154 Matching Annotations
  1. Jul 2025
    1. Because Read Committed mode starts each command with a new snapshot that includes all transactions committed up to that instant, subsequent commands in the same transaction will see the effects of the committed concurrent transaction in any case. The point at issue above is whether or not a single command sees an absolutely consistent view of the database.
  2. May 2025
  3. Apr 2025
  4. Mar 2025
  5. Jun 2024
  6. Apr 2024
    1. The standard difference operator (-) returns day-based results for both date, timestamp and timestamp with time zone (the former returns days as int, the latter two return day-based intervals): From the day-based intervals you can extract days with the extract() function: select current_date - '2017-01-01', extract(day from now()::timestamp - '2017-01-01 00:00:00'), extract(day from now() - '2017-01-01 00:00:00Z');
  7. Oct 2023
  8. Sep 2023
  9. Jul 2023
    1. Writing to the database may fail (e.g. it will not respond). When that happens, the process handling outbox pattern will try to resend the event after some time and try to do it until the message is correctly marked as sent in the database.

      Outbox pattern should be especially implemented when using operations such as PostgreSQL LISTEN/NOTIFY

  10. Jun 2023
  11. May 2023
  12. Feb 2023
  13. Jan 2023
  14. Dec 2022
  15. Nov 2022
  16. Oct 2022
    1. There are a lot of PostgreSQL servers connected to the Internet: we searched shodan.io and obtained a sample of more than 820,000 PostgreSQL servers connected to the Internet between September 1 and September 29. Only 36% of the servers examined had SSL certificates. More than 523,000 PostgreSQL servers listening on the Internet did not use SSL (64%)
    2. At most 15% of the approximately 820,000 PostgreSQL servers listening on the Internet require encryption. In fact, only 36% even support encryption. This puts PostgreSQL servers well behind the rest of the Internet in terms of security. In comparison, according to Google, over 96% of page loads in Chrome on a Mac are encrypted. The top 100 websites support encryption, and 97 of those default to encryption.
  17. Sep 2022
  18. Jul 2022
    1. How does PostgreSQL access a column? It will fetch the row and then dissect this tuple to calculate the position of the desired column inside the row. So if we want to access column #1000 it means that we have to figure out how long those first 999 columns before our chosen one really are. This can be quite complex. For integer we simply have to add 4, but in case of varchar, the operation turns into something really expensive.

      Column order matters in PostgreSQL. The time to read 1000th column can be pretty large, especially if there are varchar columns before that.

  19. May 2022
  20. Apr 2022
  21. Mar 2022
    1. When we insert data into the comments table, we need it to route to be inserted into a partition instead of the actual table. For that, we can create a trigger: add_partition_trigger :comments, :comments_by_year, [ { if: 'NEW.year = 2016', insert: :comments_2016 }, { elsif: 'NEW.year = 2017', insert: :comments_2017 }, { else: "RAISE EXECEPTION 'comments_by_year recieived an unexpected value: %', NEW.year;" } ]
    1. And that can all can be written with CROSS JOIN LATERAL which is much cleaner, SELECT ARRAY( SELECT DISTINCT e FROM ( VALUES ('foo', 'bar', 'foo', 'baz' ) ) AS t(a,b,c,d) CROSS JOIN LATERAL unnest(ARRAY[a,b,c,d]) AS a(e) -- ORDER BY e; -- if you want it sorted );
  22. Feb 2022
  23. Dec 2021
  24. Jul 2021
  25. Jun 2021
  26. www.postgresql.org www.postgresql.org
    1. Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference columns provided by preceding FROM items. (Without LATERAL, each subquery is evaluated independently and so cannot cross-reference any other FROM item.) TL;DR - LATERAL allows subqueries to reference earlier tables.
    2. SELECT * FROM ( -- build virtual table of all hours between -- a date range SELECT start_ts, start_ts + interval '1 hour' AS end_ts FROM generate_series( '2017-03-01'::date, '2017-03-03'::timestamp - interval '1 hour', interval '1 hour' ) AS t(start_ts) ) AS cal LEFT JOIN ( -- build virtual table of uptimes SELECT * FROM ( VALUES ('2017-03-01 01:15:00-06'::timestamp, '2017-03-01 02:15:00-06'::timestamp), ('2017-03-01 08:00:00-06', '2017-03-01 20:00:00-06'), ('2017-03-02 19:00:00-06', null) ) AS t(start_ts, end_ts) ) AS uptime ON cal.end_ts > uptime.start_ts AND cal.start_ts <= coalesce(uptime.end_ts, current_timestamp)
  27. May 2021
  28. Jan 2021
  29. Nov 2020
  30. Jul 2020
  31. Jun 2020
  32. May 2020
    1. An array constructor is an expression that builds an array value using values for its member elements. A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions (separated by commas) for the array element values, and finally a right square bracket ].
    1. If you have variable number of ids (or you have a lot of them), you can use json[b]_array_elements() to extract each element of the array, build up an id list and then query it with the any-containment operator ?|: select * from jsonbtest where to_json(array(select jsonb_array_elements(data) ->> 'id'))::jsonb ?| array['1884595530', '791712670'];
  33. Apr 2020
    1. Relational databases are designed around joins, and optimized to do them well. Unless you have a good reason not to use a normalized design, use a normalised design. jsonb and things like hstore are good for when you can't use a normalized data model, such as when the data model changes rapidly and is user defined. If you can model it relationally, model it relationally. If you can't, consider json etc.
    2. Joins are not expensive. Who said it to you? As basically the whole concept of relational databases revolve around joins (from a practical point of view), these product are very good at joining. The normal way of thinking is starting with properly normalized structures and going into fancy denormalizations and similar stuff when the performance really needs it on the reading side. JSON(B) and hstore (and EAV) are good for data with unknown structure.
  34. Jan 2020
    1. Which to use? ANY is a later, more versatile addition, it can be combined with any binary operator returning a boolean value. IN burns down to a special case of ANY. In fact, its second form is rewritten internally: IN is rewritten with = ANY NOT IN is rewritten with <> ALL
  35. Dec 2019
    1. Practical highlights in my opinion:

      • It's important to know about data padding in PG.
      • Be conscious when modelling data tables about columns ordering, but don't be pure-school and do it in a best-effort basis.
      • Gains up to 25% in wasted storage are impressive but always keep in mind the scope of the system. For me, gains are not worth it in the short-term. Whenever a system grows, it is possible to migrate data to more storage-efficient tables but mind the operative burder.

      Here follows my own commands on trying the article points. I added - pg_column_size(row()) on each projection to have clear absolute sizes.

      -- How does row function work?
      
      SELECT pg_column_size(row()) AS empty,
             pg_column_size(row(0::SMALLINT)) AS byte2,
             pg_column_size(row(0::BIGINT)) AS byte8,
             pg_column_size(row(0::SMALLINT, 0::BIGINT)) AS byte16,
             pg_column_size(row(''::TEXT)) AS text0,
             pg_column_size(row('hola'::TEXT)) AS text4,
             0 AS term
      ;
      
      -- My own take on that
      
      SELECT pg_column_size(row()) AS empty,
             pg_column_size(row(uuid_generate_v4())) AS uuid_type,
             pg_column_size(row('hola mundo'::TEXT)) AS text_type,
             pg_column_size(row(uuid_generate_v4(), 'hola mundo'::TEXT)) AS uuid_text_type,
             pg_column_size(row('hola mundo'::TEXT, uuid_generate_v4())) AS text_uuid_type,
             0 AS term
      ;
      
      CREATE TABLE user_order (
        is_shipped    BOOLEAN NOT NULL DEFAULT false,
        user_id       BIGINT NOT NULL,
        order_total   NUMERIC NOT NULL,
        order_dt      TIMESTAMPTZ NOT NULL,
        order_type    SMALLINT NOT NULL,
        ship_dt       TIMESTAMPTZ,
        item_ct       INT NOT NULL,
        ship_cost     NUMERIC,
        receive_dt    TIMESTAMPTZ,
        tracking_cd   TEXT,
        id            BIGSERIAL PRIMARY KEY NOT NULL
      );
      
      SELECT a.attname, t.typname, t.typalign, t.typlen
        FROM pg_class c
        JOIN pg_attribute a ON (a.attrelid = c.oid)
        JOIN pg_type t ON (t.oid = a.atttypid)
       WHERE c.relname = 'user_order'
         AND a.attnum >= 0
       ORDER BY a.attnum;
      
      -- What is it about pg_class, pg_attribute and pg_type tables? For future investigation.
      
      -- SELECT sum(t.typlen)
      -- SELECT t.typlen
      SELECT a.attname, t.typname, t.typalign, t.typlen
        FROM pg_class c
        JOIN pg_attribute a ON (a.attrelid = c.oid)
        JOIN pg_type t ON (t.oid = a.atttypid)
       WHERE c.relname = 'user_order'
         AND a.attnum >= 0
       ORDER BY a.attnum
      ;
      
      -- Whoa! I need to master mocking data directly into db.
      
      INSERT INTO user_order (
          is_shipped, user_id, order_total, order_dt, order_type,
          ship_dt, item_ct, ship_cost, receive_dt, tracking_cd
      )
      SELECT true, 1000, 500.00, now() - INTERVAL '7 days',
             3, now() - INTERVAL '5 days', 10, 4.99,
             now() - INTERVAL '3 days', 'X5901324123479RROIENSTBKCV4'
        FROM generate_series(1, 1000000);
      
      -- New item to learn, pg_relation_size. 
      
      SELECT pg_relation_size('user_order') AS size_bytes,
             pg_size_pretty(pg_relation_size('user_order')) AS size_pretty;
      
      SELECT * FROM user_order LIMIT 1;
      
      SELECT pg_column_size(row(0::NUMERIC)) - pg_column_size(row()) AS zero_num,
             pg_column_size(row(1::NUMERIC)) - pg_column_size(row()) AS one_num,
             pg_column_size(row(9.9::NUMERIC)) - pg_column_size(row()) AS nine_point_nine_num,
             pg_column_size(row(1::INT2)) - pg_column_size(row()) AS int2,
             pg_column_size(row(1::INT4)) - pg_column_size(row()) AS int4,
             pg_column_size(row(1::INT2, 1::NUMERIC)) - pg_column_size(row()) AS int2_one_num,
             pg_column_size(row(1::INT4, 1::NUMERIC)) - pg_column_size(row()) AS int4_one_num,
             pg_column_size(row(1::NUMERIC, 1::INT4)) - pg_column_size(row()) AS one_num_int4,
             0 AS term
      ;
      
      SELECT pg_column_size(row(''::TEXT)) - pg_column_size(row()) AS empty_text,
             pg_column_size(row('a'::TEXT)) - pg_column_size(row()) AS len1_text,
             pg_column_size(row('abcd'::TEXT)) - pg_column_size(row()) AS len4_text,
             pg_column_size(row('abcde'::TEXT)) - pg_column_size(row()) AS len5_text,
             pg_column_size(row('abcdefgh'::TEXT)) - pg_column_size(row()) AS len8_text,
             pg_column_size(row('abcdefghi'::TEXT)) - pg_column_size(row()) AS len9_text,
             0 AS term
      ;
      
      SELECT pg_column_size(row(''::TEXT, 1::INT4)) - pg_column_size(row()) AS empty_text_int4,
             pg_column_size(row('a'::TEXT, 1::INT4)) - pg_column_size(row()) AS len1_text_int4,
             pg_column_size(row('abcd'::TEXT, 1::INT4)) - pg_column_size(row()) AS len4_text_int4,
             pg_column_size(row('abcde'::TEXT, 1::INT4)) - pg_column_size(row()) AS len5_text_int4,
             pg_column_size(row('abcdefgh'::TEXT, 1::INT4)) - pg_column_size(row()) AS len8_text_int4,
             pg_column_size(row('abcdefghi'::TEXT, 1::INT4)) - pg_column_size(row()) AS len9_text_int4,
             0 AS term
      ;
      
      SELECT pg_column_size(row(1::INT4, ''::TEXT)) - pg_column_size(row()) AS int4_empty_text,
             pg_column_size(row(1::INT4, 'a'::TEXT)) - pg_column_size(row()) AS int4_len1_text,
             pg_column_size(row(1::INT4, 'abcd'::TEXT)) - pg_column_size(row()) AS int4_len4_text,
             pg_column_size(row(1::INT4, 'abcde'::TEXT)) - pg_column_size(row()) AS int4_len5_text,
             pg_column_size(row(1::INT4, 'abcdefgh'::TEXT)) - pg_column_size(row()) AS int4_len8_text,
             pg_column_size(row(1::INT4, 'abcdefghi'::TEXT)) - pg_column_size(row()) AS int4_len9_text,
             0 AS term
      ;
      
      SELECT pg_column_size(row()) - pg_column_size(row()) AS empty_row,
             pg_column_size(row(''::TEXT)) - pg_column_size(row()) AS no_text,
             pg_column_size(row('a'::TEXT)) - pg_column_size(row()) AS min_text,
             pg_column_size(row(1::INT4, 'a'::TEXT)) - pg_column_size(row()) AS two_col,
             pg_column_size(row('a'::TEXT, 1::INT4)) - pg_column_size(row()) AS round4;
      
      SELECT pg_column_size(row()) - pg_column_size(row()) AS empty_row,
             pg_column_size(row(1::SMALLINT)) - pg_column_size(row()) AS int2,
             pg_column_size(row(1::INT)) - pg_column_size(row()) AS int4,
             pg_column_size(row(1::BIGINT)) - pg_column_size(row()) AS int8,
             pg_column_size(row(1::SMALLINT, 1::BIGINT)) - pg_column_size(row()) AS padded,
             pg_column_size(row(1::INT, 1::INT, 1::BIGINT)) - pg_column_size(row()) AS not_padded;
      
      SELECT a.attname, t.typname, t.typalign, t.typlen
        FROM pg_class c
        JOIN pg_attribute a ON (a.attrelid = c.oid)
        JOIN pg_type t ON (t.oid = a.atttypid)
       WHERE c.relname = 'user_order'
         AND a.attnum >= 0
       ORDER BY t.typlen DESC;
      
      DROP TABLE user_order;
      
      CREATE TABLE user_order (
        id            BIGSERIAL PRIMARY KEY NOT NULL,
        user_id       BIGINT NOT NULL,
        order_dt      TIMESTAMPTZ NOT NULL,
        ship_dt       TIMESTAMPTZ,
        receive_dt    TIMESTAMPTZ,
        item_ct       INT NOT NULL,
        order_type    SMALLINT NOT NULL,
        is_shipped    BOOLEAN NOT NULL DEFAULT false,
        order_total   NUMERIC NOT NULL,
        ship_cost     NUMERIC,
        tracking_cd   TEXT
      );
      
      -- And, what about other varying size types as JSONB?
      
      SELECT pg_column_size(row('{}'::JSONB)) - pg_column_size(row()) AS empty_jsonb,
             pg_column_size(row('{}'::JSONB, 0::INT4)) - pg_column_size(row()) AS empty_jsonb_int4,
             pg_column_size(row(0::INT4, '{}'::JSONB)) - pg_column_size(row()) AS int4_empty_jsonb,
             pg_column_size(row('{"a": 1}'::JSONB)) - pg_column_size(row()) AS basic_jsonb,
             pg_column_size(row('{"a": 1}'::JSONB, 0::INT4)) - pg_column_size(row()) AS basic_jsonb_int4,
             pg_column_size(row(0::INT4, '{"a": 1}'::JSONB)) - pg_column_size(row()) AS int4_basic_jsonb,
             0 AS term;
      
  36. Nov 2019
  37. Nov 2018
  38. Sep 2017
  39. May 2016
    1. Because this is not always needed, and there are many choices available on how to index, declaration of a foreign key constraint does not automatically create an index on the referencing columns.

      PostgreSQL does not automatically create an index for foreign key constraints, it does however for primary keys.