7 Matching Annotations
  1. Mar 2021
  2. Oct 2020
  3. Sep 2020
    1. When you visit location /one and the server redirects you to location /two, you expect the browser’s address bar to display the redirected URL. However, Turbolinks makes requests using XMLHttpRequest, which transparently follows redirects. There’s no way for Turbolinks to tell whether a request resulted in a redirect without additional cooperation from the server. To work around this problem, send the Turbolinks-Location header in the final response to a visit that was redirected, and Turbolinks will replace the browser’s topmost history entry with the value you provide.
  4. Mar 2019
    1. Language Understanding

      目标是根据一个用户utterance/query 得到其对应的语义slot。slots是预先根据场景定于的。通常来说有两种类型的表示,一个是句子级别的类别,例如用户的意图和utterance的类别。另外一个是单词级别的信息抽取,例如命名实体和槽位填充。

      意图识别是根据一句话来检测用户的意图。 基于深度学习的意图识别: L. Deng, G. Tur, X. He, and D. Hakkani-Tur. Use ofkernel deep convex networks and end-to-end learningfor spoken language understanding. InSpoken Lan-guage Technology Workshop (SLT), 2012 IEEE, pages210–215. IEEE, 2012

      G. Tur, L. Deng, D. Hakkani-T ̈ur, and X. He. Towardsdeeper understanding: Deep convex networks for se-mantic utterance classification. InAcoustics, Speechand Signal Processing (ICASSP), 2012 IEEE Interna-tional Conference on, pages 5045–5048. IEEE, 2012.

      D. Yann, G. Tur, D. Hakkani-Tur, and L. Heck. Zero-shot learning and clustering for semantic utteranceclassification using deep learning. 2014.

      尤其是这个用CNN来抽取query vector进行query分类。 H. B. Hashemi, A. Asiaee, and R. Kraft. Query intentdetection using convolutional neural networks. InIn-ternational Conference on Web Search and Data Min-ing, Workshop on Query Understanding, 2016

      P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, andL. Heck. Learning deep structured semantic modelsfor web search using clickthrough data. InProceedingsof the 22nd ACM international conference on Confer-ence on information & knowledge management, pages2333–2338. ACM, 2013

      Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil.Learning semantic representations using convolutionalneural networks for web search. InProceedings of the23rd International Conference on World Wide Web,pages 373–374. ACM, 2014.

  5. Feb 2018
  6. Aug 2015