64 Matching Annotations
  1. Mar 2021
  2. Feb 2021
    1. By and large, this first defense is effective and may be why many people who contract COVID-19 are asymptomatic.

      It may be that some people have the virus enter their nostrils but the mucus captures it and the virus doesn't enter the cells.

    1. Andrew💙Croxford. (2020, December 3). NEW THREAD: possible development of anti-Syncytin responses after immunization with the SARS-CoV-2 spike protein-coding mRNA vaccines, based on a ‘homologous’ region shared between these proteins. [Tweet]. @andrew_croxford. https://twitter.com/andrew_croxford/status/1334593606196187136

    1. Eric Topol. (2021, February 17). New reports @NEJM today confirming some immune evasion of the B.1.351 variant (identified in South Africa) to both the mRNA vaccines, in vitro data @BioNTech_Group/@Pfizer and @moderna_tx. Less vaccine efficacy vs B.1.351 has been confirmed in clinical trials for 3 vaccines https://t.co/2N7eKDllso [Tweet]. @EricTopol. https://twitter.com/EricTopol/status/1362160675913568256

    1. Shen, X., Tang, H., McDanal, C., Wagh, K., Fischer, W. M., Theiler, J., Yoon, H., Li, D., Haynes, B. F., Saunders, K. O., Gnanakaran, S., Hengartner, N. W., Pajon, R., Smith, G., Dubovsky, F., Glenn, G. M., Korber, B. T., & Montefiori, D. C. (2021). SARS-CoV-2 Variant B.1.1.7 is Susceptible to Neutralizing Antibodies Elicited by Ancestral Spike Vaccines (SSRN Scholarly Paper ID 3777473). Social Science Research Network. https://papers.ssrn.com/abstract=3777473

  3. Dec 2020
  4. Oct 2020
  5. Sep 2020
  6. Aug 2020
    1. Mateus, J., Grifoni, A., Tarke, A., Sidney, J., Ramirez, S. I., Dan, J. M., Burger, Z. C., Rawlings, S. A., Smith, D. M., Phillips, E., Mallal, S., Lammers, M., Rubiro, P., Quiambao, L., Sutherland, A., Yu, E. D., Antunes, R. da S., Greenbaum, J., Frazier, A., … Weiskopf, D. (2020). Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. https://doi.org/10.1126/science.abd3871

    1. Felipe, L. S., Vercruysse, T., Sharma, S., Ma, J., Lemmens, V., Looveren, D. van, Javarappa, M. P. A., Boudewijns, R., Malengier-Devlies, B., Kaptein, S. F., Liesenborghs, L., Keyzer, C. D., Bervoets, L., Rasulova, M., Seldeslachts, L., Jansen, S., Yakass, M. B., Quaye, O., Li, L.-H., … Dallmeier, K. (2020). A single-dose live-attenuated YF17D-vectored SARS-CoV2 vaccine candidate. BioRxiv, 2020.07.08.193045. https://doi.org/10.1101/2020.07.08.193045

    1. Zhu, F.-C., Guan, X.-H., Li, Y.-H., Huang, J.-Y., Jiang, T., Hou, L.-H., Li, J.-X., Yang, B.-F., Wang, L., Wang, W.-J., Wu, S.-P., Wang, Z., Wu, X.-H., Xu, J.-J., Zhang, Z., Jia, S.-Y., Wang, B.-S., Hu, Y., Liu, J.-J., … Chen, W. (2020). Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(20)31605-6

    1. Yonker, L. M., Neilan, A. M., Bartsch, Y., Patel, A. B., Regan, J., Arya, P., Gootkind, E., Park, G., Hardcastle, M., John, A. S., Appleman, L., Chiu, M. L., Fialkowski, A., Flor, D. D. la, Lima, R., Bordt, E. A., Yockey, L. J., D’Avino, P., Fischinger, S., … Fasano, A. (2020). Pediatric SARS-CoV-2: Clinical Presentation, Infectivity, and Immune Responses. The Journal of Pediatrics, 0(0). https://doi.org/10.1016/j.jpeds.2020.08.037

    1. Rodda, L. B., Netland, J., Shehata, L., Pruner, K. B., Morawski, P. M., Thouvenel, C., Takehara, K. K., Eggenberger, J., Hemann, E. A., Waterman, H. R., Fahning, M. L., Chen, Y., Rathe, J., Stokes, C., Wrenn, S., Fiala, B., Carter, L. P., Hamerman, J. A., King, N. P., … Pepper, M. (2020). Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. MedRxiv, 2020.08.11.20171843. https://doi.org/10.1101/2020.08.11.20171843

    1. Bangaru, S., Ozorowski, G., Turner, H. L., Antanasijevic, A., Huang, D., Wang, X., Torres, J. L., Diedrich, J. K., Tian, J.-H., Portnoff, A. D., Patel, N., Massare, M. J., Yates, J. R., Nemazee, D., Paulson, J. C., Glenn, G., Smith, G., & Ward, A. B. (2020). Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. BioRxiv, 2020.08.06.234674. https://doi.org/10.1101/2020.08.06.234674

    1. Immune neglect describes another failure of affective fore-casting, specifically around predicting our ability to cope with adverse outcomes.

    Tags

    Annotators

    1. Unterman, A., Sumida, T. S., Nouri, N., Yan, X., Zhao, A. Y., Gasque, V., Schupp, J. C., Asashima, H., Liu, Y., Cosme, C., Deng, W., Chen, M., Raredon, M. S. B., Hoehn, K., Wang, G., Wang, Z., Deiuliis, G., Ravindra, N. G., Li, N., … Cruz, C. S. D. (2020). Single-Cell Omics Reveals Dyssynchrony of the Innate and Adaptive Immune System in Progressive COVID-19. MedRxiv, 2020.07.16.20153437. https://doi.org/10.1101/2020.07.16.20153437

  7. Jul 2020
  8. Jun 2020
    1. Long, Q.-X., Tang, X.-J., Shi, Q.-L., Li, Q., Deng, H.-J., Yuan, J., Hu, J.-L., Xu, W., Zhang, Y., Lv, F.-J., Su, K., Zhang, F., Gong, J., Wu, B., Liu, X.-M., Li, J.-J., Qiu, J.-F., Chen, J., & Huang, A.-L. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 1–5. https://doi.org/10.1038/s41591-020-0965-6

    1. Robbiani, D. F., Gaebler, C., Muecksch, F., Lorenzi, J. C. C., Wang, Z., Cho, A., Agudelo, M., Barnes, C. O., Gazumyan, A., Finkin, S., Hagglof, T., Oliveira, T. Y., Viant, C., Hurley, A., Hoffmann, H.-H., Millard, K. G., Kost, R. G., Cipolla, M., Gordon, K., … Nussenzweig, M. C. (2020). Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals [Preprint]. Immunology. https://doi.org/10.1101/2020.05.13.092619

  9. May 2020
  10. Apr 2020
  11. Nov 2018
    1. attraverso l'inserimento nel corpo umano di un agente patogeno attenuato o di una sua subunità

      In pratica, questa considerazione ignora completamente l'esistenza del sistema immune innato, presupponendo che sia una cosa normale aggirarlo..

  12. Feb 2018
  13. Jan 2018
    1. Combination therapy strategies for improving PD-1 blockade efficacy

      Methods of augmenting PD-1 blockade against cancer involve concomitant CTLA-4 inhibition among others. Here is a visual representation of common biological pathways and cell types between these genes.

      “Immune

      https://www.biovista.com/vizit-research/#!bv_gid=1357fa5ee3b610d1918476e21c7be00c