1. Last 7 days
    1. Статистика — это наука о данных. А что можно делать с данными? На этот вопрос отвечают4 части курса.

      Очень странная формулировка

    1. eLife assessment

      This useful study aimed to quantify associations between regular use of proton-pump inhibitors (PPI) with the occurrence of respiratory infections, such as influenza, pneumonia, COVID-19, and others over a period of several years. PPI use was associated with increased risks of influenza, pneumonia, but not of COVID-19, although severity and mortality of COVID-19 infections were higher in PPI users. There are inevitable weaknesses of the study design used, such as the fact that PPI use was only measured at one time-point whereas infections were assessed over a long time period, but these are appropriately highlighted in the discussion. Weaknesses are highlighted in the discussion and the study presents convincing evidence for the conclusions overall.

    2. Reviewer #1 (Public Review):

      Summary:

      The current study aims to quantify associations between regular use of proton-pump inhibitors (PPI) - defined as using PPI most days of the week during the last 4 weeks at one cross-section in time - with several respiratory outcomes (6 in total: risk of influenza, pneumonia, COVID-19, other respiratory tract infections, as well as COVID-19 severity and mortality) up to several years later in time.

      Strengths:

      Several sensitivity analyses were performed, including i) estimation of the e-value to assess how strong unmeasured confounders should be to explain observed effects, ii) comparison with another drug with a similar indication to potentially reduce (but not eliminate) confounding by indication, iii)

      Weaknesses:

      While the original submission had several weaknesses, the authors have appropriately addressed all issues raised. There are inevitable weaknesses remaining, but these are appropriately highlighted in the discussion. Remaining weaknesses that remain - but are highlighted in the discussion - include the fact that the main exposure of interest is only measured at one time-point whereas outcomes are assessed over a long time period, the inclusion of prevalent users leading to potential bias (e.g. those experiencing bad outcomes already stopping because of side-effects before inclusion in the study), and the possibility of unmeasured confounding explaining observations (e.g. severity of underlying comorbidities leading to PPI prescriptions combined with the absence of information about comorbidity severity), and potential selection bias.

    1. eLife assessment

      This important paper shows that the anti-gremlin-1 (GREM1) antibody is not effective at treating liver inflammation or fibrosis. Critically, the evidence also challenges existing data on the detection of GREM1 by ELISA in serum or plasma by demonstrating that high-affinity binding of GREM1 to heparin would lead to localisation of GREM1 in the ECM or at the plasma membrane of cells. The conclusions are supported by a convincing, well-controlled set of experiments.

    2. Reviewer #1 (Public Review):

      Summary:

      Horn and colleagues present data suggesting that the targeting of GREM1 has little impact on a mouse model of metabolic dysfunction-associated steatohepatitis. Importantly, they also challenge existing data on the detection of GREM1 by ELISA in serum or plasma by demonstrating that high-affinity binding of GREM1 to heparin would lead to localisation of GREM1 in the ECM or at the plasma membrane of cells.

      Strengths:

      This is an impressive tour-de-force study around the potential of targeting GREM1 in MASH.

      This paper will challenge many existing papers in the field around our ability to detect GREM1 in circulation, at least using antibody-mediated detection.

      Well-controlled, detailed studies like this are critically important in order to challenge less vigorous studies in the literature.

      The impressive volume of high-level, well-controlled data using an impressive range of in vitro biochemical techniques, rodent models, and human liver slices.

      Weaknesses: only minor.

      (1) The authors clearly show that heparin can limit the diffusion of GREM1 into the circulation-however, in a setting where GREM1 is produced in excess (e.g. cancer), could this "saturate" the available heparin and allow GREM1 to "escape" into the circulation?

      (2) Secondly, has the author considered that GREM1 be circulating bound to a chaperone protein like albumin which would reduce its reactivity with GREM1 detection antibodies?

      (3) Statistics-there is no mention of blinding of samples-I assume this was done prior to analysis?

      (4) Line 211-I suggest adding the Figure reference at the end of this sentence to direct the reader to the relevant data.

      (5) Figure 1E Y-axis units are a little hard to interpret-can integers be used?

      (6) Did the authors attempt to detect GREM1 protein by IHC? There are published methods for this using the R&D Systems mouse antibody (PMID 31384391).

      (7) Did the authors ever observe GREM1 internalisation using their Atto-532 labelled GREM1?

      (8) Did the authors complete GREM1 ISH in the rat CDAA-HFD model? Was GREM1 upregulated, and if so, where?

      (9) Supplementary Figure 4C - why does the GFP level decrease in the GREM1 transgenic compared to control the GFP mouse? No such change is observed in Supplementary Figure 4E.

    3. Reviewer #2 (Public Review):

      It is controversial whether liver gremlin-1 expression correlates with liver fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Horn et al. developed an anti-Gremlin-1 antibody in-house and tested its ability to neutralize gremlin-1 and treat liver fibrosis. This article has the advantage of testing its hypothesis with different animal and human liver fibrosis models and using a variety of research methodologies.

      The experimental design and results support the conclusion that the anti-gremlin-1 antibody had no therapeutic effect on treating liver fibrosis, so there are no other suggestions for new experiments:

      (1) The authors used RNAscope in situ hybridization to establish the correlation between Gremlin-1 expression and NMSH livers or cell lines.

      (2) A luminescent oxygen channelling immunoassay was used to measure circulating Gremlin-1 concentration. They found that Gremlin-1 binds to heparin very efficiently, preventing Gremlin-1 from entering circulation, and restricting Gremlin-1's ability to mediate organ cross-communication.

      (3) The authors developed a suitable NMSH rat model which is a choline-deficient, L-amino acid defined high fat 1% cholesterol diet (CDAA-HFD) fed rat model of NMSH, and created a selective anti-Gremlin-1 antibody which is heparin-displacing 0030:HD antibody. They also used human cirrhotic precision-cut liver slices to test their hypotheses. They demonstrated that neutralization of Gremlin-1 activity with monoclonal therapeutic antibodies does not reduce liver inflammation or liver fibrosis.

      One concern is that several reagents and assays are made in-house without external validation. Also, will those in-house reagents and assays be available to the science community?

      Overall this manuscript provides useful information that gremlin-1 has a limited role in liver fibrosis pathogenesis and treatment.

    4. Author response:

      Reviewer #1 (Public Review):

      Summary:

      Horn and colleagues present data suggesting that the targeting of GREM1 has little impact on a mouse model of metabolic dysfunction-associated steatohepatitis. Importantly, they also challenge existing data on the detection of GREM1 by ELISA in serum or plasma by demonstrating that high-affinity binding of GREM1 to heparin would lead to localisation of GREM1 in the ECM or at the plasma membrane of cells.

      Strengths:

      This is an impressive tour-de-force study around the potential of targeting GREM1 in MASH.

      This paper will challenge many existing papers in the field around our ability to detect GREM1 in circulation, at least using antibody-mediated detection.

      Well-controlled, detailed studies like this are critically important in order to challenge less vigorous studies in the literature.

      The impressive volume of high-level, well-controlled data using an impressive range of in vitro biochemical techniques, rodent models, and human liver slices.

      We thank the reviewer for their time in assessing our manuscript and are very grateful for the positive response. Below, we give a point-by-point response to the reviewer’s comments and indicate where we plan to adjust the manuscript.

      Weaknesses: only minor.

      (1) The authors clearly show that heparin can limit the diffusion of GREM1 into the circulation-however, in a setting where GREM1 is produced in excess (e.g. cancer), could this "saturate" the available heparin and allow GREM1 to "escape" into the circulation?

      We thank the reviewer for their question. Indeed theoretically, if the production of Gremlin-1 exceeds the capacity of heparin to immobilise Gremlin-1, the protein may be released into solution and thus may enter the circulation. Whilst we have not addressed this possibility in our studies, we agree that it may be a mechanism worthwhile exploring in future studies.

      (2) Secondly, has the author considered that GREM1 be circulating bound to a chaperone protein like albumin which would reduce its reactivity with GREM1 detection antibodies?

      We have thought of the possibility that Gremlin would bind other proteins such as BMPs, and thereby mask assay-antibody epitopes. To minimise this possibility, we used antibody pairs which bind different epitopes. We also used LC-MS for Gremlin-1 detection (data not shown in the manuscript), a method that is not affected by epitope masking. With the LC-MS analysis we did not pick up any gremlin-signal in plasma. We will mention the LC-MS data in the updated manuscript.

      Also, we were able to detect circulating Gremlin-1 after treatment with anti-Gremlin-1 antibodies. As these were the same antibodies that were used in our assays, we should have not been able to detect Gremlin-1 if there had been a masking interaction with circulating high abundant plasma proteins such as albumin.

      Finally, we believe that the assay antibodies would outcompete binding of any other proteins because of their high affinity and very high concentrations used in the assays.

      In summary, we are very confident that Gremlin-1 is not present in circulation. We will though make some minor adjustments to the manuscript in order to stress this important point.

      (3) Statistics-there is no mention of blinding of samples-I assume this was done prior to analysis?

      All reported results were derived from hard quantitative readouts obtained through assays that are not liable to subjective interpretation. This also applies to immunohistochemistry and RNAscope histologic quantification, using Visiopharm Integrator System software ver. 8.4 or HALO v3.5.3577 (Area Quantification v2.4.2 module), respectively. Therefore, no blinding was necessary prior to analysis.

      (4) Line 211-I suggest adding the Figure reference at the end of this sentence to direct the reader to the relevant data.

      We thank the reviewer for the suggestion and will add a reference to Figure 1F here.

      (5) Figure 1E Y-axis units are a little hard to interpret-can integers be used?

      As the y axis in Figure 1E is on the logarithmic scale, integer numbers would be very hard to read because of the large range of numbers. As we acknowledge that the notation used may be difficult to read, we will change it to superscript scientific notation.

      (6) Did the authors attempt to detect GREM1 protein by IHC? There are published methods for this using the R&D Systems mouse antibody (PMID 31384391).

      Parallel to the work described in PMID 31384391 (Dutton et al., Oncotarget, 10: 4630-4639, 2019), we have tested a whole range of commercial and in-house gremlin-1 antibodies. We independently arrived at the same conclusion as Dutton et al namely that goat anti-gremlin antibody R&D Systems AF956 can stain the mouse or rat intestine in the muscularis layer and in the crypts/lower part of the villi, using FFPE sections. As per Dutton et al. we also corroborated this IHC staining by RNAscope - the mRNA was restricted to the muscularis and the connective tissue just below the crypts, suggesting that Gremlin-1 partially diffuses away from the cells that produce it. In contrast, none of the other commercial or in-house gremlin antibodies that we tested provided any useful staining on FFPE sections.

      We also used the R&D Systems AF956 antibody on several rat MASH liver samples. We saw little or no staining in livers from chow-fed rats, with only occasional weak staining around portal areas. Depending on the rat model, we saw from little or no staining to at most weak staining in portal areas and fibrotic areas. Among the various models tested, we observed the strongest staining in the rat CDAA-HFD+cholesterol model, in line with the ISH data.

      However, we were unable to establish IHC on human MASH liver samples using the R&D Systems AF956 antibody (or any other antibody) despite 98% sequence identity at the amino acid level between human and rat gremlin-1. Considering the results in Dutton et al. on rodent intestines, we tested the antibody on some human intestine samples, but the results on the available samples (inflamed appendices) were inconclusive.

      We will include representative IHC staining images for Gremlin-1 protein on rat livers as a Supplementary Figure and mention in the manuscript that IHC for human Gremlin-1 did not work with the available antibodies.

      (7) Did the authors ever observe GREM1 internalisation using their Atto-532 labelled GREM1?

      The Atto-532 Gremlin-1 cell association assay was mainly intended to visualise the association of Gremlin-1 with cell surface proteoglycans and how this interaction is affected by heparin-displacing and non-displacing antibodies. We observed a possible, but inconclusive intracellular association of Atto-532 Gremlin-1. However, this assay was not specifically designed for this purpose, and we did not follow up on this. Therefore, we cannot draw any conclusions on whether cell surface bound Gremlin-1 can be internalised. However, we appreciate that internalisation of Gremlin-1 would be an interesting biological mechanism worth following up in future studies.

      (8) Did the authors complete GREM1 ISH in the rat CDAA-HFD model? Was GREM1 upregulated, and if so, where?

      We have performed Grem1 ISH in the rat CDAA-HFD model and representative images of this are shown in Figure 1F. In chow-fed animals, Grem1 was expressed in a few cells in the portal tract, whereas after CDAA-HFD, Grem1 positive cells became more abundant in the portal tract and were also detectable in the fibrotic septa, as described in the respective results section. However, we performed no co-staining with other markers as we did for human liver samples.

      (9) Supplementary Figure 4C - why does the GFP level decrease in the GREM1 transgenic compared to control the GFP mouse? No such change is observed in Supplementary Figure 4E.

      In Supplementary Figure 4C we show expression of GFP mRNA and GREM1 mRNA in lysates of GFP-control and GREM1-GFP overexpressing LX-2 cells. The x-axis labels indicate the different lentiviruses. Therefore, the right panel in Supplementary Figure 4C shows that GREM1 overexpressing LX-2 cells expressed more GREM1 compared to GFP-control transduced LX-2, while GFP mRNA expression was comparable between the two.

      The results in Supplementary Figure 4E look different because – as can also be seen from the % of GFP+ cells in Supplementary Figure 4D – the GREM1 lentivirus here was more effective in transducing the cells, which is why both GFP and GREM1 mRNA were increased with GREM1 lentivirus compared to the GFP-only control. Unlike LX-2, the lentivirally transduced HHSC were not sorted on GFP positive cells prior to qPCR, which may explain the differences in GFP mRNA expression pattern between the two cell types.

      We acknowledge that the figure may be difficult to interpret and will adjust the figure annotation to improve on this.

      Reviewer #2 (Public Review):

      It is controversial whether liver gremlin-1 expression correlates with liver fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Horn et al. developed an anti-Gremlin-1 antibody in-house and tested its ability to neutralize gremlin-1 and treat liver fibrosis. This article has the advantage of testing its hypothesis with different animal and human liver fibrosis models and using a variety of research methodologies.

      The experimental design and results support the conclusion that the anti-gremlin-1 antibody had no therapeutic effect on treating liver fibrosis, so there are no other suggestions for new experiments:

      (1) The authors used RNAscope in situ hybridization to establish the correlation between Gremlin-1 expression and NMSH livers or cell lines.

      (2) A luminescent oxygen channelling immunoassay was used to measure circulating Gremlin-1 concentration. They found that Gremlin-1 binds to heparin very efficiently, preventing Gremlin-1 from entering circulation, and restricting Gremlin-1's ability to mediate organ cross-communication.

      (3) The authors developed a suitable NMSH rat model which is a choline-deficient, L-amino acid defined high fat 1% cholesterol diet (CDAA-HFD) fed rat model of NMSH, and created a selective anti-Gremlin-1 antibody which is heparin-displacing 0030:HD antibody. They also used human cirrhotic precision-cut liver slices to test their hypotheses. They demonstrated that neutralization of Gremlin-1 activity with monoclonal therapeutic antibodies does not reduce liver inflammation or liver fibrosis.

      One concern is that several reagents and assays are made in-house without external validation. Also, will those in-house reagents and assays be available to the science community?

      Overall this manuscript provides useful information that gremlin-1 has a limited role in liver fibrosis pathogenesis and treatment.

      We thank the reviewer for their time in assessing our manuscript and are very grateful for the positive response. We acknowledge the fact that most of our results were derived from assays using in-house generated reagents which will therefore be hard to reproduce externally. Whilst for legal reasons we cannot share the sequences of the monoclonal antibodies, we will be able to share aliquots with fellow scientists upon request. We will include a sentence to this end to the data availability statement.

    1. MarginNote 4 简明功能介绍

      MN新版把三大內容再加深:閱讀學習,思维导圖,記憶卡片。

    1. eLife assessment

      The study by Asabuki et al. is a valuable contribution to understanding how cortical neural networks encode internal models into spontaneous activity. It uses a recurrent network of spiking neurons subject to predictive learning principles and provides a novel mechanism to learn the spontaneous replay of probabilistic sensory experiences. While promising in its ability to explain spontaneous network dynamics, the manuscript is incomplete in terms of the strength of support for its main findings. The difference of the proposed sampling dynamics from Markovian types of sampling is unclear and the use of non-negative synaptic strengths is applied in a non-biological manner.

    2. Reviewer #1 (Public Review):

      In their manuscript, the authors propose a learning scheme to enable spiking neurons to learn the appearance probability of inputs to the network. To this end, the neurons rely on error-based plasticity rules for feedforward and recurrent connections. The authors show that this enables the networks to spontaneously sample assembly activations according to the occurrence probability of the input patterns they respond to. They also show that the learning scheme could explain biases in decision-making, as observed in monkey experiments. While the task of neural sampling has been solved before in other models, the novelty here is the proposal that the main drivers of sampling are within-assembly connections, and not between-assembly (Markov chains) connections as in previous models. This could provide a new understanding of how spontaneous activity in the cortex is shaped by synaptic plasticity.

      The manuscript is well written and the results are presented in a clear and understandable way. The main results are convincing, concerning the spontaneous firing rate dependence of assemblies on input probability, as well as the replication of biases in the decision-making experiment. Nevertheless, the manuscript and model leave open several important questions. The main problem is the unclarity, both in theory and intuitively, of how the sampling exactly works. This also makes it difficult to assess the claims of novelty the authors make, as it is not clear how their work relates to previous models of neural sampling.

      Regarding the unclarity of the sampling mechanism, the authors state that within-assembly excitatory connections are responsible for activating the neurons according to stimulus probability. However, the intuition for this process is not made clear anywhere in the manuscript. How do the recurrent connections lead to the observed effect of sampling? How exactly do assemblies form from feedforward plasticity? This intuitive unclarity is accompanied by a lack of formal justification for the plasticity rules. The authors refer to a previous publication from the same lab, but it is difficult to connect these previous results and derivations to the current manuscript. The manuscript should include a clear derivation of the learning rules, as well as an (ideally formal) intuition of how this leads to the sampling dynamics in the simulation.

      Some of the model details should furthermore be cleared up. First, recurrent connections transmit signals instantaneously, which is implausible. Is this required, would the network dynamics change significantly if, e.g., excitation arrives slightly delayed? Second, why is the homeostasis on h required for replay? The authors show that without it the probabilities of sampling are not matched, but it is not clear why, nor how homeostasis prevents this. Third, G and M have the same plasticity rule except for G being confined to positive values, but there is no formal justification given for this quite unusual rule. The authors should clearly justify (ideally formally) the introduction of these inhibitory weights G, which is also where the manuscript deviates from their previous 2020 work. My feeling is that inhibitory weights have to be constrained in the current model because they have a different goal (decorrelation, not prediction) and thus should operate with a completely different plasticity mechanism. The current manuscript doesn't address this, as there is no overall formal justification for the learning algorithm.

      Finally, the authors should make the relation to previous models of sampling and error-based plasticity more clear. Since there is no formal derivation of the sampling dynamics, it is difficult to assess how they differ exactly from previous (Markov-based) approaches, which should be made more precise. Especially, it would be important to have concrete (ideally experimentally testable) predictions on how these two ideas differ. As a side note, especially in the introduction (line 90), this unclarity about the sampling made it difficult to understand the contrast to Markovian transition models.

      There are also several related models that have not been mentioned and should be discussed. In 663 ff. the authors discuss the contributions of their model which they claim are novel, but in Kappel et al (STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning) similar elements seem to exist as well, and the difference should be clarified. There is also a range of other models with lateral inhibition that make use of error-based plasticity (most recently reviewed in Mikulasch et al, Where is the error? Hierarchical predictive coding through dendritic error computation), and it should be discussed how the proposed model differs from these.

    3. Reviewer #2 (Public Review):

      Summary:

      The paper considers a recurrent network with neurons driven by external input. During the external stimulation predictive synaptic plasticity adapts the forward and recurrent weights. It is shown that after the presentation of constant stimuli, the network spontaneously samples the states imposed by these stimuli. The probability of sampling stimulus x^(i) is proportional to the relative frequency of presenting stimulus x^(i) among all stimuli i=1,..., 5.

      Methods:

      Neuronal dynamics:

      For the main simulation (Figure 3), the network had 500 neurons, and 5 non-overlapping stimuli with each activating 100 different neurons where presented. The voltage u of the neurons is driven by the forward weights W via input rates x, the inhibitory recurrent weights G, are restricted to have non-negative weights (Dale's law), and the other recurrent weights M had no sign-restrictions. Neurons were spiking with an instantaneous Poisson firing rate, and each spike-triggered an exponentially decaying postsynaptic voltage deflection. Neglecting time constants of the postsynaptic responses, the expected postsynaptic voltage reads (in vectorial form) as

      u = W x + (M - G) f (Eq. 5)

      where f =; phi(u) represents the instantaneous Poisson rate, and phi a sigmoidal nonlinearity. The rate f is only an approximation (symbolized by =;) of phi(u) since an additional regularization variable h enters (taken up in Point 4 below). The initialisation of W and M is Gaussian with mean 0 and variance 1/sqrt(N), N the number of neurons in the network. The initial entries of G are all set to 1/sqrt(N).

      Predictive synaptic plasticity:

      The 3 types of synapses were each adapted so that they individually predict the postsynaptic firing rate f, in matrix form

      ΔW ≈ (f - phi( W x ) ) x^T<br /> ΔM ≈ (f - phi( M f ) ) f^T<br /> ΔG ≈ (f - phi( M f ) ) f^T but confined to non-negative values of G (Dale's law).

      The ^T tells us to take the transpose, and the ≈ again refers to the fact that the ϕ entering in the learning rule is not exactly the ϕ determining the rate, only up to the regularization (see Point 4).

      Main formal result:

      As the authors explain, the forward weight W and the unconstrained weight M develop such that, in expectations,

      f =; phi( W x ) =; phi( M f ) =; phi( G f ) ,

      consistent with the above plasticity rules. Some elements of M remain negative. In this final state, the network displays the behaviour as explained in the summary.

      Major issues:

      Point 1: Conceptual inconsistency

      The main results seem to arise from unilaterally applying Dale's law only to the inhibitory recurrent synapses G, but not to the excitatory recurrent synapses M.

      In fact, if the same non-negativity restriction were also imposed on M (as it is on G), then their learning rules would become identical, likely leading to M=G. But in this case, the network becomes purely forward, u = W x, and no spontaneous recall would arise. Of course, this should be checked in simulations.

      Because Dale's law was only applied to G, however, M and G cannot become equal, and the remaining differences seem to cause the effect.

      Predictive learning rules are certainly powerful, and it is reasonable to consider the same type of error-correcting predictive learning rule, for instance for different dendritic branches that both should predict the somatic activity. Or one may postulate the same type of error-correcting predictive plasticity for inhibitory and excitatory synapses, but then the presynaptic neurons should not be identical, as it is assumed here. Both these types of error-correcting and error-forming learning rules for same-branches and inhibitory/excitatory inputs have been considered already (but with inhibitory input being itself restricted to local input, for instance).

      Point 2: Main result as an artefact of an inconsistently applied Dale's law?

      The main result shows that the probability of a spontaneous recall for the 5 non-overlapping stimuli is proportional to the relative time the stimulus was presented. This is roughly explained as follows: each stimulus pushes the activity from 0 up towards f =; phi( W x ) by the learning rule (roughly). Because the mean weights W are initialized to 0, a stimulus that is presented longer will have more time to push W up so that positive firing rates are reached (assuming x is non-negative). The recurrent weights M learn to reproduce these firing rates too, while the plasticity in G tries to prevent that (by its negative sign, but with the restriction to non-negative values). Stimuli that are presented more often, on average, will have more time to reach the positive target and hence will form a stronger and wider attractor. In spontaneous recall, the size of the attractor reflects the time of the stimulus presentation. This mechanism so far is fine, but the only problem is that it is based on restricting G, but not M, to non-negative values.

      Point 3: Comparison of rates between stimulation and recall.

      The firing rates with external stimulations will be considerably larger than during replay (unless the rates are saturated).

      This is a prediction that should be tested in simulations. In fact, since the voltage roughly reads as<br /> u = W x + (M - G) f,<br /> and the learning rules are such that eventually M =; G, the recurrences roughly cancel and the voltage is mainly driven by the external input x. In the state of spontaneous activity without external drive, one has<br /> u = (M - G) f ,<br /> and this should generate considerably smaller instantaneous rates f =; phi(u) than in the case of the feedforward drive (unless f is in both cases at the upper or lower ceiling of phi). This is a prediction that can also be tested.

      Because the figures mostly show activity ratios or normalized activities, it was not possible for me to check this hypothesis with the current figures. So please show non-normalized activities for comparing stimulation and recall for the same patterns.

      Point 4: Unclear definition of the variable h.<br /> The formal definition of h = hi is given by (suppressing here the neuron index i and the h-index of tau)

      tau dh/dt = -h if h>u, (Eq. 10)<br /> h = u otherwise.

      But if it is only Equation 10 (nothing else is said), h will always become equal to u, or will vanish, i.e. either h=u or h=0 after some initial transient. In fact, as soon as h>u, h is decaying to 0 according to the first line. If u is >0, then it stops at u=h according to the second line. No reason to change h=u further. If u<=0 while h>u, then h is converging to 0 according to the first line and will stay there. I guess the authors had issues with the recurrent spiking simulations and tried to fix this with some regularization. However as presented, it does not become clear how their regulation works.

      BTW: In Eq. 11 the authors set the gain beta to beta = beta0/h which could become infinite and, putatively more problematic, negative, depending on the value of h. Maybe some remark would convince a reader that no issues emerge from this.

      Added from discussions with the editor and the other reviewers:

      Thanks for alerting me to this Supplementary Figure 8. Yes, it looks like the authors did apply there Dale's law for both the excitatory and inhibitory synapses. Yet, they also introduced two types of inhibitory pathways converging both to the excitatory and inhibitory neurons. For me, this is a confirmation that applying Dale's law to both excitatory and inhibitory synapses, with identical learning rules as explained in the main part of the paper, does not work.

      Adding such two pathways is a strong change from the original model as introduced before, and based on which all the Figures in the main text are based. Supplementary Figure 8 should come with an analysis of why a single inhibitory pathway does not work. I guess I gave the reason in my Points 1-3. Some form of symmetry breaking between the recurrent excitation and recurrent inhibition is required so that, eventually, the recurrent excitatory connection will dominate.

      Making the inhibitory plasticity less expressive by applying Dale's law to only those inhibitory synapses seems to be the answer chosen in the Figures of the main text (but then the criticism of unilaterally applying Dale's law).

      Applying Dale's law to both types of synapses, but dividing the labor of inhibition into two strictly separate and asymmetric pathways, and hence asymmetric development of excitatory and inhibitory weights, seems to be another option. However, introducing such two separate inhibitory pathways, just to rescue the fact that Dale's law is applied to both types of synapses, is a bold assumption. Is there some biological evidence of such two pathways in the inhibitory, but not the excitatory connections? And what is the computational reasoning to have such a separation, apart from some form of symmetry breaking between excitation and inhibition? I guess, simpler solutions could be found, for instance by breaking the symmetry between the plasticity rules for the excitatory and inhibitory neurons. All these questions, in my view, need to be addressed to give some insights into why the simulations do work.

      Overall, Supplementary Figure 8 seems to me too important to be deferred to the Supplement. The reasoning behind the two inhibitory pathways should appear more prominently in the main text. Without this, important questions remain. For instance, when thinking in a rate-based framework, the two inhibitory pathways twice try to explain the somatic firing rate away. Doesn't this lead to a too strong inhibition? Can some steady state with a positive firing rate caused by the recurrence, in the absence of an external drive, be proven? The argument must include the separation into Path 1 and Path 2. So far, this reasoning has not been entered.

      In fact, it might be that, in a spiking implementation, some sparse spikes will survive. I wonder whether at least some of these spikes survive because of the other rescuing construction with the dynamic variable h (Equation 10, which is not transparent, and that is not taken up in the reasoning either, see my Point 4).

      Perhaps it is helpful for the authors to add this text in the reply to them.

    4. Reviewer #3 (Public Review):

      Summary:

      The work shows how learned assembly structure and its influence on replay during spontaneous activity can reflect the statistics of stimulus input. In particular, stimuli that are more frequent during training elicit stronger wiring and more frequent activation during replay. Past works (Litwin-Kumar and Doiron, 2014; Zenke et al., 2015) have not addressed this specific question, as classic homeostatic mechanisms forced activity to be similar across all assemblies. Here, the authors use a dynamic gain and threshold mechanism to circumnavigate this issue and link this mechanism to cellular monitoring of membrane potential history.

      Strengths:

      (1) This is an interesting advance, and the authors link this to experimental work in sensory learning in environments with non-uniform stimulus probabilities.

      (2) The authors consider their mechanism in a variety of models of increasing complexity (simple stimuli, complex stimuli; ignoring Dale's law, incorporating Dale's law).

      (3) Links a cellular mechanism of internal gain control (their variable h) to assembly formation and the non-uniformity of spontaneous replay activity. Offers a promise of relating cellular and synaptic plasticity mechanisms under a common goal of assembly formation.

      Weaknesses:

      (1) However, while the manuscript does show that assembly wiring does follow stimulus likelihood, it is not clear how the assembly-specific statistics of h reflect these likelihoods. I find this to be a key issue.

      (2) The authors' model does take advantage of the sigmoidal transfer function, and after learning an assembly is either fully active or nearly fully silent (Figure 2a). This somewhat artificial saturation may be the reason that classic homeostasis is not required since runaway activity is not as damaging to network activity.

      (3) Classic mechanisms of homeostatic regulation (synaptic scaling, inhibitory plasticity) try to ensure that firing rates match a target rate (on average). If the target rate is the same for all neurons then having elevated firing rates for one assembly compared to others during spontaneous activity would be difficult. If these homeostatic mechanisms were incorporated, how would they permit the elevated firing rates for assemblies that represent more likely stimuli?

    1. eLife assessment

      This study presents a valuable methodological advancement in quantifying thoughts over time. A novel multi-dimensional experience-sampling approach is used to identify data-driven patterns that the authors use to interrogate fMRI data collected during naturalistic movie-watching. The experimentation is inventive and the analyses carried out are convincing, although the conceptualization of thoughts remains too vague to allow for a clear interpretation of results.

    2. Reviewer #1 (Public Review):

      Summary:

      The authors used a novel multi-dimensional experience sampling (mDES) approach to identify data-driven patterns of experience samples that they use to interrogate fMRI data collected during naturalistic movie-watching data. They identify a set of multi-sensory features of a set of movies that delineate low-dimensional gradients of BOLD fMRI signal patterns that have previously been linked to fundamental axes of cortical organization.

      Strengths:

      The novel solution to challenges associated with experience sampling offers potential access to aspects of experience that have been challenging to assess. While inventive, I worry that the reliability of the mDES approach is currently under-investigated, making it challenging to interpret the import of the later analyses, which are themselves strong and compelling.

      Weaknesses:

      The lack of direct interrogation of individual differences/reliability of the mDES scores warrants some pause.

    3. Reviewer #2 (Public Review):

      Summary:

      The present study explores how thoughts map onto brain activity, a notoriously challenging question because of the dynamic, subjective, and abstract nature of thoughts. To tackle this question, the authors collected continuous thought ratings from participants watching a movie, and additionally made use of an open-source fMRI dataset recorded during movie watching as well as five established gradients of brain variation as identified in resting state data. Using a voxel-space approach, the results show that episodic knowledge, verbal detail, and sensory engagement of thoughts commonly modulate the activation of the visual and auditory cortex, while intrusive distraction modulates the frontoparietal network. Additionally, sensory engagement is mapped onto a gradient from the primary to the association cortex, while episodic knowledge is mapped onto a gradient from the dorsal attention network to the visual cortex. Building on the association between behavioral performance and neural activation, the authors conclude that sensory coupling to external input and frontoparietal executive control is key to comprehension in naturalistic settings.

      The manuscript stands out for its methodological advancements in quantifying thoughts over time and its aim to study the implementation of thoughts in the brain during naturalistic movie watching. However, the conceptualization of thoughts remains vague, its distinction from other concepts like attention is unclear, and interindividual differences are not sufficiently addressed, limiting the study's insights into brain function.

      Strengths:

      (1) The study raises a question that has been difficult to study in naturalistic settings so far but is key to understanding human cognition, namely how thoughts map onto brain activation.

      (2) The thought ratings introduce a novel method for continuously tracking thoughts, promising utility beyond this study.

      (3) The authors substantiated the effects of thinking from multiple perspectives, using diverse data types, metrics, and analyses.

      (4) The figures are highly informative, accessible, and consistent, aiding comprehension.

      Weaknesses:

      (1) The dimensions of thought seem to distinguish between sensory and executive processing states. However, it is unclear if this effect primarily pertains to thinking. I could imagine highly intrusive distractions in movie segments to correlate with stagnating plot development, little change in scenery, or incomprehensible events. Put differently, it may primarily be the properties of the movies that evoke different processing modes, but these properties are not accounted for. For example, I'm wondering whether a simple measure of engagement with stimulus materials could explain the effects just as much. How can the effects of thinking be distinguished from the perceptual and semantic properties of the movie, as well as attentional effects? Is the measure used here capturing thought processes beyond what other factors could explain?

      (2) I'm skeptical about taking human thought ratings at face value. Intrusive distraction might imply disengagement from stimulus materials, but it could also be an intended effect of the movie to trigger higher-level, abstract thinking. Can a label like intrusive distraction be misleading without considering the actual thought and movie content?

      (3) A jittered sampling approach is used to acquire thought ratings every 15 seconds. Are ratings for the same time point averaged across participants? If so, how consistent are ratings among participants? High consistency would suggest thoughts are mainly stimulus-evoked. Low consistency would question the validity of applying ratings from one (group of) participant(s) to brain-related analyses of another participant.

      (4) Using three different movies to conclude that different genres evoke different thought patterns (e.g., line 277) seems like an overinterpretation with only one instance per genre.

      (5) I see no indication that results were cross-validated, and no effect sizes are reported, leaving the robustness and strength of effects unknown.

    4. Reviewer #3 (Public Review):

      This study attempted to investigate the relationship between processing in the human brain during movie watching and corresponding thought processes. This is a highly interesting question, as movie watching presents a semi-constrained task, combining naturally occurring thoughts and common processing of sensory inputs across participants. This task is inherently difficult because in order to know what participants are thinking at any given moment, one has to interrupt the same thought process which is the object of study.

      This study attempts to deal with this issue by aggregating staggered experience sampling data across participants in one behavioral study and using the population-level thought patterns to model brain activity in different participants in an open-access fMRI dataset.

      The behavioral data consist of 120 participants who watched 3 11-minute movie clips. Participants responded to the mDES questionnaire: 16 visual scales characterizing ongoing thought 5 times, two minutes apart, in each clip. The 16 items are first reduced to 4 factors using PCA, and their levels are compared across the different movies. The factors are "episodic knowledge", "intrusive distraction", "verbal detail", and "sensory engagement". The factors differ between the clips, and distraction is negatively correlated with movie comprehension, and sensory engagement is positively correlated with comprehension.

      The components are aggregated across participants (transforming single-subject mDES answers into PCA space and concatenating responses of different participants), and are used as regressors in a GLM analysis. This analysis identifies brain regions corresponding to the components. The resulting brain maps reveal activations that are consistent with the proposed mental processes (e.g. negative loading for intrusion in the frontoparietal network, and positive loadings for visual and auditory cortices for sensory engagement).

      Then, the coordinates for brain regions that were significant for more than one component are entered into a paper search in neurosynth. It is not clear what this analysis demonstrates beyond the fact that sensory engagement contains both visual and auditory components.

      The next analysis projected group-averaged brain activation onto gradients (based on previous work) and used gradient timecourses to predict the behavioral report timecourses. This revealed that high activations in gradient 1 (sensory→association) predicted high sensory engagement, and that "episodic knowledge" thought patterns were predicted by increased visual cortex activations. Then, permutation tests were performed to see whether these thought pattern-related activations corresponded to well-defined regions on a given cluster.

      This paper is framed as presenting a new paradigm but it does little to discuss what this paradigm serves, what its limitations are, and how it should have been tested. I assume that the novelty is in using experience sampling from 1 sample to model the responses of a second sample.

      What are the considerations for treating high-order thought patterns that occur during film viewing as stable enough to be used across participants? What would be the limitations of this method? (Do all people reading this paper think comparable thoughts reading through the sections?)

      How does this approach differ from collaborative filtering, (for example as presented in Chang et al., 2021)?

      In conclusion, this study tackles a highly interesting subject and does it creatively and expertly. It fails to discuss and establish the utility and appropriateness of its proposed method.

      Luke J. Chang et al. ,Endogenous variation in ventromedial prefrontal cortex state dynamics during naturalistic viewing reflects affective experience.Sci. Adv.7,eabf7129(2021).DOI:10.1126/sciadv.abf7129

    1. eLife assessment

      This important study provides new insights into the mechanisms that underlie perceptual and attentional impairments of conscious access. The paper presents convincing evidence of a dissociation between the early stages of low-level perception, which are impermeable to perceptual or attentional impairments, and subsequent stages of visual integration which are susceptible to perceptual impairment but resilient to attentional manipulations. This study will be of interest to scientists working on visual perception and consciousness.

    2. Reviewer #1 (Public Review):

      Summary:

      In this work, Noorman and colleagues test the predictions of the "four-stage model" of consciousness by combining psychophysics and scalp EEG in humans. The study relies on an elegant experimental design to investigate the respective impact of attentional and perceptual blindness on visual processing.

      The study is very well summarised, the text is clear and the methods seem sound. Overall, a very solid piece of work. I haven't identified any major weaknesses. Below I raise a few questions of interpretation that may possibly be the subject of a revision of the text.

      (1) The perceptual performance on Fig1D appears to show huge variation across participants, with some participants at chance levels and others with performance > 90% in the attentional blink and/or masked conditions. This seems to reveal that the procedure to match performance across participants was not very successful. Could this impact the results? The authors highlight the fact that they did not resort to post-selection or exclusion of participants, but at the same time do not discuss this equally important point.

      (2) In the analysis on collinearity and illusion-specific processing, the authors conclude that the absence of a significant effect of training set demonstrates collinearity-only processing. I don't think that this conclusion is warranted: as the illusory and non-illusory share the same shape, so more elaborate object processing could also be occuring. Please discuss.

      (3) Discussion, lines 426-429: It is stated that the results align with the notion that processes of perceptual segmentation and organization represent the mechanism of conscious experience. My interpretation of the results is that they show the contrary: for the same visibility level in the attentional blind or masking conditions, these processes can be implicated or not, which suggests a role during unconscious processing instead.

      (4). The two paradigms developed here could be used jointly to highlight non-idiosyncratic NCCs, i.e. EEG markers of visibility or confidence that generalise regardless of the method used. Have the authors attempted to train the classifier on one method and apply it to another (e.g. AB to masking and vice versa)? What perceptual level is assumed to transfer?

      (5). How can the results be integrated with the attentional literature showing that attentional filters can be applied early in the processing hierarchy?

    3. Reviewer #2 (Public Review):

      Summary:

      This is a very elegant and important EEG study that unifies within a single set of behaviorally equated experimental conditions conscious access (and therefore also conscious access failures) during visual masking and attentional blink (AB) paradigms in humans. By a systematic and clever use of multivariate pattern classifiers across conditions, they could dissect, confirm, and extend a key distinction (initially framed within the GNWT framework) between 'subliminal' and 'pre-conscious' unconscious levels of processing. In particular, the authors could provide strong evidence to distinguish here within the same paradigm these two levels of unconscious processing that precede conscious access : (i) an early (< 80ms) bottom-up and local (in brain) stage of perceptual processing ('local contrast processing') that was preserved in both unconscious conditions, (ii) a later stage and more integrated processing (200-250ms) that was impaired by masking but preserved during AB. On the basis of preexisting studies and theoretical arguments, they suggest that this later stage could correspond to lateral and local recurrent feedback processes. Then, the late conscious access stage appeared as a P3b-like event.

      Strengths:

      The methodology and analyses are strong and valid. This work adds an important piece in the current scientific debate about levels of unconscious processing and specificities of conscious access in relation to feed-forward, lateral, and late brain-scale top-down recurrent processing.

      Weaknesses:

      - The authors could improve clarity of the rich set of decoding analyses across conditions.<br /> - They could also enrich their Introduction and Discussion sections by taking into account the importance of conscious influences on some unconscious cognitive processes (revision of traditional concept of 'automaticity'), that may introduce some complexity in Results interpretation<br /> - They should discuss the rich literature reporting high-level unconscious processing in masking paradigms (culminating in semantic processing of digits, words or even small group of words, and pictures) in the light of their proposal (deeper unconscious processing during AB than during masking).

    4. Reviewer #3 (Public Review):

      Summary:

      This work aims to investigate how perceptual and attentional processes affect conscious access in humans. By using multivariate decoding analysis of electroencephalography (EEG) data, the authors explored the neural temporal dynamics of visual processing across different levels of complexity (local contrast, collinearity, and illusory perception). This is achieved by comparing the decidability of an illusory percept in matched conditions of perceptual (i.e., degrading the strength of sensory input using visual masking) and attentional impairment (i.e., impairing top-down attention using attentional blink, AB). The decoding results reveal three distinct temporal responses associated with the three levels of visual processing. Interestingly, the early stage of local contrast processing remains unaffected by both masking and AB. However, the later stage of collinearity and illusory percept processing are impaired by the perceptual manipulation but remain unaffected by the attentional manipulation. These findings contribute to the understanding of the unique neural dynamics of perceptual and attentional functions and how they interact with the different stages of conscious access.

      Strengths:

      The study investigates perceptual and attentional impairments across multiple levels of visual processing in a single experiment. Local contrast, collinearity, and illusory perception were manipulated using different configurations of the same visual stimuli. This clever design allows for the investigation of different levels of visual processing under similar low-level conditions.

      Moreover, behavioural performance was matched between perceptual and attentional manipulations. One of the main problems when comparing perceptual and attentional manipulations on conscious access is that they tend to impact performance at different levels, with perceptual manipulations like masking producing larger effects. The study utilizes a staircasing procedure to find the optimal contrast of the mask stimuli to produce a performance impairment to the illusory perception comparable to the attentional condition, both in terms of perceptual performance (i.e., indicating whether the target contained the Kanizsa illusion) and metacognition (i.e., confidence in the response).

      The results show a clear dissociation between the three levels of visual processing in terms of temporal dynamics. Local contrast was represented at an early stage (~80 ms), while collinearity and illusory perception were associated with later stages (~200-250 ms). Furthermore, the results provide clear evidence in support of a dissociation between the effects of perceptual and attentional processes on conscious access: while the former affected both neuronal correlates of collinearity and illusory perception, the latter did not have any effect on the processing of the more complex visual features involved in the illusion perception.

      Weaknesses:

      The design of the study and the results presented are very similar to those in Fahrenfort et al. (2017), reducing its novelty. Similar to the current study, Fahrenfort et al. (2017) tested the idea that if both masking and AB impact perceptual integration, they should affect the neural markers of perceptual integration in a similar way. They found that behavioural performance (hit/false alarm rate) was affected by both masking and AB, even though only the latter was significant in the unmasked condition. An early classification peak was instead only affected by masking. However, a late classification peak showed a pattern similar to the behavioural results, with classification affected by both masking and AB.

      The interpretation of the results mainly centres on the theoretical framework of the recurrent processing theory of consciousness (Lamme, 2020), which lead to the assumption that local contrast, collinearity, and the illusory perception reflect feedforward, local recurrent, and global recurrent connections, respectively. It should be mentioned, however, that this theoretical prediction is not directly tested in the study. Moreover, the evidence for the dissociation between illusion and collinearity in terms of lateral and feedback connections seems at least limited. For instance, Kok et al. (2016) found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers. Lee & Nguyen (2001), instead, found that V1 neurons respond to illusory contours of the Kanizsa figures, particularly in the superficial layers. They all mention feedback connections, but none seem to point to lateral connections.

      Moreover, the evidence in favour of primarily lateral connections driving collinearity seems mixed as well. On one hand, Liang et al. (2017) showed that feedback and lateral connections closely interact to mediate image grouping and segmentation. On the other hand, Stettler et al. (2002) showed that, whereas the intrinsic connections link similarly oriented domains in V1, V2 to V1 feedback displays no such specificity. Furthermore, the other studies mentioned in the manuscript did not investigate feedback connections but only lateral ones, making it difficult to draw any clear conclusions.

    1. eLife assessment

      This fundamental state-of-the-art modeling study explores neural mechanisms underlying walking control in cats, demonstrating the probability of three different states of operation of the spinal cord circuits generating locomotion at different speeds. The biophysical modeling sufficiently reproduces and provides explanations for experimental data on how the locomotor cycle and phase durations depend on treadmill walking speed. It also points to new principles of functional architecture and operating regimes underlying how spinal circuits interact with supraspinal signals and limb sensory feedback signals to produce different locomotor behaviors at different speeds, which are major unresolved problems in the field. The modeling evidence is compelling, especially in advancing our understanding of locomotion control mechanisms, and will interest neuroscientists studying the neural control of movement.

    2. Reviewer #1 (Public Review):

      Summary:

      It is suggested that for each limb the RG (rhythm generator) can operate in three different regimes: a non-oscillating state-machine regime, and in a flexordriven and a classical half-center oscillatory regime. This means that the field can move away from the old concept that there is only room for the classic half-center organization

      Strengths:

      A major benefit of the present paper is that a bridge was made between various CPG concepts ( "a potential contradiction between the classical half-center and flexor-driven concepts of spinal RG operation"). Another important step forward is the proposal about the neural control of slow gait ("at slow speeds ({less than or equal to} 0.35 m/s), the spinal network operates in a state regime and requires external inputs for phase transitions, which can come from limb sensory feedback and/or volitional inputs (e.g. from the motor cortex").

      Weaknesses:

      Some references are missing.

    3. Reviewer #2 (Public Review):

      Summary:

      The biologically realistic model of the locomotor circuits developed by this group continues to define the state of the art for understanding spinal genesis of locomotion. Here the authors have achieved a new level of analysis of this model to generate surprising and potentially transformative new insights. They show that these circuits can operate in three very distinct states and that, in the intact cord, these states come into successive operation as the speed of locomotion increases. Equally important, they show that in spinal injury the model is "stuck" in the low speed "state machine" behavior.

      Strengths:

      There are many strengths for the simulation results presented here. The model itself has been closely tuned to match a huge range of experimental data and this has a high degree of plausibility. The novel insight presented here, with the three different states, constitutes a truly major advance in the understanding of neural genesis of locomotion in spinal circuits. The authors systematically consider how the states of the model relate to presently available data from animal studies. Equally important, they provide a number of intriguing and testable predictions. It is likely that these insights are the most important achieved in the past 10 years. It is highly likely proposed multi-state behavior will have a transformative effect on this field.

      Weaknesses:

      I have no major weaknesses. A moderate concern is that the authors should consider some basic sensitivity analyses to determine if the 3 state behavior is especially sensitive to any of the major circuit parameters - e.g. connection strengths in the oscillators or?

    4. Reviewer #3 (Public Review):

      Summary:

      This work probes the control of walking in cats at different speeds and different states (split-belt and regular treadmill walking). Since the time of Sherrington there has been ongoing debate on this issue. The authors provide modeling data showing that they could reproduce data from cats walking on a specialized treadmill allowing for regular and split-belt walking. The data suggest that a non-oscillating state-machine regime best explains slow walking - where phase transitions are handled by external inputs into the spinal network. They then show at higher speeds a flexor-driven and then a classical half-center regime dominates. In spinal animals, it appears that a non-oscillating state-machine regime best explains the experimental data. The model is adapted from their previous work, and raises interesting questions regarding the operation of spinal networks, that, at low speeds, challenge assumptions regarding central pattern generator function. This is an interesting study. I have a few issues with the general validity of the treadmill data at low speeds, which I suspect can be clarified by the authors.

      Strengths:

      The study has several strengths. Firstly the detailed model has been well established by the authors and provides details that relate to experimental data such as commissural interneurons (V0c and V0d), along with V3 and V2a interneuron data. Sensory input along with descending drive is also modelled and moreover the model reproduces many experimental data findings. Moreover, the idea that sensory feedback is more crucial at lower speeds, also is confirmed by presynaptic inhibition increasing with descending drive. The inclusion of experimental data from split-belt treadmills, and the ability of the model to reproduce findings here is a definite plus.

      Weaknesses:

      Conceptually, this is a very useful study which provides interesting modeling data regarding the idea that the network can operate in different regimes, especially at lower speeds. The modelling data speaks for itself, but on the other hand, sensory feedback also provides generalized excitation of neurons which in turn project to the CPG. That is they are not considered part of the CPG proper. In these scenarios, it is possible that an appropriate excitatory drive could be provided to the network itself to move it beyond the state-machine state - into an oscillatory state. Did the authors consider that possibility? This is important since work using L-DOPA, for example, in cats or pharmacological activation of isolated spinal cord circuits, shows the CPG capable of producing locomotion without sensory or descending input.

    1. eLife assessment

      This study is an important advancement towards the understanding of animal nervous system organization and evolution by providing a compelling description of the entire connectome of the 3-day larva of the marine annelid Platynereis dumerilii. It provides a wealth of data on cell type diversity and the modules that interconnect them. Its strength in the massive amount of high-quality data is also partly a weakness as it can make it difficult to read and scientifically digest. This work lays the foundations for studies on cell type diversity, segmental vs. intersegmental connectivity, and mushroom bodies, but will certainly also be of use to scientists interested in other nervous systems parts, their functions, and evolution.

    2. Reviewer #1 (Public Review):

      Summary:

      This paper provides a resource for researchers studying the marine annelid Platynereis dumerilii. It is only the third whole-body connectome to be assembled and thus provides a comparison with those less complex animals: the nematode Caenorhabditis elegans and the tunicate Ciona intestinialis. The paper catalogs all cells in the body, not just neurons, and details how sensory neurons, interneurons, motor neurons, and effector organs are connected. From this, the authors are able to extract information about the organization of different aspects of the nervous system. These include the extent of recurrent connectivity, unimodal and multimodal sensory processing, and long-range and short-range connectivity.

      Several interesting conclusions are drawn, including the concept that circuit evolution might have proceeded by duplication and diversion of cell types, much as it has been posited that gene evolution has occurred. It also informs the understanding of the evolution of segmental body plans in annelids by mapping and comparing cells in each segment.

      Strengths:

      This paper contains a wealth of data. The raw dataset is available. The codes and scripts are provided to allow interested readers to utilize this dataset.

      The analysis is painstakingly meticulous. The diagrams are organized to orient the reader to the complexities of this overwhelming analysis

      Weaknesses:

      The strength of the paper is also its weakness. It contains so much data and analysis that it is burdensome to read and understand. There are 16 multi-panel data figures in the main text, and \another 38 supplemental figures, and 5 videos.

      The impact of the paper is diminished by its size and depth. The paper could be broken up into smaller thematic papers that would be more accessible to researchers interested in particular topics. For example, there could be a single paper on the mushroom body and another paper on the segmental organization.

    3. Reviewer #2 (Public Review):

      Summary:

      The stated ambition of the authors in this manuscript is to thoroughly analyze the complete neural connectome of the three-day larva of the marine annelid Platynereis. This manuscript follows several previous publications by the same group on the same volume of serial EM data, addressing several specialized functional circuits, and supersedes a previous preprint published in 2020. To this end, the authors have annotated the whole cell complement of the larva, including non-neural cells, with the collaborative tool CATMAID, traced the whole neurite extensions of neural cells, and annotated all synapses. The connectome has been algorithmically analyzed to extract the principal modules, adding several new, so far unexplored neural circuits to the list.

      Strengths:

      This remarkable study adds a third species to the list of animals in which the full connectome and functional modules have been analyzed, alongside C. elegans and Ciona intestinalis. It represents a leap in phylogeny, with Platynereis being a representative of the lophotrochozoans. Also, Platynereis has considerably more neurons than the latter species. The study provides a complete picture of the set of neural modules that are necessary for the survival of an autonomous marine larva with an active lifestyle.

      The analysis is particularly impressive for revealing the complete innervation of the entire set of effector cells in the Platynereis larva, including muscle fibers, glands, pigment cells, ciliated cells, and helping understand the overall control of the organism's behavior through multiple sensory pathway integrations. It also reveals layers of neuronal intercalation in sensory-effector pathways that allow further integration even in a larva with limited behavioral complexity. The structure of the developing mushroom bodies, proposed ancestral bilaterian brain sensory integrative units, is detailed, as well as a complex mechanosensory module specific to a swimming larva.

      A key new aspect of this connectome study is the thorough analysis of segmental cell types and intersegmental connectivity. Metameric organization is widespread in bilaterians and is nowhere clearer than in annelids. This metameric organization is even proposed by some authors to be an ancestral trait of bilaterians. Here, the authors show that homologous cell types and connectivity are shared not only by all segments of the animal but also by its non-segmental terminal parts (anterior prostomium and posterior pygidium). They suggest, in turn, that the entire body of the annelid may be formed of ancestral metameric units, an idea proposed before but here strongly supported by a list of homologous cell types. This is the most thorough evidence obtained so far for this provocative and stimulating evolutionary hypothesis.

    1. тоже

      К первой ссылке изменили текст, так что теперь тут не совсем логично получилось. Лучше бы что-то вроде "а этот, увы, совсем выключился".

    1. eLife assessment

      This valuable study reports on electrophysiological recording of the spiking activity of single neurons in the entopeduncular nucleus (EPN) in freely-moving mice performing an auditory discrimination task. The data show that the activity of single EPN neurons is modulated by reward and movement kinematics, with the latter further affected by task contexts (e.g. movement toward or away from a reward location). The results provide solid evidence for the conclusions. Reviewer enthusiasm was reduced by the lack of investigations separating confounding factors and ambiguity as to whether the data contain the population of EPN neurons characterized in previous studies that obtained different results. The work will be of interest to those that study how the basal ganglia contribute to behavior, or the mechanisms of learning and/or movement more broadly.

    2. Reviewer #1 (Public Review):

      The authors in this paper investigate the nature of the activity in the rodent EPN during a simple freely moving cue-reward association task. Given that primate literature suggests movement coding whereas other primate and rodent studies suggest mainly reward outcome coding in the EPNs, it is important to try to tease apart the two views. Through careful analysis of behavior kinematics, position, and neural activity in the EPNs, the authors reveal an interesting and complex relationship between the EPN and mouse behavior.

      Strengths:

      (1) The authors use a novel freely moving task to study EPN activity, which displays rich movement trajectories and kinematics. Given that previous studies have mostly looked at reward coding during head-fixed behavior, this study adds a valuable dataset to the literature.

      (2) The neural analysis is rich and thorough. Both single neuron level and population level (i.e. PCA) analysis are employed to reveal what EPN encodes.

      Weaknesses:

      (1) One major weakness in this paper is the way the authors define the EPN neurons. Without a clear method of delineating EPN vs other surrounding regions, it is not convincing enough to call these neurons EPNs solely from looking at the electrode cannula track from Figure 2B. Indeed, EPN is a very small nucleus and previous studies like Stephenson-Jones et al (2016) have used opto-tagging of Vglut2 neurons to precisely label EPN single neurons. Wallace et al (2017) have also shown the existence of SOM and PV-positive neurons in the EPN. By not using transgenic lines and cell-type specific approaches to label these EPN neurons, the authors miss the opportunity to claim that the neurons recorded in this study do indeed come from EPN. The authors should at least consider showing an analysis of neurons slightly above or below EPN and show that these neurons display different waveforms or firing patterns.

      (2) The authors fail to replicate the main finding about EPN neurons which is that they encode outcome in a negative manner. Both Stephenson-Jones et al (2016) and Hong and Hikosaka (2008) show a reward response during the outcome period where firing goes down during reward and up during neutral or aversive outcome. However, Figure 2 G top panel shows that the mean population is higher during correct trials and lower during incorrect trials. This could be interesting given that the authors might try recording from another part of EPN that has not been studied before. However, without convincing evidence that the neurons recorded are from EPN in the first place (point 1), it is hard to interpret these results and reconcile them with previous studies.

      3) The authors say that: 'reward and kinematic doing are not mutually exclusive, challenging the notion of distinct pathways and movement processing'. However, it is not clear whether the data presented in this work supports this statement. First, the authors have not attempted to record from the entire EPN. Thus it is possible that the coding might be more segregated in other parts of EPN. Second, EPNs have previously been shown to display positive firing for negative outcomes and vice versa, something which the authors do not find here. It is possible that those neurons might not encode kinematic and movement variables. Thus, the authors should point out in the main text the possibility that the EPN activity recorded might be missing some parts of the whole EPN.

      4). The authors use an IR beam system to record licks and make a strong claim about the nature of lick encoding in the EPN. However, the authors should note that IR beam system is not the most accurate way of detecting licks given that any object blocking the path (paw or jaw-dropping) will be detected as lick events. Capacitance based, closed-loop detection, or video capturing is better suited to detect individual licks. Given that the authors are interested in kinematics of licking, this is important. The authors should either point this out in the main text or verify in the system if the IR beam is correctly detecting licks using a combination of those methods.

    1. eLife assessment

      There is a growing interest in understanding the individuality of animal behaviours. In this article, the authors build and use an impressive array of high throughput phenotyping paradigms to examine the 'stability' (consistency) of behavioural characteristics in a range of contexts and over time. They find that certain behaviours are individualistic and persist robustly across external stimuli while others are less robust to these changing parameters. The data are solid and, with more appropriate statistical methods adopted, the findings have valuable implications for the study of individual variability.

    2. Reviewer #1 (Public Review):

      Summary:

      The authors state the study's goal clearly: "The goal of our study was to understand to what extent animal individuality is influenced by situational changes in the environment, i.e., how much of an animal's individuality remains after one or more environmental features change." They use visually guided behavioral features to examine the extent of correlation over time and in a variety of contexts. They develop new behavioral instrumentation and software to measure behavior in Buridan's paradigm (and variations thereof), the Y-maze, and a flight simulator. Using these assays, they examine the correlations between conditions for a panel of locomotion parameters. They propose that inter-assay correlations will determine the persistence of locomotion individuality.

      Strengths:

      The OED defines individuality as "the sum of the attributes which distinguish a person or thing from others of the same kind," a definition mirrored by other dictionaries and the scientific literature on the topic. The concept of behavioral individuality can be characterized as:<br /> (1) a large set of behavioral attributes,<br /> (2) with inter-individual variability, that are<br /> (3) stable over time.

      A previous study examined walking parameters in Buridan's paradigm, finding that several parameters were variable between individuals, and that these showed stability over separate days and up to 4 weeks (DOI: 10.1126/science.aaw718). The present study replicates some of those findings and extends the experiments from temporal stability to examining the correlation of locomotion features between different contexts.

      The major strength of the study is using a range of different behavioral assays to examine the correlations of several different behavior parameters. It shows clearly that the inter-individual variability of some parameters is at least partially preserved between some contexts, and not preserved between others. The development of high-throughput behavior assays and sharing the information on how to make the assays is a commendable contribution.

      Weaknesses:

      The definition of individuality considers a comprehensive or large set of attributes, but the authors consider only a handful. In Supplemental Fig. S8, the authors show a large correlation matrix of many behavioral parameters, but these are illegible and are only mentioned briefly in Results. Why were five or so parameters selected from the full set? How were these selected? Do the correlation trends hold true across all parameters? For assays in which only a subset of parameters can be directly compared, were all of these included in the analysis, or only a subset?

      The correlation analysis is used to establish stability between assays. For temporal re-testing, "stability" is certainly the appropriate word, but between contexts, it implies that there could be 'instability'. Rather, instead of the 'instability' of a single brain process, a different behavior in a different context could arise from engaging largely (or entirely?) distinct context-dependent internal processes, and have nothing to do with process stability per se. For inter-context similarities, perhaps a better word would be "consistency".

      The parameters are considered one by one, not in aggregate. This focuses on the stability/consistency of the variability of a single parameter at a time, rather than holistic individuality. It would appear that an appropriate measure of individuality stability (or individuality consistency) that accounts for the high-dimensional nature of individuality would somehow summarize correlations across all parameters. Why was a multivariate approach (e.g. multiple regression/correlation) not used? Treating the data with a multivariate or averaged approach would allow the authors to directly address 'individuality stability', along with the analyses of single-parameter variability stability.

      The correlation coefficients are sometimes quite low, though highly significant, and are deemed to indicate stability. For example, in Figure 4C top left, the % of time walked at 23{degree sign}C and 32{degree sign}C are correlated by 0.263, which corresponds to an R2 of 0.069 i.e. just 7% of the 32{degree sign}C variance is predictable by the 23{degree sign}C variance. Is it fair to say that a 7% determination indicates parameter stability? Another example: "Vector strength was the most correlated attention parameter... correlations ranged... to -0.197," which implies that 96% (1 - R2) of Y-maze variance is not predicted by Buridan variance. At what level does an r value not represent stability?

      The authors describe a dissociation between inter-group differences and inter-individual variation stability, i.e. sometimes large mean differences between contexts, but significant correlation between individual test and retest data. Given that correlation is sensitive to slope, this might be expected to underestimate the variability stability (or consistency). Is there a way to adjust for the group differences before examining the correlation? For example, would it be possible to transform the values to in-group ranks prior to correlation analysis?

      What is gained by classifying the five parameters into exploration, attention, and anxiety? To what extent have these classifications been validated, both in general and with regard to these specific parameters? Is the increased walking speed at higher temperatures necessarily due to an increased 'explorative' nature, or could it be attributed to increased metabolism, dehydration stress, or a heat-pain response? To what extent are these categories subjective?

      The legends are quite brief and do not link to descriptions of specific experiments. For example, Figure 4a depicts a graphical overview of the procedure, but I could not find a detailed description of this experiment's protocol.

      Using the current single-correlation analysis approach, the aims would benefit from re-wording to appropriately address single-parameter variability stability/consistency (as distinct from holistic individuality). Alternatively, the analysis could be adjusted to address the multivariate nature of individuality, so that the claims and the analysis are in concordance with each other.

      The study presents a bounty of new technology to study visually guided behaviors. The GitHub link to the software was not available. To verify the successful transfer of open hardware and open-software, a report would demonstrate transfer by collaboration with one or more other laboratories, which the present manuscript does not appear to do. Nevertheless, making the technology available to readers is commendable.

      The study discusses a number of interesting, stimulating ideas about inter-individual variability, and presents intriguing data that speaks to those ideas, albeit with the issues outlined above.

      While the current work does not present any mechanistic analysis of inter-individual variability, the implementation of high-throughput assays sets up the field to more systematically investigate fly visual behaviors, their variability, and their underlying mechanisms.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors repeatedly measured the behavior of individual flies across several environmental situations in custom-made behavioral phenotyping rigs.

      Strengths:

      The study uses several different behavioral phenotyping devices to quantify individual behavior in a number of different situations and over time. It seems to be a very impressive amount of data. The authors also make all their behavioral phenotyping rig design and tracking software available, which I think is great and I'm sure other folks will be interested in using and adapting it to their own needs.

      Weaknesses/Limitations:

      I think an important limitation is that while the authors measured the flies under different environmental scenarios (i.e. with different lighting and temperature) they didn't really alter the "context" of the environment. At least within behavioral ecology, context would refer to the potential functionality of the expressed behaviors so for example, an anti-predator context, a mating context, or foraging. Here, the authors seem to really just be measuring aspects of locomotion under benign (relatively low-risk perception) contexts. This is not a flaw of the study, but rather a limitation to how strongly the authors can really say that this demonstrates that individuality is generalized across many different contexts. It's quite possible that rank order of locomotor (or other) behaviors may shift when the flies are in a mating or risky context.

      The analytical framework in terms of statistical methods is lacking. It appears as though the authors used correlations across time/situations to estimate individual variation; however, far more sophisticated and elegant methods exist. The paper would be a lot stronger, and my guess is, much more streamlined if the authors employ hierarchical mixed models to analyse these data these models could capture and estimate differences in individual behavior across time and situations simultaneously. Along with this, it's currently unclear whether and how any statistical inference was performed. Right now, it appears as though any results describing how individuality changes across situations are largely descriptive (i.e. a visual comparison of the strengths of the correlation coefficients?).

      Another pretty major weakness is that right now, I can't find any explicit mention of how many flies were used and whether they were re-used across situations. Some sort of overall schematic showing exactly how many measurements were made in which rigs and with which flies would be very beneficial.

      I don't necessarily doubt the robustness of the results and my guess is that the author's interpretations would remain the same, but a more appropriate modeling framework could certainly improve their statistical inference and likely highlight some other cool patterns as these methods could better estimate stability and covariance in individual intercepts (and potentially slopes) across time and situation.

    4. Reviewer #3 (Public Review):

      This manuscript is a continuation of past work by the last author where they looked at stochasticity in developmental processes leading to inter-individual behavioural differences. In that work, the focus was on a specific behaviour under specific conditions while probing the neural basis of the variability. In this work, the authors set out to describe in detail how stable the individuality of animal behaviours is in the context of various external and internal influences. They identify a few behaviours to monitor (read outs of attention, exploration, and 'anxiety'); some external stimuli (temperature, contrast, nature of visual cues, and spatial environment); and two internal states (walking and flying).

      They then use high-throughput behavioural arenas - most of which they have built and made plans available for others to replicate - to quantify and compare combinations of these behaviours, stimuli, and internal states. This detailed analysis reveals that:

      (1) Many individualistic behaviours remain stable over the course of many days.<br /> (2) That some of these (walking speed) remain stable over changing visual cues. Others (walking speed and centrophobicity) remain stable at different temperatures.<br /> (3) All the behaviours they tested failed to remain stable over the spatially varying environment (arena shape).<br /> (4) Only angular velocity (a readout of attention) remains stable across varying internal states (walking and flying).

      Thus, the authors conclude that there is a hierarchy in the influence of external stimuli and internal states on the stability of individual behaviours.

      The manuscript is a technical feat with the authors having built many new high-throughput assays. The number of animals is large and many variables have been tested - different types of behavioural paradigms, flying vs walking, varying visual stimuli, and different temperatures among others.

    1. eLife assessment

      Yonk and colleagues provide a valuable and timely study showcasing the role of thalamostriatal inputs on learning and action selection. In particular, they provide solid evidence that posterior medial thalamic nucleus (POm) neurons are activated during reward expectation and arousal. A clearer conceptual assessment of the overall function of this circuit, together with sharper analyses of calcium responses and thalamic specificity, in terms of viral spread and striatal target, may further increase the impact of the study.

    2. Reviewer #1 (Public Review):

      Summary:

      This work aims to understand the role of thalamus POm in dorsal lateral striatum (DLS) projection in learning a sensorimotor associative task. The authors first confirm that POm forms "en passant" synapses with some of the DLS neuronal subtypes. They then perform a go/no-go associative task that consists of the mouse learning to discriminate between two different textures and to associate one of them with an action. During this task, they either record the activity of the POm to DLS axons using endoscopy or silence their activity. They report that POm axons in the DLS are activated around the sensory stimulus but that the activity is not modulated by the reward. Last, they showed that silencing the POm axons at the level of DLS slows down learning the task.

      The authors show convincing evidence of projections from POm to DLS and that POm inputs to DLS code for whisking whatever the outcome of the task is. However, their results do not allow us to conclude if more neurons are recruited during the learning process or if the already activated fibres get activated more strongly. Last, because POm fibres in the DLS are also projecting to S1, silencing the POm fibres in the DLS could have affected inputs in S1 as well and therefore, the slowdown in acquiring the task is not necessarily specific to the POm to DLS pathway.

      Strengths:

      One of the main strengths of the paper is to go from slice electrophysiology to behaviour to get an in-depth characterization of one pathway. The authors did a comprehensive description of the POm projections to the DLS using transgenic mice to unambiguously identify the DLS neuronal population. They also used a carefully designed sensorimotor association task, and they exploited the results in depth.

      It is a very nice effort to have measured the activity of the axons in the DLS not only after the mice have learned the task but throughout the learning process. It shows the progressive increase of activity of POm axons in the DLS, which could imply that there is a progressive strengthening of the pathway. The results show convincingly that POm axons in the DLS are not activated by the outcome of the task but by the whisker activity, and that this activity on average increases with learning.

      Weaknesses:

      One of the main targets of the striatum from thalamic input are the cholinergic neurons that weren't investigated here, is there information that could be provided?

      It is interesting to know that the POm projects to all neuronal types in the DLS, but this information is not used further down the manuscript so the only take-home message of Figure 1 is that the axons that they image or silence in the DLS are indeed connected to DLS neurons and not just passing fibres. In this line, are these axons the same as the ones projecting to S1? If this is the case, why would we expect a different behaviour of the axon activity at the DLS level compared to S1?

      The authors used endoscopy to measure the POm axons in the DLS activity, which makes it impossible to know if the progressive increase of POm response is due to an increase of activity from each individual neuron or if new neurons are progressively recruited in the process.

      The picture presented in Figure 4 of the stimulation site is slightly concerning as there are hardly any fibres in neocortical layer 1 while there seems to be quite a lot of them in layer 4, suggesting that the animal here was injected in the VB. This is especially striking as the implantation and projection sites presented in Figures 1 and 2 are very clean and consistent with POm injection.

    3. Reviewer #2 (Public Review):

      Summary:

      Yonk and colleagues show that the posterior medial thalamus (POm), which is interconnected with sensory and motor systems, projects directly to major categories of neurons in the striatum, including direct and indirect pathway MSNs, and PV interneurons. Activity in POm-striatal neurons during a sensory-based learning task indicates a relationship between reward expectation and arousal. Inhibition of these neurons slows reaction to stimuli and overall learning. This circuit is positioned to feed salient event activation to the striatum to set the stage for effective learning and action selection.

      Strengths:

      The results are well presented and offer interesting insight into an understudied thalamostriatal circuit. In general, this work is important as part of a general need for an increased understanding of thalamostriatal circuits in complex learning and action selection processes, which have generally received less attention than corticostriatal systems.

      Weaknesses:

      There could be a stronger connection between the connectivity part of the data - showing that POm neurons context D1, D2, and PV neurons in the striatum but with some different properties - and the functional side of the project. One wonders whether the POm neurons projecting to these subtypes or striatal neurons have unique signaling properties related to learning, or if there is a uniform, bulk signal sent to the striatum. This is not a weakness per se, as it's reasonable for these questions to be answered in future papers.

      All the in vivo activity-related conclusions stem from data from just 5 mice, which is a relatively small sample set. Optogenetic groups are also on the small side.

    4. Reviewer #3 (Public Review):

      Yonk and colleagues investigate the role of the thalamostriatal pathway. Specifically, they studied the interaction of the posterior thalamic nucleus (PO) and the dorsolateral striatum in the mouse. First, they characterize connectivity by recording DLS neurons in in-vitro slices and optogenetically activating PO terminals. PO is observed to establish depressing synapses onto D1 and D2 spiny neurons as well as PV neurons. Second, the image PO axons are imaged by fiber photometry in mice trained to discriminate textures. Initially, no trial-locked activity is observed, but as the mice learn PO develops responses timed to the audio cue that marks the start of the trial and precedes touch. PO does appear to encode the tactile stimulus type or outcome. Optogenetic suppression of PO terminals in striatum slow task acquisition. The authors conclude that PO provides a "behaviorally relevant arousal-related signal" and that this signal "primes" striatal circuitry for sensory processing.

      A great strength of this paper is its timeliness. Thalamostriatal processing has received almost no attention in the past, and the field has become very interested in the possible functions of PO. Additionally, the experiments exploit multiple cutting-edge techniques.

      There seem to be some technical/analytical weaknesses. The in vitro experiments appear to have some contamination of nearby thalamic nuclei by the virus delivering the opsin, which could change the interpretation. Some of the statistical analyses of these data also appear inappropriate. The correlative analysis of Pom activity in vivo, licking, and pupil could be more convincingly done.

      The bigger weakness is conceptual - why should striatal circuitry need "priming" by the thalamus in order to process sensory stimuli? Why would such circuitry even be necessary? Why is a sensory signal from the cortex insufficient? Why should the animal more slowly learn the task? How does this fit with existing ideas of striatal plasticity? It is unclear from the experiments that the thalamostriatal pathway exists for priming sensory processing. In fact, the optogenetic suppression of the thalamostriatal pathway seems to speak against that idea.

    1. eLife assessment

      The valuable findings in this study reveal an intricate pattern of memory expression following retrieval extinction at different intervals from retrieval-extinction to test. The novel advance is in the demonstration that, relative to a standard extinction procedure, the retrieval-extinction procedure more effectively suppresses responses to a conditioned threat stimulus when testing occurs just minutes after extinction. The manuscript provides incomplete evidence in support of the attenuation of fear recovery and solid evidence for the engagement of the dorsolateral prefrontal cortex in this "short-term" suppression of responding.

    2. Reviewer #1 (Public Review):

      Summary:

      The novel advance by Wang et al is in the demonstration that, relative to a standard extinction procedure, the retrieval-extinction procedure more effectively suppresses responses to a conditioned threat stimulus when testing occurs just minutes after extinction. The authors provide some solid evidence to show that this "short-term" suppression of responding involves engagement of the dorsolateral prefrontal cortex.

      Strengths:

      Overall, the study is well-designed and the results are potentially interesting. There are, however, a few issues in the way that it is introduced and discussed. Some of the issues concern clarity of expression/communication. However, others relate to a theory that could be used to help the reader understand why the results should have come out the way that they did. More specific comments and questions are presented below.

      Weaknesses:

      INTRODUCTION & THEORY

      (1) Can the authors please clarify why the first trial of extinction in a standard protocol does NOT produce the retrieval-extinction effect? Particularly as the results section states: "Importantly, such a short-term effect is also retrieval dependent, suggesting the labile state of memory is necessary for the short-term memory update to take effect (Fig. 1e)." The importance of this point comes through at several places in the paper:

      1A. "In the current study, fear recovery was tested 30 minutes after extinction training, whereas the effect of memory reconsolidation was generally evident only several hours later and possibly with the help of sleep, leaving open the possibility of a different cognitive mechanism for the short-term fear dementia related to the retrieval-extinction procedure." ***What does this mean? The two groups in study 1 experienced a different interval between the first and second CS extinction trials; and the results varied with this interval: a longer interval (10 min) ultimately resulted in less reinstatement of fear than a shorter interval. Even if the different pattern of results in these two groups was shown/known to imply two different processes, there is absolutely no reason to reference any sort of cognitive mechanism or dementia - that is quite far removed from the details of the present study.

      1B. "Importantly, such a short-term effect is also retrieval dependent, suggesting the labile state of memory is necessary for the short-term memory update to take effect (Fig. 1e)." ***As above, what is "the short-term memory update"? At this point in the text, it would be appropriate for the authors to discuss why the retrieval-extinction procedure produces less recovery than a standard extinction procedure as the two protocols only differ in the interval between the first and second extinction trials. References to a "short-term memory update" process do not help the reader to understand what is happening in the protocol.

      (2) "Indeed, through a series of experiments, we identified a short-term fear amnesia effect following memory retrieval, in addition to the fear reconsolidation effect that appeared much later."<br /> ***The only reason for supposing two effects is because of the differences in responding to the CS2, which was subjected to STANDARD extinction, in the short- and long-term tests. More needs to be said about how and why the performance of CS2 is affected in the short-term test and recovers in the long-term test. That is, if the loss of performance to CS1 and CS2 is going to be attributed to some type of memory updating process across the retrieval-extinction procedure, one needs to explain the selective recovery of performance to CS2 when the extinction-to-testing interval extends to 24 hours. Instead of explaining this recovery, the authors note that performance to CS1 remains low when the extinction-to-testing interval is 24 hours and invoke something to do with memory reconsolidation as an explanation for their results: that is, they imply (I think) that reconsolidation of the CS1-US memory is disrupted across the 24-hour interval between extinction and testing even though CS1 evokes negligible responding just minutes after extinction.

      (3) The discussion of memory suppression is potentially interesting but, in its present form, raises more questions than it answers. That is, memory suppression is invoked to explain a particular pattern of results but I, as the reader, have no sense of why a fear memory would be better suppressed shortly after the retrieval-extinction protocol compared to the standard extinction protocol; and why this suppression is NOT specific to the cue that had been subjected to the retrieval-extinction protocol.

      3A. Relatedly, how does the retrieval-induced forgetting (which is referred to at various points throughout the paper) relate to the retrieval-extinction effect? The appeal to retrieval-induced forgetting as an apparent justification for aspects of the present study reinforces points 2 and 3 above. It is not uninteresting but needs some clarification/elaboration.

      (4) Given the reports by Chalkia, van Oudenhove & Beckers (2020) and Chalkia et al (2020), some qualification needs to be inserted in relation to reference 6. That is, reference 6 is used to support the statement that "during the reconsolidation window, old fear memory can be updated via extinction training following fear memory retrieval". This needs a qualifying statement like "[but see Chalkia et al (2020a and 2020b) for failures to reproduce the results of 6]."

      https://pubmed.ncbi.nlm.nih.gov/32580869/<br /> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115860/

      CLARIFICATIONS, ELABORATIONS, EDITS

      (5) The Abstract was not easy to follow:

      5A. What does it mean to ask: "whether memory retrieval facilitates update mechanisms other than memory reconsolidation"? That is, in what sense could or would memory retrieval be thought to facilitate a memory update mechanism?

      5B. "First, we demonstrate that memory reactivation prevents the return of fear shortly after extinction training in contrast to the memory reconsolidation effect which takes several hours to emerge and such a short-term amnesia effect is cue independent (Study 1, N = 57 adults)."<br /> ***The phrasing here could be improved for clarity: "First, we demonstrate that the retrieval-extinction protocol prevents the return of fear shortly after extinction training (i.e., when testing occurs just min after the end of extinction)." Also, cue-dependence of the retrieval-extinction effect was assessed in study 2.

      5C. "Furthermore, memory reactivation also triggers fear memory reconsolidation and produces cue-specific amnesia at a longer and separable timescale (Study 2, N = 79 adults)." ***In study 2, the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction. This result is interesting but cannot be easily inferred from the statement that begins "Furthermore..." That is, the results should be described in terms of the combined effects of retrieval and extinction, not in terms of memory reactivation alone; and the statement about memory reconsolidation is unnecessary. One can simply state that the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction.

      5D. "...we directly manipulated brain activities in the dorsolateral prefrontal cortex and found that both memory retrieval and intact prefrontal cortex functions were necessary for the short-term fear amnesia."<br /> ***This could be edited to better describe what was shown: E.g., "...we directly manipulated brain activities in the dorsolateral prefrontal cortex and found that intact prefrontal cortex functions were necessary for the short-term fear amnesia after the retrieval-extinction protocol."

      5E. "The temporal scale and cue-specificity results of the short-term fear amnesia are clearly dissociable from the amnesia related to memory reconsolidation, and suggest that memory retrieval and extinction training trigger distinct underlying memory update mechanisms."<br /> ***The pattern of results when testing occurred just minutes after the retrieval-extinction protocol was different from that obtained when testing occurred 24 hours after the protocol. Describing this in terms of temporal scale is unnecessary, and suggesting that memory retrieval and extinction trigger different memory update mechanisms is not obviously warranted. The results of interest are due to the combined effects of retrieval+extinction and there is no sense in which different memory update mechanisms should be identified with retrieval (mechanism 1) and extinction (mechanism 2).

      5F. "These findings raise the possibility of concerted memory modulation processes related to memory retrieval..."<br /> ***What does this mean?

      (6) "...suggesting that the fear memory might be amenable to a more immediate effect, in addition to what the memory reconsolidation theory prescribes..."<br /> ***What does it mean to say that the fear memory might be amenable to a more immediate effect?

      (7) "Parallel to the behavioral manifestation of long- and short-term memory deficits, concurrent neural evidence supporting memory reconsolidation theory emphasizes the long-term effect of memory retrieval by hypothesizing that synapse degradation and de novo protein synthesis are required for reconsolidation."<br /> ***This sentence needs to be edited for clarity.

      (8) "previous behavioral manipulations engendering the short-term declarative memory effect..."<br /> ***What is the declarative memory effect? It should be defined.

      (9) "The declarative amnesia effect emerges much earlier due to the online functional activity modulation..."<br /> ***Even if the declarative memory amnesia effect had been defined, the reference to online functional activity modulation is not clear.

      (10) "However, it remains unclear whether memory retrieval might also precipitate a short-term amnesia effect for the fear memory, in addition to the long-term prevention orchestrated by memory consolidation."<br /> ***I found this sentence difficult to understand on my first pass through the paper. I think it is because of the phrasing of memory retrieval. That is, memory retrieval does NOT precipitate any type of short-term amnesia for the fear memory: it is the retrieval-extinction protocol that produces something like short-term amnesia. Perhaps this sentence should also be edited for clarity.

      I will also note that the usage of "short-term" at this point in the paper is quite confusing: Does the retrieval-extinction protocol produce a short-term amnesia effect, which would be evidenced by some recovery of responding to the CS when tested after a sufficiently long delay? I don't believe that this is the intended meaning of "short-term" as used throughout the majority of the paper, right?

      (11) "To fully comprehend the temporal dynamics of the memory retrieval effect..."<br /> ***What memory retrieval effect? This needs some elaboration.

      (12) "We hypothesize that the labile state triggered by the memory retrieval may facilitate different memory update mechanisms following extinction training, and these mechanisms can be further disentangled through the lens of temporal dynamics and cue-specificities."<br /> ***What does this mean? The first part of the sentence is confusing around the usage of the term "facilitate"; and the second part of the sentence that references a "lens of temporal dynamics and cue-specificities" is mysterious. Indeed, as all rats received the same retrieval-extinction exposures in Study 2, it is not clear how or why any differences between the groups are attributed to "different memory update mechanisms following extinction".

      (13) "In the first study, we aimed to test whether there is a short-term amnesia effect of fear memory retrieval following the fear retrieval-extinction paradigm."<br /> ***Again, the language is confusing. The phrase, "a short-term amnesia effect" implies that the amnesia itself is temporary; but I don't think that this implication is intended. The problem is specifically in the use of the phrase "a short-term amnesia effect of fear memory retrieval." To the extent that short-term amnesia is evident in the data, it is not due to retrieval per se but, rather, the retrieval-extinction protocol.

      (14) The authors repeatedly describe the case where there was a 24-hour interval between extinction and testing as consistent with previous research on fear memory reconsolidation. Which research exactly? That is, in studies where a CS re-exposure was combined with a drug injection, responding to the CS was disrupted in a final test of retrieval from long-term memory which typically occurred 24 hours after the treatment. Is that what the authors are referring to as consistent? If so, which aspect of the results are consistent with those previous findings? Perhaps the authors mean to say that, in the case where there was a 24-hour interval between extinction and testing, the results obtained here are consistent with previous research that has used the retrieval-extinction protocol. This would clarify the intended meaning greatly.

      DATA

      (15) Points about data:

      15A. The eight participants who were discontinued after Day 1 in study 1 were all from the no-reminder group. Can the authors please comment on how participants were allocated to the two groups in this experiment so that the reader can better understand why the distribution of non-responders was non-random (as it appears to be)?

      15B. Similarly, in study 2, of the 37 participants that were discontinued after Day 2, 19 were from Group 30 min, and 5 were from Group 6 hours. Can the authors comment on how likely these numbers are to have been by chance alone? I presume that they reflect something about the way that participants were allocated to groups, but I could be wrong.

      15C. "Post hoc t-tests showed that fear memories were resilient after regular extinction training, as demonstrated by the significant difference between fear recovery indexes of the CS+ and CS- for the no-reminder group (t26 = 7.441, P < 0.001; Fig. 1e), while subjects in the reminder group showed no difference of fear recovery between CS+ and CS- (t29 = 0.797, P = 0.432, Fig. 1e)."<br /> ***Is the fear recovery index shown in Figure 1E based on the results of the 1st test trial only? How can there have been a "significant difference between fear recovery indexes of the CS+ and CS- for the no-reminder group" when the difference in responding to the CS+ and CS- is used to calculate the fear recovery index shown in 1E? What are the t-tests comparing exactly, and what correction is used to account for the fact that they are applied post-hoc?

      15D. "Finally, there is no statistical difference between the differential fear recovery indexes between CS+ in the reminder and no reminder groups (t55 = -2.022, P = 0.048; Fig. 1c, also see Supplemental Material for direct test for the test phase)."<br /> ***Is this statement correct - i.e., that there is no statistically significant difference in fear recovery to the CS+ in the reminder and no reminder groups? I'm sure that the authors would like to claim that there IS such a difference; but if such a difference is claimed, one would be concerned by the fact that it is coming through in an uncorrected t-test, which is the third one of its kind in this paragraph. What correction (for the Type 1 error rate) is used to account for the fact that the t-tests are applied post-hoc? And if no correction, why not?

      15E. In study 2, why is responding to the CS- so high on the first test trial in Group 30 min? Is the change in responding to the CS- from the last extinction trial to the first test trial different across the three groups in this study? Inspection of the figure suggests that it is higher in Group 30 min relative to Groups 6 hours and 24 hours. If this is confirmed by the analysis, it has implications for the fear recovery index which is partly based on responses to the CS-. If not for differences in the CS- responses, Groups 30 minutes and 6 hours are otherwise identical.

      15F. Was the 6-hour group tested at a different time of day compared to the 30-minute and 24-hour groups; and could this have influenced the SCRs in this group?

      15G. Why is the range of scores in "thought control ability" different in the 30-minute group compared to the 6-hour and 24-hour groups? I am not just asking about the scale on the x-axis: I am asking why the actual distribution of the scores in thought control ability is wider for the 30-minute group?

      (16) During testing in each experiment, how were the various stimuli presented? That is, was the presentation order for the CS+ and CS- pseudorandom according to some constraint, as it had been in extinction? This information should be added to the method section.

      (17) "These results are consistent with previous research which suggested that people with better capability to resist intrusive thoughts also performed better in motivated dementia in both declarative and associative memories."<br /> ***Which parts of the present results are consistent with such prior results? It is not clear from the descriptions provided here why thought control ability should be related to the present findings or, indeed, past ones in other domains. This should be elaborated to make the connections clear.

    3. Reviewer #2 (Public Review):

      Summary

      The study investigated whether memory retrieval followed soon by extinction training results in a short-term memory deficit when tested - with a reinstatement test that results in recovery from extinction - soon after extinction training. Experiment 1 documents this phenomenon using a between-subjects design. Experiment 2 used a within-subject control and saw that the effect was also observed in a control condition. In addition, it also revealed that if testing is conducted 6 hours after extinction, there is no effect of retrieval prior to extinction as there is recovery from extinction independently of retrieval prior to extinction. A third group also revealed that retrieval followed by extinction attenuates reinstatement when the test is conducted 24 hours later, consistent with previous literature. Finally, Experiment 3 used continuous theta-burst stimulation of the dorsolateral prefrontal cortex and assessed whether inhibition of that region (vs a control region) reversed the short-term effect revealed in Experiments 1 and 2. The results of the control groups in Experiment 3 replicated the previous findings (short-term effect), and the experimental group revealed that these can be reversed by inhibition of the dorsolateral prefrontal cortex.

      Strengths

      The work is performed using standard procedures (fear conditioning and continuous theta-burst stimulation) and there is some justification for the sample sizes. The results replicate previous findings - some of which have been difficult to replicate and this needs to be acknowledged - and suggest that the effect can also be observed in a short-term reinstatement test.

      The study establishes links between memory reconsolidation and retrieval-induced forgetting (or memory suppression) literature. The explanations that have been developed for these are distinct and the current results integrate these, by revealing that the DLPFC activity involved in retrieval-extinction short-term effect. There is thus some novelty in the present results, but numerous questions remain unaddressed.

      Weakness

      The fear acquisition data is converted to a differential fear SCR and this is what is analysed (early vs late). However, the figure shows the raw SCR values for CS+ and CS- and therefore it is unclear whether the acquisition was successful (despite there being an "early" vs "late" effect - no descriptives are provided).

      In Experiment 1 (Test results) it is unclear whether the main conclusion stems from a comparison of the test data relative to the last extinction trial ("we defined the fear recovery index as the SCR difference between the first test trial and the last extinction trial for a specific CS") or the difference relative to the CS- ("differential fear recovery index between CS+ and CS-"). It would help the reader assess the data if Figure 1e presents all the indexes (both CS+ and CS-). In addition, there is one sentence that I could not understand "there is no statistical difference between the differential fear recovery indexes between CS+ in the reminder and no reminder groups (P=0.048)". The p-value suggests that there is a difference, yet it is not clear what is being compared here. Critically, any index taken as a difference relative to the CS- can indicate recovery of fear to the CS+ or absence of discrimination relative to the CS-, so ideally the authors would want to directly compare responses to the CS+ in the reminder and no-reminder groups. The latter issue is particularly relevant in Experiment 2, in which the CS- seems to vary between groups during the test and this can obscure the interpretation of the result.

      In Experiment 1, the findings suggest that there is a benefit of retrieval followed by extinction in a short-term reinstatement test. In Experiment 2, the same effect is observed on a cue that did not undergo retrieval before extinction (CS2+), a result that is interpreted as resulting from cue-independence, rather than a failure to replicate in a within-subjects design the observations of Experiment 1 (between-subjects). Although retrieval-induced forgetting is cue-independent (the effect on items that are suppressed [Rp-] can be observed with an independent probe), it is not clear that the current findings are similar. Here, both cues have been extinguished and therefore been equally exposed during the critical stage.

      The findings in Experiment 2 suggest that the amnesia reported in Experiment 1 is transient, in that no effect is observed when the test is delayed by 6 hours. The phenomena whereby reactivated memories transition to extinguished memories as a function of the amount of exposure (or number of trials) is completely different from the phenomena observed here. In the former, the manipulation has to do with the number of trials (or the total amount of time) that the cues are exposed to. In the current study, the authors did not manipulate the number of trials but instead the retention interval between extinction and test. The finding reported here is closer to a "Kamin effect", that is the forgetting of learned information which is observed with intervals of intermediate length (Baum, 1968). Because the Kamin effect has been inferred to result from retrieval failure, it is unclear how this can be explained here. There needs to be much more clarity on the explanations to substantiate the conclusions.

      There are many results (Ryan et al., 2015) that challenge the framework that the authors base their predictions on (consolidation and reconsolidation theory), therefore these need to be acknowledged. Similarly, there are reports that failed to observe the retrieval-extinction phenomenon (Chalkia et al., 2020), and the work presented here is written as if the phenomenon under consideration is robust and replicable. This needs to be acknowledged.

      The parallels between the current findings and the memory suppression literature are speculated in the general discussion, and there is the conclusion that "the retrieval-extinction procedure might facilitate a spontaneous memory suppression process". Because one of the basic tenets of the memory suppression literature is that it reflects an "active suppression" process, there is no reason to believe that in the current paradigm, the same phenomenon is in place, but instead, it is "automatic". In other words, the conclusions make strong parallels with the memory suppression (and cognitive control) literature, yet the phenomena that they observed are thought to be passive (or spontaneous/automatic).<br /> Ultimately, it is unclear why 10 mins between the reminder and extinction learning will "automatically" suppress fear memories. Further down in the discussion, it is argued that "For example, in the well-known retrieval-induced forgetting (RIF) phenomenon, the recall of a stored memory can impair the retention of related long-term memory and this forgetting effect emerges as early as 20 minutes after the retrieval procedure, suggesting memory suppression or inhibition can occur in a more spontaneous and automatic manner". I did not follow with the time delay between manipulation and test (20 mins) would speak about whether the process is controlled or automatic.

      Among the many conclusions, one is that the current study uncovers the "mechanism" underlying the short-term effects of retrieval extinction. There is little in the current report that uncovers the mechanism, even in the most psychological sense of the mechanism, so this needs to be clarified. The same applies to the use of "adaptive".

      Whilst I could access the data on the OFS site, I could not make sense of the Matlab files as there is no signposting indicating what data is being shown in the files. Thus, as it stands, there is no way of independently replicating the analyses reported.

      The supplemental material shows figures with all participants, but only some statistical analyses are provided, and sometimes these are different from those reported in the main manuscript. For example, the test data in Experiment 1 is analysed with a two-way ANOVA with the main effects of group (reminder vs no-reminder) and time (last trial of extinction vs first trial of the test) in the main report. The analyses with all participants in the sup mat used a mixed two-way ANOVA with a group (reminder vs no reminder) and CS (CS+ vs CS-). This makes it difficult to assess the robustness of the results when including all participants. In addition, in the supplementary materials, there are no figures and analyses for Experiment 3.

      One of the overarching conclusions is that the "mechanisms" underlying reconsolidation (long term) and memory suppression (short term) phenomena are distinct, but memory suppression phenomena can also be observed after a 7-day retention interval (Storm et al., 2012), which then questions the conclusions achieved by the current study.

      References:

      Baum, M. (1968). Reversal learning of an avoidance response and the Kamin effect. Journal of Comparative and Physiological Psychology, 66(2), 495.<br /> Chalkia, A., Schroyens, N., Leng, L., Vanhasbroeck, N., Zenses, A. K., Van Oudenhove, L., & Beckers, T. (2020). No persistent attenuation of fear memories in humans: A registered replication of the reactivation-extinction effect. Cortex, 129, 496-509.<br /> Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A., & Tonegawa, S. (2015). Engram cells retain memory under retrograde amnesia. Science, 348(6238), 1007-1013.<br /> Storm, B. C., Bjork, E. L., & Bjork, R. A. (2012). On the durability of retrieval-induced forgetting. Journal of Cognitive Psychology, 24(5), 617-629.

    4. Reviewer #3 (Public Review):

      SUMMARY

      Wang et al. have addressed how acquired fear and extinction memories evolve over time. Using a retrieval-extinction procedure in healthy humans, they have investigated the recovery of fear memories 30-60 minutes., 6 hours, and 24 hours after the retrieval-extinction phase. They have addressed this research question through 3 different experiments which included manipulations of the reminder cue, the time interval, and brain activity. Together, the studies suggest that early on after retrieval-extinction (30-60 min. later), retrieval-extinction may lead to an attenuation of fear recovery (after reinstatement) for all fear cues, as well as the non-reminded ones. Study 3 moreover suggests that this effect may depend on normal dlPFC function. In addition, the paper also contains data in line with prior findings suggesting that a 6-hour interval does not benefit from the reminder cue, and that a 24-hour interval does, and specifically for the reminded fear cue. The latter findings are seen as evidence of fear memory reconsolidation.

      STRENGTHS

      (1) The paper combines three related human fear conditioning studies, each with decent sample sizes. The authors are transparent about the fact that they excluded many participants and about which conditions they belonged to.

      (2) The effect that this paper investigates (short-term fear memory after a retrieval-extinction procedure) has not been studied extensively, thus making it a relevant topic.

      (3) The application of brain stimulation as a means to study causal relationships is interesting and goes beyond the purely behavioral or pharmacological interventions that are often used in human fear conditioning research. Also, the use of an active control stimulation is a strength of the study.

      WEAKNESSES

      (1) The entire study hinges on the idea that there is memory 'suppression' if (1) the CS+ was reminded before extinction and (2) the reinstatement and memory test takes place 30 minutes later (in Studies 1 & 2). However, the evidence supporting this suppression idea is not very strong. In brief, in Study 1, the effect seems to only just reach significance, with a medium effect size at best, and, moreover, it is unclear if this is the correct analysis (which is a bit doubtful, when looking at Figure 1D and E). In Study 2, there was no optimal control condition without reminder and with the same 30-min interval (which is problematic, because we can assume generalization between CS1+ and CS2+, as pointed out by the authors, and because generalization effects are known to be time-dependent). Study 3 is more convincing, but entails additional changes in comparison with Studies 1 and 2, i.e., applications of cTBS and an interval of 1 hour instead of 30 minutes (the reason for this change was not explained). So, although the findings of the 3 studies do not contradict each other and are coherent, they do not all provide strong evidence for the effect of interest on their own.

      Related to the comment above, I encourage the authors to double-check if this statement is correct: "Also, our results remain robust even with the "non-learners" included in the analysis (Fig. S1 in the Supplemental Material)". The critical analysis for Study 1 is a between-group comparison of the CS+ and CS- during the last extinction trial versus the first test trial. This result only just reached significance with the selected sample (p = .048), and Figures 1D and E even seem to suggest otherwise. I doubt that the analysis would reach significance when including the "non-learners" - assuming that this is what is shown in Supplemental Figure 1 (which shows the data from "all responded participants").

      Also related to the comment above, I think that the statement "suggesting a cue-independent short-term amnesia effect" in Study 2 is not correct and should read: "suggesting extinction of fear to the CS1+ and CS2+", given that the response to the CS+'s is similar to the response to the CS-, as was the case at the end of extinction. Also the next statement "This result indicates that the short-term amnesia effect observed in Study 2 is not reminder-cue specific and can generalize to the non-reminded cues" is not fully supported by the data, given the lack of an appropriate control group in this study (a group without reinstatement). The comparison with the effect found in Study 1 is difficult because the effect found there was relatively small (and may have to be double-checked, see remarks above), and it was obtained with a different procedure using a single CS+. The comparison with the 6-h and 24-h groups of Study 2 is not helpful as a control condition for this specific question (i.e., is there reinstatement of fear for any of the CS+'s) because of the large procedural difference with regard to the intervals between extinction and reinstatement (test).

      (2) It is unclear which analysis is presented in Figure 3. According to the main text, it either shows the "differential fear recovery index between CS+ and CS-" or "the fear recovery index of both CS1+ and CS2+". The authors should clarify what they are analyzing and showing, and clarify to which analyses the ** and NS refer in the graphs. I would also prefer the X-axes and particularly the Y-axes of Fig. 3a-b-c to be the same. The image is a bit misleading now. The same remarks apply to Figure 5.

      (3) In general, I think the paper would benefit from being more careful and nuanced in how the literature and findings are represented. First of all, the authors may be more careful when using the term 'reconsolidation'. In the current version, it is put forward as an established and clearly delineated concept, but that is not the case. It would be useful if the authors could change the text in order to make it clear that the reconsolidation framework is a theory, rather than something that is set in stone (see e.g., Elsey et al., 2018 (https://doi.org/10.1037/bul0000152), Schroyens et al., 2022 (https://doi.org/10.3758/s13423-022-02173-2)).

      In addition, the authors may want to reconsider if they want to cite Schiller et al., 2010 (https://doi.org/10.1038/nature08637), given that the main findings of this paper, nor the analyses could be replicated (see, Chalkia et al., 2020 (https://doi.org/10.1016/j.cortex.2020.04.017; https://doi.org/10.1016/j.cortex.2020.03.031).

      Relatedly, it should be clarified that Figure 6 is largely speculative, rather than a proven model as it is currently presented. This is true for all panels, but particularly for panel c, given that the current study does not provide any evidence regarding the proposed reconsolidation mechanism.

      Lastly, throughout the paper, the authors equate skin conductance responses (SCR) with fear memory. It should at least be acknowledged that SCR is just one aspect of a fear response, and that it is unclear whether any of this would translate to verbal or behavioral effects. Such effects would be particularly important for any clinical application, which the authors put forward as the ultimate goal of the research.

      (4) The Discussion quite narrowly focuses on a specific 'mechanism' that the authors have in mind. Although it is good that the Discussion is to the point, it may be worthwhile to entertain other options or (partial) explanations for the findings. For example, have the authors considered that there may be an important role for attention? When testing very soon after the extinction procedure (and thus after the reminder), attentional processes may play an important role (more so than with longer intervals). The retrieval procedure could perhaps induce heightened attention to the reminded CS+ (which could be further enhanced by dlPFC stimulation)?

      (5) There is room for improvement in terms of language, clarity of the writing, and (presentation of the) statistical analyses, for all of which I have provided detailed feedback in the 'Recommendations for the authors' section. Idem for the data availability; they are currently not publicly available, in contrast with what is stated in the paper. In addition, it would be helpful if the authors would provide additional explanation or justification for some of the methodological choices (e.g., the 18-s interval and why stimulate 8 minutes after the reminder cue, the choice of stimulation parameters), and comment on reasons for (and implications of) the large amount of excluded participants (>25%).

      Finally, I think several statements made in the paper are overly strong in light of the existing literature (or the evidence obtained here) or imply causal relationships that were not directly tested.

    1. 11. Noble Cause CorruptionThe greatest evils come not from people seeking to do evil, but people seeking to do good and believing the ends justify the means. Everyone who was on the wrong side of history believed they were on the right side.
    2. 7. Fiction Lag (aka Experience-Taking)When people are captivated by a work of fiction, they unconsciously adopt the traits of their favorite characters. We develop our identities by copying others, and perhaps one reason we enjoy fiction is that it gives us ideas on who to be.
    3. 5. Ovsiankina Effect (aka Hemingway Effect)We have an intrinsic need to finish what we’ve started. Exploit this by taking your breaks mid-task; the incompleteness will gnaw at you, increasing your motivation to return to work. (When writing, I end each day mid-sentence because it
    1. eLife assessment

      This useful study reports machine learning models derived from large-scale data to predict the risk of post-stroke epilepsy. The evidence supporting the conclusions is, however, incomplete, as many important methodological aspects have been omitted or described too briefly, the analysis of the results is not complete, and the dataset and code have not been disclosed, which represents an obstacle to reproducibility. The study may be of some interest in the field of clinical neurology.

    2. Reviewer #1 (Public Review):

      Summary:

      This is a large cohort of ischemic stroke patients from a single centre. The author successfully set up predictive models for PTS.

      Strengths:

      The design and implementation of the trial are acceptable, and the results are credible. It may provide evidence of seizure prevention in the field of stroke treatment.

      Weaknesses:

      The methodology needs further consideration. The Discussion needs extensive rewriting.

    3. Reviewer #2 (Public Review):

      Summary

      The authors present multiple machine-learning methodologies to predict post-stroke epilepsy (PSE) from admission clinical data.

      Strengths

      The Statistical Approach section is very well written. The approaches used in this section are very sensible for the data in question.

      Weaknesses

      There are many typos and unclear statements throughout the paper.

      There are some issues with SHAP interpretation. SHAP in its default form, does not provide robust statistical guarantees of effect size. There is a claim that "SHAP analysis showed that white blood cell count had the greatest impact among the routine blood test parameters". This is a difficult claim to make.

      The Data Collection section is very poorly written, and the methodology is not clear.

      There is no information about hyperparameter selection for models or whether a hyperparameter search was performed. Given this, it is difficult to conclude whether one machine learning model performs better than others on this task.

      The inclusion and exclusion criteria are unclear - how many patients were excluded and for what reasons?

      There is no sensitivity analysis of the SMOTE methodology: How many synthetic data points were created, and how does the number of synthetic data points affect classification accuracy?

      Did the authors achieve their aims? Do the results support their conclusions?

      The paper does not clarify the features' temporal origins. If some features were not recorded on admission to the hospital but were recorded after PSE occurred, there would be temporal leakage.

      The authors claim that their models can predict PSE. To believe this claim, seeing more information on out-of-distribution generalisation performance would be helpful. There is limited reporting on the external validation cohort relative to the reporting on train and test data.

      For greater certainty on all reported results, it would be most appropriate to perform n-fold cross-validation, and report mean scores and confidence intervals across the cross-validation splits

      The likely impact of the work on the field

      If this model works as claimed, it will be useful for predicting PSE. This has some direct clinical utility.

      Analysis of features contributing to PSE may provide clinical researchers with ideas for further research on the underlying aetiology of PSE.

      Additional context that might help readers

      The authors show force plots and decision plots from SHAP values. These plots are non-trivial to interpret, and the authors should include an explanation of how to interpret them.

    4. Reviewer #3 (Public Review):

      Summary:

      The authors report the performance of a series of machine learning models inferred from a large-scale dataset and externally validated with an independent cohort of patients, to predict the risk of post-stroke epilepsy. Some of the reported models have very good explicative and predictive performances.

      Strengths:

      The models have been derived from real-world large-scale data.

      Performances of the best-performing models are very good according to the external validation results.

      Early prediction of the risk of post-stroke epilepsy would be of high interest to implement early therapeutic interventions that could improve prognosis.

      Weaknesses:

      There are issues with the readability of the paper. Many abbreviations are not introduced properly and sometimes are written inconsistently. A lot of relevant references are omitted. The methodological descriptions are extremely brief and, sometimes, incomplete.

      The dataset is not disclosed, and neither is the code (although the code is made available upon request). For the sake of reproducibility, unless any bioethical concerns impede it, it would be good to have these data disclosed.

      Although the external validation is appreciated, cross-validation to check the robustness of the models would also be welcome.

    1. eLife assessment

      This important study reveals a neural signature of a common behavioural phenomenon: serial dependence, whereby estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The study provides solid evidence that this phenomenon arises primarily during working memory maintenance. The pervasiveness of serial dependencies across modalities and species makes these findings important for researchers interested in perceptual decision-making across subfields.

    2. Reviewer #1 (Public Review):

      This study uses MEG to test for a neural signature of the trial history effect known as 'serial dependence.' This is a behavioral phenomenon whereby stimuli are judged to be more similar than they really are, in feature space, to stimuli that were relevant in the recent past (i.e., the preceding trials). This attractive bias is prevalent across stimulus classes and modalities, but a neural source has been elusive. This topic has generated great interest in recent years, and I believe this study makes a unique contribution to the field. The paper is overall clear and compelling, and makes effective use of data visualizations to illustrate the findings. Below, I list several points where I believe further detail would be important to interpreting the results. I also make suggestions for additional analyses that I believe would enrich understanding but are inessential to the main conclusions.

      (1) In the introduction, I think the study motivation could be strengthened, to clarify the importance of identifying a neural signature here. It is clear that previous studies have focused mainly on behavior, and that the handful of neuroscience investigations have found only indirect signatures. But what would the type of signature being sought here tell us? How would it advance understanding of the underlying processes, the function of serial dependence, or the theoretical debates around the phenomenon?

      (1a) As one specific point of clarification, on p. 5, lines 91-92, a previous study (St. John-Saaltink et al.) is described as part of the current study motivation, stating that "as the current and previous orientations were either identical or orthogonal to each other, it remained unclear whether this neural bias reflected an attraction or repulsion in relation to the past." I think this statement could be more explicit as to why/how these previous findings are ambiguous. The St. John-Saaltink study stands as one of very few that may be considered to show evidence of an early attractive effect in neural activity, so it would help to clarify what sort of advance the current study represents beyond that.

      (1b) The study motivation might also consider the findings of Ranieri et al (2022, J. Neurosci) Fornaciai, Togoli, & Bueti (2023, J. Neurosci), and Luo & Collins (2023, J. Neurosci) who all test various neural signatures of serial dependence.

      (2) Regarding the methods and results, it would help if the initial description of the reconstruction approach, in the main text, gave more context about what data is going into reconstruction (e.g., which sensors), a more conceptual overview of what the 'reconstruction' entails, and what the fidelity metric indexes. To me, all of that is important to interpreting the figures and results. For instance, when I first read, it was unclear to me what it meant to "reconstruct the direction of S1 during the S2 epoch" (p. 10, line 199)? As in, I couldn't tell how the data/model knows which item it is reconstructing, as opposed to just reporting whatever directional information is present in the signal.

      (2a) Relatedly, what does "reconstruction strength" reflect in Figure 2a? Is this different than the fidelity metric? Does fidelity reflect the strength of the particular relevant direction, or does it just mean that there is a high level of any direction information in the signal?

      (3) Then in the Methods, it would help to provide further detail still about the IEM training/testing procedure. For instance, it's not entirely clear to me whether all the analyses use the same model (i.e., all trained on stimulus encoding) or whether each epoch and timepoint is trained on the corresponding epoch and timepoint from the other session. This speaks to whether the reconstructions reflect a shared stimulus code across different conditions vs. that stimulus information about various previous and current trial items can be extracted if the model is tailored accordingly. Specifically, when you say "aim of the reconstruction" (p. 31, line 699), does that simply mean the reconstruction was centered in that direction (that the same data would go into reconstructing S1 or S2 in a given epoch, and what would differentiate between them is whether the reconstruction was centered to the S1 or S2 direction value)? Or were S1 and S2 trained and tested separately for the same epoch? And was training and testing all within the same time point (i.e., train on delay, test on delay), or train on the encoding of a given item, then test the fidelity of that stimulus code under various conditions?

      (3a) I think training and testing were done separately for each epoch and timepoint, but this could have important implications for interpreting the results. Namely if the models are trained and tested on different time points, and reference directions, then some will be inherently noisier than others (e.g., delay period more so than encoding), and potentially more (or differently) susceptible to bias. For instance, the S1 and S2 epochs show no attractive bias, but they may also be based on more high-fidelity training sets (i.e., encoding), and therefore less susceptible to the bias that is evident in the retrocue epoch.

      (4) I believe the work would benefit from a further effort to reconcile these results with previous findings (i.e., those that showed repulsion, like Sheehan & Serences), potentially through additional analyses. The discussion attributes the difference in findings to the "combination of a retro-cue paradigm with the high temporal resolution of MEG," but it's unclear how that explains why various others observed repulsion (thought to happen quite early) that is not seen at any stage here. In my view, the temporal (as well as spatial) resolution of MEG could be further exploited here to better capture the early vs. late stages of processing. For instance, by separately examining earlier vs. later time points (instead of averaging across all of them), or by identifying and analyzing data in the sensors that might capture early vs. late stages of processing. Indeed, the S1 and S2 reconstructions show subtle repulsion, which might be magnified at earlier time points but then shift (toward attraction) at later time points, thereby counteracting any effect. Likewise, the S1 reconstruction becomes biased during the S2 epoch, consistent with previous observations that the SD effects grow across a WM delay. Maybe both S1 and S2 would show an attractive bias emerging during the later (delay) portion of their corresponding epoch? As is, the data nicely show that an attractive bias can be detected in the retrocue period activity, but they could still yield further specificity about when and where that bias emerges.

      (5) A few other potentially interesting (but inessential considerations): A benchmark property of serial dependence is its feature-specificity, in that the attractive bias occurs only between current and previous stimuli that are within a certain range of similarity to each other in feature space. I would be very curious to see if the neural reconstructions manifest this principle - for instance, if one were to plot the trialwise reconstruction deviation from 0, across the full space of current-previous trial distances, as in the behavioral data. Likewise, something that is not captured by the DoG fitting approach, but which this dataset may be in a position to inform, is the commonly observed (but little understood) repulsive effect that appears when current and previous stimuli are quite distinct from each other. As in, Figure 1b shows an attractive bias for direction differences around 30 degrees, but a repulsive one for differences around 170 degrees - is there a corresponding neural signature for this component of the behavior?

    3. Reviewer #2 (Public Review):

      Summary:

      The study aims to probe the neural correlates of visual serial dependence - the phenomenon that estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The authors utilize an established retro-cue working memory task together with magnetoencephalography, which allows to probe neural representations of motion direction during encoding and retrieval (retro-cue) periods of each trial. The main finding is that neural representations of motion direction are not systematically biased during the encoding of motion stimuli, but are attracted towards the motion direction of the previous trial's target during the retrieval (retro-cue period), just prior to the behavioral response. By demonstrating a neural signature of attractive biases in working memory representations, which align with attractive behavioral biases, this study highlights the importance of post-encoding memory processes in visual serial dependence.

      Strengths:

      The main strength of the study is its elegant use of a retro-cue working memory task together with high temporal resolution MEG, enabling to probe neural representations related to stimulus encoding and working memory. The behavioral task elicits robust behavioral serial dependence and replicates previous behavioral findings by the same research group. The careful neural decoding analysis benefits from a large number of trials per participant, considering the slow-paced nature of the working memory paradigm. This is crucial in a paradigm with considerable trial-by-trial behavioral variability (serial dependence biases are typically small, relative to the overall variability in response errors). While the current study is broadly consistent with previous studies showing that attractive biases in neural responses are absent during stimulus encoding (previous studies reported repulsive biases), to my knowledge it is the first study showing attractive biases in current stimulus representations during working memory. The study also connects to previous literature showing reactivations of previous stimulus representations, although the link between reactivations and biases remains somewhat vague in the current manuscript. Together, the study reveals an interesting avenue for future studies investigating the neural basis of visual serial dependence.

      Weaknesses:

      The main weakness of the current manuscript is that the authors could have done more analyses to address the concern that their neural decoding results are driven by signals related to eye movements. The authors show that participants' gaze position systematically depended on the current stimuli's motion directions, which together with previous studies on eye movement-related confounds in neural decoding justifies such a concern. The authors seek to rule out this confound by showing that the consistency of stimulus-dependent gaze position does not correlate with (a) the neural reconstruction fidelity and (b) the repulsive shift in reconstructed motion direction. However, both of these controls do not directly address the concern. If I understand correctly the metric quantifying the consistency of stimulus-dependent gaze position (Figure S3a) only considers gaze angle and not gaze amplitude. Furthermore, it does not consider gaze position as a function of continuous motion direction, but instead treats motion directions as categorical variables. Therefore, assuming an eye movement confound, it is unclear whether the gaze consistency metric should strongly correlate with neural reconstruction fidelity, or whether there are other features of eye movements (e.g., amplitude differences across participants, and tuning of gaze in the continuous space of motion directions) which would impact the relationship with neural decoding. Moreover, it is unclear whether the consistency metric, which does not consider history dependencies in eye movements, should correlate with attractive history biases in neural decoding. It would be more straightforward if the authors would attempt to (a) directly decode stimulus motion direction from x-y gaze coordinates and relate this decoding performance to neural reconstruction fidelity, and (b) investigate whether gaze coordinates themselves are history-dependent and are attracted to the average gaze position associated with the previous trials' target stimulus. If the authors could show that (b) is not the case, I would be much more convinced that their main finding is not driven by eye movement confounds.

      I am not convinced by the across-participant correlation between attractive biases in neural representations and attractive behavioral biases in estimation reports. One would expect a correlation with the behavioral bias amplitude, which is not borne out. Instead, there is a correlation with behavioral bias width, but no explanation of how bias width should relate to the bias in neural representations. The authors could be more explicit in their arguments about how these metrics would be functionally related, and why there is no correlation with behavioral bias amplitude.

      The sample size (n = 10) is definitely at the lower end of sample sizes in this field. The authors collected two sessions per participant, which partly alleviates the concern. However, given that serial dependencies can be very variable across participants, I believe that future studies should aim for larger sample sizes.

      It would have been great to see an analysis in source space. As the authors mention in their introduction, different brain areas, such as PPC, mPFC, and dlPFC have been implicated in serial biases. This begs the question of which brain areas contribute to the serial dependencies observed in the current study. For instance, it would be interesting to see whether attractive shifts in current representations and pre-stimulus reactivations of previous stimuli are evident in the same or different brain areas.

    4. Reviewer #3 (Public Review):

      Summary:

      This study identifies the neural source of serial dependence in visual working memory, i.e., the phenomenon that recall from visual working memory is biased towards recently remembered but currently irrelevant stimuli. Whether this bias has a perceptual or post-perceptual origin has been debated for years - the distinction is important because of its implications for the neural mechanism and ecological purpose of serial dependence. However, this is the first study to provide solid evidence based on human neuroimaging that identifies a post-perceptual memory maintenance stage as the source of the bias. The authors used multivariate pattern analysis of magnetoencephalography (MEG) data while observers remembered the direction of two moving dot stimuli. After one of the two stimuli was cued for recall, decoding of the cued motion direction re-emerged, but with a bias towards the motion direction cued on the previous trial. By contrast, decoding of the stimuli during the perceptual stage was not biased.

      Strengths:

      The strengths of the paper are its design, which uses a retrospective cue to clearly distinguish the perceptual/encoding stage from the post-perceptual/maintenance stage, and the rigour of the careful and well-powered analysis. The study benefits from high within-participant power through the use of sensitive MEG recordings (compared to the more common EEG), and the decoding and neural bias analysis are done with care and sophistication, with appropriate controls to rule out confounds.

      Weaknesses:

      A minor weakness of the study is the remaining (but slight) possibility of an eye movement confound. A control analysis shows that participants make systematic eye movements that are aligned with the remembered motion direction during both the encoding and maintenance phases of the task. The authors go some way to show that this eye gaze bias seems unrelated to the decoding of MEG data, but in my opinion do not rule it out conclusively. They merely show that the strengths of the gaze bias and the strength of MEG-based decoding/neural bias are uncorrelated across the 10 participants. Therefore, this argument seems to rest on a null result from an underpowered analysis.

      Impact:

      This important study contributes to the debate on serial dependence with solid evidence that biased neural representations emerge only at a relatively late post-perceptual stage, in contrast to previous behavioural studies. This finding is of broad relevance to the study of working memory, perception, and decision-making by providing key experimental evidence favouring one class of computational models of how stimulus history affects the processing of the current environment.

    1. 2. Le diagnostic fait mais difficulté d’adressage pour le suivi3. Démographie médicale préoccupante et notamment enpédopsychiatrie4. Une insuffisance d’accompagnement après le Diagnostic
    2. Pas assez de dispositifs d’aller vers Insuffisance d’accompagnement et d’appui de la psychiatrie aux professionnelssociaux et médico-sociaux missionnés auprès de ces populations
    3. Insuffisance d’accompagnement
    4. b. On sait où adresser, mais problème d’accessibilité :i. Délai d’attente, notamment dans les CMPii. Offre de soins inexistante ou insuffisante ou inadaptéeiii. Insuffisance de spécialistes ou de centre experts (liste d’attente) (notamment pour lesTSA)iv. Accessibilité géographique notamment pour le recoursv. Accessibilité financièrevi. Démographie des professionnels : médecins, généralistes et spécialistes,orthophoniste, à noter la zone de Mantes-la-Jolie, particulièrement en difficulté enraison d’insuffisance de pédopsychiatres et de généralistes
    5. A noter, absence d’unité pédiatrique ou pédopsychiatrique pour les 0-11 ans au Centre Hospitalier Meulan-les-Mureaux
    6. dans les Yvelines Nord il n’existe aucune offre libérale et l’offre hospitalière est très restreinte,avec 50 % au minimum de postes de pédopsychiatre vacants
    1. и в

      В конце строки.

    2. 20–100

      В идеале тоже бы не разрывать.

    3. ....

      Точно надо четыре точки? Или это обычное многоточие?

    4. у

      Тоже в конце строки.

    5. а в

      У меня в конце строки.

    6. и

      У меня в конце строки.

    1. Résumé de la vidéo [00:00:00][^1^][1] - [00:23:53][^2^][2] : Ce webinaire, animé par Alice Pierre-François, se concentre sur l'animation d'un collectif SISM (Semaines d'Information sur la Santé Mentale) en France. Il aborde les stratégies pour engager les membres sur le long terme, les partenariats possibles, et les méthodes d'animation pour susciter la motivation. Des intervenants partagent leurs expériences en matière de coordination d'événements SISM et d'animation de collectifs locaux.

      Points saillants : + [00:00:00][^3^][3] Introduction et objectifs du webinaire * Présentation par Alice Pierre-François * Discussion sur l'engagement des membres et l'animation des collectifs * Conseils pour la gestion des collectifs SISM + [00:01:04][^4^][4] Intervenants et leurs expériences * Partage d'expériences par divers intervenants * Exemples de coordination et d'animation de collectifs * Importance de l'engagement et de la communication + [00:03:26][^5^][5] Règles d'échange et modération du webinaire * Modération par Léa Sonet, responsable communication du Psycom * Rappel des règles pour le bon déroulement du webinaire * Encouragement à l'interaction via le chat + [00:07:35][^6^][6] Historique et importance des SISM * Explication des SISM, un rendez-vous annuel sur la santé mentale * Objectifs et organisation des SISM * Rôle du collectif national et des collectifs locaux + [00:11:21][^7^][7] Présentation de Widad l Wafi sur les SISM à Vichy * Organisation des SISM par le collectif de Vichy communauté * Diversité des acteurs et événements organisés * Exemples d'actions menées lors des SISM 2023 + [00:22:15][^8^][8] Présentation de Mélissa sur les SISM dans le département de l'Ain * Contexte géographique et démographique de l'Ain * Adaptation des événements SISM aux spécificités du département * Importance de l'accès aux soins et de la communication

      Résumé de la vidéo [00:23:55][^1^][1] - [00:48:17][^2^][2]:

      Cette vidéo présente un webinaire sur l'animation d'un collectif SISM (Semaines d'Information sur la Santé Mentale) en juin 2024. Elle aborde l'évolution des SISM dans le département de l'Indre depuis leur création en 2013, leur intégration dans le projet territorial de santé mentale en 2020, et la coordination par le service de santé mentale de l'Indre depuis 2021. La vidéo met en lumière l'importance de la mutualisation des moyens, la participation des membres du collectif, et l'évaluation de la satisfaction des participants.

      Points forts: + [00:23:55][^3^][3] Historique et évolution des SISM * Création en 2013 par un petit groupe * Évolution et intégration dans le projet territorial de santé mentale en 2020 * Coordination par le service de santé mentale de l'Indre depuis 2021 + [00:26:01][^4^][4] Participation et organisation * Environ 48 partenaires en 2023 * Réalisation de 26 événements en 2023 * Types d'événements variés : ateliers, conférences, débats, etc. + [00:29:28][^5^][5] Le collectif EO et ses objectifs * Existence depuis 2016 * Objectifs de décloisonnement et de renforcement des liens entre acteurs * Organisation de manifestations variées en 2023 + [00:39:10][^6^][6] Rôles et partenariats au sein des collectifs * Importance de la clarté des rôles et des missions * Mutualisation des moyens et participation active des membres * Évaluation de la satisfaction et amélioration continue

      Résumé de la vidéo [00:48:20][^1^][1] - [01:11:41][^2^][2]:

      Cette vidéo présente un webinaire sur l'animation d'un collectif SISM (Semaines d'Information sur la Santé Mentale) en juin 2024. Les intervenants discutent des méthodes d'organisation, de la diversité des acteurs impliqués, et de l'importance de l'interconnaissance et du soutien mutuel pour le succès des initiatives.

      Points forts: + [00:48:20][^3^][3] Organisation et partenariats * Importance de l'offre et de la demande de ressources * Exemple d'un débat universitaire facilité par la disponibilité d'une salle * Émergence de beaux partenariats + [00:49:16][^4^][4] Rôle et diversité au sein du collectif * Composition variée du collectif inscrite dans la charte * Représentation des structures hospitalières, associations d'usagers, et autres * Deux sous-groupes : coordination et communication + [00:51:57][^5^][5] Interconnaissance et engagement * Interconnaissance préalable entre certains membres * Cultivation de liens à travers différents projets * Partage d'expériences et soutien dans les actions + [00:56:21][^6^][6] Importance de la présence politique * Impact de la présence politique sur la valorisation des actions * Objectif futur de renforcer le lien avec les élus + [00:59:32][^7^][7] Méthodes d'animation d'un collectif * Présentation d'outils d'animation pour faciliter l'engagement * Exemple d'un appel à participation pour élargir le collectif + [01:07:59][^8^][8] Animation et réunions plénières du collectif * Cinq réunions plénières annuelles pour l'organisation * Présentiel privilégié pour l'accueil et la convivialité * Partage d'expériences et création de partenariats lors des réunions

      Résumé de la vidéo [01:11:45][^1^][1] - [01:23:14][^2^][2]:

      Cette partie du webinaire se concentre sur l'animation d'un collectif SISM en juin 2024, mettant en lumière les stratégies de communication, les outils de coordination et les pratiques d'engagement des membres.

      Points forts: + [01:11:45][^3^][3] Communication et visibilité * Distribution de flyers et programmes communs * Utilisation de QR codes et cartes pour localiser les actions * Soutien logistique par les coordinateurs + [01:14:55][^4^][4] Facilitation et soutien aux membres * Simplification de la participation au collectif * Prise en charge interne de la production de matériel promotionnel * Financement de la convivialité et des réunions par la communauté + [01:17:01][^5^][5] Planification et organisation des réunions * Utilisation d'outils participatifs comme Doodle pour planifier * Rotation des lieux de réunion pour une meilleure connaissance mutuelle * Création d'un padlet pour partager les coordonnées et informations + [01:21:00][^6^][6] Conseils et recommandations pour l'animation * Importance de l'horizontalité, convivialité et partage d'expérience * Bienveillance, suppression des rapports de force et rappel des enjeux * Créativité dans l'animation du collectif pour renforcer l'identité

    1. Ccile Barrois sarigné adjoint 00:12:17 du Défenseur des droits en matière de simplification du langage en langage plus clair plus compréhensible vous pouvez nous poser les les enjeux de votre côté comment vous vous saisissez de de C cette problématique essentielle 00:12:30 on l'a vu oui euh je vous remercie de m'avoir convié à ce rendez-vous donc en qualité d'adjointe de clireedon défenseur des droits une institution qui est saisie de de plus de 2 2000000 réclamations enfin sollicitations par an 00:12:42 donc qui Crète un volume important et qui porte sur la question qui nous occupe aujourd'hui je crois un double regard tout d'abord celui d'une institution dont la mission de de de contrôle et de d'observation des 00:12:54 relations usagers services public est au cœur finalement des missions euh et dans ce cadre évidemment nous sommes confrontés à la question de la complexité de de du langage administratif complexité des procédures 00:13:07 qui nous reviennent qui nous reviennent à travers les réclamations qui sont transmises notamment à nos délégués du Défenseur des droits et et qui nous ont fait fait prendre conscience de de grandes difficultés notamment sur 00:13:19 l'accès à des prestations donc l'accès au droit
    2. Points forts de la vidéo "Parlez-vous français : pour une relation entre citoyens et services publics sans jargon" avec timestamps 00:00:00 - Introduction

      Présentation de l'atelier sur la simplification du langage administratif et son importance pour la relation entre citoyens et services publics. Les enjeux de la simplification du langage administratif : accessibilité, compréhension, confiance des usagers. Coûts de l'inintelligibilité du langage administratif pour les usagers et les services publics. 03:30 - Plan gouvernemental "Parlez-nous français"

      Lancement d'un plan gouvernemental pour lutter contre le jargon administratif. Capitalisation sur les actions déjà menées et les initiatives des services publics. Centré sur les écrits administratifs (courriers, formulaires, sites internet, démarches en ligne). Articulé avec la suppression et la numérisation des formulaires administratifs (SERFA). 07:30 - Difficultés de la lutte contre le jargon administratif

      Le langage administratif est souvent technique et centré sur l'administration elle-même. Nécessité d'un renversement de perspective pour se mettre à la place de l'usager. La norme "Langage clair" vise à communiquer des informations claires et utiles aux usagers. 10:30 - Exemple de France travail

      Réécriture des courriers avec des ergonomes et des usagers. Confrontation des courriers aux usagers pour tester leur compréhension. Utilisation de la notion de "parcours" pour simplifier les démarches administratives. 15:30 - Rôle de l'IA dans la simplification du langage administratif

      Potentiel de l'IA pour générer des textes clairs et accessibles. Nécessité de prendre en compte les biais et les limites de l'IA. Importance de l'évaluation et de la validation humaine des textes générés par l'IA. 20:00 - Conclusion

      Importance de la simplification du langage administratif pour la relation entre citoyens et services publics. Engagement du gouvernement à travers le plan "Parlez-nous français". Rôle de la DITIP pour accompagner les services publics dans cette démarche. Appel à continuer les efforts de simplification et de communication claire.

      Résumé de la vidéo "Parlez-vous français : pour une relation entre citoyens et services publics sans jargon" après 00:20:00 avec timestamps Voici un résumé de la vidéo "Parlez-vous français : pour une relation entre citoyens et services publics sans jargon" après 00:20:00 avec des timestamps :

      00:20:00 Introduction de l'atelier et présentation des intervenants.

      00:25:22 Gisèle Doriano, chef du service expérience usager à la DITIP, explique les raisons de l'atelier :

      Le langage administratif est un problème pour les usagers, notamment les plus vulnérables. Il y a un coût pour les usagers et les services publics. Le gouvernement a lancé un plan appelé "Parlez-nous français" pour simplifier le langage administratif. 00:31:42 Discussion sur les difficultés de la simplification du langage administratif :

      Il est souvent plus simple pour les agents d'utiliser un langage technique. L'administration a tendance à se centrer sur elle-même plutôt que sur l'usager. 00:35:22 Présentation des actions menées par France Travail pour simplifier ses courriers :

      Réécriture des courriers avec des ergonomes. Confrontation des courriers aux usagers. 00:39:42 Discussion sur l'utilisation de l'IA pour simplifier le langage administratif :

      L'IA peut être un outil utile, mais il faut être vigilant sur les biais et l'uniformisation. L'IA doit être utilisée comme un appui pour l'intervention humaine. 00:44:22 Cécile Barouat, Défenseur des droits, souligne l'importance de la simplification du langage administratif :

      Il faut identifier les objets les plus compliqués pour les usagers. Le plan gouvernemental "Parlez-nous français" est une bonne initiative. La DITIP a un rôle important à jouer pour accompagner les services publics. 00:48:22 Conclusion de l'atelier par Gisèle Doriano :

      Il y a une dynamique de simplification en cours. Le plan "Parlez-nous français" est un engagement fort du gouvernement. La DITIP est là pour aider les services publics à simplifier leur langage. 00:51:22 Fin de l'atelier.

    1. not a magic bullet to transform learning, but a valuable tool if effectivelyintegrated into instruction.

      True, many teachers I know are afraid of using new tools because they think it will change their whole teaching style to which they got used to and feel comfortable with.

    2. See Figure 3

      This example of using annotation could be adapted during reading lessons. Students can read a question annotated by the teacher and look for an answer around the annotated/highlighted part of the text; either in prior or following sentences.

    3. Linguistic affordances of digital collaborative readingpractices were helpful for skills in areas such as reading, vocabulary, grammar, and writing(Solmaz, 2021)

      Sounds like social annotation can be a powerful tool when doing guided discovery grammar introductions. Pity students at my school can't use laptops/tablets during lessons though.

    4. a relaxed pedagogical setting suitable for educational risktaking (Solmaz, 2021

      Good stuff. Risk taking is part of learning right? What was that theory called? Productive Failure?

    5. Social annotation improves learning by supporting self-regulation, increasing engagement,providing scaffolding for improved reading comprehension, and promoting deep thinking.

      Does this also mean that any social activity helps with the outlined skills/facets? E.g. does running pairwork activities in lessons increase self-regulation?

    6. But as we know, learning – and especially language learning – is morepowerful when it is social

      This is good stuff, may use it for my academic poster in unit 10.

    7. However, reading in undergraduateclasses is often a solitary activity, done (or perhaps more often not done) prior to class. Ifstudents have not actively engaged with the reading materials prior to class time, the ensuingsynchronous class time discussion can be unproductive, with the instructor forced to lecture onmaterial that should have been learned prior to class or skip the planned content.

      Social annotation has also ties to flipped learning?

    8. We know that students benefit from social learning: collaboration can help students process andunderstand new information, see different perspectives, and create a community of learners.

      Looks like social annotation has a lot to do with connectivism. I wonder if in old times reading an annotated book was a primitive example of connectivist learning?

    9. At the centre level, some teachers are beginning to include the use of infographics in theircourses enabling them to visualise their ideas, systematically present their information, andtransfer their content from one mode (e.g., text) to another (graphics) (Sukerti & Sitawati, 2019].Studies have shown the effect of infographics on enhancing student motivation and achievement(Ibrahem & Alamro, 2021; Kohnke et al., 2021).

      Even better is when the teacher gives the students an assignment to create the infographics. That increases the understanding of the content and is a good reflection practice.

    1. 这五种数据类型与底层数据结构对应关系图如下

      关系图要记住

    2. 因为 Redis 处理命令是单线程,所以执行命令的过程是原子的。

      表述有误吧,应该是线程安全

    1. эксплойт — это средство для выявления слабости в вашей сети или системе и использования этой уязвимости для получения доступа.

      это некоторые инструмент, средства, может скрипт, который используя уязвимость, дать хакере, доступ к комьютеру, к которому используется этот эксплойт

    1. yellow on male

      Just wanted to throw out that it may be important to study males due to the yellow gene being a sex-linked trait. Males will have a greater chance of inheriting the phenotype as they only require one X chromosome to display it.

    1. Before the exodus, for many years, all the world blew poisons into the sky. Forests died. The world grew warmer. Since the exodus the forests had returned and the world begun to cool, but the old poisons were still there, dormant.

      This line reminds me of a current problem occurring in this modern day: climate change. Global warming is the warming of the Earth and this has caused many drastic changes in different environments, creating many problems such as the melting of icebergs which rises sea levels.

    2. I picked up my basket and returned to the field, making sure to sway my hips as I walked.

      I question this... did she sway her hips in hopes of seducing the younger man that was looking at her? I think most likely so because she mentioned before that she was "slow to give him grandchildren."

    3. Long ago, our ancestors looked at the sky and saw gods. Their ancestors saw only stars. In the end, only the earth knew the truth.

      This line invoked an "aha" moment for me. The statement basically states that throughout time, there are people. Those people end up dying and the only thing left is going to be the Earth that "knows the truth". I find myself personally agreeing with this because it makes me ponder on the thought that Earth started out by itself and will most likely end by itself.

    1. RRID:AB_2106051

      DOI: 10.1016/j.celrep.2021.108876

      Resource: (Cell Signaling Technology Cat# 2113, RRID:AB_2106051)

      Curator: @Naa003

      SciCrunch record: RRID:AB_2106051


      What is this?

    2. RRID:AB_2106051

      DOI: 10.1016/j.celrep.2021.108876

      Resource: (Cell Signaling Technology Cat# 2113, RRID:AB_2106051)

      Curator: @Naa003

      SciCrunch record: RRID:AB_2106051


      What is this?

    1. 7415

      DOI: 10.1038/s41598-024-53588-x

      Resource: (BDSC Cat# 7415,RRID:BDSC_7415)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_7415


      What is this?

    2. 56500

      DOI: 10.1038/s41598-024-53588-x

      Resource: (BDSC Cat# 56500,RRID:BDSC_56500)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_56500


      What is this?

    3. 51630

      DOI: 10.1038/s41598-024-53588-x

      Resource: (BDSC Cat# 51630,RRID:BDSC_51630)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_51630


      What is this?

    4. 458

      DOI: 10.1038/s41598-024-53588-x

      Resource: (BDSC Cat# 458,RRID:BDSC_458)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_458


      What is this?

    5. BL3605

      DOI: 10.1038/s41598-024-53588-x

      Resource: (BDSC Cat# 3605,RRID:BDSC_3605)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_3605


      What is this?

    1. 31595

      DOI: 10.1038/s41467-024-45493-8

      Resource: RRID:BDSC_31595

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_31595


      What is this?

    2. 8253

      DOI: 10.1038/s41467-024-45493-8

      Resource: (BDSC Cat# 8253,RRID:BDSC_8253)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_8253


      What is this?

    3. 37520

      DOI: 10.1038/s41467-024-45493-8

      Resource: (BDSC Cat# 37520,RRID:BDSC_37520)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_37520


      What is this?

    4. 58496

      DOI: 10.1038/s41467-024-45493-8

      Resource: (BDSC Cat# 58496,RRID:BDSC_58496)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_58496


      What is this?

    5. 58428

      DOI: 10.1038/s41467-024-45493-8

      Resource: (BDSC Cat# 58428,RRID:BDSC_58428)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_58428


      What is this?

    6. 28817

      DOI: 10.1038/s41467-024-45493-8

      Resource: (BDSC Cat# 28817,RRID:BDSC_28817)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_28817


      What is this?

    7. 76171

      DOI: 10.1038/s41467-024-45493-8

      Resource: BDSC_76171

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_76171


      What is this?

    8. 86330

      DOI: 10.1038/s41467-024-45493-8

      Resource: BDSC_86330

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_86330


      What is this?

    1. 41924

      DOI: 10.1007/s00401-024-02689-y

      Resource: Flybase_FBst0464354

      Curator: @mpairish

      SciCrunch record: RRID:Flybase_FBst0464354


      What is this?

    2. 35172

      DOI: 10.1007/s00401-024-02689-y

      Resource: Flybase_FBst0461018

      Curator: @mpairish

      SciCrunch record: RRID:Flybase_FBst0461018


      What is this?

    3. 35171

      DOI: 10.1007/s00401-024-02689-y

      Resource: Flybase_FBst0461017

      Curator: @mpairish

      SciCrunch record: RRID:Flybase_FBst0461017


      What is this?

    4. 4095

      DOI: 10.1007/s00401-024-02689-y

      Resource: RRID:BDSC_4095

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_4095


      What is this?

    5. 5684

      DOI: 10.1007/s00401-024-02689-y

      Resource: (BDSC Cat# 5684,RRID:BDSC_5684)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_5684


      What is this?

    6. 5255

      DOI: 10.1007/s00401-024-02689-y

      Resource: (BDSC Cat# 5255,RRID:BDSC_5255)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_5255


      What is this?

    7. 5361

      DOI: 10.1007/s00401-024-02689-y

      Resource: BDSC_5361

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_5361


      What is this?

    8. 35364

      DOI: 10.1007/s00401-024-02689-y

      Resource: RRID:BDSC_35364

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_35364


      What is this?

    9. 38293

      DOI: 10.1007/s00401-024-02689-y

      Resource: RRID:BDSC_38293

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_38293


      What is this?

    10. 31309

      DOI: 10.1007/s00401-024-02689-y

      Resource: BDSC_31309

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_31309


      What is this?

    11. 31308

      DOI: 10.1007/s00401-024-02689-y

      Resource: RRID:BDSC_31308

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_31308


      What is this?

    12. 51635

      DOI: 10.1007/s00401-024-02689-y

      Resource: (BDSC Cat# 51635,RRID:BDSC_51635)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_51635


      What is this?

    13. 7019

      DOI: 10.1007/s00401-024-02689-y

      Resource: (BDSC Cat# 7019,RRID:BDSC_7019)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_7019


      What is this?

    14. 8816

      DOI: 10.1007/s00401-024-02689-y

      Resource: (BDSC Cat# 8816,RRID:BDSC_8816)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_8816


      What is this?

    1. BDSC#33640

      DOI: 10.1080/19490976.2024.2316533

      Resource: (BDSC Cat# 33640,RRID:BDSC_33640)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_33640


      What is this?

    2. BDSC#42748

      DOI: 10.1080/19490976.2024.2316533

      Resource: (BDSC Cat# 42748,RRID:BDSC_42748)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_42748


      What is this?

    3. BDSC#16829

      DOI: 10.1080/19490976.2024.2316533

      Resource: BDSC_16829

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_16829


      What is this?

    4. BDSC#7019

      DOI: 10.1080/19490976.2024.2316533

      Resource: (BDSC Cat# 7019,RRID:BDSC_7019)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_7019


      What is this?

    5. BDSC#8765

      DOI: 10.1080/19490976.2024.2316533

      Resource: (BDSC Cat# 8765,RRID:BDSC_8765)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_8765


      What is this?

    6. BDSC#48571

      DOI: 10.1080/19490976.2024.2316533

      Resource: (BDSC Cat# 48571,RRID:BDSC_48571)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_48571


      What is this?

    1. 5146

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 5146,RRID:BDSC_5146)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_5146


      What is this?

    2. 36328

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 36328,RRID:BDSC_36328)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_36328


      What is this?

    3. 5918

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 5918,RRID:BDSC_5918)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_5918


      What is this?

    4. 76759

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 76759,RRID:BDSC_76759)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_76759


      What is this?

    5. 57040

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 57040,RRID:BDSC_57040)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_57040


      What is this?

    6. 55892

      DOI: 10.3390/cells13050365

      Resource: BDSC_55892

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_55892


      What is this?

    7. 55869

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 55869,RRID:BDSC_55869)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_55869


      What is this?

    8. 38973

      DOI: 10.3390/cells13050365

      Resource: RRID:BDSC_38973

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_38973


      What is this?

    9. 25790

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 25790,RRID:BDSC_25790)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_25790


      What is this?

    10. 29442

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 29442,RRID:BDSC_29442)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_29442


      What is this?

    11. BDSC 55850

      DOI: 10.3390/cells13050365

      Resource: (BDSC Cat# 55850,RRID:BDSC_55850)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_55850


      What is this?

    1. 58694

      DOI: 10.1126/sciadv.adj0347

      Resource: BDSC_58694

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_58694


      What is this?

    2. 58692

      DOI: 10.1126/sciadv.adj0347

      Resource: (BDSC Cat# 58692,RRID:BDSC_58692)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_58692


      What is this?

    3. 58698

      DOI: 10.1126/sciadv.adj0347

      Resource: (BDSC Cat# 58698,RRID:BDSC_58698)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_58698


      What is this?

    4. 58696

      DOI: 10.1126/sciadv.adj0347

      Resource: (BDSC Cat# 58696,RRID:BDSC_58696)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_58696


      What is this?

    5. 43642

      DOI: 10.1126/sciadv.adj0347

      Resource: (BDSC Cat# 43642,RRID:BDSC_43642)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_43642


      What is this?

    1. 28299

      DOI: 10.1038/s41593-024-01589-4

      Resource: RRID:BDSC_28299

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_28299


      What is this?

    2. 52981

      DOI: 10.1038/s41593-024-01589-4

      Resource: RRID:BDSC_52981

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_52981


      What is this?

    3. 34974

      DOI: 10.1038/s41593-024-01589-4

      Resource: (BDSC Cat# 34974,RRID:BDSC_34974)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_34974


      What is this?

    4. 50911

      DOI: 10.1038/s41593-024-01589-4

      Resource: (BDSC Cat# 50911,RRID:BDSC_50911)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_50911


      What is this?

    5. 9146

      DOI: 10.1038/s41593-024-01589-4

      Resource: (BDSC Cat# 9146,RRID:BDSC_9146)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_9146


      What is this?

    1. 35785

      DOI: 10.1101/2023.12.12.571303

      Resource: (BDSC Cat# 35785,RRID:BDSC_35785)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_35785


      What is this?

    2. 76819

      DOI: 10.1101/2023.12.12.571303

      Resource: BDSC_76819

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_76819


      What is this?

    3. 35787

      DOI: 10.1101/2023.12.12.571303

      Resource: (BDSC Cat# 35787,RRID:BDSC_35787)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_35787


      What is this?

    4. 35431

      DOI: 10.1101/2023.12.12.571303

      Resource: RRID:BDSC_35431

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_35431


      What is this?

    5. 31603

      DOI: 10.1101/2023.12.12.571303

      Resource: (BDSC Cat# 31603,RRID:BDSC_31603)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_31603


      What is this?

    6. BL#33623

      DOI: 10.1101/2023.12.12.571303

      Resource: (BDSC Cat# 33623,RRID:BDSC_33623)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_33623


      What is this?

    7. BL#38464

      DOI: 10.1101/2023.12.12.571303

      Resource: (BDSC Cat# 38464,RRID:BDSC_38464)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_38464


      What is this?

    1. Bloomington (BL7078)

      DOI: 10.1038/s41467-024-46119-9

      Resource: (BDSC Cat# 7078,RRID:BDSC_7078)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_7078


      What is this?

    2. Bloomington 28281

      DOI: 10.1038/s41467-024-46119-9

      Resource: (BDSC Cat# 28281,RRID:BDSC_28281)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_28281


      What is this?

    3. Bloomington 24469

      DOI: 10.1038/s41467-024-46119-9

      Resource: (BDSC Cat# 24469,RRID:BDSC_24469)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_24469


      What is this?

    4. Bloomington 24470

      DOI: 10.1038/s41467-024-46119-9

      Resource: (BDSC Cat# 24470,RRID:BDSC_24470)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_24470


      What is this?

    5. Bloomington 35573

      DOI: 10.1038/s41467-024-46119-9

      Resource: (BDSC Cat# 35573,RRID:BDSC_35573)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_35573


      What is this?

    6. Bloomington 3955

      DOI: 10.1038/s41467-024-46119-9

      Resource: (BDSC Cat# 3955,RRID:BDSC_3955)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_3955


      What is this?

    1. UAS-InRK1409A (#8253)

      DOI: 10.2147/DDDT.S439876

      Resource: (BDSC Cat# 8253,RRID:BDSC_8253)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_8253


      What is this?

    2. Cg-GAL4 (#7011)

      DOI: 10.2147/DDDT.S439876

      Resource: (BDSC Cat# 7011,RRID:BDSC_7011)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_7011


      What is this?

    3. Drosophila strains w1118 (#3605)

      DOI: 10.2147/DDDT.S439876

      Resource: (BDSC Cat# 3605,RRID:BDSC_3605)

      Curator: @mpairish

      SciCrunch record: RRID:BDSC_3605


      What is this?

    1. Mhc-ANF-RFP

      DOI: 10.1101/2024.03.06.583697

      Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)

      Curator: @anisehay

      SciCrunch record: RRID:SCR_006457


      What is this?

    2. +/CyO-Dfd-EYFP

      DOI: 10.1101/2024.03.06.583697

      Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)

      Curator: @anisehay

      SciCrunch record: RRID:SCR_006457


      What is this?

    3. Hand-GFP

      DOI: 10.1101/2024.03.06.583697

      Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)

      Curator: @anisehay

      SciCrunch record: RRID:SCR_006457


      What is this?

    1. BDSC 51572

      DOI: 10.7554/eLife.97902

      Resource: (BDSC Cat# 51572,RRID:BDSC_51572)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_51572


      What is this?

    2. BDSC 80575

      DOI: 10.7554/eLife.97902

      Resource: RRID:BDSC_80575

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_80575


      What is this?

    3. BDSC 3039

      DOI: 10.7554/eLife.97902

      Resource: (BDSC Cat# 3039,RRID:BDSC_3039)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_3039


      What is this?

    4. BDSC 67852

      DOI: 10.7554/eLife.97902

      Resource: (BDSC Cat# 67852,RRID:BDSC_67852)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_67852


      What is this?

    5. BDSC 28032

      DOI: 10.7554/eLife.97902

      Resource: (BDSC Cat# 28032,RRID:BDSC_28032)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_28032


      What is this?

    6. BDSC 51568

      DOI: 10.7554/eLife.97902

      Resource: BDSC_51568

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_51568


      What is this?

    7. BDSC 91673

      DOI: 10.7554/eLife.97902

      Resource: BDSC_91673

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_91673


      What is this?

    8. BDSC 59819

      DOI: 10.7554/eLife.97902

      Resource: (BDSC Cat# 59819,RRID:BDSC_59819)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_59819


      What is this?

    1. BDSC stock # 4937

      DOI: 10.1101/2024.06.11.598535

      Resource: (BDSC Cat# 4937,RRID:BDSC_4937)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_4937


      What is this?

    2. BDSC stock # 4540

      DOI: 10.1101/2024.06.11.598535

      Resource: (BDSC Cat# 4540,RRID:BDSC_4540)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_4540


      What is this?

    3. BDSC stock # 3703

      DOI: 10.1101/2024.06.11.598535

      Resource: (BDSC Cat# 3703,RRID:BDSC_3703)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_3703


      What is this?

    4. BDSC stock # 24872

      DOI: 10.1101/2024.06.11.598535

      Resource: (BDSC Cat# 24872,RRID:BDSC_24872)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_24872


      What is this?

    1. BDSC#46438

      DOI: 10.1038/s41467-024-49326-6

      Resource: (BDSC Cat# 46438,RRID:BDSC_46438)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_46438


      What is this?

    2. BDSC#7019

      DOI: 10.1038/s41467-024-49326-6

      Resource: (BDSC Cat# 7019,RRID:BDSC_7019)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_7019


      What is this?

    3. BDSC#56553

      DOI: 10.1038/s41467-024-49326-6

      Resource: (BDSC Cat# 56553,RRID:BDSC_56553)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_56553


      What is this?

    4. BDSC#78060

      DOI: 10.1038/s41467-024-49326-6

      Resource: (BDSC Cat# 78060,RRID:BDSC_78060)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_78060


      What is this?

    5. BDSC#32184

      DOI: 10.1038/s41467-024-49326-6

      Resource: (BDSC Cat# 32184,RRID:BDSC_32184)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_32184


      What is this?

    6. BDSC#8751

      DOI: 10.1038/s41467-024-49326-6

      Resource: (BDSC Cat# 8751,RRID:BDSC_8751)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_8751


      What is this?

    1. OregonR (#5)

      DOI: 10.1038/s41467-024-49501-9

      Resource: (BDSC Cat# 5,RRID:BDSC_5)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_5


      What is this?

    2. w1118 (#3605

      DOI: 10.1038/s41467-024-49501-9

      Resource: (BDSC Cat# 3605,RRID:BDSC_3605)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_3605


      What is this?

    3. synapsin97 (#29031

      DOI: 10.1038/s41467-024-49501-9

      Resource: (BDSC Cat# 29031,RRID:BDSC_29031)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_29031


      What is this?

    4. dunce1 (#6020

      DOI: 10.1038/s41467-024-49501-9

      Resource: (BDSC Cat# 6020,RRID:BDSC_6020)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_6020


      What is this?

    5. R72G06-GAL4 (#39792

      DOI: 10.1038/s41467-024-49501-9

      Resource: (BDSC Cat# 39792,RRID:BDSC_39792)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_39792


      What is this?

    6. R58E02-GAL4 (#41347

      DOI: 10.1038/s41467-024-49501-9

      Resource: (BDSC Cat# 41347,RRID:BDSC_41347)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_41347


      What is this?

    7. R52B10-GAL4 (#69657

      DOI: 10.1038/s41467-024-49501-9

      Resource: BDSC_69657

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_69657


      What is this?

    8. R30G03-GAL4 (#49646

      DOI: 10.1038/s41467-024-49501-9

      Resource: (BDSC Cat# 49646,RRID:BDSC_49646)

      Curator: @bandrow

      SciCrunch record: RRID:BDSC_49646


      What is this?