10,000 Matching Annotations
  1. Aug 2025
    1. Reviewer #2 (Public review):

      Hawes et al. investigated the role of striatal neurons in the patch compartment of the dorsal striatum. Using Sepw1-Cre line, the authors combined a modified version of the light/dark transition box test that allows them to examine locomotor activity in different environmental valence with a variety of approaches, including cell-type-specific ablation, miniscope calcium imaging, fiber photometry, and opto-/chemogenetics. First, they found ablation of patchy striatal neurons resulted in an increase in movement vigor when mice stayed in a safe area or when they moved back from more anxiogenic to safe environments. The following miniscope imaging experiment revealed that a larger fraction of striatal patchy neurons was negatively correlated with movement speed, particularly in an anxiogenic area. Next, the authors investigated differential activity patterns of patchy neurons' axon terminals, focusing on those in GPe, GPi, and SNr, showing that the patchy axons in SNr reflect movement speed/vigor. Chemogenetic and optogenetic activation of these patchy striatal neurons suppressed the locomotor vigor, thus demonstrating their causal role in the modulation of locomotor vigor when exposed to valence differentials. Unlike the activation of striatal patches, such a suppressive effect on locomotion was absent when optogenetically activating matrix neurons by using the Calb1-Cre line, indicating distinctive roles in the control of locomotor vigor by striatal patch and matrix neurons. Together, they have concluded that nigrostriatal neurons within striatal patches negatively regulate movement vigor, dependent on behavioral contexts where motivational valence differs.

      The strengths of this work include the use of multiple experimental approaches, including genetic/viral ablation of patch neurons, miniscope single-cell imaging, as well as projection-specific recording of axonal activity by fiber photometry, and causal manipulation of the neurons by chemogenetic and optogenetics. Although similar findings were reported previously, the authors' results will be of value owing to multiple levels of investigation. In my view, this study will add to the important literature by demonstrating how patch (striosomal) neurons in the striatum controls movement vigor.

    2. Reviewer #3 (Public review):

      Hawes et al. combined behavioral, optical imaging, and activity manipulation techniques to investigate the role of striatal patch SPNs in locomotion regulation. Using Sepw1-Cre transgenic mice, they found that patch SPNs encode locomotion deceleration in a light-dark box procedure through optical imaging techniques. Moreover, genetic ablation of patch SPNs increased locomotion speed, while chemogenetic activation of these neurons decreased it. The authors concluded that a subtype of patch striatonigral neurons modulates locomotion speed based on external environmental cues.

      In the revision, the authors have largely addressed my concerns with additional explanation and discussion, although some of the key experiments to strengthen the authors' claim by identifying the function of specific cell populations remain to be conducted due to technical challenges. Nevertheless, the current results remain valuable and interesting to a wide audience in the field.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary:

      This fundamental work employed multidisciplinary approaches and conducted rigorous experiments to study how a specific subset of neurons in the dorsal striatum (i.e., "patchy" striatal neurons) modulates locomotion speed depending on the valence of the naturalistic context. 

      Strengths: 

      The scientific findings are novel and original and significantly advance our understanding of how the striatal circuit regulates spontaneous movement in various contexts.  Response: We appreciate the reviewer’s positive evaluation.

      Weaknesses: 

      This is extensive research involving various circuit manipulation approaches. Some of these circuit manipulations are not physiological. A balanced discussion of the technical strengths and limitations of the present work would be helpful and beneficial to the field. Minor issues in data presentation were also noted. 

      We have incorporated the recommended discussion of technical limitations and addressed the physiological plausibility of our manipulations on Page 33 of the revised Discussion section. Specifically, we wrote: 

      “Judicious interpretation of the present data must consider the technical limitations of the various methods and circuit-level manipulations applied. Patchy neurons are distributed unevenly across the extensive structure of the striatum, and their targeted manipulation is constrained by viral spread in the dorsal striatum. Somatic calcium imaging using single-photon microscopy captures activity from only a subset of patchy neurons within a narrow focal plane beneath each implanted GRIN lens. Similarly, limitations in light diffusion from optical fibers may reduce the effective population of targeted fibers in both photometry and optogenetic experiments. For example, the more modest locomotor slowing observed with optogenetic activation of striatonigral fibers in the SNr compared to the stronger effects seen with Gq-DREADD activation across the dorsal striatum could reflect limited fiber optic coverage in the SNr.Alternatively, it may suggest that non-striatonigral mechanisms also contribute to generalized slowing. Our photometry data do not support a role for striatopallidal projections from patchy neurons in movement suppression. The potential contribution of intrastriatal mechanisms, discussed earlier, remains to be empirically tested. Although the behavioral assays used were naturalistic, many of the circuit-level interventions were not. Broad ablation or widespread activation of patchy neurons and their efferent projections represent non-physiological manipulations. Nonetheless, these perturbation results are interpreted alongside more naturalistic observations, such as in vivo imaging of patchy neuron somata and axon terminals, to form a coherent understanding of their functional role”.

      Reviewer #2 (Public review):

      Hawes et al. investigated the role of striatal neurons in the patch compartment of the dorsal striatum. Using Sepw1-Cre line, the authors combined a modified version of the light/dark transition box test that allows them to examine locomotor activity in different environmental valence with a variety of approaches, including cell-type-specific ablation, miniscope calcium imaging, fiber photometry, and opto-/chemogenetics. First, they found ablation of patchy striatal neurons resulted in an increase in movement vigor when mice stayed in a safe area or when they moved back from more anxiogenic to safe environments. The following miniscope imaging experiment revealed that a larger fraction of striatal patchy neurons was negatively correlated with movement speed, particularly in an anxiogenic area. Next, the authors investigated differential activity patterns of patchy neurons' axon terminals, focusing on those in GPe, GPi, and SNr, showing that the patchy axons in SNr reflect movement speed/vigor. Chemogenetic and optogenetic activation of these patchy striatal neurons suppressed the locomotor vigor, thus demonstrating their causal role in the modulation of locomotor vigor when exposed to valence differentials. Unlike the activation of striatal patches, such a suppressive effect on locomotion was absent when optogenetically activating matrix neurons by using the Calb1-Cre line, indicating distinctive roles in the control of locomotor vigor by striatal patch and matrix neurons. Together, they have concluded that nigrostriatal neurons within striatal patches negatively regulate movement vigor, dependent on behavioral contexts where motivational valence differs.

      We are grateful for the reviewer’s thorough summary of our main findings.

      In my view, this study will add to the important literature by demonstrating how patch (striosomal) neurons in the striatum control movement vigor. This study has applied multiple approaches to investigate their functionality in locomotor behavior, and the obtained data largely support their conclusions. Nevertheless, I have some suggestions for improvements in the manuscript and figures regarding their data interpretation, accuracy, and efficacy of data presentation

      We appreciate the reviewer’s overall positive assessment and have made substantial improvements to the revised manuscript in response to reviewers’ constructive suggestions.

      (1) The authors found that the activation of the striatonigral pathway in the patch compartment suppresses locomotor speed, which contradicts with canonical roles of the direct pathway. It would be great if the authors could provide mechanistic explanations in the Discussion section. One possibility is that striatal D1R patch neurons directly inhibit dopaminergic cells that regulate movement vigor (Nadal et al., Sci. Rep., 2021; Okunomiya et al., J Neurosci., 2025). Providing plausible explanations will help readers infer possible physiological processes and give them ideas for future follow-up studies.

      We have added the recommended data interpretation and future perspectives on Page 30 of the revised Discussion section. Specifically, we wrote:

      “Potential mechanisms by which striatal patchy neurons reduce locomotion involve the supression of dopamine availability within the striatum. Dopamine, primarily supplied by neurons in the SNc and VTA,broadly facilitates locomotion (Gerfen and Surmeier 2011, Dudman and Krakauer 2016). Recent studies have shown that direct activation of patchy neurons leads to a reduction in striatal dopamine levels, accompanied by decreased walking speed (Nadel, Pawelko et al. 2021, Dong, Wang et al. 2025, Okunomiya, Watanabe et al. 2025). Patchy neuron projections terminate in structures known as “dendron bouquets”, which enwrap SNc dendrites within the SNr and can pause tonic dopamine neuron firing (Crittenden, Tillberg et al. 2016, Evans, Twedell et al. 2020). The present work highlights a role for patchy striatonigral inputs within the SN in decelerating movement, potentially through GABAergic dendron bouquets that limit dopamine release back to the striatum (Dong, Wang et al. 2025). Additionally, intrastriatal collaterals of patch spiny projection neurons (SPNs) have been shown to suppress dopamine release and associated synaptic plasticity via dynorphin-mediated activation of kappa opioid receptors on dopamine terminals (Hawes, Salinas et al. 2017). This intrastriatal mechanism may further contribute to the reduction in striatal dopamine levels and the observed decrease in locomotor speed, representing a compelling avenue for future investigation.”

      (2) On page 14, Line 301, the authors stated that "Cre-dependent mCheery signals were colocalized with the patch marker (MOR1) in the dorsal striatum (Fig. 1B)". But I could not find any mCherry on that panel, so please modify it.

      We have included representative images of mCherry and MOR1 staining in Supplementary Fig. S1 of the revised manuscript.

      (3) From data shown in Figure 1, I've got the impression that mice ablated with striatal patch neurons were generally hyperactive, but this is probably not the case, as two separate experiments using LLbox and DDbox showed no difference in locomotor vigor between control and ablated mice. For the sake of better interpretation, it may be good to add a statement in Lines 365-366 that these experiments suggest the absence of hyperactive locomotion in general by ablating these specific neurons.

      As suggested by the reviewer, we have added the following statement on Page 17 of the revised manuscript: “These data also indicate that PA elevates valence-specific speed without inducing general hyperactivity”.

      (4) In Line 536, where Figure 5A was cited, the author mentioned that they used inhibitory DREADDs (AAV-DIO-hM4Di-mCherrry), but I could not find associated data on Figure 5. Please cite Figure S3, accordingly.

      We have added the citation for the now Fig. S4 on Page 25 of the revised manuscript.

      (5) Personally, the Figure panel labels of "Hi" and "ii" were confusing at first glance. It would be better to have alternatives.

      As suggested by the reviewer, we have now labeled each figure panel with a distinct single alphabetical letter.

      (6) There is a typo on Figure 4A: tdTomata → tdTomato

      We have made the correction on the figure.

      Reviewer #3 (Public review):

      Hawes et al. combined behavioral, optical imaging, and activity manipulation techniques to investigate the role of striatal patch SPNs in locomotion regulation. Using Sepw1-Cre transgenic mice, they found that patch SPNs encode locomotion deceleration in a light-dark box procedure through optical imaging techniques. Moreover, genetic ablation of patch SPNs increased locomotion speed, while chemogenetic activation of these neurons decreased it. The authors concluded that a subtype of patch striatonigral neurons modulates locomotion speed based on external environmental cues. Below are some major concerns:

      The study concludes that patch striatonigral neurons regulate locomotion speed. However, unless I missed something, very little evidence is presented to support the idea that it is specifically striatonigral neurons, rather than striatopallidal neurons, that mediate these effects. In fact, the optogenetic experiments shown in Fig. 6 suggest otherwise. What about the behavioral effects of optogenetic stimulation of striatonigral versus striatopallidal neuron somas in Sepw1-Cre mice?

      Our photometry data implicate striatonigral neurons in locomotor slowing, as evidenced by a negative cross-correlation with acceleration and a negative lag, indicating that their activity reliably precedes—and may therefore contribute to—deceleration. In contrast, photometry results from striatopallidal neurons showed no clear correlation with speed or acceleration.

      Figure 6 demonstrates that optogenetic manipulation within the SNr of Sepw1-Cre<sup>+</sup> striatonigral axons recapitulated context-dependent locomotor changes seen with Gq-DREADD activation of both striatonigral and striatopallidal Sepw1-Cre<sup>+</sup> cells in the dorsal striatum but failed to produce the broader locomotor speed change observed when targeting all Sepw1-Cre<sup>+</sup> cells in the dorsal striatum using either ablation or Gq-DREADD activation. The more subtle speed-restrictive phenotype resulting from ChR activation in the SNr could, as the reviewer suggests, implicate striatopallidal neurons in broad locomotor speed regulation. However, our photometry data indicate that this scenario is unlikely, as activity of striatopallidal Sepw1-Cre<sup>+</sup> fibers is not correlated with locomotor speed. Another plausible explanation is that the optogenetic approach may have affected fewer striatonigral fibers, potentially due to the limited spatial spread of light from the optical fiber within the SNr. Broad locomotor speed change in LDbox might require the recruitment of a larger number of striatonigral fibers than we were able to manipulate with optogenetics. We have added discussion of these technical limitations to the revised manuscript. Additionally, we now discuss the possibility that intrastriatal collaterals may contribute to reduced local dopamine levels by releasing dynorphin, which acts on kappa opioid receptors located on dopamine fibers (Hawes, Salinas et al. 2017), thereby suppressing dopamine release.

      The reviewer also suggests an interesting experiment involving optogenetic stimulation of striatonigral versus striatopallidal somata in Sepw1-Cre mice. While we agree that this approach would yield valuable insights, we have thus far been unable to achieve reliable results using retroviral vectors. Moreover, selectively targeting striatopallidal terminals optogenetically remains technically challenging, as striatonigral fibers also traverse the pallidum, and the broad anatomical distribution of the pallidum complicates precise targeting. This proposed work will need to be pursued in a future study, either with improved retrograde viral tools or the development of additional mouse lines that offer more selective access to these neuronal populations as we documented recently (Dong, Wang et al. 2025).

      In the abstract, the authors state that patch SPNs control speed without affecting valence. This claim seems to lack sufficient data to support it. Additionally, speed, velocity, and acceleration are very distinct qualities. It is necessary to clarify precisely what patch neurons encode and control in the current study.

      We believe the reviewer’s interpretation pertains to a statement in the Introduction rather than the Abstract: “Our findings reveal that patchy SPNs control the speed at which mice navigate the valence differential between high- and low-anxiety zones, without affecting valence perception itself.” Throughout our study, mice consistently preferred the dark zone in the Light/Dark box, indicating intact perception of the valence differential between illuminated areas. While our manipulations altered locomotor speed, they did not affect time spent in the dark zone, supporting the conclusion that valence perception remained unaltered. We appreciate the reviewer’s insight and agree it is an intriguing possibility that locomotor responses could, over time, influence internal states such as anxiety. We addressed this in the Discussion, noting that while dark preference was robust to our manipulations, future studies are warranted to explore the relationship between anxious locomotor vigor and anxiety itself. We report changes in scalar measures of animal speed across Light/Dark box conditions and under various experimental manipulations. Separately, we show that activity in both patchy neuron somata and striatonigral fibers is negatively correlated with acceleration—indicating a positive correlation with deceleration. Notably, the direction of the cross-correlational lag between striatonigral fiber activity and acceleration suggests that this activity precedes and may causally contribute to mouse deceleration, thereby influencing reductions in speed. To clarify this, we revised a sentence in the Results section:

      “Moreover, patchy neuron efferent activity at the SNr may causally contribute to deceleration, asindicated by the negative cross-correlational lag, thereby reducing animal speed.”. We also updated the Discussion to read: “Together, these data specifically implicate patchy striatonigral neurons in slowing locomotion by acting within the SNr to drive deceleration.”

      One of the major results relies on chemogenetic manipulation (Figure 5). It would be helpful to demonstrate through slice electrophysiology that hM3Dq and hM4Di indeed cause changes in the activity of dorsal striatal SPNs, as intended by the DREADD system. This would support both the positive (Gq) and negative (Gi) findings, where no effects on behavior were observed.

      We were unable to perform this experiment; however, hM3Dq has previously been shown to be effective in striatal neurons (Alcacer, Andreoli et al. 2017). The lack of effect observed in GiDREADD mice serves as an unintended but valuable control, helping to rule out off-target effects of the DREADD agonist JHU37160 and thereby reinforcing the specificity of hM3Dq-mediated activation in our study. We have now included an important caveat regarding the Gi-DREADD results, acknowledging the possibility that they may not have worked effectively in our target cells:

      “Potential explanations for the negative results in Gi-DREADD mice include inherently low basal activity among patchy neurons or insufficient expression of GIRK channels in striatal neurons, which may limit the effectiveness of Gicoupling in suppressing neuronal activity (Shan, Fang et al. 2022).”

      Finally, could the behavioral effects observed in the current study, resulting from various manipulations of patch SPNs, be due to alterations in nigrostriatal dopamine release within the dorsal striatum?

      We agree that this is an important potential implication of our work, especially given that we and others have shown that patchy striatonigral neurons provide strong inhibitory input to dopaminergic neurons involved in locomotor control (Nadel, Pawelko et al. 2021, Lazaridis, Crittenden et al. 2024, Dong, Wang et al. 2025, Okunomiya, Watanabe et al. 2025). Accordingly, we have expanded the discussion section to include potential mechanistic explanations that support and contextualize our main findings.

      Reviewer #1 (Recommendations for the authors):

      Here are some minor issues for the authors' reference:

      (1) This work supports the motor-suppressing effect of patchy SPNs, and >80% of them are direct pathway SPNs. This conclusion is not expected from the traditional basal ganglia direct/indirect pathway model. Most experiments were performed using nonphysiological approaches to suppress (i.e., ablation) or activate (i.e., continuous chemo-optogenetic stimulation). It remains uncertain if the reported observations are relevant to the normal biological function of patchy SPNs under physiological conditions. Particularly, under what circumstances an imbalanced patch/matrix activity may be induced, as proposed in the sections related to the data presented in Figure 6. A thorough discussion and clarification remain needed. Or it should be discussed as a limitation of the present work.

      We have added discussion and clarification of physiological limitations in response to reviewer feedback. Additionally, we revised the opening sentence of an original paragraph in the discussion section to emphasize that it interprets our findings in the context of more physiological studies reporting natural shifts in patchy SPN activity due to cognitive conflict, stress, or training. The revised opening sentence now reads: “Together with previous studies of naturally occurring shifts in patchy neuron activation, these data illustrate ethologically relevant roles for a subgroup of genetically defined patchy neurons in behavior.”

      (2) Lines 499-500: How striato-nigral cells encode speed and deceleration deserves a thorough discussion and clarification. These striatonigral cells can target both SNr GABAergic neurons and dendrites of the dopaminergic neurons. A discussion of microcircuits formed by the patchy SPNs axons in the SNr GABAergic and SNC DAergic neurons should be presented.

      We have added this point at lines 499–500, including a reference to a relevant review of microcircuitry. Additionally, we expanded the discussion section to address microcircuit mechanisms that may underlie our main findings.

      (3) Line 70: "BNST" should be spelled out at the first time it is mentioned.

      This has been done.

      (4) Line 133: only GCaMP6 was listed in the method, but GCaMP8 was also used (Figure 4). Clarification or details are needed.

      Thank you for your careful attention to detail. We have corrected the typographical errors in the Methods section. Specifically, in the Stereotaxic Injections section, we corrected “GCaMP83” to “GCaMP8s.” In the Fiber Implant section, we removed the incorrect reference to “GCaMP6s” and clarified that GCaMP8s was used for photometry, and hChR2 was used for optogenetics.

      (5) Line 183: Can the authors describe more precisely what "a moment" means in terms of seconds or minutes?

      This has been done.

      (6) Line 288: typo: missing / in ΔF

      Thank you this has been fixed

      (7) Line 301-302: the statement of "mCherry and MOR1 colocalization" does not match the images in Figure 1B.

      This has been corrected by proving a new Supplementary Figure S1.

      (8) Related to the statement between Lines 303-304: Figure 1c data may reflect changes in MOR1 protein or cell loss. Quantification of NeuN+ neurons within the MOR1 area would strengthen the conclusion of 60% of patchy cell loss in Figure 1C

      Since the efficacy of AAV-FLEX-taCasp3 in cell ablation has been well established in our previous publications and those of others (Yang, Chiang et al. 2013, Wu, Kung et al. 2019), we do not believe the observed loss of MOR1 staining in Fig. 1C merely reflects reduced MOR1 expression. Moreover, a general neuronal marker such as NeuN may not reliably detect the specific loss of patchy neurons in our ablation model, given the technical limitations of conventional cell-counting methods like MBF’s StereoInvestigator, which typically exhibit a variability margin of 15–20%.

      (9) Lines 313-314: "Similarly, PA mice demonstrated greater stay-time in the dark zone (Figure 1E)." Revision is needed to better reflect what is shown in Figure 1E and avoid misunderstandings.

      Thank you this has been addressed.

      (10) The color code in Figure 2Gi seems inconsistent with the others? Clarifications are needed

      Color coding in Figure 2Gi differs from that in 2Eii out of necessity. For example, the "Light" cells depicted in light blue in 2Eii are represented by both light gray and light red dots in 2Gi. Importantly, Figure 2G does not encode specific speed relationships; instead, any association with speed is indicated by a red hue.

      (11) Lines 538-539: the statement of "Over half of the patch was covered" was not supported by Figure 5C. Clarification is needed.

      Thank you. For clarity, we updated the x-axis labels in Figures 1C and 5C from “% area covered” to “% DS area covered,” and defined “DS” as “dorsal striatal” in the corresponding figure legends. Additionally, we revised the sentence in question to read: “As with ablation, histological examination indicated that a substantial fraction of dorsal patch territories, identified through MOR1 staining, were impacted (Fig. 5C).”

      (12) Figure 3: statistical significance in Figure 3 should be labeled in various panels.

      We believe the reviewer's concern pertains to the scatter plot in panel F—specifically, whether the data points are significantly different from zero. In panel 3F, the 95% confidence interval clearly overlaps with zero, indicating that the results are not statistically significant.

      (13) Figures 6D-E: no difference in the speed of control mice and ChR2 mice under continuous optical stimulation was not expected. It was different from Gq-DRADDS study in Figure 5E-F. Clarifications are needed.

      For mice undergoing constant ChR2 activation of Sepw1-Cre+ SNr efferents, overall locomotor speed does not differ from controls. However, the BIL (bright-to-illuminated) effect on zone transitions isdisrupted: activating Sepw1-Cre<sup>+ </sup> fibers in the SNr blunts the typical increase in speed observed when mice flee from the light zone toward the dark zone. This impaired BIL-related speed increase upon exiting the light was similarly observed in the Gq-DREADD cohort. The reviewer is correct that this optogenetic manipulation within the SNr did not produce the more generalized speed reductions seen with broader Gq-DREADD activation of all Sepw1-Cre<sup>+ </sup> cells in the dorsal striatum. A likely explanation is the difference in targeting—ChR2 specifically activates SNr-bound terminals, whereas Gq-DREADD broadly activates entire Sepw1-Cre<sup>+ </sup> cells. Notably, many of the generalized speed profile changes observed with chemogenetic activation are opposite to those resulting from broad ablation of Sepw1-Cre<sup>+ </sup> cells. The more subtle speed-restrictive phenotype observed with ChR2 activation targeted to the SNr may suggest that fewer striatonigral fibers were affected by this technique, possibly due to the limited spread of light from the fiber optic. Broad locomotor speed change in LDbox might require the recruitment of a larger number of striatonigral fibers than we were able to manipulate with an optogenetic approach. Alternatively, it could indicate that non-striatonigral Sepw1-Cre<sup>+ </sup> projections—such as striatopallidal or intrastriatal pathways—play a role in more generalized slowing. If striatopallidal fibers contributed to locomotor slowing, we would expect to see non-zero cross-correlations between neural activity and speed or acceleration, along with negative lag indicating that neural activity precedes the behavioral change. However, our fiber photometry data do not support such a role for Sepw1-Cre<sup>+ </sup> striatopallidal fibers. We have also referenced the possibility that intrastriatal collaterals could suppress striatal dopamine levels, potentially explaining the stronger slowing phenotype observed when the entire striatal population is affected, as opposed to selectively targeting striatonigral terminals. These technical considerations and interpretive nuances have been incorporated and clarified in the revised discussion section.

      (14) Lines 632: "compliment": a typo?

      Yes, it should be “complement”.

      (15) Figure 4 legend: descriptions of panels A and B were swapped

      Thank you. This has been corrected.

      (16) Friedman (2020) was listed twice in the bibliography (Lines 920-929).

      Thank you. This has been corrected.

      Reviewer #3 (Recommendations for the authors):

      It will be helpful to label and add figure legends below each figure.

      Thank you for the suggestion.

      Editor's note:

      Should you choose to revise your manuscript, if you have not already done so, please include full statistical reporting including exact p-values wherever possible alongside the summary statistics (test statistic and df) and, where appropriate, 95% confidence intervals. These should be reported for all key questions and not only when the p-value is less than 0.05 in the main manuscript. We noted some instances where only p values are reported.

      Readers would also benefit from coding individual data points by sex and noting N/sex

      We have included detailed statistical information in the revised manuscript. Both male and female mice were used in all experiments in approximately equal numbers. Since no sex-related differences were observed, we did not report the number of animals by sex.

      References

      Alcacer, C., L. Andreoli, I. Sebastianutto, J. Jakobsson, T. Fieblinger and M. A. Cenci (2017). "Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy." J Clin Invest 127(2): 720-734.

      Crittenden, J. R., P. W. Tillberg, M. H. Riad, Y. Shima, C. R. Gerfen, J. Curry, D. E. Housman, S. B. Nelson, E. S. Boyden and A. M. Graybiel (2016). "Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons." Proc Natl Acad Sci U S A 113(40): 1131811323.

      Dong, J., L. Wang, B. T. Sullivan, L. Sun, V. M. Martinez Smith, L. Chang, J. Ding, W. Le, C. R. Gerfen and H. Cai (2025). "Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion." Nat Commun 16(1): 2710.

      Dudman, J. T. and J. W. Krakauer (2016). "The basal ganglia: from motor commands to the control of vigor." Curr Opin Neurobiol 37: 158-166.

      Evans, R. C., E. L. Twedell, M. Zhu, J. Ascencio, R. Zhang and Z. M. Khaliq (2020). "Functional Dissection of Basal Ganglia Inhibitory Inputs onto Substantia Nigra Dopaminergic Neurons." Cell Rep 32(11): 108156.

      Gerfen, C. R. and D. J. Surmeier (2011). "Modulation of striatal projection systems by dopamine." Annual review of neuroscience 34: 441-466.

      Hawes, S. L., A. G. Salinas, D. M. Lovinger and K. T. Blackwell (2017). "Long-term plasticity of corticostriatal synapses is modulated by pathway-specific co-release of opioids through kappa-opioid receptors." J Physiol 595(16): 5637-5652.

      Lazaridis, I., J. R. Crittenden, G. Ahn, K. Hirokane, T. Yoshida, A. Mahar, V. Skara, K. Meletis, K.Parvataneni, J. T. Ting, E. Hueske, A. Matsushima and A. M. Graybiel (2024). "Striosomes Target Nigral Dopamine-Containing Neurons via Direct-D1 and Indirect-D2 Pathways Paralleling Classic DirectIndirect Basal Ganglia Systems." bioRxiv.

      Nadel, J. A., S. S. Pawelko, J. R. Scott, R. McLaughlin, M. Fox, M. Ghanem, R. van der Merwe, N. G. Hollon, E. S. Ramsson and C. D. Howard (2021). "Optogenetic stimulation of striatal patches modifies habit formation and inhibits dopamine release." Sci Rep 11(1): 19847.

      Okunomiya, T., D. Watanabe, H. Banno, T. Kondo, K. Imamura, R. Takahashi and H. Inoue (2025).

      "Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion." J Neurosci 45(4).

      Shan, Q., Q. Fang and Y. Tian (2022). "Evidence that GIRK Channels Mediate the DREADD-hM4Di Receptor Activation-Induced Reduction in Membrane Excitability of Striatal Medium Spiny Neurons." ACS Chem Neurosci 13(14): 2084-2091.

      Wu, J., J. Kung, J. Dong, L. Chang, C. Xie, A. Habib, S. Hawes, N. Yang, V. Chen, Z. Liu, R. Evans, B. Liang, L. Sun, J. Ding, J. Yu, S. Saez-Atienzar, B. Tang, Z. Khaliq, D. T. Lin, W. Le and H. Cai (2019). "Distinct Connectivity and Functionality of Aldehyde Dehydrogenase 1a1-Positive Nigrostriatal Dopaminergic Neurons in Motor Learning." Cell Rep 28(5): 1167-1181 e1167.

      Wu, J., J. Kung, J. Dong, L. Chang, C. Xie, A. Habib, S. Hawes, N. Yang, V. Chen, Z. Liu, R. Evans, B. Liang, L. Sun, J. Ding, J. Yu, S. Saez-Atienzar, B. Tang, Z. Khaliq, D. T. Lin, W. Le and H. Cai (2019). "Distinct Connectivity and Functionality of Aldehyde Dehydrogenase 1a1-Positive Nigrostriatal Dopaminergic Neurons in Motor Learning." Cell Rep 28(5): 1167-1181 e1167.

    1. eLife Assessment

      In this manuscript, Park et al. developed a multiplexed CRISPR construct to genetically ablate the GABA transporter GAT3 in the mouse visual cortex, with effects on population-level neuronal activity. This work is important, as it sheds light on how GAT3 controls the processing of visual information. The findings are compelling, leveraging state-of-the-art gene CRISPR/Cas9, in vivo two-photon laser scanning microscopy, and advanced statistical modeling.

    2. Reviewer #1 (Public review):

      Summary:

      The authors have investigated the role of GAT3 in the visual system. First, they have developed a CRISPR/Cas9-based approach to locally knock out this transporter in the visual cortex. They then demonstrated electrophysiologically that this manipulation increases inhibitory synaptic input into layer 2/3 pyramidal cells. They further examined the functional consequences by imaging neuronal activity in the visual cortex in vivo. They found that absence of GAT3 leads to reduced spontaneous neuronal activity and attenuated neuronal responses and reliability to visual stimuli, but without an effect on orientation selectivity. Further analysis of this data suggests that Gat3 removal leads to less coordinated activity between individual neurons and in population activity patterns, thereby impaired information encoding. Overall, this is an elegant and technically advanced study that demonstrates a new and important role of GAT3 in controlling processing of visual information.

      Strengths:

      Development of a new approach for a local knockout (GAT3)

      Important and novel insights into visual system function and its dependence on GAT3

      Plausible cellular mechanism

      Weaknesses:

      No major weaknesses.

    3. Reviewer #2 (Public review):

      Summary:

      Park et al. has made a tool for spatiotemporally restricted knockout of the astrocytic GABA transporter GAT3 leveraging CRISPR/Cas9 and viral transduction in adult mice, and evaluated the effects of GAT3 on neural encoding of visual stimulation.

      Strengths:

      This concise manuscript leverages state-of-the-art gene CRISPR/Cas9 technology for knocking out astrocytic genes. This has to a little degree been preformed previously in astrocytes and represents an important development in the field. Moreover they utilize in vivo two-photon imaging of neural responses to visual stimuli as a readout of neural activity, in addition to validating their data with ex vivo electrophysiology. Lastly, they use advanced statistical modeling to analyze the impact on GAT3 knockout. Overall, the study comes across as rigorous and convincing.

      Weaknesses:

      Adding the following experiments would potentially have strengthened the conclusions and helped interpret the findings, although may be considered outside the scope of this manuscript, and be pursued in future work:

      (1) Neural activity is quite profoundly influenced by GAT3 knockout. Corroborating these relatively large changes to neural activity with in vivo electrophysiology of some sort as an additional readout would have strengthened the conclusions.

      (2) Given the quite large effects on neural coding in visual cortex assessed with jRGECO imaging it would have been interesting the mouse groups could have been subjected to behavioral testing assessing the visual system.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors have investigated the role of GAT3 in the visual system. First, they have developed a CRISPR/Cas9-based approach to locally knock out this transporter in the visual cortex. They then demonstrated electrophysiologically that this manipulation increases inhibitory synaptic input into layer 2/3 pyramidal cells. They further examined the functional consequences by imaging neuronal activity in the visual cortex in vivo. They found that the absence of GAT3 leads to reduced spontaneous neuronal activity and attenuated neuronal responses and reliability to visual stimuli, but without an effect on orientation selectivity. Further analysis of this data suggests that Gat3 removal leads to less coordinated activity between individual neurons and in population activity patterns, thereby impairing information encoding. Overall, this is an elegant and technically advanced study that demonstrates a new and important role of GAT3 in controlling the processing of visual information.

      We are grateful to the reviewer for their positive appraisal of our work, including our technical advances and our demonstration of how cortical astrocytes play a role in visual information processing by neurons via GAT3-mediated regulation of activity.

      Strengths:

      (1)  Development of a new approach for a local knockout (GAT3).

      (2)  Important and novel insights into visual system function and its dependence on GAT3.

      (3)  Plausible cellular mechanism.

      Weaknesses:

      No major weaknesses were identified by this reviewer.

      We thank the reviewer for highlighting the strengths of our study, including the development of a novel local knockout strategy for GAT3, the discovery of important functional consequences for visual system processing, and the identification of a plausible underlying cellular mechanism.

      Reviewer #2 (Public review):

      Summary:

      Park et al. have made a tool for spatiotemporally restricted knockout of the astrocytic GABA transporter GAT3, leveraging CRISPR/Cas9 and viral transduction in adult mice, and evaluated the effects of GAT3 on neural encoding of visual stimulation.

      Strengths:

      This concise manuscript leverages state-of-the-art gene CRISPR/Cas9 technology for knocking out astrocytic genes. This has only to a small degree been performed previously in astrocytes, and it represents an important development in the field. Moreover, the authors utilize in vivo two-photon imaging of neural responses to visual stimuli as a readout of neural activity, in addition to validating their data with ex vivo electrophysiology. Lastly, they use advanced statistical modeling to analyze the impact of GAT3 knockout. Overall, the study comes across as rigorous and convincing.

      We appreciate the reviewer’s endorsement of our experimental rigor and methodological innovation. We agree that combining in vivo and ex vivo measurements with rigorous analytical methods strengthens the overall conclusions of the study and demonstrates the important role of astrocytic GAT3 in cortical visual processing.

      Weaknesses:

      Adding the following experiments would potentially have strengthened the conclusions and helped with interpreting the findings:

      (1) Neural activity is quite profoundly influenced by GAT3 knockout. Corroborating these relatively large changes to neural activity with in vivo electrophysiology of some sort as an additional readout would have strengthened the conclusions.

      We agree that further investigation of neuronal activity at higher temporal resolution would provide valuable complementary data, particularly given the profound effects we observed using a pan-neuronal calcium indicator. Detailed in vivo electrophysiology—such as large-scale Neuropixel recordings—would allow assessment of single-neuron spiking dynamics and potentially cell-type specific responses following GAT3 deletion. While such an investigation is beyond the scope of the current study, we concur that it would be an important follow-up direction to further dissect the effects of GAT3 knockout on neuron activity profiles at both single-cell and population levels.

      (2) Given the quite large effects on neural coding in visual cortex assessed på jRGECO imaging, it would have been interesting if the mouse groups could have been subjected to behavioral testing, assessing the visual system.

      We appreciate the reviewer’s suggestion to explore potential behavioral consequences of GAT3 deletion. Based on our observed alterations in visual cortical activity, we agree that GAT3 knockout could impact visual discrimination-based behaviors. Astrocytes in the visual cortex are highly tuned to sensory and motor events and are generally known to shape behavioral outputs (Slezak et al., 2019; Kofuji & Araque, 2021). Our study suggests that regulation of inhibitory signaling via GAT3 transporters is a possible mechanism by which astrocytes influence visually guided behaviors. Although behavioral assessments fall beyond the scope of the current work, we agree with the reviewer’s suggestion and will pursue future experiments employing paradigms such as go/no-go visual detection or two-alternative forced choice to determine whether astrocytic GAT3 modulates visually guided behaviors and perceptual decisionmaking.  

      Reviewer #1 (Recommendations for the authors):

      It could be more clearly stated from the very beginning that a method was developed and used which, by itself, apparently has no cell type selectivity. It is highly plausible that the effects are mostly due to the absence of astrocytic GAT3, as discussed by the authors, but the distinction of what has been done and what is interpretation based on the literature is occasionally a bit blurry. This is also important because there are CRISPR/Cas9-based approaches that are astrocyte-specific (e.g., GEARBOCS).

      We thank the reviewer for this helpful suggestion. As noted, our current approach does not confer celltype specificity on its own. Although our interpretation—supported by expression patterns and prior literature—attributes the observed effects primarily to astrocytic GAT3 loss, we agree that this distinction should be explicitly stated. We have revised the Introduction section (lines 83-87) to clarify that while MRCUTS allows for local gene knockout, it is not inherently cell-type specific unless combined with celltype restricted Cre drivers, as is possible in future applications.

      A change of ambient GABA following GAT3 deletion is central to the proposed cellular mechanism. Demonstrating this directly would strengthen the manuscript (e.g., changed tonic GABAergic current in the absence of GAT3, and insensitivity to SNAP-5114).

      While we recognize that directly quantifying ambient GABA levels would further strengthen our study, substantial evidence supports the role of GABA transporters in coordinately regulating both phasic and tonic inhibition and cellular excitability (Kinney, 2005; Keros & Hablitz, 2005; Semyanov et al. 2003).

      Moreover, tonic GABA currents have been shown to strongly correlate with phasic inhibitory bursts (Glykys & Mody, 2007; Farrant & Nusser, 2005; Ataka & Gu, 2006), suggesting shared underlying regulatory mechanisms. Furthermore, as the reviewer correctly points out, alternative mechanisms such as non-vesicular GABA release or disinhibition via interneuron suppression cannot be excluded (also discussed in Kinney 2005). Given these considerations, we prioritized sIPSC measurements as a more integrative and reliable proxy for altered GABAergic signaling in L2/3 pyramidal neurons. We have revised the Discussion section (lines 329-333) to explain our choice of approach for further clarification.

      We also agree it would be of interest to test whether GAT3 KO neurons exhibit insensitivity to SNAP-5114, both ex vivo and in vivo. However, based on our SNAP-5114 application experiments in vivo, which revealed only subtle effects on single-neuron properties (Figure S2A-F), we anticipate that interpreting a lack of effect in the KO condition would be challenging and potentially inconclusive.  

      References

      Ataka, T. & Gu, J. G. Relationship between tonic inhibitory currents and phasic inhibitory activity in the spinal cord lamina II region of adult mice. Mol. Pain. (2006).  

      Bright, D. & Smart, T. Methods for recording and measuring tonic GABAA receptor-mediated inhibition. Front. Neural Circuits. 7, (2013).

      Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 6, 215–229 (2005).  

      Glykys, J. & Mody, I. Activation of GABAA Receptors: Views from Outside the Synaptic Cleft. Neuron. 56, 763-770 (2007).

      Keros, S. & Hablitz, J. J. Subtype-Specific GABA Transporter Antagonists Synergistically Modulate Phasic and Tonic GABAA Conductances in Rat Neocortex. J. Neurophysiol. 94, 2073–2085 (2005).

      Kinney, G. A. GAT-3 Transporters Regulate Inhibition in the Neocortex. J. Neurophysiol. 94, 4533–4537 (2005).

      Kofuji, P. & Araque, A. Astrocytes and Behavior. Annu. Rev. Neurosci. 44, 49–67 (2021).

      Semyanov, A., Walker, M. & Kullmann, D. GABA uptake regulates cortical excitability via cell type–specific tonic inhibition. Nat. Neurosci. 6, 484–490 (2003).

      Slezak, M., Kandler, S., Van Veldhoven, P. P., Van den Haute, C., Bonin, V. & Holt, M.G. Distinct

      Mechanisms for Visual and Motor-Related Astrocyte Responses in Mouse Visual Cortex. Curr. Biol. 18, 3120-3127 (2019).

    1. It’s vinyl, and $500 grand is firmly in Hardie®™© Board territory.

      Apparently, Hardie is a brand of house siding. The implication of which I do not know.

    1. Sorozatokra vonatkozó Fedezeti ügyletekhez kapcsolódó számla száma. Ha sorozatra vonatkozik a fedezeti ügylet, kötelező rögzíteni. Hedge típusú számlák választhatóak ki.

      Hedging account: Account number related to Hedging transactions linked to series. If the there could be hedging transaction recorded to the series, than it must be must be set. Hedge type accounts can be selected.

    2. A kiválasztott Instrumentum (Sorozat befektetési jegyének) ISIN kódja és a sorozat Devizája automatikusan töltődik az Instrumentum törzsadatából.

      "The ISIN code of the selected Instrument (Instrument of Series investment unit) and the currency are automatically filled from the Instrument's base data."

    3. A rögzítés feltétele, hogy a befektetési jegy rögzítésre kerüljön instrumentumként.

      Helyes angol szöveg: "The condition for registration is that the investment unit is registered as an instrument. "

    4. A kitöltés előfeltétele, hogy a befektetési jegyek, illetve - ha a Pénztárak és Biztosítók értékelése unit alapú, - akkor az elszámolási egységek Instrumentumként rögzítésre kerüljenek.

      A perquisition for data recording is, if the valuation of Funds or Insurance portfolios are unit-based, than the related units are recorded as Instruments.

    5. Befektetési alapok sorozatainak, valamint Pénztárak és Biztosítók esetén a portfóliók unitjainak jellemzői adhatóak meg a Sorozatok fülön.

      A helyes nagol fordítás: "On the Share classes tab, the characteristics of investment fund series, and in the case of Funds or Insurance companies, the units of portfolios can be specified."

    6. Ebben választható ki az adott Ügyfél, majd a törzsadataiban rögzített Számla. A modal megjelenő mezői az alábbiak:

      Helyes angol szöveg: "In this field the Client can be selected, then the Account recorded in its base data."

    7. Az Általános adatok fül adatainak kitöltését követően a Mentés gombbal menthetőek el az adatok, és ekkor jelennek meg a portfólió további tabfülei.

      Helyes angol fordítás: "After filling the data on the General data tab, the data can be saved with the Save button, after that further tabs of the portfolio appear."

    8. NAV rekonsziliálás csoport: Alapkezelő/Letétkezelő partnerrel azon portfólió csoportja, amelyre a nettó eszközérték ellenőrzés vonatkozik. Az ellenőrzendő NAV fájlt azonosítja. Értékkészlete: Ügyfélspecifikus

      Helyes angol fordítás: "NAV reconciliation group: Group of portfolio at the Asset Manager/Custodian partner to which the net asset value checking applies. Identifies the NAV reconciliation file . Values: Client-specific"

    9. MNB 30 jelentések esetén a portfólió azonosító kódja

      Helyes angol fordítás: The identifier code for the portfolio for MNB 30 reports

    10. Befektetési jegyek esetén az első sorozat ISIN kódja (akkor is, ha az lezárásra kerül) Pénztári, biztosító portfóliók esetén a pénztár illetve a biztosító által megadott kód

      Helyesangol fordítás: Helyes angol szöveg: "In case of investment fund units, the ISIN code of the first series (even if it is closed) In case of other funds or insurance, portfolios, the code provided by the fund or insurer"

    11. A Portfólió NAV adatainak megtekintése során - az értékelés sorra duplán kattintva- alapbeállításként az első tab részletes adatai jelennek meg. A további tabok részletes adatai pedig a tabok elnevezésére kattintva érhetőek el. Az aktuális nézetben megjelenő tab elnevezése kék betűkkel, aláhúzással jelölt.

      During viewing the Portfolio NAV data by double-clicking on the valuation row by default, the detailed data of the first tab are displayed. The detailed data of the other tabs can be accessed by clicking on the names of the tabs. The currently displayed tab page name is marked in underlined, blue letters.

    12. A portfólió vonatkozásban vizsgálandó befektetési korlátok halmazát tartalmazó Limitcsoport(ok) rendelhetőek hozzá a portfólióhoz

      Helyes angol fordítás: "Limit group(s) assigment to the portfolio. A limit group contains the set of investment restrictions to be examined"

    13. Portfólióra érvényes értékelési szabály és a Portfólió értékelés típus portfólióhoz történő hozzárendelése

      Helyes angol fordítás: "Assigment of valuation rule and valuation type for the portfolio"

    14. A portfólió jellemzőinek rögzítése tabfüleken rendezett adatcsoportok feltöltésével végezhető el.

      Helyes angol fordítás: The recording of portfolio related base data can be performed by entering values on dedicated tabpages.

    1. Problem-posing education, as a humanist and liberating praxis, posits as fundamental that the people subjected to domination must fight for their emancipation

      It is the role of those who have intellect to spread that intellect and foster it in future generations. According to Anthropology (the study of humans), we are social creatures; in ages past, we passed down our history orally from generation to generation. With the emergence of the internet and social media, that onus to pass on our wisdom has not changed and it becomes more critical now than ever. If we allow misinformation to creep into the societal consensus for truth, then the disadvantaged will only become more disadvantaged as literacy rate plummet, and access to jobs that are AI-proof evaporate due to demand and more skilled applicants seeking entry. Education and skill are both tools we can use to navigate a highly competitive society and break the damning cycle of oppression.

    2. the banking method directly or indirectly reinforces men's fatalistic perception of their situation,

      Design idea to disrupt fatalism: mastery paths, revision cycles, and public products build efficacy and purpose. The ability to track progress and revise work helps individuals build toward their goals. According to Marzano, goal setting is best practice for K12 students to understand the purpose of the day's lessons. It is my supposition that goal setting would naturally extend to adults; however, this requires further research. Although the supposition seems reasonable since goal setting is that reflective carrot we dangle before ourselves to urge us ever onwards.

    3. Problem-posing education is revolutionary futurity.

      Thinking of life's situations as problems that require a solution fuels innovation within our societal framework and births creativity (Bloom's Revised Pyramid's pinnacle). The ability to think outside of the standard deviation of thoughts further enhances human potential.

    4. Problem-posing education affirms men and women as beings in the process of becoming

      Adult learning identity work: include reflective e-portfolios that show growth over time rather than teaching to criterion-referenced tests. Design and Development (as well as personal growth) is an iterative and lifelong process. If we consider Lean Six Sigma principles, a majority of problems people face in an institution are Process problems, and rarely people problems; therefore, the process of learning aims to eliminate inefficiencies that hold us back from becoming the best people we are capable of being.

    5. authority must be on the side of freedom, not against it.

      Instructor presence should scaffold autonomy (choice boards, contract grading, portfolios) rather than enforce compliance for its own sake.

    6. Problem-posing" education, responding to the essence of consciousness—intentionality—rejects communiques and embodies communication.

      Dialogue as method. Operationalize via protocols (Socratic circles, peer review rubrics) that make turn-taking and questioning explicit.

    7. the interests of the oppressors lie in "changing the consciousness of the oppressed, not the situation which oppresses them"

      Beware trainings that target attitudes while leaving structures intact. Pair mindset work with structural change projects. This also illustrates the struggle we face in Capitalism; the struggle between Wealthy and Impoverished.

    8. Education thus becomes an act of depositing, in which the students are the depositories and the teacher is the depositor. Instead of communicating, the teacher issues communiques and makes deposits which the students patiently receive, memorize, and repeat.

      The banking model can be critiqued through heutagogy (self-determined learning). This makes me think of how corporate LMS systems often "deposit" compliance modules without engaging learners in authentic practice. How can we shift these designs to be more problem-posing, even within restrictive corporate or K-12 mandates?

    9. Narration (with the teacher as narrator) leads the students to memorize mechanically the narrated content.

      This is analogous to drill-and-kill software in edtech that promotes rote learning. It's a reminder to incorporate Gagne's conditions of learning--especially feedback, practice, application--to present surface-level memorization.

    10. Education is suffering from narration sickness.

      Friere critiques the traditional model where teachers merely deliver information. In instructional design terms, this aligns with transmission-focused pedagogy, which ignores learner agency. As an LDT student, I recognize the parallels modern critiques of lecture-based elearning modules that fail to foster interactivty or meaningful engagement.

    1. After reading an essay, most people feel more confident talking about the content of the piece than about the writer’s style.

      I completely agree with this statement. After reading a text the first time, I can recall what it was about, but I often fail to identify any of the writing choices that the author made in regards to their personal style. It usually takes reading the text a few times to notice the hidden meanings behind some of their descriptions, or to comment on the style of writing that was employed.

    2. To m o v e f r o m r e a d i n g t o w r i t i n g , y o u n e e d t o r e a d a c t i v e l y, i n a t h o u g h t -ful spirit, and with an alert, inquiring mind. Reading actively means learning how to analyze what you read.

      Active reading is more than just going through the words. It is about paying attention to what is being said and how it is being said. This conscious effort to pay attention helps you notice the patterns in the text and the choices the writer makes, helping you discern what they mean when making such choices. It definitely takes focus. For example, when you are tired and reading the same paragraph over and over again, you are not taking in the text and reading actively. This is a mostly universal experience that stresses the importance of active reading.

    1. I'm glad everyone is welcome in our environment. I cannot wait to participate in our space. (I cannot figure out how to annotate, this is the best I got)

    1. You’ll also be invited to draw and reflect on your existing knowledge, using the writing process to see your experiences in newways.

      This is something that I have always enjoyed about writing. It allows you to incorporate new information into any previous experiences you might have. The combination of these things often leads to new insights and ways of thinking.

    2. Writing is making transformation visible. Your own transformation and your hope to transform the lives of others

      This statement is great in setting expectations for our writing, ensuring it has meaning both for ourselves and others. This will help immensely in any projects that we have this semester.

    3. All work turned in must adhere to the following format. Work submitted that does not adhere to this formatting will not receive credit.

      This is an extremely helpful resource, as a handful of classes I have taken in the past have not introduced how to format work. Including an example is a great tool as well, ensuring that we can verify we have the correct formatting before turning in an assignment.

    1. eLife Assessment

      This important study presents a cross-species and cross-disciplinary analysis of cortical folding. The authors use a combination of physical gel models, computational simulations, and morphometric analysis, extending prior work in human brain development to macaques and ferrets. The findings support the hypothesis that mechanical forces driven by differential growth can account for major aspects of gyrification. The evidence presented, though limited in certain species-specific and parametric details, is overall strong and convincingly supports the central claims; the findings will be of broad interest in developmental neuroscience.

    2. Reviewer #1 (Public review):

      The manuscript by Yin and colleagues addresses a long-standing question in the field of cortical morphogenesis, regarding factors that determine differential cortical folding across species and individuals with cortical malformations. The authors present work based on a computational model of cortical folding evaluated alongside a physical model that makes use of gel swelling to investigate the role of a two-layer model for cortical morphogenesis. The study assesses these models against empirically derived cortical surfaces based on MRI data from ferret, macaque monkey, and human brains.

      The manuscript is clearly written and presented, and the experimental work (physical gel modeling as well as numerical simulations) and analyses (subsequent morphometric evaluations) are conducted at the highest methodological standards. It constitutes an exemplary use of interdisciplinary approaches for addressing the question of cortical morphogenesis by bringing together well-tuned computational modeling with physical gel models. In addition, the comparative approaches used in this paper establish a foundation for broad-ranging future lines of work that investigate the impact of perturbations or abnormalities during cortical development.

      The cross-species approach taken in this study is a major strength of the work. However, correspondence across the two methodologies did not appear to be equally consistent in predicting brain folding across all three species. The results presented in Figures 4 (and Figures S3 & S4) show broad correspondence in shape index and major sulci landmarks across all three species. Nevertheless, the results presented for the human brain lack the same degree of clear correspondence for the gel model results as observed in the macaque and ferret. While this study clearly establishes a strong foundation for comparative cortical anatomy across species and the impact of perturbations on individual morphogenesis, further work that fine-tunes physical modeling of complex morphologies, such as that of the human cortex, may help to further understand the factors that determine cortical functionalization and pathologies.

    3. Reviewer #2 (Public review):

      This manuscript explores the mechanisms underlying cerebral cortical folding using a combination of physical modelling, computational simulations, and geometric morphometrics. The authors extend their prior work on human brain development (Tallinen et al., 2014; 2016) to a comparative framework involving three mammalian species: ferrets (Carnivora), macaques (Old World monkeys), and humans (Hominoidea). By integrating swelling gel experiments with mathematical differential growth models, they simulate sulcification instability and recapitulate key features of brain folding across species. The authors make commendable use of publicly available datasets to construct 3D models of fetal and neonatal brain surfaces: fetal macaque (ref. [26]), newborn ferret (ref. [11]), and fetal human (ref. [22]).

      Using a combination of physical models and numerical simulations, the authors compare the resulting folding morphologies to real brain surfaces using morphometric analysis. Their results show qualitative and quantitative concordance with observed cortical folding patterns, supporting the view that differential tangential growth of the cortex relative to the subcortical substrate is sufficient to account for much of the diversity in cortical folding. This is a very important point in our field, and can be used in the teaching of medical students.

      Brain folding remains a topic of ongoing debate. While some regard it as a critical specialization linked to higher cognitive function, others consider it an epiphenomenon of expansion and constrained geometry. This divergence was evident in discussions during the Strüngmann Forum on cortical development (Silver et al., 2019). Though folding abnormalities are reliable indicators of disrupted neurodevelopmental processes (e.g., neurogenesis, migration), their relationship to functional architecture remains unclear. Recent evidence suggests that the absolute number of neurons varies significantly with position-sulcus versus gyrus-with potential implications for local processing capacity (e.g., https://doi.org/10.1002/cne.25626). The field is thus in need of comparative, mechanistic studies like the present one.

      This paper offers an elegant and timely contribution by combining gel-based morphogenesis, numerical modelling, and morphometric analysis to examine cortical folding across species. The experimental design - constructing two-layer PDMS models from 3D MRI data and immersing them in organic solvents to induce differential swelling - is well-established in prior literature. The authors further complement this with a continuum mechanics model simulating folding as a result of differential growth, as well as a comparative analysis of surface morphologies derived from in vivo, in vitro, and in silico brains.

      I offer a few suggestions here for clarification and further exploration:

      Major Comments

      (1) Choice of Developmental Stages and Initial Conditions

      The authors should provide a clearer justification for the specific developmental stages chosen (e.g., G85 for macaque, GW23 for human). How sensitive are the resulting folding patterns to the initial surface geometry of the gel models? Given that folding is a nonlinear process, early geometric perturbations may propagate into divergent morphologies. Exploring this sensitivity-either through simulations or reference to prior work-would enhance the robustness of the findings.

      (2) Parameter Space and Breakdown Points

      The numerical model assumes homogeneous growth profiles and simplifies several aspects of cortical mechanics. Parameters such as cortical thickness, modulus ratios, and growth ratios are described in Table II. It would be informative to discuss the range of parameter values for which the model remains valid, and under what conditions the physical and computational models diverge. This would help delineate the boundaries of the current modelling framework and indicate directions for refinement.

      (3) Neglected Regional Features: The Occipital Pole of the Macaque

      One conspicuous omission is the lack of attention to the occipital pole of the macaque, which is known to remain smooth even at later gestational stages and has an unusually high neuronal density (2.5× higher than adjacent cortex). This feature is not reproduced in the gel or numerical models, nor is it discussed. Acknowledging this discrepancy-and speculating on possible developmental or mechanical explanations-would add depth to the comparative analysis. The authors may wish to include this as a limitation or a target for future work.

      (4) Spatio-Temporal Growth Rates and Available Human Data

      The authors note that accurate, species-specific spatio-temporal growth data are lacking, limiting the ability to model inhomogeneous cortical expansion. While this may be true for ferret and macaque, there are high-quality datasets available for human fetal development, now extended through ultrasound imaging (e.g., https://doi.org/10.1038/s41586-023-06630-3). Incorporating or at least referencing such data could improve the fidelity of the human model and expand the applicability of the approach to clinical or pathological scenarios.

      (5) Future Applications: The Inverse Problem and Fossil Brains

      The authors suggest that their morphometric framework could be extended to solve the inverse growth problem-reconstructing fetal geometries from adult brains. This speculative but intriguing direction has implications for evolutionary neuroscience, particularly the interpretation of fossil endocasts. Although beyond the scope of this paper, I encourage the authors to elaborate briefly on how such a framework might be practically implemented and validated.

      Conclusion

      This is a well-executed and creative study that integrates diverse methodologies to address a longstanding question in developmental neurobiology. While a few aspects-such as regional folding peculiarities, sensitivity to initial conditions, and available human data-could be further elaborated, they do not detract from the overall quality and novelty of the work. I enthusiastically support this paper and believe that it will be of broad interest to the neuroscience, biomechanics, and developmental biology communities.

      Note: The paper mentions a companion paper [reference 11] that explores the cellular and anatomical changes in the ferret cortex. I did not have access to this manuscript, but judging from the title, this paper might further strengthen the conclusions.

    4. Author response:

      Reviewer 1 (Public review):

      The manuscript by Yin and colleagues addresses a long-standing question in the field of cortical morphogenesis, regarding factors that determine differential cortical folding across species and individuals with cortical malformations. The authors present work based on a computational model of cortical folding evaluated alongside a physical model that makes use of gel swelling to investigate the role of a two-layer model for cortical morphogenesis. The study assesses these models against empirically derived cortical surfaces based on MRI data from ferret, macaque monkey, and human brains.

      The manuscript is clearly written and presented, and the experimental work (physical gel modeling as well as numerical simulations) and analyses (subsequent morphometric evaluations) are conducted at the highest methodological standards. It constitutes an exemplary use of interdisciplinary approaches for addressing the question of cortical morphogenesis by bringing together well-tuned computational modeling with physical gel models. In addition, the comparative approaches used in this paper establish a foundation for broad-ranging future lines of work that investigate the impact of perturbations or abnormalities during cortical development.

      The cross-species approach taken in this study is a major strength of the work. However, correspondence across the two methodologies did not appear to be equally consistent in predicting brain folding across all three species. The results presented in Figures 4 (and Figures S3 and S4) show broad correspondence in shape index and major sulci landmarks across all three species. Nevertheless, the results presented for the human brain lack the same degree of clear correspondence for the gel model results as observed in the macaque and ferret. While this study clearly establishes a strong foundation for comparative cortical anatomy across species and the impact of perturbations on individual morphogenesis, further work that fine-tunes physical modeling of complex morphologies, such as that of the human cortex, may help to further understand the factors that determine cortical functionalization and pathologies.

      We thank the reviewer for positive opinions and helpful comments. Yes, the physical gel model of the human brain has a lower similarity index with the real brain. There are several reasons.

      First, the highly convoluted human cortex has a few major folds (primary sulci) and a very large number of minor folds associated with secondary or tertiary sulci (on scales of order comparable to the cortical thickness), relative to the ferret and macaque cerebral cortex. In our gel model, the exact shapes, positions, and orientations of these minor folds are stochastic, which makes it hard to have a very high similarity index of the gel models when compared with the brain of a single individual.

      Second, in real human brains, these minor folds evolve dynamically with age and show differences among individuals. In experiments with the gel brain, multiscale folds form and eventually disappear as the swelling progresses through the thickness. Our physical model results are snapshots during this dynamical process, which makes it hard to have a concrete one-to-one correspondence between the instantaneous shapes of the swelling gel and the growing human brain.

      Third, the growth of the brain cortex is inhomogeneous in space and varying with time, whereas, in the gel model, swelling is relatively homogeneous.

      We agree that further systematic work, based on our proposed methods, with more fine-tuned gel geometries and properties, might provide a deeper understanding of the relations between brain geometry, and growth-induced folds and their functionalization and pathologies. Further analysis of cortical pathologies using computational and physical gel models can be found in our companion paper (Choi et al., 2025), also submitted to eLife:

      G. P. T. Choi, C. Liu, S. Yin, G. Sejourn´ e, R. S. Smith, C. A. Walsh, L. Mahadevan, Biophysical basis for´ brain folding and misfolding patterns in ferrets and humans. Preprint, bioRxiv 2025.03.05.641682.

      Reviewer 2 (Public review):

      This manuscript explores the mechanisms underlying cerebral cortical folding using a combination of physical modelling, computational simulations, and geometric morphometrics. The authors extend their prior work on human brain development (Tallinen et al., 2014; 2016) to a comparative framework involving three mammalian species: ferrets (Carnivora), macaques (Old World monkeys), and humans (Hominoidea). By integrating swelling gel experiments with mathematical differential growth models, they simulate sulcification instability and recapitulate key features of brain folding across species. The authors make commendable use of publicly available datasets to construct 3D models of fetal and neonatal brain surfaces: fetal macaque (ref. [26]), newborn ferret (ref. [11]), and fetal human (ref. [22]).

      Using a combination of physical models and numerical simulations, the authors compare the resulting folding morphologies to real brain surfaces using morphometric analysis. Their results show qualitative and quantitative concordance with observed cortical folding patterns, supporting the view that differential tangential growth of the cortex relative to the subcortical substrate is sufficient to account for much of the diversity in cortical folding. This is a very important point in our field, and can be used in the teaching of medical students.

      Brain folding remains a topic of ongoing debate. While some regard it as a critical specialization linked to higher cognitive function, others consider it an epiphenomenon of expansion and constrained geometry. This divergence was evident in discussions during the Strungmann Forum on cortical development (Silver¨ et al., 2019). Though folding abnormalities are reliable indicators of disrupted neurodevelopmental processes (e.g., neurogenesis, migration), their relationship to functional architecture remains unclear. Recent evidence suggests that the absolute number of neurons varies significantly with position-sulcus versus gyrus-with potential implications for local processing capacity (e.g., https://doi.org/10.1002/cne.25626). The field is thus in need of comparative, mechanistic studies like the present one.

      This paper offers an elegant and timely contribution by combining gel-based morphogenesis, numerical modelling, and morphometric analysis to examine cortical folding across species. The experimental design - constructing two-layer PDMS models from 3D MRI data and immersing them in organic solvents to induce differential swelling - is well-established in prior literature. The authors further complement this with a continuum mechanics model simulating folding as a result of differential growth, as well as a comparative analysis of surface morphologies derived from in vivo, in vitro, and in silico brains.

      We thank the reviewer for the very positive comments.

      I offer a few suggestions here for clarification and further exploration:

      Major Comments

      (1)   Choice of Developmental Stages and Initial Conditions

      The authors should provide a clearer justification for the specific developmental stages chosen (e.g., G85 for macaque, GW23 for human). How sensitive are the resulting folding patterns to the initial surface geometry of the gel models? Given that folding is a nonlinear process, early geometric perturbations may propagate into divergent morphologies. Exploring this sensitivity-either through simulations or reference to prior work-would enhance the robustness of the findings.

      The initial geometry is one of the important factors that decides the final folding pattern. The smooth brain in the early developmental stage shows a broad consistency across individuals, and we expect the main folds to form similarly across species and individuals.

      Generally, we choose the initial geometry when the brain cortex is still relatively smooth. For the human, this corresponds approximately to GW23, as the major folds such as the Rolandic fissure (central sulcus), arise during this developmental stage. For the macaque brain, we chose developmental stage G85, primarily because of the availability of the dataset corresponding to this time, which also corresponds to the least folded.

      We expect that large-scale folding patterns are strongly sensitive to the initial geometry but fine-scale features are not. Since our goal is to explain the large-scale features, we expect sensitivity to the initial shape.

      Enclosed are some results from other researchers that are consistent with this idea. Below are some images of simulations from Wang et al. obtained by perturbing the geometry of a sphere to an ellipsoid. We see that the growth-induced folds mostly maintain their width (wavelength), but change their orientations.

      Reference:

      Wang, X., Lefevre, J., Bohi, A., Harrach, M.A., Dinomais, M. and Rousseau, F., 2021. The influence of` biophysical parameters in a biomechanical model of cortical folding patterns. Scientific Reports, 11(1), p.7686.

      Related results from the same group show that slight perturbations of brain geometry, cause these folds also tend to change their orientations but not width/wavelength (Bohi et al., 2019).

      Reference:

      Bohi, A., Wang, X., Harrach, M., Dinomais, M., Rousseau, F. and Lefevre, J., 2019, July. Global per-` turbation of initial geometry in a biomechanical model of cortical morphogenesis. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 442-445). IEEE.

      Finally, a systematic discussion of the role of perturbations on the initial geometries and physical properties can be seen in our work on understanding a different system, gut morphogenesis (Gill et al., 2024).

      We have added the discussion about geometric sensitivity in the section Methods-Numerical Simulations:

      “Small perturbations on initial geometry would affect minor folds, but the main features of major folds, such as orientations, width, and depth, are expected to be conserved across individuals [49, 50]. For simplicity, we do not perturb the fetal brain geometry obtained from datasets.”

      (2) Parameter Space and Breakdown Points

      The numerical model assumes homogeneous growth profiles and simplifies several aspects of cortical mechanics. Parameters such as cortical thickness, modulus ratios, and growth ratios are described in Table II. It would be informative to discuss the range of parameter values for which the model remains valid, and under what conditions the physical and computational models diverge. This would help delineate the boundaries of the current modelling framework and indicate directions for refinement.

      Exploring the valid parameter space is a key problem. We have tested a series of growth parameters and will state them explicitly in our revision. In the current version, we chose the ones that yield a relatively high similarity index to the animal brains. More generally, folding patterns are largely regulated by geometry as well as physical parameters, such as cortical thickness, modulus ratios, growth ratios, and inhomogeneity. In our previous work on a different system, gut morphogenesis, where similar folding patterns are seen, we have explored these features (Gill et al., 2024).

      Reference:

      Gill, H.K., Yin, S., Nerurkar, N.L., Lawlor, J.C., Lee, C., Huycke, T.R., Mahadevan, L. and Tabin, C.J., 2024. Hox gene activity directs physical forces to differentially shape chick small and large intestinal epithelia. Developmental Cell, 59(21), pp.2834-2849.

      (3) Neglected Regional Features: The Occipital Pole of the Macaque

      One conspicuous omission is the lack of attention to the occipital pole of the macaque, which is known to remain smooth even at later gestational stages and has an unusually high neuronal density (2.5× higher than adjacent cortex). This feature is not reproduced in the gel or numerical models, nor is it discussed. Acknowledging this discrepancy-and speculating on possible developmental or mechanical explanationswould add depth to the comparative analysis. The authors may wish to include this as a limitation or a target for future work.

      Yes, we have added that the omission of the Occipital Pole of the macaque is one of our paper’s limitations. Our main aim in this paper is to explore the formation of large-scale folds, so the smooth region is neglected. But future work could include this to make the model more complete.

      The main text has been modified in Methods, 3D model reconstruction, pre-processing:

      “To focus on fold formation, we neglected some smooth regions such as the Occipital Pole of the macaque.”

      (4) Spatio-Temporal Growth Rates and Available Human Data

      The authors note that accurate, species-specific spatio-temporal growth data are lacking, limiting the ability to model inhomogeneous cortical expansion. While this may be true for ferret and macaque, there are high-quality datasets available for human fetal development, now extended through ultrasound imaging (e.g., https://doi.org/10.1038/s41586-023-06630-3). Incorporating or at least referencing such data could improve the fidelity of the human model and expand the applicability of the approach to clinical or pathological scenarios.

      We thank the reviewer for pointing out the very useful datasets that exist for the exploration of inhomogeneous growth driven folding patterns. We have referred to this paper to provide suggestions for further work in exploring the role of growth inhomogeneities.

      We have referred to this high-quality dataset in our main text, Discussion:

      “...the effect of inhomogeneous growth needs to be further investigated by incorporating regional growth of the gray and white matter not only in human brains [29, 31] based on public datasets [45], but also in other species.”

      A few works have tried to incorporate inhomogeneous growth in simulating human brain folding by separating the central sulcus area into several lobes (e.g., lobe parcellation method, Wang, PhD Thesis, 2021). Since our goal in this paper is to explain the large-scale features of folding in a minimal setting, we have kept our model simple and show that it is still capable of capturing the main features of folding in a range of mammalian brains.

      Reference:

      Xiaoyu Wang. Modelisation et caract´ erisation du plissement cortical. Signal and Image Processing. Ecole´ nationale superieure Mines-T´ el´ ecom Atlantique, 2021. English.´ 〈NNT : 2021IMTA0248〉.

      (5) Future Applications: The Inverse Problem and Fossil Brains

      The authors suggest that their morphometric framework could be extended to solve the inverse growth problem-reconstructing fetal geometries from adult brains. This speculative but intriguing direction has implications for evolutionary neuroscience, particularly the interpretation of fossil endocasts. Although beyond the scope of this paper, I encourage the authors to elaborate briefly on how such a framework might be practically implemented and validated.

      For the inverse problem, we could use the following strategies:

      a. Perform systematic simulations using different geometries and physical parameters to obtain the variation in morphologies as a function of parameters.

      b. Using either supervised training or unsupervised training (physics-informed neural networks, PINNs) to learn these characteristic morphologies and classify their dependence on the parameters using neural networks. These can then be trained to determine the possible range of geometrical and physical parameters that yield buckled patterns seen in the systematic simulations.

      c. Reconstruct the 3D surface from fossil endocasts. Using the well-trained neural network, it should be possible to predict the initial shape of the smooth brain cortex, growth profile, and stiffness ratio of the gray and white matter.

      As an example in this direction, supervised neural networks have been used recently to solve the forward problem to predict the buckling pattern of a growing two-layer system (Chavoshnejad et al., 2023). The inverse problem can then be solved using machine-learning methods when the training datasets are the folded shape, which are then used to predict the initial geometry and physical properties.

      Reference:

      Chavoshnejad, P., Chen, L., Yu, X., Hou, J., Filla, N., Zhu, D., Liu, T., Li, G., Razavi, M.J. and Wang, X., 2023. An integrated finite element method and machine learning algorithm for brain morphology prediction. Cerebral Cortex, 33(15), pp.9354-9366.

      Conclusion

      This is a well-executed and creative study that integrates diverse methodologies to address a longstanding question in developmental neurobiology. While a few aspects-such as regional folding peculiarities, sensitivity to initial conditions, and available human data-could be further elaborated, they do not detract from the overall quality and novelty of the work. I enthusiastically support this paper and believe that it will be of broad interest to the neuroscience, biomechanics, and developmental biology communities.

      Note: The paper mentions a companion paper [reference 11] that explores the cellular and anatomical changes in the ferret cortex. I did not have access to this manuscript, but judging from the title, this paper might further strengthen the conclusions.

      The companion paper (Choi et al., 2025) has also been submitted to Elife and can be found on bioXiv here:

      G. P. T. Choi, C. Liu, S. Yin, G. Sejourn´ e, R. S. Smith, C. A. Walsh, L. Mahadevan, Biophysical basis for´ brain folding and misfolding patterns in ferrets and humans. bioRxiv 2025.03.05.641682.

    1. 37% Elsevier Scholarly Publishing

      Before this, I would have never guessed the publishing industry was so profitable. It makes sense though with the vast amount of students each year.

    1. eLife Assessment

      This valuable study introduces a novel experimental and modeling framework to quantify passive joint torques in Drosophila, revealing that passive forces are insufficient to support body weight, contrary to prior assumptions based on larger insects. The approach is technically impressive, combining genetic silencing, kinematic tracking, and biomechanical modeling. However, the strength of evidence is incomplete, limited by concerns about the specificity of the genetic tools, simplifications in the mechanical model, and limited functional interpretation.

    2. Reviewer #1 (Public review):

      Summary:

      In this work, Wang et al. use a combination of genetic tools, novel experimental approaches and biomechanical models to quantify the contribution of passive leg forces in Drosophila. They also deduce that passive forces are not sufficient to support the body weight of the animal. Overall, the contribution of passive forces reported in this work is much less than what one would expect based on the size of the organism and previous literature from larger insects and mammals. This is an interesting finding, but some major caveats in their approach remain unanswered.

      Strengths:

      (1) The authors combine experimental measurements and modeling to quantify the contributions of passive forces at limb joints in Drosophila.

      (2) The authors replicate a previous experimental strategy (Hooper et al 2009, J. Neuro) to suspend animals in air for measuring passive forces and, as in previous studies, find that passive forces are much stronger than gravitational forces acting on the limbs. While in these previous studies using large insects, a lot of invasive approaches for accurately quantifying passive forces are possible (e.g., physically cutting of nerves, directly measuring muscle forces in isolated preparations, etc), the small size of Drosophila makes this difficult. The authors overcome this using a novel approach where they attach additional weight to the leg (changes gravitational force) and inactivate motor neurons (remove active forces). With a few approximations and assumptions, the authors then deduce the contribution of passive forces at each joint for each leg.

      (3) The authors find interesting differences in passive forces across different legs. This could have behavioral implications.

      (4) Finally, the authors compare experimental results of how a free-standing Drosophila is lowered ("falls down") on silencing motor neurons, to a biomechanical "OpenSim" model for deducing the role of passive forces in supporting the body weight of the fly. Using this approach, they conclude that passive forces are not sufficient to support the body weight of the fly.

      Weaknesses:

      (1) Line 65 "(Figure 1A). Inactivation causes a change in the leg's rest position; however, in preliminary experiments, the body rotation did not have a large effect on the rest positions of the leg following inactivation. This result is consistent with the one already reported for stick insects and shows that passive forces within the leg are much larger than the gravitational force on a leg and dominate limb position [1]." This is the direct replication of the previous work by Hooper et al 2009 and therefore authors should ideally show the data for this condition (no weight attached).

      (2) The authors use vglut-gal4, a very broad driver for inactivating motor neurons. The driver labels all glutamatergic neurons, including brain descending neurons and nerve cord interneurons, in addition to motor neurons. Additionally, the strength of inactivation might differ in different neurons (including motor neurons) depending on the expression levels of the opsins. As a result, in this condition, the authors might not be removing all active forces. This is a major caveat that authors do not address. They explore that they are not potentially silencing all inputs to muscles by using an additional octopaminergic driver, but this doesn't address the points mentioned above. At the very least, the authors should try using other motor neuron drivers, as well as other neuronal silencers. This driver is so broad that authors couldn't even use it for physiology experiments. Additionally, the authors could silence VGlut-labeled motor neurons and record muscle activity (potentially using GCaMP as has been done in several recent papers cited by the authors, Azevedo et al, 2020) as a much more direct readout.

      (3) Figure 4 uses an extremely simplified OpenSim model that makes several assumptions that are known to be false. For example, the Thorax-Coxa joint is assumed to be a ball and socket joint, which it is not. Tibia-tarsus joint is completely ignored and likely makes a major contribution in supporting overall posture, given the importance of the leg "claw" for adhering to substrates. Moreover, there are a couple of recent open-source neuromechanical models that include all these details (NeuromechFly by Lobato-Rios et al, 2022, Nat. Methods, and the fly body model by Vaxenburg et al, 2025, Nature). Leveraging these models to rule in or rule out contributions at other joints that are ignored in the authors' OpenSim model would be very helpful to make their case.

      (4) Figure 5 shows the experimental validation of Figure 4 simulations; however, it suffers from several caveats.

      a) The authors track a single point on the head of the fly to estimate the height of the fly. This has several issues. Firstly, it is not clear how accurate the tracking would be. Secondly, it is not clear how the fly actually "falls" on VGlut silencing; do all flies fall in a similar manner in every trial? Almost certainly, there will be some "pitch" and "role" in the way the fly falls. These will affect the location of this single-tracked point that doesn't reflect the authors' expectations. Unless the authors track multiple points on the fly and show examples of tracked videos, it is hard to believe this dataset and, hence, any of the resulting interpretations.

      b) As described in the previous point, the "reason" the fly falls on silencing all glutamatergic neurons could be due to silencing all sorts of premotor/interneurons in addition to the silencing of motor neurons.

      c) (line 175) "The first finding is that there was a large variation in the initial height of the fly (Figure 5C), consistent with a recent study of flies walking on a treadmill[20]." The cited paper refers to how height varies during "walking". However, in the current study, the authors are only looking at "standing" (i.e. non-walking) flies. So it is not the correct reference. In my opinion, this could simply reflect poor estimation of the fly's height based on poor tracking or other factors like pitch and role.

      d) "The rate at which the fly fell to the ground was much smaller in the experimental flies than it was in the simulated flies (Figure 5E). The median rate of falling was 1.3 mm/s compared to 37 mm/s for the simulated flies (Figure 5F). (Line 190) The most likely reason for the longer than expected time for the fly to fall is delays associated with motor neuron inactivation and muscle inactivation." I don't believe this reasoning. There are so many caveats (which I described in the above points) in the model and the experiment, that any of those could be responsible for this massive difference between experiment and modeling. Simply not getting rid of all active forces (inadequate silencing) could be one obvious reason. Other reasons could be that the model is using underestimates of passive forces, as alluded to in point 3.

      (5) Final figure (Figure 6) focuses on understanding the time course of neuronal silencing. First of all, I'm not entirely sure how relevant this is for the story. It could be an interesting supplemental data. But it seems a bit tangential. Additionally, it also suffers from major caveats.

      a) The authors now use a new genetic driver for which they don't have any behavioral data in any previous figures. So we do not know if any of this data holds true for the previous experiments. The authors perform whole-cell recordings from random unidentified motor neurons labeled by E49-Gal4>GtACR1 to deduce a time constant for behavioral results obtained in the VGlut-Gal4>GtACR1 experiments.

      b) The DMD setup is useful for focal inactivation, however, the appropriate controls and data are not presented. Line 200 "A spot of light on the cell body produces as much of the hyperpolarization as stimulating the entire fly (mean of 11.3 mV vs 13.1 mV across 9 neurons). Conversely, excluding the cell body produces only a small effect on the MN (mean of 2.6 mV)." First of all, the control experiment for showing that DMD is indeed causing focal inactivation would be to gradually move the spot of light away from the labeled soma, i.e. to the neighboring "labelled" soma and show that there is indeed focal inactivation. Instead authors move it quite a long distance into unlabeled neuropil. Secondly, I still don't get why the authors are doing this experiment. Even if we believe the DMD is functioning perfectly, all this really tells us is that a random subset motor neurons (maybe 5 or 6 cells, legend is missing this info) labeled by E49-Gal4 is strongly hyperpolarized by its own GtACR1 channel opening, rather than being impacted because of hyperpolarizations in other E49-Gal4 labeled neurons. This has no relevance to the interpretation of any of the VGlut-Gal4 behavioral data. VGLut-Gal4 is much broader and also labels all glutamatergic neurons, most of which are inhibitory interneurons whose silencing could lead to disinhibition of downstream networks.

    3. Reviewer #2 (Public review):

      Summary:

      The authors aim to quantify passive muscle forces in the legs of Drosophila, and test the hypothesis that these forces would be sufficient to support body weight in small insects. They take advantage of the genetic tools available in Drosophila, and use a combination of genetic silencing (optogenetic inactivation of motor neurons), kinematic measurements, and simulations using OpenSim. This integrative toolkit is used to examine the role of passive torques across multiple leg joints. They find that passive forces are weaker than expected - in particular, passive forces were found to be too weak to support the body weight of the fly. This challenges previous scaling assumptions derived from studies in larger insects and has potential implications for our understanding of motor control in small animals.

      Strengths:

      The primary strength of this work lies in its integration of multiple analyses. By pulling together simulations, kinematic measurements from high-resolution videos, and genetic manipulation, they are able to overcome limitations of past studies. In particular, optogenetic manipulation allowed for measurements to be made in whole animals, and the modeling component is valuable because it both validates experimental findings and elucidates the mechanism behind some of the observed dynamic consequences (e.g., the rapid fall after motor inactivation). The conclusions made in the study are well-supported by the data and could have an impact on a number of fields, including invertebrate neurobiology and bioinspired design.

      Weaknesses:

      While (as mentioned above) the study's conclusions are well-supported by the results and modeling, limitations arise because of the assumptions made. For instance, using a linear approximation may not hold at larger joint angles, and future studies would benefit from accounting for nonlinearities. Future studies could also delve into the source of passive forces, which is important for more deeply understanding the anatomical and physical basis of the results in this study. For instance, assessments of muscle or joint properties to correlate stiffness values with physical structure might be an area of future consideration

    4. Reviewer #3 (Public review):

      Summary:

      The authors present a novel method to measure passive joint torques - torques due to internal forces other than active muscle contraction - in the fruit fly: genetically inactivating all motor neurons in intact limb acted upon by a gravitational load results in a change in limb configuration; evaluating the moment equilibrium condition about the limb joints then yields a direct estimate of the passive joint torques. Deactivating all motor neurons in an intact standing fly provided two further conclusions: First, because deactivation causes the fly to drop to the floor, the passive joint torques are deemed insufficient to maintain rotational equilibrium against the body weight; using a multi-body-dynamics simulation, the authors estimate that the passive torques would need to be about 40-80 times higher to maintain a typical posture without active muscle action. Second, a delay between the motor neuron inactivation and the onset of the "free fall" motivates the authors to invoke a simple exponential decay model, which is then used to derive a time constant for muscle deactivation, in robust agreement with direct electro-physiological recordings.

      Strengths:

      The experimental design that permits determination of passive joint torques is elegant, effective, novel, and altogether excellent; it permits measurements previously impossible. A careful error analysis is presented, and a spectrum of technically challenging methods, including multi-body dynamics and e-phys, is deployed to further interpret and contextualise the results.

      Weaknesses:

      (1) Passive torques are measured, but only some short speculative statements, largely based on previous work, are offered on their functional significance; some of these claims are not well supported by experimental evidence or theoretical arguments. Passive forces are judged as "large" compared to the weight force of the limb, but the arguably more relevant force is the force limb muscles can generate, which, even in equilibrium conditions, is already about two orders of magnitude larger. The conclusion that passive forces are dynamically irrelevant seems natural, but contrasts with the assertion that "passive forces [...] will have a strong influence on limb kinematics". As a result, the functional significance of passive joint torques in the fruit fly, if any, remains unclear, and this ambiguity represents a missed opportunity. We now know the magnitude of passive joint torques - do they matter and for what? Are they helpful, for example, to maintain robust neuronal control, or a mechanical constraint that negatively impacts performance, e.g., because they present a sink for muscle work?

      (2) The work is framed with a scaling argument, but the assumptions that underpin the associated claims are not explicit and can thus not be evaluated. This is problematic because at least some arguments appear to contradict textbook scaling theory or everyday experience. For example, active forces are assumed to scale with limb volume, when every textbook would have them scale with area instead; and the asserted scaling of passive forces involves some hidden assumptions that demand more explicit discussion to alert the reader to associated limitations. Passive forces are said to be important only in small animals, but a quick self-experiment confirms that they are sufficient to stabilize human fingers or ankles against gravity, systems orders of magnitude larger than an insect limb, in seeming contradiction with the alleged dominance of scale. Throughout the manuscript, there are such and similar inaccuracies or ambiguities in the mechanical framing and interpretation, making it hard to fairly evaluate some claims, and rendering others likely incorrect.

    5. Author response:

      Reviewer 1:

      (1) Line 65 "(Figure 1A). Inactivation causes a change in the leg's rest position; however, in preliminary experiments, the body rotation did not have a large effect on the rest positions of the leg following inactivation. This result is consistent with the one already reported for stick insects and shows that passive forces within the leg are much larger than the gravitational force on a leg and dominate limb position [1]." This is the direct replication of the previous work by Hooper et al 2009 and therefore authors should ideally show the data for this condition (no weight attached).

      We did not present this data – the effect of inactivation on the leg’s rest position in unweighted leg - because it was already reported in the case of stick insects. However, we understand the reviewer’s point that it is important to present the data showing this replication. We will do the same in the revised version.

      (2) The authors use vglut-gal4, a very broad driver for inactivating motor neurons. The driver labels all glutamatergic neurons, including brain descending neurons and nerve cord interneurons, in addition to motor neurons. Additionally, the strength of inactivation might differ in different neurons (including motor neurons) depending on the expression levels of the opsins. As a result, in this condition, the authors might not be removing all active forces. This is a major caveat that authors do not address. They explore that they are not potentially silencing all inputs to muscles by using an additional octopaminergic driver, but this doesn't address the points mentioned above. At the very least, the authors should try using other motor neuron drivers, as well as other neuronal silencers. This driver is so broad that authors couldn't even use it for physiology experiments. Additionally, the authors could silence VGlut-labeled motor neurons and record muscle activity (potentially using GCaMP as has been done in several recent papers cited by the authors, Azevedo et al, 2020) as a much more direct readout.

      This reviewer critique is related to the use of vglut-gal4 –a broad driver– to inactivate motor neurons (MNs). The reviewer argues that the use of a broad driver might result in some effects that are not due to MN inactivation. Conversely, it is possible that not all MNs are inactivated. These critiques raise important points that we will address in the revision by 1) performing experiments with other MN drivers as suggested by the reviewer, 2) performing experiments in flies that are inactivated by freezing. These measurements will provide other estimates of passive forces allowing us to better triangulate the range of values for the passive forces. Moreover, it appears that one of the reviewer’s main concern is that the passive forces are overestimated because of the residual active forces. We will discuss this possibility in detail. It is important to note that in the end what we hope to accomplish is to provide a useful estimate of the passive forces. It is unlikely that the passive force will be a precise number like a physical constant as the passive forces likely depend on recent history.

      (3) Figure 4 uses an extremely simplified OpenSim model that makes several assumptions that are known to be false. For example, the Thorax-Coxa joint is assumed to be a ball and socket joint, which it is not. Tibia-tarsus joint is completely ignored and likely makes a major contribution in supporting overall posture, given the importance of the leg "claw" for adhering to substrates. Moreover, there are a couple of recent open-source neuromechanical models that include all these details (NeuromechFly by Lobato-Rios et al, 2022, Nat. Methods, and the fly body model by Vaxenburg et al, 2025, Nature). Leveraging these models to rule in or rule out contributions at other joints that are ignored in the authors' OpenSim model would be very helpful to make their case.

      Our OpenSim model predates the newer mechanical model. In the revised manuscript, we will revisit the model in light of recent developments.

      (4) Figure 5 shows the experimental validation of Figure 4 simulations; however, it suffers from several caveats.

      a) The authors track a single point on the head of the fly to estimate the height of the fly. This has several issues. Firstly, it is not clear how accurate the tracking would be. Secondly, it is not clear how the fly actually "falls" on VGlut silencing; do all flies fall in a similar manner in every trial? Almost certainly, there will be some "pitch" and "role" in the way the fly falls. These will affect the location of this single-tracked point that doesn't reflect the authors' expectations. Unless the authors track multiple points on the fly and show examples of tracked videos, it is hard to believe this dataset and, hence, any of the resulting interpretations.

      b) As described in the previous point, the "reason" the fly falls on silencing all glutamatergic neurons could be due to silencing all sorts of premotor/interneurons in addition to the silencing of motor neurons.

      c) (line 175) "The first finding is that there was a large variation in the initial height of the fly (Figure 5C), consistent with a recent study of flies walking on a treadmill[20]." The cited paper refers to how height varies during "walking". However, in the current study, the authors are only looking at "standing" (i.e. non-walking) flies. So it is not the correct reference. In my opinion, this could simply reflect poor estimation of the fly's height based on poor tracking or other factors like pitch and role.

      d) "The rate at which the fly fell to the ground was much smaller in the experimental flies than it was in the simulated flies (Figure 5E). The median rate of falling was 1.3 mm/s compared to 37 mm/s for the simulated flies (Figure 5F). (Line 190) The most likely reason for the longer than expected time for the fly to fall is delays associated with motor neuron inactivation and muscle inactivation." I don't believe this reasoning. There are so many caveats (which I described in the above points) in the model and the experiment, that any of those could be responsible for this massive difference between experiment and modeling. Simply not getting rid of all active forces (inadequate silencing) could be one obvious reason. Other reasons could be that the model is using underestimates of passive forces, as alluded to in point 3.

      (4a) Although we agree that measuring different points on the body would allow us to estimate the moments, we disagree that the height of the fly cannot be evaluated from the measurement of a single point. The measurements have been performed using the same techniques that we used to assess the fly’s height in a different study where we estimated the resolution of our imaging system to be ~20 mm(Chun et. al. 2021). We will include these details in the revised manuscript. The video showing the falling experiments are not available or referenced in the manuscript. These will be made available.

      b) We will repeat the “falling” experiment with a more restrictive driver.

      c) We disagree with the reviewer on this point. The system has a resolution of ~20 mm and is sufficient to make conclusion about the difference in the height of the fly. We will clarify this point in the revised manuscript.

      d) We do not follow the reviewer’s rationale here. The passive forces in the model (along with any residual forces) are the same in the model as well as in the experiment. Moreover, there will be a delay between light onset, neuronal inactivation and muscle inactivation. These processes are not instantaneous. In Figure 6, we estimate these delays and have concluded that they will cause substantial delay. In the revised manuscript, we will discuss other reasons for the delay suggested by the reviewer.

      (5) Final figure (Figure 6) focuses on understanding the time course of neuronal silencing. First of all, I'm not entirely sure how relevant this is for the story. It could be an interesting supplemental data. But it seems a bit tangential. Additionally, it also suffers from major caveats.

      a) The authors now use a new genetic driver for which they don't have any behavioral data in any previous figures. So we do not know if any of this data holds true for the previous experiments. The authors perform whole-cell recordings from random unidentified motor neurons labeled by E49-Gal4>GtACR1 to deduce a time constant for behavioral results obtained in the VGlut-Gal4>GtACR1 experiments.

      b) The DMD setup is useful for focal inactivation, however, the appropriate controls and data are not presented. Line 200 "A spot of light on the cell body produces as much of the hyperpolarization as stimulating the entire fly (mean of 11.3 mV vs 13.1 mV across 9 neurons). Conversely, excluding the cell body produces only a small effect on the MN (mean of 2.6 mV)." First of all, the control experiment for showing that DMD is indeed causing focal inactivation would be to gradually move the spot of light away from the labeled soma, i.e. to the neighboring "labelled" soma and show that there is indeed focal inactivation. Instead authors move it quite a long distance into unlabeled neuropil. Secondly, I still don't get why the authors are doing this experiment. Even if we believe the DMD is functioning perfectly, all this really tells us is that a random subset motor neurons (maybe 5 or 6 cells, legend is missing this info) labeled by E49-Gal4 is strongly hyperpolarized by its own GtACR1 channel opening, rather than being impacted because of hyperpolarizations in other E49-Gal4 labeled neurons. This has no relevance to the interpretation of any of the VGlut-Gal4 behavioral data. VGLut-Gal4 is much broader and also labels all glutamatergic neurons, most of which are inhibitory interneurons whose silencing could lead to disinhibition of downstream networks.

      (5 a) However, we can address the reviewer critique by recording from the Vglut line while using a MN line to target the recordings to MNs.

      b) Once we use the Vglut driver to perform these recordings, it will help assess how much of the MN inactivation is due to the GtACR expressed in the MN versus other neurons.

      Reviewer 2:

      While (as mentioned above) the study's conclusions are well-supported by the results and modeling, limitations arise because of the assumptions made. For instance, using a linear approximation may not hold at larger joint angles, and future studies would benefit from accounting for nonlinearities. Future studies could also delve into the source of passive forces, which is important for more deeply understanding the anatomical and physical basis of the results in this study. For instance, assessments of muscle or joint properties to correlate stiffness values with physical structure might be an area of future consideration.

      We agree with these comments but believe that these studies represent avenues for future work.

      Reviewer 3:

      (1) Passive torques are measured, but only some short speculative statements, largely based on previous work, are offered on their functional significance; some of these claims are not well supported by experimental evidence or theoretical arguments. Passive forces are judged as "large" compared to the weight force of the limb, but the arguably more relevant force is the force limb muscles can generate, which, even in equilibrium conditions, is already about two orders of magnitude larger. The conclusion that passive forces are dynamically irrelevant seems natural, but contrasts with the assertion that "passive forces [...] will have a strong influence on limb kinematics". As a result, the functional significance of passive joint torques in the fruit fly, if any, remains unclear, and this ambiguity represents a missed opportunity. We now know the magnitude of passive joint torques - do they matter and for what? Are they helpful, for example, to maintain robust neuronal control, or a mechanical constraint that negatively impacts performance, e.g., because they present a sink for muscle work?

      To us, measuring passive forces was the first step to understanding neural/biomechanical control of limb. In general, we agree with these comments and would like to understand the role of passive forces in overall control of limb. A complete discussion of the role of the significance of passive forces in the control of limb is beyond the scope of this study. We would like to note that it is unlikely that the active forces are two orders of magnitude larger during unloaded movement of the limb. However, these issues will have to be settled in future work.

      (2) The work is framed with a scaling argument, but the assumptions that underpin the associated claims are not explicit and can thus not be evaluated. This is problematic because at least some arguments appear to contradict textbook scaling theory or everyday experience. For example, active forces are assumed to scale with limb volume, when every textbook would have them scale with area instead; and the asserted scaling of passive forces involves some hidden assumptions that demand more explicit discussion to alert the reader to associated limitations. Passive forces are said to be important only in small animals, but a quick self-experiment confirms that they are sufficient to stabilize human fingers or ankles against gravity, systems orders of magnitude larger than an insect limb, in seeming contradiction with the alleged dominance of scale. Throughout the manuscript, there are such and similar inaccuracies or ambiguities in the mechanical framing and interpretation, making it hard to fairly evaluate some claims, and rendering others likely incorrect.

      We interpret this comment as making two separate points. The first one is that the reviewer says that our statement that active forces depend on the third power of the limb or L<sup>3</sup> is incorrect. We agree and apologize for this oversight. Specifically, on L6-7 we say, “both inertial forces and active forces scale with the mass if the limb which in turn scales with the volume of the limb and therefore depends on the third power of limb length (L<sup>3</sup>)”. Instead, this statement should read “inertial forces scale with the mass if the limb which in turn scales with the volume of the limb and therefore depends on the third power of limb length (L<sup>3</sup>)”. However, this oversight does not affect the scaling argument as the scaling arguments in the rest of the manuscript only involves inertial forces and not active forces.

      The second point is about the scaling law that governs passive forces. In the current manuscript, we have assumed that the passive forces scale as L<sup>2</sup> based on previous work. The reviewer has pointed out that this assumption might be incorrect or at the very least needs a rationale. We agree with this assessment: passive forces that arise in the muscle are likely to scale as L<sup>2</sup> but passive forces that arise in the joint might not. In the revised manuscript, we will discuss this concern.

      Response to the public comment:

      There was a comment from a reader: “None of our work cited in various places in this preprint (i.e., Zakotnik et al. 2006, Guschlbauer et al. 2007, Page et al. 2008, Hooper et al. 2009, Hooper 2012, Ache and Matheson 2012, Blümel et al. 2012, Ache and Matheson 2013, von Twickel et al. 2019, and Guschlbauer et al. 2022) claims or implies that passive forces could be sufficient to support the weight of an insect or any animal. To claim or suggest otherwise (as done in lines 33-35) is incorrect and sets up a misleading straw man that misrepresents our work. All statements in the preprint regarding our work related to this specific matter need to be removed or edited accordingly. For instance, the investigations, calculations, and interpretations in Hooper et al. 2009 are solely about limbs that are not being used in stance or other loaded tasks (indeed, the article's title specifically refers to "unloaded" leg posture and movements). Trying to use this work to predict whether passive muscle forces alone can support a stick insect against gravity requires considering much more than the oversimplified calculation given in lines 290-292. Other “back of the envelope calculations” (lines 299-300) are likely also insufficient and erroneous. The discussion in lines 289-304 needs to be edited accordingly”

      We thank the reader for their comment. However, we interpret these studies differently. The studies above rightly focused on unloaded legs because it would be difficult to study passive forces in an intact insect without genetic tools. The commenter correctly points out that these studies do not comment on whether passive forces are strong enough to support the weight of the fly. However, we disagree that our arguments based on their results are unreasonable or strawman. We think that our interpretation of their measurements is correct. Moreover, we were motivated by Yox et. el. 1982 who states in so many words: “Stiffness of the muscles in the joints of all the legs might be sufficient to support a resting arthropod. A more rigorous analysis of all supporting limbs and joint angles would be required to prove this hypothesis”. We were inspired by this comment. In the revised manuscript, we will make it clear that the statement made in Line 33 is based on Yox. et. al. and our interpretation of measurements made by others.

    1. 3D printing

      Over the last 5 years, we have seen significant changes in 3D printing. With the implications of better material and faster speeds, 3D printing has introduced itself and is being used by multiple industries right now.

    2. 2 billion people live without mobile phones

      Again one of those things that is considered a modern "Standard" to function in the present world, so to see that about 2 billion dont have that availability again opens my eyes to the amount of people living completely different way of life.

    1. The idea that status impacts your access to information is nothing new

      Education aside, just by a simple connection with someone, you can gain more access to info than others, and this can range from anything. It's all about who you know in the world nowadays.

    1. Historians estimate the number of men who worked as cowboys in the late-nineteenth century to be between twelve thousand and forty thousand. Perhaps a fourth were African American, and more were likely Mexican or Mexican American. Much about the American cowboys evolved from Mexican vaqueros: cowboys adopted Mexican practices, gear, and terms such as rodeo, bronco, and lasso.”

      Explains why so many Mexicans still adopt cowboy culture today.

    2. Conflicts between the U.S. military, American settlers, and Native nations increased throughout the 1850s. By 1862, General James Carleton began searching for a reservation where he could remove the Navajo and end their threat to U.S. expansion in the Southwest. Carleton selected a dry, almost treeless site in the Bosque Redondo Valley, three hundred miles from the Navajo homeland. In April 1863, Carleton gave orders to Colonel Kit Carson to round up the entire Navajo population and escort them to Bosque Redondo. Those who resisted would be shot. Thus began a period of Navajo history called the Long Walk, which remains deeply important to Navajo people today. The Long Walk was not a single event but a series of forced marches to the reservation at Bosque Redondo between August 1863 and December 1866. Conditions at Bosque Redondo were horrible. Provisions provided by the U.S. Army were not only inadequate but often spoiled; disease was rampant, and thousands of Navajos died.

      Yet another form of slavery.

    3. Many female Christian missionaries played a central role in cultural reeducation programs that attempted to not only instill Protestant religion but also impose traditional American gender roles and family structures. They endeavored to replace Indigenous peoples’ tribal social units with small, patriarchal households.

      War and slaughter are one thing. But this is another key component of colonialism and conquest.

    4. The views of J. L. Broaddus, appointed to oversee several small tribes on the Hoopa Valley reservation in California, are illustrative: in his annual report to the Commissioner of Indian Affairs for 1875, he wrote, “The great majority of them are idle, listless, careless, and improvident. They seem to take no thought about provision for the future, and many of them would not work at all if they were not compelled to do so. They would rather live upon the roots and acorns gathered by their women than to work for flour and beef.”

      This from the folks who enslaved both Africans and Native Americans. How rich.

    5. Tom Torlino, a member of the Navajo Nation, entered the Carlisle Indian School, a Native American boarding school founded by the United States government in 1879, on October 21, 1882 and departed on August 28, 1886. Torlino’s student file contained photographs from 1882 and 1885. Carlisle Indian School Digital Resource Center.

      Was his skin bleached?

    6. The board effectively Christianized American Indian policy. Much of the reservation system was handed over to Protestant churches, which were tasked with finding agents and missionaries to manage reservation life. Congress hoped that religiously minded men might fare better at creating just assimilation policies and persuading Native Americans to accept them. Historian Francis Paul Prucha believed that this attempt at a new “peace policy . . . might just have properly been labelled the ‘religious policy.’”

      Colonialism seems to often be hidden behind religion. Another recurring theme throughout history.

    7. On the following day, Dakota warriors attacked settlements near the Agency. They killed thirty-one men, women, and children (including Myrick, whose mouth was found filled with grass).

      ...and effect.

    8. The federal Indian agent refused to disburse promised food. Many starved. Andrew Myrick, a trader at the agency, refused to sell food on credit. “If they are hungry,” he is alleged to have said, “let them eat grass or their own dung.”

      Cause...

    9. The Cheyenne tried to declare their peaceful intentions but Chivington’s militia cut them down. It was a slaughter.

      A sad recurring theme throughout history that continues to repeat itself today.

    10. While bison supplied leather for America’s booming clothing industry, the skulls of the animals also provided a key ingredient in fertilizer. This 1870s photograph illustrates the massive number of bison killed for these and other reasons (including sport) in the second half of the nineteenth century. Photograph of a pile of American bison skulls waiting to be ground for fertilizer, 1870s. Wikimedia.

      I've seen this photo on social media for years. Crazy finally learning the context behind it.

    11. Many of these ancillary operations profited from the mining boom: as failed prospectors found, the rush itself often generated more wealth than the mines. The gold that left Colorado in the first seven years after the Pikes Peak gold strike—estimated at $25.5 million—was, for instance, less than half of what outside parties had invested in the fever. The 100,000-plus migrants who settled in the Rocky Mountains were ultimately more valuable to the region’s development than the gold they came to find.

      Sometimes it's more of the sizzle than the steak.

    12. Buffalo Soldiers, the nickname given to African-American cavalrymen by the native Americans they fought, were the first peacetime all-black regiments in the regular United States army. These soldiers regularly confronted racial prejudice from other Army members and civilians but were an essential part of American victories during the Indian Wars of the late nineteenth and early twentieth centuries. “[Buffalo soldiers of the 25th Infantry, some wearing buffalo robes, Ft. Keogh, Montana] / Chr. Barthelmess, photographer, Fort Keogh, Montana,” 1890. Library of Congress.

      Imagine killing Native Americans in servitude to white people who also want to kill you.

    1. eLife Assessment

      This important study characterises the morphogenesis of cortical folding in the ferret and human cerebral cortex using complementary physical and computational modelling. Notably, these approaches are applied to charting, in the ferret model, known abnormalities of cortical folding in humans. The study finds that variation in cortical thickness and expansion account for deviations in morphology, and supports these findings using cutting-edge approaches from both physical gel models and numerical simulations. The strength of evidence is convincing, and although it could benefit from more quantitative assessment, the study will be of broad interest to the field of developmental neuroscience.

    2. Reviewer #1 (Public review):

      The manuscript by Choi and colleagues investigates the impact of variation in cortical geometry and growth on cortical surface morphology. Specifically, the study uses physical gel models and computational models to evaluate the impact of varying specific features/parameters of the cortical surface. The study makes use of this approach to address the topic of malformations of cortical development and finds that cortical thickness and cortical expansion rate are the drivers of differences in morphogenesis.

      The study is composed of two main sections. First, the authors validate numerical simulation and gel model approaches against real cortical postnatal development in the ferret. Next, the study turns to modelling malformations in cortical development using modified tangential growth rate and cortical thickness parameters in numerical simulations. The findings investigate three genetically linked cortical malformations observed in the human brain to demonstrate the impact of the two physical parameters on folding in the ferret brain.

      This is a tightly presented study that demonstrates a key insight into cortical morphogenesis and the impact of deviations from normal development. The dual physical and computational modeling approach offers the potential for unique insights into mechanisms driving malformations. This study establishes a strong foundation for further work directly probing the development of cortical folding in the ferret brain. One weakness of the current study is that the interpretation of the results in the context of human cortical development is at present indirect, as the modelling results are solely derived from the ferret. However, these modelling approaches demonstrate proof of concept for investigating related alterations more directly in future work through similar approaches to models of the human cerebral cortex.

    3. Reviewer #2 (Public review):

      Summary:

      Based on MRI data of the ferret (a gyrencephalic non-primate animal, in whom folding happens postnatally), the authors create in vitro physical gel models and in silico numerical simulations of typical cortical gyrification. They then use genetic manipulations of animal models to demonstrate that cortical thickness and expansion rate are primary drivers of atypical morphogenesis. These observations are then used to explain cortical malformations in humans.

      Strengths:

      The paper is very interesting and original, and combines physical gel experiments, numerical simulations, as well as observations in MCD. The figures are informative, and the results appear to have good overall face validity.

      Weaknesses:

      On the other hand, I perceived some lack of quantitative analyses in the different experiments, and currently, there seems to be rather a visual/qualitative interpretation of the different processes and their similarities/differences.

      Ideally, the authors also quantify local/pointwise surface expansion in the physical and simulation experiments, to more directly compare these processes. Time courses of eg, cortical curvature changes, could also be plotted and compared for those experiments.

      I had a similar impression about the comparisons between simulation results and human MRI data. Again, face validity appears high, but the comparison appeared mainly qualitative.

      I felt that MCDs could have been better contextualized in the introduction.

    4. Author response:

      Reviewer 1 (Public review):

      The manuscript by Choi and colleagues investigates the impact of variation in cortical geometry and growth on cortical surface morphology. Specifically, the study uses physical gel models and computational models to evaluate the impact of varying specific features/parameters of the cortical surface. The study makes use of this approach to address the topic of malformations of cortical development and finds that cortical thickness and cortical expansion rate are the drivers of differences in morphogenesis.

      The study is composed of two main sections. First, the authors validate numerical simulation and gel model approaches against real cortical postnatal development in the ferret. Next, the study turns to modelling malformations in cortical development using modified tangential growth rate and cortical thickness parameters in numerical simulations. The findings investigate three genetically linked cortical malformations observed in the human brain to demonstrate the impact of the two physical parameters on folding in the ferret brain.

      This is a tightly presented study that demonstrates a key insight into cortical morphogenesis and the impact of deviations from normal development. The dual physical and computational modeling approach offers the potential for unique insights into mechanisms driving malformations. This study establishes a strong foundation for further work directly probing the development of cortical folding in the ferret brain. One weakness of the current study is that the interpretation of the results in the context of human cortical development is at present indirect, as the modelling results are solely derived from the ferret. However, these modelling approaches demonstrate proof of concept for investigating related alterations more directly in future work through similar approaches to models of the human cerebral cortex.

      We thank the reviewer for the very positive comments. While the current gel and organismal experiments focus on the ferret only, we want to emphasize that our analysis does consider previous observations of human brains and morphologies therein (Tallinen et al., Proc. Natl. Acad. Sci. 2014; Tallinen et al., Nat. Phys. 2016), which we compare and explain. This allows us to analyze the implications of our study broadly to understand the explanations of cortical malformations in humans using the ferret to motivate our study. Further analysis of normal human brain growth using computational and physical gel models can be found in our companion paper (Yin et al., 2025), also submitted to eLife:

      S. Yin, C. Liu, G. P. T. Choi, Y. Jung, K. Heuer, R. Toro, L. Mahadevan, Morphogenesis and morphometry of brain folding patterns across species. bioRxiv 2025.03.05.641692.

      In future work, we plan to obtain malformed human cortical surface data, which would allow us to further investigate related alterations more directly.

      Reviewer 2 (Public review):

      Summary:

      Based on MRI data of the ferret (a gyrencephalic non-primate animal, in whom folding happens postnatally), the authors create in vitro physical gel models and in silico numerical simulations of typical cortical gyrification. They then use genetic manipulations of animal models to demonstrate that cortical thickness and expansion rate are primary drivers of atypical morphogenesis. These observations are then used to explain cortical malformations in humans.

      Strengths:

      The paper is very interesting and original, and combines physical gel experiments, numerical simulations, as well as observations in MCD. The figures are informative, and the results appear to have good overall face validity.

      We thank the reviewer for the very positive comments.

      Weaknesses:

      On the other hand, I perceived some lack of quantitative analyses in the different experiments, and currently, there seems to be rather a visual/qualitative interpretation of the different processes and their similarities/differences. Ideally, the authors also quantify local/pointwise surface expansion in the physical and simulation experiments, to more directly compare these processes. Time courses of eg, cortical curvature changes, could also be plotted and compared for those experiments. I had a similar impression about the comparisons between simulation results and human MRI data. Again, face validity appears high, but the comparison appeared mainly qualitative.

      We thank the reviewer for the comments. Besides the visual and qualitative comparisons between the models, we would like to point out that we have included the quantification of the shape difference between the real and simulated ferret brain models via spherical parameterization and the curvature-based shape index as detailed in main text Fig. 4 and SI Section 3. We have also utilized spherical harmonics representations for the comparison between the real and simulated ferret brains at different maximum order N. In our revision, we plan to further include the curvature-based shape index calculations for the comparison between the real and simulated ferret brains at more time points.

      As for the comparison between the malformation simulation results and human MRI data in the current work, since the human MRI data are two-dimensional while our computational models are threedimensional, we focus on the qualitative comparison between them. In future work, we plan to obtain malformed human cortical surface data, from which we can then perform the parameterization-based and curvature-based shape analysis for a more quantitative assessment.

      I felt that MCDs could have been better contextualized in the introduction.

      We thank the reviewer for the comment and will include a more detailed introduction to MCDs in our revision.

    1. eLife Assessment

      This is an important study reporting a new phenotype for a gene cluster that has previously been associated with the responses of the Gram-negative opportunistic pathogen Pseudomonas aeruginosa to flow fluid. Expression of the froABCD gene cluster is induced by HOCl in vitro and by activated immune cells, which produce these types of reactive chlorine species. Overall, the evidence presented by the authors is solid; however, the mechanism of fro-induction by HOCl remains unclear, and the evidence in support of the authors' claims is descriptive, which needs to be improved. This study is of interest to infection biologists interested in mechanisms of bacterial pathogenicity.

    2. Reviewer #1 (Public review):

      Summary:

      Foik et al. report that hypochlorous acid, a reactive chlorine species generated during host defense, activates the transcription of the froABCD in P. aeruginosa. This gene cluster had previously been associated with a potential role during the flow of fluids and appears to be regulated by the sigma factor FroR and its anti-sigma factor FroI. In the present study, the authors show that froABCD is expressed both in neutrophils and macrophages, which they claim is likely a result of HOCl but not H2O2 production. Fro expression is also induced in a murine model of corneal infection, which is characterized by immune cell invasion. Expression of the fro system can be quenched by several antioxidants, such as methionine, cysteine, and others. FroR-deficient cells that lack froABCD expression during HOCl stress appear more sensitive to the oxidant.

      Strengths:

      The authors provide a number of data supporting their claim that transcription of the froABCD system is induced by reactive chlorine species. This was shown by RNAseq, qRT-PCR, and through microscopy using a transcriptional reporter fusion. Likewise, elevated expression of froABCD was shown in vitro and in vivo, excluding potential in vitro artifacts. The manuscript, while mostly descriptive, is easy to follow, and the data were presented clearly.

      Weaknesses:

      (1) Lines 60-62: Some of the authors' conclusions are not supported by the data and thus appear unfounded. One example: "we determine that fro upregulation.....These data suggest a novel mechanism..." Their data do not show that MSR upregulation is a direct effect of FroABCD. Instead, it could be possible that the FroR sigma factor also controls the expression of msr genes, which would be independent of froABCD.

      (2) The authors show increased fro transcription both in neutrophils and macrophages; however, the two types of immune cells differ quite dramatically with respect to myeloperoxidase activation and HOCl production. Neither has this been discussed nor considered here.

      (3) With respect to the activation of fro expression upon challenge with conditioned media from stimulated neutrophils, does the conditioned media contain detectable amounts of HOCl? Do chloramines, which are byproducts of HOCl oxidation with amines, also stimulate expression?

      (4) A better control to prove that this fro expression is indeed induced by HOCl in activated neutrophils would be to conduct the experiments in the presence of a myeloperoxidase inhibitor.

      (5) The work was conducted with two different P. aeruginosa strains (i.e. AL143 and PAO1F). None of the figure legends provides details on which strain was used. For instance, in line 111, the authors refer to Figure S1B for data that I thought were done with PAO1F, while in 154, data were presented in the context of the infection model, which was conducted with the other strain.

      (6) It would be good if immune cell recruitment at 2hrs and 20hrs PI could be quantified.

      (7) The conclusions of Figure 4 are, in my opinion, weak (line 187-188; "It is possible that ....."). These antioxidants likely quench the low amounts of NaOCl directly. This would significantly reduce the NaOCl concentrations to a level that no longer activates expression of fro. There is no direct evidence provided that oxidized methionine induces fro expression. Do the authors postulate that this is free methionine, or could methionine and/or cysteine oxidation in FroR increase the binding affinity of the sigma factor to the promoter? Another possibility is that NaOCl deactivates the anti-sigma factor. None of these scenarios has been considered here.

      (8) Line 184: The reaction constants of HOCl with Cys and Met are similar.

      (9) Treatment with 16 uM NaOCl caused a growth arrest of ~15 hrs in the WT (Figure 5A), whereas no growth at all was recorded with 7.5 uM in Figure 3A.

      (10) The concentration range of NaOCl causing fro expression is extremely narrow, while oxidative burst rapidly generates HOCl at much higher concentrations. This should be discussed in more detail.

    3. Reviewer #2 (Public review):

      Summary:

      Foik et al. studied the regulation of the fro operon in response to HOCl, an oxidant derived from immune cells, especially neutrophils. They use a transcriptional fusion of YFP to the froA promoter in an mCherry-expressing P. aeruginosa strain to determine fro-induction under the microscope. They use this system to study fro expression in medium, in the presence of neutrophils and macrophages, neutrophil-conditioned medium, and several chemical stimuli, including NaCl, HOCl, hydrogen peroxide, nitric acid, hydrochloric acid, and sodium hydroxide. They also use a corneal infection model to demonstrate that froA is upregulated in P. aeruginosa 20 h post-infection and perform transcriptional analyses in WT and a froR mutant in response to HOCl.

      Strengths:

      Their data clearly shows that HOCl is a strong inducer of the fro Operon. The addition of HOCl-quenching chemicals together with HOCl abrogates the response. They also show that a froR mutant is more susceptible to HOCl than WT. Their transcriptomic data reveal genes under control of the FroR/FroI sigma factor/anti sigma factor system.

      Weaknesses:

      Although the presented evidence is mostly solid, some of their findings need to be evaluated more carefully; explaining the rationale behind some of the experiments might enhance the article, and some of the models proposed by the authors seem far-fetched, as outlined below:

      (1) In line 76 the authors claim "Relative to P. aeruginosa that were incubated in host cell-free media, P. aeruginosa in close proximity to human neutrophils or that were engulfed in mouse macrophages appeared to increase fro expression (Fig. 1C)". Counting bacterial cells in Figure 1C shows that 1 in 17 bacteria (5.8%) induce the froA-promotor in media in the absence of immune cells, while 4 in 72 bacteria (only 5.5%) do the same in the presence of neutrophils. Contrary to the authors' claims, it appears that P. aeruginosa actually decreases fro-expression in close proximity to neutrophils. There is a slight increase in fro-expression in bacteria co-incubated with macrophages (3 in 21, or 14.3%). A more rigorous statistical analysis might substantiate the authors' claim, but, as is, the claim "neutrophils increase fro expression" is untenable.

      (2) The authors should explain the rationale behind some of the chemicals used. Why did they use nitric acid? Especially at these high concentrations, a strong acid such as nitric acid might have a significant influence on the medium pH. I understand that the medium is phosphate-buffered, but 25 mM nitric acid in an unbuffered medium would shift the pH well below 2. Similar considerations apply to hydrochloric acid and sodium hydroxide.

      (3) In line 187, the authors state that "It is possible that oxidized methionine increases fro expression" and they suggest a model to that effect in Figure 5D. It is unclear why the authors singled out methionine sulfoxide, since a number of other things get oxidized by HOCl. In line 184, the authors state, in the same vein, that "HOCl oxidizes methionine residues 100-fold more rapidly than other cellular components". The authors should state which other cellular compounds they are referring to. Certainly not cysteine and other thiols, which react equally fast and are highly abundant in the cell: P. aeruginosa contains 340 µM GSH, 140 µM CoA-SH (https://doi.org/10.1074/jbc.RA119.009934) plus free cysteine and cysteines in proteins (based on codon usage, 1.34% of amino acids in proteins are cysteine, while methionine is only slightly more present at 2.10%, although a number of starting methionines are removed from mature proteins).

      (4) Overall (and this is probably not addressable with the authors' data), some very interesting questions remain unanswered: what is the molecular mechanism of fro-induction? How is the FroR/FroI system modulated by HOCl? Does the system sense free or protein-bound methionine-sulfoxide? Are certain methionine residues in these proteins directly oxidized by HOCl? Many "HOCl-sensing" proteins are also modified at cysteine residues or amino groups; could those play a role? And lastly: what is the connection between shear/fluid flow and HOCl, or are these totally separate mechanisms of fro-induction?

    4. Author response:

      We greatly appreciate the efforts of the reviewers, which have provided insightful and helpful comments to improve the manuscript. The feedback touches upon a number of topics, focusing on clarification or justification of experimental techniques and on understanding the mechanism by which P. aeruginosa detects HOCl. All reviewers raised the issue of how HOCl activates fro expression, including whether free or protein-bound methionine, cysteine, or other HOCl byproducts induce this expression. For the upcoming revision, we plan to perform experiments that address this issue and will discuss potential mechanistic models in light of the new data. In addition, we plan to perform additional experiments to address a reviewer’s concerns regarding the dependence of the fro response on HOCl production by neutrophils. The revision will correct imprecise statements pointed out by reviewers, and address all remaining issues requiring clarification or further discussion, including the range of HOCl sensitivity, relationship between HOCl and flow sensitivity, and justification for testing the fro response to nitric acid.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      GENERAL COMMENTS

      We thank the three reviewers for their comments on the paper.

      We are pleased to see that they consider it be a comprehensive and well-executed study, which clearly establishes a previously overlooked connection between MRTF-SRF signalling and proliferation, and that its conclusions require no further experimentation.

      As review 3 points out, this work has implications for cancer biology, and suggests new research routes to understand the relation between cell adhesion, proliferation, and transformation.

      However, two referees raise significant concerns about its impact

      Review 1 suggests that the paper lacks impact without exploration the wider biological significance of our observations, although it considers it to be a good basic cell biology study. It suggests further work extending the findings to tissue- or tumor-based systems. While we consider such studies worthwhile – indeed we are currently pursuing these directions – we consider them beyond the scope of the present paper.

      Review 2 questions the novelty of our findings. We strongly disagree. This is is the first study to show that MRTF-SRF signalling is required for the proliferation of both primary and immortalised fibroblasts, and epithelial cells. We show that MRTF inactivation leads cells to enter a quiescence-like state under conditions that would permit efficient cell cycle progression in wildtype cells. The study will alter the field's perspective on the role of MRTF-SRF signalling, previously viewed as concerned with cell adhesion, morphology, and motility.

      Responses to individual reviews (italic) follow in regular text.

      RESPONSE TO INDIVIDUAL REVIEWS (comments in italic, response in regular, changes made)

      __Reviewer #1 __

      *(Evidence, reproducibility and clarity (Required)): *

      *The manuscript by Neilsen et al. presents a thorough and well-structured study showing that Myocardin-related transcription factors (MRTF-A/B), via MRTF-SRF, are essential for the proliferation of both primary and immortalized fibroblasts and epithelial cells. Using a combination of knockouts/rescue experiments, cytoskeletal analysis, and transcriptomics, the authors demonstrate that MRTF-SRF signalling controls actin dynamics and contractility-key drivers of cell cycle progression. Notably, they show that the proliferative arrest caused by MRTF loss is reversible, distinguishing it from classical senescence. **

      Major points*

      • The link between MRTF-SRF activity, cytoskeletal organisation, and cell proliferation is clearly established. The fact that disrupting contractility phenocopies MRTF loss strengthens the case that the pathway acts through mechanical control.*
      • The authors support their conclusions using multiple cell types (MEFs, primary fibroblasts, epithelial cells), a range of complementary assays (RNA-seq, traction force microscopy, adhesion/spreading), and genetic tools (CRISPR, inducible rescue).*
      • The ability to restore proliferation by re-expressing MRTF-A argues against true senescence and instead suggests a quiescence-like state driven by cytoskeletal disruption.*
      • This work particularly highlights how mechanical inputs feed into transcriptional programs to regulate proliferation, with implications for understanding anchorage-dependent growth.**

      Suggestions While the authors argue convincingly against classical senescence, elevated SA-βGal and SASP expression suggest a more nuanced arrest state. It not really clear what this state is or is not, therefore a deeper discussion of possible hybrid or intermediate states would be helpful - maybe potential additional experiments to include or exclude potential explanations - e.g. how does it differ from G0 exit?* Our findings show that MRTF inactivation inhibits cell proliferation under conditions that would permit efficient cell cycle progression in wildtype cells, inducing a state with some features associated with classical senescence, and others conventionally associated with reversible cell cycle arrest/quiescence. The reviewer correctly points out that this raises problems with accurately defining the nature of the MRTF-null proliferation defect.

      To our knowledge there are no rigorously defined unambiguous markers for senescence, quiescence, or G0. Indeed, recent studies have shown that senescence and quiescence / G0 states are not as distinct as previously assumed (Anwar et al, 2018; Ashraf et al 2023) as we reviewed in detail in Discussion p27, §2; p28 §3. We therefore do not consider it a productive endeavour to define markers for the MRTF-null state as opposed to defining its mechanistic basis. However, we agree that we should have been clearer about how the phenotypes we observe relate to classical cell arrest states.

      We have therefore revised the presentation of the Results to make it clear which features of the non-proliferative state associated with MRTF inactivation are seen in classical senescence, and which are found in reversible cell cycle exit or quiescence.

      Things done:

      • __Results pp16-17 and Fig 1. Figure panels and presentation are reordered to present “senescence” features together before marker expression (panel G is now panel I). Text now explicitly points out that the spectrum of cell cycle markers, specifically p27 upregulation, is not that associated with classical senescence (p16, p21,etc) but previously linked to reversible arrest or quiescence. Lines 371-380 have been moved up from the succeeding paragraph; statement added re p27 and reversible cell cycle exit on lines 387-389; summary sentence added in lines 398-401). __
      • Statement added that reversibility distinguishes the MRTF defect from classical senescence p20§1 line 454-455.
      • Note that p27 is associated with reversible arrest included on p20§2 line 460. We also explicitly summarised the features of the phenotype at the start of the Discussion.

      • Sentences added p27§1 lines 626-631.

      • Emphasis that p27 protein upregulation is associated with reversible cell cycle inhibition and quiescence is added on p28 line 668-669.

      • The transcriptomic data are strong, but the paper would benefit from zooming in on specific MRTF-SRF targets (e.g., actin isoforms, adhesion molecules) that directly link cytoskeletal regulation to cell cycle control.*

      We have now clarified presentation of the RNAseq data in Figure 5 and the data summary tables. Figure 5B now identifies which of those genes showing deficits in MRTF-null MEFs were previously identified as direct genomic targets for MRTF-SRF, and that the majority are cytoskeletal.

      • __Additional columns added in Table 1 to indicate whether genes are candidate genomic MRTF-SRF targets; Table 2 now show gene symbol lists as well as ENSMBL IDs for GO categories and NCBI Entrez IDs for GSEA categories, respectively. __
      • __Figure 5B revised to point out cytoskeletal genes that are genomic MRTF-SRF targets in bold, legend clarified p40 lines 920-922. __
      • Now noted____ p23 lines 527-529 that cytoskeletal genes affected include many direct MRTF-SRF targets. Our data confirms that in MEFs, MRTF inactivation affects fibroblast cell morphology, adhesion, spreading, motility and contractility (Figures 5, 6), as seen in many other settings.

      A critical question remains as to whether these effects a reflect limitation in one MRTF target gene or several, and how this defect relates to proliferation.

      Concerning specific MRTF-SRF gene targets:

      Cells lacking cytoplasmic actins are reported to exhibit defective proliferation, (__now noted in Results p23 lines 529-532). __We are currently evaluating whether this defect has similarities with the MRTF-null proliferation phenotype (see Discussion p31, §2).

      Previous findings suggest that defective cytoplasmic actin expression may underlie most MRTF knockout phenotypes (Salvany et al, 2014; Maurice et al., 2024) previously noted in the Discussion (see p31, §2).

      The myoferlin gene promotes growth of liver cancer cells by inhibiting ERK activation and oncogene induced senescence. We showed that myoferlin expression does not promote proliferation of MRTF-null MEFs in the original submission (see Figure S5E). Additionally, we now point out that the RNAseq data show that myoferlin expression is not significantly affected in MRTF-null MEFs __(new text p23, lines 532-534). __

      • It depends on where what target journal would be, but this is is a very well executes mechanistic study that doesn't really have an impact. Extending the discussion to human systems-or tissues where contractility is critical-could broaden the impact and applicability of the findings.*

      We interpret this comment as indicating that our paper does not address the wider biological implications of our findings by extension to studies in tissue or tumour systems.

      As outlined in our response to review 3, our study provides strong evidence that MRTF-SRF will be required for cell proliferation in settings where physical progression through cell cycle transitions requires high contractility, either owing to intrinsic factors or external physical constraints such as tissue stiffness, fibrosis, or tumour microenvironment.

      Discussion now explicitly addresses potential roles for tissue stiffness (pp30§2 lines 717-718, and p32§1 725-727). However, we feel that resolution of this question is beyond the scope of the present paper.

      • As above, the paper briefly mentions transformation, but it would be valuable to elaborate on whether MRTF-SRF acts as a barrier or enabler in tumorigenesis under different conditions. This I feel is the main weakness remaining - e.g. it would be fine with enabling different effects driven by other transcription events in emerging tumour cells (oncogenic in context of RAS, suppressive in context of p53) but I think the manuscript fails to be definitive on this points. Addressing this would make a much stronger and impactful study. I believe they have an impact peice of science that outlines how mechanical events impact cell fate decisions, but this is unlikely to be the driver - ie it facilitates cell fate decisions in context of tissue stiffness.*

      We find it difficult to understand the precise points being made here.

      However, transformation has long been known to bypass physical constraints on proliferation such as the requirement for adhesion. Moreover, MRTF-SRF activity is not necessarily required for proliferation of all transformed cells (Hampl et al, 2013; Medjkane et al, 2009; our unpublished data). The relation of our findings to transformation is thus an open question, which we are actively pursuing. Now noted in revised Discussion p32, lines 752-755.

      MRTF-independent proliferation of tumor cells could reflect oncogenic signals substituting for MRTF-dependent ones (eg from focal adhesions), or from relief of cytoskeletal contraints on proliferation (adhesion independent proliferation). In contrast, in proliferation of DLC1-deleted cancer cells is dependent on suppression of oncogene-induced senescence by MRTF-SRF signalling (Hampl et al, 2013). These points were already made in Discussion p28, pp30-31.

      Although our current work is focussed on cell transformation, we would respectfully suggest the in-depth resolution of this complex question is beyond the scope of the present paper.

      See also response to (3) above.

      *Reviewer #1 (Significance (Required)): *

      *Overall *

      This is a well-executed and insightful study that deepens our understanding of how cytoskeletal signals drive proliferation through MRTF-SRF. It broadens the role of this pathway beyond motility and offers new perspectives on mechanotransduction and cellular plasticity. If is weak in its demonstration of biological significance, but if the aim to to present a pure basic cell biology story it is good.

      The vast majority of work with the SRF system has led to the common perception that its role is exclusively with cell motility and adhesive processes, not proliferation. The results presented in the paper, even if limited to cell culture models, are therefore novel.

      Reviewer #2

      (Evidence, reproducibility and clarity (Required)):

      *In this manuscript, Nielsen and colleagues examine the impact of MRTF-A/B and SRF gene inactivation on cell proliferation. They performed an extensive body of work (using multiple cell types and multiple clones) to show that MRTF inactivation causes cell cycle arrest and senescence (mimicking the phenotype of SRF knockout cells) although the changes in the expression of various CDK inhibitors were cell-type specific. *

      *Very interestingly, simultaneous inactivation of all three major CDK inhibitors failed to rescue MRTF knockout cells from their proliferation defect. Expectedly, MRTF knockout cells exhibited defects in actin cytoskeleton, adhesion, and contractility. Interestingly, hyperactivating Rho also failed to rescue MRTF knockout cells from proliferation defect. The main conclusion of the paper was derived from experiments which showed that inhibition of either ROCK or myosin caused wild-type cells to behave like MRTF knockout cells rather than demonstration of any molecular perturbation that could reverse the proliferation defect of MRTF knockout cells. *

      While the experimental studies are thorough and rigorous, a vast majority of the core findings related to the loss-of-function of MRTF that are reported herein (i.e. defects in cell proliferation, elevation of CDK inhibitors, migration, actin cytoskeleton, contractility) are not conceptually new and have been previously reported in other cell systems by several investigators including this research group.

      This is the first study showing that MRTF-SRF signalling is required for the proliferation of both primary and immortalised fibroblasts, and epithelial cells. We show that the MRTF-SRF non-proliferative state combines features of both classical senescence and reversible cell cycle exit / quiescence.

      The vast majority of previous work with the SRF system has led to the common perception that its role is exclusively related to cell motility and adhesive processes and not proliferation (see Olson and Nordheim 2010). Where proliferation has been examined directly, both others and our own previous studies of the MRTFs in immune cells and cancer cells lines have revealed no direct role in proliferation (Schratt et al, 2001;Medjkane et al 2009; Maurice et al, 2024).

      The results presented here are therefore novel.

      In the reviewer's opinion, since the authors have not been able to identify a molecular strategy to reverse the proliferation phenotype of MRTF knockout cells, the underlying mechanisms of MRTF-dependent regulation of cell proliferation remain largely unanswered.

      Indeed, our attempts to rescue the phenotype (knockouts of the CKIs, and overexpression of different downregulated factors) did not restore proliferation. We therefore now aim to attack the problem (i) through overexpression screens, and (ii) by identifying differences between MRTF-SRF dependent and -independent (eg transformed) cells. However, these are new projects that are beyond the scope of a revised paper.

      • *

      Other comments: Majority of the immunoblot data have not been quantified.

      P16 data in Fig 1G vs Fig S1A are not similar (although the authors mention that the findings are similar)

      We have addressed these issues by reorganisation and quantification the immunoblotting data as follows:

      • Figure S1A has been moved to new Figure 1I, replacing the limited analysis shown in old Figure 1G. This more comprehensive, and displays data from all three WT and Mrtfab-/-
      • Figure 1I data is quantified. Marker expression in each Mrtfab-/- pool is evaluated relative its mean expression in the three WT pools treated in parallel.
      • A new Figure S1A shows mean marker expression across the three Mrtfab-/- pools, drawn from 5 independent analyses (not all markers included in each analysis). Different analyses of marker expression may exhibit variation, resulting from differences in handling, culture medium, plating density, relative confluence, etc. However, Mrtfab-/- cells exhibit markedly increased p27 and TLR2 expression, while expression of the other markers tested, including p16, consistently decreases.
      • Spearman comparisons among the WT and Mrtfab-/- pools show that relative marker expression is indeed well correlated between the pools of each genotype. Note on quantitation added in Methods p10 lines 209-213.

      Figure 1I moved from former Figure S1A, to replace former Figure 1G. New legend now includes quantitation, and reference to Spearman correlations, p44 lines 834-841.

      New Figure S1A displays data from multiple independent experiments with all 3 Mrtfab-/- pools. New legend, p44 lines 997-1002.

      Figure S1B legend notes correlation between relative marker expression in untreated WT and Mrtfab-/- cells, p44, lines 1005-1008.

      Results text rewritten p17 lines 383-391; no reference to “similar”.

      *Reviewer #2 (Significance (Required)): *

      *This study aims to investigate a fundamental biological question of how an actin-regulated transcription machinery regulates cell proliferation and is therefore of broad significance. Strengths and limitations of this study are described above. *

      Reviewer #3

      *(Evidence, reproducibility and clarity (Required)): *

      Summary

      *The manuscript by Nielsen et al. (Treisman lab) entitled "MRTF-dependent cytoskeletal dynamics drive efficient cell cycle progression" investigates the effects on cell proliferation elicited upon cellular depletion of the transcription factors MRTF-A and MRTF-B. The MRTFs are actin-dependent co-factors of SRF, which direct the transcription of SRF target genes. The MRTF-SRF regulatory circuit defines both the functioning and the control of actin-driven cytoskeletal dynamics. *

      *The work presented identifies essential molecular links that interconnect cytoskeleton-dependent cellular activities (cell-cell adhesion, cell-substrate contact, cell spreading) and cell proliferation. *

      *General assessment on used methodology. *

      *The presented comprehensive body of work is performed competently; it includes all relevant and necessary state-of-the-art technologies. *

      • *

      Reviewer #3 (Significance (Required)):

      Advance

      Previously published evidence by others (including the Treisman group) had indicated that SRF does not seem essential for the proliferation of some cell types (i. e., embryonic (stem) cells, activation-dependent immune cells, etc.). In regard to this, the authors discuss in the current manuscript: "Although further work is needed to elucidate the basis for these context-dependent dfferences, our data show that MRTF-SRF signalling is likely to play a more general role in proliferation than previously thought." The current manuscript already delineates this "general role": MRTF-SRF signalling impinges on cell proliferation whenever proliferative activities are dependent upon cytoskeletal dynamics.

      We of course support the view that it is MRTF-SRF's role in cytoskeletal dynamics, especially contractility, that is a limiting factor for cell cycle progression in our cells; however, this may not be the cases or other cell types or settings, such adhesion-independent or transformed cells, and/or stiff tissue environments.

      We have stated this view more strongly, modifying the abstract and discussion, and rewording the sentence quoted above.

      The major point is that MRTF-SRF-dependent proliferation may be more common than previously thought, the field having focussed on its role in cytoskeletal dynamics rather than proliferation.

      Abstract lines 48-49; Discussion p28, line 668-669; pp30-31, lines 713-714, 725-727. See also last para pp31/32, __added lines 752-755. __

      *The work has implications for cancer biology. It offers new directions to investigate the regulation of proliferative activities of anchorage-independent tumor cells. **

      Audience *

      *The insights generated serve the wide interests of a large and diverse group of cell and tumor biologists. *

      *Reviewers field of expertise (keywords). *

      Cytoskeletal dynamics, transcriptional con*

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      The manuscript by Nielsen et al. (Treisman lab) entitled "MRTF-dependent cytoskeletal dynamics drive efficient cell cycle progression" investigates the effects on cell proliferation elicited upon cellular depletion of the transcription factors MRTF-A and MRTF-B. The MRTFs are actin-dependent co-factors of SRF, which direct the transcription of SRF target genes. The MRTF-SRF regulatory circuit defines both the functioning and the control of actin-driven cytoskeletal dynamics. The work presented identifies essential molecular links that interconnect cytoskeleton-dependent cellular activities (cell-cell adhesion, cell-substrate contact, cell spreading) and cell proliferation.

      General assessment on used methodology.

      The presented comprehensive body of work is performed competently; it includes all relevant and necessary state-of-the-art technologies.

      Significance

      Advance

      Previously published evidence by others (including the Treisman group) had indicated that SRF does not seem essential for the proliferation of some cell types (i. e., embryonic (stem) cells, activation-dependent immune cells, etc.). In regard to this, the authors discuss in the current manuscript: "Although further work is needed to elucidate the basis for these context-dependent dfferences, our data show that MRTFSRF signalling is likely to play a more general role in proliferation than previously thought." The current manuscript already delineates this "general role": MRTF-SRF signalling impinges on cell proliferation whenever proliferative activities are dependent upon cytoskeletal dynamics.

      The work has implications for cancer biology. It offers new directions to investigate the regulation of proliferative activities of anchorage-independent tumor cells.

      Audience

      The insights generated serve the wide interests of a large and diverse group of cell and tumor biologists.

      Reviewers field of expertise (keywords).

      Cytoskeletal dynamics, transcriptional control.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this manuscript, Nielsen and colleagues examine the impact of MRTF-A/B and SRF gene inactivation on cell proliferation. They performed an extensive body of work (using multiple cell types and multiple clones) to show that MRTF inactivation causes cell cycle arrest and senescence (mimicking the phenotype of SRF knockout cells) although the changes in the expression of various CDK inhibitors were cell-type specific. Very interestingly, simultaneous inactivation of all three major CDK inhibitors failed to rescue MRTF knockout cells from their proliferation defect. Expectedly, MRTF knockout cells exhibited defects in actin cytoskeleton, adhesion, and contractility. Interestingly, hyperactivating Rho also failed to rescue MRTF knockout cells from proliferation defect. The main conclusion of the paper was derived from experiments which showed that inhibition of either ROCK or myosin caused wild-type cells to behave like MRTF knockout cells rather than demonstration of any molecular perturbation that could reverse the proliferation defect of MRTF knockout cells. While the experimental studies are thorough and rigorous, a vast majority of the core findings related to the loss-of-function of MRTF that are reported herein (i.e. defects in cell proliferation, elevation of CDK inhibitors, migration, actin cytoskeleton, contractility) are not conceptually new and have been previously reported in other cell systems by several investigators including this research group. In the reviewer's opinion, since the authors have not been able to identify a molecular strategy to reverse the proliferation phenotype of MRTF knockout cells, the underlying mechanisms of MRTF-dependent regulation of cell proliferation remain largely unanswered.

      Other comments: Majority of the immunoblot data have not been quantified. P16 data in Fig 1G vs Fig S1A are not similar (although the authors mention that the findings are similar)

      Significance

      This study aims to investigate a fundamental biological question of how an actin-regulated transcription machinery regulates cell proliferation and is therefore of broad significance. Strengths and limitations of this study are described above.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript by Neilsen et al. presents a thorough and well-structured study showing that Myocardin-related transcription factors (MRTF-A/B), via MRTF-SRF, are essential for the proliferation of both primary and immortalized fibroblasts and epithelial cells. Using a combination of knockouts/rescue experiments, cytoskeletal analysis, and transcriptomics, the authors demonstrate that MRTF-SRF signalling controls actin dynamics and contractility-key drivers of cell cycle progression. Notably, they show that the proliferative arrest caused by MRTF loss is reversible, distinguishing it from classical senescence.

      Major points

      1. The link between MRTF-SRF activity, cytoskeletal organisation, and cell proliferation is clearly established. The fact that disrupting contractility phenocopies MRTF loss strengthens the case that the pathway acts through mechanical control.
      2. The authors support their conclusions using multiple cell types (MEFs, primary fibroblasts, epithelial cells), a range of complementary assays (RNA-seq, traction force microscopy, adhesion/spreading), and genetic tools (CRISPR, inducible rescue).
      3. The ability to restore proliferation by re-expressing MRTF-A argues against true senescence and instead suggests a quiescence-like state driven by cytoskeletal disruption.
      4. This work particularly highlights how mechanical inputs feed into transcriptional programs to regulate proliferation, with implications for understanding anchorage-dependent growth.

      Suggestions

      1. While the authors argue convincingly against classical senescence, elevated SA-βGal and SASP expression suggest a more nuanced arrest state. It not really clear what this state is or is not, therefore a deeper discussion of possible hybrid or intermediate states would be helpful - maybe potential additional experiments to include or exclude potential explanations - e.g. how does it differ from G0 exit?
      2. The transcriptomic data are strong, but the paper would benefit from zooming in on specific MRTF-SRF targets (e.g., actin isoforms, adhesion molecules) that directly link cytoskeletal regulation to cell cycle control.
      3. It depends on where what target journal would be, but this is is a very well executes mechanistic study that doesn't really have an impact. Extending the discussion to human systems-or tissues where contractility is critical-could broaden the impact and applicability of the findings.
      4. As above, the paper briefly mentions transformation, but it would be valuable to elaborate on whether MRTF-SRF acts as a barrier or enabler in tumorigenesis under different conditions. This I feel is the main weakness remaining - e.g. it would be fine with enabling different effects driven by other transcription events in emerging tumour cells (oncogenic in context of RAS, suppressive in context of p53) but I think the manuscript fails to be definitive on this points. Addressing this would make a much stronger and impactful study. I believe they have an impact peice of science that outlines how mechanical events impact cell fate decisions, but this is unlikely to be the driver - ie it facilitates cell fate decisions in context of tissue stiffness.

      Significance

      Overall

      This is a well-executed and insightful study that deepens our understanding of how cytoskeletal signals drive proliferation through MRTF-SRF. It broadens the role of this pathway beyond motility and offers new perspectives on mechanotransduction and cellular plasticity. If is weak in its demonstration of biological significance, but if the aim to to present a pure basic cell biology story it is good.

    1. Note that we do not actually use the type parameter unit in the right hand side of the definition. It is a phantom type, that exists only at compile-time, in order to constrain how Qs can be used. When constructing a value of type Q, we can instantiate that unit with anything we want. For example

      Vigtig: forklaring af phantom type

    2. Specifically, we now define a type constructor Q for representing a quantity of some unit:

      Fra Learn You Haskell...: "Once again, it's very important to distinguish between the type constructor and the value constructor. When declaring a data type, the part before the = is the type constructor and the constructors after it (possibly separated by |'s) are value constructors." Så Q til vnstre er type constructoren med type parameteret unit, og Q til højre er valu constructor, som tager en Double

    3. ee how the fmap method turns an f a into an f b, intuitively changing the a values to b values. That means f by itself is not a type - it must be applied to a type, and hence is a type constructor.

      Faktisk rigtig fin forklaring for at forstå forskel på type og type constructor

    1. what is going on just what do you think is going on? I mean have you backed off from it? Do you have a grip on the uh outlines

      What's going on

      Grip on the outline?

    1. Laravel is not just keeping up with AI, it is thriving with it. The future of Laravel is all about smarter builds, AI integration, and scalable architecture. This blog dives into what’s changing and why it matters now.

      Discover how AI is shaping the future of Laravel with real-world AI integrations, from chatbots and predictive analytics to cloud-native deployments and AI-assisted development workflows.

    1. eLife Assessment

      This study provides valuable insights into the host's variable susceptibility to Mycobacterium tuberculosis, using a novel collection of wild-derived inbred mouse lines from diverse geographic locations, along with immunological and single-cell transcriptomic analyses. While the data are convincing, a deeper mechanistic investigation into neutrophil subset functions would have further enhanced the study. This work will interest microbiologists and immunologists in the tuberculosis field.

    2. Reviewer #1 (Public review):

      Summary:

      This study investigated the heterogeneous responses to Mycobacterium tuberculosis (Mtb) in 19 wild-derived inbred mouse strains collected from various geographic locations. The goal of this study is to identify novel mechanisms that regulate host susceptibility to Mtb infection. Using the genetically resistant C57BL/6 mouse strain as the control, they successfully identified a few mouse strains that revealed higher bacterial burdens in the lung, implicating increased susceptibility in those mouse strains. Furthermore, using flow cytometry analysis, they discovered strong correlations between CFU and various immune cell types, including T cells and B cells. The higher neutrophil numbers correlated with significantly higher CFU in some of the newly identified susceptible mouse strains. Interestingly, MANB and MANC mice exhibited comparable numbers of neutrophils but showed drastically different bacterial burdens. The authors then focused on the neutrophil heterogeneity and utilized a single-cell RNA-seq approach, which led to identifying distinct neutrophil subsets in various mouse strains, including C57BL/6, MANA, MANB, and MANC. Pathway analysis on neutrophils in susceptible MANC strain revealed a highly activated and glycolytic phenotype, implicating a possible mechanism that may contribute to the susceptible phenotype. Lastly, the authors found that a small group of neutrophil-specific genes are expressed across many other cell types in the MANC strain.

      Strengths:

      This manuscript has many strengths.

      (1) Utilizing and characterizing novel mouse strains that complement the current widely used mouse models in the field of TB. Many of those mouse strains will be novel tools for studying host responses to Mtb infection.

      (2) The study revealed very unique biology of neutrophils during Mtb infection. It has been well-established that high numbers of neutrophils correlate with high bacterial burden in mice. However, this work uncovered that some mouse strains could be resistant to infection even with high numbers of neutrophils in the lung, indicating the diverse functions of neutrophils. This information is important.

      Weaknesses:

      The weaknesses of the manuscript are that the work is relatively descriptive. It is unclear whether the neutrophil subsets are indeed functionally different. While single-cell RNA seq did provide some clues at transcription levels, functional and mechanistic investigations are lacking. Similarly, it is unclear how highly activated and glycolytic neutrophils in MANC strain contribute to its susceptibility.

    3. Reviewer #2 (Public review):

      Summary:

      These studies investigate the phenotypic variability and roles of neutrophils in tuberculosis (TB) susceptibility by using a diverse collection of wild-derived inbred mouse lines. The authors aimed to identify new phenotypes during Mycobacterium tuberculosis infection by developing, infecting, and phenotyping 19 genetically diverse wild-derived inbred mouse lines originating from different geographic regions in North America and South America. The investigators achieved their main goals, which were to show that increasing genetic diversity increases the phenotypic spectrum observed in response to aerosolized M. tuberculosis, and further to provide insights into immune and/or inflammatory correlates of pulmonary TB. Briefly, investigators infected wild-derived mice with aerosolized M. tuberculosis and assessed early infection control at 21 days post-infection. The time point was specifically selected to correspond to the period after infection when acquired immunity and antigen-specific responses manifest strongly, and also early susceptibility (morbidity and mortality) due to M. tuberculosis infection has been observed in other highly susceptible wild-derived mouse strains, some Collaborative Cross inbred strains, and approximately 30% of individuals in the Diversity Outbred mouse population. Here, the investigators normalized bacterial burden across mice based on inoculum dose and determined the percent of immune cells using flow cytometry, primarily focused on macrophages, neutrophils, CD4 T cells, CD8 T cells, and B cells in the lungs. They also used single-cell RNA sequencing to identify neutrophil subpopulations and immune phenotypes, elegantly supplemented with in vitro macrophage infections and antibody depletion assays to confirm immune cell contributions to susceptibility. The main results from this study confirm that mouse strains show considerable variability to M. tuberculosis susceptibility. Authors observed that enhanced infection control correlated with higher percentages of CD4 and CD8 T cells, and B cells, but not necessarily with the percentage of interferon-gamma (IFN-γ) producing cells. High levels of neutrophils and immature neutrophils (band cells) were associated with increased susceptibility, and the mouse strain with the most neutrophils, the MANC line, exhibited a transcriptional signature indicative of a highly activated state, and containing potentially tissue-destructive, mediators that could contribute to the strain's increased susceptibility and be leveraged to understand how neutrophils drive lung tissue damage, cavitation, and granuloma necrosis in pulmonary TB.

      Strengths:

      The strengths are addressing a critically important consideration in the tuberculosis field - mouse model(s) of the human disease, and taking advantage of the novel phenotypes observed to determine potential mechanisms. Notable strengths include,

      (1) Innovative generation and use of mouse models: Developing wild-derived inbred mice from diverse geographic locations is innovative, and this approach expands the range of phenotypic responses observed during M. tuberculosis infection. Additionally, the authors have deposited strains at The Jackson Laboratory making these valuable resources available to the scientific community.

      (2) Potential for translational research: The findings have implications for human pulmonary TB, particularly the discovery of neutrophil-associated susceptibility in primary infection and/or neutrophil-mediated disease progression that could both inform the development of therapeutic targets and also be used to test the effectiveness of such therapies.

      (3) Comprehensive experimental design: The investigators use many complementary approaches including in vivo M. tuberculosis infection, in vitro macrophage studies, neutrophil depletion experiments, flow cytometry, and a number of data mining, machine learning, and imaging to produce robust and comprehensive analyses of the wild-derives d strains and neutrophil subpopulations in 3 weeks after M. tuberculosis infection.

      Weaknesses:

      The manuscript and studies have considerable strengths and very few weaknesses. One minor consideration is that phenotyping is limited to a single limited-time point; however, this time point was carefully selected and has a strong biological rationale provided by investigators. This potential weakness does not diminish the overall findings, exciting results, or conclusions.

    4. Author response:

      Reviewer #1 (Public review):

      […] Strengths:

      This manuscript has many strengths.

      (1) Utilizing and characterizing novel mouse strains that complement the current widely used mouse models in the field of TB. Many of those mouse strains will be novel tools for studying host responses to Mtb infection.

      (2) The study revealed very unique biology of neutrophils during Mtb infection. It has been well-established that high numbers of neutrophils correlate with high bacterial burden in mice. However, this work uncovered that some mouse strains could be resistant to infection even with high numbers of neutrophils in the lung, indicating the diverse functions of neutrophils. This information is important.

      We are grateful for the reviewer’s thoughtful consideration of our work and appreciate their comment that our mouse strains can benefit the models available in the TB field. We further appreciate the recognition of the importance of neutrophil diversity during Mtb infection.

      Weaknesses:

      The weaknesses of the manuscript are that the work is relatively descriptive. It is unclear whether the neutrophil subsets are indeed functionally different. While single-cell RNA seq did provide some clues at transcription levels, functional and mechanistic investigations are lacking.

      We appreciate this comment and agree that further research needs to be done on the functionality of the neutrophils to discover mechanistic differences between the mouse genotypes. Out attempts at extracting sufficient RNA from sorted neutrophils from the mouse lungs were unsuccessful. However, future attempts at comparing RNA expression between mouse genotypes as well as proteomic data are necessary to determine the mechanistic differences in neutrophil biology in these mice.

      Similarly, it is unclear how highly activated and glycolytic neutrophils in MANC strain contribute to its susceptibility.

      This is a fair comment and we agree that it is still unclear how these neutrophils contribute to MANC susceptibility. Growing the neutrophils ex vivo and infecting them with Mtb is technically challenging, due to the slow growth of Mtb and the short lifespan of the neutrophils. As mentioned in the comment above, future in vivo characterization and RNA expression studies will be necessary to address these questions.

      Reviewer #2 (Public review):

      […] Strengths:

      The strengths are addressing a critically important consideration in the tuberculosis field - mouse model(s) of the human disease, and taking advantage of the novel phenotypes observed to determine potential mechanisms. Notable strengths include,

      (1) Innovative generation and use of mouse models: Developing wild-derived inbred mice from diverse geographic locations is innovative, and this approach expands the range of phenotypic responses observed during M. tuberculosis infection. Additionally, the authors have deposited strains at The Jackson Laboratory making these valuable resources available to the scientific community.

      (2) Potential for translational research: The findings have implications for human pulmonary TB, particularly the discovery of neutrophil-associated susceptibility in primary infection and/or neutrophil-mediated disease progression that could both inform the development of therapeutic targets and also be used to test the effectiveness of such therapies.

      (3) Comprehensive experimental design: The investigators use many complementary approaches including in vivo M. tuberculosis infection, in vitro macrophage studies, neutrophil depletion experiments, flow cytometry, and a number of data mining, machine learning, and imaging to produce robust and comprehensive analyses of the wild-derives d strains and neutrophil subpopulations in 3 weeks after M. tuberculosis infection.

      We thank the reviewer for their thorough and thoughtful assessment of our study. We appreciate the recognition that this mouse model can become a resource and can benefit the study of different immune responses to Mtb infection as well as be informative for studying human TB. We further appreciate their comment that the complementary approaches we have used to characterized the mouse phenotypes strengthens this study.

      Weaknesses:

      The manuscript and studies have considerable strengths and very few weaknesses. One minor consideration is that phenotyping is limited to a single limited-time point; however, this time point was carefully selected and has a strong biological rationale provided by investigators. This potential weakness does not diminish the overall findings, exciting results, or conclusions.

      We thank the reviewer for pointing out that a single time point has been studied, and that this time point is biologically relevant. We agree that additional time points, including later time points that address systemic dissemination, should be included in future studies.

    1. th frinds () companions one misses one's goal,beingshackle d Ka iS i el ‘shackled in mind. Se

      Humans are social animals and isolation from others is the basic principle of some of the most inhumane torture methods (solitary confinement). Assuming that such dissociation leads to anguish, does the speaker recommend we conquer this anguish and that there is a light on the other end of the tunnel?

    Annotators

    1. eLife Assessment

      In this important study, the authors develop a microfluidic "Vessel-on-Chip" model to study Neisseria meningitidis interactions in an in vitro vascular system. Compelling evidence demonstrates that endothelial cell-lined channels can be colonized by N. meningitidis, triggering neutrophil recruitment with advantages over complex surgical xenograft models. This system offers potential for follow-on studies of N. meningitidis pathogenesis, though it lacks the cellular complexity of true vasculature including smooth muscle cells and pericytes.

      [Editors' note: this paper was reviewed by Review Commons.]

    2. Reviewer #1 (Public review):

      Summary:

      The work by Pinon et al describes the generation of a microvascular model to study Neisseria meningitidis interactions with blood vessels. The model uses a novel and relatively high throughput fabrication method that allows full control over the geometry of the vessels. The model is well characterized from the vascular standpoint and shows improvements when exposed to flow. The authors show that Neisseria binds to the 3D model in a similar geometry that in the animal xenograft model, induces an increase in permeability short after bacterial perfusion, and endothelial cytoskeleton rearrangements including a honeycomb actin structure. Finally, the authors show neutrophil recruitment to bacterial microcolonies and phagocytosis of Neisseria.

      Strengths:

      The article is overall well written, and it is a great advancement in the bioengineering and sepsis infection field. The authors achieved their aim at establishing a good model for Neisseria vascular pathogenesis and the results support the conclusions. I support the publication of the manuscript. I include below some clarifications that I consider would be good for readers.

      One of the most novel things of the manuscript is the use of a relatively quick photoablation system. Could this technique be applied in other laboratories? While the revised manuscript includes more technical details as requested, the description remains difficult to follow for readers from a biology background. I recommend revising this section to improve clarity and accessibility for a broader scientific audience.

      The authors suggest that in the animal model, early 3h infection with Neisseria do not show increase in vascular permeability, contrary to their findings in the 3D in vitro model. However, they show a non-significant increase in permeability of 70 KDa Dextran in the animal xenograft early infection. As a bioengineer this seems to point that if the experiment would have been done with a lower molecular weight tracer, significant increases in permeability could have been detected. I would suggest to do this experiment that could capture early events in vascular disruption.

      One of the great advantages of the system is the possibility of visualizing infection-related events at high resolution. The authors show the formation of actin of a honeycomb structure beneath the bacterial microcolonies. This only occurred in 65% of the microcolonies. Is this result similar to in vitro 2D endothelial cultures in static and under flow? Also, the group has shown in the past positive staining of other cytoskeletal proteins, such as ezrin in the ERM complex. Does this also occur in the 3D system?

      Significance:

      The manuscript is comprehensive, complete and represents the first bioengineered model of sepsis. One of the major strengths is the carful characterization and benchmarking against the animal xenograft model. Beyond the technical achievement, the manuscript is also highly quantitative and includes advanced image analysis that could benefit many scientists. The authors show a quick photoablation method that would be useful for the bioengineering community and improved the state-of-the-art providing a new experimental model for sepsis.

      My expertise is on infection bioengineered models.

    3. Reviewer #2 (Public review):

      Pinon and colleagues have developed a Vessel-on-Chip model showcasing geometrical and physical properties similar to the murine vessels used in the study of systemic infections. The vessel was created via highly controllable laser photoablation in a collagen matrix, subsequent seeding of human endothelial cells, and flow perfusion to induce mechanical cues. This model could be infected with Neisseria meningitidis as a model of systemic infection. In this model, microcolony formation and dynamics, and effects on the host were very similar to those described for the human skin xenograft mouse model (the current gold standard for systemic studies) and were consistent with observations made in patients. The model could also recapitulate the neutrophil response upon N. meningitidis systemic infection.

      The claims and the conclusions are supported by the data, the methods are properly presented, and the data is analyzed adequately. The most important strength of this manuscript is the technology developed to build this model, which is impressive and very innovative. The Vessel-on-Chip can be tuned to acquire complex shapes and, according to the authors, the process has been optimized to produce models very quickly. This is a great advancement compared with the technologies used to produce other equivalent models. This model proves to be equivalent to the most advanced model used to date (skin xenograft mouse model). The human skin xenograft mouse model requires complex surgical techniques and has the practical and ethical limitations associated with the use of animals. However, the Vessel-on-chip model is free of ethical concerns, can be produced quickly, and allows to precisely tune the vessel's geometry and to perform higher resolution microscopy. Both models were comparable in terms of the hallmarks defining the disease, suggesting that the presented model can be an effective replacement of the animal use in this area. In addition, the Vessel-on-Chip allows to perform microscopy with higher resolution and ease, which can in turn allow more complex and precise image-based analysis.

      A limitation of this model is that it lacks the multicellularity that characterizes other similar models, which could be useful to research disease more extensively. However, the authors discuss the possibilities of adding other cells to the model, for example, fibroblasts. It is also not clear whether the technology presented in the current paper can be adopted by other labs. The methodology is complex and requires specialized equipment and personnel, which might hinder its widespread utilization of this model by researchers in the field.

      This manuscript will be of interest for a specialized audience focusing on the development of microphysiological models. The technology presented here can be of great interest to researchers whose main area of interest is the endothelium and the blood vessels, for example, researchers on the study of systemic infections, atherosclerosis, angiogenesis, etc. This manuscript can have great applications for a broad audience and it can present an opportunity to begin collaborations, aimed at answering diverse research questions with the same model.

    4. Reviewer #3 (Public review):

      Summary:

      In this manuscript Pinon et al. describe the development of a 3D model of human vasculature within a microchip to study Neisseria meningitidis (Nm)- host interactions and validate it through its comparison to the current gold-standard model consisting of human skin engrafted onto a mouse. There is a pressing need for robust biomimetic models with which to study Nm-host interactions because Nm is a human-specific pathogen for which research has been primarily limited to simple 2D human cell culture assays. Their investigation relies primarily on data derived from microscopy and its quantitative analysis, which support the authors' goal of validating their Vessel-on-Chip (VOC) as a useful tool for studying vascular infections by Nm, and by extension, other pathogens associated with blood vessels.

      Strengths:<br /> • Introduces a novel human in vitro system that promotes control of experimental variables and permits greater quantitative analysis than previous models<br /> • The VOC model is validated by direct comparison to the state-of-the-art human skin graft on mouse model<br /> • The authors make significant efforts to quantify, model, and statistically analyze their data<br /> • The laser ablation approach permits defining custom vascular architecture<br /> • The VOC model permits the addition and/or alteration of cell types and microbes added to the model<br /> • The VOC model permits the establishment of an endothelium developed by shear stress and active infusion of reagents into the system

      Weaknesses:<br /> • The work presented here is mostly descriptive, with little new information that is learned about the biology of Nm or endothelial cells. However, the goal of this study was to establish the VOC model, and the validation presented here is necessary for follow-on studies on Nm pathogenesis and host response.<br /> • The VOC model contains one cell type, human umbilical cord vascular endothelial cells (HUVECs), while true vasculature contains a number of other cell types that associate with and affect the endothelium, such as smooth muscle cells, pericytes, and components of the immune system. These and other shortcomings of the VOC model as it currently stands warrant additional discussion.

      Impact:<br /> The VOC model presented by Pinon et al. is an exciting advancement in the set of tools available to study human pathogens interacting with the vasculature. This manuscript focuses on validating the model, and as such sets the foundation for impactful research in the future. Of particular value is the photoablation technique that permits the custom design of vascular architecture without the use of artificial scaffolding structures described in previously published works.

    5. Author response:

      Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility, and clarity):

      The work by Pinon et al describes the generation of a microvascular model to study Neisseria meningitidis interactions with blood vessels. The model uses a novel and relatively high throughput fabrication method that allows full control over the geometry of the vessels. The model is well characterized. The authors then study different aspects of Neisseriaendothelial interactions and benchmark the bacterial infection model against the best disease model available, a human skin xenograft mouse model, which is one of the great strengths of the paper. The authors show that Neisseria binds to the 3D model in a similar geometry that in the animal xenograft model, induces an increase in permeability short after bacterial perfusion, and induces endothelial cytoskeleton rearrangements. Finally, the authors show neutrophil recruitment to bacterial microcolonies and phagocytosis of Neisseria. The article is overall well written, and it is a great advancement in the bioengineering and sepsis infection field, and I only have a few major comments and some minor.

      Major comments:

      Infection-on-chip. I would recommend the authors to change the terminology of "infection on chip" to better reflect their work. The term is vague and it decreases novelty, as there are multiple infection on chips models that recapitulate other infections (recently reviewed in https://doi.org/10.1038/s41564-024-01645-6) including Ebola, SARS-CoV-2, Plasmodium and Candida. Maybe the term "sepsis on chip" would be more specific and exemplify better the work and novelty. Also, I would suggest that the authors carefully take a look at the text and consider when they use VoC or to current term IoC, as of now sometimes they are used interchangeably, with VoC being used occasionally in bacteria perfused experiments.

      We thank Reviewer #1 for this suggestion. Indeed, we have chosen to replace the term "Infection-on-Chip" by "infected Vessel-on-chip" to avoid any confusion in the title and the text. Also, we have removed all the terms "IoC" which referred to "Infection-on-Chip" and replaced with "VoC" for "Vessel-on-Chip". We think these terms will improve the clarity of the main text.

      Author response image 1.

      F-actin (red) and ezrin (yellow) staining after 3h of infection with N. meningitidis (green) in 2D (top) and 3D (bottom) vessel-on-chip models.

      Fig 3 and Supplementary 3: Permeability. The authors suggest that early 3h infection with Neisseria do not show increase in vascular permeability in the animal model, contrary to their findings in the 3D in vitro model. However, they show a non-significant increase in permeability of 70 KDa Dextran in the animal xenograft early infection. This seems to point that if the experiment would have been done with a lower molecular weight tracer, significant increases in permeability could have been detected. I would suggest to do this experiment that could capture early events in vascular disruption.

      Comparing permeability under healthy and infected conditions using Dextran smaller than 70 kDa is challenging. Previous research (1) has shown that molecules below 70 kDa already diffuse freely in healthy tissue. Given this high baseline diffusion, we believe that no significant difference would be observed before and after N. meningitidis infection and these experiments were not carried out. As discussed in the manuscript, bacteria induced permeability in mouse occurs at later time points, 16h post infection as shown previoulsy (2). As discussed in the manuscript, this difference between the xenograft model and the chip likely reflect the absence in the chip of various cell types present in the tissue parenchyma.

      The authors show the formation of actin of a honeycomb structure beneath the bacterial microcolonies. This only occurred in 65% of the microcolonies. Is this result similar to in vitro 2D endothelial cultures in static and under flow? Also, the group has shown in the past positive staining of other cytoskeletal proteins, such as ezrin in the ERM complex. Does this also occur in the 3D system?

      We thank the Reviewer #1 for this suggestion.

      • According to this recommendation, we imaged monolayers of endothelial cells in the flat regions of the chip (the two lateral channels) using the same microscopy conditions (i.e., Obj. 40X N.A. 1.05) that have been used to detect honeycomb structures in the 3D vessels in vitro. We showed that more than 56% of infected cells present these honeycomb structures in 2D, which is 13% less than in 3D, and is not significant due to the distributions of both populations. Thus, we conclude that under both in vitro conditions, 2D and 3D, the amount of infected cells exhibiting cortical plaques is similar. We have added the graph and the confocal images in Figure S4B and lines 418-419 of the revised manuscript.

      • We recently performed staining of ezrin in the chip and imaged both the 3D and 2D regions. Although ezrin staining was visible in 3D (Fig. 1 of this response), it was not as obvious as other markers under these infected conditions and we did not include it in the main text. Interpretation of this result is not straight forward as for instance the substrate of the cells is different and it would require further studies on the behaviour of ERM proteins in these different contexts.

      One of the most novel things of the manuscript is the use of a relatively quick photoablation system. I would suggest that the authors add a more extensive description of the protocol in methods. Could this technique be applied in other laboratories? If this is a major limitation, it should be listed in the discussion.

      Following the Reviewer’s comment, we introduced more detailed explanations regarding the photoablation:

      • L157-163 (Results): "Briefly, the chosen design is digitalized into a list of positions to ablate. A pulsed UV-LASER beam is injected into the microscope and shaped to cover the back aperture of the objective. The laser is then focused on each position that needs ablation. After introducing endothelial cells (HUVEC) in the carved regions,…"

      • L512-516 (Discussion): "The speed capabilities drastically improve with the pulsing repetition rate. Given that our laser source emits pulses at 10kHz, as compared to other photoablation lasers with repetitions around 100 Hz, our solution could potentially gain a factor of 100."

      • L1082-1087 (Materials and Methods): "…, and imported in a python code. The control of the various elements is embedded and checked for this specific set of hardware. The code is available upon request." Adding these three paragraphs gives more details on how photoablation works thus improving the manuscript.

      Minor comments:

      Supplementary Fig 2. The reference to subpanels H and I is swapped.

      The references to subpanels H and I have been correctly swapped back in the reviewed version.

      Line 203: I would suggest to delete this sentence. Although a strength of the submitted paper is the direct comparison of the VoC model with the animal model to better replicate Neisseria infection, a direct comparison with animal permeability is not needed in all vascular engineering papers, as vascular permeability measurements in animals have been well established in the past.

      The sentence "While previously developed VoC platforms aimed at replicating physiological permeability properties, they often lack direct comparisons with in vivo values." has been removed from the revised text.

      Fig 3: Bacteria binding experiments. I would suggest the addition of more methodological information in the main results text to guarantee a good interpretation of the experiment. First, it would be better that wall shear stress rather than flow rate is described in the main text, as flow rate is dependent on the geometry of the vessel being used. Second, how long was the perfusion of Neisseria in the binding experiment performed to quantify colony doubling or elongation? As per figure 1C, I would guess than 100 min, but it would be better if this information is directly given to the readers.

      We thank Reviewer #1 for these two suggestions that will improve the text clarity (e.g., L316). (i) Indeed, we have changed the flow rate in terms of shear stress. (ii) Also, we have normalized the quantification of the colony doubling time according to the first time-point where a single bacteria is attached to the vessel wall. Thus, early adhesion bacteria will be defined by a longer curve while late adhesion bacteria by a shorter curve. In total, the experiment lasted for 3 hours (modifications appear in L318 and L321-326).

      Fig 4: The honeycomb structure is not visible in the 3D rendering of panel D. I would recommend to show the actin staining in the absence of Neisseria staining as well.

      According to this suggestion, a zoom of the 3D rendering of the cortical plaque without colony had been added to the figure 4 of the revised manuscript.

      Line 421: E-selectin is referred as CD62E in this sentence. I would suggest to use the same terminology everywhere.

      We have replaced the "CD62E" term with "E-selectin" to improve clarity.

      Line 508: "This difference is most likely associated with the presence of other cell types in the in vivo tissues and the onset of intravascular coagulation". Do the authors refer to the presence of perivascular cells, pericytes or fibroblasts? If so, it could be good to mention them, as well as those future iterations of the model could include the presence of these cell types.

      By "other cell types", we refer to pericytes (3), fibroblasts (4), and perivascular macrophages (5), which surround endothelial cells and contribute to vessel stability. The main text was modified to include this information (Lines 548 and 555-570) and their potential roles during infection disussed.

      Discussion: The discussion covers very well the advantages of the model over in vitro 2D endothelial models and the animal xenograft but fails to include limitations. This would include the choice of HUVEC cells, an umbilical vein cell line to study microcirculation, the lack of perivascular cells or limitations on the fabrication technique regarding application in other labs (if any).

      We thank Reviewer #1 for this suggestion. Indeed, our manuscript may lack explaining limitations, and adding them to the text will help improve it:

      • The perspectives of our model include introducing perivascular cells surrounding the vessel and fibroblasts into the collagen gel as discussed previously and added in the discussion part (L555-570).

      • Our choice for HUVEC cells focused on recapitulating the characteristics of venules that respect key features such as the overexpression of CD62E and adhesion of neutrophils during inflammation. Using microvascular endothelial cells originating from different tissues would be very interesting. This possibility is now mentioned in the discussion lines 567-568.

      • Photoablation is a homemade fabrication technique that can be implemented in any lab harboring an epifluorescence microscope. This method has been more detailed in the revised manuscript (L1085-1087).

      Line 576: The authors state that the model could be applied to other systemic infections but failed to mention that some infections have already been modelled in 3D bioengineered vascular models (examples found in https://doi.org/10.1038/s41564-024-01645-6). This includes a capillary photoablated vascular model to study malaria (DOI: 10.1126/sciadv.aay724).

      Thes two important references have been introduced in the main text (L84, 647, 648).

      Line 1213: Are the 6M neutrophil solution in 10ul under flow. Also, I would suggest to rewrite this sentence in the following line "After, the flow has been then added to the system at 0.7-1 µl/min."

      We now specified that neutrophils are circulated in the chip under flow conditions, lines 1321-1322.

      Significance

      The manuscript is comprehensive, complete and represents the first bioengineered model of sepsis. One of the major strengths is the carful characterization and benchmarking against the animal xenograft model. Its main limitations is the brief description of the photoablation methodology and more clarity is needed in the description of bacteria perfusion experiments, given their complexity. The manuscript will be of interest for the general infection community and to the tissue engineering community if more details on fabrication methods are included. My expertise is on infection bioengineered models.

      Reviewer #2 (Evidence, reproducibility, and clarity):

      Summary:

      The authors develop a Vessel-on-Chip model, which has geometrical and physical properties similar to the murine vessels used in the study of systemic infections. The vessel was created via highly controllable laser photoablation in a collagen matrix, subsequent seeding of human endothelial cells and flow perfusion to induce mechanical cues. This vessel could be infected with Neisseria meningitidis, as a model of systemic infection. In this model, microcolony formation and dynamics, and effects on the host were very similar to those described for the human skin xenograft mouse, which is the current gold standard for these studies, and were consistent with observations made in patients. The model could also recapitulate the neutrophil response upon N. meningitidis systemic infection.

      Major comments:

      I have no major comments. The claims and the conclusions are supported by the data, the methods are properly presented and the data is analyzed adequately. Furthermore, I would like to propose an optional experiment could improve the manuscript. In the discussion it is stated that the vascular geometry might contribute to bacterial colonization in areas of lower velocity. It would be interesting to recapitulate this experimentally. It is of course optional but it would be of great interest, since this is something that can only be proven in the organ-on-chip (where flow speed can be tuned) and not as much in animal models. Besides, it would increase impact, demonstrating the superiority of the chip in this area rather than proving to be equal to current models.

      We have conducted additional experiments on infection in different vascular geometries now added these results figure 3/S3 and lines 288-305. We compared sheared stress levels as determined by Comsol simulation and experimentally determined bacterial adhesion sites. In the conditions used, the range of shear generated by the tested geometries do not appear to change the efficiency of bacterial adhesion. These results are consistent with a previous study from our group which show that in this range of shear stresses the effect on adhesion is limited (6) . Furthermore, qualitative observations in the animal model indicate that bacteria do not have an obvious preference in terms of binding site.

      Minor comments:

      I have a series of suggestions which, in my opinion, would improve the discussion. They are further elaborated in the following section, in the context of the limitations.

      • How to recapitulate the vessels in the context of a specific organ or tissue? If the pathogen is often found in the luminal space of other organs after disseminating from the blood, how can this process be recapitulated with this mode, if at all?

      For reasons that are not fully understood, postmortem histological studies reveal bacteria only inside blood vessels but rarely if ever in the organ parenchyma. The presence of intravascular bacteria could nevertheless alter cells in the tissue parenchyma. The notable exception is the brain where bacteria exit the bacterial lumen to access the cerebrospinal fluid. The chip we describe is fully adapted to develop a blood brain barrier model and more specific organ environments. This implies the addition of more cell types in the hydrogel. A paragraph on this topic has been added (Lines 548 and 552-570).

      • Similarly, could other immune responses related to systemic infection be recapitulated? The authors could discuss the potential of including other immune cells that might be found in the interstitial space, for example.

      This important discussion point has been added to the manuscript (L623-636). As suggested by Reviewer #2, other immune cells respond to N. meningitis and can be explored using our model. For instance, macrophages and dendritic cells are activated upon N. meningitis infection, eliminate the bacteria through phagocytosis, produce pro-inflammatory cytokines and chemokines potentially activating lymphocytes (7). Such an immune response, yet complex, would be interesting to study in our model as skin-xenograft mice are deprived of B and T lymphocytes to ensure acceptance of human skin grafts.

      • A minor correction: in line 467 it should probably be "aspects" instead of "aspect", and the authors could consider rephrasing that sentence slightly for increased clarity.

      We have corrected the sentence with "we demonstrated that our VoC strongly replicates key aspects of the in vivo human skin xenograft mouse model, the gold standard for studying meningococcal disease under physiological conditions." in lines 499-503.

      Strengths and limitations

      The most important strength of this manuscript is the technology they developed to build this model, which is impressive and very innovative. The Vessel-on-Chip can be tuned to acquire complex shapes and, according to the authors, the process has been optimized to produce models very quickly. This is a great advancement compared with the technologies used to produce other equivalent models. This model proves to be equivalent to the most advanced model used to date, but allows to perform microscopy with higher resolution and ease, which can in turn allow more complex and precise image-based analysis. However, the authors do not seem to present any new mechanistic insights obtained using this model. All the findings obtained in the infection-on-chip demonstrate that the model is equivalent to the human skin xenograft mouse model, and can offer superior resolution for microscopy. However, the advantages of the model do not seem to be exploited to obtain more insights on the pathogenicity mechanisms of N. meningitidis, host-pathogen interactions or potential applications in the discovery of potential treatments. For example, experiments to elucidate the role of certain N. meningiditis genes on infection could enrich the manuscript and prove the superiority of the model. However, I understand these experiments are time-consuming and out of the scope of the current manuscript. In addition, the model lacks the multicellularity that characterizes other similar models. The authors mention that the pathogen can be found in the luminal space of several organs, however, this luminal space has not been recapitulated in the model. Even though this would be a new project, it would be interesting that the authors hypothesize about the possibilities of combining this model with other organ models. The inclusion of circulating neutrophils is a great asset; however it would also be interesting to hypothesize about how to recapitulate other immune responses related to systemic infection.

      We thank Reviewer #2 for his/her comment on the strengths and limitations of our work. The difficulty is that our study opens many futur research directions and applications and we hope that the work serves as the basis for many future studies but one can only address a limited set of experiments in a single manuscript.

      • Experiments investigating the role of N. meningitidis genes require significant optimization of the system. Multiplexing is a potential avenue for future development, which would allow the testing of many mutants. The fast photoablation approach is particularly amenable to such adaptation.

      • Cells and bacteria inside the chambers could be isolated and analyzed at the transcriptomic level or by flow cytometry. This would imply optimizing a protocol for collecting cells from the device via collagenase digestion, for instance. This type of approach would also benefit from multiplexing to enhance the number of cells.

      • As mentioned above, the revised manuscript discusses the multicellular capabilities of our model, including the integration of additional immune cells and potential connections to other organ systems. We believe that these approaches are feasible and valuable for studying various aspects of N. meningitidis infection.

      Advance

      The most important advance of this manuscript is technical: the development of a model that proves to be equivalent to the most complex model used to date to study meningococcal systemic infections. The human skin xenograft mouse model requires complex surgical techniques and has the practical and ethical limitations associated with the use of animals. However, the Infection-on-chip model is completely in vitro, can be produced quickly, and allows to precisely tune the vessel’s geometry and to perform higher resolution microscopy. Both models were comparable in terms of the hallmarks defining the disease, suggesting that the presented model can be an effective replacement of the animal use in this area.

      Other vessel-on-chip models can recapitulate an endothelial barrier in a tube-like morphology, but do not recapitulate other complex geometries, that are more physiologically relevant and could impact infection (in addition to other non-infectious diseases). However, in the manuscript it is not clear whether the different morphologies are necessary to study or recapitulate N. meningitidis infection, or if the tubular morphologies achieved in other similar models would suffice.

      Audience

      This manuscript might be of interest for a specialized audience focusing on the development of microphysiological models. The technology presented here can be of great interest to researchers whose main area of interest is the endothelium and the blood vessels, for example, researchers on the study of systemic infections, atherosclerosis, angiogenesis, etc. Thus, the tool presented (vessel-on-chip) can have great applications for a broad audience. However, even when the method might be faster and easier to use than other equivalent methods, it could still be difficult to implement in another laboratory, especially if it lacks expertise in bioengineering. Therefore, the method could be more of interest for laboratories with expertise in bioengineering looking to expand or optimize their toolbox. Alternatively, this paper present itself as an opportunity to begin collaborations, since the model could be used to test other pathogen or conditions.

      Field of expertise:

      Infection biology, organ-on-chip, fungal pathogens.

      I lack the expertise to evaluate the image-based analysis.

      References

      (1) Gyohei Egawa, Satoshi Nakamizo, Yohei Natsuaki, Hiromi Doi, Yoshiki Miyachi, and Kenji Kabashima. Intravital analysis of vascular permeability in mice using two-photon microscopy. Scientific Reports, 3(1):1932, Jun 2013. ISSN 2045-2322. doi: 10.1038/srep01932.

      (2) Valeria Manriquez, Pierre Nivoit, Tomas Urbina, Hebert Echenique-Rivera, Keira Melican, Marie-Paule Fernandez-Gerlinger, Patricia Flamant, Taliah Schmitt, Patrick Bruneval, Dorian Obino, and Guillaume Duménil. Colonization of dermal arterioles by neisseria meningitidis provides a safe haven from neutrophils. Nature Communications, 12(1):4547, Jul 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-24797-z.

      (3) Mats Hellström, Holger Gerhardt, Mattias Kalén, Xuri Li, Ulf Eriksson, Hartwig Wolburg, and Christer Betsholtz. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. Journal of Cell Biology, 153(3):543–554, Apr 2001. ISSN 0021-9525. doi: 10.1083/jcb.153.3.543.

      (4) Arsheen M. Rajan, Roger C. Ma, Katrinka M. Kocha, Dan J. Zhang, and Peng Huang. Dual function of perivascular fibroblasts in vascular stabilization in zebrafish. PLOS Genetics, 16(10):1–31, 10 2020. doi: 10.1371/journal.pgen.1008800.

      (5) Huanhuan He, Julia J. Mack, Esra Güç, Carmen M. Warren, Mario Leonardo Squadrito, Witold W. Kilarski, Caroline Baer, Ryan D. Freshman, Austin I. McDonald, Safiyyah Ziyad, Melody A. Swartz, Michele De Palma, and M. Luisa Iruela-Arispe. Perivascular macrophages limit permeability. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(11):2203–2212, 2016. doi: 10.1161/ATVBAHA. 116.307592.

      (6) Emilie Mairey, Auguste Genovesio, Emmanuel Donnadieu, Christine Bernard, Francis Jaubert, Elisabeth Pinard, Jacques Seylaz, Jean-Christophe Olivo-Marin, Xavier Nassif, and Guillaume Dumenil. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier . Journal of Experimental Medicine, 203(8):1939–1950, 07 2006. ISSN 0022-1007. doi: 10.1084/jem.20060482.

      (7) Riya Joshi and Sunil D. Saroj. Survival and evasion of neisseria meningitidis from macrophages. Medicine in Microecology, 17:100087, 2023. ISSN 2590-0978. doi: https://doi.org/10.1016/j.medmic. 2023.100087.

    1. eLife Assessment

      Yabaji et al. reports a fundamental study highlighting the mechanistic connection for susceptibility to TB infection via the sst1 locus, this was shown to involve increased IFN and Myc production causing the down-regulation of anti-oxidant defence genes and chronic lipidation. Ultimately, lipid peroxidation may underlie infectivity and macrophage dysfunction. Overall, the data presented are compelling, supported by a well designed multi-omics approach and the findings will be of broad interest to researchers investigating the molecular mechanisms of TB infection.

      [Editors' note: this paper was reviewed by Review Commons.]

    2. Reviewer #1 (Public review):

      Summary:

      In this report, Yabaji et al describe studies designed to address the mechanism behind the TB susceptibility gene sst1. This locus is known to affect expression of IFN and synergizes with Myc to potentiate infectivity. Using a variety of molecular expression and imaging techniques, the authors demonstrate that mice harboring an sst1 transgene (compared to B6 controls) are highly susceptible to TB infection via a mechanism involving loss of antioxidant defense systems, the down regulation of key antioxidant genes and ferritin controlling intracellular iron levels. The combination of increased iron plus decreased antioxidant defense systems in turn increases lipid peroxidation and downstream sequelae. Inhibition of peroxidation diminishes infectivity increases ferritin levels. Furthermore, the authors demonstrate that Myc activation potentiates this process and that down regulation of NRF2 antioxidant defenses accompany potentiated infectivity. Increased peroxidation products (4-HNE) may activate the ASK1/JNK system leading to IFNb superinduction and diminished macrophage viability thereby diminishing ability to withstand TB infection. Extending these findings, additional mouse models plus some work in humans supports the peroxidation hypothesis. Overall, the work is significant for it introduces a molecular basis for TB infectivity and presents a potential novel therapeutic opportunity.

      Strengths:

      (1) Strengths of this study include a multi-omic analysis of infectivity combining gene expression analysis with biochemical and cell biological evaluation.

      (2) Novel identification of an iron-catalyzed lipid peroxidation based mechanism for why the sst1 locus is linked to TB infection.

      (3) Parallels to human biology are included via analysis of Myc upregulation in peripheral blood from patients.

      (4) Appropriate statistical analysis

      Weaknesses:

      (1) Lipid peroxidation is a broad phenotype process and the authors honed in on 4-HNE dependent processes as a likely mechanism because they can measure 4-HNE conjugated proteins. However, lipid peroxidation is a complex phenomenon and the work presented herein is largely descriptive.

      (2) The authors continually refer to increased 4HNE while they do not measure this 9 carbon lipid, they actually measure 4-HNE conjugated proteins immunochemically.

      (3) The authors do not distinguish between increased protein-HNE adducts and increased membrane peroxidation (or both) as mechanistically linked to infectivity.

    3. Author response:

      General Statements

      We are grateful for constructive reviewers’ comments and criticisms and have thoroughly addressed all major and minor comments in the revised manuscript.

      Summary of new data.

      We have performed the following additional experiments to support our concept:

      (1) The kinetcs of ROS production in B6 and B6.Sst1S macrophages after TNF stimulation (Fig. 3I and J, Suppl. Fig. 3G);

      (2) Time course of stress kinase activation (Fig.3K) that clearly demonstrated the persistent stress kinase (phospho-ASK1 and phospho-cJUN) activation exclusively in. the B6.Sst1S macrophages;

      (3) New Fig.4 C-E panels include comparisons of the B6 and B6.Sst1S macrophage responses to TNF and effects of IFNAR1 blockade in both backgrounds.

      (4) We performed new experiments demonstrating that the synthesis of lipid peroxidation products (LPO) occurs in TNF-stimulated macrophages earlier than the IFNβ super-induction (Suppl.Fig.4A and B).

      (5) We demonstrated that the IFNAR1 blockade 12, 24 and 32 h after TNF stimulation still reduced the accumulation of LPO product (4-HNE) in TNF-stimulated B6.Sst1S BMDMs (Suppl.Fig.4 E-G).

      (6) We added comparison of cMyc expression between the wild type B6 and B6.Sst1S BMDMs during TNF stimulation for 6-24 h (Fig.5I-J).

      (7) New data comparing 4-HNE levels in Mtb-infected B6 wild type and B6.Sst1S macrophages and quantification of replicating Mtb was added (Fig.6B, Suppl.Fig.7C and D).

      (8) In vivo data described in Fig.7 was thoroughly revised and new data was included. We demonstrated increased 4-HNE loads in multibacillary lesions (Fig.7A, Suppl. Fig.9A) and the 4-HNE accumulation in CD11b+ myeloid cells (Fig.7B and Suppl.Fig.9B). We demonstrated that the Ifnb – expressing cells are activated iNOS+ macrophages (Fig.7D and Suppl.Fig.13A). Using new fluorescent multiplex IHC, we have shown that stress markers phopho-cJun and Chac1 in TB lesions are expressed by Ifnb- and iNOS-expressing macrophages (Fig.7E and Suppl.Fig.13D-F).

      (9) We performed additional experiment to demonstrate that naïve (non-BCG vaccinated) lymphocytes did not improve Mtb control by Mtb-infected macrophages in agreement with previously published data (Suppl.Fig.7H).

      Summary of updates

      Following reviewers requests we updated figures to include isotype control antibodies, effects of inhibitors on non-stimulated cells, positive and negative controls for labile iron pool, additional images of 4-HNE and live/dead cell staining.

      Isotype control for IFNAR1 blockade were included in Fig.3M, Fig.4C -E, Fig.6L-M Suppl.Fig.4F-G, 7I.

      Positive and negative controls for labile iron pool measurements were added to Fig.3E, Fig.5D, Suppl.Fig.3B

      Cell death staining images were added Suppl.Fig.3H

      Co-staining of 4-HNE with tubulin was added to Suppl.Fig.3A.

      High magnification images for Figure 7 were added in Suppl.Fig.8 to demonstrate paucibacillary and multibacillary image classification.

      Single-channel color images for individual markers were provided in Fig.7E and Suppl.Fig.13B-F.

      Inhibitor effects on non-stimulated cells were included in Fig.5 D-H, Suppl.Fig.6A and B. Titration of CSF1R inhibitors for non-toxic concentration determination are included in Suppl.Fig.6D.

      In addition, we updated the figure legends in the revised manuscript to include more details about the experiments. We also clarified our conclusions in the Discussion. Responses to every major and minor comment of the reviewers are provided below.

      Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity:

      Summary

      The study by Yabaji et al. examines macrophage phenotypes B6.Sst1S mice, a mouse strain with increased susceptibility to M. tuberculosis infection that develops necrotic lung lesions. Extending previous work, the authors specifically focus on delineating the molecular mechanisms driving aberrant oxidative stress in TNF-activated B6.Sst1S macrophages that has been associated with impaired control of M. tuberculosis. The authors use scRNAseq of bone marrow-derived macrophages to further characterize distinctions between B6.Sst1S and control macrophages and ascribe distinct trajectories upon TNF stimulation. Combined with results using inhibitory antibodies and small molecule inhibitors in in vitro experimentation, the authors propose that TNF-induced protracted c-Myc expression in B6.Sst1S macrophages disables the cellular defense against oxidative stress, which promotes intracellular accumulation of lipid peroxidation products, fueled at least in part by overexpression of type I IFNs by these cells. Using lung tissue sections from M. tuberculosis-infected B6.Sst1S mice, the authors suggest that the presence of a greater number of cells with lipid peroxidation products in lung lesions with high counts of stained M. tuberculosis are indicative of progressive loss of host control due to the TNF-induced dysregulation of macrophage responses to oxidative stress. In patients with active tuberculosis disease, the authors suggest that peripheral blood gene expression indicative of increased Myc activity was associated with treatment failure.

      Major comments

      The authors describe differences in protein expression, phosphorylation or binding when referring to Fig 2A-C, 2G, 3D, 5B, 5C. However, such differences are not easily apparent or very subtle and, in some cases, confounded by differences in resting cells (e.g. pASK1 Fig 3L; c-Myc Fig 5B) as well as analyses across separate gels/blots (e.g. Fig 3K, Fig 5B). Quantitative analyses across different independent experiments with adequate statistical analyses are required to strengthen the associated conclusions.

      We updated our Western blots as follows:

      (1) Densitometery of normalized bands is included above each lane (Fig.2A-C; Fig.3C-D and 3K; Fig.4A-B; Fig.5B,C,I,J). New data in Fig.3K is added to highlight differences between B6 and B6.Sst1S at individual timepoints after TNF stimulation. In Fig.5I we added new data comparing Myc levels in B6 and B6.Sst1S with and without JNK inhibitor and updated the results accordingly. New Fig.3K clearly demonstrates the persistent activation of p-cJun and pAsk1 at 24 and 36h of TNF stimulation. In Fig.5B we clearly demonstrate that Myc levels were higher in B6.Sst1S after 12 h of TNF stimulation. At 6h, however, the basal differences in Myc levels are consistently higher in B6.Sst1S and the induction by TNF is 1.6-fold similar in both backgrounds. We noted this in the text.

      (2) A representative experiment is shown in individual panels and the corresponding figure legend contains information on number of biological repeats. Each Western blot was repeated 2 – 4 times.

      The representative images of fluorescence microscopy in Fig 3H, 4H, 5H, S3C, S3I, S5A, S6A seem to suggest that under some conditions the fluorescence signal is located just around the nucleus rather than absent or diminished from the cytoplasm. It is unclear whether this reflects selective translocation of targets across the cell, morphological changes of macrophages in culture in response to the various treatments, or variations in focal point at which images were acquired. Control images (e.g. cellular actin, DIC) should be included for clarification. If cell morphology changes depending on treatments, how was this accounted for in the quantitative analyses? In addition, negative controls validating specificity of fluorescence signals would be warranted.

      Our conclusion of higher LPO production is based on several parameters: 4-HNE staining, measurements of MDA in cell lysates and oxidized lipids using BODIPY C11. Taken together they demonstrate significant and reproducible increase in LPO accumulation in TNFstimulated B6.Sst1S macrophages. This excludes imaging artefact related to unequal 4-HNE distribution noted by the reviewer. In fact, we also noted that the 4-HNE was spread within cell body of B6.Sst1S macrophages and confirmed it using co-staining with tubulin, as suggested by the reviewer (new Suppl.Fig.3A). Since low molecular weight LPO products, such as MDA and 4-HNE, traverse cell membranes, it is unlikely that they will be strictly localized to a specific membrane bound compartment. However, we agree that at lower concentrations, there might be some restricted localization, explaining a visible perinuclear ring of 4-HNE staining in B6 macrophages. This phenomenon may be explained just by thicker cytoplasm surrounding nucleus in activated macrophages spread on adherent plastic surface or by proximity to specific organelles involved in generation or clearance of LPO products and definitively warrants further investigation.

      We also included images of non-stimulated cells in Fig.3H, Suppl.Fig.3A and 3E. We used multiple fields for imaging and quantified fluorescence signals (Suppl. Fig.3D and 3F, Suppl.Fig.4G, Suppl.Fig.6A and B).

      We used negative controls without primary antibodies for the initial staining optimization, but did not include it in every experiment.

      To interpret the evaluation on the hierarchy of molecular mechanisms in B6.Sst1S macrophages, comparative analyses with B6 control cells should be included (e.g. Fig 4C-I, Fig 5, Fig 6B, E-M, S6C, S6E-F). This will provide weight to the conclusions that the dysregulated processes are specifically associated with the susceptibility of B6.Sst1S macrophages.

      Understanding the sst1-mediated effects on macrophage activation is the focus of our previously published studies Bhattacharya et al., JCI, 2021) and this manuscript. The data comparing B6 and B6.Sst1S macrophage are presented in Fig.1, Fig.2, Fig.3, Fig.4, Fig.5A-C, I and J, Fig.6A-C, 6J and corresponding supplemental figures 1, 2, 3, 4A and B, Suppl.Fig.5, Suppl.Fig.6C, Suppl.Fig.7A-D,7F.

      Once we identified the aberrantly activated pathways in the B6.Sst1S, we used specific inhibitors to correct the aberrant response in B6.Sst1S.

      All experiments using inhibitory antibodies require comparison to the effect of a matched isotype control in the same experiment (e.g. Fig 3J, 4F, G, I; 6L, 6M, S3G, S6F).

      Isotype control for IFNAR1 blockade were included in Fig.3M, Fig.4C-E, Fig.6L-M Suppl.Fig.4F-G, 7I.

      Experiments using inhibitors require inclusion of an inhibitor-only control to assess inhibitor effects on unstimulated cells (e.g. Fig 4I, 5D-I)

      Inhibitor effects on non-stimulated cells were included in Fig.5 D-H, Suppl.Fig.6A and B.

      Fig 3K and Fig 5J appear to contain the same images for p-c-Jun and b-tubulin blots.

      Fig.3K and 5J partially overlapped but had different focus – 3K has been updated to reflect the time course of stress kinase activation. Fig.5J is updated (currently Fig.5I and J) to display B6 and B6.Sst1S macrophage data including cMyc and p-cJun levels.

      Data of TNF-treated cells in Fig 3I appear to be replotted in Fig 3J.

      Currently these data is presented in Fig.3L and 3M and has been updated to include comparison of B6 and B6.Sst1S cells (Fig.3L) and effects of inhibitors in Fig.3M.

      It is stated that lungs from 2 mice with paucibacillary and 2 mice with multi-bacillary lesions were analyses. There is contradicting information on whether these tissues were collected at the same time post infection (week 14?) or whether the pauci-bacillary lesions were in lungs collected at earlier time points post infection (see Fig S8A). If the former, how do the authors conclude that multi-bacillary lesions are a progression from paucibacillary lesions and indicative of loss of M. tuberculosis control, especially if only one lesion type is observed in an individual host? If the latter, comparison between lesions will likely be dominated by temporal differences in the immune response to infection.

      In either case, it is relevant to consider density, location, and cellular composition of lesions (see also comments on GeoMx spatial profiling). Is the macrophage number/density per tissue area comparable between pauci-bacillary and multi-bacillary lesions?

      We did not collect lungs at the same time point. As described in greater detail in our preprints (Yabaji et al., https://doi.org/10.1101/2025.02.28.640830 and https://doi.org/10.1101/2023.10.17.562695) pulmonary TB lesions in our model of slow TB progression are heterogeneous between the animals at the same timepoint, as observed in human TB patients and other chronic TB animal models. Therefore, we perform analyses of individual TB lesions that are classified by a certified veterinary pathologist in a blinded manner based on their morphology (H&E) and acid fast staining of the bacteria, as depicted in Suppl.Fig.8. Currently it is impossible to monitor progression of individual lesions in mice. However, in mice TB is progressive disease and no healing and recovery from the disease have been observed in our studies or reported in literature. Therefore, we assumed that paucibacillary lesions preceded the multibacillary ones, and not vice versa, thus reflecting the disease progression. In our opinion, this conclusion most likely reflects the natural course of the disease. However, we edited the text : instead of disease progression we refer to paucibacillary and multibacillary lesions.

      Does 4HNE staining align with macrophages and if so, is it elevated compared to control mice and driven by TNF in the susceptible vs more resistant mice?

      We performed additional staining and analyses to demonstrate the 4-HNE accumulation in CD11b+ myeloid cells of macrophage morphology. Non-necrotic lesions contain negligible proportion of neutrophils (Fig.7B, Suppl.Fig.9B). B6 mice do not develop advanced multibacillary TB lesions containing 4-HNE+ cells. Also, 4-HNE staining was localized to TB lesions and was not found in uninvolved lung areas of the infected mice, as shown in Suppl.Fig.9A (left panel).

      It is well established that TNF plays a central role in the formation and maintenance of TB granulomas in humans and in all animal models. Therefore, TNF neutralization would lead to rapid TB progression, rapid Mtb growth and lesions destruction in both B6 and B6.Sst1S genetic backgrounds.

      Pathway analysis of spatial transcriptomic data (Suppl.Fig.11) identified TNF signaling via NFkB among dominant pathways upregulated in multibacillary lesions, suggesting that the 4-HNE accumulation paralleled increased TNF signaling. In addition, in vivo other cytokines, including IFN-I, could activate macrophages and stimulate production of reactive oxygen and nitrogen species and lead to the accumulation of LPO products as shown in this manuscript.

      It would be relevant to state how many independent lesions per host were sampled in both the multiplex IHC as well as the GeoMx data. Can the authors show the selected regions of interest in the tissue overview and in the analyses to appreciate within-host and across-host heterogeneity of lesions. The nature of the spatial transcriptomics platform used is such that the data are derived from tissue areas that contain more than just Iba1+ macrophages. At later stages of infection, the cellular composition of such macrophage-rich areas will be different when compared to lesions earlier in the infection process. Hence, gene expression profiles and differences between tissue regions cannot be attributed to macrophages in this tissue region but are more likely a reflection of a mix of cellular composition and per-cell gene expression.

      We used Iba1 staining to identify macrophages in TB lesions and programmed GeoMx instrument to collect spatial transcriptomics probes from Iba1+ cells within ROIs. Also, we selected regions of interest (ROI) avoiding necrotic areas (depicted in Suppl.Fig.10). We agree that Iba1+ macrophage population is heterogenous – some Iba1+ cells are activated iNOS+ macrophages, other are iNOS-negative (Fig.7C and D, and Suppl.Fig.13A). Multibacillary lesions contain larger areas occupied by activated (iNOS+) macrophages (Fig.7D,

      Suppl.Fig.13B and 13F). Although the GeoMx spatial transcriptomic platform does not provide single cell resolution, it allowed us to compare populations of Iba1+ cells in paucibacillary and multibacillary TB lesions and to identify a shift in their overall activation pattern.

      It is stated that loss of control of M. tuberculosis in multibacillary lesions was associated with "downregulation of IFNg-inducible genes". If the authors base this on the tissue expression of individual genes, this requires further investigation to support such conclusion (also see comment on GeoMx above). Furthermore, how might this conclusion be compatible with significantly elevated iNOS+ cells (Fig 7D) in multibacillary lesions?

      We demonstrated that Ciita gene expression is specifically induced by IFN-gamma and is suppressed by IFN-I (Fig.6M). The expression of Ciita in paucibacillary lesions suggest the presence of the IFN-gamma activated cells and its disappearance in the multibacillary lesion is consistent with massive activation of IFN-I pathway (Fig.7C).

      It is appreciated that the human blood signature analyses contain Myc-signatures but the association with treatment failure is not very strong based on the data in Fig 13B and C (Suppl.Fig.15B and C now). The authors indicate that they have no information on disease severity, but it should perhaps not be assumed that treatment failure is indicative of poor host control of the infection. Perhaps independent analyses in separate cohort/data set can add strength and provide -additional insights (e.g. PMID: 35841871; PMID: 32451443, PMID: 17205474, PMID: 22872737). In addition, the human data analyses could be strengthened by extension to additional signatures such as IFN, TNF, oxidative stress. Details of the human study design are not very clear and are lacking patient demographics, site of disease, time of blood collection relative to treatment onset, approving ethics committees.

      X axis of Suppl.Fig.15A represent pre-defined molecular signature gene sets (MSigDB) in Gene Set Enrichment Analysis (GSEA) database (https://www.gseamsigdb.org/gsea/msigdb). On Y axis is area under curve (AUC) score for each gene set. The Myc upregulated gene set myc_up was identified among top gene sets associated with treatment failure using unbiased ssGSEA algorithm. The upregulation of Myc pathway in the blood transcriptome associated with TB treatment failure most likely reflects greater proportion of immature cells in peripheral blood, possibly due to increased myelopoiesis.

      Pathway analysis of the differentially expressed genes revealed that treatment failures were associated with the following pathways relevant to this study: NF-kB Signaling, Flt3 Signaling in Hematopoietic Progenitor Cells (indicative of common myeloid progenitor cell proliferation), SAPK/JNK Signaling and Senescence (indicative of oxidative stress). The upregulation of these pathways in human patients with poor TB treatment outcomes correlates with our findings in TB susceptible mice. The detailed analysis of differentially regulated pathways in human TB patients is beyond the scope of this study and is presented in another manuscript entitled “ Tuberculosis risk signatures and differential gene expression predict individuals who fail treatment” by Arthur VanValkenburg et al., submitted for publication.

      Blood collection for PBMC gene expression profiling of TB patients was prior to TB treatment or within a first week of treatment commencement. Boxplot of bootstrapped ssGSEA enrichment AUC scores from several oncogene signatures ranked from lowest to highest AUC score, with myc_up and myc_dn genes highlighted in red.

      We agree with the reviewer that not every gene in the myc_up gene set correlates with the treatment outcome. But the association of the gene set is statistically significant, as presented in Suppl.Fig.15B – C.

      We updated the details of the study, including study sites and the ethics committee approval statement and references describing these cohorts.

      Other comments

      It is excellent that the authors provide individual data points. Choosing a colour other than black would increase clarity when black bars are used.

      We followed this useful suggestion and selected consistent color codes for B6 and B6.Sst1S groups to enhance clarity throughout the revised manuscript.

      Error bars are inconsistently depicted as either bi-directional or just unidirectional.

      We used bi-directional error bars in the revised manuscript.

      Fig 1E, G, H - please include a scale to clarify what the heat map is representing.

      We have included the expression key in Fig.1E,G and H and Suppl.Fig.1C and D in the revised version.

      Fig 2K, Fig S10A gene information cannot be deciphered.

      We increased the font in previous Fig.2K and moved to supplement to keep larger fonts (current Suppl.Fig.2G).

      Fig S4A,B please add error bars.

      These data are presented as Suppl.Fig.5 in the revised version. We performed one experiment to test the hypothesis. Because the data indicated no clear increase in transposon small RNAs in the sst1S macrophages, we did not pursue this hypothesis further, and therefore, the error bars were not included. However, we decided to include these negative data because it rejects a very attractive and plausible hypothesis.

      Please use gene names as per convention (e.g. Ifnb1) to distinguish gene expression from protein expression in figures and text.

      We addressed the comment in the revised manuscript.

      Fig S8B. Contrary to the description of results, there seems to be minimal overlap between the signal for YFP and the Ifnb1 probe. Is the Ifnb1 reporter mouse a legacy reporter? If so, it is worth stating this and including such considerations in the data interpretation.

      The YFP reporter expresses YFP protein under the control of the Ifnb1 promoter. The YFP protein accumulates within the cells and while Ifnb protein is rapidly secreted and does not accumulate in the producing cells in appreciable amounts. So YFP is not a lineage tracing reporter, but its accumulation marks the Ifnb1 promoter activity in cells, although the YFP protein half-life is longer than that of the Ifnb1 mRNA that is rapidly degraded (Witt et al., BioRxiv, 2024; doi:10.1101/2024.08.28.61018). Therefore, there is no precise spatiotemporal coincidence of these readouts.

      Please clarify what is meant by "normal interstitium" ? If the tissue is from uninfected mice, please state clearly.

      In this context we refer to the uninvolved lung areas of the infected lungs. In every sample we compare uninvolved lung areas and TB lesions of the same animal. Also, we performed staining of lung of non-infected mice as additional controls.

      If macrophage cultures underwent media changes every 48h, how was loss of liberated Mtb taken into account especially if differences in cell density/survival were noted? The assessment of M. tuberculosis load by qPCR is not well described. In particular, the method of normalization applied within the experiments (not within the qPCR) here remains unclear, even with reference to the authors' prior publication.

      Our lab has many years of experience working with macrophage monolayers infected with virulent Mtb and uses optimized protocols to avoid cell losses and related artifacts. Recently we published a detailed protocol for this methodology in STAR Protocols (Yabaji et al., 2022; PMID 35310069). In brief, it includes preparation of single cell suspensions of Mtb by filtration to remove clumps, use of low multiplicity of infection, preparation of healthy confluent monolayers and use of nutrient rich culture medium and medium change every 2 days. We also rigorously control for cell loss using whole well imaging and quantification of cell numbers and live/dead staining.

      Please add citation for the limma package.

      The references has been added (Ritchie et al, NAR 2015; PMID 25605792).

      The description of methodology relating to the "oncogene signatures" is unclear.

      This signature was described in Bild etal, Nature, 2006 and McQuerry JA, et al, 2019 “Pathway activity profiling of growth factor receptor network and stemness pathways differentiates metaplastic breast cancer histological subtypes”. BMC Cancer 19: 881 and is cited in Methods section Oncogene signatures

      Please clearly state time points post infection for mouse analyses.

      We collected lung samples from Mtb infected mice 12 – 20 weeks post infection. The lesions were heterogeneous and were individually classified using criteria described above.

      Reference is made to "a list of genes unique to type I [interferon] genes [....]" (p29). Can the authors indicate the source of the information used for compiling this list?

      The lists were compiled from Reactome, EMBL's European Bioinformatics Institute and GSEA databases. The links for all datasets are provided in Suppl.Table 8 “Expression of IFN pathway genes in Iba1+ cells from pauci- and multi-bacillary lesions of Mtb infected B6.Sst1S mouse lungs” in the “Pool IFN I & II gene sets” worksheet.

      The discussion at present is very long, contains repetition of results and meanders on occasion.

      Thank you for this suggestion, We critically revised the text for brevity and clarity.

      Reviewer #1 (Significance):  

      Strengths and limitations  

      Strengths: multi-pronged analysis approaches for delineating molecular mechanisms of macrophage responses that might underpin susceptibility to M. tuberculosis infection; integration of mouse tissues and human blood samples  

      Weaknesses: not all conclusions supported by data presented; some concerns related to experimental design and controls; links between findings in human cohort and the mechanistic insights gained in mouse macrophage model uncertain

      The revised manuscript addresses every major and minor comment of the reviewers, including isotype controls and naïve T cells, to provide additional support for our conclusions. Our study revealed causal links between Myc hyperactivity with the deficiency of anti-oxidant defense and type I interferon pathway hyperactivity. We have shown that Myc hyperactivity in TNF-stimulated macrophages compromises antioxidant defense leading to autocatalytic lipid peroxidation and interferon-beta superinduction that in turn amplifies lipid peroxidation, thus, forming a vicious cycle of destructive chronic inflammation. This mechanism offers a plausible mechanistic explanation of for the association of Myc hyperactivity with poorer treatment outcomes in TB patients and provide a novel target for host-directed TB therapy.

      Advance

      The study has the potential to advance molecular understanding of the TNF-driven state of oxidative stress previously observed in B6.Sst1S macrophages and possible implications for host control of M. tuberculosis in vivo.

      Audience

      Experts seeking understanding of host factors mediating M. tuberculosis control, or failure thereof, with appreciation for the utility of the featured mouse model in assessing TB diseases progression and severe manifestation. Interest is likely extended to audience more broadly interested in TNF-driven macrophage (dys)function in infectious, inflammatory, and autoimmune pathologies.

      Reviewer expertise

      In preparing this review, I am drawing on my expertise in assessing macrophage responses and host defense mechanisms in bacterial infections (incl. virulent M. tuberculosis) through in vitro and in vivo studies. This includes but is not limited to macrophage infection and stimulation assays, microscopy, intra-macrophage replication of M. tuberculosis, analyses of lung tissues using multi-plex IHC and spatial transcriptomics (e.g. GeoMx). I am familiar with the interpretation of RNAseq analyses in human and mouse cells/tissues, but can provide only limited assessment of appropriateness of algorithms and analysis frameworks.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Yabaji et al. investigated the effects of BMDMs stimulated with TNF from both WT and B6.Sst1S mice, which have previously been identified to contain the sst1 locus conferring susceptibility to Mycobacterium tuberculosis. They identified that B6.Sst1S macrophages show a superinduction of IFNß, which might be caused by increased c-Myc expression, expanding on the mechanistic insights made by the same group (Bhattacharya et al. 2021). Furthermore, prolonged TNF stimulation led to oxidative stress, which WT BMDMs could compensate for by the activation of the antioxidant defense via NRF2. On the other hand, B6.Sst1S BMDMs lack the expression of SP110 and SP140, co-activators of NRF2, and were therefore subjected to maintained oxidative stress. Yabaji et al. could link those findings to in vivo studies by correlating the presence of stressed and aberrantly activated macrophages within granulomas to the failure of Mtb control, as well as the progression towards necrosis. As the knowledge regarding Mtb progression and necrosis of granulomas is not yet well understood, findings that might help provide novel therapy options for TB are crucial. Overall, the manuscript has interesting findings with regard to macrophage responses in Mycobacteria tuberculosis infection.

      However, in its current form there are several shortcomings, both with respect to the precision of the experiments and conclusions drawn.

      In particular a) important controls are often missing, e.g. T-cells form non-immune mice in Fig. 6J, in F, effectivity of BCG in B6 mice in 6N; b) single experiments are shown throughout the manuscript, in particular western blots and histology without proper quantification and statistics, this is absolutely not acceptable; c) very few repetitions are shown in in vitro experiments, where there is no evidence for limitation in resources (usually not more than 3), it is not clear what "independent experiment means" - i.e. the robustness of the findings is questionable; d) data are often normalized multiple times, e.g. in the case of qPCR, and the methods of normalization are not clear (what house-keeping gene exactly?);

      Moreover, experiments regarding IFN I signaling (e.g. short term TNF treatment of BMDMs to analyze LPO, making sure that the reporter mouse for IFNß works in vivo) and c-Myc (e.g. the increase after M-CSF addition might impact on other analysis as well and the experiments should be adjusted to control for this effect; MYC expression in the human samples) should be carefully repeated and evaluated to draw correct conclusions.

      In addition, we would like to strongly encourage the authors to more precisely outline the experimental set-ups and figure legends, so that the reader can easily understand and follow them. In other words: The legends are - in part very - incomplete. In addition, the authors should be mindful of gene names vs. protein names and italicize where appropriate.

      We appreciate a very thorough evaluation of our manuscript by this reviewer. Their insightful comments helped us improve the manuscript. As outlined below in point-by-point responses (1) we added important controls including isotype control antibodies in IFNAR blocking experiments and non-vaccinated T cells in T cell – macrophage interactions experiments; updated figure legends to indicate number of repeated experiment where a representative experiment is shown, numbers of mouse lungs and individual lesions, methods of data normalization, where it was missing. We also explained our in vitro experimental design and how we analyzed and excluded effects of media change and fresh CSF1 addition, by using a rest period before TNF stimulation and Mtb infection. The data shown in Suppl. Fig. 6C (previously Suppl. Fig. 5B) demonstrate that Myc levels induced by CSF1 return to the basal level at 12 h after media change. Our detailed in vitro protocol that contains these details has been published (Yabaji et al., STAR Protocols, 2022). We added new data demonstrating the ROS and LPO production at 6h of TNF stimulation, while the Ifnb1 mRNA super-induction occurred at 16 – 18 h, and edited the text to highlight these dynamics. The upregulation of Myc pathway in human samples does not necessarily mean the upregulation of Myc itself, it could be due to the dysregulation of downstream pathways. The upregulation of Myc pathway in the blood transcriptome associated with TB treatment failure most likely reflects greater proportion of immature cells in peripheral blood, possibly due to increased myelopoiesis. The detailed analysis of this cell populations in human patients is suggested by our findings but it is beyond the scope of this study.

      The reviewer’s comments also suggested that a summary of our findings was necessary. The main focus of our study was to untangle connections between oxidative stress and Ifnb1 superinduction. It revealed that Myc hyperactivity caused partial deficiency of antioxidant defense leading to type I interferon pathway hyperactivity that in turn amplifies lipid peroxidation, thus establishing a vicious cycle driving inflammatory tissue damage.

      Our laboratory worked on mechanisms of TB granuloma necrosis over more than two decades using genetic, molecular and immunological analyses in vitro and in vivo. It provided mechanistic basis for independent studies in other laboratories using our mouse model and further expanding our findings, thus supporting the reproducibility and robustness of our results and our lab’s expertise.

      Specific comments to the experiments and data:

      - Fig. 1E: Evaluation of differences in up- and downregulation between B6 and B6.Sst1S cells should highlight where these cells are within the heatmap, as it is only labelled with the clusters, or it should be depicted differently (in particular for cluster 1 and 2). Furthermore, a more simple labelling of the pathways would increase the readability of the data.

      For our scRNAseq data presentation, we used formats accepted by computational community. To clarify Fig.1E, we added labels above B6 and B6.Sst1S-specific clusters.

      - Fig. 2D, E: The staining legend is missing. For the quantification it is not clear what % total means. Is this based on the intensity or area? What do the dots represent in the bar chart? Is one data point pooled from several pictures? If not, the experiments need to be repeated, as three pictures might not be representative for evaluation.

      - Fig. 2E: Statistics comparing B6/ B6,SsT1S with TNF (different) is required: Absence of induction is not a proof for a difference!

      We included staining with NRF2-specific antibodies and performed area quantification per field using ImageJ to calculate the NRF2 total signal intensity per field. Each dot in the graph represents the average intensity of 3 fields in a representative experiment. The experiment was repeated 3 times. We included pairwise comparison of TNF-stimulated B6 and B6.Sst1S macrophages and updated the figure legend.

      - Fig. 3E: Positive and negative control need to be depicted in the figure (see legend).

      We have added the positive and negative controls for the determination of labile iron pool to the data in Fig. 3E and related Suppl. Fig. 3B and to Fig. 5D that also demonstrates labile iron determination.

      - Fig. 3I: A quantification by flow cytometry or total cell counts are important, as 6% cell death in cell culture is a very modest observation. Otherwise, confocal images of the quantification would be a good addition to judge the specificity of the viability staining.

      To validate the specificity of the viability staining method, we have provided fluorescent images as Suppl.Fig.3H. The main point of this experiment was to demonstrate a modest, but reproducible, increase in cell death in the sst1-mutant macrophages that suggested an IFNdependent oxidative damage. In our study, we did not focus on mechanisms of cell death, but on a state of chronic oxidative stress in the sst1 mutant live cells during TNF stimulation.

      - Fig. 3I, J: What does one dot represent?

      We performed this assay in 96 well format and each dot represent the % cell death in an individual well.

      - Fig. 3K,L: For the B6 BMDMs it seems that p-cJun is highly increased at 12h in (L), while it is not in (K). On the other hand, for the B6.Sst1S BMDMs it peaks at 24h in (K), while in (L) it seems to at 12h. According to the data in (L) it seems that p-cJun is rather earlier and stronger activated in B6 BMDMs and has a weakened but prolonged activation in the B6.Sst1S BMDMs, which would not fit with your statement in the text that B6.Sst1S BMDMs show an upregulation.

      These experiments need repetitions and quantification and statistiscs.

      Fig. 3L: ASK1 seems to be higher at 12h for the B6 BMDMs and similar for both lines at 24h, which is not fitting to the statement in the text. ("Also, the ASK1 - JNK - cJun stress kinase axis was upregulated in B6.Sst1S macrophages, as compared to B6, after 12 - 36 h of TNF stimulation")

      These experiments were repeated, and new data were added to highlight differences in ASK1 and c-Jun phosphorylation between B6 and B6.Sst1S at individual timepoints after TNF stimulation (presented in new Fig.3K). It demonstrated that after TNF stimulation the activation of stress kinases ASK1 and c-Jun initially increased in both genetic backgrounds. However, their upregulation was maintained exclusively in the sst1-susceptible macrophages from 24 to 36 h of TNF stimulation, while in the resistant macrophages their upregulation was transient. Thus, during prolonged TNF stimulation, B6.Sst1S macrophages experience stress that cannot be resolved, as evidenced by this kinetic analysis. The quantification of the band intensity was added to Western blot images above individual lanes.

      Reviewer 2 pointed to missing isotype control antibodies in Fig.3 and Fig.4:

      - Figure 3J: the isotype control for the IFNAR antibody is missing

      - Figure 4E: It seems the isotype control itself has already an effect in the reduction of IFNb.

      - Fig. 4H: It seems that the Isotype control antibody had an effect to increase 4-HNE (compared to TNF stimulated only).

      We always include isotype control antibodies in our experiments because antibodies are known to modulate macrophage activation via binding to Fc receptor. To address the reviewer’s comments, we updated all panels that present the effects of IFNAR1 blockade with isotypematched non-specific control antibodies in the revised manuscript. Specifically, we included isotype control in Fig. 3M (previously Fig.3J), Fig.4I, Suppl.4E-G, Fig.6L-M), Suppl.Fig.7I (previously Suppl.Fig.6F).

      - Fig.4A - C: "IFNAR1 blockade, however, did not increase either the NRF2 and FTL protein levels, or the Fth, Ftl and Gpx1 mRNA levels above those treated with isotype control antibodies"

      Maybe not above the isotype but it is higher than the TNF alone stimulation at least for NRF2 at 8h and for Ftl at both time points. Why does the isotype already cause stimulation/induction of the cells? !These experiments need repetitions and quantification and statistics!

      To determine specific effects of IFNAR blockade we compared effects of non-specific isotype control and IFNAR1-specific antibodies. In our experiments, the isotype control antibody modestly increased of Nrf2 and Ftl protein levels and the Fth and Ftl mRNA levels, but their effects were similar to the effect of IFNAR-specific antibody. The non-IFN -specific effects of antibodies, although are of potential biological significance, are modest in our model and their analysis is beyond the scope of this study.

      - Fig.4H Was the AB added also at 12h post stimulation? Figure legend should be adjusted.

      The IFNAR1 blocking antibodies and isotype control antibodies were added at 2 h after TNF stimulation in Fig.4H and 4I, as described in the corresponding figure legend. The data demonstrating effects of IFNAR blockade after 12, 24,and 33h of TNF stimulation are presented in Suppl.Fig.4 E-G.

      - Figure 4I: How was the data measured here, i.e. what is depicted? The isotype control is missing. It seems a two-way ANOVA was used, yet it is stated differently. The figure legend should be revised, as Dunnett's multiple comparison would only check for significances compared to the control.

      The microscopy images and bar graphs were updated to include isotype control and presented in Suppl. Fig.4E - G of the revised version. We also revised the statistical analysis to include correction for multiple comparisons.

      - Figure 4C and subsequent: How exactly was the experiment done (house-keeping gene)?

      We included the details in the figure legends of revised version. We quantified the gene expression by DDCt method using b-actin (for Fig. 4C-E) and 18S (For Fig. 4F and G) as internal controls.

      - Figure 4D,E: Information on cells used is missing. Why the change in stimulation time? Did it not work after 12h? Then the experiments in A-C should be repeated for 16h.

      The updated Fig. 4D and E present comparison of B6 and B6.Sst1S BMDMs clearly demonstrating significant difference between these macrophages in Ifnb1 mRNA expression 16 h after TNF stimulation, in agreement with our previous publication(Bhattacharya, et al., 2021). There we studied the time course of responses of B6 and B6.Sst1S macrophages to TNF at 2h intervals and demonstrated the divergence between their activation trajectories starting at 12 h of TNF stimulation Therefore, to reveal the underlying mechanisms we focus our analyses on this critical timepoint, i.e. as close to the divergence as possible. However, the difference between the strains in Ifnb1 mRNA expression achieved significance only by 16h of TNF stimulation. That is why we have used this timepoint for the Ifnb1 and Rsad2 analyses. It clearly shows that the superinduction was not driven by the positive feedback via IFNAR, as has been shown by the Ivashkiv lab for B6 wild type macrophages previously PMID 21220349.

      - Figure 4E: It would be helpful to see if these transcripts are actually translated into protein levels, e.g. perform an ELISA. Authors state that IFNAR blockages does not alter the expression but you statistic says otherwise.

      - The data for Ifnb expression (or better protein level) should be provided for B6 BMDMs as well.

      We have previously reported the differences in Ifnb protein secretion (He et al., Plos Pathogens, 2013 and Bhattacharya et al., JCI 2021). We use mRNA quantification by qRT-PCR as a more sensitive and direct measurement of the sst1-mediated phenotype. The revised Fig.4D and E include responses of B6 in addition to the B6.Sst1S to demonstrate that the IFNAR blockade does not reduce the Ifnb1 mRNA levels in TNF-stimulated B6.Sst1S mutant to the B6 wild type levels. A slight reduction can be explained by a known positive feedback loop in the IFN-I pathway (see above). In this experiment we emphasized that the effect of the sst1 locus is substantially greater, as compared to the effect of the IFNAR blockade (Fig.4D), and updated the text accordingly.

      - Fig. 4F: To what does the fold induction refer to? If it is again to unstimulated cells, then why is the induction now so much higher than in (E) where it was only 50x (now to 100x).

      - Figure 4G: Again to what is the fold induction referring to? It seems your Fer-1 treatment only contains 2 data points. This needs to be fixed.

      Yes, the fold induction was calculated by normalizing mRNA levels to untreated control incubated for the same time. Regarding the variation in Ifnb1 mRNA levels - a two-fold variation is not unusual in these experiments that may result in the Ifnb1 mRNA superinduction ranging from 50 -200-fold at this timepoint (16h). The graph in Fig.4G was modified to make all datapoints more visible.

      - "These data suggest that type I IFN signaling does not initiate LPO in our model but maintains and amplifies it during prolonged TNF stimulation that, eventually, may lead to cell death". Data for a short term TNF stimulation are not shown, however, so it might impact also on the initiation of LPO.

      - The overall conclusion drawn from Fig. 3 and 4 is not really clear with regard that IFN does not initiate LPO. Where is that shown? Data on earlier stimulation time points should be added to make this clear.

      We demonstrated ROS production (new Suppl.Fig.3G) and the rate of LPO biosynthesis (new Suppl.Fig.4E-F) at 6 h post TNF stimulation, while the Ifnb1 superinduction occurs between 12-18 h post TNF stimulation. This temporal separation supports our conclusion that IFN-β superinduction does not initiate LPO. We clarified it in the text:

      “Thus, Ifnb1 super-induction and IFN-I pathway hyperactivity in B6.Sst1S macrophages follow the initial LPO production, and maintain and amplify it during prolonged TNF stimulation”. (Previously: These data suggest that type I IFN signaling does not initiate LPO in our model). We also edited the conclusion in this section to explain the hierarchy of the sst1-regulated AOD and IFN-I pathways better:

      “Taken together, the above experiments allowed us to reject the hypothesis that IFN-I hyperactivity caused the sst1-dependent AOD dysregulation. In contrast, they established that the hyperactivity of the IFN-I pathway in TNF-stimulated B6.Sst1S macrophages was itself driven by the initial dysregulation of AOD and iron-mediated lipid peroxidation. During prolonged TNF stimulation, however, the IFN-I pathway was upregulated, possibly via ROS/LPOdependent JNK activation, and acted as a potent amplifier of lipid peroxidation”.

      We believe that these additional data and explanation strengthen our conclusions drawn from Figures 3 and 4.

      - "A select set of mouse LTR-containing endogenous retroviruses (ERV's) (Jayewickreme et al, 2021), and non-retroviral LINE L1 elements were expressed at a basal level before and after TNF stimulation, but their levels in the B6.Sst1S BMDMs were similar to or lower than those seen in B6". This sentence should be revised as the differences between B6 and B6.Sst1S BMDMs seem small and are not there after 48h anymore. Are these mild changes really caused by the mutation or could they result from different housing conditions and/or slowly diverging genetically lines. How many mice were used for the analysis? Is there already heterogeneity between mice from the same line?

      We agree with the reviewer that the data presented in Suppl.Fig.4 (Suppl.Fig.5 in the revised version) indicated no increase in single- and double-stranded transposon RNAs in the B6.Sst1S macrophages. The purpose of these experiment was to test the hypothesis that increased transposon expression might be responsible for triggering the superinduction of type I interferon response in TNF-stimulated B6.Sst1S macrophages. In collaboration with a transposon expert Dr. Nelson Lau (co-author of this manuscript) we demonstrated that transposon expression was not increased above the B6 level and, thus, rejected this attractive hypothesis. We explained the purpose of this experiment in the text and adequately described our findings as “the levels in the B6.Sst1S BMDMs were similar to or lower than those seen in B6”…and concluded that ” the above analyses allowed us to exclude the overexpression of persistent viral or transposon RNAs as a primary mechanism of the IFN-I pathway hyperactivity” in the sst1-mutant macrophages.

      - Fig. 5A: Indeed, it even seems that Myc is upregulated for the mutant BMDMs. Yet, there are only 2 data points for B6 12h.

      These experiments need repetitions and quantification and statistics.

      We observed these differences in c-Myc mRNA levels by independent methods: RNAseq and qRT-PCR. The qRT-PCR experiments were repeated 3 times. A representative experiment in Fig.5A shows 3 data points for each condition. We reformatted the panel to make all data points clearly visible.

      - Fig. 5B: Why would the protein level decrease in the controls over 6h of additional cultivation? Is this caused by fresh M-CSF? In this case maybe cells should be left to settle for one day before stimulating them to properly compare c-Myc induction. Comment on two c-Myc bands is needed. At 12h only the upper one seems increased for TNF stimulated mutant BMDMs compared to B6 BMDMs.

      We agree with the reviewer’s point that cells need to be rested after media change that contains fresh CSF-1. Indeed, in Suppl.Fig.6C, we show that after media change containing 10% L929 supernatant (a source of CSF1) there is an increase in c-Myc protein levels that takes approximately 12 hours to return to baseline.

      Our protocol includes resting period of 18-24 h after medium change before TNF stimulation.

      We updated Methods to highlight this detail. Thus, the increase in c-Myc levels we observe at 12 h of TNF stimulation (Fig.5B) is induced by TNF, not the addition of growth factors, as further discussed in the text.

      The two c-Myc bands observed in Fig.5B,I and J, are similar to patterns reported in previous studies that used the same commercial antibodies (PMIDs: 24395249, 24137534, 25351955). Whether they correspond to different c-Myc isoforms or post-translational modifications is unknown.

      - Fig. 5A,B: It seems that not all the RNA is translated into protein, as c-Myc at 12h in the mutant BMDMs seems to be lower than at 6h, while the gene expression implicates it vice versa.

      In addition to Fig.5B, the time course of Myc protein expression up to 24 h is presented in new panels Fig. 5I-5J. It demonstrates the gradual decrease of Myc protein levels. The observed dissociation between the mRNA and protein levels in the sst1-mutant BMDMs at 12 and 24 h is most likely due to translation inhibition as a result of the development of the integrated stress response, ISR (as shown in our previous publication by Bhattacharya et al., JCI, 2021). Translation of Myc is known to be particularly sensitive to the ISR (PMID18551192, PMID25079319, PMID28490664). Perhaps, the IFN-driven ISR may serve as a backup mechanism for Myc downregulation. We are planning to investigate these regulatory mechanisms in greater detail in the future.

      - Fig. 5J: Indeed, the inhibitor seems to cause the downregulation of the proteins. Explanation?

      This experiment was repeated twice and the average normalized densitometry values are presented in the updated Fig.5J. The main question addressed in this experiment was whether hyperactivity of JNK in TNF-stimulated sst1 mutant macrophages contributed to Myc upregulation, as had been previously shown in cancer. Comparing effects of JNK inhibition on phospho-cJun and c-Myc protein levels in TNF stimulated B6.Sst1S macrophages (updated Fig.5J), we rejected the hypotghesis that JNK activity might have a major role in c-Myc upregulation in sst1 mutant macrophages.

      - "TNF stimulation tended to reduce the LPO accumulation in the B6 macrophages and to increase it in the B6.Sst1S ones" However, this is not apparent in Sup. Fig. 6B. Here it seems that there might be a significant increase.

      Suppl.Fig.6B (currently Suppl.Fig.7B) shows the 4-HNE accumulation at day 3 post infection. The data obtained after 5 days of Mtb infection are shown in Fig.6A. We clarified this in the text: “By day 5 post infection, TNF stimulation induced significant LPO accumulation only in the B6.Sst1S macrophages (Fig.6A)”.

      - Fig. 6B: Mtb and 4-HNE should be shown in two different channels in order to really assign each staining correctly.

      What time point is this? Are the mycobacteria cleared at MOI1, since it looks that there are fewer than that? How does this look like for the B6 BMDMs? Are there even less mycobacteria?

      We included B6 infection data to the updated Fig.6B and added Suppl.Fig.7C and 7D that address this reviewer’s comment. The data represent day 5 of Mtb infection as indicated in the updated Fig.6B and Suppl.Fig.7C and 7D legends. New Suppl.Fig.7D shows quantification of replicating Mtb using Mtb replication reporter stain expressing single strand DNA binding protein GFP fusion, as described in Methods. We observed fewer Mtb and a lower percentage of replicating Mtb in B6 macrophages, but we did not observe a complete Mtb elimination in either background.

      We used red fluorescence for both Mtb::mCherry and 4-HNE staining to clearly visualize the SSB-GFP puncta in replicating Mtb DNA. In the revised manuscript, we have included the relevant channels in Suppl. Fig.7C and D to demonstrate clearly distinct patterns of Mtb::mCherry and 4-HNE signals. We did not aim to quantify the 4-HNE signal intensity in this experiment. For the 4-HNE quantification we use Mtb that expressed no reporter proteins (Fig.6A-B and Suppl.Fig.7A-B).

      - Fig 6E: In the context of survival a viability staining needs to be included, as well as the data from day 0. Then it needs to be analyzed whether cell numbers remain the same from D0 or if there is a change.

      We updated Fig.6 legend to indicate that the cell number percentages were calculated based on the number of cells at Day 0 (immediately after Mtb infection). We routinely use fixable cell death staining to enumerate cell death to exclude artifacts due to cell loss. Brief protocol containing this information is included in Methods section. The detailed protocol including normalization using BCG spike has been published – Yabaji et al, STAR Protocols, 2022. Here we did not present dead cell percentage as it remained low and we did not observe damage to macrophage monolayers. The fold change of Mtb was calculated after normalization using Mtb load at Day 0 after infection and washes.

      "The 3D imaging demonstrated that YFP-positive cells were restricted to the lesions, but did not strictly co-localize with intracellular Mtb, i.e. the Ifnb promoter activity was triggered by inflammatory stimuli, but not by the direct recognition of intracellular bacteria. We validated the IFNb reporter findings using in situ hybridization with the Ifnb probe, as well as anti-GFP antibody staining (Suppl.Fig.8B - E)." The colocalization is not present within the tissue sections. It seems that the reporter line does not show the same staining pattern in vivo as the IFNß probe or the anti GFP antibody staining. The reporter line has to be tested for the specificity of the staining. Furthermore, to state that it was restricted to the lesions, an uninvolved tissue area needs to be depicted.

      The Ifnb secreting cells are notoriously difficult to detect in vivo using direct staining of the protein. Therefore, lineage tracing of reporter expression are used as surrogates. The Ifnb reporter used in our study has been developed by the Locksley laboratory (Scheu et al., PNAS, 2008, PMID: 19088190) and has been validated in many independent studies. The reporter mice express the YFP protein under the control of the Ifnb1 promoter. The YFP protein accumulates within the cells, while Ifnb protein is rapidly secreted and does not accumulate in the producing cells in appreciable amounts. Also, the kinetics of YFP protein degradation is much slower as compared to the endogenous Ifnb1 mRNA that was detected using in situ hybridization. Thus, there is no precise spatiotemporal coincidence of these readouts in Ifnb expressing cells in vivo. However, this methodology more closely reflect the Ifnb expressing cells in vivo, as compared to a Cre-lox mediated lineage tracing approach. In the revised manuscript we demonstrate that both YFP and mRNA signals partially overlap (Suppl.Fig.12B). In Suppl.Fig.12B. we also included a new panel showing no YFP expression in the uninvolved area of the reporter mice infected with Mtb. The YFP expression by activated macrophages is demonstrated by co-staining with Iba1- and iNOS-specific antibodies (new Fig.7D and Suppl.Fig.13A). Our specificity control also included TB lesions in mice that do not carry the YFP reporter and did not express the YFP signal, as reported elsewhere (Yabaji et al., BioRxiv, https://doi.org/10.1101/2023.10.17.562695).

      - Are paucibacillary and multibacillary lesions different within the same animal or does one animal have one lesion phenotype? If that is the case, what is causing the differences between mice? Bacterial counts for the mice are required.

      The heterogeneity of pulmonary TB lesions has been widely acknowledged in clinic and highlighted in recent experimental studies. In our model of chronic pulmonary TB (described in detail in Yabaji et al., https://doi.org/10.1101/2025.02.28.640830 and https://doi.org/10.1101/2023.10.17.562695) the development of pulmonary TB lesions is not synchronized, i.e. the lesions are heterogeneous between the animals and within individual animals at the same timepoint. Therefore, we performed a lesion stratification where individual lesions were classified by a certified veterinary pathologist in a blinded manner based on their morphology (H&E) and acid fast staining of the bacteria, as depicted in Suppl.Fig.8.

      - "Among the IFN-inducible genes upregulated in paucibacillary lesions were Ifi44l, a recently described negative regulator of IFN-I that enhances control of Mtb in human macrophages (DeDiego et al, 2019; Jiang et al, 2021) and Ciita, a regulator of MHC class II inducible by IFNy, but not IFN-I (Suppl.Table 8 and Suppl.Fig.10 D-E)." Why is Sup. Fig. 10 D, E referred to? The figure legend is also not clear, e.g. what means "upregulated in a subset of IFN-inducible genes"? Input for the hallmarks needs to be defined.

      These data is now presented in Suppl.Fig.11 and following the reviewer’s comment, we moved reference to panels 11D – E up to previous paragraph in the main text, where it naturally belongs . We also edited the figure legend to refer to the list of IFN-inducible genes compiled from the literature that is discussed in the text. We appreciate the reviewer’s suggestion that helped us improve the text clarity. The inputs for the Hallmark pathway analysis are presented in Suppl.Tables 7 and 8, as described in the text.

      - Fig. 7C: Single channel pictures are required as it is hard to see the differences in staining with so many markers. Why is there no iNOS expression in the bottom row? What does the rectangle indicate on the bottom right? As black is chosen for DAPI, it is not visible at all. In case the signal is needed a visible a color should be chosen.

      We thoroughly revised this figure to address the reviewer’s concern about the lack of clarity. We provide individual channels for each marker in Fig.7D – E and Suppl.Fig.13F. We have to use DAPI in these presentation in gray scale to better visualize other markers.

      - "In the advanced lesions these markers were primarily expressed by activated macrophages (Iba1+) expressing iNOS and/or Ifny (YFP+)(Fig.7D)" Iba1 is needed in the quantification. Based on the images, iNOS seems to be highly produced in Iba1 negative cells. Which cells do produce it then? Flow cytometry data for this quantification are required. This would allow you to specifically check which cells express the markers and allow for a more precise analysis of double positive cells.

      Currently these data demonstrating the co-localization of stress markers phospho-c-Jun and Chac1 with YFP are presented in Fig.7E (images) and Suppl.Fig.13D (quantification). The co-localization of stress markers phospho-cJun and Chac1 with iNOS is presented in Suppl.Fig.13F (images) and Suppl.Fig.13E (quantification). We agree that some iNOS+ cells are Iba1-negative (Fig.7D). We manually quantified percentages of Iba1+iNOS+ double positive cells and demonstrated that they represent the majority of the iNOS+ population(Suppl.Fig.13A). Regarding the required FACS analysis, we focus on spatial approaches because of the heterogeneity of the lesions that would be lost if lungs are dissociated for FACS. We are working on spatial transcriptomics at a single cell resolution that preserves spatial organization of TB lesions to address the reviewer’s comment and will present our results in the future.

      - Results part 6: In general, can you please state for each experiment at what time point mice were analyzed? You should include an additional macrophage staining (e.g. MerTK, F4/80), as alveolar macrophages are not staining well for Iba1 and you might therefore miss them in your IF microscopy. It would be very nice if you could perform flow cytometry to really check on the macrophages during infection and distinguish subsets (e.g. alveolar macrophages, interstitial macrophages, monocytes).

      We have included the details of time post infection in figure legends for Fig.7, Suppl.Figures 8, 9, 12B, 13, 14A of the revised manuscript. We have performed staining with CD11b, CD206 and CD163 to differentiate the recruited and lung resident macrophages and determined that in chronic pulmonary TB lesions in our model the vast majority of macrophages are recruited CD11b+, but not resident (CD206+ and CD163+) macrophages. These data is presented in another manuscript (Yabaji et al., BioRxiv https://doi.org/10.1101/2023.10.17.562695).

      - Spatial sequencing: The manuscript would highly profit from more data on that. It would be very interesting to check for the DEGs and show differential spatial distribution. Expression of marker genes should be inferred to further define macrophage subsets (e.g. alveolar macrophages, interstitial macrophages, recruited macrophages) and see if these subsets behave differently within the same lesion but also between the lesions. Additional bioinformatic approaches might allow you to investigate cell-cell interactions. There is a lot of potential with such a dataset, especially from TB lesions, that would elevate your findings and prove interesting to the TB field.

      - "Thus, progression from the Mtb-controlling paucibacillary to non-controlling multibacillary TB lesions in the lungs of TB susceptible mice was mechanistically linked with a pathological state of macrophage activation characterized by escalating stress (as evidenced by the upregulation phospho-cJUN, PKR and Chac1), the upregulation of IFNβ and the IFN-I pathway hyperactivity, with a concurrent reduction of IFNγ responses." To really show the upregulation within macrophages and their activation, a more detailed IF microscopy with the inclusion of additional macrophage markers needs to be provided. Flow cytometry would enable analysis for the differences between alveolar and interstitial macrophages, as well as for monocytes. As however, it seems that the majority of iNOS, as well as the stress associated markers are not produced by Iba1+ cells. Analyzing granulocytes and T lymphocytes should be considered.

      We appreciate the reviewer’s suggestion. Indeed, our model provides an excellent opportunity to investigate macrophage heterogeneity and cell interactions within chronic TB lesions. We are working on spatial transcriptomics at a single cell resolution that would address the reviewer’s comment and will present our results in the future.

      In agreement with classical literature the overwhelming majority of myeloid cells in chronic pulmonary TB lesions is represented by macrophages. Neutrophils are detected at the necrotic stage, but our study is focused on pre-necrotic stages to reveal the earlier mechanisms predisposing to the necrotization. We never observed neutrophils or T cells expressing iNOS in our studies.

      - It's mentioned in the method section that controls in the IF staining were only fixed for 10min, while the infected cells were fixed for 30min. Consistency is important as the PFA fixation might impact on the fluorescence signal. Therefore, controls should be repeated with the same fixation time.

      We have carefully considered the impact of fixation time on fluorescence and have separately analyzed the non-infected and infected samples to address this concern. For the non-infected samples, we examined the effect of TNF in both B6 and B6.Sst1S backgrounds, ensuring that a consistent fixation protocol (10 min) was applied across all experiments without Mtb infection.

      For the Mtb infection experiments, we employed an optimized fixation protocol (30 min) to ensure that Mtb was killed before handling the plates, which is critical for preserving the integrity of the samples. In this context, we compared B6 and B6.Sst1S samples to evaluate the effects of fixation and Mtb infection on lipid peroxidation (LPO) induction.

      We believe this approach balances the need for experimental consistency with the specific requirements for handling infected cells, and we have revised the manuscript to reflect this clarification.

      - Reactive oxygen species levels should be determined in B6 and B6.Sst1S BMDMs (stimulated and unstimulated), as they are very important for oxidative stress.

      We have conducted experiments to measure ROS production in both B6 and B6.Sst1S BMDMs and demonstrated higher levels of ROS in the susceptible BMDMs after prolonged TNF stimulation (new Fig.3I-J and Suppl. Fig. 3G). Additionally, we have previously published a comparison of ROS production between B6 and B6.Sst1S by FACS (PMID: 33301427), which also supports the findings presented here.

      - Sup. Fig 2C: The inclusion of an unstimulated control would be advisable in order to evaluate if there are already difference in the beginning.

      We have included the untreated control to the Suppl. Fig. 2C (currently Suppl. Fig. 2D) in the revised manuscript.

      - Sup. Fig. 3F: Why is the fold change now lower than in Fig. 4D (fold change of around 28 compared to 120 in 4D)?

      The data in Fig.4D (Fig.4E in the revised manuscript) and Suppl.Fig.3F (currently Suppl.Fig.4C) represent separate experiments and this variation between experiments is commonly observed in qRT-PCR that is affected by slight variations in the expression in unsimulated controls used for the normalization and the kinetics of the response. This 2-4 fold difference between same treatments in separate experiments, as compared to 30 – 100 fold and higher induction by TNF does not affect the data interpretation.

      - Sup. Fig. 5C, D: The data seems very interesting as you even observe an increase in gene expression. Data for the B6 mice should be evaluated for increase to a similar level as the TNF treated mutants. Data on the viability of the cells are necessary, as they no longer receive MCSF and might be dying at this point already.

      To ensure that the observed effects were not confounded by cytotoxicity, we determined non-toxic concentrations of the CSF1R inhibitors during 48h of incubation and used them in our experiments that lasted for 24h. To address this valid comment, we have included cell viability data in the revised manuscript to confirm that the treatments did not result in cell death (Suppl. Fig. 6D). This experiment rejected our hypothesis that CSF1 driven Myc expression could be involved in the Ifnb superinduction. Other effects of CSF1R inhibitors on type I IFN pathway are intriguing but are beyond the scope of this study.

      - Sup. Fig 12: the phospho-c-Jun picture for (P) is not the same as in the merged one with Iba1. Double positive cells are mentioned to be analyzed, but from the staining it appears that P-c-Jun is expressed by other cells. You do not indicate how many replicates were counted and if the P and M lesions were evaluated within the same animal. What does the error bar indicate? It seems unlikely from the plots that the double positive cells are significant. Please provide the p values and statistical analysis.

      We thank the reviewer for bringing this inadvertent field replacement in the single phospho-cJun channel to our attention. However, the quantification of Iba1+phospho-cJun+ double positive cells in Suppl.Fig.12 and our conclusions were not affected. In the revised manuscript, images and quantification of phospho-cJun and Iba1 co-expression are shown in new Suppl.Fig.13B and C, respectively. We have also updated the figure legends to denote the number of lesions analyzed and statistical tests. Specifically, lesions from 6–8 mice per group (paucibacillary and multibacillary) were evaluated. Each dot in panels Suppl.Fig.13 represent individual lesions.

      - Sup. Fig. 13D (suppl.Fig.15D now): What about the expression of MYC itself? Other parts of the signaling pathway should be analyzed(e.g. IFNb, JNK)?

      The difference in MYC mRNA expression tended to be higher in TB patients with poor outcomes, but it was not statistically significant after correction for multiple testing. The upregulation of Myc pathway in the blood transcriptome associated with TB treatment failure most likely reflects greater proportion of immature cells in peripheral blood, possibly due to increased myelopoiesis. Pathway analysis of the differentially expressed genes revealed that treatment failures were associated with the following pathways relevant to this study: NF-kB Signaling, Flt3 Signaling in Hematopoietic Progenitor Cells (indicative of common myeloid progenitor cell proliferation), SAPK/JNK Signaling and Senescence (possibly indicative of oxidative stress). The upregulation of these pathways in human patients with poor TB treatment outcomes correlates with our findings in TB susceptible mice.

      - In the mfIHC you he usage of anti-mouse antibodies is mentioned. Pictures of sections incubated with the secondary antibody alone are required to exclude the possibility that the staining is not specific. Especially, as this data is essential to the manuscript and mouse-antimouse antibodies are notorious for background noise.

      We are well aware of the technical difficulties associated with using mouse on mouse staining. In those cases, we use rabbit anti-mouse isotype specific antibodies specifically developed to avoid non-specific background (Abcam cat#ab133469). Each antibody panel for fluorescent multiplexed IHC is carefully optimized prior to studies. We did not use any primary mouse antibodies in the final version of the manuscript and, hence, removed this mention from the Methods.

      - In order to tie the story together, it would be interesting to treat infected mice with an INFAR antibody, as well as perform this experiment with a Myc antibody. According to your data, you might expect the survival of the mice to be increased or bacterial loads to be affected.

      In collaboration with the Vance laboratory, we tested effects of type I IFN pathway inhibition in B6.Sst1S mice on TB susceptibility: either type I receptor knockout or blocking antibodies increased their resistance to virulent Mtb (published in Ji et al., 2019; PMID 31611644). Unfortunately, blocking Myc using neutralizing antibodies in vivo is not currently achievable. Specifically blocking Myc using small molecule inhibitors in vivo is notoriously difficult, as recognized in oncology literature. We consider using small molecule inhibitors of either Myc translation or specific pathways downstream of Myc in the future.

      - It is surprising that you not even once cite or mention your previous study on bioRxiv considering the similarity of the results and topic (https://doi.org/10.1101/2020.12.14.422743). Is not even your Figure 1I and Figure 2 J, K the same as in that study depicted in Figure 4?

      The reviewer refers to the first version of this manuscript uploaded to BioRxiv, but it has never been published. We continued this work and greatly expanded our original observations, as presented in the current manuscript. Therefore, we do not consider the previous version as an independent manuscript and, therefore, do not cite it.

      - Please revise spelling of the manuscript and pay attention to write gene names in italics

      Thank you, we corrected the gene and protein names according to current nomenclature.

      Minor points:

      - Fig. 1: Please provide some DEGs that explain why you used this resolution for the clustering of the scRNAseq data and that these clusters are truly distinct from each other.

      Differential gene expression in clusters is presented in Suppl.Fig.1C (interferon response) and Suppl.Fig.1D (stress markers and interferon response previously established in our studies).

      - Fig. 1F: What do the two lines represent (magenta, green)?

      The lines indicate pseudotime trajectories of B6 (magenta) and B6.Sst1S (green) BMDMs.

      - Fig. 1F, G: Why was cluster 6 excluded?

      This cluster was not different between B6 and B6.Sst1S, so it was not useful for drawing the strain-specific trajectories.

      - Fig. 1E, G, H: The intensity scales are missing. They are vital to understand the data.

      We have included the scale in revised manuscript (Fig.1E,G,H and Suppl.Fig.1C-D).

      - Fig. 2G-I: please revise order, as you first refer to Fig. 2H and I

      We revised the panels’ order accordingly

      - Fig. 5: You say the data represents three samples but at least in D and E you have more. Please revise. Why do you only include at (G) the inhibitor only control?

      We added the inhibitor only controls to Fig. 5D - H. We also indicated the number of replicates in the updated Fig.5 legend.

      - Figure 7A, Sup. Fig. 8: Are these maximum intensity projection? Or is one z-level from the 3D stack depicted?

      The Fig. 7A shows 3D images with all the stacks combined.

      - Fig. 7B: What do the white boxes indicate?

      We have removed this panel in the revised version and replaced it with better images.

      - Sup. Fig. 1A: The legend for the staining is missing

      The Suppl. Fig.1A shows the relative proportions of either naïve (R and S) or TNFstimulated (RT and ST) B6 or B6.Sst1S macrophages within individual single cell clusters depicted in Fig.1B. The color code is shown next to the graph on the right.

      - Sup. Fig. 1B: The feature plots are not clear: The legend for the expression levels is missing. What does the heading means?

      We updated the headings, as in Fig.1C. The dots represent individual cells expressing Sp110 mRNA (upper panels) and Sp140 mRNA (lower panels).

      - Sup. Fig. 3C: The scale bar is barely visible.

      We resized the scale bar to make it visible and presented in Suppl. Fig.3E (previously Suppl. Fig.3C).

      - Sup. Fig. 3D: There is not figure legend or the legend to C-E is wrong.

      - Sup. Fig. 3F, G: You do not state to what the data is relative to.

      We identified an error in the Suppl.Fig.3 legend referring to specific panels. The Suppl.Fig.3 legend has been updated accordingly. New panels were added and Suppl.Fig.3-G panels are now Suppl.Fig.4C-D.

      - Sup. Fig. 3H: It seems you used a two-way ANOVA, yet state it differently. Please revise the figure legend, as Dunnett's multiple comparison would only check for significances compared to the control.

      Following the reviewer’s comment, we repeated statistical analysis to include correction for multiple comparisons and revised the figure and legend accordingly.

      - Sup. Fig. 4A, B: It is not clear what the lines depict as the legend is not explained. Names that are not required should be changed to make it clear what is depicted (e.g. "TE@" what does this refer to?)

      This previous Sup. Fig 4 is now Sup. Fig. 5. The “TE@” is a leftover label from the bioinformatics pipeline, referring to “Transposable Element”. We apologize for this confusion and have removed these extraneous labels. We have also added transposon names of the LTR (MMLV30 and RTLV4) and L1Md to Suppl.Fig.5A and 5B legend, respectively.

      - Sup. 4B: What does the y-scale on the right refer to?

      We apologize for the missing label for the y-scale on the right which represents the mRNA expression level for the SetDB1 gene, which has a much lower steady state level than the LINE L1Md, so we plotted two Y-scales to allow both the gene and transposon to be visualized on this graph.

      - Sup. 4C: Interpretation of the data is highly hindered by the fact that the scales differ between the B6 and B6.Sst1. The scales are barely visible.

      We apologize for the missing labels for the y-scales of these coverage plots, which were originally meant to just show a qualitative picture of the small RNA sequencing that was already quantitated by the total amounts in Sup. 4B. We have added thee auto-scaled Y-scales to Sup. 4C and improved the presentation of this figure.

      - Sup. Fig. 5A, B: Is the legend correct? Did you add the antibody for 2 days or is the quantification from day 3?

      We recognize that the reviewer refers to Suppl.Fig.6A-B (Suppl.Fig.7A-B in the revised manuscript). We did not add antibodies to live cells. The figure legend describes staining with 4HNE-specific antibodies 3 days post Mtb infection.

      - Sup. Fig. 8A: Are the "early" and "intermediate" lesions from the same time points? What are the definitions for these stages?

      We discussed our lesion classification according to histopathology and bacterial loads above. Of note, in the revised manuscript we simplified our classification to denote paucibacillary and multibacillary lesions only. We agree with reviewers that designation lesions as early, intermediate and advanced lesions were based on our assumptions regarding the time course of their progression from low to high bacterial loads.

      - Sup. Fig. 8E: You should state that the bottom picture is an enlargement of an area in the top one. Scale bars are missing.

      We replaced this panel with clearer images in Suppl.Fig.12B.

      - Sup. Fig. 11A: The IF staining is only visible for Iba and iNOS. Please provide single channels in order to make the other staining visible.

      Suppl.Fig.11A (now Suppl.Fig.13B) shows the low-magnification images of TB lesions. In the Fig. 7 and Suppl. Fig. 13F of the revised manuscript we provided images for individual markers.

      - Sup. Fig. 13A (Suppl.Fig.15A now): Your axis label is not clear. What do the numbers behind the genes indicate? Why did you choose oncogene signatures and not inflammatory markers to check for a correlation with disease outcome?

      X axis of Suppl.Fig.15A represent pre-defined molecular signature gene sets MSigDB) in Gene Set Enrichment Analysis (GSEA) database (https://www.gseamsigdb.org/gsea/msigdb). On Y axis is area under curve (AUC) score for each gene set.

      - Sup. 13D(Suppl.Fig.15D now): Maybe you could reorder the patients, so that the impression is clearer, as right now only the top genes seem to show a diverging gene signature, while the rest gives the impression of an equal distribution.

      The Myc upregulated gene set myc_up was identified among top gene sets associated with treatment failure using unbiased ssGSEA algorithm. We agree with the reviewer that not every gene in the myc_up gene set correlates with the treatment outcome. But the association of the gene set is statistically significant, as presented in Suppl.Fig.15B – C.

      - The scale bars for many microscopy pictures are missing.

      We have included clearly visible scale bars to all the microscopy images in the revised version.

      - The black bar plots should be changed (e.g. in color), since the single data points cannot be seen otherwise.

      - It would be advisable that a consistent color scheme would be used throughout the manuscript to make it easier to identify similar conditions, as otherwise many different colours are not required and lead right now rather to confusion (e.g. sometimes a black bar refers to BMDMs with and sometimes without TNF stimulation, or B6 BMDMs). Furthermore, plot sizes and fonts should be consistent within the manuscript (including the supplemental data)

      We followed this useful suggestion and selected consistent color codes for B6 and B6.Sst1S groups to enhance clarity throughout the revised manuscript.

      Within the methods section:

      - At which concentration did you use the IFNAR antibody and the isotype?

      We updated method section by including respective concentrations in the revised manuscript.

      - Were mice maintained under SPF conditions? At what age where they used?

      Yes, the mice are specific pathogen free. We used 10 - 14 week old mice for Mtb infection.

      - The BMDM cultivation is not clear. According to your cited paper you use LCCM but can you provide how much M-CSF it contains? How do you make sure that amounts are the same between experiments and do not vary? You do not mention how you actually obtain this conditioned medium. Is there the possibility of contamination or transferred fibroblasts that would impact on the data analysis? Is LCCM also added during stimulation and inhibitor treatment?

      We obtain LCCM by collecting the supernatant from L929 cell line that form confluent monolayer according to well-established protocols for LCCM collection. The supernatants are filtered through 0.22 micron filters to exclude contamination with L929 cells and bacteria. The medium is prepared in 500 ml batches that are sufficient for multiples experiments. Each batch of L929-conditioned medium is tested for biological activity using serial dilutions.

      - How was the BCG infection performed? How much bacteria did you use? Which BCG strain was used?

      We infected mice with M. bovis BCG Pasteur subcutaneously in the hock using 10<sup>6</sup> CFU per mouse.

      - At what density did you seed the BMDMs for stimulation and inhibitor experiments?

      In 96 well plates, we seed 12,000 cells per well and allow the cells to grow for 4 days to reach confluency (approximately 50,000 cells per well). For a 6-well plate, we seed 2.5 × 10<sup>5</sup> cells per well and culture them for 4 days to reach confluency. For a 24-well plate, we seed 50,000 cells per well and keep the cells in media for 4 days before starting any treatments. This ensures that the cells are in a proliferative or near-confluent state before beginning the stimulation or inhibitor treatments. Our detailed protocol is published in STAR Protocols (Yabaji et al., 2022; PMID 35310069).

      - What machine did you use to perform the bulk RNA sequencing? How many replicates did you include for the sequencing?

      For bulk sequencing we used 3 RNA samples for each condition. The samples were sequenced at Boston University Microarray & Sequencing Resource service using Illumina NextSeq<sup>TM</sup> 2000 instrument.

      - How many replicates were used for the scRNA sequencing? Why is your threshold for the exclusion of mitochondrial DNA so high? A typical threshold of less than 5% has been reported to work well with mouse tissue.

      We used one sample per condition. For the mitochondrial cutoff, we usually base it off of the total distribution. There is no "universal" threshold that can be applied to all datasets. Thresholds must be determined empirically.

      - You do not mention how many PCAs were considered for the scRNA sequencing analysis.

      We considered 50 PCAs, this information was added to Methods

      - You should name all the package versions you used for the scRNA sequencing (e.g. for the slingshot, VAM package)

      The following package versions were used: Seurat v4.0.4, VAM v1.0.0, Slingshot v2.3.0, SingleCellTK v2.4.1, Celda v1.10.0, we added this information to Methods.

      - You mention two batches for the human samples. Can you specify what the two batches are?

      Human blood samples were collected at five sites, as described in the updated Methods section and two RNAseq batches were processed separately that required batch correction.

      - At which temperature was the IF staining performed?

      We performed the IF at 4oC. We included the details in revised version.

      Reviewer #2 (Significance):

      Overall, the manuscript has interesting findings with regard to macrophage responses in Mycobacteria tuberculosis infection.

      However, in its current form there are several shortcomings, both with respect to the precision of the experiments and conclusions drawn.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary

      The authors use a mouse model designed to be more susceptible to M.tb (addition of sst1 locus) which has granulomatous lesions more similar to human granulomas, making this mouse highly relevant for M.tb pathogenesis studies. Using WT B6 macrophages or sst1B6 macrophages, the authors seek to understand the how the sst1 locus affects macrophage response to prolonged TNFa exposure, which can occur during a pro-inflammatory response in the lungs. Using single cell RNA-seq, revealed clusters of mutant macrophages with upregulated genes associated with oxidative stress responses and IFN-I signaling pathways when treated with TNF compared to WT macs. The authors go on to show that mutant macrophages have decreased NRF2, decreased antioxidant defense genes and less Sp110 and Sp140. Mutant macrophages are also more susceptible to lipid peroxidation and ironmediated oxidative stress. The IFN-I pathway hyperactivity is caused by the dysregulation of iron storage and antioxidant defense. These mutant macrophages are more susceptible to M.tb infection, showing they are less able to control bacterial growth even in the presence of T cells from BCG vaccinated mice. The transcription factor Myc is more highly expressed in mutant macs during TNF treatment and inhibition Myc led to better control of M.tb growth. Myc is also more abundant in PBMCs from M.tb infected humans with poor outcomes, suggesting that Myc should be further investigated as a target for host-directed therapies for tuberculosis.

      Major Comments

      Isotypes for IF imaging and confocal IF imaging are not listed, or not performed. It is a concern that the microscopy images throughout the manuscript do not have isotype controls for the primary antibodies.

      Fig 4 (and later) the anti-IFNAR Ab is used along with the Isotype antibody, Fig 4I does not show the isotype. Use of the isotype antibody is also missing in later figures as well as Fig 3J. Why was this left off as the proper control for the Ab?

      We addressed the comment in revised manuscript as described above in summary and responses to reviewers 1 and 2. Isotype controls for IFNAR1 blockade were included in Fig.3M (previously 3J), Fig. 4I, Suppl.Fig.4G (previously Fig.4I), and updated Fig.4C-E, Fig.6L-M, Suppl.Fig.4F-G, 7I.

      Conclusions drawn by the authors from some of the WB data are worded strongly, yet by eye the blots don't look as dramatically different as suggested. It would be very helpful to quantify the density of bands when making conclusions. (for example, Fig 4A).

      We added the densitometry of Western blot values after normalization above each lane in Fig.2A-C, Fig.3C-D and 3K; Fig.4A-B, Fig.5B,C,I,J.

      Fig 5A is not described clearly. If the gene expression is normalized to untreated B6 macs, then the level of untreated B6 macs should be 1. In the graph the blue bars are slightly below 1, which would not suggest that levels "initially increased and subsequently downregulated" as stated in the text. It seems like the text describes the protein expression but not the RNA expression. Please check this section and more clearly describe the results.

      We appreciate the reviewer’s comment and modified the text to specify the mRNA and protein expression data, as follows:

      “We observed that Myc was regulated in an sst1-dependent manner: in TNF-stimulated B6 wild type BMDMs, c-Myc mRNA was downregulated, while in the susceptible macrophages c-Myc mRNA was upregulated (Fig.5A). The c-Myc protein levels were also higher in the B6.Sst1S cells in unstimulated BMDMs and 6 – 12 h of TNF stimulation (Fig.5B)”.

      Also, why look at RNA through 24h but protein only through 12h? If c-myc transcripts continue to increase through 24h, it would be interesting to see if protein levels also increase at this later time point.

      The time-course of Myc expression up to 24 h is presented in new panels Fig. 5I-5J It demonstrates the decrease of Myc protein levels at 24 h. In the wild type B6 BMDMs the levels of Myc protein significantly decreased in parallel with the mRNA suppression presented in Fig.5A. In contrast , we observed the dissociation of the mRNA and protein levels in the _sst1_mutant BMDMs at 12 and 24 h, most likely, because the mutant macrophages develop integrated stress response (as shown in our previous publication by Bhattacharya et al., JCI, 2021) that is known to inhibit Myc mRNA translation.

      Fig 5J the bands look smaller after D-JNK1 treatment at 6 and 12h though in the text is says no change. Quantifying the bands here would be helpful to see if there really is no difference.

      This experiment was repeated twice, and the average normalized densitometry values are presented in the updated Fig.5J. The main question addressed in this experiment was whether the hyperactivity of JNK in TNF-stimulated sst1 mutant macrophages contributed to Myc upregulation, as was previously shown in cancer. Comparing effects of JNK inhibition on phospho-cJun and c-Myc protein levels in TNF stimulated B6.Sst1S macrophages (updated Fig.5J), we concluded that JNK did not have a major role in c-Myc upregulation in this context.

      Section 4, third paragraph, the conclusion that JNK activation in mutant macs drives pathways downstream of Myc are not supported here. Are there data or other literature from the lab that supports this claim?

      This statement was based on evidence from available literature where JNK was shown to activate oncogens, including Myc. In addition, inhibition of Myc in our model upregulated ferritin (Fig.Fig.5C), reduced the labile iron pool, prevented the LPO accumulation (Fig.5D - G) and inhibited stress markers (Fig.5H). However, we do not have direct experimental evidence in our model that Myc inhibition reduces ASK1 and JNK activities. Hence, we removed this statement from the text and plan to investigate this in the future.

      Fig 6N Please provide further rationale for the BCG in vivo experiment. It is unclear what the hypothesis was for this experiment.

      In the current version BCG vaccination data is presented in Suppl.Fig.14B. We demonstrate that stressed BMDMs do not respond to activation by BCG-specific T cells (Fig.6J) and their unresponsiveness is mediated by type I interferon (Fig.6L and 6M). The observed accumulation of the stressed macrophages in pulmonary TB lesions of the sst1-susceptible mice (Fig.7E, Suppl.Fig.13 and 14A) and the upregulation of type I interferon pathway (Fig.1E,1G, 7C), Suppl.Fig.1C and 11) suggested that the effect of further boosting T lymphocytes using BCG in Mtb-infected mice will be neutralized due to the macrophage unresponsiveness. This experiment provides a novel insight explaining why BCG vaccine may not be efficient against pulmonary TB in susceptible hosts.

      The in vitro work is all concerning treatment with TNFa and how this exposure modifies the responses in B6 vs sst1B6 macrophages; however, this is not explored in the in vivo studies. Are there differences in TNFa levels in the pauci- vs multi-bacillary lesions that lead to (or correlate with) the accumulation of peroxidation products in the intralesional macrophages. How to the experiments with TNFa in vitro relate back to how the macrophages are responding in vivo during infection?

      Our investigation of mechanisms of necrosis of TB granulomas stems from and supported by in vivo studies as summarized below.

      This work started with the characterization necrotic TB granulomas in C3HeB/FeJ mice in vivo followed by a classical forward genetic analysis of susceptibility to virulent Mtb in vivo.

      That led to the discovery of the sst1 locus and demonstration that it plays a dominant role in the formation of necrotic TB granulomas in mouse lungs in vivo. Using genetic and immunological approaches we demonstrated that the sst1 susceptibility allele controls macrophage function in vivo (Yan, et al., J.Immunol. 2007) and an aberrant macrophage activation by TNF and increased production of Ifn-b in vitro (He et al. Plos Pathogens, 2013). In collaboration with the Vance lab we demonstrated that the type I IFN receptor inactivation reduced the susceptibility to intracellular bacteria of the sst1-susceptible mice in vivo (Ji et al., Nature Microbiology, 2019). Next, we demonstrated that the Ifnb1 mRNA superinduction results from combined effects of TNF and JNK leading to integrated stress response in vitro (Bhattacharya, JCI, 2021). Thus, our previous work started with extensive characterization of the in vivo phenotype that led to the identification of the underlying macrophage deficiency that allowed for the detailed characterization of the macrophage phenotype in vitro presented in this manuscript. In a separate study, the Sher lab confirmed our conclusions and their in vivo relevance using Bach1 knockout in the sst1-susceptible B6.Sst1S background, where boosting antioxidant defense by Bach1 inactivation resulted in decreased type I interferon pathway activity and reduced granuloma necrosis. We have chosen TNF stimulation for our in vitro studies because this cytokine is most relevant for the formation and maintenance of the integrity of TB granulomas in vivo as shown in mice, non-human primates and humans. Here we demonstrate that although TNF is necessary for host resistance to virulent Mtb, its activity is insufficient for full protection of the susceptible hosts, because of altered macrophages responsiveness to TNF. Thus, our exploration of the necrosis of TB granulomas encompass both in vitro and extensive in vivo studies.

      Minor comments

      Introduction, while well written, is longer than necessary. Consider shortening this section. Throughout figures, many graphs show a fold induction/accumulation/etc, but it is rarely specified what the internal control is for each graph. This needs to be added.

      Paragraph one, authors use the phrase "the entire IFN pathway was dramatically upregulated..." seems to be an exaggeration. How do you know the "entire" IFN pathway was upregulated in a dramatic fashion?

      (1) We shortened the introduction and discussion; (2) verified that figure legends internal controls that were used to calculate fold induction; (3) removed the word “entire” to avoid overinterpretation.

      Figures 1E, G and H and supp fig 1C, the heat maps are missing an expression key Section 2 second paragraph refers to figs 2D, E as cytoplasmic in the text, but figure legend and y-axis of 2E show total protein.

      The expression keys were added to Fig.1E,G,H, Fig.7C, Suppl.Fig.1C and 1D and Suppl.Fig.11A of the revised manuscript.

      Section 3 end of paragraph 1 refers to Fig 3h. Does this also refer to Supp Fig 3E?

      Yes, Fig.3H shows microscopy of 4-HNE and Suppl.Fig.3H shows quantification of the image analysis. In the revised manuscript these data are presented in Fig.3H and Suppl.Fig.3F. The text was modified to reflect this change.

      Supplemental Fig 3 legend for C-E seems to incorrectly also reference F and G.

      We corrected this error in the figure legend. New panels were added to Suppl.Fig.3 and previous Suppl.Fig.3F and G were moved to Suppl.Fig.4 panels C and D of the revise version.

      Fig 3K, the p-cJun was inhibited with the JNK inhibitor, however it’s unclear why this was done or the conclusion drawn from this experiment. Use of the JNK inhibitor is not discussed in the text.

      The JNK inhibitor was used to confirm that c-Jun phosphorylation in our studies is mediated by JNK and to compare effects of JNK inhibition on phospho-cJun and Myc expression. This experiment demonstrated that the JNK inhibitor effectively inhibited c-Jun phosphorylation but not Myc upregulation, as shown in Fig.5I-J of the revised manuscript.

      Fig 4 I and Supp Fig 3 H seem to have been swapped? The graph in Fig 4I matches the images in Supp Fig 3I. Please check.

      We reorganized the panels to provide microscopy images and corresponding quantification together in the revised the panels Fig. 4H and Fig. 4I, as well as in Suppl. Fig. 4F and Suppl. Fig. 4G.

      Fig 6, it is unclear what % cell number means. Also for bacterial growth, the data are fold change compared to what internal control?

      We updated Fig.6 legend to indicate that the cell number percentages were calculated based on the number of cells at Day 0 (immediately after Mtb infection). We routinely use fixable cell death staining to enumerate cell death. Brief protocol containing this information is included in Methods section. The detailed protocol including normalization using BCG spike has been published – Yabaji et al, STAR Protocols, 2022. Here we did not present dead cell percentage as it remained low and we did not observe damage to macrophage monolayers. This allows us to exclude artifacts due to cell loss. The fold change of Mtb was calculated after normalization using Mtb load at Day 0 after infection and washes.

      Fig 7B needs an expression key

      The expression keys was added to Fig.7C (previously Fig. 7B).

      Supp Fig 7 and Supp Fig 8A, what do the arrows indicate?

      In Suppl.Fig.8 (previously Suppl.Fig.7) the arrows indicate acid fast bacilli (Mtb). In figures Fig.7A and Suppl.Fig.9A arrows indicate Mtb expressing fluorescent reporter mCherry. Corresponding figure legends were updated in the revised version.

      Supp Fig 9A, two ROI appear to be outlined in white, not just 1 as the legend says Methods:

      We updated the figure legend.

      Certain items are listed in the Reagents section that are not used in the manuscript, such as necrostatin-1 or Z-VAD-FMK. Please carefully check the methods to ensure extra items or missing items does not occur.

      These experiments were performed, but not included in the final manuscript. Hence, we removed the “necrostatin-1 or Z-VAD-FMK” from the reagents section in methods of revised version.

      Western blot, method of visualizing/imaging bands is not provided, method of quantifying density is not provided, though this was done for fig 5C and should be performed for the other WBs.

      We used GE ImageQuant LAS4000 Multi-Mode Imager to acquire the Western blot images and the densitometric analyses were performed by area quantification using ImageJ. We included this information in the method section. We added the densitometry of Western blot values after normalization above each lane in Fig.2A-C, Fig.3C-D and 3K; Fig.4A-B, Fig.5B,C,I,J.

      Reviewer #3 (Significance):

      The work of Yabaji et al is of high significance to the field of macrophage biology and M.tb pathogenesis in macrophages. This work builds from previously published work (Bhattacharya 2021) in which the authors first identified the aberrant response induced by TNF in sst1 mutant macrophages. Better understanding how macrophages with the sst1 locus respond not only to bacterial infection but stimulation with relevant ligands such as TNF will aid the field in identifying biomarkers for TB, biomarkers that can suggest a poor outcome vs. "cure" in response to antibiotic treatment or design of host-directed therapies.

      This work will be of interest to those who study macrophage biology and who study M.tb pathogenesis and tuberculosis in particular. This study expands the knowledge already gained on the sst1 locus to further determine how early macrophage responses are shaped that can ultimately determine disease progression.

      Strengths of the study include the methodologies, employing both bulk and single cell-RNA seq to answer specific questions. Data are analyze using automated methods (such as HALO) to eliminated bias. The experiments are well planned and designed to determine the mechanisms behind the increased iron-related oxidative stress found in the mutant macrophages following TNF treatment. Also, in vivo studies were performed to validate some of the in vitro work. Examining pauci-bacillary lesions vs multi-bacillary lesions and spatial transcriptomics is a significant strength of this work. The inclusion of human data is another strength of the study, showing increased Myc in humans with poor response to antibiotics for TB.

      Limitations include the fact that the work is all done with BMDMs. Use of alveolar macrophages from the mice would be a more relevant cell type for M.tb studies. AMs are less inflammatory, therefore treatment with TNF of AMs could result in different results compared to BMDMs. Reviewer's field of expertise: macrophage activation, M.tb pathogenesis in human and mouse models, cell signaling.

      Limitations: not qualified to evaluate single cell or bulk RNA-seq technical analysis/methodology or spatial transcriptomics analysis.

    1. he wise person who has seen this ig not oneobsessed with himself, who would be inclined to imagine anythine as “mine.”

      again, this seems to be claiming, "all you need to do is see and know the truth, and you'll act accordingly" which i think contradicts the bit from eight stanzas on the pure that says that you can't become pure by mere views and beliefs – but forming views and beliefs are a natural consequence of learning the truth about desire, which has to happen if one is to act accordingly.

    2. he possessesnothing,

      I guess this makes sense given that the text is pre-madhyamakarika but wouldn't giving up all desire entail a life that is strictly austere and ascetic, and not on the "middle path"?

    3. having understood fully the nature of contact, hewill do nothing that he should have to hide.

      So if you've understood the nature of clinging and why it happens, you would automatically start curbing your desires and stop clinging?

    4. should

      I hate to bring up the tired question of the is-ought gap again, but it is apparent here. Yes, this is the way things are, but why ought we seek liberation?

    5. This makes sense to me because to possess something in the present is to prevent it from leaving your grasp in the future. If one's idea of satisfaction in the present is attached to something contingent, and, trivially, the present moment never really "ends" and the future never really "gets here", one will never be satisfied. I'm curious to read more about Buddhist metaphysics and their philosophy of time.

    6. Norisitattainedbynotseeing,nothearing,notknowing,ortheabsenceofmoralhabitand vows.Discard-ingallofthis,notgraspingand holding,relyingonnothing,atpeace,hewouldnotdesiretobecomeanything.

      I believe the Blessed One is saying that while knowledge, moral habits, and views are not the way to enlightenment or "inner peace", their lack isn't either. Both these things and their opposites are irrelevant because true peace must come from "within" and not be dependent on these things that are acquired from outside the person.

    7. He feels no excitement in passion, nor does he delight in ai spassion

      It would seem that part of being enlightened is not caring about the fact that you are. As mentioned in class (25th Aug), aren't you desiring something if you desire enlightenment? It looks like enlightenment is what happens when you're indifferent to achieving it.

    8. Because,hecanonlyspeakofwhatheknows

      I've only just begun reading Buddhist Philosophy but so far the views espoused sound an awful lot like Socrates "the only thing I know is that I know nothing". Now I know that may not be exactly what is being said is practiced by the great sages of Buddhism but I feel like there is some relation. The "hold on to no views" part is what made me think of this connection.

    9. ere,themisogynyofthetextisquiteconsistentwiththelatertr

      Controversial, but I feel like it must either be the case that misogyny is part of enlightenment or the Buddha was not enlightened. How could the Buddha himself, the man who was supposed to be wise and knowledgeable enough to escape the cycle of life and death, be mistaken about anything, including his attitude toward women? Put in another way, how could anyone who has a misogynistic attitude towards women be truly enlightened? I think 1 of the two must be true: that misogyny is part of enlightenment, or that the Buddha was not really enlightened. Or perhaps there's a third "way out". Perhaps the Buddha never said whatever he said regarding women, and this story is made up. This is also tough to digest, especially for a practicing Buddhist or scholar. Caveat: I haven't actually read the relevant passage, I'm just taking the authors word that it was misogynist.

    Annotators

    1. Fortunately, we can write applications for Cloudflare Workers, Deno, and Bun in TypeScript without having the need to transpile it to JavaScript.

      没感受到之前开发过程中对ts编译到js的过程

    1. We call the primitive that returns Response as "Handler". "Middleware" is executed before and after the Handler and handles the Request and Response. It's like an onion structure.

      这里对中间件的解释非常舒服

    1. As you will read later in the text, Milgram found that nearly two-thirds of his participants were willing to deliver what they believed to be lethal shocks to another person, simply because they were instructed to do so by an authority figure

      I find this interesting because I wouldn't think that a normal person could be willing to harm just because an authority figure told them to. In my brain, I just don't believe that I'd be able to watch another person be harmed by me just because someone like my boss told me to do so.

    2. As a result, psychology is one of the most popular majors on college campuses across the United States (Johnson & Lubin, 2011). A number of well-known individuals were psychology majors. Just a few famous names on this list are Facebook’s creator Mark Zuckerberg, television personality and political satirist Jon Stewart, actress Natalie Portman, and filmmaker Wes Craven (Halonen,

      I find it interesting how popular psychology is as a major and how many famous people who become successful are psychology majors as well. I wonder if their psychology major helps out with a lot of their careers now.

    3. The approach taken by most evolutionary psychologists is to predict the outcome of a behavior in a particular situation based on evolutionary theory and then to make observations, or conduct experiments, to determine whether the results match the theory.

      This reminds me of the rules of hypothesis. You make a prediction, after you conduct an experiment, and then make a claim within the results. This set of rules is just like it.

    4. A hypothesis should fit into the context of a scientific theory

      “theories give a clear foundation for explanation , letting new ideas be built on past knowledge instead of standing alone”

    5. Critical thinking is the active application of a set of skills to information for the understanding and evaluation of that information

      How important do you believe critical thinking is and what do you think “critical “means

    6. What is creativity? What are prejudice and discrimination? What is consciousness?

      My understanding in creativity is creating or thinking something in uniques ways & prejudice is the attitude and discrimination are behavior in something . Also believe consciousness is being aware and responsive of your feelings and surrounding.

    7. hypothesis should fit into the context of a scientific theory, which is a broad explanation or group of explanations for some aspect of the natural world that is consistently supported by evidence over time.

      A hypothesis is like a educated guess or assumption what will happen that can have scientific investigation or experiment

    1. The best way to do this is by first using tesseract to get OCR text in whatever languages you might feel are in there, using langdetect to find what languages are included in the OCR text and then run OCR again with the languages found.

      how about the accuracy?

    1. The HonoRequest is an object that can be taken from c.req which wraps a Request object.

      感觉刚刚这个问题就是在问为什么request中会有valid这个构成

    1. "Most of all, thank you for LISTENING to us." We all want to be heard, really heard. It is hard to do, but if we can break through, maybe it's not so hard. The end of the story gave us hope, but the audience, without being directed has been given a task. Listen. Listen to those who are not like you. Listen to those that you think you understand or know that you don't understand.

    2. Implicit bias was pronounced in Kathi Kinnear Hill's narrative. There was an expectation that we would hear about the implicit bias of the white people in rural America who she would be canvassing. She certainly experience some implicit bias of some of them against her and her canvasing partner. However, this story was significantly about how she overcame her bias, and the fear that came with that. She was nervous about entering into a culture that she did not believe would accept her. However, she had an older, wiser, braver guide to help her find the good---because they are always good. Because she allowed herself to be guided and open, she found a couple that was willing to cross the line as well. Through that, both the couple and she learned that the barriers are not so high

    1. Enrique Garcia Naranjo starts his story describing an audience he had in the past. I find this interesting because he shows how he took a bored and uninterested audience to become an engaged and thoughtful one. It is my thought that he did this to give permission to the current audience that no matter where you are now, I can take you on a journey where your mind and your heart will be moved. "Come with me." He most certainly did.

    2. Enrique Garcia Naranjo tells a story of a border patrol stop as someone who lives in two cultures along the US/Mexico Border. This was not just a fun story to tell, but what is at stake for Mr. Naranjo is the safety of himself, his family, his barrio. He had just finished a poetry event that energized and helped people like him and others see themselves more clearly. He is proud, excited, and joyful, but the change happens when he sees the border patrol officer. Fear and focus took over for his safety, but especially for his partner who is a DACA kid. The theme he is that people live in different worlds in the same world and that freedom is not something implicitly granted to everyone, but can be taken if we are not careful and brave.

    1. : ‘Are they Pioneers or Aliens?’43Close As historian Hsu-Ming Teo has pointed out, the ‘problem’ is that insisting that past Asian travellers were ‘pioneers’ who helped build the Australian nation inserts non-white migrants into settler narratives celebrating the usurpation of Aboriginal land.44

      Hmmmmmm.....

    2. In the context of competing colonial ideologies in British India, Mill’s History was written as an Anglicist/ utilitarian challenge to the orientalist/ Romantic viewpoint of Sir William Jones, an East India Company scholar-administrator who founded the Asiatic Society of Bengal in Calcutta in 1784.

      Interesting how racism takes nuanced forms.

    3. One of the most surprising discoveries was that the richest accounts of South Asians were in some of the Aboriginal languages spoken in Australian desert parts. I

      WHATTTTT???

    1. I cannot help it, the Devil may appear in my shap.

      In this quote, the nurse is was showing guilt for knowingly siding with the "devil". I think that this tells us that the nurse was already in a position where no matter what she said, she was guilty, so she needed to, in a way, make it seem like she was not fully responsible for her actions (that she did not commit). And I think this can relate to causality because it was already decided by the town that she was guilty, she was put in a position where she needed to defend herself as if she WAS guilty.

    2. That is strange every one can judge

      Here the woman being accused is essentially being told that you can in fact tell if just by discernment (rather unfair judgement) that someone is guilty or not. I think that this relates to Complexity because from both the accusers and the accused, there is no way of knowing the true intentions or motivations behind their behaviors.

    3. Again upon stirring her hands the afflicted persons were seized with violent fits of torture

      Observation: When Rebecca Nurse moved her hands, the afflicted girls immediately went into dramatic fits, suggesting a direct physical link between her actions and their symptoms.

      Interpretation: This reflects how the court interpreted natural movements as supernatural evidence. The afflicted girls reactions were likely influenced by the intense atmosphere, shared expectations, or even performance yet these were taken as proof of guilt. It shows how the trials showed the line between theater, fear, and justice.

    4. they say now they see these familiar spirits com to your bodily person, now what do you say to that

      I observe that this quote is saying that there were witnesses to familiar spirits coming to the Nurse and that is a piece of evidence against her. I interpret this to most likely be either a metaphor or delusion since this is unlikely that they say ghosts come up to her

    5. How oft have you eat and drunk y’r own damaon

      I observe that this quote is about how she feeds her demon by practicing witchcraft and by tempting others to practice as well. I interpret this to be related to the belief of selling your soul to the devil in return for things or about how strong at witch craft a person is believed to be

    6. Here are not only these but, here is the wife of Mr Tho: Putman who accuseth you by credible information & that both of tempting her to iniquity, & of greatly hurting her.

      In this quote they focus on the men. Ann Putnam is called a wife and Kenny's testimony holds weight. I interpret this to show how at this time men were valued over women which was why the Salem witch trials targeted vulnerable women.

    7. If you have confess & give glory to God I pray God clear you if you be innocent

      I observe here that the judge references God and God clearing her if she's innocent. This is a show of how the community was very religious at the time and believed that witches were working with the devil.

    1. We use all kinds of terms to talk about media. It will be useful to clarify them. It will be especially important to distinguish between mass communication and mass media, and to attempt a working definition of culture. You likely are reading this book as part of a class dedicated to mass communication, so let’s start with mass communication first. Note that adjective: mass. Here is a horrible definition of mass from an online dictionary: Of, relating to, characteristic of, directed at, or attended by a large number of people. But the definition gets the point across. Communication can take place just between two people, or among a few people, or maybe even within one person who is talking to himself. Mass communication is communication of, relating to, characteristic of, directed at, or attended by a large number of people. That’s pretty ugly. Let’s try the following: Mass communication refers to communication transmitted to large segments of the population. How does that happen? The transmission of mass communication happens using one or more of many different kinds of media (people sometimes forget that media is the plural of the singular, medium). A medium is simply an instrument or means of transmission. It can be two tin cans connected by a string. It can be television. It can be the Internet. A mass medium is a means of transmission designed to reach a wide audience. It is not tin cans on a string, unless you have a lot of cans, but it can be television or the Internet. Media are more than one medium. So mass mediarefers to those means of transmission that are designed to reach a wide audience. Mass media are commonly considered to include radio, film, newspapers, magazines, books, and video games, as well as Internet blogs, podcasts, and video sharing.

      the difference between the 2

    1. Media influence the way the brain works and how it processes information. They create new patterns of thought and behavior. Looking back over time, McLuhan found that people and societies were shaped by the dominant media of their time. For example, McLuhan argued, people and societies of the printing press era were shaped by that medium. And, he said, people and societies were being shaped in new ways by electronic media. Summing up, in one of his well-known phrases, he said, “The medium is the message.” This book’s title uses McLuhan’s title—and adds culture. McLuhan well understood how media shape culture. However, one weakness in McLuhan’s work, especially his early work, is that he did not fully account for how culture shapes media. Culture can be a vague and empty term. Sometimes culture is defined in a very narrow sense as “the arts” or some sort of fashionable refinement. Another definition of culture is much more expansive, however. In this broader sense, culture is a particular way of life and how that life is acted out each day in works, practices, and activities. Thus, we can talk about Italian culture, Javanese culture, or the culture of the ancient Greeks. Another communication theorist, James Carey, elegantly captures this expansive view of culture. In “A Cultural Approach to Communication,” Carey wrote the following: “We create, express, and convey our knowledge of and attitudes toward reality through the construction of a variety of symbol systems: art, science, journalism, religion, common sense, mythology. How do we do this? What are the differences between these forms? What are the historical and comparative variations in them? How do changes in communication technology influence what we can concretely create and apprehend? How do groups in society struggle over the definition of what is real?”James Carey, “A Cultural Approach to Communication,” in Communication as Culture: Essays on Media and Society. 2nd ed. New York: Taylor & Francis, 2006, p. 24. That large sense of culture will be used in this book. The chapters to come will provide an in-depth look at the relationship of media and culture. We will look at many kinds of media and how those media shape and are shaped by culture. Media and culture shape each other around the globe, of course. The focus in this book primarily will be on the United States. This focus is not because U.S. media have such global reach but because understanding media and culture in one setting will allow you to think about media and culture in other settings. This intellectual journey should be interesting and fun. You live, study, work, and play with media in culture. By the book’s end, you should have a much deeper appreciation and understanding of them.

      functions of media performance

    1. his double vision is too much. As Miller points out, the highest incidence of patients suffering from schizophrenia in the United Kingdom has for many years been among migrants from places once colonised by the British Empire.3Close Just as white soldiers are forever imprisoned at the imperial battlefront, the fluorescent halls and walled gardens of Australian mental health units are likewise haunted by non-white people, some once colonised, many still colonised.

      And this is precisely why i want to leave. I know homeland trips are so fraught and broken, but i would rather experience the pain of homeland than that of this broken place called country.

    2. Western states cannot bomb, exploit, drone, invade and kill South Asians and have us as part of their citizenry at the same time. The migrant story I had inhabited for much of my life buckled, and eventually collapsed.

      come back to this.

    1. services. They are difficult to predict, define, and measure because they can be very subjective.

      most of the time consumers will not be the same and its okay to miss out on a group of people and to never give up just because people don't purchase your service or products because its not for everyone.

    2. Take a moment to think about the many different types of businesses you come into contact with on a typical day.

      I don't know why but non profit organizations really intrigue me their is so many questions I have for them like. Why do it for no profit? Why do you do it for a cause? Why are they so passionate for their mission? Who starts the movement? Are all of the nonprofit organizations always successful?

    3. Fortunately, the management team at H&R Block not only believes in maintaining a strong culture, it also tries to offer flexibility to its more than 70,000 employees and seasonal workers in 12,000 retail offices worldwide.

      I wish more companies understood that people have lives and families outside of work. This applies especially to seasonal workers because most of the time, it is people who are taking up extra shifts during the holidays to provide for their families or buy good gifts for the holidays. I'm glad H&R Block understands this.

    4. At the other end of the spectrum is pure monopoly, the market structure in which a single firm accounts for all industry sales of a particular good or service. The firm is the industry. This market structure is characterized by barriers to entry—factors that prevent new firms from competing equally with the existing firm.

      In my country, there are many monopolies in different industries. For example, Samsung dominates semiconductors and electronics, while KakaoTalk leads in messaging, taxi services, and even its own payment system. Due to the preemption of few head coorporations, they are in charge of control of the market prices, which makes me question about how small businesses compete and survive.

    5. Risk is the potential to lose time and money or otherwise not be able to accomplish an organization’s goals. Without enough blood donors, for example, the American Red Cross faces the risk of not meeting the demand for blood by victims of disaster.

      At risk were companies during covid pandemic. Shutdowns and economic shrinkage directly affected not only businesses but the quality of people's lives. I remember that one of my favorite restaurants had to stop their business since they couldn't afford to pay their rents.

  2. learn-us-east-1-prod-fleet01-beaker-xythos.content.blackboardcdn.com learn-us-east-1-prod-fleet01-beaker-xythos.content.blackboardcdn.com
    1. I want to draw particular attention to the way that specializa-tion makes an economy subject to fluctuations in employmentand economic activity. Entrepreneurs constantly test new typesof specialization, leading to what Joseph Schumpeter calledcreative destruction, meaning new enterprises that drive oldfirms out of business. Modern production processes involvemany layers and many steps, making the patterns of specializa-tion highly complex. New patterns create new opportunities,but other patterns can become unsustainable

      Specialization drives innovation but also causes instability. How much change can the economy take before it starts causing more harm than good?

    1. I thought it would be a good opportunity to learn how to build a router using Trie trees. Then a friend showed up with ultra crazy fast router called "RegExpRouter". And I also have a friend who created the Basic authentication middleware.Using only Web Standard APIs, we could make it work on Deno and Bun. When people asked "is there Express for Bun?", we could answer, "no, but there is Hono". (Although Express works on Bun now.)We also have friends who make GraphQL servers, Firebase authentication, and Sentry middleware. And, we also have a Node.js adapter. An ecosystem has sprung up.In other words, Hono is damn fast, makes a lot of things possible, and works anywhere. We might imagine that Hono could become the Standard for Web Standards.

      没太理解这里在说什么

    1. This AI-driven auto-scheduling is a massive time-saver, eliminating the tedious manual process of trying to Tetris tasks into your day.

      important

    1. In constructing a successful speech, the orator could use three modes of expression: logos (logical argument), pathos (emotional appeals), Page 15 → and ethos (establishing the authority of the speaker).

      I think this is so wonderful how this is mentioned because it is so relevant and has been applied today when giving speeches In class. It’s important to be able to resonate with an audience, to hold their attention, and communicate in a way that hooks and appeals them.

    1. As these values and ideas shape ourpolitical and economic system , so too, they shaped the development andevolution of organized crime in America.

      This comment reminded me of the movie Bullet Train. It is a movie that came out in America a few years ago but it is centered on an American who works in organized crime. He is the protagonist, and the antagonist is multiple different Japanese gangs who are working with members of the organized crime world in England. I think the main reason that the American is the protagonist and not just another character is because he spends the whole movie talking about how he is trying to find peace and be, essentially, a good person instead of a criminal. This paints him as a better person to the audience based on what Americans value in our society.

    1. advertisements,graphically depicted the idea of the family circle with television viewersgrouped around the television set in semicircle paerns

      This reminds me of sunken living rooms or conversation pits old homes had.

    2. broadcast stations of burning Yule logs on the television screen eaChristmas Eve, a practice that originated in the 1950s

      I had always wondered why this started. It's cool to see people still do this, even for other holidays now.

    3. so I was wondering if I might somehow findsomebody who would trade me a picture or two for a perfectly good

      Its interesting to see that even though her new television set is causing her financial struggles she still would rather get rid of the piano

    4. floor plans included a space for television in the home’sstructural layout

      Because televisions are so common now its a bit bizarre to think folks had to tweak and develop floor plans to help place TV's in homes

    1. And, the Validator and Hono Client hc enable the RPC mode. In RPC mode, you can use your favorite validator such as Zod and easily share server-side API specs with the client and build type-safe applications.

      RPC(Remote Procedure Call,远程过程调用)模式解决的问题是:让分布式系统中的服务之间能够像调用本地函数一样进行通信,从而屏蔽网络通信的复杂性。

      没有特别抓到核心感觉

    1. Epidemic Curve

      I wasn't familiar with the 'Epidemic Curve' but this teaches me the graph shows cases over time and helps identify an outbreak pattern

  3. learn-us-east-1-prod-fleet01-beaker-xythos.content.blackboardcdn.com learn-us-east-1-prod-fleet01-beaker-xythos.content.blackboardcdn.com
    1. A commodity is anything that is bought and sold for money. With the advent ofcapitalism and widespread wage labour, labour itself became a commodity. Andneoclassical economics analyzes labour essentially like any other commodity: thereare suppliers (workers), demanders (employers), and a price (the wage rate). Intheory, if governments and unions stay out of the way, fluctuations in the priceof labour will supposedly ensure that everyone finds a job, in which case laboursupply equals labour demand and there is no unemployment. If unemploymentexists, just let the wage fall; employers will hire more workers, eventually absorbingall the slack in the labour market

      Neoclassical economics treats labour as a commodity, with suppliers (workers), demanders (employers), and a price (wage rate). In theory, wages adjust to eliminate unemployment. Unlike the reading on the modern capitalist class, which highlights how wealthy owners and managers exert political and social influence, this view assumes labour responds only How does assuming labour behaves like a regular commodity ignore the real-world influence of the capitalist class on wages and employment?

    2. here is that they don’t have to work, since their business wealth is sufficient tosupport themselves very comfortably without working. Statistical surveys indicatethat less than 2 percent of individuals in Anglo-Saxon economies own businessand financial wealth on this scale; and there is considerable overlap between thiscategory and the top managers.Either way, these top managers and major owners have a substantial, directpersonal stake in the profits of business. Both groups identify closely with thebusiness community, and exert their (disproportionate) political, social, andpersonal influence on its behalf. Put together, this class of top managers and wealthyinvestors accounts for perhaps 2 percent of the population of developed capitalisteconomies. They are the modern capitalist class: less visible, more sophisticated,possibly even more compassionate than the capitalists of the 1700s. But they are

      Some people don’t need to work because their wealth supports them. Less than 2 percent of the population in Anglo-Saxon economies are top managers or major owners with a direct stake in profits. They influence the business community politically, socially, and personally, forming the modern capitalist class—less visible but influential. This makes me curious to learn more about how this modern capitalist class shapes political and economic decisions compared to the capitalists of the 1700s.

    3. might derive intrinsic enjoyment from admiring their newly purchasedhardware – but they are hardly typical!) Instead, we use tools to produceother things (goods or services) that we can consume and that are inherentlyuseful. For this reason, economists call tools intermediate products:things that are needed to produce something else, not for their own sake.Final products, on the other hand, are the goods and services that weultimately use or consume

      Tools are used to produce other goods or services, not for their own sake. Economists call tools intermediate products and the goods we consume final products. Even automated machines need human work to operate. Producing tools first increases overall productivity. If we assume tools always increase productivity, what happens when this assumption fails, such as with poorly designed ?

    4. As we defined it earlier, the economy is no more and no less than the amalgamationof our collective work – all the work that is necessary to produce the goods andservices we need and want. And once we’ve produced those things, we need todecide how to distribute and use them.By “work,” we refer to any productive human activity. Most obviously, thisincludes work in a paid job. Indeed, in modern capitalism, wage labour is sowidespread that many people wrongly equate “work” with “employment.” Afrustrated parent is likely to tell their lazy teenager to “Get a job!” when what theyreally mean is “Get up and do some work!” Under capitalism, most work consists ofwage labour, but not all. There is other important work that we must also consider

      The economy is all our collective work that produces goods and services. After production, we must decide how to distribute and use them. Work includes any productive activity, not just paid jobs. In capitalism, many people equate work only with employment, but unpaid work is also important. How does seeing the economy as collective work change how we measure it?

    1. Sociologists and other social scientists have warned since then that the status of people of color has actually been worsening in many ways since this report was issued (Massey, 2007; Wilson, 2009).Massey, D. S. (2007).

      Did these articles pitted ppl against themselves

    2. Nazi racism in the 1930s and 1940s helped awaken Americans to the evils of prejudice in their own country. Against this backdrop, a monumental two-volume work by Swedish social scientist Gunnar Myrdal (1944)Myrdal, G. (1944

      This is what open America eyes to their own wrong doings

    1. However, collecting sensitive information such as SU is difficult based on social desirability and fears of disclosure.

      Are there any concerns presented about the results? Yes, as indicated in the article, there is concern that the nature of the study caused reluctance to participant. In addition to substance use being a generally difficult topic to discuss, the participants in the study only had to respond if they felt comfortable doing so, and did not have requirements for responding. The self-reporting aspect of this study along with the possible fear of self-reporting or reporting a colleague may lead to underrepresentation of substance use in registered nursing due to omission or miscontrued information.

    1. We study more thoroughly the more we strive for a global view and apply this to thetext, distinguishing its component dimensions

      We as readers and students will always strive to understand everything as a whole especially when it comes to applying knowledge to the world, we will apply the knowledge to everything as long as it relates.

    2. Once we establish the relative point between the passage under study and our owninterest, we should make a note of it on a file card with a title that identifies it with thespecific study topic

      Our own interests can help remember subjects easier than subjects we are not interested in, techniques like this have always been effective when it comes to learning and understanding passages and chapters of subjects.

    3. Maintaining this curious attitude helps us to be skillfull and to profit from ourcuriousity

      Curiosity is a valuable aspect of a reader as when we feel curious we learn more effectively than we are not, we truly understand the knowledge obtained than what we are just told.

    4. The act of study, in sum, is an attitude toward the world. Because the act of study is anattitude toward the world, the act of study cannot be reduced to the relationship of reader tobook or reader to text.

      The world is the connection all readers have and to study it and everything in and around it mark the connection readers have with everything when we study not just on the pages of the book.

    5. Sensing a possible relationship between the read passage and our preoccupation, we as goodreaders should concentrate on analyzing the text, looking for a connection between the mainidea and our own interest.

      Books are more than their intended knowledge as mentioned as the text in general can stir up curiosity and new meaning outside the intended purpose of the book in new ways and insight.

    6. Further, with this approach, a reader cannot separateherself or himself from the text because she or he would be renouncing a critical attitudetoward the text.

      The reader emphasizes or merges their thoughts with the text of the author creating a new mindset of the topic a new perspective of knowledge while trying to understand the author.

    7. Studying is a form of reinventing, re-creating, rewriting; and thisis a subject’s, not an object’s, task.

      When reading the words of the author you are not the same mindset as them as you try to understand the knowledge they present to the reader.

    8. In a critical vision, things happen differently: A reader feels challenged by the entiretext and the reader’s goal is to appropriate its deeper meaning.

      When it comes to vision the reader can draw a deeper meaning from the text and if they can then they are on the right track to understanding the reader.

    1. Much of the decline happened among participants under the age of 30, who were more likely to be seeking college education or job training.

      In high school I knew people who turned assignments in late or who skipped class because they had to help their family generate income. Not only do GBIs help moms who need to be there for their kids, they also help kids continue pursuing an education.

    1. creative w

      I would add a final 'imagine if''section here.

      This is where you acknowledge how they're currently approaching their art practice... in isolatin, overthinking, wondering how others approach creativity, not sure whether to start.

      And you paint a picture of what's possible inside the Collective. You could catch up when it suits you from the comfort of your home with your new creative besties. Take imperfectly perfect action with fresh inspiration, have gentle accountability to make time for yourself and your practice. etc

      And then I'd follow that up with another join now section with the 3 tiers and buttons.

    1. This freedom to worship was indispensable in a country whose people came from the four quarters of the earth and brought with them a diversity of religious opinion.

      This quote truly exemplifies why the establishment clause exists for the first place, as the religious diversity of America requires a notion of religious freedom if harmony is to be continued

    2. These companion cases present the issues in the context of state action requiring that schools begin each day with readings from the Bible.

      This valuable to keep note of because it already establishes that this case pertains to a school mandated religious activity.

    3. "in that it threatens their religious liberty by placing a premium on belief as against non-belief and subjects their freedom of conscience to the rule of the majority;

      This is important to note as it highlights how a religious favoritism is established with a mandated bible reading in school settings

    4. children's attendance at Abington Senior High School is compulsory

      this reinforces the fact that all children no matter their background would be expected to participate in religious matter even if they were given an option to exempt from it

    5. the children's relationships with their teachers and classmates would be adversely affected

      This is also something to consider because the fact that students have to out their disapproval publicly could cause issues of isolation from their peers