1. Last 7 days
    1. In the evenings I would sitbefore this television bearing witness to the dispatchesfrom this other world. There were little white boys withcomplete collections of football cards, and their only wantwas a popular girlfriend and their only worry was poisonoak. That other world was suburban and endless, organizedaround pot roasts, blueberry pies, fireworks, ice cream sundaes, immaculate bathrooms, and small toy trucks thatwere loosed in wooded backyards with streams and glens.

      another instance of the american dream

    2. I remember being amazed that death could so easily riseup from the nothing of a boyish afternoon, billow up likefog.

      fig lang

    3. I waseleven years old,standing out in the parking lot in front ofthe 7-Eleven,

      anecdote

    4. Maybe it didn't.All I know is, the violence rose from the fear like smoke

      simile

    5. Have they told you this story? When your grandmother

      anecdote

    6. My father was so veryafraid. I felt it in the sting of his black leather belt, whichhe applied with more anxiety than anger, my father whobeat me as if someo�e might steal me away, because that is

      violance out of fear

    1. colonial

      I don't know if it's worth wading into this whole thing, but if you put the emphasis on any of the three words 'settler-colonial state' you'll get a really different story. The first is kind of James Scott, the public land survey system, etc. The second is maybe the one you're going to tell; it's also more aligned with Francis Kinnahan's take on the census atlases https://www.jstor.org/stable/40068544?read-now=1 which IIRC emphasizes the resource-extractive take towards the West, not their settlability/population.

    2. gathered information from those they colonized

      I sort of want a tiny bit more here about why this map exists -- was someone looking over Shanawdithit's shoulder? Giving her the pen? Where and when did this hit an archive? (and I've absorbed the library-land condemnation of the phrase 'the archive' -- here we're really talking about the archives of settler colonial states, or something.)

    3. 22Schmidt

      I can probably just preliiminary-publish the URL on my project here if you want it… Have also seen people cite -- dear God -- my 2015 AHA paper.

    4. increasingly pervasive empiricist worldview

      I think the word 'Enlightenment' needs to appear in this paragraph. Like, the traditional story, though not maybe not explicitly enough, treats data visualization as one of the great Enlightenment inventions. And there's some historiographical mainline you can plug into about how great the enlightenment and its inventions really were.

    5. We

      Assuming you mean here 'we' the authors of this project, but there's also an implicit jockeying for authority here (and reflected in the comments) where the 'we' is history/cultural studies. Somewhere (maybe it's coming in the intro) you may need to take up arms and lay out the reasons you (singular or plural) are coming from an extremely different notion of 'scholarship' than Tufte or most IEEE-viz card-carryers.

    6. Tufte

      Yeah, I think the comments here make clear that you need to engage a little more directly with who Tufte is. Possibly deploying critical vocabulary from literary studies -- canon, etc -- I was about to say that his weird fusion of critic and tastemaker is a weird old-fashioned like Matthew Arnold thing, but then I thought maybe like Helen Vendler?

    7. death-count

      I would probably say 'casualty rate' or something here -- I know nothing about the campaign, but I'd assume that desertions outnumber deaths.

      (I've always had a sneaking suspicion that Minard's chart isn't based on solid data, either, but when I tried to go to whatever is generally thought to be his source my French wasn't good enough to tell)

    8. RandomTimeline

      Probably want the z-index higher on the buttons here than the shuffled cards?

    1. This second paragraph is my problem with Duolingo. It tries to gamify language learning, but you end up playing a game more than actually learning a language. It's indeed really only good to learn vocabulary, in my opinion. Learning the grammar, the structure of a language, will teach you much more and more quickly. Vocabulary will come easily enough, it's the structure of the language that really teaches you the language. permalinkembedsaveparentreportreply[–]Slight-Brain6096 10 points11 points12 points 2 days ago (0 children)The best way to learn a language is total immersion. That isn't possible for the most of us. Duolingo gives me enough to be able to go and spend a weekend apologising to Italian restaurant staff for murdering their beautiful language

      I wonder how true these statements are for other people... in general

    2. 🇩🇰 N 🇬🇧 C2 🇲🇦 B2 🇪🇦 🇫🇷 🇩🇪 🇸🇦 B1/B2 🇮🇩 A2 138 points139 points140 points 2 days ago (17 children)I’ve found it a fun way to get your feet wet when starting learning a new language - or if you’re just trying out a possible TL. For rarer languages it can be one of the only apps available. I’m currently using it for Indonesian, along with Memrise and other resources. permalinkembedsavereportreply[–]Noktilucent🇺🇸(N) | 🇩🇪 (A2) | 🇮🇪 🇫🇷 (A1) | 🇷🇴🇭🇺 (A0) 61 points62 points63 points 2 days ago (13 children)Holy hell bro your flair This guy languages

      Okay the letter things are called "flairs"

    1. abularyWhat is your favorite foreign word? (self.languagelearning

      I feel like it would be fun to analyze the comments of this someway

    1. These false statements implicate Joe Biden’s knowledge of and role in his family’s influence peddling schemes and appear to be a calculated effort to shield Joe Biden from the impeachment inquiry.

      Commenting Here for Web Archival Purposes.

    1. Props!  It’s not as unpopular as i initially thought, but i’m learning welsh. permalinkembedsavereportreply[–]adoreleschatscy pl fr vi 87 points88 points89 points 10 days ago (10 children)Another Welsh learner here! I'm actually surprised (in a good way) at how many people I've come across on this sub who are learning it :D I'm also learning Vietnamese, but I've only seen a handful of other people learning it so far. permalinkembedsaveparentreportreply[–]TerrydOrleans 28 points29 points30 points 10 days ago (0 children)And yet another Welsh learner, reporting for duty!

      I love this whole thread! We can just search for language names, too, to figure out what under-resourced languages people really need.

    2. C1🇱🇹| C1🇷🇺| B1🇰🇭

      I've seen these little subtitle things a bunch around this subreddit now........... We should consider trying to pull them out of the data to see how many learners there are, of which languages, at what level!

    1. There was a pool where you could request languages and if that language got enough support AND a team put together to build it, it would be built! There was no shortage of volunteers for all sorts of languages. The conlangs were added as a marketing ploy.

      Woah.... Had community volunteers... Would that even still be a thing in 2024

    2. We would be 100% better off creating a new website that does things better than Duolingo. permalinkembedsaveparentreportreply[–]AegisToast 49 points50 points51 points 24 days ago (4 children) We would be 100% better off creating a new website that does things better than Duolingo. Great! Go do it. permalinkembedsaveparentreportreply[–]Khang4 18 points19 points20 points 24 days ago (3 children)There's plenty of websites that do it better than Duolingo already lol. permalinkembedsaveparentreportreply[–]Existing_Imagination 🇪🇸 N | 🇬🇧 C2 | 🇯🇵 Just started 7 points8 points9 points 24 days ago (1 child)Keeping in mind that Duolingo is a game and not an e-book, which ones? permalinkembedsaveparentreportreply[–]pauuul19 3 points4 points5 points 23 days ago (0 children)genuine bump^ post sauce permalinkembedsaveparentreportreply[–]dcporlandoEn N | Es B1? 1 point2 points3 points 23 days ago (0 children)Not for Spanish. permalinkembedsaveparentreportreply[–]furac_1 8 points9 points10 points 24 days ago (0 children) We would be 100% better off creating a new website that does things better than Duolingo. They are trying to do it, it's called lingonaut

      I wonder what people would want in such a website. Just, more languages? Or more community-sourced content? Or...?

    3. They aren't profitable very right now, and last year were still losing money.

      Duolingo losing money? That's crazy!

    4. Have they publicly stated that they won’t be adding new courses? permalinkembedsaveparentreportreply[–]BitterBloodedDemon🇺🇸 English N | 🇯🇵 日本語 236 points237 points238 points 24 days ago (4 children)They did several years ago. I don't remember if it was on the now defunct incubator page or where I found it. But it seems to have been removed. I even looked for some of the exact wording they used. So I stand corrected, maybe they picked back up. It looks like they added some new ones last year? In any case it may not have been "public" per-se. But it was stated at one point. permalinkembedsaveparentreportreply[–]ChishaWolf 3 points4 points5 points 23 days ago (1 child)They added a Mandarin → Cantonese course last year permalinkembedsaveparentreportreply[–]BitterBloodedDemon🇺🇸 English N | 🇯🇵 日本語 3 points4 points5 points 23 days ago (0 children)Oh neat! So yeah the old thing I read would be defunct then permalinkembedsaveparentreportreply[–]CanKrel 3 points4 points5 points 24 days ago (1 child)Oh thats sad, so many languages we need like serbian, belarussian or icelandic permalinkembedsaveparentreportreply[–]BitterBloodedDemon🇺🇸 English N | 🇯🇵 日本語 5 points6 points7 points 24 days ago (0 children)I've been holding out for a German from Japanese course personally. There's one on Memrise but it feels too disjointed for me.

      People just want more languages, more options!!!!

    5. In my opinion, it’s better now. Phrases used be a lot more unnatural with even more unnecessary vocabulary than nowadays. It was like a regular textbook, that’s what I remember permalinkembedsaveparentreportreply[–]ibrahim0000000 1 point2 points3 points 24 days ago (0 children)I feel the same way

      aka before an AI revolution maybe?

    6. .... ok I take it this is because you have no idea HOW Duolingo got the Klingon course... you must be relatively new. So back when I started using Duolingo it was purely volunteer made. There was a pool where you could request languages and if that language got enough support AND a team put together to build it, it would be built! That's how Klingon got a duolingo course. It was voted for, and a volunteer team was assembled, and they built it. Everything from the courses themselves, to the audio recordings for singular words and questions used to be 100% user-volunteer produced. The existence of a Klingon course is the remnant of that era of Duolingo. Currently Duolingo has NO interest in producing any more courses, at least for the foreseeable future, and instead is more professionally expanding on the courses already available. permalinkembedsavereportreply[–]antpalmerpalmink 192 points193 points194 points 24 days ago (21 children)I miss the old Duolingo permalinkembedsaveparentreportreply[–]RevolutionaryStar824 186 points187 points188 points 24 days ago (1 child)I hate the new Duolingo. The bad mood Duolingo. I miss the sweet Duolingo. permalinkembedsaveparentreportreply[–]The_Tea_Party 47 points48 points49 points 24 days ago (0 children)I gotta to say at that time I'd like to meet Duolingo.

      People miss the community-based approach... civic action type

    1. Where teachers’ practices are considered ineffective, studying their beliefs can helpunderstand the reasons for these practices.
      1. Understanding reasons for ineffective practice (provides a good starting point to change)
    2. provides insight into the extent to which theinnovation is having the intended impact
      1. Insight into why or why not innovation is having the intended impact
    3. can stimulate teacherchange.

      Arguments for studying the relationship between teachers' beliefs and practices: 1. can stimulate teacher change

    4. belief is a complex,multidimensional concept and one general criticism that can be levelled at research intothe beliefs/practice relationship in language teaching is that this complexity is oftendismissed through simplistic conceptualizations and research designs

      Belief is a complex, multidimensional concept that is often dismissed or oversimplified.

    1. People cannot be treated unjustly by their own actions. So when authorization is introduced in the second premise, it has to be used to establish the subjects' ownership of the sovereign's actions.

      Does authorization really imply ownership?

    1. We added an API proposal that enables tools or functions calling. The API comes with two major parts: The ability for extensions to register a "tool". A tool is a piece of functionality that is meant to be used by language models. For example, reading the Git history of a file. The mechanics for language models to support tools, such as: extensions passing tools when making a request, language models requesting a tool invocation, and extensions communicating back the result of a tool invocation.

      Interesting further integration design.

    1. up to 90 days before your current OPT employment authorization expires, and within 60 days of the date your designated school official (DSO) enters the recommendation for OPT into your Student and Exchange Visitor Information System (SEVIS) record.

      I guess it means dso enters the recommendation for STEM OPT into the SEVIS record?

    1. >1.44 billion

      According to Wikipedia's article about Google's Knowledge Graph, by 2020 it had 500 billion facts (statements), that is roughly 350 times the number of statements (although without annotations/qualifiers, I assume), and 5 billion items, that is roughly 50 times the number of items.

      Of course the problems with the size of Wikidata is not only technical (e.g., SPARQL queries times) but also social: how can we maintain this amount of data?

    1. answered "roughly one-third" of the 100 billion monthly searches

      I wonder how Google's Knowledge Graph role may be changing in this era of generative AI's.

    1. window make no reference to former roses or to better ones;

      Why are we, as people, so burdened by what we are not?

    2. Whence, then, this worship of the past?

      I believe Emerson is saying that the past, the process of growth and nurturing our thoughts and selves, is not something to look back on with envy or pride. Perhaps it is a burden that we once were not enlightened, and we should see the present and the future as excellence and beyond. Let me know what you think (anyone)!

    3. in the world which exists for him.

      It must have been easier to feel this way considering the life Emerson was able to live, meanwhile others were not able to live such a life.

    4. Expect me not to show cause why I seek or why I exclude company.

      This reminds me of a discussion that has been happening in leftist spaces, essentially the question of: is it our job to educate those around us out of their bigotry, or can we cast them off because they may not or will not learn? I believe Emerson does not want to have to allow every person into his space, especially if he feels that the other person has not truly thought through their positions in a critical way the way he has. He has put in the work, therefore if he decides not to spend time with someone who has not nurtured or harvested their own thoughts, then he is under no obligation to open his doors to them.

    5. No law can be sacred to me but that of my nature.

      This must have been controversial at the time. Even now (as someone who was raised as a fundamentalist christian) this idea that our own thoughts can be trusted to guide us in the right direction without sometimes needing to be challenged would probably be frightening to some.

    6. Society is a joint-stock company, in which the members agree, for the better securing of his bread to each shareholder, to surrender the liberty and culture of the eater.

      Profits are best secured when you do not present yourself as controversial, and everyone within the company keeps things conformed to the expectation so that no one will be turned away and/or find something disagreeable. The more you identify as an individual, perhaps the less easy it is to advertise yourself and/or make money.

    7. But the man is, as it were, clapped into jail by his consciousness. As soon as he has once acted or spoken with eclat, he is a committed person, watched by the sympathy or the hatred of hundreds, whose affections must now enter into his account. There is no Lethe for this. Ah, that he could pass again into his neutrality!

      I wonder if Emerson is saying that while a boy can participate in critical analysis and criticism without much consequence (or fear of consequence), meanwhile once you have revealed yourself as an intellectual man you cannot go on pretending you are ignorant to the world around you, and each statement you make will be judged and recorded as an extension of yourself.

    8. The nonchalance of boys who are sure of a dinner

      Emerson might be saying that as younger folk, we are far more likely to engage and criticize and not worry so much about the consequences that might become of us, especially were we to criticize our equals or those above us. A boy will judge without thought of reputation or other influences or motivations.

    9. obeying the Almighty effort, and advancing on Chaos and the Dark.

      Nurturing and harvesting our thoughts, which are somewhat divine, will lead humanity into the light and away from the dark. This is in collaboration with what God has requested of us.

    10. Accept the place the divine providence has found for you, the society of your contemporaries, the connection of events.

      Engage with your thoughts, engage with the culture around you, the past and the present and the future.

    11. It is a deliverance which does not deliver. In the attempt his genius deserts him; no muse befriends; no invention, no hope.

      It's almost like Emerson thinks of the mind as a garden which must be nurtured and harvested, requiring effort on our end within our own minds, otherwise we are essentially wasting bountiful harvests.

    12. God will not have his work made manifest by cowards.

      If you are to forward the agenda that God has asked of you, you cannot be passive with your own thoughts and pursuits.

    13. envy is ignorance;

      Jealousy can come from a lack of understanding as to how one can achieve what others seem to have achieved.

    14. Else, to-morrow a stranger will say with masterly good sense precisely what we have thought and felt all the time, and we shall be forced to take with shame our own opinion from another.

      Perhaps this is talking about how one might passively engage with art without criticism or analysis and assume it is meant to be received well or taken on good faith, and how the criticisms and analyses we suppress will inevitably be shared by others more willing to engage, and how that is in some ways a lost opportunity for our own development of thought.

    15. Yet he dismisses without notice his thought, because it is his

      This feels like a 'mindfulness' practice, something that is more and more encouraged nowadays in the public domain and in various therapies. Emerson is suggesting that we should not just passively think, but engage with, analyze, and build upon thought.

    16. inmost in due time becomes the outmost,

      My interpretation of this is that when we truly accept how we are deep within, it will carry over into the way we outwardly live our lives and take action.

    1. Of their food and victuals, you must know that they eat all their dead animalswithout distinction, and with such flocks and herds, it cannot be but that manyanimals die. Nevertheless, in summer, so long as lasts their cosmos, that is to saymare's milk, they care not for any other food.

      I was not expecting to read that they ate it without distinction, but it makes a lot of sense. As that would be the most logical way to have food and to not waste anything. As the rest of the sections goes on about how they store things for another time. The fact that he may not give it to another also stuck out to me because this seems the opposite of the ideology, but it also makes the most sense for that one person to keep what is theirs.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment 

      fMRI was used to address an important aspect of human cognition - the capacity for structured representations and symbolic processing - in a cross-species comparison with non-human primates (macaques); the experimental design probed implicit symbolic processing through reversal of learned stimulus pairs. The authors present solid evidence in humans that helps elucidate the role of brain networks in symbolic processing, however the evidence from macaques was incomplete (e.g., sample size constraints, potential and hard-to-quantify differences in attention allocation, motivation, and lived experience between species).

      Thank you very much for your assessment. We would like to address the potential issues that you raise point-by-point below.

      We agree that for macaque monkey physiology, sample size is always a constraint, due to both financial and ethical reasons. We addressed this concern by combining the results from two different labs, which allowed us to test 4 animals in total, which is twice as much as what is common practice in the field of primate physiology. (We discuss this now on lines 473-478.)

      Interspecies differences in motivation, attention allocation, task strategies etc. could also be limiting factors. Note that we did address the potential lack of attention allocation directly in Experiment 2 using implicit reward association, which was successful as evidenced by the activation of attentional control areas in the prefrontal cortex. We cannot guarantee that the strategies that the two species deploy are identical, but we tentatively suggest that this might be a less important factor in the present study than in other interspecies comparisons that use explicit behavioral reports. In the current study, we directly measured surprise responses in the brain in the absence of any explicit instructions in either species, which allowed us to  measure the spontaneous reversal of learned associations, which is a very basic element of symbolic representation. Our reasoning is that such spontaneous responses should be less dependent on attention allocation and task strategies. (We discuss this now in more detail on lines 478-485.)

      Finally, lived experience could be a major factor. Indeed, obvious differences include a lifetime of open-field experiences and education in our human adult subjects, which was not available to the monkey subjects, and includes a strong bias towards explicit learning of symbolic systems (e.g. words, letters, digits, etc). However, we have previously shown that 5-month-old human infants spontaneously generalize learning to the reversed pairs after a short learning in the lab using EEG (Kabdebon et al, PNAS, 2019). This indicates that also with very limited experience, humans spontaneously reverse learned associations. (We discuss this now in more detail on lines 478-485.) It could be very interesting to investigate whether spontaneous reversal could be present in infant macaque monkeys, as there might be a critical period for this effect. Although neurophysiology in awake infant monkeys is highly challenging, it would be very relevant for future work. (We discuss this in more detail on lines 493-498.)

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Kerkoerle and colleagues present a very interesting comparative fMRI study in humans and monkeys, assessing neural responses to surprise reactions at the reversal of a previously learned association. The implicit nature of this task, assessing how this information is represented without requiring explicit decision-making, is an elegant design. The paper reports that both humans and monkeys show neural responses across a range of areas when presented with incongruous stimulus pairs. Monkeys also show a surprise response when the stimuli are presented in a reversed direction. However, humans show no such surprise response based on this reversal, suggesting that they encode the relationship reversibly and bidirectionally, unlike the monkeys. This has been suggested as a hallmark of symbolic representation, that might be absent in nonhuman animals. 

      I find this experiment and the results quite compelling, and the data do support the hypothesis that humans are somewhat unique in their tendency to form reversible, symbolic associations. I think that an important strength of the results is that the critical finding is the presence of an interaction between congruity and canonicity in macaques, which does not appear in humans. These results go a long way to allay concerns I have about the comparison of many human participants to a very small number of macaques. 

      We thank the reviewer for the positive assessment. We also very much appreciate the point about the interaction effect in macaque monkeys – indeed, we do not report just a negative finding. 

      I understand the impossibility of testing 30+ macaques in an fMRI experiment. However, I think it is important to note that differences necessarily arise in the analysis of such datasets. The authors report that they use '...identical training, stimuli, and whole-brain fMRI measures'. However, the monkeys (in experiment 1) actually required 10 times more training. 

      We agree that this description was imprecise. We have changed it to “identical training stimuli” (line 151), indeed the movies used for training were strictly identical. Furthermore, please note that we do report the fMRI results after the same training duration. In experiment 1, after 3 days of training, the monkeys did not show any significant results, even in the canonical direction. However, in experiment 2, with increased attention and motivation, a significant effect was observed on the first day of scanning after training, as was found in human subjects (see Figure 4 and Table 3).

      More importantly, while the fMRI measures are the same, group analysis over 30+ individuals is inherently different from comparing only 2 macaques (including smoothing and averaging away individual differences that might be more present in the monkeys, due to the much smaller sample size). 

      Thank you for understanding that a limited sampling size is intrinsic to macaque monkey physiology. We also agree that data analysis in humans and monkeys is necessarily different. As suggested by the reviewer, we added an analysis to address this, see the corresponding reply to the ‘Recommendations for the authors’ section below.

      Despite this, the results do appear to show that macaques show the predicted interaction effect (even despite the sample size), while humans do not. I think this is quite convincing, although had the results turned out differently (for example an effect in humans that was absent in macaques), I think this difference in sample size would be considerably more concerning. 

      Thank you for noting this. Indeed, the interaction effect is crucial, and the task design was explicitly made to test this precise prediction, described in our manuscript as the “reversibility hypothesis”. The congruity effect in the learned direction served as a control for learning, while the corresponding congruity effect in the reversed direction tested for spontaneous reversal. The reversibility hypothesis stipulates that in humans there should not be a difference between the learned and the reversed direction, while there should be for monkeys. We already wrote about that in the result section of the original manuscript and now also describe this more explicitly in the introduction and beginning of the result section.

      I would also note that while I agree with the authors' conclusions, it is notable to me that the congruity effect observed in humans (red vs blue lines in Fig. 2B) appears to be far more pronounced than any effect observed in the macaques (Fig. 3C-3). Again, this does not challenge the core finding of this paper but does suggest methodological or possibly motivational/attentional differences between the humans and the monkeys (or, for example, that the monkeys had learned the associations less strongly and clearly than the humans). 

      As also explained in response to the eLife assessment above, we expanded the “limitations” section of the discussion, with a deeper description of the possible methodological differences between the two species (see lines 478-485).

      With the same worry in mind, we did increase the attention and motivation of monkeys in experiment 2, and indeed obtained a greater activation to the canonical pairs and their violation, -notably in the prefrontal cortex – but crucially still without reversibility.

      In the end, we believe that the striking interspecies difference in size and extent of the violation effect, even for purely canonical stimuli, is an important part of our findings and points to a more efficient species-specific learning system, that our experiment tentatively relates to a symbolic competence.

      This is a strong paper with elegant methods and makes a worthwhile contribution to our understanding of the neural systems supporting symbolic representations in humans, as opposed to other animals. 

      We again thank the reviewer for the positive review.

      Reviewer #2 (Public Review): 

      In their article titled "Brain mechanisms of reversible symbolic reference: a potential singularity of the human brain", van Kerkoerle et al address the timely question of whether non-human primates (rhesus macaques) possess the ability for reverse symbolic inference as observed in humans. Through an fMRI experiment in both humans and monkeys, they analyzed the bold signal in both species while observing audio-visual and visual-visual stimuli pairs that had been previously learned in a particular direction. Remarkably, the findings pertaining to humans revealed that a broad brain network exhibited increased activity in response to surprises occurring in both the learned and reverse directions. Conversely, in monkeys, the study uncovered that the brain activity within sensory areas only responded to the learned direction but failed to exhibit any discernible response to the reverse direction. These compelling results indicate that the capacity for reversible symbolic inference may be unique to humans. 

      In general, the manuscript is skillfully crafted and highly accessible to readers. The experimental design exhibits originality, and the analyses are tailored to effectively address the central question at hand.

      Although the first experiment raised a number of methodological inquiries, the subsequent second experiment thoroughly addresses these concerns and effectively replicates the initial findings, thereby significantly strengthening the overall study. Overall, this article is already of high quality and brings new insight into human cognition. 

      We sincerely thank the reviewer for the positive comments. 

      I identified three weaknesses in the manuscript: 

      - One major issue in the study is the absence of significant results in monkeys. Indeed, authors draw conclusions regarding the lack of significant difference in activity related to surprise in the multidemand network (MDN) in the reverse congruent versus reverse incongruent conditions. Although the results are convincing (especially with the significant interaction between congruency and canonicity), the article could be improved by including additional analyses in a priori ROI for the MDN in monkeys (as well as in humans, for comparison). 

      First, we disagree with the statement about “absence of significant results in monkeys”. We do report a significant interaction which, as noted by the referee, is a crucial positive finding.

      Second, we performed the suggested analysis for experiment 2, using the bilateral ROIs of the putative monkey MDN from previous literature (Mitchell, et al. 2016), which are based on the human study by Fedorenko et al. (PNAS, 2013). 

      Author response table 1.

      Congruity effect for monkeys in Experiment 2 within the ROIs of the MDN (n=3). Significance was assessed with one-sided one-sample t-tests.

      As can be seen, none of the regions within the monkey MDN showed an FDR-corrected significant difference or interaction. Although the absence of a canonical congruity effect makes it difficult to draw strong conclusions, it did approach significance at an uncorrected level in the lateral frontal posterior region, similar to  the large prefrontal effect we report in Figures 4 and 5. Furthermore, for the reversed congruity effect there was never even a trend at the uncorrected level, and the crucial interaction of canonicity and congruity again approached significance in the lateral prefrontal cortex.  

      We also performed an ANOVA  in the human participants of the VV experiment on the average betas across the 7 different fronto-parietal ROIs as used by Mitchell et al to define their equivalent to the monkey brain (Fig 1a, right in Mitchell et al. 2016) with congruity, canonicity and hemisphere (except for the anterior cingulate which is a bilateral ROI) as within-subject factors. We confirmed the results presented in the manuscript (Figure 4C) with notably no significant interaction between congruity and canonicity in any of these ROIs (all F-values (except insula) <1). A significant main effect of congruity was observed in the posterior middle frontal gyrus (MFG) and inferior precentral sulcus at the FDR corrected level. Analyses restricted to the canonical trials found a congruity effect in these two regions plus the anterior insula and anterior cingulate/presupplementary motor area, whereas no ROIs were significant at a FDR corrected level for reverse trials. There was a trend in the middle MFG and inferior precentral region for reversed trials. Crucially, there was not even a trend for the interaction between congruity and canonicity at the uncorrected level. The difference in the effect size between the canonical and reversed direction can therefore be explained by the larger statistical power due to the larger number of congruent trials (70%, versus 10% for the other trial conditions), not by a significant effect by the canonical and the reversed direction. 

      Author response table 2.

      Congruity effect for humans in Experiment 2 within the ROIs of the MDN (n=23).

      These results support our contention that the type of learning of the stimulus pairs was very different in the two species. We thank the reviewer for suggesting these relevant additional analyses.

      - While the authors acknowledge in the discussion that the number of monkeys included in the study is considerably lower compared to humans, it would be informative to know the variability of the results among human participants. 

      We agree that this is an interesting question, although it is also very open-ended. For instance, we could report each subjects’ individual whole-brain results, but this would take too much space (and the interested reader will be able to do so from the data that we make available as part of this publication). As a step in this direction, we provide below a figure showing the individual congruity effects, separately for each experiment and for each ROI of table 5, and for each of the 52 participants for whom an fMRI localizer was available:

      Author response image 1.

      Difference in mean betas between congruent and incongruent conditions in a-priori linguistic and mathematical ROIs (see definition and analyses in Table 5) in both experiments (experiment 1 = AV, left panel; experiment 2= VV, right panel). Dots correspond to participants (red: canonical trials, green reversed trials).The boxplot notch is located at the median and the lower and upper box hinges at the 25th and 75th centiles. Whiskers extend to 1.5 inter-quartile ranges on either side of the hinges. ROIs are ranked by the median of the Incongruent-Congruent difference across canonical and reversed order,

      within a given experiment. For purposes of comparison between the two experiments, we have underlined with colors the top-five common ROIs between the two experiments. N.s.: non-significant congruity effect (p>0.05)

      Several regions show a rather consistent difference across subjects (see, for instance, the posterior STS in experiment 1, left panel). Overall, only 3 of the 52 participants did not show any beta superior to 2 in canonical or reversed in any ROIs. The consistency is quite striking, given the limited number of test trials (in total only 16 incongruent trials per direction per participant), and the fact that these ROIs were selected for their responses to spoken or written  sentences, as part of a subsidiary task quite different from the main task.

      - Some details are missing in the methods.  

      Thank you for these comments, we reply to them point-by-point below.

      Reviewer #3 (Public Review): 

      This study investigates the hypothesis that humans (but not non-human primates) spontaneously learn reversible temporal associations (i.e., learning a B-A association after only being exposed to A-B sequences), which the authors consider to be a foundational property of symbolic cognition. To do so, they expose humans and macaques to 2-item sequences (in a visual-auditory experiment, pairs of images and spoken nonwords, and in a visual-visual experiment, pairs of images and abstract geometric shapes) in a fixed temporal order, then measure the brain response during a test phase to congruent vs. incongruent pairs (relative to the trained associations) in canonical vs. reversed order (relative to the presentation order used in training). The advantage of neuroimaging for this question is that it removes the need for a behavioral test, which non-human primates can fail for reasons unrelated to the cognitive construct being investigated. In humans, the researchers find statistically indistinguishable incongruity effects in both directions (supporting a spontaneous reversible association), whereas in monkeys they only find incongruity effects in the canonical direction (supporting an association but a lack of spontaneous reversal). Although the precise pattern of activation varies by experiment type (visual-auditory vs. visual-visual) in both species, the authors point out that some of the regions involved are also those that are most anatomically different between humans and other primates. The authors interpret their finding to support the hypothesis that reversible associations, and by extension symbolic cognition, is uniquely human. 

      This study is a valuable complement to prior behavioral work on this question. However, I have some concerns about methods and framing. 

      We thank the reviewer for the careful summary of the manuscript, and the positive comments.

      Methods - Design issues: 

      The authors originally planned to use the same training/testing protocol for both species but the monkeys did not learn anything, so they dramatically increased the amount of training and evaluation. By my calculation from the methods section, humans were trained on 96 trials and tested on 176, whereas the monkeys got an additional 3,840 training trials and 1,408 testing trials. The authors are explicit that they continued training the monkeys until they got a congruity effect. On the one hand, it is commendable that they are honest about this in their write-up, given that this detail could easily be framed as deliberate after the fact. On the other hand, it is still a form of p-hacking, given that it's critical for their result that the monkeys learn the canonical association (otherwise, the critical comparison to the non-canonical association is meaningless). 

      Thank you for this comment. 

      Indeed, for experiment 1, the amount of training and testing was not equal for the humans and monkeys, as also mentioned by reviewer 2. We now describe in more detail how many training and imaging days we used for each experiment and each species, as well as the number of blocks per day and the number of trials per block (see lines 572-577). We also added the information on the amount of training receives to all of the legends of the Tables.

      We are sorry for giving the impression that we trained until the monkeys learned this. This was not the case. Based on previous literature, we actually anticipated that the short training would not be sufficient, and therefore planned additional training in advance. Specifically, Meyer & Olson (2011) had observed pair learning in the inferior temporal cortex of macaque monkeys after 816 exposures per pair. This is similar to the additional training we gave, about 80 blocks with 12 trials per pair per block. This is  now explained in more detail (lines 577-580).

      Furthermore, we strongly disagree with the pejorative term p-hacking. The aim of the experiment was not to show a congruency effect in the canonical direction in monkeys, but to track and compare their behavior in the same paradigm as that of humans for the reverse direction. It would have been unwise to stop after human-identical training and only show that humans learn better, which is a given. Instead, we looked at brain activations at both times, at the end of human-identical training and when the monkeys had learned the pairs in the canonical direction. 

      Finally, in experiment 2, monkeys were tested after the same 3 days of training as humans. We wrote: “Using this design, we obtained significant canonical congruity effects in monkeys on the first imaging day after the initial training (24 trials per pair), indicating that the animals had learned the associations” (lines 252-253).

      (2) Between-species comparisons are challenging. In addition to having differences in their DNA, human participants have spent many years living in a very different culture than that of NHPs, including years of formal education. As a result, attributing the observed differences to biology is challenging. One approach that has been adopted in some past studies is to examine either young children or adults from cultures that don't have formal educational structures. This is not the approach the authors take. This major confound needs to minimally be explicitly acknowledged up front. 

      Thank you for raising this important point. We already had a section on “limitations” in the manuscript, which we now extended (line 478-485). Indeed, this study is following a previous study in 5-month-old infants using EEG, in which we already showed that after learning associations between labels and categories, infants spontaneously generalize learning to the reversed pairs after a short learning period in the lab (Kabdebon et al, PNAS, 2019). We also cited preliminary results of the same paradigm as used in the current study but using EEG in 4-month-old infants (Ekramnia and Dehaene-Lambertz, 2019), where we replicated the results obtained by Kabdebon et al. 2019 showing that preverbal infants spontaneously generalize learning to the reversed pairs. 

      Functional MRI in awake infants remains a challenge at this age (but see our own work, DehaeneLambertz et al, Science, 2002), especially because the experimental design means only a few trials in the conditions of interest (10%) and thus a long experimental duration that exceed infants’ quietness and attentional capacities in the noisy MRI environment. (We discuss this on lines 493-496.)

      (3) Humans have big advantages in processing and discriminating spoken stimuli and associating them with visual stimuli (after all, this is what words are in spoken human languages). Experiment 2 ameliorates these concerns to some degree, but still, it is difficult to attribute the failure of NHPs to show reversible associations in Experiment 1 to cognitive differences rather than the relative importance of sound string to meaning associations in the human vs. NHP experiences. 

      As the reviewer wrote, we deliberately performed Experiment 2 with visual shapes to control for various factors that might have explained the monkeys' failure in Experiment 1. 

      (4) More minor: The localizer task (math sentences vs. other sentences) makes sense for math but seems to make less sense for language: why would a language region respond more to sentences that don't describe math vs. ones that do? 

      The referee is correct: our use of the word “reciprocally” was improper (although see Amalric et Dehaene, 2016 for significant differences in both directions when non-mathematical sentences concern specific knowledge). We changed the formulation to clarify this as follows: “In these ROIs, we recovered the subject-specific coordinates of each participant’s 10% best voxels in the following comparisons: sentences vs rest for the 6 language Rois ; reading vs listening for the VWFA ; and numerical vs non-numerical sentences for the 8 mathematical ROIs.” (lines 678-680).

      Methods - Analysis issues: 

      (5) The analyses appear to "double dip" by using the same data to define the clusters and to statistically test the average cluster activation (Kriegeskorte et al., 2009). The resulting effect sizes are therefore likely inflated, and the p-values are anticonservative. 

      It is not clear to us which result the reviewer is referring to. In Tables 1-4, we report the values that we found significant in the whole brain analysis, we do not report additional statistical tests for this data. For Table 5, the subject-specific voxels were identified through a separate localizer experiment, which was designed to pinpoint the precise activation areas for each subject in the domains of oral and written language-processing and math. Subsequently, we compared the activation at these voxel locations across different conditions of the main experiment. Thus, the two datasets were distinct, and there was no double dipping. In both interpretations of the comment, we therefore disagree with the reviewer.

      Framing: 

      (6) The framing ("Brain mechanisms of reversible symbolic reference: A potential singularity of the human brain") is bigger than the finding (monkeys don't spontaneously reverse a temporal association but humans do). The title and discussion are full of buzzy terms ("brain mechanisms", "symbolic", and "singularity") that are only connected to the experiments by a debatable chain of assumptions. 

      First, this study shows relatively little about brain "mechanisms" of reversible symbolic associations, which implies insights into how these associations are learned, recognized, and represented. But we're only given standard fMRI analyses that are quite inconsistent across similar experimental paradigms, with purely suggestive connections between these spatial patterns and prior work on comparative brain anatomy. 

      We agree with the referee that the term “mechanism” is ambiguous and, for systems neuroscientists, may suggest more than we are able to do here with functional MRI. We changed the title to “Brain areas for reversible symbolic reference, a potential singularity of the human brain”. This title better describes our specific contribution: mapping out the areas involved in reversibility in humans, and showing that they do not seem to respond similarly in macaque monkeys.

      Second, it's not clear what the relationship is between symbolic cognition and a propensity to spontaneously reverse a temporal association. Certainly, if there are inter-species differences in learning preferences this is important to know about, but why is this construed as a difference in the presence or absence of symbols? Because the associations aren't used in any downstream computation, there is not even any way for participants to know which is the sign and which is the signified: these are merely labels imposed by the researchers on a sequential task. 

      As explained in the introduction, the reversibility test addressed a very minimal core property of symbolic reference. There cannot be a symbol if its attachment doesn’t operate in both directions. Thus, this property is necessary – but we agree that it is not sufficient. Indeed, more tests are needed to establish whether and how the learned symbols are used in further downstream compositional tasks (as discussed in our recent TICS papers, Dehaene et al. 2022). We added a sentence in the introduction to acknowledge this fact:

      “Such reversibility is a core and necessary property of symbols, although we readily acknowledge that it is not sufficient, since genuine symbols present additional referential and compositional properties that will not be tested in the present work.” (lines 89-92).

      Third, the word "singularity" is both problematically ambiguous and not well supported by the results. "Singularity" is a highly loaded word that the authors are simply using to mean "that which is uniquely human". Rather than picking a term with diverse technical meanings across fields and then trying to restrict the definition, it would be better to use a different term. Furthermore, even under the stated definition, this study performed a single pairwise comparison between humans and one other species (macaques), so it is a stretch to then conclude (or insinuate) that the "singularity" has been found (see also pt. 2 above). 

      We have published an extensive review including a description of our use of the term “singularity” (Dehaene et al., TICS 2022). Here is a short except: “Humans are different even in domains such as drawing and geometry that do not involve communicative language. We refer to this observation using the term “human cognitive singularity”, the word singularity being used here in its standard meaning (the condition of being singular) as well as its mathematical sense (a point of sudden change). Hominization was certainly a singularity in biological evolution, so much so that it opened up a new geological age (the Anthropocene). Even if evolution works by small continuous change (and sometimes it doesn’t [4]), it led to a drastic cognitive change in humans.”

      We find the referee’s use of the pejorative term ”insinuate” quite inappropriate. From the title on, we are quite nuanced and refer only to a “potential singularity”. Furthermore, as noted above, we explicitly mention in the discussion the limitations of our study, and in particular the fact that only a single non-human species was tested (see lines 486-493). We are working hard to get chimpanzee data, but this is remarkably difficult for us, and we hope that our paper will incite other groups to collect more evidence on this point.

      (7) Related to pt. 6, there is circularity in the framing whereby the authors say they are setting out to find out what is uniquely human, hypothesizing that the uniquely human thing is symbols, and then selecting a defining trait of symbols (spontaneous reversible association) *because* it seems to be uniquely human (see e.g., "Several studies previously found behavioral evidence for a uniquely human ability to spontaneously reverse a learned association (Imai et al., 2021; Kojima, 1984; Lipkens et al., 1988; Medam et al., 2016; Sidman et al., 1982), and such reversibility was therefore proposed as a defining feature of symbol representation reference (Deacon, 1998; Kabdebon and DehaeneLambertz, 2019; Nieder, 2009).", line 335). They can't have it both ways. Either "symbol" is an independently motivated construct whose presence can be independently tested in humans and other species, or it is by fiat synonymous with the "singularity". This circularity can be broken by a more modest framing that focuses on the core research question (e.g., "What is uniquely human? One possibility is spontaneous reversal of temporal associations.") and then connects (speculatively) to the bigger conceptual landscape in the discussion ("Spontaneous reversal of temporal associations may be a core ability underlying the acquisition of mental symbols").

      We fail to understand the putative circularity that the referee sees in our introduction. We urge him/her to re-read it, and hope that, with the changes that we introduced, it does boil down to his/her summary, i.e. “What is uniquely human? One possibility is spontaneous reversal of temporal associations."

      Reviewer #1 (Recommendations For The Authors): 

      In general, the manuscript was very clear, easy to read, and compelling. I would recommend the authors carefully check the text for consistency and minor typos. For example: 

      The sample size for the monkeys kept changing throughout the paper. E.g., Experiment 1: n = 2 (line 149); n = 3 (line 205).  

      Thank you for catching this error, we corrected it. The number of animals was indeed 2  for experiment 1, and 3 for experiment 2. (Animals JD and YS participated in experiment 1 and JD, JC and DN in experiment 2. So only JD participated in both experiments.)

      Similarly, the number of stimulus pairs is reported inconsistently (4 on line 149, 5 pairs later in the paper). 

      We’re sorry that this was unclear. We used 5 sets of 4 audio-visual pairs each. We now clarify this, on line 157 and on lines 514-516.

      At least one case of p>0.0001, rather than p < 0.0001 (I assume). 

      Thank you once again, we now corrected this.

      Reviewer #2 (Recommendations For The Authors): 

      One major issue in the study is the absence of significant results in monkeys. Indeed, the authors draw conclusions regarding the lack of significant difference in activity related to surprise in the multidemand network (MDN) in the reverse congruent versus reverse incongruent conditions. Although the results are convincing (especially with the significant interaction between congruency and canonicity), the article could be improved by including additional analyses in a priori ROI for the MDN in monkeys (as well as in humans, for comparison). In other words: what are the statistics for the MDN regarding congruity, canonicity, and interaction in both species? Since the authors have already performed this type of analysis for language and Math ROIs (table 5), it should be relatively easy for them to extend it to the MDN. Demonstrating that results in monkeys are far from significant could further convince the reader. 

      Furthermore, while the authors acknowledge in the discussion that the number of monkeys included in the study is considerably lower compared to humans, it would be informative to know the variability of the results among human participants. Specifically, it would be valuable to describe the proportion of human participants in which the effects of congruency, canonicity, and their interaction are significant. Additionally, stating the variability of the F-values for each effect would provide reassurance to the reader regarding the distinctiveness of humans in comparison to monkeys. Low variability in the results would serve to mitigate concerns that the observed disparity is merely a consequence of testing a unique subset of monkeys, which may differ from the general population. Indeed, this would be a greater support to the notion that the dissimilarity stems from a genuine distinction between the two species. 

      We responded to both of these points above.

      In terms of methods, details are missing: 

      - How many trials of each condition are there exactly? (10% of 44 trials is 4.4) : 

      We wrote: “In both humans and monkeys, each block started with 4 trials in the learned direction (congruent canonical trials), one trial for each of the 4 pairs (2 O-L and 2 L-O pairs). The rest of the block consisted of 40 trials in which 70% of trials were identical to the training; 10% were incongruent pairs but the direction (O-L or L-O) was correct (incongruent canonical trials), thus testing whether the association was learned; 10% were congruent pairs but the direction within the pairs was reversed relative to the learned pairs (congruent reversed trials) and 10% were incongruent pairs in reverse (incongruent reversed trials).”(See lines 596-600.)

      Thus, each block comprised 4 initial trials, 28 canonical congruent trials, 4 canonical incongruent, 4 reverse congruent and 4 reverse incongruent trials, i.e. 4+28+3x4=40 trials.

      - How long is one trial? 

      As written in the method section: “In each trial, the first stimulus (label or object) was presented during 700ms, followed by an inter-stimulus-interval of 100ms then the second stimulus during 700ms. The pairs were separated by a variable inter-trial-interval of 3-5 seconds” i.e. 700+100+700=1500, plus 3 to 4.75 seconds of blank between the trials (see lines 531-533).

      - How are the stimulus presentations jittered? 

      See : “The pairs were separated by a variable inter-trial-interval randomly chosen among eight different durations between 3 and 4.75 seconds (step=250 ms). The series of 8 intervals was randomized again each time it was completed.”(lines 533-535).

      - What is the statistical power achieved for humans? And for monkeys? 

      We know of no standard way to define power for fMRI experiments. Power will depend on so many parameters, including the fMRI signal-to-noise ratio, the attention of the subject, the areas being considered, the type of analysis (whole-brain versus ROIs), etc.

      - Videos are mentioned in the methods, is it the image and sound? It is not clear. 

      We’re sorry that it was unclear. Video’s were only used for the training of the human subjects. We now corrected this in the method section (lines 552-554).

      Reviewer #3 (Recommendations For The Authors): 

      The main recommendations are to adjust the framing (making it less bold and more connected to the empirical evidence) and to ensure independence in the statistical analyses of the fMRI data. 

      See our replies to the reviewer’s comments on “Framing” above. In particular, we changed the title of the paper from “Brain mechanisms of reversible symbolic reference” to “Brain areas for reversible symbolic reference”.

      References cited in this response

      Dehaene, S., Al Roumi, F., Lakretz, Y., Planton, S., & Sablé-Meyer, M. (2022). Symbols and mental programs : A hypothesis about human singularity. Trends in Cognitive Sciences, 26(9), 751‑766. https://doi.org/10.1016/j.tics.2022.06.010.

      Dehaene-Lambertz, Ghislaine, Stanislas Dehaene, et Lucie Hertz-Pannier. Functional Neuroimaging of Speech Perception in Infants. Science 298, no 5600 (2002): 2013-15. https://doi.org/10.1126/science.1077066.

      Ekramnia M, Dehaene-Lambertz G. 2019. Investigating bidirectionality of associations in young infants as an approach to the symbolic system. Presented at the CogSci. p. 3449.

      Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci U S A 110:16616-16621.

      Kabdebon, Claire, et Ghislaine Dehaene-Lambertz. « Symbolic Labeling in 5-Month-Old Human Infants ». Proceedings of the National Academy of Sciences 116, no 12 (2019): 5805-10. https://doi.org/10.1073/pnas.1809144116.

      Mitchell, D. J., Bell, A. H., Buckley, M. J., Mitchell, A. S., Sallet, J., & Duncan, J. (2016). A Putative Multiple-Demand System in the Macaque Brain. Journal of Neuroscience, 36(33), 8574‑8585. https://doi.org/10.1523/JNEUROSCI.0810-16.2016

    2. eLife assessment

      fMRI was used to address an important aspect of human cognition - the capacity for structured representations and symbolic processing - in a cross-species comparison with macaques; the experimental design probed implicit symbolic processing through reversal of learned stimulus pairs. The authors present solid evidence in humans that helps elucidate the role of brain networks in symbolic processing, however the evidence from macaques was necessarily incomplete (e.g., hard-to-quantify differences in learning trajectories and lived experience between species).

    3. Reviewer #1 (Public Review):

      Kerkoerle and colleagues present a very interesting comparative fMRI study in humans and monkeys, assessing neural responses to surprise reactions at the reversal of a previously learned association. The implicit nature of this task, assessing how this information is represented without requiring explicit decision making, is an elegant design. The paper reports that both humans and monkeys show neural responses across a range of areas when presented with incongruous stimulus pairs. Monkeys also show a surprise response when the stimuli are presented in the reversed direction. However, humans show no such surprise response based on this reversal, suggesting that they encode the relationship reversibly and bidirectionally, unlike the monkeys. This has been suggested as a hallmark of symbolic representation, that might be absent in nonhuman animals.

      I find this experiment and the results quite compelling, and the data do support the hypothesis that humans are somewhat unique in their tendency to form reversible, symbolic associations. I think that an important strength of the results is that the critical finding is the presence of an interaction between congruity and canonicity in macaques, which does not appear in humans. These results go a long way to allay concerns I have about the comparison of many human participants to a very small number of macaques.

      The results do appear to show that macaques show the predicted interaction effect (even despite the sample size), while humans do not. I think this is quite convincing. (Although had the results turned out differently (for example an effect in humans that was absent in macaques), I think this difference in sample size would be considerably more concerning.)

      I would also note that while I agree with the authors conclusions, it is also notable to me that the congruity effect observed in humans (red vs blue lines in Fig. 2B) appears to be far more pronounced than any effect observed in the macaques (Fig. 3C-3). Again, this does not challenge the core finding of this paper but does suggest methodological or possibly motivational/attentional differences between the humans and the monkeys (or, for example, that the monkeys had learned the associations less strongly and clearly than the humans). The authors now discuss this more fully.

      This is a strong paper with elegant methods and makes a worthwhile contribution to our understanding of the neural systems supporting symbolic representations in humans, as opposed to other animals.

    4. Reviewer #2 (Public Review):

      In their article titled, van Kerkoerle et al address the timely question of whether non-human primates (rhesus macaques) possess the ability for reverse symbolic inference as observed in humans. Through an fMRI experiment in both humans and monkeys, they analyzed the bold signal in both species while observing audio-visual and visual-visual stimuli pairs that had been previously learned in a particular direction. Remarkably, the findings pertaining to humans revealed that a broad brain network exhibited increased activity in response to surprises occurring in both the learned and reverse directions. Conversely, in monkeys, the study uncovered that the brain activity within sensory areas only responded to the learned direction but failed to exhibit any discernible response to the reverse direction. These compelling results indicate that the capacity for reversible symbolic inference may be specific to humans, even though it remains to be tested in other species.

      In general, the manuscript is skillfully crafted and highly accessible to readers. The experimental design exhibits originality, and the analyses are tailored to effectively address the central question at hand. Although the first experiment raised a number of methodological inquiries, the subsequent second experiment thoroughly addresses these concerns and effectively replicates the initial findings, thereby significantly strengthening the overall study. Overall, this article is of high quality and brings new insight into human cognition.

      The main limitation of the studies is the sample size of the non-human primate group (n=2 and n=3). Nevertheless, this limitation is carefully addressed and discussed in the manuscript.

    5. Reviewer #3 (Public Review):

      Original review

      This study investigates the hypothesis that humans (but not non-human primates) spontaneously learn reversible temporal associations (i.e., learning a B-A association after only being exposed to A-B sequences), which the authors consider to be a foundational property of symbolic cognition. To do so, they expose humans and macaques to 2-item sequences (in a visual-auditory experiment, pairs of images and spoken nonwords, and in a visual-visual experiment, pairs of images and abstract geometric shapes) in a fixed temporal order, then measure the brain response during a test phase to congruent vs. incongruent pairs (relative to the trained associations) in canonical vs. reversed order (relative to the presentation order used in training). The advantage of neuroimaging for this question is that it removes the need for a behavioral test, which non-human primates can fail for reasons unrelated to the cognitive construct being investigated. In humans, the researchers find statistically indistinguishable incongruity effects in both directions (supporting a spontaneous reversible association), whereas in monkeys they only find incongruity effects in the canonical direction (supporting an association but a lack of spontaneous reversal). Although the precise pattern of activation varies by experiment type (visual-auditory vs. visual-visual) in both species, the authors point out that some of the regions involved are also those that are most anatomically different between humans and other primates. The authors interpret their findings to support the hypothesis that reversible associations, and by extension symbolic cognition, is uniquely human.

      This study is a valuable complement to prior behavioral work on this question. However, I have some concerns about methods and framing.

      Methods - Design issues:

      (1) The authors originally planned to use the same training/testing protocol for both species but the monkeys did not learn anything, so they dramatically increased the amount of training and evaluation. By my calculation from the methods section, humans were trained on 96 trials and tested on 176, whereas the monkeys got an additional 3,840 training trials and 1,408 testing trials. The authors are explicit that they continued training the monkeys until they got a congruity effect. On the one hand, it is commendable that they are honest about this in their write-up, given that this detail could easily be framed as deliberate after the fact. On the other hand, it is still a form of p-hacking, given that it's critical for their result that the monkeys learn the canonical association (otherwise, the critical comparison to the non-canonical association is meaningless).

      (2) Between-species comparisons are challenging. In addition to having differences in their DNA, human participants have spent many years living in a very different culture than that of NHPs, including years of formal education. As a result, attributing the observed differences to biology is challenging. One approach that has been adopted in some past studies is to examine either young children or adults from cultures that don't have formal educational structures. This is not the approach the authors take. This major confound needs to minimally be explicitly acknowledged up front.

      (3) Humans have big advantages in processing and discriminating spoken stimuli and associating them to visual stimuli (after all, this is what words are in spoken human languages). Experiment 2 ameliorates these concerns to some degree, but still it is difficult to attribute the failure of NHPs to show reversible associations in Experiment 1 to cognitive differences rather than the relative importance of sound string to meaning associations in the human vs. NHP experiences.

      (4) More minor: The localizer task (math sentences vs. other sentences) makes sense for math but seems to make less sense for language: why would a language region respond more to sentences that don't describe math vs. ones that do?

      Methods - Analysis issues:

      (5) The analyses appear to "double dip" by using the same data to define the clusters and to statistically test the average cluster activation (Kriegeskorte et al., 2009). The resulting effect sizes are therefore likely inflated, and the p-values are anticonservative.

      FRAMING:

      (6) The framing ("Brain mechanisms of reversible symbolic reference: A potential singularity of the human brain") is bigger than the finding (monkeys don't spontaneously reverse a temporal association but humans do). The title and discussion are full of buzzy terms ("brain mechanisms", "symbolic", and "singularity") that are only connected to the experiments by a debatable chain of assumptions.

      First, this study shows relatively little about brain "mechanisms" of reversible symbolic associations, which implies insights about how these associations are learned, recognized, and represented. But we're only given standard fMRI analyses that are quite inconsistent across similar experimental paradigms, with purely suggestive connections between these spatial patterns and prior work on comparative brain anatomy.

      Second, it's not clear what the relationship is between symbolic cognition and a propensity to spontaneously reverse a temporal association. Certainly if there are inter-species differences in learning preferences this is important to know about, but why is this construed as a difference in the presence or absence of symbols? Because the associations aren't used in any downstream computation, there is not even any way for participants to know which is the sign and which is the signified: these are merely labels imposed by the researchers on a sequential task.

      Third, the word "singularity" is both problematically ambiguous and not well supported by the results. "Singularity" is a highly loaded word that the authors are simply using to mean "that which is uniquely human". Rather than picking a term with diverse technical meanings across fields and then trying to restrict the definition, it would be better to use a different term. Furthermore, even under the stated definition, this study performed a single pairwise comparison between humans and one other species (macaques), so it is a stretch to then conclude (or insinuate) that the "singularity" has been found (see also pt. 2 above).

      (7) Related to pt. 6, there is circularity in the framing whereby the authors say they are setting out to find out what is uniquely human, hypothesizing that the uniquely human thing is symbols, and then selecting a defining trait of symbols (spontaneous reversible association) *because* it seems to be uniquely human (see e.g., "Several studies previously found behavioral evidence for a uniquely human ability to spontaneously reverse a learned association (Imai et al., 2021; Kojima, 1984; Lipkens et al., 1988; Medam et al., 2016; Sidman et al., 1982), and such reversibility was therefore proposed as a defining feature of symbol representation reference (Deacon, 1998; Kabdebon and Dehaene-Lambertz, 2019; Nieder, 2009).", line 335). They can't have it both ways. Either "symbol" is an independently motivated construct whose presence can be independently tested in humans and other species, or it is by fiat synonymous with the "singularity". This circularity can be broken by a more modest framing that focuses on the core research question (e.g., "What is uniquely human? One possibility is spontaneous reversal of temporal associations.") and then connects (speculatively) to the bigger conceptual landscape in the discussion ("Spontaneous reversal of temporal associations may be a core ability underlying the acquisition of mental symbols").

      Comments on revised version:

      I thank the authors for engaging constructively with my comments. I'm convinced by the responses to my original points 1, 2, 3, and 4. I'm also partially convinced by the response to point 6 (with qualifications discussed below). I do want to clear the record on points 1 and 6 (about which the authors expressed offense at aspects of my original comments), and to press on points 5 and 7.

      (1) It's very helpful to know that the plan was always to extend training in Expt 1. The rationale is now clear in the methods, although I'd encourage the authors to also emphasize this if space permits in the vicinity of lines 211-216, which still read as if the extended training was a post hoc decision ("the canonical congruity effect... was not significant... after 3 days of exposure... Thus... monkeys were further exposed..."). The authors have objected to my original use of "p hacking", which I agree was too strong (my apologies). My intention was only to point out that *if it were the case that training duration was conditional on the monkeys' success at learning the canonical association* (which the authors have now clarified was not the case), then this would be steering the study post hoc to achieve a desired outcome. I recognize the authors' point that the canonical direction was a sanity check, not the effect of interest (reversed association), but it's still true that they needed to achieve this sanity check in order for the absence of a reversed effect to be meaningful. This was the source of my original concern. This point is only clarificational (no action is recommended).

      (5) The authors have said they don't understand my concern about "double-dipping" in the statistical analyses, so I will attempt to clarify. First, I should stress that this concern applies only to the whole-brain results (Tables 1-4), not the fROI results. As the authors point out, this was indeed unclear, and I apologize. My concern about Tables 1-4 is that they seem to be derived using the classical technique of thresholding contrasts at some significance level to define clusters and then reporting cluster statistics (in this case, t-values) derived from *the same contrast in the same activation maps*. If this is not what was done (i.e., if orthogonal data and/or contrasts were used to define clusters and quantify contrasts within clusters, as in the fROI analyses), then this point is moot (and clarification in the paper would be helpful). But if this is what was done, then this procedure is known to be distortionary (e.g., Kriegeskorte et al 2009, "Nonindependent selective analysis is incorrect and should not be acceptable in neuroscientific publications").

      (6) The authors have objected to my use of the term "insinuate" as pejorative. I don't share this impression (and insult was certainly not my intent) but I'm happy to concede that a less loaded term (e.g., "suggest") would have been a better choice. I apologize. In any case, I stand by my intended original concern that a key idea in this piece (that reversible symbolic inference is a singularity of the human brain) is being advanced rhetorically rather than empirically, by repeatedly supplying it to readers (albeit with qualifiers like "potential") as an interpretive lens through which to view empirical results that only directly support a more modest claim (that macaques spontaneously reverse sequential associations less readily than humans do). To be clear, it is good that the authors don't make this stronger claim outright, and it is fine to motivate a more modest research question (e.g., do species differ in spontaneous reversal of associations) on the grounds that it is a stepping stone to a bigger one (what is the singularity). But by placing the bigger framing front and center in this way, there's a risk that this paper will be received by the community as establishing a conclusion that it does not actually establish.

      (7) The authors have said they don't understand the circularity I'm alleging. Having read the revision, I believe the issue is still there, so I'll make another attempt. The problem is most clearly apparent in the Discussion text quoted in my original comment (lines 347-350 of the revision, emphasis mine): "Several studies previously found behavioural evidence for a *uniquely human* ability to spontaneously reverse a learned association (Imai et al., 2021; Kojima, 1984; Lipkens et al., 1988; Medam et al., 2016; Sidman et al., 1982), and such reversibility was *therefore* proposed as a defining feature of symbol representation reference (Deacon, 1998; Kabdebon and Dehaene-Lambertz, 2019; Nieder, 2009)." In other words, reversal of associations is selected as a defining feature of symbols and targeted by this study *because* it is thought to be uniquely human. This is fine, but it prohibits you from then advocating the hypothesis that symbolic cognition is the singularity (lines 49-52), because "symbol" is being defined such that this is necessarily the case. To minimally paraphrase what I perceive to be the circular logic in the framing, the argument seems to go: "What is uniquely human? Symbols. What are symbols? That which is uniquely human." In my original comment, I suggested a reframing that would fix this issue, namely: "What is uniquely human? Spontaneous reversal of temporal associations." The authors say they don't see the difference between this framing and their own, so I'll try to clarify: the difference is that it sidesteps the notion of "symbol", and in so doing removes the circular definitions of "symbol" and "singularity" in terms of each other. This suggestion was given not as a prescription but as an example to show that the issue can be remedied by revisions to the framing without doing damage to the empirical claims. If the authors prefer a different remedy that avoids circular definitions of terms, that's fine.

  2. learn-us-east-1-prod-fleet02-xythos.content.blackboardcdn.com learn-us-east-1-prod-fleet02-xythos.content.blackboardcdn.com
    1. And the common people would not give theirnumbers for tribute but said: “Let us die honourably for St. Sophia and for theangelic houses” [that is, churches]

      After reading you can tell just how devoted people were to their religion and how the people could become so divided. Both groups go as far as to mentioning dying for their view. It makes it even more important as the common people could have assumed that they would have come back with more strength than they had before and would then face death. That they are not just saying this because they do not want to give tribute. It makes me wonder just how many people that would have been.

    1. analytical, creative, and practical abilities

      For: Melanie

      The fun part!

    2. in order to adapt to, shape, and select environments

      For: Melanie

      Trying to work with environment, and change ourselves, and find compromises.

    3. by capitalizing on strengths and correcting or compensating for weaknesses

      For: Melanie

      Yup.

    4. WISC-R

      Maybe it's the same for WAIS-IV?

    5. (Gifted, With Specific Learning Disabled) GT/SLD students outperformed SLD

      I'm unsure what applies to me for my current Neuropsychology work done. Is it Learning disabled? There seem to have a Dys issue. Dysexecutive function. Mixed with ADHD.

    6. Excerpts from research in Psychology

      Those are a few findings that helped me organize how things are described in academia and aligned with my personal experience.

    1. all electromagnetic radiation, regardless of wavelength or frequency, travels at the speed of light.

      huh interesting.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Response to Reviewers

      We thank the reviewers for their comments and suggestions, which we think are helpful and will improve the manuscript, and intend to address with the changes and planned revisions below.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Bello et al look at the SNP rs28834970 associated with Alzheimer's disease (AD), with C being the risk allele, on chromatin accessibility and expression of a nearby gene, PTK2B, in microglia. Their contention is that the single SNP affects chromatin accessibility and binding of the transcription factor CEBP[beta] in an intronic region of PTK2B and thereby affects PTKB expression. I had a few questions that I think are critical to be addressed. Please note that my numbering of panels is based on the figures, not the legends, which do not seem to quite agree with each other. There are also some figure legends that say "IFNg" while the figures say "LPS", which should be fixed.

      We apologise for the mistake in the figure legend that made this confusing, which we have now revised.

      The abstract says that editing a line that is homozygous for protective alleles to homozygous for risk results in "subtle downregulation of PTK2B expression". It isn't clear to me that the presented data fully supports this contention, which is central to the argument of the paper. In figure 2e, the authors show in both RNAseq and ddPCR that there is numerically lower PTK2B expression but this is not indicated to be statistically significant by one-way paired ANOVA. If there is no nominally significant difference in the edited lines, compared to the proposed significant differences in lines carrying the full risk haplotype (figure 1), then it would not seem sensible to ascribe the effects to the single edited base pair.

      We agree with the reviewer that given the effect of the SNP on PTK2B expression in the edited lines is small and only significant in macrophages, we should not interpret the effects to be mediated solely through PTK2B expression, and have substantially reworded the manuscript accordingly.

      Whilst the effects in the eQTL analysis are significant, it is worth noting that this is likely due to the much larger number of donors (133-217) giving greater power to detect the subtle changes in expression (~1.1 to 2 fold in eQTL). This change is of a similar magnitude in our SNP edited lines (~1.2 fold in SNP edited lines) as would be expected of most common regulatory variants so we believe that it could be the primary causal variant. However, we cannot exclude that other variants in the haplotype could contribute to the effect, so have also reworded accordingly to make this clear.

      Given this uncertainty about the overall strength of effect of the single base pair change it would seem important to evaluate the proposed mechanism of CEBPb binding. It wasn't clear whether the ATAC-seq data summarized in the volcano plot in 2C is proposed to be a cause or a consequence of the CEBPb binding change. I am assuming that the 'fold change' estimate here is CC compared to TT, which would be consistent with direction of effect in figure 1, but please clarify.

      We apologise for the mistake in the figure legend that made this confusing, which we have now revised along with clarification in the revised text. It is difficult to be sure whether changes in chromatin accessibility are a cause or consequence of CEBPb binding, but the fact that the binding of CEBPb is increased in the CC allele (Fig 2a, Fig 2c), that the C allele better matches the consensus sequence (Fig 2b) and there is increased chromatin accessibility (Fig 2a, Supp Fig 3b) suggests that CEBPb binding is causing the formation of the region of chromatin accessibility.

      In contrast to the subtle effects at PTK2B, the global transcriptional effects in figure 3 look quite strong. Are any of these changes dependent on PTK2B, that is to say, are they mimicked by partial suppression of PTK2B expression or activity?

      We agree that the downstream effects of the SNP are much stronger than the effects on PTK2B expression, and we have substantially reworded the manuscript to make it clear that we are unsure that the effects of the SNP are all mediated via PTK2B.

      However, we note that there is evidence in the literature of a loss in CCL4 and CCL5 expression upon PTK2B knockout in macrophages (https://www.nature.com/articles/s41467-021-27038-5) and inhibition of PTK2B in monocytes results in a reduction in CCL5 and CXCL1 (https://www.nature.com/articles/s41598-019-44098-2) consistent with our observations.

      Experiments to manipulate PTK2B expression in microglia and readout changes at the RNA level would take a few months to complete, but we would be willing to do this if the reviewer felt this was necessary.

      Finally, in figure 4, it should be clarified as to why lower expression of PTK2B would be expected to have a detrimental effect on Alzheimer's risk. If understood correctly, and again fixing the figure legends would be helpful, the CC edited lines (risk) have lower chemokine induction than the unedited TT lines.

      We apologise for the error in this figure which we have corrected in the revised version. You are correct that the CC lines have a lower chemokine level in both unstimulated and stimulated cells, and we have now discussed further how this may be linked to increased disease risk.

      "Even though overexpression of these chemokines is characteristic of neuroinflammation, correlated with disease progression and found in late stages of AD, knockout of chemokines, such as CCL2, and chemokine receptors, such as CCR2 and CCR5, in mice is associated with increased Aβ deposition and accumulation [47,50-52,107]. It has also been found that patients carrying CCR5Δ32 mutation, which prevents CCR5 surface expression, develop AD at a younger age[108]. Therefore, we hypothesize that in individuals carrying the C/C allele of rs28834970 downregulation of these chemokines in macrophages and microglia harbouring the C/C allele of rs28834970 affects Aβ-induced microglia chemotaxis, leukocytes recruitment and clearance of Aβ, and may increase the risk of developing symptomatic AD"

      Reviewer #1 (Significance (Required)):

      Going from GWAS hits, which represent blocks of high LD inherited variants, to single functional variants is a difficult problem in human genetics. The current paper attempts to isolate the effect of a single variant within an LD block on IPSC derived macrophages and microglia. This idea might be useful in nominating PTK2B as a therapeutic target for AD, although there is some question in my mind as to direction of effect.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      SUMMARY: In this manuscript the authors explore the biological effects of an intronic SNP in the PTK2B gene, previously shown to be associated with late onset Alzheimer's disease (AD) risk. Based on the likely effect of the SNP locus on PTK2B expression in the macrophage lineage, the authors explore the consequences of introducing with the Crispr/Cas9 technique the biallelic SNP base change (C/C vs T/T) in a human IPSC line that is then differentiated into macrophages or microglia. They observe that C/C increases chromatin accessibility and CEBPb binding in comparison to T/T, with a slight decrease in PTK2B expression, significant in macrophages but not in microglia. The authors then investigate the transcriptome changes induced by the C/C mutation and find alteration in many genes, including a decreased expression of a number of cytokine or receptor proteins involved in inflammatory responses. The authors also mention a decreased effect on IFNg-induced reduced mobility but the data are missing (see Figure errors below). Overall the authors propose that the risk SNP is associated with a decreased PTK2B expression and hypothesize a link between this change and a decreased function of macrophages/microglia that may contribute to AD pathology.

      MAJOR COMMENTS

      1- The authors claim that their results show that the investigated SNP has a causal effects in "microglial function" (Title) and in Alzheimer's disease (AD) (Abstract 2nd sentence "Here we validate a causal single nucleotide polymorphism (SNP) associated with an increased risk of Alzheimer's disease". The word "causal" is repeated many times. However the authors should qualify their claim with respect to AD. Their results do show that the SNP has an effect on chromatin accessibility, CEBP binding, PTK2B expression and transcriptome, but the link between these changes is not formally demonstrated and their potential role in AD-like phenotype is not explored. The "causal" role is not formally and logically demonstrated. It remains an interesting, plausible hypothesis and the results provide strong arguments in support of that hypothesis but do not prove it, yet.

      Concerning the title, "causal effects on microglial function" is awkward, anything that has effects is logically "causal" in these effects. The title should be "... has effects on microglial functions" or "... alters microglial function".

      We agree with the reviewer that given the effect of the SNP on PTK2B expression in the edited lines is small and only significant in macrophages, we should not interpret the effects to be mediated solely through PTK2B expression, or that they cause AD. We have substantially reworded the manuscript throughout to account for this.

      2- One major difficulty in the results is to link the slight decrease in PTK2B transcript, which is only significant in macrophages, with the rest of the phenotype. Because what matters to make this link is not the mRNA but the protein, and because mRNA levels are often not strictly correlated with the protein levels, the authors should measure the PTK2B/PYK2 protein levels in their differentiated cell lines in basal conditions and following activation (as they do for other readouts) using immunoblotting. A robust and significant diminution in PYK2 protein would strongly support its role in linking PTK2B expression and transcriptome change.

      We have performed preliminary analyses of PTK2B expression by Western blot in these cell lines after differentiation, but were unable to observe a significant change in abundance in the edited cell lines. This is not unexpected given the results at the RNA level, since the effect size of this common regulatory variant is likely very small (estimated to be ~1.2 fold from the eQTL analysis), and likely within the variability of this assay.

      As mentioned above, we have reworded the manuscript to avoid interpreting that the effects of rs28834970 are mediated solely through effects on PTK2B expression. We think that an experiment to manipulate PTK2B levels (see next point) may be a better way to demonstrate whether these effects are mediated through PTK2B expression.

      An optional additional key experiment would be to reverse the transcriptome phenotype by increasing the expression of PTK2B (e.g. by cDNA transfection). Note that these points are important because an alternative hypothesis to explain the effects of C/C mutation on macrophage function would be that the C/C mutation has a long distance effect on other chromatin regions with key role in regulating these cells.

      We agree that this would be a valuable experiment, and are planning additional experiments to investigate the effect of manipulating PTK2B levels (through knockout) on microglia.

      3- The manuscript contains several errors in the figures and figure legends. In Fig. 2 the legends for the figure items are shuffled. Figure 4 and Supplementary Figure 5 are duplicates of the same one. Consequently important data are not presented.

      We apologise for the errors in these figures that were due to a mistake during uploading where the incorrect versions were used. The legends for figure 2 and panels in figure 4 have now been corrected, and show the effects of rs28834970 on microglial migration and chemokine release in the presence or absence of IFNg.

      4- When the number of replicates is small (e.g. n = 3) it is preferable to use non parametric tests (rank analysis, e.g. Mann Whitney's test) rather than t test. This applies to Figures 2D (current legend 2A), 2E (current legend 2B), Figure 4A-C, Supplementary Figures 2A, 2B. In Supplementary Fig 4E (MARCO) the number of replicates (presumably 3 because based on RNAseq) and the used test are not indicated. Is it the RNAseq statistical analysis?

      We thank the reviewer for this comment. We acknowledge that the t-test may lead to inflated false discovery rates. However, it has been shown that for small sample sizes parametric tests have a power advantage compared to non-parametric ones that may outweigh the possibly exaggerated false positives. See https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02648-4#Sec3 which states:

      "In conclusion, when the per-condition sample size is less than 8, parametric methods may be used because their power advantage may outweigh their possibly exaggerated false positives."

      We have also modified the legend of supplementary figure 4E to clarify the number of replicates used.

      5- In addition to the above comment on tests, when the number of replicates is small it is not appropriate (and misleading) to show box plots or bars with SEM. In the indicated figures the individual data points should be shown.

      We now show individual replicates on box plots (Figure 2D, 2E and supp figure 4E).

      MINOR COMMENTS:

      a- Macrophages and microglia are very similar cell types. Could the authors comment more on the differences they observe and how they are related to those previously described?

      We have now referenced the original papers and commented on the markers that we see differentially expressed, notably P2RY12 which is a key homeostatic microglia marker that distinguishes these cells from macrophages.

      b- In Fig. 2A CEBPb cut and run plot, the differences are not limited to the SNP immediate vicinity, there are also visible differences between T/T and C/C plots in at least a 40-kb range. Is it due to multiple interactions of CEBPb? How can the point difference have broad consequences? Please explain this potentially interesting and relevant finding.

      Whilst there may be small changes in CEBPb binding at the second intronic PTK2B chromatin peak, this is not statistically significant given the variability between repeats. In fact, the only significant change we see in CEBPb binding genome-wide is at the locus overlapping the SNP (Fig 2c).

      c- Potentially cis-altered genes near the SNP include CHRNA2 and EPHX2 (see Sup. Fig. 3a). Their expression may not be detected in macrophage lineage. If this is the case please indicate in the text, otherwise please include the corresponding data in Sup. Fig. 3b to show the presence or absence of SNP-induced change.

      You are correct that CHRNA2 and EPHX2 are not expressed in our macrophages or microglia, and we have now explicitly stated this in the revised text.

      d- In general the Figures are not of very high quality and are difficult to read or understand without constantly going back and forth to the legends (which are mislabeled in some instances). To improve:

      . Please increase font size whenever possible.

      . Please improve Fig. 1d by indicating the position of the SNP, numbering the exons (an intermediate scale plot may be necessary and lines on bottom trace are hardly visible).

      . Please indicate the correct color code for T/T and C/C in Fig 3a and b, left panels, which currently doesn't match.

      . Please label the Venn's diagrams comparisons in Sup. Fig. 4b.

      . In the text and legends the Figure items are identified with letters in upper case, in the figures they are in lower case. Please be consistent.

      We have improved the resolution of the images in the pdf and Fig 1d has been revised to include the position of the SNP. The colour code for T/T and C/C is correct in fig 3a and 3b, but since the PCA plots are independently created, we would not always expect the position of the T/T and C/C alleles to be the same. The Venn diagrams in Sup Fig 4b have been updated, and the letters for the figure panels made consistently upper case throughout.

      e- In Fig. 2D and 2E, the Y axes should start at zero to avoid artificially increasing the visual differences. If there is a strong reason not to do so (I don't see any here), the Y axis should be clearly interrupted to avoid confusion.

      We have altered this accordingly.

      f- In the introduction the authors provide some background about previous work about the potential role of PTK2B/PYK2 in AD pathophysiology. The cited preclinical results suggest that PTK2B activity could have a deleterious effect (references in the manuscript). In contrast, some other reports (PMID: 29803828, 33718872) suggest a protective effect of PTK2B/PYK2. Because the evidence in the current manuscript suggests that the risk-associated SNP results in a decreased function of PTK2B/PYK2 (through decreased levels), at least in cells of the macrophage lineage, the authors could broaden their discussion to include these results.

      We have now discussed the conflicting evidence in the revised manuscript.

      Reviewer #2 (Significance (Required)):

      ADVANCE: Late onset Alzheimer's disease is a major medical issue. It has a complex genetic risk component with many associated loci identified in GWAS. Most of these have only a small individual impact on the risk. One of the SNPs associated with increased risk (rs28834970) is located in an intron of the PTK2B gene. Although various reports have investigated the role of the PTK2B gene product, the tyrosine kinase PYK2, in several AD models, the possible link with rs28834970, is unclear.

      An important point is to determine whether TàC SNP corresponding to rs28834970 alters PTK2B expression and how it does so. An alternative hypothesis could be that the SNP has a strong linkage disequilibrium with an unidentified allele in human populations that could be responsible for AD risk. The current manuscript is a significant step forward in addressing that question. By generating a biallelic C/C SNP mutation in a human IPSC line the current study allows to eliminate such linked contribution.

      The strength of the manuscript is to show an effect on chromatin accessibility, CEBP binding and possibly PTK2B transcripts. It also provides interesting evidence of a broad effect of the C/C mutation on the transcriptome of macrophage lineage cells. In its current form the manuscript presents weaknesses that could be improved. These flaws include issues with the presentation discussed above and the uncomplete demonstration that it is the decrease in PTK2B expression that causes the macrophage/microglia phenotype. If these flaws were overcome the paper would represent a significant advance.

      AUDIENCE: The expected audience is specialized in AD with a possible broader range if all weaknesses are addressed.

      REVIEWER EXPERTISE: Basic science close to the field.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary: In this manuscript the authors explore the biological effects of an intronic SNP in the PTK2B gene, previously shown to be associated with late onset Alzheimer's disease (AD) risk. Based on the likely effect of the SNP locus on PTK2B expression in the macrophage lineage, the authors explore the consequences of introducing with the Crispr/CAS9 technique the biallelic SNP base change (C/C vs T/T) in a human IPSC line that is then differentiated into macrophages or microglia. They observe that C/C increases chromatin accessibility and CEBPb binding in comparison to T/T, with a slight decrease in PTK2B expression, significant in macrophages but not in microglia. The authors then investigate the transcriptome changes induced by the C/C mutation and find alteration in many genes, including a decreased expression of a number of cytokine or receptor proteins involved in inflammatory responses. The authors also mention a decreased effect on IFNg-induced reduced mobility but the data are missing (see Figure errors below). Overall the authors propose that the risk SNP is associated with a decreased PTK2B expression and hypothesize a link between this change and a decreased function of macrophages/microglia that may contribute to AD pathology.

      Major comments:

      1. The authors claim that their results show that the investigated SNP has a causal effects in "microglial function" (Title) and in Alzheimer's disease (AD) (Abstract 2nd sentence "Here we validate a causal single nucleotide polymorphism (SNP) associated with an increased risk of Alzheimer's disease". The word "causal" is repeated many times. However the authors should qualify their claim with respect to AD. Their results do show that the SNP has an effect on chromatin accessibility, CEBP binding, PTK2B expression and transcriptome, but the link between these changes is not formally demonstrated and their potential role in AD-like phenotype is not explored. The "causal" role is not formally and logically demonstrated. It remains an interesting, plausible hypothesis and the results provide strong arguments in support of that hypothesis but do not prove it, yet. Concerning the title, "causal effects on microglial function" is awkward, anything that has effects is logically "causal" in these effects. The title should be "... has effects on microglial functions" or "... alters microglial function".
      2. One major difficulty in the results is to link the slight decrease in PTK2B transcript, which is only significant in macrophages, with the rest of the phenotype. Because what matters to make this link is not the mRNA but the protein, and because mRNA levels are often not strictly correlated with the protein levels, the authors should measure the PTK2B/PYK2 protein levels in their differentiated cell lines in basal conditions and following activation (as they do for other readouts) using immunoblotting. A robust and significant diminution in PYK2 protein would strongly support its role in linking PTK2B expression and transcriptome change. An optional additional key experiment would be to reverse the transcriptome phenotype by increasing the expression of PTK2B (e.g. by cDNA transfection). Note that these points are important because an alternative hypothesis to explain the effects of C/C mutation on macrophage function would be that the C/C mutation has a long distance effect on other chromatin regions with key role in regulating these cells.
      3. The manuscript contains several errors in the figures and figure legends. In Fig. 2 the legends for the figure items are shuffled. Figure 4 and Supplementary Figure 5 are duplicates of the same one. Consequently important data are not presented.
      4. When the number of replicates is small (e.g. n = 3) it is preferable to use non parametric tests (rank analysis, e.g. Mann Whitney's test) rather than t test. This applies to Figures 2D (current legend 2A), 2E (current legend 2B), Figure 4A-C, Supplementary Figures 2A, 2B. In Supplementary Fig 4E (MARCO) the number of replicates (presumably 3 because based on RNAseq) and the used test are not indicated. Is it the RNAseq statistical analysis?
      5. In addition to the above comment on tests, when the number of replicates is small it is not appropriate (and misleading) to show box plots or bars with SEM. In the indicated figures the individual data points should be shown.

      Minor comments:

      • a. Macrophages and microglia are very similar cell types. Could the authors comment more on the differences they observe and how they are related to those previously described?
      • b. In Fig. 2A CEBPb cut and run plot, the differences are not limited to the SNP immediate vicinity, there are also visible differences between T/T and C/C plots in at least a 40-kb range. Is it due to multiple interactions of CEBPb? How can the point difference have broad consequences? Please explain this potentially interesting and relevant finding.
      • c. Potentially cis-altered genes near the SNP include CHRNA2 and EPHX2 (see Sup. Fig. 3a). Their expression may not be detected in macrophage lineage. If this is the case please indicate in the text, otherwise please include the corresponding data in Sup. Fig. 3b to show the presence or absence of SNP-induced change.
      • d. In general the Figures are not of very high quality and are difficult to read or understand without constantly going back and forth to the legends (which are mislabeled in some instances). To improve:
        • Please increase font size whenever possible.
        • Please improve Fig. 1d by indicating the position of the SNP, numbering the exons (an intermediate scale plot may be necessary and lines on bottom trace are hardly visible).
        • Please indicate the correct color code for T/T and C/C in Fig 3a and b, left panels, which currently doesn't match.
        • Please label the Venn's diagrams comparisons in Sup. Fig. 4b.
        • In the text and legends the Figure items are identified with letters in upper case, in the figures they are in lower case. Please be consistent.
      • e. In Fig. 2D and 2E, the Y axes should start at zero to avoid artificially increasing the visual differences. If there is a strong reason not to do so (I don't see any here), the Y axis should be clearly interrupted to avoid confusion.
      • f. In the introduction the authors provide some background about previous work about the potential role of PTK2B/PYK2 in AD pathophysiology. The cited preclinical results suggest that PTK2B activity could have a deleterious effect (references in the manuscript). In contrast, some other reports (PMID: 29803828, 33718872) suggest a protective effect of PTK2B/PYK2. Because the evidence in the current manuscript suggests that the risk-associated SNP results in a decreased function of PTK2B/PYK2 (through decreased levels), at least in cells of the macrophage lineage, the authors could broaden their discussion to include these results.

      Significance

      Advance: Late onset Alzheimer's disease is a major medical issue. It has a complex genetic risk component with many associated loci identified in GWAS. Most of these have only a small individual impact on the risk. One of the SNPs associated with increased risk (rs28834970) is located in an intron of the PTK2B gene. Although various reports have investigated the role of the PTK2B gene product, the tyrosine kinase PYK2, in several AD models, the possible link with rs28834970, is unclear.

      An important point is to determine whether TC SNP corresponding to rs28834970 alters PTK2B expression and how it does so. An alternative hypothesis could be that the SNP has a strong linkage disequilibrium with an unidentified allele in human populations that could be responsible for AD risk. The current manuscript is a significant step forward in addressing that question. By generating a biallelic C/C SNP mutation in a human IPSC line the current study allows to eliminate such linked contribution.

      The strength of the manuscript is to show an effect on chromatin accessibility, CEBP binding and possibly PTK2B transcripts. It also provides interesting evidence of a broad effect of the C/C mutation on the transcriptome of macrophage lineage cells. In its current form the manuscript presents weaknesses that could be improved. These flaws include issues with the presentation discussed above and the uncomplete demonstration that it is the decrease in PTK2B expression that causes the macrophage/microglia phenotype. If these flaws were overcome the paper would represent a significant advance.

      Audience: The expected audience is specialized in AD with a possible broader range if all weaknesses are addressed.

      Reviewer Expertise: Basic science close to the field.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Bello et al look at the SNP rs28834970 associated with Alzheimer's disease (AD), with C being the risk allele, on chromatin accessibility and expression of a nearby gene, PTK2B, in microglia. Their contention is that the single SNP affects chromatin accessibility and binding of the transcription factor CEBP[beta] in an intronic region of PTK2B and thereby affects PTKB expression. I had a few questions that I think are critical to be addressed. Please note that my numbering of panels is based on the figures, not the legends, which do not seem to quite agree with each other. There are also some figure legends that say "IFNg" while the figures say "LPS", which should be fixed.

      The abstract says that editing a line that is homozygous for protective alleles to homozygous for risk results in "subtle downregulation of PTK2B expression". It isn't clear to me that the presented data fully supports this contention, which is central to the argument of the paper. In figure 2e, the authors show in both RNAseq and ddPCR that there is numerically lower PTK2B expression but this is not indicated to be statistically significant by one-way paired ANOVA. If there is no nominally significant difference in the edited lines, compared to the proposed significant differences in lines carrying the full risk haplotype (figure 1), then it would not seem sensible to ascribe the effects to the single edited base pair.

      Given this uncertainty about the overall strength of effect of the single base pair change it would seem important to evaluate the proposed mechanism of CEBPb binding. It wasn't clear whether the ATAC-seq data summarized in the volcano plot in 2C is proposed to be a cause or a consequence of the CEBPb binding change. I am assuming that the 'fold change' estimate here is CC compared to TT, which would be consistent with direction of effect in figure 1, but please clarify.

      In contrast to the subtle effects at PTK2B, the global transcriptional effects in figure 3 look quite strong. Are any of these changes dependent on PTK2B, that is to say, are they mimicked by partial suppression of PTK2B expression or activity?

      Finally, in figure 4, it should be clarified as to why lower expression of PTK2B would be expected to have a detrimental effect on Alzheimer's risk. If understood correctly, and again fixing the figure legends would be helpful, the CC edited lines (risk) have lower chemokine induction than the unedited TT lines.

      Significance

      Going from GWAS hits, which represent blocks of high LD inherited variants, to single functional variants is a difficult problem in human genetics. The current paper attempts to isolate the effect of a single variant within an LD block on IPSC derived macrophages and microglia. This idea might be useful in nominating PTK2B as a therapeutic target for AD, although there is some question in my mind as to direction of effect.

    1. constructivism
    2. An idea can furthermore support another idea by providing an explanation, evidence or arguments why the latter idea should be true
    1. Ao utilizar ambientes digitais para atividades de aprendizado,as instituições educacionais podem economizar recursos,como papel, impressão e materiais físicos

      Atualmente, a escassez de recursos torna fundamental o uso eficiente dos mesmos. Um exemplo dessa eficiência foi a transformação do Curso de Comando e Direção Policial (CCDP) ministrado no ISCPSI, que, antes de 2018, era exclusivamente presencial. Com a implementação da Portaria n.º 101/2018, o curso adotou o modelo em blended-learning, combinando aulas online síncronas com períodos presenciais reduzidos, através de um Sistema de Gestão de Aprendizagem. Apenas esta mudança permitiu a admissão de 153 Comissários em seis turmas, com aulas presenciais concentradas em apenas três semanas por turma, resultando em 18 semanas presenciais no total, em comparação com as 42 semanas que seriam necessárias anteriormente. Ora esta redução no tempo de permanência dos alunos, de todo o país, nas instalações do ISCPSI, tanto para aulas quanto para alojamento, refletiu-se numa considerável economia de recursos, além de mitigar o impacto nos transportes e serviços de apoio. Outro resultado precioso foi a diminuição do tempo de ausência dos alunos de seus locais de trabalho, o que trouxe benefícios para o serviço policial.

    1. This is the most robust display option. It takes a string of tokens and replaces them with their corresponding values.

      MomentJS format table

    1. cut-points anddetermined that 150 cpm

      Preferir 150 cpm para det. cut-point

    2. Waking Hours Versus 24 Hours

      Preferir 24hrs vs tiempo despierto

    3. 60- or 90-min algorithms (33 and 34 out of 34 participants, i.e., 3and 0% sample loss, respectively)

      Preferir 60/90min de 0 counts per minute para determinar Non Wear Time. Falta determinar si es con o sin allowance de pequeños movimientos por max 2 min

    4. No information about the influence of epoch length was found for adults.

      Sin información, se deberá analizar.

    5. Lyden et al. [51] found the normal filter more accurate compared to theLFE filter when it was used to identify SED and breaks in SED with the GT3X attached tothe hip against direct observation. Ried-Larsen et al. [52] and Cain et al. [53] observed lessSED and more minutes in each PA intensity with the LFE filter enabled

      Utilizar filtro normal, no LFE

    6. The number of days needed for an ICC of 0.80decreased with a more demanding wear-time criterion [from 8.3 to 6.4 days for SED, from4.4 to 3.7 days for light PA, and from 8.5 to 7.0 days for moderate-to-vigorous PA (MVPA),all adjusted for wear-time].

      Mínimo tiempo de uso 12hr al día por 8.5 días.

    7. led to a decrease in sample size and therefore the study’spower.

      Mientras más sensible es el filtro de actividad, menos horas de actividad son registradas, por lo que hay menos datos y disminuye el poder del estudio. Se deben establecer márgenes extra.

    8. observed that 30, 60, or 90 Hz

      Preferir múltiplos de 30Hz para sampleo

    9. With regard to step counting

      Cadera mejor para conteo de pasos

    10. 3.1.3 Adults—

      En cadera: mejor determinación de activity counts, energy expenditure, etc. (mejor para datos) En muñeca: mejor determinación de actividades (i.e. diferencias entre estar sentado, parado, caminando, en el auto, etc.).

    11. he amount and intensity of daily SED and PA may be obtained byclassifying activity counts accumulated in a specific time interval (epoch length) with a setof cut-points, i.e., intensity thresholds for PA intensity classification

      Definición epoch y cut-points (threshold)

    12. The signal is usuallyfiltered and pre-processed by the monitor to obtain activity counts, i.e., accelerations due tobody movement

      Definición de counts

    Annotators

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      The manuscript " Phosphoproteomic analysis reveals the diversity of signaling behind ErbB inhibitor-induced phenotypes" authored by Drs. Katri Vaparanta, Anne Jokilammi, Johannes Merilahti, Johanna Örling, Noora Virtanen, Cecilia Sahlgren, Klaus Elenius and Ilkka Paatero was reviewed in Review Commons, and we carried out a full revision based on the received reviewer comments.

      The comments from three reviewers and our point-by-point reply is here below. After each of reviewer´s comment, our reply is formatted in bold.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this study, Vaparanta and co-workers used zebrafish embryos as model to analyze the impact of ErbB tyrosine kinase inhibitors on signaling pathways at the whole organism level. Experimentally, zebrafish embryos were exposed for 1 hour to a single dose of 3 different ErbB tyrosine kinase inhibitors and the global phosphoproteome of the embryos was analyzed by MS/MS. The authors show that the 3 inhibitors differentially modulate the activity of PI3K/Akt, p38 MAPK, Notch, Hippo-YAP/TAZ and β-catenin signaling pathways, associated with different neurological and myocardial phenotypic changes. Using small molecule inhibitors of selective signaling pathways, they show that perturbation of different signaling pathways may induce similar phenotypes in zebrafish embryos.

      Specific comments:

      1. The observation that exposure of zebrafish embryos to lapatinib, gefitinib and AG1478 leads to different global phosphoproteomic changes and to differential modulation of cellular signaling pathways was predictable and supported by an abundant literature. These 3 inhibitors differentially inhibit ErbB homo- and heterodimers and hit many other kinases. This point should be discussed in the paper.

      Indeed, the kinase inhibitors do have different selectivity for the ErbB family kinases as pointed out by the reviewer. We have now discussed this point in the manuscript (new Supplemental Table 1) and added additional data from embryos treated with different ErbB kinase inhibitors with similar selectivity profiles into the manuscript (new Supplemental Figure 3-4). The ErbB family kinase selectivity profile of the inhibitors, however, does not fully explain why treatment with lapatinib (EGFR/ErbB2 inhibitor) induced the most unique phosphoproteomic changes from AG1478 (EGFR/ErbB2/ErbB4 inhibitor) and gefitinib (EGFR inhibitor) treatment in zebrafish embryos. This point is now discussed in the manuscript.

      AG1478 is a first-generation tyrphostin while gefitinib and lapatinib are FDA-approved drugs. These compounds not only have different selectivity profiles, but also different pharmacological properties. Do the authors have any information about the permeability, distribution or concentration of the compounds in zebrafish embryos? Otherwise, how can they compare their effects?

      __The reviewer points out correctly, that not only selectivity but also several other parameters could differ between compounds. The logic of our experimentation was to utilize differences in the properties of inhibitors to get new insights into underlying biological processes. These utilized differences could arise from not only selectivity but also as well from pharmacokinetic and –dynamic properties. Although it can be useful to understand these differences, this information per se is not needed to identify differentially regulated pathways that could affect the studied phenotypes. This is now better clarified in the discussion section. Our data indicates that ErbB inhibition profile explains a significant proportion, but not all, of observed signaling differences (Supplemental Fig. 3C). __

      One major limitation of this study is that phosphoproteomic analysis was performed at a single time point and with a single dose of inhibitor, which compromises the interpretation of the findings. How was the dose of each inhibitor selected?

      The doses were chosen based on our previous work (Paatero et al, 2019; Vaparanta et al, 2023), where with these inhibitor concentrations we were able to maximize the phenotypic effects without causing significant mortality. This is now mentioned in the results section of the manuscript. Higher dosages were lethal for the embryos, especially of AG1478, which is why a lower concentration of this inhibitor was used. The higher toxicity of AG1478 at lower concentrations compared to other ERBB inhibitors has also been previously noted by another group (Pruvot et al, 2014). Similar concentrations of the inhibitors have also been previously used by other groups with zebrafish embryos (Tran et al, 2007; Gallardo et al, 2015; Zhang et al, 2021; Du et al, 2024)__. __

      One approach for better exploiting the data would be to correlate changes in phosphopeptides with the kinome selectivity of the inhibitors.

      Indeed, we have now correlated our results from these inhibitors with other ErbB inhibitors of similar ErbB family kinase selectivity. The phosphoproteomic changes induced by inhibitors with similar ErbB family kinase selectivity significantly correlate (P = 0.0002, r:0.80 ,R2:0.65, Supplemental Fig. 3C) indicating that the ErbB selectivity plays a major role in determining the phosphoproteomic changes induced by these inhibitors. We also performed a correlation analysis between dimensionality-reduced phosphoproteomic changes and inhibitor selectivity. There was no significant correlation between the changes in the phosphoproteome and the ERBB selectivity of the inhibitors (P=0.1551, One-tailed Pearson correlation). Taken together, these results indicate that while the phosphoproteomic changes induced by these inhibitors can be reproduced by other inhibitors with similar ERBB selectivity profiles, inhibiting only a subset of the ERBB kinases (especially EGFR and ERBB2, but not ERBB4) produces a unique signaling signature that is not recapitulated with pan-ERBB inhibitor treatment. This information may be of interest since both lapatinib (EGFR/ERBB2 inhibitor) and neratinib (pan-ERBB inhibitor) are both used in the clinic to treat HER2-positive breast cancer. Our data indicates that the administration of these inhibitors to patients will likely have a differential global effect on cell signaling.

      In the same vein, the signaling inhibitors used in Fig. 4 to dissect the phenotypic impact of distinct signaling pathways are non-selective, precluding any rigorous interpretation of the data. This confounding factor should at least be discussed in the manuscript. Again, the choice of the different doses of inhibitors is not justified.

      Indeed, like all inhibitors, the inhibitors we utilized in Figure 4 can have some off-target effects. We aimed to use the concentration known by previous literature to have a measurable effect on the physiology of the zebrafish embryo (Fujii et al, 2000; Geling et al, 2002; Vasilyev et al, 2012; Jiang et al, 2023)__. These concentrations for different inhibitors were different in the literature, which is why different concentrations of the different inhibitors were used. We couldn’t find a reference for the concentration for VT-103, so a 30µM concentration was selected. With this concentration, the size of the embryo hearts was significantly reduced (P

      The effect of inhibitors on the motility of embryos appears variable. For example, lapatinib markedly decreases motility in Fig. 4E but has no effect in Fig. 4F. Any explanation?

      Different inhibitor concentrations were used in Figure 4E and Figure 4F. This has been now more clearly indicated in the manuscript in the results section and the figure legend. The lower inhibitor dosages in Figure 4F were to reduce the mortality and allow motility analyses of the embryos treated with a combination of the inhibitors analyses to facilitate observation of potential synergistic actions of inhibitors in co-treated embryos.

      The conclusion that ErbB inhibitors induce similar phenotypes by perturbing different signaling pathways is not justified.

      We have now softened our conclusions in the manuscript in the results section by replacing the sentence:” Taken together, these results suggest that AG1478 and lapatinib induce similar phenotypes by partially perturbing different signaling pathways in zebrafish embryos.” With the sentences: ” Taken together, these results suggest that AG1478 and lapatinib induce similar phenotypes but perturb different signaling pathways. Inhibition of these pathways induce similar phenotypes to lapatinib or AG1478 treatment in zebrafish embryos.”.

      I have a few suggestions which could enhance the study's contribution to the field-

      1. The rationale for this study should be elaborated further. What new information is expected to emerge from these studies, independently of the conceptual and technical limitations outlined above?

      We have now further elaborated the rationale of the study in the introduction section.

      The advantage of studying the whole organism instead of selected tissues is questionable. Analyzing a mixture of organs may mask subtle and physiologically relevant alterations of signaling pathways in specific tissues.

      We agree with the reviewer that if the researcher’s interests reside in a specific tissue then a more targeted approach should be applied to probe the phosphoproteome of this tissue. However, sometimes a more global view of the inhibitor effects is required especially when it is unknown which tissues are affected by the inhibitor treatment. Ideally, the global approach would be followed by a more targeted approach on the tissues that are indicated to be affected by the inhibitor. One must also consider the feasibility, time consumption and costs of probing all tissues separately. If only the targeted approach is applied, the information on what pathway activities are globally most affected in the organism by the inhibitor treatment can be hard to estimate.

      Can the authors correlate neurological and myocardial phenotypes extrapolated from their study with pharmacological effects observed in mice or humans treated with these compounds?

      __We have now correlated our findings in the discussion section with the previous literature on the phenotypes of ErbB inhibitor-treated and ErbB receptor knock-out mice and with the reported adverse effects of ErbB inhibitor treatment in the clinic. __

      Reviewer #1 (Significance (Required)):

      The authors show that the 3 inhibitors differentially modulate the activity of PI3K/Akt, p38 MAPK, Notch, Hippo-YAP/TAZ and β-catenin signaling pathways, associated with different neurological and myocardial phenotypic changes. Using small molecule inhibitors of selective signaling pathways, they show that perturbation of different signaling pathways may induce similar phenotypes in zebrafish embryos.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this study, the authors assess the effects of various ErbB receptor family tyrosine kinase inhibitors on the phosphoproteome of late embryonic and early larval stages of zebrafish. MS, Western blotting, and analysis of a transgenic zebrafish Notch signaling reporter line data suggest differential but overlapping effects of treatment with gefitinib, lapatinib and AG1478. Selected deregulated pathways are further assessed using a range of candidate downstream pathway-targeting inhibitors. Inhibitor treatment followed by quantification of spontaneous larval motility and heart ventricle wall area, which were previously found by the authors to be affected by AG1478 and lapatinib treatment, identifies involved downstream signaling pathways.

      Major comments:

      While I do not question the validity of the presented data showing phosphoproteome perturbations resulting from the performed ErbB inhibitor treatments, the treatment regimens used to assess the differential effects of the compounds may be insuffient to substantiate general statements comparing the phenotypic and phosphorylation effects of lapatinib, gefitinib and AG1478 beyond the effects of the specific doses applied to the embryo media. Unless directly quantified, it is difficult to reliably predict the in vivo dose resulting from drug administered to the embryo medium, and therefore a dose may be too high or too low for drug-to-drug comparison. Rationale for chosen dose of drugs should be provided. If available, inclusion of quantitative data on the drug-induced change in phosphorylation status of the drug target(s) is encouraged, and the discussion of the phosphoproteomic and phenotypical data should include this information.

      The reviewer points out correctly, that not only selectivity but also several other parameters could differ between compounds. The logic of our experimentation was to utilize differences in the properties of inhibitors to get new insights into underlying biological processes. These utilized differences could arise from not only selectivity but also as well from pharmacokinetic and –dynamic properties. Although it can be useful to understand these differences, this information per se is not needed for the identification of differentially regulated pathways that could affect the studied phenotypes. This is now better clarified in the manuscript.

      The rationale for the chosen drug doses has now been added to the manuscript in the results section. We used drug concentrations that were known to produce a phenotypic effect without causing significant mortality in the zebrafish embryos.

      The ErbB receptors themselves are expressed at low levels, and unfortunately, we couldn´t reliably observe phosphopeptides of ErbB tyrosine autophosphorylation sites. To address this issue from a different angle, we treated embryos with other ErbB inhibitors exhibiting similar ErbB inhibition profiles as AG1478, lapatinib, and gefitinib (Supplemental Figure 3-4). This data indicates that the ErbB inhibition profile correlates quite well with the observed changes in the downstream signaling pathways p38, pAkt, pErk and Notch (Figure 3C and 4C).

      Husbandry: The statement that "Zebrafish were maintained (...) following standard procedures." is insufficient without a specific reference. Please provide details on water quality parameters, temperature, light/darkness cycle and feeding regimen.

      The requested information has now been added to the manuscript.

      Western analysis: How many embryos were pooled in each sample? Please specify standard protocol or provide reference.

      We have now amended the western analysis chapter in the materials and methods section as suggested by the reviewer. Five embryos were pooled for each sample.

      Ventricle growth assay: The method of ventricle wall quantification is insufficiently described and might result in unnecessarily high variation. At which stage of the cardiac contraction-relaxation cycle were ventricle wall thickness and ventricle area measured? The confounding effect of contraction could be avoided altogether by stopping the heartbeat pharmacologically e.g. by administration of blebbistatin or verapamil. Subtracting ventricle lumen area from total ventricle area seems a much more direct measure of ventricle wall area than the estimation obtained by multiplying ventricle wall thickness with ventricle area.

      We apologize for the mistake in the materials methods section, where we had written area instead of perimeter. We have now amended the ventricle growth assay chapter in the materials and methods sections and added more details on the ventricle wall area estimation. The ventricle wall area was measured from high-speed movies in diastole and systole, and the average perimeter over these states was reported. The ventricle wall thickness was only measured in systole. We chose this quantification method since the lumen area is difficult to estimate in the systole.

      Phosphopeptide enrichment: How many embryos per sample? Final DMSO concentration is not stated.

      __Twenty embryos per sample and 1% DMSO was used. This information is now included in the materials and methods section. __

      P-values are presented for comparison of select groups only and a statement that e.g. only P-values We have added the recommended statement and the mean/median value with deviation values for the data indicated by the reviewer in the figure legends.

      Minor comments:

      Overall, the manuscript is well written and data and methods are well presented.

      The relevant targets within the ErbB family of receptors should be introduced including information on well-established functions and downstream signaling pathways to enable the non-specialist reader to place the presented data in the context of known gene and protein function. Furthermore, conservation of target proteins in zebrafish should be touched upon.

      We have now rewritten the introduction and results sections to include information on the ErbB family kinase selectivity of these inhibitors, the well-established functions and the target downstream pathways of ErbB receptors. We have now performed a multiple sequence alignment on the kinase domain of the ErbB receptors in human and zebrafish to estimate the conservation of the inhibitor targets in the zebrafish model. Human ErbB kinase domains had a high 86+/-9% sequence identity with zebrafish counterparts (Supplemental Figure 2) compared to 67+/-14% identity with the other ErbB kinase domain sequences in zebrafish (P=0.012).

      Given different target profiles of the tested drugs among receptors of the ErbB family, differences in protein phosphorylation perturbations and in treatment-induced phenotypes may not be unexpected. Statements such as: "An unexpectedly large cluster of phosphopeptides that were increased in lapatinib-treated embryos but reduced in AG1478 and gefitinib treated embryos was detected" and "AG1478 and lapatinib may induce similar phenotypes by partially perturbing different signaling pathways in zebrafish embryos" should be discussed in the context of known drug target(s) and their functions.

      We have now rewritten these statements as suggested by the reviewer and the target profiles are now discussed in the manuscript.

      **Referee Cross-commenting**

      I agree with the other reviewers on almost all points.

      1) While the sensitivity to smaller or highly local effects is most likely reduced using the whole organism approach compared to e.g. single tissue analysis, I do believe that it is highly relevant due to its ability to identify potential effects beyond a single tissue or organ.

      2) I maintain that while the presented data nicely show the effects of each administered dose of the individual compounds, the data does not allow for meaningful drug-to-drug comparisons without quantitative information on in vivo dose or direct target effect. If such information cannot be included, cross-drug conclusions and discussion should be done very carefully.

      Reviewer #2 (Significance (Required)):

      The evaluation of systemic molecular and phenotypic consequences of anti-cancer drugs in a vertebrate model system represents a relevant advancement. Although drug effects are likely to differ somewhat between embryonic and larval zebrafish and human cancer patients, the authors' comparison of obtained zebrafish data with human data supports translatability of the presented phosphoproteomics data. Also, the presented data pose a relevant advancement facilitating the informed use of the tested inhibitors as tools in basic science.

      Expertise: Molecular biology, signaling, zebrafish. Limited expertise in omics data analysis and pharmacology.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The authors evaluated selected EGFR inhibitors developed as targeted cancer therapeutics, using zebrafish embryos and larvae as an in vivo model system. They performed mass spectrometry to analyze phosphorylation levels in target proteins, in combination with western blotting and gene set enrichment analyses; using this data, they assessed overlap between the inhibitors and overlap with known human data. They also performed imaging and locomotion analyses to assess alterations in phenotypes and phosphorylation-dependent signaling due to the inhibitor(s). The study generates novel information that is potentially relevant to the toxicity and efficacy of clinically used kinase inhibitors.

      • The statistical analyses are appropriate to the data and the experimental design.
      • The claims made by the authors are consistent with the data. In my opinion, the following revisions are needed for the manuscript to be accepted for publication:

      • There is no mention of Gefitinib in the Abstract; please include it.

      Gefitinib is now included in the Abstract.

      Please state the target selectivity profiles (from known preclinical and/or clinical data) of the three inhibitors used.

      __These are now presented in supplemental data (Supplemental Table 1), and analysed in relation to the observed signaling changes (Supplemental Figures 3 and 4). __

      Please clarify whether the residues mentioned in the phospho-specific antibody data refer to zebrafish or human proteins.

      Residues refer to human proteins as they are more widely used. This is now more clearly indicated in the materials and methods section.

      Please state whether the pan-antibodies corresponding to the phospho-specific antibody targets were used, and mention any problems associated with their use. This will help readers not familiar with antibody use in zebrafish experiments. It will also help emphasize the value of mass spectrometric analysis in zebrafish protein work.

      __As pointed out, the target specificity of antibodies is not often defined in zebrafish models on residue level, and phospho-specific antibodies may bind several closely related targets. The availability of robustly validated antibodies for zebrafish work, especially for phosphospecific epitopes, is quite limiting and therefore other, non-antibody-based techniques would be highly useful. This is now discussed in the manuscript. The phosphorylation site-specific antibodies used in this study indeed recognize the phosphorylated residue in several protein family members which further complicates the result interpretation. This is less of a limitation in the DIA-MS based phosphoproteomics approach which is now additionally discussed in the manuscript. __

      Please attempt to describe the clinically documented cardiovascular and neurological effects of the inhibitors and any correlation(s) with your data. This will enhance the impact of the study.

      See our reply for reviewer#1, comment 3.

      **Referee Cross-commenting**

      The common points raised in all the Reviews are the following:

      1. The rationale of the study should be described in more detail, especially the utility of zebrafish as an in vivo model, addressing its advantages and limitations.

      This is now discussed more extensively in the manuscript.

      The findings need to be described in the context of the target selectivity profiles and clinical effects of the inhibitors, especially the approved inhibitors (Gefitinib and Lapatinib).

      We have added data on target selectivity profiles (Supplemental Table 1), target conservation (Supplemental Figure 2) and also compared our observations to zebrafish embryos treated with other ErbB inhibitors with similar ErbB selectivity profiles (Supplemental Figure 3 and 4).

      1. In my opinion, while the comments regarding target site drug concentration (within the embryos/larvae) and dose-response are relevant, I consider these experiments to be appropriate in a more detailed follow-up study.

      We agree with the reviewer that the comprehensive pharmacokinetic studies fall outside the scope of this manuscript. As discussed before, in this manuscript we utilize differential inhibitor properties to gain new insight into phenotypes and underlying biological processes. This logic works even if the differences arise from properties other than the target selectivity.

      One of the main value additions of the study is that it highlights a useful alternative to conventional strategies used in preclinical cellular and mammalian model studies of kinase inhibitors. I would urge the authors to discuss specific future directions, giving due importance to all the reviewers' comments.

      This is now more extensively elaborated in the discussion section.

      Reviewer #3 (Significance (Required)):

      The experiments are well-described and provide sufficient information and detail for readers to understand and reproduce.

      The study is highly relevant to the use of zebrafish as a whole-organism model for in vivo evaluation of drugs, specifically kinase inhibitors.

      References

      Du K, Liu Y, Zhang L, Peng L, Dong W, Jiang Y, Niu M, Sun Y, Wu C, Niu Y et al (2024) Lapatinib combined with doxorubicin causes dose-dependent cardiotoxicity partially through activating the p38MAPK signaling pathway in zebrafish embryos. Biomed Pharmacother 175. doi:10.1016/J.BIOPHA.2024.116637.

      Fujii R, Yamashita S, Hibi M, Hirano T (2000) Asymmetric p38 activation in zebrafish: Its possible role in symmetric and synchronous cleavage. Journal of Cell Biology 150. doi:10.1083/jcb.150.6.1335.

      Gallardo VE, Varshney GK, Lee M, Bupp S, Xu L, Shinn P, Crawford NP, Inglese J, Burgess SM (2015) Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. DMM Disease Models and Mechanisms 8. doi:10.1242/dmm.018689.

      Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C (2002) A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3. doi:10.1093/embo-reports/kvf124.

      Jiang Y, Zhao X, Chen J, Aniagu S, Chen T (2023) PM2.5 induces cardiac malformations via PI3K/akt2/mTORC1 signaling pathway in zebrafish larvae. Environmental Pollution 323. doi:10.1016/j.envpol.2023.121306.

      Paatero I, Veikkolainen V, Mäenpää M, Schmelzer E, Belting HG, Pelliniemi LJ, Elenius K (2019) ErbB4 tyrosine kinase inhibition impairs neuromuscular development in zebrafish embryos. Mol Biol Cell 30. doi:10.1091/mbc.E18-07-0460.

      Pruvot B, Curé Y, Djiotsa J, Voncken A, Muller M (2014) Developmental defects in zebrafish for classification of EGF pathway inhibitors. Toxicol Appl Pharmacol 274. doi:10.1016/j.taap.2013.11.006.

      Tran TC, Sneed B, Haider J, Blavo D, White A, Aiyejorun T, Baranowski TC, Rubinstein AL, Doan TN, Dingledine R et al (2007) Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res 67. doi:10.1158/0008-5472.CAN-07-3126.

      Vaparanta K, Jokilammi A, Paatero I, Merilahti JA, Heliste J, Hemanthakumar KA, Kivelä R, Alitalo K, Taimen P, Elenius K (2023) STAT5b is a key effector of NRG ‐1/ ERBB4 ‐mediated myocardial growth . EMBO Rep 24. doi:10.15252/embr.202256689.

      Vasilyev A, Liu Y, Hellman N, Pathak N, Drummond IA (2012) Mechanical stretch and PI3K signaling link cell migration and proliferation to coordinate epithelial tubule morphogenesis in the zebrafish pronephros. PLoS One 7. doi:10.1371/journal.pone.0039992.

      Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN (2011) Development: Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 4. doi:10.1126/scisignal.2002278.

      Zhang Y, Cai Y, Zhang SR, Li CY, Jiang LL, Wei P, He MF (2021) Mechanism of hepatotoxicity of first-line tyrosine kinase inhibitors: Gefitinib and afatinib. Toxicol Lett 343. doi:10.1016/j.toxlet.2021.02.003.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The authors evaluated selected EGFR inhibitors developed as targeted cancer therapeutics, using zebrafish embryos and larvae as an in vivo model system. They performed mass spectrometry to analyze phosphorylation levels in target proteins, in combination with western blotting and gene set enrichment analyses; using this data, they assessed overlap between the inhibitors and overlap with known human data. They also performed imaging and locomotion analyses to assess alterations in phenotypes and phosphorylation-dependent signaling due to the inhibitor(s). The study generates novel information that is potentially relevant to the toxicity and efficacy of clinically used kinase inhibitors.

      • The statistical analyses are appropriate to the data and the experimental design.
      • The claims made by the authors are consistent with the data.

      In my opinion, the following revisions are needed for the manuscript to be accepted for publication:

      1. There is no mention of Gefitinib in the Abstract; please include it.
      2. Please state the target selectivity profiles (from known preclinical and/or clinical data) of the three inhibitors used.
      3. Please clarify whether the residues mentioned in the phospho-specific antibody data refer to zebrafish or human proteins.
      4. Please state whether the pan-antibodies corresponding to the phospho-specific antibody targets were used, and mention any problems associated with their use. This will help readers not familiar with antibody use in zebrafish experiments. It will also help emphasize the value of mass spectrometric analysis in zebrafish protein work.
      5. Please attempt to describe the clinically documented cardiovascular and neurological effects of the inhibitors and any correlation(s) with your data. This will enhance the impact of the study.

      Referee Cross-commenting

      The common points raised in all the Reviews are the following:

      1. The rationale of the study should be described in more detail, especially the utility of zebrafish as an in vivo model, addressing its advantages and limitations.
      2. The findings need to be described in the context of the target selectivity profiles and clinical effects of the inhibitors, especially the approved inhibitors (Gefitinib and Lapatinib).
      3. In my opinion, while the comments regarding target site drug concentration (within the embryos/larvae) and dose-response are relevant, I consider these experiments to be appropriate in a more detailed follow-up study.
      4. One of the main value additions of the study is that it highlights a useful alternative to conventional strategies used in preclinical cellular and mammalian model studies of kinase inhibitors. I would urge the authors to discuss specific future directions, giving due importance to all the reviewers' comments.

      Significance

      The experiments are well-described and provide sufficient information and detail for readers to understand and reproduce.

      The study is highly relevant to the use of zebrafish as a whole-organism model for in vivo evaluation of drugs, specifically kinase inhibitors.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this study, the authors assess the effects of various ErbB receptor family tyrosine kinase inhibitors on the phosphoproteome of late embryonic and early larval stages of zebrafish. MS, Western blotting, and analysis of a transgenic zebrafish Notch signaling reporter line data suggest differential but overlapping effects of treatment with gefitinib, lapatinib and AG1478. Selected deregulated pathways are further assessed using a range of candidate downstream pathway-targeting inhibitors. Inhibitor treatment followed by quantification of spontaneous larval motility and heart ventricle wall area, which were previously found by the authors to be affected by AG1478 and lapatinib treatment, identifies involved downstream signaling pathways.

      Major comments:

      While I do not question the validity of the presented data showing phosphoproteome perturbations resulting from the performed ErbB inhibitor treatments, the treatment regimens used to assess the differential effects of the compounds may be insuffient to substantiate general statements comparing the phenotypic and phosphorylation effects of lapatinib, gefitinib and AG1478 beyond the effects of the specific doses applied to the embryo media. Unless directly quantified, it is difficult to reliably predict the in vivo dose resulting from drug administered to the embryo medium, and therefore a dose may be too high or too low for drug-to-drug comparison. Rationale for chosen dose of drugs should be provided. If available, inclusion of quantitative data on the drug-induced change in phosphorylation status of the drug target(s) is encouraged, and the discussion of the phosphoproteomic and phenotypical data should include this information.

      Husbandry: The statement that "Zebrafish were maintained (...) following standard procedures." is insufficient without a specific reference. Please provide details on water quality parameters, temperature, light/darkness cycle and feeding regimen.

      Western analysis: How many embryos were pooled in each sample? Please specify standard protocol or provide reference. Ventricle growth assay: The method of ventricle wall quantification is insufficiently described and might result in unnecessarily high variation. At which stage of the cardiac contraction-relaxation cycle were ventricle wall thickness and ventricle area measured? The confounding effect of contraction could be avoided altogether by stopping the heartbeat pharmacologically e.g. by administration of blebbistatin or verapamil. Subtracting ventricle lumen area from total ventricle area seems a much more direct measure of ventricle wall area than the estimation obtained by multiplying ventricle wall thickness with ventricle area.

      Phosphopeptide enrichment: How many embryos per sample? Final DMSO concentration is not stated. P-values are presented for comparison of select groups only and a statement that e.g. only P-values < 0.05 are plotted would be helpful if applicable. Also, please provide mean +/- standard deviation for data presented in figures 3A, 3B, 4C, 4E, and 4F.

      Minor comments:

      Overall, the manuscript is well written and data and methods are well presented. The relevant targets within the ErbB family of receptors should be introduced including information on well-established functions and downstream signaling pathways to enable the non-specialist reader to place the presented data in the context of known gene and protein function. Furthermore, conservation of target proteins in zebrafish should be touched upon.

      Given different target profiles of the tested drugs among receptors of the ErbB family, differences in protein phosphorylation perturbations and in treatment-induced phenotypes may not be unexpected. Statements such as: "An unexpectedly large cluster of phosphopeptides that were increased in lapatinib-treated embryos but reduced in AG1478 and gefitinib treated embryos was detected" and "AG1478 and lapatinib may induce similar phenotypes by partially perturbing different signaling pathways in zebrafish embryos" should be discussed in the context of known drug target(s) and their functions.

      Referee Cross-commenting

      I agree with the other reviewers on almost all points.

      1. While the sensitivity to smaller or highly local effects is most likely reduced using the whole organism approach compared to e.g. single tissue analysis, I do believe that it is highly relevant due to its ability to identify potential effects beyond a single tissue or organ.
      2. I maintain that while the presented data nicely show the effects of each administered dose of the individual compounds, the data does not allow for meaningful drug-to-drug comparisons without quantitative information on in vivo dose or direct target effect. If such information cannot be included, cross-drug conclusions and discussion should be done very carefully.

      Significance

      The evaluation of systemic molecular and phenotypic consequences of anti-cancer drugs in a vertebrate model system represents a relevant advancement. Although drug effects are likely to differ somewhat between embryonic and larval zebrafish and human cancer patients, the authors' comparison of obtained zebrafish data with human data supports translatability of the presented phosphoproteomics data. Also, the presented data pose a relevant advancement facilitating the informed use of the tested inhibitors as tools in basic science.

      Expertise: Molecular biology, signaling, zebrafish. Limited expertise in omics data analysis and pharmacology.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this study, Vaparanta and co-workers used zebrafish embryos as model to analyze the impact of ErbB tyrosine kinase inhibitors on signaling pathways at the whole organism level. Experimentally, zebrafish embryos were exposed for 1 hour to a single dose of 3 different ErbB tyrosine kinase inhibitors and the global phosphoproteome of the embryos was analyzed by MS/MS. The authors show that the 3 inhibitors differentially modulate the activity of PI3K/Akt, p38 MAPK, Notch, Hippo-YAP/TAZ and β-catenin signaling pathways, associated with different neurological and myocardial phenotypic changes. Using small molecule inhibitors of selective signaling pathways, they show that perturbation of different signaling pathways may induce similar phenotypes in zebrafish embryos.

      Specific comments:

      1. The observation that exposure of zebrafish embryos to lapatinib, gefitinib and AG1478 leads to different global phosphoproteomic changes and to differential modulation of cellular signaling pathways was predictable and supported by an abundant literature. These 3 inhibitors differentially inhibit ErbB homo- and heterodimers and hit many other kinases. This point should be discussed in the paper.
      2. AG1478 is a first-generation tyrphostin while gefitinib and lapatinib are FDA-approved drugs. These compounds not only have different selectivity profiles, but also different pharmacological properties. Do the authors have any information about the permeability, distribution or concentration of the compounds in zebrafish embryos? Otherwise, how can they compare their effects?
      3. One major limitation of this study is that phosphoproteomic analysis was performed at a single time point and with a single dose of inhibitor, which compromises the interpretation of the findings. How was the dose of each inhibitor selected?
      4. One approach for better exploiting the data would be to correlate changes in phosphopeptides with the kinome selectivity of the inhibitors.
      5. In the same vein, the signaling inhibitors used in Fig. 4 to dissect the phenotypic impact of distinct signaling pathways are non-selective, precluding any rigorous interpretation of the data. This confounding factor should at least be discussed in the manuscript. Again, the choice of the different doses of inhibitors is not justified.
      6. The effect of inhibitors on the motility of embryos appears variable. For example, lapatinib markedly decreases motility in Fig. 4E but has no effect in Fig. 4F. Any explanation?
      7. The conclusion that ErbB inhibitors induce similar phenotypes by perturbing different signaling pathways is not justified.

      I have a few suggestions which could enhance the study's contribution to the field-

      1. The rationale for this study should be elaborated further. What new information is expected to emerge from these studies, independently of the conceptual and technical limitations outlined above?
      2. The advantage of studying the whole organism instead of selected tissues is questionable. Analyzing a mixture of organs may mask subtle and physiologically relevant alterations of signaling pathways in specific tissues.
      3. Can the authors correlate neurological and myocardial phenotypes extrapolated from their study with pharmacological effects observed in mice or humans treated with these compounds?

      Significance

      The authors show that the 3 inhibitors differentially modulate the activity of PI3K/Akt, p38 MAPK, Notch, Hippo-YAP/TAZ and β-catenin signaling pathways, associated with different neurological and myocardial phenotypic changes. Using small molecule inhibitors of selective signaling pathways, they show that perturbation of different signaling pathways may induce similar phenotypes in zebrafish embryos.

    1. 3 × 3 blocks

      What does "3 x 3 blocks" mean?

    2. Our proposal distribution q(z = k|x) is deterministic, and bydefining a simple uniform prior over z we obtain a KL divergence constant and equal to log K.

      What?

    1. 300

      +-291

    2. Grąžinimą sujustiruojame į maksimalią galią tiek vertikalia, tiek horizontalia kryptimis.

      Tuo metu jau būname užveržę kaupinimą vertikaliai ir horizontaliai.

    1. Ils

      tu emploies pas mal les pronoms ce qui rend parfois malaisée la compréhension, par exemple ici "ils" se réfère aux différents niveaux, aux outils ?

      bref, n'aies pas peur de la répétition

    1. ds SW and NE. Mafic intrusion.

      test

    Annotators

    1. Author response:

      We thank the reviewers for their thorough comments on our manuscript. We appreciate their recognition of the strengths in our study, including addressing the significant problem of neonatal sepsis in preterm infants using a preterm piglet model, the robustness of our multi-omics dataset, and our multi-pronged approach to examining the physiological changes under different glucose management regimens.

      This document addresses our initial responses to the main concerns of the 3 reviewers. We will provide more detailed responses to their comments and revise the manuscript at a later date.

      In response to Reviewer #1, we acknowledge the concern about high blood glucose levels in the control group. This work is a follow-up from our previous work (Muk et al, JCI insight 2022) where we explored different PN glucose regimens. Taken together, our experiments suggest a linear relationship between glucose provision and infection severity, indicating increased glucose may heighten mortality risk, while radical reduction could reduce mortality due to sepsis, but cause hypoglycemia and brain damage. As for the discrepancy in survival rates between Figures 1B and 6B, this is due to a shortened follow-up time in the follow-up experiment. This was done to minimize animal suffering because relevant differences in immune-responses were detectable within 12 hours in the primary experiment. As for the relationship between bacterial burdens and glucose, we agree that lower bacterial density in piglets receiving the reduced glucose PN may result from slower bacterial growth. However, we analyzed the relationship between bacterial burdens and mortality and found that it did not correlate within each of the treatment groups. This finding inspired us to further explore the relationship between bacterial burdens and infection responses in our model which has resulted in our recent preprint: Wu et at. Regulation of host metabolism and defense strategies to survive neonatal infection. BioRxiv 2024.02.23.581534; doi: https://doi.org/10.1101/2024.02.23.581534

      For Reviewer #2, The distinction between early (EOS) and late onset sepsis (LOS) in the time cut-off makes sense clinically because they are likely to be caused by different organisms and origins (EOS with maternal origin and LOS with postnatal origin) and therefore require different empirical antibiotics regimes. However, it is also important to acknowledge that the pathophysiology of “sepsis” may be similar despite timing and pathogen and depends on the degree of immune activation. Therefore, even though the infection in our model is initiated on the first day after birth the organism that we use, Staphylococcus epidermidis (most common bacteria detected in LOS), makes it a better model for LOS. As for neutrophil specific transcripts, we only collected the whole blood transcript during the experiments, which reflects the transcriptomic profile of all the leucocytes. Since we did not do single cell RNA sequencing during the experiment there is no possibility of isolating the neutrophil transcriptome at this time. As for the question of a “safe glucose infusion rate”, there likely is none as the immune responses to glucose intake do not seem binary but increase with glucose intake. Our reduced glucose PN was chosen as it corresponded with the low end of recommended guidelines for PN glucose intake. However, the reduced glucose intervention still resulted in significant morbidity and a 25% mortality within 22 hours. There is therefore still vast room for improvement, but even though further reduction in PN glucose intake would probably provide further protection, it would entail dangerous hypoglycemia. The findings in this paper have prompted us to explore several alternative strategies to both reduce infection-related mortality and maintain glucose homeostasis. Thus, the optimal PN for infected newborns would probably differ from standard PN in all macronutrients compartments and will require much more pre- and clinical research.

      For Reviewer #3, we acknowledge the variability in data collected from animals at euthanasia. These endpoints represent snapshots of the animals' states at euthanasia, which is a clear limitation of our method. Therefore, we do not know what metabolic processes precede the development of lethal sepsis, although the increases in plasma lactate suggest a higher rate of glycolysis in animals on high glucose PN. However, we believe the data still heavily imply a causal relationship between energy metabolic processes, especially glycolytic breakdown of glucose, and the pro-inflammatory responses leading to sepsis. In our recent preprint mentioned above we further explored the metabolic responses in pigs that succumbed to sepsis, compared to those that survived and found that survival was strongly associated with increases in mitochondrial metabolism and reduction in glycolysis.

      We hope these clarifications and our commitment to further research address your concerns satisfactorily. Thank you for your valuable feedback.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      “but an obvious influencing factor that the authors could investigate in their own data set is the retinal input. In Fig1b, the authors even show these data in the form of gaze and pupil size. In these example data, by eye, it looks like the pupil size is positively correlated with the run speed. This would of course have large consequences on the activity in V1, but the authors do not do anything with these data. The study would improve substantially if the authors would correlate their run speed traces with other factors that they have recorded too, such as pupil size and gaze.”

      Absolutely. We have added a first level of eye movement (and pupil size) analyses to the revised manuscript, resulting in an additional figure. In short, we found that eye movements are unlikely to play a significant role in our primary results, as the patterns of eye movements differed only slightly between running and stationary periods, and the measured impacts of such eye movements were also quantitatively much smaller than the primary effect sizes.

      We also note that in analyzing the eye movements, we also found that pupil size was larger during running than stationary. This is suggestive evidence that running is correlated with increases in arousal. Although more work will be needed to calibrate and quantify how much this factor affects neural responses (and perhaps to dissociate it from running per se), the simple analysis we present suggest that the large differences we observe could be explained by a difference between how arousal and running are correlated in the monkey versus the mouse. Instead, it appears that both species have at least qualitatively similar relations between pupil size (a standard proxy for arousal) and running.

      On this issue, we have added extensive discussion of the relevant recent work by Talluri et al. (2023) who attempted a similar cross-species analysis that considered spontaneous body movements and their effect on cortical activity (as well as the possibility that eye movements are a critical mediator in these modulations). Due to delays in revising our manuscript, we regret that our earlier submission had not cited this work, but we now do our best to highlight its importance and the synergy between these two papers. The full citation is listed below:

      Talluri BC, Kang I, Lazere A, Quinn KR, Kaliss N, Yates JL, Butts DA, Nienborg H. Activity in primate visual cortex is minimally driven by spontaneous movements. Nat Neurosci. 2023 Nov;26(11):1953-1959. doi: 10.1038/s41593-023-01459-5.

      There is a finer level of analysis that we hope to do in the future along these lines. It would rely on detailed characterization of each receptive field, building an image-computable model linking those receptive fields to the neural activity, and doing so at a finer time grain that links individual eye movements and changes in the spike train within a stimulus presentation (as opposed to working at the level of spike counts per stimulus presentation). Because these steps need to be accomplished together— and each requires substantial additional work and would go beyond the first-order findings we report in this work— we hope to report on such finer analyses in a standalone paper later. We are working on being able to do this in both marmoset and mouse.

      More generally, we want to emphatically agree that what is missing from this paper is the “why?”! We have done our best to show that a fair comparison reveals quantitatively different phenomena in marmoset and mouse. In the revised discussion, we lay out many lines of work that we hope will gain traction on this deeper mechanistic point. There’s a lot to do, and several of the possibilities are already current topics of exploration in our ongoing work.

      “Looking at the raster plot, however, shows that this strong positive correlation must be due entirely to the lower half of the neurons significantly increasing their firing rate as the mouse starts to run; in fact, the upper 25% or so of the neurons show exactly the opposite (strong suppression of the neurons as the mouse starts running). It would be more balanced if this heterogeneity in the response is at least mentioned somewhere in the text.”

      We are also intrigued by the heterogeneity of effects at the single neuron level. That is why the next section of the paper is dedicated to analyzing effects on a cell-by-cell basis. The fractions of neurons showing either increases or decreases are described separately, to get at this very issue.

      Reviewer 2 (Public Review)::

      “For example, it is known that the locomotion gain modulation varies with layer in the mouse visual cortex, with neurons in the infragranular layers expressing a diversity of modulations (Erisken et al. 2014 Current Biology). However, for the marmoset dataset, it was not reported from which cortical layer the neurons are from, leaving this point unanswered.”

      Reviewer 2 called for more consideration of details that have been addressed in the mouse literature, such as the cortical layer of the cells, and related aspects of circuitry. We have greatly re-worked the Discussion to address several of these issues. In short, the manuscript’s set of data were collected without strong traction on layers or cell types, and it will be quite interesting to get a better handle on this using both refinements to our recording procedures as well as new techniques that are now possible in the marmoset for future studies.

      “In this regard, it is worth noting that the authors report an interesting difference between the foveal and peripheral parts of the visual cortex in marmoset. It will be interesting to investigate these differences in more detail in future studies. Likewise, while running might be an important behavioral state for mice, other behavioral states might be more relevant for marmosets and do modulate the activity of the primate visual cortex more profoundly. Future work could leverage the opportunities that the marmoset model system offers to reveal new insights about behavioral-related modulation in the primate brain.”

      Same page! We have expanded the discussion to better emphasize these points and are already deep in follow up experiments to explore the foveal and peripheral representations.

      Reviewer 3 (Public Review)::

      “However, the authors did not take full advantage of the quantity and diversity of the marmoset visual cortex recordings in their analyses. They mention recording and analyzing the activity of peripheral V1 neurons but mainly present results involving foveal V1 neurons. Foveal neurons, with their small receptive fields strongly affected by precise eye position, would seem to be less likely to be comparable to rodent data. If the authors have a reason for not doing so, they should provide an explanation.”

      We agree, and hope the reviewer finds our overall reply, detailed response to Reviewer 1 (who raised a similar issue), and corresponding updates to the manuscript appropriate for this stage of understanding.

      “Given that the marmosets are motivated to run with liquid rewards, the authors should provide more context as to how this may or may not affect marmoset V1 activity. Additionally, the lack of consideration of eye movements or position presents a major absence for the marmoset results, and fails to take advantage of one of the key differences between primate and rodent visual systems - the marmosets have a fovea, and make eye movements that fixate in various locations on the screen during the task.”

      In addition to the response above, we have made edits to the manuscript to speak to issues of arousal and eye movements (also detailed in previous responses). Given the modest decrease in activity we see, the usual concerns about potential increases in neural activity related to eye movements (which we quantify in the revision) and other issues related to motivation are hard to specifically relate to existing literature. But in the revised Discussion we talk more about how future work can/should dissociate these factors, as has been done in the mouse literature.

      “Finally, the model provides a strong basis for comparison at the level of neuronal populations, but some methodological choices are insufficiently described and may have an impact on interpreting the claims.”

      We have also clarified the shared-gain model’s description, which we agree needed additional detail and clarification.

    2. eLife assessment

      This important work advances our understanding of the differences in locomotion-induced modulation in primate and rodent visual cortexes and underlines the significant contribution cross-species comparisons make to investigating brain function. The evidence in support of these differences across species is convincing. This work will be of broad interest to neuroscientists.

    3. Reviewer #1 (Public Review):

      More than ten years ago, it was shown that activity in the primary visual cortex of mice substantially increases when mice are running compared to when they are sitting still. This finding 'revolutionised' our thinking about visual cortex, turning away from it being a passive image processor and highlighting the influence of non-visual factors. The current study now for the first time repeats this experiment in marmosets. The authors find that in contrast to mice, marmoset V1 activity is slightly suppressed during running, and they relate this to differences in gain modulations of V1 activity between the two species.

      Strengths

      - Replication in primates of the original finding in mice partly took so long, because of the inherent difficulties with recording from the brain of a running primate. In fact one recent, highly related study on macaques looked at spontaneous limb movements as the macaque was sitting. The treadmill for the marmosets in the current study is a very elegant solution to the problem of running in primates. It allows for true replication of the 'running vs stationary' experiment and undoubtedly opens up many possibilities for other experiments recording from a head-fixed but active marmoset.<br /> - In addition to their own data in marmoset, the authors run their analyses on a publicly available data set in mouse. This allows them to directly compare mouse and marmoset findings, which significantly strengthens their conclusions.<br /> - Marmoset vision is fundamentally different from mouse vision as they have a fovea and make goal-directed eye movements. In this revised version of their paper, the authors acknowledge this and investigate the possible effect of eye movements and pupil size on the differences they find between running and stationary. They conclude that eye input does not explain all these differences.

      Significance

      The paper provides interesting new evidence to the ongoing discussion about the influence of non-visual factors in general, and running in particular, on visual cortex activity. As such, it helps to pull this discussion out of the rodent field mainly and into the field of primate research. The bigger question of *why* there are differences between rodents and primates remains still unanswered, but the authors do their best to provide possible explanations. The elegant experimental set-up of the marmoset on a treadmill will certainly add new findings to this issue also in the years to come.

    4. Reviewer #2 (Public Review):

      This work aims at answering whether activity in primate visual cortex is modulated by locomotion, as was reported for mouse visual cortex. The finding that the activity in mouse visual cortex is modulated by running has changed the concept of primary sensory cortical areas. However, it was an open question whether this modulation generalizes to primates.

      To answer this fundamental question the authors established a novel paradigm in which a head-fixed marmoset was able to run on a treadmill while watching a visual stimulus on a display. In addition, eye movements and running speed were monitored continuously and extracellular neuronal activity in primary visual cortex recorded using high-channel-count electrode arrays. This paradigm uniquely permitted to investigate whether locomotion modulates sensory evoked activity in visual cortex of marmoset. Moreover, to directly compare the responses in marmoset visual cortex to responses in mouse visual cortex the authors made use of a publicly-available mouse dataset from the Allen Institute. In this dataset the mouse was also running on a treadmill and observing a set of visual stimuli on a display. The authors took extra care to have the marmoset and mouse paradigms as comparable as possible.

      To characterize the visually driven activity the authors present a series of moving gratings and estimate receptive fields with sparse noise. To estimate the gain modulation by running the authors split the dataset into epochs of running and non-running which allowed them to estimate the visually evoked firing rates in both behavioral states.

      Strengths:

      The novel paradigm of head-fixed marmosets running on a treadmill while being presented with a visual stimulus is unique and ideally tailored to answering the question that the authors aimed to answer. Moreover, the authors took extra care to ensure that the paradigm in marmoset matched as closely as possible to the conditions in the mouse experiments such that the results can be directly compared. To directly compare their data the authors re-analyzed publicly available data from visual cortex of mice recorded at the Allen Institute. Such a direct comparison, and reuse of existing datasets, is another strong aspect of the work. Finally, the presented new marmoset dataset appears to be of high quality, the comparison between mouse and marmoset visual cortex is well done and the results and interpretation straightforward.

      Weaknesses:

      It is known that the locomotion gain modulation varies with layer in mouse visual cortex, with neurons in the infragranular layers expressing a diversity of modulations (Erisken et al. 2014 Current Biology). However, for the marmoset dataset the layer information was unfortunately not recorded, leaving this point open for future studies.

      Nonetheless, the aim of comparing the locomotion induced modulation of activity in primate and mouse primary visual cortex was convincingly achieved by the authors. The results shown in the figures support the conclusion that locomotion modulates the activity in primate and mouse visual cortex differently. While mice show a profound gain increase, neurons in primate visual cortex show little modulation or even a reduction in response strength.

      This work will have a strong impact on the field of visual neuroscience but also on neuroscience in general. It revives the debate of whether results obtained in the mouse model system can be simply generalized to other mammalian model systems, such as non-human primates. Based on the presented results, the comparison between the mouse and primate visual cortex is not as straightforward as previously assumed. This will likely trigger more comparative studies between mice and primates in the future, which is important and absolutely needed to advance our understanding of the mammalian brain.

      Moreover, the reported finding that neurons in primary visual cortex of marmosets do not increase their activity during running is intriguing, as it makes you wonder why neurons in the mouse visual cortex do so. The authors discuss a few ideas in the paper which can be addressed in future experiments. In this regard it is worth noting that the authors report an interesting difference between the foveal and peripheral part of the visual cortex in marmoset. It will be interesting to investigate these differences in more detail in future studies. Likewise, while running might be an important behavioral state for mice, other behavioral states might be more relevant for marmosets and do modulate the activity of primate visual cortex more profoundly. Future work could leverage the opportunities that the marmoset model system offers to reveal new insights about behavioral related modulation in the primate brain.

    5. Reviewer #3 (Public Review):

      Prior studies have shown that locomotion (e.g., running) modulates mouse V1 activity to a similar extent as visual stimuli. However, it's unclear if these findings hold in species with more specialized and advanced visual systems such as nonhuman primates. In this work, Liska et al. leverage population and single neuron analyses to investigate potential differences and similarities in how running modulates V1 activity in marmosets and mice. Specifically, they discovered that although a shared gain model could describe well the trial-to-trial variations of population-level neural activity for both species, locomotion more strongly modulated V1 population activity in mice. Furthermore, they found that at the level of individual units, marmoset V1 neurons, unlike mice V1 neurons, experience suppression of their activity during running.

      A major strength of this work is the introduction and completion of primate electrophysiology recordings during locomotion. Data of this kind were previously limited, and this work moves the field forward in terms of data collection in a domain previously inaccessible in primates. Another core strength of this work is that it adds to a limited collection of cross-species data collection and analysis of neural activity at the single-unit and population level, attempting to standardize analysis and data collection to be able to make inferences across species. In particular, the findings on how the primate peripheral and foveal V1 representations functionally relate to and differ from the mice V1 representations speak to the power of these cross-species comparisons.

      However, there are still some lingering potential extensions to this work, largely acknowledged by the authors. One of these extensions involves more detailed eye movement analysis within species, such as microsaccades in marmosets and the potential impact on marmoset V1 activity. In the mouse data, similar eye-related analyses were not possible, in part due to instability in the eye recordings of many mouse sessions that made it challenging to replicate partnered analyses for the marmosets. We agree with the authors' assessment that these analyses can be targeted in future work and still believe that the marmoset eye-movement findings provide novel insights that will inform future cross-species comparisons of the visual system. Furthermore, another important issue not fully explored is the possible effects of the reward scheme during marmoset locomotion on V1 activity. The authors note that, unlike their mice counterparts, the marmosets were encouraged to run via liquid rewards, given after subjects traversed a specific distance. While the authors discuss the changes in arousal present when marmosets were running, there are still some unanswered questions on how their reward scheme may affect biomarkers (e.g., pupil sizes) and marmoset V1 activity.

      Overall, the methods and data support the work's main claims. Single neuron and population level approaches demonstrate that the activity of V1 in mice and marmoset are categorically different. Since primate V1 is so diverse and differs from mouse V1, this presents important limitations on direct inferences from mouse V1 to primate V1. This work is a great step forward in the field, especially with the novel methodology of collecting neural activity from running primates.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The current study provided a follow-up analysis using published datasets focused on the individual variability of both the distraction effect (size and direction) and the attribute integration style, as well as the association between the two. The authors tried to answer the question of whether the multiplicative attribute integration style concurs with a more pronounced and positively oriented distraction effect.

      Strengths:

      The analysis extensively examined the impacts of various factors on decision accuracy, with a particular focus on using two-option trials as control trials, following the approach established by Cao & Tsetsos (2022). The statistical significance results were clearly reported.

      The authors meticulously conducted supplementary examinations, incorporating the additional term HV+LV into GLM3. Furthermore, they replaced the utility function from the expected value model with values from the composite model.

      We thank the reviewer for the positive response and are pleased that the reviewer found our report interesting.

      Reviewer #1 Comment 1

      Weaknesses:

      There are several weaknesses in terms of theoretical arguments and statistical analyses.

      First, the manuscript suggests in the abstract and at the beginning of the introduction that the study reconciled the "different claims" about "whether distraction effect operates at the level of options' component attributes rather than at the level of their overall value" (see line 13-14), but the analysis conducted was not for that purpose. Integrating choice attributes in either an additive or multiplicative way only reflects individual differences in combining attributes into the overall value. The authors seemed to assume that the multiplicative way generated the overall value ("Individuals who tended to use a multiplicative approach, and hence focused on overall value", line 20-21), but such implicit assumption is at odds with the statement in line 77-79 that people may use a simpler additive rule to combine attributes, which means overall value can come from the additive rule.

      We thank the reviewer for the comment. We have made adjustments to the manuscript to ensure that the message delivered within this manuscript is consistent. Within this manuscript, our primary focus is on the different methods of value integration in which the overall value is computed (i.e., additive, multiplicative, or both), rather than the interaction at the individual level of attributes. However, we do not exclude the possibility that the distractor effect may occur at multiple levels. Nevertheless, in light of the reviewer’s comment, we agree that we should focus the argument on whether distractors facilitate or impair decision making and downplay the separate argument about the level at which distractor effects operate. We have now revised the abstract:

      “It is widely agreed that people make irrational decisions in the presence of irrelevant distractor options. However, there is little consensus on whether decision making is facilitated or impaired by the presence of a highly rewarding distractor or whether the distraction effect operates at the level of options’ component attributes rather than at the level of their overall value. To reconcile different claims, we argue that it is important to incorporate consideration of the diversity of people’s ways of decision making. We focus on a recent debate over whether people combine choice attributes in an additive or multiplicative way. Employing a multi-laboratory dataset investigating the same decision making paradigm, we demonstrated that people used a mix of both approaches and the extent to which approach was used varied across individuals. Critically, we identified that this variability was correlated with the effect of the distractor on decision making. Individuals who tended to use a multiplicative approach to compute value, showed a positive distractor effect. In contrast, in individuals who tended to use an additive approach, a negative distractor effect (divisive normalisation) was prominent. These findings suggest that the distractor effect is related to how value is constructed, which in turn may be influenced by task and subject specificities. Our work concurs with recent behavioural and neuroscience findings that multiple distractor effects co-exist.” (Lines 12-26)

      Furthermore, we acknowledge that the current description of the additive rule could be interpreted in several ways. The current additive utility model described as:

      where  is the options’ utility,  is the reward magnitude,  is the probability, and  is the magnitude/probability weighing ratio . If we perform comparison between values according to this model (i.e., HV against LV), we would arrive at the following comparison:

      If we rearrange (1), we will arrive at:

      While equations (1) and (2) are mathematically equivalent, equation (1) illustrates the interpretation where the comparison of the utilities occurs after value integration and forming an overall value. On the other hand, equation (2) can be broadly interpreted as the comparison of individual attributes in the absence of an overall value estimate for each option. Nonetheless, while we do not exclude the possibility that the distractor effect may occur at multiple levels, we have made modifications to the main manuscript employ more consistently a terminology referring to different methods of value estimation while recognizing that our empirical results are compatible with both interpretations.

      Reviewer #1 Comment 2

      The second weakness is sort of related but is more about the lack of coherent conceptual understanding of the "additive rule", or "distractor effect operates at the attribute level". In an assertive tone (lines 77-80), the manuscript suggests that a weighted sum integration procedure of implementing an "additive rule" is equal to assuming that people compare pairs of attributes separately, without integration. But they are mechanistically distinct. The additive rule (implemented using the weighted sum rule to combine probability and magnitude within each option and then applying the softmax function) assumes value exists before comparing options. In contrast, if people compare pairs of attributes separately, preference forms based on the within-attribute comparisons. Mathematically these two might be equivalent only if no extra mechanisms (such as inhibition, fluctuating attention, evidence accumulation, etc) are included in the within-attribute comparison process, which is hardly true in the three-option decision.

      We thank the reviewer for the comment. As described in our response to Reviewer #1 Comment 1, we are aware and acknowledge that there may be multiple possible interpretations of the additive rule. We also agree with the reviewer that there may be additional mechanisms that are involved in three- or even two- option decisions, but these would require additional studies to tease apart. Another motivation for the approach used here, which does not explicitly model the extra mechanisms the reviewer refers to was due to the intention of addressing and integrating findings from previous studies using the same dataset [i.e. (Cao & Tsetsos, 2022; Chau et al., 2020)]. Lastly, regardless of the mechanistic interpretation, our results show a systematic difference in the process of value estimation. Modifications to the manuscript text have been made consistent with our motivation (please refer to the reply and the textual changes proposed in response to the reviewer’s previous comment: Reviewer #1 Comment 1).

      Reviewer #1 Comment 3

      Could the authors comment on the generalizability of the current result? The reward magnitude and probability information are displayed using rectangular bars of different colors and orientations. Would that bias subjects to choose an additive rule instead of the multiplicative rule? Also, could the conclusion be extended to other decision contexts such as quality and price, whether a multiplicative rule is hard to formulate?

      We thank the reviewer for the comment. We agree with the observation that the stimulus space, with colour linearly correlated with magnitude, and orientation linearly correlated with probability, may bias subjects towards an additive rule. But that’s indeed the point: in order to maximise reward, subjects should have focused on the outcome space without being driven by the stimulus space. In practice, people are more or less successful in such endeavour. Nevertheless, we argue that the specific choice of visual stimuli we used is no more biased towards additive space than any other. In fact, as long as two or more pieces of information are provided for each option, as opposed to a single cue whose value was previously learned, there will always be a bias towards an additive heuristic (a linear combination), regardless of whether the cues are shapes, colours, graphs, numbers, words.

      As the reviewer suggested, the dataset analyzed in the current manuscript suggests that the participants were leaning towards the additive rule. Although there was a general tendency using the additive rule while choosing between the rectangular bars, we can still observe a spread of individuals using either, or both, additive and multiplicative rules, suggesting that there was indeed diversity in participants’ decision making strategies in our data.

      In previous studies, it was observed that human and non-human individuals used a mix of multiplicative and additive rules when they were tested on experimental paradigms different from ours (Bongioanni et al., 2021; Farashahi et al., 2019; Scholl et al., 2014). It was also observed that positive and negative distractor effects can be both present in the same data set when human and non-human individuals made decisions about food and social partner (Chang et al., 2019; Louie et al., 2013). It was less clear in the past whether the precise way a distractor affects decision making (i.e., positive/negative distractor effect) is related to the use of decision strategy (i.e., multiplicative/additive rules) and this is exactly what we are trying to address in this manuscript. A follow-up study looking at neural data (such as functional magnetic resonance imaging data) could provide a better understanding of the mechanistic nature of the relationship between distractor effects and decision strategy that we identified here.

      We agree with the reviewer that it is true that a multiplicative strategy may not be applicable to some decision contexts. Here it is important to look at the structure of the optimal solution (the one maximizing value in the long run). Factors modulating value (such as probability and temporal delay) require a non-linear (e.g., multiplicative solution), while factors of the cost-benefit form (such as effort and price) require a linear solution (e.g., subtraction). In the latter scenario the additive heuristic would coincide with the optimal solution, and the effect addressed in this study may not be revealed. Nonetheless, the present data supports the notion of distinct neural mechanisms at least for probabilistic decision-making, and is likely applicable to decision-making in general.

      Our findings, in conjunction with the literature, also suggest that a positive distractor effect could be a general phenomenon in decision mechanisms that involve the medial prefrontal cortex. For example, it has been shown that the positive distractor effect is related to a decision mechanism linked to medial prefrontal cortex [especially the ventromedial prefrontal cortex (Chau et al., 2014; Noonan et al., 2017)]. It is also known a similar brain region is involved not only when individuals are combining information using a multiplicative strategy (Bongioanni et al., 2021), but also when they are combining information to evaluate new experience or generalize information (Baram et al., 2021; Barron et al., 2013; Park et al., 2021). We have now revised the Discussion to explain this:

      “In contrast, the positive distractor effect is mediated by the mPFC (Chau et al., 2014; Fouragnan et al., 2019). Interestingly, the same or adjacent, interconnected mPFC regions have also been linked to the mechanisms by which representational elements are integrated into new representations (Barron et al., 2013; Klein-Flügge et al., 2022; Law et al., 2023; Papageorgiou et al., 2017; Schwartenbeck et al., 2023). In a number of situations, such as multi-attribute decision making, understanding social relations, and abstract knowledge, the mPFC achieves this by using a spatial map representation characterised by a grid-like response (Constantinescu et al., 2016; Bongioanni et al., 2021; Park et al., 2021) and disrupting mPFC leads to the evaluation of composite choice options as linear functions of their components (Bongioanni et al., 2021). These observations suggest a potential link between positive distractor effects and mechanisms for evaluating multiple component options and this is consistent with the across-participant correlation that we observed between the strength of the positive distractor effect and the strength of non-additive (i.e., multiplicative) evaluation of the composite stimuli we used in the current task. Hence, one direction for model development may involve incorporating the ideas that people vary in their ways of combining choice attributes and each way is susceptible to different types of distractor effect.” (Lines 260-274)

      Reviewer #1 Comment 4

      The authors did careful analyses on quantifying the "distractor effect". While I fully agree that it is important to use the matched two-option trials and examine the interaction terms (DV-HV)T as a control, the interpretation of the results becomes tricky when looking at the effects in each trial type. Figure 2c shows a positive DV-HV effect in two-option trials whereas the DV-HV effect was not significantly stronger in three-option trials. Further in Figure 5b,c, in the Multiplicative group, the effect of DV-HV was absent in the two-option trials and present in the three-option trials. In the Additive group, however, the effect of DV-HV was significantly positive in the two-option trials but was significantly lowered in the three-option trials. Hence, it seems the different distractor effects were driven by the different effects of DV-HV in the two-option trials, rather than the three-option trials?

      We thank the reviewer for the comment. While it may be a bit more difficult to interpret, the current method of examining the (DV−HV)T term rather than (DV−HV) term was used because it was the approach used in a previous study (Cao & Tsetsos, 2022).

      During the design of the original experiments, trials were generated pseudo-randomly until the DV was sufficiently decorrelated from HV−LV. While this method allows for better group-level examination of behaviour, Cao and Tsetsos were concerned that this approach may have introduced unintended confounding covariations to some trials. In theory, one of the unintended covariations could occur between the DV and specific sets of reward magnitude and probability of the HV and LV. The covariation between parameters can lead to an observable positive distractor effect in the DV−HV as a consequence of the attraction effect or an unintended byproduct of using an additive method of integrating attributes [for further elaboration, please refer to Figure 1 in (Cao & Tsetsos, 2022)]. While it may have some limitations, the approach suggested by Cao and Tsetsos has the advantage of leveraging the DV−HV term to absorb any variance contributed by possible confounding factors such that true distractor effects, if any, can be detected using the (DV−HV)T term.

      Reviewer #1 Comment 5

      Note that the pattern described above was different in Supplementary Figure 2, where the effect of DV-HV on the two-option trials was negative for both Multiplicative and Additive groups. I would suggest considering using Supplementary Figure 2 as the main result instead of Figure 5, as it does not rely on multiplicative EV to measure the distraction effect, and it shows the same direction of DV-HV effect on two-option trials, providing a better basis to interpret the (DV-HV)T effect.

      We thank the reviewer for the comments and suggestion. However, as mentioned in the response to Reviewer #1 Comment 4, the current method of analysis adopted in the manuscript and the interpretation of only (DV−HV)T is aimed to address the possibility that the (DV−HV) term may be capturing some confounding effects due to covariation. Given that the debate that is addressed specifically concerns the (DV−HV)T term, we elected to display Figure 5 within the main text and keep the results of the regression after replacing the utility function with the composite model as Supplementary Figure 5 (previously labelled as Supplementary Figure 2).

      Reviewer #2 (Public Review):

      This paper addresses the empirical demonstration of "distractor effects" in multi-attribute decision-making. It continues a debate in the literature on the presence (or not) of these effects, which domains they arise in, and their heterogeneity across subjects. The domain of the study is a particular type of multi-attribute decision-making: choices over risky lotteries. The paper reports a re-analysis of lottery data from multiple experiments run previously by the authors and other laboratories involved in the debate.

      Methodologically, the analysis assumes a number of simple forms for how attributes are aggregated (adaptively, multiplicatively, or both) and then applies a "reduced form" logistic regression to the choices with a number of interaction terms intended to control for various features of the choice set. One of these interactions, modulated by ternary/binary treatment, is interpreted as a "distractor effect."

      The claimed contribution of the re-analysis is to demonstrate a correlation in the strength/sign of this treatment effect with another estimated parameter: the relative mixture of additive/multiplicative preferences.

      We thank the reviewer for the positive response and are pleased that the reviewer found our report interesting.

      Reviewer #2 Comment 1

      Major Issues

      (1) How to Interpret GLM 1 and 2

      This paper, and others before it, have used a binary logistic regression with a number of interaction terms to attempt to control for various features of the choice set and how they influence choice. It is important to recognize that this modelling approach is not derived from a theoretical claim about the form of the computational model that guides decision-making in this task, nor an explicit test for a distractor effect. This can be seen most clearly in the equations after line 321 and its corresponding log-likelihood after 354, which contain no parameter or test for "distractor effects". Rather the computational model assumes a binary choice probability and then shoehorns the test for distractor effects via a binary/ternary treatment interaction in a separate regression (GLM 1 and 2). This approach has already led to multiple misinterpretations in the literature (see Cao & Tsetsos, 2022; Webb et al., 2020). One of these misinterpretations occurred in the datasets the authors studied, in which the lottery stimuli contained a confound with the interaction that Chau et al., (2014) were interpreting as a distractor effect (GLM 1). Cao & Tsetsos (2022) demonstrated that the interaction was significant in binary choice data from the study, therefore it can not be caused by a third alternative. This paper attempts to address this issue with a further interaction with the binary/ternary treatment (GLM 2). Therefore the difference in the interaction across the two conditions is claimed to now be the distractor effect. The validity of this claim brings us to what exactly is meant by a "distractor effect."

      The paper begins by noting that "Rationally, choices ought to be unaffected by distractors" (line 33). This is not true. There are many normative models that allow for the value of alternatives (even low-valued "distractors") to influence choices, including a simple random utility model. Since Luce (1959), it has been known that the axiom of "Independence of Irrelevant Alternatives" (that the probability ratio between any two alternatives does not depend on a third) is an extremely strong axiom, and only a sufficiency axiom for a random utility representation (Block and Marschak, 1959). It is not a necessary condition of a utility representation, and if this is our definition of rational (which is highly debatable), not necessary for it either. Countless empirical studies have demonstrated that IIA is falsified, and a large number of models can address it, including a simple random utility model with independent normal errors (i.e. a multivariate Probit model). In fact, it is only the multinomial Logit model that imposes IIA. It is also why so much attention is paid to the asymmetric dominance effect, which is a violation of a necessary condition for random utility (the Regularity axiom).

      So what do the authors even mean by a "distractor effect." It is true that the form of IIA violations (i.e. their path through the probability simplex as the low-option varies) tells us something about the computational model underlying choice (after all, different models will predict different patterns). However we do not know how the interaction terms in the binary logit regression relate to the pattern of the violations because there is no formal theory that relates them. Any test for relative value coding is a joint test of the computational model and the form of the stochastic component (Webb et al, 2020). These interaction terms may simply be picking up substitution patterns that can be easily reconciled with some form of random utility. While we can not check all forms of random utility in these datasets (because the class of such models is large), this paper doesn't even rule any of these models out.

      We thank the reviewer for the comment. In this study, one objective is to address an issue raised by Cao and Tsetsos (2022), suggesting that the distractor effect claimed in the Chau et al. (2014) study was potentially confounded by unintended correlation introduced between the distractor and the chooseable options. They suggested that this could be tested by analyzing the control binary trials and the experimental ternary trials in a single model (i.e., GLM2) and introducing an interaction term (DV−HV)T. The interaction term can partial out any unintended confound and test the distractor effect that was present specifically in the experimental ternary trials. We adopted these procedures in our current studies and employed the interaction term to test the distractor effects. The results showed that overall there was no significant distractor effect in the group. We agree with the reviewer’s comment that if we were only analysing the ternary trials, a multinomial probit model would be suitable because it allows noise correlation between the choices. Alternatively, had a multinomial logistic model been applied, a Hausman-McFadden Test could be run to test whether the data violates the assumption of independence of irrelevant alternatives (IIA). However, in our case, a binomial model is preferred over a multinomial model because of: (1) the inclusion of the binary trials, and (2) the small number of trials in which the distractor was chosen (the median was 4% of all ternary trials).

      However, another main objective of this study is to consider the possibility that the precise distractor effect may vary across individuals. This is exactly why we employed the composite model to estimate individual’s decision making strategy and investigated how that varied with the precise way the distractor influenced decision making.

      In addition, we think that the reviewer here is raising a profound point and one with which we are in sympathy; it is true that random noise utility models can predict deviations from the IIA axiom. Central to these approaches is the notion that the representations of the values of choice options are noisy. Thus, when the representation is accessed, it might have a certain value on average but this value might vary from occasion to occasion as if each sample were being drawn from a distribution. As a consequence, the value of a distractor that is “drawn” during a decision between two other options may be larger than the distractor’s average value and may even have a value that is larger than the value drawn from the less valuable choice option’s distribution on the current trial. On such a trial it may become especially clear that the better of the two options has a higher value than the alternative choice option. Our understanding is that Webb, Louie and colleagues (Louie et al., 2013; Webb et al., 2020) suggest an explanation approximately along these lines when they reported a negative distractor effect during some decisions, i.e., they follow the predictions of divisive normalization suggesting that decisions become more random as the distractor’s value is greater.

      An alternative approach, however, assumes that rather than noise in the representation of the option itself, there is noise in the comparison process when the two options are compared. This is exemplified in many influential decision making models including evidence accumulation models such as drift diffusion models (Shadlen & Shohamy, 2016) and recurrent neural network models of decision making (Wang, 2008). It is this latter type of model that we have used in our previous investigations (Chau et al., 2020; Kohl et al., 2023). However, these two approaches are linked both in their theoretical origin and in the predictions that they make in many situations (Shadlen & Shohamy, 2016). We therefore clarify that this is the case in the revised manuscript as follows:

      “In the current study and in previous work we have used or made reference to models of decision making that assume that a noisy process of choice comparison occurs such as recurrent neural networks and drift diffusion models (Shadlen & Shohamy, 2016; Wang, 2008). Under this approach, positive distractor effects are predicted when the comparison process becomes more accurate because of an impact on the noisy process of choice comparison (Chau et al., 2020; Kohl et al., 2023). However, it is worth noting that another class of models might assume that a choice representation itself is inherently noisy. According to this approach, on any given decision a sample is drawn from a distribution of value estimates in a noisy representation of the option. Thus, when the representation is accessed, it might have a certain value on average but this value might vary from occasion to occasion. As a consequence, the value of a distractor that is “drawn” during decision between two other options may be larger than the distractor’s average value and may even have a value that is larger than the value drawn from the less valuable choice option’s distribution on the current trial. On such a trial it may become especially clear that the better of the two options has a higher value than the alternative choice option. Louie and colleagues (Louie et al., 2013) suggest an explanation approximately along these lines when they reported a positive distractor effect during some decisions. Such different approaches share theoretical origins (Shadlen & Shohamy, 2016) and make related predictions about the impact of distractors on decision making.” (Lines 297-313)

      Reviewer #2 Comment 2

      (2) How to Interpret the Composite (Mixture) model?

      On the other side of the correlation are the results from the mixture model for how decision-makers aggregate attributes. The authors report that most subjects are best represented by a mixture of additive and multiplicative aggregation models. The authors justify this with the proposal that these values are computed in different brain regions and then aggregated (which is reasonable, though raises the question of "where" if not the mPFC). However, an equally reasonable interpretation is that the improved fit of the mixture model simply reflects a misspecification of two extreme aggregation processes (additive and EV), so the log-likelihood is maximized at some point in between them.

      One possibility is a model with utility curvature. How much of this result is just due to curvature in valuation? There are many reasonable theories for why we should expect curvature in utility for human subjects (for example, limited perception: Robson, 2001, Khaw, Li Woodford, 2019; Netzer et al., 2022) and of course many empirical demonstrations of risk aversion for small stakes lotteries. The mixture model, on the other hand, has parametric flexibility.

      There is also a large literature on testing expected utility jointly with stochastic choice, and the impact of these assumptions on parameter interpretation (Loomes & Sugden, 1998; Apesteguia & Ballester, 2018; Webb, 2019). This relates back to the point above: the mixture may reflect the joint assumption of how choice departs from deterministic EV.

      We thank the reviewer for the comment. They are indeed right to mention the vast literature on curvature in subjective valuation; however it is important to stress that the predictions of the additive model with linear basis functions are quite distinct for the predictions of a multiplicative model with non-linear basis functions. We have tested the possibility that participants’ behaviour was better explained by the latter and we showed that this was not the case. Specifically, we have added and performed model fitting on an additional model with utility curvature based on prospect theory (Kahneman & Tversky, 1979) with the weighted probability function suggested by (Prelec, 1998):

      where  and  represent the reward magnitude and probability (both rescaled to the interval between 0 and 1), respectively.  is the weighted magnitude and  is the weighted probability, while  and  are the corresponding distortion parameters. This prospect theory (PT) model is included along with the four previous models (please refer to Figure 3) in a Bayesian model comparison. Results indicate that the composite model remains the best account of participants’ choice behaviour (exceedance probability = 1.000, estimated model frequency = 0.720). We have now included these results in the main text and Supplementary Figure 2:

      “Supplementary Figure 2 reports an additional Bayesian model comparison performed while including a model with nonlinear utility functions based on Prospect Theory (Kahneman & Tversky, 1979) with the Prelec formula for probability (Prelec, 1998). Consistent with the above finding, the composite model provides the best account of participants’ choice behaviour (exceedance probability = 1.000, estimated model frequency = 0.720).” (Lines 193-198)

      Reviewer #2 Comment 3

      3) So then how should we interpret the correlation that the authors report?

      On one side we have the impact of the binary/ternary treatment which demonstrates some impact of the low value alternative on a binary choice probability. This may reflect some deep flaws in existing theories of choice, or it may simply reflect some departure from purely deterministic expected value maximization that existing theories can address. We have no theory to connect it to, so we cannot tell. On the other side of the correlation, we have a mixture between additive and multiplicative preferences over risk. This result may reflect two distinct neural processes at work, or it may simply reflect a misspecification of the manner in which humans perceive and aggregate attributes of a lottery (or even just the stimuli in this experiment) by these two extreme candidates (additive vs. EV). Again, this would entail some departure from purely deterministic expected value maximization that existing theories can address.

      It is entirely possible that the authors are reporting a result that points to the more exciting of these two possibilities. But it is also possible (and perhaps more likely) that the correlation is more mundane. The paper does not guide us to theories that predict such a correlation, nor reject any existing ones. In my opinion, we should be striving for theoretically-driven analyses of datasets, where the interpretation of results is clearer.

      We thank the reviewer for their clear comments. Based on our responses to the previous comments it should be apparent that our results are consistent with several existing theories of choice, so we are not claiming that there are deep flaws in them, but distinct neural processes (additive and multiplicative) are revealed, and this does not reflect a misspecification in the modelling. We have revised our manuscript in the light of the reviewer’s comments in the hope of clarifying the theoretical background which informed both our data analysis and our data interpretation.

      First, we note that there are theoretical reasons to expect a third option might impact on choice valuation. There is a large body of work suggesting that a third option may have an impact on the values of two other options (indeed Reviewer #2 refers to some of this work in their Reviewer #2 Comment 1), but the body of theoretical work originates partly in neuroscience and not just in behavioural economics. In many sensory systems, neural activity changes with the intensity of the stimuli that are sensed. Divisive normalization in sensory systems, however, describes the way in which such neural responses are altered also as a function of other adjacent stimuli (Carandini & Heeger, 2012; Glimcher, 2022; Louie et al., 2011, 2013). The phenomenon has been observed at neural and behavioural levels as a function not just of the physical intensity of the other stimuli but as a function of their associated value (Glimcher, 2014, 2022; Louie et al., 2011, 2015; Noonan et al., 2017; Webb et al., 2020).

      Analogously there is an emerging body of work on the combinatorial processes that describe how multiple representational elements are integrated into new representations (Barron et al., 2013; Papageorgiou et al., 2017; Schwartenbeck et al., 2023). These studies have originated in neuroscience, just as was the case with divisive normalization, but they may have implications for understanding behaviour. For example, they might be linked to behavioural observations that the values assigned to bundles of goods are not necessarily the sum of the values of the individual goods (Hsee, 1998; List, 2002). One neuroscience fact that we know about such processes is that, at an anatomical level, they are linked to the medial frontal cortex (Barron et al., 2013; Fellows, 2006; Hunt et al., 2012; Papageorgiou et al., 2017; Schwartenbeck et al., 2023). A second neuroscientific fact that we know about medial frontal cortex is that it is linked to any positive effects that distractors might have on decision making (Chau et al., 2014; Noonan et al., 2017). Therefore, we might make use of these neuroscientific facts and theories to predict a correlation between positive distractor effects and non-additive mechanisms for determining the integrated value of multi-component choices. This is precisely what we did; we predicted the correlation on the basis of this body of work and when we tested to see if it was present, we found that indeed it was. It may be the case that other behavioural economics theories offer little explanation of the associations and correlations that we find. However, we emphasize that this association is predicted by neuroscientific theory and in the revised manuscript we have attempted to clarify this in the Introduction and Discussion sections:

      “Given the overlap in neuroanatomical bases underlying the different methods of value estimation and the types of distractor effects, we further explored the relationship. Critically, those who employed a more multiplicative style of integrating choice attributes also showed stronger positive distractor effects, whereas those who employed a more additive style showed negative distractor effects. These findings concur with neural data demonstrating that the medial prefrontal cortex (mPFC) computes the overall values of choices in ways that go beyond simply adding their components together, and is the neural site at which positive distractor effects emerge (Barron et al., 2013; Bongioanni et al., 2021; Chau et al., 2014; Fouragnan et al., 2019; Noonan et al., 2017; Papageorgiou et al., 2017), while divisive normalization was previously identified in the posterior parietal cortex (PPC) (Chau et al., 2014; Louie et al., 2011).” (Lines 109-119)

      “At the neuroanatomical level, the negative distractor effect is mediated by the PPC, where signal modulation described by divisive normalization has been previously identified (Chau et al., 2014; Louie et al., 2011). The same region is also crucial for perceptual decision making processes (Shadlen & Shohamy, 2016). The additive heuristics for combining choice attributes are closer to a perceptual evaluation because distances in this subjective value space correspond linearly to differences in physical attributes of the stimuli, whereas normative (multiplicative) value has a non-linear relation with them (cf. Figure 1c). It is well understood that many sensory mechanisms, such as in primates’ visual systems or fruit flies’ olfactory systems, are subject to divisive normalization (Carandini & Heeger, 2012). Hence, the additive heuristics that are more closely based on sensory mechanisms could also be subject to divisive normalization, leading to negative distractor effects in decision making.

      In contrast, the positive distractor effect is mediated by the mPFC (Chau et al., 2014; Fouragnan et al., 2019). Interestingly, the same or adjacent, interconnected mPFC regions have also been linked to the mechanisms by which representational elements are integrated into new representations (Barron et al., 2013; Klein-Flügge et al., 2022; Law et al., 2023; Papageorgiou et al., 2017; Schwartenbeck et al., 2023). In a number of situations, such as multi-attribute decision making, understanding social relations, and abstract knowledge, the mPFC achieves this by using a spatial map representation characterised by a grid-like response (Constantinescu et al., 2016; Bongioanni et al., 2021; Park et al., 2021) and disrupting mPFC leads to the evaluation of composite choice options as linear functions of their components (Bongioanni et al., 2021). These observations suggest a potential link between positive distractor effects and mechanisms for evaluating multiple component options and this is consistent with the across-participant correlation that we observed between the strength of the positive distractor effect and the strength of non-additive (i.e., multiplicative) evaluation of the composite stimuli we used in the current task. Hence, one direction for model development may involve incorporating the ideas that people vary in their ways of combining choice attributes and each way is susceptible to different types of distractor effect.” (Lines 250-274)

      Reviewer #2 Comment 4

      (4) Finally, the results from these experiments might not have external validity for two reasons. First, the normative criterion for multi-attribute decision-making differs depending on whether the attributes are lotteries or not (i.e. multiplicative vs additive). Whether it does so for humans is a matter of debate. Therefore if the result is unique to lotteries, it might not be robust for multi-attribute choice more generally. The paper largely glosses over this difference and mixes literature from both domains. Second, the lottery information was presented visually and there is literature suggesting this form of presentation might differ from numerical attributes. Which is more ecologically valid is also a matter of debate.

      We thank the reviewer for the comment. Indeed, they are right that the correlation we find between value estimation style and distractor effects may not be detected in all contexts of human behaviour. What the reviewer suggests goes along the same lines as our response to Reviewer #1 Comment 3, multi-attribute value estimation may have different structure: in some cases, the optimal solution may require a non-linear (e.g., multiplicative) response as in probabilistic or delayed decisions, but other cases (e.g., when estimating the value of a snack based on its taste, size, healthiness, price) a linear integration would suffice. In the latter kind of scenarios, both the optimal and the heuristic solutions may be additive and people’s value estimation “style” may not be teased apart. However, if different neural mechanisms associated with difference estimation processes are observed in certain scenarios, it suggests that these mechanisms are always present, even in scenarios where they do not alter the predictions. Probabilistic decision-making is also pervasive in many aspects of daily life and not just limited to the case of lotteries.

      While behaviour has been found to differ depending on whether lottery information is presented graphically or numerically, there is insufficient evidence to suggest biases towards additive or multiplicative evaluation, or towards positive or negative distractor effects. As such, we may expect that the correlation that we reveal in this paper, grounded in distinct neural mechanisms, would still hold even under different circumstances.

      Taking previous literature as examples, similar patterns of behaviour have been observed in humans when making decisions during trinary choice tasks. In a study conducted by Louie and colleagues (Louie et al., 2013; Webb et al., 2020), human participants performed a snack choice task where their behaviour could be modelled by divisive normalization with biphasic response (i.e., both positive and negative distractor effects). While these two studies only use a single numerical value of price for behavioural modelling, these prices should originate from an internal computation of various attributes related to each snack that are not purely related to lotteries. Expanding towards the social domain, studies of trinary decision making have considered face attractiveness and averageness (Furl, 2016), desirability of hiring (Chang et al., 2019), as well as desirability of candidates during voting (Chang et al., 2019). These choices involve considering various attributes unrelated to lotteries or numbers and yet, still display a combination of positive distractor and negative distractor (i.e. divisive normalization) effects, as in the current study. In particular, the experiments carried out by Chang and colleagues (Chang et al., 2019) involved decisions in a social context that resemble real-world situations. These findings suggests that both types of distractor effects can co-exist in other value based decision making tasks (Li et al., 2018; Louie et al., 2013) as well as decision making tasks in social contexts (Chang et al., 2019; Furl, 2016).

      Reviewer #2 Comment 5

      Minor Issues:

      The definition of EV as a normative choice baseline is problematic. The analysis requires that EV is the normative choice model (this is why the HV-LV gap is analyzed and the distractor effect defined in relation to it). But if the binary/ternary interaction effect can be accounted for by curvature of a value function, this should also change the definition of which lottery is HV or LV for that subject!

      We thank the reviewer for the comment. While the initial part of the paper discussed results that were defined by the EV model, the results shown in Supplementary Figure 2 were generated by replacing the utility function based on values obtained by using the composite model. Here, we have also redefined the definition of HV or LV for each subject depending on the updated value generated by the composite model prior to the regression.

      References

      Apesteguia, J. & Ballester, M. Monotone stochastic choice models: The case of risk and time preferences. Journal of Political Economy (2018).

      Block, H. D. & Marschak, J. Random Orderings and Stochastic Theories of Responses. Cowles Foundation Discussion Papers (1959).

      Khaw, M. W., Li, Z. & Woodford, M. Cognitive Imprecision and Small-Stakes Risk Aversion. Rev. Econ. Stud. 88, 1979-2013 (2020).

      Loomes, G. & Sugden, R. Testing Different Stochastic Specificationsof Risky Choice. Economica 65, 581-598 (1998).

      Luce, R. D. Indvidual Choice Behaviour. (John Wiley and Sons, Inc., 1959).

      Netzer, N., Robson, A. J., Steiner, J. & Kocourek, P. Endogenous Risk Attitudes. SSRN Electron. J. (2022) doi:10.2139/ssrn.4024773.

      Robson, A. J. Why would nature give individuals utility functions? Journal of Political Economy 109, 900-914 (2001).

      Webb, R. The (Neural) Dynamics of Stochastic Choice. Manage Sci 65, 230-255 (2019).

      Reviewer #3 (Public Review):

      Summary:

      The way an unavailable (distractor) alternative impacts decision quality is of great theoretical importance. Previous work, led by some of the authors of this study, had converged on a nuanced conclusion wherein the distractor can both improve (positive distractor effect) and reduce (negative distractor effect) decision quality, contingent upon the difficulty of the decision problem. In very recent work, Cao and Tsetsos (2022) reanalyzed all relevant previous datasets and showed that once distractor trials are referenced to binary trials (in which the distractor alternative is not shown to participants), distractor effects are absent. Cao and Tsetsos further showed that human participants heavily relied on additive (and not multiplicative) integration of rewards and probabilities.

      The present study by Wong et al. puts forward a novel thesis according to which interindividual differences in the way of combining reward attributes underlie the absence of detectable distractor effect at the group level. They re-analysed the 144 human participants and classified participants into a "multiplicative integration" group and an "additive integration" group based on a model parameter, the "integration coefficient", that interpolates between the multiplicative utility and the additive utility in a mixture model. They report that participants in the "multiplicative" group show a negative distractor effect while participants in the "additive" group show a positive distractor effect. These findings are extensively discussed in relation to the potential underlying neural mechanisms.

      Strengths:

      - The study is forward-looking, integrating previous findings well, and offering a novel proposal on how different integration strategies can lead to different choice biases.

      - The authors did an excellent job of connecting their thesis with previous neural findings. This is a very encompassing perspective that is likely to motivate new studies towards a better understanding of how humans and other animals integrate information in decisions under risk and uncertainty.

      - Despite that some aspects of the paper are very technical, methodological details are well explained and the paper is very well written.

      We thank the reviewer for the positive response and are pleased that the reviewer found our report interesting.

      Reviewer #3 Comment 1

      Weaknesses:

      The authors quantify the distractor variable as "DV - HV", i.e., the relative distractor variable. Do the conclusions hold when the distractor is quantified in absolute terms (as "DV", see also Cao & Tsetsos, 2023)? Similarly, the authors show in Suppl. Figure 1 that the inclusion of a HV + LV regressor does not alter their conclusions. However, the (HV + LV)*T regressor was not included in this analysis. Does including this interaction term alter the conclusions considering there is a high correlation between (HV + LV)*T and (DV - HV)*T? More generally, it will be valuable if the authors assess and discuss the robustness of their findings across different ways of quantifying the distractor effect.

      We thank the reviewer for the comment. In the original manuscript we had already demonstrated that the distractor effect was related to the integration coefficient using a number of complementary analyses. They include Figure 5 based on GLM2, Supplementary Figure 3 based on GLM3 (i.e., adding the HV+LV term to GLM2), and Supplementary Figure 4 based on GLM2 but applying the utility estimate from the composite model instead of expected value (EV). These three sets of analyses produced comparable results. The reason why we elected not to include the (HV+LV)T term in GLM3 (Supplementary Figure 3) was due to the collinearity between the regressors in the GLM. If this term is included in GLM3, the variance inflation factor (VIF) would exceed an acceptable level of 4 for some regressors. In particular, the VIF for the (HV+LV) and (HV+LV)T regressors is 5.420, while the VIF for (DV−HV) and (DV−HV)T is 4.723.

      Here, however, we consider the additional analysis suggested by the reviewer and test whether similar results are obtained. We constructed GLM4 including the (HV+LV)T term but replacing the relative distractor value (DV-HV) with the absolute distractor value (DV) in the main term and its interactions, as follows:

      GLM4:

      A significant negative (DV)T effect was found for the additive group [t(72)=−2.0253, p=0.0465] while the multiplicative group had a positive trend despite not reaching significance. Between the two groups, the (DV)T term was significantly different [t(142)=2.0434, p=0.0429]. While these findings suggest that the current conclusions could be partially replicated, simply replacing the relative distractor value with the absolute value in the previous analyses resulted in non-significant findings. Taking these results together with the main findings, it is possible to conclude that the positive distractor effect is better captured using the relative DV-HV term rather than the absolute DV term. This would be consistent with the way in which option values are envisaged to interact with one another in the mutual inhibition model (Chau et al., 2014, 2020) that generates the positive distractor effect. The model suggests that evidence is accumulated as the difference between the excitatory input from the option (e.g. the HV option) and the pooled inhibition contributed partly by the distractor. We have now included these results in the manuscript:

      “Finally, we performed three additional analyses that revealed comparable results to those shown in Figure 5. In the first analysis, reported in Supplementary Figure 3, we added an  term to the GLM, because this term was included in some analyses of a previous study that used the same dataset (Chau et al., 2020). In the second analysis, we added an  term to the GLM. We noticed that this change led to inflation of the collinearity between the regressors and so we also replaced the (DV−HV) term by the DV term to mitigate the collinearity (Supplementary Figure 4). In the third analyses, reported in Supplementary Figure 5, we replaced the utility terms of GLM2. Since the above analyses involved using HV, LV, and DV values defined by the normative Expected Value model, here, we re-defined the values using the composite model prior to applying GLM2. Overall, in the Multiplicative Group a significant positive distractor effect was found in Supplementary Figures 3 and 4. In the Additive Group a significant negative distractor effect was found in Supplementary Figures 3 and 5. Crucially, all three analyses consistently showed that the distractor effects were significantly different between the Multiplicative Group and the Additive Group.” (Lines 225-237)

      Reviewer #3 Comment 2

      The central finding of this study is that participants who integrate reward attributes multiplicatively show a positive distractor effect while participants who integrate additively show a negative distractor effect. This is a very interesting and intriguing observation. However, there is no explanation as to why the integration strategy covaries with the direction of the distractor effect. It is unlikely that the mixture model generates any distractor effect as it combines two "context-independent" models (additive utility and expected value) and is fit to the binary-choice trials. The authors can verify this point by quantifying the distractor effect in the mixture model. If that is the case, it will be important to highlight that the composite model is not explanatory; and defer a mechanistic explanation of this covariation pattern to future studies.

      We thank the reviewer for the comment. Indeed, the main purpose of applying the mixture model was to identify the way each participants combined attributes and, as the reviewer pointed out, the mixture model per se is context independent. While we acknowledge that the mixture model is not a mechanistic explanation, there is a theoretical basis for the observation that these two factors are linked.

      Firstly, studies that have examined the processes involved when humans combine and integrate different elements to form new representations (Barron et al., 2013; Papageorgiou et al., 2017; Schwartenbeck et al., 2023) have implicated the medial frontal cortex as a crucial region (Barron et al., 2013; Fellows, 2006; Hunt et al., 2012; Papageorgiou et al., 2017; Schwartenbeck et al., 2023). Meanwhile, previous studies have also identified that positive distractor effects are linked to the medial frontal cortex (Chau et al., 2014; Noonan et al., 2017). Therefore, the current study utilized these two facts to establish the basis for a correlation between positive distractor effects and non-additive mechanisms for determining the integrated value of multi-component choices. Nevertheless, we agree with the reviewer that it will be an important future direction to look at how the covariation pattern emerges in a computational model. We have revised the manuscript in an attempt to address this issue.

      “At the neuroanatomical level, the negative distractor effect is mediated by the PPC, where signal modulation described by divisive normalization has been previously identified (Chau et al., 2014; Louie et al., 2011). The same region is also crucial for perceptual decision making processes (Shadlen & Shohamy, 2016). The additive heuristics for combining choice attributes are closer to a perceptual evaluation because distances in this subjective value space correspond linearly to differences in physical attributes of the stimuli, whereas normative (multiplicative) value has a non-linear relation with them (cf. Figure 1c). It is well understood that many sensory mechanisms, such as in primates’ visual systems or fruit flies’ olfactory systems, are subject to divisive normalization (Carandini & Heeger, 2012). Hence, the additive heuristics that are more closely based on sensory mechanisms could also be subject to divisive normalization, leading to negative distractor effects in decision making.

      In contrast, the positive distractor effect is mediated by the mPFC (Chau et al., 2014; Fouragnan et al., 2019). Interestingly, the same or adjacent, interconnected mPFC regions have also been linked to the mechanisms by which representational elements are integrated into new representations (Barron et al., 2013; Klein-Flügge et al., 2022; Law et al., 2023; Papageorgiou et al., 2017; Schwartenbeck et al., 2023). In a number of situations, such as multi-attribute decision making, understanding social relations, and abstract knowledge, the mPFC achieves this by using a spatial map representation characterised by a grid-like response (Constantinescu et al., 2016; Bongioanni et al., 2021; Park et al., 2021) and disrupting mPFC leads to the evaluation of composite choice options as linear functions of their components (Bongioanni et al., 2021). These observations suggest a potential link between positive distractor effects and mechanisms for evaluating multiple component options and this is consistent with the across-participant correlation that we observed between the strength of the positive distractor effect and the strength of non-additive (i.e., multiplicative) evaluation of the composite stimuli we used in the current task. Hence, one direction for model development may involve incorporating the ideas that people vary in their ways of combining choice attributes and each way is susceptible to different types of distractor effect.” (Lines 250-274)

      Reviewer #3 Comment 3

      -  Correction for multiple comparisons (e.g., Bonferroni-Holm) was not applied to the regression results. Is the "negative distractor effect in the Additive Group" (Fig. 5c) still significant after such correction? Although this does not affect the stark difference between the distractor effects in the two groups (Fig. 5a), the classification of the distractor effect in each group is important (i.e., should future modelling work try to capture both a negative and a positive effect in the two integration groups? Or just a null and a positive effect?).

      We thank the reviewer for the comment. We have performed Bonferroni-Holm correction and as the reviewer surmised, the negative distractor effect in the additive group becomes non-significant. However, we have to emphasize that our major claim is that there was a covariation between decision strategy (of combining attributes) and distractor effect (as seen in Figure 4). That analysis does not imply multiple comparisons. The analysis in Figure 5 that splits participants into two groups was mainly designed to illustrate the effects for an easier understanding by a more general audience. In many cases, the precise ways in which participants are divided into subgroups can have a major impact on whether each individual group’s effects are significant or not. It may be possible to identify an optimal way of grouping, but we refrained from taking such a trial-and-error approach, especially for the analysis in Figure 5 that simply supplements the point made in Figure 4. The key notion we would like the readers to take away is that there is a spectrum of distractor effects (ranging from negative to positive) that will vary depending on how the choice attributes were integrated.

      Reviewer #1 (Recommendations For The Authors):

      Reviewer #1 Recommendations 1

      Enhancements are necessary for the quality of the scientific writing. Several sentences have been written in a negligent manner and warrant revision to ensure a higher level of rigor. Moreover, a number of sentences lack appropriate citations, including but not restricted to:

      - Line 39-41.

      - Line 349-350 (also please clarify what it means by parameter estimate" is very accurate: correlation?).

      We thank the reviewer for the comment. We have made revisions to various parts of the manuscript to address the reviewer’s concerns.

      “Intriguingly, most investigations have considered the interaction between distractors and chooseable options either at the level of their overall utility or at the level of their component attributes, but not both (Chau et al., 2014, 2020; Gluth et al., 2018).” (Lines 40-42)

      “Additional simulations have shown that the fitted parameters can be recovered with high accuracy (i.e., with a high correlation between generative and recovered parameters).” (Lines 414-416)

      Reviewer #1 Recommendations 2

      Some other minor suggestions:

      - Correlative vs. Causality: the manuscript exhibits a lack of attentiveness in drawing causal conclusions from correlative evidence (manuscript title, Line 91, Line 153-155).

      - When displaying effect size on accuracy, there is no need to show the significance of intercept (Figure 2,5, & supplementary figures).

      - Adding some figure titles on Figure 2 so it is clear what each panel stands for.

      - In Figure 3, the dots falling on zero values are not easily seen. Maybe increasing the dot size a little?

      - Line 298: binomial linking function (instead of binomial distribution).

      - Line 100: composite, not compositive.

      - Line 138-139: please improve the sentence, if it's consistent with previous findings, what's the point of "surprisingly"?

      We thank the reviewer for the suggestions. We have made revisions to the title and various parts of the manuscript to address the reviewer’s concerns.

      - Correlative vs. Causality: the manuscript exhibits a lack of attentiveness in drawing causal conclusions from correlative evidence (manuscript title, Line 91, Line 153-155).

      We have now revised the manuscript:

      “Distractor effects in decision making are related to the individual’s style of integrating choice attributes” (title of the manuscript)

      “More particularly, we consider whether individual differences in combination styles could be related to different forms of distractor effect.” (Lines 99-100)

      “While these results may seem to suggest that a distractor effect was not present at an overall group level, we argue that the precise way in which a distractor affects decision making is related to how individuals integrate the attributes.” (Lines 164-167)

      - When displaying effect size on accuracy, there is no need to show the significance of intercept (Figure 2,5, & supplementary figures).

      We have also modified all Figures to remove the intercept.

      - Adding some figure titles on Figure 2 so it is clear what each panel stands for.

      We have added titles accordingly.

      - In Figure 3, the dots falling on zero values are not easily seen. Maybe increasing the dot size a little?

      In conjunction with addressing Reviewer #3 Recommendation 6, we have adapted the violin plots into histograms for a better representation of the values.

      - Line 298: binomial linking function (instead of binomial distribution).

      - Line 100: composite, not compositive.

      - Line 138-139: please improve the sentence, if it's consistent with previous findings, what's the point of "surprisingly"?

      We have made revisions accordingly.

      Reviewer #2 (Recommendations For The Authors):

      Reviewer #2 Recommendations 1

      Line 294. The definition of DV, HV, LV is not sufficient. Presumably, these are the U from the following sections? Or just EV? But this is not explicitly stated, rather they are vaguely referred to as values." The computational modelling section refers to them as utilities. Are these the same thing?

      We thank the reviewer for the suggestion. We have clarified that the exact method for calculating each of the values and updated the section accordingly.

      “where HV, LV, and DV refer to the values of the chooseable higher value option, chooseable lower value option, and distractor, respectively. Here, values (except those in Supplementary Figure 5) are defined as Expected Value (EV), calculated by multiplying magnitude and probability of reward.” (Lines 348-350)

      Reviewer #2 Recommendations 2

      The analysis drops trials in which the distractor was chosen. These trials are informative about the presence (or not) of relative valuation or other factors because they make such choices more (or less) likely. Ignoring them is another example of the analysis being misspecified.

      We thank the reviewer for the suggestion and this is related to Major Issue 1 raised by the same reviewer. In brief, we adopted the same methods implemented by Cao and Tsetsos (Cao and Tsetsos, 2022) and that constrained us to applying a binomial model. Please refer to our reply to Major Issue 1 for more details.

      Reviewer #2 Recommendations 3

      Some questions and suggestions on statistics and computational modeling:

      Have the authors looked at potential collinearity between the regressors in each of the GLMs?

      We thank the reviewer for the comment. For each of the following GLMs, the average variance inflation factor (VIF) has been calculated as follows:

      GLM2 using the Expected Value model:

      Author response table 1.

      GLM2 after replacing the utility function based on the normative Expected Value model with values obtained by using the composite model:

      Author response table 2.

      GLM3:

      Author response table 3.

      As indicated in the average VIF values calculated, none of them exceed 4, suggesting that the estimated coefficients were not inflated due to collinearity between the regressor in each of the GLMs.

      Reviewer #2 Recommendations 4

      - Correlation results in Figure 4. What is the regression line displayed on this plot? I suspect the regression line came from Pearson's correlation, which would be inconsistent with the Spearman's correlation reported in the text. A reasonable way would be to transform both x and y axes to the ranked data. However, I wonder why it makes sense to use ranked data for testing the correlation in this case. Those are both scalar values. Also, did the authors assess the influence of the zero integration coefficient on the correlation result? Importantly, did the authors redo the correlation plot after defining the utility function by the composite models?

      We thank the reviewer for the suggestion. The plotted line in Figure 4 was based on the Pearson’s correlation and we have modified the text to also report the Pearson’s correlation result as well.

      If we were to exclude the 32 participants with integration coefficients smaller than 1×10-6 from the analysis, we still observe a significant positive Pearson’s correlation [r(110)=0.202, p=0.0330].

      Author response image 1.

      Figure 4 after excluding 32 participants with integration coefficients smaller than 1×10-6.

      “As such, we proceeded to explore how the distractor effect (i.e., the effect of (DV−HV)T obtained from GLM2; Figure 2c) was related to the integration coefficient (η) of the optimal model via a Pearson’s correlation (Figure 4). As expected, a significant positive correlation was observed [r(142)=0.282, p=0.000631]. We noticed that there were 32 participants with integration coefficients that were close to zero (below 1×10-6). The correlation remained significant even after removing these participants [r(110)=0.202, p=0.0330].” (Lines 207-212)

      The last question relates to results already included in Supplementary Figure 5, in which the analyses were conducted using the utility function of the composite model. We notice that although there was a difference in integration coefficient between the multiplicative and additive groups, a correlational analysis did not generate significant results [r(142)=0.124, p=0.138]. It is possible that the relationship became less linear after applying the composite model utility function. However, it is noticeable that in a series of complementary analyses (Figure 5: r(142)=0.282, p=0.000631; Supplementary Figure 3: r(142)=0.278, p=0.000746) comparable results were obtained.

      Reviewer #2 Recommendations 5

      - From lines 163-165, were the models tested on only the three-option trials or both two and three-opinion trials? It is ambiguous from the description here. It might be worth checking the model comparison based on different trial types, and the current model fitting results do not tell an absolute sense of the goodness of fit. I would suggest including the correctly predicted trial proportions in each trial type from different models.

      We thank the reviewer for the suggestion. We have only modeled the two-option trials and the key reason for this is because the two-option trials can arguably provide a better estimate of participants’ style of integrating attributes as they are independent of any distractor effects. This was also the same reason why Cao and Tsetsos applied the same approach when they were re-analyzing our data (Cao and Tsetsos, 2022). We have clarified the statement accordingly.

      “We fitted these models exclusively to the Two-Option Trial data and not the Distractor Trial data, such that the fitting (especially that of the integration coefficient) was independent of any distractor effects, and tested which model best describes participants’ choice behaviours.” (Lines 175-178)

      Reviewer #2 Recommendations 6

      - Along with displaying the marginal distributions of each parameter estimate, a correlation plot of these model parameters might be useful, given that some model parameters are multiplied in the value functions.

      We thank the reviewer for the suggestion. We have also generated the correlation plot of the model parameters. The Pearson’s correlation between the magnitude/probability weighting and integration coefficient was significant [r(142)=−0.259, p=0.00170]. The Pearson’s correlation between the inverse temperature and integration coefficient was not significant [r(142)=−0.0301, p=0.721]. The Pearson’s correlation between the inverse temperature and magnitude/probability weighting was not significant [r(142)=−0.0715, p=0.394].

      “Our finding that the average integration coefficient  was 0.325 coincides with previous evidence that people were biased towards using an additive, rather than a multiplicative rule. However, it also shows rather than being fully additive ( =0) or multiplicative ( =1), people’s choice behaviour is best described as a mixture of both. Supplementary Figure 1 shows the relationships between all the fitted parameters.” (Lines 189-193)

      Reviewer #2 Recommendations 7

      Have the authors tried any functional transformations on amounts or probabilities before applying the weighted sum? The two attributes are on entirely different scales and thus may not be directly summed together.

      We thank the reviewer for the comment. Amounts and probabilities were indeed both rescaled to the 0-1 interval before being summed, as explained in the methods (Line XXX). Additionally, we have now added and performed model fitting on an additional model with utility curvature based on the prospect theory (Kahneman & Tversky, 1979) and a weighted probability function (Prelec, 1998):

      where  and  represent the reward magnitude and probability (both rescaled to the interval between 0 and 1), respectively.  is the weighted magnitude and  is the weighted probability, while  and  are the corresponding distortion parameters. This prospect theory (PT) model was included along with the four previous models (please refer to Figure 3) in a Bayesian model comparison. Results indicate that the composite model remains as the best account of participants’ choice behaviour (exceedance probability = 1.000, estimated model frequency = 0.720).

      “Supplementary Figure 2 reports an additional Bayesian model comparison performed while including a model with nonlinear utility functions based on Prospect Theory (Kahneman & Tversky, 1979) with the Prelec formula for probability (Prelec, 1998). Consistent with the above finding, the composite model provides the best account of participants’ choice behaviour (exceedance probability = 1.000, estimated model frequency = 0.720).” (Lines 193-198)

      Reviewer #3 (Recommendations For The Authors):

      Reviewer #3 Recommendations 1

      - In the Introduction (around line 48), the authors make the case that distractor effects can co-exist in different parts of the decision space, citing Chau et al. (2020). However, if the distractor effect is calculated relative to the binary baseline this is no longer the case.

      - Relating to the above point, it might be useful for the authors to make a distinction between effects being non-monotonic across the decision space (within individuals) and effects varying across individuals due to different strategies adopted. These two scenarios are conceptually distinct.

      We thank the reviewer for the comment. Indeed, the ideas that distractor effects may vary across decision space and across different individuals are slightly different concepts. We have now revised the manuscript to clarify this:

      “However, as has been argued in other contexts, just because one type of distractor effect is present does not preclude another type from existing (Chau et al., 2020; Kohl et al., 2023). Each type of distractor effect can dominate depending on the dynamics between the distractor and the chooseable options. Moreover, the fact that people have diverse ways of making decisions is often overlooked. Therefore, not only may the type of distractor effect that predominates vary as a function of the relative position of the options in the decision space, but also as a function of each individual’s style of decision making.” (Lines 48-54)

      Reviewer #3 Recommendations 2

      - The idea of mixture models/strategies has strong backing from other Cognitive Science domains and will appeal to most readers. It would be very valuable if the authors could further discuss the potential level at which their composite model might operate. Are the additive and EV quantities computed and weighted (as per the integration coefficient) within a trial giving rise to a composite decision variable? Or does the integration coefficient reflect a probabilistic (perhaps competitive) selection of one strategy on a given trial? Perhaps extant neural data can shed light on this question.

      We thank the reviewer for the comment. The idea is related to whether the observed mixture in integration models derives from value being actually computed in a mixed way within each trial, or each trial involves a probabilistic selection between the additive and multiplicative strategies. We agree that this is an interesting question and to address it would require the use of some independent continuous measures to estimate the subjective values in quantitative terms (instead of using the categorical choice data). This could be done by collecting pupil size data or functional magnetic resonance imaging data, as the reviewer has pointed out. Although the empirical work is beyond the scope of the current behavioural study, it is worth bringing up this point in the Discussion:

      “The current finding involves the use of a composite model that arbitrates between the additive and multiplicative strategies. A general question for such composite models is whether people mix two strategies in a consistent manner on every trial or whether there is some form of probabilistic selection occurring between the two strategies on each trial such that only one strategy is used on any given trial while, on average, one strategy is more probable than the other. To test which is the case requires an independent estimation of subjective values in quantitative terms, such as by pupillometry or functional neuroimaging. Further understanding of this problem will also provide important insight into the precise way in which distractor effects operate at the single-trial level.” (Lines 275-282)

      Reviewer #3 Recommendations 3

      Line 80 "compare pairs of attributes separately, without integration". This additive rule (or the within-attribute comparison) implies integration, it is just not multiplicative integration.

      We thank the reviewer for the comment. We have made adjustments to the manuscript to ensure that the message delivered within this manuscript is consistent.

      “For clarity, we stress that the same mathematical formula for additive value can be interpreted as meaning that 1) subjects first estimate the value of each option in an additive way (value integration) and then compare the options, or 2) subjects compare the two magnitudes and separately compare the two probabilities without integrating dimensions into overall values. On the other hand, the mathematical formula for multiplicative value is only compatible with the first interpretation. In this paper we focus on attribute combination styles (multiplicative vs additive) and do not make claims on the order of the operations. More particularly, we consider whether individual differences in combination styles could be related to different forms of distractor effect.” (Lines 92-100)

      Reviewer #3 Recommendations 4

      - Not clear why the header in line 122 is phrased as a question.

      We thank the reviewer for the suggestion. We have modified the header to the following:

      “The distractor effect was absent on average” (Line 129)

      Reviewer #3 Recommendations 5

      - The discussion and integration of key neural findings with the current thesis are outstanding. It might help the readers if certain statements such as "the distractor effect is mediated by the PPC" (line 229) were further unpacked.

      We thank the reviewer for the suggestion. We have made modifications to the original passage to further elaborate the statement.

      “At the neuroanatomical level, the negative distractor effect is mediated by the PPC, where signal modulation described by divisive normalization has been previously identified (Chau et al., 2014; Louie et al., 2011). The same region is also crucial for perceptual decision making processes (Shadlen & Shohamy, 2016).” (Lines 250-253)

      Reviewer #3 Recommendations 6

      - In Fig. 3c, there seem to be many participants having the integration coefficient close to 0 but the present violin plot doesn't seem to best reflect this highly skewed distribution. A histogram would be perhaps better here.

      We thank the reviewer for the suggestion. We have modified the descriptive plots to use histograms instead of violin plots.

      “Figures 3c, d and e show the fitted parameters of the composite model: , the integration coefficient determining the relative weighting of the additive and multiplicative value ( , ); , the magnitude/probability weighing ratio ( , ); and , the inverse temperature ( , ). Our finding that the average integration coefficient  was 0.325 coincides with previous evidence that people were biased towards using an additive, rather than a multiplicative rule.” (Lines 186-191)

    2. Reviewer #3 (Public Review):

      Summary:

      The way an unavailable (distractor) alternative impacts decision quality is of great theoretical importance. Previous work, led by some of the authors of this study, had converged on a nuanced conclusion wherein the distractor can both improve (positive distractor effect) and reduce (negative distractor effect) decision quality, contingent upon the difficulty of the decision problem. In very recent work, Cao and Tsetsos (2022) reanalyzed all relevant previous datasets and showed that once distractor trials are referenced to binary trials (in which the distractor alternative is not shown to participants), distractor effects are absent. Cao and Tsetsos further showed that human participants heavily relied on additive (and not multiplicative) integration of rewards and probabilities.

      The present study by Wong et al. puts forward a novel thesis according to which interindividual differences in the way of combining reward attributes underlie the absence of detectable distractor effect at the group level. They re-analysed the 144 human participants and classified participants into a "multiplicative integration" group and an "additive integration" group based on a model parameter, the "integration coefficient", that interpolates between the multiplicative utility and the additive utility in a mixture model. They report that participants in the "multiplicative" group show a negative distractor effect while participants in the "additive" group show a positive distractor effect. These findings are extensively discussed in relation to the potential underlying neural mechanisms.

      Strengths:

      - The study is forward looking, integrating previous findings well, and offering a novel proposal on how different integration strategies can lead to different choice biases.<br /> - The authors did an excellent job in connecting their thesis with previous neural findings. This is a very encompassing perspective that is likely to motivate new studies towards better understanding of how humans and other animals integrate information in decisions under risk and uncertainty.<br /> - Despite that some aspects of the paper are very technical, methodological details are well explained and the paper is very well written.

      Weaknesses:

      - The authors quantify the distractor variable as "DV - HV", i.e., the relative distractor variable. Conclusions mostly hold when the distractor is quantified in absolute terms (as "DV", see also Cao & Tsetsos, 2023). However, it is not entirely clear why the impact of the distractor alternative is not identical when the distractor variable is quantified in absolute vs. relative terms. Although understanding this nuanced point seems to extend beyond the scope of the paper, it could provide valuable decision-theoretic (and mechanistic) insights.<br /> - The central finding of this study is that participants who integrate reward attributes multiplicatively show a positive distractor effect while participants who integrate additively show a negative distractor effect. This is a very interesting and intriguing observation. However, it does not explain why the integration strategy covaries with the direction of the distractor effect. As the authors acknowledge, the composite model is not explanatory. Although beyond the scope of this paper, it would be valuable to provide a mechanistic explanation of this covariation pattern.

    3. eLife assessment

      This manuscript provides a valuable demonstration that distractor effects in multi-attribute decision-making correlate with the form of attribute integration (additive vs. multiplicative). The evidence supporting the conclusions is convincing, but there are questions about how to interpret the findings. The manuscript will be interesting to decision-making researchers in neuroscience, psychology, and related fields.

    4. Reviewer #1 (Public Review):

      Summary:

      The current study provided a follow-up analysis using published datasets focused on the individual variability of both the distraction effect (size and direction) and the attribute integration style, as well as the association between the two. The authors tried to answer the question of whether the multiplicative attribute integration style concurs with a more pronounced and positively oriented distraction effect.

      Strengths:

      The analysis extensively examined the impacts of various factors on decision accuracy, with particular focus on using two-option trials as control trials, following the approach established by Cao & Tsetsos (2022). The statistical significance results were clearly reported.

      The authors meticulously conducted supplementary examinations, incorporating the additional term HV+LV into GLM3. Furthermore, they replaced the utility function from the expected value model with values from the composite model.

      Weaknesses:

      The authors did a great job addressing the weaknesses I raised in the previous round of review, except on the generalizability of the current result in the larger context of multi-attribute decision-making. It is not really a weakness of the manuscript but more of a limitation of the studied topic, so I want to keep this comment for public readers.

      The reward magnitude and probability information are displayed using rectangular bars of different colors and orientations. Would that bias subjects to choose an additive rule instead of the multiplicative rule? Also, could the conclusion be extended to other decision contexts such as quality and price, where a multiplicative rule is hard to formulate?

      Overall, the authors have achieved their aims after clarifying that the study was trying to establish a correlation between the integration style and attraction effect. This result may be useful to inspire neuroimaging or neuromodulation studies that investigate multi-attribute decision making.

    5. Reviewer #2 (Public Review):

      This paper addresses the empirical demonstration of "distractor effects" in multi-attribute decision-making. It continues a debate in the literature on the presence (or not) of these effects, which domains they arise in, and their heterogeneity across subjects. The domain of the study is in a particular type of multi-attribute decision-making: choices over risky lotteries. The paper reports a re-analysis of lottery data from multiple experiments run previously by the authors and other labs involved in the debate.

      Methodologically, the analysis assumes a number of simple forms for how attributes are aggregated (adaptively, or multiplicatively, or both) and then applies a "reduced form" logistic regression to the choices with a number of interaction terms intended to control for various features of the choice set. One of these interactions, modulated by ternary/binary treatment, is interpreted as a "distractor effect."

      The claimed contribution of the re-analysis is to demonstrate correlation in the strength/sign of this treatment effect with another estimated parameter: the relative mixture of additive/multiplicative preferences.

      Major Issues

      (1) How to Interpret GLM 1 and 2

      This paper, and others before it, have used a binary logistic regression with a number of interaction terms to attempt to control for various features of the choice set and how they influence choice. It is important to recognize that this modelling approach is not derived from a theoretical claim about the form of the computational model that guides decision-making in this task, nor an explicit test for a distractor effect. This can be seen most clearly in the equations after line 321 and its corresponding log-likelihood after 354, which contain no parameter or test for "distractor effects". Rather the computational model assumes a binary choice probability, and then shoehorns the test for distractor effects via a binary/ternary treatment interaction in a separate regression (GLM 1 and 2). This approach has already led to multiple misinterpretations in the literature (see Cao & Tsetsos, 2022; Webb et al., 2020). One of these misinterpretations occurred in the datasets the authors study, in which the lottery stimuli contained a confound with the interaction that Chau et al., (2014) were interpreting as a distractor effect (GLM 1). Cao & Tsetsos (2022) demonstrated that the interaction was significant in binary choice data from the study, therefore it can not be caused by a third alternative. This paper attempts to address this issue with a further interaction with the binary/ternary treatment (GLM 2). Therefore the difference in the interaction across the two conditions is claimed to now be the distractor effect. The validity of this claim brings us to what exactly is meant by a "distractor effect."

      The paper begins by noting that "Rationally, choices ought to be unaffected by distractors" (line 33). This is not true. There are many normative models which allow for the value of alternatives (even low-valued "distractors") to influence choices, including a simple random utility model. Since Luce (1959), it has been known that the axiom of "Independence of Irrelevant Alternatives" (that the probability ratio between any two alternatives not depend on a third) is an extremely strong axiom, and only a sufficiency axiom for a random utility representation (Block and Marschak, 1959). It is not a necessary condition of a utility representation, and if this is our definition of rational (which is highly debatable), not necessary for it either. Countless empirical studies have demonstrated that IIA is falsified, and a large number of models can address it, including a simple random utility model with independent normal errors (i.e. a multivariate Probit model). In fact, it is only the multinomial Logit model that imposes IIA. It is also why so much attention is paid to the asymmetric dominance effect, which is a violation of a necessary condition for random utility (the Regularity axiom).

      So what do the authors even mean by a "distractor effect." It is true that the form of IIA violations (i.e. their path through the probability simplex as the low-option varies) tells us something about the computational model underlying choice (after all, different models will predict different patterns). But we do not know how the interaction terms in the binary logit regression relate to the pattern of the violations because there is no formal theory that relates them. Any test for relative value coding is a joint test of the computational model and the form of the stochastic component (Webb et al,. 2020). These interaction terms may simply be picking up substitution patterns that can be easily reconciled with some form of random utility. While we can not check all forms of random utility in these datasets (because the class of such models is large), this paper doesn't even rule any of these models out.

      (2) How to Interpret the Composite (Mixture) model?

      On the other side of the correlation is the results from the mixture model for how decision-makers aggregate attributes. The authors report that most subjects are best represented by a mixture between additive and multiplicative aggregation models. The authors justify this with the proposal that these values are computed in different brain regions and then aggregated (which is reasonable, though raises the question of "where" if not the mPFC). But an equally reasonable interpretation is that the improved fit of the mixture model simply reflects a misspecification of two extreme aggregation process (additive and EV), so the log-likelihood is maximized at some point in between them.

      One possibility is a model with utility curvature. How much of this result is just due to curvature in valuation? There are many reasonable theories for why we should expect curvature in utility for human subjects (for example, limited perception: Robson, 2001, Khaw, Li Woodford, 2019; Netzer et al., 2022) and of course many empirical demonstrations of risk aversion for small stakes lotteries. The mixture model, on the other hand, has parametric flexibility.

      There is also a large literature on testing expected utility jointly with stochastic choice, and the impact of these assumptions on parameter interpretation (Loomes & Sugden, 1998; Apesteguia & Ballester, 2018; Webb, 2019). This relates back to the point above: the mixture may reflect the joint assumption of how choice departs from deterministic EV.

      (3) So then how should we interpret the correlation that the authors report?

      On one side we have the impact of the binary/ternary treatment which demonstrates some impact of the low value alternative on a binary choice probability. This may reflect some deep flaw in existing theories of choice, or it may simply reflect some departure from purely deterministic expected value maximization that existing theories can address. We have no theory to connect it to, so we cannot tell. On the other side of the correlation with have the mixture between additive and multiplicative preferences over risk. This result may reflect two distinct neural processes at work, or it may simply reflect a misspecification of the manner in which humans perceive and aggregate attributes of a lottery (or even just the stimuli in this experiment) by these two extreme candidates (additive vs. EV). Again, this would entail some departure from purely deterministic expected value maximization that existing theories can address.

      It is entirely possible that the authors are reporting a result that points to the more exciting of these two possibilities. But it is also possible (and perhaps more likely) that the correlation is more mundane. The paper does not guide us to theories that predict such a correlation, nor reject any existing ones. In my opinion, we should be striving for theoretically-driven analyses of datasets, where the interpretation of results is clearer.

      (4) Finally, the results from these experiments might not have external validity for two reasons. First, the normative criterion for multi-attribute decision-making differs depending on whether the attributes are lotteries or nor (i.e. multiplicative vs additive). Whether it does so for humans is a matter of debate. Therefore if the result is unique to lotteries, it might not be robust for multi-attribute choice more generally. The paper largely glosses over this difference and mixes literature from both domains. Second, the lottery information was presented visually and there is literature suggesting this form of presentation might differ from numerical attributes. Which is more ecologically valid is also a matter of debate.

      Minor Issues:

      The definition of EV as a normative choice baseline is problematic. The analysis requires that EV is the normative choice model (this is why the HV-LV gap is analyzed and the distractor effect defined in relation to it). But if the binary/ternary interaction effect can be accounted for by curvature of a value function, this should also change the definition of which lottery is HV or LV for that subject!

      Comments on latest version: the authors did respond to some of my comments with discussion points in the paper.

      References

      Apesteguia, J. & Ballester, M. Monotone stochastic choice models: The case of risk and time preferences. Journal of Political Economy (2018).

      Block, H. D. & Marschak, J. Random Orderings and Stochastic Theories of Responses. Cowles Foundation Discussion Papers (1959).

      Khaw, M. W., Li, Z. & Woodford, M. Cognitive Imprecision and Small-Stakes Risk Aversion. Rev. Econ. Stud. 88, 1979-2013 (2020).

      Loomes, G. & Sugden, R. Testing Different Stochastic Specifications of Risky Choice. Economica 65, 581-598 (1998).

      Luce, R. D. Indvidual Choice Behaviour. (John Wiley and Sons, Inc., 1959).

      Netzer, N., Robson, A. J., Steiner, J. & Kocourek, P. Endogenous Risk Attitudes. SSRN Electron. J. (2022) doi:10.2139/ssrn.4024773.

      Robson, A. J. Why would nature give individuals utility functions? Journal of Political Economy 109, 900-914 (2001).

      Webb, R. The (Neural) Dynamics of Stochastic Choice. Manage Sci 65, 230-255 (2019).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a useful comparison of the dynamic properties of two RNA-binding domains. The data collection and analysis are solid, making excellent use of a suite of NMR methods. However, evidence to support the proposed model linking dynamic behavior to RNA recognition and binding by the tandem domains remains incomplete. The work will be of interest to biophysicists working on RNA-binding proteins.

      We thank eLife for taking the time and effort to review our manuscript. Evidence from the literature and our study shows a great deal of parity between the dynamic behavior of dsRBDs and its dsRNA-recognition and -binding that helped us culminate in proposing a fair model. As already mentioned in the manuscript, we have been working on the suggested experiments to support our proposed model further.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In the manuscript entitled "Differential conformational dynamics in two type-A RNA-binding domains drive the double-stranded RNA recognition and binding," Chugh and co-workers utilize a suite of NMR relaxation methods to probe the dynamic landscape of the TAR RNA binding protein (TRBP) double-stranded RNA-binding domain 2 (dsRBD2) and compare these to their previously published results on TRBP dsRBD1. The authors show that, unlike dsRBD1, dsRBD2 is a rigid protein with minimal ps-ns or us-ms time scale dynamics in the absence of RNA. They then show that dsRBD2 binds to canonical A-form dsRNA with a higher affinity compared to dsRBD1 and does so without much alteration in protein dynamics. Using their previously published data, the authors propose a model whereby dsRBD2 recognizes dsRNA first and brings dsRBD1 into proximity to search for RNA bulge and internal loop structures.

      We thank the Reviewer for sending us an encouraging review. We have combined the findings reported in the literature with new ones that led us to propose the dsRNA-binding model by tandem A-form dsRBDs.

      We propose that dsRBD1 can first recognize a variety of sequential and structurally different dsRNAs. dsRBD2 assists the interaction with a higher affinity, thus fortifying the interaction between TRBP and a possible substrate. This may enable the other associated proteins like Dicer and Ago2 to perform critical biological functions.

      However, we feel that a few statements in the comment above are factually incorrect.

      Statement 1. “They then show that dsRBD2 binds to canonical A-form dsRNA with a higher affinity compared to dsRBD1 and does so without much alteration in protein dynamics.”

      We have explicitly shown the perturbation in dsRBD2 dynamics upon RNA binding.

      Statement 2. “Using their previously published data, the authors propose a model whereby dsRBD2 recognizes dsRNA first and brings dsRBD1 into proximity to search for RNA bulge and internal loop structures.”

      Our previously published data suggests that dsRBD1, owing to its high conformational dynamics in solution, is able to recognize a variety of structurally and sequentially different dsRNAs ([Paithankar et al., 2022]). dsRBDs preferably bind to the double-stranded region (minor-major-minor-groove) of an A-form RNA ([Acevedo et al., 2016]; [Vuković et al., 2014]) and do not search for bulge and internal loop structures as a part of the binding event. Even though dsRBDs preferably bind to the double-stranded region, they can still accommodate perturbation in the A-form helix due to mismatch and bulges with decreased binding affinity ([Acevedo et al., 2015]). However, it is a matter of future research to identify how much of a deviation from the A-form structure can be accommodated by the dsRBDs. The diffusion event observed in the literature ([Koh et al., 2013]) also does not show any direct implication for searching for bulge and internal loop structures.

      Strengths:

      The authors expertly use a variety of NMR techniques to probe protein motions over six orders of magnitude in time. Other NMR titration experiments and ITC data support the RNA-binding model.

      Weaknesses:

      The data collection and analysis are sound. The only weakness in the manuscript is the lack of context with the much broader field of RNA-binding proteins. For example, many studies have shown that RNA recognition motif (RRM) domains have similar dynamic characteristics when binding diverse RNA substrates. Furthermore, there was no discussion about the entropy of binding derived from ITC. It might be interesting to compare with dynamics from NMR.

      We understand the reviewer’s point that this study is focused on a dsRNA-binding mechanism rather than addressing the much broader field of RNA-binding. There are multiple challenges in finding a single mechanism that works for all RNA-binding proteins. For instance, RRM is a single-stranded RNA binding domain that is able to read out the substrate base sequence. RRM behaves entirely differently than the dsRBD in terms of target specificity. Besides, several other RNA-binding domains, like the KH-domain, Puf domains, Zinc finger domains, etc., showcase a unique RNA-binding behavior. Thus, it would be really difficult to draw a single rule of thumb for RNA-recognition behavior for all these diverse domains.

      Thank you for pointing out the entropy of binding from ITC. We have now included the entropy of binding discussion in the main text, page 7.

      Reviewer #2 (Public Review):

      Summary:

      Proteins that bind to double-stranded RNA regulate various cellular processes, including gene expression and viral recognition. Such proteins often contain multiple double-stranded RNA-binding domains (dsRBDs) that play an important role in target search and recognition. In this work, Chug and colleagues have characterized the backbone dynamics of one of the dsRBDs of a protein called TRBP2, which carries two tandem dsRBDs. Using solution NMR spectroscopy, the authors characterize the backbone motions of dsRBD2 in the absence and presence of dsRNA and compare these with their previously published results on dsRBD1. The authors show that dsRBD2 is comparatively more rigid than dsRBD1 and claim that these differences in backbone motions are important for target recognition.

      Strengths:

      The strengths of this study are multiple solution NMR measurements to characterize the backbone motions of dsRBD2. These include 15N-R1, R2, and HetNOE experiments in the absence and presence of RNA and the analysis of these data using an extended-model-free approach; HARD-15N-experiments and their analysis to characterize the kex. The authors also report differences in binding affinities of dsRBD1 and dsRBD2 using ITC and have performed MD simulations to probe the differential flexibility of these two domains.

      Weaknesses:

      While it may be true that dsRBD2 is more rigid than dsRBD1, the manuscript lacks conclusive and decisive proof that such changes in backbone dynamics are responsible for target search and recognition and the diffusion of TRBP2 along the RNA molecule. To conclusively prove the central claim of this manuscript, the authors could have considered a larger construct that carries both RBDs. With such a construct, authors can probe the characteristics of these two tandem domains (e.g., semi-independent tumbling) and their interactions with the RNA. Additionally, mutational experiments may be carried out where specific residues are altered to change the conformational dynamics of these two domains. The corresponding changes in interactions with RNA will provide additional evidence for the model presented in Figure 8 of the manuscript. Finally, there are inconsistencies in the reported data between different figures and tables.

      We thank the reviewer for the comprehensive and insightful review. A larger construct carrying both RBDs was not used because of the multiple challenges pertaining to dynamics study by NMR spectroscopy (intrinsic R2 rates of the dsRBD1-dsRBD2 construct would be high, resulting in broadened peaks) as per our previous experience ([Paithankar et al., 2022]). There would be additional dynamics in that construct coming from domain-domain relative motions, and it is difficult to deconvolute the dynamics information. Further, the dsRNA needed to bind to this construct will be longer, causing further line broadening in NMR.

      Coming to mutational studies, careful designing of domain mutants remains as a challenge because the conformational dynamics in both the domains are distributed all through the backbone rather than only in the RNA-binding residues. The mutational studies would need an exhaustive number of mutations in protein as well as RNA to draw a parallel between the binding and dynamics. Having said that, we are working on making such mutations in the protein (at several locations to freeze the dynamics site-specifically) and the RNA (to change the shape of the dsRNA) to systematically study this mechanism, which will be out of scope of this manuscript.

      The reviewer has rightly pointed out some subtle superficial differences in the reported data between different figures and tables. These superficial differences are present because of the context in which we are describing the data. For example, in Figure S4, we are talking about the average relaxation rates and nOe values for only the common residues we were able to analyze between two magnetic field strengths 600 and 800 MHz. Whereas in Figure 6, we are comparing the averages of the core (159-227) dsRBD residues at 600 MHz, in the presence and absence of D12RNA. The differences, however, are minute falls well within the error range.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved or additional experiments -

      In regards to ITC data, dsRBD1 does not bind canonical A-form RNA with high affinity. What is dsRBD1 and dsRBD2 affinity to the miR-16 RNA?

      We have not performed ITC-based studies with miR-16 RNA for the domains. The study by Acevedo et al. has shown the effect of lengths of Watson-Crick duplex RNAs upon TRBP2 dsRBD binding. In this study, they have compared the ds22 RNA to miRNA/miRNA* duplex. By using EMSA, they show that the Kd,app (μM) for dsRBD1 is 3.5±0.2 and for dsRBD2 is 1.7±0.1, indicating a higher affinity by the latter ([Acevedo et al., 2015]).

      What was the amount of time used for the 1H saturation in the heteronuclear NOE experiment? Based on the average T1 (1/1.44 s-1) = 0.69 s, a recovery delay of >7 s should have been used for this experiment.

      According to Cavanagh et al., a minimum recovery/recycle delay should be greater than 5*1/R1 to make sure that 99% of the 1HN and 15N magnetizations are restored ([“Protein NMR Spectroscopy, Principles and Practice, John Cavanagh, Wayne J. Fairbrother, Arthur G. Palmer III, and Nicholas J. Skelton. Academic Press, San Diego, 1995, 587 pages, $59.95. ISBN: 0-12-164490-1.,” 1996]). In our study, we have used a relaxation delay of 5 s, which is greater than 7*1/R1avg thus ensuring at least 99% of the 1HN and 15N recover their bulk magnetization.

      Recommendations for improving writing and presentation -

      Figure 3 - The legend in panel C is incomplete.

      Figure 3 (Figure 4 in the revised manuscript) has been updated, and the legend now reads complete.

      Figures 3 E and F - The three views can be combined into one as is done in Figures 4 C and D.

      Thanks for the kind suggestion. We have depicted the kex in the three ranges to highlight the difference between the two domains at each range. Since there are three different exchange regimes with different populations, we believe this gives us an uncomplicated picture while classifying and comparing the dynamics between the two. Combining the three views into one becomes too overwhelming to visualize kex and population distribution in the protein.

      Figure 3 - The residues indicated in the text (e.g., R200, L212, and R224) should be indicated in panels E and F.

      We have marked the residues described in the text in Figure 4C (revised Figure 5C), and thus, they are not mentioned in Figures 3E and 3F (revised Figures 4E and 4F).

      The results and discussion put these findings into minimal context. Most comparisons are made between dsRBD1 and dsRBD2. What about other RNA-binding proteins? There is a wealth of structure/dynamics/functional data about RNA recognition motifs, which do exactly the same thing as described here but are missing.

      We understand the reviewer’s point that this study is focused on a dsRNA-binding mechanism rather than addressing the much broader field of RNA-binding. There are multiple challenges in finding a single mechanism that works for all RNA-binding proteins. For instance, RRM is a single-stranded RNA-recognition motif that can read out the substrate base sequence. RRM behaves entirely differently than the dsRBD in terms of sequence specificity. Besides, several other RNA-binding domains, like the KH-domain, Puf domains, Zinc-finger domains, etc., showcase a unique RNA-binding behaviour. Thus, with the current knowledge, it would not be possible to draw a single rule of thumb for RNA-recognition behaviour for all these diverse domains. Hence, the findings of this study are not comparable to those of other RNA-binding domains and are beyond the scope of this study.

      Results, page 8 - I'm not sure that allosteric quenching is appropriately invoked here. The amount of residues showing dynamics in the apo state is small and the number only moderately increases upon RNA binding. The observation that some residues show an increase and a neighboring residue shows a decrease (or vice versa) upon RNA binding could just be random with the small number of observations. This observation would be more convincing if it were happening to larger regions within the protein.

      We agree with the reviewer that the number of residues showing dynamics in the apo-state of the dsRBD2 is small when compared with that of dsRBD1, and the number only moderately increases upon RNA-binding. However, we believe it is quite important to invoke the allosteric quenching as all the new residues where dynamics is induced, do lie in the spatial proximity, as also observed in the dsRBD1 ([Paithankar et al., 2022]). It is a parameter to not only compare the differences and similarities in the two domains but also to highlight the presence of this phenomenon common in both the type-A dsRBDs of TRBP.

      Minor corrections -

      Introduction, page 2 - The order parameter should be defined for non-NMR experts.

      Thank you for the suggestion. The definition of order parameter has now been included on page 2 of the revised manuscript.

      Introduction, page 2 - TRBP should be defined in the main text the first time used.

      We have now defined TRBP on page 2 of the revised manuscript, where it is used in the main text for the first time.

      Results, page 5 - The reference for the HARD experiment should be given earlier in that paragraph.

      Thank you for the suggestion. We have now referenced the HARD experiment earlier in the last paragraph on page 5 of the revised manuscript.

      Results, page 7 - What is the limiting amount of RNA used for the D12-bound dsRBD2 spin relaxation measurements?

      The limiting amount of RNA used for the D12-bound dsRBD2 spin relaxation measurements is 0.05 equivalent (RNA:Protein= 50 mM:1000 mM). It has now been included on page 7 of the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Throughout the manuscript, NMR datasets are not consistent with one another (a few examples are listed below).

      Figures S4, 6, and Table S4: (a) It is unclear why relaxation data for certain residues are missing in Table S4 (e.g., S156, V168, E177, F192, etc.).

      We thank the reviewer for pointing this out. We have now reanalyzed the data for all the above-mentioned residues and other missing residues. In the revised manuscript, we have added the data for the above-mentioned residues like E177, R189, and many more N- and C-terminal residues. Unfortunately, for some residues like V168, S184, F192, S209, and L222, we witnessed severe peak broadening while measuring the R2 rates and/or nOe. Hence, data for V168, S184, F192, S209, and L222 are missing in Table S4. We have explicitly mentioned this in the table legends about missing data for a few residues.

      (b) The reported values are not consistent. For example, Figure S4 says that the average 15N-R2 rate is 10.85 +/- 0.36 s-1 whereas Figure 6 says the 15N-R2 rate is 11.02 +/- 0.39 s-1 for the same dataset.

      The superficial differences are present because of the context in which we are describing the data (now mentioned in the methods section on page 13). In Figure S4, we are talking about the average relaxation rates and nOe values for only the common residues we could analyze between two magnetic field strengths, 600 and 800 MHz. Whereas in Figure 6 (revised figure 3), we compare the averages of all the analyzed core dsRBD residues at 600 MHz in the presence and absence of D12RNA. The differences, however, are insignificant, falling well within the error range.

      (c) There is also a discrepancy in reported R2 values (at 600 MHz) in Table S4. It is unclear to me what the reported values are, as most of these are below 1 s-1.

      Thank you very much for pointing out our mistake here. The Table S4 seems to have the wrong values for R2 at 600 MHz. However, the raw data submitted to the BMRB as entry 52077 holds the correct information. We have now updated the Table S4.

      (d) It is also unclear as to why perfectly resolved residues (e.g., L230, A232, D234, etc.) have been omitted from these data (and other datasets such as 15N-CPMGs shown in Figure S6).

      The residues L230, A232, D234, etc., are the C-terminal residues of TRBP-dsRBD2 beyond the core (159-227 aa) fold of dsRBD. They have now been included in the revised figures S6 and S11 for completeness.

      (e) Figure 6 reports a 15N-R2 of 21 s-1 for one of the residues in the absence of RNA. This data point has been omitted from Figure S4.

      In Figure S4, we are talking about relaxation rates and nOe values only for the common residues we could analyze between the two magnetic field strengths, 600 and 800 MHz. Thus, that 15N-R2 value has been omitted.

      The S2 order parameters reported in Figures S5 and S10 are inconsistent with one another, as additional residues are shown in S10 (e.g., N159).

      Thank you for pointing it out. We have now reanalyzed the data for S2 order parameter and Rex by including more residues (e.g., N159, R189, etc) in the core and have updated both Figures S5 and S10. Please see the revised supplementary information.

      Tables S6 and S7 report values for residue R189. This residue has been omitted in every other dataset. Based on the 1H-15N HSQC spectrum shown in Figure S3, this residue gives a well-resolved crosspeak (which lies adjacent to V228). Can the authors explain why they omit data for this residue in Figures S4, 6, and Table S4?

      The reviewer is correct in pointing out that data for R189 is missing in the fast dynamics data, such as Figure S4, Figure 6 (revised figure 3), and Table S4. We have now reanalyzed our raw data and included data for R189 and other missing residues in our updated manuscript. Please see the revised figures S4 and 6 (revised figure 3) and the revised table S4.  

      Moreover, this residue lies in the loop2 region of this domain. Based on the MD simulations (Figure 2), this region is more flexible compared to the rest of the domain. Does the corresponding 15N-relaxation data support this claim?

      Yes, the apo 15N-relaxation data do strongly support this claim. R189 showed a higher than core average R2 rate (R189 = 15.44 +/- 0.69 s-1; core = 10.92 +/- 0.37 s-1) and a lower than core average nOe (R189 = 0.49 +/- 0.05; core = 0.73 +/- 0.03) which indicate a higher flexibility than the rest of the core (updated Figure 3 and Table S4). Additionally, the S2 order parameter for R189 was found to be 0.52 +/- 0.03, slightly lower than the core average of 0.59 +/- 0.03, indicating a more flexible region than the core (updated Table S14). Moreover, the dynamics parameters extracted from HARD experimental data using the geoHARD method for apo TRBP2-dsRBD2 shown in Table S18 depict a high kex value of 31748.72 +/- 955.20 Hz for R189. This supports the claim that this residue is highly flexible with a high exchange rate.

      Figure S9. I was not able to follow this dataset as the data points are not consistent between different residues.

      In Figure S9, the residue-wise peak intensities plotted against the RNA concentration indicate that line broadening was witnessed for all the core residues (irrespective of the initial peak intensity). Another interesting observation is that the terminal residues do not undergo the same line broadening as seen in the core residues.

      It is also unclear why residue G185 is highlighted.

      It is taken as an example and magnified to show the extent of line broadening. This is now explicitly mentioned in the figure caption in the revised supplementary information.

      It is also not clear exactly what the authors are trying to fit, as I see no chemical shift changes upon the addition of RNA (Fig. S8), and the equation used for data fitting (pg. 11) uses chemical shift changes (and not the changes in intensities).

      The same equation can be used to fit the chemical shift perturbation and peak intensity perturbation as a function of ligand concentration. Here, we have tried to fit the intensity perturbation. We have now modified the statement on page 11 in the revised manuscript.

      Table S2: The ITC analysis reports an n value of ~3. Can authors elaborate as to what this means?

      The stoichiometry ~3 indicates the number of TBDP2-dsRBD2 that can interact with D12 RNA in a single binding event. The minimum binding register for dsRBDs is known to be >8 bp (12 bp for optimal binding) ([Ramos et al., 2000]), and one single domain only covers one-third of the face of the cylindrical RNA ([Masliah et al., 2018]). Hence, 3 dsRBD2 could interact with a 12-mer RNA in solution.

      The reported Kd values between the main text (page 7) and Figure 5 are not consistent with one another (one lists 1.18 uM while the other says 1.11 uM). Table S2 does not list the parameters for interactions between dsRBD1 and D12.

      Figure 5 (revised figure 6) depicts the information of a single isolated experiment out of a total of three, whereas in the main text, we say 1.18 μM as the average Kd value (table S2).

      Figure S4: The red axis should read "211" instead of "111".

      Thank you for your helpful insight. We have now changed it in the revised figure.

      Table S3 lists the structural motifs of the two dsRBDs, which are nearly identical to one another, and yet the manuscript claims that these are different (page 4, paragraph 1).

      We agree with the reviewer that the differences are minute but important, which we have tried to highlight in this paper. In particular, loop 2, critical for dsRNA-binding ([Masliah et al., 2012]), is 1 residue longer in dsRBD2 and has a possible effect in enhanced substrate binding.

      Figure S8 shows severe signal attenuation for many residues upon the addition of 100 uM RNA. The most notable among these are residues M194, T195, and C196. Can the authors explain how they measure 15N-relaxation rates for these residues in the presence of 50 uM D12?

      First, we have recorded the measured 15N-relaxation rates for these residues in the presence of 50 mM D12 (RNA:Protein= 50 mM:1000 mM)), corresponding to 0.05 equivalent RNA. The amount of RNA used is less than that used for the HSQC-based titration shown in Figure S8, 0.1 equivalent RNA (RNA:Protein = 5 mM:50 mM), where we witness line broadening for residues like M194, T195, and C196. Second, we increased the overall protein concentration from 50 mM (used in HSQC-based titration) to 1000 mM (used in relaxation measurements) to ensure a better signal-to-noise ratio in all the spectra.

      Use the same coloring scheme for Figures S7 and S8.

      Thank you for the suggestion. We have now edited Figure S8 accordingly.

      Figures are often listed out-of-order, making it difficult to follow the manuscript.

      Thank you for the suggestion. We have now amended the main text to refer to the figures sequentially. While doing so, we have renumbered Figure 6 as Figure 3, Figure 3 as Figure 4, Figure 4 as Figure 5, and Figure 5 as Figure 6.

      Figure captions for the relaxation data should specify the temperature at which these datasets were collected.

      Thanks for the valuable suggestion. We have now added the temperature wherever applicable.

      References

      Acevedo R, Evans D, Penrod KA, Showalter SA. 2016. Binding by TRBP-dsRBD2 Does Not Induce Bending of Double-Stranded RNA. Biophys J 110:2610–2617. doi:10.1016/j.bpj.2016.05.012

      Acevedo R, Orench-Rivera N, Quarles KA, Showalter SA. 2015. Helical Defects in MicroRNA Influence Protein Binding by TAR RNA Binding Protein. PLoS ONE 10:e0116749. doi:10.1371/journal.pone.0116749

      Koh HR, Kidwell MA, Ragunathan K, Doudna JA, Myong S. 2013. ATP-independent diffusion of double-stranded RNA binding proteins.

      Masliah G, Barraud P, Allain FH-T. 2012. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell Mol Life Sci 70:1875–1895. doi:10.1007/s00018-012-1119-x

      Masliah G, Maris C, König SL, Yulikov M, Aeschimann F, Malinowska AL, Mabille J, Weiler J, Holla A, Hunziker J, Meisner‐Kober N, Schuler B, Jeschke G, Allain FH. 2018. Structural basis of siRNA recognition by TRBP double‐stranded RNA binding domains. EMBO J 37:e97089. doi:10.15252/embj.201797089

      Paithankar H, Tarang GS, Parvez F, Marathe A, Joshi M, Chugh J. 2022. Inherent conformational plasticity in dsRBDs enables interaction with topologically distinct RNAs. Biophys J 121:1038–1055. doi:10.1016/j.bpj.2022.02.005

      Protein NMR Spectroscopy, Principles and Practice, John Cavanagh, Wayne J. Fairbrother, Arthur G. Palmer III, and Nicholas J. Skelton. Academic Press, San Diego, 1995, 587 pages, $59.95. ISBN: 0-12-164490-1. 1996. . J Magn Reson, Ser B 113:277. doi:10.1006/jmrb.1996.0189

      Ramos A, Grünert S, Adams J, Micklem DR, Proctor MR, Freund S, Bycroft M, Johnston DS, Varani G. 2000. RNA recognition by a Staufen double‐stranded RNA‐binding domain. EMBO J 19:997–1009. doi:10.1093/emboj/19.5.997

      Vuković L, Koh HR, Myong S, Schulten K. 2014. Substrate Recognition and Specificity of Double-Stranded RNA Binding Proteins. Biochemistry 53:3457–3466. doi:10.1021/bi500352s

    1. отличие от других типов пиринга, веерные соединения являются однонаправленными; они всегда указывают с узла вне темы на узел, подписанный на тему.

      есть узел x - который создал сообщение на определённую тему. сам он на эту тему не подписан.

      верные соедением - ,по сути, это соединение, которые идут только в одну сторону, а данном случае в сторону, где узлы подписаны на тему, для которого x создал сообщение.

      условно, какая-нибудь беседе в телеге, где вдруг чел решил сделать рекламу, чего-то. сам он этим не занимается, но реклама есть реклама по сути, он кидает сообщние каким-то людям, с тем, что им может быть интересно.

      сами это узлы получатели, на знают, что они были выбраны, для них это связь только с метаданными

    2. Сплетни

      Каждый пир сплетничает шестью пиром, рандомным, по служебному "каналу". это происходит каждую секунду.

      когда увидел вдруг рандомного чела, с которым почти не общается, а он тебе вкинул интересную инфу, которую ты остальным рассказываешь

    3. Узлы хранят список недавно просмотренных сообщений

      сообщения, которые они просмотрели, они помечают, что просмотрели, для того, чтоб не переотправлять их более одного раза.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      Campbell et al investigated the effects of light on the human brain, in particular the subcortical part of the hypothalamus during auditory cognitive tasks. The mechanisms and neuronal circuits underlying light effects in non-image forming responses are so far mostly studied in rodents but are not easily translated in humans. Therefore, this is a fundamental study aiming to establish the impact light illuminance has on the subcortical structures using the high-resolution 7T fMRI. The authors found that parts of the hypothalamus are differently responding to illuminance. In particular, they found that the activity of the posterior hypothalamus increases while the activity of the anterior and ventral parts of the hypothalamus decreases under high illuminance. The authors also report that the performance of the 2-back executive task was significantly better in higher illuminance conditions. However, it seems that the activity of the posterior hypothalamus subpart is negatively related to the performance of the executive task, implying that it is unlikely that this part of the hypothalamus is directly involved in the positive impact of light on performance observed. Interestingly, the activity of the posterior hypothalamus was, however, associated with an increased behavioural response to emotional stimuli. This suggests that the role of this posterior part of the hypothalamus is not as simple regarding light effects on cognitive and emotional responses. This study is a fundamental step towards our better understanding of the mechanisms underlying light effects on cognition and consequently optimising lighting standards. 

      Strengths: 

      While it is still impossible to distinguish individual hypothalamic nuclei, even with the highresolution fMRI, the authors split the hypothalamus into five areas encompassing five groups of hypothalamic nuclei. This allowed them to reveal that different parts of the hypothalamus respond differently to an increase in illuminance. They found that higher illuminance increased the activity of the posterior part of the hypothalamus encompassing the MB and parts of the LH and TMN, while decreasing the activity of the anterior parts encompassing the SCN and another part of TMN. These findings are somewhat in line with studies in animals. It was shown that parts of the hypothalamus such as SCN, LH, and PVN receive direct retinal input in particular from ipRGCs. Also, acute chemogenetic activation of ipRGCs was shown to induce activation of LH and also increased arousal in mice. 

      Weaknesses: 

      While the light characteristics are well documented and EDI calculated for all of the photoreceptors, it is not very clear why these irradiances and spectra were chosen. It would be helpful if the authors explained the logic behind the four chosen light conditions tested. Also, the lights chosen have cone-opic EDI values in a high correlation with the melanopic EDI, therefore we can't distinguish if the effects seen here are driven by melanopsin and/or other photoreceptors. In order to provide a more mechanistic insight into the light-driven effects on cognition ideally one would use a silent substitution approach to distinguish between different photoreceptors. This may be something to consider when designing the follow-up studies. 

      Reviewer #1 (Recommendations For The Authors): 

      (1) As suggested in the public review more information regarding the reasons behind the chosen light condition is needed. 

      While the light characteristics are well documented and EDI calculated for all of the photoreceptors, it is not very clear why these irradiances and spectra were chosen. It would be helpful if the authors explained the logic behind the four chosen light conditions tested. Also, the lights chosen have cone-opic EDI values in a high correlation with the melanopic EDI, therefore we can't distinguish if the effects seen here are driven by melanopsin or cone opsins. In order to provide a more mechanistic insight into the light-driven effects on cognition ideally one would use a silent substitution approach to distinguish between different photoreceptors. 

      (2) In support of this work, it was shown in mice that acute activation of ipRGCs using chemogenetics induces c-fos in some of the hypothalamic brain areas discussed here including LH (Milosavljevic et al, 2016 Curr Biol). Another study to consider including in the discussion is by Sonoda et al 2020 Science, in which the authors showed that a subset of ipRGCs release GABA. 

      (3) Figure 1 looks squashed, especially the axes. Also, Figure 2 looks somewhat blurry. I would suggest that the authors edit the figures to correct this.

      We thank the reviewer for their positive comments and agree with the weaknesses they pointed out. 

      (1) The explanation regarding the choice of the illuminance is now included in the revised manuscript (PAGE 17): “Blue-enriched light illuminances were set according to the technical characteristics of the light source and to keep the overall photon flux similar to prior 3T MRI studies of our team (between ~1012 and 1014 ph/cm²/s) (Vandewalle et al., 2010, 2011). The orange light was introduced as a control visual stimulation for potential secondary whole-brain analyses. For the present region of interest analyses, we discarded colour differences between the light conditions and only considered illuminance as indexed by mel EDI lux. This constitutes a limitation of our study as it does not allow attributing the findings to a particular photoreceptor class.”

      The revised discussion makes clear that these choices limit the interpretation about the photoreceptors involved (PAGES 12-13): “We based our rationale and part of our interpretations on ipRGC projections, which have been demonstrated in rodents to channel the NIF biological impact of light and incorporate the inputs from rods and cones with their intrinsic photosensitivity into a light signal that can impact the brain (Güler et al., 2008; Tri & Do, 2019). Given the polychromatic nature of the light we used, classical photoreceptors and their projections to visual brain areas are, however, very likely to have directly or indirectly contributed to the modulation by light of the regional activity of the hypothalamus.”

      The discussion also points out the promises of silent substitution (PAGE 13): “Future human studies could isolate the contribution of each photoreceptor class to the impact of light on cognitive brain functions by manipulating prior light history (Chellappa et al., 2014) or through the use of silent substitutions between metameric light exposures (Viénot et al., 2012)”.

      (2) We now refer to the studies by Milosavljevic et al. and Sonoda et al. 

      PAGE 9: “Our data may therefore be compatible with an increase in orexin release by the LH with increasing illuminance. In line with this assumption, chemoactivation of ipRGCs lead to increase c-fos production, a marker of cellular activation, over several nuclei of the hypothalamus, including the lateral hypothalamus (Milosavljevic et al., 2016). If this initial effect of light we observe over the posterior part of the hypothalamus was maintained over a longer period of exposure, this would stimulate cognition and maintain or increase alertness (Campbell et al., 2023) and may also be part of the mechanisms through which daytime light increases the amplitude in circadian variations of several physiological features (BanoOtalora et al., 2021; Dijk et al., 2012).”

      PAGE 10: “Chemoactivation of ipRGCs in rodents led to an increase activity of the SCN, over the inferior anterior hypothalamus, but had no impact on the activity of the VLPO, over the superior anterior hypothalamus (Milosavljevic et al., 2016). How our findings fit with these fine-grained observations and whether there are species-specific differences in the responses to light over the different part of the hypothalamus remains to be established.”

      PAGE 10: “In terms of chemical communication, these changes in activity could be the results of an inhibitory signal from a subclass of ipRGCs, potentially through the release aminobutyric acid (GABA), as a rodent study found that a subset of ipRGCs release GABA at brain targets including the SCN (and intergeniculate leaflet and ventral lateral geniculate nucleus), leading to a reduction in the ability of light to affect pupil size and circadian photoentrainment (Sonoda et al., 2020). Whatever the signalling of ipRGC, our finding over the anterior hypothalamus could correspond to a modification of GABA signalling of the SCN which has been reported to have excitatory properties, such that the BOLD signal changes we report may correspond to a reduction in excitation arising in part from the SCN (Albers et al., 2017).”

      (3) Figures 1 and 2 were modified. We hope their quality is now satisfactory. We are willing to provide separate figures prior to publication of the Version of Record.

      Reviewer #2 (Public Review): 

      Summary 

      The interplay between environmental factors and cognitive performance has been a focal point of neuroscientific research, with illuminance emerging as a significant variable of interest. The hypothalamus, a brain region integral to regulating circadian rhythms, sleep, and alertness, has been posited to mediate the effects of light exposure on cognitive functions. Previous studies have illuminated the role of the hypothalamus in orchestrating bodily responses to light, implicating specific neural pathways such as the orexin and histamine systems, which are crucial for maintaining wakefulness and processing environmental cues. Despite advancements in our understanding, the specific mechanisms through which varying levels of light exposure influence hypothalamic activity and, in turn, cognitive performance, remain inadequately explored. This gap in knowledge underscores the need for high-resolution investigations that can dissect the nuanced impacts of illuminance on different hypothalamic regions. Utilizing state-of-the-art 7 Tesla functional magnetic resonance imaging (fMRI), the present study aims to elucidate the differential effects of light on the hypothalamic dynamics and establish a link between regional hypothalamic activity and cognitive outcomes in healthy young adults. By shedding light on these complex interactions, this research endeavours to contribute to the foundational knowledge necessary for developing innovative therapeutic strategies aimed at enhancing cognitive function through environmental modulation. 

      Strengths: 

      (1) Considerable Sample Size and Detailed Analysis: The study leverages a robust sample size and conducts a thorough analysis of hypothalamic dynamics, which enhances the reliability and depth of the findings. 

      (2) Use of High-Resolution Imaging: Utilizing 7 Tesla fMRI to analyze brain activity during cognitive tasks offers high-resolution insights into the differential effects of illuminance on hypothalamic activity, showcasing the methodological rigor of the study. 

      (3) Novel Insights into Illuminance Effects: The manuscript reveals new understandings of how different regions of the hypothalamus respond to varying illuminance levels, contributing valuable knowledge to the field. 

      (4) Exploration of Potential Therapeutic Applications: Discussing the potential therapeutic applications of light modulation based on the findings suggests practical implications and future research directions. 

      Weaknesses: 

      (1) Foundation for Claims about Orexin and Histamine Systems: The manuscript needs to provide a clearer theoretical or empirical foundation for claims regarding the impact of light on the orexin and histamine systems in the abstract. 

      (2) Inclusion of Cortical Correlates: While focused on the hypothalamus, the manuscript may benefit from discussing the role of cortical activation in cognitive performance, suggesting an opportunity to expand the scope of the manuscript. 

      (3) Details of Light Exposure Control: More detailed information about how light exposure was controlled and standardized is needed to ensure the replicability and validity of the experimental conditions. 

      (4) Rationale Behind Different Exposure Protocols: To clarify methodological choices, the manuscript should include more in-depth reasoning behind using different protocols of light exposure for executive and emotional tasks. 

      Reviewer #2 (Recommendations For The Authors): 

      Attention to English language precision and correction of typographical errors, such as "hypothalamic nuclei" instead of "hypothalamus nuclei," is necessary for enhancing the manuscript.

      We thank the reviewer for recognising the interest and strength of our study.

      (1) As detailed in the discussion, we do believe orexin and histamine are excellent candidates for mediating the results we report. As also pointing out, however, we are in no position to know which neurons, nuclei, neurotransmitter and neuromodulator underlie the results. The last sentence of the abstract (PAGE 2) was therefore removed as we agree the statement was too strong. We carefully reconsider the discussion and believe that no such overstatement was present.

      (2) Hypothalamus nuclei are connected to multiple cortical (and subcortical) structures. The relevance of these projections will vary with the cognitive task considered. In addition, we have not yet considered the cortex in our analyses such that truly integrating cortical structures appears premature. 

      We nevertheless added the following short statement (PAGE 11): “Subcortical structures, and particularly those receiving direct retinal projections, including those of the hypothalamus, are likely to receive light illuminance signal first before passing on the light modulation to the cortical regions involved in the ongoing cognitive process (Campbell et al., 2023).”

      (3) We now include the following as part of the method section (PAGES 16-17): “Illuminance and spectra could not be directly measured within the MRI scanner due to the ferromagnetic nature of measurement systems. The coil of the MRI and the light stand, together with the lighting system were therefore placed outside of the MR room to reproduce the experimental conditions of the in a completely dark room. A sensor was placed 2 cm away from the mirror of the coil that is mounted at eye level, i.e. where the eye of the first author of the paper would be positioned, to measure illuminance and spectra. The procedure was repeated 4 times for illuminance and twice for spectra and measurements were averaged. This procedure does not take into account interindividual variation in head size and orbit shape such that the reported illuminance levels may have varied slightly across subjects. The relative differences between illuminance are, however, very unlikely to vary substantially across participants such that statistics consisting of tests for the impact of relative differences in illuminance were not affected. The detailed values reported in Supplementary Table 2 were computed combining spectra and illuminance using the excel calculator associated with a published work (Lucas et al., 2014).”

      (4) The explanation regarding the choice of the illuminance is now included in the revised manuscript (PAGE 17): “Blue-enriched light illuminances were set according to the technical characteristics of the light source and to keep the overall photon flux similar to prior 3T MRI studies of our team (between ~1012 and 1014 ph/cm²/s) (Vandewalle et al., 2010, 2011). The orange light was introduced as a control visual stimulation for potential secondary whole-brain analyses. For the present region of interest analyses, we discarded colour differences between the light conditions and only considered illuminance as indexed by mel EDI lux. This constitutes a limitation of our study as it does not allow attributing the findings to a particular photoreceptor class.”

      (5) The manuscript was thoroughly rechecked, and we hope to have spotted all typos and language errors.

      Reviewer #3 (Public Review): 

      Summary: 

      Campbell and colleagues use a combination of high-resolution fMRI, cognitive tasks, and different intensities of light illumination to test the hypothesis that the intensity of illumination differentially impacts hypothalamic substructures that, in turn, promote alterations in arousal that affect cognitive and affective performance. The authors find evidence in support of a posterior-to-anterior gradient of increased blood flow in the hypothalamus during task performance that they later relate to performance on two different tasks. The results provide an enticing link between light levels, hypothalamic activity, and cognitive/affective function, however, clarification of some methodological choices will help to improve confidence in the findings. 

      Strengths: 

      * The authors' focus on the hypothalamus and its relationship to light intensity is an important and understudied question in neuroscience. 

      Weaknesses: 

      (1) I found it challenging to relate the authors' hypotheses, which I found to be quite compelling, to the apparatus used to test the hypotheses - namely, the use of orange light vs. different light intensities; and the specific choice of the executive and emotional tasks, which differed in key features (e.g., block-related vs. event-related designs) that were orthogonal to the psychological constructs being challenged in each task. 

      (4) Given the small size of the hypothalamus and the irregular size of the hypothalamic parcels, I wondered whether a more data-driven examination of the hypothalamic time series would have provided a more parsimonious test of their hypothesis. 

      Reviewer #3 (Recommendations For The Authors): 

      (1) The authors may wish to explain the importance of the orange light condition in the early section of the results -- i.e., when they first present the task structure. As it stands, I don't have a good appreciation of why the orange light was included -- was it a control condition? And if the differences between the light conditions (e.g., the narrow- vs. wide-band of light) were indeed ignored by focussing on the illuminance levels, are there any potential issues that the authors could then mitigate against with further experiments/analyses? 

      (2) Are there other explanations for why illuminance levels might improve cognitive performance? For instance, the capacity to more easily perceive the stimuli in an experiment could plausibly make it easier to complete a given task. If this is the case, can the authors conceptualise a way to rule out this hypothesis? 

      (3) Did the authors control for the differences in the number of voxels in each hypothalamic subregion? Or perhaps consider estimating the variance across voxels within the larger parcels, to determine whether the mean time series was comparable to the time series of the smaller parcels? 

      (4) An alternative strategy that would mitigate against the differences in the size of hypothalamic parcels would be to conduct analyses on the hypothalamus without parcellation, but instead using dimensionality reduction techniques to observe the natural spread of responses across the hypothalamus. From the authors' results, my intuition is that these analyses will lead to similar conclusions, albeit without any of the potential issues with respect to differently-sized parcels. 

      We thank the reviewer for acknowledging the originality and interest of our study. We agree that some methodological choices needed more explanation. We will address the weaknesses they pointed out as follows:

      (1) The explanation regarding the choice of the illuminance is now included in the revised manuscript (PAGE 17): “Blue-enriched light illuminances were set according to the technical characteristics of the light source and to keep the overall photon flux similar to prior 3T MRI studies of our team (between ~1012 and 1014 ph/cm²/s) (Vandewalle et al., 2010, 2011). The orange light was introduced as a control visual stimulation for potential secondary whole-brain analyses. For the present region of interest analyses, we discarded colour differences between the light conditions and only considered illuminance as indexed by mel EDI lux. This constitutes a limitation of our study as it does not allow attributing the findings to a particular photoreceptor class.”

      The revised discussion makes clear that these choices limit the interpretation about the photoreceptors involved (PAGE 12-13): “We based our rationale and part of our interpretations on ipRGC projections, which have been demonstrated in rodents to channel the NIF biological impact of light and incorporate the inputs from rods and cones with their intrinsic photosensitivity into a light signal that can impact the brain (Güler et al., 2008; Tri & Do, 2019). Given the polychromatic nature of the light we used, classical photoreceptors and their projections to visual brain areas are, however, very likely to have directly or indirectly contributed to the modulation by light of the regional activity of the hypothalamus.”

      We further mention that (PAGE 13): “Furthermore, we cannot exclude that colour and/or spectral differences between the orange and 3 blue-enriched light conditions may have contributed to our findings. Research in rodent model demonstrated that variation in the spectral composition of light was perceived by the suprachiasmatic nucleus to set circadian timing (Walmsley et al., 2015). No such demonstration has, however, been reported yet for the acute impact of light on alertness, attention, cognition or affective state.”

      Regarding the choice of tasks, we added the following the method section (PAGE 18): “Prior work of our team showed that the n-back task and emotional task included in the present protocol were successful probes to demonstrate that light illuminance modulates cognitive activity, including within subcortical structures (though resolution did not allow precise isolation of nuclei or subparts) (e.g. (Vandewalle et al., 2007, 2010)). When taking the step of ultra-high-field imaging, we therefore opted for these tasks as our goal was to show that illuminance affects brain activity across cognitive domains while not testing for task-specific aspects of these domains.”

      We further added to the discussion (PAGE 8): “The pattern of light-induced changes was consistent across an executive and an emotional task which consisted of block and an event-related fMRI design, respectively. This suggests that a robust anterior-posterior gradient of activity modulation by illuminance is present in hypothalamus across cognitive domains.”

      (2) We are unsure what the reviewer refers to when he states that the experiment could make it easier to perceive a stimulus. Aside from the fact that illuminance can increase alertness and attention such that a stimulus may be better or more easily perceived/processed, we do not see how blocks of ambient light, i.e. a long-lasting visual stimulus, may render auditory stimulation (letters or pseudo-words in the present) easier to perceive. To our knowledge multimodal or cross-modal integration has been robustly demonstrated for short visual/auditory cues that would precede or accompany auditory/visual stimulation. 

      We are willing to clarify this issue in the text if we receive additional explanation from the reviewer.

      (3) We added subpart size as covariate in the analyses (instead of subpart number) and it did not affect the output of the statistical analyses (Author response table 1). 

      For completeness, we further computed standard deviation of the activity estimates of the voxels within each parcel for the main analysis of the n-back tasks and found a main effect of subpart (Author response table 2) indicating that the variability of the estimates varied across subparts. Post hoc contrast and the display included in Author response image1 show however that the difference were not related to subpart size per see. It is in fact the largest subpart (subpart 4) that shows the largest variability while one of the smallest subpart (subpart 2) shows the lowest variability. Though it may have contributed, it is therefore unlikely to explain our findings. We consider the analyses reported in (Author response table 1 and 2 and (Author response image 1 as very technical and did not include it in the supplementary material for conciseness. If the reviewer judges it essential, we can reconsider our decision.  

      While computing these analyses, we realized that there were errors in the table 1 reporting the statistical outcomes of the main analyses of the emotional task. The main statistical outputs remain the same except for a nominal main effect of the task (emotional vs. neutral) and the fact that post hoc show a consistent difference between the posterior subpart (subpart 3) and all the other subparts, rather than all the other subparts except for the difference with superior tubular hypothalamus subpart: p-corrected = 0.09. We apologise for this slight error and were unable to isolate its origin. It does not modify the rest of the analyses (which were also rechecked) and the interpretations. 

      Author response table 1.

      Recomputations of the main GLMMs using subpart sizes rather than subpart numbers as covariate of interest.

      Author response image 1.

      Activity estimate variability per hypothalamus subpart and subpart size.  

      Author response table 2.

      Difference in activity estimate standard deviation between hypothalamus subparts during the n-back task.

      Outputs of the generalized linear mixed model (GLMM) with subject as the random factor (intercept and slope), and task and subpart as repeated measures (ar(1) autocorrelation).

      * The corrected p-value for multiple comparisons over 2 tests is p < 0.025.

      # Refer to Fig.2A for correspondence of subpart numbers

      The text referring to Table 1 was modified accordingly (PAGE 5): “A nominal main effect of the task was detected for the emotional task [p = 0.049; Table 1] but not for the n-back task. For both tasks, there was no significant main effect for any of the other covariates and post hoc analyses showed that the index of the illuminance impact was consistently different in the posterior hypothalamus subpart compared to the other subparts [pcorrected ≤ 0.05]”.

      (4) We agree that a data driven approach could have constituted an alternative means to tests our hypothesis. We opted for an approach that we mastered best, while still allowing to conclusively test for regional differences in activity across the hypothalamus. Examination of time series of the very same data we used will mainly confirm the results of our analyses – an anterior-posterior gradient in the impact of illuminance - while it may yield slight differences in the boarders of the subparts of the hypothalamus undergoing decreased or increased activity with increasing illuminance. While the suggested approach may have been envisaged if we had been facing negative results (i.e. no differences between subparts, potentially because subparts would not reflect functional differences in response to illuminance change), it would constitute a circular confirmation of our main findings (i.e. using the same data). While we truly appreciate the suggestion, we do not consider that it would constitute a more parsimonious test of our hypothesis, now that we successfully applied GLM/parcellation and GLMM approaches.

      We added the following statement to the discussion to take this comment into account (PAGE 12): “Future research may consider data-driven analyses of hypothalamus voxels time series as an alternative to the parcellation approach we adopted here. This may refine the delineation of the subparts of the hypothalamus undergoing decreased or increased activity with increasing illuminance.”

      Response references

      Albers, H. E., Walton, J. C., Gamble, K. L., McNeill, J. K., & Hummer, D. L. (2017). The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Frontiers in Neuroendocrinology, 44, 35–82. https://doi.org/10.1016/J.YFRNE.2016.11.003

      Bano-Otalora, B., Martial, F., Harding, C., Bechtold, D. A., Allen, A. E., Brown, T. M., Belle, M. D. C., & Lucas, R. J. (2021). Bright daytime light enhances circadian amplitude in a diurnal

      mammal. Proceedings of the National Academy of Sciences of the United States of America, 118(22), e2100094118. https://doi.org/10.1073/PNAS.2100094118/SUPPL_FILE/PNAS.2100094118.SAPP.PDF

      Campbell, I., Sharifpour, R., & Vandewalle, G. (2023). Light as a Modulator of Non-Image-Forming Brain Functions Positive and Negative Impacts of Increasing Light Availability. Clocks & Sleep, 5(1), 116. https://doi.org/10.3390/CLOCKSSLEEP5010012

      Chellappa, S. L., Ly, J. Q. M., Meyer, C., Balteau, E., Degueldre, C., Luxen, A., Phillips, C., Cooper, H. M., & Vandewalle, G. (2014). Photic memory for executive brain responses. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 6087–6091. https://doi.org/10.1073/pnas.1320005111

      Dijk, D. J., Duffy, J. F., Silva, E. J., Shanahan, T. L., Boivin, D. B., & Czeisler, C. A. (2012). Amplitude reduction and phase shifts of melatonin, cortisol and other circadian rhythms after a gradual advance of sleep and light exposure in humans. PloS One, 7(2). https://doi.org/10.1371/JOURNAL.PONE.0030037

      Güler, A. D., Ecker, J. L., Lall, G. S., Haq, S., Altimus, C. M., Liao, H. W., Barnard, A. R., Cahill, H., Badea, T. C., Zhao, H., Hankins, M. W., Berson, D. M., Lucas, R. J., Yau, K. W., & Hattar, S. (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature, 453(7191), 102–105. https://doi.org/10.1038/nature06829

      Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., Figueiro, M. G., Gamlin, P. D., Lockley, S. W., O’Hagan, J. B., Price, L. L. A., Provencio, I., Skene, D. J., & Brainard, G. C. (2014). Measuring and using light in the melanopsin age. Trends in Neurosciences, 37(1), 1–9. https://doi.org/10.1016/j.tins.2013.10.004

      Milosavljevic, N., Cehajic-Kapetanovic, J., Procyk, C. A., & Lucas, R. J. (2016). Chemogenetic Activation of Melanopsin Retinal Ganglion Cells Induces Signatures of Arousal and/or Anxiety in Mice. Current Biology, 26(17), 2358–2363. https://doi.org/10.1016/j.cub.2016.06.057

      Sonoda, T., Li, J. Y., Hayes, N. W., Chan, J. C., Okabe, Y., Belin, S., Nawabi, H., & Schmidt, T. M. (2020). A noncanonical inhibitory circuit dampens behavioral sensitivity to light. Science (New York, N.Y.), 368(6490), 527–531. https://doi.org/10.1126/SCIENCE.AAY3152

      Tri, M., & Do, H. (2019). Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron, 104, 205–226. https://doi.org/10.1016/j.neuron.2019.07.016

      Vandewalle, G., Hébert, M., Beaulieu, C., Richard, L., Daneault, V., Garon, M. Lou, Leblanc, J., Grandjean, D., Maquet, P., Schwartz, S., Dumont, M., Doyon, J., & Carrier, J. (2011). Abnormal hypothalamic response to light in seasonal affective disorder. Biological Psychiatry, 70(10), 954–961. https://doi.org/10.1016/j.biopsych.2011.06.022

      Vandewalle, G., Schmidt, C., Albouy, G., Sterpenich, V., Darsaud, A., Rauchs, G., Berken, P. Y., Balteau, E., Dagueldre, C., Luxen, A., Maquet, P., & Dijk, D. J. (2007). Brain responses to violet, blue, and green monochromatic light exposures in humans: Prominent role of blue light and the brainstem. PLoS ONE, 2(11), e1247. https://doi.org/10.1371/journal.pone.0001247

      Vandewalle, G., Schwartz, S., Grandjean, D., Wuillaume, C., Balteau, E., Degueldre, C., Schabus, M., Phillips, C., Luxen, A., Dijk, D. J., & Maquet, P. (2010). Spectral quality of light modulates emotional brain responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19549–19554. https://doi.org/10.1073/pnas.1010180107

      Viénot, F., Brettel, H., Dang, T.-V., & Le Rohellec, J. (2012). Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods. Journal of the Optical Society of America A, 29(2), A366. https://doi.org/10.1364/josaa.29.00a366

      Walmsley, L., Hanna, L., Mouland, J., Martial, F., West, A., Smedley, A. R., Bechtold, D. A., Webb, A. R., Lucas, R. J., & Brown, T. M. (2015). Colour As a Signal for Entraining the Mammalian Circadian Clock. PLOS Biology, 13(4), e1002127. https://doi.org/10.1371/journal.pbio.1002127

    2. eLife assessment

      This fundamental work describes the complex interplay between light exposure, hypothalamic activity, and cognitive function. The evidence supporting the conclusion is compelling with potential therapeutic applications of light modulation. The work will be of broad interest to basic and clinical neuroscientists.

    3. Reviewer #1 (Public Review):

      Summary:

      Campbell et al investigated the effects of light on the human brain, in particular the subcortical part hypothalamus during auditory cognitive tasks. The mechanisms and neuronal circuits underlying light effects in non-image forming responses are so far mostly studied in rodents but are not easily translated in humans. Therefore, this is a fundamental study aiming to establish the impact light illuminance has on the subcortical structures using the high-resolution 7T fMRI. The authors found that parts of the hypothalamus are differently responding to illuminance. In particular, they found that the activity of the posterior hypothalamus increases while the activity of the anterior and ventral parts of the hypothalamus decreases under high illuminance. The authors also report that the performance of the 2-back executive task was significantly better in higher illuminance conditions. However, it seems that the activity of the posterior hypothalamus subpart is negatively related to the performance of the executive task, implying that it is unlikely that this part of the hypothalamus is directly involved in the positive impact of light on performance observed. Interestingly, the activity of the posterior hypothalamus was, however, associated with an increased behavioural response to emotional stimuli. This suggests that the role of this posterior part of the hypothalamus is not as simple regarding light effects on cognitive and emotional responses. This study is a fundamental step towards our better understanding of the mechanisms underlying light effects on cognition and consequently optimising lighting standards.

      Strengths:

      While it is still impossible to distinguish individual hypothalamic nuclei, even with the high-resolution fMRI, the authors split the hypothalamus into five areas encompassing five groups of hypothalamic nuclei. This allowed them to reveal that different parts of the hypothalamus respond differently to an increase in illuminance. They found that higher illuminance increased the activity of the posterior part of the hypothalamus encompassing the MB and parts of the LH and TMN, while decreasing the activity of the anterior parts encompassing the SCN and another part of TMN. These findings are somewhat in line with studies in animals. It was shown that parts of the hypothalamus such as SCN, LH, and PVN receive direct retinal input in particular from ipRGCs. Also, acute chemogenetic activation of ipRGCs was shown to induce activation of LH and also increased arousal in mice.

      Weaknesses:

      While the light characteristics are well documented and EDI calculated for all of the photoreceptors, it is not very clear why these irradiances and spectra were chosen. It would be helpful if the authors explained the logic behind the four chosen light conditions tested. Also, the lights chosen have cone-opic EDI values in a high correlation with the melanopic EDI, therefore we can't distinguish if the effects seen here are driven by melanopsin and/or other photoreceptors. In order to provide a more mechanistic insight into the light-driven effects on cognition ideally one would use silent substitution approach to distinguish between different photoreceptors. This may be something to consider when designing the follow-up studies.

    4. Reviewer #2 (Public Review):

      Summary

      The interplay between environmental factors and cognitive performance has been a focal point of neuroscientific research, with illuminance emerging as a significant variable of interest. The hypothalamus, a brain region integral to regulating circadian rhythms, sleep, and alertness, has been posited to mediate the effects of light exposure on cognitive functions. Previous studies have highlighted the role of the hypothalamus in orchestrating bodily responses to light, implicating specific neural pathways such as the orexin and histamine systems, which are crucial for maintaining wakefulness and processing environmental cues. Despite advancements in our understanding, the specific mechanisms through which varying levels of light exposure influence hypothalamic activity and, in turn, cognitive performance, remain inadequately explored. This gap in knowledge underscores the need for high-resolution investigations that can dissect the nuanced impacts of illuminance on different hypothalamic regions. Utilizing state-of-the-art 7 Tesla functional magnetic resonance imaging (fMRI), the present study aims to elucidate the differential effects of light on hypothalamic dynamics and establish a link between regional hypothalamic activity and cognitive outcomes in healthy young adults. By shedding light on these complex interactions, this research endeavours to contribute to the foundational knowledge necessary for developing innovative therapeutic strategies aimed at enhancing cognitive function through environmental modulation.

      Strengths:

      (1) Considerable Sample Size and Detailed Analysis: The study leverages a robust sample size and conducts a thorough analysis of hypothalamic dynamics, which enhances the reliability and depth of the findings.<br /> (2) Use of High-Resolution Imaging: Utilizing 7 Tesla fMRI to analyze brain activity during cognitive tasks offers high-resolution insights into the differential effects of illuminance on hypothalamic activity, showcasing the methodological rigour of the study.<br /> (3) Novel Insights into Illuminance Effects: The manuscript reveals new understandings of how different regions of the hypothalamus respond to varying illuminance levels, contributing valuable knowledge to the field.<br /> (4) Exploration of Potential Therapeutic Applications: Discussing the potential therapeutic applications of light modulation based on the findings suggests practical implications and future research directions.

      The current version of the manuscript addresses previous weaknesses, including details about the illuminance levels, light spectral characteristics used in the MRI study, and light patterns during behavioural tasks. The authors effectively tackle open questions in the field and provide solid evidence that enhances our understanding of the mechanisms underlying the effects of light on cognition.

    5. Reviewer #3 (Public Review):

      Summary:

      Campbell and colleagues use a combination of high-resolution fMRI, cognitive tasks and different intensities of light illumination to test the hypothesis that the intensity of illumination differentially impacts hypothalamic substructures that, in turn, promote alterations in arousal that affect cognitive and affective performance. The authors find evidence in support of a posterior-to-anterior gradient of increased blood flow in the hypothalamus during task performance that they later relate to performance on two different tasks. The results provide an enticing link between light levels, hypothalamic activity and cognitive/affective function, however clarification of some methodological choices will help to improve confidence in the findings.

      Strengths:

      * The authors' focus on the hypothalamus and its relationship to light intensity is an important and understudied question in neuroscience.

      Weaknesses:

      * I found it challenging to relate the authors hypotheses, which I found to be quite compelling, to the apparatus used to test the hypotheses - namely, the use of orange light vs. different light intensities; and the specific choice of the executive and emotional tasks, which differed in key features (e.g., block-related vs. event-related designs) that were orthogonal to the psychological constructs being challenged in each task.

      * Given the small size of the hypothalamus and the irregular size of the hypothalamic parcels, I wondered whether a more data-driven examination of the hypothalamic time series would have provided a more parsimonious test of their hypothesis.

    1. C++之基础语法

      测试

    2. 4、在传递函数参数时,什么时候该使用指针,什么时候该使用引用呢?

      测试测试

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The current study aims to quantify associations between the regular use of proton-pump inhibitors (PPI) - defined as using PPI most days of the week during the last 4 weeks at one cross-section in time - with several respiratory outcomes up to several years later in time. There are 6 respiratory outcomes included: risk of influenza, pneumonia, COVID-19, other respiratory tract infections, as well as COVID-19 severity and mortality).

      Strengths:

      Several sensitivity analyses were performed, including i) estimation of the e-value to assess how strong unmeasured confounders should be to explain observed effects, ii) comparison with another drug with a similar indication to potentially reduce (but not eliminate) confounding by indication.

      We are grateful for your pointing out the strengths in our article, particularly the assessment of e-values and the comparison with another medication to mitigate confounding by indication. We extend our sincere gratitude to the reviewer for identifying multiple concerns and offering constructive feedback to help improve our manuscript. We will incorporate these suggestions into our revisions.

      Weaknesses:

      (1) The main exposure of interest seems to be only measured at one time-point in time (at study enrollment) while patients are considered many years at risk afterwards without knowing their exposure status at the time of experiencing the outcome. As indicated by the authors, PPI are sometimes used for only short amounts of time. It seems biologically implausible that an infection was caused by using PPI for a few weeks many years ago.

      We agree with the reviewer that PPIs are sometimes used for only short amounts of time, as indicated in our manuscript. We acknowledge that it is a limitation of the UK Biobank cohort, and we have discussed this in the discussion section as follows:

      “Given that the PPI exposure was mainly assessed at the baseline recruitment, it was possible that a small proportion of PPI users was misclassified during the follow-up due to the medication discontinuation, which may result in an underestimation of potential risk.” (Page 14, Line 8-10)

      In addition, to alleviate these concerns, we have conducted effect medication for the subgroup of potential long-term users, which were defined by participants with indications of PPI use. This information has been included in the discussion section:

      “In addition, no effect moderation was observed in subgroup analyses for the main outcome among PPI users with indications (more likely to regularly use PPIs for a long period) compared to those without indications, indicating the risks remained increased among long-term PPI users.” (Page 14, Line 12-15)

      We hope that in the future, the concerns highlighted by the reviewer can be resolved by utilizing datasets with close follow-up, especially regarding medication use:

      “Since the follow-up prescription data was lacking in our study to precisely identifying the long-term users, further evaluation using cohorts with close follow-up is needed.” (Page 14, Line 15-17)

      (2) Previous studies have shown that by focusing on prevalent users of drugs, one often induces several biases such as collider stratification bias, selection bias through depletion of susceptible, etc.

      Because of the limitations of data from the UK Biobank, such as the absence of details on initiation of medications and regular monitoring, we were restricted to using a prevalent user design to assess the associations between PPI use and respiratory outcomes. We have discussed it in the limitation section:

      “Given that the PPI exposure was mainly assessed at the baseline recruitment, it was possible that a small proportion of PPI users was misclassified during the follow-up due to the medication discontinuation, which may result in an underestimation of potential risk. However, the prevalent user design could underestimate the actual risks of PPI use for respiratory infections, which indicates the real effect might be stronger [38]……Since the follow-up prescription data was lacking in our study to precisely identifying the long-term users, further evaluation using cohorts with close follow-up is needed.” (Page 14, Line 8-17)

      (3) It seems Kaplan Meier curves are not adjusted for confounding through e.g. inverse probability weighting. As such the KM curves are currently not informative (or the authors need to make clearer that curves are actually adjusted for measured confounding).

      Your kind suggestions are greatly appreciated. We have plotted Kaplan Meier curves adjusted for confounding by inverse probability weighting with the measured confounders according to the reviewer’s advice. The methods and results are demonstrated as follows:

      “The event-free probabilities were compared by Kaplan-Meier survival curves with inverse probability weights adjusting for the measured covariates.” (Page 8, Line 13-15)

      “Regular PPI users had lower event-free probabilities for influenza and pneumonia compared to those of non-users (Supplementary Figure 2 A-B).” (Page 9, Line 21-23)

      “PPI users had lower event-free probabilities for COVID-19 severity and mortality, but not COVID-19 positivity compared to those of non-users (Supplementary Figure 2 C-E).” (Page 10, Line 9-10)

      (4) Throughout the manuscript the authors seem to misuse the term multivariate (using one model with e.g. correlated error terms to assess multiple outcomes at once) when they seem to mean multivariable.

      We apologize for misusing the term “multivariate” and “multivariable” in our previous manuscript. We have corrected the misused terms throughout the manuscript:

      “Univariate and multivariable Cox proportional hazards regression models were utilized to assess the association between regular use of PPIs and the selected outcomes.” (Page 7, Line 19-20)

      “The remaining imbalanced covariates (standardized mean difference ≥ 0.1) after propensity score matching were further adjusted by multivariate multivariable Cox regression models to calculate HRs and 95% CIs.” (Page 8, Line 23-25)

      (5) Given multiple outcomes are assessed there is a clear argument for accounting for multiple testing, which following the logic of the authors used in terms of claiming there is no association when results are not significant may change their conclusions. More high-level, the authors should avoid the pitfall of stating there is evidence of absence if there is only an absence of evidence in a better way (no statistically significant association doesn't mean no relationship exists).

      We have revised our interpretation for the results, particularly for those without statically significant association based on the reviewer’s advice, and clearly recognize that the conclusions should be interpreted with cautions:

      “In contrast, the risk of COVID-19 infection was not significant with regular PPI use…” (Page 2, Line 11-12)

      “PPI users were associated with a higher risk of influenza (HR 1.74, 95%CI 1.19-2.54), but the risks with pneumonia or COVID-19-related outcomes were not evident.” (Page 2, Line 14-16)

      “…while the effects on pneumonia or COVID-19-related outcomes under PPI use were attenuated when compared to the use of H2RAs.” (Page 2, Line 18-19, in the Abstract)

      “…while their association with pneumonia and COVID-19-related outcomes is diminished after comparison with H2RA use and remains to be further explored.” (Page 15, Line 21-22, in the Conclusion)

      (6) While the authors claim that the quantitative bias analysis does show results are robust to unmeasured confounding, I would disagree with this. The e-values are around 2 and it is clearly not implausible that there are one or more unmeasured risk factors that together or alone would have such an effect size. Furthermore, if one would use the same (significance) criteria as used by the authors for determining whether an association exists, the required effect size for an unmeasured confounder to render effects 'statistically non-significant' would be even smaller.

      We agree with the reviewer that there might still exist one or more unmeasured risk factors that have effect sizes larger than 2. Hence, we cannot affirm that the findings are robust to unmeasured confounding in the current analysis, which is a limitation of our study. We have deleted the previous statement, and added more discussion in the limitation section:

      “Moreover, patients with exacerbations of respiratory disorders (e.g., asthma, COPD) might suffer from a wide range of gastrointestinal symptoms that lead to the use of PPIs [38]. Due to the lack of data for respiratory severity and close follow-up for medication use, residual confounding might still exist due to the observational nature.” (Page 14, Line 23-27)

      (7) Some patients are excluded due to the absence of follow-up, but it is unclear how that is determined. Is there potentially some selection bias underlying this where those who are less healthy stop participating in the UK biobank?

      Thank you for your question. The reasons for the absence of follow-up are mainly classified into five categories, including: (1) Death reported to UK Biobank by a relative; (2) NHS records indicate they are lost to follow-up; (3) NHS records indicate they have left the UK; (4) UK Biobank sources report they have left the UK; (5) Participant has withdrawn consent for future linkage. According to the data from UK Biobank (https://biobank.ndph.ox.ac.uk/ showcase/field.cgi?id=190), the major reason for the loss of follow-up among participants is their departure from the UK (84.7% of participants who were lost to follow-up). In addition, not including those who were less healthy in the study might also underestimate the risk, leading to lower estimated effects of PPIs for respiratory infections. We have supplemented this in our revised manuscript:

      “Among them, 1,297 participants without follow-up, which were mainly determined by reported death, departure from the UK, or withdrawn consent, had been removed after initial exclusion.” (Page 4, Line 25-27)

      (8) Given that the exposure is based on self-report how certain can we be that patients e.g. do know that their branded over-the-counter drugs are PPI (e.g. guardium tablets)? Some discussion around this potential issue is lacking.

      Thank you for your concerns. In the data collection by the UK Biobank, the participants can enter the generic or trade name of the treatment on the touchscreen to match the medications they used. We have added this important information to the method section:

      “The exposure of interest was regular use of PPIs. The participants could enter the generic or trade name of the treatment on the touchscreen to match the medications they used (Supplementary Table S1).” (Page 5, Line 6-8)

      We acknowledge that specific information on prescribed or over-the-counter use of medications is lacking in the UK Biobank. We have discussed it in the limitation section:

      “Limitations exist in our study. Information on dose and duration of PPI use, discrimination between prescription and over-the-counter use of PPIs, health-seeking behavior, different types of pneumonia, and pneumococcus vaccination is currently not available from the UK Biobank.” (Page 14, Line 5-8)

      (9) Details about the deprivation index are needed in the main text as this is a UK-specific variable that will be unfamiliar to most readers.

      Thank you for your question on the definition of deprivation index. We have proved the details  about the deprivation index in the manuscript:

      “…socioeconomic status (deprivation index, which was defined using national census information on car ownership, household overcrowding, owner occupation, and unemployment combined for postcode areas of residence)…” (Page 6, Line 14-17)

      (10) It is unclear how variables were coded/incorporated from the main text. More details are required, e.g. was age included as a continuous variable and if so was non-linearity considered and how?

      We apologize for not elucidating how variables were incorporated into the main text. Previously, the linearity between continuous variables and outcomes was assessed by Martingale residuals plots, while the variables detected with non-linearity were regarded as categorical variables for further analyses. For example, after evaluation with the Martingale residuals plot, age demonstrated non-linearity, and we incorporated it as a categorical variable for the analysis of COVID-related mortality.

      We have supplemented the information in the method section:

      “The linearity between continuous variables and outcomes was assessed by Martingale residuals plots, while the variables detected with non-linearity were regarded as categorical variables for further analyses.” (Page 6, Line 28 to Page 7, Line 1)

      (11) The authors state that Schoenfeld residuals were tested, but don't report the test statistics. Could they please provide these, e.g. it would already be informative if they report that all p-values are above a certain value.

      We are sorry for not providing the statistics about the Schoenfeld residual in our previous manuscript. We have supplemented the information in our revisions:

      “Schoenfeld residuals tests were used to evaluate the proportional hazards assumptions, while no violation of the assumption was detected (Supplementary Table S3).” (Page 7, Line 27 to Page 8, Line 1)

      (12) The authors would ideally extend their discussion around unmeasured confounding, e.g. using the DAGs provided in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832226/, in particular (but not limited to) around severity and not just presence/absence of comorbidities.

      Thank you for your insightful suggestions that the discussion about unmeasured confounding should be extended. We agree with the reviewer that, in addition to the comorbidities themselves, their severity could also have an important impact on the use of PPIs. We have added the discussion in the limitation section with citing the article (PMC7832226):

      “Moreover, patients with exacerbations of comorbid disorders (e.g., diabetes, asthma, COPD) might suffer from a wide range of gastrointestinal symptoms that lead to the use of PPIs [38] (Supplementary Figure S4). Due to the lack of data for respiratory severity and close follow-up for medication use, residual confounding might still exist due to the observational nature.” (Page 14, Line 23-27)

      (13) The UK biobank is known to be highly selected for a range of genetic, behavioural, cardiovascular, demographic, and anthropometric traits. The potential problems this might create in terms of collider stratification bias - as highlighted here for example: https://www.nature.com/articles/s41467-020-19478-2 - should be discussed in greater detail and also appreciated more when providing conclusions.

      We acknowledge the reviewer's point about the UK Biobank's highly selective nature potentially leading to collider stratification bias in the evaluation of COVID-19-related outcomes. We have discussed this in detail and are cautious when generating conclusions.

      “Furthermore, the highly selective nature of the UK Biobank might create collider stratification bias for the evaluation of COVID-19-related outcomes, and thus the conclusions should be interpreted with cautions [39].” (Page 15, Line 2-4)

      Reviewer #2 (Public Review):

      Summary:

      Zeng et al investigate in an observational population-based cohort study whether the use of proton pump inhibitors (PPIs) is associated with an increased risk of several respiratory infections among which are influenza, pneumonia, and COVID-19. They conclude that compared to non-users, people regularly taking PPIs have increased susceptibility to influenza, pneumonia, as well as COVID-19 severity and mortality. By performing several different statistical analyses, they try to reduce bias as much as possible, to end up with robust estimates of the association.

      Strengths:

      The study comprehensively adjusts for a variety of critical covariates and by using different statistical analyses, including propensity-score-matched analyses and quantitative bias analysis, the estimates of the associations can be considered robust.

      We are grateful to the reviewer for pointing out the merits of our articles, which include adjusting for a wide range of covariates, employing diverse statistical analyses, and using robust data. We will revise our manuscript further based on the reviewer's suggestions.

      Weaknesses:

      As it is an observational cohort study there still might be bias. Information on the dose or duration of acid suppressant use was not available, but might be of influence on the results. The outcome of interest was obtained from primary care data, suggesting that only infections as diagnosed by a physician are taken into account. Due to the self-limiting nature of the outcome, differences in health-seeking behavior might affect the results.

      Thank you for your questions for information on the dose/duration of acid suppressants, the source of diagnosis, and the health-seeking behavior of participants. For the data from the UK Biobank, the dose or duration of acid suppressant use was not available since the information was not collected as baseline or follow-up. In addition, the outcome of interest was also retrieved from the hospital ICD diagnosis. We apologize for not clarifying it in our previous manuscript. Moreover, we agree with the reviewer that the health-seeking behavior could have an impact on the analyses, whereas the correlated data are still not available from the UK Biobank. We have discussed them in the method and limitation section:

      “Briefly, the first reported occurrences of respiratory system-related conditions within primary care data,  and hospital inpatient data defined by the International Classification of Diseases (ICD)- 10 codes were categorized by the UK Biobank.” (Page 5, Line 21-25)

      “Limitations exist in our study. Information on dose and duration of PPI use, discrimination between prescription and over-the-counter use of PPIs, health-seeking behavior, different types of pneumonia, and pneumococcus vaccination is currently not available from the UK Biobank.” (Page 14, Line 5-8)

      Reviewer #1 (Recommendations For The Authors):

      Analysis code should be made available.

      Thank you for your question. We have provide the sources of the analysis code we used for this study in our revised manuscript:

      “The codes used in this study can be found at: https://epirhandbook.com/en/ and https://cran.r-project.org/doc/contrib/Epicalc_Book.pdf.” (Page 16, Line 21-22)

      Reviewer #2 (Recommendations For The Authors):

      It might be interesting to study whether including self-reported infections changes the results, as people using PPI may more easily consult their GP even for a self-limiting disease such as influenza and therefore are more likely diagnosed/confirmed with such a respiratory infection.

      Thank you for your insightful suggestions on conducting analyses including self-reported infections. Therefore, we have included the self-reported cases as sensitivity analyses, and the results were not significantly altered, which confirms the robustness of our results:

      “Self-reported infections, except for COVID-19-related outcomes due to the lack of data, were also included for the outcomes as sensitivity analyses. The self-reported cases were reported at the baseline or subsequent UK Biobank assessment center visit.” (Page 8, Line 17-19)

      “Inclusion of the self-reported cases did not significantly alter the results (Supplementary Table S4).” (Page 9, Line 17-18)

      Moreover, to address the above-mentioned, sub-analyses differentiating between over-the-counter and prescribed medication might be interesting.

      Thank you for your questions on differentiating between over-the-counter and prescribed medication. We have thoroughly looked up the data provided by the UK Biobank, but it is a pity that they are not provided. We have discussed this in the limitation section:

      “Information on dose and duration of PPI use, discrimination between prescription and over-the-counter use of PPIs, health-seeking behavior, different types of pneumonia, and pneumococcus vaccination is currently not available from the UK Biobank.” (Page 14, Line 5-8)

    1. consumes 19% less energy per event in high performance mode

      in high power mode, it's more efficient for the amount of power it uses?/

    2. %. This shows, that the impact of load shaping heavily depends on the power proportionality53 of the underlying hardware, and that it is not a reasonable measure per se.

      Ah, so assumptions about physical hardware can't be blindly applied to cloud. Assuming the TEADS model is accurate

    3. Although solar forecasts are not very promising this time, it again permits to discharge to 30%, as the carbon intensity during the next day is expected to be especially low. Instead of drawing carbon-intensive grid energy at night, the demand is thereby shifted to the next morning where the batteries are charged to 60% using cleaner energy.

      In this case local generation is low, but the grid is relatively clean (maybe it's v windy, not sunny), so it's ok to run down the local store of greener energy in the battery

    4. Although the carbon-aware experiment uses 2.4 % more energy than the baseline (which is because not all power modes have the same energy-efficiency), its associated carbon emissions through grid power consumption are 35.9 % lower. In the following, we will briefly analyze the two experiments and to demonstrate how our integration enables research and development of carbon-aware applications.

      How much power draw compared to the battery does this set up have? 32,000 mAh would be how long at max power draw for a Pi?

    5. The control unit adaptively adjusts the battery's minimum state of charge and grid charge rate over time. In particular, in case of promising forecasts for solar power production or low carbon intensity, it is able to temporarily deplete the battery to 30%.

      So, PUT ing to the /soc end point with target charge and a new C value

    6. This is especially the case when not testing virtualized applications on powerful hardware but embedded systems that often only run only one energy-hungry process at a time. In these systems, load shaping is likely rather performed on a device level, for example, through DVFS.

      Also with exclusive use of a GPU server, right?

    7. Therefore, if applications under test are deployed on physical nodes like single-board computers, it is recommended to use dedicated hardware for measuring the power usage of these devices. For example, in our experimental testbed we monitor the current and voltage of a RaspberryPi 4b with a USB to USB measuring device equipped with an INA219 DC current sensor.

      What kit has a INA219 DC current sensor these days? How can I buy one?

    8. Note: The physical node's power usage is controlled via DVFS, while the virtual node uses rate limiting on the executed process.

      Ah, two strategies for "Change the speed" of the three approaches I list in this post

    1. Reviewer #2 (Public Review):

      This paper examined how the activity of neurons in the entopeduncular nucleus (EPN) of mice relates to kinematics, value, and reward. The authors recorded neural activity during an auditory-cued two-alternative choice task, allowing them to examine how neuronal firing relates to specific movements like licking or paw movements, as well as how contextual factors like task stage or proximity to a goal influence the coding of kinematic and spatiotemporal features. The data shows that the firing of individual neurons is linked to kinematic features such as lick or step cycles. However, the majority of neurons exhibited activity related to both movement types, suggesting that EPN neuronal activity does not merely reflect muscle-level representations. This contradicts what would be expected from traditional action selection or action specification models of the basal ganglia.

      The authors also show that spatiotemporal variables account for more variability compared to kinematic features alone. Using demixed Principal Component Analysis, they reveal that at the population level, the three principal components explaining the most variance were related to specific temporal or spatial features of the task, such as ramping activity as mice approached reward ports, rather than trial outcome or specific actions. Notably, this activity was present in neurons whose firing was also modulated by kinematic features, demonstrating that individual EPN neurons integrate multiple features. A weakness is that what the spatiotemporal activity reflects is not well specified. The authors suggest some may relate to action value due to greater modulation when approaching a reward port, but acknowledge action value is not well parametrized or separated from variables like reward expectation.

      A key goal was to determine whether activity related to expected value and reward delivery arose from a distinct population of EPN neurons or was also present in neurons modulated by kinematic and spatiotemporal features. In contrast to previous studies (Hong & Hikosaka 2008 and Stephenson-Jones et al., 2016), the current data reveals that individual neurons can exhibit modulation by both reward and kinematic parameters. Two potential differences may explain this discrepancy: First, the previous studies used head-fixed recordings, where it may have been easier to isolate movement versus reward-related responses. Second, those studies observed prominent phasic responses to the delivery or omission of expected rewards - responses largely absent in the current paper. This absence suggests a possibility that neurons exhibiting such phasic "reward" responses were not sampled, which is plausible since in both primates and rodents, these neurons tend to be located in restricted topographic regions. Alternatively, in the head-fixed recordings, kinematic/spatial coding may have gone undetected due to the forced immobility.

      Overall, this paper offers needed insight into how the basal ganglia output encodes behavior. The EPN recordings from freely moving mice clearly demonstrate that individual neurons integrate reward, kinematic, and spatiotemporal features, challenging traditional models. However, the specific relationship between spatiotemporal activity and factors like action value remains unclear.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Response to Reviewer #1:

      We agree with Reviewer 1 that a function of ROPGEFs in this process was expected to some degree. However, we want to point out that this manuscript focuses on the requirement of ROPGEFs and especially the spatio-temporal description of ROP signalling polarisation and activation during pollen germination. Moreover, different to the downstream ROPs, we show ROPGEFs do not act strictly redundant, confirming results from root hair initiation and providing additional evidence that multiple signalling pathways are required for pollen germination and that ROPGEFs might be essential for bringing specificity to these signals.

      Major comments:

      1. Only one GEF11 mutant line, gef11-t1, was analyzed for germination ratio. It is presumptuous to conclude that GEF11 has no function in the pollen germination of Arabidopsis thaliana (line 241- line 242).

      After the initial negative results, we did not focus on GEF11 further. Thus, we fully agree that it is presumptuous to make such strong statements about the role of GEF11 during pollen germination. We generated additional gef11 mutant alleles for this revision plan using CRISPR/Cas9 as no other suitable lines were available. Moreover, we now have additional higher-order mutants available to demonstrate the function of GEF11 during pollen germination. These additional lines were generated and confirmed and are growing right now. Thus, we will be able to implement new results addressing this point timely, allowing us to make a more founded statement about the function of GEF11 (see Response to Reviewer #2).

      Minor comments:

      1. In Figure 2A, pollen germination ratio was not provided for the single mutants gef8-c△3 and gef9-c△

      This is due to the generation process of the CRISPR/Cas9 alleles. These alleles were generated by a construct mutating both genes simultaneously; thus, these mutants are unavailable as single mutant lines. Instead of separating these alleles by outcrossing, we included additional single mutant alleles for both GEFs with a similar deletion. As all these CRISPR/Cas9 mutants have a complete deletion of the GEF-ORF, we are sure about the loss of the according GEF function. Additional alleles account for possible unspecific effects.

      In Figure 3D, the subcellular localization of GEF12GEF8C is fuzzy. Better imaging is needed.

      We agree that the quality of these images is not ideal due to this specific line having less fluorescent signal. We screened for more lines of this construct and already performed more experiments. We will provide better images for this genotype.

      In Figure 3E, it is intriguing that both GEF8-S518A and GEF8-S518D are not associated with the PM in germinating pollen grains. Does it mean that phosphorylation at S518 is not relevant to polar distribution of GEF8?

      We also find this very intriguing as we did not expect this result. However, we interpret it slightly differently in the way that the S518 site is relevant for GEF polarisation, which might be conferred by RLK interaction. We think both mutant forms alter this potential association with RLKs, thus losing polarisation. We will include more imaging experiments of these constructs and additional lines to strengthen our results. Moreover, we generated lines to study these lines' functionality and complementation capacity, which will be included in a revised manuscript.

      T-DNA insertion lines, gef11-t1 and gef12-t1, need to be verified by PCRs in Figure S3D.

      Thanks for pointing this out. This control should be provided, and we will include the verification in the supplement.

      Response to Reviewer #2:

      Like Reviewer #2, we are also very intrigued by the biphasic accumulation of GEFs, as this is an entirely novel feature of this process. Like Reviewer #2, we also interpret this as an exploration and establishment phase, which could help us to understand how the pollen germination site is decided in species without aperture-dependent pollen germination.

      Major comments:

      1. In line 241, the authors conclude that GEF11 has no function in pollen germination. However, it is likely that GEF11 also plays a redundant role as GEF12 does. I recommend the authors check the phenotypes of gef11,gef12 double mutant and gef8,gef9,gef11 triple mutant to confirm that GEF11 has indeed no function. Otherwise, this conclusion should be better rephrased.

      This point is well justified and similar to the comment of Reviewer #1. As stated before, we had to generate additional lines for this. We will analyse an additional gef11 allele, gef8/gef11 and gef9/11 double mutants, and gef9/11/12 triple mutants to address the function of GEF11 in more detail. The conclusions of the original manuscript will, of course, be adjusted according to the new results.

      Although GEF12 is in the cytosol, the strong pollen germination defects in gef8,gef9,gef12 triple mutants do indicate a critical role of GEF12. Is it possible that GEFs could function in the cytosol? The authors can test this possibility by examining the rescuing ability of several constructs that express, for example, GEF12, GEF12(+GEF8C), GEF8(SA), or GEF8(SD) in gef8. The authors may not perform all of these rescue experiments, but some of the mentioned lines are already in hands. They could readily check the phenotypes.

      We thank the Reviewer for this great point. This information is crucial to discriminate the function of the individual GEFs. We have generated new lines expressing some of the mentioned constructs in the gef8 background to address this. We now have lines that complement gef8 with GEF12, GEF12GEF8C, GEF8S518A, GEF8S518D, and GEF8ΔC. We are currently performing experiments which determine the functionality of these constructs, which will allow us to make more conclusive statements about the function of GEFs in the cytosol and how important the PRONE domain alone, or the membrane attachment of GEFs, is for their function.

      The authors conclude that the C-terminus of GEF8 and GEF9 is necessary and sufficient for membrane localization because GEF8/9C can target GEF12 PRONE domain to the membrane. It is intriguing whether the C-terminus alone could confer membrane targeting ability. Currently, it is not fully understood how GEFs localize to the membrane. Examining the localization of GEF8/9C itself would help clarify this and improve our understanding of GEF regulation. Alternatively, the authors may discuss evidence that supports or disagrees with this possibility.

      This is a good suggestion by the reviewer and indeed intriguing if the C-Terminus alone could confer membrane attachment. Meanwhile, we obtained plants expressing such constructs, showing that the C-terminus alone is insufficient for membrane attachment. This is not surprising, as these domains are largely disordered, and we suspect that the context of an adjacent PRONE domain is required to carry out this function. We will include our new results in the revised manuscript.

      Minor comments:

      1. The N- and C-terminus of GEF8 are predicted to inhibit complex formation. How is the prediction performed? Do the authors use monomer prediction or multimer prediction? Alphafold2 has a low accuracy in predicting non-conserved regions. How confident are the predicted inhibitory contacts?

      We used multimer-prediction of Alphafold2 for the shown structures. However, we fully agree that the predicted structures of Alphafold have low accuracy in that regard, especially for disordered domains like this. We will provide confidence models and predicted aligned error (PAE) plots for this structure. Additionally, we will put our conclusions in a better perspective of these structure confidences and tone down our interpretations of this section.

      Localization of ROPs and calcium reporter in Figure 4 appears to be variable. It would help clarify the specific effects on each reporter if the authors present these data more quantitatively.

      We agree with the reviewer that some of the observations are variable. We will provide the data more quantitatively, including overviews of which percentage we observed the described phenomena and a more quantitative analysis of the strength and timing of signal accumulation (see also Response to Reviewer #3).

      Response to Reviewer #3:

      Major points:

      1. One of my major points is that the manuscript is now mainly based on the observations of individual pollen grains. These are then subjected to well-performed image analysis approaches but still represent somewhat anecdotal evidence (Fig 1A, B, Fig 3C-E, etc). The analysis and (numerical) presentation of a more robust data sample (which I presume the authors have acquired) would strengthen the ms considerably. This goes beyond the Figs - e.g. in l. 164-165 authors state rather vaguely, "we observed that mCit-GEF8 and mCit-GEF9 accumulated at a defined region in the cell periphery, which strongly correlated with the future germination site." Here, I would appreciate the data showing the actual correlation, if every germinated pollen grain displays GEF8/9 accumulation, whether there is a population of pollen grains showing the GEF8/9 transient but not germinating, etc...

      We very much appreciate the reviewer's comment, as this version of the manuscript indeed seems like we made our conclusions based on observations made from individual pollen. However, this is not the case. As the reviewer suspected, more data is available but not included in the manuscript. We have multiple observations for each of the shown constructs and only show a representative one. Furthermore, we imaged more pollen germination events of lines that showed variability and included additional lines for some constructs. We will provide a more quantitative analysis of the results to better represent the variability of the individual constructs, and we will adjust the manuscript accordingly (see comment 2).

      Where the authors analyse multiple cells, we are still missing some info - e.g. it is not stated what the error bars in Fig 1C, D represents (SD, SEM, CI?), size of the sample, etc. In any case, it is evident that there is quite substantial variability in the data, which is understandable. Maybe the authors can plot the individual profile lines along the average? Plus, GEF9 seem to have the maximum pre-germination localisation at -5 min rather than -9 min.

      We agree with the Reviewer that information is missing or not obviously stated. We will correct this for the revised manuscript. Moreover, we agree that the suggested way of showing the data would provide more information and allow a better representation of the results and their variability. This can be seen in the reviewer's interpretation of the results of GEF9. In this case, we see some variability in the timing of GEF9 accumulation, leading to the peak maximum shift. In a revised manuscript, we will, as suggested, show the data as individual lines, providing a better representation of the data. Moreover, we will include such representations for other used constructs to provide a general, more quantitative data analysis (see comment 1).

      I know it is very challenging, but the ms would be much stronger with the in vivo imaging of pollen germination on stigmatic papillae (i) GEF8/9 in wt, (ii) gef8/9 double mutant. This would bring crucial data about the role of the GEF polar domain and its functional relation to pollination.

      This would indeed be great to see. We put an effort into establishing such in vivo imaging experiments with our fluorescent markers. However, we cannot image these events in an in vivo setup (at least with our resources). This has two reasons: 1. The events are very fast and limited to a small region at the pollen-papilla contact side, which we have issues resolving optically and timely. 2. The used marker lines only have a low fluorescent level due to the native promoter, and stronger expression would lead to overexpression artefacts. In vitro, it is difficult to see the observed signal accumulation. In the in vivo situation, we are facing additional diffraction of the papilla cells, which would make the observation of GEF accumulation impossible with our microscopes.

      The phylogeny presented in Fig S1 is only rudimental and not very interesting. Given the author's results, I would love to see if GEF8/9 orthologs also exist in species with defined pollen apertures (where establishing a dynamic site makes little sense). The authors touch on this (L409-411), but it would deserve better analysis and discussion.

      We agree with the reviewer that studying GEF function/accumulation in species with aperture-dependent germination would be interesting. However, we can not conclude functional orthologs in other species based on phylogeny. Such phylogenetic analyses were done, for example, by Kim et al. (BMC Plant Biology, 2020, doi: 10.1186/s12870-020-2298-5). The issue is that all Arabidopsis pollen-expressed GEFs form a closed phylogenetic group without allowing the interpretation of which rice homolog is the functional ortholog of the respective Arabidopsis GEF (this is the same for maize). Thus, such phylogenetic analyses are not conclusive, and they would require experimental data to prove orthology. However, we agree that this point can be interpreted and discussed better, and we will include this in the revised manuscript.

      I am not entirely convinced by the authors' interpretation of rather strange S518 mutation data. Could S518A mutation affect overall GEF8 structure/stability?

      We were also suspicious about these results, as they were unexpected (see also Response to Reviewer #1). To confirm these results, we made additional lines for these constructs, double-checked that the constructs were correct and made more observations for both GEF8S18A and GEF8S18D. Additionally, we started investigating the functionality of these constructs and have this data available timely. Preliminary results suggest that the constructs are partial to fully functional compared to the WT GEF8, arguing against these mutations' effect on structure or stability. We will include more data for these constructs in a revised manuscript to allow a more conclusive interpretation of these unexpected observations.

      Although the authors cannot observe the localisation of ROPs in the plasma membrane, they see the apparent accumulation of active ROP marker CRIB4 there - implying that ROPs must localise to the pollen PM at the germination site. This discrepancy should be solved or at least discussed more.

      The reviewer is correct in that we cannot observe ROP accumulation but rather the accumulation of ROP activity (as seen by CRIB4). This is in line with the observation made by Xiang et al. (2023, Plant Physiology, doi: 10.1093/plphys/kiad196), which also cannot find ROP accumulation. We are convinced that ROPs are present at the plasma membrane of the pollen germination site, but no accumulation is observable. We believe this is due to a high mobility of ROPs and that no accumulation is required, as only a few ROPs are sufficient to activate downstream signals. We will discuss these results in more detail in a revised manuscript to better explain the observed discrepancy.

      Given that calcium oscillates very rapidly in pollen and pollen tubes (with frequency ~6-20s), the profound, long-term changes in calcium levels reported by the authors can hardly be referred to as oscillations. The phenomenon observed should again be analysed using a bigger sample.

      We agree that the terminology is not good, as it suggests similarities to the oscillations found in pollen tubes. Thus, we will change the revised manuscript and refer to the changes in Ca2+ levels as “elevations”. Moreover, we will provide a more quantitative analysis and a bigger sample size, as stated in Response to Reviewer #2.

      Minor points:

      1. In Fig 1F, GEF12 also seems to be polarly localised to the future site.

      The chosen sample is not ideal, as it looks like GEF12 would also slightly accumulate. However, as seen in the quantification of this cell, GEF12 does not significantly accumulate at the pollen germination site, and we never observed any accumulation of GEF12 that is comparable to GEF8 or GEF9. We will include another sample of this colocalisation in the revised manuscript to avoid misinterpretation of the data.

      It is difficult to make any assumptions based on the AlphaFold2 predictions without showing their confidence assessments (e.g., PAE plots). The authors state this themselves in the discussion (L. 447-449).

      As the Response to Reviewer #2 stated, we will include structures with confidence values and PAE plots in the supplement. We additionally tone down our interpretation of these structure predictions to make clear that these structures should be interpreted carefully.

      On one hand the authors repeatedly state that pollen GEFs do act in a redundant manner (and provide some evidence for it), on the other hand the absence of an in vivo phenotype for single and double knockout lines and only mild phenotype for a triple ko line does suggest a level of redundancy. This should be rephrased.

      We agree that this is not clearly phrased. In a revised version, we will change the manuscript to indicate which type and level of redundancy are described. We will discriminate between genetic redundancy, as seen in the mild in vivo effects, and non-redundant molecular function, as observed by protein localisation.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This manuscript investigates the role of PRONE ROP GEFS in germinating Arabidopsis pollen. Given that the molecular mechanisms underlying cellular polarisation in pollen germinating pollen grains are still largely unknown (as opposed to the tip growth of elongating pollen tubes), this manuscript deals with an important topic. Moreover, it builds on the excellent previous research from the lead author, which uncovered ROP GEFs as principal polarisation players during root hair initiation. Here, the authors found that out of five pollen-expressed GEFS, two (GEF8 and 9) mark a future germination site with remarkable spatiotemporal dynamics. Using the genetic tools, GEF8 and 9 were shown to be important for pollen germination in vitro and participate in germination in vivo. Generally, this is an exciting topic, and I quite enjoyed reading the manuscript. However, there are several aspects of the work, which - when addressed - would significantly improve the overall message presented by the authors.

      Major points

      1. One of my major points is that the manuscript is now mainly based on the observations of individual pollen grains. These are then subjected to well-performed image analysis approaches but still represent somewhat anecdotal evidence (Fig 1A, B, Fig 3C-E, etc). The analysis and (numerical) presentation of a more robust data sample (which I presume the authors have acquired) would strengthen the ms considerably. This goes beyond the Figs - e.g. in l. 164-165 authors state rather vaguely, "we observed that mCit-GEF8 and mCit-GEF9 accumulated at a defined region in the cell periphery, which strongly correlated with the future germination site." Here, I would appreciate the data showing the actual correlation, if every germinated pollen grain displays GEF8/9 accumulation, whether there is a population of pollen grains showing the GEF8/9 transient but not germinating, etc...
      2. Where the authors analyse multiple cells, we are still missing some info - e.g. it is not stated what the error bars in Fig 1C, D represents (SD, SEM, CI?), size of the sample, etc. In any case, it is evident that there is quite substantial variability in the data, which is understandable. Maybe the authors can plot the individual profile lines along the average? Plus, GEF9 seem to have the maximum pre-germination localisation at -5 min rather than -9 min.
      3. I know it is very challenging, but the ms would be much stronger with the in vivo imaging of pollen germination on stigmatic papillae (i) GEF8/9 in wt, (ii) gef8/9 double mutant. This would bring crucial data about the role of the GEF polar domain and its functional relation to pollination.
      4. The phylogeny presented in Fig S1 is only rudimental and not very interesting. Given the author's results, I would love to see if GEF8/9 orthologs also exist in species with defined pollen apertures (where establishing a dynamic site makes little sense). The authors touch on this (L409-411), but it would deserve better analysis and discussion.
      5. I am not entirely convinced by the authors' interpretation of rather strange S518 mutation data. Could S518A mutation affect overall GEF8 structure/stability?
      6. Although the authors cannot observe the localisation of ROPs in the plasma membrane, they see the apparent accumulation of active ROP marker CRIB4 there - implying that ROPs must localise to the pollen PM at the germination site. This discrepancy should be solved or at least discussed more.
      7. Given that calcium oscillates very rapidly in pollen and pollen tubes (with frequency ~6-20s), the profound, long-term changes in calcium levels reported by the authors can hardly be referred to as oscillations. The phenomenon observed should again be analysed using a bigger sample.

      Minor points

      1. In Fig 1F, GEF12 also seems to be polarly localised to the future site.
      2. It is difficult to make any assumptions based on the AlphaFold2 predictions without showing their confidence assessments (e.g., PAE plots). The authors state this themselves in the discussion (L. 447-449).
      3. On one hand the authors repeatedly state that pollen GEFs do act in a redundant manner (and provide some evidence for it), on the other hand the absence of an in vivo phenotype for single and double knockout lines and only mild phenotype for a triple ko line does suggest a level of redundancy. This should be rephrased.

      Significance

      General assessment

      I believe that both strenghts and limitations are evident form the list above. I feel this a study with great potential, which can be improved by textual ammendments and by several additional experiments that do not require the generation of new genetic material.

      Advance

      This ms builds on the results obtained previously by the lead author and does advance the knowledge of the field of plant cell polarity substantially.

      Audience

      The ms is targeted for the basic research audience, particularly for plant scientists.

      Expertise of the reviewer

      Pollen biology, membrane trafficking, phylogenetic analyses, protein biochemistry.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      In this study, Bouatta et al. report the function of RopGEFs in pollen germination. The authors analyzed all of the five RopGEFs, namely RopGEF8/9/11/12/13, that have been shown to be expressed in mature pollen tubes, and found that only GEF8/9/11/12 are detectable. In addition, GEF8 and GEF9 localize to germination sites, while GEF11 and GEF12 are cytosolic. Through a series of phenotype analyses and live-cell imaging, the authors show that GEF8, GEF9, and GEF12 are required for pollen germination while GEF11 is not. The authors also provide evidence that GEF8 and GEF9 are targeted to the membrane via the C-terminus, where they activate ROPs and calcium signaling.

      Major comments:

      1. In line 241, the authors conclude that GEF11 has no function in pollen germination. However, it is likely that GEF11 also plays a redundant role as GEF12 does. I recommend the authors check the phenotypes of gef11,gef12 double mutant and gef8,gef9,gef11 triple mutant to confirm that GEF11 has indeed no function. Otherwise, this conclusion should be better rephrased.
      2. Although GEF12 is in the cytosol, the strong pollen germination defects in gef8,gef9,gef12 triple mutants do indicate a critical role of GEF12. Is it possible that GEFs could function in the cytosol? The authors can test this possibility by examining the rescuing ability of several constructs that express, for example, GEF12, GEF12(+GEF8C), GEF8(SA), or GEF8(SD) in gef8. The authors may not perform all of these rescue experiments, but some of the mentioned lines are already in hands. They could readily check the phenotypes.
      3. The authors conclude that the C-terminus of GEF8 and GEF9 is necessary and sufficient for membrane localization because GEF8/9C can target GEF12 PRONE domain to the membrane. It is intriguing whether the C-terminus alone could confer membrane targeting ability. Currently, it is not fully understood how GEFs localize to the membrane. Examining the localization of GEF8/9C itself would help clarify this and improve our understanding of GEF regulation. Alternatively, the authors may discuss evidence that supports or disagrees with this possibility.

      Minor comments:

      1. The N- and C-terminus of GEF8 are predicted to inhibit complex formation. How is the prediction performed? Do the authors use monomer prediction or multimer prediction? Alphafold2 has a low accuracy in predicting non-conserved regions. How confident are the predicted inhibitory contacts?
      2. Localization of ROPs and calcium reporter in Figure 4 appears to be variable. It would help clarify the specific effects on each reporter if the authors present these data more quantitatively.

      Significance

      Advance:

      ROP GTPases and RopGEFs are critical regulators of cell polarity, but how they initiate polarity remains unclear. This study uses pollen germination as a model to address this question. It systematically analyzed all pollen-specific GEFs and found that GEF8 and GEF9 are critical regulators of pollen germination and polarity initiation. Importantly, GEF8 and GEF9 undergo biphasic accumulation, suggesting polarity is established through a transient exploration phase. This study provides a comprehensive view of the functions of GEFs in polarity initiation, which will be of interest not only to readers who work on pollen germination and growth but also to those who study cell polarity and morphogenesis in general. In my view, the most novel part of this study is that GEFs play overlapping but non-identical roles in polarity establishment and undergo transient accumulation during the polarity initiation process.

      Limitations:

      This study shows that GEFs use the C-terminus for membrane targeting and GEFs can activate ROPs and calcium signaling during pollen germination. These mechanisms could be largely inferred from previous studies in mature pollen tubes or others. Advancements in the regulation of GEF such as how the C-terminus mediates GEF localization, e.g. whether through direct interaction with the PRONE domain in a phosphorylation-dependent manner, would further increase the novelty of this work.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In the manuscript, the Denninger group reported the identification of ROPGEF8/9 as the key ROPGEFs for ROP activation during pollen germination, a process of polarity establishment. By examining the subcellular localization of pollen-expressed/enriched GEFs using their own promoter and fluorescence protein fusions, the authors convincingly showed the spatiotemporal distribution of GEF8 and GEF9 during pollen germination. By characterizing pollen germination of gef mutants, the authors demonstrated that GEF8 and GEF9 are critical for the process, with GEF12 playing a redundant role likely as a compensation response. The authors further showed that C-termini of GEF8/9, previously demonstrated as an inhibitory domain for GDP-GTP exchange, was critical for the polar distribution. The C-termini of GEFs interact with PRK. The authors reported that the phosphorylation of GEFs at C-termini was critical for their polar distribution. By examining the dynamic localization of active ROP biosensor CRIBRIC4, the authors demonstrated that GEF8/9 were critical for polar distribution of active ROPs at future germination sites. By introducing a calcium biosensor, the authors showed that calcium gradient, a key downstream process of ROP signaling, was compromised by functional loss of GEF8/9 during pollen germination.

      Major comments

      Only one GEF11 mutant line, gef11-t1, was analyzed for germination ratio. It is presumptuous to conclude that GEF11 has no function in the pollen germination of Arabidopsis thaliana (line 241- line 242).

      Minor comments

      In Figure 2A, pollen germination ratio was not provided for the single mutants gef8-c△3 andgef9-c△2.

      In Figure 3D, the subcellular localization of GEF12GEF8C is fuzzy. Better imaging is needed.

      In Figure 3E, it is intriguing that both GEF8-S518A and GEF8-S518D are not associated with the PM in germinating pollen grains. Does it mean that phosphorylation at S518 is not relevant to polar distribution of GEF8?

      T-DNA insertion lines, gef11-t1 and gef12-t1, need to be verified by PCRs in Figure S3D.

      Significance

      The identification of ROPGEF8/9 as the key ROPGEFs for ROP activation during pollen germination is a step forward in understanding ROP signaling. Useful but not unexpected.

      Pollen germination is a process of polarity establishment, similar to root hair initiation. Compared to pollen tube growth and root hair growth, processes of polarity maintenance, the role of ROP signaling was less clear. Recently, Xiang et al. (2023, Plant Physiol) reported an essential role of ROP1/3/5 and their downstream components BDR8/9 in pollen germination. Consistently with polar ROP activation, Ca2+ and post-Golgi secretion were polar. The current work is one step ahead, showing GEF8/9 as the upstream GEFs for this process, comparable to GEF3/4 during root hair initiation (Denninger et al., 2019, Curr Biol). The identification of the C-terminal phosphorylate site in GEF8/9 is informative. It was reported previously that PRKs interact with the C-termini of GEFs to release their auto-inhibition (Gu et al., 2006, Plant Cell; Zhang and McCormick, et al., 2007, Proc Nat Acad Sci USA, Zhao et al., 2013, J Exp Bot) and PRKs were reported to phosphorylate GEF (Chang et al., 2013, Mol Plant). Thus, results reported in the current work indicate that phosphorylation of GEFs likely by PRKs is a critical step for the establishment of polarity domain for pollen germination. From this perspective, it would be more mechanistically sound to investigate the role of PRKs in spatiotemporal polarization of GEFs during pollen germination.

      Researchers working on cell signaling and cell morphogenesis in plants will be interested.

      My lab works on cell morphogenesis and ROP signaling. This manuscript exactly falls within the expertise of my field.

    1. и

      В конце строки.

    2. \\

      Оторвано.

    3. переда­ем раз­мер переда­ваемо­го

      Сейчас резануло. Может, указываем?

    4. (\

      Оторвано.

    1. показать статистики, описывающие

      можно еще про функцию describe в pandas упомянуть

    2. [!] Инсайт

      Почему он красный

    3. оно имеет большой смысл при тестированиигипотез

      Не только же, в целом отклонения значения от нормы тоже измеряются в стандартных отклонениях, можно сказать, что оно как единица измерения

    4. среднее и сумму

      повторение

    5. датасете1 +

      двоеточия нет

    6. ...

      опять вы интригу пытаетесь устроить

    7. ИнсайтСумма

      Новой строки нет

    8. Пример 20

      Синяя линия сбоку не до конца идет

    9. Пример 19

      Почему пример вдруг стал красным вместо синего

    10. Количество или долю чего?Количество или долю события!

      это зачем такая интрига на одно предложение?) Если хочется подвести к определению, лучше просто выделить слово жирным шрифтом:

      Частотные статистики описывают количество или долю события.

      Определение 18<br /> Событие - ...

    11. misleading

      зачем каждое слово переводить на английский?) с названиями новых терминов еще понятно, но тут как будто лишнее

    12. Индикатор (indicator)илидамми (dummy)

      Еще "флаг" называется

    13. байтах

      лучше просто "в памяти компьютера"

    14. df['Age'] = df['Age'].apply(int)

      Тоже было бы хорошо объяснить, как оно работает. Не прям в деталях, конечно, но просто сказать, что применяет функцию int к каждому значению

    15. Пример 5

      Это тогда скорее не пример, а продолжение инсайта

    16. При возникновении ошибки нужно задуматься, какого типаобъект/переменная используется

      очень странная фраза

      ну задумался, а что дальше?) какая разница, какого типа переменная? речь конкретно про TypeError? но конкретно при использовании pandas это далеко не самая частая ошибка, которая может возникнуть, поэтому такой инсайт скорее только путает людей. лучше в курсе по питону нормально объяснять, как читать ошибки, чем пытаться в статистику такие "инсайты" впихнуть

    17. Это аналог файла

      Среда - аналог файла???

    18. планируется отобразить результат

      "отображается результат" только в Google Colab или Jupyter Notebook, про которые речь в тексте пойдет только дальше. поэтому немного странно тут про это писать

    19. Визуально DataFrame отрисовывается лучше, чем Series: получается вконце DataFrame, даже если в нём только один столбец

      что то тут с русским языком очень странно, как будто слова местами поменяли

    20. df4 = df3[['Column1']]

      надо объяснить, почему именно так работает - что объект датафрейма индексируется списком ['Column1'], поэтому возвращается список Series, и так же происходит в строке кода (5).

      Если этого не объяснять, получится проблема любого типичного курса по программированию, где ученик просто запоминает конкретные строки, понятия не имея, как они работают, и потом не может сам написать что-то другое без помощи.

    21. Команда

      это не "команда"

    22. Подключаетсякомандойimportpandasaspd.

      не знаю, в каком месте в курсе стоит этот лонгрид, но если люди не проходили импорты в питоне, такая формулировка может их запутать если они увидят неконвенциональный импорт, например import pandas as pnd или просто import pandas

    23. интерфейс с данными

      что? как из "frame" получился интерфейс?

    24. унификации

      "унификации" не используется с предлогом "к"

    1. eLife assessment

      This is an important study that investigates BMP signaling mechanisms in the developing chick cerebellum to better understand germinal layer formation, cellular amplification and neuronal differentiation. The data from human tissue is compelling and lends support to the possible links of these processes to medulloblastoma, although this study does raise exciting questions regarding the generalized role of BMP signaling during normal development and malignant growth. Overall, this is a solid piece of work with beautifully presented findings.

    2. Reviewer #1 (Public Review):

      Summary:

      Rook et al examined the role of BMP signaling in cerebellum development, using chick as a model alongside human tissue samples. They first examined p-SMADs and found differences between the species, with human samples retaining high p-SMAD after foliation, while in chick, BMP signaling appears to decrease following foliation. To understand the role of BMP during early development, they then used early chick embryos to modulate BMP, using either a constitutively active BMP regulator to increase BMP signaling or overexpressing the negative intracellular BMP regulator to decrease BMP signaling. After validating the constructs in ovo, the authors then examined GNP morphology and migration. They then determined whether the effects were cell autonomous.

      Strengths:

      The experiments were well-designed and well-controlled. The figures were extremely clear and convincing, and the accompanying drawings help orient the reader to easily understand the experimental set up. These studies also help clarify the role of BMP at different stages of cerebellum development, suggesting early BMP signaling is required for dorsalization, not rhombic lip induction, and that later BMP signaling is needed to regulate the timing of migration and maturation of granule neurons.

      Weaknesses:

      While these studies certainly hint that BMP modulation may affect tumor growth, this was not explicitly tested here. Future studies are required to generalize the functional role of BMP signaling in normal cerebellum development to malignant growth.

    3. Reviewer #2 (Public Review):

      Summary:

      This is a fundamental and elegant study showing the role of BMP signaling in cerebellar development. This is an important question because there are multiple diseases, including aggressive childhood cancers, which involve granule cell precursors. Thus understanding of the factors that govern the formation of the granule cell layer is important both from a basic science and a disease perspective.

      Overall, the manuscript is clear and well-written. The figures are extremely clear, wonderfully informative, and overall quite beautiful.

      Figures 1-3 show the experimental design and report how BMP activity is altered over development in both the chick and the human developing cerebellum. Both data is very impressive and convincing.

      They then go on to modulate BMP activity in the developing chick, using a complex electroporation paradigm that allows them to label cells with GFP as well as with cell-specific reporters of BMP activity levels. They bidirectionally modulate BMP levels and then can look at both cell-specific and non-specific alterations in the formation of the external and internal granule cell layer, across different developmental timepoints. These are really elegant and rigorous experiments, as they look at both sagittal and transverse sections to collect this data. This makes the data extremely compelling. With these rigorous techniques, they show that BMP signaling serves more than one function across development: it is involved in the initial tangential migration from the rhombic lip, but at a later time, both up- and down-regulation of BMP activity reduces density of amplifying cells in the external granule cell layer.

      Strengths:

      Overall, I think the paper is interesting and important and the data is strong. The use of both chick and human tissue strengthens the findings. They are extremely rigorous, analyzing data from multiple planes at multiple ages, which also really strengthens their findings. The dual electroporation approach is extremely elegant, providing beautiful visual representations of their findings.

      Weaknesses:

      I find no significant weaknesses.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1.1) I thought the manuscript was very clear. While I realize the authors included the reference to medulloblastoma in the introduction based on previous reviewer comments, I think this speculation is better left in the discussion.

      Whilst we appreciate the reviewers feedback here, we felt it was important to include a reference to medulloblastoma and developmental disorders associated with the cerebellum to put this work into a broader context.

      We removed the sentence “Medulloblastoma can be a consequence of uncontrolled proliferation of granule cell progenitors, with BMP overexpression being a potential therapeutic avenue to inhibit this proliferation” to limit the speculation in this statement.

      (1.2) line 81: It would be better to cite the 2 original papers (Hendrikes et al 2022, Smith et al 2022) rather than the Phoenix commentary article. I'm not sure the Phoenix article needs to be cited at all within this paper.

      We have cited the two suggested papers and removed the citation to Phoenix et al.

      (1.3) line 102: confusing sentence with the unexpected separation of do and not: "the same conditional deletions of BMP pathway elements that fail to block early granule cell specification at the rhombic lip do result not in a larger cerebellum as might be expected, but either have no affect".

      We thank the reviewer for pointing out this error and have corrected the text to “do not result in a larger cerebellum”.

      (1.4) line 133: inconsistent acronyms (for example, W9 vs pcw9).

      This has been corrected to PCW in all occurrences.

      (1.5) line 139: coronal vs transverse? it seems like you show transverse sectioning but refer to it as coronal in the text.

      We thank the reviewer for highlighting this and have corrected the text to “transverse”.

      (1.6) fig 2C: would it be possible to provide a similar inset as 2D?

      We thank the reviewer for this suggestion and have added the insets in 2C. We agree that this is now clearer and more consistent with the rest of the figure.

      (1.7) line 368/369/435/436 missing arrows.

      The arrows have been re-added- it appears that they did not show up on the uploaded PDF.

      (1.8) line 517 missing word: rhombic-lip-derived.

      This typo has been corrected.

      Reviewer #2 (Public Review):

      (2.1) Fig. 3 M Why are there asterisks both above and below the brackets?

      This was a formatting error that has now been corrected.

      (2.2) Fig. 8. The arrows (BMP up and BMP down) are touching the right ")" in the figure, which makes it hard to read.

      This was also a formatting issue which has been corrected.

      (2.3) Fig. 4 and 8 legends. There are spaces in the text which I believe are for arrows to be inserted "(BMP )", but the arrows have been omitted in the PDF that I read.

      This is the same as reviewer 1’s comment- these have been re-added to the text and appears to have been an issue with the PDF upload.

      (2.4) Fig. 3 legend gets very hard to read at the end, where it seems some punctuation is missing.

      We have re-worded the legend for Fig. 3 to make it easier to read.

      (2.5) Significant figures in some of the text are probably too much given the accuracy at which they can be measured with.

      We appreciate the reviewer’s concerns here, however these were added in response to the original reviewer’s request to “provide some additional support to otherwise qualitative observations”.

    1. В таки достиг А, пройдя через NAT A, до того, как А отправил свой SYN заново. В зависимости от операционной системы, может произойти два сценария:

      А отправил запрос, но Б заблокировал после этого Б отправил запрос, и а его не заблокировал, так как он уже сделал дырку.

      это произдодёт в том случае, если 2 запрос А. будет медленее первого запроса Б.

    2. Таймауты простоя UDP

      нужно моментами кидать пустые запросы, чтоб дырка не закрылась.

      условно это когда у тебя окно постоянно само закрывается а на улице пипец какая жара и ты каждый 5 минут идёшь опять приоткрывать окно на максимум

    3. Если сообщение

      И самое интересное!! если в тоже время машина B пробёт дыру, до момента, когда машина A попадёт уже к NAT B. то NAT B просто отклонит запрос от А.

      то есть, обе машины, должны пробить дырки в NAT перед тем, чтоб они могли отправлять друг другу запросы.

      если один клиент не успеет сделать дырку для другого клиента, то ничего не будет.

    4. Представим

      прикол в том, что когда приложения А хочет сделать запрос на B. зная и локальный и глобальный адресс B.

      NAT A уже имеет соединение с сервером S. и здесь NAT A делает хитрый мув, он оставляет ip и порт, тот же, Которым он пользовался при общений с сервером. да, когда запрос проходит через nat. nat при новой сессий генерирует порт, который будет переадрессовываться на порт приложения, где находится приложение. ну и свой ip используется, который тоже будет переадрессован на ip машины внутри NAT

    5. в которой находится А, так как чисто случайно сложилось, что его адрес совпал с адресом В в локальной сети В

      А может отравить запрос на локальнный адресс Б, а этот локальный адресс в интернете принадлежать, например, яндексу.

      локальный адресс - это адрес машины внутри NAT, которая отправила запрос на сервер

    1. eLife assessment

      The aim of this important study is to functionally characterize neuronal circuits underlying the escape behavior in Drosophila larvae. Upon detection of a noxious stimulus, larvae follow a series of stereotyped movements that include bending of their body, rolling and crawling away. This paper combines quantitative behavioral analyses, cell-type specific manipulations, optogenetics, calcium imaging, immunostaining, and connectomic analysis to provide convincing evidence of an inhibitory descending pathway that controls the switch from rolling to fast crawling behaviors of the larval escape response.

    2. Reviewer #1 (Public Review):

      Summary:

      Zhu et al. set out to better understand the neural mechanisms underlying Drosophila larval escape behavior. The escape behavior comprises several sequenced movements, including a lateral roll motion followed by fast crawling. The authors specifically were looking to identify neurons important for the roll-to-crawl transition.

      Strengths:

      This paper is clearly written, and the experiments are logical and complementary. They support the author's main claim that SeIN128 is a type of descending neuron that is both necessary and sufficient to modulate the termination of rolling. In general, the rigor is high.

      Weaknesses:

      -This manuscript is narrowly focused on Drosophila larval escape behavior. It would be more accessible to a broader audience if this work were put into a larger context of descending control.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors have addressed the majority of my comments, and I believe the revised manuscript has improved significantly.

      The escape behavior of Drosophila larvae includes rolling followed by fast crawling, but the neural mechanism of this sequence was unclear. The authors determined the function of SeIN128, a group of descending neurons that terminate rolling and shorten crawling latency. SeIN128 receives inputs from Basin-2 and A00c neurons, which facilitate rolling, and makes reciprocal inhibitory synapses onto Basin-2 and A00c. SeIN128 shows a delayed activity peak upon Basins or A00c stimulation. Gad staining indicates that SeIN128 neurons are GABAergic, and blocking of SeIN128 function caused increased rolling probability and prolonged rolling. RNAi knockdown of GABA receptors in Basins suggests that several GABA receptors, especially GABA-A-R, mediate the SeIN128 to Basins inhibition. Among Basins subtypes, both Basin-2 and Basin-4 facilitate rolling but SeIN128 specifically terminates rolling elicited by Basin-2 activation. Overall, SeIN128 forms a feedback inhibition ensemble with Basin-2 and A00c that terminates rolling and shifts the animal to crawling.

      Overall, this study discovered a neural mechanism that serves as a switch from rolling to fast crawling behaviors in Drosophila larvae. It addressed important open questions of how neural circuits determine the sequence of locomotor behaviors and how animals switch from one behavior to another. Its results support the conclusions and are backed up with proper control experiments.

      Strengths:

      - The question (i.e., the neural circuitry of action selection) addressed by this study is important.<br /> - Larval and adult Drosophila is a powerful model system in neuroscience study, with rich genetic tools, diverse behaviors, and well-studied nervous systems. This study makes good use of them.<br /> - The experiments, analyses, and results are rigorous and support the major claims. This study combined multiple innovative approaches, such as automated, machine-learning-based behavioral assays, EM reconstruction of larval CNS neurons, and genetic manipulation of specific neurons. A wide range of control experiments enhanced the credibility of the results.<br /> - The graphical representations are clear and mindfully arranged.

      Weaknesses:

      I believe "Corkscrew-like rolling" is not an accurate term for larval rolling. The neuromuscular basis of rolling was recently studied by Cooney et. al., showing that rolling is the circumferential propagation of muscle activity where all segments contract similarly and synchronously. So using another term instead of "Corkscrew-like rolling" may help.

    4. Reviewer #3 (Public Review):

      Summary:

      Combining the behavioral assays with optogenetics, imaging, and connectome approaches, this meticulous study characterizes the underlying neuronal mechanisms of escape behavior in Drosophila larvae. The authors identify the neurons and provide convincing evidence to support their function in the roll-to-crawl locomotor transition.

      Strengths:

      It is a very thorough characterization of locomotor sequences in terms of underlying neural circuits. The findings shed light on investigating the analogous behaviors in other systems.

      Weaknesses:

      None. The authors have revised the article to improve the presentation and clarity.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      In my opinion, the three most important controls (hopefully easy):

      (1) Include no ATR controls for optogenetic activation experiments (not all, just one or two, e.g., Figure 4B, C, or D, for the highest activation condition). The concern is that it can be quite hard to use light to both monitor neural responses while also using light to activate the function of other neurons.

      We thank the reviewer for the suggestions. We use a 2-photon 910-nm laser (which does not activate Chrimson) for imaging of GCaMP and a 624-nm LED (which does not activate GFP) for Chrimson activation. Calcium (GCaMP) signals are detected by PMT during Chrimson activation. With this setup, we are able to image GCaMP signals without crosstalk during activation of Chrimson.

      We performed calcium imaging in animals that were not fed ATR and found that SS04185 showed no response to LED stimulation at the strongest intensity (µW/mm) (New Figure 4 – figure supplement 1B).

      (2) Demonstrate that their RNAi constructs do indeed knock down the intended target gene. They showed nicely in Figure 5A that SeIN128 expresses GABA. Presumably, these neurons also express VGAT. Is it possible to check the expression of VGAT after RNAi knockdown? The concern is that using only a single RNAi introduces the possibility of off-target effects. Using multiple RNAi lines for VGAT or other parts of the pathway would also alleviate this (minor concern).

      We thank the reviewer for raising this point. We agree that using only one RNAi line (HMS02355) for VGAT in Figure 5A is a weakness. 

      Accordingly, we have performed additional experiments to quantify the effect of RNAi knockdown of VGAT using HMS02335 in all neurons, followed by subsequent immunostaining against GABA or VGAT. We found that both VGAT and GABA were significantly reduced in the neuropil (Figure 5 – figure supplement 1C and D). These data strongly suggest that HMS02355 knocks down VGAT and reduces GABA at axon terminals. We note that HMS02355 has been used previously for knocking down GABA signaling in the following studies.

      (1) Kallman BR, Kim H, Scott K (2015). Excitation and inhibition onto central courtship neurons biases Drosophila mate choice. eLife 4:e11188. https://doi.org/10.7554/eLife.11188

      (2) Zhao W, Zhou P, Gong C et al. (2019). A disinhibitory mechanism biases Drosophila innate light preference. Nat Commun 10, 124. https://doi.org/10.1038/s41467-018-07929-w

      (3) Yamagata N, Ezaki T, Takahashi T, Wu H, Tanimoto H (2021). Presynaptic inhibition of dopamine neurons controls optimistic bias. eLife 10:e64907. https://doi.org/10.7554/eLife.6490

      (3) Include genetic controls for their driver line.

      In Figure 1, it would be nice to see one half or the other half of their split GAL4 line in their manipulations. The concern is that perhaps the phenotype is coming from something unexpected in the genetic background.

      We thank the reviewer for the suggestion. We have added half of the GAL4 lines (AD or DBD) as controls (New Figure 1 – figure supplement 2). We found that SS04185 showed reduction of rolling, whereas AD only or DBD only (split control) did not (half of the split lines). 

      In the discussion:

      It seems that activation of SS014185 has additional effects beyond what the authors have quantified. Specifically, larvae do not appear to re-initiate rolling in the same manner as Basin activation alone. Also, there appears to be an off-response, turning.

      We appreciate the reviewer’s comments. We have included a section in the discussion to consider the differences patterns of rolling observed during joint stimulation of Basins and SS04185 and during stimulation of Basins alone, as well as the increase in turning following the offset of joint stimulation of Basins and SS04185 compared with stimulation of Basins alone (lines 464 to 481). Although the reasons for these differences are beyond the scope of the paper, we have added Figure 2 – figure supplement 1K, which shows that co-activation of SS04185-MB and Basins is sufficient to evoke turning following the offset of stimulation, suggesting that the increased turning may be due to the activation of SS04185-MB neurons and independent of SS04185-DN neurons.  

      The labeling of the Figure panels could be improved. In many places, it is not clear that Basins are being stimulated in the background, whereas in nearby panels, it is clearly labeled. This is confusing for the reader.

      We thank the reviewer for the constructive suggestions. We have modified all relevant figures to read “Basins>Chrimson” above the pink line indicating the period of optogenetic activation.

      Reviewer #2 (Recommendations For The Authors):

      Claims, rigorousness, repeatability, and accuracy of terms.

      (1) In line 254, the authors suggest that the slow response of SeIN128 neurons is due to the input they receive from SEZ, but in line 453, they suggest it is due to axo-axonal connections. However, their evidence does not support one factor over the other. Overall, only the axo-axonal connection was strongly suggested in the discussion. The authors could clarify that the delay of SeIN128 activity may also be caused by multisynaptic connections involving SEZ or other neurons in the last section of the Discussion.

      Although SeIN128 primarily receives inputs from the SEZ, it also receives inputs within the VNC from Basin-2 (Figure 4 – figure supplement 2). Specifically, in the VNC, the axons of SeIN128 make inhibitory synaptic contacts onto the axon of Basin-2, which in turn makes reciprocal excitatory contacts onto the axon of SeIN128, thereby forming a feedback loop. However, by the time we wrote the original discussion, we had inadvertently focused on the potential of the negative feedback loop formed by these axo-axonal synapses in the VNC to mediate the slow response of SeIN128, overlooking the possibility that other as yet unidentified pathways could convey Basin or A00c activity indirectly to SeIN128 dendrites in the SEZ. Therefore, we have revised the original text, which read “These data suggest that the main synaptic inputs onto SeIN128 neurons in the SEZ mediate the slow responses upon activation of Basins or A00c neurons” to “These data suggest that the delay of SeIN128 activity may be caused by multi-synaptic connections involving the SEZ or a feedback loop involving axo-axonal connections between SeIN128 and Basin-2 or A00c” (revised, Lines 259 and 261). Accordingly, we have also adjusted the relevant discussion section to be consistent with this change (Lines 460 and 466).

      (2) Please clarify the following: How does the algorithm define rolling and crawling? Healthy larvae complete 360{degree sign} rolls, in each roll they rotate from dorsal up to dorsal up. It is possible that a larva rolls for an incomplete cycle and straightens up. Does the algorithm simply label individual frames as “roll”, “non-roll”, or “unknown”, and defines rolling by the existence of “roll” frames? If so, then larvae that rolled for 90{degree sign} and straightened would be counted as “rolling” though they failed to complete a full rolling bout. Also, how were “hunch” “turn” and “back” identified? Lastly, is there any manual quality control involved? Address this and related issues in the methods:

      a)  Expand the description of the classifier algorithm.

      b)  How are rolling and non-rolling animals defined in the "rolling%" assay? Were all "rolling" animals able to do at least one 360{degree sign} roll?

      c)  How are "rolling duration" and "end of 1st rolling" defined? Is the algorithm able to distinguish different rolling bouts? In these two assays, were the animals rolled for <1 second (in total or their "first roll") able to complete a 360{degree sign} roll?

      The Multi-worm Tracker (MWT) records only the contours of animals (no real video image data). Thus, the data fed into the classifier algorithm only includes features based on contour time-series data. The algorism uses movement perpendicular to the body axis—the characteristic feature of larval rolling—to classify rollers and non-rollers. Although the algorithm cannot determine whether a rolling event involves a rotation of more than 360 degrees, we ensure that rolling events are at least 360 degrees by removing any events that are shorter than 0.2 s (the minimum time to complete a 360-degree roll).

      We have accordingly revised the section of “Behavior detection” relating to the behavior classification algorithm in the methods section as follows (Lines 600 to 620).

      “After extracting behavioral parameters from Choreography, we used an unsupervised machine learning behavior classification algorithm to detect and quantify the following behaviors: hunching (Hunch), headbending (Turn), stopping (Stop), and peristaltic crawling (Crawl) as previously reported (Masson et al., 2020). Escape rolling (Roll) was detected with a classifier developed using the Janelia Automatic Animal Behavior Annotator (JAABA) platform (Kabra et al., 2013; Ohyama et al., 2015). JAABA transforms the MWT tracking data into a collection of ‘per-frame’ behavioral parameters and regenerates 2D dorsal-view videos of the tracked larvae. Based on such videos, we defined rolling as a rotation around the body while the larva maintains a C-shape, which results in a movement perpendicular to larval body axis (Supplementary videos 1 and 2). Using this definition, we trained the algorithm in the JAABA platform by labeling ~10,000 randomly chosen frames as rolling or non-rolling to develop the rolling classifier. If a larva did not curl into a C-shape or move sideways, it was labeled as a “non-roller.” Every animal with at least one rolling event longer than 0.2 s in a given period was labeled as a “roller” (i.e., it was assumed to have rolled at least 360 degrees), based on the observation that when the start and end of rolling events were precisely measured, the algorithm could identify rolling events completed in 0.2 s.

      The rejection of false positives, especially at the beginning and the end of each rolling bout, enhanced accuracy. The algorithm integrated these training labels and parameters generated with Choreography in a time series, such as speed, crabspeed, and body curvature, to generate a score for rolling detection. Above a certain threshold, the classifier labeled the frame as rolling. This classifier, which has false negative and false positive rates of 7.4% and 7.8%, respectively (n = 102), was utilized to detect rolling in this paper.”

      Readability of text

      (1) I suggest giving the SS04185 line and SeIN128 neuron common names that are easier to remember and follow (after mentioning their full name once).

      We acknowledge the reviewer’s concerns. However, because SS04185 was initially named using the Janelia split-line pipeline, and SeIN128 was named independently in a more recent study (Ohyama et al., 2015), we have retained these designations in the present manuscript.

      Figures and figure legends

      (1) It would help if the authors could put visual representations of rolling and crawling, such as a cartoon larva performing the rolling-crawling switch, and still frames of rolling and crawling of real larvae, especially in Figure 1. Also, please consider including a video of rolling and crawling in real larvae (preferably comparing control and experimental groups).

      We appreciate the reviewer’s suggestion. We have added a cartoon of the behavioral sequence in Figure 1A, as well as a Figure 1 supplement video based on MWT data, which shows rolling followed by crawling. 

      (2) To give the reader a take-home message, it would help if the authors could make a simplified version of Figure 4A and put it at the end of the paper.

      We thank the reviewer for the suggestion. To assist the reader, we have added schematics depicting how the circuit may function in panel I of Figure 8.

      (3) In Figure 1A, add the text "activation " after the neuron names.

      We have added “Chrimson” following “Basins>” to the new Figure 1B (old Figure 1A) and other figures (Figure 1C and D, Figure 5A, Figure 6A, and figure supplements).

      (4) Figure 1G: a data point is misaligned (at the top of the graph). 

      We have aligned the data point accordingly.

      (5) Figure 1B can benefit from a better design. If possible, please separate the crawling speed into an independent graph (or at least use a different line shape to code for crawling speed and indicate it on the in-graph legend). Is the speed of Basin/SS04185 co-activation studied?

      We appreciate the reviewer’s suggestion. We have separated the plots for rolling and crawling speed into different panels (Figure 1C and D). As shown in Figure 1D, the crawling speed observed during coactivation of Basins and SS04185 was similar to that during activation of Basins alone.

      (6) Figure S1 uses a different color-coding scheme from Figure 1. I suggest making the color coding consistent between figures.

      We are grateful for the reviewer’s suggestion. We have adjusted the color-coding scheme accordingly.

      (7) Line 692 (Figure 2 legend), "Killer Zipper" is misspelled as "Kipper Zipper". Out of curiosity, is there a way to remove or reduce SS04185-DN expression in the same manner as SS04185-MB reduction?

      We have corrected the text in the legend for Figure 2. As for the reviewer’s question, we did attempt to reduce or abolish SS04185-DN expression with tsh-LexA and LexAop-Kip+ but found no effect. Other identified LexA constructs with SeIN128 expression, however, all showed SS04185-MB expression. Consequently, we could not use these constructs because they inhibit both SeIN128 and SS04185-DN.

      (8) The color coding of Figure 2 (especially in D) makes it hard to distinguish between the brown and red groups.

      We thank the reviewer for the suggestion. Accordingly, we have changed the color for the brown group to orange.

      (9) In line 926 (Figure S2 legends), the description of F and G seems inverted.

      We appreciate the reviewer for pointing out the error. We have revised the text from “(F) has only SS04185-

      MB expression, and (G) has both SS04185-DN and SS04185-MB expression” to “(F) has both SS04185DN and SS04185-MB expression, and (G) has only SS04185-MB expression.”

      (10) Figure 7B: which line does the top group of asterisks belong to?

      The top group of asterisks indicates that each experimental group differs significantly (p < 0.001) from the control group. We have revised the figure to clarify the comparisons indicated by the asterisks in Figure 7B, as well as the figure legend below (Line 890-894).

      “(B) Cumulative plot of rolling duration. Statistics: Kruskal-Wallis test: H = 69.52, p < 0.001; Bonferronicorrected Mann-Whitney test, p < 0.001 between control and the GABA-B-R11, GABA-B-R12 and GABAB-R2 RNAi groups, p < 0.001 between GABA-A-R and all other experimental RNAi group. Sample size for the colored bars from top (control, black) to bottom (GABA-A-R, red); n = 520, 488, 387, 582, 306.”

      (11) Figure S8 D and F: indicate Basin-2 or Basin-4 activation on graph.

      We have revised Figure 8 – figure supplement D and F accordingly.

      Reviewer #3 (Recommendations For The Authors):

      (1) Lines 86-87: Text needs to be rewritten for clarity. Also, include the genotype in the corresponding figure legend (Figure 1B).

      We thank the reviewer for pointing this out. We have clarified the text accordingly and included the genotype in the figure legend (lines 86 and 87). Specifically, we have revised Figure 1B (New Figure 1C and D) and adjusted the legend accordingly as follows. 

      Lines 86 and 87: Crawling speed during the activation of all Basins following rolling was ~1.5 times that of the crawling speed at baseline (Figure 1D).

      (2) Include the protocol for heat shock-FLP out experiments

      We have added the following paragraph to the Methods section describing the heat shock-FlpOut experiments (lines 537 to 546).

      “Heat shock FlpOut mosaic expression

      First instar Drosophila larvae were exposed to heat shock in a water bath at 37°C for 12 min as previously described (Nern et al., 2015). With precise temporal and thermal control of heat shock, larvae with genotype

      w+, hs(KDRT.stop)FLP/13xLexAop2-IVS-CsChrimson::tdTomato; R54B01-Gal4.AD/72F11LexA;20xUAS-(FRT.stop)-CsChrimson::mVenus/R46E07-Gal4.DBD showed sporadic

      CsChrimson::mVenus expression driven by SS04185 split GAL4. As a result, the ratio of the larvae with SS04185-DN and SS04185-MB expression to those with only SS04185-MB expression was 1:1. Each larva was individually examined with optogenetic stimulation and behavior analysis. After behavioral experiments, mVenus expression in CNS was confirmed under the fluorescence microscope.”

      (3) In the immunohistochemistry, the authors exclude the steps for washings. Recommend the authors to cite the previous literature. Similar to the other protocols detailed in the methods.

      We have added a brief description of the steps involved in washing (lines 641 and 648). We have also provided a citation with similar immunohistology protocols (Patel, 1994).

      (4) Keeping the same Y-axis scale for similar graphical representation would be helpful to compare across different experimental conditions and genotypes-for example, 2E and 2H for the start of the first crawl.

      As suggested by the reviewer, we have adjusted the y-axis scales for Figure 2E and H to be identical.

      (5) The color schematics used for the graph make it hard to visualize the data. The author might reconsider the better presentation of the data by avoiding darker colors.

      We thank the reviewer for the constructive suggestion. We have lightened the shading of all violin plots. We have also modified the shading for the middle group in Figure 2C and E from dark brown to orange.

      (6) Co-activation of the SS04185 and Basins in the figures represented as Basins+SS04185 (Figure 1A) and SS04185 (rest of the figures). Authors might reconsider this terminology to define and distinguish the coactivation of SS04185 and Basins neurons from the activation of SS04185 or Basins alone. It needs to be clarified in the figures.

      We have adjusted the terminology by including “Basins>Chrimson” in all panels in which Basin neurons are optogenetically activated to trigger rolling in the background for all groups. Additionally, we have labeled the control group as “Control” and the experimental group as ”SS04185”. 

      (7) Figure 4A, summarizes the synaptic connection and strength between different neurons - SeIN128, Basins, A00c and mdIV. However, the nature of these synaptic connections - excitatory and inhibitory- is not represented. Based on the previous and current studies, the authors consider providing the schematic for circuit mechanisms of escape behavior sequences in larvae. Also, discussing these findings in light of the downstream output circuit and motor regulation might be informative (See Cooney et al. 2023, PNAS).

      As the reviewer correctly points out, the diagram of the connectome shown in Figure 4A does not indicate whether the connections are excitatory or inhibitory. Accordingly, we have added a new summary panel (Figure 8I) based on the results of examining GABAergic synapses (Figure 5A). The schematics in Figure 8I depict how the joint activity of inhibitory and excitatory synapses (indicated by arrowheads and blunt ends, respectively) may lead to rolling or fast crawling.

      We have also added a section discussing the premotor circuits for crawling and rolling premotor circuit in discussion (Line 512 – 519).

      (8) Percentage rolling present in figure 5B and 6A correspond to the control larvae 13xLexAop2-IVS-CsChrimson::mVenus; R72F11-lexA/+; HMS02355/+ and 13xLexAop2-IVS- Cs-Chrimson::mVenus; R72F11-lexA/+; UAS-TeTxLC.tnt/+. How does the author interpret the observed variability across the experiments? The author might consider discussing the genetic background effect on the observed behaviors, if any.

      As pointed out by the reviewer, we noticed that rolling probability varied depending on genetic background. We have revised the text accordingly (Lines 277 to 280).

      (9) Recheck the arrowheads in Figure 5A.

      We have confirmed the positions of the arrowheads in Figure 5A and modified the figures by outlining the cells with dotted lines.

      (10) Lines 295-298: Data presented in the supplementary figure and p-values in the text (p=0.11) suggest that the first crawl's onset is comparable to controls. Rewrite this text for clarity and include the statistical values in the supplemental figure 6.

      We have revised the text as follows (Lines 302 to 305).

      “Although the duration of each rolling bout, time to onset of the first rolling bout, and time to onset of the first crawling bout did not differ from those of controls (Figure 6–figure supplement 1D, E and G), the time to offset of the first rolling bout was delayed relative to controls (p = 0.013 for Figure 6–figure supplement 1F).”

      (11) Lines 263-264: Data provide evidence for SS04185 receiving inputs Basin-2 and A00c neurons. SS04185, which provides inputs to other neurons, specifically A00c neurons, but still needs clarification.

      We have revised the text as follows (Lines 264 to 266).

      The results thus far indicate that, activation of SeIN128 neurons inhibits rolling (Figure 1A–C), SeIN128 neurons receive functional inputs from Basin-2 and A00c (Figure 4A-C); and SeIN128 neurons make anatomical connections onto Basin-2 and A00c (Figure 4A). 

      (12) In the table that lists the genotypes, instead of '-' or the blank space in the label column, the author might consider using 'control,' consistent with the figures.

      In accord with the reviewer’s suggestion, we have revised the notation of ‘-’ or the blank space, to ‘control’ for all figures.

      (13) Check the typographical errors throughout the manuscript. Some below:

      We have revised the text accordingly as suggested below.

      a.  Lines 100, 142: SS4185 should be SS04185

      b.  Line 230: A00C should be A00c

      c.  Line 180: Expand VNC

      d.  10xUAS-IVS-mry::GFP should be 10xUAS-IVS-myr::GFP

      e.  Lines 444, 449: drosophila should be Drosophila

    1. Sure! Let's break down the fields in the THREE.PerspectiveCamera constructor one by one:

      javascript const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);

      1. 75 (Field of View - FOV):
      2. This value represents the vertical field of view of the camera in degrees. It determines how wide the camera can see.
      3. Example: If you have a 75° FOV, the camera can see a wider area compared to a 45° FOV, which sees a narrower area.

      4. window.innerWidth / window.innerHeight (Aspect Ratio):

      5. This value is the ratio between the width and height of the camera's view. It helps the camera render the scene correctly without distortion.
      6. Example: On a standard screen with a resolution of 1920x1080 pixels, the aspect ratio is 1920 / 1080 = 1.77 (or 16:9). This keeps the scene proportionate.

      7. 0.1 (Near Clipping Plane):

      8. This value represents the minimum distance from the camera to the nearest point that can be rendered. Anything closer than this distance will not be visible.
      9. Example: If the near clipping plane is 0.1, objects 0.1 units away from the camera will be visible, but anything closer will be cut off.

      10. 1000 (Far Clipping Plane):

      11. This value represents the maximum distance from the camera to the farthest point that can be rendered. Anything farther than this distance will not be visible.
      12. Example: If the far clipping plane is 1000, objects 1000 units away from the camera will be visible, but anything beyond this distance will be cut off.

      Putting It All Together

      When you create a perspective camera with these values:

      • The camera has a wide view (75 degrees) to capture a lot of the scene.
      • The aspect ratio ensures that the scene looks normal and not stretched or squished.
      • Objects as close as 0.1 units from the camera will be visible.
      • Objects as far as 1000 units from the camera will also be visible.

      Example Scenario

      Imagine you're setting up a camera to view a 3D model of a diamond in a virtual showroom:

      • FOV (75): You want a broad view to see the entire diamond.
      • Aspect Ratio (window.innerWidth / window.innerHeight): You want the view to adapt to different screen sizes so the diamond looks proportionate.
      • Near Clipping Plane (0.1): You want to see details as close as 0.1 units to the camera, like fine details on the diamond's surface.
      • Far Clipping Plane (1000): You want to see distant objects up to 1000 units away, like the walls of the showroom.

      This setup ensures that your virtual camera captures the diamond in detail while maintaining the correct proportions and visibility range.