1. Last 7 days
    1. kerung aus. In Münster eine Wohnung zu finden ist deshalb nicht einfach. Der Wohnraum ist knapp und insbesondere zu Semesterbeginn ist die Nachfrage nach Wohnungen groß. Gerade Studierenden aus dem Ausland raten wir deshalb dringend, sich bereits mehrere Monate vor Beginn des Aufenthaltes in Deutschland um eine Unterkunft zu bemühen. Hinweis: Die Universität Münster ist keine Campus-Universität und verfügt über keine eigenen Wohnheime."Studierzimmer" in Münster"Deine Couch für Erstis"StudierendenwerkStudium an der Universität Münster© Uni MS - Peter LessmannBerufsbegleitend studieren an der Universität MünsterFach- und Führungskräfte aller Branchen nutzen seit über 20 Jahren das umfassende berufsbegleitende Studienangebot der Universität Münster. Die Hochschule bietet ihnen und ihrem Team mehr als 20 hochwertige praxisorientierte Master-/MBA-Studiengänge, knapp 30 Universit

      noch übergreifender

    2. ach Wohnungen groß. Gerade Studierenden aus dem Ausland raten wir deshalb dringend, sich bereits mehrere Monate vor Beginn des Aufenthaltes in Deutschland um eine Unterkunft zu bemühen. Hinweis: Die Universität Münster ist keine Campus-Universität und verfügt über keine eigenen Wohnheime."Studierzimmer" in Münster"Deine Couch für Erstis"StudierendenwerkStudium an der Universität Münster© Uni MS - Peter LessmannBerufsbegleitend studieren an der Universität MünsterFach- und Führungskräfte aller Branchen nutzen seit über 20 Jahren das umfassende berufsbegleitende Studienangebot der Universität Münster. Die Hochschule bietet ihnen u

      übergreifend

    3. iversität Münster. Der Universitäts-Beauftragte Ludger Hiepel, Leiter Andreas Stahl, Jörg Rens

      new one

    1. "The mind, society, and behavior framework points to new tools for achieving development objectives, as well as new means of increasing the effectiveness of existing interventions. It provides more entry points for policy and new tools that practitioners can draw on in their efforts to reduce poverty and increase shared prosperity. The mind, society, and behavior framework points to new tools for achieving development objectives, as well as new means of increasing the effectiveness of existing interventions. It provides more entry points for policy and new tools that practitioners can draw on in their efforts to reduce poverty and increase shared prosperity." Pg. 4

      This quote really sums up this reports message and really shows what the author is trying to say. Their thoughts are clearly stated in the quote above and also relates to the inquiry question as it later explains how all of these factors relate to decision making and poverty,

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167530/

    2. "In contrast, a recent effort in South Africa to teach financial literacy through an engaging television soap opera improved the financial choices that individuals made. Financial messages were embedded in a soap opera about a financially reckless character. Households that watched the soap opera for two months were less likely to gamble and less likely to purchase goods through an expensive installment plan."

      This passage shows the powerful influence of something as simple as a soap opera on financial behavior. Simply putting the narrative of someone with poor financial management can help people improve theirs (as it is factored in their automatic thinking). Things like these don't have a very tangible output, so it may be hard to track, but it is a very interesting insight which has good potential for change in the future. This connects to the text as it shows how poor peoples decisions are easily influenced and that putting messages into their heads can influence their economic choices.

    3. "However, in mixed-caste groups, revealing the boys’ castes before puzzle-solving sessions created a signifi - cant “caste gap” in achievement in which low-caste boys underperformed the high-caste boys by 23 per- cent, controlling for other individual variables (Hoff and Pandey 2006, 2014). Making caste salient to the test takers invoked identities, which in turn affected perfor- mance."

      A question I have about this quote and all mental models in general is how wasy are they really to change? As unless they are convinced or persuaded otherwise will their mental models shift signifcantly from something like a soap opera?

    4. "Human sociality (the tendency of people to be concerned with and associate with each other) adds a layer of complexity and realism to the analysis of human decision making and behavior. Because many economic policies assume individuals are self-regarding, autonomous decision makers, these policies often focus on external material incentives, like prices."

      Why does assuming people are self-regarding and autonomous overlook the social and psychological influences of poverty? How can policy makers even take into account social aspects given they are fairly intangible (compared to prices at least)?

      This relates to our inquiry question as it talks about oversights of policy makers which influence the decisions people in poverty make.

    5. "However, in mixed-caste groups, revealing the boys’ castes before puzzle-solving sessions created a signifi - cant “caste gap” in achievement in which low-caste boys underperformed the high-caste boys by 23 per- cent, controlling for other individual variables (Hoff and Pandey 2006, 2014). Making caste salient to the test takers invoked identities, which in turn affected perfor- mance." Pg. 12

      This quote really suprised me as I did not think that sometime like a caste system and people's cast being revealsed to have that big of an impact on their performace.

    6. "In Kenya, many households report a lack of cash as an impediment to investing in preventive health products, such as insecticide-treated mosquito nets. However, by providing people with a lockable metal box, a padlock, and a passbook that a household simply labels with the name of a preventive health product, researchers increased savings, and investment in these products rose by 66–75 percent"

      Through this passage, the author shows how poverty shapes individual economic choices by highlighting barriers that prevent low-income individuals in Kenya to make good financial decisions. A lack of savings can make people not buy preventive products, despite the need. By just providing a box it can mentally help people allocate funds. This shows that even a minor non-physical adjustment in the environment can significantly influence behaviors. Poverty doesn't just reduce resources, it reduces the ability to manage resources, which shape different choices,

    1. go beyond the human

      https://hyp.is/ooPwuFy1Ee-caEcVuPaVIA/kaizenbatter.com/the-kaizen-philosophy/

      should be saying Zen Human

      o be properly human is to be kaizen human

      Zen means “to make good.”

      Kaizen continual improvement

      Zen Quality continually improve

      limitless potential

      continual improve the human itself

      auto-poietic self-improvement

    1. We work continuously to build good relationships with our suppliers and bring them closer toour customers with in-store information and events.

      This is important. Building a solid "B2B2C" partnership model is the unique prerogative of a marketplace.

    2. We are transparent, and share an unusually high level of information with our customers,regarding our product range and our business in genera

      Farmdrop pioneered this model in London (and later Bristol and other areas) before going into administration. They made a significant effort to 'tell the story' of the producers and the products, with photography, interviews, biographies and much more available for each producer.

      "Farmdrop was an online grocer with a focus on farm-to-table food sourced from local farmers, fishermen, and other producers; as well as ethically sourced household products." - Wikipedia

    3. To encourage more land to be farmed regeneratively, we need to build themarket for it.

      Important to understand the Forces of Progress here.

    1. eLife assessment

      This useful study reports that the Drosophila transcription factor sisterless A (sisA) regulates the expression of Sex-lethal (Sxl) in female germ cells. The data supporting claims regarding the genetic requirement of sisA are convincing, but the characterization of the cis-regulatory elements controlling Sxl expression in the female germline is viewed as incomplete. The work will be of significant interest to colleagues studying reproductive biology and sex determination.

    2. Reviewer #1 (Public Review):

      Summary:

      In Drosophila melanogaster, expression of Sex-lethal (Sxl) protein determines sexual identity and drives female development. Functional Sxl protein is absent from males where splicing includes a termination codon-containing "poison" exon. Early during development, in the soma of female individuals, Sxl expression is initiated by an X chromosome counting mechanism that activates the Sxl establishment promoter (SxlPE) to produce an initial amount of Sxl protein. This then suppresses the inclusion of the "poison" exon, directing the constructive splicing of Sxl transcripts emerging from the Sxl maintenance promotor (SxlPM) which is activated at a later stage during development irrespective of sex. This autoregulatory loop maintains Sxl expression and commits to female development.

      Sxl also determines the sexual identity of the germline. Here Sxl expression generally follows the same principles as in somatic tissues, but the way expression is initiated differs from the soma. This regulation has so far remained elusive.

      In the presented manuscript, Goyal et al. show that activation of Sxl expression in the germline depends on additional regulatory DNA sequences, or sequences different from the ones driving initial Sxl expression in the soma. They further demonstrate that sisterless A (sisA), a transcription factor that is required for activation of Sxl expression in the soma, is also necessary, but not sufficient, to initiate the expression of functional Sxl protein in female germ cells. sisA expression precedes Sxl induction in the germline and its ablation by RNAi results in impaired expression of Sxl, formation of ovarian tumors, and germline loss, phenocopying the loss of Sxl. Intriguingly, this phenotype can be rescued by the forced expression of Sxl, demonstrating that the primary function of sisA in the germline is the induction of Sxl expression.

      Strengths:

      The clever design of probes (for RNA FISH) and reporters allowed the authors to dissect Sxl expression from different promoters to get novel insight into sex-specific gene regulation in the germline. All experiments are carefully controlled. Since Sxl regulation differs between the soma and the germline, somatic tissues provide elegant internal controls in many experiments, ensuring e.g. functionality of the reporters. Similarly, animals carrying newly generated alleles (e.g. genomic tagging of the Sxl locus) are fertile and viable, demonstrating that the genetic manipulation does not interfere with protein function. The conclusions drawn from the experimental data are sound and advance our understanding of how Sxl expression is induced in the female germline.

      Weaknesses:

      The assays employed by the authors provide valuable information on when Sxl promoters become active. However, since no information on the stability of the gene products (i.e. RNA and protein) is available, it remains unclear when the SxlPE promoter is switched off in the germline (conceptually it only needs to be active for a short time period to initiate production of functional Sxl protein). As correctly stated by the authors, the persisting signals observed in the germline might therefore not reflect the continuous activity of the SxlPE promoter.

      Mapping of regulatory elements and their function: SxlPE with 1.5 kb of flanking upstream sequence is sufficient to recapitulate early Sxl expression in the soma. The authors now provide evidence that beyond that, additional DNA sequences flanking the SxlPE promoter are required for germline expression. However, a more precise mapping was not performed. Also, due to technical limitations, the authors could not precisely map the sisA binding sites. Since this protein is also involved in the somatic induction of Sxl, its binding sites likely reside in the region 1.5kb upstream of the SxlPE promoter, which has been reported to be sufficient for somatic regulation. The regulatory role of the sequences beyond SxlPE-1.5kb therefore remains unaddressed and it remains to be investigated which trans-acting factor(s) exert(s) its/their function(s) via this region.

      The central question of how Sxl expression is initiated and controlled in the germline still remains unanswered. Since sisA is zygotically expressed in both the male and the female germline (Figure 4D), it is unlikely the factor that restricts Sxl expression to the female germline.

      How does weak expression of Sxl in male tissues or expression above background after knockdown of sisA reconcile with the model that an autoregulatory feedback loop enforces constant and clonally inheritable Sxl expression once Sxl is induced? Is the current model for Sxl expression too simple or are we missing additional factors that modulate Sxl expression (such as e.g. Sister of Sex-lethal)? While I do not expect the authors to answer these questions, I would expect them to appropriately address these intriguing aspects in the discussion.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors wanted to determine whether cis-acting factors of Sxl - two different Sxl promoters in somatic cells - regulate Sxl in a similar way in germ cells. They also wanted to determine whether trans-acting factors known to regulate Sxl in the soma also regulate Sxl in the germline.

      Regarding the cis-acting factors, they examine the Sxl "establishment promoter" (SxlPE) that is activated in female somatic cells by the presence of two X chromosomes. Slightly later in development, dosage compensation equalizes X chromosome expression in males and females and so X chromosomes can no longer be counted. The second Sxl promoter is the "maintenance promoter," (SxlPM), which is activated in both sexes. The mRNA produced from the maintenance promoter has to be alternatively splicing from early Sxl protein generated earlier in development by the PE. This leads to an autoregulatory loop that maintains Sxl expression in female somatic cells. The authors used fluorescent in situ hybridization (FISH) with oligopaints to determine the temporal activation of the PE or PM promoters. They find that - unlike the soma - the PE does not precede the PM and instead is activated contemporaneously or later than the PM - this is confusing with the later results (see below). Next, they generated transcriptional reporter constructs containing large segments of the Sxl locus, the 1.5 kb used in somatic studies, a 5.2 kb reporter, and a 10.2 kb. Interestingly the 1.5 kb reporter that was reported to recapitulate Sxl expression in soma and germline was not observed by the authors. The 5.2 kb reporter was observed in female somatic cells but not in germ cells. Only when they include an additional 5 kb downstream of the 5.2 kb reporter (here the 10.2 kb reporter) they did see expression in germ cells but this occurred at the L1 stages. Their data indicate that Sxl activity in the germ requires different cis-regulation than the soma and that the PE is activated later in germ cells than in somatic cells. The authors next use gene editing to insert epitope tags in two distinct strains in the hopes of creating an early Sxl and a later Sxl protein derived from the PE and PM, respectively. The HA-tagged protein from the PE was seen in somatic cells but never in the germline, possibly due to very low expression. The FLAG-tagged late Sxl protein is observed in L2 germ cells. Because the early HA-Sxl protein is not perceptible in germ cells, it is not possible to conclude its role in the germline. However, because late FLAG-Sxl was only observed in L2 germ cells and the PE was detected in L1, this leaves open the possibility that PE produces early HA-Sxl (which currently cannot be detected), which then alternatively splices the transcript from the PM. In other words, the soma and germline could have a similar temporal relationship between the two Sxl promoters. While I agree with the authors about this conclusion, the earlier work with the oligopaints leads to the conclusion that SE is active after PM. This is confusing.

      Next, the authors wanted to turn their attention to the trans-acting factors that regulate Sxl in the soma, including Sisterless A (SisA), SisB, Runt, and the JAK/STAT ligand Unpaired. Using germline RNAi, the authors found that only knockdown of SisA causes ovarian tumors, similar to the loss of Sxl, suggesting that SisA regulates Sxl (ie the PE) in both the soma and the germline. They generated a SisA null allele using CRISPR/Cas9 and these animals had ovarian tumors and germ cell-less ovaries. FISH revealed that sisA is activated in primordial germ cells in stages 3-6 before the activation of Sxl. They used CRISPR-Cas9 to generate an endogenously-tagged SisA and found that tagged SisA was expressed in stage 3-6 PCGs, which is consistent with activating PE in the germline. They showed that sisA is upstream of Sxl as germline depletion of sisA led to a significant decrease in expression from the 10.2 kb PE reporter and in SXL protein. The authors could rescue the ovarian tumors and loss of Sxl protein upon germline depletion of sisA by supplying Sxl from another protein (the otu promoter). These data indicate that sisA is necessary for Sxl activation in the germline. However, ectopic sisA in germ cells in the testis did not lead to ectopic Sxl, suggesting that sisA is not sufficient to activate Sxl in the germline.

      Strengths:

      (1) The genetic and genomic approaches in this study are top-notch and they have generated reagents that will be very useful for the field.

      (2) Excellent use of powerful approaches (oligo paint, reporter constructs, CRISPR-Cas9 alleles).

      (3) The combination of state of art approaches and quantification of phenotypes allows the authors to make important conclusions.

      Weaknesses:

      (1) Confusion in line 127 (this indicates that SxlPE is not activated before SxlPM in the germline) about PE not being activated before the PM in the germline when later figures show that PE is activated in L1 and late Sxl protein is seen in L2. It would be helpful to the readers if the authors edited the text to avoid this confusion. Perhaps more explanation of the results at specific points would be helpful.

    4. Reviewer #3 (Public Review):

      Summary:

      The mechanisms governing the initial female-specific activation of Sex-lethal (Sxl) in the soma, the subsequent maintenance of female-specific expression and the various functions of Sxl in somatic sex determination and dosage compensation are well documented. While Sxl is also expressed in the female germline where it plays a critical role during oogenesis, the pathway that is responsible for turning Sxl on in germ cells has been a long-standing mystery. This manuscript from Goyal et al describes studies aimed at elucidating the mechanism(s) for the sex-specific activation of the Sex-lethal (Sxl) gene in the female germline of Drosophila.

      In the soma, the Sxl establishment promoter, Sxl-Pe, is regulated in pre-cellular blastoderm embryos in somatic cells by several X-linked transcription factors (sis-a, sis-b, sis-c and runt). At this stage of development, the expression of these transcription factors is proportional to gene dose, 2x females and 1x in males. The cumulative two-fold difference in the expression of these transcription factors is sufficient to turn Sxl-Pe on in female embryos. Transcripts from the Sxl-Pe promoter encode an "early" version of the female Sxl protein, and they function to activate a splicing positive autoregulatory loop by promoting the female-specific splicing of the initial pre-mRNAs derived from the Sxl maintenance promoter, Sxl-Pm (which is located upstream of Sxl-Pm). These female Sxl-Pm mRNAs encode a Sxl protein with a different N-terminus from the Sxl-Pe mRNAs, and they function to maintain female-specific splicing in the soma during the remainder of development.

      In this manuscript, the authors are trying to understand how the Sxl-Pm positive autoregulatory loop is established in germ cells. If Sxl-Pe is used and its activation precedes Sxl-Pm as is true in the soma, they should be able to detect Sxl-Pe transcripts in germ cells before Sxl-Pm transcripts appear. To test this possibility, they generated RNA FISH probes complementary to the Sxl-Pe first exon (which is part of an intron sequence in the Sxl-Pm transcript) and to a "common sequence" that labels both Sxl-Pe and Sxl-Pm transcripts. Transcripts labeled by both probes were detected in germ cells beginning at stage 5 (and reaching a peak at stage 10), so either the Sxl-Pm and Sxl-Pe promoters turn on simultaneously, or Sxl-Pe is not active.

      They next switched to Sxl-Pe reporters. The first Sxl-Pe:gfp reporter they used has a 1.5 kb upstream region which in other studies was found to be sufficient to drive sex-specific expression in the soma of blastoderm embryos. Also like the endogenous Sxl gene it is not expressed in germ cells at this early stage. In 2011, Hashiyama et al reported that this 1.5 kb promoter fragment was able to drive gfp expression in Vasa-positive germ cells later in development in stage 9/10 embryos. However, because of the high background of gfp in the nearby soma, their result wasn't especially convincing. Though they don't show the data, Goyal et al indicated that unlike Hashiyama et al they were unable to detect gfp expressed from this reporter in germ cells. Goyal et al extended the upstream sequences in the reporter to 5 kb, but they were still unable to detect germline expression of gfp.

      Goyal et al then generated a more complicated reporter which extends 5 kb upstream of the Sxl-Pe start site and 5 kb downstream-ending at or near 4th exon of the Sxl-Pm transcript (the Sxl-Pe10 kb reporter). (The authors were not explicit as to whether the 5 kb downstream sequence extended beyond the 4th exon splice junction-in which case splicing could potentially occur with an upstream exon(s)-or terminated prior to the splice junction as seems to be indicated in their diagram.) With this reporter, they were able to detect sex-specific gfp expression in the germline beginning in L1 (first instar larva). With the caveat that gfp detection might be delayed compared to the onset of reporter activation, these findings indicated that the sequences in the reporter are able to drive sex-specific transcription in the germline at least as early as L1.

      The authors next tagged the N-terminal end of the Sxl-Pe protein with HA (using Crispr/Cas9) and the N-terminal end of Sxl-Pm protein with Flag. They report that the HA-Sxl-Pe protein is first detected in the soma at stage 9 of embryogenesis. Somatic HA-Sxl-Pe protein persists into L1, but is no longer detected in L2. However, while somatic HA-Sxl-Pe protein is detected, they were unable to detect HA-Sxl-Pe protein in germ cells. In the case of FLAG-Sxl-Pm, it could first be detected in L2 germ cells indicating that at this juncture the Sxl-positive autoregulatory loop has been activated. This contrasts with Sxl-Pm transcripts which are observed in a few germ cells at stage 5 of embryogenesis, and in most germ cells by stage 10. The authors propose (based on the expression pattern of the Sxl-Pe10kb reporter and the appearance of Flag-Sxl-Pm protein) that Sxl-Pe comes on in germ cells in L1, and that the Sxl-Pe protein activates the female splicing of Sxl-Pm transcripts, giving detectable Flag-Sxl-Pm proteins beginning in L2.

      To investigate the signals that activate Sxl-Pe in germ cells, the authors tested four of the X-linked genes (sis-a, sis-b, sis-c, and runt) that function to activate Sxl-Pe in the soma in early embryos. RNAi knockdown of sis-b, sis-c, and runt had no apparent effect on oogenesis. In contrast, knockdown of sis-a resulted in tumorous ovaries, a phenotype associated with Sxl mutations. (Three different RNAi transgenes were tested-two gave this phenotype, the third did not.) Sxl-Pe10kb reporter activity in L1 female germ cells is also dependent on sis-A.

      Several approaches were used to confirm a role for sis-a in a) oogenesis and b) the activation of the Sxl-Pm autoregulatory loop. They showed that sis-a germline clones (using tissue-specific Crispr/Cas9 editing) resulted in the tumorous ovary phenotype and reduced the expression of Sxl protein in these ovaries. They found that sis-a transcripts and GFP-tagged Sis-A protein are present in germ cells. Finally, they showed tumorous ovary phenotype induced by germline RNAi knockdown of sis-a can be partially rescued by expressing Sxl in the germ cells.

      Critique:

      While this manuscript addresses a longstanding puzzle - the mechanism activating the Sxl autoregulatory loop in female germ cells-and likely identified an important germline transcriptional activator of Sxl, sis-a, the data that they've generated doesn't make a compelling story. At every step, there are puzzle pieces that don't fit the narrative. In addition, some of their findings are inconsistent with many previous studies.

      (1) The authors used RNA FISH to time the expression of Sxl-Pe and Sxl-Pm transcripts in germ cells. Transcripts complementary to Sxl-Pe and Sxl-Pm were detected at the same time in embryos beginning at stage 5. This is not a definitive experiment as it could mean a) that Sxl-Pe and Sxl-Pm turn on at the same time, b) that Sxl-Pe comes on after Sxl-Pm (as suggested by the Sxl-Pe10kb reporter) or c) Sxl-Pe never comes on.

      (2) Hashiyama et al reported that they detected gfp expression in stage 9/10 germ cells from a 1.5 kb Sxl-Pe-gfp. As noted above, this result wasn't entirely convincing and thus it isn't surprising that Goyal et al were unable to reproduce it. Extending the upstream sequences to just before the 1st exon of Sxl-Pm transcripts also didn't give gfp expression in germ cells. Only when they added 5 kb downstream did they detect gfp expression. However, from this result, it isn't possible to conclude that the Sxl-Pe promoter is actually driving gfp expression in L1 germ cells. Instead, the Sxl promoter active in the germ line could be anywhere in their 10 kb reporter.

      (3) At least one experiment suggests that Sxl-Pe never comes on in germ cells. The authors tagged the N-terminus of the Sxl-Pe protein with HA and the N-terminus of the Sxl-Pm protein with Flag. Though they could detect HA-Sxl-Pe protein in the soma, they didn't detect it in germ cells. On the other hand, the Flag-Sxl-Pm protein was detected in L2 germ cells (but not earlier). These results would more or less fit with those obtained for the 10 kb reporter and would support the following model: Prior to L1, Sxl-Pm transcripts are expressed and spliced in the male pattern in both male and female germ cells. During L1, Sxl protein expressed via a mechanism that depends upon a 10 kb region spanning Sxl-Pe (but not on Sxl-Pe) is produced and by L2 there are sufficient amounts of this protein to switch the splicing of Sxl-Pm transcripts from a male to a female pattern-generating Flag-tagged Sxl-Pm protein.

      (4) The 10kb reporter is sex-specific, but not germline-specific. The levels of gfp in female L1 somatic cells are equal to if not greater than those in L1 female germ cells. That the Sxl-Pe10kb reporter is active in the soma complicates the conclusion that it represents a germ line-specific promoter. Germline activity is, however, sensitive to sis-A knockdowns which is plus. Presumably, somatic expression of the reporter wouldn't be sensitive to a (late) sis-A knockdown- but this wasn't shown.

      (5) Their results with the HA-Sxl-Pe protein don't fit with many previous studies-assuming that the authors have explained their results properly. They report that HA-Sxl-Pe protein is first detected in the soma at stage 9 of embryogenesis and that it then persists till L2. However, previous studies have shown that Sxl-Pe transcripts and then Sxl-Pe proteins are first detected in ~NC11-NC12 embryos. In RNase protection experiments, the Sxl-Pe exon is observed in 2-4 hr embryos, but not detected in 5-8 hr, 14-12 hr, L1, L2, L3, or pupae. Northerns give pretty much the same picture. Western blots also show that Sxl-Pe proteins are first detectable around the blastoderm stage. So it is not at all clear why HA-Sxl-Pe proteins are first observed at stage 9 which, of course, is well after the time that the Sxl-Pm autoregulatory loop is established.

      Given the obvious problems with the initial timing of somatic expression described here, it is hard to know what to make of the fact that HA-tagged Sxl-Pe proteins aren't observed in germ cells.

      As for the presence of HA-Sxl-Pe proteins later than expected: While RNase protection/Northern experiments showed that Sxl-Pe mRNAs are expressed in 2-4 hr embryos and disappear thereafter, one could argue from the published Western experiments that the Sxl-PE proteins expressed at the blastoderm stage persist at least until the end embryogenesis, though perhaps at somewhat lower levels than at earlier points in development. So the fact that Goyal et al were able to detect HA-Sxl-Pe proteins in stage 9 embryos and later on in L1 larva probably isn't completely unexpected. What is unexpected is that the HA-Sxl-Pe proteins weren't present earlier.

      (6) The authors use RNAi and germline clones to demonstrate that sis-A is required for proper oogenesis: when sis-A activity is compromised in germ cells, i) tumorous ovary phenotypes are observed and ii) there is a reduction in the expression of Sxl-Pm protein. They are also able to rescue the phenotypic effects of sis-a knockdown by expressing a Sxl-Pm protein. While the experiments indicating sis-a is important for normal oogenesis and that at least one of its functions is to ensure that sufficient Sxl is present in the germline stem cells seem convincing, other findings would make the reader wonder whether Sis-A is actually functioning (directly) to activate Sxl transcription from promoter X.

      The authors show that sis-a mRNAs and proteins are expressed in stage 3-5 germ cells (PGCs). This is not unexpected as the X-linked transcription factors that turn Sxl-Pe on are expressed prior to nuclear migration, so their protein products should be present in early PGCs. The available evidence suggests that their transcription is shut down in PGCs by the factors responsible for transcriptional quiescence (e.g., nos and pgc) in which case transcripts might be detected in only one or two PGC-which fits with their images. However, it is hard to believe that expression of Sis-A protein in pre-blastoderm embryos is relevant to the observed activation of the Sxl-Pm autoregulatory loop hours later in L2 larva.

      It is also not clear how the very low level of gfp-Sis-A seen in only a small subset of migrating germ cells in stage 10 embryos (Figure S6) would be responsible for activating the Sxl-Pe10kb reporter in L1. It seems likely that the small amount of protein seen in stage 10 embryos is left over from the pre-cellular blastoderm stage. In this case, it would not be surprising to discover that the residual protein is present in both female and male stage 10 germ cells. This would raise further doubts about the relevance of the gfp-Sis-A at these early stages.

      In fact, given the evidence presented implicating sis-a in activating Sxl, (the germline activation of the Sxl-Pe10kb reporter, the RNAi knockdowns, and the germ cell-specific sis-a clones) it is clear that the sis-A RNAs and proteins seen in pre-cellular blastoderm PGCs aren't relevant. The germline clone experiment (and also the RNAi knockdowns) indicates that sis-A must be transcribed in germ cells after Cas9 editing has taken place. Presumably, this would be after transcription is reactivated in the germline (~stage 10) and after the formation of the embryonic gonad (stage 14) so that the somatic gonadal cells can signal to the germ cells. With respect to the reporter, the relevant time frame for showing that sis-A is present in germ cells would be even later in L1.

      (7) As noted above, the data in this manuscript do not support the idea that Sxl-Pe proteins activate the Sxl-Pm female splicing in the germline. Flybase indicates that there is at least one other Sxl promoter that could potentially generate a transcript that includes the male exon but still could encode a Sxl protein. This promoter "Sxl-Px" is located downstream of Sxl-Pm and from its position it could have been included in the authors' 10 kb reporter. The reported splicing pattern of the endogenous transcript skips exon2, and instead links an exon just downstream of Sxl-Px to the male exon. The male exon is then spliced to exon4. If the translation doesn't start and end at one of the small upstream orfs in the exons close to Sxl-Px and the male exon, a translation could begin with an AUG codon in exon4 that is in frame with the Sxl protein coding sequence. This would produce a Sxl protein that lacks aa sequences from N-terminus, but still retains some function.

      Another possible explanation for how gfp is expressed from the 10 kb reporter is that the transcript includes the "z" exon described by Cline et al., 2010.

    5. Author response:

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      In Drosophila melanogaster, expression of Sex-lethal (Sxl) protein determines sexual identity and drives female development. Functional Sxl protein is absent from males where splicing includes a termination codon-containing "poison" exon. Early during development, in the soma of female individuals, Sxl expression is initiated by an X chromosome counting mechanism that activates the Sxl establishment promoter (SxlPE) to produce an initial amount of Sxl protein. This then suppresses the inclusion of the "poison" exon, directing the constructive splicing of Sxl transcripts emerging from the Sxl maintenance promotor (SxlPM) which is activated at a later stage during development irrespective of sex. This autoregulatory loop maintains Sxl expression and commits to female development. 

      Sxl also determines the sexual identity of the germline. Here Sxl expression generally follows the same principles as in somatic tissues, but the way expression is initiated differs from the soma. This regulation has so far remained elusive. 

      In the presented manuscript, Goyal et al. show that activation of Sxl expression in the germline depends on additional regulatory DNA sequences, or sequences different from the ones driving initial Sxl expression in the soma. They further demonstrate that sisterless A (sisA), a transcription factor that is required for activation of Sxl expression in the soma, is also necessary, but not sufficient, to initiate the expression of functional Sxl protein in female germ cells. sisA expression precedes Sxl induction in the germline and its ablation by RNAi results in impaired expression of Sxl, formation of ovarian tumors, and germline loss, phenocopying the loss of Sxl. Intriguingly, this phenotype can be rescued by the forced expression of Sxl, demonstrating that the primary function of sisA in the germline is the induction of Sxl expression. 

      Strengths: 

      The clever design of probes (for RNA FISH) and reporters allowed the authors to dissect Sxl expression from different promoters to get novel insight into sex-specific gene regulation in the germline. All experiments are carefully controlled. Since Sxl regulation differs between the soma and the germline, somatic tissues provide elegant internal controls in many experiments, ensuring e.g. functionality of the reporters. Similarly, animals carrying newly generated alleles (e.g. genomic tagging of the Sxl locus) are fertile and viable, demonstrating that the genetic manipulation does not interfere with protein function. The conclusions drawn from the experimental data are sound and advance our understanding of how Sxl expression is induced in the female germline. 

      Weaknesses: 

      The assays employed by the authors provide valuable information on when Sxl promoters become active. However, since no information on the stability of the gene products (i.e. RNA and protein) is available, it remains unclear when the SxlPE promoter is switched off in the germline (conceptually it only needs to be active for a short time period to initiate production of functional Sxl protein). As correctly stated by the authors, the persisting signals observed in the germline might therefore not reflect the continuous activity of the SxlPE promoter. 

      Mapping of regulatory elements and their function: SxlPE with 1.5 kb of flanking upstream sequence is sufficient to recapitulate early Sxl expression in the soma. The authors now provide evidence that beyond that, additional DNA sequences flanking the SxlPE promoter are required for germline expression. However, a more precise mapping was not performed. Also, due to technical limitations, the authors could not precisely map the sisA binding sites. Since this protein is also involved in the somatic induction of Sxl, its binding sites likely reside in the region 1.5kb upstream of the SxlPE promoter, which has been reported to be sufficient for somatic regulation. The regulatory role of the sequences beyond SxlPE-1.5kb therefore remains unaddressed and it remains to be investigated which trans-acting factor(s) exert(s) its/their function(s) via this region. 

      We agree that a more precise mapping of the essential elements within the 10.2 kb reporter is an important direction in which to proceed. Unfortunately, this is out of the scope of the current manuscript given current lab personnel. In regard to the 1.5 kb promoter that activates SxlPE in the soma, we do not feel that the Sisa binding sites are necessarily in this region. It is important to note that, while the 1.5 kb promoter is sufficient for female-specific expression in the soma, it may not contain all of the regulatory elements that normally regulate PE from the endogenous locus. Activation of PE in the soma is thought to be regulated by a combination of positive-acting factors (SisA, SisB, etc.) and repressive factors (e.g. Dpn) that set a threshold for PE activation. Much more work would need to be done to determine whether all of these factors bind to the 1.5 kb promoter, or whether additional sequences are also involved to control the proper timing and robustness of normal Sxl PE activation in the soma.

      The central question of how Sxl expression is initiated and controlled in the germline still remains unanswered. Since sisA is zygotically expressed in both the male and the female germline (Figure 4D), it is unlikely the factor that restricts Sxl expression to the female germline. 

      X chromosome “counting” elements like SisA are always expressed in both males and females, but it is thought that the 2X does of them in females activates PE, while the 1X does in males does not. Thus, we do expect SisA to be expressed in both males and females as we observed.

      How does weak expression of Sxl in male tissues or expression above background after knockdown of sisA reconcile with the model that an autoregulatory feedback loop enforces constant and clonally inheritable Sxl expression once Sxl is induced? Is the current model for Sxl expression too simple or are we missing additional factors that modulate Sxl expression (such as e.g. Sister of Sex-lethal)? While I do not expect the authors to answer these questions, I would expect them to appropriately address these intriguing aspects in the discussion. 

      It is difficult to know what is “background” and what is actual weak Sxl expression in males. We agree that, if it is real, then why it doesn’t activate autoregulation of the Sxl PM transcript is mysterious. And yes, the current model for female-specific expression of Sxl in the soma may well be incomplete. Sxl PM transcript is present in the testis based on community RNA-seq data and our own analysis of male vs. female bam-mutant gonads (PMID 31329582), but it is at lower levels. Whether the lower level in the testis is due to tissue differences or sex-specific regulation of RNA levels is unknown. Our observations that the HA-tagged Sxl Early protein remains present in somatic cells in L1 larvae, and that GFP expression from the 10.2 kb Sxl PE-GFP can be detected in the soma until L2 could either be due to perdurance of the protein products, or continued sex-specific expression of PE long after the time that it was thought to shut off. This is also long after dosage compensation should have equalized the expression of X chromosome gene expression, meaning that X chromosomes can no longer be “counted” by factors like SisA and SisB. Thus, sex-specific expression of PE at this time would require another mechanism besides the current model (such as feedback regulation of Sxl PE transcription from downstream factors).

      Reviewer #2 (Public Review): 

      Summary: 

      The authors wanted to determine whether cis-acting factors of Sxl - two different Sxl promoters in somatic cells - regulate Sxl in a similar way in germ cells. They also wanted to determine whether trans-acting factors known to regulate Sxl in the soma also regulate Sxl in the germline. 

      Regarding the cis-acting factors, they examine the Sxl "establishment promoter" (SxlPE) that is activated in female somatic cells by the presence of two X chromosomes. Slightly later in development, dosage compensation equalizes X chromosome expression in males and females and so X chromosomes can no longer be counted. The second Sxl promoter is the "maintenance promoter," (SxlPM), which is activated in both sexes. The mRNA produced from the maintenance promoter has to be alternatively splicing from early Sxl protein generated earlier in development by the PE. This leads to an autoregulatory loop that maintains Sxl expression in female somatic cells. The authors used fluorescent in situ hybridization (FISH) with oligopaints to determine the temporal activation of the PE or PM promoters. They find that - unlike the soma - the PE does not precede the PM and instead is activated contemporaneously or later than the PM - this is confusing with the later results (see below). Next, they generated transcriptional reporter constructs containing large segments of the Sxl locus, the 1.5 kb used in somatic studies, a 5.2 kb reporter, and a 10.2 kb. Interestingly the 1.5 kb reporter that was reported to recapitulate Sxl expression in soma and germline was not observed by the authors. The 5.2 kb reporter was observed in female somatic cells but not in germ cells. Only when they include an additional 5 kb downstream of the 5.2 kb reporter (here the 10.2 kb reporter) they did see expression in germ cells but this occurred at the L1 stages. Their data indicate that Sxl activity in the germ requires different cis-regulation than the soma and that the PE is activated later in germ cells than in somatic cells. The authors next use gene editing to insert epitope tags in two distinct strains in the hopes of creating an early Sxl and a later Sxl protein derived from the PE and PM, respectively. The HA-tagged protein from the PE was seen in somatic cells but never in the germline, possibly due to very low expression. The FLAG-tagged late Sxl protein is observed in L2 germ cells. Because the early HA-Sxl protein is not perceptible in germ cells, it is not possible to conclude its role in the germline. However, because late FLAG-Sxl was only observed in L2 germ cells and the PE was detected in L1, this leaves open the possibility that PE produces early HA-Sxl (which currently cannot be detected), which then alternatively splices the transcript from the PM. In other words, the soma and germline could have a similar temporal relationship between the two Sxl promoters. While I agree with the authors about this conclusion, the earlier work with the oligopaints leads to the conclusion that SE is active after PM. This is confusing. 

      The temporal relationship between Sxl PE and Sxl PM in the germline is indeed confusing. One source of confusion comes from whether one is discussing Sxl protein production or promoter activity. As the reviewer nicely summarizes, our transcription analysis with oligopaints indicates that, unlike in the soma, Sxl PE is NOT on in the germline prior to PM. Our other data indicate that PE is instead likely only active well after transcription from PM has begun. However, this still means that the temporal order of the EARLY and LATE Sxl proteins can be the same as the soma. Even if PM is active well before PE in the germline, the PE transcript cannot produce any functional protein in the absence of being alternatively spliced by the Sxl protein (Sxl autoregulation). Thus, even if PM is active before PE in the germline, we would not expect to observe any LATE Sxl protein until the PE promoter comes on, and produces a pulse of EARLY Sxl protein. The fact that we observe LATE Sxl protein at L2 is consistent with our observation that the 10.2 kb Sxl PE reporter is active at L1. We will attempt to explain all of this better in a revised manuscript.

      Next, the authors wanted to turn their attention to the trans-acting factors that regulate Sxl in the soma, including Sisterless A (SisA), SisB, Runt, and the JAK/STAT ligand Unpaired. Using germline RNAi, the authors found that only knockdown of SisA causes ovarian tumors, similar to the loss of Sxl, suggesting that SisA regulates Sxl (ie the PE) in both the soma and the germline. They generated a SisA null allele using CRISPR/Cas9 and these animals had ovarian tumors and germ cell-less ovaries. FISH revealed that sisA is activated in primordial germ cells in stages 3-6 before the activation of Sxl. They used CRISPR-Cas9 to generate an endogenously-tagged SisA and found that tagged SisA was expressed in stage 3-6 PCGs, which is consistent with activating PE in the germline. They showed that sisA is upstream of Sxl as germline depletion of sisA led to a significant decrease in expression from the 10.2 kb PE reporter and in SXL protein. The authors could rescue the ovarian tumors and loss of Sxl protein upon germline depletion of sisA by supplying Sxl from another protein (the otu promoter). These data indicate that sisA is necessary for Sxl activation in the germline. However, ectopic sisA in germ cells in the testis did not lead to ectopic Sxl, suggesting that sisA is not sufficient to activate Sxl in the germline. 

      Strengths: 

      (1) The genetic and genomic approaches in this study are top-notch and they have generated reagents that will be very useful for the field. 

      (2) Excellent use of powerful approaches (oligo paint, reporter constructs, CRISPR-Cas9 alleles). 

      (3) The combination of state of art approaches and quantification of phenotypes allows the authors to make important conclusions. 

      Weaknesses: 

      (1) Confusion in line 127 (this indicates that SxlPE is not activated before SxlPM in the germline) about PE not being activated before the PM in the germline when later figures show that PE is activated in L1 and late Sxl protein is seen in L2. It would be helpful to the readers if the authors edited the text to avoid this confusion. Perhaps more explanation of the results at specific points would be helpful. 

      We agree--see response above.

      Reviewer #3 (Public Review): 

      Summary: 

      The mechanisms governing the initial female-specific activation of Sex-lethal (Sxl) in the soma, the subsequent maintenance of female-specific expression and the various functions of Sxl in somatic sex determination and dosage compensation are well documented. While Sxl is also expressed in the female germline where it plays a critical role during oogenesis, the pathway that is responsible for turning Sxl on in germ cells has been a long-standing mystery. This manuscript from Goyal et al describes studies aimed at elucidating the mechanism(s) for the sex-specific activation of the Sex-lethal (Sxl) gene in the female germline of Drosophila. 

      In the soma, the Sxl establishment promoter, Sxl-Pe, is regulated in pre-cellular blastoderm embryos in somatic cells by several X-linked transcription factors (sis-a, sis-b, sis-c and runt). At this stage of development, the expression of these transcription factors is proportional to gene dose, 2x females and 1x in males. The cumulative two-fold difference in the expression of these transcription factors is sufficient to turn Sxl-Pe on in female embryos. Transcripts from the Sxl-Pe promoter encode an "early" version of the female Sxl protein, and they function to activate a splicing positive autoregulatory loop by promoting the female-specific splicing of the initial pre-mRNAs derived from the Sxl maintenance promoter, Sxl-Pm (which is located upstream of Sxl-Pm). These female Sxl-Pm mRNAs encode a Sxl protein with a different N-terminus from the Sxl-Pe mRNAs, and they function to maintain female-specific splicing in the soma during the remainder of development. 

      In this manuscript, the authors are trying to understand how the Sxl-Pm positive autoregulatory loop is established in germ cells. If Sxl-Pe is used and its activation precedes Sxl-Pm as is true in the soma, they should be able to detect Sxl-Pe transcripts in germ cells before Sxl-Pm transcripts appear. To test this possibility, they generated RNA FISH probes complementary to the Sxl-Pe first exon (which is part of an intron sequence in the Sxl-Pm transcript) and to a "common sequence" that labels both Sxl-Pe and Sxl-Pm transcripts. Transcripts labeled by both probes were detected in germ cells beginning at stage 5 (and reaching a peak at stage 10), so either the Sxl-Pm and Sxl-Pe promoters turn on simultaneously, or Sxl-Pe is not active. 

      They next switched to Sxl-Pe reporters. The first Sxl-Pe:gfp reporter they used has a 1.5 kb upstream region which in other studies was found to be sufficient to drive sex-specific expression in the soma of blastoderm embryos. Also like the endogenous Sxl gene it is not expressed in germ cells at this early stage. In 2011, Hashiyama et al reported that this 1.5 kb promoter fragment was able to drive gfp expression in Vasa-positive germ cells later in development in stage 9/10 embryos. However, because of the high background of gfp in the nearby soma, their result wasn't especially convincing. Though they don't show the data, Goyal et al indicated that unlike Hashiyama et al they were unable to detect gfp expressed from this reporter in germ cells. Goyal et al extended the upstream sequences in the reporter to 5 kb, but they were still unable to detect germline expression of gfp. 

      Goyal et al then generated a more complicated reporter which extends 5 kb upstream of the Sxl-Pe start site and 5 kb downstream-ending at or near 4th exon of the Sxl-Pm transcript (the Sxl-Pe10 kb reporter). (The authors were not explicit as to whether the 5 kb downstream sequence extended beyond the 4th exon splice junction-in which case splicing could potentially occur with an upstream exon(s)-or terminated prior to the splice junction as seems to be indicated in their diagram.) With this reporter, they were able to detect sex-specific gfp expression in the germline beginning in L1 (first instar larva). With the caveat that gfp detection might be delayed compared to the onset of reporter activation, these findings indicated that the sequences in the reporter are able to drive sex-specific transcription in the germline at least as early as L1. 

      The authors next tagged the N-terminal end of the Sxl-Pe protein with HA (using Crispr/Cas9) and the N-terminal end of Sxl-Pm protein with Flag. They report that the HA-Sxl-Pe protein is first detected in the soma at stage 9 of embryogenesis. Somatic HA-Sxl-Pe protein persists into L1, but is no longer detected in L2. However, while somatic HA-Sxl-Pe protein is detected, they were unable to detect HA-Sxl-Pe protein in germ cells. In the case of FLAG-Sxl-Pm, it could first be detected in L2 germ cells indicating that at this juncture the Sxl-positive autoregulatory loop has been activated. This contrasts with Sxl-Pm transcripts which are observed in a few germ cells at stage 5 of embryogenesis, and in most germ cells by stage 10. The authors propose (based on the expression pattern of the Sxl-Pe10kb reporter and the appearance of Flag-Sxl-Pm protein) that Sxl-Pe comes on in germ cells in L1, and that the Sxl-Pe protein activates the female splicing of Sxl-Pm transcripts, giving detectable Flag-Sxl-Pm proteins beginning in L2. 

      To investigate the signals that activate Sxl-Pe in germ cells, the authors tested four of the X-linked genes (sis-a, sis-b, sis-c, and runt) that function to activate Sxl-Pe in the soma in early embryos. RNAi knockdown of sis-b, sis-c, and runt had no apparent effect on oogenesis. In contrast, knockdown of sis-a resulted in tumorous ovaries, a phenotype associated with Sxl mutations. (Three different RNAi transgenes were tested-two gave this phenotype, the third did not.) Sxl-Pe10kb reporter activity in L1 female germ cells is also dependent on sis-A. 

      Several approaches were used to confirm a role for sis-a in a) oogenesis and b) the activation of the Sxl-Pm autoregulatory loop. They showed that sis-a germline clones (using tissue-specific Crispr/Cas9 editing) resulted in the tumorous ovary phenotype and reduced the expression of Sxl protein in these ovaries. They found that sis-a transcripts and GFP-tagged Sis-A protein are present in germ cells. Finally, they showed tumorous ovary phenotype induced by germline RNAi knockdown of sis-a can be partially rescued by expressing Sxl in the germ cells. 

      Critique: 

      While this manuscript addresses a longstanding puzzle - the mechanism activating the Sxl autoregulatory loop in female germ cells-and likely identified an important germline transcriptional activator of Sxl, sis-a, the data that they've generated doesn't make a compelling story. At every step, there are puzzle pieces that don't fit the narrative. In addition, some of their findings are inconsistent with many previous studies. 

      We respect and appreciate this reviewer for the detailed comments. However, we feel that the claim that our work doesn’t “make a compelling story” and that many “pieces…don’t fit the narrative” is incorrect. The main issue that this reviewer raises is that we do not know if Sxl “early” transcription in the germline initiates from the Pe promoter. This is true, which we fully acknowledge, but the detail of whether “germline early” transcription of Sxl initiates from Pe or from other, as yet undefined, germline promoter does not affect the main conclusions of the paper. These conclusions are that a) regulation of Sxl in the germline is fundamentally different from in the soma and 2) despite point (1), sisA acts as an activator of Sxl in both the soma and the germline. Neither of these main points is disputed by this reviewer.

      (1) The authors used RNA FISH to time the expression of Sxl-Pe and Sxl-Pm transcripts in germ cells. Transcripts complementary to Sxl-Pe and Sxl-Pm were detected at the same time in embryos beginning at stage 5. This is not a definitive experiment as it could mean a) that Sxl-Pe and Sxl-Pm turn on at the same time, b) that Sxl-Pe comes on after Sxl-Pm (as suggested by the Sxl-Pe10kb reporter) or c) Sxl-Pe never comes on. 

      When designing this experiment, we wanted to test whether the “soma model” of Pe activation before Pm was also true in the germ cells. Our data clearly demonstrate that transcripts beginning downstream of Pe are not expressed prior to transcripts beginning downstream of Pm. Thus, we can state that the “soma model” of Pe first and then Pm does not occur in the germline, which is very interesting. However, we cannot make any other conclusions about Pe in the germline from these data, as the reviewer indicates.

      (2) Hashiyama et al reported that they detected gfp expression in stage 9/10 germ cells from a 1.5 kb Sxl-Pe-gfp. As noted above, this result wasn't entirely convincing and thus it isn't surprising that Goyal et al were unable to reproduce it. Extending the upstream sequences to just before the 1st exon of Sxl-Pm transcripts also didn't give gfp expression in germ cells. Only when they added 5 kb downstream did they detect gfp expression. However, from this result, it isn't possible to conclude that the Sxl-Pe promoter is actually driving gfp expression in L1 germ cells. Instead, the Sxl promoter active in the germ line could be anywhere in their 10 kb reporter. 

      We agree that we have not determined the transcriptional start sites for Sxl in the germline and it is possible that the 10.2 kb reporter uses a different promoter than Pe, as long as that transcript can also be spliced into exon 4 where the GFP tag has been placed. The three types of experiments conducted—FISH to regions of the nascent transcripts, tagged versions of the different predicted ORFs, and promoter-GFP constructs—are extensive, but all have different limitations. Indeed, it would be challenging to determine the transcription start sites in the germline, as it would require obtaining enough L1 larvae to be able to dissociate the animals, or isolated gonads, into single cells in order to FACS purify the germ cells for RACE or long-read sequencing (I’m not sure that L1 larval single-nucleus seq would be enough for calling start sites). Otherwise, there would be no way to determine if expected or unexpected transcripts came from the soma or the germline. We can consider these experiments in the future.

      Fortunately, the main conclusions from this paper do not require knowing whether the germline uses Pe or some other “germline early” promoter that can produce Sxl protein in the absence of autoregulation by existing Sxl protein. The observations that a nascent transcript including the region downstream of Pm is observed in embryonic germ cells, but that the tagged LATE protein is not observed until L2, suggest that the transcript produced in early germ cells cannot produce a functional protein. This is consistent with the need for Sxl autoregulation of the Pm transcript in the germline as in the soma, as was previously thought. This is further supported by the observations that activity of the 10.2 kb reporter is only observed in L1 germ cells, and that the LATE Sxl protein is only observed in germ cells after this point. Thus, we can conclude that either Pe, or another “germline early” promoter, acts to produce female-specific Sxl protein to initiate autoregulation of Sxl splicing and protein production in the germline. We feel that this is a significant advance for the field, and we will make it more clear in the text that the initial expression of Sxl in the germline may not be from the Pe promoter.

      Other conclusions of the manuscript are unaffected by the start site for “germline early” Sxl transcription, including that the germline activates Sxl protein expression much later than the soma, which calls into question previous work indicating an early role for Sxl in the germline. Also unaffected is our conclusion that different enhancer sequences are required for activation of Sxl expression in the germline than in the soma, consistent with previous work demonstrating that the genetics of Sxl activation in the germline are different than in the soma. Lastly, our conclusions that sisA acts upstream of Sxl, and is required for Sxl germline expression, either directly or indirectly, are also unaffected by the nature of the Sxl “germline early” start site.

      (3) At least one experiment suggests that Sxl-Pe never comes on in germ cells. The authors tagged the N-terminus of the Sxl-Pe protein with HA and the N-terminus of the Sxl-Pm protein with Flag. Though they could detect HA-Sxl-Pe protein in the soma, they didn't detect it in germ cells. On the other hand, the Flag-Sxl-Pm protein was detected in L2 germ cells (but not earlier). These results would more or less fit with those obtained for the 10 kb reporter and would support the following model: Prior to L1, Sxl-Pm transcripts are expressed and spliced in the male pattern in both male and female germ cells. During L1, Sxl protein expressed via a mechanism that depends upon a 10 kb region spanning Sxl-Pe (but not on Sxl-Pe) is produced and by L2 there are sufficient amounts of this protein to switch the splicing of Sxl-Pm transcripts from a male to a female pattern-generating Flag-tagged Sxl-Pm protein. 

      As described above, it is indeed possible that another promoter besides Pe is active as the “germline early” promoter. We will make this more clear in a revised version, but the major conclusions of the manuscript are unaffected.

      (4) The 10kb reporter is sex-specific, but not germline-specific. The levels of gfp in female L1 somatic cells are equal to if not greater than those in L1 female germ cells. That the Sxl-Pe10kb reporter is active in the soma complicates the conclusion that it represents a germ line-specific promoter. Germline activity is, however, sensitive to sis-A knockdowns which is plus. Presumably, somatic expression of the reporter wouldn't be sensitive to a (late) sis-A knockdown- but this wasn't shown. 

      We are confused by this comment because we do not conclude that the Pe is a germline-specific promoter. Pe is known to be expressed in the soma, from considerable previous work cited by this reviewer, and the simplest model is that Pe is used in both the soma and the germline, as reflected by our 10.2 kb reporter. It is actually quite interesting how late this promoter seems active in the soma, contrary to current dogma, but we did not study somatic activation of Sxl in this work.

      (5) Their results with the HA-Sxl-Pe protein don't fit with many previous studies-assuming that the authors have explained their results properly. They report that HA-Sxl-Pe protein is first detected in the soma at stage 9 of embryogenesis and that it then persists till L2. However, previous studies have shown that Sxl-Pe transcripts and then Sxl-Pe proteins are first detected in ~NC11-NC12 embryos. In RNase protection experiments, the Sxl-Pe exon is observed in 2-4 hr embryos, but not detected in 5-8 hr, 14-12 hr, L1, L2, L3, or pupae. Northerns give pretty much the same picture. Western blots also show that Sxl-Pe proteins are first detectable around the blastoderm stage. So it is not at all clear why HA-Sxl-Pe proteins are first observed at stage 9 which, of course, is well after the time that the Sxl-Pm autoregulatory loop is established. 

      Given the obvious problems with the initial timing of somatic expression described here, it is hard to know what to make of the fact that HA-tagged Sxl-Pe proteins aren't observed in germ cells. 

      As for the presence of HA-Sxl-Pe proteins later than expected: While RNase protection/Northern experiments showed that Sxl-Pe mRNAs are expressed in 2-4 hr embryos and disappear thereafter, one could argue from the published Western experiments that the Sxl-PE proteins expressed at the blastoderm stage persist at least until the end embryogenesis, though perhaps at somewhat lower levels than at earlier points in development. So the fact that Goyal et al were able to detect HA-Sxl-Pe proteins in stage 9 embryos and later on in L1 larva probably isn't completely unexpected. What is unexpected is that the HA-Sxl-Pe proteins weren't present earlier. 

      We thank the reviewer for this detailed analysis. Since we were not focused on somatic expression of Sxl in this work, it is possible that stage 9 was the earliest stage we observed in our experiments, rather than the earliest stage in which it is ever observed. We will repeat these experiments to verify when the HA-tagged early Sxl protein is first observed. However, these comments have no bearing on our conclusions about Sxl expression in the germline, which is the focus of this manuscript.

      (6) The authors use RNAi and germline clones to demonstrate that sis-A is required for proper oogenesis: when sis-A activity is compromised in germ cells, i) tumorous ovary phenotypes are observed and ii) there is a reduction in the expression of Sxl-Pm protein. They are also able to rescue the phenotypic effects of sis-a knockdown by expressing a Sxl-Pm protein. While the experiments indicating sis-a is important for normal oogenesis and that at least one of its functions is to ensure that sufficient Sxl is present in the germline stem cells seem convincing, other findings would make the reader wonder whether Sis-A is actually functioning (directly) to activate Sxl transcription from promoter X. 

      It is true that we do not know the binding specificity for SisA, which is why we have made no claims about the directness of SisA regulation of Sxl. This does not change our conclusions that sisA is upstream of Sxl activation, since loss of sisA function has a similar phenotype to loss of Sxl, loss of sisA blocks Sxl protein expression, and expression of Sxl rescues the sisA mutant phenotype.

      The authors show that sis-a mRNAs and proteins are expressed in stage 3-5 germ cells (PGCs). This is not unexpected as the X-linked transcription factors that turn Sxl-Pe on are expressed prior to nuclear migration, so their protein products should be present in early PGCs. The available evidence suggests that their transcription is shut down in PGCs by the factors responsible for transcriptional quiescence (e.g., nos and pgc) in which case transcripts might be detected in only one or two PGC-which fits with their images. However, it is hard to believe that expression of Sis-A protein in pre-blastoderm embryos is relevant to the observed activation of the Sxl-Pm autoregulatory loop hours later in L2 larva. 

      It is also not clear how the very low level of gfp-Sis-A seen in only a small subset of migrating germ cells in stage 10 embryos (Figure S6) would be responsible for activating the Sxl-Pe10kb reporter in L1. It seems likely that the small amount of protein seen in stage 10 embryos is left over from the pre-cellular blastoderm stage. In this case, it would not be surprising to discover that the residual protein is present in both female and male stage 10 germ cells. This would raise further doubts about the relevance of the gfp-Sis-A at these early stages. 

      In fact, given the evidence presented implicating sis-a in activating Sxl, (the germline activation of the Sxl-Pe10kb reporter, the RNAi knockdowns, and the germ cell-specific sis-a clones) it is clear that the sis-A RNAs and proteins seen in pre-cellular blastoderm PGCs aren't relevant. The germline clone experiment (and also the RNAi knockdowns) indicates that sis-A must be transcribed in germ cells after Cas9 editing has taken place. Presumably, this would be after transcription is reactivated in the germline (~stage 10) and after the formation of the embryonic gonad (stage 14) so that the somatic gonadal cells can signal to the germ cells. With respect to the reporter, the relevant time frame for showing that sis-A is present in germ cells would be even later in L1. 

      The reviewer is correct in wondering how early sisA transcription can affect late Sxl activation, and we are clear about this conundrum in our manuscript. However, they are incorrect about the early sisA expression. Our experiments examining nascent sisA transcripts indicate that sisA is zygotically expressed in the formed germ cells rather than being leftover from expression in early nuclei. The fact that only a portion of germ cells express sisA at any time may well be due to a timing issue, where not all germ cells express sisA at the same time. They are also incorrect about the timing of Cas9 editing in the germline—the guide RNAs are expressed from a general promoter that is active both maternally and in the early embryo, and the Cas9 RNA from the nos promoter is deposited in the germ plasm where it is translated long before cellularization, meaning that sisA CRISPR knockout can begin at the earliest stages of germ cell formation or before.

      (7) As noted above, the data in this manuscript do not support the idea that Sxl-Pe proteins activate the Sxl-Pm female splicing in the germline. Flybase indicates that there is at least one other Sxl promoter that could potentially generate a transcript that includes the male exon but still could encode a Sxl protein. This promoter "Sxl-Px" is located downstream of Sxl-Pm and from its position it could have been included in the authors' 10 kb reporter. The reported splicing pattern of the endogenous transcript skips exon2, and instead links an exon just downstream of Sxl-Px to the male exon. The male exon is then spliced to exon4. If the translation doesn't start and end at one of the small upstream orfs in the exons close to Sxl-Px and the male exon, a translation could begin with an AUG codon in exon4 that is in frame with the Sxl protein coding sequence. This would produce a Sxl protein that lacks aa sequences from N-terminus, but still retains some function. 

      Another possible explanation for how gfp is expressed from the 10 kb reporter is that the transcript includes the "z" exon described by Cline et al., 2010.

      As discussed above, the exact location of the start site for the Sxl transcript in the germline remains to be determined, but does not affect the main conclusions of the paper.

    1. here |BD| is unknown,

      Length of BD is unknown? So what will let us know, trig?

    2. h are the target coordinates for the end of the arm, point

      Because I have my fingertip with the position and also angle, the vector is determined. So it is actually the next joint up that angle can vary.

    3. lengths of the segments of the arm.

      magnitudes

    4. The target coordinates of the end of the arm, which is noted as point D, are (x,y).

      my target coordinates are the end of the finger (finger-tip) at (x,y) with constraints with a 105 degree angle.

    5. ll three segmentsof the arm move along one single plane, which means that we can use a 2D vectors forrepresentation. Let p

      How can we make it 3D vectors? What are the differences?

    6. ce simple geometry does not provide an easy solution to the research question, hispaper will use linear algebra and trigonometry to answer it.

      Already shown that simple geometry will not cut it -- study 2 things. Linear algebra, and trigonometry.

    Tags

    Annotators

    1. eLife assessment

      This important study uses single-cell RNA-seq to obtain a more granular understanding of cell subsets within allergic contact dermatitis in a model system with DNFB. The convincing data revela unique subpopulations of dermal fibroblasts as key responders to interferon gamma and likely as mediators of dermatitis. This study has many novel aspects and provides a unique resource as well.

    2. Reviewer #1 (Public Review):

      In this manuscript, Liu et al. used scRNA-seq to characterize cell type-specific responses during allergic contact dermatitis (ACD) in a mouse model, specifically the hapten-induced DNFB model. Using the scRNA-seq data, they deconvolved the cell types responsible for the expression of major inflammatory cytokines such as IFNG (from CD4 and CD8 T cells), IL4/13 (from basophils), IL17A (from gd T cells), and IL1B from neutrophils and macrophages. They found the highest upregulation of a type 1 inflammatory response, centering around IFNG produced by CD4 and CD8 T cells. They further identified a subpopulation of dermal fibroblasts (pre-adipocytes found in the dermal white adipose tissue layer) that upregulate CXCL9/10 during ACD and provide functional genetic evidence in their mouse model that disrupting IFNG signaling in fibroblasts decreases CD8 T cell infiltration and overall inflammation. They identify an increase in IFNG-expressing CD8 T cells in human patient samples of ACD vs. healthy control skin and co-localization of CD8 T cells with PDGFRA+ fibroblasts, which suggests this mechanism is relevant to human ACD. This mechanism is reminiscent of recent work showing that IFNG signaling in dermal fibroblasts upregulates CXCL9/10 to recruit CD8 T cells in a mouse model of vitiligo. Overall, this is a well-presented, clear, and comprehensive manuscript. The conclusions of the study are well supported by the data, with thoughtful discussion on study limitations by the authors. One such limitation was the use of one ACD model (DNFB), which prevents an assessment of how broadly relevant this axis is. The human sample validation is limited by the multiplexing capacity of immunofluorescence markers but shows a predominance of CD8+/IFNG+ cells and PDGFRA+/CXCL10+ cells in ACD (which are virtually absent in healthy control), along with co-localization of CD8+ cells with PDGFRA+ cells. Thus, this mechanism is likely active in human ACD.

      Strengths:<br /> Through deep characterization of the in vivo ACD model using scRNA-seq, the authors were able to determine which cell types were expressing the major cytokines involved in ACD inflammation, such as IFNG, IL4/13, IL17A, and IL1B. These analyses are well-presented and thoughtful, showing first that the response is IFNG-dominant, then focusing on deeper characterization of lymphocytes, myeloid cells, and fibroblasts, which are also validated and complemented by FACS experiments using canonical markers of these cell types as well as IF staining. Crosstalk analyses from the scRNA-seq data led the authors to focus on IFNG signaling fibroblasts, and in vitro experiments demonstrate that CXCL9 and CXCL10 are expressed by fibroblasts stimulated by IFNG. In vivo functional genetic evidence demonstrates an important role for IFNG signaling in fibroblasts, as KO of Ifngr1 using Pdgfra-Cre Ifngr1 fl/fl mice, showed a reduction in inflammation and CD8 T cell recruitment. Human ACD sample staining demonstrates the likely activity of the CD8 T cell IFNG-driven fibroblast response in human disease.

      Weaknesses:<br /> The use of one model limits an understanding of how broad this fibroblast-T cell axis is during ACD. However, the authors chose the most commonly employed model and compared their data to work in a vitiligo model (another type 1 immune response) to demonstrate similar mechanisms at play. Human patient samples of ACD were co-stained with two markers at a time, demonstrating the presence of CD8+IFNG+ T cells, PDGFRA+CXCL10+ fibroblasts, and co-localization of PDGFRA+ fibroblasts and CD8+ T cells. However, no IF staining demonstrates co-expression of all 4 markers at once; thus, the human validation of co-localization of CD8+IFNG+ T cells and PDGFRA+CXCL10+ fibroblasts is ultimately indirect, although more likely than not to be true.

    3. Reviewer #2 (Public Review):

      Summary: The investigators apply scRNA seq and bioinformatics to identify biomarkers associated with the DNFB-induced contact dermatitis in mice. The bioinformatics component of the study appears reasonable and may provide new insights regarding TH1 driven immune reactions in ACD in mice. However, the IF data and images of tissue sections are not clear and should be improved to validate the model.

      Strengths:<br /> The bioinformatics analysis.

      Weaknesses:<br /> The IF data presented in 4H, 6H, 7E and 7F are not convincing and need to be correlated with routine staining on histology and different IF markers for PDGFR. Some of the IF staining data demonstrates a pattern inconsistent with its target.

    1. Reviewer #1 (Public Review):

      Review after revision

      Of note the main results of this article are very similar to the results present in the previous manuscript (same Figures 1 to 9, addition of Figure 10 with no quantification).<br /> Unfortunately, the main weaknesses of the article have not been addressed:

      (1) The main findings have been obtained in clones of Jurkat cells. They have not been confirmed in primary T cells. The only experiment performed in primary cells is shown in Figure S7 (primary human T lymphoblasts) for which only the distribution of FMNL1 is shown without quantification. No results presenting the effect of FMNL1 KO and expression of mutants in primary T cells are shown.

      (2) Analysis in- depth of the defect in actin remodeling (quantification of the images, analysis of some key actors of actin remodeling) is still lacking. Only F-actin is shown, no attempt to look more precisely at actors of actin remodeling has been done.

      (3) The defect in the secretion of extracellular vesicles is still very preliminary. Examples of STED images given by the authors are nice, yet no quantification is performed.

      (4) Results shown in Figure S12 on the colocalization of proteins phosphorylated on Ser/Thr are still not convincing. It seems indeed that "phospho-PKC" is labeling more preferentially the CMAC positive cells (Raji) than the Jurkat T cells. It is thus particularly difficult to conclude on the co-localization and even more on the recruitment of phosphorylated-FMNL1 at the IS. Thus, these experiments are not conclusive and cannot be the basis even for their cautious conclusion: "Although all these data did not allow us to infer that FMNL1b is phosphorylated at the IS due to the resolution limit of confocal and STED microscopes, the results are compatible with the idea that both endogenous FMNL1 and YFP-FMNL1bWT are specifically phosphorylated at the cIS".

      The study would benefit from a more careful statistical analysis. The dot plots showing polarity are presented for one experiment. Yet, the distribution of the polarity is broad. Results of the 3 independent experiments should be shown and a statistical analysis performed on the independent experiments.

    2. Reviewer #2 (Public Review):

      Summary

      Based on i) the documented role of FMNL1 proteins in IS formation; ii) their ability to regulate F-actin dynamics; iii) the implication of PKCdelta in MVB polarization to the IS and FMNL1beta phosphorylation; and iv) the homology of the C-terminal DAD domain of FMNL1beta with FMNL2, where a phosphorylatable serine residue regulating its auto-inhibitory function had been previously identified, the authors have addressed the role of S1086 in the FMNL1beta DAD domain in F-actin dynamics, MVB polarization and exosome secretion, and investigated the potential implication of PKCdelta, which they had previously shown to regulate these processes, in FMNL1beta S1086 phosphorylation. They demonstrate that FMNL1beta is indeed phosphorylated on S1086 in a PKCdelta-dependent manner and that S1086-phosphorylated FMNL1beta acts downstream of PKCdelta to regulate centrosome and MVB polarization to the IS and exosome release. They provide evidence that FMNL1beta accumulates at the IS where it promotes F-actin clearance from the IS center, thus allowing for MVB secretion.

      Strengths

      The work is based on a solid rationale, which includes previous findings by the authors establishing a link between PKCdelta, FMNL1beta phosphorylation, synaptic F-actin clearance and MVB polarization to the IS. The authors have thoroughly addressed the working hypotheses using robust tools. Among these, of particular value is an expression vector that allows for simultaneous RNAi-based knockdown of the endogenous protein of interest (here all FMNL1 isoforms) and expression of wild-type or mutated versions of the protein as YFP-tagged proteins to facilitate imaging studies. The imaging analyses, which are the core of the manuscript, have been complemented by immunoblot and immunoprecipitation studies, as well as by the measurement of exosome release (using a transfected MVB/exosome reporter to discriminate exosomes secreted by T cells).

      Weaknesses

      The authors have satisfactorily addressed the weaknesses pointed out in my previous review.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      First, all the experiments are performed in Jurkat T cells that may not recapitulate the regulation of polarization in primary T cells.

      To extend our results in Jurkat cells forming IS to primary cells, we have now performed experiments using synapses established by Raji cells and either primary T cells  (TCRmediated) or primary CAR T cells (CAR-mediated) (new Suppl. Fig. S7). These experiments clearly show the presence of FMNL1 at these two different IS classes (new Suppl. Fig. S7), similar to what was found in Jurkat-Raji synapses. In addition, since most of the experiments were performed in Jurkat cells, we have changed the title of our manuscript, to be faithful to the main body of our results. New sentences dealing with this important issue have been included in the Results and Discussion sections.

      Moreover, all the experiments analyzing the role of PKCdelta are performed in one clone of wt or PKCdelta KO Jurkat cells. This is problematic since clonal variation has been reported in Jurkat T cells.

      Referee is right, this is the reason why we have studied three different control clones (C3, C9, C7) and three PKCdelta-interfered clones (P5, P6 and S4) all derived from JE6.1 clone and the results have been previously published (Herranz et al 2019)(Bello-Gamboa et al 2020). All these clones expressed similar levels of the relevant cell surface molecules and formed synaptic conjugates with similar efficiency (Herranz et al 2019). The P5, P6 and S4 clones exhibited a similar defect in MVB/MTOC polarization when compared with the control clones (Herranz et al 2019)(Bello-Gamboa et al 2020). Experiments developed by other researchers using a different clone of Jurkat (JE6.1) and primary CD4+ and CD8+ lymphocytes interfered in FMNL1 (Gomez et al. 2007), showed a comparable defect in MTOC polarization to that found in our control clones when were transiently interfered in FMNL1 (Bello-Gamboa et al 2020, this manuscript). In this manuscript we have studied, instead of canonical JE6.1 clone, C3 and C9 control clones derived from JE6.1, since the puromycin-resistant control clones (containing a scramble shRNA) were isolated by limiting dilution together with the PKCdelta-interfered clones (Herranz et al. 2019), thus C3 and C9 clones are the best possible controls to compare with P5 and P6 clones. Please realize that microsatellite analyses, available upon request, supports the identity of our C3 clone with JE6.1. Moreover, when GFP-PKCdelta was transiently expressed in the three PKCdelta-interfered clones, MTOC/MVB polarization was recovered to control levels (Herranz et al. 2019). Therefore, the deficient MTOC/MVB polarization in all these clones is exclusively due to the reduction in PKCdelta expression (Herranz et al 2019), and thus clonal variation cannot underlie our results in stable clones. We have now included new sentences to address this important point and to mention the inability of FMNL1betaS1086D to revert the deficient MTOC polarization occurring in P6 PKCdelta-interfered clone, as occurred in P5 clone. Due to the fact we have now included more figures and panels to satisfy editor and referees’s comments, we have not included the dot plot data corresponding to C9 and P6 clones to avoid a too long and repetitive manuscript. Since all the FMNL1 interference and FMNL1 variants reexpression experiments were performed in transient assays (2-4 days after transfection), there was no chance for any clonal variation in these short-time experiments. Moreover, internal controls using untransfected cells or Raji cells unpulsed with SEE were carried out in all these transient experiments.

      Finally, although convincing, the defect in the secretion of vesicles by T cells lacking phosphorylation of FMNL1beta on S1086 is preliminary. It would be interesting to analyze more precisely this defect. The expression of the CD63‑GFP in mutants by WB is not completely convincing. Are other markers of extracellular vesicles affected, e.g. CD3 positive?

      We acknowledge this comment. It is true that the mentioned results do not directly demonstrate the presence of exosomes at the synaptic cleft of the synapses, since the nanovesicles were harvested from the cell culture supernatants from synaptic conjugates and these nanovesicles could be produced by multi‑directional degranulation of MVBs. To address this important issue, we have performed STED super‑resolution imaging of the immune synapses made by control and FMNL1-interfered cells. Nanosized (100-150 nm) CD63+ vesicles can be found in the synaptic cleft between APC and control cells with polarized MVBs, whereas we could not detect these vesicles in the synaptic cleft from FMNL1-interfered cells that maintain unpolarized MVBs (New Fig. 10). New sentences have been included in the Results and Discussion dealing with this important point. Regarding the use of CD3 as a marker of extracellular vesicles, please realize that CD3 is neither an enriched nor a specific marker of exosomes, since it is also present in plasma membrane shedding vesicles, molting vesicles from microvilli, apoptotic bodies and small cell fragments, apart from exosomes, thus we have preferred to use the canonic exosome marker CD63 as a general exosome reporter readout, for WB and immunofluorescence (MVBs, exosomes), time-lapse of MVBs (suppl. Video 8) and super resolution experiments (Fig. 10).   

      Reviewer #2 (Public Review):

      Summary:

      The authors have addressed the role of S1086 in the FMNL1beta DAD domain in 4 F-actin dynamics, MVB polarization, and exosome secretion, and investigated the potential implication of PKCdelta, which they had previously shown to regulate these processes, in FMNL1beta S1086 phosphorylation. This is based on:

      (1) the documented role of FMNL1 proteins in IS formation

      (2) their ability to regulate F-actin dynamics

      (3) the implication of PKCdelta in MVB polarization to the IS and FMNL1beta phosphorylation

      (4) the homology of the C-terminal DAD domain of FMNL1beta with FMNL2, where a phosphorylatable serine residue regulating its auto-inhibitory function had been previously identified. They demonstrate that FMNL1beta is indeed phosphorylated on S1086 in a PKCdelta-dependent manner and that S1086-phosphorylated FMNL1beta acts downstream of PKCdelta to regulate centrosome and MVB polarization to the IS and exosome release. They provide evidence that FMNL1beta accumulates at the IS where it promotes F-actin clearance from the IS center, thus allowing for MVB secretion.  

      Strengths

      The work is based on a solid rationale, which includes previous findings by the authors establishing a link between PKCdelta, FMNL1beta phosphorylation, synaptic F-actin clearance, and MVB polarization to the IS. The authors have thoroughly addressed the working hypotheses using robust tools. Among these, of particular value is an expression vector that allows for simultaneous RNAi-based knockdown of the endogenous protein of interest (here all FMNL1 isoforms) and expression of wild-‐‑type or mutated versions of the protein as YFP‐tagged proteins to facilitate imaging studies. The imaging analyses, which are the core of the manuscript, have been complemented by immunoblot and immunoprecipitation studies, as well as by the measurement of exosome release (using a transfected MVB/exosome reporter to discriminate exosomes secreted by T cells).

      Weaknesses

      The data on F-‐‑actin clearance in Jurkat T cells knocked down for FMNL1 and expressing wild-type FMNL1 or the non‑phosphorylatable or phosphomimetic mutants thereof would need to be further strengthened, as this is a key message of the manuscript. Also, the entire work has been carried out on Jurkat cells. Although this is an excellent model easily amenable to genetic manipulation and biochemical studies, the key finding should be validated on primary T cells

      Referee’s global assessment is right. To extend our results in Jurkat cells forming IS, we have now performed experiments using synapses established by Raji cells and either primary T cells (TCR-mediated) or primary CAR T cells (CAR-mediated) (new Suppl. Fig. S7). These experiments clearly show the presence of FMNL1 at these two different IS classes (new Suppl. Fig. S7), similar to what was found in Jurkat-Raji synapses. In addition, since most of the experiments were performed in Jurkat cells, we have changed the title of our manuscript, to be faithful to the main body of our results. New sentences have been included in Results and Discussion to address these important points.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      This study shows the role of the phosphorylation of FMNL1b on S1086 on the polarity of T lymphocytes in T lymphocytes, which is a new and interesting finding. It would be important to confirm some of the key results in primary T cells and to analyze in-depth the defect in actin remodeling (quantification of the images, analysis of some key actors of actin remodeling). The description of the defect in the secretion of extracellular vesicles would also benefit from a more accurate analysis of the content of vesicles. 

      Referee is right.  We have now performed experiments using synapses containing Raji cells and either primary T cells (TCR-mediated) or primary CAR T cells (CAR-mediated) (new Suppl. Fig. S7). These experiments clearly show the presence of FMNL1 at these two different IS classes, similar to what was found in Jurkat-‐‑Raji synapses. Moreover, since most of the experiments were performed in Jurkat cells, we have changed the title of our manuscript, to be faithful to the main body of our results. Regarding the use of CD63 instead of other markers such as for instance,  CD3 (as stated by the other referee), please realize that CD3 is neither an enriched nor a specific marker of exosomes, since it is also present in plasma membrane shedding vesicles, molting vesicles from microvilli, apoptotic bodies and small cell fragments, apart from exosomes, thus we have preferred to use the accepted consensus, canonic extracellular vesicle marker CD63 (International Society of Extracellular Vesicles positioning, Thery et al 2018, doi: 10.1080/20013078.2018.1535750. eCollection 2018., Alonso et al. 2011) as a general exosome reporter readout, for both WB, immunofluorescence (MVBs, exosomes) and super-resolution experiments. Accordingly, GFP-‐‑CD63 reporter plasmid was used for exosome secretion in transient expression studies and living cell time-lapse experiments (Suppl. Video 8). Any other exosome marker will also be present in Raji cells and will not allow to analyse exclusively the secretion of exosomes by the effector Jurkat cells, since B lymphocytes produce a large quantity of exosomes upon MHC‑II stimulation by Th lymphocytes (Calvo et al, 2020, doi:10.3390/ijms21072631). To reinforce the exosome data in the context of the immune synapse, STED super-resolution imaging of the immune synapses made by control and FMNL1‑interfered cells was performed. Nanosized (100-150 nm) CD63+ vesicles can be found in the synaptic cleft of control cells with polarized MVBs, whereas we could no detect these vesicles in the synaptic cleft from FMNL1-interfered cells that maintain unpolarized MVBs (new Fig. 10).

      Moreover, all the videos are not completely illustrative. For example, in video 2 it would be more appropriate show only the z plane corresponding to the IS to see more precisely the F-actin remodeling relative to CD63 labeling.

      Referee is right. It is true that the upper rows in some videos may distract the reader of the main message contained in the lower row, that includes the 90º turn-generated, zx plane corresponding to the IS interface. Accordingly, we have maintained the still images of the whole synaptic conjugates in the first row from video 2; this will allow the reader to perceive a general view of the fluorochromes on the whole cell conjugates, as a reference, and to compare precisely the F-actin remodeling relative to CD63 labeling only at the zx interface (lower row). We have now processed the videos 1 and 5 following similar criteria

      The quality of videos 3 and 4 are not good enough. For video 7, it seems that the labeling of phospho-‐‑Ser is very broad at the IS, which is expected since it should label all the proteins that are phosphorylated by PKCs. The resolution of microscopy (at the best 200 to 300 nm) does not allow us to conclude on the co-‐localization of FMNL1b with phospho-‐‑Ser and is thus not conclusive. Finally, the study would benefit from a more careful statistical analysis. The dot plots showing polarity are presented for one experiment. Yet, the distribution of the polarity is broad. Results of the 3 independent experiments should be shown and a statistical analysis performed on the independent experiments

      Referee is right, we have amended video settings (brightness/contrast) in videos 3 and 4 to improve this issue. In addition, we would like to remark that the translocation of proteins to cellular substructures in living cells is not a trivial issue, since certain protein localizations are too dynamic to be properly imaged with enough spatial resolution. The equilibrium resulting from the association/dissociation of a certain protein to the membrane, in addition to the protein diffusion naturally occurring in living cells, as well as signal intensity fluctuations inherent to the stochastic nature of fluorescence emission often provide barriers for image quality (Shroff et al, 2024). Thus, additional image blurring is expected when compared with that observed in fixed samples. However, we think it is important to provide the potential readers with a dynamic view of FMNL1 localization, which can only be achieved through real-time videos, in addition to the still frames from the same videos provided in Fig. 6A (the referee did not argue against the inclusion of these frames), together with images from fixed cells in Fig 6B, for comparison. This is the reason why we have preferred to maintain the improved videos to complement the results of some spare frames from the videos, together with images from fixed cells in the same figure (Fig. 6).

      Regarding video 7, we agree that colocalization is limited by the spatial resolution of confocal  microscopy,  and this fact does not allow us to infer that FMNL1beta is phosphorylated at the IS. However, please realize we have never concluded this in our manuscript.  Instead, we claimed that “colocalization of endogenous FMNL1 and YFP‑FMNL1βWT with anti‑phospho‑Ser  …is compatible with the idea that both endogenous FMNL1 and YFP‑FMNL1βWT are specifically phosphorylated at the cIS”. Moreover, we have now performed colocalization in super‑resolved STED microscopy images, that reduces the XY resolution down to 30-­40 nm (Suppl. Fig. S12), and the results also support colocalization of endogenous FMNL1 with anti-phospho‑Ser PKC at the IS within a 30 nm resolution limit. We have now somewhat softened our conclusion: “Although all these data did not allow us to infer that FMNL1β is phosphorylated at the IS due to the resolution limit of confocal and STED microscopes, the results are compatible with the idea that both endogenous FMNL1 and YFP-FMNL1βWT are specifically phosphorylated at the cIS”.   

      Regarding statistical analyses we agree the dot distribution in the polarity experiments is quite broad, but this is consistent with the end point strategy used by a myriad of research groups (including ourselves) to image an intrinsically stochastic, rapid and asynchronous processes such as immune synapse formation and to score MTOC/MVB  polarization (Calvo et al 2018, https://doi.org/10.3389/fimmu.2018.00684). Despite this fact,  ANOVA  analyses have underscored the statistical significance of all the experiments represented by dot plot experiments. We cannot average or perform meta statistical analyses by combining the equivalent cohort results from independent experiments, since we have observed that small variations of certain variables (SEE concentration, cell recovery, time after transfection, etc.) affect synapse formation and PI values among experiments without altering the final outcome in each case. Please, note that our manuscript includes now 10  multi‑panel figures,  12  multi‑panel supplementary figures and 8 videos, and it is already quite large.  Thus,  we feel the inclusion of redundant, triplicate dot plot figures will dilute and distract to any potential reader from the main message of our already comprehensive contribution. We have now included new sentences at the figure legends to remark ANOVA analyses were executed separately in all the 3 independent experiments.

      Reviewer #2 (Recommendations For The Authors):

      (1) The key findings should be validated on primary CD4+ T cells (of which Jurkat is a transformed model).

      Referee is right. However, as commented by the other referee, the data from activating surfaces clearly shows that the synaptic actin architecture of the immune synapse from primary CD8+ T cells is essentially indistinguishable and thus unbiased from that of Jurkat T cells, but different to that of primary CD4+ cells (Murugesan, 2016). Thus, our data in Jurkat T cells are directly applicable to the synaptic architecture of primary CD8+ cells. In addition, to definitely extend our results in Jurkat cells forming IS, we have performed experiments using synapses established by Raji cells and either primary T cells (TCR-mediated) or primary CAR T cells (CAR-mediated) (new Suppl. Fig. S7) challenged by Raji cells. We have preferred to work with mixed CD4+ and CD8+ cells in order to maintain potential interactions in trans between these subpopulations that may affect or influence IS formation. These experiments clearly show the presence of FMNL1 at these two different IS classes (new Suppl. Fig. S7), similar to what was found in JurkatRaji synapses. Moreover, since most of the experiments were performed in Jurkat cells as stated by the referee, we have changed the title of our manuscript, to circumscribe our results to the model we have used and to be faithful to the main body of our results.

      (2) The image of wt YFP-­FMNL1beta in Figure 4A displays a weak CD63 signal and shows an asymmetric polarization of both the centrosome and MVBs. It should be replaced with a more representative one.

      Referee is right. Accordingly, we have modified the CD63 channel settings (brightness/contrast) in this panel to make it comparable to the other panels in the same figure. In addition, thanks to this referee´s comment, we have realized the position of the MTOC (yellow dot) in the diagram in the right side of the YFP-FMNL1betaWT panels row appeared mislocated, producing the mentioned apparent asymmetry with respect to MVBs’s center of mass (green dot) position. This mistake leads to an apparent segregation between the position of the center of mass of these organelles which certainly does not correspond with the real image. We have now amended the scheme and we apologize for this mistake.

      (3) The images showing F-­actin clearance at the IS (Figure 8, S4, S5) are not very convincing, also when looking at the MFI along the T cell-­‐‑APC interface in the en-­‐face  views.  Since  the  F-­actin  signal  also  includes  some  signal  from  the  APC, transfecting T cells with an actin reporter to selectively image T cell actin could better clarify this key point.

      Referee´s point is correct. However, we (83), and other researchers using the proposed actin reporter approach in the same Raji/Jurkat IS model (Fig. 4 in ref 84) have already excluded the possibility that actin cytoskeleton of Raji cells can also contribute to the measurements of synaptic F-actin. In Materials and Methods, page 37, lines 1048-1055 we included this related sentence:  ¨It is important to remark that MHC-II-antigen triggering on the B cell side of the Th synapse does not induce noticeable F-­actin changes along the synapse (i.e. F-­actin clearing at the central IS), in contrast to TCR stimulation on T cell side (84) (85) (3). In addition, we have observed that majority of F‐‑actin changes along the IS belongs to the Jurkat cell (83). Thus, the contribution to the analyses of the residual, invariant F‐actin from the B cell is negligible using our protocol (83).

      Thus, we can exclude this caveat may affect our results.

      (4) A similar consideration applies to the MVB distribution in the en‑face images. For example, in Figure S5 the MVB profile, with some peripheral distribution, does not appear very different in cells expressing wt YFP‑tagged FMNL1beta versus the S1086A‑expressing cells.

      The referee's assessment regarding Supp. Figure S5 is valid. Using only the plot profile, the outcomes obtained with YFP-FMNL1βWT may appear comparable to those derived from YFP-FMNL1βS1086A. Nonetheless, this resemblance is attributed to the plot profile's exclusive consideration of the MVBs signal in the interface from the immune synapse region (white rectangle). The upper images (second row), where the whole cell is displayed, illustrate that in YFP-FMNL1βWT, MVB are specifically accumulated within this specific region, in contrast to the scattered distribution observed in YFP-FMNL1βS1086A, where MVB are dispersed throughout the cell without distinction. While MVBs are evident in both instances within the synapse region, the reason behind this observation is different. The YFP-FMNL1βWT transfected cell (third column) shows a pronounced MVB concentration within the synaptic area (white rectangle), which leads to MVB PI=0.52, whereas the YFP-FMNL1βS1086A transfected cell (fourth column), as it presents a scattered distribution of MVB throughout the cell, also exhibits some MVB (but only a small proportion of the total cellular MVB) in the synaptic area, which yields MVB PI=-0.09. Please realise that the position of the center of mass of the distribution of MVB (MVBC) labelled in this figure (white squares) is an unbiased parameter that mirrors MVB center of mass polarization. A new sentence has been included in the figure legend to clarify this important point.

      (5) The image in the first row in Figure 6B does not show a clear accumulation of FMNL1beta at the IS, possibly because the T cell is in contact with two APCs. This image should be replaced.

      Referee is right Therefore, we have replaced the quoted example with a single cell:cell synapse that shows a clearer and more localized accumulation in the cIS, thereby avoiding the mentioned caveat.

      (6) In Figure 2A the last row shows what appears to be a T:T cell conjugate (with one cell expressing the YFP-­‐‑tagged protein). The image should be replaced with another showing a T cell-­APC (blue) conjugate.

      Referee is right, we have accordingly replaced the mentioned image with a T cell:APC conjugate.

      (7) The Discussion is very long and dispersive. It would benefit from shortening it and making it more focused.

      Referee is right, we have shortened and focused it, by eliminating the whole second and third paragraphs of the discussion. Moreover, a whole paragraph in page 24 has been also deleted.

      We have also focussed the discussion towards the new data in primary T lymphocytes.

    1. eLife assessment

      This paper presents valuable findings that gustation and nutrition might independently influence the preferred environmental temperature in flies. The evidence supporting the main claims is solid and well presented. The finding that flies might thus exhibit a cephalic phase response similar to mammals will be of value for future investigations.

    2. Reviewer #1 (Public Review):

      Summary:

      This paper presents valuable findings that gustation and feeding state influence the preferred environmental temperature preference in flies. Interestingly, the authors showed that by refeeding starved animals with non-nutritive sugar sucralose, they are able to tune their preference towards a higher temperature in addition to nutrient-dependent warm preference. The authors show that temperature sensing and sweet sensing gustatory neurons (SGNs) are involved in the former but not the latter. In addition, their data indicate that peptidergic signals involved in internal state and clock genes are required for taste-dependent warm preference behavior.

      The authors made an analogy of their results to the cephalic phase response (CPR) in mammals where the thought, sight and taste of food prepares the animal for the consumption of food and nutrients. The authors showed that taste triggers CPR-induced temperature preference behaviors in flies. The authors also briefly covered that the combined modalities of smell and taste induced CPR responses, showing that starved orco mutant flies failed to recover temperature preference after refeeding with sucralose.

      The findings of this work hold promising future research prospects, for example, whether the sight of food influences temperature preference behavior in hungry flies, or whether taste, smell and sight work together or independently in promoting CPR responses.

      Futhermore, these valuable behavioral results can be further investigated in flies with the advantage of being able to dissect the neural circuitry underlying CPR and nutrient homeostasis.

      Strengths:

      (1) The authors convincingly showed that tasting is sufficient to drive warm temperature preference behavior in starved flies and show that it is independent of nutrient-driven warm preference.<br /> (2) By using the genetic manipulation of key internal sensors and genes controlling internal feeding and sleep state such as DH44 neurons and the per genes for eg the authors linked gustation and temperature preference behavior control to the internal state of the animal.

      Weaknesses:

      Most of the weaknesses of the paper have been addressed in the revision. The points mentioned below are meant to improve readability of the paper and to promote understanding of the significance of the work.<br /> (1) Supplementary fig 1 could replace Figure 1A. The purpose of Figure 1F is not clear to me as the comparison between the different food substances is not separately addressed anywhere in the text.<br /> (2) The data for the orco receptor mutant could be placed in the main figures to justify the discussion emphasising CPR-like responses.

    3. Reviewer #2 (Public Review):

      Animals constantly adjust behavior and physiology based on internal states. Hungry animals, desperate for food, exhibit physiological changes immediately upon sensing, smelling, or chewing food, known as the cephalic phase response (CPR), involving processes like increased saliva and gastrointestinal secretions. While starvation lowers body temperature, the mechanisms underlying how the sensation of food without nutrients induces behavioral responses remain unclear. Hunger stress induces changes in both behavior and physiological responses, which in flies (or at least in Drosophila melanogaster) leads to a preference for lower temperatures, analogous to the hunger-driven lower body temperature observed in mammals. In this manuscript, the authors have used Drosophila melanogaster to investigate the issue of whether taste cues can robustly trigger behavioral recovery of temperature preference in starving animals. The authors find that food detection triggers a warm preference in flies. Starved flies recover their temperature preference after food intake, with a distinction between partial and full recovery based on the duration of refeeding. Sucralose, an artificial sweetener, induces a warm preference, suggesting the importance of food-sensing cues. The paper compares the effects of sucralose and glucose refeeding, indicating that both taste cues and nutrients contribute to temperature preference recovery. The authors show that that sweet gustatory receptors (Grs) and sweet GRNs (Gustatory Receptor Neurons) play a crucial role in taste-evoked warm preference. Optogenetic experiments with CsChrimson support the idea that the excitation of sweet GRNs leads to a warm preference. The authors then examine the internal state's influence on taste-evoked warm preference, focusing on neuropeptide F (NPF) and small neuropeptide F (sNPF), analogous to mammalian neuropeptide Y. Mutations in NPF and sNPF result in a failure to exhibit taste-evoked warm preference, emphasizing their role in this process. However, these neuropeptides appear not to be critical for nutrient-induced warm preference, as indicated by increased temperature preference during glucose and fly food refeeding in mutant flies. The authors also explore the role of hunger-related factors in regulating taste-evoked warm preference. Hunger signals, including diuretic hormone (DH44) and adipokinetic hormone (AKH) neurons, are found to be essential for taste-evoked warm preference but not for nutrient-induced warm preference. Additionally, insulin-like peptide 6 (Ilp6) and Unpaired3 (Upd3), related to nutritional stress, are identified as crucial for taste-evoked warm preference. The investigation then extends into circadian rhythms, revealing that taste-evoked warm preference does not align with the feeding rhythm. While flies exhibit a rhythmic feeding pattern, taste-evoked warm preference occurs consistently, suggesting a lack of parallel coordination. Clock genes, crucial for circadian rhythms, are found to be necessary for taste-evoked warm preference but not for nutrient-induced warm preference.

      Strengths:

      A well-written and interesting study, investigating an intriguing issue. The claims, none of which to the best of my knowledge controversial, are backed by a substantial number of experiments.

      Weakness:

      The experimental setup used and the procedures for assessing the temperature preferences of flies is rather sparingly described. Additional details and data presentation would enhance the clarity and replicability of the study. I kindly request the authors to consider the following points: i) A schematic drawing or diagram illustrating the experimental setup for the temperature preference assay would greatly aid readers in understanding the spatial arrangement of the apparatus, temperature points, and the positioning of flies during the assay. The drawing should also be accompanied by specific details about the setup (dimensions, material, etc). ii) It would be beneficial to include a visual representation of the distribution of flies within the temperature gradient on the apparatus. A graphical representation, such as a heatmaps or histograms, showing the percentage of flies within each one-degree temperature bin, would offer insights into the preferences and behaviors of the flies during the assay. In addition to the detailed description of the assay and data analysis, the inclusion of actual data plots, especially for key findings or representative trials, would provide readers with a more direct visualization of the experimental outcomes. These additions will not only enhance the clarity of the presented information but also provide the reader with a more comprehensive understanding of the experimental setup and results. I appreciate the authors' attention to these points and look forward to the potential inclusion of these elements in the revised manuscript.

      Update: The revised manuscript now includes heatmaps showing the distribution of the flies across the temperature bins. As well as a schematic drawing of the behavioral setup.

    1. EcoStrange Loop Gamesvie, 16 ago, 19:00 - vie, 13 sept, 18:59 CEST

      OK

    2. Warhammer 40,000: Speed FreeksPLAION GmbHmar, 6 ago, 17:00 - lun, 2 sept, 19:20 CEST

      OK

    3. Slipstream: Rogue SpaceSubpixeljue, 15 ago, 2:00 - dom, 1 sept, 1:58 CEST

      OK

    1. Spatial System Structural system• The three-cfimensional integration of program elements and spaces ■ A grid of columns supports horizontal beams and slabs,accommodates the multiple functions and relationships of a house. ■ The cantilever acknowledges the direction of approach along thelongitudinal axis.Enclosure system• Four exterior wall planes define a rectangular volume that contains the program elements and spaces.

      The model presenting the structure is split into 3 main diagrams (Spatial system, Structural system, Enclosure system) to help the viewer identify how different parts hold up the structure.

    2. the basic elements of form and space

      what is considered the basic elements?

    3. hey may also reflect in varying degrees the social, political, and economic climate.

      How can these majorly effect the way an architecture is built?

    4. physical manifestations of architecture accommodate human activity.

      To what extent do they accommodate human activity?

    5. manipulated and organized

      In what ways can the basic elements of form and space be manipulated?

    6. the basic elements of form and space

      What are the basic elements of form and space?

    7. The act of creating architecture, then, is a problem-solving or design

      Is this similar to the design process? What problems are there to solve?

    8. one's understanding of a design language is limited, then the range of possible solutions to a problem will also be limited.

      how can architects expanding their understanding of design language?

    1. The middle layer approach pushes designers to explicitly describe the component visual architecture and that translates to its better understanding.
    1. or //gmd:contact

      ebenfalls: gmd:contact ist lediglich fallback

    2. //gmd:contact//che:CHE_CI_ResponsibleParty

      gmd:contact ist der Metadatenkontakt und wird alls Fallback hier verwendet. Evtl. so hier beschreiben.

    1. eLife assessment

      This valuable manuscript describes evidence of sex differences in specific corticostriatal projections during alcohol consumption, and this is noteworthy given the increasing rates/levels of drinking in females and their liability for Alcohol Use disorder. The authors provide solid evidence of the lateralisation of the activity of the circuit, but other evidence is incomplete, particularly with regard to how the drinking measure relates to intoxication. There are some inconsistencies that make it difficult to reconcile the photometry and behavioral data. The findings would benefit from causal assessment in the future. The findings will be of interest to researchers investigating functional circuitry underlying alcohol-driven behaviors.

    2. Reviewer #1 (Public Review):

      Summary:

      This paper uses a model of binge alcohol consumption in mice to examine how the behaviour and its control by a pathway between the anterior insular cortex (AIC) to the dorsolateral striatum (DLS) may differ between males and females. Photometry is used to measure the activity of AIC terminals in the DLS when animals are drinking and this activity seems to correspond to drink bouts in males but not females. The effects appear to be lateralized with inputs to the left DLS being of particular interest.

      Strengths:

      Increasing alcohol intake in females is of concern and the consequences for substance use disorder and brain health are not fully understood, so this is an area that needs further study. The attempt to link fine-grained drinking behaviour with neural activity has the potential to enrich our understanding of the neural basis of behaviour, beyond what can be gleaned from coarser measures of volumes consumed etc.

      Weaknesses:

      The introduction to the drinking in the dark (DID) paradigm is rather narrow in scope (starting line 47). This would be improved if the authors framed this in the context of other common intermittent access paradigms and gave due credit to important studies and authors that were responsible for the innovation in this area (particularly studies by Wise, 1973 and returned to popular use by Simms et al 2010 and related papers; e.g., Wise RA (1973). Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29: 203-210; Simms, J., Bito-Onon, J., Chatterjee, S. et al. Long-Evans Rats Acquire Operant Self-Administration of 20% Ethanol Without Sucrose Fading. Neuropsychopharmacol 35, 1453-1463 (2010).) The original drinking in the dark demonstrations should also be referenced (Rhodes et al., 2005). Line 154 Theile & Navarro 2014 is a review and not the original demonstration.

      When sex differences in alcohol intake are described, more care should be taken to be clear about whether this is in terms of volume (e.g. ml) or blood alcohol levels (BAC, or at least g/kg as a proxy measure). This distinction was often lost when lick responses were being considered. If licking is similar (assuming a single lick from a male and female brings in a similar volume?), this might mean males and females consume similar volumes, but females due to their smaller size would become more intoxicated so the implications of these details need far closer consideration. What is described as identical in one measure, is not in another.

      While the authors have some previous data on the AIC to DLS pathway, there are many brain regions and pathways impacted by alcohol and so the focus on this one in particular was not strongly justified. Since photometry is really an observational method, it's important to note that no causal link between activity in the pathway and drinking has been established here.

      It would be helpful if the authors could further explain whether their modified lickometers actually measure individual licks. While in some systems contact with the tongue closes a circuit which is recorded, the interruption of a photobeam was used here. It's not clear to me whether the nose close to the spout would be sufficient to interrupt that beam, or whether a tongue protrusion is required. This detail is important for understanding how the photometry data is linked to behaviour. The temporal resolution of the GCaMP signal is likely not good enough to capture individual links but I think more caution or detail in the discussion of the correspondence of these events is required.

      Even if the pattern of drinking differs between males and females, the use of the word "strategy" implies a cognitive process that was never described or measured.

    3. Reviewer #2 (Public Review):

      Summary:

      This study looks at sex differences in alcohol drinking behaviour in a well-validated model of binge drinking. They provide a comprehensive analysis of drinking behaviour within and between sessions for males and females, as well as looking at the calcium dynamics in neurons projecting from the anterior insula cortex to the dorsolateral striatum.

      Strengths:

      Examining specific sex differences in drinking behaviour is important. This research question is currently a major focus for preclinical researchers looking at substance use. Although we have made a lot of progress over the last few years, there is still a lot that is not understood about sex-differences in alcohol consumption and the clinical implications of this.

      Identifying the lateralisation of activity is novel, and has fundamental importance for researchers investigating functional anatomy underlying alcohol-driven behaviour (and other reward-driven behaviours).

      Weaknesses:

      Very small and unequal sample sizes, especially females (9 males, 5 females). This is probably ok for the calcium imaging, especially with the G-power figures provided, however, I would be cautious with the outcomes of the drinking behaviour, which can be quite variable.

      For female drinking behaviour, rather than this being labelled "more efficient", could this just be that female mice (being substantially smaller than male mice) just don't need to consume as much liquid to reach the same g/kg. In which case, the interpretation might not be so much that females are more efficient, as that mice are very good at titrating their intake to achieve the desired dose of alcohol.

    4. Reviewer #3 (Public Review):

      Summary:

      In this manuscript by Haggerty and Atwood, the authors use a repeated binge drinking paradigm to assess how water and ethanol intake changes in male in female mice as well as measure changes in anterior insular cortex to dorsolateral striatum terminal activity using fiber photometry. They find that overall, males and females have similar overall water and ethanol intake, but females appear to be more efficient alcohol drinkers. Using fiber photometry, they show that the anterior insular cortex (AIC) to dorsolateral striatum projections (DLS) projections have sex, fluid, and lateralization differences. The male left circuit was most robust when aligned to ethanol drinking, and water was somewhat less robust. Male right, and female and left and right, had essentially no change in photometry activity. To some degree, the changes in terminal activity appear to be related to fluid exposure over time, as well as within-session differences in trial-by-trial intake. Overall, the authors provide an exhaustive analysis of the behavioral and photometric data, thus providing the scientific community with a rich information set to continue to study this interesting circuit. However, although the analysis is impressive, there are a few inconsistencies regarding specific measures (e.g., AUC, duration of licking) that do not quite fit together across analytic domains. This does not reduce the rigor of the work, but it does somewhat limit the interpretability of the data, at least within the scope of this single manuscript.

      Strengths:

      - The authors use high-resolution licking data to characterize ingestive behaviors.<br /> - The authors account for a variety of important variables, such as fluid type, brain lateralization, and sex.<br /> - The authors provide a nice discussion on how this data fits with other data, both from their laboratory and others'.<br /> - The lateralization discovery is particularly novel.

      Weaknesses:

      - The volume of data and number of variables provided makes it difficult to find a cohesive link between data sets. This limits interpretability.<br /> - The authors describe a clear sex difference in the photometry circuit activity. However, I am curious about whether female mice that drink more similarly to males (e.g., less efficiently?) also show increased activity in the left circuit, similar to males. Oppositely, do very efficient males show weaker calcium activity in the circuit? Ultimately, I am curious about how the circuit activity maps to the behaviors described in Figures 1 and 2.<br /> - What does the change in water-drinking calcium imaging across time in males mean? Especially considering that alcohol-related signals do not seem to change much over time, I am not sure what it means to have water drinking change.

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      This paper uses a model of binge alcohol consumption in mice to examine how the behaviour and its control by a pathway between the anterior insular cortex (AIC) to the dorsolateral striatum (DLS) may differ between males and females. Photometry is used to measure the activity of AIC terminals in the DLS when animals are drinking and this activity seems to correspond to drink bouts in males but not females. The effects appear to be lateralized with inputs to the left DLS being of particular interest. 

      Strengths: 

      Increasing alcohol intake in females is of concern and the consequences for substance use disorder and brain health are not fully understood, so this is an area that needs further study. The attempt to link fine-grained drinking behaviour with neural activity has the potential to enrich our understanding of the neural basis of behaviour, beyond what can be gleaned from coarser measures of volumes consumed etc. 

      Weaknesses: 

      The introduction to the drinking in the dark (DID) paradigm is rather narrow in scope (starting line 47). This would be improved if the authors framed this in the context of other common intermittent access paradigms and gave due credit to important studies and authors that were responsible for the innovation in this area (particularly studies by Wise, 1973 and returned to popular use by Simms et al 2010 and related papers; e.g., Wise RA (1973). Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29: 203-210; Simms, J., Bito-Onon, J., Chatterjee, S. et al. Long-Evans Rats Acquire Operant Self-Administration of 20% Ethanol Without Sucrose Fading. Neuropsychopharmacol 35, 1453-1463 (2010).)

      We appreciate the reviewer’s perspective on the history of the alcohol research field. There are hundreds of papers that could be cited regarding all the numerous different permutations of alcohol drinking paradigms. This study is an eLife “Research Advances” manuscript that is a direct follow-up study to a previously published study in eLife (Haggerty et al., 2022) that focused on the Drinking in the Dark model of binge alcohol drinking. This study must be considered in the context of that previous study (they are linked), and thus we feel that a comprehensive review of the literature is not appropriate for this study.

      The original drinking in the dark demonstrations should also be referenced (Rhodes et al., 2005). Line 154 Theile & Navarro 2014 is a review and not the original demonstration. 

      This is a good recommendation. We have added this citation to Line 33 and changed Line 154.

      When sex differences in alcohol intake are described, more care should be taken to be clear about whether this is in terms of volume (e.g. ml) or blood alcohol levels (BAC, or at least g/kg as a proxy measure). This distinction was often lost when lick responses were being considered. If licking is similar (assuming a single lick from a male and female brings in a similar volume?), this might mean males and females consume similar volumes, but females due to their smaller size would become more intoxicated so the implications of these details need far closer consideration. What is described as identical in one measure, is not in another. 

      As shown in Figure 1, all measures of intake are reported as g/kg for both water and alcohol to assess intakes across fluids that are controlled by body weights. We do not reference changes in fluid volume or BACs to compare differences in measured lickometry or photometric signals, except in one instance where we suggest that the total volume of water (ml) is greater than the total amount of alcohol (ml) consumed in DID sessions, but this applies generally to all animals, regardless of sex, across all the experimental procedures.

      In Figure 2 – Figure Supplement 1 we show drinking microstructures across single DID sessions, and that males and females drink similarly, but not identically, when assessing drinking measures at the smallest timescale that we have the power to detect with the hardware we used for these experiments. Admittedly, the variability seen in these measures is certainly non-zero, and while we are tempted to assume that there exist at least some singular drinks that occur identically between males and females in the dataset that support the idea that females are simply just consuming more volume of fluid per singular drink, we don’t have the sampling resolution to support that claim statistically. Further, even if females did consume more volume per singular drink that males, we do not believe that is enough information to make the claim that such behavior leads to more “intoxication” in females compared males, as we know that alcohol behaviors, metabolism, and uptake/clearance all differ significantly by sex and are contributing factors towards defining an intoxication state. We’ve amended the manuscript to remove any language of referencing these drinking behaviors as identical to clear up the language.

      No conclusions regarding the photometry results can be drawn based on the histology provided. Localization and quantification of viral expression are required at a minimum to verify the efficacy of the dual virus approach (the panel in Supplementary Figure 1 is very small and doesn't allow terminals to be seen, and there is no quantification). Whether these might differ by sex is also necessary before we can be confident about any sex differences in neural activity. 

      We provide hit maps of our fiber placements and viral injection centers, as we have, and many other investigators do regularly for publication based on histological verification. Figure 1A clearly shows the viral strategy taken to label AIC to DLS projections with GCaMP7s, and a representative image shows green GCaMP positive terminals below the fiber placement. Considering the experiments, animals without proper viral expression did not display or had very little GCaMP signal, which also serves as an additional expression-based control in addition to typical histology performed to confirm “hits”. These animals with poor expression or obvious misplacement of the fiber probes were removed as described in the methods. Further, we also report our calcium signals as z-scored differences in changes in observed fluorescence, thus we are comparing scaled averages of signals across sexes, and days, which helps minimize any differences between “low” or “high” viral transduction levels at the terminals, directly underneath the tips of the fibers.

      While the authors have some previous data on the AIC to DLS pathway, there are many brain regions and pathways impacted by alcohol and so the focus on this one in particular was not strongly justified. Since photometry is really an observational method, it's important to note that no causal link between activity in the pathway and drinking has been established here. 

      As mentioned above, this article is an eLife Research Advances article that builds on our previous AIC to DLS work published in eLife (Haggerty et al., 2022). Considering that this is a linked article, a justification for why this brain pathway was chosen is superfluous. In addition, an exhaustive review of all the different brain regions and pathways that are affected by binge alcohol consumption to justify this pathway seems more appropriate to a review article than an article such as this.  

      We make no claims that photometric recordings are anything but observational, but we did observe these signals to be different when time-locked to the beginning of drinking behaviors. We describe this link between activity in the pathway and drinking throughout the manuscript. It is indeed correlational, but just because it is not causal does not mean that our findings are invalid or unimportant.

      It would be helpful if the authors could further explain whether their modified lickometers actually measure individual licks. While in some systems contact with the tongue closes a circuit which is recorded, the interruption of a photobeam was used here. It's not clear to me whether the nose close to the spout would be sufficient to interrupt that beam, or whether a tongue protrusion is required. This detail is important for understanding how the photometry data is linked to behaviour. The temporal resolution of the GCaMP signal is likely not good enough to capture individual links but I think more caution or detail in the discussion of the correspondence of these events is required. 

      The lickometers do not capture individual licks, but a robust quantification of the information they capture is described in Godynyuk et al. 2019 and referenced in multiple other papers (Flanigan et al. 2023, Haggerty et al. 2022, Grecco et al. 2022, Holloway et al. 2023) where these lickometers have been used. However, individual lick tracking is not a requirement for tracking drinking behaviors more generally. The lickometers used clearly track when the animals are at the bottles, drinking fluids, and we have used the start of that lickometer signal to time-lock our photometry signals to drinking behaviors. We make no claims or have any data on how photometric signals may be altered on timescales of single licks. In regard to how AIC to DLS signals change on the second time scale when animals initiate drinking behaviors, we believe we explain these signals with caution and in context of the behaviors they aim to describe.

      Even if the pattern of drinking differs between males and females, the use of the word "strategy" implies a cognitive process that was never described or measured. 

      We use the word strategy to describe a plan of action that is executed by some chunking of motor sequences that amounts to a behavioral event, in this case drinking a fluid. We do not mean to imply anything further than this by using this specific word.

      Reviewer #2 (Public Review): 

      Summary: 

      This study looks at sex differences in alcohol drinking behaviour in a well-validated model of binge drinking. They provide a comprehensive analysis of drinking behaviour within and between sessions for males and females, as well as looking at the calcium dynamics in neurons projecting from the anterior insula cortex to the dorsolateral striatum. 

      Strengths: 

      Examining specific sex differences in drinking behaviour is important. This research question is currently a major focus for preclinical researchers looking at substance use. Although we have made a lot of progress over the last few years, there is still a lot that is not understood about sex-differences in alcohol consumption and the clinical implications of this. 

      Identifying the lateralisation of activity is novel, and has fundamental importance for researchers investigating functional anatomy underlying alcohol-driven behaviour (and other reward-driven behaviours). 

      Weaknesses: 

      Very small and unequal sample sizes, especially females (9 males, 5 females). This is probably ok for the calcium imaging, especially with the G-power figures provided, however, I would be cautious with the outcomes of the drinking behaviour, which can be quite variable. 

      For female drinking behaviour, rather than this being labelled "more efficient", could this just be that female mice (being substantially smaller than male mice) just don't need to consume as much liquid to reach the same g/kg. In which case, the interpretation might not be so much that females are more efficient, as that mice are very good at titrating their intake to achieve the desired dose of alcohol. 

      We agree that the “more efficient” drinking language could be bolstered by additional discussion in the text, and thus have added this to the manuscript starting at line 440.

      I may be mistaken, but is ANCOVA, with sex as the covariate, the appropriate way to test for sex differences? My understanding was that with an ANCOVA, the covariate is a continuous variable that you are controlling for, not looking for differences in. In that regard, given that sex is not continuous, can it be used as a covariate? I note that in the results, sex is defined as the "grouping variable" rather than the covariate. The analysis strategy should be clarified. 

      In lines 265-267, we explicitly state that the covariate factor was sex, which is mathematically correct based on the analyses we ran. We made an in-text error where we referred to sex as a grouping variable on Line 352, when it should have been the covariate. Thank you for the catch and we have corrected the manuscript.

      But, to reiterate, we are attempting to determine if the regression fits by sex are significantly different, which would be reported as a significant covariate. Sex is certainly a categorical variable, but the two measures at which we are comparing them against are continuous, so we believe we have the validity to run an ANCOVA here.

      Reviewer #3 (Public Review): 

      Summary: 

      In this manuscript by Haggerty and Atwood, the authors use a repeated binge drinking paradigm to assess how water and ethanol intake changes in male in female mice as well as measure changes in anterior insular cortex to dorsolateral striatum terminal activity using fiber photometry. They find that overall, males and females have similar overall water and ethanol intake, but females appear to be more efficient alcohol drinkers. Using fiber photometry, they show that the anterior insular cortex (AIC) to dorsolateral striatum projections (DLS) projections have sex, fluid, and lateralization differences. The male left circuit was most robust when aligned to ethanol drinking, and water was somewhat less robust. Male right, and female and left and right, had essentially no change in photometry activity. To some degree, the changes in terminal activity appear to be related to fluid exposure over time, as well as within-session differences in trial-by-trial intake. Overall, the authors provide an exhaustive analysis of the behavioral and photometric data, thus providing the scientific community with a rich information set to continue to study this interesting circuit. However, although the analysis is impressive, there are a few inconsistencies regarding specific measures (e.g., AUC, duration of licking) that do not quite fit together across analytic domains. This does not reduce the rigor of the work, but it does somewhat limit the interpretability of the data, at least within the scope of this single manuscript. 

      Strengths: 

      - The authors use high-resolution licking data to characterize ingestive behaviors. 

      - The authors account for a variety of important variables, such as fluid type, brain lateralization, and sex. 

      - The authors provide a nice discussion on how this data fits with other data, both from their laboratory and others'. 

      - The lateralization discovery is particularly novel. 

      Weaknesses: 

      - The volume of data and number of variables provided makes it difficult to find a cohesive link between data sets. This limits interpretability.

      We agree there is a lot of data and variables within the study design, but also believe it is important to display the null and positive findings with each other to describe the changes we measured wholistically across water and alcohol drinking.

      - The authors describe a clear sex difference in the photometry circuit activity. However, I am curious about whether female mice that drink more similarly to males (e.g., less efficiently?) also show increased activity in the left circuit, similar to males. Oppositely, do very efficient males show weaker calcium activity in the circuit? Ultimately, I am curious about how the circuit activity maps to the behaviors described in Figures 1 and 2. 

      In Figure 3C, we show that across the time window of drinking behaviors, that female mice who drink alcohol do have a higher baseline calcium activity compared to water drinking female mice, so we believe there are certainly alcohol induced changes in AIC to DLS within females, but there remains to be a lack of engagement (as measured by changes in amplitude) compared to males. So, when comparing consummatory patterns that are similar by sex, we still see the lack of calcium signaling near the drinking bouts, but small shifts in baseline activity that we aren’t truly powered to resolve (using an AUC or similar measurements for quantification) because the shifts are so small. Ultimately, we presume that the AIC to DLS inputs in females aren’t the primary node for encoding this behavior, and some recent work out of David Werner’s group (Towner et al. 2023) suggests that for males who drink, the AIC becomes a primary node of control, whereas in females, the PFC and ACC, are more engaged. Thus, the mapping of the circuit activity onto the drinking behaviors more generally represented in Figures 1 and 2 may be sexually dimorphic and further studies will be needed to resolve how females engage differential circuitry to encode ongoing binge drinking behaviors.

      - What does the change in water-drinking calcium imaging across time in males mean? Especially considering that alcohol-related signals do not seem to change much over time, I am not sure what it means to have water drinking change. 

      The AIC seems to encode many physiologically relevant, interoceptive signals, and the water drinking in males was also puzzling to us as well. Currently, we think it may be both the animals becoming more efficient at drinking out of the lickometers in early weeks and may also be signaling changes due to thirst states of taste associated with the fluid. While this is speculation, we need to perform more in-depth studies to determine how thirst states or taste may modulate AIC to DLS inputs, but we believe that is beyond the scope of this current study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Line 45 - states alcohol use rates are increasing in females across the past half-decade. I thought this trend was apparent over the past half-century? Please consider revising this. 

      According to NIAAA, the rates of alcohol consumption in females compares to males has been closing for about the past 100 years now, but only recently are those trends starting to reverse, where females are drinking similar amounts or more than males.

      Placing more of the null findings into supplemental data would make the long paper more accessible to the reader. 

      In reference to reviewer’s three’s point as well, there is a lot of data we present, and we hope for others to use this data, both null and positive findings in their future work. As formatted on eLife’s website, we think it is important to place these findings in-line as well.

      Reviewer #2 (Recommendations For The Authors): 

      In addition to the points raised about analysis and interpretation in the Public Review, I have a minor concern about the written content. I find the final sentence of the introduction "together these findings represent targets for future pharmacotherapies.." a bit unjustified and meaningless. The findings are important for a basic understanding of alcohol drinking behaviour, but it's unclear how pharmacotherapies could target lateralised aic inputs into dls. 

      There are on-going studies (CANON-Pilot Study, BRAVE Lab, Stanford) for targeted therapies that use technologies like TMS and focused ultrasound to activate the AIC to alleviate alcohol cravings and decrease heavy drinking days. The difficulty with these next-generation therapeutics is often targeting, and thus we think this work may be of use to those in the clinic to further develop these treatments. We agree that this data does not support the development of pharmacotherapies in a traditional sense, and thus have removed the word and added text to reference TMS and ultrasound approaches to bolster this statement in lines 101+.

    1. eLife assessment

      This paper introduces an efficient approach to identify subunits in the receptive fields of retinal ganglion cells. The general approach has been used in this application previously and this limits the conceptual advance of the paper. The improved speed is valuable, as it allows a more thorough exploration of the control parameters in this analysis and facilitates application to larger populations of cells. Validation of the approach is convincing. The paper would benefit from a more thorough exploration of the method and its limitations, or an extension of the new results about subunit populations.

    2. Reviewer #1 (Public Review):

      Summary:

      This paper introduces an efficient approach to infer properties of receptive-field subunits from the ensemble of spike-triggered stimuli. This is an important general problem in sensory coding. The results introduced in the paper make a solid contribution to both how subunits can be identified and how subunits of different types are coordinated in space.

      Strengths:

      A primary strength of the paper is the development of approaches that substantially speed non-negative matrix factorization and by doing so create an opportunity for a more systematic exploration of how the procedure depends on various control parameters. The improved procedure is well documented and the direct comparisons with previous procedures are helpful. The improved efficiency enabled several improvements in the procedure - notably tests of good procedures for initializing NNMF and tests of the dependence of the results on the sparsity regularization parameter.

      A second strength of the paper is the exploration of the spatial relationship between different subunits. This, to my knowledge, is new and is an interesting direction. There are some concerns about this analysis (see weaknesses below), but if this analysis can be strengthened it will provide new information that will be important both functionally and developmentally.

      Weaknesses:

      A primary concern is that choices made about parameters for several aspects of the analysis appear to be made subjectively. Much of this centers around how much of the structure in the extracted subunits is imposed by the procedure itself, and how much reflects the underlying neural circuitry. Some specific issues related to this concern are:

      - Sparsity: the use of the autocorrelation function to differentiate real vs spurious subunits should be documented and validated. For example, can the authors split data in half and show that the real subunits are stable?

      - Choice of regularization: the impact of the regularization parameter on subunit properties is nicely documented. However, the choice of an appropriate regularization parameter seems somewhat arbitrary. Line 253-256 is an example of this problem: this sentence sounds circular - as if the sparsity factor was turned up until the authors obtained what they expected to obtain. Could the choice of this parameter significantly impact the properties of the extracted subunits? How sensitive are the subunit properties to that parameter? Some additional control analyses are needed to validate the parameter choice (see the crossvalidation comment below).

      - Crossvalidation was not used to identify the regularization constraint value because the weight matrix from NNMF does not generalize beyond the data it was fit to. Could the authors instead hold the components matrix fixed and recompute the weight matrix, and use that approach for cross-validation (especially since it is really the components matrix that needs validating)?

      The paper would benefit from a more complete comparison with known anatomy. For example, can the authors estimate the number of cones within each subunit? This is well-constrained both anatomically (at least in macaque) and, especially for midget ganglion cell subunits, functionally. In macaque, most midget bipolar cells get input from single cones, so the number of extracted subunits should be close to the number of cones. This would be a useful point of comparison for the current work.

      Is the analysis of the spatial relationship between different subunit mosaics robust to the incompleteness of those mosaics? The argument on lines 496-503 should be backed up by more analysis. For example, if subunits are removed from regions where the mosaic is pretty complete, do the authors change the spatial dependence? Alternatively, could they use synthetic mosaics with properties like those measured to check the sensitivity to missing cells?

      NNMF relies on accounting for each spike-triggered stimulus with a linear combination of components. Would nonlinearities - e.g. those in the bipolar cell outputs - substantially change the results?

      Does the approach work for cells that receive input from multiple bipolar types? Some ganglion cells, e.g. in mice, receive input from multiple bipolar types, each accounting for a sizable percentage of the total input. There is similar anatomical work indicating that parasol cells may receive input from multiple diffuse bipolar types. It is not clear whether the current approach works in cases where the subunits of a single ganglion cell overlap. Some discussion of this would be useful.

    3. Reviewer #2 (Public Review):

      Summary:

      Identifying spatial subunits within the receptive field of retinal ganglion cells can help study spatial nonlinearities and upstream computations performed by the bipolar cells. The authors significantly accelerate the implementation of the previously proposed Spike Triggered semi-non-negative Matrix Factorization (STNMF) method to identify the subunits. The authors also propose a few method improvements - better initialization; new stability-based criteria for selecting the regularization strength, and hyperparameter selection across cell types.

      The authors then apply this new method to RGC populations in both the salamander retina and the macaque (marmoset) retina. The authors document the subunit sizes, numbers, and overlap across cell types. The neuroscience finding describes the anti-coordination of ON and OFF parasol receptive fields, but not for the corresponding subunits.

      Overall, the authors claim that a faster and more accurate method makes scale-up to large neuronal populations feasible.

      Strengths:

      - The paper is well-written, easy to read and the figures are clear. The limitations are also made clear.

      - The scientific findings are novel and seem to be well supported.

      - The claimed speed-up of the method is potentially important for practical applications to large populations. Each innovation of the method is well-supported.

      - This is a serious effort to improve the method and document the subunits in primate retina.

      Weaknesses:

      - The description of the method is confusing. Currently, the new method is described in the context of changes from existing methods. As someone who is not familiar with previous methods, it is very confusing to follow the details.

      - I think it will help a lot with clarity to have a concise flowchart/pseudocode to summarize the algorithm and separate it from a description of the main changes from previous methods.

      - Separate pseudocodes can be provided for the main method, initialization, regularization parameter selection using consensus, and identifying the regularization parameter across cell types.

      - While the new method clearly shows a drastic improvement compared to the previous method on a laptop, would it be possible to get the same improvement on the previous method if it was implemented with GPU (as is standard for most AI/ML algorithms)?

      - For the calculation of subunits across multiple cells, can you run multiple parallel jobs on the same computer? This may make some innovations unnecessary (like setting the same regularization strength across multiple cells).

      - There are two main innovations in this paper: the fast and approximate method, and analysis of subunit mosaics for primate RGCs. It would be helpful to include an analysis of the primate RGC subunits using the older, slower, but more exact method and show that the major scientific results can be reproduced. This would validate the new method in an end-to-end manner. While this may take a while to run, it may be helpful in the supplement.

      - It would be important to understand the data-efficiency of the method. The approximate method may deviate more from the exact method when the amount of data is limited.

      - Would it be possible to have a few steps of the exact method at the end to ensure that the solution truly optimizes the objective function?

      - Does the number of estimated subunits change with the number of observed spikes? If so, the estimates of subunit number/size must be interpreted with caution.

    4. Reviewer #3 (Public Review):

      Summary:

      This work addresses the problem of determining the subunit composition of receptive fields of retinal ganglion cells (RGCs). RGCs process stimuli through non-linear transforms that largely (although not entirely) reflect the individual contributions of their input bipolar cells, which themselves process visual stimuli nonlinearly. Thus, using the correct system identification methods might correctly model the RGC cells, while revealing details of the underlying circuit, including the function of the presynaptic components. It is now well established that a model of the form of an LNLN cascade can potentially capture this bipolar-RGC circuit, although the devil is in the details. The authors present an improved method of non-negative matrix factorization (NMF) - which is one approach to this system identification problem - that can speed things up by a factor of 100, and in doing so infer plausible mosaics of the bipolar cell types supporting the identified RGC types that are recorded from.

      As written, the focus of this paper seems almost entirely methodological, supporting the sped-up version of NMF, called STNMF. The >100x speedup potentially makes a lot more measurements available, since it enables much more comprehensive scans across model meta-parameters, although has its own complications that must also be methodologically addressed. The results presented are largely a demonstration and validation of the potential power of this approach using example recordings in the peripheral marmoset retina. I do not think the results themselves are meant to be evaluated as definitive, since they are often based on examples and are largely confirmatory of what is already known.

      Strengths:

      I have very few concerns about the paper methodologically: these methods are well laid out and demonstrated (at least up to the level of my expertise and interest), including validation with established literature.

      I am also enthusiastic about some of the potential results in the retina outlined (but not fully fleshed out) in the later sections of the paper.

      Weaknesses:

      My main critique is to question the conceptual advance in this paper: what did we learn, and what is the targeted audience of interest? Establishing this is particularly dire for this manuscript since NMF has already been established and expounded on as a useful approach in this context (including by the author most recently in 2017) so any of the scientific results is already achievable with enough computer power using existing approaches. As currently cast, the conceptual advances here are purely methodological and relate to the utility of speeding up the approach. Also, they do not appear to generalize to other problems outside of the narrow range that it is currently applied.

      Thus, two paths to improving the manuscript would be either:<br /> (1) target readers interested in the retina by fully fleshing out the current results and add more to make this into a paper about the retina rather than about the STNMF method, or<br /> (2) demonstrate that the methods might be useful outside of the very narrow set of conditions specific to identifying nonlinear bipolar cell subunits in peripheral retina under white noise stimulation.

      In its current state, the Discussion addressing limitations and generality seems to suggest applicability past this narrow condition, which I do not think is the case: but would be happy to be convinced otherwise.

      For fleshing out scientific results, in the current manuscript, they are currently presented to validate the approach and are largely confirmatory for what we already know about the retina (which allows for this validation). Also, much of the results are measurements based on examples, and not accumulated past a single recording in some cases. Finally, it is not clear to the extent that these results depend on the specific recordings in the peripheral marmoset retina: what about more central in the retina, or in other species?

      For demonstrating the utility of the methodology: here are some of the main limitations to generalizing past this specific case:<br /> (1) the necessity of linear or near-linear processing in previous layers;<br /> (2) lack of any negative components;<br /> (3) lack of ability to account for other influences on spiking than the positive contributions of LN subunits;<br /> (4) necessity of white noise stimulation that is specifically sized for a uniform subunit size.

      Together, I believe this precludes potential applications to other areas in the brain: further back in the visual system will require non-linear transforms as well as the convergence of positive and negative inputs. Other sensory systems like the auditory system are even more non-linear well before getting to even mid-level pre-cortical structures and also combine positive and negative influences. Given the importance of inhibition in the retina (including what is thought to be an important role of amacrine cells in shaping RGC responses), it is not clear how general this approach is in the retina, although the specific results shown are believable. How could this approach generalize, realistically? Could applications to other types of data be demonstrated, and/or plausibly get by these fundamental limitations? How?

    1. eLife assessment

      This valuable study examines the role of the interaction between cytoplasmic N- and C-terminal domains in voltage-dependent gating of Kv10.1 channels. The authors suggest that they have identified a hidden open state in Kv10.1 mutant channels, thus providing a window for observing early conformational transitions associated with channel gating. The evidence supporting the major conclusions is solid, but additional work is required to determine the molecular mechanism underlying the observations in this study. Learning the molecular mechanisms could be significant in understanding the gating mechanisms of the KCNH family and will appeal to biophysicists interested in ion channels and physiologists interested in cancer biology.

    2. Gating of Kv10 channels is unique because it involves coupling between non-domain swapped voltage sensing domains, a domain-swapped cytoplasmic ring assembly formed by the N- and C-termini, and the pore domain. Recent structural data suggests that activation of the voltage sensing domain relieves a steric hindrance to pore opening, but the contribution of the cytoplasmic domain to gating is still not well understood. This aspect is of particular importance because proteins like calmodulin interact with the cytoplasmic domain to regulate channel activity. The effects of calmodulin (CaM) in WT and mutant channels with disrupted cytoplasmic gating ring assemblies are contradictory, resulting in inhibition or activation, respectively. The underlying mechanism for these discrepancies is not understood. In the present manuscript, Reham Abdelaziz and collaborators use electrophysiology, biochemistry and mathematical modeling to describe how mutations and deletions that disrupt inter-subunit interactions at the cytoplasmic gating ring assembly affect Kv10.1 channel gating and modulation by CaM. In the revised manuscript, additional information is provided to allow readers to identify within the Kv10.1 channel structure the location of E600R, one of the key channel mutants analyzed in this study. However, the mechanistic role of the cytoplasmic domains that this study focuses on, as well as the location of the ΔPASCap deletion and other perturbations investigated in the study remain difficult to visualize without additional graphical information.

      The authors focused mainly on two structural perturbations that disrupt interactions within the cytoplasmic domain, the E600R mutant and the ΔPASCap deletion. By expressing mutants in oocytes and recording currents using Two Electrode Voltage-Clamp (TEV), it is found that both ΔPASCap and E600R mutants have biphasic conductance-voltage (G-V) relations and exhibit activation and deactivation kinetics with multiple voltage-dependent components. Importantly, the mutant-specific component in the G-V relations is observed at negative voltages where WT channels remain closed. The authors argue that the biphasic behavior in the G-V relations is unlikely to result from two different populations of channels in the oocytes, because they found that the relative amplitude between the two components in the G-V relations was highly reproducible across individual oocytes that otherwise tend to show high variability in expression levels. Instead, the G-V relations for all mutant channels could be well described by an equation that considers two open states O1 and O2, and a transition between them; O1 appeared to be unaffected by any of the structural manipulations tested (i.e. E600R, ΔPASCap, and other deletions) whereas the parameters for O2 and the transition between the two open states were different between constructs. The O1 state is not observed in WT channels and is hypothesized to be associated with voltage sensor activation. O2 represents the open state that is normally observed in WT channels and is speculated to be associated with conformational changes within the cytoplasmic gating ring that follow voltage sensor activation, which could explain why the mutations and deletions disrupting cytoplasmic interactions affect primarily O2.

      Severing the covalent link between the voltage sensor and pore reduced O1 occupancy in one of the deletion constructs. Although this observation is consistent with the hypothesis that voltage-sensor activation drives entry into O1, this result is not conclusive. Structural as well as functional data has established that the coupling of the voltage sensor and pore does not entirely rely on the S4-S5 covalent linker between the sensor and the pore, and thus the severed construct could still retain coupling through other mechanisms, which is consistent with the prominent voltage dependence that is observed. If both states O1 and O2 require voltage sensor activation, it is unclear why the severed construct would affect state O1 primarily, as suggested in the manuscript, as opposed to decreasing occupancy of both open states. In line with this argument, the presence of Mg2+ in the extracellular solution affected both O1 and O2. This finding suggests that entry into both O1 and O2 requires voltage-sensor activation because Mg2+ ions are known to stabilize the voltage sensor in its most deactivated conformations.

      Activation towards and closure from O1 is slow, whereas channels close rapidly from O2. A rapid alternating pulse protocol was used to take advantage of the difference in activation and deactivation kinetics between the two open components in the mutants and thus drive an increasing number of channels towards state O1. Currents activated by the alternating protocol reached larger amplitudes than those elicited by a long depolarization to the same voltage. This finding is interpreted as an indication that O1 has a larger macroscopic conductance than O2. In the revised manuscript, the authors performed single-channel recordings to determine why O1 and O2 have different macroscopic conductance. The results show that at voltages where the state O1 predominates, channels exhibited longer open times and overall higher open probability, whereas at more depolarized voltages where occupancy of O2 increases, channels exhibited more flickery gating behavior and decreased open probability. These results are informative but not conclusive since single-channel amplitudes could not be resolved at strong depolarizations, limiting the extent to which the data could be analyzed. In the last revision, the authors have included one representative example showing inhibition of single channel activity by the Kv10-specific inhibitor astemizole. Group data analysis would be needed to conclusively establish that the currents that were recorded indeed correspond to Kv10 channels.

      It is shown that conditioning pulses to very negative voltages result in mutant channel currents that are larger and activate more slowly than those elicited at the same voltage but starting from less negative conditioning pulses. In voltage-activated curves, O1 occupancy is shown to be favored by increasingly negative conditioning voltages. This is interpreted as indicating that O1 is primarily accessed from deeply closed states in which voltage sensors are in their most deactivated position. Consistently, a mutation that destabilizes these deactivated states is shown to largely suppress the first component in voltage-activation curves for both ΔPASCap and E600R channels.

      The authors then address the role of the hidden O1 state in channel regulation by calcium-calmodulin (CaM). Stimulating calcium entry into oocytes with ionomycin and thapsigargin, assumed to enhance CaM-dependent modulation, resulted in preferential potentiation of the first component in ΔPASCap and E600R channels. This potentiation was attenuated by including an additional mutation that disfavors deeply closed states. Together, these results are interpreted as an indication that calcium-CaM preferentially stabilizes deeply closed states from which O1 can be readily accessed in mutant channels, thus favoring current activation. In WT channels lacking a conducting O1 state, CaM stabilizes deeply closed states and is therefore inhibitory. It is found that the potentiation of ΔPASCap and E600R by CaM is more strongly attenuated by mutations in the channel that are assumed to disrupt interaction with the C-terminal lobe of CaM than mutations assumed to affect interaction with the N-terminal lobe. These results are intriguing but difficult to interpret in mechanistic terms. The strong effect that calcium-CaM had on the occupancy of the O1 state in the mutants raises the possibility that O1 can be only observed in channels that are constitutively associated with CaM. To address this, a biochemical pull-down assay was carried out to establish that only a small fraction of channels are associated with CaM under baseline conditions. These CaM experiments are potentially very interesting and could have wide physiological relevance. However, the approach utilized to activate CaM is indirect and could result in additional non-specific effects on the oocytes that could affect the results.

      Finally, a mathematical model is proposed consisting of two layers involving two activation steps for the voltage sensor, and one conformational change in the cytoplasmic gating ring - completion of both sets of conformational changes is required to access state O2, but accessing state O1 only requires completion of the first voltage-sensor activation step in the four subunits. The model qualitatively reproduces most major findings on the mutants. Although the model used is highly symmetric and appears simple, the mathematical form used for the rate constants in the model adds a layer of complexity to the model that makes mechanistic interpretations difficult. In addition, many transitions that from a mechanistic standpoint should not depend on voltage were assigned a voltage dependence in the model. These limitations diminish the mechanistic insight that can be reliably extracted from the model.

    3. Author response:

      The following is the authors’ response to the previous reviews.

      We appreciate the feedback provided and refer to our previous response for detailed explanations regarding our decisions on some of the recommendations made by the referees and editors. We have introduced changes as follows:

      • We added a supplementary Figure to Figure 5 to show inhibition by Astemizole at the single channel level.

      • We have corrected Figure 7A, where the normalized current did not reach 1 as a maximum. We had overlooked that this is expected when the prepulse was -160 mV, and the IV is strongly biphasic, but not when coming from -100 mV. We are thankful for this observation, which served to identify that the values for one of the cells were inverted with respect to the others (the sequence of stimuli was different during recording, and this information got lost in the analysis procedure). We have corrected this and made sure that such a mistake had not happened anywhere else.

      • Finally, we have corrected a typo in the discussion, as indicated in the review.

      We include a version with changes marked and a clean version of the manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank the reviewers for their overall positive assessment of our manuscript. We have used their constructive feedback to substantially improve our manuscript as described below.

      Reviewer #1

      Evidence, reproducibility and clarity

      This study by Reyes at al is a well conducted analysis of memory B cell dynamics of Plasmodium falciparum (Pf) -specific B cell populations over the course of reducing Pf prevalence in ten Ugandan adults. The data is presented well and the authors provide compelling evidence that 1. There is an overall loss of Ag specific B cells with reduction in exposure and 2. Different antigens (MSP1/AMA-1 vs CIDRa-1) generate different flavors of long lived responses. However, additional clarity to the reader should be provided on certain topics (listed below).

      Major comments: 1. While the premise of the study (reduced Pf transmission due to the use of indoor residual spraying (IRS)) is an important one, I think the authors must take into consideration that 9/10 subjects had at least one Pf positive episode between Time Points 1 and 2 (Figure 1). Also, it looks from Fig 1 that some samples were collected at a time of Pf positive test (green squares), while in Table S1 none of the subjects have a positive parasite status at TP1.

      We recognize that most individuals had detectable parasitemia before and after time point (TP) 1. In our manuscript, we therefore do not report the time between TP1 and TP2, because we agree that the length of this time interval is not relevant in our study methodology. We only mention the time between the last known P. falciparum infection and collection of blood at the second time point. We use the sample collected at TP1 only as a representative sample obtained during a time with high P. falciparum exposure and do not make any claims based on the time between TP1 and TP2. The occurrence of infections after sample collection at TP1 confirms that parasite transmission was still high at this time. We have added a schematic of the relative levels of parasite transmission to Figure 1 to emphasize this.

      With respect to infection status, none of the donors were blood smear positive at TP1. However, as mentioned in Table S1, parasites were detected in three individuals using the more sensitive LAMP assay. These three individuals are therefore marked as parasite positive in Figure 1. Table S1 has been modified to highlight the parasite status of these three individuals.

      1. Figure S1A: What is trBC? Figure S1B: What is Strep? Are the strep positive cells also CIDR-1 positive and were they gated out? Why is APC used for MZ-1 and one of the MSP1-AMA-1 tetramers? Do these stainings come from multiple panels?

      All abbreviations of B cell populations were defined in the figure legend (for example, trBC stands for transitional B cells). To facilitate the interpretation of Figure S1, we have now included the definitions of these abbreviations in the figure.

      Strep stands for streptavidin, which has now also been clarified in the figure. In our gating strategy, we used the term “strep” to denote cells that bound to both CIDRa1 and MSP1/AMA1 tetramers, which we interpreted as non-specific binding to streptavidin or other components of the antigen tetramers. Only the “non-strep” cells were used to gate on antigen-specific cells. We have added this clarification to the figure legend.

      In panel B, we accidentally used the term MZ (for merozoite) to describe tetramers of the merozoite antigens MSP1 / AMA1. These labels are interchangeable, but to avoid confusion, MZ-1 has been changed to MSP1 / AMA1.

      1. Figure 3A: how many cells does the umap plot represent? Were there a total of 3555 Ag specific B cells that were non-naive (Figure 3E)?

      It is correct that there were a total of 3,555 antigen-specific B cells used for the clustering shown in panel A. This information has been added to Figure 3A.

      1. Could the authors comment on why in Figure 3, Ig isotype expression was not considered for clustering? This would allow for characterization of DN sub populations/ clusters in addition to the CD21-CD27- ABCs? It looks like IgD expression was low across the clusters (Figure 3D). Was this the case for the cells considered in this analysis, or was it excluded? If it was truly low expressed, how were the assessments in Figure 2 made?

      From prior experience, we know that Ig isotype information tends to dominate in the clustering, which would result in major clusters based on IgM, IgD, IgG, and IgA expression, not on expression of other markers. This is illustrated in the example below. The UMAP on the left shows clusters in green and red that consist of IgG+ and IgA+ B cells, respectively. The UMAP on the right shows that switched memory (swM) B cells and DN B cells are found in both IgG and IgA clusters. Because we were mainly interested in identifying different subsets of B cells, irrespective of Ig isotype, we did not include Ig isotype in the clustering. We have clarified in the manuscript that Ig isotypes were excluded from the analysis to prevent these from dominating the clustering:

      “Unsupervised clustering was then performed based on expression of all markers, except for Ig isotypes to prevent these from dominating the clustering.”

      IgD expression among cell clusters shown in Figure 3 was low because only non-naïve B cells were included in the analyis. The majority of non-naïve cells are class-switched memory B cells and DN B cells, which by definition do not express IgD (see gating strategy in Figure S1A). Figure 2 shows all B cell populations, including naïve B cells and non-naïve B cell populations (unswitched memory, switched memory, and DN), that were gated based on IgD and CD27 expression.

      5.Are there differences in these designations / phenotypes of DN populations of atBCs vs CD21-CD27- atBCs?

      In the malaria field, atypical B cells are typically defined as CD21-CD27-. The definition of DN2 B cells comes from the autoimmunity field and is stricter: IgD-CD27-CD21-CD11c+ B cells. In our manuscript, we define atypical B cells in a stricter way than typically done in the malaria field, following published guidelines for the identification of B cell subsets (https://doi.org/10.3389/fimmu.2019.02458). Using these guidelines, atypical B cells and DN2 B cells are phenotypically identical. We have added a reference to these published guidelines in the Results section:

      “Following published guidelines for the identification of B cell populations (21), total CD19+ B cells were divided into naïve B cells (IgD+CD27-), unswitched memory B cells (IgD+CD27+), switched memory B cells (IgD-CD27+), and double negative B cells (IgD-CD27-).”

      1. Lines 258-259: In considering only switched MBCs, what clusters from Figure 3a were included? There seem to be 2588 sw MBCs (Table S3, Figure 4). Do the remaining cells (967 cells) come from clusters 2, 5 and 6 (and excludes the atBC clusters)

      This analysis did not use the clusters presented in Figure 3, but instead used switched memory B cells gated as shown in Figure S1A. The reason for this is that the clusters in Figure 3 were generated using antigen-specific B cells and cannot be reproduced using non-antigen-specific B cells. Thus, it is not possible to separate all other B cells into the same six clusters. The only way to compare expression of certain markers between antigen-specific and non-antigen specific switched memory B cells is to gate on these populations manually. We have now tried to clarify this in the manuscript as follows:

      “we determined the percentages of CD95+ cells and CD11c+ cells among antigen-specific switched memory B cells and the total population of switched memory B cells (gated manually as shown in Figure S1A).”

      Minor comments: 1. Line 178- 179: Was there a specific measure of rate of decline made for these cells?

      We did not calculate a rate of decline of antigen-specific B cells for several reasons: 1) the time between TP1 and TP2 is not the same for all people in the study, 2) the time between last exposure and TP2 is not the same for all people, and 3) the rate of decline is most likely not linear and cannot accurately be estimated with only two data points. We have changed the wording of this sentence such that we do not use the word “rate”:

      “we did not observe a difference in the percentage of B cells with specificity for merozoite antigens or variant surface antigens that were lost.”

      In addition, we included the percentage of reduction in size in the paragraph before this section:

      “we observed that both populations decreased in size by about 50%, although these differences were not statistically significant.”

      Significance

      General assessment: Strengths: The authors provide evidence that the dynamics of antigen specific cells in humans can vary with exposure and with the nature of the antigen. They have nicely discussed the potential causes for these differences (Discussion), although they should include the findings of Ambegaonkar et al that ABCs in malaria may be restricted to responding specifically to membrane bound antigens (PMCID: PMC7380957)

      As suggested by the reviewer, we have added a paragraph to the Discussion section to discuss the results reported by Ambegaonkar et al. and how the difference between soluble vs. membrane-bound antigens may have an effect on how these antigens are perceived by B cells:

      The difference between soluble and membrane-bound antigens may also have a direct effect on how these antigens are perceived by B cells. Atypical B cells have been shown to be restricted to recognition of membrane-bound antigens (41). The interaction of a B cell with membrane-associated antigen allows the formation of an immunological synapse. Inhibitory receptors expressed by atypical B cells are excluded from this synapse, resulting in B cell receptor signaling and differentiation towards antibody-secreting cells (41). This could explain why atypical B cell subset 1 that expresses the highest levels of the inhibitory receptor FcRL5 is enriched for recognition of the CIDRα1 domain of membrane-bound protein PfEMP1. It should however be noted that soluble antigen can also be presented effectively in membrane-context by conventional dendritic cells, follicular dendritic cells, and subcapsular macrophages in secondary lymphoid organs, especially when it is part of an immune complex (reviewed in (42)). This would provide a route for atypical B cells to also respond to soluble merozoite antigens, such as MSP1 and AMA1.

      Limitations: 1. Outlined above, and as the authors also mention, a small sample size and homogenous population. 2. The evidence for reduced transmission is not clear, and the negative parasite tests for donors shown in Table S1 do not match with Figure 1 data. 3. Lack of IgD expression across clusters (Figure 3D- the authors will need to clarify this point) would require re-analysis of Figure 2 data

      1. We have provided clarification in response to the points raised by the reviewer.

      2. We believe there is clear evidence for reduced transmission, from a median of almost 2 infections per person per year prior to the implementation of IRS to a median parasite-free period of 1.7 years prior to sample collection at TP2. To further emphasize this, we have summarized the number of P. falciparum infections among the ten individuals included in this study (now included in Table S3):

      year

      Pf infections

      comment

      2012

      20

      2013

      19

      TP1

      2014

      20

      TP1

      2015

      8

      Start IRS

      2016

      0

      TP2

      This reduced parasite exposure is reflected in a decrease in immune activation as presented in Figure 2. We have clarified that the data in Table S1 did indeed match those shown in Figure 1.

      1. We have clarified that IgD expression is low in the clusters presented in Figure 3 because naïve B cells were excluded from this analysis.

      Advances: This study highlights the importance of studying antigen specific B cells in humans in the context of natural infection and the use of high-parameter tools such as spectral flow cytometry in assessing a large quantity of data from limited clinical samples. These data are important to inform better vaccine design. Studies in inbred animals can be quite limited or different from human B cell responses.

      Audience: This study will be of interest to malariologists and B cell immunologists. Atypical B cells are relevant to many infectious diseases and auto immunity, while the dynamics of memory B cells in malaria all be relevant to those interested in vaccine design against blood stage antigens.


      Reviewer #2

      Evidence, reproducibility and clarity

      Summary: In this study, the authors compared long-lived total and antigen (ag)-specific B-cell levels in a cohort of 10 Ugandan malaria patient samples that were collected before and after local reduction of P. falciparum transmission (pre/post-IRS). The focus is on the novel comparison of the two most common malaria antigens: merozoite antigens (MSP1/AMA1) and variant surface antigens (CIDRα1). Using high-parameter spectral flow cytometry, they also characterized the phenotype of the different populations of cells. Their main findings include 1) a decrease in activated but maintenance of resting ag-specific B-cells in the post-IRS sample and 2) CD95 and CD11c, as the only differentially expressed markers between MSP1/AMA1-specific and CIDRα1-specific long-lived memory B cells. Their further phenotypic characterization suggests functional consequences with MSP1/AMA1-specific B-cells being poised for rapid antibody-secreting cell differentiation while CIDRα1-specific B cells were enriched among a subset of atypical B cells that seem poised for antigen presentation (CD86+CD11chi/ AtBC1). Their findings consolidate and further expand our knowledge of long-lived B-cell levels during P. falciparum malaria and report/compare (for the first time to my knowledge) a differential selection of long-lived B-cell levels between these 2 antigen specificities. Overall, the manuscript is straightforward and well-written and the authors did a good job explaining their methodology, findings, and interpretations. I believe the major gap missing in this study is the reconciliation of long-lived antigen-specific B-cell levels with the serum antigen-specific antibody levels of these patients against the same 2 antigens (MSP1/AMA1 and CIDRα1) in the experiments and the discussion. The antibody data would strengthen their main argument and is the main missing piece for characterizing more completely the long-lived antigen-specific humoral responses. Below are my suggestions that would help improve the manuscript:

      Major comments: 1. Serum Anti-Pf antibodies: Do the authors have access to the serum/plasma of these patients? It would be important to correlate the total and ag-specific B-cell populations with levels of serum IgG antibodies against those specific Pf antigens (MSP1/AMA1 and CIDRα1) and total IgG levels to strengthen their point about long-lived humoral responses.

      To our understanding, the rationale for such an analysis would be that if IgG levels correlated with the size of a certain B cell population, it would suggest that this B cell population is implicated in the production of IgG against a particular antigen. While a correlation between the percentage of memory B cells and IgG titers has been observed for antigens from several viruses and bacteria (1-4), other studies have reported the absence of such a correlation (4-7). Similarly, for P. falciparum antigens, a moderate correlation between memory B cell abundance and IgG titers has been observed for some merozoite antigens, but not for others (8, 9). The lack of a correlation between the magnitude of the memory B cell and the antibody response fits with the prevailing model that memory B cells and plasma cells are two independently controlled arms of the humoral immune system (10, 11). Given the lack of strong evidence that the levels of IgG titers and memory B cells are interconnected, we do not think this analysis will be informative.

      An alternative analysis would be to study the contribution of B cell subsets to the production of IgG after re-exposure, similar to a recent study that identified T-bet+ memory B cells as the main contributors to antibody responses following influenza virus vaccination (12). Unfortunately, we are unable to perform this analysis in this study population, because only four of the individuals included in this study (spanning calendar years 2012 – 2016) were recruited into a follow up cohort (calendar years 2017 – 2019), and none of these four people were infected during this later time frame.

      We have however added this future direction to the Discussion section:

      To determine the contribution of different memory B cell subsets to the recall response against P. falciparum, it would be interesting to analyze IgG responses upon re-infection. However, none of the individuals included in this study experienced a recorded P. falciparum infection post-IRS, preventing us from performing such an analysis.

      References

      1. Crotty et al., J Immunol (2003), https://doi.org/10.4049/jimmunol.171.10.4969
      2. Quinn et al., J Infect Dis (2004), https://doi.org/10.1086/423937
      3. Cohen et al., Cell Rep Med (2021), https://doi.org/10.1016/j.xcrm.2021.100354
      4. Amanna et al., New England J Med (2007), https://doi.org/10.1056/nejmoa066092
      5. Leyendeckers et al., Eur J Immunol (1999), https://doi.org/10.1002/(sici)1521-4141(199904)29:04%3C1406::aid-immu1406%3E3.0.co;2-p
      6. Nanan et al., Vaccine (2001), https://doi.org/10.1016/s0264-410x(01)00328-0
      7. Goel et al., Science Immunol (2021), https://doi.org/10.1126/sciimmunol.abi6950
      8. Rivera-Correa et al., eLife (2019), https://doi.org/10.7554/elife.48309
      9. Jahnmatz et al., Front Immunol (2021), https://doi.org/10.3389/fimmu.2020.619398
      10. Weisel et al., Immunity (2016), https://doi.org/10.1016/j.immuni.2015.12.004
      11. Shinnakasu et al., Nat Immunol (2016), https://doi.org/10.1038/ni.3460
      12. Nellore et al., Immunity (2023), https://doi.org/10.1016/j.immuni.2023.03.00
        1. Correlation between populations and initial parasite load: Are the levels between any of the populations at any time point correlated significantly in any way? If the statistical power/N allows it, please perform a correlation array between all populations using all samples both total and ag-specific and initial parasite load.

      We agree that this analysis could be very interesting. However, in most recorded infection cases, parasitemia was submicroscopic and parasite load was not reported. Information about parasite density in the blood prior to TP1 is available for only half of the individuals in this study. In these people, the last known parasite density was recorded between three months to two years prior to TP1. Given the small number of individuals for whom these data are available and the large variation in time between parasitemia and sampling, we do not have sufficient data to perform this analysis.

      1. Figure 2: Why were total and ag-specific plasmablasts/plasma cells not included in this figure? Please include to compare levels in these two time points.

      We did not include the levels of total and antigen-specific plasmablasts (PBs) in Figure 2 because the percentages of PBs are relatively low, and very few antigen-specific PBs were detected. We have now included the levels of total PBs in Figure 2A and the percentages of antigen-specific PBs in Supplementary Figure 2. The percentage of PBs among total B cells decreased by about 50% between TP1 and TP2, in line with a decrease in immune activation.

      1. Healthy baseline: The study is missing "healthy" controls as a reference. I presume this is because each patient is its uninfected control in the post-IRS sample. In methods, they mentioned they used two naïve-USA B-cells as technical controls. It would be important to include and maybe expand (to match age and gender)on that specific data from those controls as supplementary figures to support their findings:
      2. Show negative Tetramer staining for these samples (to understand the background).
      3. Levels of all the USA controls total B cell populations and compared to the pre/post-IRS samples to understand "baseline" or "non-endemic" control levels.
      1. We have included flow cytometry plots of tetramer staining for the non-P. falciparum exposed donors (pooled B cells from two US donors) to show the level of background for these probes. These plots are shown in Figure S1B.

      2. We have used data from P. falciparum-naive US donors (n = 7) that we generated for a prior study to show the average level of total B cell populations in Figure 2, and the percentage of switched memory B cells that express CD95, CD11c, T-bet, and FcRL5 in Figure 4.

      Minor comments: 1. In the gating strategy (S1), please include the percentage of each population of that representative example.

      We have added the percentages for all gated populations to Figure S1.

      1. For Figure 2, since not every panel has the same N, please include the N for each panel in the figure or a supplementary table.

      All panels in Figure 2 show data for all 10 individuals. However, since some data points are overlapping, it may appear that some panels show data from fewer individuals. Specifically, no antigen-specific DN1 cells were detected pre- and post-IRS for four individuals. These data points therefore overlap and are not visible. To avoid confusion, we had mentioned this in the legend to Figure 2 (see text in orange). We have tried to further clarify this by emphasizing in the figure legend that data from all 10 individuals are shown (see text in red):

      Figure 2: Abundance of total and antigen-specific B cell subsets in the circulation during high parasite transmission and in the absence of P. falciparum exposure. The percentage of B cell subsets among circulating B cells is shown for total B cells (A), MSP1/AMA1-specific B cells (B), and CIDRα1-specific B cells (C). For MSP1/AMA1-specific B cells and CIDRα1-specific B cells, the total percentage among all circulating B cells is also shown (right most graphs in each panel). All panels show data for all 10 individuals. In panels B and C, no antigen-specific DN1 cells were detected pre- and post-IRS for four individuals. These data points therefore overlap and are not clearly visible. Differences between groups were evaluated using a Wilcoxon matched-pairs signed-rank test. P values

      1. Please mention the history of past and chronic co-infections of these 10 patients. Particularly if they had any other active or recent infection when the sample was taken.

      Four individuals had active or recent infections in the three months prior to sample collection, with upper respiratory tract infections being the most common. This information has been included in Table S3, with a reference to these data in the Methods section. We have also included a link to ClinEpiDB where additional information about the cohort participants, including medical history, can be found.

      1. Discussion: further discussion with relevant literature on the following points is needed to consolidate cellular and antibody studies: a. Whether the presence of long-lived ag-specific B-cell responses correlates with sustained levels of IgG against Pf antigens. b. The different types of antibodies (protective/pathogenic) that these different B-cell populations have been reported to produce during malaria.

      a. We have added the following paragraph to the Discussion section:

      To determine how these different long-lived B cell subsets contribute to protection against P. falciparum infection, it would be important to analyze the connection between the cellular repertoire and plasma IgG. For P. falciparum antigens, a moderate correlation between memory B cell abundance and IgG titers has been observed for some merozoite antigens, but not for others (28, 44). This is in line with studies for other pathogens, that showed a correlation between the percentage of memory B cells and IgG titers for antigens from several viruses and bacteria (48-51), while other studies have reported the absence of such a correlation (51-54). The lack of a correlation between the magnitude of the memory B cell and the antibody response fits with the prevailing model that memory B cells and plasma cells are two independently controlled arms of the humoral immune system (55, 56). To determine the contribution of different memory B cell subsets to the recall response against P. falciparum, it would be interesting to analyze IgG responses upon re-infection. However, none of the individuals included in this study experienced a recorded P. falciparum infection post-IRS, preventing us from performing such an analysis.

      b. We have added additional discussion about the types of antigens recognized by atypical B cells to the Discussion section:

      Prior studies have shown that while atypical B cells harbor reactivity against P. falciparum antigens (9,18), they are also enriched for autoreactivity (43). Specifically, atypical B cells produce antibodies against the membrane lipid phosphatidylserine, which can induce the destruction of uninfected erythrocytes and contribute to anemia (44).

      Significance

      General assessment:

      Strengths: - Novelty in contrasting two different types of P. falciparum antigen responses at the B-cell level. - The use of tetramers is a cutting-edge technique to assess this question. - Analyses were thorough and found contrasting differences in antigen-specific B-cell populations (atypical vs classical) between these 2 antigens for the first time (to my knowledge). - Well-written manuscript with clear data, methodology, and conclusions

      Limitations: - Missing serum/plasma antibody data to support their claim about long-lived humoral responses and reconciliation of ag-specific B-cell levels and ag-specific antibody levels in experiments and discussion. - Limited N of 10 patients of the same gender (female), some population analyses had even fewer samples. - Missing baseline levels for non-endemic uninfected control for B-cell populations for comparison.

      • We have included a discussion about the correlation between plasma antibody and memory B cell responses in the Discussion section.

      • We have clarified that some data points overlap in Figure 2, giving the impression that data from fewer than 10 individuals were shown.

      • We have included baseline levels of 1) tetramer reactivity (Figure S1), 2) the size of B cell populations (Figure 2), and 3) expression of select markers (Figure 4).

      Advance: The study consolidates antigen-specific responses with the discovery of recently characterized populations (ex. atypical) and finds novel differences between two types of malaria antigen responses at the B-cell level and between specific populations responding differentially to these antigens. The findings are incremental (role of B-cell population in malaria-specific responses), conceptual (contrasting two types of B-cell antigen responses in the same infection), and clinical (finding significant differences in patients).

      Audience: This study will attract basic B-cell immunology scientists, infectious disease clinicians/scientists, vaccinologists, and both basic malaria immunology and clinical audiences.

      Reviewer expertise: Malaria, immunology, antibodies.

      __Reviewer #3 __

      Evidence, reproducibility and clarity: The authors analysed the antigen specificity and phenotypes of B cells during high P falciparum transmission and after a period of successful malaria control with IRS in Uganda. The gap between the two sampling time points is close to two years.

      They use antigen probes for MSP1/AMA1 and CIDRalpha1, two antigens expressed at different stages of P. falciparum life cycle-merozoites and infected red cells, respectively. While MSP1/AMA1 are involved in the parasite's invasion of red blood cells, CIDRalpha1 is a domain of PFEMP1, a large family of antigenically variant proteins that mediates the sequestration of infected red cells in small blood vessels.

      They found that the percentage of activated antigen-specific memory B cells declined with malaria control. However, detectable frequencies of antigen-specific memory B cells were retained after malaria control, which confirms earlier reports.

      However, they also demonstrate that the phenotypic characteristics of memory B cells are associated with antigen specificity. The retained MSP1/AMA1-specific B cells were mostly CD95+CD11c+ memory B cells and FcRL5-Tbet- atypical B cells. In contrast, the retained CIDRalpha1-specific B cells were enriched among a subpopulation of atypical B cells.

      These findings suggest differences exist in how the MSA1/AMA1 and CIDRalpha1 y are recognised and processed by the human immune system and how the immune response responds to them upon re-infection with P falciparum.

      Major issues affecting the conclusion: The findings and conclusions of this study, whilst positively exciting and informative, are based on the analyses of very few cells (at times). Even the authors themselves acknowledge this. I expect the authors to address this issue by toning down their reporting and conclusions (where appropriate). Ultimately, we need to have the confidence that these results are reproducible.

      We appreciate the reviewer’s concern about the numbers of antigen-specific cells included in our analyses, which is an inherent limitation of this approach. However, we would like to point out that most analyses included a substantial number of antigen-specific B cells:

      Figure 3D: 158 to 2,038 cells per group

      Figure 4: an average of 26 to 184 cells per donor

      Figure 5B: 55 to 508 cells per group

      Figure 5C: 10 to 334 cells per group*

      * The group with 10 cells is an outlier here. All other groups contain at least 104 cells. Because this one condition had such a small number of cells, we specifically mentioned this number in the text.

      The numbers of cells for analyses shown in Figures 3D and 5B were already included in the figures. All the other numbers were mentioned in Table S3. To further clarify the number of cells included in each analysis, we have added the number of cells to Figures 4 and 5C.

      To tone down our reporting, we have rephrased some of our conclusions, and now present our section headers in past tense to make these statements reflect our observation instead of a definitive conclusion. For example:

      Conclusion: “The loss of MSP1/AMA1-specific and CIDRα1-specific B cells in the circulation was similar, but the phenotype of long-lived MSP1/AMA1-specific and CIDRα1-specific B cells appeared to differ.”

      Section header: “Long-lived MSP1/AMA1-specific and CIDRα1-specific B cells differed in phenotype”

      Finally, in the Discussion section, we have added a statement to our paragraph describing the limitations of our study to stress the importance of reproducing our findings:

      All in all, it will be important to perform additional studies of the phenotype and functionality of long-lived B cells with specificity for P. falciparum antigens to reproduce and extend our findings.

      Minor comments: Figure 2D-I found this figure, and its presentation is unclear. Notably, using contour plots doesn't allow the reader to appreciate the density of the cells being presented.

      To facilitate the interpretation of this figure, we have changed the plot type to a contour plot with density color gradient, and added the number of cells shown in each plot. (Please note that this panel has been renumbered to C.)

      Figure 4 - label the y-axis.

      The y-axis was labeled with “%”, which we have expanded to “% of B cells expressing marker of interest”.

      __Significance: __The study design-as outlined-allowed for the analyses of the specificity and phenotypic characteristics of residual P falciparum-specific memory B cells after 1.7 years of little to no P falciparum exposure. The cell phenotyping methods presented are also appropriate. However, antigen-specific cells are rare in blood circulation, and as the authors themselves acknowledge in the discussion, some of the results are based on very few cells. This means we cannot be sure all the results presented are reproducible.

      Previous studies demonstrated that P falciparum memory B cells are maintained long after cessation of antigen exposure. However, few (if any) detailed antigen-specific and phenotypic analyses of the characteristics of P falciparum-specific memory B cells following a long period of no exposure exist. Thus, this study presents an incremental advance in our knowledge. In addition, the association of antigen specificity with cell phenotypes is a new concept in malaria immunology. The research presented will greatly interest infectious disease immunologists and vaccinologists.

      I am an infectious disease immunologist with substantial experience in malaria immunology.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The authors analysed the antigen specificity and phenotypes of B cells during high P falciparum transmission and after a period of successful malaria control with IRS in Uganda. The gap between the two sampling time points is close to two years.

      They use antigen probes for MSP1/AMA1 and CIDRalpha1, two antigens expressed at different stages of P. falciparum life cycle-merozoites and infected red cells, respectively. While MSP1/AMA1 are involved in the parasite's invasion of red blood cells, CIDRalpha1 is a domain of PFEMP1, a large family of antigenically variant proteins that mediates the sequestration of infected red cells in small blood vessels.

      They found that the percentage of activated antigen-specific memory B cells declined with malaria control. However, detectable frequencies of antigen-specific memory B cells were retained after malaria control, which confirms earlier reports.

      However, they also demonstrate that the phenotypic characteristics of memory B cells are associated with antigen specificity. The retained MSP1/AMA1-specific B cells were mostly CD95+CD11c+ memory B cells and FcRL5-Tbet- atypical B cells. In contrast, the retained CIDRalpha1-specific B cells were enriched among a subpopulation of atypical B cells.

      These findings suggest differences exist in how the MSA1/AMA1 and CIDRalpha1 y are recognised and processed by the human immune system and how the immune response responds to them upon re-infection with P falciparum.

      Major issues affecting the conclusion:

      The findings and conclusions of this study, whilst positively exciting and informative, are based on the analyses of very few cells (at times). Even the authors themselves acknowledge this. I expect the authors to address this issue by toning down their reporting and conclusions (where appropriate). Ultimately, we need to have the confidence that these results are reproducible.

      Minor comments:

      Figure 2D-I found this figure, and its presentation is unclear. Notably, using contour plots doesn't allow the reader to appreciate the density of the cells being presented.

      Figure 4 - label the y-axis.

      Significance

      The study design-as outlined-allowed for the analyses of the specificity and phenotypic characteristics of residual P falciparum-specific memory B cells after 1.7 years of little to no P falciparum exposure. The cell phenotyping methods presented are also appropriate. However, antigen-specific cells are rare in blood circulation, and as the authors themselves acknowledge in the discussion, some of the results are based on very few cells. This means we cannot be sure all the results presented are reproducible.

      Previous studies demonstrated that P falciparum memory B cells are maintained long after cessation of antigen exposure. However, few (if any) detailed antigen-specific and phenotypic analyses of the characteristics of P falciparum-specific memory B cells following a long period of no exposure exist. Thus, this study presents an incremental advance in our knowledge. In addition, the association of antigen specificity with cell phenotypes is a new concept in malaria immunology. The research presented will greatly interest infectious disease immunologists and vaccinologists.

      I am an infectious disease immunologist with substantial experience in malaria immunology.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      In this study, the authors compared long-lived total and antigen (ag)-specific B-cell levels in a cohort of 10 Ugandan malaria patient samples that were collected before and after local reduction of P. falciparum transmission (pre/post-IRS). The focus is on the novel comparison of the two most common malaria antigens: merozoite antigens (MSP1/AMA1) and variant surface antigens (CIDRα1). Using high-parameter spectral flow cytometry, they also characterized the phenotype of the different populations of cells. Their main findings include 1) a decrease in activated but maintenance of resting ag-specific B-cells in the post-IRS sample and 2) CD95 and CD11c, as the only differentially expressed markers between MSP1/AMA1-specific and CIDRα1-specific long-lived memory B cells. Their further phenotypic characterization suggests functional consequences with MSP1/AMA1-specific B-cells being poised for rapid antibody-secreting cell differentiation while CIDRα1-specific B cells were enriched among a subset of atypical B cells that seem poised for antigen presentation (CD86+CD11chi/ AtBC1). Their findings consolidate and further expand our knowledge of long-lived B-cell levels during P. falciparum malaria and report/compare (for the first time to my knowledge) a differential selection of long-lived B-cell levels between these 2 antigen specificities. Overall, the manuscript is straightforward and well-written and the authors did a good job explaining their methodology, findings, and interpretations. I believe the major gap missing in this study is the reconciliation of long-lived antigen-specific B-cell levels with the serum antigen-specific antibody levels of these patients against the same 2 antigens (MSP1/AMA1 and CIDRα1) in the experiments and the discussion. The antibody data would strengthen their main argument and is the main missing piece for characterizing more completely the long-lived antigen-specific humoral responses. Below are my suggestions that would help improve the manuscript:

      Major comments:

      1. Serum Anti-Pf antibodies: Do the authors have access to the serum/plasma of these patients? It would be important to correlate the total and ag-specific B-cell populations with levels of serum IgG antibodies against those specific Pf antigens (MSP1/AMA1 and CIDRα1) and total IgG levels to strengthen their point about long-lived humoral responses.
      2. Correlation between populations and initial parasite load: Are the levels between any of the populations at any time point correlated significantly in any way? If the statistical power/N allows it, please perform a correlation array between all populations using all samples both total and ag-specific and initial parasite load.
      3. Figure 2: Why were total and ag-specific plasmablasts/plasma cells not included in this figure? Please include to compare levels in these two time points.
      4. Healthy baseline: The study is missing "healthy" controls as a reference. I presume this is because each patient is its uninfected control in the post-IRS sample. In methods, they mentioned they used two naïve-USA B-cells as technical controls. It would be important to include and maybe expand (to match age and gender)on that specific data from those controls as supplementary figures to support their findings:
      5. Show negative Tetramer staining for these samples (to understand the background).
      6. Levels of all the USA controls total B cell populations and compared to the pre/post-IRS samples to understand "baseline" or "non-endemic" control levels.

      Minor comments:

      1. In the gating strategy (S1), please include the percentage of each population of that representative example.
      2. For Figure 2, since not every panel has the same N, please include the N for each panel in the figure or a supplementary table.
      3. Please mention the history of past and chronic co-infections of these 10 patients. Particularly if they had any other active or recent infection when the sample was taken.
      4. Discussion: further discussion with relevant literature on the following points is needed to consolidate cellular and antibody studies: a. Whether the presence of long-lived ag-specific B-cell responses correlates with sustained levels of IgG against Pf antigens. b. The different types of antibodies (protective/pathogenic) that these different B-cell populations have been reported to produce during malaria.

      Significance

      General assessment:

      Strengths:

      • Novelty in contrasting two different types of P. falciparum antigen responses at the B-cell level.
      • The use of tetramers is a cutting-edge technique to assess this question.
      • Analyses were thorough and found contrasting differences in antigen-specific B-cell populations (atypical vs classical) between these 2 antigens for the first time (to my knowledge).
      • Well-written manuscript with clear data, methodology, and conclusions

      Limitations:

      • Missing serum/plasma antibody data to support their claim about long-lived humoral responses and reconciliation of ag-specific B-cell levels and ag-specific antibody levels in experiments and discussion.
      • Limited N of 10 patients of the same gender (female), some population analyses had even fewer samples.
      • Missing baseline levels for non-endemic uninfected control for B-cell populations for comparison.

      Advance:

      The study consolidates antigen-specific responses with the discovery of recently characterized populations (ex. atypical) and finds novel differences between two types of malaria antigen responses at the B-cell level and between specific populations responding differentially to these antigens. The findings are incremental (role of B-cell population in malaria-specific responses), conceptual (contrasting two types of B-cell antigen responses in the same infection), and clinical (finding significant differences in patients).

      Audience:

      This study will attract basic B-cell immunology scientists, infectious disease clinicians/scientists, vaccinologists, and both basic malaria immunology and clinical audiences.

      Reviewer expertise:

      Malaria, immunology, antibodies.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This study by Reyes at al is a well conducted analysis of memory B cell dynamics of Plasmodium falciparum (Pf) -specific B cell populations over the course of reducing Pf prevalence in ten Ugandan adults. The data is presented well and the authors provide compelling evidence that 1. There is an overall loss of Ag specific B cells with reduction in exposure and 2. Different antigens (MSP1/AMA-1 vs CIDRa-1) generate different flavors of long lived responses. However, additional clarity to the reader should be provided on certain topics (listed below).

      Major comments:

      1. While the premise of the study (reduced Pf transmission due to the use of indoor residual spraying (IRS)) is an important one, I think the authors must take into consideration that 9/10 subjects had at least one Pf positive episode between Time Points 1 and 2 (Figure 1). Also, it looks from Fig 1 that some samples were collected at a time of Pf positive test (green squares), while in Table S1 none of the subjects have a positive parasite status at TP1.
      2. Figure S1A: What is trBC? Figure S1B: What is Strep? Are the strep positive cells also CIDR-1 positive and were they gated out? Why is APC used for MZ-1 and one of the MSP1-AMA-1 tetramers? Do these stainings come from multiple panels?
      3. Figure 3A: how many cells does the umap plot represent? Were there a total of 3555 Ag specific B cells that were non-naive (Figure 3E)?
      4. Could the authors comment on why in Figure 3, Ig isotype expression was not considered for clustering? This would allow for characterization of DN sub populations/ clusters in addition to the CD21-CD27- ABCs? It looks like IgD expression was low across the clusters (Figure 3D). Was this the case for the cells considered in this analysis, or was it excluded? If it was truly low expressed, how were the assessments in Figure 2 made?
      5. Are there differences in these designations / phenotypes of DN populations of atBCs vs CD21-CD27- atBCs?
      6. Lines 258-259: In considering only switched MBCs, what clusters from Figure 3a were included? There seem to be 2588 sw MBCs (Table S3, Figure 4). Do the remaining cells (967 cells) come from clusters 2, 5 and 6 (and excludes the atBC clusters)

      Minor comments:

      1. Line 178- 179: Was there a specfic measure of rate of decline made for these cells?

      Significance

      General assessment:

      Strengths: The authors provide evidence that the dynamics of antigen specific cells in humans can vary with exposure and with the nature of the antigen. They have nicely discussed the potential causes for these differences (Discussion), although they should include the findings of Ambegaonkar et al that ABCs in malaria may be restricted to responding specifically to membrane bound antigens (PMCID: PMC7380957)

      Limitations:

      1. Outlined above, and as the authors also mention, a small sample size and homogenous population.
      2. The evidence for reduced transmission is not clear, and the negative parasite tests for donors shown in Table S1 do not match with Figure 1 data.
      3. Lack of IgD expression across clusters (Figure 3D- the authors will need to clarify this point) would require re-analysis of Figure 2 data

      Advances: This study highlights the importance of studying antigen specific B cells in humans in the context of natural infection and the use of high-parameter tools such as spectral flow cytometry in assessing a large quantity of data from limited clinical samples. These data are important to inform better vaccine design. Studies in inbred animals can be quite limited or different from human B cell responses.

      Audience: This study will be of interest to malariologists and B cell immunologists. Atypical B cells are relevant to many infectious diseases and auto immunity, while the dynamics of memory B cells in malaria all be relevant to those interested in vaccine design against blood stage antigens.

    1. Above boiling point: Steam addition is controlled by three parameters:▪ The output signal of the differential pressure sensor P1,▪ the temperature at thermocouple "humidity" B4 and▪ the rotational speeds and rotational directions of the fan motors M1, M16, M22

      Humidity control is achieved through monitoring the negative pressure differential behind the top fan wheel , between the centre and periphery of the fan. The pressure differential behind the fan varies as the atmosphere in the cook chamber varies.

      Generally:

      • The less humid, the higher the voltage of P1

      • The higher the fan rpm, the higher the voltage of P1

      During the calibration process the CPU is educated with specific voltages from the P1 pressure switch for known fan speeds, temperature and humidity.

      • The Fan motor inverter sends fan speed data to the CPU through the Bus system.

      • B4 (Humidity) Thermocouple connected to terminal X5 on the A10 I/O board and situated behind the top fan (secured on the outside of the oven liner) measures the air temp behind the fan and sends this data to the CPU from A10 via the Bus system. *

      • P1 pressure sensor connected to terminal X1 on the A10 I/O board measures the differential pressure across the back of the fan wheel, converts the pressure reading to a voltage and delivers the results to the CPU from A10 via the Bus system, where they are stored both in the CPU and on the SD card (iCombi Pro) and External Eprom (iCombi Classic). These clearly defined reference voltages, created during the calibration process and stored in the CPU, enable the iCombi to create any specific climate requested by the chef.

      Example: 160 degrees C – 60% humidity – Fan speed 1000 rpm

      • The processor will ensure a fan speed of 1000 rpm via the communication with the fan motor inverter, via the bus system.

      • Y5 humidity valve is closed, and heat is applied via the hot air heating elements or Gas heat exchanger, to 160 deg C. Communicated to the CPU by B4 thermocouple via A10 and the Bus system.

      • Humidity is delivered to the chamber via the steam generator and pressure sensor P1 monitors the changing negative differential pressure behind the fan until a predetermined value calculated from data stored during the calibration process is reached.

      If the signal from P1 pressure sensor overruns the predetermined value, the steam generator will shut down, Y5 Humidity valve will open and negative pressure behind the fan wheel will draw ambient air into the oven pushing humidity down into the control box and out through the vent stack..

      As this occurs the P1 sensor voltage signal will indicate the reduction in humidity, Y5 will close again ad the steam generator will start again.

    2. The difference with steam control is that the chef can select a value for the cooking cabinet humidity below steam sat-uration, for example 70 %.

      To be clear!

      "The difference between Steam Control and Humidity control is that with Humidity control, the chef can select a value for cabinet humidity below the steam saturation point, for example 70 %".

    1. OpenWebTorrent - An open webtorrent tracker project

      .4 chitchatter

    1. 版权所有:国家税务总局

      袁少凯到此一游

    1. import了三个模块,使它们可以在该文件中使用。模块React被放入变量React,模块react-dom被放入变量ReactDOM,而定义应用主要组件的模块被放入变量App。

      稍后

      详细学习一下关于 Javascript 的 import

    2. 注意,现在必须为Note组件定义key属性,而不是像以前那样为li标签定义。

      如果使用 map 渲染列表元素的时候,回调函数返回的是我们抽出来的组件(不是原始的 li),那么 key 定义在自定义组件上。

    3. 然而,这是不推荐的,即使它看起来工作得很好,也会产生想不到的问题。 在这篇文章中可以阅读更多关于这个问题的内容。

      不推荐使用 array index as keys 的原因:

      稍后

      https://robinpokorny.medium.com/index-as-a-key-is-an-anti-pattern-e0349aece318

    4. 我们可以通过使用数组索引作为键来使控制台中的错误信息消失。通过向map方法的回调函数传递第二个参数,可以拿到索引。 notes.map((note, i) => ...)copy 当这样调用时,i被分配为笔记所在的数组中的索引值。

      数组的 map 方法,回调函数的第二个参数可以获取到 index。

    5. React使用数组中对象的键属性来决定如何在组件重新渲染时更新该组件生成的视图。关于这一点,更多的可以查看React文档。

      使用 map 生成的元素,每一个都必须有一个 key 属性,原因在于如下文档:

      稍后

      https://legacy.reactjs.org/docs/reconciliation.html#recursing-on-children

    6. 创建片段的说明可以查看这里。 有用的、现成的片段也可以在市场中作为VS Code插件找到。 最重要的片段是用于console.log()命令的片段,例如,clog。这可以这样创建。 { "console.log": { "prefix": "clog", "body": [ "console.log('$1')", ], "description": "Log output to console" } }copy 使用console.log()来调试你的代码非常普遍,因此Visual Studio Code内置了这个片段。要使用它,请输入log并点击tab来自动完成。更多功能的console.log()片段扩展可以在市场中找到。

      稍后

      关于在 VS Code 中配置代码片段快捷键。

    7. 相反,当你把对象作为不同的参数用逗号隔开传递给console.log,就像我们上面的第二个例子,对象的内容被打印到开发者控制台,成为可检查的字符串。

      当打印多个对象到 console.log 中时,它们都会变成可检查的字符串

    8. 当某些东西不工作时,不要只是猜测什么是错的。相反,要记录或使用一些其他的调试方法。

      当某些东西不工作时,不要只是猜测什么是错的。相反,要记录或使用一些其他的调试方法。

    1. 这是全栈开发课程中 React 入门的部分

    2. 在所介绍的两种定义事件处理程序的方式中,选择哪一种主要是口味问题。

      这里强调了,如何定义事件处理程序是风格问题。两种风格:1)把事件处理函数定义成一个调用(返回定制化函数);2)把事件处理函数定义称谓一个函数

    3. 返回的函数可以被利用来定义可以用参数定制的通用功能。创建事件处理程序的hello函数可以被认为是一个工厂,它产生了定制的事件处理程序,旨在向用户问好。

      React 中,事件处理程序不能是一个函数的调用,而是一个函数或者函数引用。但这里介绍了一个“函数工厂”的模式,就是调用返回函数的函数,来定制化函数。

    4. Dev tools按照定义的顺序显示钩子的状态。

      React 开发者工具中展示的 Hooks 顺序是按照 App 中定义的顺序来的。

    5. 记录到控制台决不是调试我们的应用的唯一方法。您可以在Chrome开发者控制台的调试器中暂停应用代码的执行,方法是在代码的任何地方写下debugger命令。 一旦执行到debugger命令被执行的地方,执行将暂停。

      在代码中的任何地方加入 debugger 命令,然后浏览器的 Source 标签页进行断点调试。

    6. NB 当你使用console.log进行调试时,不要用加号运算符以类似Java的方式组合objects。不是写: console.log('props value is ' + props)copy 而是用逗号把你想记录到控制台的东西分开。 console.log('props value is', props)copy 如果你使用类似Java的方式将一个字符串与一个对象连接起来,你最终会得到一个相当不可靠的日志信息。

      对 Java 程序员太良心了,告诉我们 console.log 里用逗号分隔就行。

    7. 在本课程中,我们使用state hook来为我们的React组件添加状态,这是React较新版本的一部分,从16.8.0起就可以使用。在增加钩子之前,没有办法向功能组件添加状态。需要状态的组件必须被定义为class组件,使用JavaScript的类语法。 在这个课程中,我们做了一个略显激进的决定,从第一天开始就完全使用钩子,以确保我们学习React的当前和未来风格。即使功能组件是React的未来,学习类的语法仍然很重要,因为有数十亿行的React遗留代码,你有一天可能会维护它们。这同样适用于你在互联网上偶然发现的React的文档和例子。

      在 16.8.0 之前没有 React Hooks 的时候,需要状态的组件必须被定义为 class。以后在维护遗留代码的时候可能会碰到。

    8. 存储在allClicks中的那块状态现在被设置为一个数组,它包含了之前状态数组的所有项目和字母L。将新的项目添加到数组中是通过concat方法完成的,该方法并不改变现有的数组,而是返回一个数组的新副本,并将项目添加到其中。 如前所述,在JavaScript中也可以用push方法向数组中添加项。如果我们通过把项目推送到allClicks数组中,然后更新状态来添加项目,这个应用看起来仍然可以工作。 const handleLeftClick = () => { allClicks.push('L') setAll(allClicks) setLeft(left + 1) }copy 然而,不要样做。如前所述,像allClicks这样的React组件的状态是不能直接改变的。即使改变状态在某些情况下看起来是有效的,它也会导致很难调试的问题。

      这个例子再一次说明,更新 state 状态的时候,不要更改原来的 state,而是生成一个全新的状态,然后更新进去。

    1. вмес­то коор­динат

      Такой вариант мне тоже кажется некорректным. Только на одной оси будет сила тока, а на другой напряжение?

    2. и с

      У меня в конце строки.

    1. Ishtar

      The goddess Ishtar further reflects the ambivalence and complexity of femininity in relation to heroism. While maintaining divine power and contributing to Gilgamesh's trials, her portrayal as capricious and vindictive underscores a cultural sentiment that power in women could be as magnificent yet perilous as strength in men. Ishtar’s interaction with Gilgamesh highlights a manipulation of traditional gender roles, where her amorous advances and subsequent wrath explore themes of vulnerability and danger associated with femininity, offering a critical lens on how the ancients perceived godly yet humanlike emotional turmoil.

  2. www.arcjournals.org www.arcjournals.org
    1. Siavash

      The "Shahnameh," or "Book of Kings," composed by Ferdowsi in the 10th century, stands as a cornerstone of Persian literary heritage. This epic not only recounts tales of dynastic glory and tragedy but also deepens our understanding of socio-cultural norms, including those surrounding gender. Syavash's story is a testament to this, embodying virtues and traits traditionally associated with both masculine and feminine roles, which in turn accentuate his heroism.

    1. threats to democracy

      Democrats claim to oppose "threats to democracy" but replace their candidates after nomination to maintain control over the party faithful. They appointed Biden after Kamala's campaign was rightly and completely destroyed in a debate with Tulsi Gabbard but the facts of Kamala's incompetent and tyrannical past, abusing minorities for political gain: https://www.youtube.com/watch?v=o1-CRrMDSLs

      Democrats ignore democracy at the drop of a hat when they believe it suits them.

    2. because she was over-prepared and used emails

      Bill Penzey Jr is gaslighting readers again with this statement. The facts are that Hillary Clinton used a private email server for official communications as Secretary of State (2009-2013). The FBI found over 100 classified emails on the server that were not encrypted as required, this included 65 emails deemed "Secret" and 22 deemed "Top Secret".

      After the investigation began, her IT team deleted ~30,000 emails and destroyed devices by smashing them with hammers, preventing a full investigation. The Obama Administration corrupted FBI found her “extremely careless” (an understatement) but did not recommend charges. This impacted her 2016 presidential campaign - but not because she was "over-prepared and used emails".

      From his statement, it is apparent that Bill Penzey Jr. is not a serious person capable of grasping established facts about the world around him and has no business pontificating on political matters. At worst, he's spreading deliberate misinformation.

    3. all because Biden’s son had a computer

      Though democrats in politics, the Biden family, and the media lied repeatedly before the election, Hunter Biden’s laptop was confirmed to be confirmed his.

      This is relevant because it contained incriminating photos of Hunter Biden; as a result, Hunter Biden was tried and convicted on Federal gun charges.

      There are still outstanding lawsuits relating to the contents of the laptop as of this writing.

      Bill Penzey, Jr. knows this, and by suggesting that Americans were merely upset that Hunter had a computer is an attempt at gaslighting people, which is dishonest and manipulative.

    1. There are those who believe we were once those animal flesh beings but that, as more and more gleaming children were made, we became such deft mimics as to become gleaming beings ourselves

      They were once physical beings; this backs up the thought of some sort of afterlife by saying they became gleaming beings it makes me think of an angel.

    2. They do not grow—although the records seem to suggest that children once did grow. Perhaps, though, the records’ use of “growth” is only metaphorical, not literal.

      The "children" are shaped and stay in that form forever.

    3. God will examine our find and consider, and then say one of two things. He might say, “Yes, this can serve as the basis for a child.” Or he might say, “Why do you bring me this?”

      They believe in a higher being in which they go to search for answers.

    1. RRID:AB_2099233

      DOI: 10.1016/j.celrep.2021.108892

      Resource: (Cell Signaling Technology Cat# 7074, RRID:AB_2099233)

      Curator: @Naa003

      SciCrunch record: RRID:AB_2099233


      What is this?

    1. 76241

      DOI: 10.1098/rsob.230355

      Resource: RRID:BDSC_76241

      Curator: @anisehay

      SciCrunch record: RRID:BDSC_76241


      What is this?

    2. 26791

      DOI: 10.1098/rsob.230355

      Resource: RRID:BDSC_26791

      Curator: @anisehay

      SciCrunch record: RRID:BDSC_26791


      What is this?

    3. 5905

      DOI: 10.1098/rsob.230355

      Resource: RRID:BDSC_5905

      Curator: @anisehay

      SciCrunch record: RRID:BDSC_5905


      What is this?

    4. 20793

      DOI: 10.1098/rsob.230355

      Resource: RRID:BDSC_20793

      Curator: @anisehay

      SciCrunch record: RRID:BDSC_20793


      What is this?

    5. 51221

      DOI: 10.1098/rsob.230355

      Resource: RRID:BDSC_51221

      Curator: @anisehay

      SciCrunch record: RRID:BDSC_51221


      What is this?

    1. RRID:SCR_003070

      DOI: 10.1039/D4FO00292J

      Resource: ImageJ (RRID:SCR_003070)

      Curator: @vtello

      SciCrunch record: RRID:SCR_003070


      What is this?

    2. RRID:AB_476743

      DOI: 10.1039/D4FO00292J

      Resource: (Sigma-Aldrich Cat# A5316, RRID:AB_476743)

      Curator: @vtello

      SciCrunch record: RRID:AB_476743


      What is this?

    3. RRID:AB_331659

      DOI: 10.1039/D4FO00292J

      Resource: (Cell Signaling Technology Cat# 9251, RRID:AB_331659)

      Curator: @vtello

      SciCrunch record: RRID:AB_331659


      What is this?

    4. RRID:AB_2250373

      DOI: 10.1039/D4FO00292J

      Resource: (Cell Signaling Technology Cat# 9252, RRID:AB_2250373)

      Curator: @vtello

      SciCrunch record: RRID:AB_2250373


      What is this?

    5. RRID:AB_330889

      DOI: 10.1039/D4FO00292J

      Resource: (Cell Signaling Technology Cat# 9151, RRID:AB_330889)

      Curator: @vtello

      SciCrunch record: RRID:AB_330889


      What is this?

    6. RRID:AB_330905

      DOI: 10.1039/D4FO00292J

      Resource: (Cell Signaling Technology Cat# 9152, RRID:AB_330905)

      Curator: @vtello

      SciCrunch record: RRID:AB_330905


      What is this?

    7. RRID:AB_330559

      DOI: 10.1039/D4FO00292J

      Resource: (Cell Signaling Technology Cat# 3031, RRID:AB_330559)

      Curator: @vtello

      SciCrunch record: RRID:AB_330559


      What is this?

    8. RRID:AB_10859369

      DOI: 10.1039/D4FO00292J

      Resource: (Cell Signaling Technology Cat# 8242, RRID:AB_10859369)

      Curator: @vtello

      SciCrunch record: RRID:AB_10859369


      What is this?

    9. RRID:AB_2078082

      DOI: 10.1039/D4FO00292J

      Resource: (Cell Signaling Technology Cat# 2466, RRID:AB_2078082)

      Curator: @vtello

      SciCrunch record: RRID:AB_2078082


      What is this?

    10. RRID:AB_591790

      DOI: 10.1039/D4FO00292J

      Resource: (MBL International Cat# 311-H, RRID:AB_591790)

      Curator: @vtello

      SciCrunch record: RRID:AB_591790


      What is this?

    11. RRID:AB_2223500

      DOI: 10.1039/D4FO00292J

      Resource: (Agilent Cat# M0851, RRID:AB_2223500)

      Curator: @vtello

      SciCrunch record: RRID:AB_2223500


      What is this?

    1. RRID:Addgene_161149

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161149

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161149


      What is this?

    2. RRID:Addgene_161152

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161152

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161152


      What is this?

    3. RRID:Addgene_161150

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161150

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161150


      What is this?

    4. RRID:Addgene_161154

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161154

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161154


      What is this?

    5. RRID:Addgene_161151

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161151

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161151


      What is this?

    6. RRID:Addgene_161152

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161152

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161152


      What is this?

    7. RRID:Addgene_161155

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161155

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161155


      What is this?

    8. RRID:Addgene_161156

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161156

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161156


      What is this?

    9. RRID:Addgene_161154

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161154

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161154


      What is this?

    10. RRID:Addgene_161157

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161157

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161157


      What is this?

    11. RRID:Addgene_161155

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161155

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161155


      What is this?

    12. RRID:Addgene_161158

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161158

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161158


      What is this?

    13. RRID:Addgene_161156

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161156

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161156


      What is this?

    14. RRID:Addgene_161159

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161159

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161159


      What is this?

    15. RRID:Addgene_161157

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161157

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161157


      What is this?

    16. RRID:Addgene_161160

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161160

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161160


      What is this?

    17. RRID:Addgene_161158

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161158

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161158


      What is this?

    18. RRID:Addgene_161161

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161161

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161161


      What is this?

    19. RRID:Addgene_161159

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161159

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161159


      What is this?

    20. RRID:Addgene_161162

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161162

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161162


      What is this?

    21. RRID:Addgene_161160

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161160

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161160


      What is this?

    22. RRID:Addgene_161161

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161161

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161161


      What is this?

    23. RRID:Addgene_161164

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161164

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161164


      What is this?

    24. RRID:Addgene_161163

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161163

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161163


      What is this?

    25. RRID:Addgene_161165

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161165

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161165


      What is this?

    26. RRID:Addgene_161163

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161163

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161163


      What is this?

    27. RRID:Addgene_161162

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161162

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161162


      What is this?

    28. RRID:Addgene_161164

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161164

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161164


      What is this?

    29. RRID:Addgene_161166

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161166

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161166


      What is this?

    30. RRID:Addgene_161167

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161167

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161167


      What is this?

    31. RRID:Addgene_161165

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161165

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161165


      What is this?

    32. RRID:Addgene_161168

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161168

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161168


      What is this?

    33. RRID:Addgene_161166

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161166

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161166


      What is this?

    34. RRID:Addgene_161169

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161169

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161169


      What is this?

    35. RRID:Addgene_161167

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161167

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161167


      What is this?

    36. RRID:Addgene_161170

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161170

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161170


      What is this?

    37. RRID:Addgene_161169

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161169

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161169


      What is this?

    38. RRID:Addgene_161168

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161168

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161168


      What is this?

    39. RRID:Addgene_161171

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161171

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161171


      What is this?

    40. RRID:Addgene_161172

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161172

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161172


      What is this?

    41. RRID:Addgene_161170

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161170

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161170


      What is this?

    42. RRID:Addgene_161171

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161171

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161171


      What is this?

    43. RRID:Addgene_161173

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161173

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161173


      What is this?

    44. RRID:Addgene_161174

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161174

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161174


      What is this?

    45. RRID:Addgene_161172

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161172

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161172


      What is this?

    46. RRID:Addgene_161173

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161173

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161173


      What is this?

    47. RRID:Addgene_161175

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161175

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161175


      What is this?

    48. RRID:Addgene_161174

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161174

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161174


      What is this?

    49. RRID:Addgene_161176

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161176

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161176


      What is this?

    50. RRID:Addgene_161175

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161175

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161175


      What is this?

    51. RRID:Addgene_161177

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161177

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161177


      What is this?

    52. RRID:Addgene_161178

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161178

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161178


      What is this?

    53. RRID:Addgene_161176

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161176

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161176


      What is this?

    54. RRID:Addgene_161177

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161177

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161177


      What is this?

    55. RRID:Addgene_161179

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161179

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161179


      What is this?

    56. RRID:Addgene_161178

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161178

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161178


      What is this?

    57. RRID:Addgene_161180

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161180

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161180


      What is this?

    58. RRID:Addgene_161181

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161181

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161181


      What is this?

    59. RRID:Addgene_161179

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161179

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161179


      What is this?

    60. RRID:Addgene_161180

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161180

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161180


      What is this?

    61. RRID:Addgene_161182

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161182

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161182


      What is this?

    62. RRID:Addgene_161181

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161181

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161181


      What is this?

    63. RRID:Addgene_161183

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161183

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161183


      What is this?

    64. RRID:Addgene_161182

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161182

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161182


      What is this?

    65. RRID:Addgene_161184

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161184

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161184


      What is this?

    66. RRID:Addgene_161183

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161183

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161183


      What is this?

    67. RRID:Addgene_161185

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161185

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161185


      What is this?

    68. RRID:Addgene_161186

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161186

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161186


      What is this?

    69. RRID:Addgene_161184

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161184

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161184


      What is this?

    70. RRID:Addgene_161187

      DOI: 10.3389/fphar.2024.1401599

      Resource: RRID:Addgene_161187

      Curator: @scibot

      SciCrunch record: RRID:Addgene_161187


      What is this?