192 Matching Annotations
  1. Nov 2022
    1. phytoncides, antibacterial and antimicrobial substances that trees and other plants release into the air to help them fight diseases and harmful organisms. When humans breathe in these substances—typically by spending time in nature—their health can improve. Across several studies, phytoncides have been shown to boost immune function, increase anticancer protein production, reduce stress hormones, improve mood, and help people relax. 

      I always feel better during and after a forest walk.

  2. Aug 2022
    1. Sadoff, J., Gars, M. L., Cardenas, V., Shukarev, G., Vaissiere, N., Heerwegh, D., Truyers, C., Groot, A. M. de, Scheper, G., Hendriks, J., Ruiz-Guinazu, J., Struyf, F., Hoof, J. V., Douoguih, M., & Schuitemaker, H. (2021). Durability of antibody responses elicited by a single dose of Ad26.COV2.S and substantial increase following late boosting (p. 2021.08.25.21262569). https://doi.org/10.1101/2021.08.25.21262569

    1. Pozzetto, B., Legros, V., Djebali, S., Barateau, V., Guibert, N., Villard, M., Peyrot, L., Allatif, O., Fassier, J.-B., Massardier-Pilonchéry, A., Brengel-Pesce, K., Yaugel-Novoa, M., Denolly, S., Boson, B., Bourlet, T., Bal, A., Valette, M., Andrieu, T., Lina, B., … Trouillet-Assant, S. (2021). Immunogenicity and efficacy of heterologous ChadOx1/BNT162b2 vaccination. Nature, 1–9. https://doi.org/10.1038/s41586-021-04120-y

    1. Krause, P. R., Fleming, T. R., Peto, R., Longini, I. M., Figueroa, J. P., Sterne, J. A. C., Cravioto, A., Rees, H., Higgins, J. P. T., Boutron, I., Pan, H., Gruber, M. F., Arora, N., Kazi, F., Gaspar, R., Swaminathan, S., Ryan, M. J., & Henao-Restrepo, A.-M. (2021). Considerations in boosting COVID-19 vaccine immune responses. The Lancet, 4. https://doi.org/10.1016/S0140-6736(21)02046-8

    1. Collier, A. Y., Brown, C. M., Mcmahan, K., Yu, J., Liu, J., Jacob-Dolan, C., Chandrashekar, A., Tierney, D., Ansel, J. L., Rowe, M., Sellers, D., Ahmad, K., Aguayo, R., Anioke, T., Gardner, S., Siamatu, M., Rivera, L. B., Hacker, M. R., Madoff, L. C., & Barouch, D. H. (2021). Immune Responses in Fully Vaccinated Individuals Following Breakthrough Infection with the SARS-CoV-2 Delta Variant in Provincetown, Massachusetts (p. 2021.10.18.21265113). https://doi.org/10.1101/2021.10.18.21265113

  3. Jul 2022
    1. Although if you catch it as an adult it has one major, VERY nasty side effect: something about a measles infection temporarily 'resets' the immune system. Meaning that all your previous immunities, from illness or vaccination, go away. In the western world if you catch measles you will later need to redo your entire childhood vaccination program, just in case.

      Ugh. That's so nasty.

  4. Apr 2022
    1. Mathew, D., Giles, J. R., Baxter, A. E., Oldridge, D. A., Greenplate, A. R., Wu, J. E., Alanio, C., Kuri-Cervantes, L., Pampena, M. B., D’Andrea, K., Manne, S., Chen, Z., Huang, Y. J., Reilly, J. P., Weisman, A. R., Ittner, C. A. G., Kuthuru, O., Dougherty, J., Nzingha, K., … Wherry, E. J. (2020). Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 369(6508), eabc8511. https://doi.org/10.1126/science.abc8511

    1. Edward Nirenberg 🇺🇦 [@ENirenberg]. (2021, November 30). This is also not limited to the vaccine- any infection we encounter will do the same thing. It’s how we evolved to get around a massive genetic and bioenergetic challenge and it’s brilliant and it’s happening all the time regardless of any vaccines we get. [Tweet]. Twitter. https://twitter.com/ENirenberg/status/1465698637434933254

    1. Katherine J. Wu, Ph.D. (2021, December 29). I wrote (last week!) about the future of boosting—How many more shots will we need? Will they all contain the same ingredients? Ultimately, it depends on our immune systems, how the virus looks, and how much of the virus is around. 1/3 https://t.co/bJKYyriE9a [Tweet]. @KatherineJWu. https://twitter.com/KatherineJWu/status/1476249881073303552

  5. Mar 2022
    1. Bellesi, S., Metafuni, E., Hohaus, S., Maiolo, E., Marchionni, F., D’Innocenzo, S., La Sorda, M., Ferraironi, M., Ramundo, F., Fantoni, M., Murri, R., Cingolani, A., Sica, S., Gasbarrini, A., Sanguinetti, M., Chiusolo, P., & De Stefano, V. (2020). Increased CD95 (Fas) and PD-1 expression in peripheral blood T lymphocytes in COVID-19 patients. British Journal of Haematology, 191(2), 207–211. https://doi.org/10.1111/bjh.17034

  6. Feb 2022
    1. Meaghan Kall. (2022, February 17). BA.2 risk assessment New this week is upgrading Immune Evasion—Amber 🟨 from low to moderate that BA.2 is antigentically different to BA.1 Unsurprising given the mutation profile, with BA.2 slightly more immune evasive than BA.1 on neuts studies https://t.co/n6DWtiRaNH [Tweet]. @kallmemeg. https://twitter.com/kallmemeg/status/1494100170195312646

    1. Altarawneh, H. N., Chemaitelly, H., Hasan, M. R., Ayoub, H. H., Qassim, S., AlMukdad, S., Coyle, P., Yassine, H. M., Al-Khatib, H. A., Benslimane, F. M., Al-Kanaani, Z., Al-Kuwari, E., Jeremijenko, A., Kaleeckal, A. H., Latif, A. N., Shaik, R. M., Abdul-Rahim, H. F., Nasrallah, G. K., Al-Kuwari, M. G., … Abu-Raddad, L. J. (2022). Protection against the Omicron Variant from Previous SARS-CoV-2 Infection. New England Journal of Medicine, 0(0), null. https://doi.org/10.1056/NEJMc2200133

    1. Lyngse, F. P., Mortensen, L. H., Denwood, M. J., Christiansen, L. E., Møller, C. H., Skov, R. L., Spiess, K., Fomsgaard, A., Lassaunière, M. M., Rasmussen, M., Stegger, M., Nielsen, C., Sieber, R. N., Cohen, A. S., Møller, F. T., Overvad, M., Mølbak, K., Krause, T. G., & Kirkeby, C. T. (2021). SARS-CoV-2 Omicron VOC Transmission in Danish Households (p. 2021.12.27.21268278). medRxiv. https://doi.org/10.1101/2021.12.27.21268278

    1. Ulrich Elling. (2022, January 12). While #Omicron BA.1 leads the race, the little sister BA.2 is catching up in numbers. They are rather different with likely functional implications. BA.2 might be more immune evasive in RBD, less in NTD. And due to reduced mutation load in NTD maybe different fusion properties? Https://t.co/kEACjzQDs3 [Tweet]. @EllingUlrich. https://twitter.com/EllingUlrich/status/1481214901997682692

  7. Jan 2022
    1. Gentles, L. E., Kehoe, L., Crawford, K. H. D., Lacombe, K., Dickerson, J., Wolf, C., Yuan, J., Schuler, S., Watson, J. T., Nyanseor, S., Briggs-Hagen, M., Saydah, S., Midgley, C. M., Pringle, K., Chu, H., Bloom, J. D., & Englund, J. A. (2022). Dynamics of infection-elicited SARS-CoV-2 antibodies in children over time (p. 2022.01.14.22269235). medRxiv. https://doi.org/10.1101/2022.01.14.22269235

    1. Zimmerman, M. I., Porter, J. R., Ward, M. D., Singh, S., Vithani, N., Meller, A., Mallimadugula, U. L., Kuhn, C. E., Borowsky, J. H., Wiewiora, R. P., Hurley, M. F. D., Harbison, A. M., Fogarty, C. A., Coffland, J. E., Fadda, E., Voelz, V. A., Chodera, J. D., & Bowman, G. R. (2021). SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nature Chemistry, 13(7), 651–659. https://doi.org/10.1038/s41557-021-00707-0

    1. Townsend, L., Dyer, A. H., Naughton, A., Kiersey, R., Holden, D., Gardiner, M., Dowds, J., O’Brien, K., Bannan, C., Nadarajan, P., Dunne, J., Martin-Loeches, I., Fallon, P. G., Bergin, C., O’Farrelly, C., Cheallaigh, C. N., Bourke, N. M., & Conlon, N. (2021). Longitudinal Analysis of COVID-19 Patients Shows Age-Associated T Cell Changes Independent of Ongoing Ill-Health. Frontiers in Immunology, 12. https://www.frontiersin.org/article/10.3389/fimmu.2021.676932

    1. Home

      Zuo, F., Abolhassani, H., Du, L., Piralla, A., Bertoglio, F., Campos-Mata, L. de, Wan, H., Schubert, M., Wang, Y., Sun, R., Cassaniti, I., Vlachiotis, S., Kumagai-Braesch, M., Andréll, J., Zhang, Z., Xue, Y., Wenzel, E. V., Calzolai, L., Varani, L., … Pan-Hammarström, Q. (2022). Heterologous immunization with inactivated vaccine followed by mRNA booster elicits strong humoral and cellular immune responses against the SARS-CoV-2 Omicron variant (p. 2022.01.04.22268755). https://doi.org/10.1101/2022.01.04.22268755

    1. Carreño, J. M., Alshammary, H., Tcheou, J., Singh, G., Raskin, A., Kawabata, H., Sominsky, L., Clark, J., Adelsberg, D. C., Bielak, D., Gonzalez-Reiche, A. S., Dambrauskas, N., Vigdorovich, V., Group, P. S., Srivastava, K., Sather, D. N., Sordillo, E. M., Bajic, G., van Bakel, H., … Krammer, F. (2021). Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature. https://doi.org/10.1038/d41586-021-03846-z

  8. Dec 2021
    1. Thiruvengadam, R., Awasthi, A., Medigeshi, G., Bhattacharya, S., Mani, S., Sivasubbu, S., Shrivastava, T., Samal, S., Rathna Murugesan, D., Koundinya Desiraju, B., Kshetrapal, P., Pandey, R., Scaria, V., Kumar Malik, P., Taneja, J., Binayke, A., Vohra, T., Zaheer, A., Rathore, D., … Garg, P. K. (2021). Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection during the delta (B.1.617.2) variant surge in India: A test-negative, case-control study and a mechanistic study of post-vaccination immune responses. The Lancet Infectious Diseases, S1473309921006800. https://doi.org/10.1016/S1473-3099(21)00680-0

  9. Nov 2021
    1. Thiruvengadam, R., Awasthi, A., Medigeshi, G., Bhattacharya, S., Mani, S., Sivasubbu, S., Shrivastava, T., Samal, S., Murugesan, D. R., Desiraju, B. K., Kshetrapal, P., Pandey, R., Scaria, V., Malik, P. K., Taneja, J., Binayke, A., Vohra, T., Zaheer, A., Rathore, D., … Garg, P. K. (2021). Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection during the delta (B.1.617.2) variant surge in India: A test-negative, case-control study and a mechanistic study of post-vaccination immune responses. The Lancet Infectious Diseases, 0(0). https://doi.org/10.1016/S1473-3099(21)00680-0

    1. It remains unclear whether the reduction in the neutralization sensitivity of the N501Y.V2 strain to vaccine-induced antibodies is enough to seriously reduce vaccine efficacy. First, mRNA vaccines also induce virus-specific helper T cells and cytotoxic T cells, both of which might be involved in protection against challenge. Also, the mRNA vaccines, in particular, induce such a strong NAb response that there could be enough “spare capacity” to deal with reductions in the sensitivity of the variant to NAbs. In other words, N501Y.V2 (and the related virus from Brazil) may be less sensitive to NAbs, but not to an extent that will cause widespread vaccine failure.

      Variants that show reduced sensitivity to NAbs don't necessarily mean mRNA vaccine failure

      New variants may emerge that show reduced sensitivity to NAbs.

      This may not result in vaccine failure because:

      1. The mRNA vaccines induce such a strong NAb response, there will be enough spare capacity to deal with the virus.
      2. The mRNA vaccines also induce other virus specific protection such as helper T cells and cytotoxic T cells, which may not be affected by the reduction in NAb sensitivity.
  10. Oct 2021
    1. Sun, W., Liu, Y., Amanat, F., González-Domínguez, I., McCroskery, S., Slamanig, S., Coughlan, L., Rosado, V., Lemus, N., Jangra, S., Rathnasinghe, R., Schotsaert, M., Martinez, J. L., Sano, K., Mena, I., Innis, B. L., Wirachwong, P., Thai, D. H., Oliveira, R. D. N., … Palese, P. (2021). A Newcastle disease virus expressing a stabilized spike protein of SARS-CoV-2 induces protective immune responses. Nature Communications, 12(1), 6197. https://doi.org/10.1038/s41467-021-26499-y