10,000 Matching Annotations
  1. Aug 2025
    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      In the presented study, the authors aim to explore the role of nociceptors in the fine particulate matter (FPM) mediated Asthma phenotype, using rodent models of allergic airway inflammation. This manuscript builds on previous studies and identify transcriptomic reprogramming and an increased sensitivity of the jugular nodose complex (JNC) neurons, one of the major sensory ganglia for the airways, on exposure to FPM along with Ova during the challenge phase. The authors then use OX-314 a selectively permeable form of lidocaine, and TRPV1 knockouts to demonstrate that nociceptor blocking can reduce airway inflammation in their experimental setup. The authors further identify the presence of Gfra3 on the JNC neurons, a receptor for the protein Artemin, and demonstrate their sensitivity to Artemin as a ligand. They further show that alveolar macrophages release Artemin on exposure to FPM.

      We thank the reviewer for their valuable comments, which have significantly enhanced the quality of our manuscript. A point-by-point rebuttal is provided below.

      Strength

      The study builds on results available from multiple previous work and presents important results which allow insights into the mixed phenotypes of Asthma seen clinically. In addition, by identifying the role of nociceptors, they identify potential therapeutic targets which bear high translational potential.

      Weakness

      While the results presented in the study are highly relevant, there is a need for further mechanistic dissection to allow better inferences. Currently certain results seem associative. Also, certain visualisations and experimental protocols presented in the manuscript need careful assessment and interpretation. While Asthma is a chronic disease, the presented results are particularly important to explore Asthma exacerbations in response to acute exposure to air pollutants. This is relevant in today's age of increasing air pollution and increasing global travel.

      Major

      The JNC is a major group of neurons responsible for receiving sensory inputs from the airways. However, the DRG also contains nociceptors and is known to receive afference from the upper airways. An explanation of why the study was restricted to the JNC would be important.

      We acknowledge that some afferents to the upper airways do arise from the DRG, specifically in the upper thoracic segments (T1–T5). We have added a statement in the text to note this subset of nociceptive and spinally mediated pathways. However, the preponderance of evidence indicates that the majority of airway and lung afferents (70–80%, sometimes up to 90%) originate from the jugular–nodose complex (JNC). Given this large imbalance—and because our study focuses on the mechanosensory, and chemosensory functions mediated primarily by the JNC—we restricted our analysis to this main vagal pathway. By contrast, DRG innervation, though functionally important for nociception and irritation-related reflexes, accounts for a smaller yet significant (~20–30%) fraction of the total afferent pool. The referenced tracing studies[1,2] support this distribution and are cited to clarify our rationale for emphasizing the JNC in our work.

      Similarly, the role of the Artemin in the study remains associative. The study results present that Artemin sensitize nociceptors to lead to an increased inflammatory response (Supplementary Figure 2), however, both upstream and downstream evidence for this inference needs to be dissected further. For instance, the evidence for the role of Artemin in the model comes from ex vivo experiments with alveolar macrophages, but not in the experimental model created. Blocking or activation experiments could be performed, along with investigating the change in the total number of nociceptors with Artemin exposure. Similarly, the downstream effects of the potential Artemin-mediated JNC stimulation should be explored in the context of this experimental setup. A detailed dissection of the mechanisms is important. Additionally, it is also important to discuss the hypothesis leading to the selection of Artemin as a target, which currently seems arbitrary.

      Our data show that exogenous i) OVA-FPM exposed AM secrete Artemin and that ii) recombinant Artemin can sensitize nociceptors, potentially heightening the inflammatory response. As suggested, we agree that more upstream and downstream evidence is needed for definitive mechanistic insight. In response, we have expanded our experiments to include intravital microscopy, which demonstrates impaired motility of alveolar macrophages and neutrophils in nociceptor-ablated mice, suggesting a bidirectional crosstalk between AMs and nociceptor neurons.  

      In future studies, we will perform blocking or activation studies to clarify Artemin’s in vivo effects and confirm its role in modulating airway nociceptors. We also recognize the importance of examining whether Artemin exposure alters the phenotype of these neurons and lung innervation density. As recommended, we plan targeted interventions (e.g., Artemin-neutralizing antibodies or overexpression strategies) to delineate the mechanisms by which Artemin-mediated nociceptor stimulation influences the local inflammatory environment.

      We have expanded our discussion to clarify that Artemin is a recognized growth factor known to sensitize certain sensory neurons, including those responsive to tissue injury and inflammation. This literature-based rationale guided our hypothesis that Artemin might increase nociceptor reactivity in the lung and thereby influence alveolar macrophage function. By combining ex vivo and intravital approaches, we have begun to map these interactions but agree that further in vivo studies are necessary to confirm causality, dissect signal transduction pathways, and fully validate Artemin’s contributions to AM–nociceptor crosstalk. We have revised our manuscript accordingly to highlight these limitations.

      A deeper exploration of the inflammatory parameters could be performed. The multiplex analysis of the cytokine analysis shows a reduction in certain cytokines like IL-6 and MCP (figure 3F), which needs to be discussed. Additionally, investigating the change in proportions of the different immune cell populations is important, which currently restricts the eosinophil and neutrophil counts in the BAL. This is also important as the study builds on work from Prof. Chang's group, which also identified the expansion of an invariant iNKT cell population by FPM, regulatory in nature. Adding data on airway hyperresponsiveness, if possible, would be a welcome addition, considering Asthma as the disease context.

      We thank the reviewer for highlighting the need for a more comprehensive exploration of inflammatory parameters. To address these concerns:

      (1) Cytokine Analysis: We re-ran all statistical analyses, including the CBA and ELISA assays, and confirmed that TNFα and Artemin are the only differentially expressed cytokines across experimental groups. We have expanded the Discussion to emphasize TNFα’s role in this context.

      (2) Immune Cell Profiling in BALF: Our data show that co-exposure with FPM exacerbates CD45+ cells, eosinophil, neutrophil, T-cells and monocyte infiltration. Notably, CD45+ cells and neutrophils were the only population reduced under nociceptor neuron loss-of-function conditions (QX314–treated or TRPV1-DTA mice, Author response image 1).

      Of note, we also confirmed these data using intravital imaging and in a second line of nociceptor ablated mice (NaV1.8DTA). We are aware of Prof. Chang’s work suggesting expansion of an invariant iNKT cell population this population in future

      (3) Airway Hyperresponsiveness (AHR): We recognize that adding AHR data would strengthen the asthma-related context. Unfortunately, we are not currently equipped to perform AHR measurements, but we intend to include this in future experiments to provide a more complete assessment of airway function.

      Author response image 1.

      The authors could revisit the data presented in terms of visualization. For instance, the pooled data presented in some of the figures is probably leading to a wide variation which makes interpretation more difficult. Presenting data separately for each experimental replicate might help the reader. This is also important considering the possible variation seen between experiments (for instance, in Figure 3A and 3C and 3B and 3D, the neutrophil and eosinophil panels for the same groups seem to have an almost 2-fold difference.). Similarly, in the cytokine analysis, the authors have used a common axis for depicting all cytokine values which leads to difficulties in interpretation (Figure 3F). Analysis of the RNA seq results and the DEGs could be revisited to include pathway analysis etc (Figure 2), and the supplementary information could include detailed lists of the major target genes.

      To address this query, we have completely reformatted all graphs and included both gene lists and lists of enriched pathways for all three comparisons in Supplementary Table 1. We also confirmed our flow cytometry analysis functionally by performing intravital imaging.

      The authors should also consider citing the previous experimental setup used for some particular protocols. For instance, the use of the specified protocol for OVA in a C57 background needs to be justified, as there are various protocols reported in the literature. Additionally, doses used in some experiments seem arbitrary (The FPM and Artemin exposure in Figure 4). Depicting the dose-response curve or citing previous literature for the same would be important. Similarly, different sample sizes seen in experiments should be explained, whether they are due to mortality, failure to exhibit phenotypes, or due to technical failures. The RNA seq experiment mentions only 2 biological replicates in one of the groups which should be addressed either by increasing the sample size or by replicating the experiment. Moreover, nested comparisons in experiments performed for Figure 1 need to be performed. Neurons isolated from each mouse should be maintained and analysed separately to retain biological replicates to better represent the heterogeneity.

      We appreciate the request for clarity regarding the experimental protocols and sample sizes:

      OVA Model in C57BL/6 Mice: We adapted a previously published OVA protocol in C57BL/6 mice[3-5] (PMID: 39661516), which uses two doses of sensitization to compensate for the lower Th2 response compared to BALB/c[6]. We increased the dose of OVA (100 µg) because our initial experiments produced low eosinophil infiltration. Although this dosage is on the higher side, some studies have noted local IFNγ induction in C57BL/6 mice; however, we did not detect IFNγ in our setup.

      FPM and Artemin Doses: We did not perform a full dose-response assay for FPM and Artemin but used 100 ng/mL as reported in prior literature, where TRPA1 and TRPV1 mRNA were upregulated after 18 hours of incubation[7]. This reference has been added for clarity.

      Sample Sizes and Exclusions: One control mouse was excluded from the RNA-seq experiment because a parallel PCA analysis indicated it was an outlier. This was the only exclusion in the study, and this have been indicated in the method section of the article.  

      Nested Comparisons and Biological Replicates: We reanalyzed the relevant data with a nested one-way ANOVA and updated the figures accordingly. Neurons isolated from each mouse were first averaged to preserve biological replicates and capture potential heterogeneity; and data was analysed on the per mouse averages.

      The manuscript should be more detailed regarding the statistics employed. Currently, there is a section mentioned in the methods section, but details of corrections employed and specific stats for specific experiments should be described. There are also some minor grammatical errors and incomplete sentences in the manuscript which should be corrected. The authors should also consider a more expansive literature review in the introduction/discussion sections.

      We have updated the figure legends and methods to include more detailed information on the specific statistical tests used for each experiment. In addition, we have fixed minor grammatical errors and incomplete sentences throughout the manuscript. Finally, we have expanded our Introduction and Discussion to include additional references and a broader literature context.

      Reviewer #2 (Public review):

      The authors sought to investigate the role of nociceptor neurons in the pathogenesis of pollutionmediated neutrophilic asthma.

      We thank the reviewer for their valuable comments, which have significantly enhanced the quality of our manuscript. A point-by-point rebuttal is provided below.

      Strength

      The authors utilize TRPV1 ablated mice to confirm effects of intranasally administered QX-314 utilized to block sodium currents. The authors demonstrate that via artemin, which is upregulated in alveolar macrophages in response to pollution, sensitizes JNC neurons thereby increasing their responsiveness to pollution. Ablation or inactivity of nociceptor neurons prevented the pollution induced increase in inflammation.

      Weakness

      While neutrophilic, the model used doesn't appear to truly recapitulate a Th2/Th17 phenotype.  No IL-17A is visible/evident in the BALF fluid within the model. (Figure 3F). Unclear of the relevance of the RNAseq dataset, none of the identified DEGs were evaluated in the context of mechanism. The authors overall achieved the aim of demonstrating that nociceptor neurons are important to the pathogenesis of pollutionexacerbated asthma. Their results support their conclusions overall, although there are ways the study findings can be strengthened. This work further evaluates how nociceptor neurons contribute to asthma pathogenesis important for consideration while proposing treatment strategies for undertreated asthma endotypes.

      Major

      Utilizing a different model, one using house dust mite or alternaria alternata or similar that is able to induce a true Th2/th17 type response that is also more translatable to humans for confirmation.

      We appreciate the suggestion to use additional allergen models. In a pilot study, we did observe increased Artemin in the BALF of house dust mite–treated mice, although the levels were low under our current dosing schedule (20 µg/dose daily from Day 0–4 and Day 7–9, with sacrifice on Day 10; Auhtor response image 2). Conversely, using an Alternaria alternata model at 100 µg/dose daily from Day 0–2 (sacrificed on Day 3) did not yield a detectable increase in Artemin. We suspect these findings may reflect the specific dose and timing used. We plan to refine our protocols (e.g., longer exposures or higher doses) for HDM and/or Alternaria to better model a Th2/Th17 response and further validate our observations in a setting more translatable to human asthma.

      Author response image 2.

      Additional analysis, maybe pathway analysis on the RNAseq dataset presented in Figure 2. Unclear how these genes are relevant/how they affect functionality. At present it is acceptable to say they are transcriptionally reprogramed, but no protein evaluation is provided which would get more at function, however, the authors do show some functional data in Figure 1, so maybe this could somehow be discussed/related to Figure 2.

      We have expanded our RNA-seq analysis to include gene lists and enriched pathways for all three comparisons in Supplementary Table 1. We have also revised our discussion to align these transcriptomic changes with the functional data shown in Figure 1. While we have not yet performed protein-level validation for all identified genes, the patterns observed in our RNA-seq dataset suggest pathways potentially tied to nociceptor activation and the downstream inflammatory response. We plan to conduct targeted protein analyses in future studies to further substantiate these findings.

      Histology and localization of neutrophils/nociceptor neurons/alveolar macrophages would enhance the study findings.

      We appreciate the reviewer’s suggestion to include histological data showing the distribution of neutrophils, nociceptor neurons, and alveolar macrophages. While we have not yet performed detailed histological staining of these cell types, we have added live in-vivo intravital microscopy data (Figure 4) that illustrate impaired AM and neutrophil motility in nociceptor-ablated mice. We plan to include additional histological analyses in future studies to further localize these cells in the lung tissue.

      Minor:

      The first 3 figures are small and hard to read.

      We have enlarged Figures 1 and 3 in the revised manuscript to improve readability. We have also added the corresponding gene lists and enriched pathways to Supplementary Table 1 for clarity.

      The figures are mislabeled in the text. Figure 2 is discussed twice in two different contexts; the second mention is supposed to be labeled as Figure 2.

      We corrected the mislabeled figures in the text, ensuring that each figure is referenced accurately.

      Figure 4 isn't cited in the text. I think it is supposed to be referenced in the paragraph before the discussion starts and is currently labeled as Figure 1.

      We have updated the text to properly cite Figure 4 in the relevant paragraph before the Discussion begins, rather than labeling it as Figure 1.

      Notating which statistical analysis was used with each figure/subfigure would be beneficial. Also, it's important to notate if the data was analyzed for multiple comparisons.

      We have revised each figure/subfigure legend to specify the statistical tests used, including information on whether corrections for multiple comparisons were applied. This provides a clearer understanding of how each dataset was analyzed.

      Reviewer #3 (Public review):

      Asthma is a complex disease that includes endogenous epithelial, immune, and neural components that respond awkwardly to environmental stimuli. Small airborne particles with diameters in the range of 2.5 micrometers or less, so-called PM2.5, are generally thought to contribute to some forms of asthma. These forms of asthma may have increased numbers of neutrophils and/or eosinophils present in bronchoalveolar lavage fluid and are difficult to treat effectively as they tend to be poorly responsive to steroids. Here, Wang and colleagues build on a recent model that incorporated PM2.5 which was found to have a neutrophilic component. Wang altered the model to provide an extra kick via the incorporation of ovalbumin. Building on their prior expertise linking nociceptors and inflammation, they find that silencing TRPV1-expressing neurons either pharmacologically or genetically, abrogated inflammation and the accumulation of neutrophils. By examining bronchoalveolar lavage fluid, they found not only that levels of the number of cytokines were increased, but also that artemin, a protein that supports neuronal development and function, was elevated, which did not occur in nociceptor-ablated mice. They also found that alveolar macrophages exposed to PM2.5 particles had increased artemin transcription, suggesting a further link between pollutants, and immune and neural interactions.

      We thank the reviewer for their valuable comments, which have significantly enhanced the quality of our manuscript. A point-by-point rebuttal is provided below.

      Weakness

      There are substantial caveats that must be attached to the suggestions by the authors that targeting nociceptors might provide an approach to the treatment of neutrophilic airway inflammation in pollutiondriven asthma in general and wildfire-associated respiratory problems in particular.  

      These caveats include the uncertainty of the relevance of the conventional source of PM2.5, to pollution and asthma. According to the National Institute of Standards and Technology (NIST), the standard reference material (SRM) 2786 is a mix obtained from an air intake system in the Czech Republic. It is not clear exactly what is in the mix, and a recent bioRxiv preprint, https://www.biorxiv.org/content/10.1101/2023.08.18.553903v3.full.pdf reveals the presence of endotoxin. Care should thus be taken in interpreting data using particulate matter. Regarding wildfires, there is data that indicates that such exposure is toxic to macrophages. What impact might that then have on the production of cytokines, and artemin, in humans?

      We recognize the potential limitations of using SRM2786 (obtained from a Czech air-intake system) as a model for realworld PM2.5 exposure. Our rationale for choosing SRM2786 is that it is commercially available and represents a broad spectrum of ambient air pollutants, in contrast to more specialized sources like diesel exhaust particles. However, we acknowledge in the discussion the presence of endotoxin in SRM2786, as suggested by recent reports, and agree that this may influence immune responses and should be considered when interpreting our data.

      Regarding wildfire-associated exposure, we are aware that certain components of wildfire smoke can be toxic to macrophages. We do not think this play a significant role in the current study design as number of AMs, as determined by flow cytometry and intravital microscopy, are similar when comparing OVA-exposed mice to OVA-FPM exposed animals. Thus, these results rule out significant AM toxicity by FPM.

      Ultimately, while our findings suggest that modulating nociceptor activity may reduce neutrophilic inflammation, we emphasize that additional research—including different PM2.5 sources, validation of endotoxin levels, and in vivo confirmation in human-relevant models—is necessary before drawing definitive conclusions about treating pollutiondriven asthma or wildfire-induced respiratory problems.

      The Introductory paragraph implies links between wildfire events, particular exposure, and neutrophilic asthma. I am not aware of such a link having been established, in which case the paragraph needs revision. In the paragraph that begins with 'Urban pollution', it is suggested that eosinophilic asthma is treatment responsive in comparison to the neutrophilic form. That may not be the case, and they may often these cellular components may occur together. In much of the manuscript, there is a mismatch between the text and the figure numbers. For example, in the Results, Figure 2 should be Figure 3 some of the time, and Figure 3 is actually Figure 4, while the reference to Figure 1F-H is Figure 4H. Please check carefully.

      (a) Introduction Paragraph and Wildfire–Neutrophilic Asthma Link

      We add references to the introduction to support the link between wildfire, respiratory symptoms and the link to neutrophilic asthma [8-12].

      (b) Distinction Between Eosinophilic and Neutrophilic Asthma

      We recognize that eosinophilic and neutrophilic airway infiltrates can co-occur in the same individual and that treatment responsiveness can vary considerably. Our intention was to note that conventional asthma therapies (e.g., inhaled corticosteroids) are generally more effective for eosinophilic-driven disease than for neutrophilic phenotypes, but we agree that these inflammatory endotypes often overlap in clinical practice. We have revised the text in the “Urban pollution” section to acknowledge this complexity and to clarify that inflammatory cell populations in asthma are not always discrete.

      Figure Numbering and Text–Figure Mismatch

      We sincerely apologize for the confusion caused by mismatched figure labels and references in the Results section. We have carefully reviewed and corrected all figure references throughout the manuscript to ensure accuracy.

      References

      (1) Kim, S. H. et al. Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets. eNeuro 9 (2022). https://doi.org/10.1523/ENEURO.0026-22.2022

      (2) McGovern, A. E. et al. Evidence for multiple sensory circuits in the brain arising from the respiratory system: an anterograde viral tract tracing study in rodents. Brain Struct Funct 220, 3683-3699 (2015). https://doi.org/10.1007/s00429-014-0883-9

      (3) Shen, C.-C., Wang, C.-C., Liao, M.-H. & Jan, T.-R. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. International journal of nanomedicine, 1229-1235 (2011).  

      (4) Delayre-Orthez, C., De Blay, F., Frossard, N. & Pons, F. Dose-dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clinical & Experimental Allergy 34, 1789-1795 (2004).  

      (5) Morokata, T., Ishikawa, J. & Yamada, T. Antigen dose defines T helper 1 and T helper 2 responses in the lungs of C57BL/6 and BALB/c mice independently of splenic responses. Immunology letters 72, 119-126 (2000).  

      (6) Li, L., Hua, L., He, Y. & Bao, Y. Differential effects of formaldehyde exposure on airway inflammation and bronchial hyperresponsiveness in BALB/c and C57BL/6 mice. PLoS One 12, e0179231 (2017).  

      (7) Ikeda-Miyagawa, Y. et al. Peripherally increased artemin is a key regulator of TRPA1/V1 expression in primary afferent neurons. Molecular pain 11, s12990-12015-10004-12997 (2015).  

      (8) Baan, E. J. et al. Characterization of Asthma by Age of Onset: A Multi-Database Cohort Study. J Allergy Clin Immunol Pract 10, 1825-1834 e1828 (2022). https://doi.org/10.1016/j.jaip.2022.03.019

      (9) de Nijs, S. B., Venekamp, L. N. & Bel, E. H. Adult-onset asthma: is it really different? Eur Respir Rev 22, 44-52 (2013). https://doi.org/10.1183/09059180.00007112

      (10) Gianniou, N. et al. Acute effects of smoke exposure on airway and systemic inflammation in forest firefighters. J Asthma Allergy 11, 81-88 (2018). https://doi.org/10.2147/JAA.S136417

      (11) Noah, T. L., Worden, C. P., Rebuli, M. E. & Jaspers, I. The Effects of Wildfire Smoke on Asthma and Allergy. Curr Allergy Asthma Rep 23, 375-387 (2023). https://doi.org/10.1007/s11882-023-01090-1

      (12) Wilgus, M. L. & Merchant, M. Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD. Healthcare (Basel) 12 (2024). https://doi.org/10.3390/healthcare12030307

    1. Had they not defended their own natural rights by killingthe tyrant who enslaved them?

      This question should be a turning point in the argument about this situation. The rebellion was self defense of their rights being infringed upon and this question makes the case feel it should come to a simple answer.

    2. Would they be returned to Cuba to be tried—and certainly executed—for their crimes of mutiny, murder, and piracy, asthe diplomats of Spain, and many American slaveholders, demanded?

      It is very interesting to see the line of questioning shift the perspective of whether slaves could be considered human enough to be tried for a “crime” but not human enough to still be considered cattle and sold off as property. The final verdict of freedom also comes to a point that if they were set free, what of the rest of the people being enslaved in their home country?

      Additionally, for such a heavy and important topic why did it take legal battles to come to a conclusion? Shouldn’t the act in of itself be an sewer to the question of morality regarding slavery?

    3. serve the purpose ofself-emancipation

      This line takes a tool of forced labor into a weapon for freedom which shows both the violence of enslavement and the want for self-emancipation. It shows how enslaved people turned what was meant to control them into a means of resistance. I wonder if the use of the cane knives was meant to be symbolic of the overall emotion of anger and hurt. Also, did they feel accomplished after this or did they feel like this was only the beginning of what they would endure on their fight to freedom?Using the same tools to demand freedom may represent both the resilience of the enslaved and the reality that resistance and survival had no separation.

    1. robust CI ellipses

      Robust in what sense? Also might be worth mentioning that we are talking about 90% credible intervals (at least that's what we asked the humans to give us).

    2. Uncertainty fields. Where available, we carry lower/upper bounds for both LLM and humans; these are used in optional uncertainty checks but do not affect the mid‑point comparisons below.

      I suspect we ultimately should do something more sophisticated with this ... like some Bayesian updating/averaging. It's also not entirely clear what you mean by "we carry".

      But of course, the "right" way to do this will depend on what precisely is the question that we're asking. Something we should have some nice chats about.

    3. Human criteria are recoded to the LLM schema (e.g., claims → claims_evidence, adv_knowledge → advancing_knowledge, etc.)

      This is just about coding the variables, right? Not really about the content?

    4. Sources. LLM ratings come from results/metrics_long.csv (rendered in the previous chapter). Human ratings are imported from your hand‑coded spreadsheet and mapped to LLM paper IDs via UJ_map.csv.

      Okay, I see these are basically notes to ourselves here.

    5. We (i) harmonize the two sources to a common set of metrics and paper IDs

      This is fine for our own notes for now, but it's not something that outsiders need to read, I guess.

    1. eLife Assessment

      CCL2 is a chemokine with immune cell chemoattractant properties, and it appears to play a role in several chronic inflammatory diseases. The RNA-binding protein HuR controls the stability and translation of CCL2 mRNA. This paper presents convincing evidence that a relatively common genetic variant tied to several disease phenotypes affects the interaction between the mRNA of CCL2 and the RNA-binding protein HuR. While the experiments cannot definitively distinguish between effects on RNA transcription and stability, CCL2 is thought to be relevant for leukocyte migration in various conditions, including chronic inflammation and cancer, and the study presents important findings that may be relevant to a broad audience.

    2. Reviewer #1 (Public review):

      Summary:

      This paper presents evidence that a relatively common genetic variant tied to several disease phenotypes affects the interaction between the mRNA of CCL2 and the RNA binding protein HuR. CCL2 is an immune cell chemoattractant protein.

      Strengths:

      The study is well conducted with relevant controls. The techniques are appropriate, and several approaches provided concordant results were generally supportive of the conclusions reached. The impact of this work, identifying a genetic variant that works by altering the binding of an RNA-regulatory protein, has important implications given that the HuR protein could be a drug target to improve its function and over-ride this genetic change. This could have important implications for a number of diseases where this genetic variant contributes to disease risk.

      The authors have done a nice job of citing prior work. Details of the experimental protocols are well elaborated and the significance of the findings are well contextualized.

      Weaknesses:

      Authors have addressed prior weaknesses.

    3. Reviewer #2 (Public review):

      This study focuses on the differential binding of the RNA-binding protein HuR to CCL2 transcript (genetic variants rs13900 T or C). The study explores how this interaction influences the stability and translation of CCL2 mRNA. Employing a combination of bioinformatics, reporter assays, binding assays, and modulation of HuR expression, the study proposes that the rs13900T allele confers increased binding to HuR, leading to greater mRNA stability and higher translational efficiency. These findings indicate that rs13900T allele might contribute to heightened disease susceptibility due to enhanced CCL2 expression mediated by HuR. The study is interesting and most results are convincing, however the interpretation relative to RNA transcription and/or stability must be modified, and some data need better presentation or interpretation.

      Major Points

      Figure 2C:<br /> The authors describe an experiment to assess mRNA stability by labeling nascent RNA with EU for 3 hours, followed by washout of EU, and then incubation with or without actinomycin D for an additional 4 hours before measuring the remaining EU-labeled RNA. While the approach to label nascent RNA with EU is appropriate for tracking RNA decay, I have concerns regarding the use and interpretation of actinomycin D in this context.<br /> After EU washout, the pool of EU-labeled RNA is fixed and no new EU incorporation can occur. Therefore, the addition of actinomycin D at this stage should not affect the decay rate of the already labeled RNA, as transcription of EU-labeled RNA has effectively ceased. In this design, measuring the decrease in EU-labeled RNA over time reflects mRNA stability (even in absence of actinomycin D) rather than transcriptional activity.<br /> Therefore, the authors' statement that the non-actinomycin D treatment group represents transcriptional changes is not accurate here. Since EU labeling was stopped prior to the 4-hour incubation, any changes in EU-labeled RNA levels during this period reflect RNA decay, not new transcription.

      In summary:<br /> To assess transcriptional changes, one would compare the amount of EU-labeled RNA synthesized during the initial labeling period (the first 3 hours), before washout.<br /> If the authors wish to use actinomycin D to block transcription, this should be done in a separate decay assay without EU labeling.<br /> In the current experimental setup, actinomycin D is unnecessary after EU washout and does not influence the decay of the labeled RNA.<br /> I recommend the authors reconsider the interpretation of their data accordingly. I recommend to remove the data points relative to the presence of actinomycin D, as the non-actinomycin D samples are already representative of post-transcriptional changes given that EU was washed out. If Authors want to assess transcriptional changes, they would have to assess the levels during the initial labeling period (before the washout). Transcriptional differences were not assessed, therefore I would modify the text accordingly.<br /> In this context, any changes observed in the actinomycin D-treated samples are likely attributable to general cellular stress induced by actinomycin D, which is known to be highly stressful for cells. This stress could indirectly influence the decay rates of already-labeled EU-RNA.

      Figure 4C and 4D:<br /> The Author provided an updated gel with relative quantification - which effectively show the enhanced binding of CCL2 mRNA carrying the T variant to HuR - but they only provided it as data for reviewers (Figure R1). I highly recommend to use these data in the final manuscript instead of the data currently presented in Figure 4C and 4D. This would be important in order not to not create confusion in the reader or concerns regarding probe degradation or saturation.

      Minor points<br /> For the IP, I recommend to explain in the final version why the input was not provided (lack of material) and to clarify that the specific binding of Actin was used as a loading control in absence of input. This would be highly beneficial for the readers.

    4. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Recommendations For The Authors):

      Comment 1: The authors need to do more to cite the prior work of others. CCL2 allelic expression imbalance tied to the rs13900 alleles was first reported by Johnson et al. (Pharmacogenet Genomics. 2008 Sep; 18(9): 781-791) and should be cited in the Introduction on line 128 next to the Pham 2012 reference. Also, in the Results section, line 142, please provide references for the statement "We and others have previously reported a perfect linkage disequilibrium between rs1024611 in the CCL2 cis-regulatory region and rs13900 in its 3′ UTR" since the linkage disequilibrium for these 2 SNPs is not reported in the ENSEMBL server for the 1000 genomes dataset. #

      We thank the reviewer for pointing out the omission regarding the citation of prior work. We acknowledge that Johnson et al. (2008) reported the association between rs13900 and CCL2 allelic expression imbalance based on Snapshot methodology while examining _cis-_acting variants of 42 candidate genes. To acknowledge these prior studies, we have cited the previous works of Johnson et al. (Johnson et al., 2008) along with Pham et al. (Pham et al., 2012) that linked rs13900 to CCL2 allelic expression imbalance. The text in the introduction section (Lines 128-130) has been updated to reflect the above-mentioned changes.

      “We and others have demonstrated AEI in CCL2 using rs13900 as a marker with the T allele showing a higher expression level relative to C allele (Johnson et al., 2008; Pham et al., 2012).”

      We have cited some previous studies that suggested strong linkage disequilibrium between rs1024611 and rs13900 within CCL2 gene, with D’=1 and R<sup>2</sup>=0.96 (Hubal et al., 2010; Intemann et al., 2011; Kasztelewicz et al., 2017; Pham et al., 2012) on Line 144. To address the concern regarding unreported linkage disequilibrium between rs1024611 and rs13900, we reviewed the pairwise linkage disequilibrium data by population in the ENSEMBL server for 1000 Genome dataset and confirm that the linkage disequilibrium (LD) between rs1024611 and rs13900 has been observed, with D’=1 and R<sup>2</sup>=0.92 to 1.0 in specific populations. We have included a table (Author response table 1) depicting pairwise LD between rs13900 and rs1024611 as reported in the ENSEMBL server for the 1000 genome dataset, a URL reference to the ENSEMBL server data.

      Author response table 1.

      Pairwise linkage disequilibrium data between rs13900 and rs1024611 by population reported in the ENSEMBL server for the 1000 genome dataset

      F. Variant, Focus Variant; R<sup>2</sup>, correlation between the pair loci; D’, difference between the observed and expected frequency of a given haplotype.

      URL: https://www.ensembl.org/Homo_sapiens/Variation/HighLD?db=core;r=17:34252269-34253269;v=rs1024611;vdb=variation;vf=959559590;second_variant_name=rs13900

      Comment 2: Certain details of the experimental protocols need to be further elaborated or clarified to contextualize the significance of the findings. For example, in the results line 184 the authors state "Using nascent RNA allows accurate determination of mRNA decay by eliminating the effects of preexisting mRNA." How does measuring nascent RNA enable the accurate determination of mRNA decay? Doesn't it measure allele-specific mRNA synthesis? Please elaborate, as this is a key result of the study. Can the authors provide a reference supporting this statement?

      It is worthwhile to mention that mRNA decay can be precisely measured by eliminating the effect of any preexisting mRNA. Metabolic labeling with 4-thiouridine allows exclusive capture of newly synthesized RNA which will allow quantification of RNA decay eliminating any interference from preexisting RNA. We agree that nascent RNA measurement primarily reflects synthesis rate rather than degradation. However, in conjugation with actinomycin-D based inhibition studies it can be exploited for accurate mRNA decay determination of the newly synthesized RNA (Russo et al., 2017). Therefore, our aim was to use the nascent RNA to study decay kinetics. The imbalance in the CCL2 allele expression does occur at the transcriptional level as seen in non-actinomycin-D treatment group (Figure 2C) although the impact of post-transcriptional mechanisms that alter transcripts stability cannot be ruled out. Therefore, we employed a novel approach that could assess both the synthesis and the degradation by combining actinomycin-D inhibition and nascent RNA capture in the same experimental setup. In the presence of actinomycin-D, we could detect much greater allelic difference in the expression levels of the rs13900T and C allele four-hour post-treatment, suggesting a role for post-transcriptional mechanisms in CCL2 AEI.

      “We have expanded the method section in the revised draft to include experimental details on capture of nascent RNA and subsequent downstream analysis” (Lines 553-563).

      Newly synthesized RNA was isolated using the Click-It Nascent RNA Capture Kit (Invitrogen, Cat No: C10365) following the manufacturer’s protocol. Peripheral blood mononuclear cells (PBMCs) or monocyte-derived macrophages (MDMs) obtained from heterozygous individuals were stimulated with lipopolysaccharide (LPS) for 3 hours in presence of 0.2 mM 5-ethynyl uridine (EU) (Jao and Salic, 2008; Paulsen et al., 2013). After the pulse, the culture medium was replaced with fresh growth medium devoid of EU. To assess RNA stability, actinomycin-D (5 µg/mL) was added, and samples were collected at 0, 1, 2, and 4 h post-treatment. The EU RNA was subjected to a click reaction that adds a biotin handle which was then captured by streptavidin beads. The captured RNA was used for cDNA synthesis (Superscript Vilo kit, Cat No: 11754250), PCR amplification, and allelic quantification.”

      Comment 3: Also, they next state that the assay was carried out using cells treated with actinomycin D (line 186). Doesn't actinomycin D block transcription? The original study by Jia et al 2008 in PNAS reported that low concentration of ActD (100 nM) blocked RNA pol I and higher concentration (2 uM) blocked RNA pol II. This or the study on which the InVitrogen kit is based should be cited. The concentration of actinomycin D used to treat the cells should be given. They report that the T allele transcript was more abundant than the C allele transcript in nascent RNA. Why doesn't that argue for a transcriptional mechanism rather than an RNA-stability mechanism? This result should be discussed in the Discussion.

      In our study, we used a concentration of 5 µg/mL (3.98 µM), which as noted by the reviewer can effectively inhibit RNA polymerase II (Pl II) activity. We have updated our manuscript to include details and cited the original work of (Jao and Salic, 2008; Paulsen et al., 2013), which thoroughly investigate the effect of various concentrations of ActD on RNA polymerase I and II (Line no 557). A discussion of the RNA stability mechanism is provided in the Result section (Lines 196-198).

      Comment 4: In their bioinformatics analysis of the allele-specific CCL2 mRNAs, they reported that the analysis obtained a score of 1e (line 214). What does that mean? Is it significant?

      We acknowledge that the notation “a score of 1e” was unclear and thank the reviewer for pointing it out. We have clarified its significance in the revised manuscript. The following text has been included in the result section (Line no 223)

      “The score of 1e was obtained using RBP-Var, a bioinformatics tool that scores variants involved in posttranscriptional interaction and regulation (Mao et al., 2016). Here, the annotation system rates the functional confidence of variants from category 1 to 6. While Category 1 is the most significant category and includes variants that are known to be expression quantitative trait loci (eQTLs), likely affecting RBP binding site, RNA secondary structure and expression, category 6 is assigned to minimal possibility to affect RBP binding. Additionally, subcategories provide further annotation ranging from the most informational variants (a) to the least informational variant (e). Reported 1e denotes that the variant has a motif for RBP binding. Although the employed scoring system is hierarchical from 1a to 1e, with decreasing confidence in the variant’s function. However, all the variants in category 1 are considered potentially functional to some degree.”

      Comment 5: In Figure 3A, why is the rare SNP rs181021073 shown? This SNP does not comeup anywhere else in the paper. For clarity, it should be removed from Figure 3A.

      We thank the reviewer for pointing out the error in Figure 3A and apologize for the oversight. We agree that the SNP rs1810210732 is not mentioned anywhere in the manuscript and its inclusion in Figure 3A may have caused confusion. We have removed this SNP from the revised figure.

      Comment 6: For the RNA EMSA results presented in Fig. 4C with recombinant ELAVL1 (HuR), there is clearly a loss of unbound T allele probe with increasing concentrations of the recombinant protein (without a concomitant increase in shifted complex). This suggests that the T allele probe is degraded or loses its fluorescent tag in the presence of recombinant HuR, whereas the C allele probe does not. The quantitation of the shifted complex presented in Fig. 4D as a percentage of bound and unbound probe is therefore artificially elevated for the T allele compared to the C allele. In fact, there seems to be little difference between the shifted complexes with the T and C allele probes. The authors should explain this difference in free probe levels.

      We appreciate the constructive critique of the reviewer regarding the RNA EMSA results in Fig. 4C. To address this, we repeated the experiments to analyze the differential binding of rs13900T/C allele bearing probes with increasing concentration of the recombinant HuR. No degradation/ loss of fluorescence tag for T allele was noted in presence of recombinant HuR in three independent experiments (Author response image 1). This indicates that both the probes with C or T allele show comparable stability and are not affected by increasing concentration of recombinant HuR. The apparent reduction in the unbound T allele probe in Figure 4C may be due to saturation at higher HuR concentration rather than degradation.

      Author response image 1.

      Differential binding and stability of oligoribonucleotide probes containing rs13900C or T alleles with recombinant HuR. (A) REMSA with labeled oligoribonucleotides containing either rs13900C or rs13900T and recombinant HuR at indicated concentrations. (B&C) Representative quantitative densitometric analysis of HuR binding to the oligoribonucleotides bearing rs13900 T or C. The signal in the bound fractions were normalized with the free probe. The figure represents data from three independent experiments (mean ± SEM).

      Comment 7: In the Methods section, concentrations and source of reagents should be given. For example, what was the bacterial origin of LPS and concentration? What concentration of actinomycin D? What was the source? Was it provided with the nascent RNA kit? In describing the riboprobes used for REMSA, please underline the allele in the sequences (lines 549 and 550).

      Thank you for your detailed feedback and suggestions regarding the Materials and Methods Section. We regret the oversight in providing detailed information on reagent concentrations and sources in the method section. We have now rectified this omission and have provided the necessary details and a summary of material/reagents used is presented as a supplementary table (Supplementary Table 4) to enable others to replicate our experiments accurately. Regarding the description of riboprobes for RNA Electrophoretic Mobility Shift Assay, we underlined and bold the allele in the sequences as suggested (Lines 603-604).

      Comment 8: For polysome profiling on line 603, please provide a protocol for the differentiation of primary macrophages from monocytes (please cite an original protocol, not a prior paper that does not give a detailed protocol).

      We agree with the reviewer’s comment and have included the following text for primary macrophage differentiation from monocytes in the method section cited the original protocol (Line 668).

      “Human monocytes were isolated from fresh blood as described earlier (Gavrilin et al., 2009) with slight modification. Briefly, peripheral blood mononuclear cells were isolated by density gradient centrifugation using Histopaque, followed by immunomagnetic negative selection using EasySep Human Monocyte isolation kit. A high purity level for CD14+ cells was consistently achieved (≥90%) through this procedure, as confirmed by flowcytometry. The purified monocytes were immediately used for macrophage differentiation by treating them with 50 ng/mL M-CSF (PeproTech) for 72 h and flow cytometric measurement of surface markers CD64+,

      CD206+, CD44 was used to confirm the differentiation”. This data is now shown in the new Supplementary Figure S6.

      Comment 9: In the legend of Figure 2, please replace "5 ug of actinomycin D" with the actual concentration used.

      We appreciate your attention to detail and thank you for pointing out the error in the legend of Figure 2. We regret the oversight and have made the suggested change (Line 739).

      Comment 10: In the Discussion, the authors cite the study of CCL2 mRNA stabilization by HuR in mice by Sasaki et al (lines 407-9). Is regulation of CCL2 mRNA by HuR in the mouse relevant to human studies?

      How conserved is the 3'UTR of mouse and human CCL2? Is the rs13900 variant located in a conserved region? How many putative HuR sites are found in the 3'UTR of human and mouse CCL2 3'UTR? Does HuR dimerize (see Pabis et al 2019, NAR)? This information could be added to the Discussion.

      Thank you for your valuable comment. We appreciate your suggestion to include information on the dimerization of HuR in our discussion. While reporting the overall structure and domain arrangement of HuR, Pabis et al. (2019) deciphered dimerization involving Trp261 in RRM3 as key requirement for functional activity of HuR in vitro. This finding provides additional context for understanding HuR’s role in regulating CCL2 expression. We have added the following few lines in the discussion (Lines 421-428) acknowledging HuR’s ability to dimerize and cite the relevant references.

      “HuR consists of three RNA recognition motifs (RRMs) that are highly conserved and canonical in nature (Ripin et al., 2019). In absence of RNA the three RRMs are flexibly linked but upon RNA binding they transition to a more compact arrangement. Mutational analysis revealed that HuR function is inseparably linked to RRM3 dimerization and RNA binding. Dimerization enables recognition of tandem AREs by dimeric HuR (Pabis et al., 2019) and explains how this protein family can regulate numerous targets found in pre-mRNAs, mature mRNAs, miRNAs and long noncoding RNAs.”

      We aligned the CCL2 3’UTR from five different mammalian species and found that the region flanking rs13900/ HuR binding site is relatively conserved (Author response image 2). Based on PAR-CLIP datasets there are four HuR binding regions in human CCL2 3’ UTR (Lebedeva et al., 2011). However, the region overlapping rs13900 seems to be predominantly involved in the CCL2 regulation (Fan et al., 2011). This information has been included in the discussion.

      Author response image 2.

      Cross-species alignment of the CCL2 3’UTR region flanking the rs13900 using homologous regions from 5 different mammals. (Hu, Human; CH, Chimps; MO, Mouse; RA, Rat; DO, Dog, rs13900 is shown within the brackets Y, pyrimidine)

      Reviewer #2 (Recommendations For The Authors):

      Comment 1: The supplemental figures need appropriate figure legends.

      We regret the oversight and thank the reviewer for bringing it to our attention. We have now included the figure legend for the supplemental figures in the revised manuscript.

      Comment 2: The data on LPS-induced CCL2 expression in PBMCs should be represented as a scatter plot with statistical significance to enhance clarity and interpretability.

      We thank the reviewer for this constructive suggestion. In the revised Figure 2A the induction of CCL2 expression by LPS in PBMCs obtained from 6 volunteers is represented as a scatter plot. We have also included individual data points in the updated figure and statistical significance to improve clarity and interpretability.

      Comment 3: The stability of CCL2 mRNA in control cells needs comparison with treated cells for context. The stability of a housekeeping gene (such as GAPDH or ACTB) should always be included as a control in actinomycin D experiments. Clarify the differential stability of rs13900C vs. rs13900T alleles.

      We used 18S to normalize data for the mRNA stability studies, as it is abundant and has been recommended for such studies, as it is relatively unaltered when compared to other housekeeping genes following Act D treatment in well-controlled studies (Barta et al., 2023). We also compared Ct values between the Act D-treated samples and the Act D-untreated samples in this study and found them to be comparable (Author response image 3).

      Author response image 3.

      Ct values of 18s rRNA in ACT-D and control samples in Fig 2.

      Comment 4: In the main text and the methods, the authors state that nascent RNA was obtained in the presence of actinomycin D and EU. However, actinomycin D blocks the transcription of nascent RNAs, therefore the findings in Figure 2C do not reflect nascent RNA

      Please see our response to Reviewer 1 Comment 2. We would like to emphasize that to assess the differential role of the rs13900 in nascent RNA decay we integrated nascent RNA labeling and transcriptional inhibition. Briefly, PBMC from a heterozygous individual were either unstimulated or stimulated with LPS and pulsed with 5-ethynyl uridine (0.2 mM) for 3 h and the media was replaced with EU free growth medium. RNA was obtained at 0,1, 2 and 4 h following actinomycin-D treatment (5 µg/mL) to assess the stability of nascent RNA.

      Comment 5: Figure 4A is not clearly described or labeled. What are lanes 2 and 6?

      Figure 4 has now been updated to clearly describe all the lanes. Lanes 2 and 6 represent the mobility shift seen following the incubation by whole cell extracts and oligonucleotide bearing rs13900C and rs13900T probes respectively.

      Comment 6: Figure 4C and Figure 4D: the charts in Figure 4D do not seem to reflect the changes in Figure 4C. How was the mean variant calculated? How do the authors explain the different quantities in unbound/free RNA in rs13900C compared to rs13900T?

      We appreciate the constructive critique of the reviewer regarding the RNA EMSA results in Fig. 4C. To address this, we repeated the experiments to analyze the differential binding of rs13900T/C probes with increasing concentration of the recombinant HuR. No degradation/ loss of fluorescence tag in presence of HuR was noted in case of T allele (Author response image 1). This indicates that both the C and T allele probes exhibit comparable stability and are not affected by increasing the concentration of recombinant HuR. The apparent reduction in the unbound T allele probe in Figure 4C may be due to saturation due to higher HuR concentration rather than degradation. Also please note under limiting HuR concentration (50µM) there is more binding of purified HuR by the T bearing oligoribonucleotide (compare lanes 2 & 6 in Author response image 1).

      Comment 7: Figure 5A does not look like an IP. The authors should show the heavy and light chains and clarify why there is co-precipitation of beta-actin with IgG and HuR. Also, they should include input samples. Figure 5B: given that in a traditional RIP the mRNA is not cross-linked and fragmented, any region of CCL2 mRNA would be amplified, not just the 3'UTR. In other words, Figure 5B can be valuable to show the enrichment of CCL2 mRNA in general, but not the enrichment of a specific region.

      We understand the reviewer’s concern on Figure 5A and 5B. Due to sample limitations we are unable to confirm these results using heavy and light chains antibodies. However, it is important to note that co-precipitation of β-actin with IgG and HuR can be due to its non-specific binding with protein G. In a recent study non-specific precipitation by protein G or A was reported for proteins such as p53, p65 and β-actin (Zeng et al., 2022). We are including a figure provided by MBL Life Sciences as the quality check document for their RIP Assay Kit (RN 1001) that was used in our study. It is evident from Author response image 4 that even pre-clearing the lysate may not remove the ubiquitously expressed proteins such as β-actin or GAPDH and they will persist as contaminants in pull-down samples. Hence the presence of β-actin in the IgG and HuR IP fractions may be due to non-specific interactions with the agarose beads.

      Author response image 4.

      MBL RIP-Assay Kit’s Quality Check. Quality check of immunoprecipitated endogenous PTBP1 expressed in Jurkat cells. Lane 1: Jurkat (WB positive cells), Lane 2: Jurkat + normal Rabbit IgG, Lane 3: Jurkat+ anti-PTBP1.

      We agree with the reviewer’s comments that traditional RIP without cross-linking and fragmentation allows amplification of any region of CCL2 mRNA. However, the upregulation of CCL2 gene expression in α-HuR immunoprecipitated samples indirectly reflects the enrichment of CCL2 mRNA associated with HuR. Moreover, 3’-UTR targeting primers were used for amplification to examine HuR binding at this region. We believe this approach ensures that the above enrichment specifically reflects HuR association with the 3’-UTR rather than other parts of the transcript.

      Comment 8: Construct Validation in Luciferase Assays (Figure 6): The authors need to confirm equal transfection amounts of constructs and show changes in luciferase mRNA levels. It would be better to use a dual luciferase construct for internal normalization.

      We would like to thank the reviewer for his concern and comments related to the luciferase reporter assay. As mentioned in the Methods equal transfection amount (0.5 µg) were used in our study (Line 658). We chose to normalize the reporter activity using total protein concentration instead of using a dual-reporter system to avoid crosstalk with co-transfected control plasmids. This is now included in the Materials and Method section (Lines 662-664). The optimized design of the LightSwitch Assay system used in our study allows a single assay design when a highly efficient transfection system is used (as recommended by the manufacturer). We verified the presence of the correct insert in the CCL2 Light Switch 3’UTR reporter constructs (Author response image 5). We also sequenced the vector backbone of both constructs to rule out any inadvertently added mutations.

      Author response image 5.

      Schematic of the Lightswitch 3’UTR vector. (A) Vector information. The vector contains a multiple cloning site (MCS) upstream of the Renilla Luciferase gene (RenSP). Human 3’UTR CCL2 is cloned into MCS downstream of the reporter gene and it becomes a part of a hybrid transcript that contains the luciferase coding sequence used to the UTR sequence of CCL2. Constructs containing rs13900C or rs13900T allele were generated using site-specific mutagenesis on CCL2 LightSwitch 3’UTR reporter. The constructs were validated by Sanger sequencing. (B&C) Sequence chromatograph of the constructs containing CCL2-3’UTR insert showing rs13900C and rs13900T respectively. The result confirms the fidelity of the constructs used in the reporter assay.

      Comment 9: Polysome Data Presentation: The authors should present the distribution of luciferase mRNA (rs13900T and rs13900C) in all fractions separately and include data on the translation of a control like ACTB or GAPDH.

      Since our assessment of CCL2 allele-specific enrichment in the polysome fractions from MDMs of heterozygous donors did not yield a consistent pattern for differential loading (Supplementary Table3), we used a 3’UTR reporter-based assays that estimated the impact of rs13900 T and C alleles on overall translational output (translatability). The translatability was calculated as luciferase activity normalized by luciferase mRNA levels after adjusting for protein and 18S rRNA using a previously reported method (Zhang et al., 2017). As the measurement of relative allele enrichment in polysome fractions was not included in our invitro reporter assays, it is not possible to present the distribution of luciferase mRNA in various fractions separately. Author response image 6 shows the proportion of CCL2 mRNA in different fractions corresponding to cytosolic, monosome and polysome fractions obtained from MDM lysates from heterozygous donors along with 18S rRNA quantification.

      Author response image 6.

      Determination of rs13900C/T allelic enrichment in polysome fractions and its effect on polysome loading. Polysome profile obtained by sucrose gradient centrifugation of macrophages before and after stimulation with LPS (1 µg/mL) for 3 h. (A&B) The CCL2 mRNA shifts from monosome-associated fractions to heavier polysomes following LPS stimulation, indicating increased translation efficiency. (C&D) In contrast, the distribution of 18S shows no significant shift due to LPS treatment. (mean ± SEM, n=4). The percentage of mRNA loading on polysome was calculated using ΔCT method (mean ± SEM, n=4). (E&F) CCL2 AEI measurement in polysomes of macrophages from heterozygous donors (n=2). Genomic and cDNA were subjected to Sanger sequencing and the peak height of both the alleles were used to determine the relative abundance of each allele.

      Comment 10: Please explain in detail how primary monocytes were transfected with siRNAs for more than 72 hours. Typically, primary monocytes are very hard to transfect, have a very limited lifespan in culture (around 48 hours), and show a high level of cell death upon transfection. If monocytes were differentiated from macrophages, explain in detail how it was done and provide supporting citations from the literature.

      We agree with the challenges associated with transfecting primary monocytes, including their limited lifespan in culture and susceptibility to cell death following transfection and apologize for not elaborating the method section on lentiviral transduction of primary macrophages. To overcome these limitations, we utilized monocytes undergoing differentiation into macrophages rather than fully differentiated macrophages for our experiments. Cells were transfected by slightly modifying the method described by Plaisance-Bonstaff et.al 2019 (Plaisance-Bonstaff et al., 2019). Briefly, monocytes were purified from PBMCs obtained from homozygous donors for rs13900 C or rs13900T by negative selection. Upon purification cells were resuspended in 24 well plates at a seeding density of 0.5 x10<sup>6</sup> cells per well and were further cultured in the medium supplemented with 50 ng/mL M-CSF (Fig S7 and Fig. S6). After 24 h, ready to use GFP-tagged pCMV6-HuR or CMV-null lentiviral particles (Amsbio, Cambridge, M.A) were transduced into 0.5 x10<sup>6</sup> cells in presence of polybrene (60 µg/mL) at a MOI of 1. The cells were processed for HuR and CCL2 expression 72 h after transduction after stimulation with LPS for 3 h. This data is now shown in new Supplementary Figure S7.

      Comment 11: The authors should prove the binding of HuR to the 3'UTR of CCL2 not only in vitro but also in cells. For this aim, a CLIP including RNA fragmentation followed by RT-PCR or sequencing would be more informative than a RIP. It would be helpful also to demonstrate the different binding to the 3'UTR variants (rs13900C vs. rs13900T).

      We thank the reviewer for his valuable suggestion on validating binding of HuR to the 3’UTR in cells. It is important to highlight that several independent datasets including CLIP have already demonstrated that HuR binds to the 3’UTR of CCL2 including the region spanning the rs13900 locus. We have summarized the relevant studies in a tabular form (Supplementary Table-2). We are unable to confirm these results in new experiments due to sample limitation. The already existing data and experimental evidence provided in this manuscript strongly suggest that HuR binds within the 3’UTR. Also, a previously published study (Fan et al, 2011) showed that only the first 125 bp of the CCL2 3’UTR that flanks rs13900 showed strong binding to HuR but not the CCL2 coding region or other regions of 3’UTR. This further suggests that the HuR binding to the CCL2 is localized to the 3’UTR that flanks rs13900. Please note that the primers used for amplification of the RIP material were 3’-UTR specific.

      Comment 12: To quantify nascent RNA, Figure 2C should be replaced by new experiments. To label nascent RNA, authors can perform a run on/run-off experiments only with EU, without actinomycin D. As aforementioned, ActD blocks the transcription of new RNA, therefore is not useful for studying nascent RNA.

      We thank the reviewer for the suggestion and would like to emphasize that while measuring the rs13900C/T allelic ratio in nascent RNA, the experimental setup included evaluating the AEI both in presence and absence of the transcriptional inhibitor actinomycin D. The data presented in Figure 2C shows that the AEI in presence of actinomycin D is amplified in comparison to non-actinomycin D treatment. This provides definitive evidence to our hypothesis that rs13900T confers greater stability to the CCL2 message. We apologize for the oversight of not mentioning non-ACT D treatment in the methods. Necessary changes have been made to the revised manuscript (Lines 553-63).

      Comment 13: The authors should also investigate the role of TIA1 as a potential RBP and explore the possibility that TIA1 may interact more with the C allele to suppress translation.

      Based on the existing studies, we highlighted the importance of RNA-binding proteins such as TIA1 and U2AF56 that may interact with CCL2 transcript (Lines 408-09). However, exploring TIA1 binding and its functional consequences are beyond the scope of the current study. We thank the reviewer for this comment and this aspect will be pursued in future studies.

      Comment 14: It would be informative if the authors included study limitations and potential clinical implications of these findings, particularly regarding therapeutic approaches targeting CCL2.

      We would like to inform the reviewer that the submitted manuscript included the limitations of our study. They were discussed at appropriate places and were not included as a separate section. For instance, Line 398 emphasizes the need for in-depth studies for association of rs13900 and canonical CCL2 transcript. The need for additional studies regarding SNP-induced structural changes in RNA and its implication for RBP accessibility was highlighted at Lines 417-419. The inconclusive results of differential loading of polysomes and the need to conduct further research on the impact of rs13900 on CCL2 translatability in primary cells (Lines 457-459). We noted at Lines 484-485 about our further studies exploring the differential binding of HuR to the other regions of CCL2 3’UTR.

      Multiple studies have indicated that functional interference of HuR as a novel therapeutic strategy, particularly in the context of cancer, inflammation, neurodegeneration, and autoimmune disorders. These approaches include inhibitors such as MS-444, KH-3, and CMLD-2 that disrupt the interaction between HuR and ARE elements or mRNAs of target genes involved in disease pathology (Chaudhary et al., 2023; Fattahi et al., 2022; Lang et al., 2017; Liu et al., 2020; Wang et al., 2019; Wei et al., 2024), offering a potential new avenue for disease treatment. Findings from our studies provide unique insights on regulation of CCL2 expression by both rs13900 and HuR. We strongly believe that the SNP rs13900 and HuR represent a new druggable target for M/M-mediated disorders such as inflammatory diseases, cancer, and cardiovascular diseases. The potential clinical implications have been discussed in the revised manuscript (Lines 487-494)

      References

      Barta, N., Ordog, N., Pantazi, V., Berzsenyi, I., Borsos, B.N., Majoros, H., Pahi, Z.G., Ujfaludi, Z., Pankotai, T., 2023. Identifying Suitable Reference Gene Candidates for Quantification of DNA Damage-Induced Cellular Responses in Human U2OS Cell Culture System. Biomolecules 13.

      Chaudhary, S., Appadurai, M.I., Maurya, S.K., Nallasamy, P., Marimuthu, S., Shah, A., Atri, P., Ramakanth, C.V., Lele, S.M., Seshacharyulu, P., Ponnusamy, M.P., Nasser, M.W., Ganti, A.K., Batra, S.K., Lakshmanan, I., 2023. MUC16 promotes triple-negative breast cancer lung metastasis by modulating RNA-binding protein ELAVL1/HUR. Breast Cancer Res 25, 25.

      Fan, J., Ishmael, F.T., Fang, X., Myers, A., Cheadle, C., Huang, S.K., Atasoy, U., Gorospe, M., Stellato, C., 2011. Chemokine transcripts as targets of the RNA-binding protein HuR in human airway epithelium. J Immunol 186, 2482-2494.

      Fattahi, F., Ellis, J.S., Sylvester, M., Bahleda, K., Hietanen, S., Correa, L., Lugogo, N.L., Atasoy, U., 2022. HuR-Targeted Inhibition Impairs Th2 Proinflammatory Responses in Asthmatic CD4(+) T Cells. J Immunol 208, 38-48.

      Hubal, M.J., Devaney, J.M., Hoffman, E.P., Zambraski, E.J., Gordish-Dressman, H., Kearns, A.K., Larkin, J.S., Adham, K., Patel, R.R., Clarkson, P.M., 2010. CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. J Appl Physiol (1985) 108, 1651-1658.

      Intemann, C.D., Thye, T., Forster, B., Owusu-Dabo, E., Gyapong, J., Horstmann, R.D., Meyer, C.G., 2011. MCP1 haplotypes associated with protection from pulmonary tuberculosis. BMC Genet 12, 34.

      Jao, C.Y., Salic, A., 2008. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci U S A 105, 15779-15784.

      Johnson, A.D., Zhang, Y., Papp, A.C., Pinsonneault, J.K., Lim, J.E., Saffen, D., Dai, Z., Wang, D., Sadee, W., 2008. Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: detection through allelic expression imbalance in human target tissues. Pharmacogenet Genomics 18, 781791.

      Kasztelewicz, B., Czech-Kowalska, J., Lipka, B., Milewska-Bobula, B., Borszewska-Kornacka, M.K., Romanska, J., Dzierzanowska-Fangrat, K., 2017. Cytokine gene polymorphism associations with congenital cytomegalovirus infection and sensorineural hearing loss. Eur J Clin Microbiol Infect Dis 36, 1811-1818. Lang, M., Berry, D., Passecker, K., Mesteri, I., Bhuju, S., Ebner, F., Sedlyarov, V., Evstatiev, R., Dammann, K., Loy, A., Kuzyk, O., Kovarik, P., Khare, V., Beibel, M., Roma, G., Meisner-Kober, N., Gasche, C., 2017. HuR Small-Molecule Inhibitor Elicits Differential Effects in Adenomatosis Polyposis and Colorectal Carcinogenesis. Cancer Res 77, 2424-2438.

      Lebedeva, S., Jens, M., Theil, K., Schwanhausser, B., Selbach, M., Landthaler, M., Rajewsky, N., 2011. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43, 340-352.

      Liu, S., Huang, Z., Tang, A., Wu, X., Aube, J., Xu, L., Xing, C., Huang, Y., 2020. Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis. Clin Sci (Lond) 134, 1433-1448.

      Mao, F., Xiao, L., Li, X., Liang, J., Teng, H., Cai, W., Sun, Z.S., 2016. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res 44, D154-163.

      Pabis, M., Popowicz, G.M., Stehle, R., Fernandez-Ramos, D., Asami, S., Warner, L., Garcia-Maurino, S.M., Schlundt, A., Martinez-Chantar, M.L., Diaz-Moreno, I., Sattler, M., 2019. HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. Nucleic Acids Res 47, 1011-1029.

      Paulsen, M.T., Veloso, A., Prasad, J., Bedi, K., Ljungman, E.A., Tsan, Y.C., Chang, C.W., Tarrier, B., Washburn, J.G., Lyons, R., Robinson, D.R., Kumar-Sinha, C., Wilson, T.E., Ljungman, M., 2013. Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response. Proc Natl Acad Sci U S A 110, 2240-2245.

      Pham, M.H., Bonello, G.B., Castiblanco, J., Le, T., Sigala, J., He, W., Mummidi, S., 2012. The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance. PLoS One 7, e49498.

      Plaisance-Bonstaff, K., Faia, C., Wyczechowska, D., Jeansonne, D., Vittori, C., Peruzzi, F., 2019. Isolation, Transfection, and Culture of Primary Human Monocytes. J Vis Exp.

      Ripin, N., Boudet, J., Duszczyk, M.M., Hinniger, A., Faller, M., Krepl, M., Gadi, A., Schneider, R.J., Sponer, J., Meisner-Kober, N.C., Allain, F.H., 2019. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc Natl Acad Sci U S A 116, 2935-2944.

      Russo, J., Heck, A.M., Wilusz, J., Wilusz, C.J., 2017. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods 120, 39-48.

      Wang, J., Hjelmeland, A.B., Nabors, L.B., King, P.H., 2019. Anti-cancer effects of the HuR inhibitor, MS-444, in malignant glioma cells. Cancer Biol Ther 20, 979-988.

      Wei, L., Kim, S.H., Armaly, A.M., Aube, J., Xu, L., Wu, X., 2024. RNA-binding protein HuR inhibition induces multiple programmed cell death in breast and prostate cancer. Cell Commun Signal 22, 580.

      Zeng, X., Zeng, W.H., Zhou, J., Liu, X.M., Huang, G., Zhu, H., Xiao, S., Zeng, Y., Cao, D., 2022. Removal of nonspecific binding proteins is required in co-immunoprecipitation with nuclear proteins. Biotechniques 73, 289-296.

      Zhang, X., Chen, X., Liu, Q., Zhang, S., Hu, W., 2017. Translation repression via modulation of the cytoplasmic poly(A)-binding protein in the inflammatory response. Elife 6.

    1. eLife Assessment

      In this important study, the authors engineered and characterised novel genetically encoded calcium indicators (GECIs) and an analytical tool (CaFire) capable of reporting and quantifying various sub-synaptic events, including miniature synaptic events, with a speed and sensitivity approaching that of intracellular electrophysiological recordings. While the evidence supporting the improvements in the speed and accuracy of these tools is convincing, including additional information about key imaging parameters, the Bar8f experiments, and CaFire would strengthen the study. This work will be of interest to neurobiologists studying synaptic calcium dynamics in various model systems.

    2. Reviewer #1 (Public review):

      Summary:

      Chen et al. engineered and characterized a suite of next-generation GECIs for the Drosophila NMJ that allow for the visualization of calcium dynamics within the presynaptic compartment, at presynaptic active zones, and in the postsynaptic compartment. These GECIs include ratiometric presynaptic Scar8m (targeted to synaptic vesicles), ratiometric active zone localized Bar8f (targeted to the scaffold molecule BRP), and postsynaptic SynapGCaMP8m. The authors demonstrate that these new indicators are a large improvement on the widely used GCaMP6 and GCaMP7 series GECIs, with increased speed and sensitivity. They show that presynaptic Scar8m accurately captures presynaptic calcium dynamics with superior sensitivity to the GCaMP6 and GCaMP7 series and with similar kinetics to chemical dyes. The active-zone targeted Bar8f sensor was assessed for the ability to detect release-site-specific nanodomain changes, but the authors concluded that this sensor is still too slow to accurately do so. Lastly, the use of postsynaptic SynapGCaMP8m was shown to enable the detection of quantal events with similar resolution to electrophysiological recordings. Finally, the authors developed a Python-based analysis software, CaFire, that enables automated quantification of evoked and spontaneous calcium signals. These tools will greatly expand our ability to detect activity at individual synapses without the need for chemical dyes or electrophysiology.

      Strengths:

      (1) In this study, the authors rigorously compare their newly engineered GECIs to those previously used at the Drosophila NMJ, highlighting improvements in localization, speed, and sensitivity. These comparisons appropriately substantiate the authors' claim that their GECIs are superior to those currently in use.

      (2) The authors demonstrate the ability of Scar8m to capture subtle changes in presynaptic calcium resulting from differences between MN-Ib and MN-Is terminals and from the induction of presynaptic homeostatic potentiation (PHP), rivaling the sensitivity of chemical dyes.

      (3) The improved postsynaptic SynapGCaMP8m is shown to approach the resolution of electrophysiology in resolving quantal events.

      (4) The authors created a publicly available pipeline that streamlines and standardizes analysis of calcium imaging data.

      Weaknesses:

      (1) Given the superior performance of GCaMP8m in the vesicle-tethered and postsynaptic applications, an analysis of its functionality at individual active zones ("Bar8m") would be a useful addition to this compendium, especially since the authors show that the faster kinetics of GCaMP8f are still not fast enough to resolve active zone-specific calcium dynamics.

      (2) Description of the CaFire pipeline could be clearer (for example, what exactly is the role of Excel?), and the GitHub user guide could be more fleshed out (with the addition of example ImageJ scripts and analyzed images).

    3. Reviewer #2 (Public review):

      Summary

      Calcium ions play a key role in synaptic transmission and plasticity. To improve calcium measurements at synaptic terminals, previous studies have targeted genetically encoded calcium indicators (GECIs) to pre- and postsynaptic locations. Here, Chen et al. improve these constructs by incorporating the latest GCaMP8 sensors and a stable red fluorescent protein to enable ratiometric measurements. In addition, they develop a new analysis platform, 'CaFire', to facilitate automated quantification. Using these tools, the authors demonstrate favorable properties of their sensors relative to earlier constructs. Impressively, by positioning postsynaptic GCaMP8m near glutamate receptors, they show that their sensors can report miniature synaptic events with speed and sensitivity approaching that of intracellular electrophysiological recordings. These new sensors and the analysis platform provide a valuable tool for resolving synaptic events using all-optical methods.

      Strengths:

      The authors present a rigorous characterization of their sensors using well-established assays. They employ immunostaining and super-resolution STED microscopy to confirm correct subcellular targeting. Additionally, they quantify response amplitude, rise and decay kinetics, and provide side-by-side comparisons with earlier-generation GECIs. Importantly, they show that the new sensors can reproduce known differences in evoked Ca²⁺ responses between distinct nerve terminals. Finally, they present what appears to be the first simultaneous calcium imaging and intracellular mEPSP recording to directly assess the sensitivity of different sensors in detecting individual miniature synaptic events.

      Weaknesses:

      Major points:

      (1) While the authors rigorously compared the response amplitude, rise, and decay kinetics of several sensors, key parameters like brightness and photobleaching rates are not reported. I feel that including this information is important as synaptically tethered sensors, compared to freely diffusible cytosolic indicators, can be especially prone to photobleaching, particularly under the high-intensity illumination and high-magnification conditions required for synaptic imaging. Quantifying baseline brightness and photobleaching rates would add valuable information for researchers intending to adopt these tools, especially in the context of prolonged or high-speed imaging experiments.

      (2) In several places, the authors compare the performance of their sensors with synthetic calcium dyes, but these comparisons are based on literature values rather than on side-by-side measurements in the same preparation. Given differences in imaging conditions across studies (e.g., illumination, camera sensitivity, and noise), parameters like indicator brightness, SNR, and photobleaching are difficult to compare meaningfully. Additionally, the limited frame rate used in the present study may preclude accurate assessment of rise times relative to fast chemical dyes. These issues weaken the claim made in the abstract that "...a ratiometric presynaptic GCaMP8m sensor accurately captures .. Ca²⁺ changes with superior sensitivity and similar kinetics compared to chemical dyes." The authors should clearly acknowledge these limitations and soften their conclusions. A direct comparison in the same system, if feasible, would greatly strengthen the manuscript.

      (3) The authors state that their indicators can now achieve measurements previously attainable with chemical dyes and electrophysiology. I encourage the authors to also consider how their tools might enable new measurements beyond what these traditional techniques allow. For example, while electrophysiology can detect summed mEPSPs across synapses, imaging could go a step further by spatially resolving the synaptic origin of individual mEPSP events. One could, for instance, image MN-Ib and MN-Is simultaneously without silencing either input, and detect mEPSP events specific to each synapse. This would enable synapse-specific mapping of quantal events - something electrophysiology alone cannot provide. Demonstrating even a proof-of-principle along these lines could highlight the unique advantages of the new tools by showing that they not only match previous methods but also enable new types of measurements.

      (4) For ratiometric measurements, it is important to estimate and subtract background signals in each channel. Without this correction, the computed ratio may be skewed, as background adds an offset to both channels and can distort the ratio. However, it is not clear from the Methods section whether, or how, background fluorescence was measured and subtracted.

      (5) At line 212, the authors claim "... GCaMP8m showing 345.7% higher SNR over GCaMP6s....(Fig. 3D and E) ", yet the cited figure panels do not present any SNR quantification. Figures 3D and E only show response amplitudes and kinetics, which are distinct from SNR. The methods section also does not describe details for how SNR was defined or computed.

      (6) Lines 285-287 "As expected, summed ΔF values scaled strongly and positively with AZ size (Fig. 5F), reflecting a greater number of Cav2 channels at larger AZs". I am not sure about this conclusion. A positive correlation between summed ΔF values and AZ size could simply reflect more GCaMP molecules in larger AZs, which would give rise to larger total fluorescence change even at a given level of calcium increase.

      (7) Lines 313-314: "SynapGCaMP quantal signals appeared to qualitatively reflect the same events measured with electrophysiological recordings (Fig. 6D)." This statement is quite confusing. In Figure 6D, the corresponding calcium and ephys traces look completely different and appear to reflect distinct sets of events. It was only after reading Figure 7 that I realized the traces shown in Figure 6D might not have been recorded simultaneously. The authors should clarify this point.

      (8) Lines 310-313: "SynapGCaMP8m .... striking an optimal balance between speed and sensitivity", and Lines 314-316: "We conclude that SynapGCaMP8m is an optimal indicator to measure quantal transmission events at the synapse." Statements like these are subjective. In the authors' own comparison, GCaMP8m is significantly slower than GCaMP8f (at least in terms of decay time), despite having a moderately higher response amplitude. It is therefore unclear why GCaMP8m is considered 'optimal'. The authors should clarify this point or explain their rationale for prioritizing response amplitude over speed in the context of their application.

    4. Reviewer #3 (Public review):

      Genetically encoded calcium indicators (GECIs) are essential tools in neurobiology and physiology. Technological constraints in targeting and kinetics of previous versions of GECIs have limited their application at the subcellular level. Chen et al. present a set of novel tools that overcome many of these limitations. Through systematic testing in the Drosophila NMJ, they demonstrate improved targeting of GCaMP variants to synaptic compartments and report enhanced brightness and temporal fidelity using members of the GCaMP8 series. These advancements are likely to facilitate more precise investigation of synaptic physiology.

      This is a comprehensive and detailed manuscript that introduces and validates new GECI tools optimized for the study of neurotransmission and neuronal excitability. These tools are likely to be highly impactful across neuroscience subfields. The authors are commended for publicly sharing their imaging software.

      This manuscript could be improved by further testing the GECIs across physiologically relevant ranges of activity, including at high frequency and over long imaging sessions. The authors provide a custom software package (CaFire) for Ca2+ imaging analysis; however, to improve clarity and utility for future users, we recommend providing references to existing Ca2+ imaging tools for context and elaborating on some conceptual and methodological aspects, with more guidance for broader usability. These enhancements would strengthen this already strong manuscript.

    1. Life in college usually differs in many ways from one’s previous life in high school or in the workforce. What are the biggest changes you are experiencing now or anticipate experiencing this term?

      Increased workload and difficulty of classes.

    2. What do you value that will be richer in your future life because you will have a college education?

      The ability to succeed in the world as an adult.

    1. eLife Assessment

      This important study describes a non-canonical role for IκBα in regulating mouse embryonic stem cell pluripotency and differentiation, independent of the classical NF-κB pathway. The conclusions are convincingly supported through orthogonal approaches and separation of function mutants. The findings add new insight into pluripotency regulation in mouse cells.

    2. Reviewer #1 (Public review):

      Summary:

      This study probes the role of the NF-κB inhibitor IκBa in the regulation of pluripotency in mouse embyronic stem cells (mESCs). It follows from previous work that identified a chromatin-specific role for IκBa in the regulation of tissue stem cell differentiation. The work presented here shows that a fraction of IκBa specifically associates with chromatin in pluripotent stem cells. Using three Nfkbia-knockout lines, the authors show that IκBa ablation impairs the exit from pluripotency, with embryonic bodies (an in vitro model of mESC multi-lineage differentiation) still expressing high levels of pluripotency markers after sustained exposure to differentiation signals. The maintenance of aberrant pluripotency gene expression under differentiation conditions is accompanied by pluripotency-associated epigenetic profiles of DNA methylation and histone marks. Using elegant separation of function mutants identified in a separate study, the authors generate versions of IκBa that are either impaired in histone/chromatin binding or NF-κB binding. They show that the provision of the WT IκBa, or the NF-κB-binding mutant can rescue the changes in gene expression driven by loss of IκBa, but the chromatin-binding mutant can not. Thus the study identifies a chromatin-specific, NF-κB-independent role of IκBa as a regulator of exit from pluripotency.

      Strengths:

      The strengths of the manuscript lie in:<br /> (a) the use of several orthogonal assays to support the conclusions on the effects of exit from pluripotency;<br /> (b) the use of three independent clonal Nfkbia-KO mESC lines (lacking IκBa), which increase confidence in the conclusions; and<br /> (c) the use of separation of function mutants to determine the relative contributions of the chromatin-associated and NF-κB-associated IκBa, which would otherwise be very difficult to unpick.

      Weaknesses:

      No notable weaknesses remain in this revised version.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of IκBα in regulating mouse embryonic stem cell (ESC) pluripotency and differentiation. The authors demonstrate that IκBα knockout impairs the exit from the naïve pluripotent state during embryoid body differentiation. Through mechanistic studies using various mutants, they show that IκBα regulates ESC differentiation through chromatin-related functions, independent of the canonical NF-κB pathway.

      Strengths:

      The authors nicely investigate the role of IκBα in pluripotency exit, using embryoid body formation and complementing the phenotypic analysis with a number of genome-wide approaches, including transcriptomic, histone marks deposition, and DNA methylation analyses. Moreover, they generate a first-of-its-kind mutant set that allows them to uncouple IκBα's function in chromatin regulation versus its NF-κB-related functions. This work contributes to our understanding of cellular plasticity and development, potentially interesting a broad audience including developmental biologists, chromatin biology researchers, and cell signaling experts.

      Weaknesses:

      Future experiments will likely help establish a more direct mechanistic link between IκBα activity and the chromatin remodeling events observed in pluripotent cells.

    4. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study probes the role of the NF-κB inhibitor IκBa in the regulation of pluripotency in mouse embyronic stem cells (mESCs). It follows from previous work that identified a chromatin-specific role for IκBa in the regulation of tissue stem cell differentiation. The work presented here shows that a fraction of IκBa specifically associates with chromatin in pluripotent stem cells. Using three Nfkbia-knockout lines, the authors show that IκBa ablation impairs the exit from pluripotency, with embryonic bodies (an in vitro model of mESC multi-lineage differentiation) still expressing high levels of pluripotency markers after sustained exposure to differentiation signals. The maintenance of aberrant pluripotency gene expression under differentiation conditions is accompanied by pluripotency-associated epigenetic profiles of DNA methylation and histone marks. Using elegant separation of function mutants identified in a separate study, the authors generate versions of IκBa that are either impaired in histone/chromatin binding or NF-κB binding. They show that the provision of the WT IκBa, or the NF-κB-binding mutant can rescue the changes in gene expression driven by loss of IκBa, but the chromatin-binding mutant can not. Thus the study identifies a chromatin-specific, NF-κB-independent role of IκBa as a regulator of exit from pluripotency.

      Strengths:

      The strengths of the manuscript lie in: (a) the use of several orthogonal assays to support the conclusions on the effects of exit from pluripotency; (b) the use of three independent clonal Nfkbia-KO mESC lines (lacking IκBa), which increase confidence in the conclusions; and (c) the use of separation of function mutants to determine the relative contributions of the chromatin-associated and NF-κB-associated IκBa, which would otherwise be very difficult to unpick.

      Weaknesses:

      In this reviewer's view, the term "differentiation" is used inappropriately in this manuscript. The data showing aberrant expression of pluripotency markers during embryoid body formation are supported by several lines of evidence and are convincing. However, the authors call the phenotype of Nfkbia-KO cells a "differentiation impairment" while the data on differentiation markers are not shown (beyond the fact that H3K4me1, marking poised enhancers, is reduced in genes underlying GO processes associated with differentiation and organ development). Data on differentiation marker expression from the transcriptomic and embryoid body immunofluorescent experiments, for example, should be at hand without the need to conduct many more experiments and would help to support the conclusions of the study or make them more specific. The lack of probing the differentiation versus pluripotency genes may be a missed opportunity in gaining in-depth understanding of the phenotype associated with loss of the chromatin-associated function of IκBa.

      Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of IκBα in regulating mouse embryonic stem cell (ESC) pluripotency and differentiation. The authors demonstrate that IκBα knockout impairs the exit from the naïve pluripotent state during embryoid body differentiation. Through mechanistic studies using various mutants, they show that IκBα regulates ESC differentiation through chromatin-related functions, independent of the canonical NFκB pathway.

      Strengths:

      The authors nicely investigate the role of IκBα in pluripotency exit, using embryoid body formation and complementing the phenotypic analysis with a number of genome-wide approaches, including transcriptomic, histone marks deposition, and DNA methylation analyses. Moreover, they generate a first-of-its-kind mutant set that allows them to uncouple IκBα's function in chromatin regulation versus its NF-κB-related functions. This work contributes to our understanding of cellular plasticity and development, potentially interesting a broad audience including developmental biologists, chromatin biology researchers, and cell signaling experts.

      Weaknesses:

      - The study's main limitation is the lack of crucial controls using bona fide naïve cells across key experiments, including DNA methylation analysis, gene expression profiling in embryoid bodies, and histone mark deposition. This omission makes it difficult to evaluate whether the observed changes in IκBα-KO cells truly reflect naïve pluripotency characteristics.

      - Several conclusions in the manuscript require a more measured interpretation. The authors should revise their statements regarding the strength of the pluripotency exit block, the extent of hypomethylation, and the global nature of chromatin changes. - From a methodological perspective, the manuscript would benefit from additional orthogonal approaches to strengthen the knockout findings, which may be influenced by clonal expansion of ES cells.

      Overall, this study makes an important contribution to the field. However, the concerns raised regarding controls, data interpretation, and methodology should be addressed to strengthen the manuscript and support the authors' conclusions.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have the following comments and suggestions for the authors to consider:

      (1) Fig, 1D: the number of replicates for this experiment is not mentioned. It would be good to see if the apparent accumulation of IκBa on chromatin of S/L cells is reproducible. If it is, does the accumulation of IκBa "prime" chromatin for differentiation?

      We apologize for missing this information in the figure legend. We have repeated the experiment two independent times, and confirmed the localization of IκBα in the chromatin fraction of mESCs cultured in Serum/LIF (S/L). We have included the information in the figure legend.

      Regarding the second question, we do believe that the presence of IκBα primes mESCs to exit from differentiation. Previous data from the lab (Mulero et al Cancer Cell 2012; Marruecos et al EMBO Reports 2020) demonstrated that IκBα regulates important developmental genes (Hox genes and differentiation-related genes), which become dysregulated upon IκBα depletion. Based on those previous results, together with our results that demonstrated that lack of IκBα hyperactivates the pluripotency network, we conclude that IκBα is a crucial element to attenuate pluripotency programs, allowing a successful exit from naïve pluripotency and differentiation.

      (2) Fig. 1E: From what is shown, Rela doesn't agree (i.e. no enrichment in EpiSCs in the Atlasi data). Are the culture conditions in Atlasi 2020 the same as in this paper (base medium etc.)? Also, why not label all genes/proteins that are shown in 1C?

      Differences observed between our data and the in-silico data might be due to differences in culture conditions used in Atlasi and colleagues. In particular, Atlasi et al. cultured the mESCs in 2i/LIF for 2 consecutive months, whereas we induced ground state of naïve pluripotency (2i/LIF) for only 96h. In the case of EpiSC differentiation, similar protocols are used in both our work and in Atlasi et al. Nevertheless, despite existing differences, in both studies IκBα is enriched in the ground state of naive pluripotency. 

      The reason why some proteins that are missing in Figure 1E but appearing in Figure 1C is because they are not detected in the mass spectrometry experiment.

      (3) Fig. 1F: The word "clustering" here is misleading. While Nfkbia shows similar dynamics as pluripotency genes, clustering should not be used unless clusters of genes are shown in the same heatmap (and the transcripts naturally cluster together). The figure would be even more informative if all the genes from the 4 different categories were presented on the same heatmap.

      As suggested by the reviewer, we have generated a heatmap where the  genes from the different four categories (Figure 1F) are displayed  and clustered together:

      Author response image 1.

      Heatmap including all the genes from Figure 1F of the manuscript and clustering is simultaneously conducted over the four categories.

      As shown in previous heatmap, we can confirm that most of the Nf-kB genes (except for Nfkbia and Nfkbid) clustered together with differentiation markers.   

      Nonetheless, to be more conservative with original Figure 1F and for clarity upon gene categories,  we have updated the figure  with a combined heatmap, sliced by gene categories.  In this updated version, we can observe how IkBα gene, though classified by the biological process where it classically belongs (NF-kB pathway), is higher at pluripotency, whereas it decreases upon differentiation induction, similarly as most of the pluripotency genes.

      We have also changed the text accordingly and have added the following sentences in the main text (lines 121-125): “The expression pattern of Nfkbia was similar to the pluripotency genes whereas most of the NF-κB genes were upregulated upon differentiation, showing an analogous expression dynamics as developmental genes, as previously described”.

      (4) This reviewer felt that the statement "Notably, several polycomb elements were highly expressed in mESCs, consistent with the possibility that chromatin-bound IκBα modulates PRC2 activity in the pluripotent state" (p.5, lines 125-127) is premature here. While similar expression dynamics may be consistent with a linked function, they in no way suggest this. This can be more accurately stated to point out that Nfkbia shows similar expression dynamics in pluripotency and differentiation as Polycomb component      genes.

      We agree that the statement is premature and we have changed it by: “Previous reports have demonstrated that chromatin-bound IκBα modulates PRC2 activity in different adult stem cell models [27]. Interestingly, we observed that most of the Polycomb target genes follow a similar expression pattern of Nfkbia and pluripotency, with higher expression in mESCs (Figure 1F).” (lines 125-128 in the manucript).

      (5) Top of p. 6: the results are mis-attributed to Fig. 1, it should be Fig. 2.

      We thank the reviewer for this observation. We have corrected it in the main text.

      (6) Fig. 1B and Fig. 5I: the images of the AP stains are very difficult to see, better resolution images should be used.

      We have increased both the resolution and the size of the AP colonies.

      (7) Line 142 (p.6): Fig. S1B should be S1C. In general the manuscript would benefit from review of the order and labeling of the figure panels as there are a number of inconsistencies.

      We have better organized the figures in the new version of the manuscript. In particular, we have reorganized the Figure S1 to have a more logical order. We have done the same for the Figure 2 and Figure 5 and they are updated in the new version of the reviewed manuscript.

      (8) The authors call the phenotype of Nfkbia-KO cells a "differentiation impairment". Do the EBs shown in Fig. 2 also express differentiation markers? Do they fail to up-regulate those markers or just fail to down-regulate pluripotency markers? At the transcriptomic level the Nfkbia-KO cells still change significantly upon provision of differentiation signals (Fig. 2C), what types of gene processes underlie the differences between WT and KO cells and which processes are common? Also, based on this figure, the phenotype looks to be more of a delay than a failure in differentiation, as the cells still follow the same trajectory but lag behind the WT cells. It is difficult to discern whether this is the case based on Fig. 2E-G as we don't see the later time point (up to Day 9).

      In general, with the data presented in Fig. 2C and Fig. S1, the authors show that many of the hallmarks of exit from pluripotency are impaired in Nfkbia-KO cells, as well as the general "transcriptional status" of the cells, but they don't show differentiation markers (which would be necessary to conclude an impairment in differentiation). The data should be readily available in the datasets that are in the manuscript already and it will be informative to extract and present them. The data are not currently publicly accessible (unavailable until July 2025) so it was not possible to mine them.

      We appreciate the observation, and we have included more data to confirm that the IκBα-KO cells show a differentiation impairment. In the first version of the manuscript, differentiation markers are displayed from Figures 2E-G, where genes from the three germ layers (ectoderm, mesoderm and endoderm) are not activated in IκBα-KO EBs at 48h and 96h. Moreover, the volcano plot displayed in Figure S1F of the first version clearly shows a downregulation of important differentiation genes such as a T, Eomes, Lhx1 and Foxa2. We agree that 96h EBs is an early time point to talk about differentiation impairment. For that reason, we have also included the same pluripotent and differentiation genes in 216h EBs (Figures S1F-G of the newer version of the manuscript). It is clearly observed that IκBα-KO 216h EBs maintain an upregulation of pluripotency programs which negatively correlate with a lower differentiation capability. Moreover, the impairment in the differentiation with a higher expression of pluripotency markers is confirmed by the presence of high SSEA-1 expression in IκBα-KO 216h EBs (Figure S1C of the manuscript) and alkaline phosphatase (AP) staining (Figure 2C of the manuscript). Lastly, the fact that IκBα-KO teratomas contain higher proportion of OCT3/4+ cells further confirming that IκBα-KO cells cannot differentiate because of the inability to exit from pluripotency.

      Finally, generated data (and deposited in GEO repository with SuperSeries id GSE239565) is already publicly available. 

      (9) Fig. 5A: even if there are no global changes in NF-κB target genes, could a small subset of NF-κB target genes still mediate the IκBa effects?

      We have analyzed the whole NF-κB signature, and we have identified a small cluster of genes that are differentially expressed at 96h EBs between IκBα-KO and IκBα-WT (Author response image 2). Interestingly, what we observed is the opposite as expected since we see un downregulation of that subset in the IκBα-KO 96h EBs (Author response image 3). For that reason, detected changes in the NF-κB target gene expression after deletion of Nfkbia do not support an NF-κB inhibitory role for IkBa in pluripotent ESC.

      Author response image 2.

      Heatmap of NF-κB genes expression at the different time points of differentiation (mESCs, 48h EBs, 96h EBs). Highlighted region marks the genes that are differentially expressed between both genotypes at 96h EBs.

       

      Author response image 3.

      Violin plot of genes from the NF-κB pathway which are differentially expressed at 96h EBs.

      (10) Lines 233-238, the part of the text is repeated.

      We appreciate the observation and have deleted the repeated part.

      (11) The data in Fig. 5D-E make it difficult to be sure whether the conclusions on the relative subcellular localisations of the different mutants are accurate, as the chromatin-binding mutant seems to be less abundant than the other mutants (judging from the Input in Fig. 5C and also from the tubulin loading controls in Fig. 5D-E). Showing the IκBa levels in total extracts would make the interpretation of these data more robust. The authors do mention that the chromatin-binding mutant IκBa protein is consistently expressed at lower levels but they do not comment on how this may affect the data interpretation - could the lack of rescue be due to lower levels of the chromatin-binding mutant IκBa relative to the wild-type IκBa? This should be addressed in the Discussion, if not tested formally by normalising the expression levels of the different forms of IκBa in the rescue experiments.

      Although protein stability is different among the SOF mutants, IκBα<sup>ΔChromatin</sup> is exclusively detected in the cytoplasm, with lack of detection in the chromatin compartment (Figures 5D-E of the reviewed manuscript). For this reason, we believe that the quantitative differences in protein levels of the different mutants cannot explain the subcellular localization differences and the phenotype observed.

      Nonetheless, we cannot discard that differences in the protein levels between SOF mutants can affect the rescue phenotype, and we have specified so in the discussion section of the manuscript. 

      (12) Lines 260-261: "Induction of i-IκBαWT and i-IκBαΔNF-κB reduced the expression levels of the naive pluripotent genes Zfp42, Klf2, Sox2 and Tbx3, which were increased by i-IκBαΔChromatin (Figure 5F)." This is not an accurate statement. The expression was not reduced by the ΔChrom mutant in the same way as it was by the WT and the ΔNF-κB mutant, but it was not increased.

      We have better specified the description of the results displayed in Figure 5F (lines 258-261 of the main manuscript):

      “Induction of i-IκBα<sup>WT</sup> and i-IκBα<sup>ΔNF-κB</sup> reduced the expression levels of the naïve pluripotent genes Zfp42, Klf2, Sox2 and Tbx3. On the other hand, the same genes either do not change their expression (Zfp42, Sox2, Klf2) or increase their levels (Tbx3) upon i-IκBα<sup>ΔChromatin</sup>  induction (Figure 5F).”

      (13) In Fig. 5J the images will ideally be shown before and after Doxycycline treatment, to better support the conclusions.

      We have included a new panel in Figure S4 (Figure S4E in the reviewed manuscript) where the No doxycycline control 216 EBs between the different conditions (i-IκBα<sup>WT</sup>, i-IκBα<sup>ΔChrom</sup> and i-IκBα<sup>ΔNF-κB</sup>) are included.

      Reviewer #2 (Recommendations for the authors):

      - The PCA analysis in Figure 2 appears to contradict the authors' conclusions about global transcriptome changes in KO cells. Furthermore, there is a discrepancy between immunofluorescence data showing near-complete methylation loss and the methylation array analysis results.

      Although there is a differentiation block in the IkBa KO EBs, this is not complete and they show some differentiation trend after 96h (Fig 2C), moreover, acquisition of differentiation genes from all three germ layers is strongly affected (Figure 2E of the reviewed manuscript) and these programs remain downregulated and pluripotency genes are still expressed in IκBα-KO EBs at later time points (216h) (Fig 2B). Altogether demonstrates that the lack of IκBα impairs differentiation and the silencing of the pluripotency network.

      Discrepancies between methylation array and immunofluorescence are expected since immunofluorescence is not quantitative and the methylation array is very precise.  

      - The authors should revise their statements regarding the strength of the pluripotency exit block, the extent of hypomethylation, and the global nature of chromatin changes. For example, the observed chromatin changes, including H3K27ac modifications, appear relatively modest and should be described as such. - The manuscript would benefit from additional orthogonal approaches to strengthen the knockout findings, which may be influenced by clonal expansion of ES cells. Additionally, the emphasis on overlapping H3K4me3 and H3K27me3 regions should be reduced, as these represent a minor fraction of the affected regions (only 41 regions).

      We have revised the text and have included it in the discussion section the following text (lines 327-331 in the reviewed manuscript):

      “Although IκBα KO  mESCs  exhibit a transcriptional phenotype and hypomethylation state  that resembles the ground state of naïve pluripotency, there are only modest changes on histone marks associated to enhancers (H3K27Ac) or gene regulation (H3K4me3 and H3K27me3). Altogether indicates that further experiments are required to fully elucidate the effect of chromatin IκBα.”

      We have also included Fig S3E-S3F to show that similar differences as WT and KO in H3K4me3 and H3K27me3 are observed in a serum/LIF and 2i conditions, further supporting the fact that KO cells in Serum/LIF resemble WT cells in 2i condition.

    1. Reviewer #1 (Public review):

      Summary:

      The authors define the principles that, based on first principles, should be guiding the optimisation of transcription factors with intrinsically disordered regions (IDR). The authors introduce an original search process, coined "octopusing", that involves transcription factor IDR and their binding affinities to optimise search times and binding affinities. The first part concerns the optimal strategies to define binding affinities to the genome in the receiving region that is called the "antenna", highlighting the following: (i) reduce the target to IDR-binding distance on the genome, (ii) optimise the distance between the DNA binding domain and the binding sites on the IDR to be as close as possible to the distance between their binding sites on the genome; (iii) keep the same number of binding sites and their targets and modulate this number with binding strength, reducing them with increased strength; (iv) modulate the binding strength to be above a threshold that depends on the proportion of IDR binding sites in the antenna. The second part concerns the scaling of the search time in function of key parameters such as the volume of the nucleus, and the size of the antenna, derived as a combination of 3D search and 1D "octopusing". The third part focuses on validation, where the current results are compared to binding probability data from a single experiment, and new experiments are proposed to further validate the model as well as testing designed transcription factors.

      Strengths:

      The strength of this work is that it provides simple, interpretable and testable theoretical conclusions. This will allow the derived design principles to be understood, evaluated and improved in the future. The theoretical derivations are rigorous. The authors provide a comparison to experiments, and also propose new experiments to be performed in the future. This is a great value in the paper since it will set the stage and inspire new experimental techniques. Further, the field needs inspiration and motivation to develop these techniques, since they are required to benchmark the transcription factors designed with the methods presented in this paper, as well as to develop novel data based or in vivo methods that would greatly benefit the field. As such, this paper is a fundamental contribution to the field.

      Weaknesses:

      The model presents many first principles to drive the design of transcription factors, but arguably, other principles and mechanisms might also play a role by being beneficial to the search and binding process. These other principles are mentioned at the end of the discussion part of the paper. On the other hand, an important task left to do, is to critically consider these principles altogether, and analyse the available data to quantify which role is predominant among transcription factors IDRs functions. Further, since one function doesn't exclude another, a theoretical investigation of possible crosstalk, interaction, and cooperativity of those different hypothetical functions is still missing.

    2. Reviewer #2 (Public review):

      Summary:

      This is an interesting theoretical exploration of how a flexible protein domain, which has multiple DNA-binding sites along it, affects the stability of the protein-DNA complex. It proposes a mechanism ("octopusing") for protein doing a random walk while bound to DNA which simultaneously enables exploration of the DNA strand and stability of the bound state.

      Strengths:

      Stability of the protein-DNA bound state and the ability of the protein to perform 1d diffusion along the DNA are two properties of a transcription factor that are usually seen as being in opposition of each other. The octopusing mechanism is an elegant resolution of the puzzle of how both could be accommodated. This mechanism has interesting biological implications for the functional role of intrinsically disordered domains in transcription factor (TF) proteins. They show theoretically how these domains, if flexible and able to make multiple weak contacts with the DNA, can enhance the ability of the TF to efficiently find their binding site on the DNA from which they exert control over the transcription of their target gene. The paper concludes with a comparison of model predictions with experimental data which gives further support to the proposed mechanism. Overall, this is an interesting and well-executed theoretical paper that proposes an interesting idea about the functional role for IDR domains in TFs.

      Weaknesses:

      It is not clear how ubiquitous among eukaryotic transcription factors are the DNA binding sites for multiple subdomains along the IDR, which are assumed by the model. These assumptions though, provide interesting points of departure for further experiments.

    3. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The authors define the principles that, based on first principles, should be guiding the optimisation of trascription factors with intrinsically disordered regions (IDR). The first part of the study defines the following principles to optimize the binding affinities to the genome in the receiving region that is called the ”antenna”: (i) reduce the target to IDR-binding distance on the genome, (ii) optimise the distance betwee the DNA binding domain and the binding sites on the IDR to be as close as possible to the distance between their binding sites on the genome; (iii) keep the same number of binding sites and their targets and modulate this number with binding strength, reducing them with increased strenght; (iv) modulate the binding strenght to be above a threshold that depends on the proportion of IDR binding sites in the antenna. The second part defines the scaling of the seach time in function of key parameters such as the volume of the nucleus, and the size of the antenna, derived as a combination of 3D search of the antenna and 1D ”octopusing” on the antenna. The third part focuses on validation, where the current results are compared to binding probabilith data from a single experiment, and new experiment are proposed to further validate the model as well as testing designed transcription factors.

      Strengths:

      The strength of this work is that it provides simple, interpretable and testable theoretical conclusions. This will allow the derived design principles to be understood, evaluated and improved in the future. The theoretical derivations are rigorous. The authors provides a comparison to experiments, and also propose new experiments to be performed in the future, this is a great value in the paper since it will set the stage and inspire new experimental techniques. Further, the field needs inspiration and motivations to develop these techniques, since they are required to benchmark the transcription factors designed with the methods presented in this paper, as well as to develop novel data based or in vivo methods that would greatly benefit the field. As such, this paper is a fundamental contribution to the field.

      Weaknesses:

      The model assumption that the interaction between the transcription factor and the DNA outside of the antenna region is negligible is probably too strong for many/most transcription factors, particularly in organisms with a longer genome than yeasts. The model presents many first principles to drive the design of transcription factor, but arguably, other principles and mechanisms might also play a role by being beneficial to the search and binding process. Specifically: (i) a role of the IDR in complex formation and cooperativity between multiple trascription factors, (ii) ability of the IDR to do parallel searching based on multiple DNA binding sites spaced by disordered regions, (iii) affinity of the IDR to specific compartmentalisations in the nucleus reducing the search time, etc. The paper would be improved by a discussion over alternative mechanisms.

      We thank the reviewer for highlighting that our work delivers simple, interpretable and rigorously derived conclusions, backed by experimental comparison and concrete proposals for future studies.

      Regarding interactions outside the antenna region, Supplementary S10 shows that the non-specific IDR–DNA interactions (on the order of 1 kBT) only slightly alter the 3D diffusion coefficient and thus do not affect our conclusions regarding the optimal search process.

      We have also added sentences in the discussion section regarding the alternative mechanism.

      Reviewer #2 (Public review):

      Summary:

      This is an interesting theoretical exploration of how a flexible protein domain, which has multiple DNAbinding sites along it, affects the stability of the protein-DNA complex. It proposes a mechanism (”octopusing”) for protein doing a random walk while bound to DNA which simultaneously enables exploration of the DNA strand and stability of the bound state.

      Strengths:

      Stability of the protein-DNA bound state and the ability of the protein to perform 1d diffusion along the DNA are two properties of a transcription factor that are usually seen as being in opposition of each other. The octopusing mechanism is an elegant resolution of the puzzle of how both could be accommodated. This mechanism has interesting biological implications for the functional role of intrinsically disordered domains in transcription factor (TF) proteins. They show theoretically how these domains, if flexible and able to make multiple weak contacts with the DNA, can enhance the ability of the TF to efficiently find their binding site on the DNA from which they exert control over the transcription of their target gene. The paper concludes with a comparison of model predictions with experimental data which gives further support to the proposed model. Overall, this is an interesting and well executed theoretical paper that proposes an interesting idea about the functional role for IDR domains in TFs.

      Weaknesses:

      IDR domains are assumed flexible which I believe is not always the case. Also, I’m not sure how ubiquitous are the assumed binding sites on the DNA for multiple subdomains along the IDR. These assumptions though seem like interesting points of departure for further experiments.

      We thank the reviewer for their careful and insightful evaluation of our work. In particular, we appreciate your emphasis on the inherent trade-off between binding stability and one-dimensional diffusion, and your recognition of how the octopusing mechanism elegantly reconciles these conflicting requirements.

      To address the flexibility of TFs with IDRs, we incorporated the spring’s rest length—effectively introducing tunable rigidity—in Supplementary Section S1, and we show that our design principles for binding probability remain robust. Indeed, this is a highly interesting point; a comprehensive study will require more detailed modeling alongside experimental validation.

      We acknowledge that the current evidence for IDR-directed DNA binding is primarily derived from a limited number of well-studied cases, particularly Msn2 in yeast, and the ubiquity of this mechanism across diverse transcription factors remains to be established.

      Reviewer #1 (Recommendations for the authors):

      The paper jumps to fast to the results, an larger introduction might improve the paper, the current introduction jumps too fast to results. Further, line 50, I don’t think that the figure is properly referenced. The formula 2 is confusing since what is the target volume V1 is not explained in the context of the formula, please expand the explanations.

      We appreciate the reviewer’s valuable recommendations. We have expanded the Introduction, clarified V<sub>1</sub>, and updated the line 50.

      Reviewer #2 (Recommendations for the authors):

      I have some mostly minor suggestions to the authors for improving the manuscript:

      In the abstract and introduction on at least two occasions the authors talk about IDRs as though they’re necessarily flexible. My understanding is that, while this is a very reasonable assumption, I don’t think this is something we know with any certainty for most IDRs. If the authors agree with my assessment I think they should reflect this uncertainty in the writing.

      Thank you for the recommendations. We revised the wording to reflect the uncertainty, changing it to: “... commonly assumed to behave as a long, flexible...” and “...can be assumed as flexible....”.

      It took me a bit of time to figure out what’s going on in Figure 1b. To help the reader I would suggest labeling the DBD targets (yellow square) and the IDR targets (gray squares) as such. The figure also left me guessing whether the DBD domain can bind to the IDR targets non-specifically? (I presume not.) This also brought a slightly bigger question into focus for me, wouldn’t the presence of the IDR binding ”sites” (since these ”sites” are on the protein I think the term ”domains” instead of ”sites” ) mean that this would increase the time the protein is bound non-specifically somewhere far from the target thereby increasing the search time. Or is the ability of the protein to bind specifically to DNA away from the DBD target ignored?

      We have labeled the DBD targets and IDR targets in the figure. ‘Domains’ usually refers to structured parts; we keep using ‘sites’ and clarify that they correspond to short linear motifs.

      The reviewer is correct. Our model omits any non-specific binding between the DBD and IDR-binding targets, as well as between the TF and other DNA regions. If such interactions were to substantially lengthen the search time, they would effectively revert our mechanism to the classical bacterial facilitateddiffusion model, which is generally considered inappropriate for IDR-mediated TF search in eukaryotic cells. However, Supplementary Figure S10 demonstrates that non-specific IDR–DNA interactions induce only marginal changes in the effective three-dimensional diffusion coefficient within complex chromatin environments, and therefore do not alter our conclusions regarding the optimal search process.

      In Equation 2 and the text that follows I was left wondering what is the target volume V1. Also, I think it would be helpful to the reader to give them a sense of scale for the dimension full quantities appearing in Equation 2. This is done later when comparing the theory to experimental data, but I think it would be helpful to give a sense of size earlier in the manuscript.

      V<sub>1</sub> denotes the volume of the IDR–binding target region, which is on the order of bp<sup>3</sup>. f(d,l<sub>0</sub>) has units of inverse volume. We have included the units and specified the order of magnitude of V<sub>1</sub> after Equation 2.

      The binding energy EB is discussed a number of times but it wasn’t clear to me that this quantity referred to the energy per IDR site on the DNA or the total energy when the IDR is bound to DNA. In Figure 1 it would seem that the model allows only one IDR domain bound at a given time but I think the model allows for multiple IDR domains to be bound to the IDR target sites simultaneously. Right? Maybe make this clear in the Figure and the text.

      E<sub>B</sub> denotes the binding energy per binding site, where each site corresponds to a short linear motif. Yes, we allow for multiple IDR domains to be bound to the IDR target sites simultaneously. We have clarified the definition of E<sub>B</sub> and adjusted the figure slightly to avoid any misunderstanding.

      After Eq 4 the discussion suggests that for ϕ << 1 the threshold energy is much greater than kBT, but that’s hard to imagine given that the logarithmic dependence of the latter on the former. Also in Figure 2d it seems that the threshold energy is about 8 kBT. Clearly this is not a big deal, just thought the authors might want to revise the language.

      Thank you. We now clarify the sentence using the representative values of ϕ and E<sub>th</sub> after Equation 4.

      Right after Figure 2 there is a discussion of the different parameters that the authors vary. I suggest having a figure that illustrates these parameters (possibly in Figure 1b) to make it easier to follow the discussion.

      We have added explanations of the relevant parameters in Figure 1 for clarity.

      When discussing the dynamics of search the result stated is that the search time is minimum for a specific value of R. I think it would be useful to translate this into a TF concentration. Also, if R represents the radius of the cells nucleus 1/6 um is almost an order of magnitude smaller than the size of a typical nucleus. Is this a worry? Either way some clarification of this number would be helpful.

      Thank you for the suggestion. As noted later in this section, we have translated R into an equivalent TF concentration, and we clarify that we assume the scaling of the minimum search time remains unchanged when extrapolated to the size of a typical nucleus.

      There is a comment regarding the role of the DNA persistence length and how it was not accounted for. It would be helpful if the authors could add a sentence or two explains how a folded DNA conformation, as is the case in the nucleus, would affect their calculation. (So that the reader gets an idea without having to get into the details described in the Supplement).

      Thank you. We have revised the sentence to: “We have verified that reducing the DNA persistence length, which promotes increased DNA coiling, results in only a modest increase in mean search time. Even under extreme coiling conditions, the increase remains below 30% of the baseline value, as detailed in Supplementary S9.”.

    1. eLife Assessment

      This paper reports a useful low-cost platform for studying mosquito behaviors such as flight activity, sugar feeding, and host-seeking responses over the course of several weeks, and demonstrates key applications of this platform. While the authors provide a biological proof of principle, the evidence that supports the validation of the tracking algorithm is incomplete; it lacks biological replicates, independent confirmation of the tracking algorithm, and data on mosquito survival.

    2. Reviewer #1 (Public review):

      Summary:

      This paper describes a behavioral platform "BuzzWatch" and its application in long-term behavioral monitoring. The study tested the system with different mosquito species and Aedes aegypti colonies and monitored behavioral response to blood feeding, change in photoperiod, and host-cue application at different times of the day.

      Strengths:

      BuzzWatch is a novel, custom-built behavioral system that can be used to monitor time-of-day-specific and long-term mosquito behaviors. The authors provide detailed documentation of the construction of the assay and custom flight tracking algorithm on a dedicated website, making them accessible to other researchers in the field. The authors performed a wide range of experiments using the BuzzWatch system and discovered differences in midday activity level among Aedes aegypti colonies, and reversible change in the daily activity profile post-blood-feeding.

      Weaknesses:

      The authors report the population metric "fraction flying" as their main readout of the daily activity profile. It is worth explaining why conventional metrics like travel distance/activity level are not reported. Alternatively, these metrics could be shown, considering the development and implementation of a flight trajectory tracking pipeline in this paper.

      The authors defined the sugar-feeding index using occupancy on the sugar feeder. However, the correlation between landing on the sugar feeder and active sugar feeding is not mentioned or tested in this paper. Is sugar feeding always observed when mosquitoes land on the sugar feeder? Do they leave the sugar feeding surface once sugar feeding is complete? One can imagine that texture preference and prolonged occupancy may lead to inaccurate reporting of sugar feeding. While occupancy on the sugar feeder is an informative behavioral readout, its link with sugar feeding activity (consumption) needs to be evaluated. Otherwise, the authors should discuss the caveats that this method presents explicitly to avoid overinterpretation of their results.

      Throughout the manuscript, the authors mentioned existing mosquito activity monitoring systems and their drawbacks. However, many of these statements are misleading and sometimes incorrect. The authors claim that beam-break monitors are "limited to counting active versus inactive states". Though these systems provide indirect readouts that may underreport activity, the number of beam-breaks in a time interval is correlated with activity level, as is commonly used and reported in Drosophila and mosquitoes and a number of reports in mosquitoes an updated LAM system with larger behavioral arenas and multiple infrared beams. The authors also mentioned the newer, camera-based alternatives to beam-break monitors, but again referred to these systems as "only detecting activity when a moving insect blocks a light beam"; however, these systems actually use video tracking (e.g., Araujo et al. 2020).

      The fold change in behavior presented in Figure 4D is rather confusing. Under the two different photoperiods, it is not clear how an hourly comparison is justified (i.e., comparing the light-on activity in the 20L4D condition with scotophase activity in the 12L12D condition). The same point applies to Figure 4H.

      The behavioral changes after changing photoperiod (Figure 4) require a control group (12L12D throughout) to account for age-related effects. This is controlled for the experiment in Figure 3 but not for Figure 4.

    3. Reviewer #2 (Public review):

      Summary:

      This study establishes a platform for studying mosquito flight activity over the course of several weeks and demonstrates key applications of such a paradigm: the comparison of daily activity profiles across different Aedes aegypti populations and the quantification of responses to physiological and environmental perturbations.

      Strengths:

      (1) Overall, the authors succeed in setting up a low-cost, scalable tracking system that stably records mosquito flight activity for several weeks and uses it to demonstrate compelling use cases.

      (2) The text is organized well, is easy to read, and is understandable for a broad audience.

      (3) Instructions for constructing housing and for performing tracking with a dedicated GUI are available on an accompanying website, with open-source (and well-organized) code.

      (4) A complementary pair of methods (one testing for activity signals at specific times of the day, and the other capturing broader daily patterns) is used effectively.

      Weaknesses:

      (1) In the interval-based GLMM results, since each time interval is tested independently, p-values should be corrected for multiple hypotheses (for instance, through controlling the false discovery rate).

      (2) The accompanying GUI application needs some modifications to fully work out of the box on a sample video.

    4. Reviewer #3 (Public review):

      Summary:

      The authors in this paper introduce BuzzWatch, an open-source, low-cost (200-300 Euros) platform for long-term monitoring of mosquito flight and behavior. They use a Raspberry Pi with a Noirv2 Camera set up under laboratory conditions to observe 3 different species of mosquitoes. The system captures a variety of multimodal data, like flight activity, sugar feeding, and host-seeking responses, with the help of external modules like CO2 and fructose-soaked cottons. They also release a GUI in addition to automated tracking and behaviour analysis, which doesn't run on Pi but rather on a personal laptop.

      Four main use cases are demonstrated:

      (1) Characterizing diel rhythms in various Aedes aegypti populations.

      (2) Differentiating behaviors of native African vs. invasive human-adapted subspecies.

      (3) Assessing physiological (blood-feeding) and environmental (light regime) perturbations.

      (4) Testing time-of-day variation in responses to host-associated cues like CO₂ and heat.

      Description (Strengths):

      (1) The authors introduce a low-cost, scalable system that uses flight tracking in 2D as an alternative to 3D multi-camera systems.

      (2) Due to the low pixel quality required by the system, they can record for weeks at a time, capturing long temporal and behavioral activities.

      (3) They also integrate external modules such as lights, CO2, and heat as a way to measure responses to a variety of stimuli.

      (4) They also introduce a wiki as a guide for building replication and a help in using the GUI module.

      (5) They implement both GLMM hourly and PCA of behavior data.

      Limitations - Major Comments:

      (1) Most experiments are only done with single replicates per colony. If the setup is claimed to be cheap and replicable, there should be clearer replicates across experiments.

      (2) No external validation for the flight tracking algorithm using manual annotation or comparison with field data. The authors focus early on biological proof of principle, but the validity of the tracking algorithm is not presented. How accurate is the algorithm at classifying behaviours (e.g., vs human ground truth)? How reliable is tracking?

      (3) Why develop a custom GUI instead of using established packages such as rethomics (https://rethomics.github.io/) that are already available for behavioral analysis?

      (4) Why use RGB light strips when perceptual white light for humans is not relevant for mosquitoes? The choice of lighting should be based on the mosquito's visual perception. - https://pmc.ncbi.nlm.nih.gov/articles/PMC12077400/ .

      (5) Why use GLMMs instead of GAMs (with explicit periodic components)? With GLMMs, you do not account for temporal structure, which is highly relevant and autocorrelated in behavioral time series data.

      (6) What is the proportion of mosquitoes that stay alive throughout the experiments? How do you address dead animals in tracking? No data are available on whether all mosquitoes made it through the monitoring period. No survival data is mentioned in the paper, and in the wiki, it is not clear how it is used or how it affects the analyses - https://theomaire.github.io/buzzwatch/analyze.html#diff-cond .

      (7 )The sugar feeding behavior is not manually validated.

      (8) Figure 4d is difficult to understand - how did you align time? Why is ZT4 aligning with ZT0? Should you "warp" the time series to compare them (e.g., from dawn to dusk)?

      (9) No video recordings are made available for demonstration or validation purposes.

      Appraisal

      (1) The core conclusions---that BuzzWatch can capture multiscale mosquito behavioral rhythms and quantify the effect of genetic, environmental, and physiological variation - show promise but require stronger validation.

      (2) Statistical approaches (GLMM, PCA) are chosen but may not be optimal for temporal data with autocorrelation.

      (3) The host-seeking module shows a differential response, which is a potentially valuable feature.

    1. eLife Assessment

      This valuable work shows that subcortically-generated behaviors, like grooming, can have widespread representations in cortical activity. While the evidence is solid, additional analyses are necessary to strengthen the claims associated with outsized cortical representations of grooming onsets, as well as to address atypical grooming events. This work will be of interest to neuroscientists interested in how subcortically-generated behaviors are represented across the cortex.

    2. Reviewer #1 (Public review):

      In their manuscript, Michelson et al use a combination of mesoscopic 1p and single-cell resolution 2p imaging to characterise cortical encoding of grooming behaviour. Despite their subcortical locus of control (and non-reliance on cortex), the authors report that grooming movements are accompanied by widespread activation of dorsal cortex. Different grooming movements elicit distinct spatiotemporal cortical activity patterns. They find that cortical engagement is greater at the beginning of grooming episodes than at their end. They also report greater cortical activation for atypical unilateral grooming movements seen under head-restraint in comparison to cortical activity during bilateral movements typical of unrestrained or spontaneous grooming.

      While this is not the first study to report cortical representations of subcortically controlled behaviours, and the authors themselves cite many previous reports of cortical activation during locomotion and even grooming (Sjöbom et al 2020), the value of the present study lies in their use of imaging to reveal the widespread nature of cortical activation during execution of a complex, innate behaviour. I also appreciate the systematic approach used by the authors to break down grooming episodes into their constituent movements and reveal their transition structure.

      I do have concerns, however, that some of the authors' claims are insufficiently supported by their results, and more analysis is required to convincingly rule out alternative interpretations.

      (1) One possible explanation for the gradual decline in cortical activity is that unilateral movements associated with greater cortical activation dominate early in grooming episodes, whereas bilateral movements that elicit weaker cortical activity dominate later (Figure 3G and 2C). The authors could check whether cortical activity associated with the *same* grooming movement is constant or declines during such episodes. A related point: doesn't the regression analysis shown in Figure 3, Supplement 2, assume that a stationary relationship between movement and spatiotemporal patterns of cortical activity?

      (2) From the decline in cortical responses during long grooming episodes, the authors suggest that "mesoscale cortical activity mostly reflects the initiation of subcortically-mediated behaviors, rather than the behavior itself". The authors have taken a lot of trouble to come up with a rich, detailed segmentation and clustering of the grooming behaviour into its constituent movements (Figure 1). Therefore, I am somewhat surprised that they make this claim solely from analysis of averaged cortical activity during nearly minute-long grooming episodes rather than a higher time resolution analysis of transitions between distinct grooming movements (like the prior study by Sjöbom et al and related work in striatal encoding of innate movement sequences by Markowitz et al).

      (3) The authors find that unilateral, atypical grooming movements elicit cortical activity that is distinct from the more naturalistic bilateral movements. They interpret this as reflecting the temporal transition structure of the behaviour. However, an alternative explanation is that the differences (or similarities) in evoked activity simply reflect differences (or similarities) in the kinematics of these movements, with bilateral movements appearing more similar to each other than to unilateral movements. A related point: there is little description of the "non-grooming forelimb movements". Were these kinematically similar to the unilateral forelimb movements, which may explain why they cluster together in Figure 4H?

      (4) Page 13, last paragraph: the authors suggest that similar encoding of non-grooming forelimb movements and unilateral grooming movements may reflect a shared reliance on the cortex. This is rather speculative. Several studies have demonstrated that voluntary unilateral movements employed for reaching or lever pressing are not generally reliant on the cortex (Whishaw et al, Beh Brain Res, 1991; Kawai et al, 2015). There isn't, in my opinion, a broad consensus for the authors' statement that "reaching for food is a cortex-dependent action". Rather than extrapolating from past studies, could the authors not experimentally assess whether unilateral grooming movements are more sensitive to cortical silencing than bilateral ones, possibly revealing a cortical locus of control?

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Michelson, Gupta, and Murphy use calcium imaging to map the distribution of neural activity across the cerebral cortex of grooming, head-restrained mice. Animals groomed spontaneously and in response to wetting of the face. Individual movement elements, such as bilateral strokes across the face, resembled those observed in freely-moving animals. Sequencing of movement elements was structured, but did not consist of full "syntactic grooming chains." Widefield imaging across the cortex revealed distinct patterns of activity for distinct movement elements. Individual neurons responded strongly during movement and had largely similar properties across cortical areas.

      Strengths:

      In my opinion, this is a solid paper that will be of interest to the mouse sensorimotor neuroscience community. The experiments are technically sound, the text is well-written, and the figures are clear. The activity maps are presented in standardized Allen Atlas coordinates, and I expect they will be very useful for future studies of orofacial and limb movement.

      Weaknesses:

      While the manuscript provides a valuable description of cortical activity during head-restrained grooming, I think it could engage a bit more with contemporary theories and debates in cortical physiology and motor control. The Abstract nicely highlights an apparent paradox: the motor cortex sends strong projections to the spinal cord, and is strongly modulated during behaviors like grooming. Nevertheless, blocking corticospinal traffic by inactivating or lesioning the motor cortex leaves such behaviors intact. There are several potential resolutions to this paradox. First, cortical activity during grooming could be confined to an "output-null" subspace that is responsible for monitoring sensorimotor events and preparing voluntary movements, but does not drive muscle activity (c.f. work in the macaque: Kaufman et al., Nature Neuroscience 2014; Churchland & Shenoy, Nature Reviews Neuroscience 2024). Second, cortical activity during grooming could be transmitted to lower centers, but gated out through inhibition. Third, it is possible that cortical activity in intact animals does contribute to muscle activation during grooming, but following a lesion or inactivation, other descending pathways compensate for the cortical deficit. The authors might wish to discuss their findings in light of these considerations.

      In the first paragraph of the Introduction, it could be made clearer which results are specific to mice. The Niell & Stryker finding, for example, holds in mice, but not marmosets (Liska et al., eLife 2024).

      The "hotspots" in Figure 3G appear to be more anterior during bilateral elliptical than unilateral elliptical movements. How do the authors interpret this finding?

      The distribution of single-neuron responses looks relatively similar across cortical areas, including forelimb, hindlimb, and trunk somatosensory cortex, and primary and secondary forelimb motor cortex. What do the authors make of this?

    4. Reviewer #3 (Public review):

      Summary:

      The authors use a combination of a head-fixed grooming paradigm, single-photon mesoscale, and wide-field-of-view two-photon calcium imaging to characterize cortical activity patterns during evoked grooming. Previous work has shown that grooming behavior does not require cortex, but that there are neuronal representations of grooming in motor cortex. The authors extend these findings by showing cortex-wide activation patterns at the meso-scale that relate to distinct grooming elements. This activation is strongest at grooming onset, but declines over the course of extended grooming periods. They also find similar activity patterns during licking/drinking behavior. Two-photon imaging further revealed that individual neurons across the cortex are preferentially activated by grooming. While their activity also declines after grooming onset, they remain active throughout grooming periods. This work extends previous findings by revealing that grooming and other subcortically-generated behaviors may be represented not only in motor cortex, but across dorsal cortex, both on the mesoscale and single neuron levels. These findings may lead to further investigation into the role of cortical activity during subcortically generated behaviors.

      Strengths:

      (1) Detailed characterization of grooming behavior in a head-fixed paradigm.

      (2) Combination of single photon mesoscale and two-photon wide field-of-view imaging to characterize grooming (and licking)-related activity across dorsal cortex on multiple levels

      Weaknesses:

      (1) The behavior observed in the head-fixed grooming paradigm only partially resembles spontaneous grooming, lacking typical elements of the syntactic chain, while additionally evoking non-typical behaviors, resembling unilateral reaches, making the interpretation of the observations and their relevance to natural behaviors difficult. Furthermore, the nature of the non-typical movements (which may be cortex-dependent while typical grooming is not) is not explored.

      (2) Two important findings in relation to the neural representations of individual grooming behaviors remain unclear:

      a) The authors state that individual grooming behaviors did not have distinct neuronal representations (except unilateral grooming; Figure 4G) - it remains unclear how this fits with the observation of distinct activation maps during the different grooming behaviors. Should this differential activation not also correspond to distinct activation patterns of 'grooming' neurons across the cortex? Or do they mean that the activity in the 'grooming' neurons is not consistent across grooming instances and therefore no distinct representation can be detected?

      b) The authors state that the 'typical' grooming behaviors do not have consistent activation patterns across animals (Figure 3 and supplements). It remains, therefore, unclear what the averaged activation maps really represent. Furthermore, this observation leaves several open questions: Are the activation patterns consistent in individual animals? Do differences across animals emerge due to differences in their behavior? And most importantly, can the actual behavior be decoded from the activation patterns?

      (3) Multiple statements/conclusions are not supported by quantification of the data, but only by qualitative assessments, e.g.: lines 433-435: "In general, the maximally activated networks involved in licking and unilateral grooming behaviors 'appeared' to be the most consistent across animals compared to the bilateral grooming movements (Figure 3G)."; 436-437: "Averaged cortical activation maps associated with licking and elliptical behaviors were 'qualitatively similar' between evoked and spontaneous sessions, where the water drop was not applied".; 480-482: "The unique explained variance maps for the licking behavior 'differed' in the drinking context compared to the grooming context (Figure 3-figure supplement 3F)." The lack of quantification leaves the significance of these observations unclear.

      (4) It remains unclear what the ongoing activity in 'grooming' neurons represents, since there is no detailed analysis of the relationship between activity and the detailed kinematics of the grooming movements.

      The authors show that neuronal representations of grooming and other subcortical behaviors can be found across dorsal cortex and that these representations are at least to some degree specific to distinct behavioral elements. While this study does not reveal functional insights into the role of cortical representations of subcortically-generated behaviors, it is a step towards more in-depth studies. In the future, it will be important to determine whether these representations are efference copies or sensory-driven, or whether they affect the behavior, and if so, under which circumstances.

    Annotators

    1. And how will you enquire, Socrates, into that which you do not know?What will you put forth as the subject of enquiry? And if you find what you want,how will you ever know that this is the thing which you did not know?

      "everything is a unknown unknown"

    Tags

    Annotators

    1. According to the author, monuments give life and power to the past. They remind us of things we do not fully know, stories we cannot touch, and histories we may never uncover.

    2. I believe the author wants us to understand why history is full of silences. Some events leave traces while others do not, and those in power decide what counts as a fact and what gets recorded as a source. This is very accurate. In the past, when historians wrote about Africa and its people, they often dehumanized the continent and its inhabitants. Even today, those writings continue to shape negative perceptions about Africa.

    3. An essential point to remember is the role of “power” in shaping history. To fully understand the past, we must examine how power operates and influences every part of the narrative.

    4. I completely agree with the author. when an author tells a story, something is always left out. No account is ever complete, sometimes because of the author’s perspective or bias, sometimes because facts are missing or hidden, and sometimes because details are intentionally omitted. That’s why readers should examine and read critically a the content. Identify potential gasp and consult additional source to recover what was left out.

    1. Communist members were allowed to join the KMT on an individual basis.

      I get the feeling the KMT were not too keen on this communism business.

    2. In 1923, Sun and Soviet representative Adolph Joffe in Shanghai pledged Soviet assistance to China's unification in the Sun–Joffe Manifesto, a declaration of cooperation among the Comintern, KMT, and the Chinese Communist Party (CCP)

      America must have hated this.

    1. Molecular studies have corroborated that these taxonomic units represent genetically distinct groups, suggesting that the structure of the river basins can impose severe restrictions to gene flow, leading to population structuring and differentiation (Hollatz et al. 2011; Gravena et al. 2014, 2015; Hrbek et al. 2014).

      Practice annotation

    1. Chargement du livre EPUB... Configuration des interactions... ⚠️ Erreur de chargement Impossible de charger le livre EPUB. Le fichier est peut-être corrompu ou dans un format non supporté. ← Retour au workflow let book = null; let rendition = null; let displayed = null; let currentFontSize = 18; function updateLoadingDetails(message) { document.getElementById('loading-details').textContent = message; console.log('📚 EPUB:', message); } async function loadEpubFromWorkflow() { try { updateLoadingDetails('Récupération des données du workflow...'); // Récupérer les données du workflow depuis localStorage const workflowData = localStorage.getItem('reading-social-workflow'); if (!workflowData) { throw new Error('Aucune donnée de workflow trouvée dans localStorage'); } const parsedData = JSON.parse(workflowData); console.log('📚 Workflow data found:', parsedData); if (!parsedData.book) { throw new Error('Aucun livre trouvé dans les données du workflow'); } const bookData = parsedData.book; if (bookData.type !== 'uploaded-epub') { throw new Error(`Type de livre incorrect: ${bookData.type}. Type attendu: uploaded-epub`); } if (!bookData.fileArrayBuffer) { throw new Error('Aucun ArrayBuffer trouvé dans les données du livre'); } updateLoadingDetails('Reconstruction de l\'ArrayBuffer du fichier EPUB...'); // Reconstruire l'ArrayBuffer depuis l'array stocké const uint8Array = new Uint8Array(bookData.fileArrayBuffer); const arrayBuffer = uint8Array.buffer; console.log('📚 ArrayBuffer reconstructed:', arrayBuffer.byteLength, 'bytes'); // Mettre à jour les infos du livre document.getElementById('book-title').textContent = bookData.title || 'Livre EPUB'; document.getElementById('book-author').textContent = bookData.author || 'Auteur inconnu'; updateLoadingDetails('Initialisation d\'ePub.js moderne...'); // Créer le livre EPUB à partir de l'ArrayBuffer - API moderne book = ePub(arrayBuffer); updateLoadingDetails('Chargement des métadonnées...'); // Attendre que le livre soit prêt await book.ready; // Mettre à jour les informations si disponibles dans les métadonnées if (book.packaging && book.packaging.metadata) { const metadata = book.packaging.metadata; if (metadata.title) { document.getElementById('book-title').textContent = metadata.title; } if (metadata.creator) { document.getElementById('book-author').textContent = metadata.creator; } } updateLoadingDetails('Configuration du lecteur...'); // Créer la zone d'affichage rendition = book.renderTo("epub-container", { width: "100%", height: "100%", ignoreClass: "annotator-hl" // Pour Hypothesis }); updateLoadingDetails('Affichage du contenu...'); // Afficher le livre displayed = await rendition.display(); updateLoadingDetails('Configuration des interactions...'); // Écouter les événements de navigation rendition.on('locationChanged', (location) => { console.log('📚 Location changed:', location); updateNavigationButtons(); updateProgressInfo(location); }); // Masquer l'écran de chargement setTimeout(() => { document.getElementById('loading-screen').style.display = 'none'; updateNavigationButtons(); console.log('📚 EPUB reader ready!'); }, 1000); } catch (error) { console.error('❌ Error loading EPUB:', error); showError('Erreur lors du chargement: ' + error.message); } } function showError(message) { document.getElementById('error-message').textContent = message; document.getElementById('loading-screen').style.display = 'none'; document.getElementById('error-screen').style.display = 'flex'; } function updateProgressInfo(location) { const progressElement = document.getElementById('progress-info'); if (location && location.start && location.start.percentage !== undefined) { const percentage = Math.round(location.start.percentage * 100); progressElement.textContent = `${percentage}%`; } else { progressElement.textContent = 'Position inconnue'; } } function updateNavigationButtons() { const prevBtn = document.getElementById('btn-prev'); const nextBtn = document.getElementById('btn-next'); if (rendition && rendition.location) { prevBtn.disabled = rendition.location.atStart; nextBtn.disabled = rendition.location.atEnd; } else { prevBtn.disabled = false; nextBtn.disabled = false; } } function previousPage() { if (rendition) { rendition.prev(); } } function nextPage() { if (rendition) { rendition.next(); } } function toggleHypothesis() { if (window.hypothesis) { try { window.hypothesis.show(); console.log('💬 Hypothesis sidebar toggled'); } catch (e) { console.log('Hypothesis toggle error:', e); } } else { console.log('⏳ Hypothesis not loaded yet'); } } function goToTOC() { if (book && book.navigation) { // Afficher une liste simple de la table des matières const toc = book.navigation.toc; if (toc && toc.length > 0) { const tocText = toc.map((item, index) => `${index + 1}. ${item.label}`).join('\n'); const choice = prompt('Table des matières:\n\n' + tocText + '\n\nEntrez le numéro du chapitre (1-' + toc.length + '):'); if (choice && !isNaN(choice)) { const chapterIndex = parseInt(choice) - 1; if (chapterIndex >= 0 && chapterIndex < toc.length) { rendition.display(toc[chapterIndex].href); } } } else { alert('Aucune table des matières disponible'); } } } function changeFontSize(delta) { currentFontSize = Math.max(12, Math.min(32, currentFontSize + delta * 2)); if (rendition) { rendition.themes.fontSize(currentFontSize + 'px'); console.log('📚 Font size:', currentFontSize + 'px'); } } function goBack() { if (confirm('Voulez-vous vraiment retourner au workflow ?')) { window.location.href = 'group-creation-workflow-debug.html'; } } // Gestion des touches du clavier document.addEventListener('keydown', (e) => { if (e.key === 'ArrowLeft') { previousPage(); } else if (e.key === 'ArrowRight') { nextPage(); } }); // Démarrer le chargement au chargement de la page document.addEventListener('DOMContentLoaded', () => { console.log('📚 EPUB Reader initializing...'); // Vérifier que les dépendances sont chargées if (typeof JSZip === 'undefined') { console.error('❌ JSZip not loaded'); showError('JSZip library not loaded. Please refresh the page.'); return; } if (typeof ePub === 'undefined') { console.error('❌ ePub.js not loaded'); showError('ePub.js library not loaded. Please refresh the page.'); return; } console.log('✅ Dependencies loaded: JSZip:', typeof JSZip, 'ePub:', typeof ePub); loadEpubFromWorkflow(); }); CaptureDrag to outliner or UploadClose

      ll

    1. After initially allying with the Chinese Communist Party (CCP) in the First United Front, the party under Chiang purged communist members.

      I wonder if this is what lead to the civil war.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      The study analyzes the gastric fluid DNA content identified as a potential biomarker for human gastric cancer. However, the study lacks overall logicality, and several key issues require improvement and clarification. In the opinion of this reviewer, some major revisions are needed:

      (1) This manuscript lacks a comparison of gastric cancer patients' stages with PN and N+PD patients, especially T0-T2 patients.

      We are grateful for this astute remark. A comparison of gfDNA concentration among the diagnostic groups indicates a trend of increasing values as the diagnosis progresses toward malignancy. The observed values for the diagnostic groups are as follows:

      Author response table 1.

      The chart below presents the statistical analyses of the same diagnostic/tumor-stage groups (One-Way ANOVA followed by Tukey’s multiple comparison tests). It shows that gastric fluid gfDNA concentrations gradually increase with malignant progression. We observed that the initial tumor stages (T0 to T2) exhibit intermediate gfDNA levels, which in this group is significantly lower than in advanced disease (p = 0.0036), but not statistically different from non-neoplastic disease (p = 0.74).

      Author response image 1.

      (2) The comparison between gastric cancer stages seems only to reveal the difference between T3 patients and early-stage gastric cancer patients, which raises doubts about the authenticity of the previous differences between gastric cancer patients and normal patients, whether it is only due to the higher number of T3 patients.

      We appreciate the attention to detail regarding the numbers analyzed in the manuscript. Importantly, the results are meaningful because the number of subjects in each group is comparable (T0-T2, N = 65; T3, N = 91; T4, N = 63). The mean gastric fluid gfDNA values (ng/µL) increase with disease stage (T0-T2: 15.12; T3-T4: 30.75), and both are higher than the mean gfDNA values observed in non-neoplastic disease (10.81 ng/µL for N+PD and 10.10 ng/µL for PN). These subject numbers in each diagnostic group accurately reflect real-world data from a tertiary cancer center.

      (3) The prognosis evaluation is too simplistic, only considering staging factors, without taking into account other factors such as tumor pathology and the time from onset to tumor detection.

      Histopathological analyses were performed throughout the study not only for the initial diagnosis of tissue biopsies, but also for the classification of Lauren’s subtypes, tumor staging, and the assessment of the presence and extent of immune cell infiltrates. Regarding the time of disease onset, this variable is inherently unknown--by definition--at the time of a diagnostic EGD. While the prognosis definition is indeed straightforward, we believe that a simple, cost-effective, and practical approach is advantageous for patients across diverse clinical settings and is more likely to be effectively integrated into routine EGD practice.

      (4) The comparison between gfDNA and conventional pathological examination methods should be mentioned, reflecting advantages such as accuracy and patient comfort.

      We wish to reinforce that EGD, along with conventional histopathology, remains the gold standard for gastric cancer evaluation. EGD under sedation is routinely performed for diagnosis, and the collection of gastric fluids for gfDNA evaluation does not affect patient comfort. Thus, while gfDNA analysis was evidently not intended as a diagnostic EGD and biopsy replacement, it may provide added prognostic value to this exam.

      (5) There are many questions in the figures and tables. Please match the Title, Figure legends, Footnote, Alphabetic order, etc.

      We are grateful for these comments and apologize for the clerical oversight. All figures, tables, titles and figure legends have now been double-checked.

      (6) The overall logicality of the manuscript is not rigorous enough, with few discussion factors, and cannot represent the conclusions drawn.

      We assume that the unusual wording remark regarding “overall logicality” pertains to the rationale and/or reasoning of this investigational study. Our working hypothesis was that during neoplastic disease progression, tumor cells continuously proliferate and, depending on various factors, attract immune cell infiltrates. Consequently, both tumor cells and immune cells (as well as tumor-derived DNA) are released into the fluids surrounding the tumor at its various locations, including blood, urine, saliva, gastric fluids, and others. Thus, increases in DNA levels within some of these fluids have been documented and are clinically meaningful. The concurrent observation of elevated gastric fluid gfDNA levels and immune cell infiltration supports the hypothesis that increased gfDNA—which may originate not only from tumor cells but also from immune cells—could be associated with better prognosis, as suggested by this study of a large real-world patient cohort.

      In summary, we thank Reviewer #1 for his time and effort in a constructive critique of our work.

      Reviewer #2 (Public review):

      Summary:

      The authors investigated whether the total DNA concentration in gastric fluid (gfDNA), collected via routine esophagogastroduodenoscopy (EGD), could serve as a diagnostic and prognostic biomarker for gastric cancer. In a large patient cohort (initial n=1,056; analyzed n=941), they found that gfDNA levels were significantly higher in gastric cancer patients compared to non-cancer, gastritis, and precancerous lesion groups. Unexpectedly, higher gfDNA concentrations were also significantly associated with better survival prognosis and positively correlated with immune cell infiltration. The authors proposed that gfDNA may reflect both tumor burden and immune activity, potentially serving as a cost-effective and convenient liquid biopsy tool to assist in gastric cancer diagnosis, staging, and follow-up.

      Strengths:

      This study is supported by a robust sample size (n=941) with clear patient classification, enabling reliable statistical analysis. It employs a simple, low-threshold method for measuring total gfDNA, making it suitable for large-scale clinical use. Clinical confounders, including age, sex, BMI, gastric fluid pH, and PPI use, were systematically controlled. The findings demonstrate both diagnostic and prognostic value of gfDNA, as its concentration can help distinguish gastric cancer patients and correlates with tumor progression and survival. Additionally, preliminary mechanistic data reveal a significant association between elevated gfDNA levels and increased immune cell infiltration in tumors (p=0.001).

      Reviewer #2 has conceptually grasped the overall rationale of the study quite well, and we are grateful for their assessment and comprehensive summary of our findings.

      Weaknesses:

      (1) The study has several notable weaknesses. The association between high gfDNA levels and better survival contradicts conventional expectations and raises concerns about the biological interpretation of the findings.

      We agree that this would be the case if the gfDNA was derived solely from tumor cells. However, the findings presented here suggest that a fraction of this DNA would be indeed derived from infiltrating immune cells. The precise determination of the origin of this increased gfDNA remains to be achieved in future follow-up studies, and these are planned to be evaluated soon, by applying DNA- and RNA-sequencing methodologies and deconvolution analyses.

      (2) The diagnostic performance of gfDNA alone was only moderate, and the study did not explore potential improvements through combination with established biomarkers. Methodological limitations include a lack of control for pre-analytical variables, the absence of longitudinal data, and imbalanced group sizes, which may affect the robustness and generalizability of the results.

      Reviewer #2 is correct that this investigational study was not designed to assess the diagnostic potential of gfDNA. Instead, its primary contribution is to provide useful prognostic information. In this regard, we have not yet explored combining gfDNA with other clinically well-established diagnostic biomarkers. We do acknowledge this current limitation as a logical follow-up that must be investigated in the near future.

      Moreover, we collected a substantial number of pre-analytical variables within the limitations of a study involving over 1,000 subjects. Longitudinal samples and data were not analyzed here, as our aim was to evaluate prognostic value at diagnosis. Although the groups are imbalanced, this accurately reflects the real-world population of a large endoscopy center within a dedicated cancer facility. Subjects were invited to participate and enter the study before sedation for the diagnostic EGD procedure; thus, samples were collected prospectively from all consenting individuals.

      Finally, to maintain a large, unbiased cohort, we did not attempt to balance the groups, allowing analysis of samples and data from all patients with compatible diagnoses (please see Results: Patient groups and diagnoses).

      (3) Additionally, key methodological details were insufficiently reported, and the ROC analysis lacked comprehensive performance metrics, limiting the study's clinical applicability.

      We are grateful for this useful suggestion. In the current version, each ROC curve (Supplementary Figures 1A and 1B) now includes the top 10 gfDNA thresholds, along with their corresponding sensitivity and specificity values (please see Suppl. Table 1). The thresholds are ordered from-best-to-worst based on the classic Youden’s J statistic, as follows:

      Youden Index = specificity + sensitivity – 1 [Youden WJ. Index for rating diagnostic tests. Cancer 3:32-35, 1950. PMID: 15405679]. We have made an effort to provide all the key methodological details requested, but we would be glad to add further information upon specific request.

    1. features

      Some of these features (like written rules or trained lawyers) also appear in other cultures, but: • In the Western tradition, law is given much greater importance. • The attitude is different: law is not just a tool, but a fundamental element of society.

    1. we couldlearn from the history and design a better file format:• Each part of a format must be unambiguously located. Itis a bad idea to rely on fragile signature searching.• Conflicting data resolution should be clearly defined,ideally by avoiding redundant data in the first place.• Leave room for backward-compatible feature extensions.Make it clear whether an extension is enabled or not.• Fields that are allowed to be silently ignored should notcontain security-sensitive data. For example, the extrafields in ZIP should not contain filenames and sizes.

      Ideally, one would (above all) maintain compatibility with at least ISO/IEC 21320-1:2015 and, as a baseline concern, follow the lead of the design of PNG and specify a means by which to identify definitively (a) whether a data block at a given offset is a ZIP-level "chunk" versus random noise, and if so (b) the extent—i.e. size—of said chunk, so that implementations know how to confidently determine the chunk boundaries to skip over them, even if they don't have intrinsic knowledge the offsets and bitwidths of the fields in that struct.

    2. Normalize the ZIP file. To exploit ZIP parsing ambiguities,the attacker usually needs to carefully manipulate the fieldsof a ZIP file, which cannot be achieved by a regular ZIParchiver. Most ambiguities will disappear if the ZIP file isfirst extracted and then repacked. Therefore, if we care aboutonly the contents but not the integrity of the whole ZIP file,we can normalize the ZIP file by extracting and repacking itbefore processing.

      This really seems like the best strategy—to ensure that Parser2 sees content the same way that Parser1 sees it, you can effectively give Parser2 Parser1's powers by having Parser1 "talk" to Parser2 by way of a specially prepared input. (It just happens to be the case that that input also looks like a ZIP archive.)

      This does require some validation of the suitability for Parser1 and Parser2 to work together, but it's not any more difficult than the previous task at hand whereby you expect/require Parser1 and Parser2 to behave exactly the same for all inputs. The task is made slightly easier. And to this end, a test suite (derived from the work from this paper) could be distributed for the purpose of benchmarking implementations for compatibility matches.

      This could be facilitated by the appropriate libraries/packages all being patched to support a "normalize" (i.e. "repack") operation (and for this to be the norm among all implementations) explicitly for this purpose.

  2. drive.google.com drive.google.com
    1. As for us, we find ourselves secure from all these inconveniences, and we can always say, more truly than thou, that we are at home everywhere, because we set up our wigwams with ease wheresoever we go, and without asking permission of anybody. Thou reproachest us, very inappropriately, that our country is a little hell in contrast with France, which thou comparest to a terrestrial paradise, inasmuch as it yields thee, so thou safest, every kind of provision in abundance.

      I found this to be interesting because we often hear the perspective of a European describing how much "better off" European life is than the lives of Natives. However, the Gaspesian Man provides insight into what many Natives might have been thinking during the time period. He explains that they are better off than the French because of their culture and understanding of their environment - a point of view we haven't seen yet in the readings.

    1. eLife Assessment

      This valuable study applies transcranial direct current stimulation (tCDS) to the prefrontal cortex of non-human primates during two states: (1) propofol-induced unconsciousness; and (2) wakeful performance of a fixation task. The analysis offers incomplete evidence to indicate that the effect of tDCS on brain dynamics, as recorded with functional magnetic resonance imaging, is contingent on the state of consciousness during which the stimulation is applied. The findings will be of interest to researchers interested in brain stimulation and consciousness.

    2. Reviewer #2 (Public review):

      General comments

      We thank the reviewers and editor for their thoughtful feedback. We are glad that the minor comments appear resolved. In this revision, we added subject-specific analyses, further FC comparisons, and clarified our rationale for stimulation parameters. We acknowledge that two concerns remain: (1) the 1 mA-2 mA sequence may introduce confounds, and (2) electric field modeling was not included due to technical limitations. We now explicitly note these as limitations in the manuscript and provide justification and discussion accordingly.

      Major comments

      R.2.1. For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      R.2.1 Authors' answer: We thank the Reviewer for the comments. First, regarding the reviewer's statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes, because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.).

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      Follow-up comment: Thank you for the detailed response and for referencing both experimental data and prior literature. While I appreciate the discussion on the lack of functional asymmetry and reduced lateralization in macaques, my original concern was about the physical distribution of the electric field (EF) due to different anode placements. Functional connectivity outcomes do not necessarily reflect EF symmetry, and without EF modeling, it's difficult to determine whether the stimulation affected both hemispheres equally. I understand the challenges of NHP-specific modeling, but even a simplified simulation or acknowledgment of this limitation in the manuscript would help clarify the interpretability of your results.

      R.2.2. For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.<br /> R.2.2 Authors' answer: We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during

      Follow-up comment: Thank you for the clarification and for acknowledging the potential for 1 mA after-effects. While I appreciate the authors' transparency and the amendment to the manuscript, I still find it important that the limitation be clearly stated in the Discussion section. The fact that 2 mA stimulation always followed 1 mA introduces a potential confound, making it difficult to attribute observed changes uniquely to 2 mA. If a counterbalanced design was not feasible, I would recommend explicitly noting this as a limitation in the interpretation of dose-dependent effects.

      R.2.3. The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that non-invasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      R.2.3. Authors' answer: First of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a 'better' measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven't already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system's activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did, by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis. In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4). We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:<br /> Follow-up comment: Thank you for the detailed and comprehensive response. The clarification regarding the use of SFC dynamics and the additional analyses provided are convincing.

      R2.4. The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      R.2.4. Authors' answer: We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes.

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4). We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      Follow-up comment: Thank you for addressing this concern and for providing the individual monkey analysis. The additional figures and statistical explanations are helpful and appreciated.

      R2.5. Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately.

      R.2.5. Authors' answer: We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      "Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys."

      Follow-up comment: Thank you for clarifying the rationale behind applying only anodal stimulation under anesthesia. While I appreciate the experimental constraints and the translational motivation, I would still encourage the authors to explicitly acknowledge in the Discussion that the absence of a cathodal condition under anesthesia limits the ability to dissociate polarity-specific effects from state-dependent effects. This clarification would help temper the conclusions and better reflect the scope of the current dataset.

    3. Reviewer #3 (Public review):

      Summary:

      This study used transcranial direct current stimulation administered using small 'high definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess neuromodulatory effects of stimulation. The authors report on modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys.

      Strengths and Weaknesses:

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness. The authors should be commended for undertaking this challenging and important work.

      The lack of a sham stimulation condition is a limitation of the study, as it somewhat restricts the certainty with which the results can be attributed to the active stimulation as opposed to other external factors such as drowsiness or fatigue as a result of the experimental procedure? Nevertheless, I acknowledge the demanding nature of performing this work in non-human primates and that only runs with high fixation rates were included, which should have helped reduce any fatigue-related effects.

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, it is possible that the initial 1 mA stimulation block might have caused some level of plasticity-related changes in neural activity that could have potentially interfered with the following 2 mA block due to the lack of a sufficient wash-out period. This potentially limits the findings from the 2 mA block as they cannot be interpreted as completely separate to the initial 1 mA stimulation period, given that they were administered consecutively. However, I do acknowledge the author's point that differences between the 1 mA post-stimulation and baseline conditions were not significantly different, which provides some evidence against this possibility.

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is potentially problematic, as it might have resulted in stimulation over different brain regions. Electric field models of brain current flow for the monkeys would really be needed to understand with reasonable certainty, however, I recognise that these models are generally designed for human studies making their integration into non-human primate studies challenging.

      Finally, the sample size is obviously small. However, I realise this is often a limitation in non-human primate research, which can be both expensive and labour intensive.

      Assessment:

      This manuscript presents some novel insights into the effects of transcranial direct current stimulation on functional brain dynamics in awake and anaesthetised monkeys using MRI-based connectivity indices. Overall, the study presents several interesting and potentially impactful findings regarding stimulation-induced changes in brain activity. There are some limitations, such as the small sample size, lack of a sham stimulation control, and lack of electric field models, which, if included, would have, in my view, further helped improve the rigour of the study. Nevertheless, the manuscript presents several important findings, which warrant further analysis in future work.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this work, the authors apply TDCS to awake and anesthetized macaques to determine the effect of this modality on dynamic connectivity measured by fMRI. The question is to understand the extent to which TDCS can influence conscious or unconscious states. Their target was the PFC. During the conscious states, the animals were executing a fixation task. Unconsciousness was achieved by administering a constant infusion of propofol and a continuous infusion of the muscle relaxant cisatracurium. They observed the animals while awake receiving anodal or cathodal hd-TDCS applied to the PFC. During the cathodal stimulation, they found disruption of functional connectivity patterns, enhanced structure-function correlations, a decrease in Shannon entropy, and a transition towards patterns that were more commonly anatomically based. In contrast under propofol anesthesia anodal hd-TDCS stimulation appreciably altered the brain connectivity patterns and decreased the correlation between structure and function. The PFC stimulations altered patterns associated with consciousness as well as those associated with unconsciousness.

      Strengths: 

      The authors carefully executed a set of very challenging experiments that involved applying tDCS in awake and anesthetized non-human primates while conducting functional imaging.

      We thank the Reviewer for summarising our study and for his appreciation of the highly challenging experiments we performed.

      Weaknesses:

      The authors show that tDCS can alter functional connectivity measured by fMRI but they do not make clear what their studies teach the reader about the effects of tDCS on the brain during different states of consciousness. No important finding is stated contrary to what is stated in the abstract. It is also not clear what the work teaches us about how tDCS works nor is it clear what are the "clinical implications for disorders of consciousness." The deep anesthesia is akin to being in a state of coma. This was not discussed.  

      While the authors have executed a set of technically challenging experiments, it is not clear what they teach us about how tDCS works, normal brain neurophysiology, or brain pathological states such as disorders of consciousness.

      We thank the reviewer for his comments. We agree that we could better highlight the value and implications of our work, and we take this opportunity to improve our manuscript according to the suggestions.

      Actions in the text: We have added several new paragraphs in the Discussion section, considering these comments and other related remarks from the Reviewing Editor (see below our answer to the first comment of the Reviewing Editor: REC#1).

      Reviewer #2 (Public review): 

      General comments: 

      The authors investigated the effects of tDCS on brain dynamics in awake and anesthetized monkeys using functional MRI. They claim that cathodal tDCS disrupts the functional connectivity pattern in awake monkeys while anodal tDCS alters brain patterns in anesthetized monkeys. This study offers valuable insight into how brain states can influence the outcomes of noninvasive brain stimulation. However, there are several aspects of the methods and results sections that should be improved to clarify the findings.

      We thank the Reviewer for the summary and appreciation of our study.  

      Major comments 

      For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      We thank the Reviewer for the comments. First, regarding the reviewer’s statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes,  because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.). 

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      We strongly agree with the reviewer that conducting an EF simulation would be valuable to confirm our expectations and to gain a comprehensive view of the characteristics of the EFs generated with our different setups in NHPs. However, the challenge is in the fact that EF computational models have been developed for humans, and their use in NHPs is not straightforward due to significant anatomical differences. For example, macaque monkeys are distinct from humans in terms of brain size, shape and cortical organisation, skull thickness, and the presence of muscles, as well as different tissue conductivities (Lee et al. 2015; Datta et al.2016; Mantell et al. 2023). We plan to address this in future work.

      Actions in the text: In the Materials and Methods section, we have modified the sentence: “Because of the small size of the monkey's head and because we did not use return electrodes to restrict the current flow (as is achieved with typical high-definition montages (Datta et al. 2009; Alam et al. 2016)), we expected that tDCS stimulation with the two symmetrical montages would result in nearly equivalent electric fields across the monkey’s head and produce roughly similar effects on brain activity.” 

      We also added a new sentence about EF simulation: 

      “This would need to be confirmed by running an electric field simulation. However, computational electric field models have been developed for humans, and their use in NHPs is not straightforward due to anatomical specificities. Indeed, monkeys differ from humans in terms of brain size, shape and cortical organization, skull thickness, tissue conductivities and the presence of muscles (Lee et al. 2015; Datta et al. 2016; Mantell et al. 2023). Modelling of EFs generated with the specific tDCS montages employed in this study will be performed in future work.”

      For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.

      We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during and after 2 mA stimulation. We have, therefore, amended the paper in line with the reviewer's comments.

      Actions in the text: We have added the following text in the Result section: 

      “While several human studies have reported that 1 mA transcranial stimulation induces aftereffects (e.g., (Jamil et al. 2017, 2020; Monte-Silva et al. 2010), the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses. However, it is still possible that the 1 mA stimulation produced some effects below the threshold of significance that may contribute to the changes observed during and after the 2 mA stimulation.”

      The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that noninvasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      First, of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a ‘better’ measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven’t already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system’s activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did,  by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis.  In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. 

      As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. 

      These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4).

      We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:

      “In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3).... In contrast, classical FC metrics did not show significant differences across stimulation conditions, highlighting the value of dynamic FC metrics to capture the neuromodulatory effects of tDCS.”

      “Analyses of the two monkeys separately showed that the changes in slope and Shannon entropy were bigger in one of the two monkeys but went in the same direction (Supplementary File 2), while classical FC metrics did not capture any statistical differences between the different stimulation conditions (Supplementary File 3).”

      The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes. 

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4).

      We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      “In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3). The separate analyses showed that the changes in slope and Shannon entropy were substantially more pronounced in one of the two monkeys, corroborating some of the effects captured in the ANOVA tests.”

      “Analyses of the two monkeys separately showed that the changes in slope and Shannon entropy were bigger in one of the two monkeys but went in the same direction (Supplementary

      File 2)”.

      Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately. 

      We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      “Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys.”

      Reviewer #3 (Public review): 

      Summary: 

      This study used transcranial direct current stimulation administered using small 'high-definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess the neuromodulatory effects of stimulation. The authors report on the modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some possible support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys. However, the reported findings need to be considered carefully against several important methodological limitations. 

      Strengths: 

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness.

      We thank the Reviewer for the summary and for highlighting the strengths of our study. 

      Weaknesses: 

      The lack of a sham stimulation condition is a significant limitation, for instance, how can the authors be sure that results were not affected by drowsiness or fatigue as a result of the experimental procedure?

      We agree with the reviewer that adding control conditions could have strengthened our study. Control conditions usually consist of a sham condition or active control conditions. However, as mentioned in response to one of Reviewer 2 comments (R.2.5), we had to make choices as we could not perform as many experiments due to their demanding nature, especially under anesthesia. 

      In the awake state, we acquired data with two experimental conditions; the monkeys were exposed to either anodal (F4/O1) or cathodal (O1/F4) PFC tDCS. As anodal tDCS of the PFC induced only minor changes in brain dynamics, it could be considered as an active control condition for the cathodal condition, which had striking effects on the cortical dynamics. It is also worth noting that doubts have been raised about the neurobiological inertia of certain sham protocols. Indeed, different sham protocols have been employed in the literature, some of which may produce unintended effects (Fonteneau et al. 2019). Therefore, active control conditions, such as reversing the polarity of the stimulation or targeting a different brain region, have been proposed to provide better control (Fonteneau et al. 2019). Furthermore, in the context of experiments performed under anesthesia, the relevance of a sham control condition typically used to achieve adequate blinding is questionable. 

      With regard to drowsiness and fatigue as a result of the experimental procedure, we agree with the reviewer that this is a common problem in functional imaging due to the length of the recording sessions. We assumed, as was done in previous work (Uhrig, Dehaene, and Jarraya 2014; Wang et al. 2015), that the monkeys' performance on the fixation task during acquisition would capture these periods of fatigue. Therefore, only sessions with fixation rates above 85% were included in our analysis. 

      Actions in the text: We have now specified, in the Materials and Methods section, the fact that only runs with a high fixation rate (> 85%) were included in the study: 

      “To ensure that the results were not biased by fatigue or drowsiness due to the lengthy

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, a potential confound here relates to the possibility that the initial 1 mA stimulation block might have caused plasticity-related changes in neural activity that could have interfered with the following 2 mA block due to the lack of a sufficient wash-out period. Hence, I am not sure any findings from the 2 mA block can really be interpreted as completely separate from the initial 1 mA stimulation period, given that they were administered consecutively. Several previous studies have shown that same-day repeated tDCS stimulation blocks can influence the effects of neuromodulation (e.g., Bastani and Jaberzadeh, 2014, Clin Neurophysiol; Monte-Silva et al., J. Neurophysiology). 

      We agree with the reviewer’s comment that the initial 1 mA stimulation block might have induced changes in neural activity and that the 20-minute post 1 mA block would not be long enough to wash out these changes. This comment is very similar to the second comment made by Reviewer 2 (R.2.2). Although our experimental data do not support this possibility (as the differences between the 1 mA post-stimulation and baseline conditions were not significant), it is still conceivable that the stimulation produced some effects below the threshold of significance and that these might weakly contribute to the changes observed during and after the 2 mA stimulation. 

      Actions in the text: We have modified the paper according to the reviewers' comments (please see our answer and actions in the text to R.2.2.).

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is problematic, as it is likely to have resulted in stimulation over different brain regions. The authors state that "Because of the small size of the monkey's head, we expected that tDCS stimulation with these two symmetrical montages would result in nearly equivalent electric fields across the monkey's head and produce roughly similar effects on brain activity"; however, I am not totally convinced of this, and it really would need E-field models to confirm. It is also more likely that there would in fact be notable differences in the brain regions stimulated as the authors used HD-tDCS electrodes, which are generally more focal.

      We thank the Reviewer for the remark, which is very similar to the second comment from Reviewer 2. Please see our answer to the first comment of Reviewer 2 

      Actions in the text: We have modified the paper according to the reviewers' comments (please see the actions taken in response to R.2.1.).

      Given the very small sample size, I think it is also important to consider the possibility that some results might also be impacted by individual differences in response to stimulation. For instance, in the discussion (page 9, paragraph 2) the authors contrast findings observed in awake animals versus anaesthetised animals. However, different monkeys were examined for these two conditions, and there were only two monkeys in each group (monkeys J and Y for awake experiments [both male], and monkeys R and N [male and female] for the anaesthesia condition). From the human literature, it is well known that there is a considerable amount of inter-individual variability in response to stimulation (e.g., Lopez-Alonso et al., 2014, Brain Stimulation; Chew et al., 2015, Brain Stimulation), therefore I wonder if some of these differences could also possibly result from differences in responsiveness to stimulation between the different monkeys? At the end of the paragraph, the authors also state "Our findings also support the use of tDCS to promote rapid recovery from general anesthesia in humans...and suggest that a single anodal prefrontal stimulation at the end of the anesthesia protocol may be effective." However, I'm not sure if this statement is really backed-up by the results, which failed to report "any behavioural signs of awakening in the animals" (page 7)?

      We thank the Reviewer for this comment. Because working with non-human primates is expensive and labor intensive, the sample sizes in classical macaque experiments are generally small (typically 2-4 subjects per experiment). Our sample size (i.e. 2 rhesus macaques in awake experiments and 2 macaques under sedation, 11 +/- 9 scan sessions per animal, 288 and 136 runs in the awake and anesthesia state, respectively) is comparable to other previous work in non-human primates using fMRI (Milham et al. 2018; Yacoub et al. 2020; Uchimura, Kumano, and Kitazawa 2024). In addition, we would like to point out that the baseline cortical dynamics we found before stimulation, whether in the awake or sedated state, are comparable to previous studies (Barttfeld et al. 2015; Uhrig et al. 2018; Tasserie et al. 2022). This suggests our results are reproducible across datasets, despite the small sample size.

      That being said, we agree with the reviewer that inter-individual variability in response to stimulation can be considerable, as shown by a large body of literature in the field. It seems possible that the two monkeys studied in each condition responded differently to the stimulation. But even if that’s the case, our results suggest that at least in one of the two monkeys, cathodal PFC stimulation in the awake state and anodal PFC stimulation under propofol anesthesia induced striking changes in brain dynamics, which we believe is a significant contribution to the field. 

      In fact, supplementary analysis, as proposed by Reviewer 2 (cf R2.4), investigating how the different measurables we’ve used were differently affected by tDCS show that indeed monkey Y’s case is more apparent and significant than monkey J’s. Still, the effects observed in monkey J’s case are still congruent with what is observed in monkey Y’s and at the population level (though less flagrant). We also show that these inter-individual variabilities are outmatched by the inter-condition variability, (as indicated by our initially strong statistical results at the population levels), thus showing that, even though we have different responses depending on the subject, the effects observed at the population level cannot be only accounted for by the differences in subjects’ specificities.

      Lastly, the Reviewer questioned whether our results support that a single anodal prefrontal stimulation at the end of the anesthesia protocol could effectively promote rapid recovery from general anesthesia, because the stimulation did not wake the animals in our experiments. It should be emphasized that in our case, the monkeys were stimulated while they were still receiving continuous propofol perfusion. In contrast, during the recovery process from anesthesia, the delivery of the anesthetic drug is stopped. It is therefore conceivable that anodal PFC tDCS, which successfully enriched brain dynamics in sedated monkeys in our experiments, may accelerate the recovery from anesthesia when the drug is no longer administered. 

      Actions in the text: We have added a line in the Materials and Methods to compare to other studies:

      “Our sample size is comparable to previous work in NHP using fMRI (Milham et al. 2018; Yacoub et al. 2020; Uchimura, Kumano, and Kitazawa 2024).”

      Reviewing Editor Comments: 

      In some cases, authors opt to submit a revised manuscript. Should you choose to do so, please be aware that the reviewers have indicated that their appraisal is unlikely to change unless some of the suggested field modelling is incorporated into the work. This may change the evaluation of the strength of evidence, but the final wording will be subject to reviewer discretion. Details for responding to the reviews are provided at the bottom of this email.

      Reviewer #1 (Recommendations for the authors): 

      The work should discuss the implications of their experiments for using tDCS to arouse a patient from a coma. The anesthetized animal is effectively in a drug-induced coma. While they observed connectivity changes, these changes did not map nicely onto behavioral changes. 

      I would suggest that the authors spell out more clearly what they view as the clinical implications of their work in terms of new insights into how tDCS may be used to either understand and or treat disorders of consciousness.

      We thank the Reviewer for his thoughtful comments. We appreciate the opportunity to clarify and expand on the key findings and implications of our work, particularly regarding the new insights into how tDCS can be used to understand and treat disorders of consciousness. We therefore provide a broader perspective on the clinical implications of our experiments regarding coma and disorders of consciousness. We also agree with the Reviewer that the absence of behavioral changes but the presence of functional differences should be more clearly addressed. 

      Actions in the text: We have added a few lines about the relevance of anesthesia as a model for disorders of consciousness in the Introduction part:

      “Anesthesia provides a unique model for studying consciousness, which, similarly to DOC, is characterized by the disruption or even  the loss of consciousness (Luppi 2024). Additionally, anesthesia mechanisms involve several subcortical nuclei that are key components of the brain's sleep and arousal circuits (Kelz and Mashour 2019).”

      In the Discussion section, we have modified and expanded a paragraph about the effects of tDCS in DOC patients and how this technique could be further used to study consciousness: From another clinical perspective, our results demonstrating that 2 mA anodal PFC tDCS decreased the structure-function correlation and modified the dynamic repertoire of brain patterns during anesthesia (Figures 6 and 7) are consistent with the beneficial effects of such stimulation in DOC patients (Thibaut et al., 2014; Angelakis et al., 2014; Thibaut et al., 2017; Zhang et al., 2017; Martens et al., 2018; Cavinato et al., 2019; Wu et al., 2019; Hermann et al., 2020; Peng et al., 2022; Thibaut et al., 2023). Although some clinical trials investigated the effects of stimulating other brain regions, such as the motor cortex (Martens et al., 2019; Straudi et al., 2019) or the parietal cortex (Huang et al., 2017; Guo et al., 2019; Zhang et al., 2022; Wan et al., 2023; Wang et al., 2020), the DLPFC appears to be the most effective target for patients with a minimally conscious state (Liu et al., 2023). In terms of neuromodulatory effects in DOC patients, DLPFC tDCS has been reported to increase global excitability (Bai et al., 2017), increase the P300 amplitude (Zhang et al., 2017; Hermann et al., 2020), improve the fronto-parietal coherence in the theta band (Bai et al., 2018), enhance the putative EEG markers of consciousness (Bai et al., 2018; Hermann et al., 2020) and reduce the incidence of slow-waves in the resting state (Mensen et al., 2020). Our findings further support the PFC as a relevant target for modulating consciousness level and align with growing evidence showing that the PFC plays a key role in conscious access networks (Mashour, Pal, and Brown 2022; Panagiotaropoulos 2024). Nevertheless, we hypothesize that other brain targets for tDCS may be of interest for consciousness restoration, potentially using multi-channel tDCS (Havlík et al., 2023). Among transcranial electrical stimulation techniques, tDCS has the great advantage of facilitating either excitation or inhibition of brain regions, depending on the polarity of the stimulation (Sdoia et al., 2019) exploited this advantage to investigate the causal involvement of the DLPFC in conscious access to a visual stimulus during an attentional blink paradigm. While conscious access was enhanced by anodal stimulation of the left DLPFC compared to sham stimulation, opposite effects were found with cathodal stimulation compared to sham over the same locus. Finally, this literature and our findings suggest that tDCS constitutes a non-invasive, reversible, and powerful tool for studying consciousness.”

      We have added a new paragraph about patients with cognitive-motor dissociation and dissociation between consciousness and behavioral responsiveness:

      “Changes in the state of consciousness are generally closely associated with changes in behavioural responsiveness, although some rare cases of dissociation have been described. Cognitive-motor dissociation (CMD) is a condition observed in patients with severe brain injury, characterized by behavior consistent with unresponsive wakefulness syndrome or a minimally conscious state minus (Thibaut et al., 2019). However, in these patients, specific cortical brain areas activate in response to mental imagery tasks (e.g., imagining playing tennis or returning home) in a manner indistinguishable from that of healthy controls, as shown through fMRI or EEG (Thibaut et al., 2019; Owen et al., 2006; Monti et al., 2010; Bodien et al., 2024). Thus, although CMD patients are behaviorally unresponsive, they demonstrate cognitive awareness that is not outwardly apparent. It is worth noting that both the structure-function correlation and the rate of the pattern closest to the anatomy were shown to be significantly reduced in unresponsive patients showing command following during mental imagery tasks compared to those who do not show command following (Demertzi et al., 2019). These observations would be compatible with our findings in anesthetized macaques exposed to 2 mA anodal PFC tDCS. The richness of the brain dynamics would be recovered (at least partially, in our experiments), but not the behaviour. This hypothesis also fits with a recent longitudinal fMRI study on patients recovering from coma (Crone et al., 2020). The researchers examined two groups of patients: one group consisted of individuals who were unconscious at the acute scanning session but regained consciousness and improved behavioral responsiveness a few months later, and the second group consisted of patients who were already conscious from the start and only improved behavioral responsiveness at follow-up. By comparing these two groups, the authors could distinguish between the recovery of consciousness and the recovery of behavioral responsiveness. They demonstrated that only initially conscious patients exhibited rich brain dynamics at baseline. In contrast, patients who were unconscious in the acute phase and later regained consciousness had poor baseline dynamics, which became more complex at follow-up. Complete recovery of both consciousness and responsiveness under general anesthesia is possible through electrical stimulation of the central thalamus (Redinbaugh et al., 2020; Tasserie et al., 2022).”

      Reviewer #2 (Recommendations for the authors): 

      Method 

      (1) The authors mentioned that they used HD-tDCS in their experiments; however, they used 1 x 1 tDCS, which is not HD-tDCS but rather single-channel tDCS.

      We thank the Reviewing Editor for pointing out this ambiguous wording. We understand that "HD-tDCS", which we used in our paper to refer to high-density 1x1 tDCS (because we used small carbon electrodes instead of the large sponge electrodes employed in conventional tDCS), may cause some confusion with high-definition tDCS, which uses compact ring electrodes and most commonly refers to a 4x1 montage (1 active central electrode over the target area and 4 return electrodes placed around the central electrode).

      Therefore, to avoid any confusion, we will use the term "tDCS" rather than “HD-tDCS” to qualify the technique used in this paper and suppress mentions of high-density or high-definition tDCS.

      Actions in the text: We have replaced the abbreviation “HD-tDCS” with “tDCS” throughout the paper. We have also suppressed the sentence about high-definition tDCS in the Introduction (“While conventional tDCS relies on the use of relatively large rectangular pad electrodes, high-density tDCS (HD-tDCS) utilizes more compact ring electrodes, allowing for increased focality, stronger electric fields, and presumably, greater neurophysiological changes (Datta et al. 2009; Dmochowski et al. 2011)”) and the two related citations in the References section.

      (2) Please provide the characteristics of electrodes, including their size, shape, and thickness.

      We thank the Reviewing Editor for this recommendation. We now provide the complete characteristics of the tDCS electrodes used in the paper.

      Actions in the text: We have added a sentence describing the characteristics of the tDCS electrodes in the Materials and Methods section:

      “We used a 1x1 electrode montage with two carbon rubber electrodes (dimensions: 1.4 cm x 1.85 cm, 0.93  cm thick) inserted into Soterix HD-tES MRI electrode holders (base diameter: 25 mm; height: 10.5 mm), which are in contact with the scalp. These electrodes (2.59 cm2) are smaller than conventional tDCS sponge electrodes (typically 25 to 35 cm<sup>2</sup>).”

      (3) Could the authors clarify why they chose to stimulate the right DLPFC? Is there a specific rationale for this choice? Additionally, could the authors explain how they ensured that the stimulation targeted the DLPFC, given that the monkey cap might differ from human configurations? In many NHP studies, structural MRI is used to accurately determine electrode placement. Considering that a single channel F4 - O2 montage was used, even a small displacement of the frontal electrode laterally could result in the electric field not adequately covering the DLPFC. Could the authors provide structural MRI images and details of electrode positioning to help readers better understand targeting accuracy?

      We thank the Reviewing Editor for the thoughtful comments and recommendations. We appreciate the opportunity to further clarify our rationale for stimulating the right DLPFC and also the suggestion to provide structural MRI images and details of electrode positioning, which we think will improve the quality of the paper by showing targeting accuracy.

      First, we would like to clarify that our initial decision to stimulate the right PFC in most animals was driven by experimental constraints. Indeed, we had limited access to the left PFC in three of the four macaques, either due to the presence of cement (spreading asymmetrically from the centre of the head) used to fix the head post in awake animals or due to a scar in one of the two animals studied under anesthesia. 

      Second, we agree with the Reviewing Editor on the importance of showing details of electrode positioning and evidence of targeting accuracy across MRI sessions. Therefore, we now provide structural images showing the positions of anodal and cathodal electrodes in almost all acquired sessions: 10 sessions (out of 10) under anesthesia and 30 sessions in the awake state (out of 34 sessions, because we could not acquire structural images in four sessions). These images show that, in anesthesia experiments, the anodal electrode was positioned over the dorsal prefrontal cortex and the cathodal electrode was placed over the contralateral occipital cortex (at the level of the parieto–occipital junction) in both monkeys. In the awake state, the montage still targeted the prefrontal cortex and the occipital cortex, but with a slightly different placement. One of the electrodes was placed over the prefrontal cortex, closer to the premotor cortex than in anesthesia experiments, while the other one was placed over the occipital cortex (V1), slightly more posterior than in anesthesia experiments. These images therefore show that the placement was relatively accurate across sessions and reproducible between monkeys in each of the two arousal conditions.

      Actions in the text: We have added a supplementary file showing electrode positioning in 40 of the 44 acquired MRI sessions (Supplementary File 1). We have also added a new supplement figure (Figure 1 - figure supplement 1) showing electrode positioning in representative MRI sessions of the awake and anesthetized experiments in the main manuscript. 

      We added a few sentences referring to these figures in the Result section: 

      “Representative structural images showing electrode placements on the head of the two awake monkeys are shown in Figure 1 - figure supplement 1A). Supplementary File 1 displays the complete set of structural images, showing that the two electrodes were accurately placed over the prefrontal cortex and the occipital cortex in a reproducible manner across awake sessions.”

      Figure 1 - figure supplement 1. Structural images displaying electrode placements on the head of monkeys. A) Awake experiments. Representative sagittal, coronal and transverse MRI sections, and the corresponding skin reconstruction images showing the position of the prefrontal and the occipital electrodes on the head of monkeys J. and Y. B) Anesthesia experiments. Representative sagittal, coronal and transverse MRI sections, and the corresponding skin reconstruction images showing the position of the prefrontal and occipital electrodes over the occipital cortex on the head of monkeys R. and N.

      Supplementary File 1 (see attached file). Structural images showing the position of the tDCS electrodes on the monkey's head across sessions. Sagittal, coronal and transverse MRI sections, and corresponding skin reconstruction images showing the position of the prefrontal and occipital electrodes on the monkey's head for each MRI session (except for 4 sessions in which no anatomical scan was acquired). The two electrodes were accurately placed over the prefrontal cortex and the occipital cortex in a reproducible manner across sessions and between the two monkeys studied in each arousal state. In anesthesia experiments, the anodal electrode was placed over the dorsal prefrontal cortex, while the cathodal electrode was positioned over the parieto-occipital junction. In awake experiments, the prefrontal electrode was positioned over the dorsal prefrontal cortex/pre-motor cortex, while the occipital electrode was placed over the visual area 1. The position of the two electrodes differed slightly between the anesthetized and awake experiments due to different body positions (the prone position of the sedated monkeys prevented a more posterior position of the occipital electrode) and also due to the presence of a headpost on the head of the two monkeys in awake experiments (the monkeys we worked with in anesthesia experiments did not have an headpost).

      (4) If the authors did not analyze the data for the passive event-related auditory response, it may be helpful to remove the related sentence to avoid potential confusion for readers.

      We thank the Reviewing Editor for the comment. Although we understand the reviewer’s point of view, we decide to keep this information in the paper to inform the reader that the macaques were passively engaged in an auditory task, as this could have some influence on the brain state. In the Materials and Methods section, we already mentioned that the analysis of the cerebral responses to the auditory paradigm is not part of the paper. We have modified the sentence to make it clearer and to avoid potential confusion for readers.

      Actions in the text: We have modified the sentence referring to the passive event-related auditory response in the Materials and Methods section:

      “All fMRI data were acquired while the monkeys were engaged in a passive event-related auditory task, the local-global paradigm, which is based on local and global deviations from temporal regularities (Bekinschtein et al. 2009; Uhrig, Dehaene, and Jarraya 2014). The present paper does not address how tDCS perturbs cerebral responses to local and global deviants, which will be the subject of future work.”

      (5) Could the authors clarify what x(t) represents in the equation? Additionally, it would be better to number the equations.

      We apologize for the confusion,  x(t) represents the evolution of the BOLD signals over time. We have numbered the equations as suggested. 

      Actions in the text: We have added explanations about the notation and numerotation of equations.

      (6) It would be much better to provide schematic illustrations to explain what the authors did for analyzing fMRI data.

      We thank the Reviewing Editor for the suggestion and now provide a new figure as suggested.  

      Actions in the text: We have added a new figure (Figure 2) graphically showing the overall analysis performed. We have added a sentence about the new Figure 2 in the Results section:  “A graphical overview of the overall analysis is shown in Figure 2.” We have renumbered Figure 2 - supplement figures accordingly.

      Figure 2. fMRI Phase Coherence analysis. A) Left) Animals were scanned before, during and after PFC tDCS stimulation in the awake state (two macaques) or under deep propofol anesthesia (two macaques). Right) Example of Z-scored filtered BOLD time series for one macaque, 111 time points with a TR of 2.4 s. B) Hilbert transform of the z-scored BOLD signal of one ROI into its time-varying amplitude A(t) (red) and the real part of the phase φ (green). In blue, we recover the original z-scored BOLD signal as A(t)cos(φ). C) Example of the phase of the Hilbert transform for each brain region at one TR. D) Symmetric matrix of cosines of the phase differences between all pairs of brain regions. E) We concatenated the vectorized form of the triangular superior of the phase difference matrices for all TRs for all participants, in all the conditions for both datasets separately obtaining using the K-means algorithm, the brain patterns whose statistics are then analyzed in the different conditions.

      Results 

      (1) In Figures 3A, 5A, and 6A showing brain connectivity, it is difficult to relate the connectivity variability among the brain regions. Instead of displaying connection lines for nodes, it would be more effective if the authors highlighted significant, strong connectivity within specific brain regions using additional methods, such as bootstrapping.

      We thank the Reviewing Editor for the comment and suggestion. The connection lines indeed represent all the synchronizations above 0.5 and all the anti-synchronization below -0.5 between all pairs of brain regions. As suggested, another element we haven’t addressed is the heterogeneity in coherences between individual brain regions. We hence propose additional supplementary figures showing, for all centroids mentioned in main figures, the variance in phase-based connectivity of the distributions of coherence of all brain regions to the rest of the brain. High value would then indicate a wide range of values of coherence, while low would indicate the different coherence a region has with the rest of the brain have similar values. Thus, a brain with uniform color would indicate high homogeneity in coherence among brain regions, while sharp changes in colors would reveal that certain regions are more subject to high variance in their coherence distributions. We expect this new figure to more clearly expose the connectivity variability among the brain regions.

      Actions in the text: We have added new figures showing, for all centroids mentioned in the main figures, the variances in phase-based connectivity of the distributions of coherence  (Figure 3 - figure supplement 3;  Figure 5 - figure supplement 2; Figure 6 - figure supplement 3; Figure 7 - figure supplement 2). One of them is shown below for the only awake analysis (Figure 3 - figure supplement 3).

      Figure 3 - figure supplement 3. Variance in inter-region phase coherences of brain patterns. Low values (red and light red) indicate that the distribution of synchronizations between a brain region and the rest of the brain has relatively low variance, while high values (blue and light blue) indicate relatively high variance. Are displayed both supra (top) and subdorsal (bottom) views for each brain pattern from the main figure, ordered similarly as previously: from left (1) to right (6) as their respective SFC increases. 

      We added a few sentences about variances in phase-based connectivity of the distributions of coherence in the Result section: 

      “Further investigation of the variances in inter-region phase coherences of brain patterns, presented in Figure 3 - figure supplement 3, revealed two main findings. First, all the patterns exhibited some degree of lateral symmetry. Second, except for the pattern with the highest SFC, most patterns displayed high heterogeneity in their coherence variances and striking inter-pattern differences. These observations reflect both the segmentation of distinct functional networks across patterns and a topological organization within the patterns themselves: some regions showed a broader spectrum of synchrony with the rest of the brain, while others exhibited narrower distributions of coherence variances. For instance, unlike other brain patterns, pattern 5 was characterized by a high coherence variance in the frontal premotor areas and low variance in the occipital cortex, whereas pattern 3 had a high variance in the frontal and orbitofrontal regions. In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3).”

      “The variance in inter-regional phase coherence across brain patterns showed notably that pattern 4, in contrast to most other patterns, was characterized by a high variance in frontal premotor areas and a low variance in the occipital cortex (Figure 5 - figure supplement 2)." 

      “The variance in inter-region phase coherences of the brain patterns is displayed in Figure 6 - figure supplement 3 and showed a striking heterogeneity between the patterns. For example, pattern 5 had a low overall variance (except in the frontal cortex), while pattern 1 was the only pattern with a high variance in the occipital cortex.”

      “The variance in inter-region phase coherences of brain patterns is displayed in Figure 6 - figure supplement 2.”

      (2) For both conditions, only 2 to 3 out of 6 patterns showed significant effects of tDCS on the occurrence rate. Is it sufficient to claim the authors' conclusion?

      We thank the Reviewer Editor for the comment. We would like to point out that similar kinds of differences in the occurrence rates of specific brain patterns (particularly in patterns at the extremities of the SFC scale) have already been reported previously. Prior works in patients suffering from disorders of consciousness, in healthy humans or in non-human primates,  have shown, by using a similar method of analysis, that not all brain states are equally disturbed by loss of consciousness, even in different modalities of unconscious transitioning (Luppi et al. 2021; Z. Huang et al. 2020; Demertzi et al. 2019; Castro et al. 2023; Golkowski et al. 2019; Barttfeld et al. 2015). Therefore, yes we believe that our conclusions are still supported by the results.

      (3) If the authors want to assert that the brain state significantly influences the effects of tDCS as discussed in the manuscript, further analysis is necessary. First, it would be great to show the difference in connectivity between two consciousness conditions during the baseline (resting state) to see how resting state connectivity or structural connectivity varies. Second, demonstrating the difference in connectivity between the awake and anesthetized conditions (e.g., awake during cathodal vs. anesthetized cathodal) to show how the connectivity among the brain regions was changed by the brain state during tDCS. This would strengthen the authors' conclusion.

      We thank the reviewer for this comment. Firstly, we’d like to clarify that the structural connectivity doesn’t change from one session to another in the same animal and minimally between subjects. Secondly, we agree with the Reviewing Editor that it is informative to show the differences between the baselines and this is what we have done. The results are shown in Figures 5 and 7. Regarding the comparison of the stimulating conditions across arousal levels, the only contrast that we could make is to compare 2 mA anodal awake with 2 mA anodal anesthetized (during and post-stimulation). However, as 2 mA anodal stimulation in the awake state did not affect the connectivity much (compared to the awake baseline), the results would be almost similar to the comparison of the awake baseline with 2 mA anodal anesthetized, which is shown in Figure 7. Therefore, we believe that this would result in minimal informative gains and even more redundancy. 

      Reviewer #3 (Recommendations for the authors): 

      Introduction, par 2: HD-tDCS does not necessarily produce stronger electric fields (E-fields) in the brain. The E-field is largely montage-dependent, and some configurations such as the 4x1 configuration can actually have weaker E-fields compared to conventional tDCS designs (i.e., with two sponge electrodes) as electrodes are often closer together resulting in more current being shunted by skull, scalp, and CSF. I would consider re-phrasing this section.

      We agree with the Reviewer Editor that high-definition tDCS does not necessarily produce stronger electric fields in the brain and apologize for the confusion caused by our use of HD-tDCS to refer to high-density tDCS. To avoid any confusion, we have removed the sentence mentioning that HD-tDCS produces stronger electric fields. 

      Actions in the text: We have removed the sentence about high-definition tDCS in the Introduction (“While conventional tDCS relies on the use of relatively large rectangular pad electrodes, high-density tDCS (HD-tDCS) utilizes more compact ring electrodes, allowing for increased focality, stronger electric fields, and presumably, greater neurophysiological changes (Datta et al. 2009; Dmochowski et al. 2011)”) and the two related citations in the References section.

    1. “their infants are born with hair on their heads, and are of a complexion white as our nation; but their mothers in their infancy make a bath of walnut leaves, husks of walnuts, and such things as will stain their skin forever, wherein they dip and wash them to make them tawny…”

      I found this claim to be very interesting because it doesn't separate the English settlers from the Native Americans as much as other Englishmen have in their writings. Morton sees the Native infants as almost identical to English infants and that their skin tone is achieved through walnut staining where as other authors have chosen to not find similarities between themselves and the Natives in the region.

    1. Nay the Isle of Cuba, which extends as far, as Valladolid in Spain is distant from Rome, lies now uncultivated, like a Desert, and entombed in its own Ruins. You may also find the Isles of St. John, and Jamaica, both large and fruitful places, unpeopled and desolate. The Lucayan Islands on the North Side, adjacent to Hispaniola and Cuba, which are Sixty in number, or thereabout, together with those, vulgarly known by the name of the Gigantic Isles, and others, the most infertile whereof, exceeds the Royal Garden of Seville in fruitfulness, a most Healthful and pleasant Climate, is now laid waste and uninhabited; and whereas, when the Spaniards first arrived here, about Five Hundred Thousand Men dwelt in it, they are now cut off, some by slaughter, and others ravished away by Force and Violence, to work in the Mines of Hispaniola, which was destitute of Native Inhabitants

      The author compares different territories in the Americas to ones familiar to the Spanish in an attempt to make his argument clear and understandable for all. For example, He compares the Gigantic Isles to the Garden of Seville (located in Spain) to show them what the desolation looks like in the Americas in hopes to prevent further exploitation.

    1. A study in 2013 found that higher percentages of minorities say global warming is happening and want the president to take action to address the issue. 18 In general, it’s widely recognized that low-income minorities, and to an extent low-income whites, tend to have more progressive political views than the mainstream— and progressive views (with few exceptions) are demonstrably more rational, evidence-based, and empathy-based than conservative views.

      Is having progressive views and doing nothing about it more progressive than having non-progressive views and doing something about it? Does being passive beat being active as a rule?

    1. eLife Assessment

      This interesting study presents important information on how human cytomegalovirus (HCMV) infection disrupts the activity of the TEAD1 transcription factor, leading to widespread chromatin alterations. The strength of evidence in revised manuscript is convincing, and includes additional functional data teasing out how TEAD1-driven chromatin changes might influence HCMV replication. This work will be of interest to the virology, chromosome biology and transcriptional co-regulation fields.

    2. Reviewer #1 (Public review):

      The manuscript by Sayeed et al. uses a comprehensive series of multi-omics approaches to demonstrate that late-stage human cytomegalovirus (HCMV) infection leads to a marked disruption of TEAD1 activity, a concomitant loss of TEAD1-DNA interactions, and extensive chromatin remodeling. The data are thoroughly presented and provide evidence for the role of TEAD1 in the cellular response to HCMV infection.

      However, a key question remains unresolved: is the observed disruption of TEAD1 activity a direct consequence of HCMV infection, or could it be secondary to the broader innate antiviral response? In this respect, the study would benefit from more in-depth experiments that assess the effect of TEAD1 overexpression or knockdown/deletion on HCMV replication dynamics. The new data provided by the authors in Reviewer Response Figures 1 and 2 suggest that the presence of constitutively expressed TEAD1 does not substantially impact HCMV replication and gene expression as assessed at 72 and 96 hours post-infection. However, this does not discount the fact that HCMV infection induces significant TEAD1-related chromatin changes that may impact other cellular functions.

    3. Reviewer #2 (Public review):

      Summary:

      This work uses genomic and biochemical approaches for HCMV infection in human fibroblasts and retinal epithelial cell lines, followed by comparisons and some validations using strategies such as immunoblots. Based on these analyses, they propose several mechanisms that could contribute to the HCMV-induced diseases, including closing of TEAD1-occupying domains and reduced TEAD1 transcript and protein levels, decreased YAP1 and phospho-YAP1 levels, and exclusion of TEAD1 exon 6. Some functional assays, using over-expression of TEAD1, are provided.

      Strengths:

      The genomics experiments were done in duplicates and data analyses show good technical reproducibility. Data analyses are performed to show changes at the transcript and chromatin level changes, followed by some Western blot validations.

      Weaknesses:

      For readers who are outside the field, some clarifications of the system and design would be helpful.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The manuscript by Sayeed et al. uses a comprehensive series of multi-omics approaches to demonstrate that late-stage human cytomegalovirus (HCMV) infection leads to a marked disruption of TEAD1 activity, a concomitant loss of TEAD1-DNA interactions, and extensive chromatin remodeling. The data are thoroughly presented and provide evidence for the role of TEAD1 in the cellular response to HCMV infection.

      However, a key question remains unresolved: is the observed disruption of TEAD1 activity a direct consequence of HCMV infection, or could it be secondary to the broader innate antiviral response? In this respect, the study would benefit from experiments that assess the effect of TEAD1 overexpression or knockdown/deletion on HCMV replication dynamics. Such functional assays could help delineate whether TEAD1 perturbation directly influences viral replication or is part of a downstream/indirect cellular response, providing deeper mechanistic insights.

      To examine the effect of TEAD1 on HCMV, we performed an experiment in primary human foreskin fibroblasts (HFF) which were stably transduced with constitutive TEAD1. To constitutively express TEAD1, we cloned the open reading frame of TEAD1 into pLenti-puro (Plasmid #39481 from Addgene). We selected for transduced cells using puromycin. For these experiments, we first assessed two multiplicities of infection (MOI): 1 and 10 (Reviewer Response Figure 1). Based on the TEAD1 expression in these cells relative to non-transduced HFF cells, we performed HCMV infection experiments in cells transduced with TEAD1 lentivirus at an MOI of 1.

      For infections, we used a version of HCMV in which the C terminus of the capsi-associated tegument protein pUL32 (pp150) is tagged by enhanced green fluorescent protein (GFP) (PMID: 15708994). This experimental design allowed us to assess the impact of constitutive TEAD1 expression on HCMV infection. GFP and immediate early protein expression levels were measured 48 hours after infection by flow cytometry.

      After infecting parent cells (no constitutive TEAD1) and TEAD1 constitutively expressing cells with a GFP-positive HCMV at MOIs of 0.3 and 1, we identified equivalent GFP expression in the two conditions, indicating equivalent levels of HCMV infection 48 hours after initial infection (Reviewer Response Figure 1A). We also identified equivalent immediate early protein expression at 48 hours after infection, as measured both by percent positivity (Reviewer Response Figure 1B) and mean florescent intensity (Reviewer Response Figure 1C). At 96 hours with an MOI of 3, constitutive expression of TEAD1 led to a slight reduction in the expression of the HCMV proteins pp65 (encoded by UL83) and UL44 at 72 and 96 hours post initial infection (Reviewer Response Figure 1D). These results suggest that TEAD1 expression has minimal effects, if any, on the expression of these two late HCMV proteins in fibroblasts.  Regulation of particular HCMV genes by TEAD1 is likely to be central for HCMV replication and reactivation in other specialized cell types relevant to viral pathogenesis and disease. However, definitive studies are beyond the scope of the current study. 

      Author response image 1.

      Constitutive TEAD1 expression reduces expression of two HCMV late genes at 72 and 96 hours after infection. A-C. Primary human foreskin fibroblasts with and without constitutive TEAD1 expression were infected with pp150-GFP HCMV at a multiplicity of infection (MOI) of 0.3 or 1 and assessed 48 hours post infection. A. HCMV positive cells were quantified by measuring the percent of cells that were GFP positive. B. The percentages of immediate early (IE1/IE2) positive cells were quantified by flow cytometry. C. The mean florescence intensity of immediate early positive cells was quantified by flow cytometry. D. Primary human foreskin fibroblasts with and without constitutive TEAD1 expression were infected with pp150-GFP HCMV at an MOI of 1 and assessed by Western blot at various time point post infection. UL44 and pp65 are expressed late in the cascade of HCMV gene expression. TEAD1 expression levels and uncropped Westerns are provided in Supplemental Figure S8

      Reviewer Response Methods:

      Flow cytometric analysis of viral entry and spread using GFP expression and HCMV immediate early (IE) protein staining

      Parental and TEAD1 transduced human foreskin fibroblasts were seeded into 12-well plates at 1.0 × 10<sup>5</sup> cells per well and either mock infected or infected with pp150-GFP HCMV (PMID: 15708994) at MOIs of 0.3 or 1 on the same day. Cells were trypsinized at appropriate time points and then neutralized with complete medium. Cell suspensions were spun down at 500g for 5 minutes, and the cell pellet was fixed in 70% ethanol for 30 minutes. Following fixation, cells were permeabilized in phosphate-buffered saline (PBS) containing 0.5% bovine serum albumin (BSA) and 0.5% Tween 20 for 10 minutes at 4°C, pelleted, and then stained with IE1/IE2 antibody (mAb810-Alexa Fluor 488) diluted in PBS supplemented with 0.5% BSA for 2 hours. Cells were washed with PBS supplemented with 0.5% BSA–0.5% Tween 20 and then resuspended in PBS. Cells were analyzed using a flow cytometer (BD Biosciences). Infected cells were also trypsinized at appropriate time points, neutralized in the appropriate media, and directly analyzed for GFP positivity on the flow cytometer.

      Western blot analyses of HCMV protein expression in infected cells with and without constitutive TEAD1 expression

      TEAD1 transduced and parental human foreskin fibroblasts were seeded into 6-well cell culture plates at a density of 3.0 × 10<sup>5</sup> cells per well and either mock infected or infected with pp150-GFP HCMV (PMID: 15708994) at an MOI of 1. Whole-cell lysates were collected at various time points post-infection, separated by SDS-PAGE, and transferred to nitrocellulose for Western blot analysis. Western blots were probed with the following primary antibodies: anti-IE1/IE2 (Chemicon), anti-UL44 (kind gift of John Shanley), anti-pp65 (Virusys Corporation), and cellular β-actin antibody (Bethyl Laboratories). Next, each blot was incubated with appropriate horseradish peroxidase-conjugated anti-rabbit or anti-mouse IgG secondary antibodies. Chemiluminescence was detected and quantified using a C-DiGit blot scanner from Li-Cor.

      Reviewer #2 (Public review):

      Summary:

      This work uses genomic and biochemical approaches for HCMV infection in human fibroblasts and retinal epithelial cell lines, followed by comparisons and some validations using strategies such as immunoblots. Based on these analyses, they propose several mechanisms that could contribute to the HCMV-induced diseases, including closing of TEAD1-occupying domains and reduced TEAD1 transcript and protein levels, decreased YAP1 and phospho-YAP1 levels, and exclusion of TEAD1 exon 6.

      Strengths:

      The genomics experiments were done in duplicates and data analyses show good technical reproducibility. Data analyses are performed to show changes at the transcript and chromatin level changes, followed by some Western blot validations.

      Weaknesses:

      This work, at the current stage, is quite correlative since no functional studies are done to show any causal links. For readers who are outside the field, some clarifications of the system and design need to be stated.

      Reviewer #2 (Recommendations for the authors):

      Here are some specific questions:

      (1) Since all current analyses are correlative, it is difficult to know which changes are of biological significance. For example, experiments manipulating TEAD transcription factor or YAP with effects on how cells respond to HCMV infection would significantly strengthen the conclusions, which are largely speculations now.

      Please see response to Reviewer 1, which highlights newly added functional assays that include the constitutive (forced) expression of TEAD1, as suggested.

      (2) How similar are these cell lines (human fibroblasts and retinal epithelial cell lines) resembling the actually infected cells in patients that lead to symptoms?

      In infected cells in patients, HCMV initially infects both fibroblasts and epithelial cells. HCMV penetrates fibroblasts by fusion at the cell surface but is endocytosed into epithelial cells (PMID: 18077432). Thus, most experimental studies of HCMV in vitro use primary human foreskin fibroblasts and a retinal epithelial cell line, as we do in this study.

      Additional information on primary human fibroblasts as a model of HCMV infection in humans

      There is a nice review article that provides the history of the study of the molecular biology of HCMV that describes how Stanley Plotkin from the Wistar Institute first identified human fibroblast HCMV infected cells (PMID: 24639214). The primary fibroblasts of the foreskin of neonates are available commercially (sometimes called HS68) and model neonatal HCMV infection. Neonatal HCMV, or Congenital Cytomegalovirus, is a leading cause of congenital infection and a significant cause of non-genetic hearing loss in the US (https://www.cdc.gov/cytomegalovirus/congenital-infection/index.html). While many infected newborns appear healthy at birth, a substantial percentage experience long-term health problems, including hearing loss, developmental delays, and vision problems (PMID: 39070527). 

      More information on ARPE-3 as a model of HCMV infection in humans

      HCMV retinitis is a leading cause of vision loss and results from HCMV infection of retinal cells. Retinal epithelial cells are the primary target for HCV infection in the eye. The cell line ARPE-19 is derived from a primary human adult retinal pigment epithelium explant and is commonly used to study HCMV and is thought to be physiologically relevant to the human infection (PMID: 8558129 and 28356702). When compared to primary retinal pigment epithelia, ARPE-19 cells develop a similar cellular and molecular phenotype to primary cells from adults and neonates (PMID: 28356702).

      (3) What is the rationale for using 48 hours' infection? Is this the typical timeframe for patients to develop symptoms?

      HCMV genes are expressed in a temporally controlled manner (PMID: 35417700). Early genes (within the first 4 hours) are involved in regulating transcription, while genes within 4-48 hours are involved in DNA replication and further transcriptional regulation. The 48 hour mark corresponds to the onset of significant viral replication and interactions between the virus and the host immune response. After 48 hours, late genes are expressed, which encode structural proteins as well as viral proteins that inhibit host anti-viral responses.  Most studies that focus on the role of HCMV’s early and immediate early genes are performed at 24 or 48 hours. Similarly, most studies that assess the initial innate immune response to HCMV are performed within the initial 48 hours after in vitro infection.

      In most people with healthy immune systems, there are no symptoms (PMID: 34168328). While 60% of people in developed countries and 90% of those in developing countries are serologically positive for past infection, it is challenging to study the kinetics of symptom development due to heterogeneity in the initial virion exposure, the cell types that are initially infected, and immune response. HCMV persists throughout the lifetime of the infected individual by establishing latent infection.

      Also, among all these large-scale global changes, what are primary and what are secondary?

      A kinetic study with many timepoints would be needed to identify the primary and secondary genomic changes associated with HCMV infection. These experiments, while exciting, are beyond the scope of this manuscript.

      (4) Fig.2: In addition to the changes for each cell type, comparison of unchanged, closed and opened with infection regions between the two cell types could be informative for commonalities and differences between cell types.

      This was a good suggestion.  We have added a new Supplemental Figure S2, which compares the differentially accessible regions between the two cell types:

      We have also added the following sentence to the Results section:

      “Comparison of differentially accessible chromatin between ARPE and HFF revealed that the vast majority of the HCMV-induced changes are specific to one of the two cell types (Supplemental Figure S2).”

      (5) "Of the 23,018 loops present in both infected and uninfected cells, only 10 are differential at a 2-fold cutoff and a false discovery rate (FDR) <0.01."

      We thank the reviewer for drawing our attention to the differential chromatin looping analysis.  Your comment prompted us to re-examine the methodologies we employed to identify differential chromatin looping events between uninfected and infected cells.  In the process, we realized that the relatively low resolution of chromatin looping assays such as HiChIP might require additional care in classifying a particular loop as shared or differential when comparing two experimental conditions. We have thus revamped our differential chromatin looping methodologies by adding 5kb “pads” to either end of each chromatin loop “anchor”.

      The corresponding passage now reads:

      “We next used the HiChIP data to identify HCMV-dependent differential chromatin looping events (see Methods). In total, uninfected cells have 143,882 loops. With HCMV infection, 90,198 of these loops are lost, and 44,045 new loops are gained (Supplemental Dataset 3). Because the number of altered loops was large, we repeated loop calling and differential analysis with FDR values less than 0.05, 0.01, and 0.001 (Supplemental Dataset 3). For all three cutoffs, the percentage of loops specific to an infection state were very similar. We also randomly downsampled the number of input pairs used for calling loops to verify that our results were not due to a difference in read depth (Supplemental Dataset 3). For the three smaller subsets of data, the number of loops specific to an infection state only changed slightly. The full quantification of each chromatin looping event and comparisons of events between conditions are provided in Supplemental Dataset 6.”

      Are these cells asynchronous and how to determine whether certain changes are not due to cell cycle stage differences?

      Cells were plated to an identical density of cells per well before either mock or HCMV infection for this study. Based on the differentially expressed genes cell cycle pathways were not amongst the top 50 enriched molecular pathways.

    1. eLife Assessment

      This paper is important in demonstrating a requirement for sulfation in organizing apical ECM (aECM) during tubulogenesis in Drosophila melanogaster. The authors identify and characterize the organization of some of the first known components of the non-chitinous aECM in the Drosophila salivary gland tube, and these findings are supported by convincing data. This study would be of interest to developmental and cell biologists.

      [Editors' note: this paper was reviewed by Review Commons.]

    2. Reviewer #1 (Public review):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations. Importantly, the rescue experiments also demonstrated that sulfation enzymatic activity is important.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing.

      Significance:

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore, it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      Comments on revised version:

      Overall, I am pleased with the authors' revisions in response to my original comments and those of the other reviewers

    3. Reviewer #2 (Public review):

      Summary

      This study provides new insights into organ morphogenesis using the Drosophila salivary gland (SG) as a model. The authors identify a requirement for sulfation in regulating lumen expansion, which correlates with several effects at the cellular level, including regulation of intracellular trafficking and the organization of Golgi, the aECM and the apical membrane. In addition, the authors show that the ZP proteins Dumpy (Dpy) and Pio form an aECM regulating lumen expansion. Previous reports already pointed to a role for Papss in sulfation in SG and the presence of Dpy and Pio in the SG. Now this work extends these previous analyses and provides more detailed descriptions that may be relevant to the fields of morphogenesis and cell biology (with particular focus on ECM research and tubulogenesis). This study nicely presents valuable information regarding the requirements of sulfation and the aECM in SG development.

      Strengths

      -The results supporting a role for sulfation in SG development are strong. In addition, the results supporting the involvement of Dpy and Pio in the aECM of the SG, their role in lumen expansion, and their interactions, are also strong.

      -The authors have made an excellent job in revising and clarifying the many different issues raised by the reviewers, particularly with the addition of new experiments and quantifications. I consider that the manuscript has improved considerably.

      -The authors generated a catalytically inactive Papss enzyme, which is not able to rescue the defects in Papss mutants, in contrast to wild type Papss. This result clearly indicates that the sulfation activity of Papss is required for SG development.

      Weaknesses

      -The main concern is the lack of clear connection between sulfation and the phenotypes observed at the cellular level, and, importantly, the lack of connection between sulfation and the Pio-Dpy matrix. Indeed, the mechanism/s by which sulfation affects lumen expansion are not elucidated and no targets of this modification are identified or investigated. A direct (or instructive) role for sulfation in aECM organization is not clearly supported by the results, and the connection between sulfation and Pio/Dpy roles seems correlative rather than causative. As it is presented, the mechanisms by which sulfation regulates SG lumen expansion remains elusive in this study.

      -In my opinion the authors overestimate their findings with several conclusions, as exemplified in the abstract:

      "In the absence of Papss, Pio is gradually lost in the aECM, while the Dpy-positive aECM structure is condensed and dissociates from the apical membrane, leading to a thin lumen. Mutations in dpy or pio, or in Notopleural, which encodes a matriptase that cleaves Pio to form the luminal Pio pool, result in a SG lumen with alternating bulges and constrictions, with the loss of pio leading to the loss of Dpy in the lumen. Our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining luminal diameter."

      The findings leading to conclude that sulfation organizes the aECM and that the absence of Papss leads to a thin lumen due to defects in Dpy/Pio are not strong. The authors certainly show that Papss is required for proper Pio and Dpy accumulation. They also show that Pio is required for Dpy accumulation, and that Pio and Dpy form an aECM required for lumen expansion. However, the absence of Pio and Dpy do not fully recapitulate Papss mutant defects (thin lumen). I wonder whether other hypothesis and models could account for the observed results. For instance, a role for Papss affecting secretion, in which case sulfation would have an indirect role in aECM organization. This study does not address the mechanical properties of Dpy in normal and mutant salivary glands.

      -Minor issues relate to the genotype/phenotype analysis. It is surprising that the authors detect only mild effects on sulfation in Papss mutants using an anti-sulfoTyr antibody, as Papss is the only Papss synthathase. Generating germ line clones (which is a feasible experiment) would have helped to prove that this minor effect is due to the contribution of maternal product. The loss of function allele used in this study seems problematic, as it produces effects in heterozygous conditions difficult to interpret. Cleaning the chromosome or using an alternative loss of function condition (another allele, RNAi, etc...) would have helped to present a more reliable explanation.

    4. Author response:

      General Statements:

      The formation of three-dimensional tubes is a fundamental process in the development of organs and aberrant tube size leads to common diseases and congenital disorders, such as polycystic kidney disease, asthma, and lung hypoplasia. The apical (luminal) extracellular matrix (ECM) plays a critical role in epithelial tube morphogenesis during organ formation, but its composition and organization remain poorly understood. Using the Drosophila embryonic salivary gland as a model, we reveal a critical role for the PAPS Synthetase (Papss), an enzyme that synthesizes the universal sulfate donor PAPS, as a critical regulator of tube lumen expansion. Additionally, we identify two zona pellucida (ZP) domain proteins, Piopio (Pio) and Dumpy (Dpy) as key apical ECM components that provide mechanical support to maintain a uniform tube diameter.

      The apical ECM has a distinct composition compared to the basal ECM, featuring a diverse array of components. Many studies of the apical ECM have focused on the role of chitin and its modification, but the composition of the non-chitinous apical ECM and its role, and how modification of the apical ECM affects organogenesis remain elusive. The main findings of this manuscript are listed below.

      (1) Through a deficiency screen targeting ECM-modifying enzymes, we identify Papss as a key enzyme regulating luminal expansion during salivary gland morphogenesis. 

      (2) Our confocal and transmission electron microscopy analyses reveal that Papss mutants exhibit a disorganized apical membrane and condensed aECM, which are at least partially linked to disruptions in Golgi structures and intracellular trafficking. Papss is also essential for cell survival and basal ECM integrity, highlighting the role of sulfation in regulating both apical and basal ECM.

      (3) Salivary gland-specific overexpression of wild-type Papss rescues all defects in Papss mutants, but the catalytically inactive mutant form does not, suggesting that defects in sulfation are the underlying cause of the phenotypes.

      (4) We identify two ZP domain proteins, Piopio (Pio) and Dumpy (Dpy), as key components of the salivary gland aECM. In the absence of Papss, Pio is progressively lost from the aECM, while the Dpy-positive aECM structure is condensed and detaches from the apical membrane, resulting in a narrowed lumen. 

      (5) Mutations in pio or dpy, or in Notopleural (Np), which encodes a matriptase that cleaves Pio, cause the salivary gland lumen to develop alternating bulges and constrictions. Additionally, loss of pio results in loss of Dpy in the salivary gland lumen, suggesting that the Dpycontaining filamentous structures of the aECM is critical for maintaining luminal diameter, with Pio playing an essential role in organizing this structure.

      (6) We further reveal that the cleavage of the ZP domain of Pio by Np is critical for the role of Pio in organizing the aECM structure.

      Overall, our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining tube diameter. Mammals have two isoforms of Papss, Papss1 and Papss2. Papss1 shows ubiquitous expression, with higher levels in glandular cells and salivary duct cells, suggesting a high requirement for sulfation in these cell types. Papss2 shows a more restricted expression, such as in cartilage, and mutations in Papss2 have been associated with skeletal dysplasia in humans. Our analysis of the Drosophila Papss gene, a single ortholog of human Papss1 and Papss2, reveals its multiple roles during salivary gland development. We expect that these findings will provide valuable insights into the function of these enzymes in normal development and disease in humans. Our findings on the key role of two ZP proteins, Pio and Dpy, as major components of the salivary gland aECM also provide valuable information on the organization of the non-chitinous aECM during organ formation.

      We believe that our results will be of broad interest to many cell and developmental biologists studying organogenesis and the ECM, as well as those investigating the mechanisms underlying human diseases associated with conserved mutations.

      Point-by-point description of the revisions:

      We are delighted that all three reviewers were enthusiastic about the work. Their comments and suggestions have improved the paper. The details of the changes we have made in response to each reviewer’s comments are included in italicized text below.

      Reviewer #1 (Evidence, reproducibility and clarity):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      (1) The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K’). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      (2) The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed “normal, fully expanded” lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system. 

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E). 

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I’), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.  

      (3) Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      (4) A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy. 

      (5) Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I’). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      (6) A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManIIGFP signals. Standard colocalization analysis methods, such as Pearson’s correlation coefficient or Mander’s overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L’). 

      (7) I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed “filled” electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      (8) The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology. 

      (9) Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to “defective sulfation affects Golgi structures and multiple routes of intracellular trafficking”. 

      (10) DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      (11) WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. DpyYFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5figure supplement 2C. 

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly. 

      (12) Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to “constrictions” to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      (13) The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes? 

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H). 

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np. 

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT. 

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      (14) Minor:

      Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error.  It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      Minor comments

      (1) Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsm<sup>MI07716</sup> line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.  

      (2) The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      (3) TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      (4) The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.  

      Reviewer #2 (Significance):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      - This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I’) and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.  

      - A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed).

      This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila.

      Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130. 

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants–although this line was very sick and difficult to grow–showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss. 

      - A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a

      product recognized by WGA?

      For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We’re also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism’s proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant. 

      - Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      After cleavages by Np and furin, the Pio protein should have three fragments. The Nterminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals. 

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1’s comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I. 

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      -  What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That’s probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      - The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3. 

      - The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      - It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.   

      - The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a “C-terminal ZP domain”, which is a middle piece after furin + Np cleavages. 

      - The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. eLife Assessment

      This valuable study combines anatomical tracing and slice physiology to examine how anterior thalamic and retrosplenial inputs converge in the presubiculum, a key region in the navigation circuit. The authors show that near-simultaneous co-activation of retrosplenial and thalamic inputs drives supra-linear presubiculum responses, revealing a potential cellular mechanism for anchoring the brain's head direction system to external visual landmarks. Their thorough experimental approach and analyses provide convincing evidence for the cellular basis of how the brain's internal compass may be anchored to the external world, laying the groundwork for future experimental testing in vivo.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors use anatomical tracing and slice physiology to investigate the integration of thalamic (ATN) and retrosplenial cortical (RSC) signals in the dorsal presubiculum (PrS). This work will be of interest to the field, as postsubiculum is thought to be a key region for integrating internal head direction representations with external landmarks. The main result is that ATN and RSC inputs drive the same L3 PrS neurons, which exhibit superlinear summation to near-coincident inputs. Moreover, this activity can induce bursting in L4 PrS neurons, which can pass the signals LMN (perhaps gated by cholinergic input).

      Strengths:

      The slice physiology experiments are carefully done. The analyses are clear and convincing, and the figures and results are well composed. Overall, these results will be a welcome addition to the field.

      Weaknesses:

      The conclusions about the circuit-level function of L3 PrS neurons sometimes outstrip the data, and their model of the integration of these inputs is unclear. I would recommend some revision of the introduction and discussion. I also had some minor comments about the experimental details and analysis.

      Specific major comments:

      (1) I found that the authors' claims sometimes outstrip their data, given that there were no in vivo recordings during behavior. For example, in the abstract that their results indicate "that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex", and in the conclusion they state "[...] cortical RSC projections that carry visual landmark information converge on layer 3 pyramidal cells of the dorsal presubiculum". However, they never measured the nature of the signals coming from ATN and RSC to L3 PrS (or signals sent to downstream regions). Their claim is somewhat reasonable with respect to ATN, where the majority of neurons encode HD, but neurons in RSC encode a vast array of spatial and non-spatial variables other than landmark information (e.g., head direction, egocentric boundaries, allocentric position, spatial context, task history to name a few), so making strong claims about the nature of the incoming signals is unwarranted.

      (2) Related to the first point, the authors hint at, but never explain, how coincident firing of ATN and RSC inputs would help anchor HD signals to visual landmarks. Although the lesion data (Yoder et al. 2011 and 2015) support their claims, it would be helpful if the proposed circuit mechanism was stated explicitly (a schematic of their model would be helpful in understanding the logic). For example, how do neurons integrate the "right" sets of landmarks and HD signals to ensure a stable anchoring? Moreover, it would be helpful to discuss alternative models of HD-to-landmark anchoring, including several studies that have proposed that the integration may (also?) occur in RSC (Page & Jeffrey, 2018; Yan, Burgess, Bicanski, 2021; Sit & Goard, 2023). Currently, much of the Discussion simply summarizes the results of the study, this space could be better used in mapping the findings to the existing literature on the overarching question of how HD signals are anchored to landmarks.

      Comments on revised version:

      The authors addressed all of my major points and most of my minor points in the revised submission.

    3. Reviewer #2 (Public review):

      Richevaux et al investigate how anterior thalamic (AD) and retrosplenial (RSC) inputs are integrated by single presubicular (PrS) layer 3 neurons. They show that these two inputs converge onto single PrS layer 3 principal cells. By performing dual wavelength photostimulation of these two inputs in horizontal slices, the authors show that in most layer 3 cells, these inputs summate supra-linearly. They extend the experiments by focusing on putative layer 4 PrS neurons and show that they do not receive direct anterior thalamic nor retrosplenial inputs; rather, they are (indirectly) driven to burst firing in response to strong activation of the PrS network.

      This is a valuable study, which investigates an important question - how visual landmark information (possibly mediated by retrosplenial inputs) converges and integrates with HD information (conveyed by the AD nucleus of the thalamus) within PrS circuitry. The data indicate that near-coincident activation of retrosplenial and thalamic inputs leads to non-linear integration in target layer 3 neurons, thereby offering a potential biological basis for landmark + HD binding.

      Main limitations relate to the anatomical annotation of 'putative' PrS L4 neurons, and to the presentation of retrosplenial / thalamic input modularity. Specifically, more evidence should be provided to convincingly demonstrate that the 'putative L4 neurons' of the PrS are not distal subicular neurons (as the authors' anatomy and physiology experiments seem to indicate). The modularity of thalamic and retrosplenial inputs could be better clarified in relation to the known PrS modularity.

    4. Reviewer #3 (Public review):

      Summary:

      The authors sought to determine, at the level of individual presubiculum pyramidal cells, how allocentric spatial information from retrosplenial cortex was integrated with egocentric information from the anterior thalamic nuclei. Employing a dual opsin optogenetic approach with patch clamp electrophysiology, Richevaux and colleagues found that around three quarters of layer 3 pyramidal cells in presubiculum receive monosynaptic input from both brain regions. While some interesting questions remain (e.g. the role of inhibitory interneurons in gating the information flow and through different layers of presubiculum, this paper provides valuable insights into the microcircuitry of this brain region and the role that it may play in spatial navigation.

      Strengths:

      One of the main strengths of this manuscript was that the dual opsin approach allowed the direct comparison of different inputs within an individual neuron, helping to control for what might otherwise have been an important source of variation. The experiments were well-executed and the data rigorously analysed. The conclusions were appropriate to the experimental questions and were well-supported by the results. These data will help to inform in vivo experiments aimed at understanding the contribution of different brain regions in spatial navigation and could be valuable for computational modelling.

      Weaknesses:

      Some attempts were made to gain mechanistic insights into how inhibitory neurotransmission may affect processing in presubiuclum (e.g. figure 5) but these experiments were a little underpowered and the analysis carried out could have been more comprehensively undertaken, as was done for other experiments in the manuscript.

      Comments on revised version:

      The authors have addressed all of my comments and I have nothing further to add. Well done for an interesting and valuable contribution!

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors use anatomical tracing and slice physiology to investigate the integration of thalamic (ATN) and retrosplenial cortical (RSC) signals in the dorsal presubiculum (PrS). This work will be of interest to the field, as the postsubiculum is thought to be a key region for integrating internal head direction representations with external landmarks. The main result is that ATN and RSC inputs drive the same L3 PrS neurons, which exhibit superlinear summation to near-coincident inputs. Moreover, this activity can induce bursting in L4 PrS neurons, which can pass the signals LMN (perhaps gated by cholinergic input).

      Strengths:

      The slice physiology experiments are carefully done. The analyses are clear and convincing, and the figures and results are well-composed. Overall, these results will be a welcome addition to the field.

      We thank this reviewer for the positive comment on our work.

      Weaknesses:

      The conclusions about the circuit-level function of L3 PrS neurons sometimes outstrip the data, and their model of the integration of these inputs is unclear. I would recommend some revision of the introduction and discussion. I also had some minor comments about the experimental details and analysis.

      Specific major comments:

      (1) I found that the authors' claims sometimes outstrip their data, given that there were no in vivo recordings during behavior. For example, in the abstract, their results indicate "that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex", and in the conclusion they state "[...] cortical RSC projections that carry visual landmark information converge on layer 3 pyramidal cells of the dorsal presubiculum". However, they never measured the nature of the signals coming from ATN and RSC to L3 PrS (or signals sent to downstream regions). Their claim is somewhat reasonable with respect to ATN, where the majority of neurons encode HD, but neurons in RSC encode a vast array of spatial and non-spatial variables other than landmark information (e.g., head direction, egocentric boundaries, allocentric position, spatial context, task history to name a few), so making strong claims about the nature of the incoming signals is unwarranted.

      We agree of course that RSC does not only encode landmark information. We have clarified this point in the introduction (line 69-70) and formulated more carefully in the abstract (removed the word ‘landmark’ in line 17) and in the  introduction (line 82-83). In the discussion we explicitly state that ‘In our slice work we are blind to the exact nature of the signal that is carried by ATN and RSC axons’ (line 522-523).

      (2) Related to the first point, the authors hint at, but never explain, how coincident firing of ATN and RSC inputs would help anchor HD signals to visual landmarks. Although the lesion data (Yoder et al. 2011 and 2015) support their claims, it would be helpful if the proposed circuit mechanism was stated explicitly (a schematic of their model would be helpful in understanding the logic). For example, how do neurons integrate the "right" sets of landmarks and HD signals to ensure stable anchoring? Moreover, it would be helpful to discuss alternative models of HD-to-landmark anchoring, including several studies that have proposed that the integration may (also?) occur in RSC (Page & Jeffrey, 2018; Yan, Burgess, Bicanski, 2021; Sit & Goard, 2023). Currently, much of the Discussion simply summarizes the results of the study, this space could be better used in mapping the findings to the existing literature on the overarching question of how HD signals are anchored to landmarks.

      We agree with the reviewer on the importance of the question, how do neurons integrate the “right” sets of landmarks and HD signals to ensure stable anchoring? Based on our results we provide a schematic to illustrate possible scenarios, and we include it as a supplementary figure (Figure 1, to be included in the ms as Figure 7—figure supplement 2), as well as a new paragraph in the discussion section (line 516-531).  We point out that critical information on the convergence and divergence of functionally defined inputs is still lacking, both for principal cells and interneurons

      Interestingly, recent evidence from functional ultrasound imaging and electrical single cell recording demonstrated that visual objects may refine head direction coding, specifically in the dorsal presubiculum (Siegenthaler et al. bioRxiv 2024.10.21.619417; doi: https://doi.org/10.1101/2024.10.21.619417). The increase in firing rate for HD cells whose preferred firing direction corresponds to a visual landmark could be supported by the supralinear summation of thalamic HD signals and retrosplenial input described in our study. We include this point in the discussion (line 460-462), and hope that our work will spur further investigations.

      Reviewer #2 (Public Review):

      Richevaux et al investigate how anterior thalamic (AD) and retrosplenial (RSC) inputs are integrated by single presubicular (PrS) layer 3 neurons. They show that these two inputs converge onto single PrS layer 3 principal cells. By performing dual-wavelength photostimulation of these two inputs in horizontal slices, the authors show that in most layer 3 cells, these inputs summate supra-linearly. They extend the experiments by focusing on putative layer 4 PrS neurons, and show that they do not receive direct anterior thalamic nor retrosplenial inputs; rather, they are (indirectly) driven to burst firing in response to strong activation of the PrS network.

      This is a valuable study, that investigates an important question - how visual landmark information (possibly mediated by retrosplenial inputs) converges and integrates with HD information (conveyed by the AD nucleus of the thalamus) within PrS circuitry. The data indicate that near-coincident activation of retrosplenial and thalamic inputs leads to non-linear integration in target layer 3 neurons, thereby offering a potential biological basis for landmark + HD binding.

      The main limitations relate to the anatomical annotation of 'putative' PrS L4 neurons, and to the presentation of retrosplenial/thalamic input modularity. Specifically, more evidence should be provided to convincingly demonstrate that the 'putative L4 neurons' of the PrS are not distal subicular neurons (as the authors' anatomy and physiology experiments seem to indicate). The modularity of thalamic and retrosplenial inputs could be better clarified in relation to the known PrS modularity.

      We thank the reviewer for their important feedback. We discuss what defines presubicular layer 4 in horizontal slices, cite relevant literature, and provide new and higher resolution images. See below for detailed responses to the reviewer’s comments, in the section ‘recommendations to authors’.

      Reviewer #3 (Public Review):

      Summary:

      The authors sought to determine, at the level of individual presubiculum pyramidal cells, how allocentric spatial information from the retrosplenial cortex was integrated with egocentric information from the anterior thalamic nuclei. Employing a dual opsin optogenetic approach with patch clamp electrophysiology, Richevaux, and colleagues found that around three-quarters of layer 3 pyramidal cells in the presubiculum receive monosynaptic input from both brain regions. While some interesting questions remain (e.g. the role of inhibitory interneurons in gating the information flow and through different layers of presubiculum, this paper provides valuable insights into the microcircuitry of this brain region and the role that it may play in spatial navigation).

      Strengths:

      One of the main strengths of this manuscript was that the dual opsin approach allowed the direct comparison of different inputs within an individual neuron, helping to control for what might otherwise have been an important source of variation. The experiments were well-executed and the data was rigorously analysed. The conclusions were appropriate to the experimental questions and were well-supported by the results. These data will help to inform in vivo experiments aimed at understanding the contribution of different brain regions in spatial navigation and could be valuable for computational modelling.

      Weaknesses:

      Some attempts were made to gain mechanistic insights into how inhibitory neurotransmission may affect processing in the presubiculum (e.g. Figure 5) but these experiments were a little underpowered and the analysis carried out could have been more comprehensively undertaken, as was done for other experiments in the manuscript.

      We agree that the role of interneurons for landmark anchoring through convergence in Presubiculum requires further investigation. In our latest work on the recruitment of VIP interneurons we begin to address this point in slices (Nassar et al., 2024 Neuroscience. doi: 10.1016/j.neuroscience.2024.09.032.); more work in behaving animals will be needed.

      Reviewer #1 (Recommendations For The Authors):

      Full comments below. Beyond the (mostly minor) issues noted below, this is a very well-written paper and I look forward to seeing it in print.

      Major comments:

      (1) I found that the authors' claims sometimes outstrip their data, given that there were no in vivo recordings during behavior. For example, in the abstract, their results indicate "that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex", and in the conclusion they state "[...] cortical RSC projections that carry visual landmark information converge on layer 3 pyramidal cells of the dorsal presubiculum". However, they never measured the nature of the signals coming from ATN and RSC to L3 PrS (or signals sent to downstream regions). Their claim is somewhat reasonable with respect to ATN, where the majority of neurons encode HD, but neurons in RSC encode a vast array of spatial and non-spatial variables other than landmark information (e.g., head direction, egocentric boundaries, allocentric position, spatial context, task history to name a few), so making strong claims about the nature of the incoming signals is unwarranted.

      Our study was motivated by the seminal work from Yoder et al., 2011 and 2015, indicating that visual landmark information is processed in PoS and from there transmitted to the LMN.  Based on that, and in the interest of readability, we may have used an oversimplified shorthand for the type of signal carried by RSC axons. There are numerous studies indicating a role for RSC in encoding visual landmark information (Auger et al., 2012; Jacob et al., 2017; Lozano et al., 2017; Fischer et al., 2020; Keshavarzi et al., 2022; Sit and Goard, 2023); we agree of course that this is certainly not the only variable that is represented. Therefore we change the text to make this point clear:

      Abstract, line 17: removed the word ‘landmark’

      Introduction, line 69: added “...and supports an array of cognitive functions including memory, spatial and non-spatial context and navigation (Vann et al., 2009; Vedder et al., 2017). ”

      Introduction, line 82: changed “...designed to examine the convergence of visual landmark information, that is possibly integrated in the RSC, and vestibular based thalamic head direction signals”.

      Discussion, line 522-523: added “In our slice work we are blind to the exact nature of the signal that is carried by ATN and RSC axons.”

      (2) Related to the first point, the authors hint at, but never explain, how coincident firing of ATN and RSC inputs would help anchor HD signals to visual landmarks. Although the lesion data (Yoder et al., 2011 and 2015) support their claims, it would be helpful if the proposed circuit mechanism was stated explicitly (a schematic of their model would be helpful in understanding the logic). For example, how do neurons integrate the "right" sets of landmarks and HD signals to ensure stable anchoring? Moreover, it would be helpful to discuss alternative models of HD-to-landmark anchoring, including several studies that have proposed that the integration may (also?) occur in RSC (Page & Jeffrey, 2018; Yan, Burgess, Bicanski, 2021; Sit & Goard, 2023). Currently, much of the Discussion simply summarizes the results of the study, this space could be better used in mapping the findings to the existing literature on the overarching question of how HD signals are anchored to landmarks.

      We suggest a physiological mechanism for inputs to be selectively integrated and amplified, based on temporal coincidence. Of course there are still many unknowns, including the divergence of connections from a single thalamic or retrosplenial input neuron. The anatomical connectivity of inputs will be critical, as well as the subcellular arrangement of synaptic contacts. Neuromodulation and changes in the balance of excitation and inhibition will need to be factored in. While it is premature to provide a comprehensive explanation for landmark anchoring of HD signals in PrS, our results have led us to include a schematic, to illustrate our thinking (Figure 1, see below).

      Do HD tuned inputs from thalamus converge on similarly tuned HD neurons only? Is divergence greater for the retrosplenial inputs? If so, thalamic input might pre-select a range of HD neurons, and converging RSC input might narrow down the precise HD neurons that become active (Figure 1). In the future, the use of activity dependent labeling strategies might help to tie together information on the tuning of pre-synaptic neurons, and their convergence or divergence onto functionally defined postsynaptic target cells. This critical information is still lacking, for principal cells, and also for interneurons. 

      Interneurons may have a key role in HD-to-landmark anchoring. SST interneurons support stability of HD signals (Simonnet et al., 2017) and VIP interneurons flexibly disinhibit the system (Nassar et al., 2024). Could disinhibition be a necessary condition to create a window of opportunity for updating the landmark anchoring of the attractor? Single PV interneurons might receive thalamic and retrosplenial inputs non-specifically. We need to distinguish the conditions for when the excitation-inhibition balance in pyramidal cells may become tipped towards excitation, and the case of coincident, co-tuned thalamic and retrosplenial input may be such a condition. Elucidating the principles of hardwiring of inputs, as for example, selective convergence, will be necessary. Moreover, neuromodulation and oscillations may be critical for temporal coordination and precise temporal matching of HD-to-landmark signals.

      We note that matching directional with visual landmark information based on temporal coincidence as described here does not require synaptic plasticity. Algorithms for dynamic control of cognitive maps without synaptic plasticity have been proposed (Whittington et al., 2025, Neuron): information may be stored in neural attractor activity, and the idea that working memory may rely on recurrent updates of neural activity might generalize to the HD system. We include these considerations in the discussion (line 497-501; 521-531) and hope that our work will spur further experimental investigations and modeling work.

      While the focus of our work has been on PrS, we agree that RSC also treats HD and landmark signals. Possibly the RSC registers a direction to a landmark rather than comparing it with the current HD (Sit & Goard, 2023). We suggest that this integrated information then reaches PrS. In contrast to RSC, PrS is uniquely positioned to update the signal in the LMN (Yoder et al., 2011), cf. discussion (line 516-520).

      Minor comments:

      (1) Fig 1 - Supp 1: It appears there is a lot of input to PrS from higher visual regions, could this be a source of landmark signals?

      Yes, higher visual regions projecting to PrS may also be a source of landmark information, even if the visual signal is not integrated with HD at that stage (Sit & Goard 2023). The anatomical projection from the visual cortex was first described by Vogt & Miller (1983), but not studied on a functional level so far.

      (2) Fig 2F, G: Although the ATN and RSC measurements look quite similar, there are no stats included. The authors should use an explicit hypothesis test.

      We now compare the distributions of amplitudes and of latencies, using the Mann-Whitney U test. No significant difference between the two groups were found. Added in the figure legend: 2F, “Mann-Whitney U test revealed no significant difference (p = 0.95)”. 2G, “Mann-Whitney U test revealed no significant difference (p = 0.13)”.

      (3) Fig 2 - Supp 2A, C: Again, no statistical tests. This is particularly important for panel A, where the authors state that the latencies are similar but the populations appear to be different.

      Inputs from ATN and RSC have a similar ‘jitter’ (latency standard deviation) and ‘tau decay’. We added in the Fig 2 - Supp 2 figure legend: A, “Mann-Whitney U test revealed no significant difference (p = 0.26)”. C, “Mann-Whitney U test revealed no significant difference (p = 0.87)”.

      As a complementary measure for the reviewer, we performed the Kolmogorov-Smirnov test which confirmed that the populations’ distributions for ‘jitter’ were not significantly different, p = 0.1533.

      (4) Fig 4E, F: The statistics reporting is confusing, why are asterisks above the plots and hashmarks to the side?

      Asterisks refer to a comparison between ‘dual’ and ‘sum’ for each of the 5 stimulations in a Sidak multiple comparison test. Hashmarks refer to comparison of the nth stimulation to the 1st one within dual stimulation events (Friedman + Dunn’s multiple comparison test). We mention the two-way ANOVA p-value in the legend (Sum v Dual, for both Amplitude and Surface).

      (5) Fig 5C: I was confused by the 2*RSC manipulation. How do we know if there is amplification unless we know what the 2*RSC stim alone looks like?

      We now label the right panel in Fig 5C as “high light intensity” or “HLI”. Increasing the activation of Chrimson increases the amplitude of the summed EPSP that now exceeds the threshold for amplification of synaptic events. Amplification refers to the shape of the plateau-like prolongation of the peak, most pronounced on the second EPSP, now indicated with an arrow.  We clarify this also in the text (line 309-310).

      (6) Fig 6D (supplement 1): Typo, "though" should be "through"

      Yes, corrected (line 1015).

      (7) Fig 6G (supplement 1): Typo, I believe this refers to the dotted are in panel F, not panel A.

      Yes, corrected (line 1021).

      (8) Fig 7: The effect of muscarine was qualitatively described in the Results, but there is no quantification and it is not shown in the Figure. The results should either be reported properly or removed from the Results.

      We remove the last sentence in the Results.

      (9) Methods: The age and sex of the mice should be reported. Transgenic mouse line should be reported (along with stock number if applicable).

      We used C57BL6 mice with transgenic background (Ai14 mice, Jax n007914  reporter line) or C57BL6 wild type mice. This is now indicated in the Methods (lines 566-567).

      (10) Methods: If the viruses are only referred to with their plasmid number, then the capsid used for the viruses should be specified. For example, I believe the AAV-CAG-tomato virus used the retroAAV capsid, which is important to the experiment.

      Thank you for pointing this out. Indeed the AAV-CAG-tdTom virus used the retroAAV capsid, (line 575).

      (11) Data/code availability: I didn't see any sort of data/code availability statement, will the data and code be made publicly available?

      Data are stored on local servers at the SPPIN, Université Paris Cité, and are made available upon reasonable request. Code for intrinsic properties analysis is available on github (https://github.com/schoki0710/Intrinsic_Properties). This information is now included (line 717-720).

      (12) Very minor (and these might be a matter of opinion), but I believe "records" should be "recordings", and "viral constructions" should be "viral constructs".

      The text had benefited from proofreading by Richard Miles, who always preferred “records” to “recordings” in his writings. We choose to keep the current wording.

      Reviewer #2 (Recommendations For The Authors):

      Below are two major points that require clarification.

      (1) In the last set of experiments presented by the authors (Figs 6 onwards) they focus on 'putative L4' PrS cells. For several lines of evidence (outlined below), I am convinced that these neurons are not presubicular, but belong to the subiculum. I think this is a major point that requires substantial clarification, in order to avoid confusion in the field (see also suggestions on how to address this comment at the end of this section).

      Several lines of evidence support the interpretation that, what the authors call 'L4 PrS neurons', are distal subicular cells:

      (1.1) The anatomical location of the retrogradely-labelled cells (from mammillary bodies injections), as shown in Figs 6B, C, and Fig. 6_1B, very clearly indicates that they belong to the distal subiculum. The subicular-to-PrS boundary is a sharp anatomical boundary that follows exactly the curvature highlighted by the authors' red stainings. The authors could also use specific subicular/PrS markers to visualize this border more clearly - e.g. calbindin, Wfs-1, Zinc (though I believe this is not strictly necessary, since from the pattern of AD fibers, one can already draw very clear conclusions, see point 1.3 below).

      Our criteria to delimit the presubiculum are the following: First and foremost, we rely on the defining presence of antero-dorsal thalamic fibers that target specifically the presubiculum and not the neighbouring subiculum (Simonnet et al., 2017, Nassar et al., 2018, Simonnet and Fricker, 2018; Jiayan Liu et al., 2021). This provides the precise outline of the presubicular superficial layers 1 to 3. It may have been confusing to the reviewer that our slicing angle gives horizontal sections. In fact, horizontal sections are favourable to identify the layer structure of the PrS,  based on DAPI staining and the variations in cell body size. The work by Ishihara and Fukuda (2016) illustrates in their Figure 12 that the presubicular layer 4 lies below the presubicular layer 3, and forms a continuation with the subiculum (Sub1). Their Figure 4 indicates with a dotted line the “generally accepted border between the (distal) subiculum and PreS”, and it runs from the proximal tip of superficial cells of the PrS toward the white matter, among the radial direction of the cortical tissue.  We agree with this definition. Others have sliced coronally (Cembrowski et al., 2018) which renders a different visualization of the border region with the subiculum.

      Second, let me explain the procedure for positioning the patch electrode in electrophysiological experiments on horizontal presubicular slices. Louis Richevaux, the first author, who carried out the layer 4 cell recordings, took great care to stay very close (<50 µm) to the lower limit of the zone where the GFP labeled thalamic axons can be seen. He was extremely meticulous about the visualization under the microscope, using LED illumination, for targeting. The electrophysiological signature of layer 4 neurons with initial bursts (but not repeated bursting, in mice) is another criterion to confirm their identity (Huang et al., 2017). Post-hoc morphological revelation showed their apical dendrites, running toward the pia, sometimes crossing through the layer 3, sometimes going around the proximal tip, avoiding the thalamic axons (Figure 6D). For example the cell in Figure 6, suppl. 1 panel D, has an apical dendrite that runs through layer 3 and layer 1. 

      Third, retrograde labeling following stereotaxic injection into the LMN is another criterion to define PrS layer 4. This approach is helpful for visualization, and is based on the defining axonal projection of layer 4 neurons (Yoder and Taube, 2011; Huang et al., 2017). Due to the technical challenge to stereotaxically inject only into LMN, the resultant labeling may not be limited to PrS layer 4. We cannot entirely exclude some overflow of retrograde tracers (B) or retrograde virus (C) to the neighboring MMN. This would then lead to co-labeling of the subiculum. In the main Figure 6, panels B and C, we agree that for this reason the red labelled cell bodies likely include also subicular neurons, on the proximal side, in addition to L4 presubicular neurons. We now point out this caveat in the main text (line 324-326) and in the methods (line 591-592).

      (1.2) Consistent with their subicular location, neuronal morphologies of the 'putative L4 cells' are selectively constrained within the subicular boundaries, i.e. they do not cross to the neighboring PrS (maybe a minor exception in Figs. 6_1D2,3). By definition, a neuron whose morphology is contained within a structure belongs to that structure.

      From a functional point of view, for the HD system, the most important criterion for defining presubicular layer 4 neurons is their axonal projection to the LMN (Yoder and Taube 2011). From an electrophysiological standpoint, it is the capacity of layer 4 neurons to fire initial bursts (Simonnet et al., 2013; Huang et al., 2017).  Anatomically, we note that the expectation that the apical dendrite should go straight up into layer 3 might not be a defining criterion in this curved and transitional periarchicortex. Presubicular layer 4 apical dendrites may cross through layer 3 and exit to the side, towards the subiculum (This is the red dendritic staining at the proximal end of the subiculum, at the frontier with the subiculum, Figure 6 C).

      (1.3) As acknowledged by the authors in the discussion (line 408): the PrS is classically defined by the innervation domain of AD fibers. As Figure 6B clearly indicates, the retrogradely-labelled cells ('putative L4') are convincingly outside the input domain of the AD; hence, they do not belong to the PrS.

      The reviewer is mistaken here, the deep layers 4 and 5/6 indeed do not lie in the zone innervated by the thalamic fibers (Simonnet et al., 2017; Nassar et al., 2018; Simonnet and Fricker, 2018) but still belong to the presubiculum. The presubicular deep layers are located below the superficial layers, next to, and in continuation of the subiculum. This is in agreement with work by Yoder and Taube 2011; Ishihara and Fukuda 2016; Boccara, … Witter, 2015; Peng et al., 2017 (Fig 2D); Yoshiko Honda et al., (Marmoset, Fig 2A) 2022; Balsamo et al., 2022 (Figure 2B).

      (1.4) Along with the above comment: in my view, the optogenetic stimulation experiments are an additional confirmation that the 'putative L4 cells' are subicular neurons, since they do not receive AD inputs at all (hence, they are outside of the PrS); they are instead only indirectly driven upon strong excitation of the PrS. This indirect activation is likely to occur via PrS-to-Subiculum 'back-projections', the existence of which is documented in the literature and also nicely shown by the authors (see Figure 1_1 and line 109).

      See above. Only superficial layers 1-3 of the presubiculum receive direct AD input.

      (1.5) The electrophysiological properties of the 'putative L4 cells' are consistent with their subicular identity, i.e. they show a sag current and they are intrinsically bursty.

      Presubicular layer 4 cells also show bursting behaviour and a sag current (Simonnet et al., 2013; Huang et al., 2017).

      From the above considerations, and the data provided by the authors, I believe that the most parsimonious explanation is that these retrogradely-labelled neurons (from mammillary body injections), referred to by the authors as 'L4 PrS cells', are indeed pyramidal neurons from the distal subiculum.

      We agree that the retrograde labeling is likely not limited to the presubicular layer 4 cells, and we now indicate this in the text (line 324-326). However, the portion of retrogradely labeled neurons that is directly below the layer 3 should be considered as part of the presubiculum.

      I believe this is a fundamental issue that deserves clarification, in order to avoid confusion/misunderstandings in the field. Given the evidence provided, I believe that it would be inaccurate to call these cells 'L4 PrS neurons'. However, I acknowledge the fact that it might be difficult to convincingly and satisfactorily address this issue within the framework of a revision. For example, it is possible that these 'putative L4 cells' might be retrogradely-labelled from the Medial Mammillary Body (a major subicular target) since it is difficult to selectively restrict the injection to the LMN, unless a suitable driver line is used (if available). The authors should also consider the possibility of removing this subset of data (referring to putative L4), and instead focus on the rest of the story (referring to L3)- which I think by itself, still provides sufficient advance.

      We agree with the reviewer that it is difficult to provide a satisfactory answer. To some extent, the reviewer’s comments target the nomenclature of the subicular region. This transitional region between the hippocampus and the entorhinal cortex has been notoriously ill defined, and the criteria are somewhat arbitrary for determining exactly where to draw the line. Based on the thalamic projection, presubicular layers 1-3 can now be precisely outlined, thanks to the use of viral labeling. But the presubicular layer 4 had been considered to be cell-free in early works, and termed ‘lamina dissecans’ (Boccara 2010), as the limit between the superficial and deep layers. Then it became of great interest to us and to the field, when the PrS layer 4 cells were first identified as LMN projecting neurons (Yoder and Taube 2011). This unique back-projection to the upstream region of the HD system is functionally very important, closing the loop of the Papez circuit (mammillary bodies - thalamus - hippocampal structures).

      We note that the reviewer does not doubt our results, rather questions the naming conventions. We therefore maintain our data. We agree that in the future a genetically defined mouse line would help to better pin down this specific neuronal population.

      We thank the reviewer for sharing their concerns and giving us the opportunity to clarify our experimental approach to target the presubicular layer 4. We hope that these explanations will be helpful to the readers of eLife as well.

      (2) The PrS anatomy could be better clarified, especially in relation to its modular organization (see e.g. Preston-Ferrer et al., 2016; Ray et al., 2017; Balsamo et al., 2022). The authors present horizontal slices, where cortical modularity is difficult to visualize and assess (tangential sections are typically used for this purpose, as in classical work from e.g. barrel cortex). I am not asking the authors to validate their observations in tangential sections, but just to be aware that cortical modules might not be immediately (or clearly) apparent, depending on the section orientation and thickness. The authors state that AD fibers were 'not homogeneously distributed' in L3 (line 135) and refer to 'patches of higher density in deep L3' (line 136). These statements are difficult to support unless more convincing anatomy and  . I see some L3 inhomogeneity in the green channel in Fig. 1G (last two panels) and also in Fig. 1K, but this seems to be rather upper L3. I wonder how consistent the pattern is across different injections and at what dorsoventral levels this L3 modularity is observed (I think sagittal sections might be helpful). If validated, these observations could point to the existence of non-homogeneous AD innervation domains in L3 - hinting at possible heterogeneity among the L3 pyramidal cell targets. Notably, modularity in L2 and L1 is not referred to. The authors state that AD inputs 'avoid L2' (line 131) but this statement is not in line with recent work (cited above) and is also not in line with their anatomy data in Fig. 1G, where modularity is already quite apparent in L2 (i.e. there are territories avoided by the AD fibers in L2) and in L1 (see for example the last image in Fig. 1G). This is the case also for the RSC axons (Fig. 1H) where a patchy pattern is quite clear in L1 (see the last image in panel H). Higher-mag pictures might be helpful here. These qualitative observations imply that AD and RSC axons probably bear a precise structural relationship relative to each other, and relative to the calbindin patch/matrix PrS organization that has been previously described. I am not asking the authors to address these aspects experimentally, since the main focus of their study is on L3, where RSC/AD inputs largely converge. Better anatomy pictures would be helpful, or at least a better integration of the authors' (qualitative) observations within the existing literature. Moreover, the authors' calbindin staining in Fig. 1K is not particularly informative. Subicular, PaS, MEC, and PrS borders should be annotated, and higher-resolution images could be provided. The authors should also check the staining: MEC appears to be blank but is known to strongly express calb1 in L2 (see 'island' by Kitamura et al., Ray et al., Science 2014; Ray et al., frontiers 2017). As additional validation for the staining: I would expect that the empty L2 patches in Figs. 1G (last two panels) would stain positive for Calbindin, as in previous work (Balsamo et al. 2022).

      We now provide a new figure showing the pattern of AD innervation in PrS superficial layers 1 to 3, with different dorso-ventral levels and higher magnification (Figure 2). Because our work was aimed at identifying connectivity between long-range inputs and presubicular neurons, we chose to work with horizontal sections that preserve well the majority of the apical dendrites of presubicular pyramidal neurons. We feel it is enriching for the presubicular literature to show the cytoarchitecture from different angles and to show patchiness in horizontal sections. The non-homogeneous AD innervation domains (‘microdomains’) in L3 were consistently observed across different injections in different animals.

      Author response image 1.

      Thalamic fiber innervation pattern. A, ventral, and B, dorsal horizontal section of the Presubiculum containing ATN axons expressing GFP. Patches of high density of ATN axonal ramifications in L3 are indicated as “ATN microdomains”. Layers 1, 2, 3, 4, 5/6 are indicated.  C, High magnification image (63x optical section)(different animal).<br />

      We also provide a supplementary figure with images of horizontal sections of calbindin staining in PrS, with a larger crop, for the reviewer to check (Figure 3, see below). We thank the reviewer for pointing out recent studies using tangential sections. Our results agree with the previous observation that AD axons are found in calbindin negative territories (cf Fig 1K). Calbindin+ labeling is visible in the PrS layer 2 as well as in some patches in the MEC (Figure 3 panel A). Calbindin staining tends to not overlap with the territories of ATN axonal ramification. We indicate the inhomogeneities of anterior thalamic innervation that form “microdomains” of high density of green labeled fibers, located in layer 1 and layer 3 (Figure 3, Panel A, middle). Panel B shows another view of a more dorsal horizontal section of the PrS, with higher magnification, with a big Calbindin+ patch near the parasubiculum.

      The “ATN+ microdomains” possess a high density of axonal ramifications from ATN, and have been previously documented in the literature. They are consistently present. Our group had shown them in the article by Nassar et al., 2018, at different dorsoventral levels (Fig 1 C (dorsal) and 1D (ventral) PrS). See also Simonnet et al., 2017, Fig 2B, for an illustration of the typical variations in densities of thalamic fibers, and supplementary Figure 1D. Also Jiayan Liu et al., 2021 (Figure 2 and Fig 5) show these characteristic microzones of dense thalamic axonal ramifications, with more or less intense signals across layers 1, 2, and 3.  While it is correct that thalamic axons can be seen to cross layer 2 to ramify in layer 1, we maintain that AD axons typically do not ramify in layer 2. We modify the text to say, “mostly” avoiding L2 (line 130).

      The reviewer is correct in pointing out that the 'patches of higher density in deep L3' are not only in the deep L3, as in the first panel in Fig 1G, but in the more dorsal sections they are also found in the upper L3. We change the text accordingly (line 135-136) and we provide the layer annotation in Figure 1G. We further agree with the reviewer that RSC axons also present a patchy innervation pattern. We add this observation in the text (line 144).

      It is yet unclear whether anatomical microzones of dense ATN axon ramifications in L3 might fulfill the criteria of a functional modularity, as it is the case for the calbindin patch/matrix PrS organization (Balsamo et al., 2022). As the reviewer points out, this will require more information on the precise structural relationship of AD and RSC axons relative to each other, as well as functional studies. Interestingly, we note a degree of variation in the amplitudes of oEPSC from different L3 neurons (Fig. 2F, discussion line 420; 428), which might be a reflection of the local anatomo-functional micro-organization.

      Minor points:

      (1) The pattern or retrograde labelling, or at least the way is referred to in the results (lines 104ff), seems to imply some topography of AD-to-PreS projections. Is it the case? How consistent are these patterns across experiments, and individual injections? Was there variability in injection sites along the dorso-ventral and possibly antero-posterior PrS axes, which could account for a possibly topographical AD-to-PrS input pattern? It would be nice to see a DAPI signal in Fig. 1B since the AD stands out quite clearly in DAPI (Nissl) alone.

      Yes, we find a consistent topography for the AD-to-PrS projection, for similar injection sites in the presubiculum. The coordinates for retrograde labeling were as indicated -4.06 (AP), 2.00 (ML) and -2.15 mm (DV) such that we cannot report on possible variations for different injection sites.

      (2) Fig. 2_2KM: this figure seems to show the only difference the authors found between AD and RS input properties. The authors could consider moving these data into main Fig. 2 (or exchanging them with some of the panels in F-O, which instead show no difference between AD and RSC). Asterisks/stats significance is not visible in M.

      For space reasons we leave the panels of Fig. 2_2KM in the supplementary section. We increased the size of the asterisk in M.

      (3) The data in Fig. 1_1 are quite interesting, since some of the PrS projection targets are 'non-canonical'. Maybe the authors could consider showing some injection sites, and some fluorescence images, in addition to the schematics. Maybe the authors could acknowledge that some of these projection targets are 'putative' unless independently verified by e.g. retrograde labeling. Unspecific white matter labelling and/or spillover is always a potential concern.

      We now include the image of the injection site for data in Fig. 1_1 as a supplementary Fig. 1_2. The Figure 1_1 shows the retrogradely labeled upstream areas of Presubiculum.

      Author response image 2.

      Retrobeads were injected in the right Presubiculum.<br />

      (4) The authors speculate that the near-coincident summation of RS + AD inputs in L3 cells could be a potential mechanism for the binding of visual + HD information in PrS. However, landmarks are learned, and learning typically implies long-term plasticity. As the authors acknowledge in the discussion (lines 493ff) GluR1 is not expressed in PrS cells. What alternative mechanics could the authors envision? How could the landmark-update process occur in PrS, if is not locally stored? RSC could also be involved (Jakob et al) as acknowledged in the introduction - the authors should keep this possibility open also in the discussion.

      A similar point has been raised by Reviewer 1, please check our answer to their point 2. Briefly, our results indicate that HD-to-landmark updating is a multi-step process. RSC may be one of the places where landmarks are learned. The subsequent temporal mapping of HD to landmark signals in PrS might be plasticity-free, as matching directional with visual landmark information based on temporal coincidence does not necessarily require synaptic plasticity.  It seems likely that there is no local storage and no change in synaptic weights in PrS. The landmark-anchored HD signals reach LMN via L4 neurons, sculpting network dynamics across the Papez circuit. One possibility is that the trace of a landmark that matches HD may be stored as patterns of neural activity that could guide navigation (cf. El-Gaby et al., 2024, Nature) Clearly more work is needed to understand how the HD attractor is updated on a mechanistic level. Recent work in prefrontal cortex mentions “activity slots” and delineates algorithms for dynamic control of cognitive maps without synaptic plasticity (Whittington et al., 2025, Neuron): information may be stored in neural attractor activity, and the idea that working memory may rely on recurrent updates of neural activity might generalize to the HD system. We include these considerations in the discussion (line 499-503; 523-533) and also point to alternative models (line 518 -522) including modeling work in the retrosplenial cortex.

      (5) The authors state that (lines 210ff) their cluster analysis 'provided no evidence for subpopulations of layer 3 cells (but see Balsamo et al., 2022)' implying an inconsistency; however, Balsamo et al also showed that the (in vivo) ephys properties of the two HD cell 'types' are virtually identical, which is in line with the 'homogeneity' of L3 ephys properties (in slice) in the authors' data. Regarding the possible heterogeneity of L3 cells: the authors report inhomogeneous AD innervation domains in L3 (see also main comment 2) and differences in input summation (some L3 cells integrate linearly, some supra-linearly; lines 272) which by itself might already imply some heterogeneity. I would therefore suggest rewording the statements to clarify what the lack of heterogeneity refers to.

      We agree. In line 212 we now state “cluster analysis (Figure 2D) provided no evidence for subpopulations of layer 3 cells in terms of intrinsic electrophysiological properties (see also Balsamo et al., 2022).”

      (6) n=6 co-recorded pairs are mentioned at line 348, but n=9 at line 366. Are these numbers referring to the same dataset? Please correct or clarify

      Line 349 refers to a set of 6 co-recorded pairs (n=12 neurons) in double injected mice with Chronos injected in ATN and Chrimson in RSC (cf. Fig. 7E). The 9 pairs mentioned in line 367 refer to another type of experiment where we stimulated layer 3 neurons by depolarizing them to induce action potential firing while recording neighboring layer 4 neurons to assess connectivity. Line 367  now reads: “In n = 9 paired recordings, we did not detect functional synapses between layer 3 and layer 4 neurons.”

      Reviewer #3 (Recommendations For The Authors):

      Questions for the authors/points for addressing:

      I found that the slice electrophysiology experiments were not reported with sufficient detail. For example, in Figure 2, I am assuming that the voltage clamp experiments were carried out using the Cs-based recording solution, while the current clamp experiments were carried out using the K-Gluc intracellular solution. However, this is not explicitly stated and it is possible that all of these experiments were performed using the K-Gluc solution, which would give slightly odd EPSCs due to incomplete space/voltage clamp. Furthermore, the method states that gabazine was used to block GABA(A) receptor-mediated currents, but not when this occurred. Was GABAergic neurotransmission blocked for all measurements of EPSC magnitude/dynamics? If so, why not block GABA(B) receptors? If not blocking GABAergic transmission for measuring EPSCs, why not? This should be stated explicitly either way.

      The addition of drugs or difference of solution is indicated in the figure legend and/or in the figure itself, as well as in the methods. We now state explicitly: “In a subset of experiments, the following drugs were used to modulate the responses to optogenetic stimulations; the presence of these drugs is indicated in the figure and figure legend, whenever applicable.” (line 632). A Cs-based internal solution and gabazine were used in Figure 5, this is now indicated in the Methods section (line 626). All other experiments were performed using K-Gluc as an internal solution and ACSF.

      Methods: The experiments involving animals are incompletely reported. For example, were both sexes used? The methods state "Experiments were performed on wild‐type and transgenic C57Bl6 mice" - what transgenic mice were used and why is this not reported in detail (strain, etc)? I would refer the authors to the ARRIVE guidelines for reporting in vivo experiments in a reproducible manner (https://arriveguidelines.org/).

      We now added this information in the methods section, subsection “Animals” (line 566-567). Animals of both sexes were used. The only transgenic mouse line used was the Ai14 reporter line (no phenotype), depending on the availability in our animal facility.

      For experiments comparing ATN and RSC inputs onto the same neuron (e.g. Figure 2 supplement 2 G - J), are the authors certain that the observed differences (e.g. rise time and paired-pulse facilitation on the ATN input) are due to differences in the synapses and not a result of different responses of the opsins? Refer to https://pubmed.ncbi.nlm.nih.gov/31822522/ from Jess Cardin's lab. This could easily be tested by switching which opsin is injected into which nucleus (a fair amount of extra work) or comparing the Chrimson synaptic responses with those evoked using Chronos on the same projection, as used in Figure 2 (quite easy as authors should already have the data).

      We actually did switch the opsins across the two injection sites. In Figure 2 - supplement 2G-J, the values linked by a dashed line result from recordings in the switched configuration with respect to the original configuration (in full lines, Chronos injected in RSC and Chrimson in ATN). The values from switched configuration followed the trend of the main configuration and were not statistically different (Mann-Whitney U test).

      Statistical reporting: While the number of cells is generally reported for experiments, the number of slices and animals is not. While slice ephys often treat cells as individual biological replicates, this is not entirely appropriate as it could be argued that multiple cells from a single animal are not independent samples (some sort of mixed effects model that accounts for animals as a random effect would be better). For the experiments in the manuscript, I don't think this is necessary, but it would certainly reassure the reader to report how many animals/slices each dataset came from. At a bare minimum, one would want any dataset to be taken from at least 3 animals from 2 different litters, regardless of how many cells are in there.

      Our slice electrophysiology experiments include data from 38 successfully injected animals: 14 animals injected in ATN, 20 animals injected in RSC, and 4 double injected animals. Typically, we recorded 1 to 3 cells per slice. We now include this information in the text or in the figure legends (line 159, 160, 297, 767, 826, 831, 832, 839, 845, 901, 941).

      For the optogenetic experiments looking at the summation of EPSPs (e.g. figure 4), I have two questions: why were EPSPs measured and not EPSCs? The latter would be expected to give a better readout of AMPA receptor-mediated synaptic currents. And secondly, why was 20 Hz stimulation used for these experiments? One might expect theta stimulation to be a more physiologically-relevant frequency of stimulation for comparing ATN and RSC inputs to single neurons, given the relevance with spatial navigation and that the paper's conclusions were based around the head direction system. Similarly, gamma stimulation may also have been informative. Did the authors try different frequencies of stimulation?

      Question 1. The current clamp configuration allows to measure  EPSPamplification/prolongation by NMDA or persistent Na currents (cf.  Fricker and Miles 2000), which might contribute to supralinearity.

      Question 2. In a previous study from our group about the AD to PrS connection (Nassar et al., 2018), no significant difference was observed on the dynamics of EPSCs between stimulations at 10 Hz versus 30 Hz. Therefore we chose 20 Hz. This value is in the range of HD cell firing (Taube 1995, 1998 (peak firing rates, 18 to 24 spikes/sec in RSC; 41 spikes/sec in AD)(mean firing rates might be lower), Blair and Sharp 1995). In hindsight, we agree that it would have been useful to include 8Hz or 40Hz stimulations. 

      The GABA(A) antagonist experiments in Figure 5 are interesting but I have concerns about the statistical power of these experiments - n of 3 is absolutely borderline for being able to draw meaningful conclusions, especially if this small sample of cells came from just 1 or 2 animals. The number of animals used should be stated and/or caution should be applied when considering the potential mechanisms of supralinear summation of EPSPs. It looks like the slight delay in RSC input EPSP relative to ATN that was in earlier figures is not present here - could this be the loss of feedforward inhibition?

      The current clamp experiments in the presence of QX314 and a Cs gluconate based internal solution were preceded by initial experiments using puff applications of glutamate to the recorded neurons (not shown). Results from those experiments had pointed towards a role for TTX resistant sodium currents and for NMDA receptor activation as a factor favoring the amplification and prolongation of glutamate induced events. They inspired the design of the dual wavelength stimulation experiments shown in Figure 5, and oriented our discussion of the results. We agree of course that more work is required to dissect the role of disinhibition for EPSP amplification. This is however beyond the present study.

      Concerning the EPSP onset delays following RSC input stimulation:  In this set of experiments, we compensated for the notoriously longer delay to EPSP onset, following RSC axon stimulation, by shifting the photostimulation (red) of RSC fibers to -2 ms, relative to the onset of photostimulation of ATN fibers (blue). This experimental trick led to an improved  alignment of the onset of the postsynaptic response, as shown in the figure below for the reviewer.

      Author response image 3.

      In these experiments, the onset of RSC photostimulation was shifted forward in time by -2 ms, in an attempt to better align the EPSP onset to the one evoked by ATN stimulation.<br />

      We insert in the results a sentence to indicate that experiments illustrated in Figure 5 were performed in only a small sample of 3 cells that came from 2 mice (line 297), so caution should be applied. In the discussion we  formulate more carefully, “From a small sample of cells it appears that EPSP amplification may be facilitated by a reduction in synaptic inhibition (n = 3; Figure 5)” (line 487).

      Figure 7: I appreciate the difficulties in making dual recordings from older animals, but no conclusion about the RSC input can legitimately be made with n=1.

      Agreed. We want to avoid any overinterpretation, and point out in the results section that the RSC stimulation data is from a single cell pair. The sentence now reads : “... layer 4 neurons occurred after firing in the layer 3 neuron, following ATN afferent stimuli, in 4 out of 5 cell pairs. We also observed this sequence when RSC input was activated, in one tested pair.” line (347-349)

      Minor points:

      Line 104: 'within the two subnuclei that form the anterior thalamus' - the ATN actually has three subdivisions (AD, AV, AM) so this should state 'two of the three nuclei that form the anterior thalamus...'

      Corrected, line 103

      Line 125: should read "figure 1F" and not "figure 2F".

      Corrected, line 124

      Line 277-280: Why were two different posthoc tests used on the same data in Figures 3E & F?

      We used Sidak’s multicomparison test to compare each event Sum vs. Dual (two different configurations at each time point - asterisks) and Friedman’s and Dunn’s to compare the nth EPSP amplitude to the first one for Dual events (same configuration between time points - hashmarks). We give two-way ANOVA results in the legend.

    1. eLife Assessment

      This study presents a useful set of experiments to explore how a salivary protein might facilitate planthopper-transmitted rice stripe virus infection by interfering with callose deposition and if fully validated, these findings would significantly advance our understanding of tripartite virus-vector-plant interactions and could be of broad interest to plant science research. The authors provide additional data supporting protein-protein interactions and clarify the transient presence of LssaCA in plants. However, the mechanistic framework remains incomplete, particularly regarding the temporal dynamics of callose function and the sustained effect of LssaCA after virus inoculation. Evidence for the tripartite interaction's functional relevance is still limited, and several critical phenotypic and biochemical details require further substantiation.

    2. Reviewer #1 (Public review):

      In this study, the authors identified an insect salivary protein LssaCA participating viral initial infection in plant host. LssaCA directly bond to RSV nucleocapsid protein and then interacted with a rice OsTLP that possessed endo-β-1,3-glucanase activity to enhance OsTLP enzymatic activity and degrade callose caused by insects feeding. The manuscript suffers from fundamental logical issues, making its central narrative highly unconvincing.

      (1) These results suggested that LssaCA promoted RSV infection through a mechanism occurring not in insects or during early stages of viral entry in plants, but in planta after viral inoculation. As we all know that callose deposition affects the feeding of piercing-sucking insects and viral entry, this is contradictory to the results in Fig. S4 and Fig 2. It is difficult to understand callose functioned in virus reproduction in 3 days post virus inoculation. And authors also avoided to explain this mechanism.

      (2) Missing significant data. For example, the phenotypes of the transgenic plants, the RSV titers in the transgenic plants (OsTLP OE, ostlp). The staining of callose deposition were also hard to convince. The evidence about RSV NP-LssaCA-OsTLP tripartite interaction to enhance OsTLP enzymatic activity is not enough.

      (3) Figure 4a, there was the LssaCA signal in the fourth lane of pull-down data. Did MBP also bind LsssCA? The characterization of pull-down methods was rough a little bit. The method of GST pull-down and MBP pull-down should be characterized more in more detail.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, the authors identify an insect salivary protein participating viral initiate infection in plant host. They found a salivary LssaCA promoting RSV infection by interacting with OsTLP that could degrade callose in plants. Furthermore, RSV NP bond to LssaCA in salivary glands to form a complex, which then bond to OsTLP to promote degradation of callose.

      The story focus on tripartite virus-insect vector-plant interaction and is interesting. However, the study is too simple and poor-conducted. The conclusion is also overstated due to unsolid findings.

      We thank the reviewer for their constructive feedback. We have conducted additional experiments to strengthen our results and conclusions as detailed below:

      (1) The comparison between vector inoculation and microinjection involves multiple confounding factors that could affect the experimental results, including salivary components, RSV inoculation titers, and the precision of viral deposition. The differential outcomes could be attributed to these various factors rather than definitively demonstrating the necessity of salivary factors. Therefore, we have removed this comparison from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (2) We conducted new experiments to assess the function of LssaCA enzymatic activity in mediating RSV infection. Additional experiments revealed that OsTLP enzymatic activity is highly pH-dependent, with increased activity as pH decreases from 7.5 to 5.0 (Fig. 3H). However, the LssaCA-OsTLP interaction at pH 7.4 significantly enhanced OsTLP enzymatic activity without requiring pH changes. These results demonstrate that LssaCA-OsTLP protein interactions are crucial for mediating RSV infection. In contrast to pH-dependent mechanisms, our study demonstrated that LssaCA's biological function in mediating RSV infection is at least partially, if not completely, independent of its enzymatic activity. We have added these new resulted into the revised manuscript (Lines 220-227). We have also added a comprehensive discussion comparing the aphid CA mechanism described by Guo et al. (2023 doi.org/10.1073/pnas.2222040120) with our findings in the revised manuscript (Lines 350-371).

      (3) We have repeated majority of callose deposition experiments, providing clearer images (Figures 5-6). In addition to aniline blue staining, we quantified callose concentrations using a plant callose ELISA kit to provide more precise measurements (Figure 5A, I, 6A, C and S8A). We utilized RT-qPCR to measure callose synthase expression in both feeding and non-feeding areas, confirming that callose synthesis was induced specifically in feeding regions, leading to localized callose deposition (Figures 5D-G and S8B-E). For sieve plate visualization, we examined longitudinal sections, which revealed callose deposition in sieve plates during SBPH feeding and RSV infection (Figure S7).

      (4) We generated OsTLP mutant rice seedlings (ostlp) and use this mutant to directly demonstrate that LssaCA mediates callose degradation in planta through enhancement of OsTLP enzymatic activity (Lines 288-302 and Figure 6).

      (5) We produced LssaCA recombinant proteins in sf9 cells to ensure full enzymatic activity and constructed a comprehensive CA mutant protein, in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>,LssaCA<sup>N139H</sup>,LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C).

      Major comments:

      (1) The key problem is that how long the LssCA functioned for in rice plant. Author declared that LssCA had no effect on viral initial infection, but on infection after viral inoculation. It is unreasonable to conclude that LssCA promoted viral infection based on the data that insect inoculated plant just for 2 days, but viral titer could be increased at 14 days post-feeding. How could saliva proteins, which reached phloem 12-14 days before, induce enough TLP to degrade callose to promote virus infection? It was unbelievable.

      We appreciate your insightful comment and acknowledge that our initial description may have been unclear. We agree that salivary proteins would not present in plant tissues for two weeks post-feeding or post-injection. Our intention was to clarify that when salivary proteins enhance RSV infection, this initial enhancement leads to sustained high viral loads. We measured viral burden at 14 days post-feeding or post-injection because this is the common measurement time point when viral titers are sufficiently high for reliable detection by qRT-PCR or western blotting. We have clarified this rationale in the revised manuscript (Lines 155-157).

      To determine the actual persistence of LssaCA in plant tissues, we conducted additional experiments where insects were allowed to feed on a defined aera of rice seedlings for two days. We then monitored LssaCA protein levels at 1 and 3 days after removing the insects. Western blotting analysis revealed that LssaCA protein levels decreased post-feeding and remained detectable at 3 days post-feeding. These results are presented in Figure 2H and described in detail in Lines 184-193.

      (2) Lines 110-116 and Fig. 1, the results of viruliferous insect feeding and microinjection with purified virus could not conclude the saliva factor necessary of RSV infection, because these two tests are not in parallel and comparable. Microinjection with salivary proteins combined with purified virus is comparable with microinjection with purified virus.

      We thank the reviewer’s insightful comment. We agree that “the results of viruliferous insect feeding and microinjection with the purified virus could not conclude the saliva factor necessary of RSV infection”. However, due to the technical difficulty in collecting sufficient quantities of salivary proteins to conduct the microinjection experiment, we have removed these results from the revised manuscript.

      (3) The second problem is how many days post viruliferous insect feeding and microinjection with purified virus did author detect viral titers? in Method section, authors declared that viral titers was detected at 7-14 days post microinjection. Please demonstrate the days exactly.

      We thank the reviewer’s insightful comment. We typically measured RSV infection levels at both 7- and 14-days post-microinjection. However, since the midrib microinjection experiments have been removed from the revised manuscript, this methodology has also been removed accordingly.

      (4) The last problem is that how author made sure that the viral titers in salivary glands of insects between two experiments was equal, causing different phenotype of rice plant. If not, different viral titers in salivary glands of insects between two experiments of course caused different phenotype of rice plant.

      We thank the reviewer’s comment. When we compared the effects of LssaCA deficiency on RSV infection of rice plants, we have compared the viral titers in the insect saliva and salivary glands. The results indicated that the virus titers in both tissues have not changed by LssaCA deficiency, suggesting that the viruses inoculated into rice phloem by insects of different treatments were comparable. Please refer to the revised manuscript Figures 2D-G and Lines 161-173.

      (5) The callose deposition in phloem can be induced by insect feeding. In Fig. 5H, why was the callose deposition increased in the whole vascular bundle, but not phloem? Could the transgenic rice plant directional express protein in the phloem? In Fig. 5, why was callose deposition detected at 24 h after insect feeding? In Fig. 6A, why was callose deposition decreased in the phloem, but not all the cells of the of TLP OE plant? Also in Fig.6A and B, expression of callose synthase genes was required.

      We thank the reviewer for these insightful comments.

      (1) Figure 5. The callose deposition increased in multiple cells within the vascular bundle, including sieve tubes, parenchymatic cells, and companion cells. While callose deposition was detected in other parts of the vascular bundle, no significant differences were observed between treatments in these regions, indicating that in response to RSV infection and other treatments, altered callose deposition mainly occurred in phloem cells. Please refer to the revised 5B, 5J, 6B, and 6D.

      (2) Transgenic plant expression. The OsTLP-overexpressing transgenic rice plants express TLP proteins in various cells under the control of CaMV 35S promoter, rather than being directionally expressed in the phloem. However, since TLP proteins are secreted, they are potentially transported and concentrated in the phloem where they can degrade callose.

      (3) Figure 5. The 24-hour time point for callose deposition detection was selected based on established protocols from previous studies. According to Hao et al. (Plant Physiology 2008), callose deposition increased during the first 3 days of planthopper infestation and decreased after 4 days. Additionally, Ellinger and Voigt (Ann Bot 2014) demonstrated that callose visualization typically begins 18-24 hours after treatment, making 24 hours an optimal detection time point.

      (4) Figure 6, Phloem-specific changes. Similar to Figure 5, while callose deposition was detected in other parts of vascular bundle, significant differences between treatments were mainly observed in phloem cells, indicating that RSV infection specifically affects callose deposition in phloem tissue.

      (5) Callose synthase gene expression. We performed RT-qPCR analysis to measure the expression levels of callose synthase genes. The results indicated that OsTLP overexpression did not significantly alter the mRNA levels of these genes, regardless of RSV infection status in SBPH.

      Reviewer #2 (Public Review):

      There is increasing evidence that viruses manipulate vectors and hosts to facilitate transmission. For arthropods, saliva plays an essential role for successful feeding on a host and consequently for arthropod-borne viruses that are transmitted during arthropod feeding on new hosts. This is so because saliva constitutes the interaction interface between arthropod and host and contains many enzymes and effectors that allow feeding on a compatible host by neutralizing host defenses. Therefore, it is not surprising that viruses change saliva composition or use saliva proteins to provoke altered vector-host interactions that are favorable for virus transmission. However, detailed mechanistic analyses are scarce. Here, Zhao and coworkers study transmission of rice stripe virus (RSV) by the planthopper Laodelphax striatellus. RSV infects plants as well as the vector, accumulates in salivary glands and is injected together with saliva into a new host during vector feeding.

      The authors present evidence that a saliva-contained enzyme - carbonic anhydrase (CA) - might facilitate virus infection of rice by interfering with callose deposition, a plant defense response. In vitro pull-down experiments, yeast two hybrid assay and binding affinity assays show convincingly interaction between CA and a plant thaumatin-like protein (TLP) that degrades callose. Similar experiments show that CA and TLP interact with the RSV nuclear capsid protein NT to form a complex. Formation of the CA-TLP complex increases TLP activity by roughly 30% and integration of NT increases TLP activity further. This correlates with lower callose content in RSV-infected plants and higher virus titer. Further, silencing CA in vectors decreases virus titers in infected plants.

      (1) Interestingly, aphid CA was found to play a role in plant infection with two non-persistent non-circulative viruses, turnip mosaic virus and cucumber mosaic virus (Guo et al. 2023 doi.org/10.1073/pnas.2222040120), but the proposed mode of action is entirely different.

      We appreciate the reviewer’s insightful comment and have carefully examined the cited publication. The study by Guo et al. (2023) elucidates a distinct mechanism for aphid-mediated transmission of non-persistent, non-circulative viruses (turnip mosaic virus and cucumber mosaic virus). In their model, aphid-secreted CA-II in the plant cell apoplast leads to H<sup>+</sup> accumulation and localized acidification. This trigger enhanced vesicle trafficking as a plant defense response, inadvertently facilitating virus translocation from the endomembrane system to the apoplast.

      In contrast to these pH-dependent mechanisms, our study demonstrated that LssaCA’s biological function in mediating RSV infection is, if not completely, at least partially independent of its enzymatic activity. We performed additional experiments to reveal that OsTLP enzymatic activity is highly pH-dependent and exhibits increased enzymatic activity as pH decreases from 7.5 to 5.0 (Fig. 3H); however, the LssaCA-OsTLP interaction occurring at pH 7.4 significantly enhanced OsTLP enzymatic activity without any change in buffer pH (Fig. 3G). These results demonstrate the crucial importance of LssaCA-OsTLP protein interactions, rather than enzymatic activity alone, in mediating RSV infection.

      We have incorporated these new experimental results and added a comprehensive discussion comparing the aphid CA mechanism described by Guo et al. (2023) with our findings in the revised manuscript. Please refer to Figures 3G-H, Lines 220-227 and 350-371 for detailed information.

      (2) While this is an interesting work, there are, in my opinion, some weak points. The microinjection experiments result in much lower virus accumulation in rice than infection by vector inoculation, so their interpretation is difficult.

      We acknowledge the reviewer's concern regarding the lower virus accumulation observed in microinjection experiments compared to vector-mediated inoculation. We have removed these experiments from the revised manuscript. To address the core question raised by these experiments, we have conducted new experiments that directly demonstrate the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. These results demonstrate the crucial importance of LssaCA-OsTLP protein interactions, rather than enzymatic activity alone, in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (3) Also, the effect of injected recombinant CA protein might fade over time because of degradation or dilution.

      We appreciate the reviewer’s insightful comment. This is indeed a valid concern that could affect the interpretation of microinjection results. To address the temporal dynamics of CA protein presence in planta, we conducted time-course experiments to monitor the retention of naturally SBPH-secreted CA proteins in rice plants. Our analysis at 1- and 3- days post-feeding (dpf) revealed that CA protein levels decreased progressively following SBPH feeding, but could also been detected at 3dpf (Fig. 2H). Please refer to Figures 2H and lines 184-193 for detailed information.

      (4) The authors claim that enzymatic activity of CA is not required for its proviral activity. However, this is difficult to assess because all CA mutants used for the corresponding experiments possess residual activity.

      We appreciate the reviewer’s insightful comment. We constructed a comprehensive CA mutant protein in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>, LssaCA<sup>N139H</sup>, LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C). However, since we have removed the recombinant CA protein microinjection experiments from the revised manuscript, we lack sufficient direct evidence to definitively demonstrate that CA enzymatic activity is dispensable for its proviral function. To address the core question raised by these experiments, we have conducted new experiments that provide direct evidence for the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (5) It remains also unclear whether viral infection deregulates CA expression in planthoppers and TLP expression in plants. However, increased CA and TLP levels could alone contribute to reduced callose deposition.

      We have compared LssaCA mRNA levels in RSV-free and RSV-infected L.striatellus salivary glands, which indicated that RSV infection does not significantly affect LssaCA expression (Figure 1J). By using RSV-free and RSV-infected L.striatellus to feed on rice seedlings, we clarified that RSV infection does not affect TLP expression in plants (Figure 5H).

      Reviewer #1: (Recommendations For The Authors):

      Other comments:

      (1) Most data proving viral infection and LssaCA expression were derived from qPCR assays. Western blot data are strongly required to prove the change at the protein level.

      We agree that western blot data are required to prove the change at the protein level. In the revised manuscript, we have added western-blotting results (Figures 1F, 1I, 2C, 2J, and S6).

      (2) Line 145, data that LssaCA was significantly downregulated should be shown.

      Thank you and the data has been added to the revised manuscript. Please refer to Line 165 and Figure 2D.

      (3) Lines 159-161, how did authors assure that the dose of recombinant LssCA was closed to the release level of insect feeding, but not was excessive? How did author exclude the possibility of upregulated RSV titer caused by excessive recombinant LssCA?

      We appreciate this important concern regarding dosage controls. While microinjection of recombinant proteins typically yields viral infection levels significantly lower than those achieved through natural insect feeding, higher protein concentrations are often required to achieve high viral infection levels. In this experiment, we compared RSV infection levels following microinjection of BSA+RSV versus LssaCA+RSV, with the expectation that any observed upregulation in RSV titer would be specifically attributable to recombinant LssaCA rather than excessive protein dosing. However, given the low RSV infection levels observed with viral microinjection, we have removed their corresponding results from the revised manuscript.

      (4) Lines 124-125, recombinantly expressed LssaCA protein should be underlined, but not the LssaCA protein itself.

      We have clearly distinguished recombinantly expressed LssaCA from endogenous LssaCA protein throughout the manuscript, ensuring that all references to recombinant proteins are properly labeled as such.

      (5) LssaCA expression in salivary glands of viruliferous and nonviruliferous insects is required. LssaCA accumulation in rice plant exposed to viruliferous and nonviruliferous insects is also required.

      We have measured LssaCA mRNA levels in salivary glands of viruliferous and nonviruliferous insects (Figure 1J), and protein levels in rice plant exposed to viruliferous and nonviruliferous insects (Figure 1I).

      (6) Fig. 4G, the enzymatic activities of OsTLP were too low compared with that in Fig. 4E and Fig. 7E. Why did the enzymatic activities of the same protein show so obvious difference?

      We apologize for the error in Fig. 4G. The original data presented relative fold changes between OsTLP+BSA and OsTLP+LssaCA treatment, with OsTLP+BSA normalized to 1.0 and OsTLP+LssaCA values expressed as fold changes relative to this baseline. However, the Y-axis was incorrectly labeled as “β-1,3-glucanase (units mg<sup>-1</sup>)”, which suggested absolute enzymatic activity values. We have now corrected the figure (revised Figure 3G) to display the actual absolute enzymatic activity values with the appropriate Y-axis label “β-1,3-glucanase (units mg<sup>-1</sup>)”.

      (7) Fig. 7E, was the LssaCA + NP and LssaCA + GST quantified?

      Yes, all proteins were quantified, and enzymatic activity values were calculated and expressed as units per milligram of proteins (units mg<sup>-1</sup>).

      Minor comments:

      (1) The keywords: In fact, the LssaCA functioned during initial viral infection in plant, but not viral horizontal transmission.

      We appreciate the reviewer’s insightful comment. We have revised the manuscript title to “Rice stripe virus utilizes an Laodelphax striatellus salivary carbonic anhydrase to facilitate plant infection by direct molecular interaction” and changed the keyword from “viral horizontal transmission” to “viral infection of plant”.

      (2) Fig. 2A, how about testes? Was this data derived from female insects? Fig. 2C, is the saliva collected from nonviruliferous insects? Fig. 2E, what is the control?

      We appreciate the reviewer’s insightful comments.

      (1) Fig. 2A: The data present mean and SD calculated from three independent experiments, with 5 tissue samples per experiment. Since 3<sup>rd</sup> instar nymphs were used for feeding experiments in this study, we also used 3<sup>rd</sup> instar RSV-free nymphs to measure gene expression in guts, salivary glands and fat bodies. R-body represents the remaining body after removing these tissues. Female insects were used to measure gene expression in ovaries, and gene expression in testes was also added. We have added this necessary information to the revised manuscript (please refer to new Figure 1F and Lines 402-403).

      (2) Fig. 2C: Yes, saliva was collected from nonviruliferous insects.

      (3) Fig. 2E: The control consisted of 100 mM PBS, as described in the experimental section (Lines 643-644): “A blank control consisted of 2 mL of 100 mM PBS (pH 7.0) mixed with 1 mL of 3 mM p-NPA.” In the revised manuscript, we recombinantly expressed LssaCA and its mutant proteins in both sf9 cells and E.coli. Therefore, we have used the mutant proteins as controls to demonstrate specific enzymatic activity. Please refer to Figure 1C, Lines 115-122 and 621-635 for detailed information.

      (3) Some figure labeling appeared unprofessional. For example, "a-RSV", "loading" in Fig. 1, "W-saliva", "G-saliva" in Fig. 2, and so on, the related explanations were absent.

      We appreciate the reviewer’s insightful comments. We have thoroughly reviewed all figures to ensure professional labels. Specifically, we have:

      (1) Used proper protein names to label western blots and clearly explained the antibodies used for protein detection.

      (2) Provided comprehensive explanations for all abbreviations used in figures within the corresponding figure legends.

      (3) Ensured consistent and clear labeling throughout all figures.

      Please refer to the revised Figures 1-3 for these corrections.

      (4) Lines 83-84, please cite references on callose preventing viral movement. I do not think the present references were relevant.

      We have added a more relevant reference (Yue et al., 2022, Line 82), which revealed that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at plasmodesmata.

      (5) The background of transgenic plants of OsTLP OE should be characterized. And the overexpression of OsTLP should be shown. Which generation of OsTLP OE did authors use?

      The background of transgenic plants of OsTLP OE and its generation used have been shown in the “Materials and methods” section (Line 782-786) and has been mentioned in the main text (Line 214). T<sup>2</sup> lines have been selected for further analysis (Line 789).

      (6) Fig. 5A, the blank, which derived from plants without exposure to insect, was absent.

      We appreciate the reviewer’s insightful comments. We have added the non- fed control in the revised Figure 5A-C.

      (7) Fig. 7A, the nonviruruliferous insects were required to serve as a control.

      Immunofluorescence localization of RSV and LssaCA in uninfected L. striatellus salivary glands have been added to the revised manuscript (Figure S2).

      (8) The manuscript needs English language edit.

      The manuscript has undergone comprehensive English language editing to improve clarity, grammar, and overall readability.

      Reviewer #2 (Recommendations For The Authors):

      (1) The first experiment compares vector inoculation vs microinjection of RSV in tissue. I am not sure that your claim (saliva factors are necessary for inoculation) holds, because the vector injects RSV directly into the phloem, whereas microinjection is less precise and you cannot control where exactly the virus is deposed. However, virus deposited in other tissues than the phloem might not replicate, and indeed you observe, compared to natural vector inoculation, highly reduced virus titers.

      We appreciate the reviewer’s insightful comments. We agree that the comparison between vector inoculation and microinjection involves multiple confounding factors that could affect the experimental results, including salivary components, RSV inoculation titers, and the precision of viral deposition. As the reviewer correctly points out, the differential outcomes could be attributed to these various factors rather than definitively demonstrating the necessity of salivary factors. Therefore, we have removed this comparison from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (2) Next the authors show that a carbonic anhydrase (CA) that they previously detected in saliva is functional and secreted into rice. I assume this is done with non-infected insects, but I did not find the information. Silencing the CA reduces virus titers in inoculated plants at 14 dpi, but not in infected planthoppers. At 1 dpi, there is no difference in RSV titer in plants inoculated with CA silenced planthoppers or control hoppers. To see a direct effect of CA in virus infection, purified virus is injected together with a control protein or recombinant CA into plants. At 14 dpi, there is about double as much virus in the CA-injected plants, but compared to authentic SBPH inoculation, titers are 20,000 times lower. Actually, I believe it is not very likely that the recombinant CA is active or present so long after initial injection.

      We appreciate the reviewer’s insightful comments.

      (1) Our previous study identified the CA proteins from RSV-free insects. We have added this information to the revised manuscript (Line 110).

      (2) We acknowledge the reviewer's concern regarding the lower virus accumulation observed in microinjection experiments compared to vector-mediated inoculation. We have removed these experiments from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (3) We didn’t intend to suggest that LssaCA proteins presented for 14 days post-injection. We measured viral titers at 14 days post-feeding or post-injection because this is the common measurement time point when viral titers are sufficiently high for reliable detection by RT-qPCR or western blotting. We have clarified this rationale in the revised manuscript (Lines 155-157). To determine the actual persistence of LssaCA in plant tissues, we monitored LssaCA protein levels at 1 and 3 dpf. Western blotting analysis revealed that LssaCA protein levels decreased post-feeding and remained detectable at 3 dpf. These results are presented in Figure 2H and described in detail in Lines 184-193.

      (3) Then the authors want to know whether CA activity is required for its proviral action and single amino acid mutants covering the putative active CA site are created. The recombinant mutant proteins have 30-70 % reduced activity, but none of them has zero activity. When microinjected together with RSV into plants, RSV replication is similar as injection with wild type CA. Since no knock-out mutant with zero activity is used, it is difficult to judge whether CA activity is unimportant for viral replication, as claim the authors.

      We appreciate the reviewer’s insightful comment. We constructed a comprehensive CA mutant protein in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>, LssaCA<sup>N139H</sup>, LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C). However, since we have removed the recombinant CA proteins microinjection experiments from the revised manuscript, we lack sufficient direct evidence to definitively demonstrate that CA enzymatic activity is dispensable for its proviral function. To address the core question raised by these experiments, we have conducted new experiments that provide direct evidence for the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (4) Next a yeast two hybrid assay reveals interaction with a thaumatin-like rice protein (TLP). It would be nice to know whether you detected other interacting proteins as well. The interaction is confirmed by pulldown and binding affinity assay using recombinant proteins. The kD is in favor of a rather weak interaction between the two proteins.

      We have added a list of rice proteins that potentially interact with LssaCA (Table S1) and have measured interactions with additional proteins (unpublished data). Despite the relatively weak binding affinity, the functional significance of the LssaCA-OsTLP interaction in enhancing TLP enzymatic activity is substantial.

      (5) Then the glucanase activity of TLP is measured using recombinant TLP-MBP or in vivo expressed TLP. It is not clear to me which TLP is used in Fig. 4G (plant-expressed or bacteria-expressed). If it is plant-expressed TLP, why is its basic activity 10 times lower than in Fig. 4F?

      Fig. 4G is the Fig. 3G in the revised manuscript. A E. coli-expressed TLP protein has been used. We apologize for the error in our original Fig. 4G. The original data presented relative fold changes between OsTLP+BSA and OsTLP+LssaCA treatment, with OsTLP+BSA normalized to 1.0 and OsTLP+LssaCA values expressed as fold changes relative to this baseline. However, the Y-axis was incorrectly labeled as “β-1,3-glucanase (units mg<sup>-1</sup>)”, which suggested absolute enzymatic activity values. We have now corrected the figure to display the actual absolute enzymatic activity values with the appropriate Y-axis label “β-1,3-glucanase (units mg<sup>-1</sup>)”.

      (6) There is also a discrepancy in the construction of the transgenic rice plants: did you use TLP without signal peptide or full length TLP? If you used TLP without signal peptide, you should explain why, because the wild type TLP contains a signal peptide.

      We cloned the full-length OsTLP gene including the signal peptide sequence (Line 782 in the revised manuscript).

      (7) The authors find that CA increases glucanase activity of TLP. Next the authors test callose deposition by aniline blue staining. Feeding activity of RSV-infected planthoppers induces more callose deposition than does feeding by uninfected insects. In the image (Fig. 5A) I see blue stain all over the cell walls of xylem and phloem cells. Is this what the authors expect? I would have expected rather a patchy pattern of callose deposition on cell walls. Concerning sieve plates, I cannot discern any in the image; they are easier to visualize in longitudinal sections than in transversal section as presented here.

      We appreciate the reviewer’s insightful comment.

      (1) Callose deposition pattern: While callose deposition was detected in other parts of the vascular bundle, significant differences between treatments were mainly observed in phloem cells, indicating that phloem-specific callose deposition is the primary response to RSV infection and SBPH feeding (Figures 5B and 5J).

      (2) Sieve plate visualization: We have examined longitudinal sections to visualize sieve plates, which revealed callose deposition in sieve plates during SBPH feeding and RSV infection (Figure S7).

      (3) Quantitative analysis: In addition to aniline blue staining, we quantified callose concentrations using a plant callose ELISA kit to provide more precise measurements (Figure 5A, 5I and S8A).

      (4) Gene expression analysis: We utilized RT-qPCR to measure callose synthase expression in both feeding and non-feeding areas, confirming that callose synthesis was induced specifically in feeding regions, leading to localized callose deposition (Figures 5D-H).

      These experimental results collectively demonstrate that RSV infection induces enhanced callose synthesis and deposition, with this response occurring primarily in phloem cells, including sieve plates, within feeding sites and their immediate vicinity.

      (8) I do not quite understand how you quantified callose deposition (arbitrary areas?) with ImageJ. Please indicate in detail the analysis method.

      We have added more detailed information for the methods to quantify callose deposition (Lines 673-678).

      (9) More callose content is also observed by a callose ELISA assay of tissue extracts and supported by increased expression of glucanase synthase genes. Did you look whether expression of TLP is changed by feeding activity and RSV infection? Silencing CA in planthoppers increases callose deposition, which is inline with the observation that CA increases TLP activity.

      We measured OsTLP expression following feeding by RSV-free or RSV-infected SBPH and found that gene expression was not significantly affected by either insect feeding or RSV infection. These results have been added to the revised manuscript (Lines 275-277 and Figure 5H).

      (10) Next, callose is measured after feeding of RSV-infected insects on wild type or TLP-overexpressing rice. Less callose deposition (after 2 days) and more virus (after 14 days) is observed in TLP overexpressors. I am missing a control in this experiment, that is feeding of uninfected insects on wild type or TLP overexpressing rice, where I would expect intermediate callose levels.

      We appreciate the reviewer’s insightful comment and fully agree with the prediction. In the revised manuscript, we have constructed ostlp mutant plants and conducted additional experiments to further clarify how callose deposition is regulated by insect feeding, RSV infection, LssaCA levels, and OsTLP expression. Specifically: 

      (1) Both SBPH feeding and RSV infection induce callose deposition, with RSV-infected insect feeding resulting in significantly higher callose levels compared to RSV-free insect feeding (Fig. 5A-C).

      (2) LssaCA enhances OsTLP enzymatic activity, thereby promoting callose degradation (Fig. 5I-K).

      (3) OsTLP-overexpressing (OE) plants exhibit lower callose levels than wild-type (WT) plants, while ostlp mutant plants show higher callose levels than WT (Fig. 6A-B).

      (4) In ostlp knockout plants, LssaCA no longer affects callose levels, indicating that OsTLP is required for LssaCA-mediated regulation of callose (Fig. 6C-D).

      These additional data address the reviewer’s concern and support the conclusion that OsTLP plays a central role in modulating callose levels in response to RSV infection and insect feeding.

      (11) Next the authors test for interaction between virions and CA. Immunofluorescence shows that RSV and CA colocalize in salivary glands; in my opinion, there is partial and not complete colocalization (Fig. 7A).

      We agree with the reviewer’s observation. CA is primarily produced in the small lobules of the principal salivary glands, while RSV infects nearly all parts of the salivary glands. In regions where RSV and CA colocalize within the principal glands, the CA signal appears sharper than that of RSV, likely due to the relatively higher abundance of CA compared to RSV in these areas. This may explain the partial, rather than complete, colocalization observed in our original Figure 7A. In the revised manuscript, please refer to Figure 1A.

      (12) Pulldown experiments with recombinant RSV NP capsid protein and CA confirm interaction, binding affinity assays indicate rather weak interaction between CA and NP. Likewise in pull-down experiments, interaction between NP, CA and TLP is shown. Finally, in vitro activity assays show that activity of preformed TLP-CA complexes can be increased by adding NP; activity of TLP alone is not shown.

      We performed two independent experiments to confirm the influence on TLP enzymatic activity by LssaCA or by the LssaCA-RSV NP complex. In the first experiment, we compared the enhancement of TLP activity by LssaCA using TLP alone as a control (Figure 3G). In the second experiment examining the LssaCA-RSV NP complex effect on TLP activity, we used the LssaCA-TLP combination as the baseline control rather than TLP alone (Figure 4B), since we had already established the LssaCA enhancement effect in the previous experiment.

      (13) For all microscopic acquisitions, you should indicate the exact acquisition conditions, especially excitation and emission filter settings, kind of camera used and objectives. Use of inadequate filters or of a black & white camera could for example be the reason why you observe a homogeneous cell wall label in the aniline blue staining assays. Counterstaining cell walls with propidium iodide might help distinguish between cell wall and callose label.

      Thank you for your insightful suggestions. We have added the detailed information to the revised manuscript (Lines 656-659 and 673-678).

      (14) You should provide information whether CA is deregulated in infected planthoppers, as this could also modify its mode of action.\

      We have compared LssaCA mRNA levels in RSV-free and RSV-infected L.striatellus salivary glands. The results indicated that RSV infection does not significantly affect LssaCA expression (Figure 1J).

      (15) You should show purity of the proteins used for affinity binding measurements.

      We have included SDS-PAGE results of purified proteins in the revised manuscript (Figure S3).

      (16) L 39: Not all arboviruses are inoculated into the phloem.

      Thank you. We have revised this description (Lines 40, 73, 95 and 97).

      (17) L 76: Watery saliva is also injected in epidermis and mesophyll cells.

      Thank you. We have revised this description (Line 73).

      (18) L 79: What do you mean by "avirulent gene"?

      Thank you for your valuable comments. We have revised this description as “certain salivary effectors may be recognized by plant resistance proteins to induce effector-triggered immunity”. Please refer to Lines 76-77 for detail.

      (19) L 128: Please add delivery method.

      Thank you. We have added the delivery methods (Line 134).

      (20) L 195: Please explain "MST".

      Explained (Line 124). Thank you.

      (21) L 203: Please add the plant species overexpressing TLP.

      Added (Line 214). Thank you.

      (22) L 213: Callose deposition has also a role against phloem-feeding insects.

      We appreciate the reviewer’s insight comment. We have added this information to the revised manuscript (Line 252).

      (23) L 626: What is a "mutein"?

      "mutein" is an abbreviation for mutant proteins. Since the recombinant protein microinjection experiments have been removed from the revised manuscript, the term “mutein” has also been removed. For all other instances, we now use the full term “mutant proteins”.

      (24) Fig. 1E: what is "loading"? You should rather show here and elsewhere (or add to supplement) complete protein gels and Western blot membranes and not only bands of interest.

      Thank you for your valuable suggestion. Although Figure 1E has been removed from the revised manuscript, we have carefully reviewed all figures to ensure that the term “loading” has been replaced with the specific protein names where appropriate.

      (25) Fig. 2C: Please indicate which is the blot and which is the silver stained gel and add mass markers in kDa to the silver stained gel.

      Thank you for your suggestion. We have revised figure to include labeled silver-stained gels with indicated molecular weight markers (Figure 1H in the revised manuscript).

    1. eLife Assessment

      This paper presents an analysis of demography and selection from whole-genome sequencing of 40 Faroese, with data that are useful beyond the study region. Much of the analysis is solid, but a more fine-scale analysis of demographic history could have led to more interesting findings. In addition, there are concerns about the selection analyses, given the special nature of the studied population and sampling scheme. Finally, lack of data availability limits the broader value of the paper.

    2. Reviewer #1 (Public review):

      Summary:

      The paper reports an analysis of whole-genome sequence data from 40 Faroese. The authors investigate aspects of demographic history and natural selection in this population. The key findings are that the Faroese (as expected) have a small population size and are broadly of Northwest European ancestry. Accordingly, selection signatures are largely shared with other Northwest European populations, although the authors identify signals that may be specific to the Faroes. Finally, they identify a few predicted deleterious coding variants that may be enriched in the Faroes.

      Strengths:

      The data are appropriately quality-controlled and appear to be of high quality. Some aspects of the Faroese population history are characterized, in particular, by the relatively (compared to other European populations) high proportion of long runs of homozygosity, which may be relevant for disease mapping of recessive variants. The selection analysis is presented reasonably, although as the authors point out, many aspects, for example differences in iHS, can reflect differences in demographic history or population-specific drift and thus can't reliably be interpreted in terms of differences in the strength of selection.

      Weaknesses:

      The main limitations of the paper are as follows:

      (1) The data are not available. I appreciate that (even de-identified) genotype data cannot be shared; however, that does substantially reduce the value of the paper. Minimally, I think the authors should share summary statistics for the selection scans, in line with the standard of the field.

      (2) The insight into the population history of the Faroes is limited, relative to what is already known (i.e., they were settled around 1200 years ago, by people with a mixture of Scandinavian and British ancestry, have a small effective population size, and any admixture since then comes from substantially similar populations). It's obvious, for example, that the Faroese population has a smaller bottleneck than, say, GBR.

      More sophisticated analyses (for example, ARG-based methods, or IBD or rare variant sharing) would be able to reveal more detailed and fine-scale information about the history of the populations that is not already known. PCA, ADMIXTURE, and HaplotNet analysis are broad summaries, but the interesting questions here would be more specific to the Faroes, for example, what are the proportions of Scandinavian vs Celtic ancestry? What is the date and extent of sex bias (as suggested by the uniparental data) in this admixture? I think that it is a bit of a missed opportunity not to address these questions.

      (3) I don't really understand the rationale for looking at HLA-B allele frequencies. The authors write that "ankylosing spondylitis (AS) may be at a higher prevalence in the Faroe Islands (unpublished data), however, this has not been confirmed by follow-up epidemiological studies". So there's no evidence (certainly no published evidence) that AS is more prevalent, and hence nothing to explain with the HLA allele frequencies?

    3. Reviewer #2 (Public review):

      In this paper, Hamid et al present 40 genomes from the Faroe Islands. They use these data (a pilot study for an anticipated larger-scale sequencing effort) to discuss the population genetic diversity and history of the sample, and the Faroes population. I think this is an overall solid paper; it is overall well-polished and well-written. It is somewhat descriptive (as might be expected for an explorative pilot study), but does make good use of the data.

      The data processing and annotation follows a state-of-the-art protocol, and at least I could not find any evidence in the results that would pinpoint towards bioinformatic issues having substantially biased some of the results, and at least preliminary results lead to the identification of some candidate disease alleles, showing that small, isolated cohorts can be an efficient way to find populations with locally common, but globally rare disease alleles.

      I also enjoyed the population structure analysis in the context of ancient samples, which gives some context to the genetic ancestry of Faroese, although it would have been nice if that could have been quantified, and it is unfortunate that the sampling scheme effectively precludes within-Faroes analyses.

      I am unfortunately quite critical of the selection analysis, both on a statistical level and, more importantly, I do not believe it measures what the authors think it does.

      Major comments:

      (1) Admixture timing/genomic scaling/localization:<br /> As the authors lay out, the Faroes were likely colonized in the last 1,000-1,500 years, i.e., 40-60 generations ago. That means most genomic processes that have happened on the Faroese should have signatures that are on the order of ~1-2cM, whereas more local patterns likely indicate genetic history predating the colonization of the islands. Yet, the paper seems to be oblivious to this (to me) fascinating and somewhat unique premise. Maybe this thought is wrong, but I think the authors miss a chance here to explain why the reader should care beyond the fact that the small populations might have high-frequency risk alleles and the Faroes are intrinsically interesting, but more importantly, it also makes me think it leads to some misinterpretations in the selection analysis

      (2) ROH:<br /> Would the sampling scheme impact ROH? How would it deal with individuals with known parental coancestry? As an example of what I mean by my previous comment, 1MB is short enough in that I would expect most/many 1MB ROH-tracts to come from pedigree loops predating the colonization of the Faroes. (i.e, I am actually quite surprised that there isn't much more long ROH, which makes me wonder if that would be impacted by the sampling scheme).

      (3) Selection scan:

      We are talking about a bottlenecked population that is recently admixed (Faroese), compared to a population (GBR) putatively more closely related to one of its sources. My guess would be that selection in such a scenario would be possibly very hard to detect, and even then, selection signals might not differentiate selection in Faroese vs. GBR, but rather selection/allele frequency differences between different source populations. I think it would be good to spell out why XP-EHH/iHS measures selection at the correct time scale, and how/if these statistics are expected to behave differently in an admixed population.

      (4) Similarly, for the discussion of LCT, I am not convinced that the haplotypes depicted here are on the right scale to reflect processes happening on the Faroes. Given the admixture/population history, it at the very least should be discussed in the context of whether the 13910 allele frequency on the Faroes is at odds with what would be expected based on the admixture sources.

      (5) I am lacking information to evaluate the procedure for turning the outliers into p-values. Both iHS and XP-EHH are ratio statistics, meaning they might be heavy-tailed if one is not careful, and the central limit theorem may not apply. It would be much easier (and probably sufficient for the points being made here) to reframe this analysis in terms of empirical outliers.

      (6) Oldest individual predating gene flow: It seems impossible to make any statements based on a single individual. Why is it implausible that this person (or their parents), e.g., moved to the Faroes within their lifetime and died there?

    4. Author response:

      We thank the reviewers for their thoughtful comments and constructive suggestions. We describe how we will address each point below and are grateful for the guidance on areas where our work could be clarified or expanded. In particular, we note the following:

      Selection scan summary statistics: In our revised manuscript, we will include summary statistics from the selection scans. We believe this addition will enhance transparency and provide additional context for readers.

      Reporting of outliers: As highlighted by the editor, the reviewers expressed differing views on the most appropriate way to report outliers. To provide a comprehensive and balanced presentation, we will report both the empirical selection statistics and the corresponding converted p-values. This dual approach will allow readers to fully interpret the results under both perspectives.

      Methodological considerations: We have carefully considered the reviewers' methodological suggestions and will incorporate them into our revisions where possible. These changes strengthen the rigor and clarity of the analyses.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The paper reports an analysis of whole-genome sequence data from 40 Faroese. The authors investigate aspects of demographic history and natural selection in this population. The key findings are that the Faroese (as expected) have a small population size and are broadly of Northwest European ancestry. Accordingly, selection signatures are largely shared with other Northwest European populations, although the authors identify signals that may be specific to the Faroes. Finally, they identify a few predicted deleterious coding variants that may be enriched in the Faroes.

      Strengths:

      The data are appropriately quality-controlled and appear to be of high quality. Some aspects of the Faroese population history are characterized, in particular, by the relatively (compared to other European populations) high proportion of long runs of homozygosity, which may be relevant for disease mapping of recessive variants. The selection analysis is presented reasonably, although as the authors point out, many aspects, for example differences in iHS, can reflect differences in demographic history or population-specific drift and thus can't reliably be interpreted in terms of differences in the strength of selection.

      Weaknesses:

      The main limitations of the paper are as follows:

      (1) The data are not available. I appreciate that (even de-identified) genotype data cannot be shared; however, that does substantially reduce the value of the paper. Minimally, I think the authors should share summary statistics for the selection scans, in line with the standard of the field.

      We agree with the reviewer that sharing the selection scan results is important, so in the next revision of this manuscript we will make the selection scan summary statistics publicly available, and clearly lay out the guidelines and research questions for which the data can be accessed.

      (2) The insight into the population history of the Faroes is limited, relative to what is already known (i.e., they were settled around 1200 years ago, by people with a mixture of Scandinavian and British ancestry, have a small effective population size, and any admixture since then comes from substantially similar populations). It's obvious, for example, that the Faroese population has a smaller bottleneck than, say, GBR.

      More sophisticated analyses (for example, ARG-based methods, or IBD or rare variant sharing) would be able to reveal more detailed and fine-scale information about the history of the populations that is not already known. PCA, ADMIXTURE, and HaplotNet analysis are broad summaries, but the interesting questions here would be more specific to the Faroes, for example, what are the proportions of Scandinavian vs Celtic ancestry? What is the date and extent of sex bias (as suggested by the uniparental data) in this admixture? I think that it is a bit of a missed opportunity not to address these questions.

      We clarify that we did quantify the proportions of various ancestry components as estimated by HaploNet in main text Figure 5 and supplemental figures S5 and S6. In our revisions, we will include the average global ancestry of the various components in the Main Text so that this result is more clear.

      We agree that more fine-scale demographic analyses would be informative. We have begun working on an estimation of the admixture date, for example, but have encountered problems with using different standard date estimation software, which give very inconsistent and unstable results. We suspect this might be due to the strong bottleneck experienced in the history of the Faroe Islands breaking one or more of the assumptions of these methods. We will continue working on this problem in coming months, possibly using simulations to assess where the problem might be. We recognize that our relatively small sample size places limits on the fine-scale demographic analyses that can be performed. We are addressing this in ongoing work by generating a larger cohort, which we hope will enable more detailed inference in the future.

      (3) I don't really understand the rationale for looking at HLA-B allele frequencies. The authors write that "ankylosing spondylitis (AS) may be at a higher prevalence in the Faroe Islands (unpublished data), however, this has not been confirmed by follow-up epidemiological studies". So there's no evidence (certainly no published evidence) that AS is more prevalent, and hence nothing to explain with the HLA allele frequencies?

      We agree that no published studies have confirmed a higher prevalence of ankylosing spondylitis (AS) in the Faroe Islands. Our recruitment data suggest that AS might be more common than in other European populations, but we understand that this is only based on limited, unpublished observations and what we are hearing from the community. We emphasized in our original manuscript that this is based on observational evidence from the FarGen project. However, as this reviewer pointed out, we can be more clear that this prevalence has not been formally studied.

      In our next revision we will clarify in the text that our recruitment data suggest a higher prevalence of AS may be possible, but more formal epidemiological studies are needed to confirm this observation. The reason we study HLA-B allele frequencies is to see if the genetic background of the Faroese population could help explain this possible difference, since HLA-B27 is already known to play a strong role in AS.

      Reviewer #2 (Public review):

      In this paper, Hamid et al present 40 genomes from the Faroe Islands. They use these data (a pilot study for an anticipated larger-scale sequencing effort) to discuss the population genetic diversity and history of the sample, and the Faroes population. I think this is an overall solid paper; it is overall well-polished and well-written. It is somewhat descriptive (as might be expected for an explorative pilot study), but does make good use of the data.

      The data processing and annotation follows a state-of-the-art protocol, and at least I could not find any evidence in the results that would pinpoint towards bioinformatic issues having substantially biased some of the results, and at least preliminary results lead to the identification of some candidate disease alleles, showing that small, isolated cohorts can be an efficient way to find populations with locally common, but globally rare disease alleles.

      I also enjoyed the population structure analysis in the context of ancient samples, which gives some context to the genetic ancestry of Faroese, although it would have been nice if that could have been quantified, and it is unfortunate that the sampling scheme effectively precludes within-Faroes analyses.

      We note that although the ancestry proportions are not specified in the main text, we did quantify ancestry proportions in the modern Faroese individuals and other ancient samples, and we visualized these proportions in Figure 5 and Supplementary Figures S5 and S6. As stated in our response to Reviewer #1, in our revisions, we will more clearly state the average global ancestry of the various components in the Main Text.

      I am unfortunately quite critical of the selection analysis, both on a statistical level and, more importantly, I do not believe it measures what the authors think it does.

      Major comments:

      (1) Admixture timing/genomic scaling/localization:

      As the authors lay out, the Faroes were likely colonized in the last 1,000-1,500 years, i.e., 40-60 generations ago. That means most genomic processes that have happened on the Faroese should have signatures that are on the order of ~1-2cM, whereas more local patterns likely indicate genetic history predating the colonization of the islands. Yet, the paper seems to be oblivious to this (to me) fascinating and somewhat unique premise. Maybe this thought is wrong, but I think the authors miss a chance here to explain why the reader should care beyond the fact that the small populations might have high-frequency risk alleles and the Faroes are intrinsically interesting, but more importantly, it also makes me think it leads to some misinterpretations in the selection analysis

      See response to point #3

      (2) ROH:

      Would the sampling scheme impact ROH? How would it deal with individuals with known parental coancestry? As an example of what I mean by my previous comment, 1MB is short enough in that I would expect most/many 1MB ROH-tracts to come from pedigree loops predating the colonization of the Faroes. (i.e, I am actually quite surprised that there isn't much more long ROH, which makes me wonder if that would be impacted by the sampling scheme).

      The sampling scheme was designed to choose 40 Faroese individuals that were representative of the different regions and were minimally related. There were no pairs of third-degree relatives or closer (pi-hat > 0.125) in either the Faroese cohort or the reference populations. It is possible that this sampling scheme would reduce the amount of longer ROHs in the population, but we should still be able to see overall patterns of ROH reflective of bottlenecks in the past tens of generations. Additionally, based on this reviewer's earlier comment, 1 Mb ROHs would still be relevant to demographic events in the last 40-60 generations given that on average 1 cM corresponds to 1 Mb in humans, though we recognize that is not an exact conversion.

      That said, the “sum total amount of the genome contained in long ROH” as we described in the manuscript includes all ROHs greater than 1Mb. Although we group all ROHs longer than 1Mb into one category in the current manuscript, we can look more specifically at the distribution of the longer ROH in future revisions and add discussion into what this might tell us about the timing of bottlenecks. 

      For now, we share a plot of the distribution in ROH lengths across all individuals for each cohort. As this plot shows, there certainly are ROHs longer than 1Mb in the Faroese cohort, and on average there is a higher proportion of long ROH particularly in the 5-15 Mb range in the Faroese cohort relative to the other cohorts.

      Author response image 1.

      (3) Selection scan:

      We are talking about a bottlenecked population that is recently admixed (Faroese), compared to a population (GBR) putatively more closely related to one of its sources. My guess would be that selection in such a scenario would be possibly very hard to detect, and even then, selection signals might not differentiate selection in Faroese vs. GBR, but rather selection/allele frequency differences between different source populations. I think it would be good to spell out why XP-EHH/iHS measures selection at the correct time scale, and how/if these statistics are expected to behave differently in an admixed population.

      The reviewer brings up good points about the utility of classical selection statistics in populations that are admixed or bottlenecked, and whether the timescale at which these statistics detect selection is relevant for understanding the selective history of the Faroese population. We break down these concerns separately.

      (1) Bottlenecks: Recent bottlenecks result in higher LD within a population. However, demographic events such as bottlenecks affect global genomic patterns while positive selection is expected to affect local genomic patterns. For this reason, iHS and XP-EHH statistics are standardized against the genome-wide background, to account for population-specific demographic history.

      (2) Admixture: The term “admixture” has different interpretations depending on the line of inquiry and the populations being studied. Across various time and geographic scales, all human populations are admixed to some degree, as gene flow between groups is a common fixture throughout our history. For example,

      even the modern British population has “admixed” ancestry from North / West European sources as well, dating to at least as recently as the Medieval & Viking periods (Gretzinger et al. 2022, Leslie et al. 2015), yet we do not commonly consider it an “admixed” population, and we are not typically concerned about applying haplotype-based statistics in this population. This is due to the low divergence between the source populations. In the case of the Faroe Islands, we believe admixture likely occurred on a similar timescale. We see low variance in ancestry proportions estimated by HaploNet, both from the historical Faroese individuals (250BP) and the modern samples. This indicates admixture predating the settlement of the Faroe Islands, where recombination has had time to break up long ancestry tracts and the global ancestry proportions have reached an equilibrium. That is, these ancestry patterns suggest that the modern Faroese are most likely descended from already admixed founders. We mention this as a likely possibility in the main text: “This could have occurred either via a mixture of the original “West Europe” ancestry with individuals of predominantly “North Europe” ancestry, or a by replacement with individuals that were already of mixed ancestry at the time of arrival in the islands (the latter are not uncommon in Viking Age mainland Europe).” And, as with the case of the British population, the closely-related ancestral sources for the Faroese founders were likely not so diverged as to have differences in allele frequencies and long-range haplotypes that would disrupt signals of selection from iHS or XP-EHH.

      (3) Time scale: It is certainly possible, and in fact likely, that iHS measures selection older than the settlement of the Faroe Islands. In our manuscript, we calculated iHS in both the Faroese and the closely related British cohort, and we highlight in the main Main Text that the top signals, with the exception of LCT, are shared between the two cohorts, indicative of selection that began prior to the population split. iHS is a commonly calculated statistic, and it is often calculated in a single population without comparing to others, so we feel it is important to show our result demonstrating these shared selection signals. In future revisions, we will emphasize in the main text that we are not claiming to have identified selection that occurred in the Faroese population post-settlement with the iHS statistic. As far as XP-EHH, it is a statistic designed to identify differentiated variants that are fixed or approaching fixation in one population but not others. The time-scale of selection that XP-EHH can detect would therefore be dependent on the populations used for comparison. As XP-EHH has the best power to identify alleles that are fixed or approaching fixation in one population but not others, it is less likely to detect older selection events / incomplete sweeps from the source populations.

      In our next revision, we will more clearly state limitations of these statistics under various population histories, and clarify the time-scale at which we are detecting selection for iHS vs XP-EHH.

      (4) Similarly, for the discussion of LCT, I am not convinced that the haplotypes depicted here are on the right scale to reflect processes happening on the Faroes. Given the admixture/population history, it at the very least should be discussed in the context of whether the 13910 allele frequency on the Faroes is at odds with what would be expected based on the admixture sources.

      We agree that more investigation into the LCT allele frequency in the other ancient samples may provide some insight into the selection history, particularly in light of ancient admixture. Please note, we did look at the allele frequency of the LCT allele rs4988235 and stated in the main text that it was present at high frequencies in the historical (250BP) Faroese samples. The frequency of this allele in the imputed historical Faroese samples is 82% while the allele is present at ~74% frequency in modern samples. We did not report the exact percentage in the main text because the sample size of the historical samples (11 individuals) is small and coverage of ancient samples is low, leading to potential errors in imputation. However, we can try to calculate the LCT allele frequency in other ancient samples, and assuming that we have good proxies for the sources at the time of admixture, we may calculate the expected allele frequency in the admixed ancestors of the Faroese founders in the next revision.

      (5) I am lacking information to evaluate the procedure for turning the outliers into p-values. Both iHS and XP-EHH are ratio statistics, meaning they might be heavy-tailed if one is not careful, and the central limit theorem may not apply. It would be much easier (and probably sufficient for the points being made here) to reframe this analysis in terms of empirical outliers.

      Given that there are disagreements on the best approach to reporting selection scan results from the reviewers, in our revision, we can additionally supply both the standardized iHS / XP-EHH values in the supplementary information as well as these values transformed to p-values. As the p-values are derived from the empirical distribution, the “significant” p-values are also empirical outliers from the empirical distribution, so the conclusions of the manuscript do not change. We found that the p-value approach and controlling for FDR is more conservative, with fewer signals reaching “significance” than are considered empirical outliers based on common approaches such as IQR or arbitrary percentile cutoffs.

      (6) Oldest individual predating gene flow: It seems impossible to make any statements based on a single individual. Why is it implausible that this person (or their parents), e.g., moved to the Faroes within their lifetime and died there?

      We agree with the reviewer that this is a plausible explanation, and in future revisions we will update the main text to acknowledge this possibility.

    1. generative AI in completing your work

      I have used ChatGPT as an EDITOR ONLY in my work as I normally write too long of a paper. I am not expecting this to be a problem in this class. However, any paper I write, may be edited for length using ChatGPT. I have a strong bias against using AI to generate content, but it can be hard to get time with an editor in the writing lab in a timely fashion. ChatGPT can work in a pinch for that.

    1. AbstractRice (Oryza sativa) is one of the most important staple food crops worldwide, and its wild relatives serve as an important gene pool in its breeding. Compared with cultivated rice species, African wild rice (Oryza longistaminata) has several advantageous traits, such as resistance to increased biomass production, clonal propagation via rhizomes, and biotic stresses. However, previous O. longistaminata genome assemblies have been hampered by gaps and incompleteness, restricting detailed investigations into their genomes. To streamline breeding endeavors and facilitate functional genomics studies, we generated a 343-Mb telomere-to-telomere (T2T) genome assembly for this species, covering all telomeres and centromeres across the 12 chromosomes. This newly assembled genome has markedly improved over previous versions. Comparative analysis revealed a high degree of synteny with previously published genomes. A large number of structural variations were identified between the O. longistaminata and O. sativa. A total of 2,466 segmentally duplicated genes were identified and enriched in cellular amino acid metabolic processes. We detected a slight expansion of some subfamilies of resistance genes and transcription factors. This newly assembled T2T genome of O. longistaminata provides a valuable resource for the exploration and exploitation of beneficial alleles present in wild relative species of cultivated rice.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf074), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 2: Chengzhi Liang

      The authors generated a 343-Mb telomere-to-telomere (T2T) genome assembly for an African wild rice (Oryza longistaminata), covering all telomeres and centromeres across the 12 chromosomes, and performed genome annotation and analyses on structural variations and NLR genes. While the manuscript has provided a valuable genome sequence, several problems should be addressed before the manuscript can be published.

      Major issues 1. The authors estimated that the genome heterozygosity is 1.27%, which is quite high, so I am wondering how large the assembled genome size is using only HiFi data, which could reflect the actual heterozygosity rate of the genome, particularly by comparing it with the final genome size of 12 chromosomes. If there was only one gap in the initial assembly of Hifiasm (a total of 13 contigs), it is unlikely that the genome has such a high heterozygosity. In Table 1, the total size of assembled genome was 331,045,917bp. If this is the summed size of 12 chromosomes, it should be used as the final genome size in the main text. Please clarify. Also, what is the base accuracy of Ultra-long CycloneSEQ data? which is useful to readers for this is a new sequencing technology. 2. For SV detection, considering that the assembled genome in the manuscript (does it have a accession ID or name?) is an African wild rice, it is rather strange that the authors did not compare it with an O. glaberrima genome, but with an O. sativa genome. Meanwhile, the name of the genomes should be mentioned since there were so many different genomes in each species, all with different SV variations between them. 3. The conclusion that "This distribution suggests that chromosomes 1, 4, 3, and 2 might have contributed to the evolution of rice in previously unrecognized ways (Table S8)" is purely speculative, and thus should be removed from the manuscript, or the authors should provide more evidence to support it. 4. The author claimed that "Compared with other Oryza species, O. longistaminata has many fewer NBS-lRR domain genes, which reflects a contraction of resistance genes in this species." Please give specific gene numbers for each species. Meanwhile, the conclusion does not look right here since it looks that O. longistaminata had more NBS-LRR genes than other species.

      Minor issues 1. What is "quartets"? 2. The author used "11 Oryza species" which included O. indica, please clarify what this species is.Bold

    2. AbstractRice (Oryza sativa) is one of the most important staple food crops worldwide, and its wild relatives serve as an important gene pool in its breeding. Compared with cultivated rice species, African wild rice (Oryza longistaminata) has several advantageous traits, such as resistance to increased biomass production, clonal propagation via rhizomes, and biotic stresses. However, previous O. longistaminata genome assemblies have been hampered by gaps and incompleteness, restricting detailed investigations into their genomes. To streamline breeding endeavors and facilitate functional genomics studies, we generated a 343-Mb telomere-to-telomere (T2T) genome assembly for this species, covering all telomeres and centromeres across the 12 chromosomes. This newly assembled genome has markedly improved over previous versions. Comparative analysis revealed a high degree of synteny with previously published genomes. A large number of structural variations were identified between the O. longistaminata and O. sativa. A total of 2,466 segmentally duplicated genes were identified and enriched in cellular amino acid metabolic processes. We detected a slight expansion of some subfamilies of resistance genes and transcription factors. This newly assembled T2T genome of O. longistaminata provides a valuable resource for the exploration and exploitation of beneficial alleles present in wild relative species of cultivated rice.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf074), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1: Francois Sabot

      The manuscript from Guang et al deals with a T2T assembly for the wild perennial African rice Oryza longistaminata. Using last up to date technologies and approaches, authors provided a high quality assembly for this wild species, rending it a valuable ressource for understanding rice evolution. While the results as assembly are of high quality, the interpretation of some biological results, in particular about the NBS-LRR, are quite weird, in my opinion, and need to be more refined. That's why I think the manuscript should be published, but after major corrections.

      in details:

      -Introduction: not sure the exceptional biomass is a good idea from longistaminata, as this plant has avery high content in silicium, rendering its biomass complex to use. - Methods: We do not have access to most of the command options and command-lines. please provide them at least as a texte file in supp data. In addition, some of the references for tools are missing. Finally, please provide the accession number of the assembled plant. - Assembly in itself: O longistaminata is a outcrossing heterozygous organism. Did you obtained the two haplotypes ? - Comparison with the previous longistaminata genome: is the inversion in middle of Chr6 specific ? or due to an error of previous assembly ? - Table 1: what do you mean "Total size of assembled genomes (bp) 331,045,917" ? What is the residual percentage of N ? - Figure 1 and others: please show the legend in other way, here we may mix it with the main text. in addition, check the legends for spelling and the size of figure (3b eg) for lisibility - Syri/MUMmer analysis: you limit as min size at 1kb ? What was the order of query vs ref ? can we have a bed file with the positions ? - SD: is there a statistical link between chromosome size and number of SD ? It could explain why the first 4 ones have more SD. In general, the data are missing stats. - GO in SD: any statistical validation ? - Genomes comparison: please provide the acc number of the genome you used for comparison. - NBS-LRR: the longistaminata genome has 215 genes for 116 to 289 for other oryza so I cannot see any contraction or expansion. in addition, the text here is weird, starting speaking of onctraction then going to expansion ??? - TF analysis; the african assemblies are quite bad I think, explaining the discrepency. For glaberrima, did you check the one from Tranchant-Dubreuil et al, 2023 ?

    1. AbstractBackground The central bearded dragon (Pogona vitticeps) is widely distributed in central eastern Australia and adapts readily to captivity. Among other attributes, it is distinctive because it undergoes sex reversal from ZZ genotypic males to phenotypic females at high incubation temperatures. Here, we report an annotated telomere to telomere phased assembly of the genome of a female ZW central bearded dragon.Results Genome assembly length is 1.75 Gbp with a scaffold N50 of 266.2 Mbp, N90 of 28.1 Mbp, 26 gaps and 42.2% GC content. Most (99.6%) of the reference assembly is scaffolded into 6 macrochromosomes and 10 microchromosomes, including the Z and W microchromosomes, corresponding to the karyotype. The genome assembly exceeds standard recommended by the Earth Biogenome Project (6CQ40): 0.003% collapsed sequence, 0.03% false expansions, 99.8% k-mer completeness, 97.9% complete single copy BUSCO genes and an average of 93.5% of transcriptome data mappable back to the genome assembly. The mitochondrial genome (16,731 bp) and the model rDNA repeat unit (length 9.5 Kbp) were assembled. Male vertebrate sex genes Amh and Amhr2 were discovered as copies in the small non-recombining region of the Z chromosome, absent from the W chromosome.This, coupled with the prior discovery of differential Z and W transcriptional isoform composition arising from pseudoautosomal sex gene Nr5a1, suggests that complex interactions between these genes, their autosomal copies and their resultant transcription factors and intermediaries, determines sex in the bearded dragon.Conclusion This high-quality assembly will serve as a resource to enable and accelerate research into the unusual reproductive attributes of this species and for comparative studies across the Agamidae and reptiles more generally.Species Taxonomy Eukaryota; Animalia; Chordata; Reptilia; Squamata; Iguania; Agamidae; Amphibolurinae; Pogona; Pogona vitticeps (Ahl, 1926) (NCBI:txid103695).

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf085), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 2: Yuan Li

      The authors de novo assembled a telomere to telomere phased genome assembly of the Australian central bearded dragon Pogona vitticeps, using PacBio HiFi, ONT, HiC, and Illumina sequencing platforms. The assembly achieves remarkable contiguity (scaffold N50: 266.2 Mb) and completeness (97.9% BUSCO score), surpassing Earth Biogenome Project standards. The phased assembly of sex chromosomes (Z/W) and identification of candidate sex-determining genes (Amh, Amhr2, and Nr5a1) provide valuable insights into reptilian sex determination. Overall, the study is well-executed and provides a valuable resource for comparative genomics and reproductive biology.

      Major concern: 1.The description of read depth had errors at lines 401-402, such as 60.6x. In addition, "4 x promethION", "2x150 bp" were should be revised and please check and revise all the similar description in the manuscript. 2.There are errors in the citation format of the journal references, such as the absence of punctuation "."marks between the title name and the journal name at lines 1005-1009, mixing abbreviations (e.g., "PNAS" vs. "Proceedings of the National Academy of Sciences USA") (lines 988-990, 1005-1009). Please check carefully the format of all references. 3.The script "calculateGC.py and processtrftelo.py" (lines 242 and 245) are mentioned without code availability or parameter details. Provide effective links or repository access. 4.The inconsistent use of "Gb" and "Gbp" is observed; it is recommended to adopt a unified description. 5.Units were missing in the descriptions in multiple places in Table 1 and 2, such as the unit for "Total Bases" and "Assembly length"; please include them. 6.At lines 683-687, the conclusion that Amh/Amhr2 are sex-determining genes relies solely on positional evidence. Discuss the need for functional studies (e.g., CRISPR knockouts) to strengthen claims. 7.There were errors in "Vasimuddin et al. 2019" (line 238) and "Danecek et al. 2021" (line 239). Please check all the other formats of references. 8.At lines 476-481, BAC mappings are cited as validation but lack visual evidence (e.g., alignment plots in figures or supplements). Please verify the accuracy of Figure 7 at line 478, as it does not correspond with the description.

    2. AbstractBackground The central bearded dragon (Pogona vitticeps) is widely distributed in central eastern Australia and adapts readily to captivity. Among other attributes, it is distinctive because it undergoes sex reversal from ZZ genotypic males to phenotypic females at high incubation temperatures. Here, we report an annotated telomere to telomere phased assembly of the genome of a female ZW central bearded dragon.Results Genome assembly length is 1.75 Gbp with a scaffold N50 of 266.2 Mbp, N90 of 28.1 Mbp, 26 gaps and 42.2% GC content. Most (99.6%) of the reference assembly is scaffolded into 6 macrochromosomes and 10 microchromosomes, including the Z and W microchromosomes, corresponding to the karyotype. The genome assembly exceeds standard recommended by the Earth Biogenome Project (6CQ40): 0.003% collapsed sequence, 0.03% false expansions, 99.8% k-mer completeness, 97.9% complete single copy BUSCO genes and an average of 93.5% of transcriptome data mappable back to the genome assembly. The mitochondrial genome (16,731 bp) and the model rDNA repeat unit (length 9.5 Kbp) were assembled. Male vertebrate sex genes Amh and Amhr2 were discovered as copies in the small non-recombining region of the Z chromosome, absent from the W chromosome.This, coupled with the prior discovery of differential Z and W transcriptional isoform composition arising from pseudoautosomal sex gene Nr5a1, suggests that complex interactions between these genes, their autosomal copies and their resultant transcription factors and intermediaries, determines sex in the bearded dragon.Conclusion This high-quality assembly will serve as a resource to enable and accelerate research into the unusual reproductive attributes of this species and for comparative studies across the Agamidae and reptiles more generally.Species Taxonomy Eukaryota; Animalia; Chordata; Reptilia; Squamata; Iguania; Agamidae; Amphibolurinae; Pogona; Pogona vitticeps

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf085), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1: Heiner Kuhl

      Patel et al. present a genome assembly of the bearded dragon Pogona vitticeps a lizard species that is widely distributed as a pet and known for its interesting sex-determination, which may switch from genetic sex-determination (ZW) to temperature dependent sex-reversal. The methods chosen to assemble the genome are very state-of-the-art including HIFI and ONT long reads, Hi-C and suitable bioinformatic tools.

      I have to admit that I have recently been reviewing a similar manuscript for Gigascience (https://www.biorxiv.org/content/10.1101/2024.09.05.611321v1), where a female ZZ P. vitticeps had been sequenced/assembled from long read data of a different nanopore technology and analyses of the ZW-chromosome was done by short read coverage analysis. One of my major comments was that this approach lacked a true assembly of the W-chromosome. Thus, I am happy to see that the assembly of the W-specific region has been achieved here and the sequencing technologies used might even improve the assembly quality over the ZZ assembly in terms of phasing, consensus accuracy etc. The two manuscripts are highly complementary and I think they should be published, if possible, in the very same issue of Gigascience. Surely both groups have invested a lot of efforts. (Reading L. 685, I just have realized that this seems to be the intention of the journal and I very much support this idea.)

      Still there are some minor points that need improvement for the current manuscript:

      Why do you leave the Z and W splitted into PAR, Z- and W-specific scaffolds and do not assemble the full-length chromosomes (L. 676)? Would the Hi-C data not support that?

      Mitochondrial assembly: from ONT only (L. 307), please do a consensus correction with illumina data, or at least show that the MT assembly has a high consensus accuracy (Q40-Q50).

      Genome annotation: show BUSCO scores for annotated proteins (do they fit to BUSCO performed on the whole genome?). If possible, compare to results of the NCBI RefSeq annotation (is it already available?). In this regard please explain the relatively low mapping rates (L. 647) of RNAseq to the annotated sequences.

      Could you provide some expression data for the Z-specific Amh and AmhR2? Is it differentially expressed in testis/ovary (after correction for copy number)?

      Table1, could you show results for the two different ONT library types (ligation vs. ultralong kit). It seems the overall yield was low (5 cells -> 100Gb), any speculation why?

      I think assembly statistics (Table2) should also contain contig N50 length as an additional value to show the high continuity of the assembly.

      L. 488: "48.36 (1 error in 146kb)", I think something is wrong here. Q48.36 would be 1 error in 68.5kb. I would suggest to re-check these values and incorporate them in Table2. The high consensus accuracy is one selling point compared to the competitor's assembly.

      L. 490: "Individual haplotypes were 85.5% complete…". Explain why you are confident that the haplotypes are more complete than the Merqury results suggest (just one sentence).

    1. AbstractBackground The agamid dragon lizard Pogona vitticeps is one of the most popular domesticated reptiles to be kept as pets worldwide. The capacity of breeding in captivity also makes it emerging as a model species for a range of scientific research, especially for the studies of sex chromosome origin and sex determination mechanisms.Results By leveraging the CycloneSEQ and DNBSEQ sequencing technologies, we conducted whole genome and long-range sequencing for a captive-bred ZZ male to construct a chromosome-scale reference genome for P. vitticeps. The new reference genome is ∼1.8 Gb in length, with a contig N50 of 202.5 Mb and all contigs anchored onto 16 chromosomes. Genome annotation assisted by long-read RNA sequencing greatly expanded the P. vitticeps lncRNA catalog. With the chromosome-scale genome, we were able to characterize the whole Z sex chromosome for the first time. We found that over 80% of the Z chromosome remains as pseudo-autosomal region (PAR) where recombination is not suppressed. The sexually differentiated region (SDR) is small and occupied mostly by transposons, yet it aggregates genes involved in male development, such as AMH, AMHR2 and BMPR1A. Finally, by tracking the evolutionary origin and developmental expression of the SDR genes, we proposed a model for the origin of P. vitticeps sex chromosomes which considered the Z-linked AMH as the master sex-determining gene.Conclusions Our study provides novel insights into the sex chromosome origin and sex determination of this model lizard. The near-complete P. vitticeps reference genome will also benefit future study of amniote evolution and may facilitate genome-assisted breeding.Competing Interest StatementThe authors have declared no competing interest.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf079), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1: Heiner Kuhl

      Guo et al. present a new reference genome for Pogona vitticeps, a widespread reptile model organism that is also common as a domestic animal worldwide. The genome assembly shows much improvement over an older assembly from 2017. There are two points that make this manuscript outstanding from common genome assembly papers:

      1. The authors find a new sex determination locus in this species.
      2. the authors use a new nanopore sequencing technology ("CycloneSEQ"), which has so far only described in a preprint (https://www.biorxiv.org/content/10.1101/2024.08.19.608720v1).

      In my opinion this deserves a publication in Gigascience, but both points must be focused more in a revised manuscript.

      Major comments:

      1) The authors have sequenced a male individual (ZZ), which means the long-read reference assembly is missing the W-chromosome. PAR and SDR regions are deduced from the Z sequence, by analysis of sequencing coverage of only a few sexed samples (2 females and 4 males). It is unclear if these individuals are from the same family, which could mean that the newly found SD-region could just be a family specific variation. To make the whole story more intriguing and statistical sound the authors should at least test 15 males and 15 females from different P. vitticeps populations for W-specific markers near the proposed AMH deletion. The authors should also show that the prior proposed SD locus (nr5a1) does not carry W-specific mutations in these 15+15 individuals. Furthermore, a phased assembly of a female (ZW) Pogona vitticeps individual, could enable the assembly of the missing W-chr and should be included, it would even improve analysis of W-specific sequences in the proposed additional individuals.

      2) A technology aware reader would like to see more information on the specifics of the CycloneSEQ data quality and handling and maybe a comparison to competing technologies. Which enzymes and buffers were used to prepare the library? In the sections on the methods, there are only superficial descriptions such as (DNA repair buffer/enzyme, DNA clean beads, wash buffer for long fragments). Is it a kit or were the enzymes and buffers purchased individually? I cannot find the procedure for preparation and sequencing of the long-read cDNA libraries. How many flowcells were needed to generate the different datasets? How do the read-length distributions look like (statistics over all reads not only selected 40Kb+)? How was the variability between those runs, especially culmulative output over time? What hardware was needed to run the basecalling and what was the runtime? How is the Q-Value distribution of the reads? Why is the consensus accuracy of the assembly low (Q36.4)? can it be improved? Typically reference quality genomes should have Q40+. Which regions of the genome display lower consensus accuracies (is it random or sequence specific)?

      Minor comments:

      L.900: PRJNAxxxxxx looks like a placeholder, insert the true number,please.

    2. AbstractBackground The agamid dragon lizard Pogona vitticeps is one of the most popular domesticated reptiles to be kept as pets worldwide. The capacity of breeding in captivity also makes it emerging as a model species for a range of scientific research, especially for the studies of sex chromosome origin and sex determination mechanisms.Results By leveraging the CycloneSEQ and DNBSEQ sequencing technologies, we conducted whole genome and long-range sequencing for a captive-bred ZZ male to construct a chromosome-scale reference genome for P. vitticeps. The new reference genome is ∼1.8 Gb in length, with a contig N50 of 202.5 Mb and all contigs anchored onto 16 chromosomes. Genome annotation assisted by long-read RNA sequencing greatly expanded the P. vitticeps lncRNA catalog. With the chromosome-scale genome, we were able to characterize the whole Z sex chromosome for the first time. We found that over 80% of the Z chromosome remains as pseudo-autosomal region (PAR) where recombination is not suppressed. The sexually differentiated region (SDR) is small and occupied mostly by transposons, yet it aggregates genes involved in male development, such as AMH, AMHR2 and BMPR1A. Finally, by tracking the evolutionary origin and developmental expression of the SDR genes, we proposed a model for the origin of P. vitticeps sex chromosomes which considered the Z-linked AMH as the master sex-determining gene.Conclusions Our study provides novel insights into the sex chromosome origin and sex determination of this model lizard. The near-complete P. vitticeps reference genome will also benefit future study of amniote evolution and may facilitate genome-assisted breeding.Competing Interest StatementThe authors have declared no competing interest.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf079), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 2: Nazila Koochekian

      Impressive work but needs major revision to be accepted. The authors compressed everything in the result section and did not put enough effort into the other sections. Introduction and discussion need major changes and more details regarding many aspects of the study that comes in the results. Methods need rearrangement. It's common to keep the order of methods such as first DNA extraction, then sequencing and so on. The data availability needs to be completed. Biosamples for each sequenced tissue, all the reads, and even intermediate assemblies need to be submitted to the database and reported in the manuscript. More specific comments are on the copy of the manuscript attached for the authors.

    1. eLife Assessment

      This valuable study identifies and characterizes probe binding errors in a widely used commercial platform for visualizing gene activity in tissue samples, discovering that at least 21 out of 280 genes in a human breast cancer panel are not accurately detected. The authors provide convincing evidence for their findings validated against multiple independent sequencing technologies and reference datasets. Given the broad adoption of this spatial gene detection platform in biomedical research, this work provides an essential quality control resource that will improve data interpretation across numerous studies.

    2. Reviewer #1 (Public review):

      Summary:

      In the manuscript, Hallinan et al. describe off-target probe binding in the 10x Genomics Xenium platform, which results in invalid profiling of some genes in a spatial context. This was validated by comparing the Xenium results with Visium and scRNA-seq using human breast tissue, which are comprehensive and convincing. The authors also provide a dedicated tool to predict such off-target binding, Off-target Probe Tracker (OPT), which could be widely adopted in the field by researchers who are interested in validating the previously published results.

      Strengths:

      (1) This is the first study to suggest off-target binding of probes in the gene panels of the Xenium platform, which could be easily overlooked.

      (2) The results were rigorously validated with two different methods.

      (3) This paper will be a helpful resource for properly interpreting the results of previously published papers based on the Xenium platform (the signals could be mixed).

      Weaknesses:

      (1) The results were only tested with one tissue (human breast). However, this is not a major weakness, as one can easily extrapolate that this should be the case for any other tissue.

      (2) Once the 10X Genomics corrects their gene panels according to this finding, the tool (OPT) will not be useful for most people. Still, it can be used by those who want to design de novo probes from scratch.

    3. Reviewer #2 (Public review):

      This paper describes an analysis of a commercially available panel for a spatial transcriptomic approach and introduces a computational tool to predict potential off-target binding sites for the type of probe used in the aforementioned panel. The performance of the prediction tool was validated by examining a dataset that profiled the same cancer tissue with multiple modalities. Finally, a detailed analysis of the potential pitfalls in a published study communicated by the company that commercialized the spatial transcriptomic platform in question is provided, along with best practice guidelines for future studies to follow.

      Strengths:

      The manuscript is clearly written and easy to follow.

      The authors provide clean, organized, and well-documented code in the associated GitHub repository.

      Weaknesses:

      The manuscript section on the software tool feels underdeveloped.

    4. Reviewer #3 (Public review):

      Summary:

      The authors present a new computational method (OPT) for predicting off-target probe binding in the commercial 10X Xenium spatial transcriptomics platform. They identified 28 genes in the 10x xenium human breast cancer gene panel (280 genes) that are not accurately detected at the single-molecule level. They validated the predicted off-target binding using reference data from single-cell RNA-seq and 3'-sequencing-based Visium RNA-seq. This work provides a practical resource and will serve as a valuable reference for future data interpretation.

      Strengths:

      (1) Provides a toolbox for the community to identify off-target probes.

      (2) Validates the predictions using single-cell RNA-seq and sequencing-based Visium RNA-seq datasets.

      Weaknesses:

      (1) Does not apply the OPT method to the most widely used Xenium gene panels (e.g., pan-Human, pan-Mouse panels with ~5,000 genes each).

      (2) Lacks clarity on how the confidence level of off-target predictions is calculated.

    5. Author response:

      We sincerely thank the editors and the reviewers for their feedback in helping us improve this manuscript. During the time this work has been under review, 10x Genomics has updated the probe sequences of their gene panels. We therefore plan to update these findings as well as further expand to incorporate reviewer recommendations.

    1. eLife Assessment

      This valuable study reveals the pro-locomotor effects of activating a deep brain region containing diverse range of neurons in both healthy and Parkinson's disease mouse models. While the findings are solid, mechanistic insights remain limited due to the small sample size. This research is relevant to motor control researchers and offers clinical perspectives.

    2. Reviewer #1 (Public review):

      Summary:

      This study aimed to investigate the effects of optically stimulating the A13 region in healthy mice and a unilateral 6-OHDA mouse model of Parkinson's disease (PD). The primary objectives were to assess changes in locomotion, motor behaviors, and the neural connectome. For this, the authors examined the dopaminergic loss induced by 6-OHDA lesioning. They found a significant loss of tyrosine hydroxylase (TH+) neurons in the substantia nigra pars compacta (SNc) while the dopaminergic cells in the A13 region were largely preserved. Then, they optically stimulated the A13 region using a viral vector to deliver the channelrhodopsine (CamKII promoter). In both sham and PD model mice, optogenetic stimulation of the A13 region induced pro-locomotor effects, including increased locomotion, more locomotion bouts, longer durations of locomotion, and higher movement speeds. Additionally, PD model mice exhibited increased ipsilesional turning during A13 region photoactivation. Lastly, the authors used whole-brain imaging to explore changes in the A13 region's connectome after 6-OHDA lesions. These alterations involved a complex rewiring of neural circuits, impacting both afferent and efferent projections. In summary, this study unveiled the pro-locomotor effects of A13 region photoactivation in both healthy and PD model mice. The study also indicates the preservation of A13 dopaminergic cells and the anatomical changes in neural circuitry following PD-like lesions that represent the anatomical substrate for a parallel motor pathway.

      Strengths:

      These findings hold significant relevance for the field of motor control, providing valuable insights into the organization of the motor system in mammals. Additionally, they offer potential avenues for addressing motor deficits in Parkinson's disease (PD). The study fills a crucial knowledge gap, underscoring its importance, and the results bolster its clinical relevance and overall strength.

      The authors adeptly set the stage for their research by framing the central questions in the introduction, and they provide thoughtful interpretations of the data in the discussion section. The results section, while straightforward, effectively supports the study's primary conclusion-the pro-locomotor effects of A13 region stimulation, both in normal motor control and in the 6-OHDA model of brain damage.

      Weaknesses:

      (1) Anatomical investigation. I have a major concern regarding the anatomical investigation of plastic changes in the A13 connectome (Figures 4 and 5). While the methodology employed to assess the connectome is technically advanced and powerful, the results lack mechanistic insight at the cell or circuit level into the pro-locomotor effects of A13 region stimulation in both physiological and pathological conditions. This concern is exacerbated by a textual description of results that doesn't pinpoint precise brain areas or subareas but instead references large brain portions like the cortical plate, making it challenging to discern the implications for A13 stimulation. Lastly, the study is generally well-written with a smooth and straightforward style, but the connectome section presents challenges in readability and comprehension. The presentation of results, particularly the correlation matrices and correlation strength, doesn't facilitate biological understanding. It would be beneficial to explore specific pathways responsible for driving the locomotor effects of A13 stimulation, including examining the strength of connections to well-known locomotor-associated regions like the Pedunculopontine nucleus, Cuneiformis nucleus, LPGi, and others in the diencephalon, midbrain, pons, and medulla. Additionally, identifying the primary inputs to A13 associated with motor function would enhance the study's clarity and relevance.

      The study raises intriguing questions about compensatory mechanisms in Parkinson's disease a new perspective with the preservation of dopaminergic cells in A13, despite the SNc degeneration, and the plastic changes to input/output matrices. To gain inspiration for a more straightforward reanalysis and discussion of the results, I recommend the authors refer to the paper titled "Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon from the David Kleinfeld laboratory." This could guide the authors in investigating motor pathways across different brain regions.

      (2) Description of locomotor performance. Figure 3 provides valuable data on the locomotor effects of A13 region photoactivation in both control and 6-OHDA mice. However, a more detailed analysis of the changes in locomotion during stimulation would enhance our understanding of the pro-locomotor effects, especially in the context of 6-OHDA lesions. For example, it would be informative to explore whether the probability of locomotion changes during stimulation in the control and 6-OHDA groups. Investigating reaction time, speed, total distance, and even kinematic aspects during stimulation could reveal how A13 is influencing locomotion, particularly after 6-OHDA lesions. The laboratory of Whelan has a deep knowledge of locomotion and the neural circuits driving it so these features may be instructive to infer insights on the neural circuits driving movement. On the same line, examining features like the frequency or power of stimulation related to walking patterns may help elucidate whether A13 is engaging with the Mesencephalic Locomotor Region (MLR) to drive the pro-locomotor effects. These insights would provide a more comprehensive understanding of the mechanisms underlying A13-mediated locomotor changes in both healthy and pathological conditions.

      (3) Figure 2 indeed presents valuable information regarding the effects of A13 region photoactivation. To enhance the comprehensiveness of this figure and gain a deeper understanding of the neurons driving the pro-locomotor effect of stimulation, it would be beneficial to include quantifications of various cell types:

      • cFos-Positive Cells/TH-Positive Cells: it can help determine the impact of A13 stimulation on dopaminergic neurons and the associated pro-locomotor effect in healthy condition and especially in the context of Parkinson's disease (PD) modeling.

      • cFos-Positive Cells /TH-Negative Cells: Investigating the number of TH-negative cells activated by stimulation is also important, as it may reveal non-dopaminergic neurons that play a role in locomotor responses. Identifying the location and characteristics of these TH-negative cells can provide insights into their functional significance.<br /> Incorporating these quantifications into Figure 2 would enhance the figure's informativeness and provide a more comprehensive view of the neuronal populations involved in the locomotor effects of A13 stimulation.

      (4) Referred to Figure 3. In the main text (page 5) when describing the animal with 6-OHDA the wrong panels are indicated. It is indicated in Figure 2A-E but it should be replaced with 3A-E. Please do that.

      Summary of the Study after revision

      The revised manuscript reflects significant efforts to improve clarity, organization, and data interpretation. The refinements in anatomical descriptions, behavioral analyses, and contextual framing have strengthened the manuscript considerably. However, the study still lacks direct causal evidence linking anatomical remodeling to behavioral improvements, and the small sample size in the anatomical analyses remains a concern. The authors have addressed many points raised in the initial review, but further acknowledgement of the exploratory nature of these findings would enhance the scientific rigor of the work.

      Key Improvements in the Revision

      The revised manuscript demonstrates considerable progress in clarifying data presentation, refining behavioral analyses, and improving the contextualization of anatomical findings. The restructuring of the anatomical section now provides greater precision in describing motor-related pathways, integrating terminology from the Allen Brain Atlas. The addition of new figures (Figures 4 and 5) strengthens the accessibility of these findings by illustrating key connectivity patterns more effectively. Furthermore, the correlation matrices have been adjusted to improve interpretability, ensuring that the presented data contribute meaningfully to the overall narrative of the study.

      The authors have also made significant improvements in their behavioral analyses, particularly in the organization and presentation of locomotor data. Figure 3 has been revised to distinctly separate results from 6-OHDA and sham animals, providing a clearer comparison of locomotor outcomes. Additional metrics, such as reaction time, locomotion bouts, and movement speed, further enhance the granularity of the analysis, making the results more informative.

      The discussion surrounding anatomical connectivity has also been strengthened. The revised manuscript now places greater emphasis on motor-related pathways and refines its analysis of A13 efferents and afferents. A newly introduced figure provides a concise summary of these connections, improving the contextualization of the anatomical data within the study's broader scope. Moreover, the authors have addressed the translational relevance of their findings by acknowledging the differences between optogenetic stimulation and deep brain stimulation (DBS). Their discussion now better situates the findings within existing literature on PD-related motor circuits, providing a more balanced perspective on the potential implications of A13 stimulation.

      Remaining Concerns

      Despite these substantial improvements, a number of critical concerns remain. The anatomical findings, though insightful, remain largely correlative and do not establish a causal link between structural remodeling and locomotor recovery. While the authors argue that these data will serve as a reference for future investigations, their necessity for the core conclusions of the study is not entirely clear. Additionally, while the anatomical data offer an interesting perspective on A13 connectivity, their direct relevance to the study's primary goal-demonstrating the role of A13 in locomotor recovery-remains uncertain. The authors emphasize that these data will be valuable for future research, yet their integration into the study's main narrative feels somewhat supplementary. Based on this last thought of the authors it is even more relevant another key limitation lying in the small sample size used for connectivity analyses. With only two sham and three 6-OHDA animals included, the statistical confidence in the findings is inherently limited. The absence of direct statistical comparisons between ipsilesional and contralesional projections further weakens the conclusions drawn from these anatomical studies. The authors have acknowledged that obtaining the necessary samples, acquiring the data, and analyzing them is a prolonged and resource-intensive process. While this may be a valid practical limitation, it does not justify the lack of a robust statistical approach. A more rigorous statistical framework should be employed to reinforce the findings, or alternative techniques should be considered to provide additional validation. Given these constraints, it remains unclear why the authors have not opted for standard immunohistochemistry, which could provide a complementary and more statistically accessible approach to validate the anatomical findings. Employing such an approach would not only increase the robustness of the results but also strengthen the study's impact by providing an independent confirmation of the observed structural changes.

    3. Reviewer #2 (Public review):

      Summary:

      The paper by Kim et al. investigates the potential of stimulating the dopaminergic A13 region to promote locomotor restoration in a Parkinson's mouse model. Using wild-type mice, 6-OHDA injection depletes dopaminergic neurons in the substantia nigra pars compacta, without impairing those of the A13 region and the ventral tegmentum area, as previously reported in humans. Moreover, photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region improves bradykinesia and akinetic symptoms after 6-OHDA injection. Whole-brain imaging with retrograde and anterograde tracers reveals that the A13 region undergoes substantial changes in the distribution of its afferents and projections after 6-OHDA injection, thus suggesting a remodeling of the A13 connectome. Whether this remodelling contributes to pro-locomotor effects of the photostimulation of the A13 region remains unknown as causality was not addressed.

      Strengths:

      Photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region promotes locomotion and locomotor recovery of wild-type mice 1 month after 6-OHDA injection in the medial forebrain bundle, thus identifying a new potential target for restoring motor functions in Parkinson's disease patients. The study also provides a description of the A13 region connectome pertaining to motor behaviors and how it changes after a dopaminergic lesion. Although there is no causal link between anatomical and behavioral data, it raises interesting questions for further studies.

      Weaknesses:

      Although CAMKIIa is a marker of presumably excitatory neurons and can be used as an alternative marker of dopaminergic neurons, some uncertainty remains regarding the phenotype of neurons underlying recovery of akinesia and improvement of bradykinesia.

      Figure 4 is improved, but the results from the correlation analyses remain difficult to interpret, as they may reflect changes in various impaired brain regions independently of the A13 region. While the analysis offers a snapshot of correlated changes within the connectome, it does not identify which specific cell or axonal populations are actually increasing or decreasing. Although functional MRI connectome analyses are well-established, anatomical data seem less suitable for this purpose. How can one interpret correlated changes in anatomical inputs or outputs between two distinct regions?

      Figure 5 is also improved, but there is room for further enhancement. As currently presented, it is difficult to distinguish the differences between the sham and 6-OHDA groups. The first column could compare afferents, while the second column could compare efferents. Given the small sample size, it would be more appropriate to present individual data rather than the mean and standard deviation.

      Appraisal and impact

      Although the behavioral experiments are convincing, the low number of animals in the anatomical studies is insufficient to make any relevant statistical conclusions due to extremely low statistical power.

    4. Reviewer #3 (Public review):

      Kim, Lognon et al. present an important finding on pro-locomotor effects of optogenetic activation of the A13 region, which they identify as a dopamine-containing area of the medial zona incerta that undergoes profound remodeling in terms of afferent and efferent connectivity after administration of 6-OHDA to the MFB. The authors claim to address a model of PD-related gait dysfunction, a contentious problem that can be difficult to treat by dopaminergic medication or DBS in conventional targets. They make use of an impressive array of technologies to gain insight into the role of A13 remodeling in the 6-OHDA model of PD. The evidence provided is solid and the paper is well written, but there are several general issues that reduce the value of the paper in its current form, and a number of specific, more minor ones. Also some suggestions, that may improve the paper compared to its recent form, come to mind.

      The most fundamental issue that needs to be addressed is the relation of the structural to the behavioral findings. It would be very interesting to see whether the structural heterogeneity in afferent/effects projections induced by 6-OHDA is related to the degree of symptom severity and motor improvement during A13 stimulation.

      The authors provide extensive interrogation of large-scale changes in the organization of the A13 region afferent and efferent distributions. It remains unclear how many animals were included to produce Fig 4 and 5. Fig S5 suggests that only 3 animals were used, is that correct? Please provide details about the heterogeneity between animals. Please provide a table detailing how many animals were used for which experiment. Were the same animals used for several experiments?

      While the authors provide evidence that photoactivation of the A13 is sufficient in driving locomotion in the OFT, this pro-locomotor effect seems to be independent of 6-OHDA induced pathophysiology. Only in the pole test do they find that there seems to be a difference between Sham vs 6-OHDA concerning effects of photoactivation of the A13. Because of these behavioral findings, optogenic activation of A13 may represent a gain of function rather than disease-specific rescue. This needs to be highlighted more explicitly in the title, abstract and conclusion.

      The authors claim that A13 may be a possible target for DBS to treat gait dysfunction. However, the experimental evidence provided (imparticular lack of disease-specific changes in the OFT) seem insufficient to draw such conclusions. It needs to be highlighted that optogenetic activation does not necessarily have the same effects as DBS (see the recent review from Neumann et al. in Brain: https://pubmed.ncbi.nlm.nih.gov/37450573/). This is important because ZI-DBS so far had very mixed clinical effects. The authors should provide plausible reasons for these discrepancies. Is cell-specificity, that only optogenetic interventions can achieve, necessary? Can new forms of cyclic burst DBS achieve similar specificity (Spix et al, Science 2021)? Please comment.

      In a recent study, Jeon et al (Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus, 2022, Cell Reports) provided evidence on the topographically graded organization of STN afferents and McElvain et al. (Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon, 2021, Neuron) have shown similar topographical resolution for SNr efferents. Can a similar topographical organization of efferents and afferents be derived for the A13/ ZI in total?

      In conclusion, this is an interesting study that can be improved taking into consideration the points mentioned above.

    5. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public review):

      Summary:

      The paper by Kim et al. investigates the potential of stimulating the dopaminergic A13 region to promote locomotor restoration in a Parkinson's mouse model. Using wild-type mice, 6-OHDA injection depletes dopaminergic neurons in the substantia nigra pars compacta, without impairing those of the A13 region and the ventral tegmentum area, as previously reported in humans. Moreover, photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region improves bradykinesia and akinetic symptoms after 6-OHDA injection. Whole-brain imaging with retrograde and anterograde tracers reveals that the A13 region undergoes substantial changes in the distribution of its afferents and projections after 6-OHDA injection, thus suggesting a remodeling of the A13 connectome. Whether this remodelling contributes to pro-locomotor effects of the photostimulation of the A13 region remains unknown as causality was not addressed.

      Strengths:

      Photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region promotes locomotion and locomotor recovery of wild-type mice 1 month after 6-OHDA injection in the medial forebrain bundle, thus identifying a new potential target for restoring motor functions in Parkinson's disease patients. The study also provides a description of the A13 region connectome pertaining to motor behaviors and how it changes after a dopaminergic lesion. Although there is no causal link between anatomical and behavioral data, it raises interesting questions for further studies.

      Thank you for the comments.

      Weaknesses:

      Although CAMKIIa is a marker of presumably excitatory neurons and can be used as an alternative marker of dopaminergic neurons, some uncertainty remains regarding the phenotype of neurons underlying recovery of akinesia and improvement of bradykinesia.

      The primary objective was to focus on a population of neurons that could contribute to functional recovery, with a long-term translational focus in mind. We have followed up on this by creating a rat-based DBS model of stimulating the A13 region (Bisht et al 2025). We agree that the next steps are to genetically dissect the circuits, and we have made a start on this with our recent publication (Sharma et al 2024).

      Figure 4 is improved, but the results from the correlation analyses remain difficult to interpret, as they may reflect changes in various impaired brain regions independently of the A13 region. While the analysis offers a snapshot of correlated changes within the connectome, it does not identify which specific cell or axonal populations are actually increasing or decreasing. Although functional MRI connectome analyses are well-established, anatomical data seem less suitable for this purpose. How can one interpret correlated changes in anatomical inputs or outputs between two distinct regions?

      We appreciate the reviewer's thoughtful comment regarding the interpretability of the correlation analyses in Figure 4. We fully acknowledge that our anatomical data cannot establish causality or identify specific cell types or axonal populations undergoing changes following unilateral nigrostriatal degeneration. However, our intent with this analysis was not to infer mechanistic pathways but rather to provide a systems-level overview of how the global organization of A13 efferents and afferents is altered following 6-OHDA lesioning. By calculating proportions of total inputs and outputs and comparing them across brain regions, we aimed to control for variability in labeling and highlight relative shifts in network organization. The correlation matrices are intended to capture coordinated changes in input/output distribution patterns, effectively reflecting how groups of regions co-vary in their input to or output from the A13 region. In our case, we used correlation analysis to identify how input and output distributions across brain regions reorganize as a network following 6-OHDA lesioning. For example, a positive correlation between inputs from Region A and Region B to the A13 suggests that across animals, when input from Region A is relatively high, input from Region B tends to be high as well, indicating that connectivity from these regions to the A13 may be co-regulated or affected similarly by the lesion. Conversely, a shift from positive to negative correlation may signal a divergence in how regions contribute to the A13 connectome after nigrostriatal degeneration (e.g., increased connectivity to Region A compared to reduced connectivity to Region B). Thus, these patterns offer new insight into the broader reorganization of the A13 connectome and may serve as systems-level signatures of altered anatomical organization, providing a foundation for future mechanistic investigations using circuit-specific tools. We have revised the text to better emphasize the correlative and descriptive nature of these analyses and to clarify that they serve as a hypothesis-generating exploration. Future studies using cell type- and/or projection-specific functional manipulations will be essential to determine the causal roles of these reorganized circuits. We believe our use of this method is justified in the context of exploring broad, lesion-induced network reorganization, and we hope this additional context helps clarify the purpose and limitations of our approach.

      Figure 5 is also improved, but there is room for further enhancement. As currently presented, it is difficult to distinguish the differences between the sham and 6-OHDA groups. The first column could compare afferents, while the second column could compare efferents. Given the small sample size, it would be more appropriate to present individual data rather than the mean and standard deviation.

      We have reorganized Figure 5 as suggested.

      Appraisal and impact

      Although the behavioral experiments are convincing, the low number of animals in the anatomical studies is insufficient to make any relevant statistical conclusions due to extremely low statistical power.

      See previous comments on this.

      Reviewer #2 (Recommendations for the authors):

      Points that need to be addressed:

      Figure S1 is supposed to illustrate the percentage of expression in all mice, but the number of mice does not match (n=3 and 3 in Figure S1 versus n=5 and 6 in Figure 1). Revise the legend or add the missing data.

      We have added the additional data to this graph (Figure 2 – figure supplement 1) and have separated out 6-OHDA and sham mice for clarity.

      Page 4: "There was also an increase in the number of ChR2 cells with c-fos labeling in 6-OHDA ChR2 mice compared to the 6-OHDA eYFP mice. However, there was no net increase in TH+ cells labelled with ChR2 and c-Fos suggesting a heterogeneous population of activated cells." A quantification will be necessary to advance this conclusion.

      We were able to determine that there was a trend of increased c-Fos intensity within the A13 region following photostimulation. However, the variability in the data makes it premature to comment on the TH co-localization and we have deleted this statement.

      Figure 3: The choice of red and green could be a problem for color-blind people.

      Thank you - switched to orange and cyan instead.

      Page 7, 4th paragraph: "6-OHDA mice demonstrated significantly greater descent times than sham mice (Figure 3L, p<0.01)." This is not what is shown in the Figure 3L.

      We made changes in the legend and text to clarify.

      Page 7, last line: PT abbreviation should be introduced in parentheses at the beginning of this section.

      Removed the abbreviation.

      Figure S4A: The authors should show data for the VTA or refer to the quantification of Figure S4G in the text.

      Now referenced correctly in the text.

      Figure S7 and S8 are not referenced in the results or methods.

      References added to text.

      Double-check the formatting of some references: L.-X. Li et al, 2021, L. Kim et al., 2021.

      References checked and corrected.

    1. eLife Assessment

      Bonnifet et al. present data on the expression and interacting partners of the transposable element L1 in the mammalian brain. The work includes important findings addressing the potential role of L1 in aging and neurodegenerative disease. The reviewers conclude that several aspects of the study are well done and most evidence is solid, with a noted concern related to the RNA-seq analysis.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, Bonnifet et al. profile the presence of L1 ORF1p in the mouse and human brain and report that ORF1p is expressed in the human and mouse brain specifically in neurons at steady state and that there is an age-dependent increase in expression. This is a timely report as two recent papers have extensively documented the presence of full-length L1 transcripts in the mouse and human brain (PMID: 38773348 & PMID: 37910626). Thus, the finding that L1 ORF1p is consistently expressed in the brain is important to document and will be of value to the field.

      Strengths:

      Several parts of this manuscript appear to be well done and include the necessary controls. In particular, the documentation of neuron-specific expression of ORF1p in the mouse brain is an interesting finding with nice documentation. This will be very useful information for the field.

      Weaknesses:

      The transcriptomic data using human postmortem tissue presented in Figures 4 and 5 are not convincing. Quantification of transposon expression on short read sequencing has important limitations. Longer reads and complementary approaches are needed to study the expression of evolutionarily young L1s (see PMID: 38773348 & PMID: 37910626 for examples of the current state of the art). As presented, the human RNA data is inconclusive due to the short read length and small sample size. The value of including an inconclusive analysis in the manuscript is difficult to understand. With this data set, the authors cannot investigate age-related changes in L1 expression in human neurons.

      In line with these comments, the title should be changed to better reflect the findings in the manuscript. A title that does not mention "L1 increase with aging" would be better.

      Comments on Revisions:

      It is notable that the expression of ORF1p in the human brain shows two strong bands in the WB. As the authors acknowledge in their discussion, some labs report only one band. The authors have performed a number of controls to address this issue, acknowledge remaining uncertainty, and discuss the discrepancy in the field.

    3. Reviewer #2 (Public review):

      Summary:

      Bonnifet et al. sought to characterize the expression pattern of L1 ORF1p expression across the entire mouse brain, in young and aged animals and to corroborate their characterization with Western blotting for L1 ORF1p and L1 RNA expression data from human samples. They also queried L1 ORF1p interacting partners in the mouse brain by IP-MS.

      Strengths:

      A major strength of the study is the use of two approaches: a deep-learning detection method to distinguish neuronal vs. non-neuronal cells and ORF1p+ cells vs. ORF1p- cells across large-scale images encompassing multiple brain regions mapped by comparison to the Allen Brain Atlas, and confocal imaging to give higher resolution on specific brain regions. These results are also corroborated by Western blotting on six mouse brain regions. Extension of their analysis to post-mortem human samples, to the extent possible, is another strength of the paper. The identification of novel ORF1p interactors in brain is also a strength in that it provides a novel dataset for future studies.

      Weaknesses:

      The main weakness of the IP-MS portion of the study is that none of the interactors were individually validated or subjected to follow-up analyses. The list of interactors was compared to previously published datasets, but not to ORF1p interactors in any other mouse tissue.

      Comments on revisions:

      The co-staining of Orf1p with Parvalbumin (PV) presented in Supplemental Figure S5 is a welcome addition exploring the cell type-specificity of Orf1p staining, and broadly corroborates the work of Bodea et al. while revealing that Orf1p also is expressed in non-PV+ cells, consistent with L1 activity across a range of neuronal subtypes. The authors also have strengthened their findings regarding the increased intensity of ORF1p staining in aged compared to young animals, and the newly presented results are indeed more convincing. The prospect of increased neuronal L1 activity with age is exciting, and the results in this paper have provided the groundwork for ongoing discoveries in this area. While it is disappointing that no Orf1p interactors were followed up, this is understandable and the data are nonetheless valuable and will likely prove useful to future studies.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary: 

      In this study, Bonnifet et al. profile the presence of L1 ORF1p in the mouse and human brain and report that ORF1p is expressed in the human and mouse brain specifically in neurons at steady state and that there is an age-dependent increase in expression. This is a timely report as two recent papers have extensively documented the presence of full-length L1 transcripts in the mouse and human brain (PMID: 38773348 & PMID: 37910626). Thus, the finding that L1 ORF1p is consistently expressed in the brain is important to document and will be of value to the field. 

      Strengths: 

      Several parts of this manuscript appear to be well done and include the necessary controls. In particular, the documentation of neuron-specific expression of ORF1p in the mouse brain is an interesting finding with nice documentation. This will be very useful information for the field. 

      We thank the reviewer for this positive comment. 

      Weaknesses: 

      Several parts of the manuscript appear to be more preliminary and need further experiments to validate their claims. In particular, the data suggesting expression of L1 ORF1p in the human brain and the data suggesting increased expression in the aged brain need further validation. Detailed comments: 

      (1) The expression of ORF1p in the human brain shown in Fig. 1j is puzzling. Why are there two strong bands in the WB? How can the authors be sure that this signal represents ORF1p expression and not non-specific labelling? While the authors discuss that others have found double bands when examining human ORF1p, there are also several labs that report only one band. This discrepancy in the field should at least be discussed and the uncertainties with their findings should be acknowledged. 

      Please see also our extensive response to this comment we made in round #1 of the revisions.

      As a summary, in response to the initial review, we included several lines of additional evidence in the revised manuscript:

      siRNA-mediated knockdown of ORF1p in human neurons, resulting in ≈50% signal reduction using the antibody in question (Suppl. Fig. 2C) immunoprecipitation using the human ORF1p antibody in question confirming signal specificity (Suppl. Fig. 2B) use of a second antibody in immunostainings, including a new control (Suppl. Fig. 2E) and a revised discussion acknowledging the uncertainty surrounding the lower band:

      “The double band pattern in Western blots has been observed in other studies for human ORF1p outside of the brain as well as for mouse ORF1p. […] The nature of the lower band is unknown, but might be due to truncation, specific proteolysis or degradation.”

      We have also now added more content to the paragraph starting from line 183 : "While there is some discrepancy in the field, the double band pattern in Western blots..."

      To our understanding, this combination of independent methods using two antibodies and complementary validation strategies supports the presence of ORF1p in human brain tissue.

      (2) The data showing a reduction in ORF1p expression in the aged mouse brain is an interesting observation, but the effect magnitude of effect is very limited and somewhat difficult to interpret. This finding should be supported by orthogonal methods to strengthen this conclusion. For example, by WB and by RNA-seq (to verify that the increase in protein is due to an increase in transcription). 

      This would indeed be valuable but at this point, we will not be able to perform these experiments at this point (please also see revision #1 for a more detailed answer)

      (3) The transcriptomic data using human postmortem tissue presented in Figure 4 and Figure 5 are not convincing. Quantification of transposon expression on short read sequencing has important limitations. Longer reads and complementary approaches are needed to study the expression of evolutionarily young L1s (see PMID: 38773348 & PMID: 37910626 for examples of the current state of the art). As presented, the human RNA data is inconclusive due to the short read length and small sample size. The value of including an inconclusive analysis in the manuscript is difficult to understand. With this data set, the authors cannot investigate age-related changes in L1 expression in human neurons. 

      Please see also our extensive response to this comment we made in round #1 of the revisions.

      In the revised version, we have added further statistical analyses, incorporated locus-specific mappability scores and provided an even more nuanced interpretation of our findings, as illustrated in lines 390 and 427.

      We have acknowledged the limitations of short-read sequencing in this context, while referencing established methodologies (e.g., Teissandier et al., 2019) and recent benchmarking studies (e.g., Schwarz et al., 2022) that validate the use of such data under specific precautions—many of which we have implemented.

      Given these considerations, and with the guidance of a co-author with specific expertise in TE bioinformatics, we believe our approach is justified and robust.

      (4) In line with these comments, the title should be changed to better reflect the findings in the manuscript. A title that does not mention "L1 increase with aging" would be better. 

      In line with our response to Point (3), we prefer to retain the current analyses and discussion, which we believe strike an appropriate balance between caution and added scientific value.

      Reviewer #2 (Public review): 

      Summary: 

      Bonnifet et al. sought to characterize the expression pattern of L1 ORF1p expression across the entire mouse brain, in young and aged animals and to corroborate their characterization with Western blotting for L1 ORF1p and L1 RNA expression data from human samples. They also queried L1 ORF1p interacting partners in the mouse brain by IP-MS. 

      Strengths: 

      A major strength of the study is the use of two approaches: a deep-learning detection method to distinguish neuronal vs. non-neuronal cells and ORF1p+ cells vs. ORF1p- cells across large-scale images encompassing multiple brain regions mapped by comparison to the Allen Brain Atlas, and confocal imaging to give higher resolution on specific brain regions. These results are also corroborated by Western blotting on six mouse brain regions. Extension of their analysis to post-mortem human samples, to the extent possible, is another strength of the paper. The identification of novel ORF1p interactors in brain is also a strength in that it provides a novel dataset for future studies. 

      We thank the reviewer for these positive comments.

      Weaknesses: 

      The main weakness of the IP-MS portion of the study is that none of the interactors were individually validated or subjected to follow-up analyses. The list of interactors was compared to previously published datasets, but not to ORF1p interactors in any other mouse tissue.

      As we had stated in the first round of revision, the list of previously published datasets does include a mouse dataset with ORF1p interacting proteins in mouse spermatocytes (please see line 478-4479: “ORF1p interactors found in mouse spermatocytes were also present in our analysis including CNOT10, CNOT11, PRKRA and FXR2 among others (Suppl_Table4).”) -> De Luca, C., Gupta, A. & Bortvin, A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 19, e1010797 (2023)). We agree that a validation of protein interactors of ORF1p in the mouse brain would have been valuable. However, the significant overlap with previously published interactors highlights the validity of our data. As reviewer #2 points out in the comments on revisions, we hope that follow-up studies will address these points and we anticipate that this list of ORF1p protein interactors in the mouse brain will be of further use for the community.

      Comments on revisions: 

      The co-staining of Orf1p with Parvalbumin (PV) presented in Supplemental Figure S5 is a welcome addition exploring the cell type-specificity of Orf1p staining, and broadly corroborates the work of Bodea et al. while revealing that Orf1p also is expressed in non-PV+ cells, consistent with L1 activity across a range of neuronal subtypes. The authors also have strengthened their findings regarding the increased intensity of ORF1p staining in aged compared to young animals, and the newly presented results are indeed more convincing. The prospect of increased neuronal L1 activity with age is exciting, and the results in this paper have provided the groundwork for ongoing discoveries in this area. While it is disappointing that no Orf1p interactors were followed up, this is understandable and the data are nonetheless valuable and will likely prove useful to future studies. 

      Thank you for your time and constructive comments.

      Reviewer #1 (Recommendations for the authors): 

      We would recommend that the human RNA-seq analysis is removed from the manuscript. The human RNA data is inconclusive due to the short read length and small sample size. The value of including an inconclusive analysis in the manuscript is difficult to understand. With this data set, the authors cannot investigate age-related changes in L1 expression in human neurons. 

      Reviewer #2 (Recommendations for the authors): 

      Thank you for addressing my suggestions. I have no further recommendations at this time.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the reviewers

      We would like to thank the reviewers for their overall positive evaluations of our manuscript and for their invaluable suggestions that will allow us to reinforce our conclusions. We acknowledge that there is some work to be done and are ready to address most of the reviewers' comments as detailed in our replies below.

      Reviewer #1

      1. The findings that mmDicer is proviral in bat cells relies exclusively on the observation that the depletion of Dicer in M. myotis cells leads to a reduced accumulation of SFV and SINV at the RNA and protein levels (figure 2). Heterologous expression of mmDicer in HEK 293T NoDice doesn't lead to an increase permissivity to viral infections (figure 1) and the accumulation of Dicer foci is only observed in M. myotis cells but not when mmDicer is expressed in HEK 293 NoDice cells (figure 6). Given that the key finding of this manuscript relies on these knockdown experiments, the authors should ensure that the impact on viral infections is due to the specific silencing of mmDicer and not caused by off-target effects of their siRNA-mediated approach. The authors designed a siRNA pool to efficiently knock-down mmDicer. They should validate their findings by using individual Dicer siRNA and verify whether the decrease SFV/SINV accumulation is observed with at least two individual siRNAs targeting Dicer. It would also strengthen their findings if they could show a complementation experiment in which a mmDicer (designed to not be affected by the siRNA-mediated silencing) is introduced exogenously in Dicer-depleted cells and show that it rescues the observed decrease in viral accumulation to demonstrate that the proviral role is strictly dependent on mmDicer. Alternatively, the authors could consider a CRISPR/Cas9 genome editing approach to knockout Dicer in bat cells to test whether this proviral effect is confirmed.

      Reply: We agree with this reviewer that it is important to provide evidence for the specificity of the knock-down and to rule out any off-target effect of the siRNAs. This is the reason for using the siTool technology, which relies on the use of a pool of 30 siRNAs that are transfected at a final concentration of 3 nM. This means that each individual siRNA in the pool is at a concentration of 0.1 nM, so the possibility of off-target effect is largely avoided and the efficiency of silencing is boosted by the cooperative activity of many siRNAs (see https://www.sitoolsbiotech.com/documents/sipools/siPOOLBrochure2019_Web.pdf for more details). This being said, we agree that it would be better to confirm that the observed effect can be recapitulated using a single siRNA and that a complementation experiment would definitely strengthen our findings. For this reason, we will test two individual siRNAs targeting the 3' UTR of mmDicer, which will allow us to complement the knock-down by transfecting a cDNA construct. Regarding the CRISPR/Cas9 genome editing approach, we will give it a try, but Dicer is notoriously difficult to knock-out, so we cannot be sure that this will be successful.

      Figure 2: the authors knock-downed Dicer in M. myotis nasal epithelial cells and carried out infections with SINV-GFP and SFV. The authors conclude that Dicer is proviral as its depletion causes a decrease in SINV-GFP and SFV accumulation. While this conclusion is supported by the decrease levels of viral RNA and protein levels upon Dicer depletion (figure 2D, 2E, 2G), the effect on the viral titers is non-significant for both viruses (Figure 2C and 2F) based on the statistical analysis. This reviewer appreciates that the titers are lower upon Dicer knockdown, which support the authors' findings at the viral RNA and protein levels. However, as these results are central to the core message of the manuscript, the authors should provide evidence that this proviral effect observed is statistically significant on viral titers by perhaps providing additional repeats and/or comment on this observation.

      Reply: Indeed, we agree that even if the effect of Dicer knockdown results in a lowering of the viral titer, it would be better to have a statistically significant effect. We will repeat the experiment to increase the number of replicates and the power of the statistical test.

      a) *In figure 4 and 5, the authors nicely show that mmDicer accumulate to cytoplasmic foci in M. myotis cells upon infection with SFV and SINV and these foci co-localise with double-stranded RNA. The authors used a commercial polyclonal antibody against Dicer (A301-937A, Bethyl according to the Material and Methods section) which is specific to human Dicer to carry out their immunostaining in bat cells. The authors should provide evidence that this antibody indeed recognises/crossreacts with mmDicer as well and that the staining shown is indeed specific to mmDicer localisation especially because the heterologous expression of HA-tagged version of mmDicer in HEK 293T NoDice cells did not show this accumulation of cytoplasmic foci. The authors should verify the specificity of their mmDicer immunostaining by performing the same labelling in bat cells in which Dicer is knock-downed (or knock out) by individual and validated siRNA against mmDicer. The decrease signal of bat Dicer staining using the anti-human Dicer antibody would indicate specificity. *

      Reply: the reviewer is correct in its assertion and it is important to provide evidence that the protein that is detected by the anti-human Dicer antibody in bat cells is indeed Dicer. We will perform the suggested experiment and do an immunostaining using the Dicer antibody in bat cells upon Dicer knockdown.

      b) Another complementary approach would be to test their Dicer staining between HEK NoDice cells (no Dicer present) versus NoDice complemented with either mmDicer or human Dicer constructs, which would then indicate how much the anti-human Dicer antibody recognises bat Dicer.

      Reply: this complementary approach should yield even cleaner result than the previous one as there will be no expression of Dicer at all in the HEK NoDice cells. Therefore, we should be able to measure the increase of signal in the IF upon expression of either human or bat Dicer. We will perform this experiment together with the other one suggested above. In addition, since the constructs are tagged, we might be able to do a double-staining and verify the colocalization of the two signals.

      c) In addition, the authors should overexpress HA-tagged mmDicer in M. myotis nasal epithelial cells and test whether HA-mmDicer accumulate into foci upon infection using an anti-HA immunostaining. This would confirm that these accumulation into foci indeed is specific to mmDicer but also would reinforce the authors' findings that host factors within bat cells are important for this formation into foci since mmDicer expression in HEK 293T No Dice cells didn't show this phenotype upon infection (figure 6). OPTIONAL: it would be interesting to overexpress HA-tagged human Dicer into M. myotis nasal epithelial cells as well to then test using anti-HA staining whether human Dicer in presence of host factors from the bat can accumulate into cytoplasmic foci or not upon viral infection.

      Reply: we could perform the suggested experiment, but we might face the issue that transfected cells might mount an immune response, which makes them resistant to the infection. We have observed indeed that we needed to use a higher MOI to infect cells after they have been transfected. Since we will have controls in place, this might not be too much of a problem, but we will have to keep it in mind. Alternatively, we will perform a lentiviral transduction of the cells.

      This reviewer appreciates that this might be judged as beyond the scope of this study since it is focused on the role of Dicer in M. myotis. However, the observation that mmDicer accumulates into foci containing as well viral dsRNA is very interesting and it would significantly improve the manuscript if the authors would provide further indications that this phenotype is related to the lack of antiviral activity of mmDicer compared to what has been previously shown in other bat species (P.alecto and T. brasiliensis). In other words, is this accumulation of mmDicer into foci responsible for its different impact on virus infection? It would therefore be insightful to compare Dicer localisation upon infection in M. myotis versus P.alecto and/or T. brasiliensis bat cells in which Dicer was shown to be antiviral and test whether this accumulation in foci is only observed in bat cells in which Dicer is proviral (M. myotis) but not in the other bat cells in which Dicer is antiviral (P.alecto and/or T. brasiliensis).

      Reply: this is something that we have been wondering about and we have therefore started to look for the cell lines that have been described in the two published studies. While it proved difficult to find the PaKi cells from P. alecto bats, which is not commercially available, we have obtained the Tblu cells from T. brasiliensis and will look at Dicer localization in this model. However, we have to pay attention to the fact that the published data reported a contribution of RNAi in this cell line upon SARS-CoV-2 infection and that we will be using SINV. In addition, we do not know yet whether the anti-Dicer antibody will cross react with the T. brasiliensis Dicer protein.

      OPTIONAL: Given the difference between the provial role of mmDicer compared to the antiviral activity of Dicer in cells from P.alecto and T. brasiliensis bat cells, it would strengthen the authors' findings. if additional experiments would be conducted in parallel using M. myotis, P.alecto and/or T. brasiliensis cells. Notably knocking down Dicer in both M. myotis, P.alecto and/or T. brasiliensis cells, compare the impact on viral infections with SINV, SFV, VSV and correlate any observed difference in phenotype with putative variations in the formation of foci.

      Reply: it would indeed be really nice to be able to do the Dicer knockdown experiment in several bat cell lines and to correlate the phenotype with the formation of foci. This experiment might take a long time and we are not sure to be able to realize it in a reasonable amount of time. It could however be the subject of another manuscript further down the line.

      *Minor comments *

        • Figure 2I: The authors performed a knockdown of Dicer in M. myotis nasal epithelial cells and monitor the impact on VSV-GFP infection. They found that knocking down Dicer leads to an increase in GFP protein and RNA levels suggesting an antiviral role of Dicer while, in contrast, no effect is observed on the production of infectious particles (figure 2H). On the western blot there is only a slight/weak increase of GFP protein level observed upon Dicer knockdown. Yet, the quantification of the band intensity shows a 4-fold increase relative to tubulin and compared to cells treated with siRNA control. This 4-fold increase seems exaggerated given the low increase in the intensity shown on the blot. This discrepancy is most likely due to the lower intensity of tubulin in the western blot analysis of siDicer-treated cells compared to siNeg-treated cells. The authors should reload their western blot with equal amount of protein extract loaded to ensure that the results shown on the western blot are in line with the quantification.*

      Reply: the signal quantification for this experiment was done across several replicates, but we agree that the observed effect seems exaggerated when compared to the signal seen on the blot. We observed important variations between replicates, but we will make sure that this was not due to a problem in the analysis and reload the western blot if needed.

        • Figure 3D: the authors mention that in both HEK293T cells and M. myotis nasal epithelial cells infected with SINV-GFP, there was an enrichment of 22-nucleotides (nt) paired positive and negative sense reads that overlapped with a 2-nt overhang, typical of Dicer cleavage. In Figure 3D, the data shows indeed that the duplexes are enriched for reads of 22-nt but it is unclear how this analysis reveals a 3' 2nt overhang within these duplexes. Can the authors clarify this point and if the data provided in that particular analysis indeed doesn't allow to detect these overhangs, please rephrase accordingly or provide additional analysis to support that point. *

      Reply: In Figure 3D, the graphs show the probability of pairing of all 22 nucleotides sequence mapping either to the plus or the minus strand of the viral RNA. Thus, for each sequence mapping to the plus strand, the number of sequences mapping to the minus strand with a full or partial overall is counted. A corresponding probability of pairing and Z score is calculated for each number of overlapping nucleotides (for more information on the calculation see Antoniewski (2014) Computing siRNA and piRNA Overlap Signatures. In Animal Endo-SiRNAs: Methods and Protocols, Werner A (ed) pp 135-146. New York, NY: Springer). The Z score peaks for an overlap of 20 nt in both HEK293T and M. myotis nasal epithelial cells infected with SINV. This means that there is a higher probability of two 22 nt sequence to pair along 20 nt, and thus that there are two unpaired nucleotides at the extremities of the duplexes. This higher Z score at 20 nt is not seen in VSV-infected cells. We will rephrase the text in the manuscript to make this point clearer.

        • Typo: page 5, line 152: the authors mention that Dicer knock down had an antiviral effect against VSV-GFP infection at the RNA and protein levels. However, the data in Figure 2I and 2J show an increase in both GFP RNA and proteins levels upon knockdown of Dicer. Although this data suggests that Dicer is antiviral against VSV, the knockdown of Dicer itself is not antiviral but rather proviral/increase virus accumulation. Please rephrase this sentence to avoid confusions. *

      Reply: thank you for spotting this typo. We have corrected it accordingly.

      Reviewer #2.

      1. Figure 1 relies on transduction of cells and antibiotic selection to obtain mmDicer-expressing cells. Although we would expect that every cell expresses the construct of interest, this is not always the case, depending on the cell type and toxicity of the construct. As the constructs are tagged, I suggest that the authors use flow cytometry to measure expression levels in a single cell manner. While doing so, they can infect with SINV-GFP and correlate GFP signal with construct expression in each cell, providing a more accurate measurement of mmDicer effect on viral infection. Alternatively, the authors could use live microscopy, as done in Fig 2, to obtain similar data.

      Reply: the reviewer is correct that we did not go for monoclonal selection of our mmDicer-expressing cells and therefore that there could be some cell-to-cell variation in expression. However, we have done immunostaining of Dicer in these cells and did not see drastic differences in expression, so we do not think this should impact SINV-GFP expression in a major way. We will provide these images and a quantification of the Dicer signal as a supplementary figure.

      For Fig 1C and 1F, it would be great to have growth curves with two different MOIs, instead of a single time point, to ensure that a putative antiviral effect is not missed. Same goes for Fig 2C, especially when the authors document quite a big defect on GFP expression (a proxy for SINV infection) when Dicer is knocked down (Fig 2B). There may be a bigger difference in titers at earlier time points. This matter runs throughout the manuscript. I do not suggest that the authors should provide growth curves every time viral titers are measured, but it is still worth doing it for the 2-3 key experiments of the paper.

      Reply: we will perform growth curves of virus infection for the key experiments in the manuscript as suggested. We already have done kinetic measurements of GFP accumulation at different MOIs, which we can provide as supplementary data, but we agree with the reviewer that GFP signal should not been used as the only proxy for the infection and that measuring viral titers by plaque assay is important as well.

      Figure 4, could the authors provide a proof that the Dicer antibody is specific in the bat context? This can be done by staining Dicer in bat cells knocked down for Dicer and infected with SINV. The apparition of foci upon anti-Dicer antibody staining should be abbrogated or severely impaired by the knock-down.

      Reply: see our reply to point 3 of Reviewer 1.

      Fig 5C, please provide a quantification of the images.

      Reply: these microscopy images have not been quantified because they have been obtained with an epifluorescence microscope. Indeed, the Pearson correlation coefficient can only be obtained using a confocal microscope. In fact, we have tried to use a confocal microscope to take pictures of these FISH images, but the SINV gRNA signal was too weak or the dots too small to be properly visualized. Furthermore, there is a very large difference in signal intensity between HEK293T and M. myotis cells, making it difficult to define a signal threshold compatible for both cell lines.

      l.263, when comparing this work with the recent publications on bat antiviral RNAi, the authors could also provide the percentage identity between Dicers from different species.

      Reply: this is a valid point, we have looked at the percentage identity between Dicer proteins from different bat species but we did not include this in our manuscript. We will provide this analysis in the revised version together with a comparison of Dicer from other mammals as a reference point.

      Reviewer 3.

        • Without direct comparison to the other bat species Dicers (especially where RNAi activity has been suggested as antiviral in previous publications) there is little in this paper that can be concluded about global aspects of bat dicer/RNAi.*

      Reply: see our reply to point 4 of Reviewer 1. We are planning to look at least in Tblu cells whether there is also a relocalization of Dicer upon SINV infection. So far, we could not obtain PaKi cells, but we are still looking and should we get those, we will test them as well.

      *Minor *

      What rules out that the mmDicer re-localization observed in the immortalized mm nasal epithelial is due simply to greater expression levels over the NoDice cells heterologously expressing mmDicer?

      Reply: we will provide an immunoblot to show the level of Dicer expression between HEK NoDice + mmDicer and M. myotis nasal epithelial cells as suggested below to address this point.

      • Although partially addressed in the text stating the generally long half-life of miRNAs, it seems the simplest explanation for this observation is due to some activity of a shorter-lived miRNA is required for optimal alphavirus replication is the mm nasal epithelial cells. *

      Reply: this is an interesting hypothesis that would prove difficult to test in a reasonable amount of time. We thank the reviewer and will mention this possibility in the discussion of the revised manuscript.

      *Suggestions that could enhance the magnitude of conclusions that can be drawn from this work. *

      *Major *

        • Making NoDice cells expressing other bat species Dicers, including those with claims that RNAi is antiviral, would address how universal these current observations are to bats/cell lines.*

      Reply: this could be an alternative to the use of P. alecto or T. brasiliensis cell lines that we have mentioned above. We will try to clone Dicer from the Tblu cells that we have in the laboratory. Since we do not have PaKi cells at the moment, it will be more complicated for the Pteropus Dicer, but one possibility could be to synthesize it. However, Dicer is a big gene so it could prove tricky.

        • Including an immunoblot showing that mm cells express mmDicer no more abundantly than the heterologous NoDice cells would allow ruling out the trivial explanation that foci occur at a certain critical mass of Dicer*

      Reply: yes, we will provide this piece of data as stated in reply to point 2.

      *Minor *

        • I believe line 151 " In contrast, Dicer * *knock down had an ANTIVIRAL effect against VSV-GFP infection at the RNA and protein *

      *levels, but no difference in titers was found (Fig. 2H-J)." should be " In contrast, Dicer *

      *knock down had an PROVIRAL effect against VSV-GFP infection at the RNA and protein *

      *levels, but no difference in titers was found (Fig. 2H-J)." *

      Reply: thank you for spotting this error, which was also mentioned by Reviewer 1, we have corrected this in the text.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this manuscript by Gaucherand and colleagues, the authors demonstrate that heterologous expression of Myotis myotis Dicer into 293 derivative Dicer KO cells did not produce antiviral effects. The authors further demonstrate that knockdown of Dicer in SV40 immortalized M myotis nasal epithelial cells results in reduced alphavirus infection. Finally, they show a correlation where mmDicer changes subcellular localization co-localizing with likely alphavirus replication foci. The manuscript is clearly written, and the conclusions drawn as stated are accurate.

      Strengths

      • This is an overall topical area of research: how bat antiviral responses differ from other mammals - - with enormous general interest in host-pathogen interfaces, and particular relevance to the role of RNAi.
      • The manuscript is clearly written and does not overstate the conclusions.
      • The team are well-qualified experts in this area with an excellent track record of findings from the Pfeffer lab in the years preceding this work

      Critiques

      Major

      1. Without direct comparison to the other bat species Dicers (especially where RNAi activity has been suggested as antiviral in previous publications) there is little in this paper that can be concluded about global aspects of bat dicer/RNAi. Minor
      2. What rules out that the mmDicer re-localization observed in the immortalized mm nasal epithelial is due simply to greater expression levels over the NoDice cells heterologously expressing mmDicer?
      3. Although partially addressed in the text stating the generally long half-life of miRNAs, it seems the simplest explanation for this observation is due to some activity of a shorter-lived miRNA is required for optimal alphavirus replication is the mm nasal epithelial cells.

      Suggestions that could enhance the magnitude of conclusions that can be drawn from this work.

      Major

      • Making NoDice cells expressing other bat species Dicers, including those with claims that RNAi is antiviral, would address how universal these current observations are to bats/cell lines.
      • Including an immunoblot showing that mm cells express mmDicer no more abundantly than the heterologous NoDice cells would allow ruling out the trivial explanation that foci occur at a certain critical mass of Dicer Minor
      • I believe line 151 " In contrast, Dicer knock down had an ANTIVIRAL effect against VSV-GFP infection at the RNA and protein levels, but no difference in titers was found (Fig. 2H-J)." should be " In contrast, Dicer knock down had an PROVIRAL effect against VSV-GFP infection at the RNA and protein levels, but no difference in titers was found (Fig. 2H-J)."

      Significance

      As written, this work would be significant to aficionados of bat RNAi. With a little extra work, this could have broader significance regarding more global aspect of Dicer in the the bat antiviral response.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      This study by the Pfeffer lab interrogates the role of Dicer during RNA virus infection in bats. This is an interesting and important topic, as bats are well-documented to be a reservoir of viruses that can target humans. The field of bat immunology is gaining momentum, but there is still a lot to be done. This study is thus particularly timely. It also explores more of a niche pathway when it comes to immunity: antiviral RNAi and its entry point, Dicer. This work comes after two recent studies, cited by the authors (Dai 2024, Owolabi 2025), that also explore this concept. Here though, the Pfeffer lab comes to an opposite conclusion, as their results advocate against the existence of antiviral RNAi in bats. As discussed by the authors, discrepancies between their study and the two others may be linked to differences in experimental systems. It nonetheless brings a novel, interesting take on the topic of Dicer & antiviral RNAi in bats, and will be of interest to immunologists and virologists. Altogether, I find the manuscript well-written and clear. Experiments are to the point and well interpreted. Below are a few suggestions that will help bolster the authors' conclusions.

      Figure 1 relies on transduction of cells and antibiotic selection to obtain mmDicer-expressing cells. Although we would expect that every cell expresses the construct of interest, this is not always the case, depending on the cell type and toxicity of the construct. As the constructs are tagged, I suggest that the authors use flow cytometry to measure expression levels in a single cell manner. While doing so, they can infect with SINV-GFP and correlate GFP signal with construct expression in each cell, providing a more accurate measurement of mmDicer effect on viral infection. Alternatively, the authors could use live microscopy, as done in Fig 2, to obtain similar data.

      For Fig 1C and 1F, it would be great to have growth curves with two different MOIs, instead of a single time point, to ensure that a putative antiviral effect is not missed. Same goes for Fig 2C, especially when the authors document quite a big defect on GFP expression (a proxy for SINV infection) when Dicer is knocked down (Fig 2B). There may be a bigger difference in titers at earlier time points. This matter runs throughout the manuscript. I do not suggest that the authors should provide growth curves every time viral titers are measured, but it is still worth doing it for the 2-3 key experiments of the paper.

      Figure 4, could the authors provide a proof that the Dicer antibody is specific in the bat context? This can be done by staining Dicer in bat cells knocked down for Dicer and infected with SINV. The apparition of foci upon anti-Dicer antibody staining should be abbrogated or severely impaired by the knock-down.

      Fig 5C, please provide a quantification of the images.

      l.263, when comparing this work with the recent publications on bat antiviral RNAi, the authors could also provide the percentage identity between Dicers from different species.

      Significance

      This study by the Pfeffer lab interrogates the role of Dicer during RNA virus infection in bats. This is an interesting and important topic, as bats are well-documented to be a reservoir of viruses that can target humans. The field of bat immunology is gaining momentum, but there is still a lot to be done. This study is thus particularly timely. It also explores more of a niche pathway when it comes to immunity: antiviral RNAi and its entry point, Dicer. This work comes after two recent studies, cited by the authors (Dai 2024, Owolabi 2025), that also explore this concept. Here though, the Pfeffer lab comes to an opposite conclusion, as their results advocate against the existence of antiviral RNAi in bats. As discussed by the authors, discrepancies between their study and the two others may be linked to differences in experimental systems. It nonetheless brings a novel, interesting take on the topic of Dicer & antiviral RNAi in bats, and will be of interest to immunologists and virologists. Altogether, I find the manuscript well-written and clear. Experiments are to the point and well interpreted. Below are a few suggestions that will help bolster the authors' conclusions.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Bats acts a reservoir for many viruses. While some of these viruses can be pathogenic for humans and other animals, infected bats tolerate these viruses and show little to no pathogenesis. It is therefore key to characterise which immune pathways are active in bats and how do they differ from other mammals to understand how bats can sustain these virus infections. RNA interference (RNAi) acts as an antiviral mechanism in plants, invertebrates and was recently shown to be active in a cell type-dependent manner as a defence mechanism in mammals. Notably, recent findings show that antiviral RNAi activity is high in cells lines from two bats species (P.alecto and T. brasiliensis) and that this pathway might play an important role in bat viral tolerance. In this study, the authors investigate the antiviral role of Dicer in another bat species, Myotis myotis. First they express M. myotis Dicer (mmDicer) or human Dicer (hDicer) in a human epithelial kidney (HEK) 293T cell line knockout for Dicer (NoDice cells) and show that, in a human cell line, expression of mmDicer or hDicer doesn't restrict infections with either Sindbis virus (SINV) or vesicular stomatitis virus (VSV). The authors then tested the role of endogenous bat Dicer in M. myotis nasal epithelial cells and found that mmDicer has a proviral activity since its knockdown reduced the replication of SINV and Semliki Forest virus (SFV), but not of VSV. The authors also show by small RNA deep sequencing analysis that there was only a modest RNAi signature in both HEK293T and M. myotis infected with SINV suggesting that mmDicer does not have increased RNAi activity compared to human cells. Interestingly, the authors then found that in M. myotis cells infected with SINV, SFV but not VSV, mmDicer accumulates into cytoplasmic foci, which also contain double-stranded RNA (dsRNA) derived from viral replication. Finally, the authors showed that this relocalisation of mmDicer into foci was dependent on host factors from M. myotis cells as there was no change in localisation in SINV-infected HEK 293T NoDice cells complemented with mmDicer.

      Major comments

      • The findings that mmDicer is proviral in bat cells relies exclusively on the observation that the depletion of Dicer in M. myotis cells leads to a reduced accumulation of SFV and SINV at the RNA and protein levels (figure 2). Heterologous expression of mmDicer in HEK 293T NoDice doesn't lead to an increase permissivity to viral infections (figure 1) and the accumulation of Dicer foci is only observed in M. myotis cells but not when mmDicer is expressed in HEK 293 NoDice cells (figure 6). Given that the key finding of this manuscript relies on these knockdown experiments, the authors should ensure that the impact on viral infections is due to the specific silencing of mmDicer and not caused by off-target effects of their siRNA-mediated approach. The authors designed a siRNA pool to efficiently knock-down mmDicer. They should validate their findings by using individual Dicer siRNA and verify whether the decrease SFV/SINV accumulation is observed with at least two individual siRNAs targeting Dicer. It would also strengthen their findings if they could show a complementation experiment in which a mmDicer (designed to not be affected by the siRNA-mediated silencing) is introduced exogenously in Dicer-depleted cells and show that it rescues the observed decrease in viral accumulation to demonstrate that the proviral role is strictly dependent on mmDicer. Alternatively, the authors could consider a CRISPR/Cas9 genome editing approach to knockout Dicer in bat cells to test whether this proviral effect is confirmed.
      • Figure 2: the authors knock-downed Dicer in M. myotis nasal epithelial cells and carried out infections with SINV-GFP and SFV. The authors conclude that Dicer is proviral as its depletion causes an decrease in SINV-GFP and SFV accumulation. While this conclusion is supported by the decrease levels of viral RNA and protein levels upon Dicer depletion (figure 2D, 2E, 2G), the effect on the viral titers is non-significant for both viruses (Figure 2C and 2F) based on the statistical analysis. This reviewer appreciates that the titers are lower upon Dicer knockdown, which support the authors' findings at the viral RNA and protein levels. However, as these results are central to the core message of the manuscript, the authors should provide evidence that this proviral effect observed is statistically significant on viral titers by perhaps providing additional repeats and/or comment on this observation.
      • In figure 4 and 5, the authors nicely show that mmDicer accumulate to cytoplasmic foci in M. myotis cells upon infection with SFV and SINV and these foci co-localise with double-stranded RNA. The authors used a commercial polyclonal antibody against Dicer (A301-937A, Bethyl according to the Material and Methods section) which is specific to human Dicer to carry out their immunostaining in bat cells. The authors should provide evidence that this antibody indeed recognises/crossreacts with mmDicer as well and that the staining shown is indeed specific to mmDicer localisation especially because the heterologous expression of HA-tagged version of mmDicer in HEK 293T NoDice cells did not show this accumulation of cytoplasmic foci. The authors should verify the specificity of their mmDicer immunostaining by performing the same labelling in bat cells in which Dicer is knock-downed (or knock out) by individual and validated siRNA against mmDicer. The decrease signal of bat Dicer staining using the anti-human Dicer antibody would indicate specificity. Another complementary approach would be to test their Dicer staining between HEK NoDice cells (no Dicer present) versus NoDice complemented with with either mmDicer or human Dicer constructs, which would then indicate how much the anti-human Dicer antibody recognises bat Dicer. In addition, the authors should overexpress HA-tagged mmDicer in M. myotis nasal epithelial cells and test whether HA-mmDicer accumulate into foci upon infection using an anti-HA immunostaining. This would confirm that these accumulation into foci indeed is specific to mmDicer but also would reinforce the authors' findings that host factors within bat cells are important for this formation into foci since mmDicer expression in HEK 293T No Dice cells didn't show this phenotype upon infection (figure 6). OPTIONAL: it would be interesting to overexpress HA-tagged human Dicer into M. myotis nasal epithelial cells as well to then test using anti-HA staining whether human Dicer in presence of host factors from the bat can accumulate into cytoplasmic foci or not upon viral infection.
      • This reviewer appreciates that this might be judged as beyond the scope of this study since it is focused on the role of Dicer in M. myotis. However, the observation that mmDicer accumulates into foci containing as well viral dsRNA is very interesting and it would significantly improve the manuscript if the authors would provide further indications that this phenotype is related to the lack of antiviral activity of mmDicer compared to what has been previously shown in other bat species (P.alecto and T. brasiliensis). In other words, is this accumulation of mmDicer into foci responsible for its different impact on virus infection? It would therefore be insightful to compare Dicer localisation upon infection in M. myotis versus P.alecto and/or T. brasiliensis bat cells in which Dicer was shown to be antiviral and test whether this accumulation in foci is only observed in bat cells in which Dicer is proviral (M. myotis) but not in the other bat cells in which Dicer is antiviral (P.alecto and/or T. brasiliensis).
      • OPTIONAL: Given the difference between the provial role of mmDicer compared to the antiviral activity of Dicer in cells from P.alecto and T. brasiliensis bat cells, it would strengthen the authors' findings. if additional experiments would be conducted in parallel using M. myotis, P.alecto and/or T. brasiliensis cells. Notably knocking down Dicer in both M. myotis, P.alecto and/or T. brasiliensis cells, compare the impact on viral infections with SINV, SFV, VSV and correlate any observed difference in phenotype with putative variations in the formation of foci.

      Minor comments

      • Figure 2I: The authors performed a knockdown of Dicer in M. myotis nasal epithelial cells and monitor the impact on VSV-GFP infection. They found that knocking down Dicer leads to an increase in GFP protein and RNA levels suggesting an antiviral role of Dicer while, in contrast, no effect is observed on the production of infectious particles (figure 2H). On the western blot there is only a slight/weak increase of GFP protein level observed upon Dicer knockdown. Yet, the quantification of the band intensity shows a 4-fold increase relative to tubulin and compared to cells treated with siRNA control. This 4-fold increase seems exaggerated given the low increase in the intensity shown on the blot. This discrepancy is most likely due to the lower intensity of tubulin in the western blot analysis of siDicer-treated cells compared to siNeg-treated cells. The authors should reload their western blot with equal amount of protein extract loaded to ensure that the results shown on the western blot are in line with the quantification.
      • Figure 3D: the authors mention that in both HEK293T cells and M. myotis nasal epithelial cells infected with SINV-GFP, there was an enrichment of 22-nucleotides (nt) paired positive and negative sense reads that overlapped with a 2-nt overhang, typical of Dicer cleavage. In Figure 3D, the data shows indeed that the duplexes are enriched for reads of 22-nt but it is unclear how this analysis reveals a 3' 2nt overhang within these duplexes. Can the authors clarify this point and if the data provided in that particular analysis indeed doesn't allow to detect these overhangs, please rephrase accordingly or provide additional analysis to support that point.
      • Typo: page 5, line 152: the authors mention that Dicer knock down had an antiviral effect against VSV-GFP infection at the RNA and protein levels. However, the data in Figure 2I and 2J show an increase in both GFP RNA and proteins levels upon knockdown of Dicer. Although this data suggests that Dicer is antiviral against VSV, the knockdown of Dicer itself is not antiviral but rather proviral/increase virus accumulation. Please rephrase this sentence to avoid confusions.

      Significance

      The findings from this study are interesting as they provide further insights into the role of RNAi towards virus infections. Notably, it highlights a putative proviral role of Dicer in M. myotis bat cells in contrast to the antiviral role in mammals (including other bat species) as well as in plants and invertebrates. Another exciting finding of this study is the observation that mmDicer accumulates in cytoplasmic foci upon viral infection and that these foci also contain viral dsRNA replication intermediates. These accumulation of Dicer into foci only appear in bat cells infected with viruses producing large amounts of dsRNA such as SFV and SINV but not with VSV infection where no dsRNA was detected.

      While these findings are novel and interesting, this study, as it stands, is rather descriptive and doesn't provide mechanistic insights into the proviral activity of mmDicer and its localisation into cytoplasmic foci upon infections. The importance of the authors' findings would greatly improve if there were some experiments addressing whether this localisation of mmDicer into foci is responsible or at least correlate with its proviral activity/its lack of antiviral activity. Comparative studies between M. myotis cells in which Dicer is proviral and/or P.alecto and T. brasiliensis cells where RNAi was previously shown to be antiviral would likely provide key mechanistic insights.

    1. @nevilleseabridge4615 6 years ago She needs help. Completely bonkers. Show less Read more Like 19 Dislike Reply @ratedg5039 2 months ago When they have nothing to do, they find things to whine and complain about. It gets pretty rodiculous. She's just a victim.

      the toxic nature of social media commentary exhibited here

    2. @JFabree 5 years ago You should do a full analysis on all gender disparities. This is very biased which is bad in statistics. Men are 4 times more likely to commit suicide. Men are more likely to have alcohol and drug addiction issues. Men are more likely to die in war. Men are more likely to die at work (i.e. police officers, miners, firefighters). Men are more likely to suffer from homelessness. Men serve more jail time than women for the same offenses and also make up a majority of prisoner population. Men have a lower life expectancy than women. Men are more likely to be a victim of homicide. I am not negating your facts, but you are ignoring many issues that face men therefore your issues sampling is extremely selective. You should address all human issues, not just one sides.

      "you should address all human issues, not just one side"

    3. @Lancelote. 10 months ago men die more in car crashes than women die, so accomodating women's need at the expense of men's seem absurd, the alternative is to create a "woman car", which have already been attempted at ford if im not mistaken, but ended up not being very useful.

      "accommodating women's need at the expense of men's" -- a distortion of the point being made, in which the assumption is that it is a personal attack, rather than being a launching pad for discussing unintended consequences of poor design decisions, which are influenced by the presumption that the male default is by definition a neutral circumstance

    4. @aaroncostello8812 1 year ago Let me guess...at the end of the book it is revealed that "everything can be blamed on men".

      common assertion that discussions about gender inequities are piling on: "everything can be blamed on men"

    5. @rickycheese5879 5 years ago Alice E I read the book to try and understand. It really feels like petty self victimisation. History wasn’t kind for MOST people. 99% of society has been oppressed for all of history, not just women. And it is still that way. Please try to explain cos I still dont understand why this comment is ignorant.

      provocative wording: "petty self victimisation"

    6. @DrBustenHalter 5 years ago (edited) Men built the world. Women could have done but they were too busy complaining. It still needs some improvement but thanks for the feedback. Nowadays we have powertools so women COULD learn a trade and build bathrooms for themselves but they don't. Because apparently it's not sexy to be covered in sawdust and plaster. Or covered in tarmac from digging roads. Or covered in shit from cleaning sewers. An awful lot of them don't work at all, or just want to work in media, fashion or HR. So men will have to keep building things wrong until we get new requirements from our slave masters. Damn the patriarchy! And who is invisible?

      an example of antagonistic comments in relation to discussions about gender disparities

    7. @DrBustenHalter 5 years ago (edited) Men built the world. Women could have done but they were too busy complaining. It still needs some improvement but thanks for the feedback. Nowadays we have powertools so women COULD learn a trade and build bathrooms for themselves but they don't. Because apparently it's not sexy to be covered in sawdust and plaster. Or covered in tarmac from digging roads. Or covered in shit from cleaning sewers. An awful lot of them don't work at all, or just want to work in media, fashion or HR. So men will have to keep building things wrong until we get new requirements from our slave masters. Damn the patriarchy! And who is invisible?

      example of the antagonistic discourse common today about issues related to sex and gender

    1. 12.02 documents the more advanced ways to keep your JDex.

      This one is closer to what MEMEPleX is about

      if you get your document structuring right -

      indexing can take care of itself

      as long as you can develop deep insightful generative answer to the the deepest question of them all:

      What's in a Name

      or rather develop novel ays of Constructing them such that they can be

      created as Universal Resource Names in some suitable digital spaces designed for that purpose

      that can support

      Uniersal Resource Names such that they can be

      mapped by a suitable constructed system

      that supports say Universal hyperDocuments

      where such names can actually be used to obtain the suitably named resource

  3. drive.google.com drive.google.com
    1. Indeed, when CBS did a MaryTyler Moore Show twentieth-anniversary retrospective in February 1991,they scheduled it to immediately follow Murphy Brown, billing the evening as "Murphy and Mary." The newer show features the same newsroomsetting, the same family of coworkers concept, the same home/office alternation, and the same sophisticated humor. Only the character of Murphydiffers significantly from the older model; she is a loudmouthed (but gorgeous), successful, single career woman in her forties, who would havebeen starting her career about the same time that Mary Richards (then30) joined the WJM news team in 1971. Mary represented the traditionalwoman caught in a network of social change; Murphy represents the fruition of the middle-class women's movement: tough, successful, and aloneas she approaches middle ag

      This shows that even though Murphy Brown updates the Mary Tyler Moore formula, it still fits the same sitcom genre. It makes me think that genres can limit how we see a show, because labeling it a sitcom can make people overlook how it actually comments on social issues.

    2. W hen genretheory is applied to the television medium, this danger is even greater, forwe already have cultural preconceptions as to the "sameness" of televisionprogramming-that is, "if you've seen one sitcom, you've seen them all;'

      This makes me think about how easy it is to assume that all shows in a genre are the same, but I don’t agree. For example the movie Sinners is generally labeled as horror, but it also represents a metaphor for racism. It feels unfair to simply call it a horror movie when it explores such deep rooted controversial topics.

    3. enres are made,not born. The coherence is provided in the process of construction, and agenre is ultimately an abstract conception rather than something thatexists empirically in the world

      When it comes to productions, directors and actors often communicate to decide how certain feelings and scenes should be portrayed, but who interprets it (different social, religious, or racial groups) can view them differently, which shows that genre isn’t always fixed but shaped by the audience's perspective.

    4. ome viewed the genre as a constraint on complete originality and self-expression, but others, following a more classical or mimetic theory of art, felt that these constraints were in factproductive to the creative expression of the author.

      From a viewer’s standpoint, I agree with some critics that genres can be limiting. For example, Brooklyn Nine-Nine fits into the police procedural category because of its crime solving plots, but is also considered a sitcom because of the humor.

    5. The very use of the term implies that worksof literature, films, and television programs can be categorized; they arenot unique. Thus genre theory deals with the ways in which a work maybe considered to belong to a class of related works.

      It’s interesting that shows get stuck in categories and are considered to not be unique, but the actual aspects of a production, which including the writing, acting, and directing, can be far more unique than other productions in that genre.

    6. he basic comic plot uses the young couple'sunion to symbolize the promise of the future, guaranteeing the possibilityof personal change and, with it, social change.

      Plots become over used and cliche at some point. Even if when they were first introduced it was new. I can name a bunch of movies that are exactly the plot that was just named. I believe this plot comes from classics like Romeo and Juliet, but with a twist and a happy ending. A lot of kids, especially Millennials, feel as if their parents don't understand them. I'm excited to see what the cliche comedy movie would be for my generation and see how it differs from the last.

    7. This also caused the industry to redefine the measure of the popularityof a particular genre or program. "Popularity" came to mean high ratingswith the eighteen- to forty-nine-year-old urban dweller, rather than popularity with the older, rural audience that had kept the Paul Henning sitcoms on the air throughout the 1960s. Later, the industry refined its modelaudience once again. During the "Fred Silverman years" of the mid- tolate 1970s, the audience for sitcoms was defined as mindless teenagers;the result was shows like Three's Company, Happy Days, and Laverneand Shirley. In the 1980s, the desirable audience-at least for the NBCnetwork-became the high-consuming "yuppie" audience, thus definingthe popularity of such shows as Cheers and Family Ties.

      Demographics change. Populatiry matters more depending on who its coming from rather than overall numbers.

    8. The survey found that 75 percent of viewers had remote control, andof those, 30 percent said they try to watch two or more shows at once-either occasionally or most of the time. T

      That's kind of crazy, I cannot imagine doing that. I get too hooked on 1 show to do anything else. That changes my perspective a bit.

    9. Of course, it was not uncommonduring the Hollywood studio era (and it is even more common in contemporary Hollywood films that no longer exhibit the distinct genre boundaries of yore) for new genres to develop out of the recombination of previous genres

      Genres change and evolve over time. Movies don't have to stay in the box; there is artistic freedom. That is how some of my favourite movies are, when it's not predictable and cliché. It's always great to see new takes on genres.

    10. The approaches to genre that we have discussed might be summarizedunder three labels-the aesthetic, the ritual, and the ideological approaches

      3 approaches to genres. Helps viewers, critics, and artists.

    11. For example, althoughHomer did not refer to his own work as an "epic" poem, both industry andcritics employ the categories of "Western" and "sitcom?'

      There are different levels to the genre. Genres are commonly used amongst everyone.

    12. Heclassified fiction into modes according to the hero's power of action-eithergreater than ours, less than ours, or the same as ours-arriving at suchcategories as myth, romance, epic and tragedy, comedy, and realistic fictionaccording to the hero's relationship to the reader. Frye points out thatover the last fifteen centuries these modes have shifted, so that, for example, the rise of the middle class introduces the law mimetic mode in whichthe hero is one of us (pp. 33-35). As for genres, Frye distinguishes amongdrama, epic, and lyric on the basis of their "radical of presentation" (thatis, acted out, sung, read), viewing the distinction as a rhetorical one withthe genre being determined by the relationship between the poet and hispublic (pp. 246-47)

      It didn't just end at Aristotle. Frye continued to change it, and that sounds more like Genres as we know it. It's so cool to see how this industry continues to evolve and change.

    13. Aristotle implied, tragedy could then haveits ideal impact on an audience. (In a similar way, although Hollywood filmgenres are constructed from actual films, the genre itself is frequentlyspoken of as an ideal set of traits that inform individual films. Thus, although many individual Westerns do not feature Indians, Indians remaina crucial generic element.)

      Having generic elements helps both the audience and film workers categorise the movie/TV show so that it can reach and attract the right person. It is not a clear separation, though, so writers still have artistic freedom.

    14. In a similar way,literature may be divided into comedy, tragedy, and melodrama; Hollywood films into Westerns, musicals, and horror films; television programsinto sitcoms, crime shows, and soap operas

      The basic genres for film and TV

    15. W hat makes a genre 'good; in otherwords, is its power to make the literary text 'good

      Many genres can be good but it is difficult for them to be great and keep the attention of the audience. The depths of a genre have the power to promote change and shape the literary text within it. A great genre understands that a good framework must be provided that allows for structure, engagement, innovation and evolution. Altogether a good genre shows the broad aspects of the theme but a great genre attacks the insides as a whole. A good genre goes deep and is effectively enabling it to achieve its artistic and communicative goals so it resonates with its audience.

    1. eLife Assessment

      This useful study advances our understanding of how organisms respond to chronic oxidative stress. Using the nematode C. elegans, the authors identified key neuronal signaling molecules and their receptors that are required for stress signaling and survival. The evidence supporting the conclusions is solid, with rigorous genetics, stress response analysis, and transcriptional profiling. This research will be of broad interest to neuroscientists and researchers working in the field of oxidative stress regulation.

    2. Reviewer #1 (Public review):

      Summary:

      The researchers aimed to identify which neurotransmitter pathways are required for animals to withstand chronic oxidative stress. This work thus has important implications for disease processes that are caused/linked to oxidative stress. This work identified specific neurotransmitters and receptors that coordinate stress resilience, both prior to and during stress exposure. Further, the authors identified specific transcriptional programs coordinated by neurotransmission that may provide stress resistance.

      Strengths:

      The manuscript is very clearly written with a well-formulated rationale. Standard C. elegans genetic analysis and rescue experiments were performed to identify key regulators of the chronic oxidative stress response. These findings were enhanced by transcriptional profiling that identified differentially expressed genes that likely affect survival when animals are exposed to stress.

      Weaknesses:

      Where the gar-3 promoter drives expression was not discussed in the context of the rescue experiments in Figure 7.

    3. Reviewer #2 (Public review):

      In this paper, Biswas et al. describe the role of acetylcholine (ACh) signaling in protection against chronic oxidative stress in C. elegans. They showed that disruption of ACh signaling in either unc-17 mutants or gar-3 mutants led to sensitivity to toxicity caused by chronic paraquat (PQ) treatment. Using RNA seq, they found that approximately 70% of the genes induced by chronic PQ exposure in wild type failed to upregulate in these mutants. The overexpression of gar-3 selectively in cholinergic neurons was sufficient to promote protection against chronic PQ exposure in an ACh-dependent manner. The study points to a previously undescribed role for ACh signaling in providing organism-wide protection from chronic oxidative stress, likely through the transcriptional regulation of numerous oxidative stress-response genes. The paper is well-written, and the data are robust, though some conclusions seem preliminary and do not fully support the current data. While the study identifies the muscarinic ACh receptor gar-3 as an important regulator of the response to PQ, the specific neurons in which gar-3 functions were not unambiguously identified, and the sources of ACh that regulate GAR-3 signaling and the identities of the tissues targeted by gar-3 were not addressed, limiting the scope of the study.

      Major Comments:

      (1) The site of action of cholinergic signaling for protection from PQ was not adequately explored. The authors' conclusion that cholinergic motor neurons are protective is based on studies using overexpression of gar-3 and an unc-17 allele that may selectively disrupt ACh in cholinergic motor neurons (Figure 9F), but these approaches are indirect. To more directly address the site of action, the authors should conduct rescue experiments using well-defined heterologous promoters. Figure 7G shows that gar-3 expressed under a 7.5 kb promoter fragment fully rescues the defect of gar-3 mutants, but the authors did not report where this promoter fragment is expressed, nor did they conduct rescue experiments of the specific tissues where gar-3 is known to be expressed (cholinergic neurons, GABAergic neurons, pharynx, or muscles). UNC-17 rescue experiments could also be useful to address the site of action. Does expression of unc-17 selectively in cholinergic motor neurons rescue the stress sensitivity of unc-17 mutants (or restore resistance to gar-3(OE); unc-17 mutants)? These experiments may also address whether ACh acts in an autocrine or paracrine manner to activate gar-3, which would be an important mechanistic insight to this study that is currently lacking.

      (2) The genetic pan-neuronal silencing experiments presented in Figure 1 motivated the subsequent experiments, but the authors did not relate these observations to ACh/gar-3 signaling. For example, the authors did not address whether silencing just the cholinergic motor neurons at the different times tested has the same effects on survival as pan-neuronal silencing.

      (3) It is assumed that protection occurs through inter-tissue signaling of ACh to target tissues, where it impacts gene expression. While this is a reasonable assumption, it has not been directly shown here. It is recommended that the authors examine GFP reporter expression of a sampling of the genes identified in this study (including proteasomal genes that the authors highlight) that are regulated by unc-17 and gar-3. This would serve to independently confirm the RNAseq data and to identify target tissues that are subject to gene expression regulation by ACh, which would significantly strengthen the study.

    4. Author response:

      Reviewer #1 (Recommendations for the authors):

      “The gar-3 promoter expression pattern was not discussed in the context of rescue experiments.”

      We agree that the expression pattern of the gar-3 promoter used in our rescue experiments should be clarified. We will include a description of the tissues where the 7.5 kb gar-3 promoter fragment is expressed, based on both prior studies and our own expression data. We will also discuss how the gar-3 cell and tissue expression pattern relates to both our analysis of gar-3 expression in the genome edited strain we generated as well as the observed rescue effects.

      Reviewer #2 (Recommendations for the authors):

      (1) The site of action of cholinergic signaling was not adequately explored.

      We plan to perform additional rescue experiments using heterologous promoters to drive gar-3 expression in specific tissues (e.g. cholinergic neurons, muscle). These experiments will help clarify the sufficiency of unc-17 expression in specific cell types for rescue. However, we point out that cell-specific unc-17 knockdown by RNAi using the unc-17b promoter (expression largely restricted to ventral cord ACh motor neurons) increases sensitivity to PQ in our long-term survival assays. Combined with our analysis of unc-17(e113) mutants, we believe our data offer robust support of a requirement for unc-17 expression in cholinergic motor neurons.

      (2) Pan-neuronal silencing experiments were not connected to ACh/GAR-3 signaling.

      We will expand our discussion to relate the pan-neuronal silencing results to our analysis of ACh signaling. We used the pan-neuronal silencing to motivate further analysis of various neurotransmitter systems. We note that our studies implicate both glutamatergic and cholinergic systems in protective responses to oxidative stress. The effects of silencing on survival during long-term PQ exposure may therefore be derived solely from cholinergic neurons, glutamatergic neurons, or a combination of both neuronal populations. We hope the reviewer will agree that distinguishing between these possibilities may be quite complicated and is not central to the main message of our paper. We therefore suggest this additional analysis lies outside the scope of this revision.

      (3) Inter-tissue signaling and transcriptional regulation by ACh were assumed but not directly shown.

      We will generate GFP reporters for a subset of genes (including proteasomal genes) identified in our RNA-seq analysis or assess their expression by quantitative RT-PCR to validate cholinergic regulation. These experiments will help to identify target tissues and confirm transcriptional regulation by cholinergic signaling.

      We appreciate the opportunity to revise our manuscript and believe that these additions will significantly strengthen the mechanistic insights and overall impact of our study. Please let us know if further clarification is needed.

    1. Description

      Are you searching for a car for your child? See the common tricks and tactics used by car salesmen. Particularly the strategy of selling a visible defect to distract from other issues. Learn the value of honesty in sales. Then draw parallels to the Hive blockchain community. With transparency about flaws. While focusing on strengths and collaboration.

    1. eLife Assessment

      This important work by Lesser et al provides a first and comprehensive description of Drosophila wing proprioceptors at an EM resolution. By linking peripheral neurons with information on their morphology and connectivity in the central nervous system, the authors provide new hypotheses and tools to study proprioceptive motor control of the wing in the fruit fly. The evidence and techniques supporting this work are solid, and this resource will contribute to connectome-based modeling of fly behavior.

    2. Reviewer #1 (Public review):

      Summary:

      Lesser et al provide a comprehensive description of Drosophila wing proprioceptive sensory neurons at the electron microscopy resolution. This "tour-de-force" provides a strong foundation for future structural and functional research aimed at understanding wing motor control in Drosophila with implications for understanding wing control across other insects.

      Strengths:

      (1) The authors leverage previous research that described many of the fly wing proprioceptors, and combine this knowledge with EM connectome data such that they now provide a near-complete morphological description of all wing proprioceptors.

      (2) The authors cleverly leverage genetic tools and EM connectome data to tie the location of proprioceptors on the wings with axonal projections in the connectome. This enables them to both align with previous literature as well as make some novel claims.

      3) In addition to providing a full description of wing proprioceptors, the authors also identified a novel population of sensors on the wing tegula that make direct connections with the B1 wing motor neurons, implicating the role of the tegula in wing movements that was previously underappreciated.

      (4) Despite being the most comprehensive description so far, it is reassuring that the authors clearly state the missing elements in the discussion.

      Weaknesses:

      (1) The authors do their main analysis on data from the FANC connectome but provide corresponding IDs for sensory neurons in the MANC connectome. I wonder how the connectivity matrix compares across FANC and MANC if the authors perform a similar analysis to the one they have done in Figure 2. This could be a valuable addition and potentially also pick up any sexual dimorphism.

      (2) The authors speculate about the presence of gap junctions based on the density of mitochondria. I'm not convinced about this, given that mitochondrial densities could reflect other things that correlate with energy demands in sub-compartments.

      (3) I'm intrigued by how the tegula CO is negative for iav. I wonder if authors tried other CO labeling genes like nompc. And what does this mean for the nature of this CO. Some more discussion on this anomaly would be helpful.

      (4) The authors conclude there are no proprioceptive neurons in sclerite pterale C based on Chat-Gal4 expression analysis. It would be much more rigorous if authors also tried a pan-neuronal driver like nsyb/elav or other neurotransmitter drivers (Vglut, GAD, etc) to really rule this out. (I hope I didn't miss this somewhere.)

      Overall, I consider this an exceptional analysis that will be extremely valuable to the community.

    3. Reviewer #2 (Public review):

      Summary:

      Lesser et al. present an atlas of Drosophila wing sensory neurons. They proofread the axons of all sensory neurons in the wing nerve of an existing electron microscopy dataset, the female adult fly nerve cord (FANC) connectome. These reconstructed sensory axons were linked with light microscopy images of full-scale morphology to identify their origin in the periphery of the wing and encoded sensory modalities. The authors described the morphology and postsynaptic targets of proprioceptive neurons as well as previously unknown sensory neurons.

      Strengths:

      The authors present a valuable catalogue of wing sensory neurons, including previously undescribed sensory axons in the Drosophila wing. By providing both connectivity information with linked genetic drive lines, this research facilitates future work on the wing motor-sensory network and applications relating to Drosophila flight. The findings were linked to previous research as well as their putative role in the proprioceptive and nerve cord circuitry, providing testable hypotheses for future studies.

      Weaknesses:

      (1) With future use as an atlas, it should be noted that the evidence is based on sensory neurons on only one side of the nerve cord. Fruit flies have stereotyped left/right hemispheres in the brain and left/right hemisegments in the nerve cord. The comparison of left and right neurons of the nervous system can give a sense of how robust the morphological and connectivity findings are. Here, the authors have not compared the left and right side sensory axons from the wing nerve, leaving potential for developmental variability across samples and left/right hemisegments.

      (2) Not all links between the EM reconstructions and driver lines are convincing. To strengthen these, for all EM-LM matches in Figures 3-7, rotated views of the driver line (matching the rotated EM views) should be shown to provide a clearer comparison of the data. In particular, Figure 3G and Figure 7B are not very convincing based on the images shown. MCFO imaging of the driver lines in Figure 3G and 7B would make this position stronger if a clone that matches the EM reconstruction could be identified.

      (3) Figure 7B looks like the driver line might have stochastic expression in the sensory neuron, which further reduces confidence in the result shown in Figure 7C. Is this expression pattern in the wing consistently seen? Many split-GAL4s have stochastic expressions. The evidence would be strengthened if the authors presented multiple examples (~4-5) of each driver line's expression pattern in the supplement.

      (4) Certain claims in this work lack quantitative evidence. On line 128, for instance, "Overall, our comprehensive reconstruction revealed many morphological subgroups with overlapping postsynaptic partners, suggesting a high degree of integration within wing sensorimotor circuits." If a claim of subgroups having shared postsynaptic partners is being made, there should have been quantitative evidence. For example, cosine similar amongst members of each group compared to the cosine similarity of shuffled/randomised sets of axons from different groups. The heat map of cosine similarity in Figure 2B alone is not sufficient.

      (5) Similarly, claims about putative electrical connections to b1 motor neurons are very speculative. The authors state that "their terminals contain very densely packed mitochondria compared to other cells", without providing a quantitative comparison to other sensory axons. There is also no quantitative comparison to the one example of another putative electrical connection from the literature. Further, it should be noted that this connection from Trimarchi and Murphey, 1997, is also stated as putative on line 167, which further weakens this evidence. Quantification would strongly strengthen this position. Identification of an example of high mitochondrial density at a confirmed electrical connection would be even better. In the related discussion section "A potential metabolic specialization for flight circuitry", it should be more clearly noted that the dense mitochondria could be unrelated to a putative electrical connection. If the authors have an alternative hypothesis about the mitochondria density, this should be stated as well.

      (6) It would be appropriate to cite previous work using a similar strategy to match sensory axons to their cell bodies/dendrites at the periphery using driver lines and connectomics (see Figure 5 for example in the following paper: https://doi.org/10.7554/eLife.40247 ).

      The methods section is very sparse. For the sake of replicability, all sections should be expanded upon.

    4. Reviewer #3 (Public review):

      Summary:

      The authors aim to identify the peripheral end-organ origin in the fly's wing of all sensory neurons in the anterior dorsomedial nerve. They reconstruct the neurons and their downstream partners in an electron microscopy volume of a female ventral nerve cord, analyse the resulting connectome, and identify their origin with a review of the literature and imaging of genetic driver lines. While some of the neurons were already known through previous work, the authors expand on the identification and create a near-complete map of the wing mechanosensory neurons at synapse resolution.

      Strengths:

      The authors elegantly combine electron microscopy, neuron morphology, connectomics, and light microscopy methods to bridge the gap between fly wing sensory neuron anatomy and ventral nerve cord morphology. Further, they use EM ultrastructural observations to make predictions on the signaling modality of some of the sensory neurons and thus their function in flight.

      The work is as comprehensive as state-of-the-art methods allow to create a near-complete map of the wing mechanosensory neurons. This work will be of importance to the field of fly connectomics and modelling of fly behavior, as well as a useful resource to the Drosophila research community.

      Through this comprehensive mapping of neurons to the connectome, the authors create a lot of hypotheses on neuronal function, partially already confirmed with the literature and partially to be tested in the future. The authors achieved their aim of mapping the periphery of the fly's wing to axonal projections in the ventral nerve cord, beautifully laying out their results to support their mapping.

      The authors identify the neurons in a previously published connectome of a male fly ventral nerve cord to enable cross-individual analysis of connections. Further, together with their companion paper, Dhawan et al. 2025, describing the haltere sensory neurons in the same EM dataset, they cover the entire mechanosensory space involved in Drosophila flight.

      Weaknesses:

      The connectomic data are only available upon request; the inclusion of a connectivity table of the reconstructed neurons would aid analysis reproducibility and cross-dataset comparisons.

    1. eLife Assessment

      This fundamental study identifies specific neural mechanisms through which HIF-1 signaling in ADF serotonergic neurons extends lifespan in C. elegans, revealing that downstream signaling in multiple types of neurons, as well as other neuromodulators like GABA, tyramine, and NLP-17, is required for this effect. The strength of the evidence is largely convincing, as the authors establish the necessity and causality of key neuronal components using multiple genetic tools and functional dissection in a well-validated model organism.

    2. Reviewer #1 (Public review):

      Summary:

      In this study by Kitto et al., the authors set out to identify specific signaling components regulating the hypoxic response from the neurons to the periphery and which components are required for lifespan extension. Their previous work had shown that expression of a stabilized HIF-1 mutant in the nervous system extends lifespan through the serotonin receptor SER-7 and leads to the induction of fmo-2 in the intestine. In the current study, they mapped the precise neural circuits required for this response, as well as the signaling mediators. Their work reveals that neurotransmitters GABA and tyramine, and the neuropeptide NLP-17, act downstream of neuronal HIF-1 to convey a "hypoxic signal" to peripheral tissues. Through cell-type-specific expression studies, targeted knockouts, and comprehensive lifespan analysis, the authors provide robust evidence to support their conclusions. The insights gained from the study are both moving the field forward as they advance our understanding of neuro-peripheral hypoxic signaling, but they also lay the groundwork for potential therapeutic strategies aimed at the modulation of such signaling pathways.

      Strengths:

      (1) This study provides new evidence further delineating signaling components required for hypoxic signaling-mediated longevity, from the nervous system to the periphery. Using a rigorous approach where they express stabilized HIF-1 mutant selectively in ADF, NSM, and HSN serotonergic neurons, followed by cell-type-specific tph-1 knockouts to pinpoint ADF-dependent serotonin signaling as essential for both lifespan extension and intestinal fmo-2 induction.

      This was followed by generating 11 transgenic lines that drive SER-7 expression under distinct neuron-specific promoters, to systematically tease out in which of 27 candidate neurons SER-7 functions to mediate hypoxia-induced longevity. This ultimately highlighted the RIS interneuron as the required signaling hub.

      (2) As the intestine lacks direct neuronal innervation, the authors employ neuron-specific RNAi (TU3311 strain) and dense core vesicle analyses to identify that the neuropeptide NLP-17 is required to transmit the hypoxic signal from RIS to induce fmo-2 in the intestine.

      (3) Overall, the paper is very well written. The experiments were carried out carefully and thoroughly, and the conclusions drawn are also well supported by the results they are showing.

      Weaknesses:

      Overall, I don't see many weaknesses. One point relates to their read-outs, which rely heavily on lifespan measurements and fmo-2 induction without evaluating other physiological processes that serotonin or NLP-17 might affect. For translational relevance, it would be valuable to assess or mention potential adverse effects, such as changes in reproduction, pharyngeal pumping, or proteostasis capacity (proteostasis capacity specifically in the tissue showing fmo-2 upregulation).

      While lifespan assays and fmo-2 expression do provide strong evidence, incorporating additional markers of stress resistance could strengthen the link between hypoxic signaling and organismal health as well.

    3. Reviewer #2 (Public review):

      Summary:

      The authors aimed to identify the specific neurons, neurotransmitters, and neuropeptides that mediate the longevity effects of the hypoxic response in C. elegans. By genetically dissecting the pathway downstream of HIF-1, they define a neural circuit involving ADF serotonergic neurons, the SER-7 receptor in the RIS interneuron, tyraminergic signaling from RIM, and neuropeptide NLP-17, ultimately linking neuronal hypoxic sensing to pro-longevity signaling in the intestine.

      Strengths:

      The study employs a diverse genetic toolkit, including neuron-specific transgenes, tissue-specific knockouts and rescues, RNAi knockdowns, allowing the authors to pinpoint causality, sufficiency, and necessity with high resolution. The comprehensive mapping of cell-nonautonomous signaling adds depth to our understanding of how HIF and serotonin signaling interface with aging pathways. The conclusions are supported by consistent survival assays and fmo-2 gene expression analyses.

      Weaknesses:

      A key limitation is the lack of clear evidence showing epistasis of so many identified molecular/neuronal components downstream of HIF-1 and serotonin. Thus, the mechanisms of how a diverse set of molecules/neurons coordinate and mediate neuronal HIF-1 effects on intestinal fmo-2 and longevity remain murky. Some rescue strategies may inadvertently cause non-physiological expression. Additionally, environmental hypoxia was not tested in parallel, so the claim on "hypoxia respone" throughout the manuscript is not justified by genetic manipulation alone, and the translational relevance of the genetic manipulations remains somewhat uncertain.

    4. Reviewer #3 (Public review):

      Summary:

      This study found that ADF serotonergic neurons have a significant role in extending lifespan mediated by HIF-1, as well as serotonin receptor SER-7 in the GABAergic RIS interneurons. The author focuses on the sufficiency and necessity of components from the central nervous system and how they contribute to aging upon hypoxia.

      Previous work from the lab has identified that the stabilization of HIF-1 in neurons is sufficient to extend lifespan through the serotonin receptor, SER-7, which subsequently activates fmo-2 in the intestine and leads to lifespan extension. Building on this, the author sought to determine which serotonergic neurons are involved and found that serotonin signaling in ADF neurons is required for lifespan extension mediated by HIF-1.

      The author next tested which subset of neurons requires Ser-7 expression to rescue hypoxic response. They found that ser-7 expression in multiple neurons is sufficient to induce fmo-2, with the top candidate being the RIS neuron. Ablation of the RIS neuron did not extend lifespan, suggesting that ser-7 expression in the RIS neuron is required for lifespan extension, positioning it as a key component in the longevity signaling pathway.

      The author also investigated neurotransmitters and found that GABA and tyramine are important components in this circuit. They showed that the tyramine receptor called tyra-3 is required for vhl-1-mediated longevity. Given that tyra-3 is expressed in oxygen- and carbon dioxide-sensing neurons, the author demonstrated that these sensing neurons work downstream of serotonin signaling. Lastly, the author screened neuropeptide/receptor binding pairs and identified NLP-17 as playing a role in hypoxia-mediated longevity.

      Originality and Significance:

      This research is significant in that it uncovers components that are sufficient and necessary for lifespan extension via the hypoxic response. It provides comprehensive data supporting longevity induced by HIF-1-mediated hypoxic response, in conjunction with fmo-2, a longevity gene, as demonstrated in previous work from the lab. Moreover, it provides a number of new transgenic worm tools for C. elegans and aging communities.

      Data and Methodology:

      (1) The experiments were thoroughly conducted, especially the generations of strains using different neuron-type promoters and crossing into mutant strains to demonstrate sufficiency and necessity.

      (2) Some figure legends from the text do not match what the data show. (Figure 6E, F, G).

      (3) The lifespan graph legends are confusing and could use some revamping for better clarification.

      Conclusions:

      This study provides insights into how hypoxic response regulates aging in a cell non-autonomous manner, outlining a potential circuit involving neurons, neurotransmitters, and neuropeptides.

    1. eLife Assessment

      This study presents a valuable application of a video-text alignment deep neural network model to improve neural encoding of naturalistic stimuli in fMRI. The authors found that models based on multimodal and dynamic embedding features of audiovisual movies predicted brain responses better than models based on unimodal or static features. The evidence supporting the claims is generally solid, with clear benchmarking against baseline models. The work will be of interest to researchers in cognitive neuroscience and AI-based brain modeling.

    2. Reviewer #1 (Public review):

      Summary:

      This study compares four models - VALOR (dynamic visual-text alignment), CLIP (static visual-text alignment), AlexNet (vision-only), and WordNet (text-only) - in their ability to predict human brain responses using voxel-wise encoding modeling. The results show that VALOR not only achieves the highest accuracy in predicting neural responses but also generalizes more effectively to novel datasets. In addition, VALOR captures meaningful semantic dimensions across the cortical surface and demonstrates impressive predictive power for brain responses elicited by future events.

      Strengths:

      The study leverages a multimodal machine learning model to investigate how the human brain aligns visual and textual information. Overall, the manuscript is logically organized, clearly written, and easy to follow. The results well support the main conclusions of the paper.

      Weaknesses:

      (1) My primary concern is that the performance difference between VALOR and CLIP is not sufficiently explained. Both models are trained using contrastive learning on visual and textual inputs, yet CLIP performs significantly worse. The authors suggest that this may be due to VALOR being trained on dynamic movie data while CLIP is trained on static images. However, this explanation remains speculative. More in-depth discussion is needed on the architectural and inductive biases of the two models, and how these may contribute to their differences in modeling brain responses.

      (2) The methods section lacks clarity regarding which layers of VALOR and CLIP were used to extract features for voxel-wise encoding modeling. A more detailed methodological description is necessary to ensure reproducibility and interpretability. Furthermore, discussion of the inductive biases inherent in these models-and their implications for brain alignment - is crucial.

      (3) A broader question remains insufficiently addressed: what is the purpose of visual-text alignment in the human brain? One hypothesis is that it supports the formation of abstract semantic representations that rely on no specific input modality. While VALOR performs well in voxel-wise encoding, it is unclear whether this necessarily indicates the emergence of such abstract semantics. The authors are encouraged to discuss how the computational architecture of VALOR may reflect this alignment mechanism and what implications it has for understanding brain function.

      (4) The current methods section does not provide enough details about the network architectures, parameter settings, or whether pretrained models were used. If so, please provide links to the pretrained models to facilitate reproducible science.

    3. Reviewer #2 (Public review):

      Summary:

      Fu and colleagues have shown that VALOR, a model of multimodal and dynamic stimulus features, better predicts brain responses compared to unimodal or static models such as AlexNet, WordNet, or CLIP. The authors demonstrated the robustness of their findings by generalizing encoding results to an external dataset. They demonstrated the models' practical benefit by showing that semantic mappings were comparable to another model that required labor-intensive manual annotation. Finally, the authors showed that the model reveals predictive coding mechanisms of the brain, which held a meaningful relationship with individuals' fluid intelligence measures.

      Strengths:

      Recent advances in neural network models that extract visual, linguistic, and semantic features from real-world stimuli have enabled neuroscientists to build encoding models that predict brain responses from these features. Higher prediction accuracy indicates greater explained variance in neural activity, and therefore a better model of brain function. Commonly used models include AlexNet for visual features, WordNet for audio-semantic features, and CLIP for visuo-semantic features; these served as comparison models in the study. Building on this line of work, the authors developed an encoding model using VALOR, which captures the multimodal and dynamic nature of real-world stimuli. VALOR outperformed the comparison models in predicting brain responses. It also recapitulated known semantic mappings and revealed evidence of predictive processing in the brain. These findings support VALOR as a strong candidate model of brain function.

      Weaknesses:

      The authors argue that this modeling contributes to a better understanding of how the brain works. However, upon reading, I am less convinced about how VALOR's superior performance over other models tells us more about the brain. VALOR is a better model of the audiovisual stimulus because it processes multimodal and dynamic stimuli compared to other unimodal or static models. If the model better captures real-world stimuli, then I almost feel that it has to better capture brain responses, assuming that the brain is a system that is optimized to process multimodal and dynamic inputs from the real world. The authors could strengthen the manuscript if the significance of their encoding model findings were better explained.

      In Study 3, the authors show high alignment between WordNet and VALOR feature PCs. Upon reading the method together with Figure 3, I suspect that the alignment almost has to be high, given that the authors projected VALOR features to the Huth et al.'s PC space. Could the authors conduct non-parametric permutation tests, such as shuffling the VALOR features prior to mapping onto Huth et al.'s PC space, and then calculating the Jaccard scores? I imagine that the null distribution would be positively shifted. Still, I would be convinced if the alignment is higher than this shifted null distribution for each PC. If my understanding of this is incorrect, I suggest editing the relevant Method section (line 508) because this analysis was not easy to understand.

      In Study 4, the authors show that individuals whose superior parietal gyrus (SPG) exhibited high prediction distance had high fluid cognitive scores (Figure 4C). I had a hard time believing that this was a hypothesis-driven analysis. The authors motivate the analysis that "SPG and PCu have been strongly linked to fluid intelligence (line 304)". Did the authors conduct two analyses only-SPG-fluid intelligence and PCu-fluid intelligence-without relating other brain regions to other individual differences measures? Even if so, the authors should have reported the same r-value and p-value for PCu-fluid intelligence. If SPG-fluid intelligence indeed holds specificity in terms of statistical significance compared to all possible scenarios that were tested, is this rationally an expected result, and could the authors explain the specificity? Also, the authors should explain why they considered fluid intelligence to be the proxy of one's ability to anticipate upcoming scenes during movie watching. I would have understood the rationale better if the authors had at least aggregated predictive scores for all brain regions that held significance into one summary statistic and found a significant correlation with the fluid intelligence measure.

    4. Reviewer #3 (Public review):

      Summary:

      In this work, the authors aim to improve neural encoding models for naturalistic video stimuli by integrating temporally aligned multimodal features derived from a deep learning model (VALOR) to predict fMRI responses during movie viewing.

      Strengths:

      The major strength of the study lies in its systematic comparison across unimodal and multimodal models using large-scale, high-resolution fMRI datasets. The VALOR model demonstrates improved predictive accuracy and cross-dataset generalization. The model also reveals inherent semantic dimensions of cortical organization and can be used to evaluate the integration timescale of predictive coding.

      This study demonstrates the utility of modern multimodal pretrained models for improving brain encoding in naturalistic contexts. While not conceptually novel, the application is technically sound, and the data and modeling pipeline may serve as a valuable benchmark for future studies.

      Weaknesses:

      The overall framework of using data-driven features derived from pretrained AI models to predict neural response has been well studied and accepted by the field of neuroAI for over a decade. The demonstrated improvements in prediction accuracy, generalization, and semantic mapping are largely attributable to the richer temporal and multimodal representations provided by the VALOR model, not a novel neural modeling framework per se. As such, the work may be viewed as an incremental application of recent advances in multimodal AI to a well-established neural encoding pipeline, rather than a conceptual advance in modeling neural mechanisms.

      Several key claims are overstated or lack sufficient justification:

      (1) Lines 95-96: The authors claim that "cortical areas share a common space," citing references [22-24]. However, these references primarily support the notion that different modalities or representations can be aligned in a common embedding space from a modeling perspective, rather than providing direct evidence that cortical areas themselves are aligned in a shared neural representational space.

      (2) The authors discuss semantic annotation as if it is still a critical component of encoding models. However, recent advances in AI-based encoding methods rely on features derived from large-scale pretrained models (e.g., CLIP, GPT), which automatically capture semantic structure without requiring explicit annotation. While the manuscript does not systematically address this transition, it is important to clarify that the use of such pretrained models is now standard in the field and should not be positioned as an innovation of the present work. Additionally, the citation of Huth et al. (2012, Neuron) to justify the use of WordNet-based annotation omits the important methodological shift in Huth et al. (2016, Nature), which moved away from manual semantic labeling altogether.

      Since the 2012 dataset is used primarily to enable comparison in study 3, the emphasis should not be placed on reiterating the disadvantages of semantic annotation, which have already been addressed in prior work. Instead, the manuscript's strength lies in its direct comparison between data-driven feature representations and semantic annotation based on WordNet categories. The authors should place greater emphasis on analyzing and discussing the differences revealed by these two approaches, rather than focusing mainly on the general advantage of automated semantic mapping.

      (3) The authors use subject-specific encoding models trained on the HCP dataset to predict group-level mean responses in an independent in-house dataset. While this analysis is framed as testing model generalization, it is important to clarify that it is not assessing traditional out-of-distribution (OOD) generalization, where the same subject is tested on novel stimuli, but rather evaluating which encoding model's feature space contains more stimulus-specific and cross-subject-consistent information that can transfer across datasets.

      Within this setup, the finding that VALOR outperforms CLIP, AlexNet, and WordNet is somewhat expected. VALOR encodes rich spatiotemporal information from videos, making it more aligned with movie-based neural responses. CLIP and AlexNet are static image-based models and thus lack temporal context, while WordNet only provides coarse categorical labels with no stimulus-specific detail. Therefore, the results primarily reflect the advantage of temporally-aware features in capturing shared neural dynamics, rather than revealing surprising model generalization. A direct comparison to pure video-based models, such as Video Swin Transformers or other more recent video models, would help strengthen the argument.

      Moreover, while WordNet-based encoding models perform reasonably well within-subject in the HCP dataset, their generalization to group-level responses in the Short Fun Movies (SFM) dataset is markedly poorer. This could indicate that these models capture a considerable amount of subject-specific variance, which fails to translate to consistent group-level activity. This observation highlights the importance of distinguishing between encoding models that capture stimulus-driven representations and those that overfit to individual heterogeneities.

    1. eLife Assessment

      This important Research Advance builds on the authors' previous work delineating the roles of the rodent perirhinal cortex and the basolateral amygdala in first- and second-order learning. The convincing results show that serial exposure of non-motivationally relevant stimuli influences how those stimuli are encoded within the perirhinal cortex and basolateral amygdala when paired with a shock. This manuscript will be interesting for researchers in cognitive and behavioral neuroscience.

    2. Reviewer #1 (Public review):

      Summary:

      This study advances the lab's growing body of evidence exploring higher-order learning and its neural mechanisms. They recently found that NMDA receptor activity in the perirhinal cortex was necessary for integrating stimulus-stimulus associations with stimulus-shock associations (mediated learning) to produce preconditioned fear, but it was not necessary for forming stimulus-shock associations. On the other hand, basolateral amygdala NMDA receptor activity is required for forming stimulus-shock memories. Based on these facts, the authors assessed: (1) why the perirhinal cortex is necessary for mediated learning but not direct fear learning, and (2) the determinants of perirhinal cortex versus basolateral amygdala necessity for forming direct versus indirect fear memories. The authors used standard sensory preconditioning and variants designed to manipulate the novelty and temporal relationship between stimuli and shock and, therefore, the attentional state under which associative information might be processed. Under experimental conditions where information would presumably be processed primarily in the periphery of attention (temporal distance between stimulus/shock or stimulus pre-exposure), perirhinal cortex NMDA receptor activation was required for learning indirect associations. On the other hand, when information would likely be processed in focal attention (novel stimulus contiguous with shock), basolateral amygdala NMDA activity was required for learning direct associations. Together, the findings indicate that the perirhinal cortex and basolateral amygdala subserve peripheral and focal attention, respectively. The authors provide support for their conclusions using careful, hypothesis-driven experimental design, rigorous methods, and integrating their findings with the relevant literature on learning theory, information processing, and neurobiology. Therefore, this work will be highly interesting to several fields.

      Strengths:

      (1) The experiments were carefully constructed and designed to test hypotheses that were rooted in the lab's previous work, in addition to established learning theory and information processing background literature.

      (2) There are clear predictions and alternative outcomes. The provided table does an excellent job of condensing and enhancing the readability of a large amount of data.

      (3) In a broad sense, attention states are a component of nearly every behavioral experiment. Therefore, identifying their engagement by dissociable brain areas and under different learning conditions is an important area of research.

      (4) The authors clearly note where they replicated their own findings, report full statistical measures, effect sizes, and confidence intervals, indicating the level of scientific rigor.

      (5) The findings raise questions for future experiments that will further test the authors' hypotheses; this is well discussed.

      Weaknesses:

      As a reader, it is difficult to interpret how first-order fear could be impaired while preconditioned fear is intact; it requires a bit of "reading between the lines".

    3. Reviewer #2 (Public review):

      Summary:

      This paper continues the authors' research on the roles of the basolateral amygdala (BLA) and the perirhinal cortex (PRh) in sensory preconditioning (SPC) and second-order conditioning (SOC). In this manuscript, the authors explore how prior exposure to stimuli may influence which regions are necessary for conditioning to the second-order cue (S2). The authors perform a series of experiments which first confirm prior results shown by the author - that NMDA receptors in the PRh are necessary in SPC during conditioning of the first-order cue (S1) with shock to allow for freezing to S2 at test; and that NMDA receptors in the BLA are necessary for S1 conditioning during the S1-shock pairings. The authors then set out to test the hypothesis that the PRh encodes associations in a peripheral state of attention, whereas the BLA encodes associations in a focal state of attention, similar to the A1 and A2 states in Wagner's theory of SOP. To do this, they show that BLA is necessary for conditioning to S2 when the S2 is first exposed during a serial compound procedure - S2-S1-shock. To determine whether pre-exposure of S2 will shift S2 to a peripheral focal state, the authors run a design in which S2-S1 presentations are given prior to the serial compound phase. The authors show that this restores NMDA receptor activity within the PRh as necessary for the fear response to S2 at test. They then test whether the presence of S1 during the serial compound conditioning allows the PRh to support the fear responses to S2 by introducing a delay conditioning paradigm in which S1 is no longer present. The authors find that PRh is no longer required and suggest that this is due to S2 remaining in the primary focal state.

      Strengths:

      As with their earlier work, the authors have performed a rigorous series of experiments to better understand the roles of the BLA and PRh in the learning of first- and second-order stimuli. The experiments are well-designed and clearly presented, and the results show definitive differences in functionality between the PRh and BLA. The first experiment confirms earlier findings from the lab (and others), and the authors then build on their previous work to more deeply reveal how these regions differ in how they encode associations between stimuli. The authors have done a commendable job of pursuing these questions.

      Table 1 is an excellent way to highlight the results and provide the reader with a quick look-up table of the findings.

      Weaknesses:

      The authors have attempted to resolve the question of the roles of the PRh and BLA in SPC and SOC, which the authors have explored in previous papers. Laudably, the authors have produced substantial results indicating how these two regions function in the learning of first- and second-order cues, providing an opportunity to narrow in on possible theories for their functionality. Yet the authors have framed this experiment in terms of an attentional framework and have argued that the results support this particular framework and hypothesis - that the PRh encodes peripheral and the BLA encodes focal states of learning. This certainly seems like a viable and exciting hypothesis, yet I don't see why the results have been completely framed and interpreted this way. It seems to me that there are still some alternative interpretations that are plausible and should be included in the paper.

    4. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a series of experiments that further investigate the roles of the BLA and PRH in sensory preconditioning, with a particular focus on understanding their differential involvement in the association of S1 and S2 with shock.

      Strengths:

      The motivation for the study is clearly articulated, and the experimental designs are thoughtfully constructed. I especially appreciate the inclusion of Table 1, which makes the designs easy to follow. The results are clearly presented, and the statistical analyses are rigorous. My comments below mainly concern areas where the writing could be improved to help readers more easily grasp the logic behind the experiments.

      Weaknesses:

      (1) Lines 56-58: The two previous findings should be more clearly summarized. Specifically, it's unclear whether the "mediated S2-shock" association occurred during Stage 2 or Stage 3. I assume the authors mean Stage 2, but Stage 2 alone would not yet involve "fear of S2," making this expression a bit confusing.

      (2) Line 61: The phrase "Pavlovian fear conditioning" is ambiguous in this context. I assume it refers to S1-shock or S2-shock conditioning. If so, it would be clearer to state this explicitly.

      (3) Regarding the distinction between having or not having Stage 1 S2-S1 pairings, is "novel vs. familiar" the most accurate way to frame this? This terminology could be misleading, especially since one might wonder why S2 couldn't just be presented alone on Stage 1 if novelty is the critical factor. Would "outcome relevance" or "predictability" be more appropriate descriptors? If the authors choose to retain the "novel vs. familiar" framing, I suggest providing a clear explanation of this rationale before introducing the predictions around Line 118.

      (4) Line 121: This statement should refer to S1, not S2.

      (5) Line 124: This one should refer to S2, not S1.

      (6) Additionally, the rationale for Experiment 4 is not introduced before the Results section. While it is understandable that Experiment 4 functions as a follow-up to Experiment 3, it would be helpful to briefly explain the reasoning behind its inclusion.

  4. dbdev.cngb.org dbdev.cngb.org
    -
    1
    1. at can distinguish DNA from viable and dead microorganisms in a controlled experimental setting of UV-induced Escherichia cell death. The application of explainable AI tools then allows us to pinpoint the signal patterns in the n

      The ability to differentiate between viable and dead microorganisms in metagenomic data is crucial for various microbial inferences, ranging from assessing ecosystem functions of environmental microbiomes to inferring the virulence of potential pathogens from metagenomic analysis. While established viability-resolved genomic approaches are labor-intensive as well as biased and lacking in sensitivity, we here introduce a new fully computational framework that leverages nanopore sequencing technology to assess microbial viability directly from freely available nanopore signal data. Our approach utilizes deep neural networks to learn features from such raw nanopore signal data that can distinguish DNA from viable and dead microorganisms in a controlled experimental setting of UV-induced Escherichia cell death. The application of explainable AI tools then allows us to pinpoint the signal patterns in the nanopore raw data that allow the model to make viability predictions at high accuracy. Using the model predictions as well as explainable AI, we show that our framework can be leveraged in a real-world application to estimate the viability of obligate intracellular Chlamydia, where traditional culture-based methods suffer from inherently high false negative rates. This application shows that our viability model captures predictive patterns in the nanopore signal that can be utilized to predict viability across taxonomic boundaries.

    1. She is a Poetry Editor for The Adroit Journal & on the Editorial team for The Fire Inside, a project initiated by people inside California women’s prisons in collaboration with former prisoners & advocates on the outside.

      what is this program about?

    1. The principles of “Open Pedagogy” can be leveraged to engage students as the creators of knowledge rather than passive consumers of it.

      Rather than just spending your time just trying to listen and memorize everything you need to learn, become more hands on by working together in study groups, creating study guides, etc. Students are more likely to retain information and knowledge this way by being creative instead of sitting back in your chair and just continue listening to another lecture that will go in one ear and out the other.

    1. As a result, all the "gains" from "powerful new models" come from burning more and more tokens. The cost-per-million-token number is no longer an accurate measure of the actual costs of generative AI, because it's much, much harder to tell how many tokens a reasoning model may burn, and it varies (as Theo Browne noted) from model to model

      This is a really important idea in the context of SCI for AI. You could easily have an app that improves its score per town, but consumers massively more tokens for the higher level functional unit of answering a prompt

    2. The "early days" argument hinges on obscurity and limited resources, something that generative AI does not get to whine about. Companies that make effectively no revenue can raise $500 million to do the same AI coding bullshit that everybody else does.In simpler terms, these companies are flush with cash, have all the attention and investment they could possibly need, and are still unable to create a product with a defined, meaningful, mass-market use case.

      Compare to iPhone take up, or even cloud

    3. In one sense, explaining what happened to the telecom sector is very simple: the growth in capacity has vastly outstripped the growth in demand. In the five years since the 1996 bill became law, telecommunications companies poured more than $500 billion into laying fiber optic cable, adding new switches, and building wireless networks. So much long-distance capacity was added in North America, for example, that no more than two percent is currently being used

      Wow, even now, in 2025?

    1. At what price would you consider the product to be so expensive that you would not consider buying it? (Too expensive) At what price would you consider the product to be priced so low that you would feel the quality couldn't be very good? (Too cheap) At what price would you consider the product starting to get expensive, so that it is not out of the question, but you would have to give some thought to buying it? (Expensive/High Side) At what price would you consider the product to be a bargain—a great buy for the money? (Cheap/Good Value) The cumulative frequencies are plotted, and PSM advocates claim interpretive qualities exist for any intersecting of the cumulative frequencies for each of the four price categories.

      this is neat!! I wonder how you combine with, like, demographic weighting

    1. “Big Five” or the Five Factor model,

      The "Big Five traits" are described as stable over a person’s lifetime. But if traits are influenced by genetics and context, how much do you think people can intentionally change their personality, and should we try?

    1. “e style of acting in television is determined by the conditions ofreception; there is simply no place for the florid gesture, the overprojectionof emotion, the exaggeration of voice or grimace or movement, inside theaverage American living room.”

      This is so important and changed the movie/TV industry forever. Acting in theatre is completely different from film. Theatre, you overexaggerate and use overprojection. But in film, you have to be more realistic because, as Gilbert Seldes wrote, there is no place for that in a living room. Overacting in theatre is great, but in film, it makes it feel fake and forced. That is so cool to see people learn and grow and make TV really come to life.

    2. is means thatvulgarity, profanity, the sacrilegious in every form, and immorality of every kind willhave no place in television. All programs must be in good taste, unprejudiced, andimpartial.

      Shows how much TV has changed throughout the years. In the past, they highlighted the same morals regardless of whether all the viewers agreed. Now I find it hard to find family-appropriate TV shows that both I and the kids I babysit for can enjoy.

    3. the networks emerged from the war with abroad public relations strategy, emphasizing both their patriotic role indeveloping wartime military electronics and the philosophical defence ofcommercial broadcasting.

      TV has to do with politics. After the war tv was used to make people see the world differently. It is very important to be patriotic after a war, it helps everyone have hope.

    4. imultaneously with the first round of the Justice Department’s effortsto divest the Hollywood studios of their theatre ains and outlawestablished distribution practices in 1938, the two broadcast networks faceda period of unseling antitrust and regulatory scrutiny.

      The Justice Department tried to get rid of Hollywood in TV and they tried to put laws on it.

    5. Broadcast regulation in the United States has been founded upon twoopposing principles: that the federal licence confers a privilege, not a right,to the broadcaster to operate in “the public interest” using public airwaves,and that the licence establishes and protects the broad de facto propertyrights of private operators of television and radio stations under restrictedoversight of network operations and programme content.

      Federal license confirms it's a privilege to be able to broadcast, not a right. But when they do it they have to keep the public's interest in mind.

    6. ideological and economic constraints during television’s early growth, hadinfluenced the commercial structures and programme forms of the mediumin America, as well as the relation of U.S. television to the rest of the world.

      I wonder if they knew how much TV was going to make in the future and if they suspected it to be such a big hit.

    7. e first decade of commercial television in the United States set in place themajor economic actors, programme forms, and regulatory structures of thevast American TV industry of the next thirty years.

      Beginning of TV of how we know it was made then, super exciting to think about!

    1. chuffed. 9 00:05:20

      The term "chuffed" is a British slang word meaning to be very pleased or happy about something. It is often used casually to express satisfaction or delight. In the context of this excerpt, the speaker is likely expressing joy, although the surrounding text does not provide additional context.

      在这个摘录中,“chuffed”是一个英国俚语,意为对某事感到非常高兴或满意。这通常用来随意表达满足感或愉悦。在这个上下文中,发言者可能在表达快乐,尽管周围的文本没有提供更多的背景信息。

    2. catering

      The excerpt focuses on "catering" in relation to wedding planning and the benefits of social media influence. In the context of a conversation, it suggests that couples can access various discounts and free services (like catering and dresses) if they have a substantial online presence with followers and views. The discussion highlights the competitive nature of securing deals, with a mention of perfect teeth implying that appearances can play a role in gaining sponsorships or promotional offers.


      这个摘录关注于“餐饮服务”,与婚礼策划及社交媒体影响力的好处相关。在谈话的背景中,暗示如果夫妻有较大的在线影响力和关注者,他们可以获得各种折扣和免费服务(例如餐饮和礼服)。讨论强调了获取交易的竞争性,还提到完美的牙齿,暗示外表在获得赞助或推广优惠中可能起到作用。

    3. veneers

      veneers

      Explanation in English:

      In the excerpt, the conversation revolves around a person having cosmetic dental work, specifically "veneers." These are thin layers of material placed over the teeth to improve appearance. One speaker mentions that another is getting sponsorship for this procedure in Turkey, implying a significant investment in her appearance, especially in the context of an upcoming wedding. There’s an enthusiastic tone as they discuss how this news ties into wedding preparations, highlighting the importance of aesthetics and the benefits of sponsorships.

      中文解释:

      在这段摘录中,谈话围绕一个人进行美容牙齿治疗,特别是“贴面”。这些是覆盖在牙齿上的薄层材料,用于改善外观。一位说话者提到另一位将在土耳其获得赞助进行这个程序,暗示这是对她外貌的重要投资,尤其是在即将到来的婚礼背景下。谈话的基调很热情,讨论这个消息与婚礼准备的关系,强调了美观的重要性以及赞助的好处。

    4. blip

      In the excerpt, the term "blip" refers to a brief and insignificant occurrence or interruption in life. The context suggests a transformation in George's feelings, as he expresses that his past struggles feel trivial or like mere "blips" in comparison to the happiness Amber has brought him. This indicates a shift in perspective, where the challenges he faced now seem less important.

      在摘录中,“blip”一词指的是生活中的短暂且无关紧要的事件或干扰。上下文表明乔治的感受发生了改变,他表达说,过去的挣扎相比于安伯带来的快乐,感觉微不足道或只是短暂的“blip”。这表明了一种视角的转变,他所面临的挑战如今显得不那么重要。

    1. not accounting for exigence and response

      One of the biggest reasons why most people I know find academic texts boring/tedious/unrelatable is they don't see the need to examine why the piece was actually constructed in the first place, which is something I find myself stressing the importance of whenever I get into a conversation about studying English and why it's valuable. Exigence is so important and more people should care!!

    2. The Chamber of Secrets

      It's funny the author chose this specific Harry Potter book (second in the series instead of the first) because the actual chamber in the novel requires very specific conditions to successfully open, so he might be drawing a parallel between the way we believe we need to decipher academic texts in one particular way vs. the method he lays out for the reader.

    3. diatribe

      I associate the word "diatribe" with an attack or spirited criticism, so this makes me wonder who/what exactly is the target of this animosity. Is it an attack on how most people tend to moralize reading, or a passionate argument about how it is necessary in an academic setting to introduce potentially an overwhelming amount of texts? I find this word choice interesting

    1. Makes fun of education/didacticism: * proper language used along with technical mistakes * showing off education instead of utilizing it * mocking memorization technique * Alice doesn't think of how else the stories she learned can apply/underestimates dangers

    2. Main reason for the story: children's entertainment/pleasure: * even goes so far as to mock education * nonsense language for entertainment * puns/play on words for humor * The whole story doesn't make logical sense

    1. Hold your peace!" screamed the priestess, her voice terrible as it echoed through thedark void. "You have offended neither the gods nor your fathers. And when a man is atpeace with his gods and his ancestors, his harvest will be good or bad according to thestrength of his arm. You, Unoka, are known in all the clan for the weakness of yourmachete and your hoe. When your neighbours go out with their axe to cut down virginforests, you sow your yams on exhausted farms that take no labour to clear. They crossseven rivers to make their farms,- you stay at home and offer sacrifices to a reluctant soil.Go home and work like a man."

      Unoka seemed as if he did not want to put in the hard labor to achieve his goals.

    2. His mother had wept bitterly, but he had been toosurprised to weep. And so the stranger had brought him, and a girl, a long, long way fromhome, through lonely forest paths. He did not know who the girl was, and he never sawher again

      Ikemefuna did not deserve this fate. He had no part in this and should not have been used as a pawn.

    Annotators