7,104 Matching Annotations
  1. Mar 2021
    1. Si la demande a été transmise à un service incompétent, il appartient à l’administration de la transmettre à l’autorité compétente et d’en informer l’usager Le délai au terme duquel peut naître unedécision implicite de rejet débute à la datede réception de la demande par le serviceincompétent saisi (Article L114-2 CRPA)
    1. Reviewer #2 (Public Review):

      This is a well-written paper describing the co-recruitment of p117-BCAR3 and Cas to adhesion sites for activation of lamellipodial ruffling and the subsequent ubiquitin-dependent degradation. The completeness of the description of the cycle is a major success of this article and warrants publication. I didn't find major holes in their arguments and they did document that this pathway was not universal but there were possibly analogous signaling processes with other players.

    1. Reviewer #2 (Public Review):

      Summary:

      Frey et al develop an automated decoding method, based on convolutional neural networks, for wideband neural activity recordings. This allows the entire neural signal (across all frequency bands) to be used as decoding inputs, as opposed to spike sorting or using specific LFP frequency bands. They show improved decoding accuracy relative to standard Bayesian decoder, and then demonstrate how their method can find the frequency bands that are important for decoding a given variable. This can help researchers to determine what aspects of the neural signal relate to given variables.

      Impact:

      I think this is a tool that has the potential to be widely useful for neuroscientists as part of their data analysis pipelines. The authors have publicly available code on github and Colab notebooks that make it easy to get started using their method.

      Relation to other methods:

      This paper takes the following 3 methods used in machine learning and signal processing, and combines them in a very useful way. 1) Frequency-based representations based on spectrograms or wavelet decompositions (e.g. Golshan et al, Journal of Neuroscience Methods, 2020; Vilamala et al, 2017 IEEE international workshop on on machine learning for signal processing). This is used for preprocessing the neural data; 2) Convolutional neural networks (many examples in Livezey and Glaser, Briefings in Bioinformatics, 2020). This is used to predict the decoding output; 3) Permutation feature importance, aka a shuffle analysis (https://scikit-learn.org/stable/modules/permutation_importance.htmlhttps://compstat-lmu.github.io/iml_methods_limitations/pfi.html). This is used to determine which input features are important. I think the authors could slightly improve their discussion/referencing of the connection to the related literature.

      Overall, I think this paper is a very useful contribution, but I do have a few concerns, as described below.

      Concerns:

      1) The interpretability of the method is not validated in simulations. To trust that this method uncovers the true frequency bands that matter for decoding a variable, I feel it's important to show the method discovers the truth when it is actually known (unlike in neural data). As a simple suggestion, you could take an actual wavelet decomposition, and create a simple linear mapping from a couple of the frequency bands to an imaginary variable; then, see whether your method determines these frequencies are the important ones. Even if the model does not recover the ground truth frequency bands perfectly (e.g. if it says correlated frequency bands matter, which is often a limitation of permutation feature importance), this would be very valuable for readers to be aware of.

      2) It's unclear how much data is needed to accurately recover the frequency bands that matter for decoding, which may be an important consideration for someone wanting to use your method. This could be tested in simulations as described above, and by subsampling from your CA1 recordings to see how the relative influence plots change.

      3)

      a) It is not clear why your method leads to an increase in decoding accuracy (Fig. 1)? Is this simply because of the preprocessing you are using (using the Wavelet coefficients as inputs), or because of your convolutional neural network. Having a control where you provide the wavelet coefficients as inputs into a feedforward neural network would be useful, and a more meaningful comparison than the SVM. Side note - please provide more information on the SVM you are using for comparison (what is the kernel function, are you using regularization?).

      b) Relatedly, because the reason for the increase in decoding accuracy is not clear, I don't think you can make the claim that "The high accuracy and efficiency of the model suggest that our model utilizes additional information contained in the LFP as well as from sub-threshold spikes and those that were not successfully clustered." (line 122). Based on the shown evidence, it seems to me that all of the benefits vs. the Bayesian decoder could just be due to the nonlinearities of the convolutional neural network.

    1. Reviewer #2 (Public Review):

      This work analyses the movement of the dorsal forerunner cells (DFCs) and its interaction with the extra-embryonic enveloping layer (EVL). By doing high-resolution time lapse microscopy the authors characterize the movement of the DFCc showing that they delaminate from the epithelium by apical constriction but they remain attached to the superficial EVL. By doing laser ablations they show that the movement of the DFCc depends on the attachment and vegetal displacement of the EVL. However, they show that with some frequencies some DFCc are detached from the rest of the cluster, leading to some random movement or even being left behind and differentiating into other cell types. Importantly, they investigate an additional mechanism to explain the movement of the DFCc detached cells. They show that single cells generate protrusions that connect them with the DFCc cluster forming an E-cadherin junction. This paper makes an important contribution by adding some new mode of migrations during development. Most of the conclusion are supported by the experiments.

    1. Reviewer #2 (Public Review):

      Scharmann et al. present a study of sex-biased gene expression as a function of sexual dimorphism in leaf tissue in the genus Leucadendron. Comparative studies of sex-biased expression across clades are still relatively rare, and this analysis tests some core findings of a recent paper (Harrison et al. 2015). Overall, I like the analysis and think it could be a valuable addition to the literature on sex-biased genes. This is particularly true given the difficulty of cross-species expression comparisons and the paucity of them in plants.

      However, there are some critical differences between the Harrison paper and the one here, and I think it would be helpful if the authors present them early in the text. Specifically, Harrison et al. (2015) was primarily focused on gonad tissue, which in animals is the site of the vast majority of sex-biased genes. In contrast, the authors here focus on vegetative (leaf) tissue, which is analogous to animal somatic tissue. None of the patterns that Harrison et al. (2015) observed and report from the gonad were evidence in the somatic tissue they assessed. Also, by looking at gonadal tissue, Harrison et al. (2015) focused on the tissue that produces gametes, which are thought to be subject to some of the strongest sexual selection pressures. The fairest comparison would be flower tissue in plants, so I am unsure how much of the Harrison results would be expected to hold up in leaf samples. This doesn't mean the authors should do the analyses they present, just that they should be a little more upfront about what they might reasonably expect to find.

      There is also a conflation at times in the paper between sexual dimorphism, which the authors can quantify in their leaf samples, and sexual selection. I explain this in more detail below, but to summarize here, I think the expectations for the relationship between sex-biased gene expression and sexual selection versus sexual dimorphism are somewhat distinct.

      Finally, I am a little concerned that the low numbers of sex-biased genes, expected from leaf tissue, offer limited power for some of the tests the authors want to do. Harrison et al. (2015) had hundreds of sex-biased genes from the gonad, and this power made it possible to detect subtle patterns. The authors have a few dozen sex-biased genes, and this makes it difficult to know whether their negative results are the result of low statistical power. That they find clear associations between pre-sex-biased genes and rates of evolution is quite impressive given this low power.

    1. Reviewer #2 (Public Review):

      The paper by Lauer et al provides further insight into the factors that might determine why RO1 applications from AAB (African American Black) principal investigators appear to fare worse than their white counterparts. Their work is derived from an earlier analysis published by Hoppe et al that found 3 factors determined funding success among AAB PIs. These included decision to discuss at study section, impact score, and topic choice. The latter, topic choice (community and population studies) appeared to represent more than 20% of the variability in funding gaps. This raised the question of whether there was reviewer bias at study sections. In the Lauer paper, after controlling for several of these variables, the authors found that the topic choice of AABs (ie. preferred topics) were indeed important in respect to funding, but they uncovered the fact that the topic choices occurred more frequent in ICs that had lower funding rates. Thus the authors conclude that the disparity between AAB and white investigator RO1s is very dependent on topic choice which ultimately ends up in larger ICs with lower funding percentiles.

      Overall the paper is relatively straightforward and could be important as It provides some additional data to consider. It is in fact basically a re-analysis of the Hoppe paper, but that is reasonable since that paper left many unanswered questions. Its implications however are less clear, and these raise additional questions of importance to the extramural scientific community as well as IC leadership.

      Overall the reader is left with the unsettling question: Can we just wish away these disparities based on IC funding rates? (Figure 1).

      1) Why would topic choice of community engagement or population studies fare worse at an Institute such as AI rather than at GM if both have the relatively same proportion of preferred topics, and both have relatively high budgets compared to other institutes. Is there one or more ICs that drive the correlations between IC funding and preferred topics or PIs?

      2) Since only 2% of all PIs are AAB does that represents another issue of low frequency relative to the larger cohort?

      3) It would be valuable to know if community engagement or population studies in total do worse than mechanistic studies. The authors do admit that preferred topics of AABs in general fare worse(Figure 2, Panel B).

      4) Another concern is that the data are up to 2015; it has now been five years and things have changed dramatically at NIH and in society. There are now many more multiple PI applications including AABs that may not be the contact PI yet are likely to be in a preferred topic area.

      5) There is nothing in the discussion about potential resolutions to this very timely issue; In other words we now know that the disparity in funding is such that AAB RO1s do worse than white PIs because they are selecting topics that end up at institutes with lower funding rates. Should the institutes devote a set aside for these topic choices to balance the portfolio of the IC and equal the playing field for AABs? Are there other alternative approaches?

    1. Reviewer #2 (Public Review):

      Thank you for the opportunity to review the short report "Regional sequencing collaboration reveals persistence of the T12 Vibrio cholerae O1 lineage in West Africa" by Ekeng and colleagues. The authors report an analysis of 46 new Vibrio cholerae genomes in context of 1280 published genomes. The goal of their analysis was to establish a recent snapshot of VC population genomics in West Africa and assess the occurrence importations of new lineages. From their analysis, they infer that the recent cases were endemic.

      Overall, this report presents findings from a region with little genomic surveillance, and as such these data are valuable for the understanding of endemic cholera in the region. The authors' analysis is technically sound, and the figures are well constructed. However, the depth of the analysis is relatively shallow, even for a short report, and the conclusions drawn from the data appear more subjective then based on the analysis at hand. These weaknesses could be addressed by a more in-depth analysis and clarification of the points below. Last, I did appreciate that this study was conducted in the context of a regional training. This could be an effective model for future analyses of regional importance. I feel like that wasn't the main focus of the report. If they were to shift their focus, I would want to know:

      1) Where did the isolates come from (e.g., cholera treatment centers, hospitals, or broader active surveillance)?

      2) Do they conduct environmental sampling and could this be part of future efforts?

      3) Who attended the training? Were they members from regional ministry of health labs, academic institutes etc?

      4) Were the attendees laboratorians, bioinformaticians, clinicians etc?

      5) Was there an effort to analyze the data, particularly the bioinformatics portion, locally or did the rely 100% on the collaborators at JHU? If the latter, then I don't think this is a good sustainable model for ongoing genomic epidemiology. If the prior, then were local or regional computing resources used? 6) Are they continuing to sequence isolates after the training?

    1. Reviewer #2 (Public Review):

      Halliday et al. sampled plant communities and foliar fungal diseases along an elevation gradient in Swiss Alps, to test the potential relationship between environment, plant communities and diseases in the context of climate change. The authors confirmed that elevation can affect diseases by both abiotic and biotic factors, and, host community pace-of-life was the main driver for diseases along elevation. The topic is important and new, the study is well-designed, and the analysis is reasonable.

    1. Reviewer #2 (Public Review):

      Despite the fact that reverse transcription was discovered 50 years ago, there are still some black boxes regarding RT spatiotemporal activity. Recent studies elsewhere and here indicate that RT can occur in the nucleus, revising the "dogma" that RT occurs exclusively in the cytoplasm of infected cells. However, it is still debated whether this concept can be extended to all HIV target cells and which RT processes can start and finish in the nucleus. The authors also performed several experiments designed to show that uncoating (loss of capsid) occurs in the nucleus. The authors deserve credit for developing and applying complicated imaging technologies. However, live imaging data comes from pseudo-viruses, which have low infectivity, so high amounts of virus have been used to obtain some of the results. This is a limitation, and I have some reservations about the conclusions and the generalization of the results, and also about the lack of statistics for the CLEM-ET studies, probably owing to the complexity of the technique (detailed below). In addition, despite using state-of-the-art CLEM-ET, it is possible to visualize only structures with strong fluorescence and recognizable structures. I therefore wonder how can the authors can conclude that only the forms that still have a conical or partial conical shape are the most important to follow? It is possible that more flexible CA structures can access the nucleus and that the authors neglect them owing to limitations of the technology. Immuno-gold CA labeling could solve this issue, and the authors have the technologies required to perform these experiments.

    1. Reviewer #2 (Public Review):

      This manuscript builds upon some important thought-leading work within the Ras field that the authors have published in recent years. They have previously demonstrated how changing the protein expression levels of KRAS can modulate the number of Ras-driven tumours that are observed and posited that this suggests an optimal level of Ras signalling that is neither too stressing nor too insufficient to promote tumourigenesis.

      In this manuscript they use urethane to induce lung tumours in mouse models that have either normal or high levels of KRAS expression (also higher oncogenic stress). They are also able to modulate the associated oncogenic stress levels by the presence (higher stress) or deletion (lower stress) of p53. Urethane normally generates Q61 KRAS mutations, biochemical analysis by other groups has previously shown that these mutations are more active than G12 mutations. Following urethane induction, they observe an improved competence to support tumorigenesis in the high KRAS model when p53 is removed. They also observe a shift towards G12 mutants under genetic conditions where oncogenic stress is higher (higher KRAS expression, presence of p53). ie. stress compensators (p53 loss or weaker activating mutation) permit promotion of tumourigenesis in the high KRAS model. The converse was also observed. Loss of p53 (lower stress) resulted in higher mRNA levels of G12 mutants - suggesting that the weaker mutant increases protein expression/cancer signalling to occupy the new oncogenic stress headroom that has been created. Some support for the hypothesis that these effects are mediated by differences in Ras signalling amplitude between the different mutants was provided by analysing the expression of three key Ras gene targets. As predicted, higher expression (signalling output) was seen in Q61 vs Q12 mutants and when p53 was deleted.

      Strengths:

      The mouse model conditions provide a suitable range of options to allow the hypothesis to be tested. The data are all internally consistent and broadly support the general conclusions.

      Weaknesses:

      The mRNA data are interpreted as evidence for changes in protein expression and Ras signalling activity - there is no formal evidence that this is the case.

      The similarity in G12/13 mutations between the KRAS normal and high KRAS mice in Figure 2C is unexpected. The authors focussed on the potential for higher G12/13 mutant expression in the KRAS normal mice to explain this. It is also intriguing how there wasn't a more complete switch to Q61 in the high KRAS tumours when p53 was deleted. Whilst the Ras signalling dosing/oncogenic stress nexus are a reasonable explanation, the model/methods are a snapshot in time and don't have the resolution to fully understand the detail of what is going on here.

      This study represents a solid contribution supporting an important model and will stimulate future work to understand Ras variant cancer contributions.

    1. Reviewer #2 (Public Review):

      In this manuscript Koiwai et al. used single cell RNA sequencing of hemocytes from the shrimp Marsupenaeus japonicus. Due to lack of complete genome information for this species, they first did a de novo assembly of transcript data from shrimp hemocytes, and then used this as reference to map the scRNA results. Based on expression of the 3000 most variable genes, and a subsequent cluster analysis, nine different subpopulations of hemocytes were identified, named as Hem1-Hem9. They used the Seurat marker tool to find in total 40 cluster specific marker transcripts for all cluster except for Hem6. Based upon the predicted markers the authors suggested Hem1 and Hem2 to be immature hemocytes. In order to determine differentiation lineages they then used known cell-cycle markers from Drosophila melanogaster and could confirm Hem1 as hemocyte precursors. While genes involved in the cell cycle could be used to identify hemocyte precursors, the authors concluded that immune related genes from the fly was not possible to use to determine functions or different lineages of hemocytes in the shrimp. This is an important (and known) fact, since it is often taught that the fruit fly can be used as a general model organism for invertebrate immunologists which obviously is not the case. Even among arthropods, animals are different. The authors suggest four lineages based upon a pseudo temporal analysis using the Drosophila cell-cycle genes and other proliferation-related genes. Further, they used growth factor genes and immune related genes and could nicely map these into different clusters and thereby in a way validating the nine subpopulations. This paper will provide a good framework to detect and analyze immune responses in shrimp and other crustaceans in a more detailed way.

      Strengths:

      The determination of nine classes of hemocytes will enable much more detailed studies in the future about immune responses, which so far have been performed using expression analysis in mixed cell populations. This paper will give scientists a tool to understand differential cell response upon an injury or pathogen infection. The subdivision into nine hemocyte populations is carefully done using several sets of markers and the conclusions are on the whole well supported by the data.

      Weaknesses:

      One obvious drawback of the paper is first the low number of UMIs. A total number of 2704 cells gave a median UMI as low as 718 which is very low. Especially shrimp no. 2 has an average far below 500 and should perhaps be omitted. Therefore, one question is about cell viability prior to the drop-seq analysis. The fact of this low number of UMIs should be discussed more thoroughly.

      Details about how quality control (QC) was performed would be needed, for example the cutoff values for number of UMI per cell, and also one important information showing the quality is the proportion of mitochondrial genes. The clustering into nine subpopulations seems solid, however the determination of lineages based upon the pseudo time analysis with cell-cycle related genes is not that strong. The authors identify four lineages, all starting from hem1 via hem2-Hem3- Hem4 and then one to Hem5, another through part of Hem 6 to Hem 7, next through part of Hem 6 to Hem 8 and finally through part of Hem 6 to Hem 9. Referring to Figure 3 - supplement 3, it seems as if Hem6 could be subdivided into two clusters, one visible in B and C, while another part of Hem & is added in D. Also, the data in figure 3 - supplement 1 showing expression of cell cycle markers do not convincingly show the lineages. Cluster Hem 3 and 4 seems to express much fewer and lower amount of these markers compared to cluster Hem6 - Hem9.

      It is also clear (from figure 5 - supplement 1) that there are more than one TGase gene and the authors would need to discuss that fact related to differentiation.

      While the part to determine subpopulations is very strong, the part about FACS analysis and qRT-PCR is weaker than the other sections, and doesn't add so much information. Validation of marker genes and the relationship between clusters and morphology shown in figure 6 is not totally convincing. It seems clear that both R1 and R2 contains a mixture of different cell types even if TGase expression is a bit higher in R1. A better way to confirm the results could be to do in situ hybridization (or antibody staining) and show the cell morphology of some selected marker proteins in a mixed hemocyte population. FACS sorting is very crude and does not really separate the shrimp hemocytes in clear groups based on granularity and size. This may be because the size of hemocytes without granules vary a lot. You need cell surface markers to do a good sorting by FACS. Another minor issue is the discussion about KPI. There are a huge number of Kazal-type proteinase inhibitors in crustaceans and it is not clear from this data if the authors discuss a specific KPI-gene, and there is a mistake in referring to reference 65 which is about a Kunitz-type inhibitor.

      In summary, this paper is a very important contribution to crustacean immunology, and although a bit weak in lineage determination it will be of extremely high value.

    1. Reviewer #2 (Public Review):

      The goal of this study is to devise a means of promoting adult mouse auditory sensory cell development from supporting cells (SCs), as occurs naturally in birds and fish following sensory cell death. Previous studies indicated that activating Atoh1, an early acting transcription factor that specifies sensory cell fate during embryogenesis, was not sufficient for such regeneration. The authors hypothesized that adding a second transcription factor, Ikzf2, which maintains outer hair cell (OHC) fate, would synergize with Atoh1 and push adult SCs to differentiate as OHCs. They tested this hypothesis by over-expressing both Atoh1 and Ikzf2 in supporting cells after killing the endogenous OHCs in adult cochleae. The authors showed that the induced cells first express the general HC marker, Myo6, and only later become Prestin-positive, much as occurs during normal development. Unfortunately, these induced OHC-like cells had abnormal stereocilia and did not restore auditory (ABR) thresholds. Moreover, there was a loss of IHCs (the primary auditory receptors) suggesting that much more is needed to induce a real OHC and to protect IHCs than simply inducing the two selected transcription factors. Single-cell RNAseq (scRNA-seq) results showed that the induced OHC-like cells are enriched for HC genes and depleted for SC genes, but overall are most similar to neonatal HCs as defined in published scRNA-seq data from other groups. Overall, the scRNA-seq data did not offer a clear path forward, other than to identify and test additional transcription factors that might push the induced cells to the next stage. Nevertheless, the extent of SC transformation is impressive and has not been seen in previous approaches. This is an important contribution to our understanding of the control of OHC gene expression and differentiation contributed by two important transcription factors.

    1. Reviewer #2 (Public Review):

      The paper revisits the question of ligand discrimination ability of TCRs of T cells. The authors find that the commonly held notion of very sharp discrimination between strongly and weakly binding peptides does not hold when the affinities of the weak peptides are re-measured more accurately, using their own new method of calibration of SPR measurements. They are able to phenomenologically fit their results with a ~2 step Kinetic Proofreading model.

      It is a very carefully researched and thorough paper. The conclusions seem to be supported by the data and fundamental for our understanding of the T cell immune response with potentially very high impact in many scientific and applied fields. The calibration method could be of potential use in other cases where low affinities are an issue.

      As a non-expert in the details of experimental technique, it is somewhat difficult to understand in detail the Ab calibration of the SPR curve - which is a central piece of the paper. The main question is - what are the grounds (theoretical and/or empirical) to expect that the B_max of the TCR dose response curve will continue to be proportional to the plateau level of the Ab. Figure 1D does suggest that, but it would be hard to predict what proportionality shape the curve will take for lower affinity peptides. Given that essentially all the paper claims rest on this assumption, this should explained/reasoned/supported more clearly.

      On the theoretical side - I think the scaling alpha\simeq 2 in Figure 2 is indeed consistent with a two-step KPR amplification. However, there are some questions regarding the fitting of the full model to the P_15 of the CD69 response. As explained in the Supplementary Material the authors use 3 global and 2 local parameters resulting in 37 (or 27) parameters for 32 data points. To a naive reader this might look excessive and prone to overfitting. On the other hand, looking at Figure S8 shows the value ranges of lambda and k_p are quite tight. This is in contrast to gamma and dellta that look completely unconstrained.

      Finally, one of the stated advantages of the adaptive proof-reading model is that it is capable of explaining antagonism. It is hard to see how a 'vanilla" KPR model is capable of explaining antagonism.

    1. Reviewer #2 (Public Review):

      There is now a considerable body of knowledge about the genetic and cellular mechanisms driving the growth, morphogenesis and differentiation of organs in experimental organisms such as mouse and zebrafish. However, much less is known about the corresponding processes in developing human organ systems. One powerful strategy to achieve this important goal is to use organoids derived from self-renewing, bona fide progenitor cells present in the fetal organ. The Rawlins' lab has pioneered the long-term culture of organoids derived from multipotent epithelial progenitors located in the distal tips of the early human lung. They have shown that clonal cell "lines" can be derived from the organoids and that they capable of not only long-term self-renewal but also limited differentiation in vitro or after grafting under the kidney capsule of mice. Here, they now report a strategy to efficiently test the function of genes in the embryonic human lung, regardless of whether the genes are actively transcribed in the progenitor cells. The strengths of the paper are that the authors describe a number of different protocols (work-flows), based on Crisper/Cas9 and homology directed repair, for making fluorescent reporter alleles (suitable for cell selection) and for inducible over-expression or knockout of specific genes. The so-called "Easytag" protocols and results are carefully described, with controls. The work will be of significant interest to scientists using organoids as models of many human organ systems, not just the lung. The weaknesses are that they authors do not show that their lines can undergo differentiation after genetic manipulation, and therefore do not provide proof of principle that they can determine the function in human lung development of genes known to control mouse lung epithelial differentiation. It would also be of general interest to know whether their methods based on homologous recombination are more accurate (fewer incorrect targeting events or off target effects) than methods recently described for organoid gene targeting using non homologous repair.

    1. Reviewer #2 (Public Review):

      In this manuscript, Moncla et al. undertake a large sequencing and phylogenetic study to investigate the underlying epidemiology of the 2016-2017 Washington State Mumps epidemic. The authors generate 110 sequences and include 166 novel sequences in their analysis. This data set represents over a quarter of the publicly available Mumps genomes from North America.

      They then apply a mixture of phylogenetic methods and intuitive data analyses to uncover, that i) Mumps was imported into Washington at least 13 times. ii) A disproportionate amount of transmission occurred in the Marshallese community in WA with limited transmission in the non-Marshallese community. iii) These heterologous transmission dynamics might be explained by historical and current health disparities within the community, but are not due to low vaccination coverage.

      These conclusions are supported by a wide array of carefully controlled phylogenetic methods. The authors explore the sensitivity of their findings to sampling bias. Additionally, the conclusion that transmission occurred disproportionally within the Marshallese community is supported by multiple implementations of the structured coalescent as well as, more coarse but intuitive methods such as the rarefaction analysis and the "descendent" analysis in Figure 4. The "descendent" analysis complements the structured coalescent models and highlights how tips that are close to internal nodes inform the "state" of those unsampled ancestors. Each internal node represents an unsampled ancestor, and if transmission rates are higher in one population, then samples from that population are more likely to be close to those ancestors. The approach captures these processes; however, calling downstream tips "descendants" is unfortunate, as it is unknown if the tips that have "descendants" are direct ancestors of their "descendants" in the transmission chain. Inferring transmission dynamics from divergence trees is difficult, and variants of this approach are likely to be useful in other systems.

      The finding that transmission disproportionally occurred in the Marshallese community leads the authors to propose several possibilities for why this may be. The authors should be commended for reaching out to Marshallese health advocates in this process and including the community in their study. This context is a major strength of the study.

      Both the data generation and data analysis are achievements that advance our understanding of the epidemiology of Mumps. As can be seen in the tree in Figure 1 the 2016-2017 epidemic in North America was seeded by at least two divergent lineages that appear to have all contributed to the same outbreak. The large number of sequences contributed by this study will help future work uncover the dynamics that drive Mumps epidemics at larger scales. The findings also highlight how large outbreaks can persist in highly vaccinated populations and how an array of phylogenetic approaches can be employed to uncover the underlying population heterogeneity behind an outbreak. To have both of these achievements in the same manuscript sets this work apart.

    1. Reviewer #2 (Public Review):

      In this incredibly detailed effort, Hulse, Haberkern, Franconville, Turner-Evans, and coauthors painstakingly and patiently reveal the connectivity of central complex neurons within one "hemibrain" EM-imaged connectome of a fruit fly. This is best read as one of a series of such detailed papers including Scheffer et al., 2020 (which introduces the dataset) and Li et al., 2020 (which focuses on the mushroom body).

      The authors achieve two major goals. First, they present a full account of all neurons (by type) present in the central complex and the connections between them (including to and from regions outside the central complex). By necessity, this work only examines such connections within a single animal from whose brain the hemibrain volume was imaged. Nonetheless, the relatively conserved morphology of fly neurons (at the scale of which regions they form arbors within) allows the authors to confidently relate their neurons to known examples from genetically labeled lines imaged at the light level. (And in some cases, they are able to show that some neurons with similar morphology can then be further subdivided into different types on the basis of their connectivity). Importantly, the hemibrain dataset contains both sides of the central complex, allowing for a complete analysis.

      Secondly, the authors contextualize the observed connectivity patterns within the known functions of the central complex (particularly navigation and sleep/arousal). Appropriately and importantly, they offer detailed explanations for how the circuitry observed can support these functions. In some cases, particularly in their discussion of the fan body, they show how the connectivity patterns can support multiple variations of models of path integration (and more broadly how its architecture supports vector computation in general). These analyses make their central complex connectome a useful map - there is little doubt that it will inspire many future experiments in the fly community.

      The only limitations of this work are rooted in the nature of the source material: it's only one animal's brain and because it's EM-based there's often no way to know whether a given cell type (if new) is even excitatory or inhibitory (though, notably, the authors take care to note where this is the case and to offer alternate interpretations of the circuit function). Synaptic strength is another relative unknown (not to mention plasticity rules or modulatory influences). For EM-based connectomes, the number of synapses made between two neurons is considered the basis for determining whether or not they are meaningfully connected. However, this precise number can vary as a function of how complete the reconstructions are (generally, as proofreading progresses, more synapses are found). This work improves on prior hemibrain studies by carefully demonstrating that it is possible to set a threshold on the relative fraction of synaptic contributions within a region in order to identify meaningful connections. (That is, they find that as the number of synapses discovered increases, the relative contribution remains relatively constant).

      This is a massive work. There are 75 figures, not including supplements, and numerous region and neuron names to keep track of (not to mention visualize). It is impossible to read in a single sitting. So for the purposes of this public review, I highly recommend to any reader that they first find the region of the paper they're interested in and skip to that to view in side-by-side mode. The "generally interested" reader is best served by reading through the Discussion, which has more of the structure-function analyses in it and then referring to the Results as their curiosity warrants.

      Scheffer et al., 2020 is available here: https://elifesciences.org/articles/57443#content Li et al., 2020 is available here: https://elifesciences.org/articles/62576#content

    1. Reviewer #2 (Public Review):

      Pupillometry is an increasingly accessible tool for the non-invasive readout of brain activity. However, our understanding of pupil-control circuits and of the relationship between changes in pupil size and perception, cognition or action, is far from complete. Therefore, any measurements that further this understanding are of great interest to a wide audience in the field of psychology and neurobiology.

      This study used pupillometry to explore the neural processing that underlie perception and dissociate those from action-related neural processing. The authors use a novel and comprehensive task design, centered on binocular rivlary, that is likely to find wider use among researchers studying the neural processes that underlie perception and action. They used a non-invasive method (pupillometry) to disscociate putative processes and circuits that might drive perceptual switching. They found changes in pupil size that are reliably different depending on the task: for example - between the conditions that require reporting a perceptual switch versus not reporting it and between rivalrous and explicit changes in the visual stimulus.

      Such approaches can be very useful in deciphering which of the myriad factors that can affect pupil size are in fact active under specific, controlled conditions and thus provide a basis for guided, direct measurements of these specific brain regions.

      Overall, this study is well-conceived and executed. However, I have some questions and concerns about the analyses and conclusions made from the results shown. In general, I would encourage the authors to try and include more of what we do know about neuromodulation and the cortical control of pupil pathways to frame the hypothesis and interpret the results. Further, it is unclear to me whether the constriction/dilation dissociation is tenable with the presented data and analyses.

    1. Reviewer #2 (Public Review):

      Rhabdomeric Opsins (r-Opsins) are well known for their role in photon detection by photosensory cells which are commonly found in eyes. However, r-Opsin expression has also been detected in non-photosensory cells (e.g., mechanosensors), but their function(s) in these other sensory cells is less well understood. To explore the function of r-Opsins outside the context of an eye/head (non-cephalic function) as well as to investigate the potential evolutionary path by which sensory systems that rely on r-Opsins have evolved, Revilla-i-Domingo et al. have investigated gene expression in two distinct subsets of r-Opsin expressing cells in the marine bristle worm Platynereis dumerilii : EP (eye photoreceptor) and TRE (trunk r-opsin1 expressing) cells. The authors also generate two Pdu-r-Opsin1 mutant strains in order to investigate how the loss of r-Opsin function affects gene expression and behavior.

      The question of what role r-Opsins play outside of photoreceptors is an interesting one that remains poorly understood. In this manuscript, the authors demonstrate a powerful protocol for FACS sorting and sequencing different cell populations from an important evolutionary model organism.

      The transcriptomic analysis presented here demonstrates that both the cephalic EP cells and the non-cephalic TRE cells express components of the photosensory transduction pathway. This observation, together with heterologous cell expression data presented demonstrating sensitivity of Pdu-r-Opsin1 to blue light, suggests that both EP and TRE cells are likely to be light sensitive. The authors also suggest that they observe "mechanosensory signatures" in the transcriptomes, which, together with the analysis of undulatory movements in headless animals, lead them to suggst that r-Opsin in TRE cells functions as an evolutionarily conserved light-dependent modulator of mechanosensation, a conclusion that is not well-supported by the data presented.

      Overall, many of the conclusions drawn from the transcriptome data are inferential and based on weak evidence. Key limitations are listed below:

      1) The apparent overlap between the phototransduction and mechanosensory systems has already been shown (in Drosophila for instance) and the current work adds limited information to this story, and what is added is weakened by the absence of functional and physiological analyses. This is particularly true for supporting the claims of mechanosensory signatures in these cells. For example, genes whose expression is suggested in the text as being indicative of a mechanosensory function (glass and waterwitch) are, in fact, expressed in multiple sensory cell types. Glass (gl) is a transcription factor best known for regulating the expression of phototransduction proteins in photoreceptors. The function of waterwitch (wtrw) is not fully understood, but it is broadly expressed in sensory cells in Drosophila. It would be more compelling if mechanotransduction channels like Piezo and NompC were expressed in the TREs, but there is no mention of this.

      2) The suggestion that the TRE cells share similarity with the mechanosensitive mammalian inner ear is provocative, but lacks strong support. For instance, physiological characterization of the response properties of these sensory cells or identification of anatomical similarities analogous to the stereocilia upon which hair cell mechanosensitivity is based would greatly increase plausibility of this claim. Particularly for a species that diverged from mice and flies many hundreds of millions of years ago, speculation based largely on transcriptome analysis is risky. Careful validation is required as identified genes might not share a conserved function with their assigned orthologs in mice and Drosophila.

      3) The current analysis lacks sufficient power to make compelling claims with regard to potential ancestral protosensory cells. The investigators are examining a single species of marine worm and doing so without detailed anatomical and functional studies of the r-Opsin-expressing cells in the worm.

      4) The behavioral experiments require more functional data to interpret unambiguously. The data indicate that r-opsin1 is required for light to surpress the undulation of decapitated worms. Does this mean that the TREs are photosensors whose activity inhibits locomotion or that the TREs are light-sensitive mechanosensors ?

      5) It is assumed that the TREs constitute a homogenous cell population, but this is not demonstrated. This means that the TREs could be a mixed population (for example, distinct sets of photosensors and mechanosensors) and some of the TRE-expressed genes identified could be expressed in different specific subset of TREs.

    1. Reviewer #2:

      I like this type of multimodal study, and I think that the rationale for the study is good. I am not, however, convinced about the results/conclusions provided. Here are my main points:

      I don't agree with your conclusion that the mediating role of GABA changes in aging. This requires longitudinal data, the cross-sectional approach in this study can only conclude differences between groups since only 1 time point is available.

      No age interaction, this is surprising to me since there are age differences?

      Compensatory explanation: Is there a correlation with performance? If there isn't, the proposal of compensatory mechanisms is unclear since it is then not obvious what the compensation is for?

    1. Reviewer #2 (Public Review):

      This study traces the detailed excitatory connections of mouse forepaw sensorimotor circuits from the spinal cord, through brainstem, thalamus, sensory and motor cortical areas, and their motor outputs. This is a welcome and important contribution, considering the technical advantages of mice for circuit cracking and the increasing number of labs studying the functions of their limbs. Although the structure and function of forelimb sensorimotor circuits have been extensively studied in primates, they have been relatively neglected in the rodent, especially compared to the enormous scope of research that has been done on the rodent vibrissae system over the past 50 years. This study uses a variety of contemporary methods to reveal important similarities and differences between the forelimb and vibrissae sensorimotor circuits.

      Overall, the results do not hold major surprises, although this is itself a noteworthy result. The authors did identify a few qualitative and quantitative differences between the forelimb circuit and the parallel vibrissae-related circuit; the functional significance of these differences is as yet unclear.

      The weaknesses of the manuscript are few and minor. The study would have been stronger if it had performed comparable, parallel experiments on the hand and vibrissae circuits, however the scope of the study is already ambitious and strong enough as it stands. I do have a question about the identity of the cortical L4 neurons that were recorded, and this issue should be discussed.

    1. Reviewer #2 (Public Review):

      NICEdrug.ch integrates well-established previous methods/pipelines from the same group and provides an easy-to-use platform for users to identify reactive sites, create repurposing and druggability reports, and reactive site-specific similarity searches between compounds. Case studies provided in the manuscript are quite strong and provide ideas to the reader regarding how this service can be useful (i.e., for which kinds of scientific aims/purposes NICEdrug.ch can be utilized). On the other hand, there are a few critical issues related to the current state of the manuscript, which, in my opinion, should be addressed with a revision.

      Major issues:

      1) Two of the most critical drawbacks are, first, the lack of quantitative assessment of the abilities of the service and its analysis pipeline. Use cases provide valuable information; however, it is not possible to assess the overall value of any computational tool/service without large-scale quantitative analyses. One analysis of this kind has been done and explained under "NICEdrug.ch validation against biochemical assays" and "Comparison of NICEdrug.ch predictions and biochemical assays"; however, this is not sufficient as both the experimental setup and the evaluation of results are quite generic (e.g., how to evaluate an overall accuracy of 0.73 without comparing it to other computational methods that produce such predictions, as there are many of them in the literature). Also, similar quantitative and data-driven evaluations should be made for other sections of the study as well.

      2) The second critical issue is that, in the manuscript, the emphasis should be on NICEdrug.ch, since most of the underlying computational methods have already been published. However, the authors did not sufficiently focus on how the service can actually be used to conduct the analysis they mention in the use cases (in terms of usability). Via use cases, authors provide results and its biological discussion (which actually is done very well), but there is no information on how a potential user of NICEdrug.ch (who is not familiar with this system before and hoping to get an idea by reading this paper) can do similar types of analyses. I recommend authors to support the textual expressions with figures in terms of screenshots taken from the interface of NICEdrug.ch at different stages of doing the use case analyses being told in the manuscript. This will provide the reader with the ability to effectively use NICEdrug.ch.

    1. Reviewer #2 (Public Review):

      Böhm et al. investigated the phosphorylation of the Ctf19CCAN component Ame1CENP-U by Cdk1 which forms a phosphodegron motif recognized by the E3 ubiquitin ligase complex SCF-Cdc4. They identify phosphorylation sites on Ame1 and demonstrate that phosphorylation of Ame1 leads to its degradation by the SCF with Cdc4 in a cell-cycle dependent manner. They also demonstrate that the outer kinetochore component Mtw1c shields Ame1 from Cdk1 phosphorylation in vitro. Finally, they propose a model in which at least one component, Ame1, is present in excess at S-phase in yeast to incorporate into high levels of sub-complexes for efficient inner kinetochore formation on newly duplicated centromere DNA. Then, in mitosis, phosphodegrons serve to mediate the degradation of excess Ame1 (and presumably other CCAN components) and in so doing protect against the formation of ectopic outer kinetochores.

      This manuscript puts forth well-designed and thorough experiments characterizing the phosphorylation of Ame1 and its regulation by the SCF-Cdc4 complex. The writing is clear and the figures are generally easy to understand. The authors succeed in asking pertinent questions, designing experiments to answer them, and considering potential alternative explanations or confounding factors. As a whole this creates a generally convincing study regarding the phospho-regulation of Ame1. However, I also have some important concerns:

      1) The authors begin the manuscript by mapping phosphorylation sites across Ctf19CCAN components but then largely narrow their experimental focus to Ame1 and to a lesser extent its binding partner Okp1. Without mutation of other components, the Ame1 mutant phenotypes are either absent or very mild. This would seem to implicate that, if this is an important process, that other targets for this quality control mechanism must exist. As it stands now, the focused investigation does not make the most compelling case for the broad conclusions that are claimed. More extensive investigation of phosphoregulation of CCAN subunits beyond Ame1 would certainly help justify the claim that phosphoregulation is used to clear excess CCAN subunits and protect against ectopic kinetochore assembly. Is there another lead from their initial mass spec work that could provide some molecular evidence that this is a general process? Failing that, the discussion could at least provide some hint at how the model could be tested in future studies.

      2) The conclusion that the binding of the Mtw1 complex shields Ame1 phosphodegrons is arguably one of the most significant and interesting claims made in this paper. However, the evidence presented to support this claim seems to rely exclusively on in vitro data. Thus, this part is out of balance with other parts of the paper where some in vivo correlations are attempted/made.

      3) The central model mentioned at the outset strongly predicts that the mitotic degradation of Ame1 doesn't impact its abundance at centromeres. That is not the only possibility, though, and some measurement (fluorescence of a tagged Ame1 or a ChIP on centromere DNA) of Ame1 at centromeres before and through mitosis would help instill confidence in the proposal.

    1. Reviewer #2 (Public Review):

      This study presents iteratively constructed network models of spinal locomotor circuits in developing zebrafish. These models are shown to generate different locomotor behavior of the developing zebrafish, in a manner that is supported by electrophysiological and anatomical data, and by appropriate sensitivity analyses. The broad conclusions of the study result in the hypothesis that the circuitry driving locomotor movements in zebrafish could switch from a pacemaker kernel located rostrally during coiling movements to network-based spinal circuits during swimming. The study provides a rigorous quantitative framework for assessing behaviorally relevant rhythm generation at different developmental regimes of the zebrafish. The study offers an overarching hypothesis, and specific testable predictions that could drive further experimentation and further refinement of the model presented here. The models and conclusions presented here point to important avenues for further investigation, and provide a quantitative framework to address constituent questions in a manner that is directly relatable to electrophysiological recordings and anatomical data. The study would benefit from additional sensitivity analyses, and from the recognition that biological systems manifest degeneracy and significant variability along every scale of analysis.

    1. Reviewer #2 (Public Review):

      Tu et al. submit a manuscript that evaluates the performance of the Abbott ID NOW SARS-CoV-2 test in an ambulatory cohort relative to RT-PCR tests. They enrolled 785 symptomatic patients, 21 tested positive for SARS-CoV-2 by ID NOW and PCR (Hologic) while 2 tested positive only via PCR. They also tested 189 asymptomatic individuals, none of whom tested positive by either ID NOW or PCR. The positive agreement between ID NOW and PCR was 91.3%, and the negative percent agreement was 100%. The authors also provide a review and meta-analysis of ID NOW performance across at least a dozen other named studies which is thorough and interesting. The cohort assessed in this study is small and localized. The data is undermined by sample size, with the most glaring example being the 100% negative percent agreement, which doesn't compare with the known performance of the test in broader populations.

    1. Reviewer #2 (Public Review):

      In this manuscript, Xue et al. assessed many AAV vectors and demonstrated that Thioredoxin-interacting protein (TXNIP) saves RP cones by enhancing their lactate catabolism. The results of this study were based on cone counting, IHC and reporter. While the authors focus on the cellular metabolism in the Txnip-mediated rescue effect, it is unknown whether anti-oxidative stress plays a role as well.

    1. Reviewer #2 (Public Review):

      Previously, Oon and Prehoda showed apically directed movement of aPKC clusters during polarization of the neuroblast prior to asymmetric cell division. They found that these movements required F-actin, but the distribution of F-actin has only been reported for later stages of neuroblast polarization and division. Here, the authors report pulses of cortical F-actin during interphase, followed by an apically directed flow at the onset of mitosis, a strong apical accumulation of F-actin at metaphase and anaphase, followed by fragmentation and basally directed flow of the fragments. aPKC clusters are shown to colocalize with the F-actin networks as they flow apically. The F-actin networks are also shown have partial colocalization with non-muscle myosin II, suggesting a possible mechanism for their movement. Finally, the authors solidify the results of actin inhibitor studies from their 2019 study by showing that reported effects on aPKC localization are preceded by F-actin loss as would be expected but was not previously shown. Overall, the Research Advance extends the past study by more directly showing the involvement of F-actin and myosin in the apical localization mechanism of aPKC, and by describing F-actin and myosin dynamics prior to this transition. The following concerns should be addressed.

      1) The pulsatile nature of broad F-actin networks is evident during interphase, but these pulsations substantially subside upon entry into mitosis, and at this stage an apically directed flow of F-actin is the main behavior evident. This transition from pulses to flow is evident in both the movies and the kymographs of the F-actin probe. However, the authors state that the pulsations continue at the onset of mitosis and as the apical cap of aPKC matures. It is unclear whether the apical flow of aPKC and F-actin is associated with small-scale defined F-actin pulses, or small-scale random fluctuations of F-actin. The F-actin flow alone is an informative finding. The authors should consider revising their descriptions of these data (including in the manuscript title), or provide clearer examples of defined F-actin pulsations during the stage when aPKC polarizes.

      2) I checked the main text, methods, figures and figure legends, but could not find listings of sample sizes. Thus, the reproducibility of the findings has not been reported.

    1. Reviewer #2 (Public Review):

      This work tests the ability of a kinase inhibitor to increase bone mass in a mouse model of osteoporosis. The inhibitor, which targets SIK and other kinases, was shown previously by these investigators to increase trabecular bone mass in young intact mice. Here they show that it increases trabecular, but not cortical, bone in oophorectomized mice and that this is associated with increased bone formation and little or no effect on bone resorption. In contrast, postnatal deletion of SIK2 and SIK3 increased both bone formation and resorption, suggesting that the inhibitor targets other kinases to control resorption. Indeed, the authors confirm that the inhibitor effectively suppressed the activity of CSF1R, a receptor tyrosine kinase essential for osteoclast formation. The authors also provide some evidence of unwanted effects of the inhibitor on glucose homeostasis and kidney function.

      Overall, the studies are performed well with all the necessary controls. The effects of the inhibitor on CSF1R inhibition are convincing and provide a compelling explanation for the net effects of the compound on the skeleton.

      1) The ability of the inhibitor to increase trabecular but not cortical bone mass will likely limit its appeal as an anabolic therapy. Indeed, the authors show that PTH, but not the inhibitor, increases bone strength. However, this limitation is not addressed in the manuscript. In addition, the mechanisms leading to these site-specific effects were not explored.

      2) The mechanisms by which YKL-05-099 increases bone formation remain unclear. The authors point out that their previous studies indicate that the compound stimulates bone formation by suppressing expression of sclerostin. However, YKL-05-099 increased trabecular bone in the femur but not spine of intact mice and did not increase cortical bone in intact or OVX mice. In contrast, neutralization of sclerostin increases trabecular bone at both sites in intact mice as well as increases cortical bone thickness. These differences do not support the idea that YKL-05-099 increases bone formation by suppressing sclerostin.

      3) The authors repeatedly state that the kinase inhibitor uncouples bone formation and bone resorption. However, the authors do not provide any direct evidence that this is the case. Although the term coupling is used to refer to a variety of phenomena in skeletal biology, the most common definition, and the one used in the review cited by the authors, is the recruitment of osteoblasts to sites of previous resorption. The authors certainly provide evidence that the kinase inhibitor independently targets bone formation and bone resorption, but they do not provide evidence that the mechanisms leading to recruitment of osteoblasts to sites of previous resorption has been altered. The resorption that takes place in the inhibitor-treated mice likely still leads to recruitment of osteoblasts to sites of resorption. Thus coupling remains intact.

      4) The results of the current study nicely confirm previous findings by the same authors, demonstrating the reproducibility of the effects of the inhibitor. They also provide a compelling explanation for the net effect of the inhibitor on bone resorption (it stimulates RANKL expression but inhibits CSF1 action). While this latter finding will likely be of interest to those exploring SIK inhibitors for therapeutic uses, overall this study may be of limited appeal to a broader audience.

    1. Reviewer #2 (Public Review):

      The authors analyze diminishing-return (beneficial mutations likely having a small effects for genotypes of high fitness) and increasing-costs epistasis (deleterious mutations likely having large effects for genotypes of high fitness). A framework is proposed where the fitness of genotype after a mutation at a single locus can be estimated from (i) the additive effect at the locus and (ii) a component determined by the fitness of the original genotype at the locus, referred to as "global epistasis". The concept of locus-specific global epistasis is new, even if variants of global epistasis have been discussed in published work. The manuscript shows that the locus specific assumption is empirically justified and it provides applications to a study of yeast.

      Regression effects (diminishing returns and increasing costs epistasis) are quantified under the assumption that epistasis can be considered noise (idiosyncratic epistasis). The result is expressed in terms of Fourier representation for the fitness of a genotype, and the proof depends on a locus-specific analysis of correlations derived from the Fourier representation. In particular, the author clarify under what circumstances one can expect the regression effects. Several conclusions are very precise, and numerical results are provided as a complement to the analytical work.

      The second part of the manuscript concerns historical contingency. Absence of contingency means that the expected fitness effect of new mutation for a genotype is independent of previous substitutions. A condition for minimal contingency in provided, and a new model (The Connected Network model, or CN-model) which satisfies is introduced.

      A somewhat puzzling point is that the authors emphasize that their proposed frame workexplains diminishing-return and increased-costs epistasis. Diminishing return has been described as a "regression to the mean effect" of sorts in Draghi and Plotkin (2013) for the NK model, and it was argued that a similar regression effect applies to a broad category of fitness landscapes in Greene and Crona (2014). Moreover, "increased-costs epistasis" is likely to apply broadly as well with a similar argument also for landscapes that fall outside the category discussed by in the manuscript (an example is in the Recommendation section). On the other hand, a major strength of the manuscript is that it provides a superior quantitative precision, and some quantitative understanding for when one can expect diminishing returns and increased costs epistasis (that should be emphasized more in my view).

      From a conceptual point of view, the locus specific framework, as well as the historical contingency discussion are valuable contributions. The fact that the author could construct a model (the CN model) that satisfy their minimal contingency condition is very interesting as well.

      The weakness of the manuscript is the presentation of the work, especially for a general audience. More context and background, explanations of quantitative results and references would help. There are also a few cases of unclear claims and confusing notation (SSWM seems to be assumed without that being stated, the notation for Fourier coefficients is unclear in some cases) and the text has some other minor issues. Fortunately, a limited effort (in terms of time) would resolve the problem, and also improve the prospects for high impact.

    1. Wang, P., Nair, M. S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong, P. D., Graham, B. S., Mascola, J. R., Chang, J. Y., Yin, M. T., Sobieszczyk, M., Kyratsous, C. A., Shapiro, L., Sheng, Z., Huang, Y., & Ho, D. D. (2021). Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7. Nature, 1–9. https://doi.org/10.1038/s41586-021-03398-2

    1. Reviewer #2 (Public Review):

      This well-conceived and well-presented work has both originality and substance, and contributes important new ideas to the Hh signaling field with wonderful clarity.

    1. WT-PALB2 was associated with robust formation of damage-induced RAD51 foci, whereas the four variants were associated with defective foci formation (Fig. 3d, e).

      AssayResult: 1.5

      AssayResultAssertion: Abnormal

      Approximation: Exact assay result value not reported; value estimated from Figure 3e.

    2. WT-PALB2 was associated with robust formation of damage-induced RAD51 foci, whereas the four variants were associated with defective foci formation (Fig. 3d, e).

      AssayResult: <1

      AssayResultAssertion: Abnormal

      Approximation: Exact assay result value not reported; value estimated from Figure 3e.

    3. WT-PALB2 was associated with robust formation of damage-induced RAD51 foci, whereas the four variants were associated with defective foci formation (Fig. 3d, e).

      AssayResult: 1

      AssayResultAssertion: Abnormal

      Approximation: Exact assay result value not reported; value estimated from Figure 3e.

    4. WT-PALB2 was associated with robust formation of damage-induced RAD51 foci, whereas the four variants were associated with defective foci formation (Fig. 3d, e).

      AssayResult: 3

      AssayResultAssertion: Abnormal

      Approximation: Exact assay result value not reported; value estimated from Figure 3e.

    5. WT-PALB2 was associated with robust formation of damage-induced RAD51 foci, whereas the four variants were associated with defective foci formation (Fig. 3d, e).

      AssayResult: 1

      AssayResultAssertion: Abnormal

      ControlType: Abnormal; empty vector

      Approximation: Exact assay result value not reported; value estimated from Figure 3e.

    6. WT-PALB2 was associated with robust formation of damage-induced RAD51 foci, whereas the four variants were associated with defective foci formation (Fig. 3d, e).

      AssayResult: 27

      AssayResultAssertion: Normal

      StandardDeviation: 14

      ControlType: Normal; wild type PALB2 cDNA

      Approximation: Exact assay result and standard deviation values not reported; values estimated from Figure 3e.

    7. ImmunofluorescenceLive cell imaging and microirradiation studies of HeLa cells transfected with peYFP-C1-PALB2 WT or variant constructs were carried out with a Leica TCS SP5 II confocal microscope. To monitor the recruitment of YFP-PALB2 to laser-induced DNA damage sites, cells were microirradiated in the nucleus for 200 ms using a 405-nm ultraviolet (UV) laser and imaged every 30 seconds for 15 minutes. Fluorescence intensity of YFP-PALB2 at DNA damage sites relative to an unirradiated nuclear area was quantified (Supplemental Materials). Cyclin A–positive HeLa cells treated with siCtrl and siRNA against PALB2 were complemented with wild-type and mutant FLAG-tagged PALB2 expression constructs, exposed to 2 Gy of γ-IR, incubated for 6 hours, and subjected to immunofluorescence for RAD51 foci. HeLa cells were fixed with 4% (w/v) paraformaldehyde for 10 minutes at room temperature, washed with tris-buffered saline (TBS), and fixed again with ice-cold methanol for 5 minutes at −20 °C. Cells were incubated for 1 hour at room temperature with the anti-RAD51 (1:7000, B-bridge International, 70-001) and anticyclin A (1:400, BD Biosciences, 611268), and incubated for 1 hour at room temperature with the Alexa Fluor 568 goat antirabbit (Invitrogen, A-11011) and Alexa Fluor 647 goat antimouse (Invitrogen, A-21235) secondary antibodies. Z-stack images were acquired on a Leica CTR 6000 microscope and the number of RAD51 foci per cyclin A–positive cells expressing the indicated YFP-PALB2 constructs was scored with Volocity software v6.0.1 (Perkin–Elmer Improvision). Results represent the mean (± SD) of three independent trials (n = 50 cells per condition). HEK293T cells transfected with PALB2 expression constructs were also subjected to immunofluorescence for PALB2 using the monoclonal anti-FLAG M2 antibody (Sigma) and the Alexa Fluor 568 goat antimouse (Life Technologies) secondary antibody.

      AssayGeneralClass: BAO:0000450 fluorescence microscopy

      AssayMaterialUsed: CLO:0003684 HeLa cell

      AssayDescription: HeLa cells were treated with PALB2 siRNA and transfected with peYFP-PALB2 expressing PALB2 variants (or empty vector), followed by exposure to 2 Gy of γ-IR. Six hours after irradiation, cells were subjected to immunofluorescence for RAD51 foci (where foci formation serves as marker of normal DNA damage repair function).

      AssayReadOutDescription: The number of RAD51 foci per cyclin A-positive cells expressing the indicated YFP-PALB2 constructs.

      AssayRange: foci/cell

      AssayNormalRange: Not reported

      AssayAbnormalRange: Not reported

      AssayIndeterminateRange: Not reported

      ValidationControlPathogenic: 0

      ValidationControlBenign: 0

      Replication: Three independent experiments with 50 cells per condition

      StatisticalAnalysisDescription: Kruskal–Wallis test with Dunn's multiple comparison post-test

    8. Results for individual PALB2 variants were normalized relative to WT-PALB2 and the p.Tyr551ter (p.Y551X) truncating variant on a 1:5 scale with the fold change in GFP-positive cells for WT set at 5.0 and fold change GFP-positive cells for p.Y551X set at 1.0. The p.L24S (c.71T>C), p.L35P (c.104T>C), p.I944N (c.2831T>A), and p.L1070P (c.3209T>C) variants and all protein-truncating frame-shift and deletion variants tested were deficient in HDR activity, with normalized fold change <2.0 (approximately 40% activity) (Fig. 1a).

      AssayResult: 5.3

      AssayResultAssertion: Normal

      StandardErrorMean: 0.46

    9. A total of 84 PALB2 patient-derived missense variants reported in ClinVar, COSMIC, and the PALB2 LOVD database were selected

      HGVS: NM_024675.3:c.1010T>C p.(Leu337Ser)

    1. Reviewer #2:

      This study reports a new cell line model for Dyskeratosis congenita, generated by introducing a disease-causing mutation, DKC1 A386T, into human iPS-derived type II alveolar epithelial cells (iAT2). The authors found that the mutant cells failed to form organoids after serial passaging and displayed hallmarks of cellular senescence and telomere shortening. Transcriptomics analysis for the mutant cells unveiled defects in Wnt signaling and down-regulation of the downstream shelterin complex components. Finally, treating the mutant cells with a Wnt agonist, a GSK3 inhibitor CHIR99021 can rescue these defects and enhance telomerase activity. Overall, the study is well designed and executed. Data presented are generally clear and convincing. The new model presented here can be of great interests in the field to study the effects of DC disease causing mutants in diverse cell types.

    1. RAD51 foci assayHeLa cells were seeded on glass coverslips in 6-well plates at 225 000 cells per well. Knockdown of PALB2 was performed 18 h later with 50 nM PALB2 siRNA using Lipofectamine RNAiMAX (Invitrogen). After 5 h, cells were subjected to double thymidine block. Briefly, cells were treated with 2 mM thymidine for 18 h and release into fresh media for 9 h. Complementation using 800 ng of the peYFP-C1 empty vector or the indicated siRNA-resistant YFP-PALB2 construct was carried out with Lipofectamine 2000 during that release time. Then, cells were treated with 2 mM thymidine for 17 h and protected from light from this point on. After 2 h of release from the second block, cells were irradiated with 2 Gy and processed for immunofluorescence 4 h post-irradiation. Unless otherwise stated, all immunofluorescence dilutions were prepared in PBS and incubations performed at room temperature with intervening washes in PBS. Cell fixation was carried out by incubation with 4% paraformaldehyde for 10 min followed by 100% ice-cold methanol for 5 min at −20°C. This was succeeded by permeabilization in 0.2% Triton X-100 for 5 min and a quenching step using 0.1% sodium borohydride for 5 min. After blocking for 1 h in a solution containing 10% goat serum and 1% BSA, cells were incubated for 1 h with primary antibodies anti-RAD51 (1 :7000, B-bridge International, #70–001) and anti-cyclin A (1:400, BD Biosciences, #611268) diluted in 1% BSA. Secondary antibodies Alexa Fluor 568 goat anti-rabbit (Invitrogen, #A-11011) and Alexa Fluor 647 goat anti-mouse (Invitrogen, #A-21235) were diluted 1:1000 in 1% BSA and applied for 1 h. Nuclei were stained for 10 min with 1 μg/ml 4,6-diamidino-2-phenylindole (DAPI) prior to mounting onto slides with 90% glycerol containing 1 mg/ml paraphenylenediamine anti-fade reagent. Z-stack images were acquired on a Leica CTR 6000 microscope using a 63× oil immersion objective, then deconvolved and analyzed for RAD51 foci formation with Volocity software v6.0.1 (Perkin-Elmer Improvision). The number of RAD51 foci per cyclin A-positive cells expressing the indicated YFP-PALB2 constructs was scored using automatic spot counting by Volocity software and validated manually. Data from three independent trials (total n = 225 cells per condition) were analyzed for outliers using the ROUT method (Q = 1.0%) in GraphPad Prism v6.0 and the remaining were reported in a scatter dot plot. Intensity values, also provided by Volocity, of 500 RAD51 foci from a representative trial were normalized to the WT mean and reported in a scatter dot plot. Horizontal lines on the plots designate the mean values.

      AssayGeneralClass: BAO:0000450 fluorescence microscopy

      AssayMaterialUsed: CLO:0003684 HeLa cell

      AssayDescription: HeLa cells were treated with PALB2 siRNA and synchronized to G1/S phase by double thymidine block. Cells were then transfected with peYFP-PALB2 expressing PALB2 variants (or empty vector) and irradiated with 2 Gy. Four hours after irradiation, cells were subjected to immunofluorescence for RAD51 foci (where foci formation serves as marker of normal DNA damage repair function).

      AssayReadOutDescription: The number of RAD51 foci per cyclin A-positive cells expressing the indicated YFP-PALB2 constructs was scored and presented as percentage change relative to the wild type mean RAD51 foci number per cell.

      AssayRange: %

      AssayNormalRange: Not reported

      AssayAbnormalRange: Not reported

      AssayIndeterminateRange: Not reported

      ValidationControlPathogenic: 1

      ValidationControlBenign: 3

      Replication: Three independent experiments, each with 225 cells per condition

      StatisticalAnalysisDescription: Kruskal–Wallis test with Dunn's multiple comparison post-test

    2. SUPPLEMENTARY DATA

      AssayResult: 38

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

      Approximation: Exact assay result value not reported; value estimated from Figure 6C.

    3. SUPPLEMENTARY DATA

      AssayResult: -96

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

      ControlType: Abnormal; empty vector

    4. SUPPLEMENTARY DATA

      AssayResult: 0

      AssayResultAssertion: Normal

      ControlType: Normal; wild type PALB2 cDNA

    5. SUPPLEMENTARY DATA

      AssayResult: -34

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

    6. SUPPLEMENTARY DATA

      AssayResult: -11

      AssayResultAssertion: Indeterminate

      PValue: Not reported

    7. SUPPLEMENTARY DATA

      AssayResult: -4

      AssayResultAssertion: Indeterminate

      PValue: Not reported

    8. SUPPLEMENTARY DATA

      AssayResult: -14

      AssayResultAssertion: Indeterminate

      PValue: Not reported

    9. SUPPLEMENTARY DATA

      AssayResult: -56

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

    10. SUPPLEMENTARY DATA

      AssayResult: -6

      AssayResultAssertion: Normal

      PValue: Not reported

    11. SUPPLEMENTARY DATA

      AssayResult: -25

      AssayResultAssertion: Abnormal

      PValue: < 0.01

    12. SUPPLEMENTARY DATA

      AssayResult: -31

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

    13. SUPPLEMENTARY DATA

      AssayResult: -16

      AssayResultAssertion: Normal

      PValue: Not reported

    14. SUPPLEMENTARY DATA

      AssayResult: -10

      AssayResultAssertion: Normal

      PValue: Not reported

    15. SUPPLEMENTARY DATA

      AssayResult: -21

      AssayResultAssertion: Indeterminate

      PValue: < 0.01

    16. SUPPLEMENTARY DATA

      AssayResult: -20

      AssayResultAssertion: Indeterminate

      PValue: < 0.05

    17. SUPPLEMENTARY DATA

      AssayResult: 8

      AssayResultAssertion: Indeterminate

      PValue: Not reported

    18. SUPPLEMENTARY DATA

      AssayResult: -29

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

    19. SUPPLEMENTARY DATA

      AssayResult: -98

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

    20. SUPPLEMENTARY DATA

      AssayResult: -36

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

    21. SUPPLEMENTARY DATA

      AssayResult: 3

      AssayResultAssertion: Indeterminate

      PValue: Not reported

    22. SUPPLEMENTARY DATA

      AssayResult: -32

      AssayResultAssertion: Abnormal

      PValue: < 0.0001

    23. SUPPLEMENTARY DATA

      AssayResult: 85.76

      AssayResultAssertion: Indeterminate

      PValue: 0.0445

      Comment: Exact values reported in Table S3.

    24. To this end, 44 missense variants found in breast cancer patients were identified in the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar) and/or selected by literature curation based on their frequency of description or amino acid substitution position in the protein (Supplemental Table S1).

      HGVS: NM_024675.3:c.110G>A p.(Arg37His)

    1. Reviewer #2 (Public Review):

      In the manuscript Li and colleagues explored the mechanisms that potentially regulated the transcoelomic metastasis of ovarian cancer. By using the in vivo genome-wide CRISPR/Cas9 screen in human SK-OV-3 cell line after transplanted in NOD-SCID mice, the authors identified that IL-20Ra was a potential protective factor preventing the transcoelomic metastasis of ovarian cancer. SK-OV-3 cells with higher expression of IL-20R have lower metastatic potential in vivo. On the contrary, a mouse cell line ID8 with lower IL20Ra expression metastasized aggressively, which could be reversed by over expressing IL-20Ra in the cells. In human, the metastasized ovarian cancers had lower expression of IL-20Ra than the primary tumors. Mechanistically, the authors hypothesized that IL-20 and IL-24 produced by peritoneum mesothelial could act on tumor cells through the IL-20Ra/IL-20Rb receptor to promote the production of IL-18. IL-18 could drive the macrophages into M1 like phenotypes, which in turn controlled the transcoelomic metastasis of the cancer. The in vivo phenotypes in this study were consistent with these hypotheses. The role of IL-20Ra in this setting is potentially interesting and novel.

    1. sensitivity to PARPi treatment using a cellular proliferation assay

      AssayGeneralClass: BAO:0002805 cell proliferation assay

      AssayMaterialUsed: CLO:0037317 mouse embryonic stem cell line

      AssayDescription: Stable expression of wild type and variant PALB2 cDNA constructs in Trp53 and Palb2-null mouse cell line containing DR-GFP reporter; exposure to PARP inhibitor Olaparib for 48 h inhibits end-joining mediated by PARP and sensitizes cells to DNA damage; cell survival is measured by FACS 24 h after Olaparib washout

      AssayReadOutDescription: Relative resistance to PARPi represented as cell survival relative to wild type, which was set to 100%

      AssayRange: %

      AssayNormalRange: PARPi resistance levels comparable to that of cells expressing wild type PALB2; no numeric threshold given

      AssayAbnormalRange: PARPi resistance levels ≤30% of wild type

      AssayIndeterminateRange: Not reported

      ValidationControlPathogenic: 12

      ValidationControlBenign: 9

      Replication: 2 independent experiments

      StatisticalAnalysisDescription: Not reported

    2. Source Data

      AssayResult: 26.03

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 11.42

      Comment: Exact values reported in “Source Data” file.

    3. Source Data

      AssayResult: 24.27

      AssayResultAssertion: Abnormal

      ReplicateCount: Not reported

      StandardErrorMean: Not reported

      Comment: Exact values reported in “Supplementary Data 1” file; result for this variant not reported in “Source Data” file.

    4. Source Data

      AssayResult: 96.22

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 16.7

      Comment: Exact values reported in “Source Data” file. Discrepancy in “Supplementary Data 1” file: nucleotide reported as c.3191A>G.

    5. Source Data

      AssayResult: 15.23

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 6.42

      Comment: Exact values reported in “Source Data” file. Discrepancy in “Source Data” file: protein reported as Q899X.

    6. Source Data

      AssayResult: 52.23

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 6.33

      Comment: Exact values reported in “Source Data” file. Discrepancy in “Source Data” file: protein reported as I1037R.

    7. Source Data

      AssayResult: 74.36

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 1.89

      Comment: Exact values reported in “Source Data” file.

    8. Source Data

      AssayResult: 87.27

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 1.3

      Comment: Exact values reported in “Source Data” file.

    9. Source Data

      AssayResult: 17.29

      AssayResultAssertion: Abnormal

      ReplicateCount: 3

      StandardErrorMean: 6.81

      ControlType: Abnormal; empty vector (set 5)

      Comment: Exact values reported in “Source Data” file.

    10. Source Data

      AssayResult: 7.86

      AssayResultAssertion: Abnormal

      ReplicateCount: 3

      StandardErrorMean: 2.39

      ControlType: Abnormal; empty vector (set 4)

      Comment: Exact values reported in “Source Data” file.

    11. Source Data

      AssayResult: 34.03

      AssayResultAssertion: Abnormal

      ReplicateCount: 3

      StandardErrorMean: 10.86

      ControlType: Abnormal; empty vector (set 3)

      Comment: Exact values reported in “Source Data” file.

    12. Source Data

      AssayResult: 12.78

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 3.65

      ControlType: Abnormal; empty vector (set 2)

      Comment: Exact values reported in “Source Data” file.

    13. Source Data

      AssayResult: 10.93

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 0.78

      ControlType: Abnormal; empty vector (set 1)

      Comment: Exact values reported in “Source Data” file.

    14. Source Data

      AssayResult: 100

      AssayResultAssertion: Normal

      ReplicateCount: 38

      StandardErrorMean: 0

      ControlType: Normal; wild type

      Comment: Exact values reported in “Source Data” file.

    15. Source Data

      AssayResult: 102.22

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 8.29

      Comment: Exact values reported in “Source Data” file.

    16. Source Data

      AssayResult: 21.7

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 1.42

      Comment: Exact values reported in “Source Data” file.

    17. Source Data

      AssayResult: 55.4

      AssayResultAssertion: Not reported

      ReplicateCount: 4

      StandardErrorMean: 13.29

      Comment: Exact values reported in “Source Data” file.

    18. Source Data

      AssayResult: 17.5

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 7.75

      Comment: Exact values reported in “Source Data” file.

    19. Source Data

      AssayResult: 102.7

      AssayResultAssertion: Not reported

      ReplicateCount: 3

      StandardErrorMean: 12.82

      Comment: Exact values reported in “Source Data” file.

    20. Source Data

      AssayResult: 94.47

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 0.99

      Comment: Exact values reported in “Source Data” file.

    21. Source Data

      AssayResult: 13.87

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 1.32

      Comment: Exact values reported in “Source Data” file.

    22. Source Data

      AssayResult: 93.44

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 2.24

      Comment: Exact values reported in “Source Data” file.

    23. Source Data

      AssayResult: 9.67

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 1.31

      Comment: Exact values reported in “Source Data” file.

    24. Source Data

      AssayResult: 109.07

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 9.27

      Comment: Exact values reported in “Source Data” file.

    25. Source Data

      AssayResult: 98.64

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 5.5

      Comment: Exact values reported in “Source Data” file.

    26. Source Data

      AssayResult: 102.88

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 20.71

      Comment: Exact values reported in “Source Data” file.

    27. Source Data

      AssayResult: 16.6

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 4.35

      Comment: Exact values reported in “Source Data” file.

    28. Source Data

      AssayResult: 103.21

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 8.98

      Comment: Exact values reported in “Source Data” file.

    29. Source Data

      AssayResult: 108.27

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 16.12

      Comment: Exact values reported in “Source Data” file.

    30. Source Data

      AssayResult: 98.43

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 14.96

      Comment: Exact values reported in “Source Data” file.

    31. Source Data

      AssayResult: 102.57

      AssayResultAssertion: Not reported

      ReplicateCount: 3

      StandardErrorMean: 11.51

      Comment: Exact values reported in “Source Data” file.

    32. Source Data

      AssayResult: 103.83

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 3.67

      Comment: Exact values reported in “Source Data” file.

    33. Source Data

      AssayResult: 87.51

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 4.4

      Comment: Exact values reported in “Source Data” file.

    34. Source Data

      AssayResult: 56.67

      AssayResultAssertion: Not reported

      ReplicateCount: 4

      StandardErrorMean: 12.4

      Comment: Exact values reported in “Source Data” file.

    35. Source Data

      AssayResult: 85.13

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 15.04

      Comment: Exact values reported in “Source Data” file.

    36. Source Data

      AssayResult: 108.56

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 19.59

      Comment: Exact values reported in “Source Data” file.

    37. Source Data

      AssayResult: 10.42

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 0.01

      Comment: Exact values reported in “Source Data” file.

    38. Source Data

      AssayResult: 99.69

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 3.09

      Comment: Exact values reported in “Source Data” file.

    39. Source Data

      AssayResult: 12.35

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 1.48

      Comment: Exact values reported in “Source Data” file.

    40. Source Data

      AssayResult: 14.79

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 7.81

      Comment: Exact values reported in “Source Data” file.

    41. Source Data

      AssayResult: 84.41

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 1.42

      Comment: Exact values reported in “Source Data” file.

    42. Source Data

      AssayResult: 25.09

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 3.48

      Comment: Exact values reported in “Source Data” file.

    43. Source Data

      AssayResult: 97.37

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 5.14

      Comment: Exact values reported in “Source Data” file.

    44. Source Data

      AssayResult: 12.77

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 5.34

      Comment: Exact values reported in “Source Data” file.

    45. Source Data

      AssayResult: 78.91

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 6.86

      Comment: Exact values reported in “Source Data” file.

    46. Source Data

      AssayResult: 8.41

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 1.95

      Comment: Exact values reported in “Source Data” file.

    47. Source Data

      AssayResult: 24.31

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 5.23

      Comment: Exact values reported in “Source Data” file.

    48. Source Data

      AssayResult: 14.78

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 9.34

      Comment: Exact values reported in “Source Data” file.

    49. Source Data

      AssayResult: 81.17

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 9.32

      Comment: Exact values reported in “Source Data” file.

    50. Source Data

      AssayResult: 91.11

      AssayResultAssertion: Not reported

      ReplicateCount: 3

      StandardErrorMean: 17.74

      Comment: Exact values reported in “Source Data” file.

    51. Source Data

      AssayResult: 26.39

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 1.11

      Comment: Exact values reported in “Source Data” file.

    52. Source Data

      AssayResult: 94.54

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 19.94

      Comment: Exact values reported in “Source Data” file.

    53. Source Data

      AssayResult: 86.26

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 4.22

      Comment: Exact values reported in “Source Data” file.

    54. Source Data

      AssayResult: 7.73

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 2.25

      Comment: Exact values reported in “Source Data” file.

    55. Source Data

      AssayResult: 29.04

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 7.24

      Comment: Exact values reported in “Source Data” file.

    56. Source Data

      AssayResult: 115.45

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 11.81

      Comment: Exact values reported in “Source Data” file.

    57. Source Data

      AssayResult: 78.3

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 11.75

      Comment: Exact values reported in “Source Data” file.

    58. Source Data

      AssayResult: 86.54

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 11.96

      Comment: Exact values reported in “Source Data” file.

    59. Source Data

      AssayResult: 87.96

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 10.31

      Comment: Exact values reported in “Source Data” file.

    60. Source Data

      AssayResult: 78.2

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 7.31

      Comment: Exact values reported in “Source Data” file.

    61. Source Data

      AssayResult: 103.53

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 7.06

      Comment: Exact values reported in “Source Data” file.

    62. Source Data

      AssayResult: 19.46

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 1.75

      Comment: Exact values reported in “Source Data” file.

    63. Source Data

      AssayResult: 64.92

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 8.7

      Comment: Exact values reported in “Source Data” file.

    64. Source Data

      AssayResult: 11.06

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 2.4

      Comment: Exact values reported in “Source Data” file.

    65. Source Data

      AssayResult: 117.58

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 0.81

      Comment: Exact values reported in “Source Data” file.

    66. Source Data

      AssayResult: 10.68

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 0.32

      Comment: Exact values reported in “Source Data” file.

    67. Source Data

      AssayResult: 23.96

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 7.6

      Comment: Exact values reported in “Source Data” file.

    68. Source Data

      AssayResult: 120.54

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 11.09

      Comment: Exact values reported in “Source Data” file.

    69. Source Data

      AssayResult: 74.18

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 6.49

      Comment: Exact values reported in “Source Data” file.

    70. Source Data

      AssayResult: 95.74

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 14.87

      Comment: Exact values reported in “Source Data” file.

    71. Source Data

      AssayResult: 83.96

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 9.89

      Comment: Exact values reported in “Source Data” file.

    72. Source Data

      AssayResult: 94.84

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 20.56

      Comment: Exact values reported in “Source Data” file.

    73. Source Data

      AssayResult: 17.43

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 5.19

      Comment: Exact values reported in “Source Data” file.

    74. Source Data

      AssayResult: 108.51

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 17.71

      Comment: Exact values reported in “Source Data” file.

    75. Source Data

      AssayResult: 67.82

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 10.97

      Comment: Exact values reported in “Source Data” file.

    76. Source Data

      AssayResult: 72.7

      AssayResultAssertion: Not reported

      ReplicateCount: 3

      StandardErrorMean: 9.73

      Comment: Exact values reported in “Source Data” file.

    77. Source Data

      AssayResult: 9.68

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 3.44

      Comment: Exact values reported in “Source Data” file.

    78. Source Data

      AssayResult: 115.71

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 3.09

      Comment: Exact values reported in “Source Data” file.

    79. Source Data

      AssayResult: 11.28

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 1.24

      StandardErrorMean: 0.87

      Comment: Exact values reported in “Source Data” file.

    80. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.104T>C p.(L35P)

    Tags

    Annotators

    URL

    1. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 113.2

      AssayResultAssertion: Normal

      ReplicateCount: 30

      StandardErrorMean: 13.9

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    2. we selected 73 previously unstudied variants: 63 suspected Brugada syndrome variants and 10 suspected benign variants

      HGVS: NM_198056.2:c.1038G>T p.(Glu346Asp)

    1. This new quantitative assay, based on both RT-QMPSF and RT-MLPA, was first validated on 31 lymphoblastoid cell lines derived from patients with LFS harbouring different germline heterozygous TP53 variants

      AssayGeneralClass: BAO:0010044 targeted transcriptional assay

      AssayMaterialUsed: BTO:0000773 lymphoblastoid cell line derived from control individuals or individuals with germline TP53 variants

      AssayDescription: Comparative transcriptomic analysis using RNA-Seq to compare EBV cell lines of wild type and pathogenic TP53 in the context of genotoxic stress induced by doxorubicin treatment. p53 RNA levels were evaluated and expressed as a percentage of the mean levels obtained for the three wild-type TP53 individuals.

      AdditionalDocument: PMID: 23172776

      AssayReadOutDescription: The p53 mRNA levels were expressed as a ratio of the normal values obtained for 3 TP53 wild-type control individuals.

      AssayRange: UO:0000187 the p53 RNA levels were evaluated and expressed as a percentage of the mean levels obtained for three wild-type TP53 individuals.

      AssayNormalRange: N/A

      AssayAbnormalRange: N/A

      AssayIndeterminateRange: N/A

      AssayNormalControl: wild type TP53

      AssayAbnormalControl: LFS patient cells

      ValidationControlPathogenic: 8 Individuals with dominant-negative TP53 missense variants, 10 Individuals with null TP53 variants, and 13 Individuals with other TP53 missense variants

      ValidationControlBenign: 3 patients with wild type TP53

      Replication: experiments were performed in triplicates.

      StatisticalAnalysisDescription: Differentially expressed genes between doxorubicin-treated and untreated cells were arbitrarily defined using, as filters, a P<0.01 and fold-change cutoffs >2 or <2, for up and down regulation, respectively. The resultant signal information was analyzed using one-way analysis of variance (ANOVA, P= 0.001), assuming normality but not equal variances with a Benjamani–Hochberg correction for multiple comparisons using three groups: controls, null, and missense mutations.

      SignificanceThreshold: P=0.001

      Comment: statistical analysis and P value from previous publication.

    1. Reviewer #2 (Public Review):

      Panigrahi and co-authors introduce a program that can segment a variety of images of rod-shaped bacteria (with somewhat different sizes and imaging modalities) without fine-tuning. Such a program will have a large impact on any project requiring segmentation of a large number of rod-shaped cells, including the large images demonstrated in this manuscript. To my knowledge, training a U-Net to classify an image from the image's shape index maps (SIM) is a new scheme, and the authors show that it performs fairly well despite a small training set including synthetic data that, based on Figure 1, does not closely resemble experimental data other than in shape. The authors discuss extending the method to objects with other shapes and provide an example of labelling two different species - these extensions are particularly promising.

      The authors show that their network can reproduce results of manual segmentation with bright field, phase and fluorescence input. Performance on fluorescence data in Fig. 1 where intensities vary so much is particularly good and shows benefits of the SIM transformation. Automated mapping of FtsZ show that this method can be immediately useful, though the authors note this required post-processing to remove objects with abnormal shapes. The application in mixed samples in Fig. 4 shows good performance. However, no Python workflow or application is provided to reproduce it or train a network to classify mixtures in different experiments.

      Performance was compared between SuperSegger with default parameters and MiSiC with tuned parameters for a single data set. Perhaps other SuperSegger parameters would perform better with the addition of noise, and it's unclear that adding Gaussian noise to a phase contrast image is the best way to benchmark performance. An interesting comparison would be between MiSiC and other methods applying neural networks to unprocessed data such as DeepCell and DeLTA, with identical training/test sets and an attempt to optimize free parameters.

      INSTALLATION: I installed both the command line and GUI versions of MiSiC on a Windows PC in a conda environment following provided instructions. Installation was straightforward for both. MiSiCgui gave one error and required reinstallation of NumPy as described on GitHub. Both give an error regarding AVX2 instructions. MiSiCgui gives a runtime error and does not close properly. These are all fairly small issues. Performance on a stack of images was sufficiently fast for many applications and could be sped up with a GPU implementation.

      TESTING: I tested the programs using brightfield data focused at a different plane than data presumably used to train the MiSiC network, so cells are dark on a light background and I used the phase option which inverts the image. With default settings and a reasonable cell width parameter (10 pixels for E. coli cells with 100-nm pixel width; no added noise since this image requires no rescaling) MiSiCgui returned an 8-bit mask that can be thresholded to give segmentation acceptable for some applications. There are some straight-line artifacts that presumably arise from image tiling, and the quality of segmentation is lower than I can achieve with methods tuned to or trained on my data. Tweaking magnification and added noise settings improved the results slightly. The MiSiC command line program output an unusable image with many small, non-cell objects. Looking briefly at the code, it appears that preprocessing differs and it uses a fixed threshold.

    1. Reviewer #2 (Public Review):

      The influenza A genome is made up of eight viral RNAs. Despite being segmented, many of these RNAs are known to evolve in parallel, presumably due to similar selection pressures, and influence each other's evolution. The viral protein-protein interactions have been found to be the mechanism driving the genomic evolution. Employing a range of phylogenetic and molecular methods, Jones et al. investigated the evolution of the seasonal Influenza A virus genomic segments. They found the evolutionary relationships between different RNAs varied between two subtypes, namely H1N1 and H3N2. The evolutionary relationships in case of H1N1 were also temporally more diverse than H3N2. They also reported molecular evidence that indicated the presence of RNA-RNA interaction driving the genomic coevolution, in addition to the protein interactions. These results do not only provide additional support for presence of parallel evolution and genetic interactions in Influenza A genome and but also advances the current knowledge of the field by providing novel evidence in support of RNA-RNA interactions as a driver of the genomic evolution. This work is an excellent example of hypothesis-driven scientific investigation.

      The communication of the science could be improved, particularly for viral evolutionary biologists who study emergent evolutionary patterns but do not specialise in the underlying molecular mechanisms. The improvement can be easily achieved by explaining jargon (e.g., deconvolution) and methodological logics that are not immediately clear to a non-specialist.

      The introduction section could be better structured. The crux of this study is the parallel molecular evolution in influenza genome segments and interactions (epistasis). The authors spent the majority of the introduction section leading to those two topics and then treated them summarily. This structure, in my opinion, is diluting the story. Instead, introducing the two topics in detail at the beginning (right after introducing the system) then discussing their links to reassortments, viral emergence etc. could be a more informative, easily understandable and focused structure. The authors also failed to clearly state all the hypotheses and predictions (e.g., regarding intracellular colocalisation) near the end of the introduction.

      The authors used Robinson-Foulds (RF) metric to quantify topological distance between phylogenetic trees-a key variable of the study. But they did not justify using the metric despite its well-known drawbacks including lack of biological rational and lack of robustness, and particularly when more robust measures, such as generalised RF, are available.

      Figure 1 of the paper is extremely helpful to understand the large number of methods and links between them. But it could be more useful if the authors could clearly state the goal of each step and also included the molecular methods in it. That would have connected all the hypotheses in the introduction to all the results neatly. I found a good example of such a schematic in a paper that the authors have cited (Fig. 1 of Escalera-Zamudio et al. 2020, Nature communications). Also this methodological scheme needs to be cited in the methods section.

      Finally, I found the methods section to be difficult to navigate, not because it lacked any detail. The authors have been excellent in providing a considerable amount of methodological details. The difficulty arose due to the lack of a chronological structure. Ideally, the methods should be grouped under research aims (for example, Data mining and subsampling, analysis of phylogenetic concordance between genomic segments, identifying RNA-RNA interactions etc.), which will clearly link methods to specific results in one hand and the hypotheses, in the other. This structure would make the article more accessible, for a general audience in particular. The results section appeared to achieve this goal and thus often repeat or explain methodological detail, which ideally should have been restricted to the methods section.

    1. Reviewer #2 (Public Review):

      In this study, Fraccarollo and colleagues describe the existence and higher prevalence of subpopulations of immature monocytes and neutrophils with pro-inflammatory responses in patients with acute myocardial infarction. CD14+HLA-DRneg/low monocytes and CD16+CD66b+CD10neg neutrophils correlate with markers of systemic inflammation and parameters of cardiac damage. In particular in patients positive for cytomegalovirus and elevated levels of CD4+CD28null T cells, the expansion of immature neutrophils associates with increased levels of circulating IFNg. Mechanistically, immature neutrophils regulate T-cell responses by inducing IFN release through IL-12 production in a contact-independent manner. Besides, CD14+HLA-DRneg/low monocytes differentiate into macrophages with a potent pro-inflammatory phenotype characterized by the release of pro-inflammatory cytokines upon IFNg stimulation.

      This very interesting study provides new insights into the diversity and complexity of myeloid populations and responses in the context of cardiac ischemia. It is technically well performed and the results sufficiently support the conclusions of the study.

      Strengths

      The authors provide a detailed analysis of the phenotype and function of two subpopulations of CD14+HLA-DRneg/low monocytes and CD16+CD66b+CD10neg neutrophils in the context of acute myocardial infarction (AMI). Extensive phenotyping of these immune populations at different time-points after the onset of the disease provides strong correlations with multiple parameters of inflammation and severity of the disease. Hence, these subpopulations emerge as biomarkers of heart ischemic diseases with predictive potential. Using in vitro approaches, the authors support these correlations with mechanistic analyses of the inflammatory and immunomodulatory function of these populations. Finally, the authors use mouse models of ischemia-reperfusion injury to mimic the conditions observed in the AMI patients and supporting the pro-inflammatory role of immature neutrophils in this disease.

      Weaknesses

      The associations between immature neutrophils, IFNg, and CD4+CD28null T cells found in AMI patients positive for cytomegalovirus are not well supported by the mechanistic findings observed in vitro. Here, the induction of IFNg production by immature neutrophils is restricted to CD4+CD28+ T cells but not CD4+CD28null T cells.

      The experimental data obtained from mouse models of AMI to support their findings in humans would require a more extensive study. Causality between the expansion of these immature populations and the course of the disease is missing. Also, although expected, substantial differences are found between equivalent subpopulations in mice and humans thus limiting the relevance of the mouse data.

    1. Reviewer #2 (Public Review):

      PKC-theta is a critical signaling molecule downstream of T cell receptor (TCR), and required for T cell activation via regulating the activation of transcription factors including AP-1, NF-kB and NFAT. This manuscript revealed a novel function of PKC-theta in the regulation of the nuclear translocation of these transcription factors via nuclear pore complexes. This novel perspective for PKC-theta function advances our understanding T cell activation. The manuscript provided solid cellular and biochemical evidence to support the conclusions. However, nuclear pore complexes regulate the export and import essential components of cells, it is not clear whether PKC-theta selectively regulates the translocation of above transcription factors, or also other components, and whether regulates both import and export. It is essential to provide more substantial evidence to support the conclusion.

    1. Reviewer #2 (Public Review):

      This paper addresses a fundamental question regarding the evolution of the stress response, specifically that the action of natural selection on the stress response should promote the functional integration of its behavioral and physiological components. Therefore, the authors predict that genetic variation in the stress response should include covariation between its component behavioral and physiological traits. The results are intrinsically interesting and seem to provide a critical proof of principle that, if confirmed, will prompt future follow up research. However, there are some fundamental conceptual and experimental design issues that need to be addressed, in order to assess the conclusions that can be drawn from the results presented here.

      Conceptual issues:

      1) The authors selected multiple behavioral measures of the stress response but only considered the glucocorticoid response as a physiological trait. In my view this has several problems:

      A) Although, for historical reasons and because they are easier to measure, glucocorticoids have been perceived as a stress hormone, the fact is that they respond not only to threats to the organism (i.e. stressors) but also to opportunities (e.g. mating). In other words, glucocorticoids are produced and released whenever there is the need to metabolically prepare the organism for action. Therefore, glucocorticoids are probably not the best physiological candidate to look for phenotypic integration with stress behaviors, since they must have also been selected to be produced and released in other ecological contexts. In this regard it would have been interesting to measure the phenotypic integration of cortisol also with behaviors used in non-threatning but metabolically challenging ecological opportunities (e.g. mating), and to investigate the occurrence of an eventual trade-off (or of a "phenotypic linkage") between these two sets of traits (stress traits vs. mating traits).

      B) Sympathetic activation is a key component of the physiological stress response in vertebrates. It is thus odd not to consider the sympathetic response in a study that has the main aim of studying the evolution of a phenotypically integrated stress response. I understand that the sympathetic response in guppies is more difficult to study than measuring cortisol, but this technical challenge can certainly be overcome (e.g. techniques for measuring cardiac response to threat stimuli have been recently developed for other challenging model organisms, such as fruit flies; e.g. https://www.biorxiv.org/content/10.1101/2020.12.02.408161v1); or if not, then an alternative model organism should have been used to address this question.

      2) Typically, in vertebrates the behavioral response to a stressor has a passive (e.g. freezing) and an active (i.e. fight-flight) component. It would be very interesting to assess if these two components are phenotypically integrated with each other and each of them with the physiological response. Unfortunately, the authors did not use behavioral measures of each of these two components. Instead they have extracted 3 spatial behaviors from an open field test (time in the central part of the tank in an open field test (OFT); relative area covered; track length) and emergence latency in an emergence from a shelter test. It is not clear how each of the measured behaviors captures these two key components of the behavioral stress response. For example, a fish that freezes in the central part of the tank when it is introduced in the OFT will have a high time in the middle score and eventually a high relative area covered, but relatively low track length. However, if it darts towards the tank wall and freezes there, the result would probably be low time in the middle and low relative area covered. Thus, a fish that has spent approximately the same time in freezing may show very different behavioral profiles according to the variables used here. This could be avoided if explicit measures of fleeing and freezing behavior have been used. Given that the authors have video-tracked the fish, I suggest they can still extract such measures (e.g. angular speed is usually a good indicator of escape/fleeing behavior; and a swimming speed threshold can be validated and subsequently used to detect freezing behavior from tracking data) from the videos. The fact that variables of these two types of behavioral responses to stress have not been used in this study may explain to a large extent why the authors came to the conclusion that, "the structure of G is more consistent with a continuous axis of variation in acute stress responsiveness than with the widely invoked 'reactive - proactive' model of variation in stress coping style".

      3) The authors used a half-sib breeding design, which is the golden standard in evolutionary quantitative genetics. However, and this is not a specific critique of the present study but a general problem of this field, the extent to which estimates of G obtained with breeding designs reflect the G that would be obtained by actually sampling a natural population is questionable, because these designs create artificially structured populations with higher levels of outbreeding and concomitantly also with higher genetic variation than what is usually found in nature. This problem can be illustrated by analogy using the example of heritability estimates, which are typically lower when obtained from selection studies by comparing the generation after selection to the one before selection (aka realized heritability), than when computed from artificial breeding designs.

      Methodological issues:

      4) The authors considered the OFT, ET and ST testing paradigms to be behavioral assays that allow the characterization of the behavioral components of the stress response in guppies, because all these paradigms involve capturing and transferring the focal fish to a novel environment (tank) and in social isolation. Undoubtedly these procedures must have induced stress, however the stressor was not standardized because it consisted in the capture and transfer, and these may have varied from fish to fish (btw are there measures of handling time for each fish? And how to measure "handling intensity"?). In my view a standardized stressor, such as a looming stimulus (e.g. Temizer et al. 2015 Current Biology 25: 1823-34; Bhattacharyya et al. 2017 Current Biology 27, 2751-2762; Hein et al. 2018 PNAS 115: 12224-8), should have been used such that the behavioral measures could have been linked to the stressor in a more controlled way.

      5) Moreover, the authors have measured the "stress behaviors" and cortisol in response to two different stressors: the handling described above and the confinement and social isolation for the GC response. This is not the best experimental design, because the behavioral and physiological expression is expected to be linked and to be flexible, as shown by the data on cortisol habituation to repeated stressor exposure. Thus, when the goal of the study is to characterize the co-variation between traits it is critical to standardize the stimulus that triggers their expression in the two domains (behavioral and physiological) and behavior and physiological measures should have been obtained in response to the same stressor stimulus for each individual. In principle, the failure to do so will artificially decrease the observed co-variation between traits, due to environmental differences (i.e. test contexts and their specific stressors).

    1. Reviewer #2 (Public Review):

      This study compares the pharmacology of intracellular polyamine blockers for Ca-permeable (CP-AMPAR) and Ca-impermeable (CI-AMPAR) AMPA receptors in the absence/presence of auxiliary subunits. Spermine is a widely used polyamine blocker to identify CP-AMPARs in native tissue, but the blocking action of spermine varies depending on which auxiliary subunits are associated with the CP-AMPARs. Hence, spermine has limitations. The goal of the present work was to identify if other polyamine blockers would be more efficient than spermine in identifying CP-AMPARs.

      The authors studied CP- and CI-AMPARs in heterologous cells (HEK293T) and in primary cerebellar stellate interneurons from mice lacking the GluA2 subunit. They primarily used electrophysiology to assay channel block by various polyamines. While the technology is standard, the experiments are carried out in a rigorous manner and encompass numerous controls and variations on appropriate constructs (GluA2-containing and GluA2-lacking AMPARs and various prominent auxiliary subunits - TARPs, cornichons, and GSG1L).

      The main conclusion of the work is that 100 uM NASPM fully blocks CP-AMPAR regardless of the associated auxiliary subunit. This conclusion is strongly supported by experiments including testing various auxiliary subunits in the defined conditions of HEK293T cells as well as recording and demonstrating that NASPM fully blocks AMPAR-mediated currents in stellate cells lacking GluA2 subunits.

      I have no major criticisms of the work.

    1. Reviewer #2 (Public Review):

      In the current study Gill et al present a retrospective analysis of NP swabs of mother infant pairs taken longitudinally in Zambia. They use qPCR CT values to quantify the amount of IS431 in each sample to detect pertussis infection. They find strong evidence for asymptomatic pertussis infection in both mothers and infants, validating previous work identifying the role of asymptomatic transmitters in populations. This is a tremendously important study and is conducted and analyzed very well. The manuscript is well written, and I heartily recommend publication. Excellent work, well done.

      Comments:

      This study was done in a population with wP vaccine, I wonder if that's part of the reason many of the CT values are high. Can the authors speculate what this study would look like in a population having received aP for a long period? I'd appreciate more discussion around vaccination in general.

    1. Reviewer #2 (Public Review):

      This manuscript by Galdadas et. al. used a combination of equilibrium and non-equilibrium simulations to investigate the allosteric signaling propagation pathway in two class-A beta-lactamases, TEM-1 and KPC2, from allosteric ligand binding sites. The authors performed extensive analysis and comparison of the simulated protein allostery pathway with know mutations in the literature. The results are rigorously analyzed and neatly presented in all figures. The conclusions of this paper are mostly supported by previous mutational data, but a few aspects of simulation protocol and data analysis need to be validated or justified.

      Line 293, by "comparing the Apo_NE and IB_EQ simulations at equivalent points in time" and perform subtraction "from the corresponding Ca atom from one system to another at 0.05, 0.5, 1, 3, 5ns". It is not clear to me why those time points were chosen? Have authors attempted at validating whether or not the signal from the ligand-binding site has had enough time to propagate across the allosteric signaling pathway? If one considers that the ligand is a spatially localized signal, it requires time to propagate. This is in contrast with the Kubo-Onsager paper cited by authors in which the molecule is responding to a global perturbation such as an external field. However, a local perturbation on one side of the protein will need time to propagate to the other side of the protein (30 angstroms away in this case). A simple and naive example is to map out all the bus stops on one's route. 800 simulations between the first and second stop will not be able to provide the locations of other stops. Since authors have used this "subtraction technique" on several other proteins, it would be nice to clarify how this approach works on mapping out signaling propagation perturbed by local ligand binding/unbinding and how to choose the time points for subtraction.

      Another question is whether tracing the dynamics of Calpha alone is enough. As we have seen from the network analysis papers, Calpha sometimes missed some paths or could overemphasize others. The Center of the mass of residue has been proposed to be a better indicator of protein allostery. Authors may wish to clarify the particular choice of Calpah in this study.

      In Figure5, the authors seem to use Pearson correlation to compute dynamic cross-correlation maps. Mutual information (M)I or linear MI have advantages over Pearson correlations, as has been discussed in the dynamical network analysis literature.

    1. Reviewer #2 (Public Review):

      In this manuscript, Dahlen et al. aimed to agnostically investigate the association between ABO and RhD blood group and disease occurrence for a large number of disease phenotypes using large-scale population-based Swedish healthcare registries. Using 2 large subject cohorts, they convincingly demonstrate that beyond the known associations between ABO, infectious diseases and thrombosis, there are other associations with very different diseases. This paper is purely epidemiological with no biological data to explain the observed associations. The clinical phenotypes are derived from hospital coding and probably lack precision, especially in terms of diagnostic certainty.

    1. Reviewer #2 (Public Review):

      eQTLs can vary between cell types. To capture this in an organism as complex as a mammal looks daunting and expensive if eQTLs have to be mapped a single cell type at a time. However, here the authors propose a 'one pot' method where whole animals are dissociated and the cell types deconvoluted based on a robust set of markers. Thus in a single experiment, eQTLS can be mapped in tens of cell types at once - here they identify 19 major cell types but in the case of the nervous system break it down with even more specificity, down to individual cells.

      They test their method in C. elegans which is ideal for this - the lineage is invariant, there are extensive sets of cell type specific markers, and they can exploit their previously published method called ceX-QTL to generate massive pools of segregants using an elegant genetic trick.

      Overall I was extremely impressed with the clarity of writing, the care of data analysis, and I honestly found that every analysis I was looking for had been done. They highlight some beautiful findings, most striking of which was the opposing regulation of nlp-21 in two neurons, a perfect example of the resolution this can achieve.

    1. Reviewer #2 (Public Review):

      In their manuscript "CEM500K - A large-scale heterogeneous unlabeled cellular electron microscopy image dataset for deep learning", the authors describe how they established and evaluated CEM500K, a new dataset and evaluation framework for unsupervised pre-training of 2D deep learning based pixel classification in electron microscopy (EM) images.

      The authors argue that unsupervised pre-training on large and representative image datasets using contrastive learning and other methods has been demonstrated to benefit many deep learning applications. The most commonly used dataset for this purpose is the well established ImageNet dataset. ImageNet, however, is not representative for structural biases observed in EM of cells and biological tissues.

      The authors demonstrate that their CEM500K dataset leads to improved downstream pixel classification results and reduced training time on a number of existing benchmark datasets a new combination thereof compared to no pre-training and pre-training with ImageNet.

      The data is available on EMPIAR under a permissive CC0 license, the code on GitHub under a similarly permissive BSD 3 license.

      This is an excellent manuscript. The authors established an incredibly useful dataset, and designed and conducted a strict and sound evaluation study. The paper is well written, easy to follow and overall well balanced in how it discusses technical details and the wider impact of this study.

    1. Reviewer #2 (Public Review):

      Landemard et al. compare the response properties of primary vs. non-primary auditory cortex in ferrets with respect to natural and model-matched sounds, using functional ultrasound imaging. They find that responses do not differentiate between natural and model-matched sounds across ferret auditory cortex; in contrast, by drawing on previously published data in humans where Norman-Haignere & McDermott (2018) showed that non-primary (but not primary) auditory cortex differentiates between natural and model-matched sounds, the authors suggest that this is a defining distinction between human and non-human auditory cortex. The analyses are conducted well and I appreciate the authors including a wealth of results, also split up for individual subjects and hemispheres in supplementary figures, which helps the reader get a better idea of the underlying data.

      Overall, I think the authors have completed a very nice study and present interesting results that are applicable to the general neuroscience community. I think the manuscript could be improved by using different terminology ('sensitivity' as opposed to 'selectivity'), a larger subject pool (only 2 animals), and some more explanation with respect to data analysis choices.

    1. Reviewer #2 (Public Review):

      Hay et al. investigated the effect of optogenetic activation of MS cholinergic inputs on hippocampal spatial memory formation, which extended our current knowledge of the relationship between MS cholinergic neurons and hippocampal ripple oscillations.

      The authors showed that optogenetic stimulation at the goal location during Y maze task impaired the formation of hippocampal dependent spatial memory. They also found that opto-stimulation at the goal location reduced the incidence of ripple oscillations, while having no effect on the power and frequency of theta and slow gamma oscillations.

      Interestingly, the authors reported different results compared to previously published work by applying the analytical methods developed by Donoghue et al. (Donoghue et al., Nat Neurosci, 2020). They showed that optogenetic activation of MS cholinergic neurons during sleep not only reduced the incidence of hippocampal ripple oscillations, but also increased the power of both theta and slow gamma oscillations, which is contradict to both decreased or no change of theta and gamma power by previous reports (Vandecasteele et al., 2014, Ma et al., 2020). These results are valuable to the community of hippocampal oscillation studies.

    1. Reviewer #2 (Public Review):

      In humans, extreme stresses, such as famine, can trigger multi-generational physiological responses through altered metabolism. In C. elegans, environmental stresses, such as heat shock, can similarly promote changes in gene expression and physiology. In addition, researchers observed more than two decades ago that dsRNA triggers can silence gene expression transgenerationally. This manuscript by Houri-Zeevi et al., entitled "Stress resets ancestral heritable small RNA responses", seeks to tie these two observations in C. elegans together mechanistically, showing that environmental stress (heat shock, high osmolarity, or starvation) can alter the small RNA populations in adults and their progeny, affecting their gene expression levels. The authors used a GFP reporter as a proxy for exo-siRNA levels in various experimental paradigms. P0 animals were fed dsRNA targeting the GFP transgene, and their F1 progeny were subjected to one of the environmental stresses. The GFP expression levels of P0, F2, and F2 adults were measured, showing that the stressed F1 and their F2 progeny have increased de-silencing of the GFP transgene compared to controls. The authors also performed small RNA sequencing on these populations, showing that a subset of small RNAs become "reset" or decreased after stress, while a different subset was increased. Additionally, the p38 MAPK pathway, SKN-1 TF, and MET-2 H3K4me1/2 HMT were shown to be required for the stress-dependent changes in transgene de-silencing. The manuscript is well-written and contains some very interesting and convincing results that should be of broad interest to the fields of stress biology and RNAi.

    1. Reviewer #2:

      In their paper "A graph-based algorithm called StormGraph for cluster analysis of diverse single-molecule localization microscopy data", Scurll et al. present a new algorithm to identify clusters in single-molecule localization microscopy (SMLM) data. They use graph-based clustering and show that StormGraph outperforms a selection of existing algorithms, both on simulated and experimental data. The improvement seems not huge, but is convincing, thus this work presents an important contribution to the field. Naturally, not all competing algorithms could be benchmarked in comparison to StormGraph, thus it is not clear if this algorithm is indeed among the best performing algorithms. This is especially true for the cross-correlation analysis. If the applicability of the software included with the manuscript was extended to more potential users, this could be a useful contribution to the field. The manuscript is well written, but quite long. The information content would not be jeopardized if part of the main text and some figures were to be moved to the supplementary information or methods section.

    1. Reviewer #2:

      This is a very interesting study, examining the properties of different types of neurons in the primate Frontal Eye Fields. It is commonly assumed that a serial processing of information takes place in the frontal lobe, from visual representation, to working memory maintenance, to motor output. However, some evidence to the contrary has also been reported, creating a debate in the field. The authors have characterized meticulously FEF neurons receiving V4 projections, by means of orthodromic stimulation. They report two main findings: that visual-input recipient neurons in FEF exhibit substantial motor activity and that working memory alters the efficacy of V4 input to FEF. The paper provides an important addition to our understanding of FEF processing. Although the first result is unambiguous, and goes against the traditional view of the FEF, the interpretation of the second is less straightforward and would need to be qualified further.

      1) Orthodromic activation of FEF neurons via V4 stimulation increases the percentage of FEF events that lead to spikes and decreases their latency during working memory. Such an effect appears expectable if FEF neurons are at a higher level when a stimulus in their receptive field is held in memory compared to a stimulus out of their receptive field. Are the authors suggesting something special about working memory? Would the same outcome not be expected during fixation or smooth pursuit for FEF neurons that are activated by these states? It was not clear that the efficacy of transmission itself improves by working memory, just the likelihood that the spiking threshold would be reached.

      2) It would strengthen the author's thesis to discuss the existing functional evidence (in addition to anatomical evidence) that motor FEF neurons receive visual input and can plan movements accordingly. See for example Costello et al. J. Neurosci 2013, 33(41):16394-408.

      3) The authors match the receptive location of FEF and V4 neurons to maximize the chances of identifying monosynaptically connected neurons between the two areas. However, a negative finding of ia orthodromic activation does not entirely rule out that the FEF neuron under study receives V4 input, from another site. Some discussion is warranted on this point.

    1. Reviewer #2:

      This paper by Har-shai Yahav and Zion Golumbic investigates the coding of higher level linguistic information in task-irrelevant speech. The experiment uses a clever design, where the task-irrelevant speech is structured hierarchically so that the syllable, word, and sentence levels can be ascertained separately in the frequency domain. This is then contrasted with a scrambled condition. The to-be-attended speech is naturally uttered and the response is analyzed using the temporal response function. The authors report that the task-irrelevant speech is processed at the sentence level in the left fronto-temporal area and posterior parietal cortex, in a manner very different from the acoustical encoding of syllables. They also find that the to-be-attended speech responses are smaller when the distractor speech is not scrambled, and that this difference shows up in exactly the same fronto-temporal area--a very cool result.

      This is a great paper. It is exceptionally well written from start to finish. The experimental design is clever, and the results were analyzed with great care and are clearly described.

      The only issue I had with the results is that the possibility (or likelihood, in my estimation) that the subjects are occasionally letting their attention drift to the task-irrelevant speech rather than processing in parallel can't be rejected. To be fair, the authors include a nice discussion of this very issue and are careful with the language around task-relevance and attended/unattended stimuli. It is indeed tough to pull apart. The second paragraph on page 18 states "if attention shifts occur irregularly, the emergence of a phase-rate peak in the neural response would indicate that bits of 'glimpsed' information are integrated over a prolonged period of time." I agree with the math behind this, but I think it would only take occasional lapses lasting 2 or 3 seconds to get the observed results, and I don't consider that "prolonged." It is, however, much longer than a word, so nicely rejects the idea of single-word intrusions.

    1. Reviewer #2 (Public Review):

      Work in the nematode C. elegans has shown that these worms learn to avoid pathogens like Pseudomonas aeruginosa after consumption and infection over a period of 12 or more hours. Here, the authors confirm and expand upon earlier observations that - in contrast to P. aeruginosa - avoidance of Gram-positive pathogens such as E. faecalis, E. faecium and S. aureus occurs rapidly on a timescale as short as even several minutes. Consistent with this more rapid response, they present evidence that behavioral avoidance occurs via distinct molecular, neuronal and phenotypic mechanisms from those of P. aeruginosa.

      The first major finding that the authors describe is that behavioral avoidance of E. faecalis occurs as a consequence of rapid intestinal distension and not through immune responses or other pathways. They show that anterior intestinal distension occurs rapidly - as early as 1 hr, which is a striking finding and is consistent with rapid behavioral effects. They show that neither E. faecalis bacterial RNA, nor bacterial virulence are necessary for behavioral avoidance and that immune response genes are induced only after distension. These data are consistent with a model in which intestinal distension underlies behavioral avoidance, but this assertion could be strengthened by showing that bloating is necessary for behavioral avoidance, that it occurs prior to observable behavioral avoidance, and by more definitively ruling out a role for immune responses.

      Next, the authors show that behavioral avoidance in laboratory conditions requires intact neuropeptide signaling via the npr-1 receptor and this is because worms tend to avoid high oxygen conditions outside of bacterial lawns that typically exists in the lab. At lower oxygen concentrations, npr-1 is dispensable for avoidance. This is consistent with previous work implicating this neuropeptide pathway in lawn avoidance and is convincingly demonstrated.

      The second major finding presented in this manuscript is that rapid behavioral avoidance of Gram-positive bacteria occurs via a learning process involving both gustatory and olfactory neurons. This suggests that worms may rapidly learn to avoid the taste and smell of these bacteria. They show that lawn avoidance of E. faecalis occurs in minutes and coincides with changes in lawn leaving and re-entry rates. They identify sensory neurons involved in lawn avoidance through genetic ablation and cell-specific rescue of signal transduction in the ASE, AWC and AWB neurons. A role for ASE in avoidance is specific to E. faecalis and is a new finding. The authors also show that after a 4hr training exposure to E. faecalis, worms switch from their naïve preference for E. faecalis odors to preferring E. coli odors. This switch in olfactory preference appears to require the AWC and AWB neurons, but not the ASE neurons. While the authors show a clear change in olfactory preference with these data, it is currently unclear whether this reflects associative learning as opposed to non-associative olfactory plasticity resulting from, for example, intestinal distension. Previous work from this group showed that longer-term bloating from bacteria could induce avoidance of different bacteria, arguing against a strictly associative learning role for previously described bloating phenotypes. It is also not currently clear from the authors' data whether ASE plays a role in training-dependent changes in food preference, how this training process relates to the timecourse of intestinal distension, and what role nutrient status might play here.

      Lastly, the authors present the intriguing hypothesis that TRPM family channels may sense bloating either directly or indirectly to mediate this colonization-dependent aversive behavior. Mutations in TRPM channels gon-2 and gtl-2 block lawn aversion that occurs after intestinal distension elicited by E. faecalis colonization or through interference with the defecation motor program. The authors convincingly show that these channels, which are expressed in the intestine but also play known roles in the germline, do not act via the germline in this context. The hypothesis that these channels act in the intestine to sense bloating is an exciting and particularly important one; however, both of these channels are known to be expressed in multiple tissues, and there is no data demonstrating a sensory function for these receptors in the intestine as opposed to other roles.

    1. Reviewer #2 (Public Review):

      This manuscript addresses how myeloid cells are rapidly regenerated during periods of consumptive stress, such as that what occurs during infection. The authors defined a novel migration pattern activated upon inflammation wherein bone marrow-derived myeloid progenitors rapidly seed lymph nodes to produce dendritic cells. Using an in vivo model (injection of LPS) they demonstrated systemic inflammation was necessary for triggering this migratory pathway. A key observation was that prior to detection in the blood, myeloid progenitors were detected in the lymphatics, including the thoracic duct and lymph nodes. Using a combination of imaging strategies, in vitro assays, and transplantation assays the specific myeloid differentiation of these progenitors was revealed: progenitors in lymphatics did not have stem cell function but maintained potential to generate dendritic cells. Using adoptive transfer experiments they determined that labeled progenitors did not home to the bone marrow after LPS. Moreover, prior to their detection in the lymph nodes, these progenitors were found in close proximity to lymphatic endothelial cells in the bone, as determined with intra vital imaging of Lyve-1-GFP mice. They also observed the existence of Lyve-1+ vessels in the bone of LPS treated mice, rarely observed in controls. Therefore, it was concluded that myeloid progenitors are released from the bone marrow and enter the lymphatics very rapidly upon LPS challenge via a network of lymphatic vessels in the bone.

      To determine mechanisms that were required for this migratory pathway, they first focused on the signaling molecule TRAF6, a key signaling protein downstream of TLR signaling. Using Mx1-Cre inducible TRAF6 deficiency they observed reduce mobilization of progenitors and found a cell-autonomous defect in migration towards LPS-stimulated cells in vitro. These chemotactic assays were used to identify the specific role of myeloid cells in driving migration of progenitors. The authors ruled out the role of NF-kB signaling via over-expressing the degradation-resistant mutant of IkBa, but revealed that protein-trafficking was necessary for progenitor mobilization. Analysis of chemokines and potential factors that could drive this trafficking pattern identified the chemokine CCL19 and its receptor CCR7 in migration. In vivo targeting of this pathway via antibody blockade experiments demonstrated that CCL19 and CCR7 were required for the myeloid progenitor mobilization, and, furthermore, that the mature myeloid (CD11b+CD11c+) cells in the LNs were sources of CCL19.

      The main strengths of this manuscript include: (1) the intriguing and novel observation of lymphatic migration early during inflammation; (2) the various techniques used to address the questions, including imaging and flow cyotmetric analysis, as well as functional assays; and (3) the thorough mechanistic model they have built through their investigation of signaling molecules and the chemokine-receptor interactions necessary for dendritic cell replenishment. Using the Lyve-1 mouse, they were able to identify vessels in the bone, suggesting a specific route for migration. They were also able to determine that the Lin- progenitors were in close proximity to these vessels upon LPS challenge and differentiated into dendritic cells. The ability of myeloid cells to rapidly release preformed CCL19 was also dependent on TRAF6, thus suggesting that mature cells in the lymph nodes initiate recruitment of CCR7+ myeloid progenitors, highlighting a novel circuitry of regeneration.

      This study is very comprehensive, though there are several questions remaining: (1) the conclusion regarding the physiological role of this early response in survival is not well supported by the data; (2) the link with observations in humans is not robust; (3) a number of questions regarding progenitor survival and proliferation remain. First, studies revealing enhanced mortality when CCR7 is blocked or when CCL19 production is lacking may be due to impacts on a variety of other cell types, most notably T regulatory cells. The reason these mice die faster was not carefully investigated and is unclear. While the authors conclude it is due to reduced anti-inflammatory dendritic cells, they provide very little data to support this. Second, data presented in the manuscript highlighting the presence of side population cells in human lymph nodes under specific conditions is consistent with the observations in the mouse model. However, the authors do not investigate functional potential in detail and do not account for abundance of mature cells in these lymph nodes (particularly the lymphoma patients, that may result in decreased frequency of HSPCs). Finally, though the findings are very interesting and the studies are robust, one potential concern is that TRAF6 is downstream of a variety of innate signaling pathways and, in general, the dysfunction of myeloid cells may be profound and beyond the conclusion of directing migration, as TRAF6-dependent proliferation may also contribute to the observations made in vivo.

      Overall, this is a compelling story and reveals a novel migratory pathway that may operate in a variety of settings to replenish immune cells to maintain homeostasis, and how this trafficking is impacted in different immune/inflammatory and diseased states warrants more investigation.

    1. Reviewer #2 (Public Review):

      The manuscript "Adult Stem Cell-derived Complete Lung Organoid Models Emulate Lung Disease in COVID-19" by Das and colleagues introduces a new model system of airway epithelium derived from adult lung organoids (ALO) to be utilised for the study of COVID-19-related processes. In this manuscript two main novelties are claimed: the development of a new model system which represents both proximal as distal airway epithelium and a computationally acquired gene signature that identifies SARS-CoV-2-infected individuals. While interesting data are presented, the novelty claim is questionable and the data is not always convincing.

      Strengths:

      Multiple model systems have been developed for COVID-19. The lack of a complete ex vivo system is still hampering quick development of efficient therapies. The authors in this manuscript describe a new model system which allows for both proximal and distal airway infectious studies. While their claim is not completely novel, the method used can be used in other studies for the discovery of potential new therapies against COVID-19. Moreover, their computational analyses shows the promise of bioinformatics in discovering important features in COVID-19 diseased patients which might elucidate new therapeutic targets.

      Weaknesses:

      Although the paper does have strengths in principle, the weaknesses of the paper are that these strengths are not directly demonstrated and their model system is not completely novel. That is, insufficient analyses are performed to fully support the key claims in the manuscript by the data presented. In particular:

      The characterisation of the adult lung organoids and their monolayers is insufficient and sometimes incorrect. Their claims are based on contradicting data which includes cell composition in the culture system. Therefore, the claim of a novel model system seems invalid and rushed. Moreover, the characterisation of a new gene signature is based on this model system which has been infected with SARS-CoV-2. The infection however is hard to interpret and therefore claims are hard to validate.

    1. Reviewer #2 (Public Review):

      The recent discovery of CTP as a co-factor for the ParB protein family has prompted the field to revisit all the experimental data and models on ParABS-mediated chromosome/plasmid segregation from the past 35 years. Some recent research has been performed to investigate ParB-CTP interaction and the roles of CTP on ParB spreading/sliding. However, the important roles of CTP on ParB-ParA interaction have not been investigated so far. This manuscript from Taylor et al is the first to investigate this important area, thus this work is timely and is very welcomed. I note that Mizuuchi et al proposed the ground-breaking "diffusion-ratchet" model of plasmid/chromosome segregation, and the latest findings in his manuscript here have very important implications for this model. The work here has been done rigorously; I have read it with much interest.

    1. neocolonialist strategy—an attempt to accommodate new realities in order to retain the dominance— neocolonialist methods signal victory for the colonized.

      Neocolonialist strategy is the idea of accommodating new realities as to retain dominance

    2. Origin narratives form the vital core of a people’s unifying iden- tity and of the values that guide them. In the United States, the founding and development of the Anglo-American settler-state in- volves a narrative about Puritan settlers who had a covenant with God to take the land.

      MYTH 2: Origin Narratives

      • Puritan covenant with God to take the land

        • Reinforced by Columbus Myth

          • "Columbia," represented by lady, is found everywhere throughout the USA, in names and idea
        • Reinforced by the "Doctrine of Discovery"

          • European nations acquired titles to lands they discovered and Indigenous inhabitants lost natural right to land after Europeans claimed it.
          • Law of Nations required the subjugation of all people who diverge from European-derived norms of right conduct
        • Reinforced by Academia: Threatened by civil rights

          • Called for "balance," against "moralizing," and pro "culturally relative approach." "There were good and bad people on both sides."

            • "MULTICULTURALISM" is used to support the origin story. "We all got along from the beginning and now we are all a big happy nation"
    3. The ori- gin story of a supposedly unitary nation, albeit now multicultural, remained intact. The original cover design featured a multicolored woven fabric—this image meant to stand in place of the discredited “melting pot.”

      Origin Story myth is perpetuated by idea of multiculturalism

    4. Multiculturalism became the cutting edge of post-civil-rights- movement US history revisionism. For this scheme to work—and affirm US historical progress—Indigenous nations and communities had to be left out of the picture. As territorially and treaty-based peoples in North America, they did not fit the grid of multicultur- alism but were included by transforming them into an inchoate oppressed racial group, while colonized Mexican Americans and Puerto Ricans were dissolved into another such group, variously called “Hispanic” or “Latino.” The multicultural approach empha- sized the “contributions” of individuals from oppressed groups to the country’s assumed greatness. Indigenous peoples were thus cred- ited with corn, beans, buckskin, log cabins, parkas, maple syrup, canoes, hundreds of place names, Thanksgiving, and even the con- cepts of democracy and federalism. But this idea of the gift-giving Indian helping to establish and enrich the development of the United States is an insidious smoke screen meant to obscure the fact that the very existence of the country is a result of the looting of an entire continent and its resources.

      MULTICULTURALISM: US history revision that emphasizes the "contributions" of ethnic groups to the United States, while obscuring the fact that these groups were instead PLUNDERED of their natural resources - it was not a consensual giving process.

    5. This approach to history allows one to safely put aside present re- sponsibility for continued harm done by that past and the questions of reparations, restitution, and reordering society.’

      Danger of accepting origin myth 2: put asides responsibility for continued harm done by past - puts aside option of reparations, restitution, and reordering of society.

      (Why the Origin Myth is currently harmful)

    6. Perhaps worst of all, some claimed (and still claim) that the colonizer and colonized experienced an “encounter” and engaged in “dialogue,” thereby masking reality with justifications and ratio- nalizations—in short, apologies for one-sided robbery and murder.

      Academics attempt to justify settler colonialism and origin MYTH, with idea that there was dialogue between settler and indigenous, when in reality it was one-sided robbery and murder.

    Tags

    Annotators

    1. Reviewer #2 (Public Review):

      The authors have been able to carry out a well-planned countrywide sero-survey in a cohort of 10,427 employees of their organization with 23 laboratories spread over 17 states and 2 union territories. The reported sero-positivity of 10.14% among persons mainly from cities and towns, helps understand the spread of the pandemic across the country and corelates well with the point prevalence of active infections in the various states of India during the same period. It helps understand the role of asymptomatic cases in increasing sero-positivity as 2/3 of the personnel could not remember any symptoms or illness.

      Strengths:

      1) The strength of this study is a large pan India cohort with all demographic details captured, which can be easily followed up. The sero-positivity datasets corelate well with the national Covid cases data in the states of India as reported in the public domain during the same time frame. The time period of Aug Sept after the mass migration of labourers from cities to rural India was possibly responsible for a quick spread of the infection and this study is able to capture the same effectively.

      2) The study has also correlated the antibodies to Nuclear Capsid Antigen with the Neutralizing antibody levels and the correlation is good. However, this needs to be followed up to interpret humoral stability especially with the interesting observation of declining Antibodies to nuclear capsid antigen at six months but levels of neutralizing antibodies being stable after an initial drop at three months.

      3) The study demonstrates an inverse correlation between the changes in test positivity rate and sero-positivity suggesting reduced transmission with increasing sero-positivity. The sero-positivity was higher in densely populated areas suggesting faster transmission.

      Weakness:

      1) The extrapolation of the study results to the country may not be completely acceptable with the basic difference from the country's urban rural divide and a largely agricultural economy. The female gender is underrepresented in the study cohort, and no children have been included.

      2) The observations regarding corelates of sero-positivity such as diet smoking etc would need specifically designed adequately powered studies to confirm the same. The sample size for the three and six months follow up to conclude stability of the humoral immunity, is small and requires further follow-up of the cohort. The role of migration of labour helping the spread of the pandemic simultaneously to all parts of the country though attractive may not explain lower rates in states like UP and Bihar where maximum migrants moved to.

      3) A large chunk of seropositive data set has been removed representing the big cities of Delhi and Bengaluru while correlating Test Positivity Rate citing duration as the reason. However, these cities also had different testing strategies and health infrastructure and hence are important.

      4) Test positivity rate depends on testing strategy and type of test used; whether RTPCR or the Rapid Antigen Test and the ratio of the two tests was different in different parts of the country.

      Overall a good study where the authors have been able to effectively show a relatively high sero-positivity than reported infections possibly due to asymptomatic cases. It will be able to provide insight into immune memory in COVID 19 as they continue with follow-up quantitative sero-assay for the cohort

    1. Reviewer #2 (Public Review):

      Hesse et al. implemented a murine model of cardiac ischemia to study two populations, epicardial stromal cells (EpiSC) and activated cardiac stromal cells (aCSC). Furthermore, uninjured cardiac stromal cells were used as a control. An isolation method for EpiSC was used by applying a gentle shear force to the cardiac surface. The authors show heterogeneity in the Epi-SC populations. Certain markers were confirmed by in-situ hybridization. Furthermore, molecular programs within these subsets were explored. A comparison between EpiSC and aCSCs cells (and EpiSC and uninjured CSCs cells) was performed, which showed differences in expression of multiple genes namely HOX, HIF1 and cardiogenic factor genes. A WT1 population was marked by tdTomato, confirming the localization of expression to a cell population. There are however specific weaknesses. First, a major concern is regarding clarity of the experimental conditions and sample purity. Data is not robustly presented showing differences across conditions, namely between uninjured CSCs and activated CSCs. Furthermore, the purity of isolating EpiSC was not explored, along with the anticipated overlap of cells between aCSC and EpiSC. Specifically, the in-situ findings do not clarify the subject of purity. For example, EpiSC-3 (Pcsk6) is a large population in the scRNA-seq shown in Fig 1; however, this gene is also expressed in the myocardium. There is an attempt to perform EpiSC and aCSC comparison analysis in Figure 3; however without clarity the expected overlap, these data are hard to interpret. Furthermore, cluster-based approaches for comparing population fractions can be problematic due to the inherent stochasticity of sampling. Lastly, there is no actual lineage tracing over time, but rather marking of WT1 cells with tdTomato. The RNA velocity analysis is not particularly robust with the number of expressed genes driving these results, rather than the author's conclusion of developmental potential.

    1. Reviewer #2 (Public Review):

      In their study, Lutes et al examine the fate of thymocytes expressing T cell receptors (TCR) with distinct strengths of self-reactivity, tracking them from the pre-selection double positive (DP) stage until they become mature single positive (SP) CD8+ T cells. Their data suggest that self-reactivity is an important variable in the time it takes to complete positive selection, and they propose that it thus accounts for differences in timescales among distinct TCR-bearing thymocytes to reach maturity. They make use of three MHC-I restricted T cell receptor transgenics, TG6, F5, and OT1, and follow their thymic development using in vitro and in vivo approaches, combining measures at the individual cell-level (calcium flux and migratory behaviour) with population-level positive selection outcomes in neonates and adults. By RNA-sequencing of the 3 TCR transgenics during thymic development, Lutes et al make the additional observation that cells with low self-reactivity have greater expression of ion channel genes, which also vary through stages of thymic maturation, raising the possibility that ion channels may play a role in TCR signal strength tuning.

      This is a well-written manuscript that describes a set of elegant experiments. However, in some instances there are concerns with how analyses are done (especially in the summaries of individual cell data in Fig 2 and 3), how the data is interpreted, and the conclusions from the RNA-seq with regard to the ion channel gene patterns are overstated given the absence of any functional data on their role in T cell TCR tuning. As such the abstract is currently not an accurate reflection of the study, and the discussion also focuses disproportionately on the data in the final figure, which forms the most speculative part of this paper.

      (1) As the authors themselves point out (discussion), one of the strengths of this study is the tracking of individual cells, their migratory behaviour and calcium flux frequency and duration over time. However, the single-cell experiments presented (Figure 2 and 3) do not make use of the availability of single-cell read-outs, but focus instead on averaging across populations. For instance, Figure 3a,b provides only 2 sets of examples, but there is no summary of the data providing a comparison between the two transgenics across all events imaged. In Figure 3c, the question that is being asked, which is to test for between-transgenic differences is ultimately not the question that is being answered: the comparison that is made is between signaling and non-signaling events within transgenics. However, this latter question is less interesting as it was already shown previously that thymocytes pause in their motion during Ca flux events (as do mature T cells). Moreover, the average speed of tracks is probably not the best measure here in reading out self-reactivity differences between TCR transgenic groups.

      (2) The authors conclude from their data that the self-reactivity of thymocytes correlates with the time to complete positive selection. However the definition of what this includes is blurry. It could be that while an individual cell takes the same amount of time to complete positive selection (ie, the duration from the upregulation of CD69 until transition to the SP stage is the same), but the initial 'search' phase for sufficient signaling events differs (eg. because of lower availability of selecting ligands for TG6 than for OT1), in which case at the population level positive selection would appear to take longer. Given that from Fig 2/3 it appears that both the frequency of events and their duration differ along the self-reactivity spectrum, this needs to be clarified. Moreover, whether the positive selection rate and positive selection efficiency can be considered independently is not explained. It appears that the F5 transgenic in particular has very low positive selection efficiency (substantially lower %CD69+ and of %CXCR4-CCR7+ cells than the OT1 and TG6) and how this relates to the duration of positive selection, or is a function of ligand availability is unclear.

      (3) While the question of time to appearance of SP thymocytes of distinct self-reactivities during neonatal development presented (Figure 5) is interesting, it is difficult to understand the stark contrast in time-scales seen here compared with their in vitro thymic slice (Figure 4) and in vivo EdU-labelling data (Figure 6), where differences in positive selection time was estimated to be ~1-2 days between TCR transgenics of high versus low affinity. This would suggest that there may be other important changes in the development of neonates to adults not being considered, such as the availability of the selecting self-antigens.

      (4) The conclusion that "ion channel activity may be an important component of T cell tuning during both early and late stages of T cell development" is not supported by any data provided. The authors have shown an interesting association between levels of expression of ion channels, their self-affinity and the thymus selection stage. However, some functional data on their expression playing a role in either the strength of TCR signaling or progression through the thymus (for instance using thymic slices and the level of CD69 expression over time), would be needed to make this assertion. Moreover, from how the data is presented it is difficult to follow the conclusion that a 'preselection signature' is retained by the low but not the high self-reactivity thymocytes.

    1. Reviewer #2 (Public Review):

      Using budding yeast, the authors have generated transcriptome and proteome data for a series of experimental conditions, augmented with measurement of some amino acid abundances. These data are subjected to a number of correlation and enrichment analyses. Based on those, the authors put forward a verbal "model of information flow, material flow and global control of material abundance".

      The main message of this paper was not sufficiently clear because at different places of the manuscript the authors highlight different aspects: Based on the title it seems that the "distinct regulation" is the key aspect. Notably, however, this point has only a minor role in the manuscript itself. In the abstract, it seems that the key aspect is a "framework", although after having read the paper it was not clear what the authors mean with the term. Later in the manuscript the authors also use the term "coarse-graining approach", but it was not clear whether this is the same as the "framework". Beyond, throughout the manuscript, the authors make the point that global physiological parameters (such as growth rate) determine gene and protein expression level. Even though this point is important and often overlooked, it has been made before in several papers, which the authors also cite. Thus, this aspect mostly provides confirmation of previous work. Finally, at the end of the introduction, where the authors refer to "our findings... ", it is unclear to which findings they particularly refer to.

      The manuscript could be clearer in certain specific aspects:

      1) The paper uses lots of terms that are not well defined: For instance, it is not explained well what the authors mean by "metabolic parameters". I know metabolite concentrations, and metabolic fluxes, but I don't know what metabolic parameters are. It is also not explained well what is meant with "global control mechanisms" and what is meant by "augment".

      2) Similarly, this lack of clarity also exists when the authors step from a particular analysis (i.e. a correlation) to a conclusion statement. The hard evidence supporting particular statements is not sufficiently explained.

    1. RRID:ZDB-ALT-001220-2

      DOI: 10.1016/j.celrep.2020.108039

      Resource: (ZFIN Cat# ZDB-ALT-001220-2,RRID:ZFIN_ZDB-ALT-001220-2)

      Curator: @scibot

      SciCrunch record: RRID:ZFIN_ZDB-ALT-001220-2


      What is this?

    1. Reviewer #2 (Public Review):

      The research community has been frustrated by difficulties in using AAVs to obtain robust experimental access to neurons co-expressing Cre and Flp recombinase (often called the intersectional approach). In many cases, the approach is sufficiently inefficient as to not be usable. This is in part due to difficulties in designing AAVs that will efficiently express protein-encoded tools in a Cre-ON/Flp-ON fashion, and in part due to the relative inefficiency of Flp recombinase. This present study presents a new intersectional approach for solving this problem. The approach involves co-injecting two AAVs into sites in the brain where Cre/Flp-co-expressing neurons reside - in this case, neurons in the ventromedial nucleus of the hypothalamus (VMH) which co-expresses VGLUT2 (Slc17a6)-Flp and Leptin receptor (Lepr)-Cre. One of the AAVs, in a Flp-dependent fashion, expresses the tTA transcriptional activator, while the other AAV, in a tTA and Cre-dependent fashion, expresses the protein-encoded tool. This new system produced robust expression in neurons co-expressing Flp and Cre in the VMH which previously could not be accomplished using existing intersectional AAVs. The authors also demonstrate a Flp-ON/Cre-OFF version of this approach. Finally, by using these tools the authors show, as was suspected based on prior work, that the Lepr/Vglut2-coexpressing VMH neurons increase brown fat thermogenesis and energy expenditure when stimulated. The results presented very strongly support the effectiveness of this new approach. The only weakness of this study is that, at this point in time, the universality of this approach for all Cre/Flp-co-expressing neurons is unknown. Its effectiveness was only evaluated in VMH neurons. While it is expected that this approach will work for most or all Cre/Flp-co-expressing neurons, there is anecdotal evidence of this or that AAV approach not working in this or that neuron.

    1. Reviewer #2 (Public Review):

      • The aim of this paper was to demonstrate whether FLIM-based imaging of optical redox ratio can be used to monitor metabolic states of immune cells in vivo during the course of inflammatory responses.

      • The study is rigorous and well-presented and the findings are interesting and novel. The main strength is in the in vivo data, where the authors used a variety of inflammatory challenges and perturbations and were able to detect previously unreported trends in metabolic states of macrophages.

      • The authors have demonstrated the potential of the technique to be used in vivo. Their initial findings are intriguing and can be followed up by more mechanistic studies.

      • The work is timely, because of growing interest in the role of metabolism in immune cell signalling and functions. Relevant microscopy-based assays in vivo are limited, so this innovation is important and can form the basis of further technology developments.

    1. Reviewer #2 (Public Review):

      Here are three notable examples (among a long list of new discoveries). (1) The authors provided a comprehensive description of the antennal lobe local interneuron (LN) network for the first time, providing a "final" counts of neuronal number and type of LNs as well as the preference for the input and output partners of each LN type. (2) They introduced "layer" as a quantitative parameter to describe how many synapses away on average a particular neuron or neuron type is from the sensory world. A few interesting new discoveries from this analysis include that on average, multi-glomerular antennal lobe projection neurons (PNs) are further away from the sensory world than uniglomerular PNs; inhibitory lateral horn neurons are closer to the sensory world than excitatory lateral horn neurons. (3) By leveraging previous analyses they performed on another EM volume (FAFB) and comparing n = 3 (bilateral FAFB, unilateral hemibrain) samples, they analyzed stereotypy and variability of neurons and connections, something rarely done in serial EM reconstruction studies but is very important.

      Overall, the text is clearly written, figures well illustrated, and quantitative analysis expertly performed. I have no doubt that this work will have long-lasting values for anyone who study the fly olfactory system, and for the connectomics field in general.

    1. Reviewer #2 (Public Review):

      Open source software for data rendering in neuroanatomy is either too specific to be generically useful (for example, designed for only one specific brain atlas, or brain atlases of a single species), or too general, and thus not integrated with atlases or other relevant software. Additionally, despite the growing popularity of the Python programming language in science, 3D rendering tools in Python are still very limited. Claudi et al have sought to narrow both of these gaps with brainrender. Biologists can use their software to display co-registered data on any atlas available through their AtlasAPI, explore the data in 3D, and create publication quality screenshots and animations.

      The authors should be commended for the level of modularity they have achieved in the design of their software. Brainrender depends on atlasAPI (Claudi et al, 2020), which means that compatibility for new atlases can be added in that package and brainrender will support them automatically. Similarly, by supporting standard data storage formats across the board, brainrender lets users import data registered with brainreg (Tyson et al, 2020), but does not depend on brainreg for its functionality.

      Like all software, brainrender still has limitations. For example, it's unclear from the paper exactly what input and output formats are supported, particularly from the GUI. Additionally, at publication, using the software still requires a Python installation, with all the complexity that currently entails. However, thanks to the rich and growing scientific Python ecosystem, including application packaging tools, I am confident that the authors, perhaps in collaboration with some readers, will be able to address these issues as the software matures.

    1. Reviewer #2 (Public Review):

      A summary of what the authors were trying to achieve. This interesting and data-rich paper reports the results of several detailed experiments on the pollination biology of the dioceus plant Silene latfolia. The authors uses multiple accessions from several European (native range) and North American (introduced range) populations of S. latifolia to generate an experimental common garden. After one generation of within-population crosses, each cross included either two (half-)siblings or two unrelated individuals, they compared the effects of one-generation of inbreeding on multiple plant traits (height, floral size, floral scent, floral color), controlling for population origin. Thereby, they set out to test the hypothesis that inbreeding reduces plant attractiveness. Furthermore, they ask if the effect is more pronounced in female than male plants, which may be predicted from sexual selection and sex-chromosome-specific expression, and if the effect of inbreeding larger in native European populations than in North American populations, that may have already undergone genetic purging during the bottleneck that inbreeding reduces plant attractiveness. Finally, the authors evaluate to what extent the inbreeding-related trait changes affect floral attractiveness (measured as visitation rates) in field-based bioassays.

      An account of the major strengths and weaknesses of the methods and results. The major strength of this paper is the ambitious and meticulous experimental setup and implementation that allows comparisons of the effect of multiple predictors (i.e. inbreeding treatment, plant origin, plant sex) on the intraspecific variation of floral traits. Previous work has shown direct effects of plant inbreeding on floral traits, but no previous study has taken this wholesale approach in a system where the pollination ecology is well known. In particular, very few studies, if any, has tested the effects of inbreeding on floral scent or color traits. Moreover, I particularly appreciate that the authors go the extra mile and evaluate the biological importance of the inbreeding-induced trait variation in a field bioassay. I also very much appreciate that the authors have taken into account the biological context by using a relevant vision model in the color analyses and by focusing on EAD-active compounds in the floral scent analyses.

      The results are very interesting and shows that the effects of inbreeding on trait variation is both origin- and sex-dependent, but that the strongest effects were not always consistent with the hypothesis that North American plants would have undergone genetic purging during a bottleneck that would make these plants less susceptible to inbreeding effects. The authors made a large collection effort, securing seeds from eight populations from each continent, but then only used population origin and seed family origin as random factors in the models, when testing the overall effect of inbreeding on floral traits. It would have been very interesting with an analysis that partition the variance both in the actual traits under study and in the response to inbreeding to determine whether to what extent there is variation among populations within continents. Not the least, because it is increasingly clear that the ecological outcome of species interactions (mutualistic/antagonistic) in nursery pollination systems often vary among populations (cf. Thompson 2005, The geographic mosaic of coevolution), and some results suggest that this is the case also in Hadena-Silene interactions (e.g. Kephardt et al. 2006, New Phytologist). Furthermore, some plants involved in nursery pollination systems both show evidence of distinct canalization across populations of floral traits of importance for the interaction (e.g. Svensson et al. 2005), whereas others show unexpected and fine-grained variation in floral traits among populations (e.g. Suinyuy et al. 2015, Proceedings B, Thompson et al. 2017 Am. Nat., Friberg et al. 2019, PNAS). Hence, it is possible that the local population history and local variation in the interactions between the plants and their pollinators may be more important predictors for explaining variation in floral trait responses to inbreeding, than the larger-scale continental analyses. Not the least, because North American S. latifolia probably has multiple origins, with subsequent opportunity for admixture in secondary contact.

      I see no major weaknesses in the study, and but in my detailed response, I have made a few questions and suggestions about the floral scent analyses. In short, the authors have used a technique that is not the standard method used for making quantitative floral scent analyses, and I am curious about how it was made sure that the results obtained from the static headspace sampling using PDMS adsorbents could be used as a quantitative measure. I would suggest the authors to validate the use of this method more thoroughly in the manuscript, and have detailed this comment in my response to the authors.

      Also, and this may seem like a nit-picky comment, I am not convinced that the best way to describe the traits under study is "plant attractiveness", because in the experimental bioassays, most of the traits under study that are affected by the inbreeding treatment, did not result in a reduced pollinator visitation. Most (or all) of these traits may also be involved in other plant functions and important for other interactions, so I suggest potentially using a term like "floral traits" or "(putative) signalling traits".

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions: By and large, the authors achieved the aims of this study, and drew conclusions based in these results. One interesting aspect of this work that I think could be discussed a bit deeper is the lack of congruence between the effects of inbreeding on floral traits and the variation in visitation pattern in the bioassay. In fact, the only large effect of inbreeding on a floral trait that may play a role as an explanatory factor is the reduction of emission of lilac aldehyde A in inbred female S. latifolia from North America, which correspond to a reduced visitation rate in this group in the pollinator visitation bioassay. I have made some specific suggestions in my comments to the authors.

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community: I think that one important aspect of this work that may broaden the impact of this study further is the link between these experiment, and our expectations from the evolution of selfing. Selfing plant species most often conform to the selfing syndrome, presenting smaller, less scented flowers than outcrossing relatives. Traditionally, the selfing syndrome is explained by natural selection against individuals that invest energy into floral signalling, when attracting pollinators is no longer crucial for reproduction. Some studies (for example Andersson, 2012, Am. J. Bot), however, have shown that only one, or a few, generations of inbreeding may reduce floral size as much as quite strong selection for reduced signalling. Here, at least for some populations and sexes, similar results are obtained in this paper regarding several traits (including floral scent), and one way to put this paper in context is by discussing the results in the light of these previous papers.

      Any additional context that would help readers interpret or understand the significance of the work: I would like to reiterate here the potential to utilize the population sampling to make additional conclusions about the geography of trait variation and its importance for the phenotypic response to inbreeding.

    1. Reviewer #2 (Public Review):

      The authors showed that the TNX treatment is able to reduces the liver steatosis. But, a lot of results are contradictory. Fer example, the PPAR-gamma is well known insulin sensitizing and the authors did not show the effect of the ntagonism on PPAR-gamma in insulin and glucose homeostasis. Moreover, more analyzis about the adipose tissue are mandatory, since the inhibition of PPAR-gamma might induce the pro-inflammatory status. Thus, to publish in this outstanding journal it is necessary additional experiments to proof that the PPAr-gamma is the main pathway of beneficial effects of TXN.

    1. Reviewer #2 (Public Review):

      This enzymological analysis of the DNA-repair protein PARP1 in the presence and absence of its recently discovered regulator, HPF1, is a welcome contribution to the field that provides new data as well as introducing a valuable conceptual framework (seeing PARP1 as simultaneously catalysing 4 different reactions) and novel assays. Some of its conclusions - e.g. regarding the importance of residues Glu284 and Asp283 within HPF1 - are an independent validation of some of those from a recently published study but here they are reached with partially orthogonal means and supported by additional data (e.g. precisely quantified stability, binding, and catalytic parameters). Moreover, the study offers new insights, with the most interesting observation pointing to the prevalence of NAD+ hydrolysis to free ADP-ribose by PARP1 in the presence of HPF1. The technical aspects of the study including the design, number of repeats, data presentation and analysis, and the level of detail provided in the method section are adequate.

    1. Reviewer #2 (Public Review):

      Anderson et al construct an epigenetic clock using samples from 245 individuals in the long-running Amboseli study of wild baboons. Their epigenetic clock tracks chronological age reasonably well, and also relates to other metrics of developmental tempo. Contrary to expectations from studies in humans and other species, deviations between epigenetic age and chronological age are unrelated to important predictors of life expectancy in this sample, including measures of early adversity and social integration. Instead, the key predictor of epigenetic aging is dominance rank: In males, more dominant animals show evidence for accelerated epigenetic aging using the epigenetic clock that they derive. In a longitudinal analysis the relationship between dominance and biological aging is shown to be at least partially transient and reversible, pointing to possible concurrent rather than cumulative or non-reversible effects. Although reproductive effort in the form of larger body size and muscularity are plausible factors linking dominance to epigenetic aging, the relationships documented here are shown to be largely independent of measures of body size and relative weight.

      This study is important because the authors generate an epigenetic clock, a method increasingly important in research on human aging and life history, for use in this species of baboon. To achieve this, they use a long-running study in which the actual ages of animals are known. Their findings suggest that the aspect of biological aging indexed by this clock is distinct from other important influences on lifespan previously documented in this species, and specifically points to reproductive effort related to maintaining dominance as a key driver of this variation in males.

    1. Reviewer #2 (Public Review):

      The manuscript by Guo et al. focuses on the involvement of TRPM4 channel in the development of pressure overload-induced cardiac hypertrophy. They show that TRPM4 expression, in both mRNA and protein, was downregulated in response to left ventricular pressure overload in wild type mice. They demonstrate that a reduction in TRPM4 expression in cardiomyocytes reduces the hypertrophic response to pressure overload due to transverse aortic arch constriction. Furthermore, they show that activation of CaMKIIδ-HDAC4-MEF2A pathway is reduced in mice with cardiomyocyte-specific, conditional deletion of Trpm4. Originally, TRPM4 channel was well known for its association with cardiomyocyte action potential formation and arrhythmia, but this study is very interesting in that it clarified the association of TRPM4 channel with the mechanotransduction mechanism of ventricular pressure overload. Their work may lead to the development of treatment strategies for hypertensive heart disease.

    1. Reviewer #2 (Public Review):

      Alvarez et al. present a study of the heritability of functional properties of early visual cortex, as assessed by a population receptive field (pRF) analysis of retinotopic mapping data in monozygotic (MZ) versus dizygotic (DZ) twin pairs. The use of a MZ versus DZ twin design is a strength, as it permits estimates of heritability, and connects the retinotopic mapping and pRF literature to the literature examining heritability of a diverse range of cognitive functions.

      I have only one point of concern that I feel the authors should address. It seems that the correlation analysis assumes that each vertex in the cortical surface model represents an independent observation, but an assumption of independence does not appear to be satisfied. FMRI responses in nearby vertices are expected to be highly inter-dependent, as a single fMRI voxel may be mapped onto many vertices. Spatial blurring intrinsic to the fMRI signal (i.e., point-spread function), as well as the spatial smoothing of pRF parameters that was performed, would be expected to exacerbate this issue.

    1. Reviewer #2 (Public Review):

      Understanding the mechanisms by which thermogenic brown adipocytes become activated in response to adrenergic signaling remains a high priority for the field of adipose tissue biology. The authors of this study investigate the importance of mitochondrial fusion protein optic atrophy 1 (OPA1) in brown adipocytes, which is highly regulated at the transcriptional and post-transcriptional level upon cold exposure and obesogenic conditions. Using a genetic loss of function mouse model, the authors demonstrate BAT specific knockout of OPA1 results in brown adipocyte mitochondrial dysfunction; however, knockout animals have improved thermoregulations due to the activation of compensatory mechanisms. Part of this compensatory mechanism involves the activation of an ATF4 mediated stress response leading to the induction of FGF21 from brown adipose tissue. These data highlight the presence of homeostatic mechanisms that can ensure thermoregulation in mammals.

      Overall, the manuscript is very well-written and the data is nicely presented. The use of multiple genetic mouse models is elegant, rigorous, and yields convincing results. The authors acknowledge the strengths and limitations of the work in a nicely written discussion. This should be a valuable addition to the field, including those interested in mitochondrial biology, brown adipose tissue biology, and FGF21 function. There are minor issues that require attention and one important issue regarding the variability in FGF21 levels observed in the knockout model.