colleagues performed multiplexed in situ hybridization and analyzed different mutants, to gain a first understanding of the most important downstream pathways they characterized, which are Wnt2 and Toll. 

      This study pioneers a completely new system. It is a model for exploring a process crucial in morphogenesis across animal species, yet not well understood. Wang and colleagues not only identified a crucial regulator of heterotypic epithelial fusion but took on the considerable effort of meticulously pinning down functionally important downstream effectors by using many state-of-the-art methods. This is especially impressive, as the dissection of pupal genital discs before epithelial fusion is a time-consuming and difficult task. This promising work will be the foundation future studies build on, to further elucidate how this epithelial fusion works, for example on a cell biological and biomechanical level. 

      We appreciate that the reviewer thinks our study is orginal and important.

      Weaknesses: 

      The developing testis-genital disc system has many moving parts. Myotube migration was previously shown to be crucial for testis shape. This means, that there is the potential of non-tissue autonomous defects upon knockdown of genes in the genital disc or the terminal epithelium, affecting myotube behavior which in turn affects fusion, as myotubes might create the first "bridge" bringing the epithelia together. The authors clearly showed that their driver tools do not cause expression in myoblasts/myotubes, but this does not exclude non-tissue autonomous defects in their RNAi screen. Nevertheless, this is outside the scope of this work. 

      We thank the reviewer’s consideration of non-tissue autonomous defects upon gene knockdown. The driver, hamRSGal4, drives reporter gene expression mainly in the RS epithelia, but we did observe weak expression of the reporter in the myoblasts before they differentiate into myotubes. Thus, we could not rule out a non-tissue autonomou effect in the RNAi screen. So we now included a statement in the result, “Given that the hamRSGal4 driver is highly expressed in the TE and SV epithelia, we expect highly effective knockdown occurs only in these epithelial cells. However, hamRSGal4 also drives weak expression in the myoblasts before they differentiated into myotubes (Supplementary Fig. 5B), which may result in a non-tissue autonomous effect when knocking down the candidate genes expressed in myoblasts.”

      However, one point that could be addressed in this study: the RNAseq and CUT&TAG experiments would profit from adding principal component analyses, elucidating similarities and differences of the diverse biological and technical replicates. 

      Thanks for the suggestion. We now have included the PCA analyses in supplementary figure 6A-B and the corresponding description in the text. The PCA graphs validated the consistency between biological replicates of the RNA-seq samples. The Cut&Tag graphs confirm the consistency between the two biological replicates from the GFP samples, but show a higher variability between the w1118 replicates. Importantly, we only considered the overlapped peaks pulled by the GFP antibody from the ham_GFP genotype and the Ham antibody from the wildtype (w1118) sample as true Ham binding sites. 

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors): 

      Major Concern: 

      (1) The image resolution and presentation of figures (Figures 2, 5, 6, and 7) is a major issue in this study. As a non-expert, it is nearly impossible to see the morphological changes as described in the results. Images need to be captured at higher resolution and zoomed in with arrows denoting changes as described. Individual channels, particularly for intensity measurement need to be shown in black and white in addition to merged images. Images also need pseudo-colored for color-blind individuals (i.e. no red-green staining). 

      The images were captured at a high resolution, but somehow the resolution was drammaticlly reduced in the BioRxiv PDF. We try to overcome this by directly submitting the PDF in the Elife submission system. In the revised version, we have included single-channel images, changed the green and red colors to lime and magenta for color blindness. We also highlighted the testis (TE) and seminal vescicle structures in the images to make morphological changes more visible.  

      (2) The penetrance of morphological changes observed in RT development is also unclear and needs to be rigorously quantified for data in Figures 2, 5, and 7. 

      We now included quantification for cell biological phenotypes which are generally with 100% penetrance. The percentage of the penetrance and the number of animals used are indicated in each corresponding image.  

      Reviewer #2 (Recommendations for the authors): 

      Major Points 

      (1) Lines 193- 220 I would strongly suggest pointing out the obvious shape defects of the testes visible in Figure 2A ("Spheres" instead of "Spirals"). These are probably a direct consequence of a lack in the epithelial connection that myotubes require to migrate onto the testis (in a normal way) as depicted in the cartoons, allowing the testis to adopt a spiral shape through myotube-sculpting (Bischoff et al., 2021), further confirming the authors' findings! 

      Good point. In the revised text, we have added more description of the testis shape defects and pointed out a potential contribution from compromised myotube migration.   

      (2) Line 216: "Often separated from each other". Here it would be important to mention how often. If the authors cannot quantify that from existing data, I suggest carrying it out in adult/pharate adult genital tracts (if there is no strong survivor bias due to the lethality of stronger affected animals), as this is much easier than timing prepupae. This should be a quick and easy experiment. 

      Because it is hard to tell whether the separation of the SV and TE was caused by developmental defects or sometimes could be due to technical issues (bad dissection), we now change the description to, “control animals always showed connected TE and SV, whereas ham mutant TE and SV tissues were either separated from each other, or appeared contacted but with the epithelial tubes being discontinuous (Fig. 2B).” Additionally, we quantified the disconnection phenotype, which is 100% penetrance in 18 mutant animals. This quantification is now included in the figure. 

      (3) Lines 289-305, Figure 3. I could only find how many replicates were analyzed in the RNAseq/CUT&Tag experiments in the Material & Methods section. I would add that at least in the figure legends, and perhaps even in the main text. Most importantly, I would add a Principal Component Analysis (one for RNAseq and one for the CUT&TAG experiment), to demonstrate the similarity of biological replicates (3x RNaseq, 4x Cut&Tag) but also of the technical replicates (RNAseq: wt & wt/dg, ham/ham & ham/df, GD & TE; CUT&TAG: Antibody & GFP-Antibody, TG&TE...). This should be very easy with the existing data, and clearly demonstrate similarities & differences in the different types of replicates and conditions. 

      Principle component analysis and its description are now added to Supplementary Fig 6 and the main text respectively. 

      (4) Line 321; Supplementary Table 1: In the table, I cannot find which genes are down- or upregulated - something that I think is very important. I would add that, and remove the "color" column, which does not add any useful information. 

      In Supplementary table 1, the first sheet includes upregulated genes while the second sheet includes downregulated genes. We removed the column “color” as suggested.  

      (5) Line 409: SCRINSHOT was carried out with candidate genes from the screen. One gene I could not find in that list was the potential microtubule-actin crosslinker shot. If shot knockdown caused a phenotype, then I would clearly mention and show it. If not, I would mention why a shot is important, nonetheless. 

      shot is one of the candidate target genes selected from our RNA-seq and Cut&Tag data. However, in the RNAi screen, knocking down shot with the available RNAi lines did not cause any obvious phenotype. These could be due to inefficient RNAi knockdown or redundancy with other factors. We anyway wanted to examine shot expression pattern in the developing RS, give the important role of shot in epithelial fusion (Lee S., 2002). Using SCRINSHOT, we could detect epithelial-specific expression of shot, implying its potential function in this context. We now revised the text to clarify this point. 

      Minor points 

      (1) Cartoons in Figure 1: The cartoons look like they were inspired by the cartoon from Kozopas et al., 1998 Fig. 10 or Rothenbusch-Fender et al., 2016 Fig 1. I think the manuscript would greatly profit from better cartoons, that are closer to what the tissue really looks like (see Figure 1H, 2G), to allow people to understand the somewhat complicated architecture. The anlagen of the seminal vesicles/paragonia looks like a butterfly with a high columnar epithelium with a visible separation between paragonia/seminal vesicles (upper/lower "wing" of the "butterfly"). Descriptions like "unseparated" paragonia/seminal vesicle anlagen, would be much easier to understand if the cartoons would for example reflect this separation. It would even be better to add cartoons of the phenotypic classes too, and to put them right next to the micrographs. (Another nitpick with the cartoons: pigment cells are drastically larger and fewer in number (See: Bischoff et al., 2021 Figure 1E & MovieM1).) 

      Thanks for the suggestion. We have updated Figure 1 by adding additional illustrations showing the accessory gland and seminal vesicle structures in the pupal stage and changing the size of pigment cells.

      (2) Line 95-121 I would also briefly introduce PR domains, here. 

      We have added a brief descripition of the PR domains.

      (3) Line 152, 158, 160, 162. When first reading it, I was a bit confused by the usage of the word sensory organ. I would at least introduce that bristles are also known as external mechanosensory organs. 

      We have now revised the description to “mechano-sensory organ”.

      eg. Line 184, 194, and many more. Most times, the authors call testis muscle precursors "myoblasts". This is correct sometimes, but only when referring to the stage before myoblast-fusion, which takes place directly before epithelial fusion (28 h APF). Postmyoblast-fusion (eg. during migration onto the testis), these cells should be called myotubes or nascent myotubes, as the fly muscle community defined the term myoblast as the singlenuclei precursors to myotubes. 

      We have now revised the description accordingly.  

      (4) Line 217/Figure 2B. It looks like there is a myotube bridge between the testis and the genital disc. I would point that out if it's true. If the authors have a larger z-stack of this connection, I suggest creating an MIP, and checking if there are little clusters of two/three/four nuclei packed together. This would clearly show that the cells in between are indeed myotubes (granted that loss of ham does not introduce myoblast-fusion-defects). 

      We do not have a Z-stack of this connection, and thus can not confirm whether the cells in this image are myotubes. However, we found that mytubes can migrate onto the testis and form the muscular sheet in the ham mutant despite reduced myotube density. At the junction there are myotubes, suggesting that loss of ham does not introduce myoblast-fusion defects. These results are now included in the revised manuscript, supplementary Fig. 5 C-D.

      (5) Line 231/Supplementary Fig. 3C-G: I would add to the cartoons, where the different markers are expressed. 

      We have added marker gene expression in the cartoons.

      (6) Line 239. I don't see what Figure 1A/1H refers to, here. I would perhaps just remove it. 

      Yes, we have removed it.

      (7) Line 232. I would rephrase the beginning of the sentence to: Our data suggest Ham to be... 

      Yes, we have revised it.

      (8) Line 248-250/Figure 2F. Clonal analyses are great, but I think single channels should be shown in black and white. Also, a version without the white dashed line should be shown, to clearly see the differences between wt and ham-mutant cells. 

      Now single channel images from the green and red images are presented in Supplementary Figures. This particular one is in Supplementary Figure 3B. 

      (9) Line 490. The Toll-9 phenotype was identified on the sterility effect/lack-of-spermphenotype alone, and it was deduced, that this suggests connection defects. By showing the right focus plane in Fig S8B (lower right), it should be easy to directly show whether there is a connection defect or not. Also, one would expect clearer testis-shaping defects, like in ham-mutants, as a loss of connection should also affect myotube migration to shape the testis. This is just a minor point, as it only affects supplementary data with no larger impact on the overall findings, even if Toll-9 is shown not to have a defect, after all. 

      We find that scoring defects at the junction site at the adult stage is difficult and may not be always accurate. Instead, we score the presence of sperms in the SV, which indirectly but firmly suggests successful connection between the TE and SV. We have now included a quantification graph, showing the penetrance of the phentoype in the new Supplementary Fig.14C. There were indeed morphological defects of TE in Toll-9 RNAi animals. We now included the image and quantification in the new Supplementary Fig.14B.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public Review): 

      This study investigates the role of microtubules in regulating insulin secretion from pancreatic islet beta cells. This is of great importance considering that controlled secretion of insulin is essential to prevent diabetes. Previously, it has been shown that KIF5B plays an essential role in insulin secretion by transporting insulin granules to the plasma membrane. High glucose activates KIF5B to increase insulin secretion resulting in the cellular uptake of glucose. In order to prevent hypoglycemia, insulin secretion needs to be tightly controlled. Notably, it is known that KIF5B plays a role in microtubule sliding. This is important, as the authors described previously that beta cells establish a peripheral sub-membrane microtubule array, which is critical for the withdrawal of excessive insulin granules from the secretion sites. At high glucose, the sub-membrane microtubule array is destabilized to allow for robust insulin secretion. Here the authors aim to answer the question of how the peripheral array is formed. Based on the previously published data the authors hypothesize that KIF5B organizes the sub-membrane microtubule array via microtubule sliding. 

      General comment: 

      This manuscript provides data that indicate that KIF5B, like in many other cells, mediates microtubule sliding in beta cells. This study is limited to in vitro assays and one cell line. Furthermore, the authors provide no link to insulin secretion and glucose uptake and the overall effects described are moderate. Finally, the overall effect of microtubule sliding upon glucose stimulation is surprisingly low considering the tight regulation of insulin secretion. Moreover, the authors state "the amount of MT polymer on every glucose stimulation changes only slightly, often undetectable…. In fact, we observe a prominent effect of peripheral MT loss only after a long-term kinesin depletion (three-four days)". This challenges the view that a KIF5Bdependent mechanism regulating microtubule sliding plays a major role in controlling insulin secretion. 

      (1) Our initial study was indeed done in a cell line, which is a normal approach to addressing molecular mechanisms of a phenomenon in a challenging cell model: primary pancreatic beta cells are prone to rapidly dedifferentiate outside of the organism and are hard to genetically modify. To address this reviewer’s comment, in the revised manuscript we now confirm the phenotype in beta cells within intact pancreatic islets from a KIF5B KO mouse model (New Figure 2 – Supplemental Figure 1).

      (2) We agree that testing the effect of microtubule sliding on insulin secretion is an important question. Unfortunately, the experimental design needed to accomplish this task is not straighDorward. Importantly, besides microtubule sliding, KIF5B is heavily engaged in insulin granule transport, and GSIS deficiency upon KIF5B inactivation is well documented (e.g. Varadi et al 2002). In this study, we choose not to repeat this GSIS assay because of ample existing data. However, this reported GSIS deficiency could result from a combination of lack of insulin granule delivery to the periphery (previous data) and from the depletion of insulin granules from the periphery due to the loss of the submembrane MT bundle (this study and Bracey et al 2020).  In order to exclusively test the role of MT sliding in secretion, a significant investment in mutant tool development would be needed. Ideally, a new mutant mouse model where insulin granule transport is allowed by MT sliding in blocked must be developed to specifically address this question. To conclude, answering this question will be the subject for another, follow-up study. 

      (3) We respecDully disagree with the reviewer’s opinion that the effect of MT sliding in beta cells is moderate. As MT networks go, even a slight change in MT configuration often has dramatic consequences. For example, in mitotic spindles, a tiny overgrowth of microtubule ends during metaphase, which causes them to attach to both kinetochores rather than just one, is very significant for the efficiency of chromosome segregation, causing aneuploidy and cancer. The changes in beta-cell MT networks that we are reporting are much stronger: the effect on the peripheral MT network accumulated over three days of KIF5B depletion is dramatic (Fig 2 B, C). Short-term gross MT network configurations after a single glucose stimulation are harder to detect, but MTs at the cell periphery are, in fact, destabilized and fragmented, as we and others have previously reported (Ho et al 2020, Mueller et al 2021). Preventing this MT rearrangement completely blocks GSIS (Zhu et al 2015, Ho et al 2020). 

      One of the most fascinating features of insulin secretion regulation is that the amount of generated insulin granules significantly exceeds the normal physiological needs for insulin secretion (~100 times more than needed). At the same time, even slightly facilitated glucose depletion can be devastating. Accordingly, the excessive insulin content of a beta cell resulted in the development of multiple levels of control, preventing excessive secretion. Our previous data suggest that the peripheral MT array provides one of those mechanisms. This study indicates that microtubule sliding is necessary to form the proper peripheral network in the long term. Short-term glucose-induced changes in the peripheral MT array likely need to be subtle to prevent over-secretion. Thus, we are not surprised that a dramatic effect of sliding inhibition is only detectable by our approaches after the changes in the MT network accumulate over time. In the revised paper, we now discuss the potential impact of peripheral MT sliding on positive and negative regulation of secretion and add a schematic model illustrating these processes.

      Specific comments: 

      (1) Notably, the authors have previously reported that high glucose-induced remodeling of microtubule networks facilitates robust glucose-stimulated insulin secretion. This remodeling involves the disassembly of old microtubules and the nucleation of new microtubules. Using real-time imaging of photoconverted microtubules, they report that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Here, they state that the sub-membrane microtubule array is destabilized via microtubule sliding. What is the relevance of the different processes? 

      In this comment, the summary of our previous conclusions is correct, but the conclusion of this current study is re-stated incorrectly. Indeed, we have previously shown that in high glucose, MTs are destabilized at the cell periphery and nucleated in the cell interior. However, this current paper does not state that “the sub-membrane microtubule array is destabilized via microtubule sliding”. To answer this reviewer’s question, our data support a model where, during glucose stimulation, MT sliding within the peripheral bundle might move fragments of MTs severed by other mechanisms. Importantly, we propose that MT sliding restores the partially destabilized peripheral bundle by delivery of MTs that are nucleated at the cell interior and incorporating them into that bundle. In our overall model, three processes (destabilization, nucleation, and sliding to restore the bundle) are coordinated to maintain beta cell fitness on each GSIS cycle.

      (2) On one hand the authors describe how KIF5B depletion prevents sliding and the transport of microtubules to the plasma membrane to form the sub-membrane microtubule array. This indicates KIF5B is required to form this structure. On the other hand, they describe that at high glucose concentration, KIF5B promotes microtubule sliding to destabilize the sub-membrane microtubule array to allow robust insulin secretion. This appears contradictory. 

      We never intended to make an impression that MT sliding destabilized the sub-membrane bundle. Apologies if there was a reason in our wording that caused this misunderstanding of our model. We propose that while the bundle is destabilized downstream of glucose signaling (e.g. due to tau phosphorylation, please see Ho et al Diabetes 2020), MT sliding remodels the bundle and thereafter rebuilds it to prevent over-secretion. In the revised manuscript, we have doublechecked the whole text to make sure that such misunderstanding is avoided. 

      (3) Previously, it has been shown that KIF5B induces tubulin incorporation along the microtubule shaft in a concentration-dependent manner. Moreover, running KIF5B increases microtubule rescue frequency and unlimited growth of microtubules. Notably, KIF5B regulates microtubule network mass and organization in cells (PMID: 34883065). Consequently, it appears possible that the here observed phenomena of changes in the microtubule network might be due to alterations in these processes. 

      We thank the reviewer for proposing this alternative explanation to the observed change in microtubule networks after KIF5B depletion. We have now directly tested this possibility. Namely, we have re-expressed the kinesin-1 motor domain in MIN6 cells depleted of KIF5B. This motor domain construct by itself is not capable of driving microtubule sliding because it lacks the tail domain. At the same time, it is known to move very efficiently at microtubules and should provide the effects as reported in the article cited by the reviewer. We found that the reexpression of the kinesin motor domain does not rescue microtubule network defects in beta cells (see new Figure 2 – Supplemental Figure 2). Thus, we conclude that the effects of kinesin depletion on the microtubule network in beta cells are due to the lack of microtubule sliding, as reported here.

      (4) The authors provide data that indicate that microtubule sliding is enhanced upon glucose stimulation. They conclude that these data indicate that microtubule sliding is an integral part of glucose-triggered microtubule remodeling. Yet, the authors fail to provide any evidence that this process plays a role in insulin secretion or glucose uptake. 

      We would like to point out that we do not “fail” but rather choose not to overload our study by repeating insulin secretion assays in KIF5B-inactivated cells because this would not have been very informative. It has been found previously that kinesin-1 inactivation or knockout significantly attenuates insulin secretion because kinesin-1 is actively transporting insulin granules and kinesin-1 activity is enhanced under high glucose conditions (e.g. Varadi et al 2002, Cui et al., 2011, Donelan et al, 2002). That said, our current finding is very much in line with these previous data. When kinesin is depleted, two things would be happening at the same time: in the absence of sub-membrane microtubule bundle pre-existing insulin granules would be over-secreted, and new insulin would not be delivered to the periphery, both decreasing GSIS. Unfortunately, we do not have tools yet that would allow us to dissect which part of the insulin secretion defect is due to prior over-secretion (the consequence of deficient MT sliding) and which part is due to the lack of new granule delivery. We plan to develop such tools in the future and elaborate on them in a follow-up study. Here, our goal is to understand microtubule organization principles in beta cells, and we choose not to extend the scope of the current study to metabolic assays.  

      (5) The authors speculate that the sub-membrane microtubule array prevents the over-secretion of insulin. Would one not expect in this case a change in the distribution of insulin granules at the plasma membrane when this array is affected? Or after glucose stimulation? Notably, it has been reported that "the defects of β-cell function in KIF5B mutant mice were not coupled with observable changes in islet morphology, islet cell composition, or β-cell size" and "the subcellular localization of insulin vesicles was found to not be affected significantly by the decreased Kif5b level. The cytoplasm of both wild-type and mutant β-cells was filled with insulin vesicles. Insulin vesicle numbers per square μm were determined by counting all insulin vesicles in randomly photographed β-cells. More insulin granules were found in Kif5b knockout β-cells compared with control cells. This phenomenon is consistent with the observation that insulin secretion by β-cells is affected" whereby "Insulin vesicles (arrowheads) were distributed evenly in both mutant and control cells" (PMID: 20870970).  

      Quantitative analyses in the study cited by the reviewer do not include assays that would be relevant to our study. Particularly, in that study neither the amount of insulin granules at the cell periphery nor the ratio between the number of granules at the periphery and the beta cell interior has been analyzed. In addition, in our preliminary observations not shown here, insulin content in beta cells in KIF5B KO mice is highly heterogeneous, with a subpopulation of cells severely depleted of insulin. This opens a new avenue of investigation into beta cell heterogeneity, which is out of the scope of this current study. Thus, we chose to restrict this current study to microtubule organization data.   

      (6) Does the sub-membrane microtubule array exist in primary beta cells (in vitro and/or in vivo) and how it is affected in KIF5B knockout mice?  

      Yes, it does exist. In fact, we have first reported it in mouse islets (Bracey et al 2020, Ho et al 2020). Now, we report that the sub-membrane bundle is defective, and microtubules are misaligned in KIF5B KO mice (new Figure 2 – Supplemental Figure 1).

      Reviewer #2 (Public Review): 

      In this article, Bracey et al. provide insights into the factors contributing to the distinct arrangement observed in sub-membrane microtubules (MTs) within mouse β-cells of the pancreas. Specifically, they propose that in clonal mouse pancreatic β-cells (MIN6), the motor protein KIF5B plays a role in sliding existing MTs towards the cell periphery and aligning them with each other along the plasma membrane. Furthermore, similar to other physiological features of β-cells, this process of MTs sliding is enhanced by a high glucose stimulus. Because a precise alignment of MTs beneath the cell membrane in β-cells is crucial for the regulated secretion of pancreatic enzymes and hormones, KIF5B assumes a significant role in pancreatic activity, both in healthy conditions and during diseases. 

      The authors provide evidence in support of their model by demonstrating that the levels of KIF5B mRNA in MIN6 cells are higher compared to other known KIFs. They further show that when KIF5B is genetically silenced using two different shRNAs, the MT sliding becomes less efficient. Additionally, silencing of KIF5A in the same cells leads to a general reorganization of MTs throughout the cell. Specifically, while control cells exhibit a convoluted and non-radial arrangement of MTs near the cell membrane, KIF5B-depleted cells display a sparse and less dense sub-membrane array of MTs. Based on these findings, the Authors conclude that the loss of KIF5B strongly affects the localization of MTs to the periphery of the cell. Using a dominant-negative approach, the authors also demonstrate that KIF5B facilitates the sliding of MTs by binding to cargo MTs through the kinesin-1 tail binding domain. Additionally, they present evidence suggesting that KIF5B-mediated MT sliding is dependent on glucose, similar to the activity levels of kinesin-1, which increase in the presence of glucose. Notably, when the glucose concentrations in the culturing media of MIN6 cells are reduced from 20 mM to 5 mM, a significant decrease in MT sliding is observed. 

      Strengths:

      This study unveils a previously unexplained mechanism that regulates the specific rearrangement of MTs beneath the cell membrane in pancreatic β-cells. The findings of this research have implications and are of significant interest because the precise regulation of the MT array at the secretion zone plays a critical role in controlling pancreatic function in both healthy and diseased states. In general, the author's conclusions are substantiated by the provided data, and the study demonstrates the utilization of state-of-the-art methodologies including quantification techniques, and elegant dominant-negative experiments. 

      Weaknesses:

      A few relatively minor issues are present and related to data interpretation and the conclusions drawn in the study. Namely, some inconsistencies between what appears to be the overall and sub-membrane MT array in scramble vs. KIF5B-depleted cells, the lack of details about the sub-cellular localization of KIF5B in these cells and the physiological significance of the effect of glucose levels in beta-cells of the pancreas. 

      We thank the reviewer for this insighDul review. In the revised version, we provided re-worded and extended interpretations and conclusions to prevent any issues or misunderstandings.  We trust that while some noted apparent inconsistencies may reflect the intrinsic heterogeneity of the beta cell population, all data presented here indicate the same trend in phenotypes.  In the revised version, we have provided additional cell views and, in places, alternative representative images and videos, to clear out any apparent inconsistencies. We also would like to point out that we in fact reported KIF5B localization: not surprisingly, KIF5B predominantly localized to insulin granules and the punctate staining fills the whole cytoplasm (Figure 2A, bottom panel). However, as pointed out in detail in our response to reviewer 1, we choose to leave out an extensive study of the physiological and metabolic consequences of the reported microtubule network dynamics to a follow-up study. 

      Reviewer #3 (Public Review): 

      Prior work from the Kaverina lab and others had determined that beta-cells build a microtubule network that differs from the canonical radial organization typical in most mammalian cell types and that this organization facilitates the regulated secretion of insulin-containing secretory granules (IGs). In this manuscript, the authors tested the hypothesis that kinesin-driven microtubule sliding is an underlying mechanism that establishes a sub-membranous microtubule array that regulates IG secretion. They employed knock-down and dominant-negative strategies to convincingly show microtubule sliding does, in fact, drive the assembly of the sub-membranous microtubule band. They also used live cell imaging assays to demonstrate that kinesin-mediated microtubule sliding in beta-cells is triggered by extracellular high glucose. Overall, this is an interesting and important study that relates microtubule dynamics to an important physiological process. The experiments were rigorous and well-controlled. 

      We truly appreciate this reviewer’ opinion. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Figures: 

      (1) Figure 1: 

      a) Why can one not see here, and in most following images, the peripheral sub-membrane microtubule array? One can also not see an accumulation of microtubules in the cell interior. 

      Microtubule pattern in beta cells is variable, and the sub-membrane array is seen in the whole population to a variable extent (see directionality histogram in Figure 2E for statistics). In fact, an array of peripheral MTs parallel to the cell border is present in the example shown in Figure 1 and in all following control images. To make it clearer, we now show the pre-bleach images in Figure 1 D-F at a lower magnification, so that the differences in MT density at the cell periphery and cell center are more clearly seen: MTs lack at the periphery in KF5B-depleted but not the control cells.  

      b) 5 min appears to be a long time and enough time to polymerize a significant number of new microtubules. 

      We interpret this comment as the reviewer’s concern that in FRAP assays, fluorescently-labeled MTs moving into the bleached area might be newly polymerizing MTs rather than preexisting MT relocated into that area. However, this is not the case because newly polymerized MTs contain predominantly quenched “dark” tubulin molecules and only a small percent of fluorescent tubulin. These dim MTs are not included in MT sliding assay analysis, where a threshold for bright MTs is introduced. Now, we added more details for the quantification of these data to Materials and Methods section.

      c) The overall effects appear minor. It is unclear how Fig. 1-Suppl-Fig.1, where no significant difference is shown, is translated into Figure 1 J and K showing a significant difference. 

      With all due respect, we do not agree that the effect is minor. Please see our response to the Public Review where we discuss the major consequences of MT defects in detail. 

      To answer this specific comment, we show that there are significant differences in the number of rapidly moving MTs (5-sec displacement over 0.3 µm) and in the amount of stationary MTs (5sec displacement is below 0.15 µm). There is no significant difference in the amount of slightly displaced MTs (displacements between 0.15 and 0.3 µm; the central part of the histogram). This might indicate that these slight displacements do not depend on kinesin-1 motor but rather are caused by experimental noise, pushing by moving organelles, and/or myosin-dependent forces in the cell. In the revised manuscript, we have this quantification more clearly detailed in Methods and included in Figure legends.

      d) The authors utilize single molecule tracking to further strengthen their conclusion that KIF5B promotes microtubule sliding. The observed effects are weaker than the data obtained from photobleaching experiments. The videos clearly show that there is still significant movement also in KIF5B-depleted cells. If K560RigorE236A binds irreversibly to a microtubule and this microtubule is growing (not only by the addition of tubulin dimers to the plus end; see PMID: 34883065) wouldn't that also result in movement of the tagged K560RigorE236A? As KIF5B is also required in the transport of insulin granules, it should also label "interior microtubules". And in Video 2 it appears that pretty much all "labeled" microtubules are moving. 

      K560RigorE236A forms fiducial marks along the whole MTs lattice, as previously shown in (Tanenbaum et al., 2014). When it is bound to MT lattice, K560RigorE236A moves with the whole MT if it is being relocated. The mechanism described in (PMID: 34883065) appears to be absent or minor in beta cells (see Figure 2- Supplemental Figure 2), thus, even if this mechanism would displace already polymerized MTs, this is not happening in this cell type.

      The reviewer is correct, K560RigorE236A does mark all MTs throughout a beta cell. All MTs are moving slightly in a living cell because they are pushed around by moving organelles, actin contractility, etc. MTs may also be slid by other MT-dependent motors (dynein against the membrane and such). So, it is not surprising that the MT network is “breezing,” and kinesindependent sliding is only a part of MT movement. What we show here is that the KIF5Bdependent MT sliding is responsible for a relatively “long-distance” relocation of MTs manifested in long, directional displacement of fiducial marks.  This does not exclude other movements. This makes extraction of kinesin-dependent MT movements somewhat challenging, of course, that is why we needed to do those extensive analyses. 

      e) Figure 1 G to K is misleading, at least in the context of the provided videos. There are several microtubules that move extensively in shRNA#2-treated cells and overall there appears more movement in this cell as in the control cell. Figure 1I is clearly not representative of the movement shown in Video 2. 

      We apologize if our selection of representative movies/figures for this experiment was imperfect. Indeed, in all depleted cells, SunTag puncta still move to a certain extent, either due to incomplete depletion or to alternative intracellular forces dislocating microtubules. However, there is a clear difference in the fraction of persistently moving puncta (please see Figure 1K and  histogram in Figure 1 - Supplemental Figure 1B). Unfortunately, when the number of SunTag puncta per a cell is variable, it sometimes prevents a good visual perception of the actual distribution of moving versus stationary microtubules. We now show an alternative representative movie for the Figure 1I and the corresponding Video 2, with a goal to compare cells with more consistent numbers of Sun-Tag puncta.

      (2) Figure 2A. 

      a) This is the only image that clearly shows the existence of a sub-membrane microtubule array and the concentration of microtubules in the cell interior. The differences are unclear between the experimental setups including the length of cultivation and knockdown of KIF5B or expression of mutants. 

      We now provide a more detailed description of each image acquisition and processing in Materials and Methods. In brief, while the morphology of MT patterns is intrinsically variable in beta cells, all control cells have populated peripheral MTs that exhibit a more parallel configuration as compared to depletions and mutants.

      b) The authors state "While control cells had convoluted non-radial MTs with a prominent sub-membrane array, typical for beta cells (Fig. 2A), KIF5B-depleted cells featured extra-dense MTs in the cell center and sparse reseeding MTs at the periphery (Fig. 2B, C)". Could that not be explained with the observation that "Kinesin-1 controls microtubule length" (PMID: 34883065)? 

      Thank you for this interesting alternative idea. It does not appear to be the case for beta cells.

      Please see Figure 2-Supplemental Figure 2  and our response to Public Review Comment #3.

      Also, our apologies for the typo in the original manuscript: this is “receding” nor “reseeding”.

      (3) Figure 3: 

      a) This is an elegant way to determine whether KIF5B is involved in microtubule sliding independent of the fact that the effect appears very small. 

      Thank you!            

      b) The assay depends on ectopic expression of a dominant negative mutant. It appears important to show that KIFDNwt is high enough expressed to indeed block the binding of endogenous KIF5B. The authors need to provide a control for this. Furthermore, authors need to provide evidence that other functions of KIF5B are not impaired such as transport of insulin granules and tubulin incorporation or microtubule stability and length.

      Expression of cargo-binding motor domains routinely causes a dominant-negative effect of their cargo transport. This exact construct has been used for the purpose of dominant-negative action previously (Ravindran et al., 2017). It does prevent the membrane cargo binding of KIF5B (Ravindran et al., 2017), thus the transport of insulin granules is also impaired in overexpression cells. Confirming this fact would not influence our study conclusions, so we chose not to repeat these assays for the sake of time.

      c) N-numbers should be similar. The data for KIFDNmut are difficult to interpret with possibly 2 experiments showing little to no displacement and 3 showing displacement. 

      In the revised manuscript, additional data have been added to increase N-numbers.

      (4) Figure 4 and supplements: The morphology of the KIFDNwt cells is greatly affected and this makes it difficult to say whether the effect on microtubules at the cell periphery is a direct or indirect effect. 

      Yes, these cells often have less spread appearance, obscuring visual perception of MT distribution. We have now replaced the image of KIFDNwt cell (Figure 4, Supplemental Figure 1 A) to a more visually representative example.

      Things to do: 

      (1) Notably, the authors have previously reported that high glucose-induced remodeling of microtubule networks facilitates robust glucose-stimulated insulin secretion. This remodeling involves the disassembly of old microtubules and the nucleation of new microtubules. Here, they state that the sub-membrane microtubule array is destabilized via microtubule sliding. What is the relevance of the different processes? Please discuss these in the manuscript. 

      Thank you, we have now extended our discussion of these points and our prior findings. We have also added a schematic model figure for clarity (Figure 7).  

      (2) 5 min appears to be a long time and enough time to polymerize a significant number of new microtubules. Do the authors have any information about the speed of MT formation in MIN6 cells? Can the authors repeat this experiment by preventing MT polymerization? Or repeat the experiment with EB1/EB3 reporter to visualize microtubule growth in the same experimental setting? 

      While some MT polymerization will happen in this timeframe, newly polymerized MTs contain predominantly quenched “dark” tubulin molecules and only a small percent of fluorescent tubulin. These dim MTs are not included in MT sliding assay analysis, where a threshold for bright MTs is introduced. We apologize for initially omitting certain details from the FRAP assay analysis. Now these details have been added.   

      Are the microtubules shown on the cell surface (TIRF microscopy) or do we see here all microtubules? 

      Please see Materials and Methods for microscopy methods and image processing for each figure. Specifically, FRAP assays show a maximum intensity projection of spinning disk confocal stacks over 2.4µm in height (approximately the ventral half of a cell).

      (3) Previously, it has been shown that KIF5B induces tubulin incorporation along the microtubule shaft in a concentration-dependent manner. Moreover, running KIF5B increases microtubule rescue frequency and unlimited growth of microtubules. Notably, KIF5B regulates microtubule network mass and organization in cells (PMID: 34883065). Consequently, it appears possible that the here observed phenomena of changes in the microtubule network might be due to alterations in these processes. Authors need to exclude these possibilities and discuss them. 

      Thank you for this interesting alternative idea. It does not appear to be the case for beta cells. Please see Figure 2-Supplemental Figure 2  and our response to Public Review Comment #3.

      (4) It is important that the authors describe in the text and possibly in the figure legends the differences between the experimental set-ups including the length of cultivation and knock down of KIF5B or expression of mutants. 

      Thank you, please see these details in the text (Materials and Methods section).

      (5) Figure 5: Does KIF5B depletion rescue the kinesore-induced defects 

      Thank you for suggesting this control. We have now conducted corresponding experiments. The answer is yes, it does. Kinesore does not induce detectable changes in MT patterns in KIF5Bdepleted cells (new Figure 5-Supplemental Figure 2). 

      (6) Can the authors block kinesin-1 resulting in microtubule accumulation in the cell center and then release the block, and best inhibiting microtubule formation, to see whether the microtubules accumulated in the cell center will be transported to the periphery? 

      This proposed experiment would have been a nice illustration to the study, however it has proven to be too challenging. Unfortunately we have to leave it for the future studies. However,  the experiments already included in the paper are sufficient to prove our conclusions. 

      Minor comments: 

      (1) The English needs to be improved. Oaen it is unclear what the authors try to convey. The manuscript is difficult to read and contains several overstatements. 

      The revised manuscript has been through several rounds of proof-reading for clarity.

      (2) It is important to describe in more detail in the introduction what is known about KIF5B in beta cells. Previously, it has been demonstrated that silencing, or inactivation by a dominant negative form of KIF5B, blocks the sustained phase of glucose-stimulated insulin secretion (PMID: 9112396, PMID: 12356920, PMID: 20870970). 

      Yes, this is of course very important and have been cited in the original manuscript. Now, we have expanded the discussion on the matter.

      (3) Figure 1B and Fig. 1 Suppl Fig.1: Please provide band sizes and provide information on the size of KIF5B. 

      We have replaced Fig. 1B and Suppl Fig 1A with quantitative analysis of KIF5B depletion, not found in new Fig. 1B and Suppl Fig. 1A-C. 

      (4) It is important to state the used glucose concentrations in Figure 1D (based on the methods section it is probably 25 mM glucose) and all subsequent experiments. Is this correct and comparable to Figure 6A or B? For the non-specialized reader, more information should be provided on why initial glucose starvation is performed.  

      Cell culture models of pancreatic beta cells are routinely maintained at glucose levels that at considered “high”, or stimulatory for secretion. This is needed to prevent the loss of cells’ capacity to respond to glucose stimulation over generations. In order to test GSIS, cells need to be equilibrated at low (fasting, standardly 2.8mM) glucose levels for several hours, so that they are capable of secreting insulin upon glucose addition. 25mM glucose is normally used to stimulate GSIS in cell culture models of beta cells, like MIN6. This is a higher concentration as compared to what is needed to stimulate primary beta cells in islets.

      Reviewer #2 (Recommendations For The Authors): 

      I have the following specific questions that pertain to data interpretation and the conclusions drawn.

      (1) The morphology of the overall MT array before the bleach treatment in both control cells and KIF5B-KD cells depicted in Figure 1D-F and Figure 2A-C appears to be distinct. In Figure 1, it seems that the absence of KIF5B results in a general augmentation of MT mass, whereas the arrangement presented in Figure 2 indicates the contrary. Even in the sub-membrane areas, this phenomenon appears to hold true. However, the images used in this study, which depict entire cells or a significant portion of cells, may not be ideal for visualizing the sub-membrane regions.

      It would be beneficial if the author could offer some explanations for this apparent inconsistency. 

      While beta cell population is intrinsically heterogeneous, all data presented here indicate the same trend in phenotypes. Possibly, some apparent inconsistency between figure 1 and 2 appeared because in the original manuscript we did not show the pre-bleach whole-cell overview in Figure 1. In the revised version, we now show the whole cells for pre-bleach so that MT organization at the cell periphery can be assessed. Please note that in the control cell, MTs are more or less equally distributed over the cell, while in KIF5B depletions the cell periphery is significantly less populated than the cell center. Furthermore, we did not detect MT mass augmentation or increase in KIF5B depletions. One possible explanation for such reviewer’s impression from Figure 2 is that Figure 2 F-H shows thresholded images where threshold was adjusted to highlight peripheral MTs in each cell. Please note that this is not the same threshold for each cell (see Figure 2 - Supplemental Figure 2 and 3). Thus, KIF5B-depleted cells that have fewer MTs at the periphery appear brighter in these thresholded images. For the true comparison of MT intensity, please see Figure 2 A-C (grayscale image, not the threshold).

      (2) It would be helpful if the author could provide a visual representation or comment on the sub-cellular localization of KIF5B in MIN6 cells. Is it predominantly localized in the submembrane region, or is it more evenly distributed throughout the cytoplasm? 

      Please see Fig 2A, lower panel. KIF5B is seen across the cell as a punctate staining, in agreement with previous findings that it mostly localize at IGs.

      (3) The alteration in microtubule (MT) organization and sliding in the absence of KIF5B seems to initiate in proximity to the apparent microtubule organizing center (MTOC) depicted in Figure 2A, and then "simply" extends towards the sub-membrane region. Although the authors acknowledge it, it would be advantageous for the readers to have a clearer indication that the sub-membrane microtubule (MT) reorganization in the absence of KIF5B is a result of a broader MT reorganization rather than a specific occurrence restricted to the sub-membrane regions. 

      Thank you for this comment. We now extend our discussion to clearer state our conclusions and interpretations of this point. We also have added a schematic Figure 7 as an illustration. 

      (4) Regarding the "glucose experiments," it is common to add 20-25 mM glucose to culture media, but physiological concentrations of glucose typically hover around 5 mM. Therefore, it is somewhat unclear what the implications are when investigating the impact of KIF5B depletion on MT sliding at 2.8 mM of glucose. It would be helpful if the authors could provide some commentary on this matter, particularly in relation to physiological and pathological conditions. 

      2.8 mM glucose is a standard low glucose condition used to model glucose deprivation/fasting. For functional primary beta cells within pancreatic islets, GSIS can be triggered by glucose stimulation as low as 8-12 mM glucose. However, for glucose stimulation of cultured beta cells such as MIN6 used in this paper, 20-25 mM glucose is standardly used because these cell lines have a higher threshold of stimulation compared to primary beta cells and whole islets.

      (5) In supplementary Figure 1A, it would be helpful if the lanes in the WB were marked indicating what is what. In my observation, it appears that Supplementary Figure 1A, particularly lanes #2, 3, and 4, display the GAPDH protein (MW 36 kDa) (or is it alpha-tubulin, as mentioned in the Material and Methods section and indicated in lane #409?) relative to Figure 1A. I am curious about KIF5B (MW 108 kDa). Is it represented by the upper band? Did the author probe the same membrane simultaneously with two different primary antibodies? This should be clarified, and the author should indicate the molecular weight of the ladder. 

      Indeed, in the original WB two antibodies have been used together, due to a challenge in collecting a sufficient number of shRNA-expressing beta cells. It caused a confusion and improper interpretation of the loading control. We thank the reviewer for catching this.  We have now replaced old Fig. 1B and Suppl. Fig. 1A with quantitative analysis of KIF5B depletion based on single-cell immunofluorescent staining. It is now found in new Fig. 1B and Suppl Fig. 1A-C.  

      Reviewer #3 (Recommendations For The Authors): 

      In all of the figures that present microtubule orientations (e.g. Figure 2E) the error bars obscure the vertical bins making them difficult to read or interpret. If they were rendered at a larger scale, it would be easier to read and interpret these results. 

      Thank you pointing this out. We now show these histograms with a different format of error bars and without outliers that obscure the view. A variant with outliers is now shown in the supplement. 

      Some of the callouts to the videos in the paper are inaccurate. Perhaps the authors reordered sections of the paper but failed to correctly renumber the video citations? 

      Thank you for this comment, we have corrected all callouts now.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      Summary: Chitin is a critical component of the extracellular matrix of arthropods and plays an essential role in the development and protection of insects. There are two chitin synthases in insects: Type A (exoskeletons) and Type B (for the peritrophic matrix in the gut). The study aims to investigate the specificity and mechanisms of the two chitin synthases in D. melanogaster and to clarify whether they are functionally interchangeable. Various genetic manipulations and fluorescence-based labeling were used to analyze the expression, localization, and function of Kkv and Chs2 in different tissues. Chs2 is expressed in the PR cells of the proventriculus and is required for chitin deposition in the peritrophic matrix. Kkv can deposit chitin in ectodermal tissues but not in the peritrophic matrix, whereas Chs2 can deposit chitin in the peritrophic matrix but not in ectodermal tissues. The subcellular localization of chitin synthases is specific to the tissues in which they are expressed. Kkv localizes apically in ectodermal tissues, whereas Chs2 localizes apically in the PR cells of the proventriculus. Altogether, Kkv and Chs2 cannot replace each other. The specificity of chitin synthases in D. melanogaster relies on distinct cellular and molecular mechanisms, including intracellular transport pathways and the specific molecular machinery for chitin deposition.*

      • *

      Congratulations on this incredible story and manuscript, which is straightforward and well-written. However, I have some comments that may help to improve it.

      We thank the reviewer for this very positive comment. We have addressed all comments to clarify and improve our manuscript.

      Major comments: 1.) Funny thing: the Chs2 mutant larva shows a magenta staining below the chitin accumulation of the esophagus, which looks like a question mark in 1H but cannot be found in control. Is that trachea reaching the pv?

      We assume that the reviewer refers to Fig 1N. As the reviewer suspects, this corresponds to a piece of trachea. Figure 1N shows a single section, making it difficult to identify what this staining corresponds to. We are providing below a projection of several sections where it is easier to identify the staining as tracheal tissue (arrow).

      We are now marking this pattern as trachea (tr) in the manuscript Figure 1N

      2.) Also, though it is evident that the PM chitin is lost in Ch2 mutants, could it be that the region is disturbed and cells express somewhere else chitin? There are papers by Fuß and Hoch (e.g., Mech of Dev, 79, 1998; Josten, Fuß et al., Dev. Biol.267, 2004) using markers such as Dve, Fkh, Wg, Delta, and Notch, etc. for precisely marking the endodermal/ectodermal region in the embryonic foregut/proventriculus. It would be beneficial to show, along with chitin and Chs expression patterns, the ectoderm/endoderm cells. This is particularly important as the authors report endodermal expression of Chs2 in embryos but don't use co-markers of the endodermal cells.

      We agree with the reviewer that this is an important issue and we note that Reviewer 2 also raised the same point. Therefore, we have addressed this issue.

      We obtained an antibody against Dve, kindly provided by Dr. Hideki Nakagoshi. Dve marks the endodermal region in the proventriculus (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998).This antibody worked nicely in our dissected L3 digestive tracts and allowed us to mark the endodermal region. We also obtained an antibody against Fkh, kindly provided by Dr. Pilar Carrera. Fkh marks the ectodermal foregut cells (Fuss and Hoch, 1998, Fuss et al., 2004). While, in our hands, this antibody performed well in embryonic tissues, we observed no staining in our dissected L3 digestive tracts. The reason for this is unclear, but we suspect technical limitations may be responsible (the ectodermal region of the proventriculus is very internal, potentially hindering antibody penetration). To circumvent this inconvenience, we tested a FkhGFP tagged allele available in Bloomington Stock Center. Fortunately, we were able to detect GFP in ectodermal cells of L3 carrying this allele. Using this approach, we conducted experiments to detect Fkh and Dve in the wild type or in Df(Chs2) conditions (Fig S1). In addition, we used these markers to map the expression of Kkv and Chs2 in the proventriculus (Fig 4).

      Altogether the results using these endodermal/ectodermal markers confirmed the presence of a cuticle adjacent to the FkhGFP-positive cells and a PM adjacent to the PR cells, marked by Dve. This PM is absent in Df(Chs2) L3 escapers, however, the general pattern of Fkh/Dve expression is not affected. Finally, we show that Chs2-expressing cells are positive for Dve while Kkv-expressing cells are not. We were unable to conduct an experiment demonstrating Kkv and Fkh co-expression due to technical incompatibilities, as both genes require the use of GFP-tagged alleles to visualise their expression. However, we believe that our imaging of Dve/Kkv clearly shows that Kkv expressing cells lack Dve expression and are localised in the internal (ectodermal) region of the proventriculus (Fig 4E).

      3.) The origin of midgut chitin accumulation is unclear. Chitin can come from yeast paster. Can the authors check kkv and chs2 mutants for food passage and test starving L1 larvae to detect chitin accumulation in the midgut without feeding them?

      This is a very interesting point that has also intrigued us.

      We observed that, in addition to the PM layer lining the midgut epithelium, CBP staining also revealed a distinct luminal pattern. Our initial hypothesis was that this pattern corresponded to the PM. However, its presence in Df(Chs2) larval escapers clearly indicates that this is not the case. Unfortunately, we cannot assess this pattern in kkv mutants, as these die at eclosion and do not proceed to larva stages.

      As the reviewer suggests, a likely possibility is that the luminal pattern originates from components in the food. These could correspond to yeast, as suggested by the reviewer, or possibly remnants of dead larvae present in the media (although Drosophila is considered herbivore in absence of nutritional stress).

      To assess whether the luminal pattern originates from the food we conducted two independent experiments. In experiment 1, we collected larvae reared under normal food conditions. Newly emerged L3 larvae were transferred in small numbers to minimise cannibalism (Ahmad et al., 2015) to new Petri plates containing moist paper. Larvae were starved for 3,4 or 5 days. Larvae starved for more than 5 days did not survive. We then dissected the guts and analysed CBP staining. We observed the presence of luminal CBP staining in these larvae, along with the typical PM signal in the proventriculus and along the midgut. In experiment 2, we collected larvae directly on agar plates containing only agar (without yeast or any other nutrients). We allowed the larvae to develop. These larvae showed minimal growth. We dissected the guts of these small larvae (which were challenging to dissect) and analysed CBP staining. Again, we detected presence of luminal CBP staining.

      These experiments indicate that, despite starvation, a luminal chitin pattern is still detected, suggesting that it is unlikely to originate from food. However, we cannot unequivocally rule out the possibility that the cannibalistic, detrivorous or carnivorous behavior of the nutrionally stressed larvae (Ahmad et al., 2015) in our experiments may influence the results. Therefore, more experiments would be required to address this point.

      In summary, while we cannot provide a definitive answer to the reviewer's question, nor fully satisfy our own curiosity, we would like to note that this specific observation is unrelated to the main focus of our study, as we have confirmed that the luminal pattern is not dependent on Chs2 function.

      Portions of midgut of starved larvae under the regimes indicated, stained for chitin (CBP, magenta). Note the presence of the luminal chitin pattern in the midgut

      4.) Subcellular localization assays require improved analysis, such as a co-marker for the apical membrane and statistical analysis with co-localization tools, showing the overlap at the membrane and intracellularly with membrane co-markers and KDEL.

      We have addressed the point raised by the reviewer. To analyse and quantify Chs2 subcellular localisation, particularly considering the observed pattern, we decided to use both a membrane and an ER marker. As a membrane marker we used srcGFP expressed in tracheal cells (see answer to point 7 of Reviewer 1) and as an ER marker we used KDEL. In this analysis, tracheal cells also expressed Chs2, which was visualised using the Chs2 antibody generated in the lab.

      To assess the colocalisation of Chs2 with each marker we used the JaCop pluggin in Fiji. We analysed individual cells from different embryos stained for membrane/ER/Chs2 using single confocal sections (to avoid artificial colocalisation). Images were processed as described in Materials and Methods. We obtained the Pearson's correlation coefficient (r), which measures the degree of colocalisation, for Chs2/srcGFP and Chs2/KDEL, n=36 cells from 9 different embryos. The average r value for Chs2/srcGFP was 0,064, while the average for Chs2/KDEL was around 0,7. r ranges between -1 and 1, where 1 indicates perfect correlation, 0 no correlation, and -1 perfect anti-correlation. Typically, an r value of 0.7 and above is considered a strong positive correlation, whereas a value below 0,1 is regarded as very weak or no correlation. Thus, our colocalisation analysis supports the hypothesis that Chs2 is primarily retained in the ER when expressed in non-endogenous tissues, likely unable to reach the membrane.

      We have reorganised the figures and now present an example of Chs2/srcGFP/KDEL subcellular localisation in tracheal cells and the colocalisation analysis in Fig 5H. The colocalisation analysis is described in the Materials and Methods section.

      Minor comments:

      5.) The authors used "L3 larval escapers." It would be interesting to know if the lack of Chs2 and the peritrophic matrix cause any physiological defects or lethality.

      The point raised by the reviewer is very interesting and relevant. The peritrophic matrix is proposed to play several important physiological roles, including the spatial organisation of the digestive process, increasing digestive efficiency, protection against toxins and pathogens, and serving as a mechanical barrier. Therefore, it is expected that the absence of chitin in the PM of the Df(Chs2) larval escapers may cause various physiological effects.

      Analysing these effects is a complex task, and it constitutes an entire research project on its own. In addressing the physiological requirements of the PM, we aim to analyse adult flies and assess various parameters, including viability, digestive transit dynamics, gut integrity, resistance to infections, fitness and fertility.

      A critical initial challenge in conducting a comprehensive analysis of the physiological requirements of the PM is identifying a suitable condition to evaluate the absence of Chs2. In this work we are using a combination of two overlapping deficiencies that uncover Chs2, along with a few additional genes (as indicated in Fig S1F). This deficiency condition presents two major inconveniences: first, the observed defects could be caused or influenced by the absence of genes other than Chs2, preventing us from conclusively attributing the defects to Chs2 loss (unless we rescued the defects by adding Chs2 back as we did in the manuscript). Second, the larva escapers, which are rare, do not survive to adulthood (indicating lethality but preventing us from analysing specific physiological aspects).

      To overcome these limitations, we are currently working to identify a genetic condition in which we can specifically analyse the absence of Chs2. We have identified several available RNAi lines and we are testing their efficiency in preventing chitin deposition in the PM. Additionally, we are characterising a putative null Chs2 allele, Chs2CR60212-TG4.0. This stock contains a Trojan-GAL4 gene trap sequence in the third intron, inserted via CRISPR/Cas9. As described in Flybase (https://flybase.org/), the inserted cassette contains a 'Trojan GAL4' gene trap element composed of a splice acceptor site followed by the T2A peptide, the GAL4 coding sequence and an SV40 polyadenylation signal. When inserted in a coding intron in the correct orientation, the cassette should result in truncation of the trapped gene product and expression of GAL4 under the control of the regulatory sequences of the trapped gene. We already know that, when crossed to a reporter line (e.g. UAS-GFP or UAS-nlsCherry) this line reproduces the Chs2 expression pattern, suggesting that the insertion may generate a truncated Chs2 protein. This line would represent an ideal tool to assess the absence of Chs2, and we are currently characterising it for further analysis

      In summary, we fully agree with the reviewer that investigating the physiological requirements of the PM is a compelling area of research, and we are actively addressing this question. However, this investigation constitutes a substantial and independent research effort that we believe is beyond the scope of the current manuscript at this stage.

      6.) The order identifiers are missing for materials and antibodies, e.g., anti-GFP (Abcam), but Abcam provides several ant-GFP; which was used? Please provide order numbers that guarantee the repeatability for others.

      We have now added all identifiers for materials and reagents used, in the materials and methods section.

      7.) Figure S5C, C', what marks GFP (blue) in the trachea? Maybe I have overlooked the description. What is UASsrcGFP? What is the origin of this line?

      We apologise for not providing a more detailed description of the UASsrcGFP line. This line corresponds to RRID BDSC#5432, as now indicated in Materials and Methods section.

      In this transgene, the UAS regulatory sequences drive the expression of GFP fused to Tag:Myr(v-src). As described in Flybase (https://flybase.org/), the P(UAS-srcEGFP) construct contains the 14 aa myristylation domain of v-src fused to EGFP. This tag is commonly used to target proteins of interest to the plasma membrane. The construct was generated by Eric Spana and is available in Drosophila stock centers.

      We typically use this transgene as a plasma membrane marker to outline cell membrane contours. In our experiments, srcGFP, under the control of the btlGal4 promoter, was used to visualise the membrane of tracheal cells in relation to Chs2 accumulation. As indicated in point 4, we have now transferred the images of srcGFP/Chs2/KDEL to the main Figures and used it for colocalisation analyses.

      8.) The authors claim that they validated the anti-Chs2 antibody. However, they show only that it recognizes a Cht2 epitope via ectopic expression. For more profound validation, immune staining is required in deletion mutants, upon knockdown, or upon expression of recombinant proteins, which is not shown.

      We generated an antibody against Chs2. We found that the antibody does not reliably detect the endogenous Chs2 protein, and so we find no pattern in the proventriculus or any other tissue in our immunostainings. It is very possible that the combination of low endogenous levels of Chs2 with a sub-optimal antibody (or low titer) leads to this result. In any case, as the antibody does not detect endogenous Chs2, it cannot be validated by analysing the expression upon Chs2 knockdown. In contrast, our antibody clearly detects specific staining in various tissues (e.g. trachea, salivary glands, gut) when Chs2 is expressed using the Gal4/UAS system, confirming its specificity for Chs2. It is worth to point that it is not unusual to find antibodies that are not sensitive enough to detect endogenous proteins but can detect overexpressed proteins (e.g

      (Lebreton and Casanova, 2016)).

      As an additional way to validate the specificity of our antibody, we have used the chimeras generated, as suggested by the reviewer. As indicated in the Materials and Methods section, the Anti-Chs2 was generated against a region comprising 1222-1383 aa in Chs2, with low homology to Kkv. This region is present in the kkv-Chs2GFP chimera but absent in Chs2-KkvGFP (see Fig 7A). Accordingly, our antibody recognises kkv-Chs2GFP but does not recognise Chs2-KkvGFP (Fig S7).

      We have revised the text in chapter 6 (6. Subcellular localisation of Chs2 in endogenous and ectopic tissues) to clarify these points and we have added the validation of the antibody using the chimeras in chapter 8 (8. Analysis of Chs2-Kkv chimeras) and Fig S7

      9) The legend and text explaining Fig. 4 D-E' can be improved. The authors used the Crimic line, which is integrated into the third ("coding") intron. This orientation can lead to the expression of Gal4 and cause a truncated version of the protein (according to Flybase). Is Chs2 expression reduced in the crimic mutant? If the mutation causes expression of a truncated version, the Chs2 antibody may not be able to detect it as it recognizes a fragment between 1222 and 1383 aa? Also, I'm unsure whether the Chs2 antibody or GFP was used to detect expression in PR cells. The authors describe using Ch2CR60212>SrcGFP together with Chs2+ specific antibodies.

      We apologise for the confusion.

      As the reviewer points, Chs2CR60212-TG4.0 contains a Trojan-GAL4 gene trap sequence in the third intron, inserted via CRISPR/Cas9. As described in Flybase (https://flybase.org/), the inserted cassette contains a 'Trojan GAL4' gene trap element composed of a splice acceptor site followed by the T2A peptide, the GAL4 coding sequence and an SV40 polyadenylation signal. When inserted in a coding intron in the correct orientation, the cassette should result in truncation of the trapped gene product and expression of GAL4 under the control of the regulatory sequences of the trapped gene.

      We found that when crossed to UAS-GFP or UAS-nlsCherry, this line reproduces a expression pattern that must correspond to Chs2. As the antibody that we generated is not suitable for detecting Chs2 endogenous expression, we resorted to using this combination, Chs2CR60212-TG4.0 crossed to a reporter line (such asUAS-GFP or UAS-nlsCherry), to visualise Chs2 expression by staining for GFP/Cherry in the intestinal tract and in the embryo (Figures 4 and S4).

      We realise that the Figure labelling we used in our original submission is very misleading, and we apologise for this. In the original figures we had labelled the staining combination with Kkv, Chs2, Exp as if we had used these antibodies. However, in all cases, we used GFP to visualise the pattern of these proteins in the genetic combinations indicated in the figures. We have corrected this in our revised version. We have also updated the text (Chapter 5), figures and figure legends.

      As the reviewer points, the insertion in Chs2CR60212-TG4.0 is likely to generate a truncated Chs2 protein. We cannot confirm this using the Chs2 antibody we generated because it does not recognise the endogenous Chs2 pattern. Nevertheless, as indicated in point 5, we are currently characterising this line. Our preliminary results indicate a high complexity of effects from this allele that require thorough analysis, as it may be acting as a dominant negative.

      Reviewer #1 (Significance (Required)):

      Significance: The manuscript's strength and most important aspects are the genetic analysis, expression, and localization studies of the two Chitin synthases in Drosophila embryos and larvae. However, beyond this manuscript, the development of mechanistic details, such as interaction partners that trigger secretion and action at the apical membranes and the role of the coiled-coil domain, will be interesting.

      The manuscript uses "first-class" genetics to describe the different roles of the two Chitin synthases in Drosophila, comparing ectodermal chitin (tracheal and epidermal chitin) with endodermal (midgut) chitin. Such a precise analysis has not been investigated before in insects. Therefore, the study deeply extends knowledge about the role of Chitin synthases in insects.

      The audience will specialize in basic research in zoology, developmental biology, and cell biology regarding - how the different Chitin synthases produce chitin. Nevertheless, as chitin is relevant to material research and medical and immunological aspects, the manuscript will be fascinating beyond the specific field and thus for a broader audience.

      I'm working on chitin in the tracheal system and epidermis in Drosophila.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ Drosophila have two different chitin synthase enzymes, Kkv and Chs2, and due to unique expression patterns and mutant phenotypes, it is relatively clear that they have different functions in producing either the cuticle-related chitin network (Kkv) or the chitin associated with the peritrophic matrix (PM). However, what is unknown is whether the different functions in making cuticle vs PM chitin is related to differences in cellular expression and/or enzyme properties within the cell. The authors exploit the genetic tractability of Drosophila and their ability to image cuticle vs PM chitin production to examine whether these 2 enzymes can substitute each other. They conclude that these two proteins are not equivalent in their capacity to generate chitin. The data are convincing; however, it is currently presented in a subjective fashion, which makes it difficult to interpret. Additionally, in my opinion there is some interpretation that requires softening or alternatively interpreted.

      We are pleased that the reviewer finds our data convincing. However, we acknowledge the reviewer's concern that our data was presented in a subjective manner, and we apologise for this. In response, we have carefully reviewed the entire manuscript and revised our data presentation to ensure a more objective tone. Numerous changes (including additional quantifications, new experiments and clarifications) have been incorporated throughout the text. These revisions are highlighted in the marked-up version. We hope that this revision provides a more accurate and objective presentation of our work.

      Major Comments:

      1- While the imaging is lovely, there are some things that are difficult to see in the figures. For example, the "continuous, thin and faint 'chitin' layer that lined the gut epithelium" is very difficult to visualise in the control images. Can they increase the contrast to help the reader appreciate this layer? This is particularly important as we are asked to appreciate a loss of this layer in the absence of Chs2.

      We have tried to improve the figures so that the PM layer in the midgut region is more clearly visible. We have added magnifications of small sections at the midgut lumen/epithelium border in grey to help visualise the PM. These improvements have been made in Figures 1,2,S1,S2,S3 and we believe that they better illustrate our results.

      2- All the mutant analysis is presented subjectively. For example, the authors state that they "found a consistent difference of CBP staining when they compared the 'Chs2' escapers to the controls". How consistent is consistent? Can this be quantified? What is the penetrance of this phenotype? They say that the thin layer is absent in the midgut and the guts are thinner. Could they provide more concrete data?

      As indicated above, we have reviewed the text to provide a more objective description of the phenotypes.

      We have quantified the defects in the Df(Chs2) mutant conditions. For this quantification we dissected intestinal tracts of control and Df(Chs2) larva escapers. We fixed, stained and mounted them together. The control guts expressed GFP in the midgut region as a way to distinguish control from mutants. We analysed the presence or absence of chitin in the PM. We found absence of chitin in the proventricular lumen and in the midgut in all Df(Chs2) guts and presence of chitin there in all control ones (n=12 Df(Chs2) guts, n=9 control guts, from 5 independent experiments). The results indicate a fully penetrant phenotype of lack of chitin in Df(Chs2) larva escapers (100% penetrance). We have added this quantification in the text, chapter 2 (2. Chs2 deposits chitin in the PM).

      To quantify the thickness of the guts, we took measurements of the diameter in control and Df(Chs2) guts at two comparable distance positions from the proventriculus (position 1, position 2, see image). Our quantifications indicated thinner tubes in mutant conditions.

      Image shows the anterior part of the intestinal tract, with the proventriculus encircled in white. Positions 1 and 2 indicate where the diameter quantifications were taken. Scatter plots quantifying the diameter at the two different positions in control and Chs2 larval escapers. Bars show mean {plus minus} SD. p=p value of unpaired t test two-tailed with Welch's correction.

      However, we are aware that our analysis of the thickness of the gut is not accurate, because we have not used markers to precisely measure at the same position in all guts and because we have not normalised the measurement position in relation to the whole intestinal tract (mainly due to technical issues).

      In relation to the fragility, we noticed that the guts of Chs2 larval escapers tended to break more easily during dissection than control guts, however, we have not been able to quantify this parameter in a reliable and objective manner.

      Since we consider that the requirement of Chs2 for PM deposition is sufficiently demonstrated, and that aspects such as gut morphology or fragility relate to the physiological requirements of the PM, which we are beginning to address as a new independent project (see our response to point 5 of Reviewer 1), we have decided to remove the sentence 'We also noticed that the guts of L3 escapers were thinner and more fragile at dissection." from the manuscript to avoid subjectivity.

      3- They state that Chs2 was able to restore accumulation of chitin in the PM of the proventriculus and the midgut. Please quantify. Additionally, does this restore the morphology of the guts (related to the comment above on the thinner guts in the absence of Chs2)?

      We have quantified the rescue of chitin deposition in the PM when Chs2 is expressed in PR cells in a Df(Chs2) mutant background. For this quantification we used the following genetic cross: PRGal4/Cyo; Df(Chs2)/TM6dfdYFP (females) crossed to UASChs2GFP or UASChs2/Cyo; Df(Chs2)/TM6dfdYFP. We selected Df(Chs2) larval escapers by the absence of TM6 (recognisable by the body shape). Among these larval escapers, we identified the presence of Chs2 in PR cells by the expression of GFP or Chs2. We found absence of chitin in the proventriculus and in the midgut in all Df(Chs2) guts that did not express Chs2 in PR cells (n=8/8 Df(Chs2)). In contrast, chitin was present in those intestinal tracts where Chs2 expression was detected in PR cells (n=8/8 PRGal4-UASChs2; Df(Chs2) guts, from 5 independent experiments). The results indicate a full rescue of chitin deposition by Chs2 expression in PR cells in Df(Chs2) mutant larvae. We have added this quantification in the text, chapter 2 (2. Chs2 deposits chitin in the PM).

      As requested by the reviewer, we have also conducted measurements to quantify gut thickness. We performed an analysis similar to the one described in point 2, this time comparing the diameter of Df(Chs2) and PRGal4-UASChs2;Df(Chs2) guts at positions 1 and 2 (see image in point 2 of Reviewer 2). Our quantifications indicated that guts were thicker when Chs2 is expressed in the PR region in Df(Chs2) larval escapers.

      As discussed in point 2, we have decided not to include these results in the manuscript, as this type of analysis requires a more comprehensive investigation.

      Scatter plots quantifying the diameter at the two different positions in Chs2 larval escapers and Chs2 larval escapers expressing Chs2 in PR cells. Bars show mean {plus minus} SD. p=p value of unpaired t test two-tailed with Welch's correction.

      4- This may be beyond the scope of this paper, but I find it interesting that the PM chitin is deposited in the proventricular lumen. Yet it forms a thin layer that lines the entire midgut? Any idea how this presumably dense chitin network gets transported throughout the midgut to line the epithelium? I imagine that this is unlikely due to diffusion, especially if they see an even distribution across the midgut. Do they see any evidence of a graded lining (i.e. is it denser in the midgut towards the proventriculus and does this progressively decrease as you look through the midgut?)?

      Insect peritrophic matrices have been classified into Type I and II (with some variations) depending on their origin (extensively reviewed in (Peters, 1992, Hegedus et al., 2019). Type I PMs are typically produced by delamination as concentric lamellae along the length of the midgut. Type II PMs, in contrast, are produced in a specialised region of the midgut that corresponds to the proventriculus and are typically more organised than Type I. In Type II PMs, distinct layers originate from distinct cell clusters in the proventriculus. It has been proposed that as food passes, it becomes encased by the extruded PM, which then slides down to ensheath the midgut. Drosophila larvae have been proposed to secrete a type II PM: through PM implantation experiments, Rizki proposed that the proventriculus is required to generate the PM in Drosophila larvae (Rizki, 1956). Our experiments confirmed this hypothesis: we show that expressing Chs2 exclusively in PR cells is sufficient to produce a PM along the midgut. Furthermore, we also show that expressing Chs2 in the midgut is not sufficient to produce a PM layer lining the midgut, at least at larval stages.

      The type II PM in Drosophila is proposed to be fully organised into four layers in the proventricular region (also referred as PM formation zone) before reaching the midgut (Peters, 1992, King, 1988, Rizki, 1956, Zhu et al., 2024). However, the mechanism by which the PM is subsequently transported into the midgut remains unclear. PM movement posteriorly is thought to depend on to the pressure exerted by continuous secretion of PM material (Peters, 1992). Early work by Wigglesworth (1929, 1930) proposed that the PM is secreted into the proventricular lumen, becomes fully organised, and is then pushed down by a press mechanism involving the aposed ectodermal/endodermal walls of the proventriculus. Rizki suggested that muscular contractions of the proventriculus walls may play a role, and that peristaltic movements of the gut add a pulling force to push the PM into the midgut (Rizki, 1956). Nevertheless, to our knowledge, the exact mechanism is still not fully understood.

      In response to the reviewer's question, the level of resolution of our analysis does not allow us to determine whether there is a graded PM lining along the midgut. However, available data using electron microscopy approaches suggest that the PM is a fully organised structure composed of four layers that is secreted and transported to line the midgut (King, 1988, Zhu et al., 2024).

      5- The authors state that expression of kkv in tracheal cells of kkv mutants perfectly restores accumulation of chitin in the luminal filaments. Is this really 100% restoration? They also reference a paper here, which may have quantified this result.

      We previously reported that the expression of kkv in tracheal cells restores chitin deposition in kkv mutants (Moussian et al,2015). However, our previous study did not quantify this rescue. As requested by the reviewer, we have now quantified the extent of the rescue.

      To perform this quantification, we used the following genetic cross:

      btlGa4/(Cyo); kkv/TM6dfdYFP (females) crossed to +/+; kkv UASkkvGFP/TM6dfdYFP (males)

      We stained the resulting embryos with CBP (to detect chitin) and GFP. GFP staining allowed us to identify the kkv mutants (by the absence of dfdYFP marker) and to simultaneously identify the embryos that expressed kkvGFP in tracheal cells (through btlGal4-driven expression). Since btlGal4 is homozygous viable, most females carried two copies of btlGal4.

      We compared the following embryo populations across 4 independent experiments:

      1. Cyo/+; kkv/kkv UASkkvGFP (kkv mutants not expressing kkv in the trachea)
      2. btlGal4/+; kkv/kkv UASkkvGFP (kkv mutants expressing kkv in the trachea) Results:

      3. Cyo/+; kkv/kkv UASkkvGFP ---- 0/6 embryos deposited chitin in trachea

      4. btlGal4/+; kkv/kkv UASkkvGFP ---- 27/27 embryos deposited chitin in trachea These results indicate complete restauration of chitin deposition in kkv mutants when kkv is expressed in tracheal cells (100% rescue).

      To further investigate whether Chs2 can compensate for kkv function in ectodermal tissues, we performed a similar quantification using the following genetic cross:

      btlGa4/(Cyo); kkv/TM6dfdYFP (females) crossed to UASChs2GFP/UASChs2GFP; kkv UASkkvGFP/TM6dfdYFP (males)

      We compared the following embryo populations across 2 independent experiments:

      1. Cyo/UASChs2GFP; kkv/kkv (kkv mutants not expressing Chs2 in the trachea)
      2. btlGal4/ UASChs2GFP; kkv/kkv (kkv mutants expressing Chs2 in the trachea) Results:

      3. Cyo/UASChs2GFP; kkv/kkv ---- 0/4 embryos deposited chitin in trachea

      4. btlGal4/ UASChs2GFP; kkv/kkv ---- 0/16 embryos deposited chitin in trachea These results indicate no restauration of chitin deposition in kkv mutants expressing Chs2 in the trachea (0% rescue).

      We have now incorporated these quantifications in the text, chapter 4 (4. Chs2 cannot replace Kkv and deposit chitin in ectodermal tissues.)

      6- They ask whether Kkv overexpression in the proventriculus can rescue Chs2 mutants... and vice versa, whether Chs2 overexpression in ectodermal cells can rescue kkv mutants. They show that kkv overexpression leads to an intracellular accumulation of chitin in the proventriculus. However, Chs2 overexpression in the trachea did not lead to any accumulation of chitin in the cells. They tailored their experiments and the associated discussion to address the hypothesis that there is potentially some difference in trafficking of these components. However, another possibility, which they have not ruled out, is that the different ability of kkv and Chs2 to produce chitin inside cells of the proventriculus and ectoderm, respectively, is potentially related to different enzymatic activities and cofactors required for chitin formation in these different cell types. Is this another potential explanation for the differences that they observe?

      We note that Kkv overexpression in any cell type (e.g. ectoderm, endoderm) consistently leads to chitin polymerisation. In ectodermal tissues, Kkv expression, in combination with Exp/Reb activity, results in extracellular chitin deposition. In the absence of Exp/Reb, Kkv expression leads to the accumulation of intracellular chitin punctae (De Giorgio et al., 2023, Moussian et al., 2015); this work). This correlates with the accumulation of Kkv at the apical membrane and presence of Kkv-containing vesicles, regardless of the presence of Exp/Reb (De Giorgio et al., 2023, Moussian et al., 2015); Figure 6, S6). In endodermal tissues, regardless of the presence of Exp/Reb, Kkv cannot deposit chitin extracellularly and instead produces intracellular chitin punctae. This correlates with a diffuse accumulation of Kkv in the endodermal cells (PR cells, or gut cells in the embryo) but presence of Kkv-containing vesicles (Figure 6, S6).

      In previous work we showed that Kkv's ability to polymerise chitin is completely abolished when it is retained in the ER. Indeed, we found that a mutation in a conserved WGTRE region leads to ER retention, the absence of Kkv-containing vesicles in the cell, and absence of intracellular chitin punctae or chitin deposition (De Giorgio et al., 2023).

      These findings indicate a correlation between Kkv subcellular localisation and chitin polymerisation/extrusion. Therefore, we hypothesise that intracellular trafficking and subsequent subcellular localisation play a crucial role in regulating Kkv activity (De Giorgio et al., 2023; this work).

      We find that Chs2 is expressed in PR cells (Figure 4) and observe that only in these PR cells does Chs2 localise apically (Fig 5A-D, S5A,B). This localisation correlates with the ability of Chs2 to deposit chitin in the PM and the presence of intracellular chitin punctae in PR cells (Fig 1F). When Chs2 is expressed in other cells types, we detect it primarily in the ER and observed no Chs2-containing vesicles (vesicles are suggestive of trafficking). This localisation correlates with the inability of Chs2 to produce intracellular chitin punctae or extracellular chitin deposition.

      Again, these results suggest a correlation between Chs2 subcellular localisation and chitin polymerisation/extrusion, aligning with the results observed for Kkv. Therefore, we hypothesise in this work that the intracellular trafficking and subsequent subcellular localisation of Chs2 play a crucial role in regulating its activity.

      Our hypothesis is consistent with seminal work in yeast chitin synthases, which has demonstrated the critical role of intracellular trafficking, and particularly ER exit, in regulating chitin synthase activity (reviewed in (Sanchez and Roncero, 2022).

      That said, we cannot exclude other explanations that are also compatible with the observed results. As pointed out by the reviewer, it is possible that Chs2 and Kkv require different enzymatic activities and/or cofactors for chitin polymerisation/deposition, which may be specific to different cell types. Indeed, we know that the auxiliary proteins Exp/Reb are specifically expressed in certain ectodermal tissues (Moussian et al., 2015). These mechanisms could act jointly or in parallel with the regulation of intracellular trafficking, or could even regulate this intracellular trafficking itself.

      Identifying the exact mechanisms controlling Kkv and Chs2 intracellular trafficking would be necessary to determine whether additional mechanisms (specific cofactors or enzymatic activities) are also involved or even serve as the primary regulatory elements.

      We have introduced these additional possibilities in the discussion section.

      7- They co-express Chs2 and Reb and show that this does not lead to chitin production or secretion. In the discussion they conclude that Chs2 does not "seem to be dependent on 'Reb' activity". I think that this statement potentially needs softening. They show that Reb is not sufficient in to induce Chs2 chitin production in cells that do not normally make a PM. However, they do not show that it is not essential in cells that normally express Chs2 and make PM.

      We fully agree with the reviewer's observation and thank her/him for pointing it out.

      As indicated by the reviewer, we show that co-expression of Reb and Chs2 in different tissues does not lead to an effect distinct from that observed with Chs2 expression alone. In addition, in the discussion we mention that we could not detect expression of reb/exp in PR cells, which aligns with the findings from Zhu et al, 2024, indicating no expression of reb/exp in the midgut cells of the adult proventriculus, as assessed by scRNAseq. We found that exp is expressed in the ectodermal cells of the larval proventriculus (Fig S4D), correlating with kkv expression in this region and cuticle deposition. These findings led us to propose that Chs2 does not seem to be dependent on Exp/Reb activity.

      However, in our original manuscript, we did not directly address whether Exp/Reb are required in the cells that normally express Chs2. As a result, we could not conclude that Chs2 relies on a set of auxiliary proteins different from Exp/Reb, and therefore a different molecular mechanism to that of Kkv in regulating chitin deposition.

      To address this specific point, we have conducted a new experiment to test Exp/Reb requirement in PR cells. We co-expressed RNAi lines for Exp/Reb in these cells and found that chitin deposition in the PM was not prevented. This further supports the hypothesis that Exp/Reb activity is not necessary for Chs2 function. We have added this experiment to Chapter 4 and Fig S3I,J.

      8- They looked at the endogenous expression pattern of kkv and Chs2 and say that they found accumulation of Kkv in the proventriculus and no accumulation in the midgut. Siimilarly, they look at the expression of Chs2 and detect it in cells of the proventriculus. Are there markers of these different cell types that they could use to colocalize these enzymes?

      We agree with the reviewer that this is an important issue and we note that Reviewer 1 also raised the same point. Therefore, we have addressed this issue.

      We obtained an antibody against Dve, kindly provided by Dr. Hideki Nakagoshi. Dve marks the endodermal region in the proventriculus (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998).This antibody worked nicely in our dissected L3 digestive tracts and allowed us to mark the endodermal region. We also obtained an antibody against Fkh, kindly provided by Dr. Pilar Carrera. Fkh marks the ectodermal foregut cells (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998). While, in our hands, this antibody performed well in embryonic tissues, we observed no staining in our dissected L3 digestive tracts. The reason for this is unclear, but we suspect technical limitations may be responsible (the ectodermal region of the proventriculus is very internal, potentially hindering antibody penetration). To circumvent this inconvenience, we tested a FkhGFP tagged allele available in Bloomington Stock Center. Fortunately, we were able to detect GFP in ectodermal cells of L3 carrying this allele. Using this approach, we conducted experiments to detect Fkh and Dve in relation to chitin accumulation in the wild type (Fig S1). In addition, we used these markers to map the expression of Kkv and Chs2 in the proventriculus (Fig 4). Our results using these endodermal/ectodermal markers confirmed the presence of a cuticle adjacent to the FkhGFP-positive cells and a PM adjacent to the PR cells, marked by Dve. Additionally, we show that Chs2-expressing cells are positive for Dve while Kkv-expressing cells are not. We could not conduct an experiment showing Kkv and Fkh co-expression due to technical incompatibilities, as we have to use GFP tagged alleles for both Kkv and Fkh to reveal their expression. However, we believe that our imaging of Dve/Kkv clearly shows that Kkv expressing cells lack Dve expression and localise in the internal (ectodermal) region of the proventriculus (Fig 4E).

      9- They overexpress Chs2 in cells of the midgut and see that it colocalises with an ER marker. They conclude that it is retained in the ER, which again, for them suggests that it has a trafficking problem in these cells. However, they are overexpressing it in these cells and this strong accumulation that they observe in the ER could simply be due to the massive expression levels. Additionally, they cannot conclude that it doesn't get out of the ER at all. They could be correct in thinking that there may be a trafficking issue, but this experiment does not conclusively show that Chs2 is entirely retained in the ER when expressed in ectopic tissues. I wonder if their interpretation needs softening or whether they should potentially address alternative hypotheses.

      The reviewer raises two distinct issues: 1) the localisation of overexpressed proteins 2) Chs2 ER retention.

      We agree that massive overexpression can lead to artifactual subcellular localisation due to saturation of the secretory pathway, causing ER accumulation. In our experiments, we overexpressed Kkv and Chs2 in different tissues (trachea, salivary glands, embryonic gut, and larval proventriculus), inducing high levels of both chitin synthases.

      For Kkv, we observed distinct subcellular localisation patterns in ectodermal versus endodermal tissues (illustrated in new Fig S6). In ectodermal tissues such as the trachea, large amounts of KkvGFP were detected, most of it localising apically. We also detected a more general KkvGFP distribution throughout the cell, including the ER, particularly at early stages. Additionally, we observed many KkvGFP-positive vesicles, reflecting exocytic and endocytic trafficking, as described previously (De Giorgio et al., 2023). The presence of these vesicles (as well as the apical localisation) indicates that KkvGFP is able to exit the ER. Indeed, our previous work demonstrated that when Kkv is retained in the ER, it does not localise apically or appear in vesicles (De Giorgio et al, 2023). In endodermal tissues, as described in our manuscript, KkvGFP did not exhibit polarised apical localisation and instead showed a diffuse pattern with some cortical enrichment. However, the presence of KkvGFP-containing vesicles still suggests that the protein is capable of exiting the ER also in these endodermal tissues.

      We observed a different subcellular pattern when we overexpressed Chs2GFP. In tissues where Chs2 is not normally expressed (e.g., trachea, salivary gland, embryonic gut), we did not detect apical or membrane accumulation (see Fig. 5,S5, S6 and response to point 4 of Reviewer #1). Nor did we observe accumulation of Chs2GFP in intracellular vesicles. Instead, Chs2GFP showed strong colocalisation with an ER marker (see Fig. 5,S5, S6 and response to point 4 of Reviewer #1). In contrast, when overexpressed in PR cells, we detected apical enrichment (Fig 5A-D, S5A,B). This indicates that despite massive expression levels, Chs2 can exit the ER in particular tissues.

      Taken together, our results strongly suggest that overexpressed Kkv can exit the ER in the different tissues analysed, whereas most Chs2GFP is retained in the ER in tissues other than PR cells. This correlates with the ability of overexpressed KkvGFP to polymerise chitin (either in intracellular puncta or deposited extracellularly depending on the presence of Exp/Reb) in all analysed tissues. Conversely, Chs2 was unable to polymerise chitin (either in intracellular puncta or extracellularly regardless of Exp/Reb presence) in tissues other than PR cells.

      Nevertheless, we acknowledge that we cannot definitively conclude that all Chs2 protein is entirely retained in the ER. We have included this caveat in our revised manuscript (Chapter 6 and Discussion section).

      Minor Comments: - No mention of Fig 3I in the results section and the order discussed in the results does not match the order in the figure.

      We apologise for these inconsistencies. We have addressed this issue in the text, figure legend, and the image order in Figure 3 and Figure S3.

      • In the results please provide some information on what the CRIMIC collection is and how it allows you to see Chs2 expression for non-experts.

      We have addressed this point in chapter 5 in the revised version, and we now provide a more detailed explanation of the CRIMIC Chs2CR60212-TG4.0 allele.

      Further details of this allele are also provided in our responses to points 5 and 9 of Reviewer 1.

      Reviewer #2 (Significance (Required)):

      Drosophila produce different types of chitinous structures that are required for either the exoskeleton of the animal or for proper gut function (peritrophic matrix). Additionally, most insects have two enzymes involved in the production of chitin and current data suggests that they have unique roles in producing either the exoskeleton or the peritrophic matrix. However, it is unclear whether their different functions are due to differences in cell type expression or differences in physiological activity of the enzymes. The authors exploit Drosophila to drive these 2 enzymes in different cell types that are known to produce the exoskeleton or the peritrophic matrix to determine whether they can functionally substitute mutant backgrounds. Their results give us a hint that these enzymes are not equivalent. What the authors were unable to address is why they are not equivalent. They hypothesise that the different physiological functions of the enzymes may be related to trafficking differences within their respective cell types. While this is an interesting hypothesis, the date are not really clear yet to make this conclusion.

      This work will be of interest to anyone interested in chitinous structures in insects and the cell biology of chitin-related enzymes.

      Literature


      AHMAD, M., CHAUDHARY, S. U., AFZAL, A. J. & TARIQ, M. 2015. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults. Sci Rep, 5__,__ 14285.

      DE GIORGIO, E., GIANNIOS, P., ESPINAS, M. L. & LLIMARGAS, M. 2023. A dynamic interplay between chitin synthase and the proteins Expansion/Rebuf reveals that chitin polymerisation and translocation are uncoupled in Drosophila. PLoS Biol, 21__,__ e3001978.

      FUSS, B. & HOCH, M. 1998. Drosophila endoderm development requires a novel homeobox gene which is a target of Wingless and Dpp signalling. Mech Dev, 79__,__ 83-97.

      FUSS, B., JOSTEN, F., FEIX, M. & HOCH, M. 2004. Cell movements controlled by the Notch signalling cascade during foregut development in Drosophila. Development, 131__,__ 1587-95.

      HEGEDUS, D. D., TOPRAK, U. & ERLANDSON, M. 2019. Peritrophic matrix formation. J Insect Physiol, 117__,__ 103898.

      KING, D. G. 1988. Cellular organization and peritrophic membrane formation in the cardia (proventriculus) of Drosophila melanogaster. J Morphol, 196__,__ 253-82.

      LEBRETON, G. & CASANOVA, J. 2016. Ligand-binding and constitutive FGF receptors in single Drosophila tracheal cells: Implications for the role of FGF in collective migration. Dev Dyn, 245__,__ 372-8.

      MOUSSIAN, B., LETIZIA, A., MARTINEZ-CORRALES, G., ROTSTEIN, B., CASALI, A. & LLIMARGAS, M. 2015. Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLoS Genet, 11__,__ e1004939.

      NAKAGOSHI, H., HOSHI, M., NABESHIMA, Y. & MATSUZAKI, F. 1998. A novel homeobox gene mediates the Dpp signal to establish functional specificity within target cells. Genes Dev, 12__,__ 2724-34.

      PETERS, W. 1992. Peritrophic Membranes, Springer Berlin, Heidelberg.

      RIZKI, M. T. M. 1956. The secretory activity of the proventriculus of Drosophila melanogaster. Journal of Experimental Zoology, 131__,__ 203-221.

      SANCHEZ, N. & RONCERO, C. 2022. Chitin Synthesis in Yeast: A Matter of Trafficking. Int J Mol Sci, 23.

      ZHU, H., LUDINGTON, W. B. & SPRADLING, A. C. 2024. Cellular and molecular organization of the Drosophila foregut. Proc Natl Acad Sci U S A, 121__,__ e2318760121.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public reviews:

      Reviewer #1:

      The authors attempted to replicate previous work showing that counterconditioning leads to more persistent reduction of threat responses, relative to extinction. They also aimed to examine the neural mechanisms underlying counterconditioning and extinction. They achieved both of these aims and were able to provide some additional information, such as how counterconditioning impacts memory consolidation. Having a better understanding of which neural networks are engaged during counterconditioning may provide novel pharmacological targets to aid in therapies for traumatic memories. It will be interesting to follow up by examining the impact of varying amounts of time between acquisition and counterconditioning phases, to enhance replicability to real-world therapeutic settings.

      Major strengths

      · This paper is very well written and attempts to comprehensively assess multiple aspects of counterconditioning and extinction processes. For instance, the addition of memory retrieval tests is not core to the primary hypotheses but provides additional mechanistic information on how episodic memory is impacted by counterconditioning. This methodical approach is commonly seen in animal literature, but less so in human studies.

      · The Group x Cs-type x Phase repeated measure statistical tests with 'differentials' as outcome variables are quite complex, however, the authors have generally done a good job of teasing out significant F test findings with post hoc tests and presenting the data well visually. It is reassuring that there is a convergence between self-report data on arousal and valence and the pupil dilation response. Skin conductance is a notoriously challenging modality, so it is not too concerning that this was placed in the supplementary materials. Neural responses also occurred in logical regions with regard to reward learning.

      · Strong methodology with regards to neuroimaging analysis, and physiological measures.

      ·The authors are very clear on documenting where there were discrepancies from their pre-registration and providing valid rationales for why.

      We thank reviewer 1 for the positive feedback and for pointing out the strengths of our work. We agree that future research should investigate varying times between acquisition and counterconditioning to assess its success in real-life applications.

      Major Weaknesses

      (1) The statistics showing that counterconditioning prevents differential spontaneous recovery are the weakest p values of the paper (and using one-tailed tests, although this is valid due to directions being pre-hypothesized). This may be due to a relatively small number of participants and some variability in responses. It is difficult to see how many people were included in the final PDR and neuroimaging analyses, with exclusions not clearly documented. Based on Figure 3, there are relatively small numbers in the PDR analyses (n=14 and n=12 in counterconditioning and extinction, respectively). Of these, each group had 4 people with differential PDR results in the opposing direction to the group mean. This perhaps warrants mention as the reported effects may not hold in a subgroup of individuals, which could have clinical implications.

      General exclusion criteria are described on page 17. We have added more detailed information on the reasons for exclusion (see page 17). All exclusions were in line with pre-registered criteria. For the analysis, the reviewer is referring to (PDR analysis that investigated whether CC can prevent the spontaneous recovery of differential conditioned threat responses), 18 participants were excluded from this analysis: 2 participants did not show evidence for successful threat acquisition as was already indicated on page 17, and 16 participants were excluded due to (partially) missing data. We now explicitly mention the exclusion of the additional 16 participants on page 7 and have updated Figure 3 to improve visibility of the individual data points. Therefore, for this analysis both experimental groups consisted of 15 participants (total N=30).

      It is true that in both groups a few participants show the opposite pattern. Although this may also be due to measurement error, we agree that it is relevant to further investigate this in future studies with larger sample sizes. It will be crucial to identify who will respond to treatments based on the principles of standard extinction or counterconditioning. We have added this point in the discussion on page 14.

      Reviewer #2:

      Summary:

      The present study sets out to examine the impact of counterconditioning (CC) and extinction on conditioned threat responses in humans, particularly looking at neural mechanisms involved in threat memory suppression. By combining behavioral, physiological, and neuroimaging (fMRI) data, the authors aim to provide a clear picture of how CC might engage unique neural circuits and coding dynamics, potentially offering a more robust reduction in threat responses compared to traditional extinction.

      Strengths:

      One major strength of this work lies in its thoughtful and unique design - integrating subjective, physiological, and neuroimaging measures to capture the various aspects of counterconditioning (CC) in humans. Additionally, the study is centered on a well-motivated hypothesis and the findings have the potential to improve the current understanding of pathways associated with emotional and cognitive control. The data presentation is systematic, and the results on behavioral and physiological measures fit well with the hypothesized outcomes. The neuroimaging results also provide strong support for distinct neural mechanisms underlying CC versus extinction.

      We thank reviewer 2 for the feedback and for valuing the thoughtfulness that went into designing the study.

      Weaknesses:

      (1) Overall, this study is a well-conducted and thought-provoking investigation into counterconditioning, with strong potential to advance our understanding of threat modulation mechanisms. Two main weaknesses concern the scope and decisions regarding analysis choices. First, while the findings are solid, the topic of counterconditioning is relatively niche and may have limited appeal to a broader audience. Expanding the discussion to connect counterconditioning more explicitly to widely studied frameworks in emotional regulation or cognitive control would enhance the paper's accessibility and relevance to a wider range of readers. This broader framing could also underscore the generalizability and broader significance of the results. In addition, detailed steps in the statistical procedures and analysis parameters seem to be missing. This makes it challenging for readers to interpret the results in light of potential limitations given the data modality and/or analysis choices.

      In this updated version of the manuscript, we included the notion that extinction has been interpreted as a form of implicit emotion regulation. In addition to our discussion on active coping (avoidance), we believe that our discussion has an important link to the more general framework of emotion regulation, while remaining within the scope of relevance. Please see pages 14 and 15 for the changes. In addition to being informative to theories of emotion regulation, our findings are also highly relevant for forms of psychotherapy that build on principles of counterconditioning (e.g. the use of positive reinforcement in cognitive behavioral therapy), as we point out in the introduction. We believe this relevance shows that counterconditioning is more than a niche topic. In line with the recommendation from reviewer 2, we added more details and explanations to the statistical procedures and analyses where needed (see responses to recommendations).

      Reviewer #3:

      Summary:

      In this manuscript, Wirz et al use neuroimaging (fMRI) to show that counterconditioning produces a longer lasting reduction in fear conditioning relative to extinction and appears to rely on the nucleus accumbens rather than the ventromedial prefrontal cortex. These important findings are supported by convincing evidence and will be of interest to researchers across multiple subfields, including neuroscientists, cognitive theory researchers, and clinicians.

      In large part, the authors achieved their aims of giving a qualitative assessment of the behavioural mechanisms of counterconditioning versus extinction, as well as investigating the brain mechanisms. The results support their conclusions and give interesting insights into the psychological and neurobiological mechanisms of the processes that underlie the unlearning, or counteracting, of threat conditioning.

      Strengths:

      · Mostly clearly written with interesting psychological insights

      · Excellent behavioural design, well-controlled and tests for a number of different psychological phenomena (e.g. extinction, recovery, reinstatement, etc).

      · Very interesting results regarding the neural mechanisms of each process.

      · Good acknowledgement of the limitations of the study.

      We thank reviewer 3 for the detailed feedback and suggestions.

      Weaknesses:

      (1) I think the acquisition data belongs in the main figure, so the reader can discern whether or not there are directional differences prior to CC and extinction training that could account for the differences observed. This is particularly important for the valence data which appears to differ at baseline (supplemental figure 2C).

      Since our design is quite complex with a lot of results, we left the fear acquisition results as a successful manipulation check in the Supplementary Information to not overload the reader with information that is not the main focus of this manuscript. If the editor would like us to add the figure to the main text, we are happy to do so. During fear acquisition, both experimental groups showed comparable differential conditioned threat responses as measured by PDRs and SCRs. Subjective valence ratings indeed differed depending on CS category. Importantly, however, the groups only differed with respect to their rating to the CS- category, but not the CS+ category, which suggests that the strength of the acquired fear is similar between the groups. To make sure that these baseline differences cannot account for the differences in valence after CC/Ext, we ran an additional group comparison with differential valence ratings after fear acquisition added as a covariate. Results show that despite the baseline difference, the group difference in valence after CC/Ext is still significant (main effect Group: F<sub>(1,43)</sub>=7.364, p=0.010, η<sup>2</sup>=0.146). We have added this analysis to the manuscript (see page 7).

      (2) I was confused in several sections about the chronology of what was done and when. For instance, it appears that individuals went through re-extinction, but this is just called extinction in places.

      We understand that the complexity of the design may require a clearer description. We therefore made some changes throughout the manuscript to improve understanding. Figure 1 is very helpful in understanding the design and we therefore refer to that figure more regularly (see pages 6-7). We also added the time between tasks where appropriate (e.g. see page 7). Re-extinction after reinstatement was indeed mentioned once in the manuscript. Given that the reinstatement procedure was not successful (see page 9), we could not investigate re-extinction and it is therefore indeed not relevant to explicitly mention and may cause confusion. We therefore removed it (see page 12).

      (3) I was also confused about the data in Figure 3. It appears that the CC group maintained differential pupil dilation during CC, whereas extinction participants didn't, and the authors suggest that this is indicative of the anticipation of reward. Do reward-associated cues typically cause pupil dilation? Is this a general arousal response? If so, does this mean that the CSs become equally arousing over time for the CC group whereas the opposite occurs for the extinction group (i.e. Figure 3, bottom graphs)? It is then further confusing as to why the CC group lose differential responding on the spontaneous recovery test. I'm not sure this was adequately addressed.

      Indeed, reward and reward anticipation also evoke an increase in pupil dilation. This was an important reason for including a separate valence-specific response characterization task. Independently from the conditioning task, this task revealed that both threat and reward-anticipation induced strong arousal-related PDRs and SCRs. This was also reflected in the explicit arousal ratings, which were stronger for both the shock-reinforced (negative valence) and reward-reinforced (positive valence) stimuli. Therefore, it is not surprising that reward anticipation leads to stronger PDRs for CS+ (which predict reward) compared to CS- stimuli (which do not predict reward) during CC, but is reduced during extinction due to a decrease in shock anticipation. During the spontaneous recovery test, a return of stronger PDRs for CS+ compared to CS- stimuli in the standard extinction group can only reflect a return of shock anticipation. Importantly, the CC group received no rewards during the spontaneous recovery task and was aware of this, so it is to be expected that the effect is weakened in the CC group. However, CS+ and CS- items were still rated of similar valence and PDRs did not differ between CS+ and CS- items in the CC group, whereas the Ext group rated the CS+ significantly more negative and threat responses to the CS+ did return. It therefore is reasonable to conclude that associating the CS+ with reward helps to prevent a return of threat responses. We have added some clarifications and conclusions to this section on page 8.

      (4) I am not sure that the memories tested were truly episodic

      In line with previous publications from Dunsmoor et al.[1-4], our task allows for the investigation of memory for elements of a specific episode. In the example of our task, retrieval of a picture probes retrieval of the specific episode, in which the picture was presented. In contrast, fear retrieval relies on the retrieval of the category-threat association, which does not rely on retrieval of these specific episodic elements, but could be semantic in nature, as retrieval takes place at a conceptual level. We have added a small note on what we mean with episodic in this context on page 4. We do agree that we cannot investigate other aspects of episodic memories here, such as context, as this was not manipulated in this experiment.

      (5) Twice as many female participants than males

      It is indeed unfortunate that there is no equal distribution between female and male participants. Investigating sex differences was not the goal of this study, but we do hope that future studies with the appropriate sample sizes are able to investigate this specifically. We have added this to the limitations of this study on page 17.

      (6) No explanation as to why shocks were varied in intensity and how (pseudo-randomly?)

      The shock determination procedure is explained on pages 18-19 (Peripheral stimulation). As is common in fear conditioning studies in humans (see references), an ascending staircase procedure was used. The goal of this procedure is to try and equalize the subjective experience of the electrical shocks to be “maximally uncomfortable but not painful”.

      Recommendations for the authors:

      Reviewer #1:

      Very well written. No additional comments

      We thank reviewer 1 for valuing our original manuscript version. To further improve the manuscript, we adapted the current version based on the reviewer’s public review (see response to reviewer #1 public review comment 1).

      Reviewer #2:

      (1) I feel that more justification/explanation is needed on why other regions highly relevant to different aspects of counterconditioning (e.g., threat, memory, reward processing) were not included in the analyses.

      We first performed whole-brain analyses to get a general idea of the different neural mechanisms of CC compared to Ext. Clusters revealing significant group differences were then further investigated by means of preregistered ROI analyses. We included regions that have previously been shown to be most relevant for affective processing/threat responding (amygdala), memory (hippocampus), reward processing (NAcc) and regular extinction (vmPFC). We restricted our analyses to these most relevant ROIs as preregistered to prevent inflated or false-positive findings[5]. Beyond these preregistered ROIs, we applied appropriate whole-brain FEW corrections. The activated regions are listed in Supplementary Table 1 and include additional regions that were expected, such as the ACC and insula.

      (2) Were there observed differences across participants in the experiment? Any information on variance in the data such as how individual differences might influence these findings would provide a richer understanding of counterconditioning and increase the depth of interpretation for a broad readership.

      We agree that investigating individual differences is crucial to gain a better understanding of treatment efficacy in the framework of personalized medicine. Specifically, future research should aim to identify factors that help predict which treatment will be most effective for a particular patient. The results of this study provide a good basis for this, as we could show that the vmPFC in contrast to regular extinction, is not required in CC to improve the retention of safety memory. Therefore, this provides a viable option for patients who are not responding to treatments that rely on the vmPFC. In addition, as noted by Reviewer 1, in both groups a few participants show the opposite pattern (see Figure 3). It will be crucial to identify who will respond to treatments based on the principles of standard extinction or counterconditioning. We have added this point in the discussion on page 14.

      (3) While most figures are informative and clear, Figure 3 would benefit from detailed axis labels and a more descriptive caption. Currently, it is challenging to navigate the results presented to support the findings related to differential PDRs. A supplementary figure consolidating key patterns across conditions might also further facilitate understanding of this rather complicated result.

      We have made some changes to the figure to improve readability and understanding. Specifically, we changed the figure caption to “Change from last 2 trials CC/Ext to first 2 trials Spontaneous recovery test”, to give more details on what exactly is shown here. We also simplified the x-axis labels to “counterconditioning”, “recovery test” and “extinction”. With the addition of a clearer figure description, we hope to have improved understanding and do not think that another supplemental figure is needed.

      (4) Additional details on the statistical tests are needed. For example, please clarify whether p-values reported were corrected across all experimental conditions. Also, it would be helpful for the authors to discuss why for example repeated measures ANOVA or mixed-effects conditions were not used in this study. Might those tests not capture variance across participants' PDRs and SCRs over time better?

      We added that significant interactions were followed by Bonferroni-adjusted post-hoc tests where applicable (see page 21). We have used repeated measures ANOVAs to capture early versus late phases of acquisition and CC/extinction, as well as to compare late CC/extinction (last 2 trials) compared to early spontaneous recovery (first 2 trials) as is often done in the literature. A trial-level factor in a small sample would cost too many degrees of freedom and is not expected to provide more information. We have added this information and our reasoning to the methods section on page 21.

      Reviewer #3:

      (1) Suggest putting acquisition data into the main figures. In fact many of the supplemental figures could be integrated into the main figures in my opinion.

      See response to reviewer #3 public review comment 1.

      (2) Include explanations for why shock intensity was varied

      See response to reviewer #3 public review comment 6.

      (3) Include a better explanation for the change in differential responding from training to spontaneous recovery in the CC group (I think the loss of such responding in extinction makes more sense and is supported by the notion of spontaneous recovery, but I'm not sure about the loss in the CC group. There is some evidence from the rodent literature - which I am most familiar with - regarding a loss in contextual gradient across time which could account for some loss in specificity, could it be something like this?).

      See response to reviewer #3 public review comment 3.

      If we understand the reviewer correctly in that the we see a loss of differential responding due to a generalization to the CS-, this would imply an increase in responding to the CS-, which is not what we see. Our data should therefore be correctly interpreted as a loss of the specific response to the CS+ from the CC phase to the recovery test. Therefore, there is no spontaneous recovery in the CC group, and also not a non-specific recovery. To clarify this we relabeled Figure 3 by indicating “recovery test” instead of “spontaneous recovery”.

      (4) Is there a possibility that baseline differences, particularly that in Supplemental Figure 2C, could account for later differences? If differences persist after some transformation (e.g. percentage of baseline responding) this would be convincing to suggest that it doesn't.

      See response to reviewer #3 public review comment 1.

      (5) As I mentioned, I got confused by the chronology as I read through. Maybe mention early on when reporting the spontaneous recovery results that testing occurred the next day and that participants were undergoing re-extinction when talking about it for the second time.

      See response to reviewer #3 public review comment 2.

      (6) Page 8 - I was confused as to why it is surprising that the CC group were more aroused than the extinction group, the latter have not had CSs paired with anything with any valence, so doesn't this make sense? Or perhaps I am misunderstanding the results - here in text the authors refer back to Figure 2B, but I'm not sure if this is showing data from the spontaneous recovery test or from CC/extinction. If it is the latter, as the caption suggests, why are the authors referring to it here?

      Participants in the CC group showed increased differential self-reported arousal after CC, whereas arousal ratings did not differ between CS+ and CS- items after extinction. We interpret this in line with the valence and PDR results as an indication of reward-induced arousal. At the start of the next day, however, participants from the CC and extinction groups gave comparable ratings. It may therefore be surprising why participants in the CC group do not still show stronger ratings since nothing happened between these two ratings besides a night’s sleep (see design overview in Figure 1A). We removed the “suprisingly” to prevent any confusion.

      (7) I suggest that the authors comment on whether there were any gender differences in their results.

      See response to reviewer #3 public review comment 5.

      (8) The study makes several claims about episodic memory, but how can the authors be sure that the memories they are tapping into are episodic? Episodic has a very specific meaning - a biographical, contextually-based memory, whereas the information being encoded here could be semantic. Perhaps a bit of clarification around this issue could be helpful.

      See response to reviewer #3 public review comment 4.

      References

      (1) Dunsmoor, J. E. & Kroes, M. C. W. Episodic memory and Pavlovian conditioning: ships passing in the night. Curr Opin Behav Sci 26, 32-39 (2019). https://doi.org/10.1016/j.cobeha.2018.09.019

      (2) Dunsmoor, J. E. et al. Event segmentation protects emotional memories from competing experiences encoded close in time. Nature Human Behaviour 2, 291-299 (2018). https://doi.org/10.1038/s41562-018-0317-4

      (3) Dunsmoor, J. E., Murty, V. P., Clewett, D., Phelps, E. A. & Davachi, L. Tag and capture: how salient experiences target and rescue nearby events in memory. Trends Cogn Sci 26, 782-795 (2022). https://doi.org/10.1016/j.tics.2022.06.009

      (4) Dunsmoor, J. E., Murty, V. P., Davachi, L. & Phelps, E. A. Emotional learning selectively and retroactively strengthens memories for related events. Nature 520, 345-348 (2015). https://doi.org/10.1038/nature14106

      (5) Gentili, C., Cecchetti, L., Handjaras, G., Lettieri, G. & Cristea, I. A. The case for preregistering all region of interest (ROI) analyses in neuroimaging research. Eur J Neurosci 53, 357-361 (2021). https://doi.org/10.1111/ejn.14954

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Dear Editor,

      Thank you for reviewing our article. We are happy to see that the reviewers are positive on our manuscript. We have tried to address nearly all their comments. Find below a point-by-point answer.

      With best regards,

      Bruno Lemaitre and Asya Dolgikh

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This work defines NimB1 protein as a PS binding bridging molecule but with a negative regulatory role in efferocytosis. Specifically, the authors demonstrate via a variety of genetic, cell biological, and other approaches that loss of NimB1 leads to Drosophila macrophages being more adherent to apoptotic targets and engulf them more robustly. The authors also nicely demonstrate that the function of NimB1 differs from NimB4, and the double mutant demonstrating PS-binding yet, distinct roles. Further, the authors show that NimB1 does not affect bacterial phagocytosis.

      Overall, this is a well-done study. The authors have already done a very thorough job addressing the key points and I congratulate the authors.

      My only minor comment is that the authors could try to make the comment better about whether or not such a 'negative regulatory' bridging molecules may exist in other species, and particularly mammals. If so, this is quite novel. The authors refer to CD47 but this is a membrane protein. The other minor comment is whether the authors ever tried express the PS binding domains as a fusion protein - this would provide a more direct evidence for the binding to PS (although the authors do competitive inhibition with Annexin V). This could be commented upon although testing this is not necessary if they have not already done so.

      We greatly appreciate the reviewer’s positive feedback. In the revised manuscript, we have now included a more detailed discussion of mammalian proteins with analogous roles, specifically referencing Draper isoforms (I and II), the CD300 receptor family, and surfactant proteins A and B (see page 16).

      Reviewer #1 (Significance (Required)):

      The identification of the negative regulator bridging protein NimB1 is novel and could be broadly interesting to those studying efferocytosis.

      Regarding the suggestion to overexpress just the putative PS-binding domain of NimB1, we agree this could strengthen the evidence for its PS-binding function. However, generating a new transgenic fly line would require significant additional time. Moreover, the presence of a PS-binding motif was also proposed in the recent study on Orion (Ji et al., 2023), which we have cited in our manuscript. The Orion binds PS through a conserved RRY motif. This motif is critical for Orion’s ability to directly interact with PS and facilitate its secretion. Mutagenesis experiments disrupting the RRY motif—specifically substituting arginine residues with alanines—abolished Orion’s PS-binding capacity, demonstrating the essential role of this sequence. Functional assays also validated that Orion competes with Annexin V, a well-established PS-binding protein, for access to PS-exposing surfaces (Ji et al., 2023).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this study, Dolgikh and colleagues propose a first investigation about the role of the drosophila Nimrod protein NimB1. Although the role of several members of the family in phagocytosis has been explored, the function of Nimrod type B proteins is less addressed. Within silico analysis, they first see a strong similarity between NimB1 and NimB4. They show that NimB1 is primarily expressed in phagocytes, and as NimB4 can bind phosphatidylserines (PS), leading to a possible shared role in efferocytosis. Using transgenic and null drosophila models, the authors then compare the impact of NimB1 overexpression or deficiency. They compare the effects shown to NimB4 and Draper deficient lines, as these two proteins were previously shown to play a role in efferocytosis. They propose that NimB1 is a secreted protein that binds apoptotic cells. They show that NimB1 deficiency changes the adhesion properties of macrophages. The major finding is that NimB1 delays the early stages of efferocytosis, contrary to NimB4 and Draper that on the contrary facilitate efferocytosis. In contrast, the authors propose that NimB1 increases the formation of phagosomes.

      We appreciate the reviewer’s acknowledgment that our key discovery centered around NimB1 functioning as a negative regulator of efferocytosis. This finding highlights NimB1’s distinct role compared to NimB4 and Draper, which instead promote the process.

      Major comments:

      One of the major technical challenges here was to generate models to allow the detection of the protein in cellulo and in vivo. Although the results are convincing in transgenic lines NimB1 expression is driven by the endogenous promoter, one could still argue that the GFP tags would lead to changes in the localization of the protein.

      We understand the concern regarding potential localization changes introduced by GFP tags. However, in previous studies, the same fosmid construct was applied to NimB4-sGFP, and produced a distinctly different expression pattern—NimB4-sGFP expression was more pronounced and clearly present in the glial cells in the brain (Petrignani et al, 2021: Figure EV1A). The fact that the NimB1-sGFP and NimB4-sGFP fosmids localized to different tissues suggests that possible any mis-localization changes due to the GFP tag do not override localization properties intrinsic to the proteins.

      In line with the previous comment, to show that NimB1 is a secreted protein, the authors use an overexpression model. How to be sure, that overexpression itself does not lead to increased secretion, or shedding from the membrane?

      The observation that uas-NimB1-RFP accumulates in the nephrocytes upon Lpp-Gal4 (fat body) expression, and the presence of a signal peptide suggests that this protein can be secreted.

      We cannot exclude that in endogenous condition, NimB1, remains attached to hemocytes. We have confirmed that the Lpp driver is not expressed in nephrocytes.

      Would an experiment with a control consisting in a known protein secreted by macrophages lead to the same staining pattern (positive control)? Could another methodology like a Western Blot on supernatants from hemocyte cell culture (over)expressing NimB1, with an anti-RFP staining, be envisaged?

      We have already performed similar experiment with other secreted proteins such as NimB4-GFP (Petrignani et al., 2021: Figure: 1B). In the revised article, we have added Viking-RFP as a positive control of a secreted protein (Figure S1F). Figure S2 shows a Western blot with hemolymph extract. We detected NimB1-RFP at its expected molecular weight of 44 kDa, verifying that is present into the hemolymph (Supplementary Document S2 C).

      It sems counterintuitive that phagocytes from Draper and NimB4 null mutants with defects in efferocytosis show increased load of apoptotic cells (Figure 6C and D in both unchallenged and injury condition). Do the authors have precedent data to cite going to the same direction? Are cell debris engulfed but not degraded efficiently?

      The observation that Draper and NimB4 null mutants have an increased load of apoptotic cells has already been reported in the literature. Several studies have now shown that Draper is not always required for the initial uptake of apoptotic corpses but is critical for phagosome maturation (Meehan et al., 2016; Serizier et al., 2022; Serizier & McCall, 2017). In our article on NimB4 (Petrignani et al., 2021), we have previously shown that the accumulation of immature phagosomes that are not properly eliminated indirectly impairs the uptake of new apoptotic corpses. This explains why efferocytosis is then impaired only at late time points, when unresolved phagosomes have accumulated to the threshold that prevents further phagocytosis.

      In Figure 6D it seems indeed that NimB4, NimB1/NimB4 and Draper mutants do not accumulate more apoptotic material upon injury. However, levels for NimB4 is close to the one obtained with NimB1 mutants. Is it statistically true? If yes, what could be the reason for this similarity? In any case, as some important conclusion relies on the comparison between UC and injury conditions, adequate statistics and representations could be proposed.

      We thank the reviewer for this pertinent observation and the opportunity to clarify. In the unchallenged (UC) condition, NimB4sk2 and draperΔ5 mutants indeed exhibit significantly elevated levels of apoptotic cell (AC) content in macrophages compared to wild-type and NimB1 mutant genotypes (****p crimic and NimB1229/NimB1crimic* mutants show significantly lower levels in the UC condition, consistent with a role for NimB1 in early recognition or regulation of phagocytic initiation, not in corpse degradation.

      In contrast, upon injury (90 minutes post-challenge) we observe a statistically significant increase in apoptotic material in NimB1 mutants compared to UC hemocytes of the same genotype (****p sk2 and draperΔ5* mutants between the UC and 90 min conditions (ns for NimB4). This is consistent with their known defect in corpse degradation, which results in saturation of phagocytic capacity at baseline, and an inability to respond further upon challenge with apoptotic cells.

      While the absolute levels of apoptotic material in injured NimB1 and UC NimB4 mutants appear similar at first glance, statistical testing confirms that they are significantly different. NimB4 mutant macrophages retain apoptotic debris due to defective degradation, whereas NimB1 mutants have an increase in newly acquired apoptotic content due to enhanced uptake.

      Additionally, NimB161, NimB4sk2 double mutants display a partial increase in apoptotic load upon injury (****p To directly address the reviewer’s suggestion, we have now recalculated and visualized key comparisons with appropriate statistical testing, as shown in Revision Figure 1. All statistical analyses were conducted using unpaired two-tailed Student’s t-tests. This additional figure allows clearer evaluation of genotype-specific differences at both baseline and post-injury conditions and supports our conclusions that NimB1 and NimB4 regulate distinct stages of phagocytosis. We have also clarified the text to better explain that both NimB4 and Draper mutants accumulate unresolved apoptotic material under baseline conditions, and do not accumulate further material upon challenge, due to a block in phagosome maturation.

      Revisions Figure 1.

      __Quantification of phagocytic events in wild-type and mutant macrophages under unchallenged and post-injury conditions __

      (A) Comparison of phagocytic events per frame in w1118 (wild-type), NimB1crimic, NimB1229/NimB1crimic, NimB4sk2, NimB161,NimB4 sk2, and draperΔ5 larvae under unchallenged conditions (UC) and 90 minutes after injury (90 min). Data are presented as individual data points with means. Statistical significance was determined using Student's t-test (*P (B) Direct comparison of phagocytic events between NimB1crimic (red) and NimB4sk2 (gray), and between NimB1229/crimic (dark red) and NimB4sk2 (gray) under both unchallenged (UC) and post-injury (90 min) conditions.

      The authors claim with analyses of Figure 8C and D, that NimB1 mutants show acidic vehicles normal in size and fluorescence intensity. However, statistical differences are still observed compared to control condition, which is also seen in representative images shown.

      In Figure 8C and D, we provide two quantitative measures to clarify the size and intensity of acidic vesicles. First, we show that mean fluorescence in hemocytes is elevated for all NimB and draper mutants compared to wild type, indicating an overall increase in internalized material. However, we also quantified the number of vesicles per hemocyte and found that NimB1 mutants exhibit significantly more vesicles. Despite this increase, the representative images do not show an obvious enlargement of individual vesicles, suggesting that while more material is being taken up, the vesicles themselves are not enlarged. The enlarged vesicles in case of NimB4 or draper mutant would result from the unresolved cargo (Petrignani et al., 2021). This distinction underscores that higher fluorescence values reflect increased cargo internalization, rather than the larger vesicular structures that result from impaired degradation as in NimB4 or draper mutants.

      Minor comments:

      In figure 2D, what allows to say the expression is restricted in macrophages? Is it the colocalization with SIMU being a macrophage-specific marker?

      In Figure 2D, we relied on SIMU as a macrophage-specific marker in Drosophila embryos to determine that NimB1 expression is restricted to macrophages. Previous research has demonstrated that SIMU is predominantly expressed in embryonic macrophages (where it is essential for apoptotic cell clearance) (Kurant et al., 2008; Roddie et al., 2019). Consequently, the colocalization of NimB1 signal with SIMU-positive cells strongly indicates that NimB1 is confined to macrophages during this developmental stage.

      In figure S3B and C, it appears that double NimB1/NimB4 mutants exhibit less spreading than single ones (especially NimB4). Is it the case (statistical significance). If yes what could be the explanation?

      Yes, the double NimB1, NimB4 mutants exhibit higher number of hemocytes and significantly reduced cell spreading compared to single mutants. The phenotype is similar to NimC1, eater double mutants (Melcarne et al., 2019) which also show higher number of hemocytes, reduced cell spreading and also diminished capacity to phagocytose apoptotic cells (and, in the case of NimC1, Eater, bacteria as well) (Melcarne et al., 2019). A likely explanation lies in impaired membrane remodeling critical for pseudopod extension and phagosome formation. Studies have shown that defects in actin polymerization or membrane tension can hinder pseudopod extension, reducing phagocytic efficiency (Lee et al., 2007; Masters et al., 2013). Same for the decreased ability of these mutants to form filopodium, a process essential for effective target engagement and engulfment. Filopodia play a significant role in capturing particles and directing them toward the macrophage body for engulfment (Horsthemke et al., 2017). Disruptions in these pathways lead to reduced phagocytic efficiency and a more rounded macrophage morphology, as the cells fail to spread properly (Horsthemke et al., 2017; Lillico et al., 2018). Other than these general observations, we do not have an explanation as to why NimB1, NimB4 double mutants specifically show a higher number of hemocytes and reduced cell spreading.

      Several graphs are identical between figure 4 and S4. It is probably not useful and complicates reading.

      We agree that duplicating these graphs complicates the presentation. Therefore, we have removed the redundant graphs in the supplementary materials, ensuring the data are shown only once to maintain clarity and ease of reading

      As TEM images shown in Figure 8B do not lead to quantitative data, I would put it as supplementary file.

      We agree that the TEM images in Figure 8B do not provide strictly quantitative data. To streamline the main manuscript, we have relocated these images to the supplementary section in the revised version

      Reviewer #2 (Significance (Required)):

      This study uses several approaches and models to address the role of NimB1 in efferocytosis. Both In Vitro and In Vivo approaches are proposed. They give insight into the role of this protein with unknown function so far. Some statistical analysis could be performed to improve the clarity of conclusions. One of the important aspects is the secreted nature of NimB1.However, additional approaches could be proposed to confirm this.

      Basic immunologists and cell biologists would be interested in reading this article that highlights the delicate equilibrium between pro and anti-efferocytosis molecules.

      I am an immunologist/cell biologist with expertise in lysosomal catabolism. As I work on mouse models or Human samples, my mastering of drosophila as a model is limited.

      We thank the reviewer for the positive evaluation of our work. In this revision, we have added further detail to clarify the properties of NimB1 as a secreted protein and strengthen our data presentation. By providing additional clarity on methods and interpretations, we hope immunologists and cell biologists—including those who do not routinely work with Drosophila—will find our findings more accessible.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This paper investigates the role of NimB1, a secreted member of the Nimrod family in Drosophila, in the process of efferocytosis, the clearance of apoptotic cells by macrophages. Previous studies have identified NimB4, another secreted Nimrod protein, as a positive regulator of efferocytosis, enhancing both apoptotic cell binding and phagosome maturation. In contrast, the authors propose that NimB1 functions as a negative regulator, slowing down the early stages of apoptotic cell binding and internalization. This regulatory balance is suggested to fine-tune efferocytosis to maintain homeostasis.

      The primary aim of this study was to characterize the function of NimB1 to better understand the roles of proteins within the NimB family.

      This study identifies a novel function for NimB1 in modulating the early stages of efferocytosis, adding to our understanding of how Nimrod proteins fine-tune apoptotic cell clearance. The authors establish a clear phenotypic contrast between NimB1 and NimB4, which provides a compelling framework for understanding how positive and negative regulators coordinate phagocytosis. It also highlights the multiple roles of the secreted members of the Nimrod scavenger receptor family, which have remained so far poorly investigated.

      This is an interesting study that could be strengthened by additional validation and broader experimental support. As the authors point out in the discussion, it is known that PS bridging molecules contribute to phagocytosis and that the contribution of positive and negative players finely tune phagocytosis in flies and mammals. Clarifying the mode of action of NimB1 in those processes would higher the impact of this interesting piece of work. For example, does NimB1 interact with NimB4 and if so, what is the role of this interaction? How does NimB1 integrate in the signaling cascade that allows scavenger receptors to bind PS? Does it act similar to Orion by enhancing the PS binding of a scavenger receptor?

      Key Findings • NimB1 and NimB4 are structurally similar, as supported by AlphaFold2 modeling, suggesting functional relatedness. • NimB1 is expressed in macrophages, secreted into the hemolymph, and binds apoptotic cells in a phosphatidylserine (PS)-dependent manner. • NimB1 is induced by challenge. • NimB1 mutants display a hyper-phagocytic phenotype, with faster recognition and internalization of apoptotic cells. • NimB1 loss enhances macrophage adhesion and actin remodeling, while bacterial phagocytosis remains unaffected, suggesting a specific role in apoptotic clearance. • NimB1 acts early in the phagocytic process, while NimB4 functions at later stages, particularly in phagosome maturation.

      We thank the reviewer for their positive assessment and are pleased that our findings identify NimB1 as a novel secreted negative regulator of efferocytosis, underscoring a greater level of regulatory complexity in apoptotic cell clearance.

      Unfortunately, attempts to produce functional NimB1 protein were not successful, limiting our ability to address some of the reviewer’s suggestions experimentally. Despite these challenges, the evidence we present—particularly from our genetic assays—clearly indicates that NimB1 exerts an inhibitory influence during the early steps of apoptotic cell binding, distinguishing it from the late-stage promoting function of NimB4.

      Major comments:

      Figure 1: AlphaFold is a valuable tool for generating hypotheses, however predicted structures should not be presented as definitive evidence of similarity, particularly without complementary experimental validation. This section would be stronger if the structural predictions were explicitly framed as predictions. In the absence of such data, the interpretation should be toned down.

      We agree with the reviewer and we have now framed our observation as prediction and toned down our interpretation. We also note that the similarities between NimB4 and NimB1 are also underlined by the phylogenetic analysis and expression pattern.

      Figure 2DE: Given its basal level in homeostatic conditions, it would have been useful to look at the NimB1-GFP upon challenge. Also, the authors show only a single larval macrophage with no comparison point. To strengthen this result, the authors could include another protein quantification method, such as western blotting. Alternatively, labelling of NimB1>UASmRFP in embryo that present the highest expression levels would also strengthen this result.

      Unfortunately, we cannot currently perform additional experiments on embryos within the scope of this project because those experiments were performed by our collaborators in Haifa (Estee Kurant Lab). Repeating them would require sending the lines to their lab and accommodating their experimental schedule and manpower constraints.

      In supplementary Figure S1F: the authors overexpress NimB1-RFP using the fat body driver Lpp-Gal4 and show larvae with RFP in the nephrocyte. Could filet preparations be shown? Could the authors present evidence that the Lpp driver is not expressed in the nephrocytes (or refer to literature)?

      The Lpp-Gal80 driver is described as fat body-specific and has been used to manipulate gene expression in the fat body in many other studies. We have checked Lpp-Gal80>UAS-GFP expression in larvae and did not observe expression in larval nephrocytes. The whole live larvae were observed under the microscope with no prior filet preparations. To provide the evidence that Lpp is not expressed in the nephrocytes we are providing the images of the whole larvae expressing GPF from the Lpp, as per genotype: Lgg-Gal80>UAS-GFP (see below, Revisions Figure 2).


      Revisions Figure 2.

      __Expression pattern of Lpp-Gal80>UAS-GFP in Drosophila larvae __

      Representative fluorescence microscopy images showing GFP expression driven by the Lpp-Gal80 system in Drosophila larvae. The images display dorsal (top) and ventral (bottom) views of the same larva, demonstrating the pattern of expression throughout the fat body tissue. Green fluorescence indicates cells expressing the GFP reporter under the control of the Lpp promoter, which is predominantly active in the larval fat body.

      The results on the increased number of hemocytes observed in the double NimB1, NimB4 mutant animals (Figure S3A) remains not only disconnected from the rest of the data but also unexplained. Providing a mechanistic view may require a significant amount of work that may indicate an additional role of the two NimBs but will not add to our understanding of the role of NimB1 in phagocytosis. Nevertheless, it would be at least useful to know whether in the double mutant the lymph gland is still intact, as its precocious histolysis could account for the elevated number of hemocytes. If that were the case, that could indicate that lacking the two NimBs triggers an inflammatory state that affects the lymph gland, meaning that the pathway controlling phagocytosis also has a systemic impact on development. When checking the representative Figure S4D, it seems that very large cells are present in the double mutants, even larger than in the single mutants. These could be (pre)lamellocytes, which constitute activated hemocytes, known to impact the status of the lymph gland. If the enhanced number of hemocytes does not depend on lymph gland histolysis, a simple immunolabeling with the anti-PH3 antibody would assess the proliferative phenotype of the double mutant hemocytes. At least this piece of data would provide a better explanation for the observed phenotype.

      We thank the reviewer for this interesting comment. We cannot explain why NimB1, NimB4 double mutants have more hemocytes. It is unclear to us if this is a secondary consequence of defects in efferocytosis or linked to another function of these two NimBs, such as a role in adhesion. We did look at the lymph gland and our preliminary observations suggest that NimB1, NimB4 double mutants have an easily ruptured or fragile lymph gland, which could explain the higher number and the roundish shape of hemocytes in circulation as proposed by the reviewer. Lacking expertise on lymph gland, we prefer not to include this data, as they are not central to the main message of this article on role of NimB1 on efferocytosis. We have also noted the presence of lamellocytes in unchallenged NimB1, NimB4 double mutant larvae, as well as excessive lamellocyte production compared to controls upon clean injury (see below, Revisions Figure 3). We have mentioned the presence of lamellocytes in NimB1, NimB4 double mutants in the revised version. We prefer not include this new data directly in the article because this not central to the main message of the article.


      __Revisions Figure 3. __

      A.

      B.

      Lamellocyte recruitment following a clean injury in L3 Drosophila larvae:

      (A) Quantification of lamellocytes per 50 frames of x63 microscopy lens in w1118 (wild-type), NimB1crimic, NimB4sk2, NimB161, NimB4sk2, and draperΔ5 larvae under unchallenged conditions (UC) and 3 hours after clean injury (3h). Arrowheads indicate lamellocytes.

      (B) Representative confocal microscopy images of hemocytes isolated from challenged NimB161, NimB4sk2 larvae. Cells were fixed and stained with Phalloidin (green) to label F-actin and DAPI (blue) to visualize nuclei. The smaller inset (40x magnification) shows a detailed view of individual lamellocytes with characteristic morphology, while the larger field (20x magnification) displays the overall view on the hemocytes. Scale bar = 50 μm.

      Figure 6: The connection between the ex-vivo (Figure 5) and in vivo (Figure 6) assays should be clarified. In the first type of assay, the lack of NimB4 results in reduced internalization (while lack of NimB1 enhances it). In the in vivo assay, more fragments are seen within the cell (hence internalized), using the NimB4 mutant. Also, in the ex-vivo assay, the lack of NimB1 does not affect the first steps ('attachment' and 'membrane'), while NimB4 does, yet it is proposed that NimB1 acts in the early steps (page 11-12). In that case, wouldn't we expect the double mutant NimB1 NmB4 to have the NimB1 phenotype?

      The apparent discrepancy between our ex vivo and in vivo assays reflects the different methodologies and what each assay measures. In the ex vivo assay (Figure 4), we add exogenous fluorescently-labeled apoptotic cells to measure new engulfment events. Here, NimB4 mutant macrophages show reduced phagocytic index because they are already saturated with unresolved phagosomes, limiting their capacity to uptake additional corpses, as previously described by (Petrignani et al., 2021). This reduced uptake capacity is reflected in the decreased phagocytic index observed.

      In contrast, our in vivo assay (Figure 6) uses DAPI staining to visualize all internalized material, including previously engulfed debris. As expected, we observe accumulation of DAPI signals in NimB4 mutant macrophages under unchallenged conditions, reflecting their inability to process and clear phagosomes rather than enhanced engulfment. This phenotype highlights the role of NimB4 in phagosome maturation rather than initial uptake.

      Regarding the role of NimB1 in early phagocytic steps, while attachment and membrane measurements in the ex vivo assay don't show significant differences in NimBcrimic mutants individually, our other experiments demonstrate that NimB1 functions as a negative regulator during early recognition phases. The predominance of the NimB4 phenotype in the NimB1crimic, NimB4 double mutant parallels observations in draper mutants, where double mutants lacking both Draper I (positive regulator) and Draper II (negative regulator) display the Draper I phenotype (Logan et al., 2012). This suggests that phagosome maturation defects (the NimB4 phenotype) present a more severe bottleneck in the phagocytic process than enhanced early uptake (the NimB1crimic phenotype), explaining why the double mutant primarily exhibits accumulation of unresolved phagosomes rather than accelerated uptake. We have re-written this part of the article to clarify these points (see page 11).

      Figure 8A: a definition of the phagocytic cup mentioned in the text (page 12, 2nd paragraph) as well as the homogenization of the scale bars in Figure 8A would clarify the interpretation of Figure 8A. The structures shown for w1118 seem quite distant from the structures highlighted for NimB1crimic.

      According to reviewer 2, we have now moved this figure to the supplement. The reviewer is correct and we have modified the associated text to clarify the interpretation of the images (see page 12-13).

      The same scale should be used across different panels in Figure 8. This is particularly important since the authors mention the size of the lysotracker vesicles to conclude on their levels of maturity. This data and conclusions would be strengthened by a quantification of the vacuole sizes and the combination with markers of phagosome/lysosome maturation levels. It would help disentangling the complementary roles of NimB1 and NimB4.

      The scale bar has been homogenized.

      Minor comments:

      Figure 2BC: is there a particular reason to shift from Rp49 to Rpl32 as normalizing gene in Figure 2B and C? This prevents the comparison of NimB1 expression levels across the different graphs.

      We thank the reviewer for highlighting this point. We changed the housekeeping gene from Rp49 to RPL32 in Figure 2C to unify the normalization strategy across all experiments and allow comparisons throughout the manuscript.

      Page 9, 2nd paragraph and Figure S3C: the authors mention "Actin structure revealed an increased ratio of filopodia to lamellipodia across all mutants". A clear definition of the parameters defining filopodia and lamellipodia is required to fully appreciate the meaning of the ratio.

      We thank the reviewer for the comment. To address this comment, we have included a clear definition of the parameters used to distinguish filopodia and lamellipodia on page 9. In particular, in the revised version we now specify that filopodia were defined as thin, spike-like actin-rich protrusions, while lamellipodia were defined as broad, sheet-like structures at the cell periphery. These criteria were applied consistently for quantification.

      Figure S5B: a bar is missing in the right graph (% of cells containing AC, NimB1>UAS-NimB1-RFP). Page 10 2nd paragraph. The authors mention "draper mutants displayed impaired apoptotic cell binding and engulfment" referring to Figure 4. Figure S4 provide a more convincing illustration of this statement, since the decreased phagocytic index in Drpr KO is mostly due to less cells phagocytosing and not less material phagocytosed.

      We thank the reviewer for the careful examination. In Figure S5B, the missing bar was due to its color being too close to the background color, making it difficult to distinguish. We have now corrected this by adjusting the color to ensure it is clearly visible.

      Regarding the comment on page 10, we agree that Figure S4 more clearly illustrates the impaired apoptotic cell binding and engulfment observed in draper mutants, particularly through the reduced percentage of hemocytes engaging in phagocytosis. We have now clarified the statement in the text to ensure consistency and to guide the reader appropriately to Figure S4 (10).

      Figure 6: not easy to distinguish the DAPI labelling relative to the nucleus vs. that of apoptotic fragments.

      This is a good point. We have changed the images for clearer demonstration of the DAPI labelling. See Figure 6.

      Figure 7B: the number of cells used to generate the violin plot should be indicated in the legend or the method section.

      We have mentioned the number of cells used in the quantification (n-50 per genotype) in the figure legend.

      A schematic figure recapitulating the data would help

      We have added a schematic figure recapitulating the data. See Figure 9 with associated text.

      Page 11 last line: homeostatic rather than hemostatic.

      Thank you for this comment. We have changed it.

      Reviewer #3 (Significance (Required)):

      This study identifies a novel function for NimB1 in modulating the early stages of efferocytosis, adding to our understanding of how Nimrod proteins fine-tune apoptotic cell clearance. The authors establish a clear phenotypic contrast between NimB1 and NimB4, which provides a compelling framework for understanding how positive and negative regulators coordinate phagocytosis. It also highlights the multiple roles of the secreted members of the Nimrod scavenger receptor family, which have remained so far poorly investigated.

      This is an interesting study that could be strengthened by additional validation and broader experimental support. As the authors point out in the discussion, it is known that PS bridging molecules contribute to phagocytosis and that the contribution of positive and negative players finally tune phagocytosis in flies and mammals. Clarifying the mode of action of NimB1 in those processes would higher the impact of this interesting piece of work. For example, does NimB1 interact with NimB4 and if so, what is the role of this interaction? How does NimB1 integrate in the signaling cascade that allows scavenger receptors to bind PS? Does it act similar to Orion by enhancing the PS binding of a scavenger receptor?

      We thank the reviewer for the insightful comments and suggestions. Indeed, understanding the mode of action of NimB1 in the regulation of efferocytosis would significantly strengthen the impact of our findings. Our data, supported by structural and phylogenetic analyses, indicate that NimB1 and NimB4 share a conserved phosphatidylserine (PS)-binding motif, suggesting that these proteins may interact functionally. Preliminary biochemical observations, together with structural predictions, raise the possibility of a direct or indirect interaction between NimB1 and NimB4, although this remains to be experimentally confirmed.

      Our observations from NimB1 and NimB4 double mutants reveal that the phenotype closely resembles that of NimB4 single mutants, indicating that NimB4 plays a dominant role in the downstream maturation steps of phagosome processing. These findings are consistent with a model in which NimB1 may modulate early phagocytic uptake, possibly by competing with NimB4 for PS binding or by limiting NimB4 accessibility to apoptotic cells, thereby fine-tuning the rate of efferocytosis.

      Regarding the integration into the signaling cascade, while NimB1 and Orion both recognize PS, our data suggest that they function through distinct mechanisms. Orion enhances PS binding to Draper receptor isoforms to promote apoptotic corpse recognition. In contrast, NimB1 appears to act as an inhibitory modulator, potentially masking PS or limiting receptor engagement, thus slowing the phagocytic response. Further functional studies, including receptor-binding assays, will be important to determine whether NimB1 acts by altering receptor-ligand interactions or through a different regulatory pathway.

      Future experiments investigating the potential direct interactions between NimB1 and NimB4, their respective affinities for PS, and their influence on phagocytic receptor dynamics will be necessary to better understand NimB1’s precise mode of action. Such studies will help clarify how secreted regulators fine-tune efferocytosis in Drosophila and may offer broader insights into conserved principles of phagocytic regulation across species.

      __ __

      List of References:

      Horsthemke, M., Bachg, A. C., Groll, K., Moyzio, S., Müther, B., Hemkemeyer, S. A., Wedlich-Söldner, R., Sixt, M., Tacke, S., Bähler, M., & Hanley, P. J. (2017). Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. The Journal of Biological Chemistry, 292(17), 7258–7273. https://doi.org/10.1074/jbc.M116.766923

      Ji, H., Wang, B., Shen, Y., Labib, D., Lei, J., Chen, X., Sapar, M., Boulanger, A., Dura, J.-M., & Han, C. (2023). The Drosophila chemokine–like Orion bridges phosphatidylserine and Draper in phagocytosis of neurons. Proceedings of the National Academy of Sciences, 120(24), e2303392120. https://doi.org/10.1073/pnas.2303392120

      Kurant, E., Axelrod, S., Leaman, D., & Gaul, U. (2008). Six-Microns-Under Acts Upstream of Draper in the Glial Phagocytosis of Apoptotic Neurons. Cell, 133(3), 498–509. https://doi.org/10.1016/j.cell.2008.02.052

      Lee, W. L., Mason, D., Schreiber, A. D., & Grinstein, S. (2007). Quantitative Analysis of Membrane Remodeling at the Phagocytic Cup. Molecular Biology of the Cell, 18(8), 2883–2892. https://doi.org/10.1091/mbc.E06-05-0450

      Lillico, D. M. E., Pemberton, J. G., & Stafford, J. L. (2018). Selective Regulation of Cytoskeletal Dynamics and Filopodia Formation by Teleost Leukocyte Immune-Type Receptors Differentially Contributes to Target Capture During the Phagocytic Process. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.01144

      Masters, T. A., Pontes, B., Viasnoff, V., Li, Y., & Gauthier, N. C. (2013). Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proceedings of the National Academy of Sciences, 110(29), 11875–11880. https://doi.org/10.1073/pnas.1301766110

      Meehan, T. L., Joudi, T. F., Timmons, A. K., Taylor, J. D., Habib, C. S., Peterson, J. S., Emmanuel, S., Franc, N. C., & McCall, K. (2016). Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing. PLOS ONE, 11(6), e0158217. https://doi.org/10.1371/journal.pone.0158217

      Melcarne, C., Ramond, E., Dudzic, J., Bretscher, A. J., Kurucz, É., Andó, I., & Lemaitre, B. (2019). Two Nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in Drosophila melanogaster. The FEBS Journal, 286(14), 2670–2691. https://doi.org/10.1111/febs.14857

      Petrignani, B., Rommelaere, S., Hakim-Mishnaevski, K., Masson, F., Ramond, E., Hilu-Dadia, R., Poidevin, M., Kondo, S., Kurant, E., & Lemaitre, B. (2021). A secreted factor NimrodB4 promotes the elimination of apoptotic corpses by phagocytes in Drosophila. EMBO Reports, 22(9), e52262. https://doi.org/10.15252/embr.202052262

      Roddie, H. G., Armitage, E. L., Coates, J. A., Johnston, S. A., & Evans, I. R. (2019). Simu-dependent clearance of dying cells regulates macrophage function and inflammation resolution. PLoS Biology, 17(5), e2006741. https://doi.org/10.1371/journal.pbio.2006741

      Serizier, S. B., & McCall, K. (2017). Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary. Frontiers in Immunology, 8, 1642. https://doi.org/10.3389/fimmu.2017.01642

      Serizier, S. B., Peterson, J. S., & McCall, K. (2022). Non-autonomous cell death induced by the Draper phagocytosis receptor requires signaling through the JNK and SRC pathways. Journal of Cell Science, 135(20), jcs250134. https://doi.org/10.1242/jcs.250134

    1. Once multiple accurate students enter the same tag for a new image, the system wouldbe confident that the tag is correct. In this manner, image tagging and vocabulary learning can becombined into a single activity.

      is this not how CAPTCHA is evaluated too?

  9. Apr 2025
    1. Allow you to save files from apps to any folder in drive

      That is quite something

      How would the code look like

      I am using "STORE_APP_DATA" permission so I can pass any path?

      Will try it straight away

    1. annotated tags point to a tag object in the object database. git tag -as -m msg annot cat .git/refs/tags/annot contains the SHA of the annotated tag object: c1d7720e99f9dd1d1c8aee625fd6ce09b3a81fef and then we can get its content with: git cat-file -p c1d7720e99f9dd1d1c8aee625fd6ce09b3a81fef
  10. social-media-ethics-automation.github.io social-media-ethics-automation.github.io
    1. We might want to avoid physical danger from a stalker, so we might keep our location private

      Keeping information private is vital but it is specifically interesting to see that having our location be private be interesting. I mention this as many of the people I know around me post where they are and tag their locations and have their social media accounts open to the public rather than having it private and closed only to their friends. People I believe do not realize how much they are exposing themselves by constantly posting their current or past locations on the internet which can later have issues be exposed (if they are like public figures) and have people attack them.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their thoughtful comments and suggestions. Our plans for revisions are first summarized. Below you can find the original reviews and our responses and detailed plans (indicated by "Response").

      Revision plan summary:

      1. Many of the concerns can be addressed by changes in the text and better explanations of how the experiments were done. These changes are detailed in the point-by-point responses.
      2. The reviewers suggested experiments such as ChIP-seq and immunoprecipitation which require collection of a large number of mutants. Since our mutants are sterile, the line needs to be maintained as heterozygotes, from which we can pick out individual mutant worms. Therefore, with the current reagents it is impossible to collect mutants in sufficient quantities for ChIP-seq or IP. We understand that it limits the conclusions that can be drawn.
      3. For some figures, additional quantification of fluorescence signal will be done to show differences between mutant and wild type.
      4. A few experiments will be repeated:
      5. We will repeat the ATPase assays shown on Fig 1 with additional independently prepared and purified protein samples.
      6. Additional replicates will be performed for the few immunofluorescence experiments that were only performed once. Point-by-point responses:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Dosage compensation (DC) in C. elegans involves halving the gene expression from the two hermaphrodite X chromosomes to match the output of the single X in male worms. The key regulator of this repression is a specialized condensin complex, which is defined by a dedicated SMC-4 paralog, termed DPY-27. SMC-4 in other animals is an ATPase that functions as a motor of loop extrusion in cohesion complexes. In their current manuscript, Chawla et al. assessed whether DPY-27 has ATPase function and whether this activity is required for dosage compensation. It had previously been shown that an ATPase-deficient 'EQ' mutant DPY-27 protein interacts with other DC complex members, yet fails to localize to the X. This observation was made with an extra copy of DPY-GFP expressed in addition to the endogenous wildtype protein [Ref 77]. No dominant negative effect was observed. The authors have now engineered the 'EQ' mutation into the endogenous gene locus and genetically generated hetero- and homozygous ATPase mutant worms. Their data suggest that the ATPase activity is required or X-chromosome localization, complex assembly, chromosome compaction as well as enrichment of H4K20me1 on the dampened X chromosome.

      Major comments: 1. ATPase assays, Figure 1.Preparations of individual recombinant proteins may vary significantly and may occasionally show much reduced enzymatic activity. A conclusion about the failure of an ATPase activity should not be concluded from a single preparation, but several protein preps need to be tested, which then serve as 'biological replicates' for the in vitro reaction. Apparently, the ATPase assays shown only involved technical replicates, which is not sufficient.

      Response: We will express and purify additional protein samples and will repeat the assay.

      CRISPR-mediated engineering may lead to unwanted reactions, exemplified by the 'indel' mutation that was recovered in one clone. As a good practice and important control, the sequences of the mutated alleles in the worms should be determined by sequencing of PCR products. Restrictions enzyme cleavage or gel electrophoresis of the PCR products is not sufficient to document the nature of the mutation.

      Response: The sequence of the edit was confirmed by Sanger sequencing. We will make it clear in the text.

      All IF data need to be collected from at least 2 biological replicates, i.e. the experiment must have been carried out independently on two different days. The replicates should deliver consistent results. The number of independent replicates should be mentioned in each figure legend.

      Response: Most of our experiments were performed multiple times. We will indicate the number of replicates in the figure legends. The one or two experiments that were only performed once, will be repeated an additional time.

      The expression levels of wildtype and mutant proteins are concluded from IFM. This is very qualitative; quantitative measurements would strengthen the paper.

      Response: We will quantify fluorescence intensity on our existing images to show differences between mutant and wild type.

      Figure 4B: What are the criteria for classification of the three classes of mutant nuclei? To the uninitiated eye they look very similar. I am a bit worried about the human bias, if such diffuse staining are to be categorized. The two categories of localization need be documented better.

      Response: We will provide more images to show the range of phenotypes and provide a better explanation of how they were classified. We will also try a few ways to quantify “diffuseness” to provide a numerical readout.

      Figure 5: volume of the X chromosome. Related to (5): Apparently, the mask that contains the X chromosome was drawn by hand on each individual nucleus? I find it very difficult to see how the X chromosomal territory would be assessed in the examples shown. I would be good to see a panel of nuclei, in which the masks are visible. I think the analysis should be blinded, in which a researcher not involved in the analysis draws masks on coded nuclei and their classes are only revealed later. The same concern holds for the FISH/IP overlaps or DPY-27/SDC-2 overlaps.

      Response: The masks used were not drawn by hand but were based on fluorescence intensity thresholds. We will make a supplementary figure that shows the masks used for quantification to help clarify how the experiment and quantification were performed.

      For figure 5, age-matched hermaphrodites were analyzed. How was the age determined and what would be the consequence of age-variations? What is the effect of the mutations on development?

      Response: For our staining experiments, we routinely use young adult which we define as 24 hr past larval L4 stage. At this stage, young adults have started laying eggs. We have unpublished data that shows that dosage compensation and chromosome compaction deteriorates with age. To avoid using old worms in our assays, we pick L4 larvae, and then use them for experiments the following day.

      Minor comments: 8. The labeling of p-values as a-f in the figures with the values listed in a supplemental table is not comfortable. The p-values corresponding to the letters should be listed in the corresponding legends.

      Response: p values can be added to the figure or the figure legend (they are currently in supplementary tables).

      How were the concentrations of the ATPase preparations determined? It would help to see a proteins gel in the supplement to assess their purity.

      Response: Concentrations were determined using a spectrometer. We can show protein gels of the preparations as a supplementary figure.

      In figure 1, heterodimers are assumed, but not shown. Do they dimerize under these conditions?

      Response: We can cite papers from others that show heterodimerization in these conditions (for example, Hassler et al, 2019).

      Reviewer #1 (Significance (Required)):

      Significance: The involvement of the ATPase function of DPY-27 was somewhat expected, in light of the earlier findings published in reference 77 using a transgene. The current study confirms and extends these earlier findings. In principle, the genetic experiment presented here is stronger, if documented better.

      Strengths: The study investigates endogenous proteins and measures different phenomena known to be correlated from previous work. The data are internally consistent.

      Limitations: The lack of biological replicates, and unclear procedures of how to draw the IF masks that underlie the conclusions about X chromosome (co)localization and nuclear volume determination render the argument less convincing. For this reviewer, who is not in the C. elegans field, the analysis of mutant phenotypes is difficult to follow. The conclusions are based on only one type of experiment. In reference 77, the X chromosome binding was done by ChIP-seq, clearly a superior, complementary method.

      Response: As explained above, since the strain has to be maintained as a heterozygote, we are unable to collect enough mutants for a ChIP-seq experiment. We can perform and better document the experimental replicates and we can better explain the quantification methods used.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The authors analyzed the ATPase function of an SMC-4 variant required for dosage compensation in C. elegans. They made a single amino acid mutation that significantly reduced ATPase activity of the protein as shown by in vitro ATP hydrolysis. They showed that the mutation results in the phenotypic consequences of those shown for other DC mutants, including viability assay, immunofluorescence and DNA FISH. These results demonstrate the important role of ATPase activity in transcription repression.

      Major comments: - Are the key conclusions convincing? The key conclusion that DPY-27 has ATPase activity and using a classic mutation that reduces it largely eliminates its function is convincing. The interpretation of the IF experiments to build the model in the final figure requires stronger evidence, as commented below in additional experiment section.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? Yes, as explained below.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      The main issue with the current model is that the authors assume that the EQ proteins that they are analyzing is in complex with the rest of the condensin IDC subunits. However, there is no evidence in the paper suggesting that this occurs. The results are consistent with the possibility that a large portion of the DPY27-EQ is not in a complex.

      IP-western experiments comparing the proportion of other subunits pulled down by the wild type versus the EQ mutant (perhaps extract from ~50% EQ containing population could be reached) is needed to understand the incorporation of the EQ mutant in the complex. This is particularly important for the interpretation of the data in Figure 4A, where 70% of the nuclei show diffuse CAPG-1 and DPY-27 EQ. Is this signal due to disassembled subunits diffusing freely, or as depicted in the model figure, bound less stably everywhere? The immunofluorescence results are consistent with both EQ mutation 1) forming a full complex and unstably binding or 2) destabilizing the complex but incompletely assembled complexes sustaining a pool of free EQ detected by the immunofluorescence experiments.

      Response: We agree that to conclusively show interactions, an IP would be necessary. However, as explained above for ChIP, it is not possible to collect enough mutants to make enough protein extract for an IP. An IP in heterozygous worms is also not ideal, as it would be nearly impossible to distinguish wild protein from the mutant. The antibody we used recognizes the N terminus, which is identical in the two proteins. The only way to distinguish them would be mass spec. However, during the fragmentation process for mass spec, Q can deaminate to E, which would complicate interpretation of our data. To do this experiment properly, we would need to introduce a different tag into the mutant protein. With the current reagents, an IP is not possible.

      Instead, we have to rely on indirect evidence. The fact that DPY-27 and CAPG-1 colocalize (figure 4) does provide some support for the hypothesis. From previous studies,including our recent publication Trombley et al PLoS Genetics 2025, we know that the condensin IDC complex is not stable unless all subunits are present. It is therefore highly unlikely, although not impossible, that what we detect is diffuse individual subunits.

      We can make changes in the text to soften this claim and better discuss the caveats of the experiment and the conclusions.

      Along the same point, authors show that EQ protein that binds to the X is incapable of bringing H4K20me1, which is consistent with the possibility that a large portion of the EQ protein is not in a complex. : "To our surprise, we observed that there was no discernable enrichment of H4K20me1, even though there is discernable enrichment of DPY-27 EQ on the X chromosomes in the dpy-27 EQ mutants (Figure 8A).

      Response: There is an important difference. CAPG-1 and DPY-27 are both members of condensin IDC. The five subunits of this complex depend on each other for stability. DPY-21, the protein that introduces the H4K20me1 mark, also localizes to the X chromosomes, but is not part of condensin IDC. Condensin IDC is able to localize to the X chromosomes in the absence of DPY-21, and is not dependent on DPY-21 for stability. However, DPY-21 is dependent on condensin IDC for X localization (Yonker et al 2003). It is then possible that the mutant condensin IDC is X-bound, but it is unable to recruit DPY-21. We can clarify this in the text.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments. It is unclear how long it would take to collect enough het/mutant worms can be collected for IP-western. Without additional evidence, interpretation of the data would be affected.

      Response: As explained above, collecting enough mutant worms is essentially impossible. Collecting enough heterozygotes is possible, but distinguishing the mutant protein from the wild type in hets is not.

      • Are the data and the methods presented in such a way that they can be reproduced? Yes
      • Are the experiments adequately replicated and statistical analysis adequate? Yes, except the presentation of the test (see minor comment below)

      Minor comments: - Specific experimental issues that are easily addressable. The use of letters for statistical test result is confusing and the figure legend is not clear about what actual p values were produced "Letters represent multiple comparison p values, with different letters indicating statistically significant differences, and any repeated letter demonstrating no significance. " Providing the values at a reasonably concise manner in the legend will help the reader a lot.

      Response: P values can be added to the figures, or the legend

      • Are prior studies referenced appropriately? The authors state that "Surprisingly, this mutant did not phenocopy the transgenic EQ mutant in [77], .." however in the previous paragraph, the authors state that the transgenic was expressed in the presence of wild type copy. Therefore, the endogenous mutant showing phenotypes rather than the transgenic is rather expected.

      Response: What we referred to were ways in which the protein behaved (for example in ability to bind to the X at all), and not mutant phenotypes of worms. We can clarify this in the text.

      The authors state that "One possible explanation could be that mitotic condensation has multiple drivers of equal consequence including changes in histone modifications [129], whereas condensation of dosage compensated X chromosomes is predominantly dependent on the DCC. " In a dpy-21 mutant, X chromosome decondenses but DPY-27 stays on the chromosome. Therefore, the effect of the EQ mutation may be due to lack of H4K20me1 enrichment in addition to the lack of loop extrusion.

      Response: We can add the role of H4K20me1 to the discussion.

      • Are the text and figures clear and accurate? Yes
      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions? The Pearson correlation coefficient for assessing colocalization between SDC-2 and DPY-27 was helpful for quantification, because there is a lot of background signal that makes the support for or lack of colocalization with the X in the other IF/FISH figures difficult to assess. Additionally, please provide information on how chromatic aberration was assessed when analyzing colocalization experiments.

      Response: Chromatic aberration was not considered for these experiments.

      Reviewer #2 (Significance (Required)):

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. Although long assumed to be a functional SMC, the demonstration of DPY-27 function depending on ATPase activity is important. This demonstrates that an X-specific condensin retained its SMC activity.

      • Place the work in the context of the existing literature (provide references, where appropriate). The authors do an adequate job in doing this in their discussion.

      • State what audience might be interested in and influenced by the reported findings. The field of 3D genome organization and function would be influenced by the reported findings.

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Genomic analyses of 3D genome organization and gene expression.