192 Matching Annotations
  1. Nov 2022
    1. phytoncides, antibacterial and antimicrobial substances that trees and other plants release into the air to help them fight diseases and harmful organisms. When humans breathe in these substances—typically by spending time in nature—their health can improve. Across several studies, phytoncides have been shown to boost immune function, increase anticancer protein production, reduce stress hormones, improve mood, and help people relax. 

      I always feel better during and after a forest walk.

  2. Aug 2022
    1. Sadoff, J., Gars, M. L., Cardenas, V., Shukarev, G., Vaissiere, N., Heerwegh, D., Truyers, C., Groot, A. M. de, Scheper, G., Hendriks, J., Ruiz-Guinazu, J., Struyf, F., Hoof, J. V., Douoguih, M., & Schuitemaker, H. (2021). Durability of antibody responses elicited by a single dose of Ad26.COV2.S and substantial increase following late boosting (p. 2021.08.25.21262569). https://doi.org/10.1101/2021.08.25.21262569

    1. Pozzetto, B., Legros, V., Djebali, S., Barateau, V., Guibert, N., Villard, M., Peyrot, L., Allatif, O., Fassier, J.-B., Massardier-Pilonchéry, A., Brengel-Pesce, K., Yaugel-Novoa, M., Denolly, S., Boson, B., Bourlet, T., Bal, A., Valette, M., Andrieu, T., Lina, B., … Trouillet-Assant, S. (2021). Immunogenicity and efficacy of heterologous ChadOx1/BNT162b2 vaccination. Nature, 1–9. https://doi.org/10.1038/s41586-021-04120-y

    1. Krause, P. R., Fleming, T. R., Peto, R., Longini, I. M., Figueroa, J. P., Sterne, J. A. C., Cravioto, A., Rees, H., Higgins, J. P. T., Boutron, I., Pan, H., Gruber, M. F., Arora, N., Kazi, F., Gaspar, R., Swaminathan, S., Ryan, M. J., & Henao-Restrepo, A.-M. (2021). Considerations in boosting COVID-19 vaccine immune responses. The Lancet, 4. https://doi.org/10.1016/S0140-6736(21)02046-8

    1. Collier, A. Y., Brown, C. M., Mcmahan, K., Yu, J., Liu, J., Jacob-Dolan, C., Chandrashekar, A., Tierney, D., Ansel, J. L., Rowe, M., Sellers, D., Ahmad, K., Aguayo, R., Anioke, T., Gardner, S., Siamatu, M., Rivera, L. B., Hacker, M. R., Madoff, L. C., & Barouch, D. H. (2021). Immune Responses in Fully Vaccinated Individuals Following Breakthrough Infection with the SARS-CoV-2 Delta Variant in Provincetown, Massachusetts (p. 2021.10.18.21265113). https://doi.org/10.1101/2021.10.18.21265113

  3. Jul 2022
    1. Although if you catch it as an adult it has one major, VERY nasty side effect: something about a measles infection temporarily 'resets' the immune system. Meaning that all your previous immunities, from illness or vaccination, go away. In the western world if you catch measles you will later need to redo your entire childhood vaccination program, just in case.

      Ugh. That's so nasty.

  4. Apr 2022
    1. Mathew, D., Giles, J. R., Baxter, A. E., Oldridge, D. A., Greenplate, A. R., Wu, J. E., Alanio, C., Kuri-Cervantes, L., Pampena, M. B., D’Andrea, K., Manne, S., Chen, Z., Huang, Y. J., Reilly, J. P., Weisman, A. R., Ittner, C. A. G., Kuthuru, O., Dougherty, J., Nzingha, K., … Wherry, E. J. (2020). Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 369(6508), eabc8511. https://doi.org/10.1126/science.abc8511

    1. Edward Nirenberg 🇺🇦 [@ENirenberg]. (2021, November 30). This is also not limited to the vaccine- any infection we encounter will do the same thing. It’s how we evolved to get around a massive genetic and bioenergetic challenge and it’s brilliant and it’s happening all the time regardless of any vaccines we get. [Tweet]. Twitter. https://twitter.com/ENirenberg/status/1465698637434933254

    1. Katherine J. Wu, Ph.D. (2021, December 29). I wrote (last week!) about the future of boosting—How many more shots will we need? Will they all contain the same ingredients? Ultimately, it depends on our immune systems, how the virus looks, and how much of the virus is around. 1/3 https://t.co/bJKYyriE9a [Tweet]. @KatherineJWu. https://twitter.com/KatherineJWu/status/1476249881073303552

  5. Mar 2022
    1. Bellesi, S., Metafuni, E., Hohaus, S., Maiolo, E., Marchionni, F., D’Innocenzo, S., La Sorda, M., Ferraironi, M., Ramundo, F., Fantoni, M., Murri, R., Cingolani, A., Sica, S., Gasbarrini, A., Sanguinetti, M., Chiusolo, P., & De Stefano, V. (2020). Increased CD95 (Fas) and PD-1 expression in peripheral blood T lymphocytes in COVID-19 patients. British Journal of Haematology, 191(2), 207–211. https://doi.org/10.1111/bjh.17034

  6. Feb 2022
    1. Meaghan Kall. (2022, February 17). BA.2 risk assessment New this week is upgrading Immune Evasion—Amber 🟨 from low to moderate that BA.2 is antigentically different to BA.1 Unsurprising given the mutation profile, with BA.2 slightly more immune evasive than BA.1 on neuts studies https://t.co/n6DWtiRaNH [Tweet]. @kallmemeg. https://twitter.com/kallmemeg/status/1494100170195312646

    1. Altarawneh, H. N., Chemaitelly, H., Hasan, M. R., Ayoub, H. H., Qassim, S., AlMukdad, S., Coyle, P., Yassine, H. M., Al-Khatib, H. A., Benslimane, F. M., Al-Kanaani, Z., Al-Kuwari, E., Jeremijenko, A., Kaleeckal, A. H., Latif, A. N., Shaik, R. M., Abdul-Rahim, H. F., Nasrallah, G. K., Al-Kuwari, M. G., … Abu-Raddad, L. J. (2022). Protection against the Omicron Variant from Previous SARS-CoV-2 Infection. New England Journal of Medicine, 0(0), null. https://doi.org/10.1056/NEJMc2200133

    1. Lyngse, F. P., Mortensen, L. H., Denwood, M. J., Christiansen, L. E., Møller, C. H., Skov, R. L., Spiess, K., Fomsgaard, A., Lassaunière, M. M., Rasmussen, M., Stegger, M., Nielsen, C., Sieber, R. N., Cohen, A. S., Møller, F. T., Overvad, M., Mølbak, K., Krause, T. G., & Kirkeby, C. T. (2021). SARS-CoV-2 Omicron VOC Transmission in Danish Households (p. 2021.12.27.21268278). medRxiv. https://doi.org/10.1101/2021.12.27.21268278

    1. Ulrich Elling. (2022, January 12). While #Omicron BA.1 leads the race, the little sister BA.2 is catching up in numbers. They are rather different with likely functional implications. BA.2 might be more immune evasive in RBD, less in NTD. And due to reduced mutation load in NTD maybe different fusion properties? Https://t.co/kEACjzQDs3 [Tweet]. @EllingUlrich. https://twitter.com/EllingUlrich/status/1481214901997682692

  7. Jan 2022
    1. Gentles, L. E., Kehoe, L., Crawford, K. H. D., Lacombe, K., Dickerson, J., Wolf, C., Yuan, J., Schuler, S., Watson, J. T., Nyanseor, S., Briggs-Hagen, M., Saydah, S., Midgley, C. M., Pringle, K., Chu, H., Bloom, J. D., & Englund, J. A. (2022). Dynamics of infection-elicited SARS-CoV-2 antibodies in children over time (p. 2022.01.14.22269235). medRxiv. https://doi.org/10.1101/2022.01.14.22269235

    1. Zimmerman, M. I., Porter, J. R., Ward, M. D., Singh, S., Vithani, N., Meller, A., Mallimadugula, U. L., Kuhn, C. E., Borowsky, J. H., Wiewiora, R. P., Hurley, M. F. D., Harbison, A. M., Fogarty, C. A., Coffland, J. E., Fadda, E., Voelz, V. A., Chodera, J. D., & Bowman, G. R. (2021). SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nature Chemistry, 13(7), 651–659. https://doi.org/10.1038/s41557-021-00707-0

    1. Townsend, L., Dyer, A. H., Naughton, A., Kiersey, R., Holden, D., Gardiner, M., Dowds, J., O’Brien, K., Bannan, C., Nadarajan, P., Dunne, J., Martin-Loeches, I., Fallon, P. G., Bergin, C., O’Farrelly, C., Cheallaigh, C. N., Bourke, N. M., & Conlon, N. (2021). Longitudinal Analysis of COVID-19 Patients Shows Age-Associated T Cell Changes Independent of Ongoing Ill-Health. Frontiers in Immunology, 12. https://www.frontiersin.org/article/10.3389/fimmu.2021.676932

    1. Home

      Zuo, F., Abolhassani, H., Du, L., Piralla, A., Bertoglio, F., Campos-Mata, L. de, Wan, H., Schubert, M., Wang, Y., Sun, R., Cassaniti, I., Vlachiotis, S., Kumagai-Braesch, M., Andréll, J., Zhang, Z., Xue, Y., Wenzel, E. V., Calzolai, L., Varani, L., … Pan-Hammarström, Q. (2022). Heterologous immunization with inactivated vaccine followed by mRNA booster elicits strong humoral and cellular immune responses against the SARS-CoV-2 Omicron variant (p. 2022.01.04.22268755). https://doi.org/10.1101/2022.01.04.22268755

    1. Carreño, J. M., Alshammary, H., Tcheou, J., Singh, G., Raskin, A., Kawabata, H., Sominsky, L., Clark, J., Adelsberg, D. C., Bielak, D., Gonzalez-Reiche, A. S., Dambrauskas, N., Vigdorovich, V., Group, P. S., Srivastava, K., Sather, D. N., Sordillo, E. M., Bajic, G., van Bakel, H., … Krammer, F. (2021). Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature. https://doi.org/10.1038/d41586-021-03846-z

  8. Dec 2021
    1. Thiruvengadam, R., Awasthi, A., Medigeshi, G., Bhattacharya, S., Mani, S., Sivasubbu, S., Shrivastava, T., Samal, S., Rathna Murugesan, D., Koundinya Desiraju, B., Kshetrapal, P., Pandey, R., Scaria, V., Kumar Malik, P., Taneja, J., Binayke, A., Vohra, T., Zaheer, A., Rathore, D., … Garg, P. K. (2021). Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection during the delta (B.1.617.2) variant surge in India: A test-negative, case-control study and a mechanistic study of post-vaccination immune responses. The Lancet Infectious Diseases, S1473309921006800. https://doi.org/10.1016/S1473-3099(21)00680-0

  9. Nov 2021
    1. Thiruvengadam, R., Awasthi, A., Medigeshi, G., Bhattacharya, S., Mani, S., Sivasubbu, S., Shrivastava, T., Samal, S., Murugesan, D. R., Desiraju, B. K., Kshetrapal, P., Pandey, R., Scaria, V., Malik, P. K., Taneja, J., Binayke, A., Vohra, T., Zaheer, A., Rathore, D., … Garg, P. K. (2021). Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection during the delta (B.1.617.2) variant surge in India: A test-negative, case-control study and a mechanistic study of post-vaccination immune responses. The Lancet Infectious Diseases, 0(0). https://doi.org/10.1016/S1473-3099(21)00680-0

    1. It remains unclear whether the reduction in the neutralization sensitivity of the N501Y.V2 strain to vaccine-induced antibodies is enough to seriously reduce vaccine efficacy. First, mRNA vaccines also induce virus-specific helper T cells and cytotoxic T cells, both of which might be involved in protection against challenge. Also, the mRNA vaccines, in particular, induce such a strong NAb response that there could be enough “spare capacity” to deal with reductions in the sensitivity of the variant to NAbs. In other words, N501Y.V2 (and the related virus from Brazil) may be less sensitive to NAbs, but not to an extent that will cause widespread vaccine failure.

      Variants that show reduced sensitivity to NAbs don't necessarily mean mRNA vaccine failure

      New variants may emerge that show reduced sensitivity to NAbs.

      This may not result in vaccine failure because:

      1. The mRNA vaccines induce such a strong NAb response, there will be enough spare capacity to deal with the virus.
      2. The mRNA vaccines also induce other virus specific protection such as helper T cells and cytotoxic T cells, which may not be affected by the reduction in NAb sensitivity.
  10. Oct 2021
    1. Sun, W., Liu, Y., Amanat, F., González-Domínguez, I., McCroskery, S., Slamanig, S., Coughlan, L., Rosado, V., Lemus, N., Jangra, S., Rathnasinghe, R., Schotsaert, M., Martinez, J. L., Sano, K., Mena, I., Innis, B. L., Wirachwong, P., Thai, D. H., Oliveira, R. D. N., … Palese, P. (2021). A Newcastle disease virus expressing a stabilized spike protein of SARS-CoV-2 induces protective immune responses. Nature Communications, 12(1), 6197. https://doi.org/10.1038/s41467-021-26499-y

  11. Sep 2021
    1. Lee, J. W., Su, Y., Baloni, P., Chen, D., Pavlovitch-Bedzyk, A. J., Yuan, D., Duvvuri, V. R., Ng, R. H., Choi, J., Xie, J., Zhang, R., Murray, K., Kornilov, S., Smith, B., Magis, A. T., Hoon, D. S. B., Hadlock, J. J., Goldman, J. D., Price, N. D., … Heath, J. R. (2021). Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nature Biotechnology, 1–11. https://doi.org/10.1038/s41587-021-01020-4

    1. Michael Mina on Twitter: “With all the news of vaccines & immunity, did you know measles infections destroy immunity and cause ‘Immune Amnesia’, increasing risk of all other infections Our research in ‘15 & ‘19 discovered this & the abbreviated story is written up nicely here: 1/ https://t.co/t5DKoQljxM” / Twitter. (n.d.). Retrieved September 7, 2021, from https://twitter.com/michaelmina_lab/status/1435037668027641861

  12. Aug 2021
    1. Liu, Y., Arase, N., Kishikawa, J., Hirose, M., Li, S., Tada, A., Matsuoka, S., Arakawa, A., Akamatsu, K., Ono, C., Jin, H., Kishida, K., Nakai, W., Kohyama, M., Nakagawa, A., Yamagishi, Y., Nakagami, H., Kumanogoh, A., Matsuura, Y., … Arase, H. (2021). The SARS-CoV-2 Delta variant is poised to acquire complete resistance to wild-type spike vaccines (p. 2021.08.22.457114). https://doi.org/10.1101/2021.08.22.457114

    1. Tenbusch, M., Schumacher, S., Vogel, E., Priller, A., Held, J., Steininger, P., Beileke, S., Irrgang, P., Brockhoff, R., Salmanton-García, J., Tinnefeld, K., Mijocevic, H., Schober, K., Bogdan, C., Yazici, S., Knolle, P., Cornely, O. A., Überla, K., Protzer, U., … Wytopil, M. (2021). Heterologous prime–boost vaccination with ChAdOx1 nCoV-19 and BNT162b2. The Lancet Infectious Diseases, 0(0). https://doi.org/10.1016/S1473-3099(21)00420-5

  13. Jul 2021
    1. Collier, D. A., Ferreira, I. A. T. M., Kotagiri, P., Datir, R., Lim, E., Touizer, E., Meng, B., Abdullahi, A., Elmer, A., Kingston, N., Graves, B., Gresley, E. L., Caputo, D., Bergamaschi, L., Smith, K. G. C., Bradley, J. R., Ceron-Gutierrez, L., Cortes-Acevedo, P., Barcenas-Morales, G., … Gupta, R. K. (2021). Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature, 1–9. https://doi.org/10.1038/s41586-021-03739-1

  14. Jun 2021
  15. May 2021
    1. Eric Topol. (2021, February 17). New reports @NEJM today confirming some immune evasion of the B.1.351 variant (identified in South Africa) to both the mRNA vaccines, in vitro data @BioNTech_Group/@Pfizer and @moderna_tx. Less vaccine efficacy vs B.1.351 has been confirmed in clinical trials for 3 vaccines https://t.co/2N7eKDllso [Tweet]. @EricTopol. https://twitter.com/EricTopol/status/1362160675913568256

  16. Apr 2021
    1. Eric Topol on Twitter: “The variants of concern/interest fall into a spectrum of immune evasiveness, w/ B.1.351 being most; B.1.1.7, B.1.429 least. This property pertains to potential for reinfection & some reduction in vaccine efficacy My prelim estimates based on publications/preprints, subject to Δ https://t.co/fQZwBCUEGS” / Twitter. (n.d.). Retrieved April 28, 2021, from https://twitter.com/EricTopol/status/1380203664317456385

  17. Mar 2021
  18. Feb 2021
    1. By and large, this first defense is effective and may be why many people who contract COVID-19 are asymptomatic.

      It may be that some people have the virus enter their nostrils but the mucus captures it and the virus doesn't enter the cells.

    1. Andrew💙Croxford. (2020, December 3). NEW THREAD: possible development of anti-Syncytin responses after immunization with the SARS-CoV-2 spike protein-coding mRNA vaccines, based on a ‘homologous’ region shared between these proteins. [Tweet]. @andrew_croxford. https://twitter.com/andrew_croxford/status/1334593606196187136

    1. Shen, X., Tang, H., McDanal, C., Wagh, K., Fischer, W. M., Theiler, J., Yoon, H., Li, D., Haynes, B. F., Saunders, K. O., Gnanakaran, S., Hengartner, N. W., Pajon, R., Smith, G., Dubovsky, F., Glenn, G. M., Korber, B. T., & Montefiori, D. C. (2021). SARS-CoV-2 Variant B.1.1.7 is Susceptible to Neutralizing Antibodies Elicited by Ancestral Spike Vaccines (SSRN Scholarly Paper ID 3777473). Social Science Research Network. https://papers.ssrn.com/abstract=3777473

  19. Dec 2020
  20. Oct 2020
  21. Sep 2020
  22. Aug 2020
    1. Mateus, J., Grifoni, A., Tarke, A., Sidney, J., Ramirez, S. I., Dan, J. M., Burger, Z. C., Rawlings, S. A., Smith, D. M., Phillips, E., Mallal, S., Lammers, M., Rubiro, P., Quiambao, L., Sutherland, A., Yu, E. D., Antunes, R. da S., Greenbaum, J., Frazier, A., … Weiskopf, D. (2020). Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. https://doi.org/10.1126/science.abd3871

    1. Felipe, L. S., Vercruysse, T., Sharma, S., Ma, J., Lemmens, V., Looveren, D. van, Javarappa, M. P. A., Boudewijns, R., Malengier-Devlies, B., Kaptein, S. F., Liesenborghs, L., Keyzer, C. D., Bervoets, L., Rasulova, M., Seldeslachts, L., Jansen, S., Yakass, M. B., Quaye, O., Li, L.-H., … Dallmeier, K. (2020). A single-dose live-attenuated YF17D-vectored SARS-CoV2 vaccine candidate. BioRxiv, 2020.07.08.193045. https://doi.org/10.1101/2020.07.08.193045

    1. Zhu, F.-C., Guan, X.-H., Li, Y.-H., Huang, J.-Y., Jiang, T., Hou, L.-H., Li, J.-X., Yang, B.-F., Wang, L., Wang, W.-J., Wu, S.-P., Wang, Z., Wu, X.-H., Xu, J.-J., Zhang, Z., Jia, S.-Y., Wang, B.-S., Hu, Y., Liu, J.-J., … Chen, W. (2020). Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(20)31605-6

    1. Yonker, L. M., Neilan, A. M., Bartsch, Y., Patel, A. B., Regan, J., Arya, P., Gootkind, E., Park, G., Hardcastle, M., John, A. S., Appleman, L., Chiu, M. L., Fialkowski, A., Flor, D. D. la, Lima, R., Bordt, E. A., Yockey, L. J., D’Avino, P., Fischinger, S., … Fasano, A. (2020). Pediatric SARS-CoV-2: Clinical Presentation, Infectivity, and Immune Responses. The Journal of Pediatrics, 0(0). https://doi.org/10.1016/j.jpeds.2020.08.037

    1. Rodda, L. B., Netland, J., Shehata, L., Pruner, K. B., Morawski, P. M., Thouvenel, C., Takehara, K. K., Eggenberger, J., Hemann, E. A., Waterman, H. R., Fahning, M. L., Chen, Y., Rathe, J., Stokes, C., Wrenn, S., Fiala, B., Carter, L. P., Hamerman, J. A., King, N. P., … Pepper, M. (2020). Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. MedRxiv, 2020.08.11.20171843. https://doi.org/10.1101/2020.08.11.20171843

    1. Bangaru, S., Ozorowski, G., Turner, H. L., Antanasijevic, A., Huang, D., Wang, X., Torres, J. L., Diedrich, J. K., Tian, J.-H., Portnoff, A. D., Patel, N., Massare, M. J., Yates, J. R., Nemazee, D., Paulson, J. C., Glenn, G., Smith, G., & Ward, A. B. (2020). Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. BioRxiv, 2020.08.06.234674. https://doi.org/10.1101/2020.08.06.234674

    1. Immune neglect describes another failure of affective fore-casting, specifically around predicting our ability to cope with adverse outcomes.

    Tags

    Annotators

    1. Unterman, A., Sumida, T. S., Nouri, N., Yan, X., Zhao, A. Y., Gasque, V., Schupp, J. C., Asashima, H., Liu, Y., Cosme, C., Deng, W., Chen, M., Raredon, M. S. B., Hoehn, K., Wang, G., Wang, Z., Deiuliis, G., Ravindra, N. G., Li, N., … Cruz, C. S. D. (2020). Single-Cell Omics Reveals Dyssynchrony of the Innate and Adaptive Immune System in Progressive COVID-19. MedRxiv, 2020.07.16.20153437. https://doi.org/10.1101/2020.07.16.20153437

  23. Jul 2020
  24. Jun 2020
    1. Long, Q.-X., Tang, X.-J., Shi, Q.-L., Li, Q., Deng, H.-J., Yuan, J., Hu, J.-L., Xu, W., Zhang, Y., Lv, F.-J., Su, K., Zhang, F., Gong, J., Wu, B., Liu, X.-M., Li, J.-J., Qiu, J.-F., Chen, J., & Huang, A.-L. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 1–5. https://doi.org/10.1038/s41591-020-0965-6

    1. Robbiani, D. F., Gaebler, C., Muecksch, F., Lorenzi, J. C. C., Wang, Z., Cho, A., Agudelo, M., Barnes, C. O., Gazumyan, A., Finkin, S., Hagglof, T., Oliveira, T. Y., Viant, C., Hurley, A., Hoffmann, H.-H., Millard, K. G., Kost, R. G., Cipolla, M., Gordon, K., … Nussenzweig, M. C. (2020). Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals [Preprint]. Immunology. https://doi.org/10.1101/2020.05.13.092619

  25. May 2020
  26. Apr 2020
  27. Nov 2018
    1. attraverso l'inserimento nel corpo umano di un agente patogeno attenuato o di una sua subunità

      In pratica, questa considerazione ignora completamente l'esistenza del sistema immune innato, presupponendo che sia una cosa normale aggirarlo..

  28. Feb 2018
  29. Jan 2018
    1. Combination therapy strategies for improving PD-1 blockade efficacy

      Methods of augmenting PD-1 blockade against cancer involve concomitant CTLA-4 inhibition among others. Here is a visual representation of common biological pathways and cell types between these genes.

      “Immune

      https://www.biovista.com/vizit-research/#!bv_gid=1357fa5ee3b610d1918476e21c7be00c