1,483 Matching Annotations
  1. Jan 2020
  2. Dec 2019
  3. Nov 2019
    1. a promising technology for decades that's never truly caught on. That's constantly changing with the current wave of VR products,

      PC magazine is a online compuer magazine, based on popular topics ranging form hackers to smartphones.

      Rating: 9/10

  4. Sep 2019
    1. Are you looking for portable sink manufacturer to get portable 4 compartment sink? At MONSAM Portable Sinks, they offer four-compartment portable self-contained sinks which are perfect for use as a commercial portable sink.

  5. Aug 2019
  6. Jul 2019
    1. Eventually, the term Communist became identified with the brand of Socialism that came to be called “Marxism.”

      Is this the same Communism as the Soviet Union Communism?

    1. to my Celestial Court and to be in control of your country’s trade with China, this request is contrary to all usage of my dynasty and cannot possibly be entertained. It is true that Europeans, in the service of the dynasty, have been permitted to live at Peking, but they are compelled to adopt Chinese dress, they are strictly confined to their own precincts and are never permitted to return home.

      The emperor basically saying that diplomat sent to his country cannot return home

    2. You, O King, live beyond the confines of many seas, nevertheless, impelled by your humble desire to partake of the benefits of our civilisation, you have dispatched a mission respectfully bearing your memorial. Your Envoy has crossed the seas and paid his respects at my Court on the anniversary of my birthday. To show your devotion, you have also sent offerings of your country’s produce.

      throughout the entire passage the emperor had a condescending tone

    1. All those people in China who sell opium or smoke opium should receive the death penalty.

      The selling of opium is punishable by death

    1. Relative prevalence of extracellular virulence factors among Vibriofrom Cochin estuary, shrimp farm and seafood
    2. Detection of type III secretion system genes
    3. Production of gelatinase
    1. Plasmid profiles among Vibriofrom Cochin estuary, shrimp farms and seafood
    2. Relative antibiotic resistance amongVibrioisolated from Cochin estuary, shrimp farm and seafood
    3. Plasmid profiling of the drug resistant strains
    4. Detection ofblaNDM-1gene
    5. Antibiotic resistance among Vibriofrom seafood
  7. sg.inflibnet.ac.in sg.inflibnet.ac.in
    1. Active site identification, metal detection and interaction of Dof domain structure
    2. Superposition of the Dof domain with predicted 3D structure
    3. Validation of the predicted 3D structure
    4. Tertiary structural prediction
    5. Secondary structural prediction
    6. Secondary and tertiary structure prediction of SbDof proteins o
    7. Gene structure prediction
    8. Phylogenetic and motif analysis of sequenced Dof domains
    9. In silico characterization of sequenced Dof domains of cereal
    10. Sequencing of Dof domain and gene
    11. Cloning of Dof genes of sorghum using pBSK vector
    12. Cloning of Dof domain and Dof genes using pGEM-T Easy
    13. Gel elution of PCR products
    14. PCR based cloning, sequencing and in silico characterization of Dof domain and Dofgenes of cereals and millet
    15. Comparative analysis of cereals and millets based on banding patterns generated by Dof domain and Dof genes-specific primers
    1. Transformation of ligation mixture in electro-competent E. coli host cells (DH5ααααstrain)
    2. Analysis of PCR amplicons using agarose gel electrophoresis
    3. Qualitative analysis of DNA by agarose gel electrophoresi
    4. Plasmids and bacterial strain
  8. Jun 2019
    1. IFN γ production by CD8 T cells upon stimulation with PMA and viral peptides
    2. Decreased CD3 ζ chain expression on CD8 T cells in HBsAgpositive newborns
    3. Phenotypic and Functional Characterization of CD8 T cells in cord blood
    4. CD107a expression (marker of cytotoxicity)
    1. <RXFDQVSOLW\RXUWLPHVHULHVGDWDLQGLIIHUHQWZD\V,QVRPHFDVHVLWPDNHVVHQVHWRVKRZKRXUO\RUGDLO\YDOXHV2WKHUWLPHVLWFRXOGEHEHWWHUWRVHHWKDWGDWDRQDPRQWKO\RUDQQXDOEDVLV:KHQ\RXJRZLWKWKHIRUPHU\RXUWLPHVHULHVSORWFRXOGVKRZPRUHQRLVHZKHUHDVWKHODWWHULVPRUHRIDQDJJUHJDWHYLHZ7KRVHZLWKZHEVLWHVDQGVRPHDQDO\WLFVVRIWZDUHLQSODFHFDQLGHQWLI\ZLWKWKLVTXLFNO\:KHQ\RXORRNDWWUDIILFWR\RXUVLWHRQDGDLO\EDVLVDVVKRZQLQ)LJXUHWKHJUDSKLVEXPSLHU7KHUHDUHDORWPRUHIOXFWXDWLRQV)LJXUH'DLO\XQLTXHYLVLWRUVWR)ORZLQJ'DWD:KHQ\RXORRNDWLWRQDPRQWKO\EDVLVDVVKRZQLQ)LJXUHIHZHUGDWDSRLQWVDUHRQWKHVDPHJUDSKFRYHULQJWKHVDPHWLPHVSDQVRLWORRNVPXFKVPRRWKHU,¶PQRWVD\LQJRQHJUDSKLVEHWWHUWKDQWKHRWKHU,QIDFWWKH\FDQFRPSOHPHQWHDFKRWKHU+RZ\RXVSOLW\RXUGDWDGHSHQGVRQKRZPXFKGHWDLO\RXQHHGRUGRQ¶WQHHG

      Figure 1-6 and 1-7 look very different, and it could be hard to see that they are documenting the same set of data. This manipulation of data and how it is viewd can be used for very specific intents. If I wanted a client to see that my business has a consistent viewer rate, I would show them them figure 1-7's monthly chart, because of how smooth it looks. To me at first glance, it seems much more "consistent" than figure 1-6, with all of its spikes.

    2. 7KHPDLQSRLQWLVWKDWGDWDDQGYLVXDOL]DWLRQGRQ¶WDOZD\VKDYHWREHMXVWDERXWWKHFROGKDUGIDFWV6RPHWLPHV\RX¶UHQRWORRNLQJIRUDQDO\WLFDOLQVLJKW5DWKHUVRPHWLPHV\RXFDQWHOOWKHVWRU\IURPDQHPRWLRQDOSRLQWRIYLHZWKDWHQFRXUDJHVYLHZHUVWRUHIOHFWRQWKHGDWD

      This is also an important part of marketing. While there is a specific "thing" or "data" that is being produced, the facts are not necessarily all that you're looking for. You want to look at how this connects to the readers or buyers, what it makes them feel and think. Ultimately, the goal is to make these people buy into the thing/idea etc. being sold, .

    3. 7KHIRUPHUUHDGVDVDQXPEHUZLWKRXWPXFKFRQWH[WZKHUHDVWKHODWWHULVPRUHUHODWDEOH

      I think the whole idea of visualizations and statistics is to create something relateable. Without providing context there would be no way for the general public to interact with the data without intense reading and critical analysis. And, let's be honest, who really wants to do that much thinking about every little thing? Creating visualizations help us all to understand complex ideas easier.

      It also helps us to visualize these complex data sets to see patterns and themes that could have otherwise been overlooked. Not only do these visualizations help the general public to understand, it also helps professionals in their field analyze data within different contexts to see all of the potential.

    4. )LQDOO\DOZD\VFRQVLGHU\RXUDXGLHQFHDQGWKHSXUSRVHRI\RXUJUDSKLFV

      I believe this is very important. I think a lot of people tend to forget who they are presenting to, and lots of the valuable information goes to waste. In m Health Care Systems class we were always presented with lots of statistical data but nothing was every explain nor was the source the data was collected from presented so it seemed very misleading. Lots of numbers were thrown around without a true explanation given. After reading through this article, it seems more information was needed for both the students and the professor to understand the information provided.

    5. %DVLFDOO\ZKDW\RX¶UHORRNLQJIRULVVWXIIWKDWPDNHVQRVHQVH0D\EHWKHUHZDVDQHUURUDWGDWDHQWU\DQGVRPHRQHDGGHGDQH[WUD]HURRUPLVVHGRQH0D\EHWKHUHZHUHFRQQHFWLYLW\LVVXHVGXULQJDGDWDVFUDSHDQGVRPHELWVJRWPXFNHGXSLQUDQGRPVSRWV:KDWHYHULWLV\RXQHHGWRYHULI\ZLWKWKHVRXUFHLIDQ\WKLQJORRNVIXQN\

      This reminds me of Organic Chemistry labs. When data points don't make sense, something must have gone wrong in the experiment. It was vital to ensure that the source was found to determine if it would effect the results or if the experiment needed to be redone.

    6. %XEEOHVUHSUHVHQWFRXQWULHVDQGPRYHEDVHGRQWKHFRUUHVSRQGLQJFRXQWU\¶VSRYHUW\GXULQJDJLYHQ\HDU

      I wonder why bubbles were used instead of a geographical map displaying the percent? I know it mentions how it puts people to sleep, but wouldn't this be more confusing?

    7. 7KHLQWHUDFWLYHSLHFHVFUDSHVVHQWHQFHVDQGSKUDVHVIURPSHUVRQDOSXEOLFEORJVDQGWKHQYLVXDOL]HVWKHPDVDER[RIIORDWLQJEXEEOHV

      This seems extremely difficult to follow. I'm wondering how people who are colour blind might interpret this chart due to the similar colours used to display the stats.

    1. The complementary segments of a globin needed for the semisynthesis of mutant chains were prepared by V8 protease digestion (Sivaram eta/, 2001). The a globin was dissolved in 0.01 M ammonium acetate buffer (pH 4) at a concentration of 1.0 mg/ml and digested at 37°C with V8 protease (1: 200, w/w) for 3 hours. The completion of digestion was ascertained by RPHPLC, after which the reaction was quenched by addition of neat TFA to a final concentration of 0.1 %. The complementary segments, al-30 and a31-141, from the digestion mixture were isolated in pure form by size-exclusion chromatography on a Sephadex G50 column (98cm x 2.8cm). The column was equilibrated and run in 0.1% TFA. The lyophilized sample of the digest was dissolved in the above solvent and loaded on to the column. The column was run at a flow rate of 30 mllhour and the elution profile monitored at 280 nm. The individual chromatographic profile of a globin digest showed only two peaks, a31-141 and a1-30 respectively, as expected from a single cleavage at the 30-31 peptide bond. The peak fractions were pooled separately and lyophilized
    2. Generation of complementary fragments, al-30 and a31-141, from heme-free a globin
  9. May 2019
    1. Xylanolytic activity was determined according to Archana and Satyanarayana (1997). The reaction mixture containing 0.5 mL of 1% birchwood xylan in glycine NaOH buffer (0.1 M, pH 9.0) and 0.5 mL of cell free sonicated supernatant was incubated at 80 °C in a water bath for 10 min. After incubation, 1 mL DNSA reagent (Miller, 1959) was added to the reaction mixture and the tubes were incubated in a boiling water bath for 10 min, followed by the addition of 400 μL of 33% w/v sodium potassium tartrate. The absorbance values were recorded at 540 nm in a spectrophotometer (Shimadzu, Japan). The liberated reducing sugars were determined by comparing the absorbance values of these with a standard curve drawn with different concentrations of xylose. One unit (IU) of xylanase is defined as the amount of enzyme required for liberating one μmol of reducing sugar as xylose mL-1 min-1under the assay conditions. Composition of Dinitrosalicylic acid (DNSA) reagent NaOH - 10.0 g Phenol - 2.0 g DNSA - 2.0 g Distilled Water - 1000 mL DNSA reagent was stored in an amber bottle at 4 °C till further use. Sodium sulphite (0.05 % v/v) was added just before the use of the reagent.
    2. Enzyme Assays
    3. Transformation of calcium-competent cells was carried out by the procedure detailed below: •The competent bacterial cells were thawed briefly and 200 μL of cells was mixed rapidly with plasmid DNA (10-50 ng) in fresh, sterile microcentrifuge tubes and maintained on ice for 30 min. A negative control with competent cells only (no added DNA) was also included. •Cell membranes were disrupted by subjecting cells to heat-pulse (42 °C) for 90 sec. •After heat shock, cells were incubated on ice for 5 min. •Cells were then mixed with 1 mL LB medium and incubated with shaking at 37 °C for 1 h. •For blue/white screening 40 μL of X-gal solution (20 mg mL-1 in dimethylformamide) and 4 μL of the IPTG (200 mg mL-1) was spread on LB-ampicillin (LB-amp) plates with a sterile glass rod. The plate was allowed to dry for 1h at 37 °C prior to spreading of bacterial cells. •Bacterial cells (100-200 μL) were spread and the plate was incubated at 37 °C for overnight. •White colonies were picked from the plates and suspended into LB-amp broth and cultivated to OD600=0.5
    4. Transformation procedure
    5. 2 mL of an overnight culture of E. coli cells was inoculated into 100 mL LB medium and incubated with vigorous shaking at 30 °C until A600 of 0.8 was reached. •Cells were collected in 50 mL plastic (Falcon) tubes, cooled for 15 min on ice and centrifuged in a pre-cooled centrifuge (4,000 rpm for 10 min at 4 °C). •The pellet was suspended in 20 mL of ice-cold 50 mM CaCl2-15% glycerol solution, maintained on ice for 15 min and centrifuged again at 4,000 rpm for 10 min at 4 °C. •Pellet was resuspended in 2 mL of ice-cold 50 mM CaCl2-15 % glycerol solution, kept on ice for 30 min and aliquoted in 400 μL in microcentrifuge tubes. These were stored at -80 °C until required.
    6. Preparation of calcium-competent cells
    7. Preparation of electrocompetent cells (E. coli cells) A protocol was employed. The procedure was carried out in cold under sterile conditions as follows: •A single colony of E. coli DH10B/ DH5α/XL1blue was inoculated in 20 mL of LB medium and grown overnight at 30 °C. •500 mL LB medium was inoculated with 5mL of this overnight grown culture of the E. coli and incubated with vigorous shaking (250 rpm) at 30 °C until an A600of 0.5 - 0.8 was achieved. •The cells were chilled in ice for 10-15 min and transferred to prechilled Sorvall® centrifuge tubes and sedimented at 4,000 rpm for 20 min at 4 °C. •The supernatant was decanted and cells were resuspended in 500 mL of sterile ice-cold water, mixed well and centrifuged as described above. •The washing of the cells described above was repeated with 250 mL of sterile ice-cold water, following which cells were washed with 40 mL of ice-cold 10 % (v/v) glycerol and centrifuged at 4,000 rpm for 10 min. •The glycerol solution was decanted and the cell volume was recorded. The cells were resuspended in an equal volume of ice-cold 10 % glycerol. •Cells were then dispensed in 40 μL volumes and stored at -80 °C until required.
    8. Electrotransformation
    9. BACTERIAL TRANSFORMATION
    10. Ligation of insert DNA with dephosphorylated vector
    11. In order to minimize self ligation of vector during cloning experiments, the digested DNA was subsequently treated with calf intestinal phosphatase (CIP) [NEB, UK]. The reaction conditions and amount of CIP were optimized and varied from (0.06-1) unit/picomole DNA termini. The dephosphorylation reaction was carried out in 50 μL reaction as follows. Reaction mixture containing no restriction enzyme was treated as control. Reaction was incubated for 1 h at 37 °C and stopped by heat inactivation at 65 °C for 20 min. 2.5.5. Composition of restriction mixture (50 μL) Linearized Plasmid DNA X μL (1 μg) CIP 1 μL (0.06-1 U μL-1) Reaction buffer (10X) 5.0 μL Distilled water Y μL Total volume 50 μL Linearized and dephosphorylated plasmids from each reaction were purified from low melting agarose gel using gel extraction method according to the manufacturer’s protocol (Qiagen gel extraction kit, Germany). 100 ng DNA from each reaction was then ligated in15 μL reaction volume containing 1.5 μL of 10X ligation buffer (NEB, England) and 0.2 μL of T4 DNA ligase to check the efficiency of self ligation after dephosphoryaltion. The ligation mixture was incubated at 16 °C for overnight and transformed into E. coli DH5αcompetent cells.
    12. Dephosphorylation of the restricted plasmid
    1. The ligation reaction consisted of 10 ng of vector, appropriate amount of insert (insert:vector ratio :: 3: 1), 1 x ligation buffer and 1 U of T 4 DNA ligase (NEB, England). The total volume was made up to 10 III with autoclaved water. The ligation reaction mixture was incubated at 16°C for 12 hrs
    2. Ligation
    3. cryopreserved culture vial was obtained from the liquid nitrogen tank, and thawed quickly at 37°C in a water bath. To the vial, O.lv of 12% NaCl was addeq I slowly, dropwise, while shaking the tube gently. Subsequently, 10v of 1.6% NaCl I was added slowly, dropwise while swirling the tube, followed by centrifugation at 200 g at 20°C for 5 min. The supernatant was discarded and 10v of RPMI 1640 complete media was added, followed by centrifugation at 200 g at 20°C for 5 min.' After removal of the supernatant, pelleted parasites were resuspended in complete I media at 0.5% hematocrit. Cultures were gassed with 5% C02, 3% 02, and 92%' N2 and maintained at 37°C
    4. Revival of cryo-preserved Plasmodiumfalciparum cultures
    1. Enzymatic assays using acyl-peptidyl substrates were set up as follows: 100-120 llmoles of purified ~PL/RNRP protein, 200 l!M valeryl-FT AA-CoA/ valery 1-FT AAlaninal and 2 mM NADPH were incubated at 30°C for 2 hrs. The protein was precipitated with acetonitrile and the reaction was loaded on C 18 RP HPLC column (250 x 4.6 mm, 5l!, phenomenex). The products could be resolved using following gradient: 0 to 48% B in 25 min, 48% B in 40 min and 70% B in 50 min (A-water with 0.1% TF A and B-acetonitrile with 0.1% TF A) at a flow rate 0.6 ml/min. The elution profile was monitored at 220 nm. The identity of peaks obtained was confirmed by TOF-MS and tandem mass spectrometric analysis using ESI-MS (API QSTAR Pulsar i MS/MS, Applied Biosystems).
    2. The enzymatic assays were performed as described for wild type ~Pl. in chapter 2. The standard reaction mixture contained 100 J.lM fatty acyl-CoA (30 J.lM [1-14C] fatty acyl-CoA (55 mCi/mmole,ARC) and 70 J.lM of unlabeled fatty acyl CoA), 2 mM NADPH and 10-20 nmoles protein for l-2 hrs. Lauroyl aldehyde [ l-14C] was obtained enzymatically from [ l-14C] lauric acid (55mCi/mmole,ARC) using the FadD9 protein, and extracted from TLC by using ethyl acetate. Assays were set up using a total of 100 J.lM ('4C labeled + unlabeled) of lauroyl aldehyde in the presence of 2 mM NADPH and 10-20 nmoles protein for 1-2 hrs. The products were extracted twice in 300 J.ll of hexanes and resolved on silica gel 60 F2s4 TLC plates (Merck) using hexanes:ethyl acetate (80:20, v/v) solvent system. The radiolabeled product was detected by using phosphorimager (Fuji BAS500)
    3. nzymatic assays and product characterization
    1. treatment were harvested by centrifugation at 250 x g for 5 min following which they were resuspended in 1x PBS (pH 7.5). PI was added at a final concentration of 1 J.tg/mL and incubated for 5 minutes following which the cells were pelleted by centrifugation and washed once with PBS. These cells were analyzed for uptake of PI by either flow cytometry in FL2 channel (570 nm) or by fluorescence microscopy using a G2A filter block.
    2. Propidium iodide (PI) is a DNA intercalating fluorescent dye which is excluded by viable cells with intact membranes, however, dead and dying cells with damaged membranes take up the dye. To assess viability, cells after appropriate
    3. Assay for cell viability by propidium iodide dye exclusion method
    4. Biochemical and cell biology techniques
    1. Phaser is a program for phasing macromolecular crystal structures by both molecular replacement and experimental phasing methods (A. J. McCoy, 2007). The novel algorithms in Phaser are based on maximum likelihood probability theory and multivariate statistics rather than the traditional least-squares and Patterson methods. For molecular replacement, the new algorithms have proved to be significantly better than traditional methods in discriminating correct solutions from noise. One of the design concepts of Phaser was that it be capable of a high degree of automation. Phaser has novel maximum likelihood phasing algorithms for the rotation functions and translation functions in MR, but also implements other non-likelihood algorithms that are critical to success in certain cases.
    2. Automated molecular replacement program (Phaser)
    3. merging data, and symmetry equivalent positions, space group-specific systematic absences, total percentage of data collected and the linear Rmerge for data reduction. Finally, truncate program was used to obtain structure factor or amplitudes from averaged intensities (output from SCALA, or SCALEPACK) and write a file containing mean amplitudes and the original intensities. If anomalous data is present then F(+), F(-), with the anomalous difference, plus I(+) and 1(-) are also written out. The amplitudes are put on an approximate absolute scale using the scale factor taken from a Wilson plot. For all the Fab-peptide complexes and unliganded Fab of BBE6.12H3 antibody, the diffraction data were collected and processed using MOSFLM and subsequently merged using SCALA. For all the Fab-peptide complexes of 36-65 Fab, the diffraction data were collected and processed using DENZO and subsequently merged using SCALEPACK. The cell dimensions and space groups were unambiguously determined for each crystal. The solvent content and Matthews's constant were calculated (Matthews, 1968). The merged and scaled intensities were used for structure determination.
    4. parameters using the whole data set. It is also used for merging different data sets and carrying out statistical analysis of the measurements related by space group symmetry. SCALEPACK also provides the detailed analysis of the merged data, and symmetry equivalent positions, space group-specific systematic absences, total percentage of data collected and the linear Rmerge for data reduction. MOSFLM is a package of programs with an integrated graphical user interface for processing data collected on any detectors. The programs cover all aspects of data reduction starting from the crystallographic pattern recorded on an image to the final intensities of observed reflections. In MOSFLM this entire process of integration of diffraction images is subdivided into three steps. The first is the determination of the crystal parameters, in particular the crystal lattice (unit cell) and its orientation relative to a laboratory axial system (usually based on the X-ray beam direction and the rotation axis)_ This is usually referred to as autoindexing. Knowledge of these parameters then allows an initial estimate of the crystal mosaicity. The second step is the determination of accurate unit-cell parameters, using a procedure known as post-refinement. This requires the integration of one or more segments of data with a few images in each segment. The final step is the integration of the entire set of diffraction images, while simultaneously refining parameters associated with both the crystal and the detector. After integration of the data, next step is to scale and merge the data set. Scaling and merging are done with the program SCALA. This program scales together multiple observations of reflections, and merges multiple observations into an average intensity. The merging algorithm analyses the data for outliers, and gives detailed analyses. It generates a weighted mean of the observations of the same reflection, after rejecting the out:iers. SCALA also provides the detailed analysis of
    5. therefore only partially recorded on any individual image. For each predicted reflection, the background-subtracted diffracted intensity must be estimated. Although straightforward in principle, defects and limitations in both the sample (the crystal) and the detector can make this difficult in practice. Complicating factors include crystal splitting, anisotropic and/or very weak diffraction, high mosaicity, diffuse scattering, the presence of ice rings or spots, unresolved or overloaded spots, noise arising from cosmic rays or zingers, backstop shadows, detector blemishes, radiation damage and spatial distortion. These experimental factors will be important in determining the final quality of a data set. The HKL2000 (Otwinowski, 1997) is GUI based suite of programs for the analysis of X-ray diffraction data collected from single crystals. The package consists of three programs: DENZO, XDISPLA YF and SCALEPACK. HKL is the program that converts the raw X-ray diffraction data, collected from an image plate and reduces it to a file containing the hkl indices, intensities of the spots on the image plate along with estimates of errors involved. DENZO initially performs peak searching. The autoindexing algorithm carries out complete search of all the possible indices of the reflections picked by peak search using a fast Fourier transformation (FFT) software module. After search for real space vectors is completed, the program finds the three best linearly independent vectors, with a minimal unit cell volume, that would index all of the observed peaks. After refining the initial cell dimensions and detector parameters, the determined values are applied to the rest of the frames and the parameters are refined for each frame. The diffraction maxima are also integrated by DENZO_ The program XDISPLA YF (W., 1993) enables visualization of the peak search and processing procedures. SCALEPACK finds the relative scale factors between frames and carries out precise refinement of crystal
    6. The collection of macromolecular diffraction data has undergone dramatic advances during the last 20 years with the advent of two-dimensional area detectors such as image plates and CCDs, crystal cryocooling and the availability of intense, monochromatic and highly collimated X-ray beams from synchrotron sources. These technical developments have been accompanied by significant advances in the software used to process the resulting diffraction images. In particular, autoindexing procedures have improved the ease of data processing to the point that in many cases it can be carried out automatically without any user intervention. However, the procedure used to collect the diffraction images, the screenless rotation method, has remained essentially unchanged since it was first suggested for macromolecular crystals by Xuong et al. (Nguyen-huu-Xuong, 1968) and by Arndt and coworkers and popularized by the availability of the Arndt-Wonacott oscillation camera (Arndt, 1977; U. W. Arndt, 1973). In this procedure, each diffraction image is collected while rotating the crystal by a small angle (typically between 0.2 and 2°) about a fixed axis (often referred to as the cpaxis). The only development of the method has been the use of very small rotation angles per image (the so-called fine cp-slicing technique) to provide improved signal to noise for weakly diffracting samples. Since, virtually all macromolecular diffraction data are collected in this way (with the exception of data collected using the Laue technique). The starting point for data integration will therefore be a series of such diffraction images and the desired outcome is a data set consisting of the Miller indices (hk/) of all reflections recorded on these images together with an estimate of the diffracted intensities I(hkl) and their standard uncertainties al(hkl). This requires the prediction of which reflections occur on each image and also the precise position of each reflection on each image (note that typically most reflections will be present on several adjacent images and
    7. X-ray intensity data processing
    8. mounted on goniometer heads, which were in turn fixed on the oscillator dial of the image plate. However since our crystals suffered significant radiation damage at room temperature we decided to attempt cryo-crystallography and collected data at low temperature. Radiation damage to protein crystals is greatly reduced at lower than room temperatures (D. J. Haas, 1970; Low et al., 1966). Primary radiation damage is largely caused by interactions between the molecules in the crystal and the beam. This energy is dissipated in at least two ways; it produces thermal vibrations (heat) and it provides the necessary energy to break bonds between atoms in the molecules. Secondary damage to the crystals is caused by the diffusion of reactive radicals produced due to damage to the protein. This diffusion is aided by the presence of thermal energy. At cryo-temperature of around 1 OOK, thermal damage is limited and also the reactive products are immobilized and do not cause extensive secondary damage in areas of the crystal which are not exposed to the beam (Garman, 1999). For low temperature data collection, the crystals were initially soaked in a cryo-protectant, which was basically the mixture of the mother liquor and antifreeze. We added 30% glycerol to our mother liquor, in which the crystals were soaked from between 1 to 5 minutes to achieve cryo-protection. The crystals were then picked up using a 20Jl nylon loop, which was immediately flash frozen in a stream of nitrogen at 120k at a flow rate of 6 liters/min (Oxford cryo-systems). The crystals were centered in the beam using the two arcs and translations on the goniometer head and by viewing the crystal on the monitor of the attached CCD camera. The collimation, crystal to detector distance, oscillation angle and the exposure time per frame were optimized after a few trial frames in each case.
    9. Data collection for macromolecular crystallography involves exposure of the crystal to X-rays and recording the intensities of the resultant diffraction patterns. Rapid advances in this field have made available sophisticated electronic detectors like the Image plate detector, high power X-ray generators and synchrotrons. Successful data set collection is followed by data processing to extract the hkl indices with corresponding intensities, along with an estimate of the errors involved. At the core of the Image Plate detector is an amorphous thin film made of Barium, Europium and Bromium. This material that is coated on to a motorized plate absorbs X-rays to form F-centers. These F-centers are the regions that store photon energy as excited electrons. After the exposure is complete the plate is read by a He-Ne (2eV) red laser. Absorption of photons induces excited electrons to return to ground state with the emission of blue light (4eV) which is quantitatively read by a photomultiplier. Exposing it to intense white radiation erases the plate. While the basic technology behind the image plates remains the same, improvements in electronics and computers has led to greater automation and faster data collection cycles. The X-ray intensity data for various Fab-peptide complexes of 36-65 were collected on the Mar345dtb, installed on a rotating anode X-ray source (RIGAKU, Japan) operating at 50kV and 1 OOmA (CuKa. radiation) with Osmic mirrors (RIGAKU, Japan). While the Mar225 image plate installed at BM14 (ESRF, Grenoble, France) was used to record three Fab-peptide complexes of BBE6.12H3. Data for antigen free BBE6.12 H3 Fab and its complex with Ppy peptide was recorded on Mar345dtb image plate (Mar research, Germany), installed on the home source. For data collection at room temperature, the crystals were mounted in 0.5 mm quartz capillary tube along with some mother liquor. The capillaries were then
    10. X-ray intensity data collection
    11. a buffered protein solution in the form of a droplet in contact with the precipitant through the vapor phase. The precipitant slowly causes dehydration to occur in the protein droplet increasing the effective concentration of the protein. The hanging drop crystallization experiment is set up in 24 well tissue culture plates, with the drop of protein solution containing 50% of the precipitant in the mother liquor suspended over the precipitant solution from a siliconized cover slip. This setup is sealed with silicon grease to facilitate controlled vapor diffusion between the well and the drop. For setting up hanging drop crystallization, a pure preparation of Fab molecules in the crystallization buffer (50 mM Na-cacodylate pH 6.7, 0.05% sodium azide or 50mM Tris-Cl pH 7.1, 0.05% sodium azide) was concentrated to a final concentration of 10 mg/ml. For the antibody-peptide complexes, 50-fold molar excess of the peptide was added to the Fab solution. Hanging drops of 8 Jll volume containing 4 111 of the Fab so:ution and 4 111 of varying concentrations of the precipitant were set up in 24-well tissue culture plates (Nunc, Denmark). Initially, a variety of precipitants were used in the crystallization experiments. Conditions which gave indications of crystal formation were then further explored to improve the quality of the crystals. The crystallization plates were maintained at room temperature in insulated conditions so as to prevent rapid changes in temperature. For crystallization of BBE6.12H3Fab-peptide complexes, the crystallization plates were also maintained at 8°C in vibration free incubator (RUMED, Rubarth Apparate, GmbH, Germany). The plates were checked for the presence of crystals every two weeks.
    12. One of the most widely utilized methodologies of crystallization is hanging drop vapor diffusion technique (Wlodawer and Hodgson, 1975). The setup involves
    13. Crystallization