- Aug 2022
-
-
Mertens, G., Lodder, P., Smeets, T., & Duijndam, S. (2021). Fear of COVID-19 predicts vaccination willingness 14 months later. PsyArXiv. https://doi.org/10.31234/osf.io/rt7u4
-
-
assets.publishing.service.gov.uk assets.publishing.service.gov.uk
-
SARS-CoV-2 variants of concern and variants under investigation. (2021). 45.
-
-
twitter.com twitter.com
-
Trevor Bedford. (2021, December 11). We find that logistic growth of Omicron sequence fraction looks similar between the UK, the US and Germany with roughly 1% of sequenced cases in all three countries being Omicron on Dec 1. 3/10 https://t.co/De0t2xreU9 [Tweet]. @trvrb. https://twitter.com/trvrb/status/1469784757261127685
-
- Sep 2020
-
www.ajpmonline.org www.ajpmonline.org
-
Liu, Y., Finch, B. K., Brenneke, S. G., Thomas, K., & Le, P. D. (2020). Perceived Discrimination and Mental Distress Amid the COVID-19 Pandemic: Evidence From the Understanding America Study. American Journal of Preventive Medicine, 0(0). https://doi.org/10.1016/j.amepre.2020.06.007
-
-
www.medrxiv.org www.medrxiv.org
-
Ip, A., Ahn, J., Zhou, Y., Goy, A. H., Hansen, E., Pecora, A. L., Sinclaire, B. A., Bednarz, U., Marafelias, M., Mathura, S., Sawczuk, I. S., Underwood, J. P., Walker, D. M., Prasad, R., Sweeney, R. L., Ponce, M. G., LaCapra, S., Cunningham, F. J., Calise, A. G., … Goldberg, S. L. (2020). Hydroxychloroquine in the treatment of outpatients with mildly symptomatic COVID-19: A multi-center observational study. MedRxiv, 2020.08.20.20178772. https://doi.org/10.1101/2020.08.20.20178772
-
- Aug 2020
-
-
Sun, K., Wang, W., Gao, L., Wang, Y., Luo, K., Ren, L., Zhan, Z., Chen, X., Zhao, S., Huang, Y., Sun, Q., Liu, Z., Litvinova, M., Vespignani, A., Ajelli, M., Viboud, C., & Yu, H. (2020). Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. MedRxiv, 2020.08.09.20171132. https://doi.org/10.1101/2020.08.09.20171132
-
-
www.jahonline.org www.jahonline.org
-
Gaiha, S. M., Cheng, J., & Halpern-Felsher, B. (2020). Association Between Youth Smoking, Electronic Cigarette Use, and Coronavirus Disease 2019. Journal of Adolescent Health, 0(0). https://doi.org/10.1016/j.jadohealth.2020.07.002
-
- Jul 2020
-
psyarxiv.com psyarxiv.com
-
Ahn, M. H., Shin, Y. W., Kim, J. H., Kim, H. J., Lee, K.-U., & Chung, S. (2020). High Work-related Stress and Anxiety Response to COVID-19 among Healthcare Workers in South Korea: SAVE study [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/9nxth
-
- May 2020
-
www.preprints.org www.preprints.org
-
Samuel, J.; Ali, G.G.M.N.; Rahman, M.M.; Esawi, E.; Samuel, Y. COVID-19 Public Sentiment Insights and Machine Learning for Tweets Classification. Preprints 2020, 2020050015 (doi: 10.20944/preprints202005.0015.v1)
-
-
onlinelibrary.wiley.com onlinelibrary.wiley.com
-
Roland, L. T., Gurrola, J. G., Loftus, P. A., Cheung, S. W., & Chang, J. L. (2020). Smell and taste symptom‐based predictive model for COVID‐19 diagnosis. International Forum of Allergy & Rhinology, alr.22602. https://doi.org/10.1002/alr.22602
-
- Jan 2020
-
www.sthda.com www.sthda.com
-
Logistic regression assumptions
-
-
www.sthda.com www.sthda.com
-
Make sure that the predictor variables are normally distributed. If not, you can use log, root, Box-Cox transformation.
-
- Sep 2018
-
192.168.199.102:5000 192.168.199.102:5000
-
生成模型 vs. 判别模型
总体来看,如果样本足够多,判别模型的正确率高于生成模型的正确率。
生成模型和判别模型最大的区别在于,生成模型预先假设了很多东西,比如预先假设数据来自高斯,伯努利,符合朴素贝叶斯等等,相当于预先假设了 Hypothesis 函数集,只有在此基础上才有可能求出这个概率分布的参数。
生成模型,进行了大量脑补。脑补听起来并不是一件好事,但是当你的数据量太小的时候,则必须要求你的模型具备一定的脑补能力。
判别模型非常依赖样本,他就是很传统,死板,而生成模型比较有想象力,可以“想象”出不存在于当前样本集中的样本,所以他不那么依赖样本。
关于 想象出不能存在于当前样本集的样本 ,见本课程 40:00 老师举例。
生成模型在如下情形比判别模型好:
- 数据量较小时。
- 数据是noisy,标签存在noisy。
- 先验概率和类别相关的概率可以统计自不同的来源。
释疑第三条优点:老师举例,在语音辨识问题中,语音辨识部分虽然是 DNN --- 一个判别模型,但其整体确实一个生成模型,DNN 只是其中一块而已。为什么会这样呢?因为你还是要去算一个先验概率 --- 某一句话被说出来的概率,而获得这个概率并不需要样本一定是声音,只要去网络上爬很多文字对话,就可以估算出这个概率。只有 类别相关的概率 才需要声音和文字pair,才需要判别模型 --- DNN 出马。
Tags
Annotators
URL
-
- Oct 2017
-
www.restore.ac.uk www.restore.ac.uk
-
An Introduction to Odds, Odds Ratios and Exponents
-
- Jun 2016
-
www.ats.ucla.edu www.ats.ucla.edu
-
The parameter estimate for the first contrast compares the mean of the dependent variable, write, for levels 1 and 2 yielding 11.5417 and is statistically significant (p<.000). The t-value associated with this test is 3.5122. The results of the second contrast, comparing the mean of write for levels 1 and 3. The expected difference in variable write between group 1 and 3 is 1.7417 and is not statistically significant (t = 0.6374, p = .5246), while the third contrast is statistically significant. Notice that the intercept corresponds to the cell mean for race = Hispanic group.
Interpreting the reference group in dummy coding.
-
- Oct 2015
-
inst-fs-iad-prod.inscloudgate.net inst-fs-iad-prod.inscloudgate.net
-
since urbanization depends on the mobiliza-tion of a surplus product, an intimate connection emerges between the development of capitalism and urbanization.
the development and success of capitalism benefits urbanization by contributing resources over time that spur its growth.
-