9 Matching Annotations
  1. Last 7 days
    1. bien que les filles objectivement on est 00:21:46 en 6e en France objectivement soit un petit peu moins bonne en maths que les garçons en 6e les profs les surnotes un petit peu
    1. donc ce qu'on voit c'est que l'école ne ne favorise pas du tout le passage de des compétences abstraites au 00:24:21 compétences concrètes dans les deux sens
    1. Résumé de la vidéo [00:00:00][^1^][1] - [00:21:47][^2^][2]:

      Cette vidéo, présentée par Stanislas Dehaene, explore la perception des objets mathématiques élémentaires et leurs mécanismes cérébraux. Elle examine comment les humains reconnaissent rapidement des motifs géométriques et sonores, en utilisant des exemples comme les dessins géométrisés des enfants et les motifs anciens trouvés sur des objets datant de 70 000 à 100 000 ans. Dehaene discute de la capacité extraordinaire de percevoir des motifs abstraits et comment cela est traité dans le cerveau, en s'appuyant sur des études comportementales et des modèles de langage de la pensée.

      Points forts: + [00:00:26][^3^][3] Introduction au sujet * Focus sur les formes géométriques élémentaires * Importance des mécanismes cérébraux dans la perception + [00:01:41][^4^][4] Sensibilité aux motifs * Illustration avec une vidéo musicale * Reconnaissance immédiate des motifs spatiaux et sonores + [00:03:50][^5^][5] Étude des séquences géométriques * Utilisation d'un test avec des enfants pour étudier la perception * Capacité à anticiper des motifs géométriques complexes + [00:07:04][^6^][6] Langage de la géométrie * Nécessité d'un langage pour expliquer la mémoire des séquences * Présentation d'un modèle de langage de la pensée + [00:10:58][^7^][7] Performances et anticipation * Corrélation entre la complexité des séquences et la performance * Étude des mouvements oculaires et de l'IRM fonctionnelle + [00:16:09][^8^][8] Inférence de programme * Exploration de la capacité à inférer des motifs géométriques * Discussion sur la nature des primitives du langage de la pensée Résumé de la vidéo [00:21:50][^1^][1] - [00:42:52][^2^][2]:

      La partie 2 de la vidéo se concentre sur la perception des objets mathématiques élémentaires et leur représentation dans le cerveau. Stanislas Dehaene explore les régions cérébrales activées par les tâches géométriques et mathématiques, la magnéto-encéphalographie pour suivre l'activité cérébrale, et comment les séquences spatiales sont codées et anticipées par le cerveau. Il discute également des limites de la compréhension des séquences spatiales chez les animaux par rapport aux humains.

      Points saillants: + [00:22:00][^3^][3] Activation cérébrale et langage * Les régions activées par le langage ne sont pas les mêmes que celles utilisées pour les tâches géométriques * Les tâches géométriques activent des régions liées au calcul mental * L'anticipation cérébrale joue un rôle dans la complexité des séquences + [00:23:25][^4^][4] Magnéto-encéphalographie * Permet de suivre l'activité cérébrale milliseconde par milliseconde * Révèle comment le cerveau code et anticipe les séquences spatiales * Montre que le cerveau fonctionne sur un mode prédictif + [00:27:01][^5^][5] Anticipations cérébrales * Le cerveau anticipe les positions dans les séquences avant qu'elles ne surviennent * La capacité d'anticipation est corrélée avec la complexité de la séquence * Les représentations mentales abstraites comme la rotation et la symétrie sont décodables + [00:33:00][^6^][6] Comparaison avec les animaux * Les animaux ont des difficultés à comprendre les structures géométriques complexes * Les humains ont une capacité unique à former des structures récursives et à comprimer l'information * Cette capacité pourrait être propre à l'espèce humaine Résumé de la vidéo [00:42:54]¹[1] - [01:03:55]²[2]:

      Cette partie de la vidéo explore la perception des objets mathématiques élémentaires dans la musique et la géométrie, en se concentrant sur la théorie de la compression de l'information et son application dans la compréhension des séquences musicales et géométriques. Stanislas Dehaene discute de l'ancienneté du phénomène musical chez Homo sapiens, comparable à celle du langage géométrique, et présente des expériences de laboratoire simplifiant ces phénomènes pour tester la mémoire de travail et la détection de régularités.

      Points saillants: + [00:42:54]³[3] Ancienneté de la musique et de la géométrie * Présentation de flûtes anciennes comme preuve de la culture musicale préhistorique * Comparaison de l'ancienneté du langage musical avec le langage géométrique + [00:43:36]⁴[4] Expériences de laboratoire sur la musique * Utilisation de séquences musicales binaires pour tester la mémoire et la perception des régularités * Proposition d'un système de compression de l'information pour les séquences musicales + [00:45:01]⁵[5] Complexité des séquences musicales * Discussion sur la longueur de description minimale et la complexité subjective perçue * Exclusion de modèles alternatifs et confirmation de la théorie de la compression + [00:49:55]⁶[6] Systèmes de règles et statistiques dans la perception * Distinction entre le traitement des règles et des statistiques dans la perception des séquences * Présentation d'un modèle bayésien pour inférer les règles et les probabilités de transition

      Source : conversation avec Bing, 14/03/2024 (1) undefined. https://www.education.gouv.fr/education-la-sexualite-en-milieu-scolaire-341103. (2) undefined. https://soseducation.org/docs/notes-etudes-entretiens-tribunes/education-a-la-sexualite-danger-ou-prevention-final.pdf. (3) undefined. https://www.planning-familial.org/sites/default/files/2023-11/LIVRE_BLANC_WEB.pdf. (4) undefined. https://www. Résumé de la vidéo [01:03:56][^1^][1] - [01:21:55][^2^][2]:

      Cette partie de la vidéo aborde la perception des objets mathématiques élémentaires à travers une étude sur la structure des séquences musicales et leur traitement cérébral. Stanislas Dehaene discute des résultats d'IRM montrant comment le cerveau humain traite la complexité des séquences musicales, révélant un réseau de régions cérébrales impliquées dans la compréhension de la structure et de la syntaxe des séquences.

      Points saillants: + [01:03:56][^3^][3] Traitement des séquences musicales * Étude des parenthèses placées par les sujets dans des séquences * Révélation de la structure perçue par le cerveau * Différences entre séquences simples et complexes + [01:05:11][^4^][4] Résultats d'IRM et prédiction de la complexité * Activation cérébrale croissante avec la complexité des séquences * Réseau de régions cérébrales associées à la perception de la structure * Inversion de l'activation pour les séquences complexes + [01:07:55][^5^][5] Séparation entre musique et langage * Études indiquant une distinction claire dans le cortex temporal supérieur * Régions cérébrales spécialisées pour le traitement du langage et de la musique * Peu de recouvrement entre les aires du langage et celles traitant la musique + [01:11:56][^6^][6] Implications en éducation et mathématiques * Corrélation entre la capacité de traiter les motifs et les performances mathématiques * Potentiel impact de l'entraînement musical sur le développement des compétences abstraites * Importance de l'enseignement précoce des motifs géométriques et musicaux

    1. Résumé de la vidéo [00:00:00]¹[1] - [00:21:41]²[2]:

      Cette vidéo, présentée par Stanislas Dehaene, explore la perception des objets mathématiques élémentaires tels que les formes géométriques, les motifs et les graphiques. Elle examine la capacité humaine à créer des dessins, en particulier ceux des enfants, et comment nous sommes capables de produire des dessins basés sur une simplification géométrique.

      Points forts: + [00:00:22]³[3] Introduction à la perception des formes * Importance des dessins dans l'histoire de l'humanité * Propension universelle à créer des dessins iconiques et géométriques * Exemples historiques de dessins géométriques + [00:02:00]⁴[4] Les sphéroïdes et la géométrie * Production d'objets avec des symétries et des formes géométriques simples * Intention derrière la création de sphères parfaites * Difficulté d'interpréter le sens des objets graphiques anciens + [00:03:35]⁵[5] Le langage de la géométrie * Analyse de la syntaxe graphique et géométrique * Trois opérations de base : répétition, concaténation et composition récursive * L'idée d'un langage universel de la géométrie + [00:09:00]⁶[6] La reconnaissance des formes chez les humains et les primates * Capacité humaine à reconnaître des dessins simplifiés * Comparaison avec la reconnaissance chez les primates non humains * Études sur la généralisation des formes chez les chimpanzés et autres espèces + [00:14:02]⁷[7] Le dessin chez les enfants et les primates non humains * Différences dans la production de dessins entre les jeunes enfants et les primates * Études sur la capacité des chimpanzés à dessiner sur des tablettes * L'absence de dessins géométriques structurés chez les primates non humains + [00:20:07]⁸[8] Complétion de dessins par les enfants * Les enfants complètent les dessins manquants et créent des interprétations * Évolution de la capacité de dessin chez les enfants par rapport aux primates * Importance de la complétion dans la reconnaissance des formes et des intentions

      Source : conversation avec Bing, 14/03/2024 (1) undefined. https://www.education.gouv.fr/education-la-sexualite-en-milieu-scolaire-341103. (2) undefined. https://soseducation.org/docs/notes-etudes-entretiens-tribunes/education-a-la-sexualite-danger-ou-prevention-final.pdf. (3) undefined. https://www.planning-familial.org/sites/default/files/2023-11/LIVRE_BLANC_WEB.pdf. (4) undefined. https://www. Résumé de la vidéo [00:21:42][^1^][1] - [00:43:42][^2^][2]:

      La vidéo explore la perception des enfants des objets mathématiques élémentaires à travers leur dessin. Elle discute des théories historiques et contemporaines sur le développement du dessin chez les enfants, soulignant l'importance de la géométrie et de l'abstraction dans la représentation mentale des objets.

      Points saillants: + [00:21:42][^3^][3] Perception géométrique chez les enfants * Les enfants humains sont attentifs à la structure géométrique dès 2 ans * Ils complètent intuitivement les dessins en se basant sur la relation partie-tout + [00:22:17][^4^][4] Histoire de la psychologie du dessin * Les théories anciennes utilisaient le dessin comme un test d'intelligence ou projectif * Luquet et Goodenough ont marqué l'étude du dessin enfantin avant Piaget + [00:25:06][^5^][5] Le réalisme intellectuel dans le dessin enfantin * Les enfants représentent des abstractions intellectuelles plutôt que des reproductions visuelles * Cette abstraction précède le réalisme et montre une compréhension géométrique précoce + [00:33:35][^6^][6] Modèle interne et abstraction dans l'esprit de l'enfant * Les enfants possèdent un modèle interne abstrait qui guide leur dessin * Ce modèle interne est différent de la copie visuelle et est plus abstrait + [00:37:08][^7^][7] Analyse contemporaine des dessins d'enfants * Les recherches actuelles se concentrent sur la syntaxe géométrique des dessins d'enfants * Les enfants utilisent une variété de formes géométriques dès l'âge de 4 ans + [00:41:08][^8^][8] Influence de l'échelle sur la représentation des enfants * Les enfants dessinent plus de détails lorsqu'ils travaillent avec des objets à l'échelle d'un jouet * Cette observation suggère un biais pour l'objet et une tendance à omettre l'environnement dans les dessins plus grands Résumé de la vidéo [00:43:43][^1^][1] - [01:05:00][^2^][2]:

      La partie 3 de la vidéo se concentre sur la perception des objets mathématiques élémentaires par les enfants, en explorant comment ils utilisent les formes géométriques et les représentent dans leurs dessins. Stanislas Dehaene discute des recherches sur la manière dont les enfants comprennent et utilisent les lignes, les cercles et les courbes, soulignant l'importance de la syntaxe correcte et de l'organisation spatiale dans leurs représentations graphiques.

      Points saillants: + [00:43:43][^3^][3] Perception enfantine * Les enfants ont un biais pour les objets et leur représentation * Utilisation des formes géométriques dans la bonne syntaxe * Différenciation entre les murs et les objets dans les dessins + [00:47:01][^4^][4] Intelligence artificielle et dessins d'enfants * Comparaison des capacités de dessin entre les enfants et l'IA * Limitations de l'IA dans la reproduction des dessins enfantins * Exploration de l'IA pour modéliser la perception des objets + [00:51:01][^5^][5] Clipasso : IA pour reproduire les dessins humains * Présentation de Clipasso, un logiciel visant à imiter les esquisses humaines * Discussion sur la performance de Clipasso par rapport aux dessins d'enfants * Analyse de la reconnaissance des objets par Clipasso et les humains + [00:58:01][^6^][6] Recherche sur la production graphique dans le cerveau * Étude de l'activité cérébrale lors de la visualisation et du dessin d'objets * Implication des régions visuelles et pariétales dans la production graphique * Suggestion d'un modèle interne pour la perception et la production d'objets Résumé de la vidéo 01:05:01 - 01:20:56 : La partie 4 de la vidéo aborde la perception des objets mathématiques élémentaires et la capacité humaine unique à représenter une infinité de concepts grâce à la combinaison de symboles. Stanislas Dehaene discute de la métaphore du corail pour illustrer la croissance exponentielle des concepts humains et explore l'idée que différentes cultures peuvent développer des branches de connaissances distinctes en fonction de leur éducation. Il introduit un langage précis pour décrire les formes géométriques universelles et propose un modèle mental, similaire à un programme informatique, pour générer ces formes.

      Points saillants : + [01:05:01]¹[1] La croissance des concepts humains * Métaphore du corail pour la croissance exponentielle * Combinaisons de symboles créant un univers infini * Importance de l'éducation dans l'exploration des connaissances + [01:06:12]²[2] Langage de la géométrie * Développement d'un langage pour expliquer les formes géométriques * Utilisation de primitives psychologiques conformes à la cognition humaine * Exemple de la formule mentale pour dessiner un carré + [01:08:15]³[3] La récursion dans la cognition humaine * La récursion comme élément central de la cognition spécifique à l'humain * Capacité à créer des pensées enchâssées et récursives * Influence de la récursion sur le langage, la musique, les mathématiques et la science + [01:13:27]⁴[4] Compression des données * Compression des objets mentaux en expressions symboliques minimales * La longueur de description minimale détermine la complexité psychologique * Application du principe de simplicité dans les sciences cognitives

      Source : conversation avec Bing, 14/03/2024 (1) undefined. https://www.planning-familial.org/sites/default/files/2023-11/LIVRE_BLANC_WEB.pdf. (2) undefined. https://www.education.gouv.fr/education-la-sexualite-en-milieu-scolaire-341103. (3) undefined. https://soseducation.org/docs/notes-etudes-entretiens-tribunes/education-a-la-sexualite-danger-ou-prevention-final.pdf. (4) undefined. https://www.

    1. Résumé de la vidéo [00:00:00][^1^][1] - [00:22:25][^2^][2]:

      Cette vidéo explore l'origine de la capacité humaine à créer et à comprendre des formes géométriques, en utilisant des exemples de l'art préhistorique et des premières cartes de navigation. Elle examine comment ces formes simples, telles que les carrés et les cercles, ont joué un rôle fondamental dans le développement des mathématiques et de la cognition humaine.

      Points forts: + [00:00:00][^3^][3] L'art préhistorique et les formes géométriques * Importance des formes simples dans l'art des grottes * Distinction entre dessins iconiques et symboliques * L'abstraction dans la représentation des animaux + [00:02:30][^4^][4] La capacité humaine pour les formes géométriques * Utilisation universelle des motifs géométriques * Exemple d'une carte de navigation des îles Marshall * Impact des formes géométriques sur la vision du monde + [00:05:00][^5^][5] Les modèles géométriques dans différentes cultures * Réutilisation de formes géométriques simples * Exemples du disque de Nebra et du calendrier aztèque * La persistance de modèles géométriques même lorsqu'ils sont incorrects + [00:10:00][^6^][6] La géométrie dans l'architecture préhistorique * Formes géométriques dans les premières villes et structures * L'importance des formes circulaires et rectangulaires * La prédominance de la pensée géométrique dans la construction + [00:14:00][^7^][7] Les cartes dans la préhistoire * Découverte de cartes néolithiques représentant des structures de chasse * La capacité de créer des cartes abstraites sans vue aérienne * L'importance de la géométrie dans la représentation de l'environnement + [00:19:00][^8^][8] L'ancienneté du sens géométrique chez les humains * Les premières représentations géométriques dans l'art préhistorique * L'évolution de la décoration géométrique au fil du temps * La sophistication de la géométrie dans les objets anciens Résumé de la vidéo [00:00:00]¹[1] - [00:22:25]²[2]:

      La vidéo présente une conférence de Thomas Römer sur l'importance des formes géométriques dans l'histoire humaine, en explorant leur présence dans l'art préhistorique, les cartes de navigation, et leur rôle dans le développement des mathématiques et de la cognition.

      Points forts: + [00:00:23]³[3] L'art préhistorique et les formes géométriques * L'attention est attirée sur les dessins d'animaux, mais les formes géométriques simples sont peut-être plus significatives * Les formes géométriques comme les rectangles et les points sont explorées * Distinction entre dessins iconiques et symboliques + [00:02:25]⁴[4] Capacité humaine pour les formes géométriques * Discussion sur l'origine psychologique et cérébrale de l'attrait pour les formes géométriques * Exemple d'une carte de navigation des îles Marshall basée sur des formes géométriques * Importance de la capacité humaine à créer des modèles mentaux du monde + [00:10:01]⁵[5] Formes géométriques dans l'architecture * Les premières villes montrent des formes rectangulaires et circulaires dans leur architecture * Les structures préhistoriques comme les trous de poteaux et les cromlechs révèlent des formes géométriques * La spirale et le cercle sont des motifs fréquents dans l'architecture ancienne + [00:14:22]⁶[6] Les cartes dans la préhistoire * Les gravures sur roche à Valcamonica interprétées comme des cartes * Discussion sur les "désert kites", des structures néolithiques qui pourraient représenter des cartes * La stèle découverte avec une gravure d'un "désert kite" suggère une capacité à concevoir des cartes abstraites + [00:19:11]⁷[7] Ancienneté du sens géométrique * Les premières représentations dans la préhistoire sont géométriques plutôt qu'iconiques * Gravures sur des œufs d'autruches et bâtons d'ocre montrent des motifs géométriques complexes * L'importance des formes géométriques remonte à l'apparition de l'espèce humaine

      Source : conversation avec Bing, 14/03/2024 (1) undefined. https://www.planning-familial.org/sites/default/files/2023-11/LIVRE_BLANC_WEB.pdf. (2) undefined. https://www.education.gouv.fr/education-la-sexualite-en-milieu-scolaire-341103. (3) undefined. https://soseducation.org/docs/notes-etudes-entretiens-tribunes/education-a-la-sexualite-danger-ou-prevention-final.pdf. (4) undefined. https://www. Résumé de la vidéo [00:44:16][^1^][1] - [01:05:59][^2^][2]:

      La partie 3 de la vidéo se concentre sur l'analyse de la syntaxe géométrique dans l'art préhistorique, en examinant les formes et les motifs récurrents à travers différentes cultures. Thomas Römer discute de l'importance de comprendre la structure géométrique des signes préhistoriques, tout en reconnaissant les défis liés à l'interprétation de leur signification.

      Points saillants: + [00:44:16][^3^][3] Analyse de la structure géométrique * Importance des lignes parallèles, de la symétrie et de la répétition * Utilisation de nombres spécifiques comme 3 ou 4 dans les motifs * Nécessité d'un vocabulaire géométrique pour décrire les figures + [00:45:07][^4^][4] Syntaxe vs sémantique * Difficulté d'interpréter le sens des signes préhistoriques * Proposition d'une typologie basée sur la géométrie plutôt que sur la signification binaire * Établissement d'une syntaxe des signes complexes + [00:51:24][^5^][5] Interprétation des signes préhistoriques * Tentatives de déchiffrer le sens des symboles à travers des analyses statistiques * Critique des méthodes utilisées et des conclusions tirées * Importance de la prudence dans l'interprétation des données archéologiques + [01:03:11][^6^][6] Base de données des signes géométriques * Création d'une base de données pour classifier les signes sur les objets mobiliers * Analyse de la fréquence et de la distribution géographique des signes * Reconnaissance des limites de la classification et de l'interprétation subjective Résumé de la vidéo [01:06:01][^1^][1] - [01:10:58][^2^][2]:

      Dans cette partie de la vidéo, Thomas Römer discute de l'importance de l'analyse géométrique des formes et des signes dans l'éducation. Il souligne les limites des systèmes actuels et propose une approche plus proche de la psychologie de la représentation des formes. Römer suggère de ne pas traiter les signes géométriques comme des signes, mais plutôt d'analyser leur forme pour déduire les facultés cognitives qu'ils impliquent.

      Points forts: + [01:06:01][^3^][3] Analyse des formes géométriques * Importance de distinguer les séquences de points * Nécessité de coder les propriétés géométriques dans la base de données * Examiner les relations entre les signes et leur syntaxe + [01:07:14][^4^][4] Proposition d'approche pour l'éducation * Analyser le signifiant plutôt que de chercher un signifié évasif * Utiliser les outils modernes des sciences cognitives pour étudier le langage géométrique * Explorer les capacités cognitives à travers la forme des symboles + [01:08:32][^5^][5] Plan des prochains cours * Continuation de l'exploration de l'univers géométrique * Comparaison avec les dessins d'enfants et d'autres espèces * Introduction à la notion de langage de la géométrie + [01:10:28][^6^][6] Modèles pour le sens de la géométrie * Discussion sur l'adéquation des modèles connexionnistes actuels * Réflexion sur la nécessité d'une syntaxe préexistante à l'expérience * Anticipation des sujets des prochains cours sur la perception des formes géométriques

    1. Résumé de la vidéo [00:00:00][^1^][1] - [00:10:42][^2^][2]:

      Cette vidéo présente une conférence de Nalini Anantharaman, qui aborde les défis de l'éducation en mathématiques à l'université. Elle souligne la différence entre l'enseignement des mathématiques au lycée et la réalité des mathématiques au niveau universitaire et professionnel. Anantharaman discute de la nécessité de réformer l'enseignement des mathématiques pour encourager la créativité, la persévérance et l'appréciation de l'abstraction, tout en remettant en question les stéréotypes et en valorisant divers talents et approches.

      Points forts: + [00:00:22][^3^][3] Profil des étudiants en mathématiques * Majorité de garçons issus de milieux à l'aise avec l'institution scolaire * Aiment les devoirs répétitifs mais manquent de vision claire des mathématiques * Désemparés par la construction de démonstrations et le raisonnement + [00:02:17][^4^][4] Diversité dans les mathématiques professionnelles * Les professionnels des maths ont des talents et personnalités variés * Certains aiment l'aspect ludique, d'autres ont une vision sérieuse et philosophique * Collaboration avec d'autres disciplines pour résoudre des problèmes concrets + [00:03:19][^5^][5] Qualités valorisées chez les mathématiciens * La virtuosité n'est pas essentielle; d'autres qualités comme l'originalité et la persévérance sont importantes * Savoir poser les bonnes questions et écouter des problématiques d'autres domaines + [00:06:44][^6^][6] Encourager l'effort en mathématiques * Varier les types d'efforts pour répondre à des aspirations diverses * Alterner entre travail solitaire et en équipe, et entre travail abstrait et appliqué * Expliquer l'intérêt d'un travail régulier et la possibilité de progression

    1. Résumé de la vidéo [00:00:00][^1^][1] - [00:11:32][^2^][2]:

      Stéphane Mallat aborde les défis actuels de l'éducation en mathématiques en France, soulignant les lacunes du système éducatif et proposant des solutions pour inspirer et soutenir les jeunes talents, en particulier les filles et les élèves issus de milieux défavorisés. Il présente l'association "Maths c'est de plus" et l'initiative "Challenge Data" comme des moyens innovants pour engager les élèves dans les mathématiques à travers des stages et des défis pratiques, tout en appelant à un soutien financier accru du secteur privé pour l'éducation mathématique.

      Points forts: + [00:00:33][^3^][3] Défis de l'éducation en mathématiques * Lacunes du baccalauréat français * Faible proportion de jeunes filles en mathématiques * Importance de l'action face à ces problèmes + [00:02:07][^4^][4] Association 'Maths c'est de plus' * Stages en milieu universitaire pour collégiens et lycéens * Encouragement des talents et motivation en mathématiques * Évaluation positive de l'impact des stages + [00:05:08][^5^][5] Initiative 'Challenge Data' * Challenges de données pour l'enseignement des mathématiques * Approche par l'expérimentation et l'abstraction * Collaboration entre éducation et secteurs économiques + [00:10:15][^6^][6] Appel au soutien financier du secteur privé * Nécessité de financer les enseignants du secondaire * Importance des mathématiques pour l'économie * Participation active des secteurs économiques dans l'éducation

  2. Sep 2020
  3. Nov 2019
    1. des exemples merveilleux de cette espèce rigoureuse de beauté

      La beauté n’est pas qu’une affaire floue et imprécise réservée aux artistes; les géomètres sont capables d’une réelle beauté, et qui plus est rigoureuse!