10,000 Matching Annotations
  1. Dec 2024
    1. Những cây camkhác đều phải mất một thời gian dài. Những cây cam ngọt của tôi “khôntrước tuổi”, như cách bác Edmundo miêu tả tôi

      Zz đã áp dụng những câu mình học được tù các người lớn và để ý đến những vận dụng xung quanh mình. Như cây cam ngọt Pinkie, nó đã phát triển nhanh hơn cây cam ngọt bình thường

    Annotators

    1. saddle point

      Et saddelpunkt antages at være kritisk til at begynde med. Eksemplet

      $$ f(x, y, z) = x^2 - y^2 + z $$

      har \( (0,0,0)\) som saddelpunkt i henhold til definitionen. Dette punkt er ikke kritisk!

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Wilson's Disease (WD) is an inherited rare pathological condition due to a mutation in ATP7B that alters mitochondrial structure and dysfunction. Additionally, WD results in dysregulated copper metabolism in patients. These metabolic abnormalities affect the functions of the liver and can result in cholecystitis. Understanding the immune component and its contribution to WD and cholecystitis has been challenging. In this work, the authors have performed single-cell RNA sequencing of mesenchymal tissue from three WD patients and three liver hemangioma patients.

      Strengths:

      The authors describe the transcriptomic alterations in myeloid and lymphoid compartments.

      Weaknesses:

      In brief, this manuscript lacks a clear focus, and the writing needs vast improvement. Figures lack details (or are misrepresented), the results section only catalogs observations, and the discussion needs to focus on their findings' mechanistic and functional relevance. The major weakness of this manuscript is that the authors do not provide a mechanistic link between the absence of ATP7B and NK cells' impaired/altered functions. While the work is of high clinical relevance, there are various areas that could be improved.

      In this study, we reported for the first time that ATP7B mutation and the resulting metabolic abnormalities in hepatocytes cause functional alteration of immune cells in WD patients. We dissected the transcriptional profiles of liver mesenchymal cells and delineated the functional differences of main immune cells in WD patients through scRNA-seq. The NK cell exhaustion and its clinical significance were further demonstrated.

      The mechanism study is of our concern. Given that the ATP7B mutation is hepatocyte-specific, its effect on immune cells is most probably through intercellular communication rather than through the direct action of ATP7B protein. How ATP7B mutation disturbs the metabolic homeostasis in hepatocyte, how metabolic pathways regulate the release of signal substances, and how signal substances act on the NK cells need to be explained. These contents, together with this manuscript, are beyond the scope of a single article, so we put the novelty in this manuscript.

      We sincerely appreciate the comments. We have improved the manuscript based on your valuable suggestions. The mechanism study is our subsequent research topic. We are actively promoting it and have found that ATP7B mutation rewires a certain metabolism pathway in hepatocyte, and that a critical metabolite functions as the mediator causing NK cell exhaustion.

      Reviewer #2 (Public Review):

      Summary:

      Wilson's disease is a rare genetic disorder caused by mutations in the ATP7B gene. Previous studies have documented that ATP7B mutations can disrupt copper metabolism, affecting brain and liver function. In this paper, the authors performed a retrospective clinical study and found that Wilson's disease has a high incidence of cholecystitis. Single-cell RNA-seq analysis revealed changes in the immune microenvironment, including the activation of immune responses and the exhaustion of natural killer cells.

      Strengths:

      A key finding of this study is that the predominant ATP7B gene mutation in the Chinese population is the 2333G>T (p. R778L) mutation. The authors reported associations between Wilson's disease and cholecystitis, as well as the exhaustion of natural killer cells.

      Weaknesses:

      The underlying mechanisms linking ATP7B mutations to cholecystitis and natural killer cell exhaustion remain unclear. Specifically, it is not yet determined whether copper metabolism alterations directly cause cholecystitis and natural killer cell exhaustion, or if these effects are secondary to liver dysfunction.

      In this study, we reported for the first time that ATP7B mutation and the resulting metabolic abnormalities in hepatocytes cause functional alteration of immune cells in WD patients. We dissected the transcriptional profiles of liver mesenchymal cells and delineated the functional differences of main immune cells in WD patients through scRNA-seq, focusing on the NK cell exhaustion and its clinical significance.

      The mechanism study is of our concern. Given that the ATP7B mutation is hepatocyte-specific, its effect on immune cells is most probably through intercellular communication, so we prioritize the studying of this aspect. How ATP7B mutation disturbs the metabolic homeostasis in hepatocyte, how metabolic pathways regulate the release of signal substances, and how signal substances act on the NK cells need to be explained. These contents, together with this manuscript, are beyond the scope of a single article, so we put the novelty in this manuscript.

      We sincerely appreciate the comments. The mechanism study is the topic of our follow-up study. We are actively promoting the research and we have found that ATP7B mutation rewires a certain metabolism pathway in hepatocyte, and that a critical metabolite functions as the mediator causing NK cell exhaustion.

      Reviewer #1 (Recommendations For The Authors):

      Major:

      (1) Abstract. A major portion of this manuscript focuses on non-NK cells. Data that describes NK cell exhaustion is only minimal. Therefore, the authors should modify the abstract.

      Thank you for your valuable suggestion. We have supplemented the description of functional changes in other immune cells, and have modified the abstract (line 31-35).

      (2) Introduction. There are three paragraphs. The first paragraph discusses cholecystitis. However, there are too many repetitions, and the information is unclear. In the second part, the authors discuss NK cells and their exhaustion. The authors do not establish a clear rationale or logic linking NK cells to WD or cholecystitis. In the last paragraph, the authors describe their findings. Their correlation between NK cell exhaustion and the poor healing process of cholecystitis has no direct experimental proof.

      Thank you for your comments. We have deleted the repetitions and rephrased some sentences (line 72-74). Briefly, in the first paragraph, we proposed the significant prognostic value of immune cell dysfunction for cholecystitis. In the second paragraph, we introduced NK cell exhaustion and its potential to predict prognosis of certain diseases. In the third paragraph, we introduced that the liver is a central organ involved in metabolism and immunity, holding a large number of NK cells. Liver pathologies commonly impact the development and outcome of inflammation-associated diseases such as cholecystitis. WD was selected as a research model. In the last paragraph, we introduced our findings from clinical study, scRNA-seq, clinical samples, and bioinformatics analysis, and concluded at the end.

      (3) Results. Overall, the results section lacks clarity and a clear focus. Figure legends need to be significantly detailed. The authors make too many broad statements without any support. The authors also make too many overstatements.

      Thank you for your valuable suggestion. We have improved the inaccurate statements and made detailed refinement of figure legends. All the changes are marked in the manuscript, and related responses are described below.

      Figure 1: No information is provided about the functional impairment of ATP7B protein due to the mutation found in the cohort of Chinese patients. What does 'immune abnormalities' (line 127) mean? What is the relevance of showing liver fibrosis and copper accumulation in the eye in Figure 1c and d, respectively? Total cholesterol concentrations are still within the range in the plasma of WD patients, but the authors call it higher. ECAR has not changed in WD patients, but the authors claim it has (line 117).

      (1) All these gene mutations in WD disable the protein function and cause the same outcome. (2) We have deleted the inappropriate statement. (3) In clinical observation, we found that WD not only causes copper accumulation in hepatocytes, but also leads to a variety of diseases, including liver fibrosis, Kayser-Fleischer Ring, and lower risk of hyperglycemia. We showed these together with the data of cholecystitis incidence. We think these might suggest the significance of intercellular communication between hepatocytes and other cells in microenvironment. (4) We have deleted the inappropriate statement (line 108-110, 112-113).

      Figure 2: Did the authors use the liver mesenchymal tissue or mesenchymal cells? Figure 2 states that they used mesenchymal cells, different from liver mesenchymal tissue. Numbers within Figure 2b UMAP are not visible. Were the initial T and NK cells annotated as indicated in Figure S2 (CD3D, CD#E, CD3G)? If so, that does not include NK cells.

      (1) The liver mesenchymal cells were used for scRNA-seq. (2) It is possible that the image resolution was reduced due to the compression of files by the submission system during merging process. We confirm that the image resolution of all figures meets publishing requirements, and that all characters on the figures are visible. You can download figure files to view details. (3) It was our negligence that the incomplete cell markers were shown in Figure S2. We have updated the markers (CD3D, CD3E, NKG7), references (Ref #53, #55, and #56), and related figures (Figure 2e, and Figure S2c).

      Figure 3: The authors should change 'Case' to 'WD patients' both in the text and figures. DEGs in Figure 3C indicate a transcriptomic alteration in the B cell compartment, which the authors do not delineate. Also, the rationale and explanation for the CellChat analyses are minimal. Concluding that a change occurred within the TME with minimal data and explanations is unfair.

      Thank you for your comments. (1) We apologize for the confusion caused by the use of nomenclatures and abbreviations in the text and figures. In all scRNA-seq data analysis, presentation, and description, we used specific terms (CASE and CON) to refer to the group of WD patients and controls, as well as their cell population. We have now unified the use of nomenclature in full text and defined them when first appeared (line 126-127), avoiding using lowercase form to prevent confusion. (2) We have now compared the expression of key genes of B cell between the two group in the next section “The dysfunction of main immune cells in WD patients” (line 230-235, Figure 4e, Figure S4e). (3) We have described the results of cellular communication in more detail (line 188-194). (4) We have modified the conclusion and all the related statement in full text (line 29-31, 82-84, 149, 194-195).

      Figure 4: This section deals with multiple cell types with minimal explanations. This section discusses various cell types, but it lacks focus. In particular, the T cell section should be separated and elaborated more in detail.

      (1) In this section, we intended to show the comparison in function of main immune cells that account for a considerable proportion, instead of just showing differently expressed genes that provide minimal information. The evaluation of functional signature, based on the integration of multiple gene expression, allows a direct understanding of the final outcome owing to transcriptional changes. (2) Given that the main functions of T cells did not change significantly and there were more significant changes in innate immunity, the T cell section is relatively short and unsuitable as a separated part.

      Figure 5: What are the distinct subsets of NK cells authors have found in the WD patients and controls? How do these subsets differ between the two groups in numbers and their transcriptomes? The presentation and labeling of Figure 5 and Supplementary Figure 5 need to be vastly improved. The pseudotime presentation in Figure 5b should be presented separately for the patients and the controls. Are the changes in gene expression presented in Figure 5a due to the change in the subset compositions? Figure 5c immuno-staining is not at all visible. A clear explanation should be given for the differences between Figure 5c and Figure 5e, where NKG2A expressions are shown. A better explanation for Figure 5d is required. Did the authors use all the antibodies with the same fluorochrome? If so, what color is that? Can the authors include the individual samples in the bar diagram in Figure 5e? Again, the data in Figure 5 is insufficient to conclude that NK cells are exhausted in WD patients. While the role of changes in the expression of T-BET and EOMES can be related to dysfunction and cellular exhaustion of NK cells, the statement made by the authors needs to be toned down as they do not test with independent experiments.

      (1) The subsets of NK cell were clustered by gene expression profile and labeled by the characteristically expressed gene, using certain algorithm in the routine procedure. They cannot be distinguished in clinical samples by one or several genes or other sorting methods. Thus, we were not able to analyze these subsets in clinical samples. (2) We have supplemented the comparison of numbers and transcriptomes of three NK subtypes between the two groups (line 268-273). (3) We have checked the figures and confirmed that all characters on the figures are visible. (4) We have separately presented the plot in Figure S5d. (5) We compared the expression level of genes presented in Figure 5a between the two groups in three NK subtypes and supplemented this part (line 264-268). The results were very consistent across the three subtypes, suggesting that the results in total NK population were contributed by all three subtypes and not affected by a single composition. (6) KLRC1 is also known as NKG2A. We are sorry for not making a clear explanation, and now we use KLRC1 only in all text to avoid confusion. We have made a more clear and detailed description for Figure 5c, 5d, and 5e (now labeled as Figure 5b, 5c, and 5d), and have included the fluorochrome in Figure 5d (now labeled as Figure 5c) and the individual value in Figure 5e (now labeled as Figure 5d) (line 293-299). (7) In this section, we found the upregulated expression of inhibitory receptors, downregulated expression of effector molecules, and the impaired NK cell-mediated cytotoxicity in NK cell of WD patients from scRNA-seq. Then we validated the findings in clinical liver section samples and clinical blood samples by mIHC and flow cytometry, respectively. According to the recent articles, exhausted NK cells are characterized by decreased production of effector cytokines (e.g., IFNγ), as well as by impaired cytolytic activity, and downregulate expression of certain activating receptors and upregulate expression of inhibitory receptors (e.g., 10.3389/fimmu.2017.00760, 10.1038/s41590-018-0132-0, 10.1038/s41467-019-09212-y, 10.1080/2162402X.2016.1264562). Therefore, we concluded NK cell exhaustion in WD patients. (8) In the part about transcription factors, we kept the description of objective data and deleted the statement of the contribution of transcription factors to NK exhaustion.

      Figure 6: Data presented in Figure 6 and the conclusion made in this manuscript are predictive. There is no direct testing of ATP7B in NK cells to show the functions of this gene. Extension of this to patient survival is purely speculative. As long as authors state these facts clearly in their text, it can be acceptable. However, they do not extend their conclusions to similar liver diseases.

      ATP7B mutation is hepatocyte-specific, and it does not occur in any immune cells. The function of ATP7B in NK cell was not studied. We found the NK exhaustion and poor prognosis of cholecystitis in WD patients. Given that there were researches demonstrating that NK exhaustion is correlated with poor liver cancer prognosis, we hypothesized that NK exhaustion contributes to the poor prognosis of cholecystitis. Bioinformatics studies confirmed our hypothesis and supported the extension of this result to other inflammatory diseases. We had no experimental data, but this result was reliable in bioinformatics method.

      (4) Discussion: While the authors analyzed multiple cell types, the discussion is primarily focused on NK cells. There is no clear link between copper utilization, NK cell function, and exhaustion that the authors articulate.

      Thank you for your comments. The focus of our study is NK cell exhaustion, which is experimentally proven, so we discussed this aspect. We prioritize the effect of intercellular communication and metabolic alteration on the NK cell exhaustion in our follow-up study. Excess copper is released into the circulation in some circumstances in WD patients, but generally they receive long-term de-coppering therapy to maintain intracellular copper at a non-lethal level. Thus, we do not tend to consider copper as a critical factor in this study. In original manuscript, we mentioned the cuproptosis and its potential as a novel target. It is likely to lead to ambiguity and misunderstanding, so we deleted this part to put our point of view clearly.

      (5) Supplementary Figures: The presentation and labeling of these figures need to be changed.

      Thank you for your suggestions. We have modified the figures and confirmed that all characters on the figures are visible.

      Reviewer #2 (Recommendations For The Authors):

      It is better to test whether ATP7B mutation can directly affect immune functions.

      Thank you for your suggestions. Given that the ATP7B mutation is hepatocyte-specific, its effect on immune cells is most probably through intercellular communication. Thus, we prioritize the effect of intercellular communication on the NK cell exhaustion and we are actively promoting the research.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      This manuscript from Schwintek and coworkers describes a system in which gas flow across a small channel (10^-4-10^-3 m scale) enables the accumulation of reactants and convective flow. The authors go on to show that this can be used to perform PCR as a model of prebiotic replication.

      Strengths:

      The manuscript nicely extends the authors' prior work in thermophoresis and convection to gas flows. The demonstration of nucleic acid replication is an exciting one, and an enzyme-catalyzed proof-of-concept is a great first step towards a novel geochemical scenario for prebiotic replication reactions and other prebiotic chemistry.

      The manuscript nicely combines theory and experiment, which generally agree well with one another, and it convincingly shows that accumulation can be achieved with gas flows and that it can also be utilized in the same system for what one hopes is a precursor to a model prebiotic reaction. This continues efforts from Braun and Mast over the last 10-15 years extending a phenomenon that was appreciated by physicists and perhaps underappreciated in prebiotic chemistry to increasingly chemically relevant systems and, here, a pilot experiment with a simple biochemical system as a prebiotic model.

      I think this is exciting work and will be of broad interest to the prebiotic chemistry community.

      Weaknesses:

      The manuscript states: "The micro scale gas-water evaporation interface consisted of a 1.5 mm wide and 250 µm thick channel that carried an upward pure water flow of 4 nl/s ≈ 10 µm/s perpendicular to an air flow of about 250 ml/min ≈ 10 m/s." This was a bit confusing on first read because Figure 2 appears to show a larger channel - based on the scale bar, it appears to be about 2 mm across on the short axis and 5 mm across on the long axis. From reading the methods, one understands the thickness is associated with the Teflon, but the 1.5 mm dimension is still a bit confusing (and what is the dimension in the long axis?) It is a little hard to tell which portion (perhaps all?) of the image is the channel. This is because discontinuities are present on the left and right sides of the experimental panels (consistent with the image showing material beyond the channel), but not the simulated panels. Based on the authors' description of the apparatus (sapphire/CNC machined Teflon/sapphire) it sounds like the geometry is well-known to them. Clarifying what is going on here (and perhaps supplying the source images for the machined Teflon) would be helpful.

      We understand. We will update the figures to better show dimensions of the experimental chamber. We will also add a more complete Figure in the supplementary information. Part of the complexity of the chamber however stems from the fact that the same chamber design has also been used to create defined temperature gradients which are not necessary and thus the chamber is much more complex than necessary.

      We added the scheme of the whole PTFE Chip to Figure 2 in the top left corner, indicating the ROI shown in the fluorescence micrographs. Additionally, the channel walls are now clearly indicated by white dotted lines. The dimensions of the setup are now shown clearer, by showing the total width of the channel as well as its height until the gas flux channel, as well as its depth. Changed caption of the figure accordingly and it now reads: “[…] The PTFE chip cutout in the top left corner shows the ROI used for the micrographs. The color scale is equal for both simulation and experiment and Channel dimensions are 4 x 1.5 x 0.25 mm as indicated. Dotted lines visualize the location of the channel walls. […]“

      The data shown in Figure 2d nicely shows nonrandom residuals (for experimental values vs. simulated) that are most pronounced at t~12 m and t~40-60m. It seems like this is (1) because some symmetry-breaking occurs that isn't accounted for by the model, and perhaps (2) because of the fact that these data are n=1. I think discussing what's going on with (1) would greatly improve the paper, and performing additional replicates to address (2) would be very informative and enhance the paper. Perhaps the negative and positive residuals would change sign in some, but not all, additional replicates?

      To address this, we will show two more replicates of the experiment and include them in Figure 2.

      We are seeing two effects when we compare fluorescence measurements of the experiments.

      Firstly, degassing of water causes the formation of air-bubbles, which are then transported upwards to the interface, disrupting fluorescence measurements. This, however, mostly occurs in experiments with elevated temperatures for PCR reactions, such as displayed in Figure 4.

      Secondly, due to the high surface tension of water, the interface is quite flexible. As the inflow and evaporation work to balance each other, the shape of the interface adjusts, leading to alterations in the circular flow fields below.

      Thus the conditions, while overall being in steady state, show some fluctuations. The strong dependence on interface shape is also seen in the simulation. However, modeling a dynamic interface shape is not so easy to accomplish, so we had to stick to one geometry setting. Again here, the added movies of two more experiments should clarify this issue.

      We performed three more replicates of the experiment and included the averaged data points together with their respective standard deviation as error bars in Figure 2d. Additionally, the videos of each individual repeat are now added to the supplementary files for the reader to better understand where the strong fluctuations around half an hour come from. The Figure caption was adjusted to “ […] The maximum relative concentration of DNA increased within an hour to ~30 X the initial concentration, with the trend following the simulation. Error bars are the standard deviation from four independent measurements. […].

      The main text was also changed to better explain how the fluctuations impact the measurements: […] Water continuously evaporated at the interface, but nucleic acids remained in the aqueous phase accumulating near the interface. They could only escape downward either by diffusion or by the vortex induced by the gas flowing across the interface, pushing the molecules back deeper into the bulk (See the flow lines in Fig2(b) taken from the simulation).  As the gas flow continuously removed excess vapor, the evaporation rate remained constant. Thus, except for fluctuations, a stable interface shape should be expected. However, due to the high surface tension of water, the interface is very flexible. As the inflow and evaporation work to balance each other, the shape of the interface adjusts, likely in response to small fluctuations in gas pressure and spatial variations in water surface tension. This is leading to alterations in the circular flow fields below (Supplementary Movie 2).

      As these fluctuations are difficult to simulate, we decided to stick with one interface shape, matching evaporation and inflow speeds. The evaporation rate at the interface was therefore set to be proportional to the vapor concentration gradient and varied spatially along the interface between 5 and 10.5 µm/s (See Suppl. Fig. VI.1(d)). Using the known diffusion coefficient of 95 µm²/s for the 63mer[9]}, the simulation closely matched the experimental results. In both cases, DNA accumulated in regions with circular flow patterns driven by the gas flux (Fig.2(b), right panel).

      5 minutes after starting the experiment, the maximum DNA accumulation was 3-fold, while after one hour of evaporation, around 30-fold accumulation was observed. Due to molecules residing in very shallow volumes when directly at the interface, the fluorescence signal can vary drastically compared to measurements deeper in the bulk. This can be seen in the fluctuations between independent measurements (See Supplementary Movies 2b,2b,2c), especially around 0.5~h shown in Figure 2(d). The simulated maximum accumulation followed the experimental results and starts saturating after about one hour (Fig.2(d)). […]”

      The authors will most likely be familiar with the work of Victor Ugaz and colleagues, in which they demonstrated Rayleigh-Bénard-driven PCR in convection cells (10.1126/science.298.5594.793, 10.1002/anie.200700306). Not including some discussion of this work is an unfortunate oversight, and addressing it would significantly improve the manuscript and provide some valuable context to readers. Something of particular interest would be their observation that wide circular cells gave chaotic temperature profiles relative to narrow ones and that these improved PCR amplification (10.1002/anie.201004217). I think contextualizing the results shown here in light of this paper would be helpful.

      Thanks for pointing this out and reminding us. We apologize. We agree that the chaotic trajectories within Rayleigh-Bénard convection cells lead to temperature oscillations similar to the salt variations in our gas-flux system. Although the convection-driven PCR in Rayleigh-Bénard is not isothermal like our system, it provides a useful point of comparison and context for understanding environments that can support full replication cycles. We will add a section comparing approaches and giving some comparison into the history of convective PCR and how these relate to the new isothermal implementation.

      We added a main text paragraph after the last paragraph in section “Strand Separation Dynamics”: “[…]Rayleigh-Bénard convection cells generate similar patterns to those seen in Fig. 3(c) The oscillations in salt concentration resemble the temperature fluctuations observed in convection-based PCR reactions from earlier studies [32,33], which showed that chaotic temperature variations, compared to periodic ones, enhanced the efficiency of the PCR reaction.[…]

      Again, it appears n=1 is shown for Figure 4a-c - the source of the title claim of the paper - and showing some replicates and perhaps discussing them in the context of prior work would enhance the manuscript.

      We appreciate the reviewer for bringing this to our attention. We will now include the two additional repeats for the data shown in Figure 4c, while the repeats of the PAGE measurements are already displayed in Supplementary Fig. IX.2. Initially, we chose not to show the repeats in Figure 4c due to the dynamic and variable nature of the system. These variations are primarily caused by differences at the water-air interface, attributed to the high surface tension of water. Additionally, the stochastic formation of air bubbles in the inflow—despite our best efforts to avoid them—led to fluctuations in the fluorescence measurements across experiments. These bubbles cause a significant drop in fluorescence in a region of interest (ROI) until the area is refilled with the sample.

      Unlike our RNA-focused experiments, PCR requires high temperatures and degassing a PCR master mix effectively is challenging in this context. While we believe our chamber design is sufficiently gas-tight to prevent air from diffusing in, the high surface-to-volume ratio in microfluidics makes degassing highly effective, particularly at elevated temperatures. We anticipate that switching to RNA experiments at lower temperatures will mitigate this issue, which is also relevant in a prebiotic context.

      The reviewer’s comments are valid and prompt us to fully display these aspects of the system. We will now include these repeats in Figure 4c to give readers a deeper understanding of the experiment's dynamics. Additionally, we will provide videos of all three repeats, allowing readers to better grasp the nature of the fluctuations in SYBR Green fluorescence depicted in Figure 4c.

      The data from the triplicates are now added to Figure 4c, showing how air bubbles, forming through degassing at the high temperatures required for Taq polymerase, disrupt the measurement, as they momentarily dry off the channel and stop the reaction until the channel fills again. Figure caption has been adapted and now reads: “[…] Dotted lines show the data from independent repeats. Air bubbles formed through degassing can momentarily disrupt the reaction. […]”

      We additionally changed the main text to explain the reader the experimental difficulties: “[…] In other repetitions of the reaction, this increase was sometimes even observed earlier, around the one-hour mark (dotted lines). However, air bubbles nucleated by degassing events rise and temporarily dry out the channel, interrupting the reaction until the liquid refills the channel (Supplementary Movies 4,4b,4c\&5). Despite our best efforts, we were unable to fully prevent this, especially given the high temperatures required for Taq polymerase activity. In an identical setting when the gas- and water flux were switched off, no fluorescence increase was found (See Fig. 4(c) red lines). Fluorescence variations are additionally caused by fluctuations in the position of the gas-water interface, as discussed earlier. […]”

      I think some caution is warranted in interpreting the PCR results because a primer-dimer would be of essentially the same length as the product. It appears as though the experiment has worked as described, but it's very difficult to be certain of this given this limitation. Doing the PCR with a significantly longer amplicon would be ideal, or alternately discussing this possible limitation would be helpful to the readers in managing expectations.

      This is a good point and should be discussed more in the manuscript. Our gel electrophoresis is capable of distinguishing between replicate and primer dimers. We know this since we were optimizing the primers and template sequences to minimize primer dimers, making it distinguishable from the desired 61mer product. That said, all of the experiments performed without a template strand added did not show any band in the vicinity of the product band after 4h of reaction, in contrast to the experiments with template, presenting a strong argument against the presence of primer dimers.

      We added a main text section explaining this to the reader: “[…]Suppl. Fig. IX.2 shows all independent repeats of the corresponding experiments. No product was detected in any of these cases, ruling out reaction limitations such as primer dimer formation. Primer dimers would form even in the absence of a template strand and would be identifiable through gel electrophoresis. As Taq polymerase requires a significant overlap between the two dimers to bind, this would result in a shorter product compared to the 61mer used here.  […]”

      Reviewer #2 (Public review):

      Schwintek et al. investigated whether a geological setting of a rock pore with water inflow on one end and gas passing over the opening of the pore on the other end could create a non-equilibrium system that sustains nucleic acid reactions under mild conditions. The evaporation of water as the gas passes over it concentrates the solutes at the boundary of evaporation, while the gas flux induces momentum transfer that creates currents in the water that push the concentrated molecules back into the bulk solution. This leads to the creation of steady-state regions of differential salt and macromolecule concentrations that can be used to manipulate nucleic acids. First, the authors showed that fluorescent bead behavior in this system closely matched their fluid dynamic simulations. With that validation in hand, the authors next showed that fluorescently labeled DNA behaved according to their theory as well. Using these insights, the authors performed a FRET experiment that clearly demonstrated the hybridization of two DNA strands as they passed through the high Mg++ concentration zone, and, conversely, the dissociation of the strands as they passed through the low Mg++ concentration zone. This isothermal hybridization and dissociation of DNA strands allowed the authors to perform an isothermal DNA amplification using a DNA polymerase enzyme. Crucially, the isothermal DNA amplification required the presence of the gas flux and could not be recapitulated using a system that was at equilibrium. These experiments advance our understanding of the geological settings that could support nucleic acid reactions that were key to the origin of life.

      The presented data compellingly supports the conclusions made by the authors. To increase the relevance of the work for the origin of life field, the following experiments are suggested:

      (1) While the central premise of this work is that RNA degradation presents a risk for strand separation strategies relying on elevated temperatures, all of the work is performed using DNA as the nucleic acid model. I understand the convenience of using DNA, especially in the latter replication experiment, but I think that at least the FRET experiments could be performed using RNA instead of DNA.

      We understand the request only partially. The modification brought about by the two dye molecules in the FRET probe to be able to probe salt concentrations by melting is of course much larger than the change of the backbone from RNA to DNA. This was the reason why we rather used the much more stable DNA construct which is also manufactured at a lower cost and in much higher purity also with the modifications. But we think the melting temperature characteristics of RNA and DNA in this range is enough known that we can use DNA instead of RNA for probing the salt concentration in our flow cycling.

      Only at extreme conditions of pH and salt, RNA degradation through transesterification, especially under alkaline conditions is at least several orders of magnitude faster than spontaneous degradative mechanisms acting upon DNA [Li, Y., & Breaker, R. R. (1999). Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2 ‘-hydroxyl group. Journal of the American Chemical Society, 121(23), 5364-5372.]. The work presented in this article is however focussed on hybridization dynamics of nucleic acids. Here, RNA and DNA share similar properties regarding the formation of double strands and their respective melting temperatures. While RNA has been shown to form more stable duplex structures exhibiting higher melting temperatures compared to DNA [Dimitrov, R. A., & Zuker, M. (2004). Prediction of hybridization and melting for double-stranded nucleic acids. Biophysical Journal, 87(1), 215-226.], the general impact of changes in salt, temperature and pH [Mariani, A., Bonfio, C., Johnson, C. M., & Sutherland, J. D. (2018). pH-Driven RNA strand separation under prebiotically plausible conditions. Biochemistry, 57(45), 6382-6386.] on respective melting temperatures follows the same trend for both nucleic acid types. Also the diffusive properties of RNA and DNA are very similar [Baaske, P., Weinert, F. M., Duhr, S., Lemke, K. H., Russell, M. J., & Braun, D. (2007). Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proceedings of the National Academy of Sciences, 104(22), 9346-9351.].

      Since this work is a proof of principle for the discussed environment being able to host nucleic acid replication, we aimed to avoid second order effects such as degradation by hydrolysis by using DNA as a proxy polymer. This enabled us to focus on the physical effects of the environment on local salt and nucleic acid concentration. The experiments performed with FRET are used to visualize local salt concentration changes and their impact on the melting temperature of dissolved nucleic acids.  While performing these experiments with RNA would without doubt cover a broader application within the field of origin of life, we aimed at a step-by-step / proof of principle approach, especially since the environmental phenomena studied here have not been previously investigated in the OOL context. Incorporating RNA-related complexity into this system should however be addressed in future studies. This will likely require modifications to the experimental boundary conditions, such as adjusting pH, temperature, and salt concentration, to account for the greater duplex stability of RNA. For instance, lowering the pH would reduce the RNA melting temperature [Ianeselli, A., Atienza, M., Kudella, P. W., Gerland, U., Mast, C. B., & Braun, D. (2022). Water cycles in a Hadean CO2 atmosphere drive the evolution of long DNA. Nature Physics, 18(5), 579-585.].

      (2) Additionally, showing that RNA does not degrade under the conditions employed by the authors (I am particularly worried about the high Mg++ zones created by the flux) would further strengthen the already very strong and compelling work.

      Based on literature values for hydrolysis rates of RNA [Li, Y., & Breaker, R. R. (1999). Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2 ‘-hydroxyl group. Journal of the American Chemical Society, 121(23), 5364-5372.], we estimate RNA to have a half-life of multiple months under the deployed conditions in the FRET experiment (High concentration zones contain <1mM of Mg2+). Additionally, dsRNA is multiple orders of magnitude more stable than ssRNA with regards to degradation through hydrolysis [Zhang, K., Hodge, J., Chatterjee, A., Moon, T. S., & Parker, K. M. (2021). Duplex structure of double-stranded RNA provides stability against hydrolysis relative to single-stranded RNA. Environmental Science & Technology, 55(12), 8045-8053.], improving RNA stability especially in zones of high FRET signal. Furthermore, at the neutral pH deployed in this work, RNA does not readily degrade. In previous work from our lab [Salditt, A., Karr, L., Salibi, E., Le Vay, K., Braun, D., & Mutschler, H. (2023). Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment. Nature Communications, 14(1), 1495.], we showed that the lifetime of RNA under conditions reaching 40mM Mg2+ at the air-water interface at 45°C was sufficient to support ribozymatically mediated ligation reactions in experiments lasting multiple hours.

      With that in mind, gaining insight into the median Mg2+ concentration across multiple averaged nucleic acid trajectories in our system (see Fig. 3c&d) and numerically convoluting this with hydrolysis dynamics from literature would be highly valuable. We anticipate that longer residence times in trajectories distant from the interface will improve RNA stability compared to a system with uniformly high Mg2+ concentrations.

      Added a new Supplementary section for this. We used the trace from Figure 3(c) and calculated the hydrolysis rate for each timestep by using literature values from RNA [Li, Y., & Breaker, R. R. (1999). Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2 ‘-hydroxyl group. Journal of the American Chemical Society, 121(23), 5364-5372.]. We conclude that the conditions deployed for the experiment are not harsh on RNA, with hydrolysis rates in the E-6 1/min regime. The figure below (also now in the supplementary information) shows the hydrolysis of RNA deployed under the conditions of the experiment in Figure 3. RNA is not expected to hydrolyze under these conditions and timescales, in which a replication reaction would occur. With a half life of around 83 days, even a prebiotically plausible – very slow – replication reaction would not be constrained by hydrolysis boundary conditions in this scenario.

      Referenced to this section in the supplementary information in the maintext: […] In the experimental conditions used here, RNA would also not readily degrade, even if the strand enters the high salt regimes (See Suppl. Sec. IX). Using literature values for hydrolysis rates under the deployed conditions, we estimate dissolved RNA to have a half life of around 83 days. […]

      (3) Finally, I am curious whether the authors have considered designing a simulation or experiment that uses the imidazole- or 2′,3′-cyclic phosphate-activated ribonucleotides. For instance, a fully paired RNA duplex and a fluorescently-labeled primer could be incubated in the presence of activated ribonucleotides +/- flux and subsequently analyzed by gel electrophoresis to determine how much primer extension has occurred. The reason for this suggestion is that, due to the slow kinetics of chemical primer extension, the reannealing of the fully complementary strands as they pass through the high Mg++ zone, which is required for primer extension, may outcompete the primer extension reaction. In the case of the DNA polymerase, the enzymatic catalysis likely outcompetes the reannealing, but this may not recapitulate the uncatalyzed chemical reaction.

      This is certainly on our to-do list for future experiments in this setting. Our current focus is on templated ligation rather than templated polymerization and we are working hard to implement RNA-only enzyme-free ligation chain reaction, based on more optimized parameters for the templated ligation from 2’3’-cyclic phosphate activation that was just published [High-Fidelity RNA Copying via 2′,3′-Cyclic Phosphate Ligation, Adriana C. Serrão, Sreekar Wunnava, Avinash V. Dass, Lennard Ufer, Philipp Schwintek, Christof B. Mast, and Dieter Braun, JACS doi.org/10.1021/jacs.3c10813 (2024)]. But we first would try this at an air-water interface which was shown to work with RNA in a temperature gradient [Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment, Annalena Salditt, Leonie Karr, Elia Salibi, Kristian Le Vay, Dieter Braun & Hannes Mutschler, Nature Communications doi.org/10.1038/s41467-023-37206-4 (2023)] before making the jump to the isothermal setting we describe here. So we can understand the question, but it was good practice also in the past to first get to know the setting with PCR, then jump to RNA.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) Could the authors comment on the likelihood of the geological environments where the water inflow velocity equals the evaporation velocity?

      This is an important point to mention in the manuscript, thank you for pointing that out. To produce a defined experiment, we were pushing the water out with a syringe pump, but regulated in a way that the evaporation was matching our flow rate. We imagine that a real system will self-regulate the inflow of the water column on the one hand side by a more complex geometry of the gas flow, matching the evaporation with the reflow of water automatically. The interface would either recede or move closer to the gas flux, depending on whether the inflow exceeds or falls short of the evaporation rate. As the interface moves closer, evaporation speeds up, while moving away slows it down. This dynamic process stabilizes the system, with surface tension ultimately fixing the interface in place.

      We have seen a bit of this dynamic already in the experiments, could however so far not yet find a good geometry within our 2-dimensional constant thickness geometry to make it work for a longer time. Very likely having a 3-dimensional reservoir of water with less frictional forces would be able to do this, but this would require a full redesign of a multi-thickness microfluidics. The more we think about it, the more we envisage to make the next implementation of the experiment with a real porous volcanic rock inside a humidity chamber that simulates a full 6h prebiotic day. But then we would lose the whole reproducibility of the experiment, but likely gain a way that recondensation of water by dew in a cold morning is refilling the water reservoirs in the rocks again. Sorry that I am regressing towards experiments in the future.

      We added a paragraph after the second paragraph in Results and Discussion.

      It now reads: […] For a real early Earth environment we envision a system that self-regulates the water column's inflow by automatically balancing evaporation with capillary flows. The interface adjusts its position relative to the gas flux, moving closer if the inflow is less than the evaporation rate, or receding if it exceeds it. When the interface nears the gas flux, evaporation accelerates, while moving it away slows evaporation. This dynamic process stabilizes the system, with surface tension ultimately fixing the interface's position. […]

      (2) Could the authors speculate on using gases other than ambient air to provide the flux and possibly even chemical energy? For example, using carbonyl sulfide or vaporized methyl isocyanide could drive amino acid and nucleotide activation, respectively, at the gas-water interface.

      This is an interesting prospect for future work with this system. We thought also about introducing ammonia for pH control and possible reactions. We were amazed in the past that having CO2 instead of air had a profound impact on the replication and the strand separation [Water cycles in a Hadean CO2 atmosphere drive the evolution of long DNA, Alan Ianeselli, Miguel Atienza, Patrick Kudella, Ulrich Gerland, Christof Mast & Dieter Braun, Nature Physics doi.org/10.1038/s41567-022-01516-z (2022)]. So going more in this direction absolutely makes sense and as it acts mostly on the length-selectively accumulated molecules at the interface, only the selected molecules will be affected, which adds to the selection pressure of early evolutionary scenarios.

      Of course, in the manuscript, we use ambient air as a proxy for any gas, focusing primarily on the energy introduced through momentum transfer and evaporation. We speculate that soluble gasses could establish chemical gradients, such as pH or redox potential, from the bulk solution to the interface, similar to the Mg2+ accumulation shown in Figure 3c. The nature of these gradients would depend on each gas's solubility and diffusivity. We have already observed such effects in thermal gradients [Keil, L. M., Möller, F. M., Kieß, M., Kudella, P. W., & Mast, C. B. (2017). Proton gradients and pH oscillations emerge from heat flow at the microscale. Nature communications, 8(1), 1897.] and finding similar behavior in an isothermal environment would be a significant discovery.

      Added a paragraph in the Conclusion to showcase this: [… ] Furthermore we expect that other gases, such as CO2, could establish chemical gradients in this environment. Such gradients have been observed in thermal gradients before [23] and finding similar behaviour in an isothermal environment would be a significant discovery.[…]

      (3) Line 162: Instead of "risk," I suggest using "rate".

      Thanks for pointing this out! Will be changed.

      Fixed.

      (4) Using FRET of a DNA duplex as an indicator of salt concentration is a decent proxy, but a more direct measurement of salt concentration would provide further merit to the explicit statement that it is the salt concentration that is changing in the system and not another hidden parameter.

      Directly observing salt concentration using microscopy is a difficult task. While there are dyes that change their fluorescence depending on the local Na+ or Mg2+ concentration, they are not operating differentially, i.e. by making a ratio between two color channels. Only then we are not running into artifacts from the dye molecules being accumulated by the non-equilibrium settings. We were able to do this for pH in the past, but did not find comparable optical salt sensors. This is the reason we ended up with a FRET pair, with the advantage that we actually probe the strand separation that we are interested in anyhow. Using such a dye in future work would however without a doubt enhance the understanding of not only this system, but also our thermal gradient environments.

      (5) Figure 3a: Could the authors add information on "Dried DNA" to the caption? I am assuming this is the DNA that dried off on the sides of the vessel but cannot be sure.

      Thanks to the reviewer for pointing this out. This is correct and we will describe this better in the revised manuscript.

      Added a sentence in the caption to address this: […] Fluctuations in interface position can dry and redissolve DNA repeatedly (see “Dried DNA” in right panel). […]

      (6) Figure 4b and c: How reproducible is this data? Have the authors performed this reaction multiple independent times? If so, this data should be added to the manuscript.

      The data from the gel electrophoresis was performed in triplicates and is shown in full in supplementary information. The data in c is hard to reproduce, as the interface is not static and thus ROI measurements are difficult to perform as an average of repeats. Including the data from the independent repeats will however give the reader insight into some of the experimental difficulties, such as air bubbles, which form from degassing as the liquid heats up, that travel upwards to the interface, disrupting the ongoing fluorescence measurements.

      This was also pointed out by reviewer 1 and addressed there.

      (7) Line 256: "shielding from harmful UV" statement only applies to RNA oligomers as UV light may actually be beneficial for earlier steps during ribonucleoside synthesis. I suggest rephrasing to "shielding nucleic acid oligomers from UV damage.".

      Will be adjusted as mentioned.

      Fixed.

      (8) The final paragraph in the Results and Discussion section would flow better if placed in the Conclusion section.

      This is a good point and we will merge results and discussion closer together.

      Fixed.

      (9) Line 262, "...of early Life" is slightly overstating the conclusions of the study. I suggest rephrasing to "...of nucleic acids that could have supported early life."

      This is a fair comment. We thank the reviewer for his detailed analysis of the manuscript!

      Changed the phrase to: […]In this work we investigated a prebiotically plausible and abundant geological environment to support the replication of nucleic acids. […]

      (10) In references, some of the journal names are in sentence case while others are in title case (see references 23 and 26 for example).

      Thanks - this will be fixed.

      Fixed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Yao S. and colleagues aims to monitor the potential autosomal regulatory role of the master regulator of X chromosome inactivation, the Xist long non-coding RNA. It has recently become apparent that in the human system, Xist RNA can not only spread in cis on the future inactive X chromosome but also reach some autosomal regions where it recruits transcriptional repression and Polycomb marking. Previous work has also reported that Xist RNA can show a diffused signal in some biological contexts in FISH experiments.

      In this study, the authors investigate whether Xist represses autosomal loci in differentiating female mouse embryonic stem cells (ESCs) and somatic mouse embryonic fibroblasts (MEFs). They perform a time course of ESC differentiation followed by Capture Hybridization of Associated RNA Targets (CHART) on both female and male ESCs, as well as pulldowns with sense oligos for Xist. The authors also examine transcriptional activity through RNA-seq and integrate this data with prior ChIP-seq experiments. Additional experiments were conducted in MEFs and Xist-ΔB repeat mutants, the latter fails to recruit Polycomb repressors.

      Based on this experimental design, the authors make several bold claims:

      (1) Xist binds to about a hundred specific autosomal regions.

      (2) This binding is specific to promoter regions rather than broad spreading.

      (3) Xist autosomal signal is inversely correlated with PRC1/2 marks but positively correlated with transcription.

      (4) Xist targeting results in the attenuation of transcription at autosomal regions.

      (5) The B-repeat region is important for autosomal Xist binding and gene repression.

      (6) Xist binding to autosomal regions also occurs in somatic cells but does not lead to gene repression.

      Together, these claims suggest that Xist might play a role in modulating the expression of autosomal genes in specific developmental and cellular contexts in mice.

      Strengths:

      This paper deals with an interesting hypothesis that Xist ncRNA can also function at autosomal loci.

      Weaknesses: The claims reported in this paper are largely unsubstantiated by the data, with multiple misinterpretations, lacking controls, and inadequate statistics. Fundamental flaws in the experimental design/analysis preclude the validity of the findings. Major concerns are listed below: (1) The entire paper is based on the CHART observation that Xist is specifically targeted to autosomal promoters. Overall, the data analysis is flawed and does not support such conclusions. Importantly the sense WT and the 0h controls are not used, nor are the biological replicates. 

      We respectfully disagree with Rev1 but nevertheless thank the reviewer for making some suggestions that helped to strengthen our manuscript.  We have provided new experiments and analyses in the revised manuscript. Please see responses below.

      Rev1 seems to have missed or misunderstood some key experiments. In fact, the sense WT and 0h controls were shown. Furthermore, we included at least two biological replicates for each experiment.

      We used both male ES cells (which do not express Xist) and sense probes as key negative controls, as outlined in Figure S1. Crucially, we only analyzed peaks that were reproducible between biological replicates. The Xist CHART peaks in differentiating female ES cells were significantly enriched above the “background” defined by the sense probe and male controls. Specifically, in comparison to undifferentiated female ES cells (day 0) where both X chromosomes are active and Xist is not induced, Xist CHART robustly pulled down the X chromosome during cell differentiation (day 4, day 7, and day 14). In contrast, male ES cells showed no significant pull-down of the X chromosome, and the sense group also exhibited markedly reduced binding (new Figure S1B). Furthermore, Principal Component Analysis (PCA) of CHART-seq reads (day 4 as an example) include Xist, sense, and input in WT and ΔRepB female, further confirmed that the sense probe CHART was clearly distinguishable from Xist CHART signals. Please see revised Figure S1C. Together, these findings underscore the specificity and robustness of our CHART results.

      Data is typically visualized without quantification, and when quantified, control loci/gene sets are erroneously selected. Firstly, CHART validation on the X in FigS1 is misleading and not based on any quantifications (e.g., see the scale on Kdm6a (0-190) compared to Cdkl5 (0-40)). If scaled appropriately, there is Xist signal on the escapee. 

      Rev1 may have misread the presented data. In the example raised by Rev1, Fig. S1 is inherently quantitative: e.g., a ratio is a number in Fig. S1A (now Fig. S1B) and all gene tracks in Fig. 1B-E are shown with scales. We showed X-linked genes in Fig. S1 (now Fig. S2) as a control to demonstrate that the CHART worked and that Xist accumulated over time from day 0 to day 14. Our new Figure 1B demonstrates the Xist accumulation in graph format. 

      Our paper focuses on Xist autosomal binding sites. Thus, the X-linked examples were placed in the supplement. Escapee genes do in fact accumulate Xist at their promoter regions and this finding is consistent with data published by Simon et al. (2013, Nature). It was therefore not desirable in this paper to reanalyze X-linked genes, including escapees. Nevertheless, to address the reviewer’s concerns, we present new data in new Figure S3A. Here we analyzed the density of Xist binding across X-linked genes, including both active and inactive genes, as well as escapee genes. From this quantitative analysis, it should be clear that escapees do bind Xist. However, from the metagene plots in Figure S3B, we confirm the previous conclusion that escapees bind Xist at high levels just upstream of the promoter and that there is a depletion of Xist in the escapee gene body, consistent with a barrier preventing Xist from moving into the active gene. 

      All X-linked loci should have been quantified and classified based on escape status; sense control should also be quantified, and biological replicates should be shown separately. 

      Please see above response.

      Additionally, in the revised manuscript, we have examined the Irreproducible Discovery Rate (IDR) to validate the reproducibility of peaks between the two replicates in the revised version, and we included a representative example from female WT ES cells at day 4 (revised Figure S4A). The results showed a strong correlation between the replicates, with an IDR threshold of 0.05 (red point > 0.05). As described in the Methods section, to ensure reliable and robust peak identification, we performed peak calling (MACS2) separately on each replicate, and then used bedtools intersect to identify peaks that overlapped between the two replicates. This stringent process, including strict q-value settings in MACS2, ensures the reliability and reproducibility of the peaks presented in this study.

      Secondly, and most importantly, Figure 1 does not convincingly show specific Xist autosomal binding. Panel A quantification is on extremely variable y-scales and actually shows that Xist is recruited globally to nearly all autosomal genes, likely indicating an unspecific signal. Again, the sense and 0h controls should have been quantified along with biological replicates. 

      Figure 1 shows heatmaps and corresponding metagenes for d0, d4, d7, and d14 female ES cells. Two biological replicates are analyzed. In our revised manuscript, we have used Pearson and Spearman correlation coefficients to measure the strength and direction of a relationship between two biological replicates and shown that the two replicates have high reproducibility (new Figure S1A). On d0, the Xist coverage on autosomes and X chromosome is low, but there is a clear increase on d4, d7, and d14, particularly at the TSS of autosomal genes, as shown by the metagene plots on in Figure 1A-B and the CHART density maps in new Figure 1E-F. We also show relative depletion of Xist signals in the male and sense negative controls.

      Upon inspecting genome browser tracks of all regions reported in the manuscript (Rbm14, Srp9, Brf1, Cand2, Thra, Kmt2c, Kmt2e, Stau2, and Bcl7b), the signal is unspecific on all sites with the possible exception of Kmt2e. On all other loci, there is either a strong signal in the 0h ESC controls or more signal in some of the sense controls. This implies that peak calling is picking up false positive regions. How many peaks would have been picked up if the sense or the 0h controls were used for peak calling? It is likely that there would be a lot since there are also possible "peaks" (e.g., Fzd9) in control tracks. 

      The analysis cannot be performed by visual inspection. A statistical analysis must be performed to call signal above noise. This is why we performed peak-calling on two biological replicates and identified overlapping peaks using bedtools intersect to improve reliability. Significant peaks are noted as black bars under each track. As mentioned above, for our analysis, we focused on the top 100 peaks based on peak scores to ensure robustness. Xist has significantly higher signal compared to the sense probe in the Xist-autosomal peak regions (revised Figure 1E-F). Additionally, we conducted peak calling on undifferentiated ES cells (d0) and detected a significantly higher number of peaks (~600) compared to the differentiated states (d4 or d7) (~100).

      Single-cell sequencing studies have shown that about 2% of undifferentiated mESCs express detectable Xist (Pacini et al., Nat Commun, 2021). The Xist peaks in “day 0” cells may be due to the differentiating population.

      Further inspection of the data was not possible as the authors did not provide access to the raw fastq files. When inspecting results from past published experiments {Engreitz, 2013 #1839} reported regions were not bound by Xist. 

      On the contrary, we deposited the raw data files to GEO prior to the submission of the paper and included the reviewer link to access them. As of August 24, 2024, GEO publicly released these files, allowing for full inspection of the data. 

      Regarding the Engreitz publication, it is not recommended to compare our current study to their analysis for the crucial reason that the Engreitz study was not conducted under physiological conditions. The authors overexpressed the Xist gene in male ES cells. Because Xist RNA can silence genes in male cells as well, this ectopic overexpression normally leads to cell death — thus forcing examination of effects in a narrow time window before Xist can fully spread and act across the genome. Comparing our experiments (endogenous Xist expression in female ES cells) to the ectopic overexpression in male ES cells of Engreitz et al. should therefore not be undertaken.

      Thirdly, contrary to the authors' claim, deleting the B repeat does not lead to a loss of autosomal signal. Indeed, comparing Fig1A and Fig2B side by side clearly shows no difference in the autosomal signal, likely because the autosomal signal is CHART background. Properly quantifying the signal with separate replicates as well as the sense and 0h controls is vital. Overall current data together with published results indicate that CHART peak calling on autosomes is due to technical noise or artefacts.

      In our revised manuscript, we have included the quantitative results as mentioned above in the main and supplementary figure (new Figure 1E-F, Figure 2E-F, and S3A). The data clearly show an enrichment in the Xist CHART samples in differentiating female ES cells.

      We believe the reviewer may be comparing the original Figure 1A and Figure 2A (not Figure 2B). As mentioned above, the analysis cannot be performed by visual inspection. Please see new Figure 2E and 2F. From these data, it should be clear that deleting RepB causes a decrease in Xist targeting to autosomal loci.

      (2) The RNA-seq analysis is also flawed and precludes strong statements. Firstly, the analysis frequently lacks statistical analysis (Fig3B, FigS2B-C) and is often based on visualizations (Fig 3D-G) without quantifications. Day 4 B-repeat deletion does not lead to a significant change in the expression of genes close to Xist signal (Fig3H, d14 does not fully show). 

      Please see new revised Figure 3B and Figures S2B-C (now revised as Figures S6A and S6B). 

      Secondly, for all transcriptional analysis, it is important to show autosomal non-target genes, which is not always done. 

      In the revised manuscript, we included non-target genes for each analysis (new Figure 4E-F, 5D and 5F, 7C and 7E, S7F, S8).

      Indeed, both males and B repeat deletion will lead to transcriptional changes on autosomes as a secondary effect from different X inactivation status. The control set, if used, is inappropriate as it compares one randomly selected set of ~100 genes. This introduces sampling error and compares different classes of genes. Since Xist signal targets more active genes, it is important to always compare autosomal target genes to all other autosomal genes with similar basal expression patterns.

      Please see new Figure S8. We included 100 randomly selected non-target sites on autosomes for this comparative analysis. For consistency, we applied the same flanking regions (10 kb) in the analysis of both target and non-target genes. We believe that this selection method for nontargets is appropriate for two reasons: first, it allows us to control for Xist binding and non-binding; second, it ensures a similar number of genes in both groups, providing a robust foundation for statistical analysis. 

      (3) The ChIP-seq analysis also has some problems. The authors claim that there is no positive correlation between genes close to Xist autosomal binding (10kb) compared to those 50kb away (Fig 3C, S2D); however, this analysis is based entirely on metagene visualization. Signal within the Xist binding sites should be quantified (not genes close by) and compared to other types of genomic loci and promoters. Focusing on the 50kb group only as controls is misleading.

      We believe the reviewer may have misunderstood our conclusions. As stated in the paper, we observed lower coverage of the histone marks H3K27me3 and H2AK119ub, associated with PRC2 and PRC1, respectively. Our conclusions regarding PRC1/2 support the RNA-seq results, indicating that Xist tends to bind to actively expressed genes. In other words, these genes exhibit lower levels of PRC-mediated silencing signals. This observation underscores the relationship between Xist binding and gene activity, highlighting that Xist preferentially associates with regions that are less subject to silencing by polycomb repressive complexes.

      Secondly, the authors only look at PRC mark signal upon differentiation; what about the 0h timepoint, i.e., is there pre-marking? 

      Day 0 is not an appropriate timepoint for this analysis because Xist is not yet induced. There is also a small fraction of cells (<5%) that spontaneously differentiate and start to undergo XCI. Because of these reasons, the day 0 timepoint is considered somewhat heterogeneous and it would be difficult to make conclusions regarding Xist peaks in these samples.

      Most worryingly, the data analysis is not consistent between figures (see Fig3C vs 5H-I). In Fig5, the group of Xist targets was chosen as those within 100kb of Xist binding, which would encompass all the control regions from Fig3C. In this analysis, the authors report that there is Xist-dependent H3K27me3 deposition, and in fact, here the Xist autosomal targets have more of it than the controls. Overall, all of this analysis is misleading, and clear conclusions cannot be made.

      We believe that the reviewer may have also misunderstood the analysis in Figure 5. Figure 5 shows the effect of the Xist inhibitor, X1, on H3K27me3 and gene expression. X1 blocks reduces PRC2 targeting and gene silencing — consistent with X1’s effect on RepA as published in Aguilar et al. 2022. 

      All in all, because the fundamental observation is not robust (see point 1), all subsequent analyses are also affected. There are also multiple other inconsistencies within the analysis; however, they have not been included here for brevity.

      We again respectfully disagree with Rev1 but thank the reviewer for making suggestions that helped to strengthen our manuscript.  We believe that the revised manuscript with new analyses is improved in part because of the reviewer’s critical comments.

      Reviewer #2 (Public review):

      Summary:

      To follow-up on recent reports of Xist-autosome interaction the authors examine female (and male transgenic) mESCs and MEFs by CHARTseq. Upon finding that only 10% of reads map to X, they sought to identify reproducible alternative sites of Xist-binding, and identify ~100 autosomal Xistbinding sites and show a transient impact on expression.

      Strengths:

      The authors address a topical and interesting question with a series of models including developmental timepoints and utilize unbiased approaches (CHARTseq, RNAseq). For the CHARTseq they have controls of both sense probes and male cells; and indeed do detect considerable background with their controls. The use of deletions emphasizes that intact functional Xist is involved. The use of 'metagene' plots provides a visual summation of genic impact.

      Reviewer 2 has made some excellent suggestions. We have revised the manuscript accordingly and are grateful to the reviewer for the recommendations.

      Weaknesses:

      Overall, the result presentation has many 'sample' gene presentations (in contrast to the stronger 'metagene' summation of all genes). The manuscript often relies on discussion of prior X chromosomal studies, while the data generated would allow assessment of the X within this study to confirm concordance with prior results using the current methodology/cell lines. 

      Many of the 'follow-up' analyses are in fact reprocessing and comparison of published datasets. The figure legends are limited, and sample size and/or source of control is not always clear. While similar numbers of autosomal Xist-binding sites were often observed, the presented data did not clarify how many were consistent across time-points/cell types. While there were multiple time points/lines assessed, only 2 replicates were generally done.

      We apologize for the deficiencies in the legend.  The revised manuscript has corrected them.

      We generated many new datasets with deep sequencing, with at least two biological replicates for each. Such experiments are extremely expensive by nature. Thus, two biological replicates are typically considered acceptable.

      Additionally, we performed reanalysis of published datasets to test whether — in the hands of other investigators — cell lines expressing Xist also supported autosomal targeting. Figure 4 is a case in point. Here we examined Tg1 and Tg2, which respond to doxycycline to overexpress Xist from an ectopic site. Transcriptomic analysis showed significant downregulation of autosomal Xist targets, as exemplified by Rbm14 and Bcl7b (new Figure 4C, S9B). In contrast, non-targets of Xist such as Stau1 did not demonstrate significant changes in gene expression (new Figure 4E and 4G). Looking across all autosomal target genes, we observed a significant decrease in mean expression in the Xist overexpressing cell lines (new Figure 4D). The fact that the autosomal changes were also observed in datasets generated by other investigators greatly strengthen our conclusions. 

      Aim achievement:

      The authors do identify autosomal sites with enrichment of chromatin marks and evidence of silencing. More details regarding sample size and controls (both treatment, and most importantly choice of 'non-targets' - discussed in comments to authors) are required to determine if the results support the conclusions.

      Specific scenarios for which I am concerned about the strength of evidence underlying the conclusion:

      I found the conclusion "Thus, RepB is required not only for Xist to localize to the X- chromosome but also for its localization to the ~100 autosomal genes " (p5) in constrast to the statement 2 lines prior: "A similar number of Xist peaks across autosomes in ΔRepB cells was observed and the autosomal targets remained similar". Some quantitative statistics would assist in determining impact, both on autosomes and also X; perhaps similar to the quintile analysis done for expression.

      We have added the Xist coverage panel for day 4 and 7 in the identified Xist-autosomal peak regions (new Figure 1E-F, Figure 2E-F), as mentioned above. The results clearly demonstrate that the deletion of RepB decreases Xist binding to autosomes. Also, we showed that ΔRepB increased X-linked genes expression in our revised Figure 3D. 

      It is stated that there is a significant suppression of X-linked genes with the autosomal transgenes; however, only an example is shown in Figure 4B. To support this statement, a full X chromosomal geneset should be shown in panels F and G, which should also list the number of replicates. 

      Please see new Figure 4B.

      As these are hybrid cells, perhaps allelic suppression could be monitored? Is Med14 usually subject to X inactivation in the Ctrl cells, and is the expression reduced from both X chromosomes or preferentially the active (or inactive) X chromosome?

      If Rev2 is referring to Figure 4, the dataset used in Figure 4 comes from another research group and was previously published (Loda, A. et al. Nat Commun, 2017).

      If Rev2 is referring to our ES cells, they are N2 cell lines.  The X chromosomes are fully hybridized (Cas/Mus), but the autosomes are not fully hybridized (Ogawa et al., Science, 2008). Med14 is subject to XCI and is expressed from the Xa, silenced on the Xi. 

      The expression change for autosomes after transgene induction is barely significant; and it was not clear what was used as the Ctrl? This is a critical comparator as doxycycline alone can change expression patterns.

      We agree that there was a modest change in expression after transgene induction, but it is a significant change. Again, the dataset is from a published study where the authors generated doxycycline-responsive Xist transgenes (see above). The control in this case is Dox-treated wildtype cells. We now clarify these points.

      In the discussion there is the statement. "Genetic analysis coupled to transcriptomic analysis showed that Xist down-regulates the target autosomal genes without silencing them. This effect leads to clear sex difference - where female cells express the ~100 or so autosomal genes at a lower level than male cells (Figure 7H)." This sweeping statement fails to include that in MEFs there is no significant expression difference, in transgenics only borderline significance, and at d14 no significant expression difference. The down-regulation overall seems to be transient during development while targeting is ongoing?

      Indeed, the Xist effects on autosomes seem to occur during cell differentiation in ES cells. While there is no apparent effect in MEFs, we cannot exclude effects on other somatic cells. Regardless of whether the effects are in early development or throughout life, the sex differences may have life-long effects in mammals. The study conducted in human cells by the Plath lab also concluded that the differences primarily affect stem cells.

      Finally, I would have liked to see discussion of the consistency of the identified genes to support the conclusion that the autosomal sites are not merely the results of Xist diffusion.

      We address this in the third paragraph of the Discussion. Our main argument is that if autosomal binding were caused by diffusion, then RepB deletion or X1 treatment would have led to increased binding at autosomal sites, as Xist would bind less to the X chromosome. However, as demonstrated in our study, both treatments resulted in reduced Xist binding on both the X chromosome and autosomes. This finding suggests that the binding is specific and reliant on Xist's RepA and RepB domains, rather than being a passive diffusion process.

      To examine overlap between the conditions (days of differentiation and WT/RepB cells), we generated Venn Diagrams as now shown in Figure S4E.

      The impact of Xist on autosomes is important for consideration of impact of changes in Xist expression with disease (notably cancers). Knowing the targets (if consistent) would enable assessment of such impact.

      We thank Rev2 for the very helpful review and for the forward-looking experiments. Indeed, the physiological changes brought on by autosomal targeting will be of future interest.

      Reviewer #3 (Public review):

      Summary:

      Yao et al use CHART to identify chromatin associated with Xist in female mouse ESCs, and, as control, male ESCs at various timepoints of differentiation. Besides binding of Xist to X chromosome regions they found significant binding to autosomes, concentrating mostly on promoter regions of around 100 autosomal genes, as elucidated by MACS. The authors went on to show that the RepB repeat is mostly responsible for these autosomal interactions using a female ESC line in which RepB is deleted. Evidence is provided that Xist interacts with active autosomal genes containing lower coverage of repressive marks H3K27me3 and H2AK119ub and that RepB dependent Xist binding leads to dampening of expression, but not silencing of autosomal genes. These results were confirmed by overexpression studies using transgenic ESCs with doxycycline-inducible Xist as well as via a small molecule inhibitor of Xist (X1), inducing/inhibiting the dampening of autosomal genes, respectively. Finally, using MEFs and Xist mutants RepB or RepE the authors provide evidence that Xist is bound to autosomal genes in cells after the XCI process but appears not to affect gene expression. The data presented appear generally clear and consistent and indicate some differences between human and mouse autosomal regulation by Xist. Thus, these results are timely and should be published.

      We thank Rev3 for the positive remarks and great suggestions.  We have amended the manuscript per below. 

      Strengths:

      Regulation of autosomal gene expression by Xist is a "big deal" as misregulation of this lncRNA causes developmental defects and human disease. Moreover, this finding may explain sexspecific developmental differences between the sexes. The results in this manuscript identify specific mouse autosomal genes bound by Xist and decipher critical Xist regions that mediate this binding and gene dampening. The methods used in this study are appropriate, and the overall data presented appear convincing and are consistent, indicating some differences between human and mouse autosomal regulation by Xist.

      Weaknesses:

      (1) The figure legends and/or descriptions of data are often very short lacking detail, and this unnecessarily impedes the reading of the manuscript, in particular the figures would benefit not only from more detailed descriptions/explanations of what has been done but also what is shown. 

      We have included more detailed descriptions in the figure legends and throughout the manuscript.

      This will facilitate the reading and overall comprehension by the reader. One out of many examples: In Fig S1B in the CHART data at d4 and d7 there is not only signal in female WT Xist antisense but also in female sense control. For a reader that is not an expert in XCI it would be helpful to point out in the legend that this signal corresponds to the lncRNA Tsix (I suppose), that is transcribed on the other strand.

      We thank the reviewer for this excellent point.  We have amended the Results section accordingly.

      (2) Different scales are used in the lower panels of Figures 1A and 2A, which makes it difficult to directly compare signals between the different differentiation stages.

      We have included a figure combining all timepoints — d0, d4, d7, and d14 WT female Xist CHART signals  — on the X chromosome and autosomes to support our thesis. Please see new Figure 1B.

      (3) In this study some of the findings on mouse cells contrast previously published results in human ESCs: 1) Xist binding occurs preferentially to promoters in mice, not in human. 2) Binding of Xist is mostly detected in polycomb-depleted regions in mice but there is a positive correlation between Xist RNA and PRC2 marks in human ESCs. These differences are surprising but may be very interesting and relevant. While I am aware that this might be a difficult task, it would be helpful to experimentally address this issue in order to distinguish whether species specific and/or methodological differences between the studies are responsible for these differences.

      Indeed, our findings in mouse cells contrast with those observed in humans. As discussed in the manuscript, this discrepancy may be attributed to factors such as cell type, differentiation methods, and the Xist pull-down technique employed (our CHART method utilizes a 20 nt oligo library, whereas RAP uses long oligos). We agree that future work should investigate the underlying causes of these differences between mouse and human systems.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      For Figure 2: labelling ∆B on the panel A timeline (e.g. d0-∆B) would make the results clearer for the audience. Panel B makes most sense beside panel E of Figure 1, so combine here and skip in Figure 1?

      We have modified Figure 2A and thank Rev2 for this suggestion. As for the embedded tables: since we performed peak calling for WT and ∆B separately, we believe that showing both the peak numbers and their corresponding peak patterns provides a clearer representation of the data.

      I agree that at day 7 there appears to be a difference in X; but by day 14 this looks much more minimal - is it just time-shifted rather than altered? Perhaps this could be discussed. Autosomal binding sites show no change in number.

      Day 7 exhibits the strongest Xist binding on the X chromosome, consistent with the de novo establishment phase of XCI when Xist is expressed at the highest levels (300 copies/cell during de novo XCI versus ~100 copies/cell during maintenance [Sunwoo et al., 2015 as cited]. Per our RNA-seq analysis here, we also observed highest Xist expression on day 7 and reduced levels on day 14 (Fig. S5A). This expression difference explains the reduced Xist CHART levels on day 14 compared to day 7. 

      While the X has previously been examined, it would seem beneficial to conduct the same expression analyses (Figure 3) for the X (perhaps supplemental), as the authors have the data 'in hand'. I feel comparison to X in the main figure for panels A and B would fit, while a similar analysis for the X for panel C could be supplemental, presumably supporting the published data to which this data is currently compared. 

      This is a good suggestion. Please find the new data in Figures 2E-F and 3D, which demonstrate that the RepB deletion inhibits Xist binding on the X chromosome, resulting in increased X-linked gene expression, as previously mentioned. Since Xist binds across the X chromosome, we did not perform peak calling as we did for the autosomes. Therefore, applying a similar analysis as in Figures 3A-B may not be appropriate in this case.

      Such a direct comparison to X-data from the same study would be important. For panel H: How many replicates (2)? This should be in the legend. What is the change in median expression? Again, a supplemental figure showing impact on X-linked targets would be useful. Do male and female ESCs show an expression difference prior to differentiation (ie d0)? The data underlying this Figure should be in one of the supplementary tables, showing the full statistical tests and average change. The supplementary tables 8-12 list the WT target genes, not expression differences with the deletion. Again, given that the difference appears transient, might the ∆B cells be altered in rate of differentiation?

      Panel H (revised Figure 3G) includes two replicates, and this has been added to the legends. We have provided a supplementary figure demonstrating that RepB increases the expression levels of X-linked genes on days 4, 7, and 14 (revised Figure 3D). Male and female ESCs show differences in the expression of X-linked genes, as both X chromosomes are active in females at this stage prior to differentiation (revised Figure S5C). 

      A supplementary table with statistical tests and average change information has been included in our revised version (Table S11).

      On the other hand, these Xist-autosomal target genes displayed no significant differences between WT male, female, or ∆B female cells on day 0 — prior to onset of XCI and Xist expression. Please see new Figure 3H. 

      As for whether ∆B cells are altered in their rate of differentiation, the analysis by Colognori et al. 2019 indicates that ∆B cells differentiate similarly to WT cells. (In Figure 6 of Colognori et al. 2019, autosomal genes expressed similarly in WT and ∆B cells, whereas XCI is affected only in ∆B cells)

      We have also modified the legends for our supplementary tables.

      Why were the transgene lines examined upon neuronal differentiation rather than the same approach as in Figures 1-3? I would have thought neuronal differentiation might be more similar to d14, where limited changes remain? Could the authors clarify and discuss?

      We apologize for the confusion. The Tg lines in Figure 4 came from a previously published study. We performed reanalysis of published datasets because we wanted to test whether — in the hands of other investigators — cell lines expressing Xist also supported autosomal targeting. Here we examined Tg1 and Tg2, which respond to doxycycline to overexpress Xist from an ectopic site. Transcriptomic analysis showed significant downregulation of autosomal Xist targets, as exemplified by Bcl7b and Rbm14 (Figure 4C and S9B). In contrast, non-targets of Xist such as Stau1 did not demonstrate significant changes in gene expression (Figure 4E and 4F). Looking across all autosomal target genes, we observed a significant decrease in mean expression in the Xist overexpressing cell lines (Figure 4D). The fact that the autosomal changes were also observed in datasets generated by other investigators greatly strengthen our conclusions. We have clarified this in the Results section.

      Figure 5 - the legend should specify the number of replicates and clarify the blue/green (intuitive, but not specified). Are the 'target' / 'non-target' genes from d4 Chart (but the RNA from d5)? How are 'non-targets' defined - do they match the 'targets' in certain criteria (expression level, chromatin features, GC content)? Do they change per differentiation protocol?

      We have modified the legends to clarify that the 'target' and 'non-target' genes are derived from the day 4 CHART-seq data, while the RNA data is from day 5, as that study sequenced day 5 and not day 4. Non-targets were randomly chosen based on (i) the absence of Xist binding and (ii) similar expression levels. Please see revised Figure S8.

      It would be helpful to compare Xist expression levels across the various models, and the MEF model could be better described - are they polyploid as often happens?

      We have included the Xist expression levels of ES cells and MEF cells in the revised version (revised Figure S5A, 6D). The transformed MEFs are indeed tetraploid, as is typical.

      For 6A to be informative, one needs to know % mapping to X in ES timeline, which is in supplemental, so perhaps 6A should also be supplemental?

      We have moved 6A to the supplemental figure.

      It is odd that ∆B seems to have had more impact in MEFs, and I would like more discussion - but I also think I am missing something: "We observed that Xist signals were more substantially reduced on both the Xi and autosomal regions in ΔRepE MEFs compared to ΔRepB cells", yet in lower panel 6 G it looks like ∆B is LOWER than ∆E? Am I misinterpreting?

      We apologize for the confusing writing.  The revised text now reads:  “To investigate, we utilized a deletion of Xist’s Repeat E (∆RepE), which was previously demonstrated to severely abrogate localization of Xist to the Xi 41,42. We reasoned that the severe loss of Xist binding might unmask a transcriptomic difference. As expected, we observed that Xist signals were somewhat more reduced on the Xi in ΔRepE MEFs compared to ΔRepB cells (Figure 6E-6F). Despite this reduction, peak coverages in autosomal target genes did not increase in ΔRepE MEFs (Figure 6E-6F). However, there was an overall decrease in the number of significant autosomal peaks in ∆RepE MEFs relative to WT cells (Figure 6A). Regardless, we observed no significant transcriptomic differences in ∆RepE MEFs relative to WT MEFs (Figure 7A-7E). Additionally, further examination of RNA sequencing data from male and female MEF cells in two published studies 43,44 corroborated that the expression levels of these autosomal Xist targets did not exhibit significant changes (Figure 7F and 7G). Altogether, the analysis in MEFs demonstrates that Xist continues to bind autosomal genes in post-XCI somatic cells. However, autosomal binding of Xist in post-XCI cells does not overtly impact expression of the associated autosomal genes. Nonetheless, we cannot exclude more subtle changes that do not meet the significance cut-off.”

      Overall, I would like to see how consistent these autosomal peaks are - I shudder to suggest Venn diagrams, but something to show whether there are day/lineage specific peaks and/or ∆repeat B/E resistant peaks. 

      We now present Venn diagrams comparing MEF, ES_d4, and ES_d7, showing approximately 50% overlap between MEF and ES cells (revised Figure S10B). This may be expected, as each timepoint is a different developmental stage of XCI, with expected gene expression differences.

      Very minor comments:

      It would be easier if the supplemental tables were tabs in 1 file!

      We will defer to the editor on how best to format the supplemental tables.

      Similar to the text, could gene names be included in the supplemental?

      We have provided gene names in the supplemental files.

      Figure 3 legend: should 'representing' be representative?

      We have modified it.

      "Xist patterns identified in human cells" p 5; it is challenging to follow human versus mouse, so specify or ensure correct use of XIST/Xist Indeed, we edited the manuscript accordingly.

      Gene names should be italicized.

      We have italicized gene names in our manuscript.

      Ref. 38 lacks details (...).

      We have updated the reference.

      Peak-like characters - perhaps characteristics? P8

      We have modified this.

      Reviewer #3 (Recommendations for the authors):

      On page 6, the 6th sentence in the first paragraph needs correction. "Consistent with Xist's behavior on the X chromosome."

      We have modified the sentence. Thank you.

    1. Author response:

      We are submitting a revised manuscript with major additions that address the main concerns in the initial reviews. At the highest level, this revision provides i) orthogonal biochemical measurements that yield concrete evidence of lysosomal protein aggregates, and ii) a plausible mechanism linking lysosomal lipid handling and protein aggregation through disruption of ESCRT function. We believe these additions significantly improve the completeness of this study and the conclusions that can be drawn from the data.

      Below are more specific highlights on the addition in this revision:

      -       We included orthogonal techniques (thioflavin-T staining and Lyso-IP followed by differential extraction) and confirmed the accumulation of RIPA-insoluble protein aggregates at the lysosomes in cells under lipid perturbation (Figure 3).

      -       We performed TMT-Proteomics and identified accumulation of insoluble ESCRT components at the lysosomes under lipid perturbation (Figure 4). Two new authors involved in this effort are added onto the manuscript.

      -       The ESCRT result prompted us to revisit lysosomal membrane integrity. With improved imaging conditions and analysis we were able to see increased membrane permeabilization under lipid perturbation. VPS4A overexpression partially rescued this phenotype, suggesting that lipid accumulation impairs ESCRT disassembly (Figure 5).

      -       Together, the results suggest that lipid perturbation impairs ESCRT function, compromising both lysosomal membrane repair and microautophagy, resulting in the accumulation of endogenous protein aggregates at the lysosomes (Graphical Abstract).

      Reviewer #1 (Recommendations For The Authors):

      (1) Perhaps the most prominent limitation of this work is the unilateral focus on native cells (i.e. cells under no endogenous or exogenous stress) as the model for protein aggregate formation. Furthermore, although the ProteoStat stain has been utilized by many investigators before, the sole reliance on this stain as the read-out for their assays is concerning. To compound the concern, the ProteoStat-positive puncta co-localize with lysosmal markers which was surprising even to the authors. All in all, it behooves the authors to test proteostasis in multiple parallel ways to actually define what they are studying. How is it possible that protein aggregates under native conditions are only co-localized with lysosomes? Are we really studying protein aggregates which should predominantly be cytoplasmic insoluble aggregates?

      (a) They need to get away from a simple stain like ProteoStat and conduct co-stainings with other markers such as poly-ubiquitin antibodies and other chaperones to define what and where else exactly are these aggregates.

      Co-staining with poly-ubiquitin was included in the original manuscript. We added orthogonal staining with another widely used amyloid dye, Thioflavin-T, and provided fine-grained quantification of lysosomal vs cytosolic localization of various signals (Figures S4A-C & 3A-B).

      (b) They need to do Immunoblots with and without triton insolubility to see if these aggregates are insoluble as most would predict. They can do lysosomal isolation vs cytoplasmic to see if the insoluble aggregates are really lysosomal.

      We performed Lyso-IP followed by differential detergent extraction to confirm the accumulation of insoluble proteins at the lysosomes (Figure 3C). Proteomic analysis identified some of these insoluble proteins as ESCRT subunits (Figure 4).

      (c) They should compare aggregate formation in the native state versus cells with lysosomal inhibition via Bafilomycin or chloroquine versus cells with proteosomal inhibition. The lysosomal inhibition experiments are particularly informative given the lysosomal relevance they have uncovered.

      We included other small molecule inhibitors and at different time points to compare the effect of different modes of proteostasis challenge (Figure S4A-D). Together with the ESCRT finding, our results suggest the role of microautophagy in our system, and provide a model of how ProteoStat- and/or ubiquitin- positive substrates become partitioned between the cytoplasm and lysosomes under different perturbations.

      (d) Many protein aggregates which are too bulky for proteosome degradation will traditionally be dealt with by aggrephagy. Why is this not observed?

      Knockdown of core macroautophagy components did not impact Proteostat intensity in our CRISPRi screen, suggesting that basal macroautophagy plays a negligible role in clearing endogenous amyloid-like structures in our experimental system. We provide an alternative model that these aggregates instead arrive at the lysosomes via microautophagy.

      (2) After addressing #1, they can validate if the genes they identified by CRISPR screens are also important in modulation of protein aggregate burden in other systems. For example, if they inhibit lysosomes by Bafilo or Chloroquine to obtain protein aggregates and then Knockdown the identified genes in the CRISPR screens, will they get the same results?

      We addressed the effect of different modes of proteostasis challenge as recommended above. Deacidifying the lysosomes alone causes intense protein aggregation (Figure S4A-D) and eventually cell death, and was thus not combined with other perturbations.

      (3) They identify lysosomal lipid metabolism genes/pathways as the culprit for inducing proteostasis. In particular sphingolipid and cholesteryl ester species appear to be operational here. However, there are no specific lipids species or specific lipid metabolism gene that is causative. Rather, you have to knockdown entire processes to have an effect. This suggests that the focus on lysosome health (i.e. permeability, proteolysis, etc) is rudimentary. When you have to knockdown entire classes of lipids, this would indicate more broad effects on cellular lipids (including membrane lipids beyond the lysosome) and related cellular health?

      We included data on the effect of knocking down MYLIP, PSAP, and as a comparison PSMD2 on the growth rate of K562 cells (Figure S5A). MYLIP and PSAP KDs, which cause predominantly an accumulation of lipids, do not impede cell growth. Increasing lipid uptake by MYLIP KD increases cell proliferation under our culture conditions, suggesting a general negative impact on cell health was not required for the association between lipid levels and protein aggregates.

      (a) They conduct a superficial methyl-beta-cyclodextrin experiment with equivocal results. The use of MBCD for different time-courses to deplete various membrane cholesterol pools including the plasma membrane pool is important to ascertain what aspect of the cellular cholesterol is affecting proteostasis. MBCD +/- cholesterol reintroduction time-courses for rescue will also be key to determine the culprit cellular cholesterol pool.

      The MBCD / Filipin experiment helped us determine that ProteoStat doesn’t directly stain cholesterol, nor any major plasma membrane components. Free cholesterol was implicated in neither the screen nor the lipidomics and was not the subject of targeted experiments.

      (b) The same concept can be applied to sphingolipids. There are sphingolipids in abundance in multiple membrane compartments. Which ones are causal here? More nuanced evaluation of this with sphingolipid staining/tracking can be conducted.

      We attempted experiments where sphingolipids were added back to cells grown in FBS-depleted media. Nevertheless, we were not able to consistently deliver these lipid species and doing so while ensuring the correct subcellular localization at physiologically relevant level would require substantial methods development.

      (c) As part of this, are lipid rafts and/or caveolae being affected by the perturbations in cholesterol and sphingolipids? Lipid rafts are highly enriched in these 2 lipids which could link to their preteostasis observation.

      Indeed, ceramides released from SM hydrolysis are proposed to self-assembled into microdomains with negative curvature that can promote the formation of intralumenal vesicles (Alonso and Goni, 2018; Niekamp et al 2022). We propose that SM accumulation may hinder this process by counteracting the negative membrane curvature and impede microautophagy.

      (d) How about ER membrane lipids? The UPR and subsequent effects on proteostasis are intricately involved with ER lipid bilayer composition.

      We did not perform lipidomics on ER membranes in this study, though we note that at steady state, sphingolipids and cholesterol esters are not expected to be enriched at the ER (Ikonen and Zhou, 2021). We checked whether lipid-related genetic perturbations induced the UPR in published perturb-seq data in K562 cells. Neither MYLIP nor PSAP knockdown induced a UPR.

      In conclusion, the manuscript is interesting but the excitement over a link between lysosome-related lipid metabolism and proteostasis needs to be tamped until a more robust experimental approach is employed to generate supportive and corroborating results.

      Reviewer #2 (Recommendations For The Authors):

      - The paper has a number of grammatically awkward sentences. Editing these would enhance clarity.

      - It is important to show the co-localization of aggregates with the lysosome. This is shown in supplements but should be in a main figure. Here the authors cite previous work indicating that ProteoStat puncta co-localize with ubiquitinated proteins and state that they do not see this, then essentially just move on. Is there an explanation for this discrepancy and can it be resolved? What do they think is really going on? What happens to levels of ubiquitinated proteins when lipid metabolism is perturbed as in these experiments?

      We have included the lipid-induced lysosomal protein aggregation data in the main text (Figure 3A-B), and provided fine-grained quantification of the cytosolic-vs-lysosomal ProteoStat / Ub / ThT signals under different aggregate-inducing conditions (Figure S4A-D). We discuss these results in the main text and propose a model involving ESCRT-mediated microautophagy in the main text. This is supported further by the LysoIP-proteomics and LMP analysis.

      - Please add an indicator of amino acid numbers to Fig. 3C.

      These annotations are now included (now Figure S3C).

      - The legend for 3D is mislabelled.

      We have corrected the legend (now Figure S3D).

      Reviewer #3 (Recommendations For The Authors):

      Protein homeostasis and lipid homeostasis are both are important for maintaining cellular functions. However, the crosstalk remains largely unknown. The manuscript entitled as "Impairment of lipid homoeostasis causes accumulation of protein aggregates in the lysosome" deals with this interesting topic. An important link between lysosomal protein aggregation and sphingolipids/cholesterol esters metabolism were discovered. The topic belonging to the Cell Biology domain also falls into the aims and scope of eLife. Here are the revisions I recommend:

      (1) From lipidomics analysis, a remarkable correlation between levels of sphingomyelin and cholesterol ester and ProteoStat staining was found. Could the authors explain how sphingomyelin and cholesterol ester are quantified? The two lipids are not included as internal standards from the lipidomics experiment.

      Sphingomyelin and cholesterol ester internal standards are included in the Avanti 330707 SPLASH® LIPIDOMIX® Mass Spec Standard, which was supplied at 3% v/v to the MeOH/H2O cell lysis buffer. We have amended the Methods section to clarify this.

      (2) Could the authors perhaps delete Figure 1B and show it on Figure 2A only? There is no need to show the same figure two times. The threshold of both False Discovery Rate and Median Enrichment needs to be added. From Figure 2A, the Lysosomal hydrolases (GBA, LIPA, GALC) seems located in statistically insignificant region. Based on previous studies, the GBA could have an effect on sphingolipid levels, then how to explain that sphingomyelin was highly correlated with ProteoSate staining?

      We have combined the two volcano plots into a single figure (now Figure 1D), and added a line to help visualize the gene effects while considering the combined contribution of FDR and enrichment. Individual lysosomal hydrolases indeed have insignificant effects on ProteoStat and this is discussed in the main text as having relatively constrained impacts on the general lipidome. For example, while GBA and GALC KDs can lead to accumulation of their immediate substrates (glucosylceramide and galactosylceramide, respectively), they do not directly impinge on sphingomyelin.

      (3) The authors show the corelation between ProteoState staining and different lipids/lipid classes in Figure 3B and Figure S3A. It is not necessary to show the corelation with individual lipids (such as sphingomyelin(d18:1/24:0) and cholesterol ester(18:2). The corelation with full collection of lipid classes would be more representative, which is only list in Figure 3B and Figure S3A. It is suggested to add the information of how many individual lipids in each chass are used for the correlation analysis. Replace Figure 3A to Figure S3A, and put Figure 3A as supplementary figure are suggested.

      We decided to retain the correlation of two individual lipids (a sphingomyelin and a cholesterol ester species) with ProteoStat as examples to illustrate with clarity how we obtained the class-wide comparison. The number of individual lipids included in each class for correlation analysis is now included in Figures 2F and S3A.

      (4) The authors state that lipid uptake and metabolism modulate proteostasis. However, only cholesterol and LDL were tested. It would be more precise to state as cholesterol uptake and metabolism modulate proteostasis. In addition, sphingolipids and cholesterol esters accumulate with increased lysosomal protein aggregation. It would be interesting to see the effects of sphingolipids uptake, since sphingolipids are correlated with proteostasis better than cholesterol.

      We attempted to add back specific sphingolipids to assess sufficiency. However, we found it challenging to ensure that these lipids were distributed to the correct subcellular locations at physiologically relevant levels. Without this crucial information, it was difficult to draw any conclusions about the sufficiency of the sphingolipids we tested to impair proteostasis.

      Alonso A, Goñi FM. 2018. The Physical Properties of Ceramides in Membranes. Annu Rev Biophys 47:633–654. doi:10.1146/annurev-biophys-070317-033309

      Ikonen E, Zhou X. 2021. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev Cell 56:1430–1436. doi:10.1016/j.devcel.2021.04.025

      Niekamp P, Scharte F, Sokoya T, Vittadello L, Kim Y, Deng Y, Südhoff E, Hilderink A, Imlau M, Clarke CJ, Hensel M, Burd CG, Holthuis JCM. 2022. Ca2+-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair. Nat Commun 13:1875. doi:10.1038/s41467-022-29481-4

    1. On September 10, 2010, AdGrok founder Antonio Garcia-Martinez was hanging out at co-founder Argyris Zymnis’s San Francisco apartment when he received a call from Rodger Cole. Rodger Cole was a litigator at Fenwick & West, and Fenwick & West was one of the big three Silicon Valley law firms. Getting an unexpected call from your law firm is never a good sign — this was no exception.

      test

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. Point-by-point description of the revisions

      • *Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors present the use of previously identified biosensors in a single-molecule concentration regime to address lipid effector recruitment. Using controlled and careful single-cell based analysis, the study investigates how expression of the commonly used PIP3 sensor based on Akt-PH domain interferes with the native detection of PIP3. Predominantly live-cell fluorescence microscopy coupled to image analysis drives their studies.

      Conceptually, this manuscript carefully and quantitatively describes the influence of lipid biosensor overexpression and presents a means to overcome the inherent and long-recognized problems therein. This solution, namely employing low expression of the lipid biosensor, should be generally applicable. The work is of general interest to cell biologists focused on answering questions at membranes and organelles, including especially those interested in lipid-mediated signaling transductions.

      Reviewer 1 Major:

      #1.1 The terminology "single molecule biosensor" is not really appropriate. A protein is not "single-molecule". An enzyme does not "single molecule". Better is biosensors at single-molecule expression levels. In most cases, this should be changed. Single-molecule vs single-cell vs. bulk measurements are often poorly defined in quantifications and conflating these does not help the case, which is already supported by generally clear data.

      We appreciate the reviewer’s thoughtful critique of our grammatically incorrect use of jargon; we saw this as soon as they mentioned it! We have amended the manuscript where appropriate as detailed:

      • Title is now changed to “Lipid Biosensors Expressed at Single Molecule Levels Mitigates Inhibition of Endogenous Effector Proteins”
      • Last paragraph of the introduction on __ 2__ now reads “As well as alleviating inhibition of PI3K signaling, biosensors expressed at these low levels show improved dynamic range and report more accurate kinetics than their over-expressed counterparts."
      • The title of the results section on __ 6__ is now: Mitigating PIP3 competition using biosensors expressed at single molecule levels
      • Last paragraph of the results section on 6 now reads: “this showed that when expressed at single molecule levels, the biosensor has substantially better dynamic range”. #1.2 Figure 1D-F, images not as clearly describing quantitation as one would hope. Untransfected cells in 1E should demonstrate more translocated Akt-pS473 than transfected, but it is difficult for this reviewer to find. Consider inset images in addition to the wider field. Consider also moving the "negative" data of Fig 1B-C to Supplement.

      We regret not making this figure easier to interpret; we have substantially updated the figure, as comprehensively detailed in our point-by-point response to reviewer 2’s point 2.3. To specifically address this reviewer’s concerns:

      The older figure used non-confocal, low-resolution images that were used for quantification. Such an approach was employed to enable fluorescence from the entire cellular volume to be captured, which produces more robust quantification. However, to the reviewer’s point, it is not possible to see the translocation of PH-AKT1 nor translocated AKT-pS473 in these images. Fortunately, we had in parallel captured high resolution confocal images for some experiments. These are now shown in Fig 1D-E, which clearly shows translocated AKT-pS473 and PH-AKT-EGFP

      #1.3 The cell line being used is not clearly specified after the initial development of the NG1 followed by CRISPRed NG2 onto Akt. For example, for the Figure 3C experiments, the text states "complete ablation of endogenous AKT1-NG2" but this information is not apparent from the figure legend or figure. Throughout the cell line used and the aspects transfected need to be made explicitly clear.

      We are grateful to the reviewer for highlighting this ambiguity. We have now defined the gene-edited cells used throughout as “AKT1-NG2 cells” and expressly used this term when referring to experiments in figures 2-5.

      #1.4 Fig. 5 shows single cells. It is therefore unclear if broken promoters have resulted in decreased expression. This point is important because the expression plasmids should be made publicly available, and for their use to be understood properly, this must be clarified. The details of the plasmids are unclear. Perhaps listed in the table? - unclear. This aspect would be important for the field to effectively use the reagents.

      Thank you for drawing our attention to the lack of adequate detail here. We have now updated the results text to expressly reference Morita et al., 2022 where the origins of the truncated CMV promoters are detailed. We have also updated the plasmids table 1 to add pertinent details for these constructs: *pCMVd3 plasmids are based on the pEGFP-C1 backbone, with the CMV promoter truncated to remove 18 of the 26 putative transcription factor binding sites in the human Cytomegalovirus Major Intermediate Enhancer/Promoter (pCMV∆3 as described in Morita et al., 2012). The full sequences will be deposited with the plasmids on Addgene.

      We did not perform a formal comparison of full vs truncated promoters. Our only observation is that the truncated promoters greatly help in increasing the number of expressing cells presenting single-molecule resolvable expression levels (though the approach can still work with full promoters).

      #1.5 This manuscript speculates several times that with more abundant PIs like PI45P2, the observed saturation effect is probably not happening. This should be removed. While the back of envelope calculations may reflect an ideal scenario, the heterogeneity of distribution and multiple key cellular structures involved would seem to corral increased PI45P2 levels in certain regions. These factors amid multivalency and electrostatic mechanisms of lipid effector recruitment (e.g. MARCKS) suggest that speculation may be too strong. Moreover, Maib et al JCB 2024 demonstrated PI4P probe overexpression could directly mask the ability to detect PI4P post-fixation - not fully, but partially. Repeating the titration experiments of this manuscript for multiple PIs is entirely beyond the scope of reasonable, and hence, such experiments are not requested, in favor of adopting more conscientious speculation.

      The reviewer’s point is well taken. Whilst we still believe the overall argument for lipids is sounds (for example, PS or cholesterol are far too abundant for any expressed, stoichiometric binding protein to bind the majority of the population) even abundant phosphoinositides like PI4P and PI(4,5)P2 are an edge case. We have therefore undated the first paragraph of the introduction on __p. 1 __to be less explicit: One of the most prominent is the fact that lipid engagement by a biosensor occludes the lipid’s headgroup, blocking its interaction with proteins that mediate biological function. It follows that large fractions of lipid may be effectively outcompeted by the biosensor, inhibiting the associated physiology. We have argued that, in most cases, this is unlikely because the total number of lipid molecules outnumbers expressed biosensors by one to two orders of magnitude (Wills et al., 2018). However, for less abundant lipids, total molecule copy numbers may be in the order of tens to hundreds of thousands, making competition by biosensors a real possibility.

      We also removed the explicit discussion of PI(4,5)P2 from the introduction, and focus now solely on the PI3K lipids.

      Reviewer 1 Minor:

      1.6 Schematics throughout need simplification, enabling their enlargement.

      We have now enlarged the size of all schematics

      #1.7 Numerous spelling (Fig. 4 schemas) and capitalizations need fixing.

      Thank you for drawing our attention to these. We have thoroughly proof-read the figure panels and corrected errors.

      #1.8 Pg 1 Famous is not appropriate wording

      We respectfully beg to differ with the reviewer here. We believe it is perfectly accurate to state that PIP3 is a second messenger molecule that is known about by many people; we see this as the dictionary definition of the word “famous”.

      #1.9 Fig. 1A statistical testing of microscopy quantifications absent (generally, throughout) and should be included.

      This was indeed an oversight on our part. We have now added appropriate multiple comparisons tests to the data presented in figures 1F, 3F, 4C, 4F and 5C.

      #1.10 Fig.1. In a transient transfection, the protein expression is not uniform. Please explain how you normalized the quantification.

      We hope this is now clarified by the expanded “Image Analysis” part of the methods section on pp. 10-11 (relevant sentence is underlined): For immunofluorescence, we identified individual cells by auto thresholding the DAPI channel using the “Huang” method, followed by the Watershed function to segment bunched cells that appeared to touch. We then used the Voronoi function to generate boundary lines for the segmentation of the cells. To identify cytoplasm, auto thresholding of the CellMask channel using the “Huang” function was employed, with the cells segmented by adding the nuclear Voronoi boundaries. The “analyze particles” function was then used to identify individual cellular ROIs that were greater than 10 µm2 and were not touching the image periphery. These ROIs were used to measure the raw 12-bit intensity of the EGFP and AKT-pS473 channels. A cutoff of EGFP > 100 was used to define EGFP-positive cells, since this value was greater than the mean ± 3 standard deviations of the non-transfected cells’ EGFP intensity. Background intensity of AKT-pS473 was estimated from control cells subject to immunofluorescence in the absence of AKT-pS473 antibody; this value was subtracted from the measured values of all other conditions.

      #1.11 Fig. 1D. EGFP expression levels increased with EGF stimulation. How is this possible?

      There appeared to be a difference due to the presence of 5 strongly expressing cells in the chosen field in the original field for the EGF stimulated, EGFP cells. However, this arose just by chance. The new set of high-resolution images in the new figure 1 were selected to be more representative.

      #1.12 Fig. 1D. The images have pS473 whereas the y-axis label on box plots has p473. Can these box plots be labelled separately for consistency?

      Thank you. This has now been corrected in the revised Figure 1.

      #1.13 Fig.1. T308 phosphorylation is mentioned in Figure 1, but only pS473 data is shown.

      Both T308 and S473 phosphorylation are indicative of AKT activation. However, antibodies suitable for immunofluorescence are only available for pS473, hence why our experiments are restricted to this moiety.

      #1.14 Fig.1 legend. 'Over-expression of PH-AKT is hypothesised to outcompete the endogenous AKT's PH domain'. Why do you need to state a hypothesis in the legend?

      We included this statement for the benefit of the casual reader – i.e. one who looks at the pictures, but doesn’t read the main text!

      #1.15 Fig.1E You stated that the PH-AKT R25C-EGFP is stimulated by EGF addition. However, the GFP signal looks the same in both unstimulated and stimulated. Could you please clarify? Are you sure that the stimulation worked?

      We have clarified the second paragraph of the results section “Inhibition of AKT activation by PIP3 biosensor”__on __p. 4 as follows: In the non PIP3 binding PH-AKT1R25C-EGFP positive cells, we still observed an increase in pS473 intensity.

      The revised figure 1 images also show that PH-AKT1R25C does not translocate to the membrane with EGF stimulation.

      #1.16 You mention...that the AKT enzyme is activated by PDK1 and TORC2, which phosphorylate at residues T308 and S473, respectively. Phosphorylation is also known to occur on T450 at c-tail. Does this phosphorylation also contribute to its activation?

      Yes and no. Threonine 450 phosphorylation is thought to occur co-translationally and is important for AKT stability (see Truebestein et al as cited in the manuscript). It is not really relevant in the context for T308 and S473, which are phosphorylated acutely to activate the protein.

      #1.17 Fig. 1 scale bar in all images equivalent?

      We have now added scale bars to panels in both figure 1D and E to clarify.

      __#1.18 __Pg. 1 paragraph 1 "we have argued..." vs. paragraph 3"...consider that an..." feels like arguing with themselves.

      We believe the re-write we have done in response to major point #1.5 clarifies this point also.

      #1.19 Pg. 1 para 3 what is RFC score - must explain

      We have now defined this more clearly in third __paragraph of the __introduction on p. 1: PH domain containing PIP3effector proteins can be predicted based on sequence comparison to known PIP3 effectors vs non effectors using a recursive functional classification matrix for each amino acid (Park et al., 2008).

      #1.20 Discussion of numbers of PIP3 vs. effectors etc may not be appropriate for the introduction, as the points made by these calculations are already made in the previous paragraphs. May fit better in pg 6 Mitigating PIP3 titration... with an accompanying schematic.

      Respectfully, we prefer to keep this discussion of molecular concentrations, as this adds details and specifics to the pathway that is core to the paper.

      #1.21 Pg 2 "a neonGreen" not well defined, needs accurate description.

      We have clarified this in the sentence in the first paragraph of the results section “Genomic tagging of AKT1…” __on __p. 4, which includes the citation to the full description of the tag: To that end, we used gene editing to incorporate a bright, photostable neonGreen fluorescent protein to the C-terminus of AKT1 via gene editing using a split fluorescent protein approach (Kamiyama et al., 2016).

      #1.22 Fig 2C should give a unstimulated trajectory of puncta/100 um2 to compare with the stimulated

      Unfortunately, we did not record a full 5.5-minute video-rate time-lapse with unstimulated cells. However, we do not believe this control is essential for this experiment, since this example data is included to illustrate (1) the problem of photobleaching, which is clear in the 30-s pre-stimulus and (2) the variability in the raw molecule counts.

      #1.23 Fig 2C and F and G should be systematized for easier comparison. E.g. min vs seconds, 0 timepoint of EGF/rapa addition

      We have made the adjustment to figure 2C to be consistent with 2F and G:

      #1.24 Pg 5 "...and calibrated them..." unclear what is being calibrated, as the text later states that the histograms are fit to monomer/dimer/multimer model resulting in 98.1% in monomer. Minor point.

      We have clarified this point in the second paragraph of the results section “__Genomic tagging of AKT1…” __on __p. 4 __as follows: We analyzed the intensity of these spots and compared them to intensity distributions from a known monomeric protein localized to the plasma membrane (PM) and expressed at single molecule levels

      #1.25 Explain why baselines in Fig2CFG are different

      We did not comment on figure 2C; it is a single cell measurement, as opposed to the mean of 20 cells reported in F. However, we do now clarify the difference between figure 2F and G as the very end of the “Genomic tagging of AKT1…” results section on p 4: Notably, baseline AKT-NG2 localization increased from ~5 to ~15 per 100 µm2 in iSH2 cells, perhaps because the iSH2 construct does not contain the inhibitory SH2 domains of p85 regulatory subunits, producing higher basal PI3K activity.

      #1.26 Fig. 2 has quantification with images; Fig. 3 has it separate. Make consistent.

      We sometimes combine images with quantification, and other times separate the panel containing graphs. This is done deliberately, depending on whether the reader is directed to both together, or whether we consider the data separately in the results section.

      #1.27 Fig. 3B comes before images? Where are the images? Also, y-axis = Intensity (a.u.). Is intensity just full image field? Or per cell? All very unclear.

      We have modified both the graph y-axis label and the figure legend to clarify: (C) TIRF imaging of AKT1-NG2 cells from (B) stimulated with 10 ng/ml EGF

      #1.28 Fig. 3C missing images

      We believe the reviewer is referring to the mCherry channel for the “0 ng cDNA” condition. These images are missing because they do not exist. Since these cells were transfected with pUC19, there was no mCherry fluorescence to image.

      #1.29 Fig 3 C needs brightness/contrast adjusted as images are nearly entirely black (zero values).

      We believe the addition of insets addresses this concern. To the reviewer’s specific suggestion, we found that further increases in the brightness and contrast will bring up the camera noise, but this then occludes the signal from single molecules, such as those found after EGF stimulation of the 0 ng condition.

      #1.30 Fig 3C needs scale bar systemization

      We believe that the incorporation of scaled 6 µm insets addresses this point.

      #1.31 Fig 4 needs 4 panels A-D

      We have now added these individual panel labels to figure 4.

      #1.32 Pg 6 5-OH phosphatases needs reference

      We have added a citation to Trésaugues at the very end of the “Sequestration of PIP3 by lipid biosensors” results section on p. 6, which describes the activity of the whole 5-OH phosphatase activity against PIP3, not just the SHIP phosphatases.

      #1.33 Fig 5B, make images bigger

      Again, we trust that the addition of insets to all single molecule images has addressed this point.

      Reviewer 1 Referees cross-commenting**

      I have read the other reviews and find them entirely reasonable. My impression is we landed on similar general content that needs work, none of which is out of line. The importance and care taken in the author's work is uniformly lauded.

      We agree. At the risk of restoring to alliteration, we have been delighted to receive a trio of clear, concise and consistent comments on the manuscript! We believe it is now much improved.

      Reviewer #1 (Significance (Required)):

      This manuscript clearly and reasonably demonstrates that the commonly used PIP3 sensor can be titrated to low concentrations, at which it does not interfere with Akt translocation and activation. This work is a good technical reference for the field. Signal transduction and membrane biologists should be especially interested in the data. The reviewer/s have core expertise in phosphoinositides, protein biochemistry, cell biology, and membrane biophysics.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors characterize the inhibition of lipid second messenger mediated cell signaling through lipid biosensors that outcompete endogenous effector proteins. This is a very important study that as it quantitatively assesses an issue that many people suspected to exit, yet never properly characterized. This paper is therefore as much a service to the community as a research study in its own right and should be published without undue delay. I am glad that the authors decided to carry out this study & really appreciate their work.

      I do however, have a number of suggestions that I think will make the manuscript stronger and can be readily implemented, mostly by reformulating and/or re-analysis of exiting datasets. I've structured my comments by the datasets in the respective figures to follow the logic of the paper.

      Reviewer 2 Major:

      #2.1 Throughout the manuscript, statistical tests are missing, e.g. in figures 1C-F. This must be amended in the revised version. The authors are making a very quantitative point about buffering, data should be treated accordingly.

      We have now added appropriate multiple comparisons tests to figures 1F, 3F, 4C, 4F and 5C.

      #2.2 I do not think that "PIP3 titration" is the best term to describe the observed effect. "Titration" usually implies the controlled modulation of a concentration, e. g. in analytical chemistry. I think either "competitive binding of PIP3" or "buffering of free PIP3" are more adequate.

      This point is well taken. We have now replaced the word “titration” throughout, replacing it with either “competitive binding” or “sequestration”.

      #2.3 Specific comments: Figure 1

      #2.3a Why are data in 1D-Ff shown as median, with interquartile ranges and 10-90 percentile distance when everything else in the paper is mean +/- se? There might be a good reason for it, but I did not find it mentioned everywhere

      For consistency’s sake, we have changed figure 1F to show a bar graph, though as noted in the figure legend: Graphs show medians ± 95% confidence interval of the median from 82-160 cells pooled from three experiments (medians are reported since the data are not normally distributed).

      #2.3b The authors should test, whether the difference between the +EGF conditions in 1D (EGFP) and 1F (PH-AktR25C-EGFP) is indeed statistically significant. If this observation holds up, what does it mean? Is the mutant still competing with endogenous Akt despite the much-reduced binding affinity? The authors should discuss.

      We have re-analyzed the data in figure 1, with the quantitative data presented in figure 1F combined with statistical analysis. The new data shows no significant effect of the PH-AKT1R25C mutant in either resting or EGF stimulated condition

      There results are also described in the__ second paragraph__ of the first results section on pp. 3-4: This analysis showed that the R25C mutant had no substantial effect on pS473 levels, whereas wild-type PH-AKT greatly inhibited pS473 staining in EGF-stimulated cells as well as reducing basal levels in serum starved cells (Fig. 1F).

      #2.3c How were biosensor/GFP positive cells chosen? Did the authors choose a defined fluorescence intensity cut-off? I think that a pure manual selection is problematic from a methodological point of view as this may introduce biases. Since the authors use Fiji, they can also simply use the "Analyze particles" function, which allows to automatically segment cells from a thresholded image. By choosing the same threshold for all images, it would be ensured that all images are treated exactly the same way.

      We had initially opted for manual outlining of cells since automatic segmentation of irregularly-shaped HEK293a cells is imperfect. However, we agree with André that this opens the possibility of bias. We have therefore re-run the analysis with an automated segmentation and thresholding approach, as suggested. This is detailed in the__ second paragraph__ of the first results section on pp. 3-4: In parallel, we imaged cells with a low resolution 0.75 NA air objective to capture fluorescence from the cells’ entire volume, then quantified these images using an automatically determined threshold for GFP-positive cells (see Materials and Methods). This analysis showed that the R25C mutant had no substantial effect on pS473 levels, whereas wild-type PH-AKT greatly inhibited pS473 staining in EGF-stimulated cells as well as reducing basal levels in serum starved cells (Fig. 1F).

      Further detail is provided in the first paragraph of the “Image analysis” subsection of the methods on pp. 10-11: For immunofluorescence, we identified individual cells by auto thresholding the DAPI channel using the “Huang” method, followed by the Watershed function to segment bunched cells that appeared to touch. We then used the Voronoi function to generate boundary lines for the segmentation of the cells’ cytoplasm. To identify cytoplasm, auto thresholding of the CellMask channel using the “Huang” function was employed, with the images segmented by adding the nuclear Voronoi boundaries. The “analyze particles” function was then used to identify individual cellular ROIs that were greater than 10 µm2 and were not touching the image periphery. These ROIs were used to measure the raw 12-bit intensity of the EGFP and AKT-pS473 channels. A cutoff of EGFP > 100 was used to define EGFP-positive cells, since this value was greater than the mean ± 3 standard deviations of the untransfected cells’ EGFP intensity. Background intensity of AKT-pS473 was estimated from control cells subject to immunofluorescence with the AKT-pS473 antibody omitted; this value was subtracted from the measured values of all other conditions.

      #2.3d I am missing a statement in the methods section that all images were acquired using the same settings.

      This was indeed an important oversight on our part – thanks for spotting the omission of this crucial detail. This is now included at the end of the “Immunofluorescence” section of the Methods on pp. 9-10: Identical laser excitation power, scan speeds and photomultiplier gains were used across experiments to enable direct comparison.

      #2.3e I recommend that the authors include a single cell correlation plot of EGFP fluorescence intensity vs AktpS473 intensity in Figure 1 D-F. This should be rather informative & make the concentration dependence clear.

      We did not observe a strong correlation between PH-AKT1-EGFP intensity and pS473 staining, likely driven by both the imprecision of the cell segmentation and the fact that very low concentrations of PH domain effectively inhibit endogenous AKT1 (as we show in the later figures with the more precise, live cell AKT-NG2 recruitment experiments: see response to #2.5).

      #2.3f I further recommend that the authors look at alterations of baseline Akt activity in the presence of the biosensor. In the images it looks like there might be an effect, but this is then lost in the analysis due to the normalization.

      As covered in our response to #2.3b, there is indeed an inhibition of baseline pS473 in PH-AKT1-EGFP expressing cells, now explicitly quantified and documented in results.

      #2.3g Please include zoomed image insets in Fig. 1D-F, in the current magnification one needs to zoom in quite a bit to see the effect in the raw data. It is a clear effect, but having a zoomed version would make for much easier reading.

      We now include high-resolution confocal images instead of low power, low NA volumes as shown in the last version of the manuscript, which we believe addresses this point and also reviewer #1.2.

      2.3h Up to the authors: I wonder whether it is possible to extract an IC50 value for the competitive inhibition of Akt by the respective biosensors. The transient expression gives the authors access to a wide range of expression levels at the single cell level, which could be quantified by counterstaining with a EGFP-nanobody at a different color (since the EGFP fluorophore went through the fixation process, it is likely unsuitable for quantification) and microscope calibration. Activity could be quantified as the ratio of observed and expected Akt-pS473 fluorescence (derived from the mean FI per cell from the EGFP control). This is not strictly necessary, but would be a beautiful quantitative experiment, give an easy-to-understand number & make the paper much stronger.

      This is a great suggestion, but does not produce precise enough data to work out, as we detail in response to #2.3e. From our data in new figure 3F and figure 5, it seems we have not explored the appropriate expression range to see intermediate levels of inhibition necessary to estimate IC50. This would be a cool experiment though!

      __#2.4 __Specific comments: Figure 2. Overall, compelling data. However, 25 molecules/100 um^2 at maximal recruitment feels low. Assuming a total cell surface area of appr. 2000 um^2 per cell and taking a baseline of 5 molecules/100 um^2 into account, this would mean that only about 400 copies of Akt are recruited in response to a pretty robust stimulus. Is it possible that the association reaction of the split GFP is not complete under these conditions? I think that a direct measurement of intracellular endogenous Akt concentration is required to put these numbers into context.

      This is an excellent point that we had missed. We now specifically address this point in the third paragraph of the “Genomic tagging of AKT…” section on p. 4: __Accumulation of AKT-NG2 was ~25 molecules per 100 µm2, which assuming a surface area of ~1,500 µm2 per cell corresponds to ~375 molecules total. It should be noted that tagging likely only occurred at a single allele in each cell, and the population still exhibited expression of non-edited AKT1 (__Fig. 2B). Given that HEK293 are known to be pseudotriploid (Bylund et al., 2004), the true number of AKT1 molecules would be at least 1,125. However, given an estimated total copy number of 23,000 AKT1 in these cells (Cho et al., 2022), this is still only about 5%. However, we do not interpret these raw numbers due to uncertainties in the efficiency of NG2 complementation under these conditions, as well as potential for reduced expression from the edited allele.

      We also removed the specific comment on molecule density from the abstract.

      #2.5 Specific comments: Figure 3 I think that the classification by plasmid dose does not make a lot of sense, as the resulting expression levels are rather similar. I suggest to pool all traces and calculate mean curves by actual expression levels using a binning approach (e.g. 0-50 au, 50-100 au and so on in raw intensity from Figure 3b). If there is an effect in the realized concentration regime, this should pick it up.

      This is an excellent suggestion, and we have done just that: thank you! The data is now included as a new panel Fig. 3F. The result is described in the results section, “Sequestration of PIP3 by lipid biosensors”, end of the first paragraph on pp. 4-6: To observe the concentration-dependence of AKT1-PH-mCherry inhibition, we pooled the single cell data from these experiments and split transfected cells into cohorts based on raw expression level (excitation and gain were consistent between experiments, allowing direct comparison). This analysis showed profound inhibition of AKT1-NG2 recruitment at all expression levels, with a slightly reduced effect only visible in the lowest expressing cohort (Fig. 2F).

      #2.6 Specific comments: Figure 5 These are very interesting data, in particular with regard to the underlying PIP3 dynamics. I agree with the conclusion of the authors that shielding of PIP3 from degradation is the likely culprit. What I would like to see here is actual kinetic fits - and different terms. On- and off-rate imply biosensor binding, but these are likely rather fast and not on the minute-timescale. The detected processes are much more likely to reflect production and degradation of PIP3 and that should be reflected in the terminology. For the fit: I think that a simple rate law for subsequent reactions ([PIP3]=C(e^-k1t-e^k2t)) will give good results and yield effective rate constants for PIP3 generation and degradation. This implies the quasi-steady state assumption for biosensor binding and implies that [PIP3] is proportional to the biosensor bound [PIP3], but these are reasonable assumptions to make.

      The is an excellent suggestion, which we have added. Specifically, fits are now present on Figs. 5G and 5I; we describe these in the last paragraph of results on p. 8: Normalizing data from both expression modes to their maximum response (Fig. 5G) and fitting kinetic profiles for cooperative synthesis and degradation reactionsrevealed the rate of synthesis is remarkably similar: 1.09 min–1 (95% C.I. 1.02-1.17) for single molecule expression vs 1.02 min-1 (95% C.I. 0.98-1.06) for over-expression. On the other hand, degradation slowed with over expression from 0.34 min–1 (95% C.I. 0.24-0.58) to 0.13 min–1 (95% C.I. 0.12-0.15). This is expected, since synthesis of PIP3molecules would not be prevented by biosensor. On the other hand, PIP3 degradation could be slowed by the over-expressed biosensor competing with PTEN and 5-OH phosphatases that degrade PIP3. An even more exaggerated result is achieved with the cPHx1 PI(3,4)P2 biosensor; this shows an increase in fold-change over baseline of 600% for single molecule expression levels, compared to only 100% in over-expressed cells (Fig. 5H). Again, the degradation rate of the signal is substantially slowed by the over-expressed sensor, reducing from 0.27 min–1 (95% C.I. 0.22-0.39) to 0.16 min–1 (95% C.I. 0.14-0.19), whereas synthesis remains only minorly impacted, changing from 0.61 min–1 (95% C.I. 0.57-0.64) to 0.54 min–1 (95% C.I. 0.52-0.56) with over-expression (Fig. 5I). Collectively, these data show that single molecule based PI3K biosensors show improved dynamic range and kinetic fidelity compared to the same sensors over-expressed.

      Details of the fits are given in a new methods section on p. 11:

      Fitting of reaction kinetics

      Curve fitting was performed in Graphpad Prism 9 or later. For the data presented in Figs. 5G and 5I, both synthesis and degradation phases displayed clear “s” shaped profiles not well fit by simple first order kinetics. Since activation of the PI3K pathway involves many multiplicative interactions between adapters and allosteric activation of the enzymes themselves, we assumed cooperativity and fit reactions with the two phase reaction as follows:

      Where Ft denotes ∆Ft/∆FMAX, nsyn and ndeg are the Hill coefficients of the respective synthesis and degradation reactions, and the rate constants for the reactions are derived from ksyn = 1/τsyn and kdeg = 1/τdeg.

      André Nadler

      Reviewer #2 (Significance (Required)):

      This is an important paper, analyses the effects of over-expressed lipid biosensors on cell signalling in some detail and will be of significant interest to a broad readership.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This is essentially a methods paper in which the authors provide a detailed and highly quantitative analysis of the potentially deleterious effects of expressing phosphoinositide-binding domains as biosensors. Specifically, they study the effects on PIP3 signalling, using biosensors that are widely used in the field.

      They show that the most-commonly used method of expressing PIP3 biosensors using transient transfection with viral promotors has clear deleterious effects on downstream signalling due to out-competing the endogenous effectors. Importantly, they also describe a new approach to overcome this by developing new plasmids and methodology to express these reporters at low levels.

      Reviewer 3 Major comments:

      The work in this paper is thorough and very nicely done. I particularly appreciate the efforts to quantitate or estimate actual numbers and densities of molecules, which significantly strengthen their arguments. The data are excellent and strongly support all their conclusions. I would therefore be happy to see this work published in its current form.

      Reviewer 3 Minor comments:

      I only have some minor and optional suggestions for improvement.

      #3.1 In figure 1D-F they show that PH-Atk-EGFP expression can suppress downstream Akt activation by quantifying P-Akt signal my microscopy. In these panels they say tgey selectively measure this in GFP-expressing cells, but it is not clear how they define which cells are expressing GFP - was a threshold used? Also, it would be nice to also measure both PH-Akt-GFP and P-Akt staining by flow cytometry to look for a correlation. Is there a threshold of biosensor expression that blocks downstream signalling, or is there a linear relationship? This might help specifically measure how much biosensor is too much.

      This is an important comment, also raised by reviewer 2. We provide a detailed explanation and outline revisions that address this in our response to reviewer #2.3c; essentially, we replaced the analysis with an automated segmentation and quantification, estimating GFP-positive cells from a fraction of non transfected cells. We have not performed a FACS analysis, but as we note in our response to #2.3e __and #2.3h, the correlation between EGFP and pAKT staining is imprecise in these experiments. The new __Fig. 3C does address this point for AKT1-NG2 recruitment, as described in our response to #2.5.

      #3.2 Some of their microscopy images (e.g. Fig 1D-F, Fig 5) are very small and would benefit from a zoom box - especially when they are trying to demonstrate single molecule detection.

      This is a fair point raised by all of the reviewers in one form or another. We have added zoomed insets to all of the single molecule images in Figs 2-5, and added higher magnification, confocal section images to Fig. 1.

      Reviewer #3 (Significance (Required)):

      This is both a methods paper and cautionary tale for cell biologists working in this field. Whilst everyone who uses these probes should be aware of the potential risk of biosensors titrating our effectors, this is often not sufficiently acknowledged. This paper is a very nice and clear demonstration of these risks, exemplified with probably the most highly-used biosensor and key downstream signalling pathway.

      Whilst the concepts presented are not especially novel, this paper nonetheless makes an important contribution to the community and hopefully will make others more cautious in how they use these biosensors.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The authors present the use of previously identified biosensors in a single-molecule concentration regime to address lipid effector recruitment. Using controlled and careful single-cell based analysis, the study investigates how expression of the commonly used PIP3 sensor based on Akt-PH domain interferes with the native detection of PIP3. Predominantly live-cell fluorescence microscopy coupled to image analysis drives their studies.

      Conceptually, this manuscript carefully and quantitatively describes the influence of lipid biosensor overexpression and presents a means to overcome the inherent and long-recognized problems therein. This solution, namely employing low expression of the lipid biosensor, should be generally applicable. The work is of general interest to cell biologists focused on answering questions at membranes and organelles, including especially those interested in lipid-mediated signaling transductions.

      Major:

      1. The terminology "single molecule biosensor" is not really appropriate. A protein is not "single-molecule". An enzyme does not "single molecule". Better is biosensors at single-molecule expression levels. In most cases, this should be changed. Single-molecule vs single-cell vs. bulk measurements are often poorly defined in quantifications and conflating these does not help the case, which is already supported by generally clear data.
      2. Figure 1D-F, images not as clearly describing quantitation as one would hope. Untransfected cells in 1E should demonstrate more translocated Akt-pS473 than transfected, but it is difficult for this reviewer to find. Consider inset images in addition to the wider field. Consider also moving the "negative" data of Fig 1B-C to Supplement.
      3. The cell line being used is not clearly specified after the initial development of the NG1 followed by CRISPRed NG2 onto Akt. For example, for the Figure 3C experiments, the text states "complete ablation of endogenous AKT1-NG2" but this information is not apparent from the figure legend or figure. Throughout the cell line used and the aspects transfected need to be made explicitly clear.
      4. Fig. 5 shows single cells. It is therefore unclear if broken promoters have resulted in decreased expression. This point is important because the expression plasmids should be made publicly available, and for their use to be understood properly, this must be clarified. The details of the plasmids are unclear. Perhaps listed in the table? - unclear. This aspect would be important for the field to effectively use the reagents.
      5. This manuscript speculates several times that with more abundant PIs like PI45P2, the observed saturation effect is probably not happening. This should be removed. While the back of envelope calculations may reflect an ideal scenario, the heterogeneity of distribution and multiple key cellular structures involved would seem to corral increased PI45P2 levels in certain regions. These factors amid multivalency and electrostatic mechanisms of lipid effector recruitment (e.g. MARCKS) suggest that speculation may be too strong. Moreover, Maib et al JCB 2024 demonstrated PI4P probe overexpression could directly mask the ability to detect PI4P post-fixation - not fully, but partially. Repeating the titration experiments of this manuscript for multiple PIs is entirely beyond the scope of reasonable, and hence, such experiments are not requested, in favor of adopting more conscientious speculation.

      Minor:

      1. Schematics throughout need simplification, enabling their enlargement.
      2. Numerous spelling (Fig. 4 schemas) and capitalizations need fixing.
      3. Pg 1 Famous is not appropriate wording
      4. Fig. 1A statistical testing of microscopy quantifications absent (generally, throughout) and should be included.
      5. Fig.1. In a transient transfection, the protein expression is not uniform. Please explain how you normalized the quantification.
      6. Fig. 1D. EGFP expression levels increased with EGF stimulation. How is this possible?
      7. Fig. 1D. The images have pS473 whereas the y-axis label on box plots has p473. Can these box plots be labelled separately for consistency?
      8. Fig.1. T308 phosphorylation is mentioned in Figure 1, but only pS473 data is shown.
      9. Fig.1 legend. 'Over-expression of PH-AKT is hypothesised to outcompete the endogenous AKT's PH domain'. Why do you need to state a hypothesis in the legend?
      10. Fig.1E You stated that the PH-AKT R25C-EGFP is stimulated by EGF addition. However, the GFP signal looks the same in both unstimulated and stimulated. Could you please clarify? Are you sure that the stimulation worked?
      11. You mention...that the AKT enzyme is activated by PDK1 and TORC2, which phosphorylate at residues T308 and S473, respectively. Phosphorylation is also known to occur on T450 at c-tail. Does this phosphorylation also contribute to its activation?
      12. Fig. 1 scale bar in all images equivalent?
      13. Pg. 1 paragraph 1 "we have argued..." vs. paragraph 3"...consider that an..." feels like arguing with themselves.
      14. Pg. 1 para 3 what is RFC score - must explain
      15. Discussion of numbers of PIP3 vs. effectors etc may not be appropriate for the introduction, as the points made by these calculations are already made in the previous paragraphs. May fit better in pg 6 Mitigating PIP3 titration... with an accompanying schematic.
      16. Pg 2 "a neonGreen" not well defined, needs accurate description.
      17. Fig 2C should give a unstimulated trajectory of puncta/100 um2 to compare with the stimulated
      18. Fig 2C and F and G should be systematized for easier comparison. E.g. min vs seconds, 0 timepoint of EGF/rapa addition
      19. Pg 5 "...and calibrated them..." unclear what is being calibrated, as the text later states that the histograms are fit to monomer/dimer/multimer model resulting in 98.1% in monomer. Minor point.
      20. Explain why baselines in Fig2CFG are different
      21. Fig. 2 has quantification with images; Fig. 3 has it separate. Make consistent.
      22. Fig. 3B comes before images? Where are the images? Also, y-axis = Intensity (a.u.). Is intensity just full image field? Or per cell? All very unclear.
      23. Fig. 3C missing images
      24. Fig 3 C needs brightness/contrast adjusted as images are nearly entirely black (zero values).
      25. Fig 3C needs scale bar systemization
      26. Fig 4 needs 4 panels A-D
      27. Pg 6 5-OH phosphatases needs reference
      28. Fig 5B, make images bigger

      Referees cross-commenting

      I have read the other reviews and find them entirely reasonable. My impression is we landed on similar general content that needs work, none of which is out of line. The importance and care taken in the author's work is uniformly lauded.

      Significance

      This manuscript clearly and reasonably demonstrates that the commonly used PIP3 sensor can be titrated to low concentrations, at which it does not interfere with Akt translocation and activation. This work is a good technical reference for the field. Signal transduction and membrane biologists should be especially interested in the data. The reviewer/s have core expertise in phosphoinositides, protein biochemistry, cell biology, and membrane biophysics.

    1. Author Response:

      Thank you for your interest in our paper. We would also like to thank the anonymous reviewers for their critical and constructive comments. Although the reviewers found our work interesting, they raised several important concerns about our study. To address these concerns, mostly we will perform new experiments as following.

      1. Examine whether antioxidant-NAC can block SFN-induced TFEB-nuclear translocation in NPC cells;

      2. Examine whether calcineurin inhibitor (FK506+CsA) or Ca 2+ inhibitor (Bapta-AM) can block SFN-induced TFEB-nuclear translocation in NPC cells.

      3. Investigate whether cholesterol was cleared by activation of TFEB by SFN in vivo tissues.

      4. Investigate whether SFN-evoked the lysosomal exocytosis is TFEB-dependent by using TFEB-KO cells.

      5. Examine the effect of NPC1 deficiency on dextran trafficking by studying the localization of CF- dex and Lamp1.

      6. Perform cytotoxicity experiments to examine whether SFN used in this study is cytotoxic in various cell lines

      In addition, according to the reviewers’ suggestions, we will make clarifications and corrections wherever appropriate in the manuscript. Below please find our point-by-point responses and plans to the reviewers’ comments.

      Reviewer #1 (Public review):

      Summary:

      The authors are trying to determine if SFN treatment results in dephosphorylation of TFEB, subsequent activation of autophagy-related genes, exocytosis of lysosomes, and reduction in lysosomal cholesterol levels in models of NPC disease.

      Strengths:

      (1) Clear evidence that SFN results in translocation of TFEB to the nucleus.

      (2) In vivo data demonstrating that SFN can rescue Purkinje neuron number and weight in NPC1-/- animals.

      Thank you for the support!

      Weaknesses:

      (1) Lack of molecular details regarding how SFN results in dephosphorylation of TFEB leading to activation of the aforementioned pathways. Currently, datasets represent correlations.

      Thank you for this constructive comment. The reviewer is right that in this manuscript the molecular mechanism of SFN-activated TFEB has not been discussed in details. Because previously we have shown that SFN induces TFEB nuclear translocation via a Ca 2+ - dependent but MTOR (mechanistic target of rapamycin kinase)-independent mechanism through a moderate increase in reactive oxygen species (ROS). And calcineurin-mediated TFEB dephosphorylation underlies SFN-induced TFEB activation. These data have been published in 2021 autophagy (Li, Shao et al. 2021) . Therefore, in this study we did not mention this part. We will add the molecular mechanism of TFEB activation by SFN in the discussion part. And to further confirm this mechanism in NPC cells, we will also perform experiments including: 1) examine whether antioxidant-NAC can block SFN-induced TFEB-nuclear translocation in NPC cells; 2) examine whether calcineurin inhibitor (FK506+CsA) can block SFN-induced TFEB-nuclear translocation in NPC cells.

      (2) Based on the manuscript narrative, discussion, and data it is unclear exactly how steady-state cholesterol would change in models of NPC disease following SFN treatment. Yes, there is good evidence that lysosomal flux to (and presumably across) the plasma membrane increases with SFN. However, lysosomal biogenesis genes also seem to be increasing. Given that NPC inhibition, NPC1 knockout, or NPC1 disease mutations are constitutively present and the cell models of NPC disease contain lysosomes (even with SFN) how could a simple increase in lysosomal flux decrease cholesterol levels? It would seem important to quantify the number of lysosomes per cell in each condition to begin to disentangle differences in steady state number of lysosomes, number of new lysosomes, and number of lysosomes being exocytosed.

      Thank you for the suggestion. It is important to define the three states 1) original number of lysosomes, 2) number of new lysosomes, and 3) number of lysosomes being exocytosis. However, we have checked literature, so far it seems that there is no good method that could clearly differentiate the three states of lysosomes.

      (3) Lack of evidence supporting the authors' premise that "SFN could be a good therapeutic candidate for neuropathology in NPC disease".

      Suggestion was taken! We will investigate whether cholesterol was reduced by activation of TFEB by SFN in vivo to strength the point that SFN could be a potential therapeutic compound for NPC treatment. And to avoid confusion, we have removed this sentence.

      Reviewer #2 (Public review):

      Summary:

      This study presents a valuable finding that the activation of TFEB by sulforaphane (SFN) could promote lysosomal exocytosis and biogenesis in NPC, suggesting a potential mechanism by SFN for the removal of cholesterol accumulation, which may contribute to the development of new therapeutic approaches for NPC treatment.

      Strengths:

      The cell-based assays are convincing, utilizing appropriate and validated methodologies to support the conclusion that SFN facilitates the removal of lysosomal cholesterol via TFEB activation.

      Weaknesses:

      (1) The in vivo experiments demonstrate the therapeutic potential of SFN for NPC. A clear dose-response analysis would further strengthen the proposed therapeutic mechanism of SFN. Additional data supporting the activation of TFEB by SFN for cholesterol clearance in vivo would strengthen the overall impact of the study

      We understand the reviewer’s point. We examined two doses of SFN-30 and 50mg/kg. As shown in Fig.6, SFN (50mg/kg), but not 30mg/kg prevents a degree of Purkinje cell loss in the lobule IV/V of cerebellum, suggesting a dose-correlated preventive effect of SFN. In vivo experiments with higher concentrations of SFN and optimized dosage form of SFN were planned in the future study, but will not be included in this study.

      We will investigate whether cholesterol was cleared by activation of TFEB by SFN in vivo.

      (2) In Figure 4, the authors demonstrate increased lysosomal exocytosis and biogenesis by SFN in NPC cells. Including a TFEB-KO/KD in this assay would provide additional validation of whether these effects are TFEB-dependent.

      Thank you for this valuable suggestion. We will investigate whether SFN-evoked the lysosomal exocytosis is TFEB-dependent by using TFEB-KO cells.

      (3) For lysosomal pH measurement, the combination of pHrodo-dex and CF-dex enables ratiometric pH measurement. However, the pKa of pHrodo red-dex (according to Invitrogen) is ~6.8, while lysosomal pH is typically around 4.7. This discrepancy may account for the lack of observed lysosomal pH changes between WT and U18666A-treated cells. Notably, previous studies (PMID: 28742019) have reported an increase in lysosomal pH in U18666A-treated cells.

      We understand the reviewer’s point. But we used pHrodo™ Green-Dextran (P35368, Invitrogen), but not pHrodo red-dex to measure the lysosomal luminal acidity. According to the product information from Invitrogen, pHrodo Green-dex conjugates are non-fluorescent at neural pH, but fluorescence bright green at acidic pH ranges 4-9, such as those in endosomes and lysosomes. Therefore, pHrodo Green-dex can be used to monitor the acidity of lysosome (Hu, Li et al. 2022) . We also used LysoTracker Red DND-99 (Thermo Scientific, L7528) to measure lysosomal pH (Fig. 4G, H), which is consistent with results of pHrodo Green/CF measurement. Overall, in our hands, we have not detected pH change of lysosomes in U18666A-treated NPC1 cell models.

      (4) The authors are also encouraged to perform colocalization studies between CF-dex and a lysosomal marker, as some researchers may be concerned that NPC1 deficiency could reduce or block the trafficking of dextran along endocytosis.

      Suggestion was taken! We will examine the effect of NPC1 deficiency on dextran trafficking by studying the localization of CF-dex and Lamp1.

      (5) In vivo data supporting the activation of TFEB by SFN for cholesterol clearance would significantly enhance the impact of the study. For example, measuring whole-animal or brain cholesterol levels would provide stronger evidence of SFN's therapeutic potential.

      We really appreciate the reviewer’s suggestions. We will investigate whether cholesterol was cleared by activation of TFEB by SFN in vivo.

      Reviewer #3 (Public review):

      Summary:

      The authors demonstrate that activation of TFEB facilitates cholesterol clearance in cell models of Niemann-Pick type C (NPC). This is done through a variety of approaches including activation of TFEB by sulforaphane (SFN), a naturally occurring small-molecule TFEB agonist. SFN induces TFEB nuclear translocation and promotes lysosomal exocytosis. In an NPC mouse model, SFN dephosphorylates/activates TFEB in the brain and rescues the loss of Purkinje cells.

      Strengths:

      NPC is a severe disease and there is little in the way of treatment. The manuscript points towards some treatment options. However, the title, the title "Small-molecule activation of TFEB Alleviates Niemann-Pick Disease..." is far too strong and should be changed.

      Weaknesses:

      (1) The manuscript is extremely hard to read due to the writing; it needs careful editing for grammar and English.

      We will thoroughly check grammar to improve the manuscript.

      (2) There are a number of important technical issues that need to be addressed.

      We will address the technical issues mentioned in the following.

      (3) The TFEB influence on filipin staining in Figure 1A is somewhat subtle. In the mCherry alone panels there is a transfected cell with no filipin staining and the mCherry-TFEBS211A cells still show some filipin staining.

      We understand the reviewer’s point. We will investigate whether cholesterol is cleared by activation of TFEB by SFN in vivo.

      (4) Figure 1C is impressive for the upregulation of filipin with U18666A treatment. However, SFN is used at 15 microM. This must be hitting multiple pathways. Vauzour et al (PMID: 20166144) use SFN at 10 nM to 1microM. Other manuscripts use it in the low microM range. The authors should repeat at least some key experiments using SFN at a range of concentrations from perhaps 100 nM to 5 microM. The use of 15 microM throughout is an overall concern.

      We understand the reviewer’s point. See RESPONSE #1, previously we have shown that SFN (10–15 μM, 2–9 h) induces robust TFEB nuclear translocation in a dose- and time-dependent manner in HeLa GFP-TFEB stable cells as well as in other human cell lines without cytotoxicity (Li, Shao et al. 2021) . According to previous results, in this study, we chose SFN (15 μM) to examine its effect on cholesterol clearance. We will add the information in the discussion part. In this study, we will perform dose-response TFEB nuclear translocation in NPC model cells as well as cytotoxicity experiments to examine whether the concentrations of SFN used in various cell lines are toxic.

      References:

      Hu, M. Q., P. Li, C. Wang, X. H. Feng, Q. Geng, W. Chen, M. Marthi, W. L. Zhang, C. L. Gao, W. Reid, J. Swanson, W. L. Du, R. Hume and H. X. Xu (2022). "Parkinson's disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes.” Cell 185(13): 2292-+.

      Li, D., R. Shao, N. Wang, N. Zhou, K. Du, J. Shi, Y. Wang, Z. Zhao, X. Ye, X. Zhang and H. Xu (2021). “Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress.” Autophagy 17(4): 872-887.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02546

      Corresponding author: Woo Jae, Kim

      1. General Statements

      This is the second version of revision.

      After thoroughly reviewing the comments provided by the EMBO Journal reviewers, we found their feedback to be highly constructive and valuable for enhancing our manuscript without the need for additional experiments. For example, Reviewer 1 acknowledged that our "data are intriguing and some of the experiments are quite convincing," but suggested that the manuscript contained excessive data that required simplification. This sentiment was echoed by Reviewer 2. In response, we have completely reformatted our manuscript to eliminate unnecessary imaging quantification data and CrzR-related screening data. The reviewers noted the density of our experimental data, which has led us to focus on the SIFa to Crz-CrzR circuit mechanisms related to heart function and interval timing in future projects.

      Reviewer 2's comments were generally more moderate, and we successfully addressed all five of their points with detailed explanations and modifications to our manuscript. They positively remarked that "Overall, this highly interesting study advances our knowledge about the behavioral roles of SIFamide and contributes to an understanding of how motivated behavior such as mating is orchestrated by modulatory peptides." Additionally, Reviewer 3 accepted our manuscript without any further comments.

      In summary, we believe we have effectively addressed all concerns raised by Reviewers 1 and 2, resulting in a clearer manuscript that is more accessible to a broader audience.

      2. Point-by-point description of the revisions

      Reviewer #1

      General Comments: In this revision of their manuscript, Zhang et al have attempted to address most of the points raised by the reviewers, however, they have not assuaged my most important concerns. The manuscript contains a ton of information, but at times this is to the detriment of the narrative flow. I had a lot of trouble following the rationale of each experiment, and the throughline from one experiment to the next is not always obvious. The data are intriguing, and some of the experiments are quite convincing, but other experiments are either superfluous or have methodological issues. I will summarize the most acute issues below.

      • *Answer: Thank you for your thoughtful feedback and for acknowledging our efforts to address your previous comments. We appreciate your recognition of the intriguing nature of our data and the convincing aspects of our experiments. In this second revision, we have taken your concerns regarding the narrative flow and data overload to heart. We have completely reshaped our manuscript, significantly reducing unnecessary data, including the NP5270 data and overlapping quantification results that did not contribute meaningfully to the storytelling. Our goal was to streamline the presentation of our findings to enhance clarity and coherence, ensuring that each experiment clearly supports the overarching narrative. We believe these revisions will not only improve the readability of our manuscript but also allow readers to follow the rationale behind each experiment more easily. We are confident that this refined approach will make our contributions clearer and more impactful. Thank you once again for your constructive insights, which have been invaluable in guiding us toward a more focused and compelling presentation of our work.

      Comment 1. *The authors argue that genetic controls are unnecessary because they have been conducted in previously published papers. I am concerned with this argument, as it is good practice to repeat controls with each experiment. However, I am overall convinced by the basic phenotype indicating that panneuronal SIFaR knockdown eliminates the changes in mating duration associated with previous experience. As for the more restricted 24F06-GAL4, the phenotype is odd-the flies do actually change their mating duration, just in the opposite direction of controls. Doesn't this imply that these flies are still capable of "interval timing", and of changing their mating strategy following exposure to rivals or following sexual experience? *

      • *

      __ Answer:__ We appreciate the reviewer's critical comments regarding genetic control and the intriguing phenotypes we observed in specific genetic combinations. We fully agree with the reviewer and have repeated all genetic control experiments for this revision, confirming that our genetic controls consistently demonstrate intact LMD and SMD behaviors, as previously reported. These genetic control experiments have been included in Supplementary Information 1-2. We are grateful to the reviewer for the opportunity to reaffirm that LMD and SMD represent stable behavioral phenotypes suitable for genetically studying interval timing, supported by reproducible data.

      • *

      We acknowledge the reviewer's insightful comments about the exciting phenotype observed when SIFaR is knockdown which shows both singly reared and sexually experienced male show lengthened mating duration in contrast to normal LMD and SMD behaviors. Actually, we have observed such phenotype when specific neural circuits are disrupted such as when sNPF peptidergic signaling is disrupted in restricted neuronal population [4]. We are now investigating such phenotype as hypothesis as disinhibition. We explained this phenotype and about disinhibition in main text as below.

      In the spatial, the targeted reduction of SIFaR expression in the GAL424F06 neuronal subset resulted in a notable alteration of mating behavior. Both singly reared and sexually experienced flies exhibited an extended mating duration relative to naïve flies, contrary to the expected reduction. This observation indicates a deficit in the neural mechanism responsible for modulating mating duration, suggesting a disinhibition-like effect within the neural circuitry governing mating behavior. We have also previously observed a similar phenotype when sNPF peptidergic signaling is inhibited in specific neuronal circuits [62]. Disinhibition, characterized by the alleviation of inhibitory constraints, permits the activation of neural circuits that are ordinarily repressed. This process is instrumental in sculpting behavioral patterns and facilitating the sequential progression of behaviors. Through the orchestrated promotion of select neuronal activation and concurrent inhibition of competing neural routes, disinhibition empowers the brain with the ability to dynamically ascertain and preserve the requisite behavioral state, concurrently smoothing the transition to ensuing behavioral phases [63]. It is known that Drosophila neural circuits also exhibit disinhibition phenotypes in light preference and ethanol sensitization [64,65]. Further investigation is needed to uncover the underlying mechanisms of this disinhibition-like phenotype observed in LMD and SMD behaviors.

      This reversed phenotype strongly suggests a disruption in interval timing, as one would expect that if interval timing were normal and intact, male flies would decrease their mating duration in response to appropriate environmental changes. For instance, research has shown that patients with Parkinson's disease exhibit heterogeneity in temporal processing, leading to disrupted interval timing phenotypes [5]. Therefore, if male flies subjected to social isolation or sexual experience do not show a reduction in mating duration compared to control conditions, it indicates a potential disruption in their interval timing mechanisms. We appreciate the reviewer's encouragement to further explore this intriguing disinhibition-like phenotype, and we plan to investigate this aspect in our future projects.

      Comment 2. *I am glad the see the addition of data assessing the extent of SIFaR and CrzR RNAi knockdown; however, this has not completely addressed my concerns about interpretation of behavioral phenotypes. In both cases, the knockdown was assessed by qPCR using the very strong tub-GAL4 driver. mRNA levels are decreased but not nearly eliminated. Thus, when in line 177-178 the authors assert: "Consequently, we infer that the knockdown of SIFaR using the HMS00299 line nearly completely diminishes the levels of the SIFaR protein," the statement is not supported by the data. The qPCR results showed a knockdown at the mRNA level of ~50%. No assays were conducted to measure protein levels. The conclusions should be tempered to align with the data. Furthermore, it is not clear that knockdown is as successful with other drivers, which means that negative behavioral data must be interpreted with caution. For example, the lack of phenotype with repo-GAL4 driving SIFaR RNAi or elav-GAL4 driving CrzR RNAi could be due to a lack of efficient knockdown. This should be acknowledged. *

         __Answer:__ We appreciate the reviewer's critical observation regarding the efficiency of SIFaR knockdown. We fully agree that it is essential to confirm both for ourselves and our readers that the SIFaR knockdown phenotype is robust and convincing. At the outset of this project, we tested all available SIFaR-RNAi strains following established protocols within the fly community to ensure consistency in our findings. When we employed strong drivers such as tub-GAL4 and nSyb-GAL4 for SIFaR-RNAi knockdown, we observed that the flies failed to eclose and exhibited a lethal phenotype during the larval stage, which closely resembles the homozygous lethal phenotype seen in SIFaR mutants. This suggests that, in most cases, the effects of SIFaR knockdown can effectively mimic those of SIFaR mutations. To share our methodology and reinforce our findings, we have added clarifying statements in the main text as follows:
      

      "Employment of broad drivers, including the tub-GAL4 and the strong neuronal driver nSyb-GAL4, with HMS00299 line consistently results in 100% embryonic lethality (data not shown). This phenotype mirrors the homozygous lethality observed in the SIFaRB322 mutant."

      • *

      Due to the significant lethality phenotype observed, we conducted PCR analyses using a combination of tub-GAL80ts and SIFaR-RNAi. As detailed in Fig. 1E, we reared the flies at 22{degree sign}C to suppress RNAi expression and then shifted the temperature to 29{degree sign}C for just three days prior to performing PCR. While our PCR results indicate a 50% reduction in SIFaR levels, we believe that experiments conducted without the tub-GAL80ts system would likely demonstrate an even greater reduction in SIFaR expression. To clarify this point and provide additional context, we have included the following description in the main text:

      "The silencing of SIFaR mRNA was achieved at approximately 50% using the HMS00299 knockdown line in combination with tub-GAL80ts, with RNAi induction lasting for three days (bottom diagram in Fig. 1E). Notably, the same tub-GAL4 driver, when used without the tub-GAL80ts combination, resulted in embryonic lethality while still reducing SIFaR mRNA levels by 50% after three days of RNAi induction. This finding suggests that SIFaR knockdown using the HMS00299 line with GAL4 drivers is likely sufficient to elicit the observed LMD and SMD behaviors. This rationale underscores the effectiveness of our experimental approach and its potential implications for understanding the role of SIFaR in mating behaviors."

      We also concur with the reviewer that the absence of a behavioral phenotype associated with CrzR-RNAi may be due to inefficient RNAi knockdown. Consequently, we have included a description of this issue in the main text as follows:

      • *

      "It is important to consider that the 50% knockdown of SIFaR and CrzR may be sufficient to disrupt LMD and/or SMD behavior. However, the lack of phenotype with repo-GAL4 or elav-GAL4 could be due to a less efficient knockdown. This possibility highlights the need for cautious interpretation of negative behavioral data."

      Comment 3. *Regarding the issue of outcrossing, I am confused by the authors' statement: "To reduce the variation from genetic background, all flies were backcrossed for at least 3 generations to CS strain. For the generation of outcrosses, all GAL4, UAS, and RNAi lines employed as the virgin female stock were backcrossed to the CS genetic background for a minimum of ten generations. Notably, the majority of these lines, which were utilized for LMD assays, have been maintained in a CS backcrossed state for long-term generations subsequent to the initial outcrossing process, exceeding ten backcrosses." It's not clear what this means. Perhaps the authors could definitively state how many times each line was outcrossed. The genetic background is important because of 1) the lack of all controls, and 2) the variability of the behavioral phenotype. Often, the presence or absence of LMD or SMD appears to depend on the behavior of the control flies. When these flies show low mating duration, there is typically not a reduction following sexual experience or group raising. Could these differences derive from genetic background or transgenic insertion effects? *

      Answer: We appreciate the reviewer's concern regarding the potential for confusion stemming from our descriptions of the genetic background. As the reviewer noted, we have published multiple papers on LMD and SMD behaviors, and we have conducted our experiments with careful attention to controlling the genetic background [1-3,6-8]. In response to the reviewer's comments about the importance of genetic control and background, we have completed all necessary genetic control experiments and confirmed that all our flies have been backcrossed for more than ten generations to the Canton-S (CS) strain. We believe that we have adequately addressed the reviewer's concerns regarding potential differences arising from genetic background or transgenic insertion effects. To provide readers with more detailed information about our genetic background, we have added a paragraph in the MATERIALS AND METHODS section as follows:

      "The CS background was selected as the experimental background due to its well-characterized and consistent LMD and SMD behaviors. To ensure that genetic variation did not confound our results, all GAL4, UAS, and RNAi lines employed in our assays were rigorously backcrossed into the CS strain, often exceeding ten generations of backcrossing. This approach was undertaken to isolate the effects of our genetic manipulations from those of genetic background. We assert that the extensive backcrossing to the CS background, in concert with the internal control in LMD and SMD, provides a stable platform for the accurate interpretation of the LMD and SMD phenotypes observed in our experiments."

      Comment 4. *I continue to have substantial concerns about the thresholding method used across many experiments to quantify overlap, and then to claim that this indicates that synaptic connections are being made between different neuronal populations. The degree of overlap will depend on factors including the settings during imaging (was care taken to prevent pixel saturation?). It is also not clear to me from the methods whether analysis was done on single confocal images or on projections. The images shown in the figures look like maximum projections of a confocal stack. Overlap would have to be assessed on individual confocal sections-it is possible that this is what was done for analysis but not clear from the description in the methods. Furthermore, a lot of figure space is dedicated to superfluous information. For example, in Figure 1F-J, there is a massive amount of space dedicated to assessing the agree of overlap between red stinger and CD4GFP, each driven from the same SIFaR2A driver, and further assessing what percentage of the CD4GFP signal overlaps with nc82, with the apparent goal of showing that a lot of the SIFaR signal is at active zones. This information does little to drive the narrative forward, and is quite confusing to read. Finally, the confocal images are generally too small to actually assess. *

         __Answer:__ We appreciate the reviewer's concerns regarding our imaging quantification methods. We recognize the importance of providing a clear and transparent methodology for both readers and the broader scientific community. Instead of using maximum projection of confocal images, we employed a projection method that incorporates the standard deviation function available in ImageJ. Based on our experience, this approach yields more reliable quantification results, allowing for a more accurate assessment of our data. To ensure clarity and reproducibility, we have detailed our methods in the MATERIALS AND METHODS section as follows:
      
      • *

      "The quantification of the overlap was performed using confocal images with projection by standard deviation function provided by ImageJ to ensure precise measurements and avoid pixel saturation artifacts."

      We appreciate the reviewer's suggestion regarding the inclusion of image quantification data for overlapping regions, which may not be essential to the logical flow of our narrative and could lead to confusion for readers. In response, we have removed nearly all of the quantification data related to overlapping regions, retaining only those that we consider critical for the paper. Currently, only Fig. S3B-E remains, as it is important for illustrating how SIFa neuronal arborization interacts with SIFaR neurons in the central nervous system.

      Additionally, we fully agree with the reviewer that the overall size of the confocal images was too small for effective assessment. To address this concern, we have enlarged all confocal images and increased the spacing in the figures. We believe these improvements will enhance the clarity of our manuscript and facilitate a better understanding of our findings.

      • *

      Comment 5. *In general, the figures are still very cluttered, with panels too close together, and the labels are hard to read. *

      Answer: We thank the reviewer for their valuable feedback regarding the clarity of our figures. In response to their concern, we have enlarged the figures to enhance readability and ensure that the panels are more distinct. We believe these adjustments will significantly improve the viewer's ability to interpret the data. We appreciate the reviewer's attention to detail, which has helped us to refine the presentation of our findings.

      Comment 6. *There are no methodological details on how the VFB was used. The authors have not addressed my concern that they are showing only the neuronal skeleton (rather than the actual site of synapses). They are simply identifying all locations where the neuronal skeleton overlaps an entire brain region, and suggesting that these represent synapses. Many papers use the VFB to denote the actual location of synapses, which should be done in Figures 3B and S4A. *

      Answer: We appreciate the reviewer's constructive comments regarding the methodological details of using VFB data. We fully agree that we cannot draw definitive conclusions about SIFa projections to specific regions based solely on neuronal skeleton data, which do not indicate the actual locations of synapses. To address this concern, we have made it clear to readers that the VFB skeleton data serves only as a preliminary indication of potential SIFa projections to GA, FB, and AL.

      To confirm the presence of actual synapses from SIFa neurons, we conducted a thorough analysis using FlyWire data, which validated our findings from VFB. By integrating insights from VFB with the detailed synaptic mapping provided by FlyWire, we can confidently assert the functional relevance of these connections within the context of SIFa neuronal activity. This comprehensive approach not only bolsters our conclusions but also enhances our understanding of how SIFa neurons interact within the broader neural circuitry. We believe this rationale highlights the significance of our work in elucidating the complex relationships among these neuronal populations. We have detailed our findings in the main text as follows:

      "We utilized the "Virtual Fly Brain (VFB)" platform, an interactive tool designed for exploring neuronal connectivity, to gain insights into the connectivity of SIFa neurons with four other neurons, specifically GA, FB, and AL (Fig. 3B and Fig. S4B) [74]. While VFB provides valuable information, it does not offer precise locations of synapses originating from SIFa neurons. To address this limitation, we incorporated data from the FlyWire connectome, which allowed us to confirm that SIFa projections indeed form actual synapses with GA, AL, FB, and SMP (Fig. S3F and S3G) [75]. This multi-faceted approach enhances the robustness of our findings by integrating different data sources to validate neuronal connections."

      • *

      Comment 7. *The changes in GRASP and CaLexA with experience are very interesting, and suggest a substantial rearrangement of synaptic connectivity associated with changes in mating duration following group rearing or female exposure. I am still concerned, however, that the nsyb and tGRASP images look so different. I wouldn't expect them to be identical, but it is puzzling that the nsyb-GRASP data show connections in a few discrete brain areas, while the tGRASP data show connections in a much larger overall brain area, but curiously not in the major regions seen with nsyb-GRASP (ie PI, FB and GA). Shouldn't the tGRASP signal appear in all the places that the nsyb-GRASP does? For CaLexA and GRASP data, the methods should indicate the timing of the dissections and staining relative to the group/sexual experience. *

      Answer: We appreciate the reviewer's constructive comments regarding our GRASP data, which indeed reveal an intriguing neural plasticity phenotype, as the reviewer noted. In our previous response, we suggested that the observed differences may be attributed to the distinct SIFa-GAL4 strains utilized, as described in another manuscript focused on SIFa inputs [9]. In that manuscript, we classified the four SIFa neurons into two groups: SIFaDA (dorsal-lateral) and SIFaVP (ventral-posterior). The SIFa2A-GAL4 specifically labels only the SIFaVP neurons, while the SIFa-PT driver labels all four neurons. We acknowledge that we did not clearly communicate this distinction to the reviewer or our readers, and we apologize for any confusion this may have caused. To rectify this oversight, we have added a detailed explanation of these differences in the main text as follows:

      "The subtle differences in GRASP signals observed in Fig. 3A may stem from the distinct expression patterns of the SIFa2A-lexA and GAL4SIFa.PT drivers. We would like to emphasize that the SIFa2A driver labels only a subset of SIFa neurons in other regions (Kim 2024)."

      We recognize that a clear and transparent methodology is essential for generating reproducible data. In response to the reviewer's suggestion, we have revised our MATERIALS AND METHODS section to include more detailed descriptions of the dissection conditions. This enhancement aims to provide readers with the necessary information to replicate our experiments effectively.

      "To ascertain calcium levels and synaptic intensity from microscopic images, we dissected and imaged five-day-old flies of various social conditions and genotypes under uniform conditions. For group reared (naïve) flies, the flies were reared in group condition and dissect right after 5 days of rearing without any further action. For single reared flies, the flies were reared in single condition and dissect at the same time as group reared flies right after 5 days of rearing without any further action. For sexual experienced flies, the flies were reared in group condition after 4 days of rearing and will be given virgins to give them sexual experience for one day, those flies will also be dissected at the same time as group and single reared flies after one day."

      • *

      Comment 8. *The calcium imaging data are odd. In most cases, the experimental flies don't actually show an increase in calcium levels but rather a lack of a decrease that is present in the ATR- controls. Also, in the cases where they argue for an excitatory affect of SIF neuron stimulation, the baseline signal intensity appears higher in ATR- controls compared to ATR+ experimental flies (eg Fig 5L, 6O), while it is significantly higher in ATR+ flies compared to ATR- controls when the activation results in decreased calcium signals. Perhaps more details on how these experiments were conducted and whether data were normalized in some way would help to clarify this. *

      Answer: Thank you for your valuable feedback. We appreciate your careful analysis of our calcium imaging data and have addressed your concerns below:

      In our experiments, we observed that ATR+ flies maintained relatively stable calcium levels, whereas ATR- controls exhibited a gradual decrease. Under confocal imaging, GFP signals typically decrease over time, which we observed in ATR- controls. However, ATR+ flies did not exhibit this decline. To better convey this observation, we have refined the language in the manuscript. Specifically, we now describe this as a tendency to sustain the activity of Crz neurons in the OL and AG regions (Fig. 6K-M, Fig. S6G-I). This is supported by the sustained intracellular calcium activity in ATR+ flies compared to the gradual decline to baseline levels observed in ATR- controls (Fig. 6K-M).

      Baseline signal intensity differences: You correctly noted that in some cases, the baseline signal intensity appears higher in ATR- controls compared to ATR+ flies. These differences are likely due to technical factors, such as variations in the distance between the imaged brain and the objective lens. Even minor positional shifts in the brain (forward or backward) can affect the observed signal intensity.

      Our analyses focus on relative changes in fluorescence intensity within the same sample, which we present as line graphs to highlight trends rather than absolute values. However, we acknowledge that showing the magnitude of relative values instead of absolute values may have caused some confusion. We have revised the images to better align with our conclusions, ensuring that the adjustments do not affect the observed relative changes.

      Normalization and experimental details: The calcium imaging data were normalized to ΔF/F to account for differences in baseline fluorescence intensity. However, we recognize that further clarification of the normalization process and experimental setup is essential. We have expanded the methods section to include detailed descriptions of data acquisition, normalization steps, and statistical analyses.

      As the reviewer correctly noted, calcium signals in ATR+ flies are generally higher than those in ATR- flies. However, it appears that the calcium levels exhibit a maintained response rather than a dramatic increase compared to the control ATR- condition, particularly in the case shown in Fig. 6K, which illustrates SIFa-to-Crz signaling. We believe this observation may reflect the actual physiological conditions under which SIFa influences SIFaR neurons to sustain activity during activation. We have included our interpretation of these findings in the main text as follows:

      "Upon optogenetic stimulation of SIFa neurons, we observed a tendency to maintain the activity of Crz neurons in OL and AG regions (Fig. 6K-M, Fig. S6H-J), evidenced by a sustained activity in intracellular Ca2+ levels that persisted in a high level compared to control ATR- condition which shows gradual declining to baseline levels (Fig. 6K-M). In contrast to the OL and AG regions, the cells in the upper region of the SIP consistently show a decrease in Ca2+ levels following stimulation of the SIFa neurons (Fig. 6N-P)."

      To enhance readers' understanding of our calcium imaging results, we have reformatted our GCaMP data for improved clarity and included additional details in the MATERIALS AND METHODS section regarding the quantification of GCaMP imaging methods. Furthermore, as the reviewer correctly noted, discrepancies in baseline activity were due to our error in presenting the baseline data. We have now corrected this oversight accordingly.

      • *

      Comment 9. *The models in Fig 4 J and T show data from Song et al, though I could not find a citation for this. I would omit this part of the model since these data are not discussed at all in the manuscript. *

      Answer: We appreciate the reviewer for correctly identifying our oversight in failing to properly cite Song et al.'s paper. This error occurred partly because the preprint was not available at the time we submitted our manuscript. We now have a preprint for Song et al.'s paper, which discusses the contributions of SIFa neurons to various energy balance behaviors, and we plan to submit this paper back-to-back with our current submission to PLOS Biology. We have briefly cited Song et al.'s work in the manuscript; however, we have removed references to it from Fig. 4J and T to avoid any potential confusion for readers.

      Comment 10. *The graphs for the SCOPE data (eg Figure 8I-L) are still too small to make sense of. *

      Answer: We enlarged the tSNE plot generated from the SCOPE data.

      • *

      Comment 11. The rationale behind including the data in Figure 9 is not well explained. I would omit this data to help streamline and focus the manuscript.

      Answer: We fully understand and agree with the reviewer's concerns, and we have removed all previous versions of Figure 9 from the manuscript to prevent any confusion regarding the storyline.

      • *

      Comment 12. *The single control group is still being duplicated in two different graphs but with different names in each graph. The authors updated figure caption hints at this but does not make it explicit. At the very least, these should be given the same name across all graphs, as is done, for example, in the CaLexA experiments in Figure 4B-C. *

      Answer: We concur with the reviewer and have changed the label for all "group" conditions to "naïve" in all figures.

      • *

      Comment 13. *Lines 640-641: Moreover, the pacemaker function is essential for the generation of interval timing capabilities (Meck et al, 2012; Matell, 2014; Buhusi & Meck, 2005), with the heart being recognized as the primary pacemaker organ within the animal body". This is an intriguing idea, however, I attempted to look at the cited references and don't see any claim about the heart being involved in interval timing. I could not find a paper matching the citation of Matell 2014. Meck et al 2012 is an introduction to a Frontiers in Integrative Neuroscience Research Topic and does not mention the heart, nor does the Buhusi and Meck 2005 paper. Perhaps there is a more suitable reference to make the assertion that the fly's interval timer would be affected by changes in heart rate. My suggestion would be to simplify the manuscript, focusing on the most robust findings-the behavioral effect of SIFaR knockdown, the GRASP and CaLexA data showing differences following group rearing or female exposure, and the effect of Crz knockdown in SIFaR neurons. Other details could be included but would have to be verified with more rigorous experiments. *

      __ Answer:__ We appreciate the reviewer's interest in our exploration of the role of heart function in interval timing. While we found that knocking down CrzR in the heart specifically disrupts LMD behavior, we agree that our manuscript needs to be streamlined for clarity. As a result, we have eliminated all CrzR-RNAi knockdown data except for the oenocyte, neuronal and glial knockdown data presented in Fig. S8C-H. This decision was made to ensure a more focused comparison with the SIFaR knockdown experiments shown in Fig. 1. We are dedicated to further investigating the role of Crz-CrzR in heart function and its influence on interval timing in a future project. This approach allows us to maintain clarity in our current manuscript while laying the groundwork for more comprehensive studies ahead.

      In line with the reviewer's suggestions, we have simplified our manuscript by eliminating unnecessary data, such as overlapping image quantification and CrzR-RNAi screening, allowing us to focus on SIFaR knockdown and GRASP, as well as CaLexA with GCaMP imaging. We are grateful to the reviewer for providing us with the opportunity to delineate the role of CrzR in heart function related to LMD as a significant future project. We believe that our manuscript has been greatly improved by the reviewer's constructive feedback.

      • *

      __ __


      Reviewer #2

      General Comments:* The authors investigate mating behavior in male fruit flies, Drosophila melanogaster, and test for a role of the SIFamide receptor (SIFaR) in this type of behavior, in particular mating duration in dependence of social isolation and prior mating experience. The anatomy of SIFamide-releasing neurons in comparison with SIFamide receptor-expressing neurons is characterized in a detail-rich manner. Isolating males or exposing them to mating experience modifies the anatomical organization of SIFamidergic axon termini projecting onto SIFamide receptor-expressing neurons. This structural synaptic plasticity is accompanied by changes in calcium influx. Lastly, it is reported that corazonin-releasing neurons are modulated by SIFamide releasing neurons and impact the duration of mating behavior.

      Overall, this highly interesting study advances our knowledge about the behavioral roles of SIFamide, and contributes to an understanding how motivated behavior such as mating is orchestrated by modulatory peptides. The manuscript has some points that are less convincing.*

      __ Answer:__ We appreciate the reviewer's positive feedback regarding our investigation into the role of the SIFamide receptor (SIFaR) in mating behavior in male Drosophila melanogaster. We are pleased that the detailed characterization of SIFamide-releasing neurons and their anatomical changes in response to social isolation and mating experience has been recognized as a valuable contribution to the understanding of synaptic plasticity and its impact on behavior. We are also grateful that the reviewer described our manuscript as a "highly interesting study" that advances knowledge about the behavioral roles of SIFamide and contributes to the understanding of how motivated behaviors, such as mating, are orchestrated by modulatory peptides. We sincerely thank the reviewer for these encouraging comments about our work.

      We acknowledge the reviewer's concerns about certain aspects of our manuscript that may be less convincing. We are committed to addressing these points thoroughly to strengthen our arguments and enhance the clarity of our findings. In response to the feedback, we have made several revisions throughout the manuscript, including clarifying our methodology, enhancing the presentation of our data, and providing additional context where needed. We believe these changes will improve the overall quality of the manuscript and make our conclusions more compelling. Thank you for your thoughtful review, and we look forward to your further insights.

      Comment 1. *It remains unclear why the authors link the differentially motivated duration of mating behavior with the psychological concept of interval timing. This distracts from the actually interesting neurobiology and is not necessary to make the study interesting. The study deals with the modulation of mating behavior by SIFamide. The abstraction that SIFamide plays a role in the neuronal calculation of time intervals for the perception of time sequenc es is not convincing in itself. *

      • Answer: We appreciate the reviewer's thoughtful comments regarding our conclusion that links SIFamide to interval timing in mating behavior. We recognize that our data primarily indicate that SIFamide is essential for normal mating duration and influences the motivation-dependent aspects of this behavior. We also acknowledge the need for more robust evidence to establish a clearer connection between these findings and interval timing. Recent research by Crickmore et al. has provided valuable insights into how mating duration in Drosophila *serves as an effective model for examining changes in motivation over time as behavioral goals are achieved. For example, around six minutes into mating, sperm transfer occurs, resulting in a significant shift in the male's nervous system, where he no longer prioritizes continuing the mating at the expense of his own survival. This pivotal change is mediated by four male-specific neurons that release the neuropeptide Corazonin (Crz). When these Crz neurons are inhibited, sperm transfer does not take place, and as a result, the male fails to reduce his motivation, leading to matings that can extend for hours instead of the typical duration of approximately 23 minutes [10].

      Recent research conducted by Crickmore et al. has secured NIH R01 funding (Mechanisms of Interval Timing, 1R01GM134222-01) to investigate mating duration and sperm transfer timing in Drosophila as a genetic model for understanding interval timing. Their study emphasizes how fluctuations in motivation over time can affect mating behavior, particularly noting that significant behavioral changes occur during mating. For instance, around six minutes into the mating process, sperm transfer takes place, which corresponds with a notable decrease in the male's motivation to continue mating [10]. These findings indicate that mating duration serves not only as an endpoint for behavior but may also reflect fundamental mechanisms associated with interval timing.

         We believe that by leveraging the robustness and experimental tractability of these findings, along with our own work on SIFamide's role in mating behavior, we can gain deeper insights into the molecular and circuit mechanisms underlying interval timing. We will revise our manuscript to clarify this relationship and emphasize how SIFamide may interact with other neuropeptides and neuronal circuits involved in motivation and timing.
      
         In addition to the efforts of Crickmore's group to connect mating duration with a straightforward genetic model for interval timing, we have previously published several papers demonstrating that LMD and SMD can serve as effective genetic models for interval timing within the fly research community. For instance, we have successfully connected SMD to an interval timing model in a recently published paper [3], as detailed below:
      

      "We hypothesize that SMD can serve as a straightforward genetic model system through which we can investigate "interval timing," the capacity of animals to distinguish between periods ranging from minutes to hours in duration.....

      In summary, we report a novel sensory pathway that controls mating investment related to sexual experiences in Drosophila. Since both LMD and SMD behaviors are involved in controlling male investment by varying the interval of mating, these two behavioral paradigms will provide a new avenue to study how the brain computes the 'interval timing' that allows an animal to subjectively experience the passage of physical time [11-16]."

         Lee, S. G., Sun, D., Miao, H., Wu, Z., Kang, C., Saad, B., ... & Kim, W. J. (2023). Taste and pheromonal inputs govern the regulation of time investment for mating by sexual experience in male Drosophila melanogaster. *PLoS Genetics*, *19*(5), e1010753.
      
         We have also successfully linked LMD behavior to an interval timing model and have published several papers on this topic recently [6-8].
      
         Sun, Y., Zhang, X., Wu, Z., Li, W., & Kim, W. J. (2024). Genetic Screening Reveals Cone Cell-Specific Factors as Common Genetic Targets Modulating Rival-Induced Prolonged Mating in male Drosophila melanogaster. *G3: Genes, Genomes, Genetics*, jkae255.
      
         Zhang, T., Zhang, X., Sun, D., & Kim, W. J. (2024). Exploring the Asymmetric Body's Influence on Interval Timing Behaviors of Drosophila melanogaster. *Behavior Genetics*, *54*(5), 416-425.
      
         Huang, Y., Kwan, A., & Kim, W. J. (2024). Y chromosome genes interplay with interval timing in regulating mating duration of male Drosophila melanogaster. *Gene Reports*, *36*, 101999.
      
         Finally, in this context, we have outlined in our INTRODUCTION section below how our LMD and SMD models are related to interval timing, aiming to persuade readers of their relevance. We hope that the reviewer and readers are convinced that mating duration and its associated motivational changes such as LMD and SMD provide a compelling model for studying the genetic basis of interval timing in *Drosophila*.
      

      "The dimension of time is the fundamental basis for an animal's survival. Being able to estimate and control the time between events is crucial for all everyday activities [25]. The perception of time in the seconds-to-hours range, referred to as 'interval timing', is involved in foraging, decision making, and learning via activation of cortico-striatal circuits in mammals [26]. Interval timing requires entirely different neural mechanisms from millisecond or circadian timing [27-29]. There is abundant psychological research on time perception because it is a universal cognitive dimension of experience and behavioral plasticity. Despite decades of research, the genetic and neural substrates of temporal information processing have not been well established except for the molecular bases of circadian timing [30,31]. Thus, a simple genetic model system to study interval timing is required. Considering that the mating duration in fruit flies, which averages approximately 20 minutes, is well within the range addressed by interval timing mechanisms, this behavioral parameter provides a relevant context for examining the neural circuits that modulate the Drosophila's perception of time intervals. Such an investigation necessitates an understanding of the extensive neural and behavioral plasticity underlying interval timing [32-37]."

      We would like to highlight that many researchers are currently working to bridge the gap between interval timing as a purely psychological concept and its neurobiological underpinnings, as illustrated in the following articles [15,17-20]. We appreciate the reviewer's concerns regarding the relationship between mating duration and interval timing. However, we believe that our LMD and SMD model can effectively bridge the gap between psychological concepts and neurobiological mechanisms using a straightforward genetic model organism. By employing Drosophila as our model, we aim to elucidate the underlying neural circuits that govern these behaviors, thereby contributing to a deeper understanding of how interval timing is represented in both psychological and biological contexts.

      Matell, M. S. Neurobiology of Interval Timing. Adv. Exp. Med. Biol. 209-234 (2014) doi:10.1007/978-1-4939-1782-2_12.

      Matell, M. S. & Meck, W. H. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn. Brain Res. 21, 139-170 (2004).

      Merchant, H. & Lafuente, V. de. Introduction to the neurobiology of interval timing. Adv Exp Med Biol 829, 1-13 (2014).

      Golombek, D. A., Bussi, I. L. & Agostino, P. V. Minutes, days and years: molecular interactions among different scales of biological timing. Philosophical Transactions Royal Soc B Biological Sci 369, 20120465 (2014).

      Balcı, F. & Toda, K. Editorial: Psychological and neurobiological mechanisms of time perception and temporal information processing: insight from novel technical approaches. Front. Behav. Neurosci. 17, 1208794 (2023).

      Comment 2. *For all behavioral experiments, genetic controls should always be conducted. That is, both the heterozygous Gal4-line as well as the heterozygous UAS-line should be used as controls. This is laborious, but important and common standard. The authors often report data only for offspring from genetc crosses in which UAS-lines and Gal4-lines are combined (e.g. figure S1). This is not sufficient. *

      • *Answer: We are grateful for the reviewer's constructive suggestions regarding the genetic control experiments. In response to similar concerns raised by another reviewer, we have conducted all necessary genetic control experiments and included the results in Supplementary Information 1-2. We hope that this thorough effort will demonstrate to both the reviewer and readers that the LMD and SMD behaviors represent stable and reproducible phenotypes for investigating the genetic components of interval timing.

      Comment 3. *There are quite a lot of citations of preprints, including preprints from the authors's own lab. It seems inappropriate to cite non-peer reviewed preprints in order to present the basic principles of the study (interval timing in flies) as recognized knowledge. In general, it is unclear whether the information presented in these multiple preprints will turn out to be credible and acceptable. *

      • *Answer: We concur with the reviewer and have removed most of the preprint material, retaining only one preprint that discusses SIFa function, which has been co-submitted with this manuscript.

      Comment 4. *Anatomical images are often very small and not informative. For example, figure S1 O, R, S and U shows small images of fly brains and ventral nerve chords that do not convincingly describe the expression of fluorescent proteins. The choice of a threshold to quantify fluorescence seems arbitrary. It is also not clear what the quantification "83% of brain and 71% of VNC SIFaR+ neurons" actually tells us. This quantification does not rely on counting neurons (such as 83% of neurons), but only shows how fluorescence in these neurons overlaps with an immunostaining of an ubiquitous active zone protein. The same is true for figure S2 or S3: overlapping brain areas do not inform you about numbers of cells, as stated in the text. *

      Answer: We appreciate the reviewer's concerns regarding our imaging quantification methods. In response to similar questions raised by another reviewer, we have thoroughly reformatted our methods section and eliminated much of the overlapping data that appeared unnecessary for this paper. We recognize the importance of providing a clear and transparent methodology for both readers and the broader scientific community. Instead of using maximum projection of confocal images, we employed a projection method that incorporates the standard deviation function available in ImageJ. Based on our experience, this approach yields more reliable quantification results, allowing for a more accurate assessment of our data. To ensure clarity and reproducibility, we have detailed our methods in the MATERIALS AND METHODS section as follows:

      • *

      "The quantification of the overlap was performed using confocal images with projection by standard deviation function provided by ImageJ to ensure precise measurements and avoid pixel saturation artifacts."

      We appreciate the reviewer's suggestion regarding the inclusion of image quantification data for overlapping regions, which may not be essential to the logical flow of our narrative and could lead to confusion for readers. In response, we have removed nearly all of the quantification data related to overlapping regions, retaining only those that we consider critical for the paper. Currently, only Fig. S3B-E remains, as it is important for illustrating how SIFa neuronal arborization interacts with SIFaR neurons in the central nervous system.

      Additionally, we fully agree with the reviewer that the overall size of the confocal images was too small for effective assessment. To address this concern, we have enlarged all confocal images and increased the spacing in the figures. We believe these improvements will enhance the clarity of our manuscript and facilitate a better understanding of our findings.

      Comment 5. *The authors have consistently confused the extensive overlap of neuronal processes (dendrites and presynaptic regions) across large brain areas with synaptic connections. One cannot infer functional synaptic connectivity from the overlap of these fluorescent signals. *

      Answer: We appreciate the reviewer's feedback and, in light of similar comments from another reviewer, we have removed most of the DenMark and syt.eGFP data, retaining only Fig. 3A. We are grateful for the constructive suggestions, which have significantly enhanced our manuscript. We believe that these revisions have clarified the narrative for readers, allowing for a more focused exploration of SIFaR's role in synaptic plasticity and neuronal orchestration.

      Reviewer #3

      General Comments: In this revised manuscript, the authors have fully and satisfactorily addressed my comments on the previous version. I recommend publication of this manuscript.

      __ Answer:__ We would like to extend our heartfelt thanks for the careful consideration and positive assessment of our revised manuscript. Your insightful feedback has been instrumental in shaping the final version of our work, and we are delighted to hear that our revisions have met your expectations.

      Your dedication to ensuring the quality and rigor of the scientific literature is truly commendable, and we are immensely grateful for the time and effort you have devoted to reviewing our paper. Your support for publication is a significant encouragement to us and validates the hard work we have put into addressing the issues you raised.

      Please accept our sincere appreciation for your professional and constructive approach throughout the review process. We look forward to the possibility of contributing to the scientific community through the dissemination of our research.

      REFERENCES

      1. Kim WJ, Jan LY, Jan YN. Contribution of visual and circadian neural circuits to memory for prolonged mating induced by rivals. Nat Neurosci. 2012;15: 876-883. doi:10.1038/nn.3104
      2. Kim WJ, Jan LY, Jan YN. A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating. Neuron. 2013;80: 1190-1205. doi:10.1016/j.neuron.2013.09.034
      3. Lee SG, Sun D, Miao H, Wu Z, Kang C, Saad B, et al. Taste and pheromonal inputs govern the regulation of time investment for mating by sexual experience in male Drosophila melanogaster. PLOS Genet. 2023;19: e1010753. doi:10.1371/journal.pgen.1010753
      4. Zhang X, Miao H, Kang D, Sun D, Kim WJ. Male-specific sNPF peptidergic circuits control energy balance for mating duration through neuron-glia interactions. bioRxiv. 2024; 2024.10.17.618859. doi:10.1101/2024.10.17.618859
      5. Merchant H, Luciana M, Hooper C, Majestic S, Tuite P. Interval timing and Parkinson's disease: heterogeneity in temporal performance. Exp Brain Res. 2008;184: 233-248. doi:10.1007/s00221-007-1097-7
      6. Sun Y, Zhang X, Wu Z, Li W, Kim WJ. Genetic Screening Reveals Cone Cell-Specific Factors as Common Genetic Targets Modulating Rival-Induced Prolonged Mating in male Drosophila melanogaster. G3: Genes, Genomes, Genet. 2024; jkae255. doi:10.1093/g3journal/jkae255
      7. Zhang T, Zhang X, Sun D, Kim WJ. Exploring the Asymmetric Body's Influence on Interval Timing Behaviors of Drosophila melanogaster. Behav Genet. 2024; 1-10. doi:10.1007/s10519-024-10193-y
      8. Huang Y, Kwan A, Kim WJ. Y chromosome genes interplay with interval timing in regulating mating duration of male Drosophila melanogaster. Gene Rep. 2024; 101999. doi:10.1016/j.genrep.2024.101999
      9. Kim WJ, Song Y, Zhang T, Zhang X, Ryu TH, Wong KC, et al. Peptidergic neurons with extensive branching orchestrate the internal states and energy balance of male Drosophila melanogaster. bioRxiv. 2024; 2024.06.04.597277. doi:10.1101/2024.06.04.597277
      10. Thornquist SC, Langer K, Zhang SX, Rogulja D, Crickmore MA. CaMKII Measures the Passage of Time to Coordinate Behavior and Motivational State. Neuron. 2020;105: 334-345.e9. doi:10.1016/j.neuron.2019.10.018
      11. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6: 755-765. doi:10.1038/nrn1764
      12. Merchant H, Harrington DL, Meck WH. Neural Basis of the Perception and Estimation of Time. Annu Rev Neurosci. 2012;36: 313-336. doi:10.1146/annurev-neuro-062012-170349
      13. Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the Internal Clock: First- and Second-Order Principles of Subjective Time. Annu Rev Psychol. 2013;65: 743-771. doi:10.1146/annurev-psych-010213-115117
      14. Rammsayer TH, Troche SJ. Neurobiology of Interval Timing. Adv Exp Med Biol. 2014; 33-47. doi:10.1007/978-1-4939-1782-2_3
      15. Golombek DA, Bussi IL, Agostino PV. Minutes, days and years: molecular interactions among different scales of biological timing. Philosophical Transactions Royal Soc B Biological Sci. 2014;369: 20120465. doi:10.1098/rstb.2012.0465
      16. Jazayeri M, Shadlen MN. A Neural Mechanism for Sensing and Reproducing a Time Interval. Curr Biol. 2015;25: 2599-2609. doi:10.1016/j.cub.2015.08.038
      17. Balcı F, Toda K. Editorial: Psychological and neurobiological mechanisms of time perception and temporal information processing: insight from novel technical approaches. Front Behav Neurosci. 2023;17: 1208794. doi:10.3389/fnbeh.2023.1208794
      18. Gür E, Duyan YA, Arkan S, Karson A, Balcı F. Interval timing deficits and their neurobiological correlates in aging mice. Neurobiol Aging. 2020;90: 33-42. doi:10.1016/j.neurobiolaging.2020.02.021
      19. Merchant H, Lafuente V de. Introduction to the neurobiology of interval timing. Adv Exp Med Biol. 2014;829: 1-13. doi:10.1007/978-1-4939-1782-2_1
      20. Matell MS. Neurobiology of Interval Timing. Adv Exp Med Biol. 2014; 209-234. doi:10.1007/978-1-4939-1782-2_12
    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      The article investigates the role of the neuropeptide SIFa and its receptor SIFaR in regulating two distinct mating duration behaviors in male Drosophila melanogaster, Longer-Mating-Duration (LMD) and Shorter-Mating-Duration (SMD). The study reveals that SIFaR expression in specific neurons is required for both behaviors. It shows that social context and sexual experience lead to synaptic reorganization between SIFa and SIFaR neurons, altering internal brain states. The SIFa-SIFaR/Crz-CrzR neuropeptide relay pathway is essential for generating these behaviors, with Crz neurons responding to SIFa neuron activity. Furthermore, CrzR expression in non-neuronal cells is critical for regulating LMD and SMD behaviors. The study utilizes neuropeptide RNAi screening, chemoconnectome (CCT) knock-in, and genetic intersectional methods to elucidate these findings.

      Major Comments

      • Are the key conclusions convincing? The key conclusions are intriguing but require more robust data to be fully convincing. While the study presents compelling evidence for the involvement of SIFa and SIFaR in mating behaviors, additional experiments are needed to firmly establish the proposed mechanisms.
      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? The authors should qualify certain claims as preliminary or speculative. Specifically, the proposed SIFa-SIFaR/Crz-CrzR neuropeptide relay pathway is only investigated via imaging approach. More experiments using behavioral tests are needed to confirm that Crz relays the SIFa signaling pathway. For example, Crz-Gal4>UAS-SIFaR RNAi should be done to show that SIFaR+ Crz+ cells are necessary for LMD and SMD.
      • Would additional experiments be essential to support the claims of the paper? Yes, additional experiments are essential. Detailed molecular and imaging studies are needed to support claims about synaptic reorganization. For example:
        • More controls are needed for RNAi and Gal80ts experiments, such as Gal4-only control, RNAi-only control, etc.
        • Using synaptic markers and high-resolution imaging to observe synaptic changes directly.
        • Electrophysiological recordings from neurons expressing SIFa and SIFaR to analyze their functional connectivity and activity patterns.
      • Are the suggested experiments realistic in terms of time and resources? The suggested experiments are realistic but will require considerable time and resources. Detailed molecular interaction studies, imaging synaptic plasticity, and electrophysiological recordings could take several months to over a year, depending on the complexity and availability of necessary equipment and expertise. The cost would be moderate to high, involving expenses for reagents, imaging equipment, and animal husbandry for maintaining Drosophila stocks.
      • Are the data and the methods presented in such a way that they can be reproduced? The methods are generally described in detail, allowing for potential reproducibility. However, more precise documentation of certain experimental conditions, such as the timing and conditions of RNAi induction and temperature controls, is necessary. The methods about imaging analysis are too detailed. The exact steps about how to use ImageJ should be removed.
      • Are the experiments adequately replicated and statistical analysis adequate? Most figures in the manuscript need to be re-plotted. The right y-axis "Difference between means" is not necessary, if not confusing. The image panels are too small to see, while the quantification of overlapping cells are unnecessarily large. The figures are too crowded with labels and texts, which makes it extremely difficult to comprehend the data.

      Minor Comments

      • Specific experimental issues that are easily addressable. Clarify the timing of RNAi induction and provide more detailed figure legends for better understanding and reproducibility.
      • Are prior studies referenced appropriately? Yes.
      • Are the text and figures clear and accurate? The text is generally clear, but the figures need re-work. See comment above.
      • Suggestions to improve the presentation of data and conclusions. Use smaller fonts in the bar plots and make the plots smaller. Enlarge the imaging panels and let the pictures tell the story.

      Significance

      Nature and Significance of the Advance

      This study aims to advance understanding of how neuropeptides modulate context-dependent behaviors in Drosophila. It provides novel insights into the role of SIFa and SIFaR in interval timing behaviors, contributing to the broader field of neuropeptide research and behavioral neuroscience. However, the significance of the findings is limited by the preliminary nature of some claims and the need for additional supporting data.

      Context in Existing Literature

      The work builds on previous studies that identified various roles of neuropeptides in behavior modulation but lacked detailed mechanistic insights. By elucidating the SIFa-SIFaR/Crz-CrzR pathway, this study attempts to fill a gap in the literature, but more robust evidence is required to solidify its contributions.

      Interested Audience

      The findings will interest neuroscientists, behavioral biologists, and researchers studying neuropeptides and their roles in behavior and neural circuitry. Additionally, this research may have implications for understanding neuropeptidergic systems in other organisms, making it relevant to a broader audience in the fields of neurobiology and physiology.

      Field of Expertise

      Keywords: Neuropeptides, Drosophila melanogaster, Behavioral Neuroscience. Areas without sufficient expertise: courtship behavior.

      Recommendation

      I recommend a major revision of this manuscript. The study presents intriguing findings, but several key claims are preliminary and require additional experiments for support. The data is poorly presented and the figures can be significantly improved. Detailed molecular and imaging studies, as well as more rigorous statistical analyses, are necessary to strengthen the conclusions. Addressing these concerns will significantly improve the robustness and impact of the paper.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We want to thank both reviewers for their thorough and constructive review of our manuscript. Below, we have re-iterated their comments followed by an explanation of how we have revised the manuscript to address this.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This manuscript presented by Segeren et al. applied an interesting HRASG12V inducible cell model to study the mechanism of cellular resistance to replication stress inducing agents. They also employed a novel reversible fixation technique which allows them to FAC sort cells according to their replication stress levels before applying single cell sequencing analysis to the same cell populations. By comparing cells with low levels of replication stress to cells with high levels of replication stress, they found that reduction in gene expression of FOXM1 target genes potentially protects cells against replication stress induced by CHK1i plus gemcitabine combination. Overall, this is a very interesting study. However, the following points should be addressed prior to publication:

      Major: 1. Figure 3E and 3F showed two lists of differentially expressed genes in γH2Ax low cells. However, instead of arbitrarily extracting the FOXM1 target genes and TP53 targeted genes, it would be appreciated if the author could perform an unbiased and unsupervised gene set enrichment analysis such as Enrichr.

      As recommended, we performed an enrichment analysis using Enrichr to identify transcriptional programs associated with the we used the genes that were downregulated in the γH2AX-low cells. FOXM1 appeared as a prominent hit in different databases (both experimental and computational). We have included the lists of differentially expressed genes as an additional supplemental table (Table S1) and have included the Enrichr results as Table S3 (i.e. CHEA and ENCODE). We have described our results in lines 198-200 of the revised manuscript.

      1. At the experiment design stage, the authors also included HRASG12V status as a test condition because they previously found that HRASG12V mutation induces basal level replication stress and they would like to include this condition to study the adaptation to replication stress (line 110). However, the difference in HRASG12V negative and HRASG12V positive cells was not followed up in the later part of the paper. Can they show lists of differentially expressed genes identified under HRASG12V negative conditions as well (in the same format of Figure 3E and 3F) and comment on the differences as well?

      In the original manuscript, we included heatmaps of differentially expressed genes in the control cells in Figure S2. For improved clarity, we have modified this figure so that the heatmaps are labeled "Control cells". In the revised manuscript, we have also included Table S2, which lists the differentially expressed genes between yH2AX low and yH2AX high control cells, and Table S3, which lists the Enrichr results obtained based on these gene lists.

      We observed FOXM1 target genes in both the control and HRASG12V cells. Thus, the mechanism we identify does not appear to be specific to oncogenic Ras expression. We discuss this in lines 221-225. Because there were no other notable differences between the gene sets, we do not focus on this in the manuscript.

      1. In line 194 and in Figure S2B, the authors claimed that ANLN, HMGB2, CENPE, MKI67, and UBE2C demonstrated co-expression, but other genes displaying similar correlation scores were not commented (such as F3, CYR61, CTGF, etc). To avoid being biased at the analysis stage, the authors should define clearly what the cut-off of correlation score is and why only co-expression of ANLN, HMGB2, CENPE, MKI67, and UBE2C were mentioned.

      As suggested, we explain now in the revised manuscript that we focused on gene clusters consisting of at least 3 genes, that had a correlation coefficient greater than or equal to 0.4 with at least one other gene within the clusters. This cutoff is typically defined as representing a "moderate to good" correlation in biological data (Overholser, Sowinski, 2008). To make clear which clusters correlating gene sets passed these criteria, we have also highlighted these genes in Figure S3B. This returned the cluster we had already identified as FOXM1 targets, and as well spotted by the reviewer, a larger cluster which included F3, CYR61, CTGF, SERPINE1, ANKRD1, KRTAP2-3, UGCG, and AMOTL. Our Enrichr analysis did not identify any putative transcription factors linking the genes in this larger cluster. We are still interested to identify the putative transcription regulation mechanism linking these genes in future studies, but this is beyond the scope of the current manuscript. We have described these observations in lines 211-218.

      1. In line 215, instead of validating CENPE, UBE2C, HMGB2, ANLN, and MKI67 individually, the authors decided to validate FOXM1 instead, because they believe all the aforementioned genes are targets of FOXM1, therefore, validating FOXM1 alone would suffice. Again, this makes the validation process also biased. CENPE, UBE2C, HMGB2, ANLN, and MKI67 should be validated individually because they might sensitize cells to replication stress via different mechanisms. Besides, if all these genes were identified together because they are FOXM1 target genes, why did the authors not identify FOXM1 itself as a differentially expressed gene from the single cell sequencing? The sequencing only analyzed the S/G2/M cells, expression of FOXM1 should be detected easily.

      We agree with the reviewer that the omission of individual FOXM1 target genes in the validation process makes a biased impression. Therefore we ordered siRNAs against CENPE, UBE2C, HMGB2, ANLN, and MKI67. Similar to the other DE genes in the original mini-screen we first knocked down these genes using the siRNA Smartpools (pools of 4 individual siRNAs against each genes). Here, we observed a decrease in γH2AX signal compared to drug-treated cells transfected with all 5 Smartpools compared to drug-treated cells transfected with control siRNA. We next moved on to the deconvolution step of the screen, where we transfected cells with 4 individual siRNA against each gene. Here, we observed inconsistent effects of ANLN, CENPE, and HMGB2 when comparing the individual siRNAs, which all produce efficient knockdown of their target genes. But interestingly, for both MKI67 and UBE2C, each of the 4 individual siRNAs similar decreased yH2AX signal, though it was not as strong as the decrease observed when FOXM1 is knocked out. Understanding the exact mechanism of how MKI67 and UBE2C reduce replication stress is beyond the scope of this paper, but we hypothesize that, as with FOXM1, it is likely linked to their role in promoting progression through the cell cycle. These results are shown in Figures S5, and we mention these remarkable findings in the revised abstract and discuss these in the light of the recent literature in the Discussion section (lines 275-286).

      Then, we also addressed the comment about FOXM1 not being changed in the single cell RNA-seq analysis. We could indeed readily detect FOXM1 expression our single-cell RNA sequencing data. The difference in expression did not change significantly in cells sorted according to γH2AX level (Figure 4C). Because FOXM1 is highly regulated post-translationally, we hypothesized that an increase in the (active) protein is correlated to increased replication stress rather than transcript levels. This was indeed the case and we further explain our experiment to test this hypothesis in response to Point #6 (results are displayed in Figure 4D and described in lines 201-209).

      1. As pointed out by the author in the Discussion, single cell sequencing is not good at differentiating the causes from the consequences. The author tried to validate many of the differentially expressed genes in γH2Ax low cells. However, the fact that only FOXM1 knockdown passed the validation and deconvolution pointed out that the great majority of the identified genes are not the cause of the sensitivity change to replication stress inducing agents but likely the consequences. Therefore, in Figure S2C and S2D, it would be better that the authors could just name the genes as 'downregulated genes' in Figure S2C and 'upregulated genes' in Figure S2D. Taking into consideration that the expression change in the great majority of these genes are just consequences of sensitivity change to replication stress, defining them as 'potentially sensitizing' genes and 'potentially conferring resistance' genes is rather misleading.

      We agree that the way we originally labeled these plots may have been misleading. We have renamed then to "Downregulated in yH2AXlow" and "Upregulated in yH2AXlow", as recommended by the reviewer.

      1. To better prove that FOXM1 is the leading cause of the sensitivity to CHK1i+Gemcitabine induced replication stress, can the authors show the FOXM1 expression status in the tolerant cell population identified in Figure 1B (lowest panel)? Alternatively, can they plot FOXM1 expression level in the same tSNE plots shown in Figure 3B to 3D to see whether some of the γH2Ax low populations also show reduced FOXM1 expression?

      FOXM1 expression levels were not increased with gH2AXhigh versus gH2AXlow HRASG12V cells in the single cell RNA-sequencing data (Figure 4C in revised manuscript). However, as mentioned in our answer to point #4 we performed an additional experiment, which showed a strong positive correlation between phospho-FOXM1 and γH2AX (as measured by flow cytometry) in S-phase cells (Figure 4D). This indicates that the active form of the FOXM1 indeed increases as yH2AX levels increase, consistent with the observed increase in FOXM1 target genes. These results are described in lines 201-209.

      1. Clonogenic survival assay in Figure 4D was not quantified properly in Figure 4E. To rule out the siFOXM1 mediated growth/survival defects and to only focus on the siFOXM1 mediated resistance to CHK1i+Gemcitabine, the survival rate (intensity percent in this case) of CHK1i+Gemcitabine treated condition should be normalized against the survival rate of the Vehicle condition. E.g., the intensity percent of the siSCRAMBLE after treatment should be divided by the intensity percent of the untreated siSCRAMBLE; the intensity percent of the si#1 after treatment should be divided by the intensity percent of the untreated si#1, and so on. If the authors would like to show siFOXM1 induced growth/survival defects, they can still present the left part of the Figure 4E (the Vehicle group).

      Originally, we chose to show the absolute IntensityPercent for all groups, without normalizing to the untreated group, because we wanted to also highlight the FOXM1-mediated changes in growth. We agree that normalizing the IntensityPercent of the drug-treated group to the vehicle group better highlights the siFOXM1-mediated resistance. We have therefore re-analyzed the data and presented it this way in Figure 5E (described in lines 293-295). We moved our original Figure 4E to a new supplemental figure (Figure S4B) to still point out the effects of siFOXM1 on cell growth in untreated cells.

      Minor:

      1. In line 176, the author claimed that 'Interestingly, rare cells treated with CHK1i + gemcitabine are located within the untreated cell cluster (Fig. 3C)'. However, it is not as obvious where these cells are in the plot, especially to people who are new to tSNE plots. It would be appreciated if the authors could label these cells by circling them with red lines and make the point stronger.

      Rather than circling these points (we thought this would make the plot too "busy"), we have created an inset that zooms in on the region where we see the untreated cells within the untreated cell cluster. Within the inset, we use arrows to point out the cells we are referring to. This can be seen in our updated Figure 3C.

      1. In Figure S2B, it will be ideal to label clearly which genes are upregulated genes and which are downregulate.

      On the x-axis of the heatmap, we have drawn lines to separate the downregulated and upregulated genes.

      1. In line 50, the word 'multifaced' needs to be corrected to 'multifaceted'.

      Thank you for catching this, we have fixed it.

      1. It is unclear what 'underly drug resistance' means in line 150.

      We have reworded this sentence so that is more clear. It is now written as follows: "we aimed to identify gene-expression programs that mediate the low level of RS in a subset of cells, which could potentially mediate drug resistance". This change is in lines 155.

      1. It is advised that the phrase 'cell cycle position' could be changed to 'cell cycle phase' or 'cell cycle stage'.

      We purposefully used the phrase "cell cycle position" because we wanted to emphasis gradient-like progress through the cell cycle rather than a discrete distinction from one-phase to the next. We have reworded the text slightly to now say "position within S-phase" (lines 163, 187, 191, 208), since all the cells we are interested in are in S phase, but some are further through S phase than others.

      1. In line 185, the word 'in' after 'within' can be removed.

      Thank you for catching this, we have fixed it.

      1. In line 194, 'Among genes downregulated in γH2AXlow cells, the expression of ANLN, HMGB2, CENPE, MKI67 and UBE2C correlated' is missing an 'are' in front of the word 'correlated'.

      Thank you for catching this, we have fixed it.

      1. In line 239, Fig.SC3 should be Fig. S3C.

      Thank you for catching this, we have fixed it.

      1. FOXM1 is known as a crucial gene for G2/M transition. Therefore, FOXM1 knockdown cells are expected to be mostly arrested at the G2/M interface. Therefore, in line 244, it is incorrect to say stronger FOXM1 knockdown induced a 'lower proportion of cells in G2 phase'. In fact, as shown in Figure 4C, cells are accumulating in G2 phase (peaking around 11M on the DAPI axis) and depleted from G1 phase (peaking around 7M).

      We have reworded this to say that there is "a higher proportion of cells in S-phase and a less distinct G2 peak" (lines 270-271). The DAPI profiles of the scrambled, siFOXM1 #1, and siFOXM1 #2 conditions all show an S-phase "valley" between a G1 and G2 peak (the valley sits at about 8M-9M). In the siFOXM1 #3 and siFOXM1 #4 conditions, we no longer see this valley, therefore we interpret this as cells still in S-phase. If they had progressed from S-phase into G2 phase, we expect that we would again see this "valley" to the left of a clear G2 peak. In the figure below, we overlayed DNA content histograms of the different FOXM1 targeting siRNAs with the scrambled siRNA to demonstrate this point more clearly.

      Reviewer #1 (Significance (Required)):

      Advance: The study reported a novel reversible fixation technique which can lead to potentially good citations. However, the findings from the single cell sequencing alone fell short in novelty to reach high impact because FOXM1 has been reported to impact on cellular sensitivity to CHK1 inhibition mediated replication stress (PMC7970065). Moreover, the study did not provide mechanistic explanation to the observed phenotype but only validated the finding from the sequencing, and the gene of focus (FOXM1) was not originally identified from the sequencing, slightly undermining the paper's foundation. To make it a better paper. the authors need to be less biased when it comes to data analysis and interpretation.

      Audience: People who are interested in basic research in cell cycle, DNA damage, cancer, chemotherapy would be interested.

      My expertise: Cancer, DNA damage, cell cycle

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Replication stress activates ATR and CHEK1 kinases as part of the inter S phase DNA damage response. CHEK1 kinase inhibitors (CHK1i) have been shown to induce an accumulation of unresolved replication stress and widespread DNA damage and cell death caused by replication catastrophe, and are therefore under clinical evaluation. At the same time, CHEK1 inhibition results in the activation of CDK1 and FOXM1 and premature expression of G2/M genes (Saldivar et al., 2018 Science). FOXM1-drivent premature mitosis has been shown to be required for the replication catastrophe and CHK1i sensitivity (Branigan et al., 2021 Cell Rep.). In this study, Segeren and colleagues set out to investigate the mechanisms of replication stress tolerance. They used CHK1i inhibitors in combination with the DNA-damaging chemotherapeutic agent Gemcitabine and oncogenic HRASG12V expression to increase replication stress. The authors utilized an intriguing setup of combined immunofluorescence staining followed by single cell RNA-seq analysis to overcome limitations of bulk cell analyses. In particular, the authors sought to identify genes that are differentially regulated in replication stress-tolerant cells compared to sensitive cells. However, even single cell analyses can be confounded by differences in cell cycle distribution. To mitigate this, the authors selected mid S-phase cells for their analysis. While this may not have completely eliminated minor differences in cell cycle progression, the authors identified FOXM1-regulated G2/M cell cycle genes, among others, that were down-regulated in the tolerant cells. When the authors followed up on the effect of these genes on replication stress tolerance, they identified FOXM1 knockdown as the only robust mediator of replication stress tolerance.

      Major comments:

      The authors observed that cell cycle distribution could be a major confounding factor in their single cell analysis and attempted to reduce this variation by selecting mid S-phase cells based on the DAPI signal. The authors then chose to compare gH2AXlow and gH2AXhigh subpopulations of RPE-HRASG12V cells because their "DAPI signal was comparable" (line 181-184). However, their data show that these subpopulations also show differences in their DAPI signal distribution, with gH2AXlow cells tending to have lower DAPI signals than gH2AXhigh cells (Supplementary Figure 2A). Thus, the major confounding factor that the authors sought to remove seems to have prevailed and it remains possible that the difference in cell cycle gene expression is merely due to differences in cell cycle progression of the individual cells. Given that DAPI information seem to be readily available for the individual cells, the authors should normalize their analysis to the DAPI signal to remove this potential confounding effect or clearly state this potential limitation.

      We agree that indeed it is very challenging to fully disentangle the influence of cell cycle distribution on our analysis. And indeed, the γH2AXlow HRASG12V cells have slightly reduced median DNA content compared to γH2AXmid and γH2AXhigh. However, this was not the case in the RPE control cells, and we still found that FOXM1 target genes were strongly enriched in the γH2AXhigh cells (Fig S2C and Table S4). Therefore, it is highly unlikely that bias in S-phase position distributions does not explain our results. Nevertheless, to be transparent about this write in the Results on lines 192-193 the following: "The other groups all showed similar DAPI intensities, although gH2AXlow RPE-HRASG12V cells showed a slight but statistically significant reduction compared to their gH2AXhigh counterparts (Fig. S2A)".

      In our subsequent experiments to assess the relationship between phospho-FOXM1 (representing the transcriptionally active protein) and γH2AX, we observed that though there was a strong correlation between pFOXM1 and γH2AX, there was no correlation between phospho-FOXM1 and DAPI (Figure 4D-E). We therefore would like to point out that although our readout for replication stress inevitably increases as cells progress through DNA replication, heterogeneity in phospho-FOXM1 levels cannot be explained by position in S-phase. These results are described in lines 203-209.

      Finally, we do not think it would be statistically appropriate to use the DAPI signal (generated by fluorescence intensity as measured by the flow cytometer) as a normalization factor for our gene expression data.

      Minor comments:

      The findings of Saldivar et al., 2018 Science and Branigan et al., 2021 Cell Rep. should be mentioned in the introduction.

      As recommended, we mentioned both these papers in the introduction. In line 62, we cite the Branigan paper as showing that modulation of cell cycle regulators is a strategy used by cancer cells to resist replication stress. In lines 63-65, we reference them as follows: "The RS response is tightly linked with cell cycle progression, as multiple intra S-phase checkpoint kinases play a role in curtailing proteins involved in the S-G2 transition (Branigan et al., 2021, Saldivar et al., 2018)."

      The authors conclude that "cell cycle position can be a major confounding factor when evaluating the transcriptomic response to RS." It should be noted that stochastic differences in the cell cycle distribution of bulk cells are perhaps the best-known confounder in single cell analyses (see, for example, Buettner et al., 2015 Nat. Biotechnol.).

      We chose to reference the Buettner paper to justify our decision to select only cycling cells in our scRNA seq approach. Our reference to the paper, and to the fact that cell cycle distribution is a major confounder in single cell analysis, is in lines 138-140.

      Supplementary Figure 2A: The median should be added to the violin plots.

      As suggested, we have added medians to the violin plots. In addition, we added details on statistical analysis.

      The statement "Differential expression analysis revealed 19 genes that were significantly downregulated in gH2AXlow RPE-HRASG12V cells, suggesting that elevated levels of these genes are correlated with sensitivity to RS-inducing drugs" refers to Figure 3E and Table S1. However, Table S1 lists the "key resources" and does not seem to be related to this statement. A table showing log2fold-changes and FDR values should be added and referenced here.

      We have generated tables with the fold change values of differentially expressed genes between the yH2AX low and yH2AX high cells. These are found in Table S1 (for HRAS G12V cells) and Table S2 (for Control cells) in the supplementary file of the revised manuscript. The "key resources" has been moved to Table S5.

      The statement "Remarkably, Braningan and co-workers observed no effect of full FOXM1 deletion on cell cycle progression" seems somewhat inconsistent with what has been stated and assessed in that study. The authors may want to replace "progression" with "distribution". A reduction in proliferation is commonly observed when FOXM1 levels are reduced.

      In addition, the authors may want to consider that their addition of HRASG12V and Gemcitabine may contribute to a more substantial S phase checkpoint response.

      We agree with the reviewer that a reduction in proliferation is commonly observed when FOXM1 levels are reduced (Barger et al., 2021, Cheng et al., 2022, Yang et al., 2015, Wu et al., 2010), but in Branigan et al., they see no decrease in proliferation with knockout of FOXM1. They state "There were no apparent differences in the growth rate of the LIN54 and FOXM1 KO versus EV cells over 10 days (Figure 1G)". Though they do not elaborate on why they see this unexpected response, we suspect a permanent full knockout of FOXM1 could cause compensatory adaptation in their cell lines. In our experiments, we perform transient knockdowns, so cells may not have the time to adapt to the loss of FOXM1 and obtain compensatory mechanisms that would allow them to continue cycling as rapidly as control cells treated with non-targeting siRNA.

      However, we decided to remove this from the Discussion section, as it seemed to interrupt the discussion about the potential mechanisms underlying protection against DNA damage by FOXM1 depletion.

      The statement that "the mechanism by which high FOXM1 activity is a prerequisite to accumulate DNA damage in S-phase during CHK1 inhibition remains to be uncovered" seems to neglect that premature mitosis has been suggested as a mechanistic cause (Branigan et al., 2021 Cell Rep.). It would be helpful if the authors could elaborate on this.

      In our discussion, we do already emphasize the described role of FOXM1 in promoting premature mitosis (lines 330-337), but we argue that in our experimental conditions we are observing another - previously undescribed- role for FOXM1 in promoting replication stress during S phase. We previously observed with live cell imaging that CHK1i + gemcitabine does not cause premature mitosis in RPE-HRASG12V cells (published in Segeren et al. Oncogene 2022, Figure 5). Instead, these cells typically showed a cell cycle exit from G2. This makes it highly unlikely that premature mitosis is the reason why these cells would accumulate excessive DNA damage. We realize now that it was an important omission not to elaborate on this and have added this clarification to the Discussion (lines 341-345 in revised manuscript). In addition, we have removed a few lines of less important text (about the lack of direct effect of FOXM1 KO in the Branigan paper; see answer to previous point) to improve clarity and readability.

      Reviewer #2 (Significance (Required)):

      General assessment: The strength of the study is the intriguing methodology of combined immunofluorescence followed by single cell RNA-seq. The limitations are that this methodology does not seem to fully solve the stated problems. In addition, the study is essentially limited to confirming previous findings.

      Advance: The study strengthens current knowledge but provides essentially no advance. The authors confirm existing knowledge with an additional approach. While this is not an advance in itself, it is important to the community.

      Audience: I felt that the study would appeal to a basic science audience. In particular, the CHK1i and intra S-phase checkpoint areas, with limited interest beyond that.

      My relevant expertise lies in transcriptomics, gene regulation and the cell cycle.

      Reference list

      Barger, C.J., Chee, L., Albahrani, M., Munoz-Trujillo, C., Boghean, L., Branick, C., Odunsi, K., Drapkin, R., Zou, L. & Karpf, A.R. 2021, "Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer", eLife, vol. 10, pp. 10.7554/eLife.55070.

      Branigan, T.B., Kozono, D., Schade, A.E., Deraska, P., Rivas, H.G., Sambel, L., Reavis, H.D., Shapiro, G.I., D'Andrea, A.D. & DeCaprio, J.A. 2021, "MMB-FOXM1-driven premature mitosis is required for CHK1 inhibitor sensitivity", Cell reports, vol. 34, no. 9, pp. 108808.

      Cheng, Y., Sun, F., Thornton, K., Jing, X., Dong, J., Yun, G., Pisano, M., Zhan, F., Kim, S.H., Katzenellenbogen, J.A., Katzenellenbogen, B.S., Hari, P. & Janz, S. 2022, "FOXM1 regulates glycolysis and energy production in multiple myeloma", Oncogene, vol. 41, no. 32, pp. 3899-3911.

      Overholser, B.R. & Sowinski, K.M. 2008, "Biostatistics primer: part 2", Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition, vol. 23, no. 1, pp. 76-84.

      Saldivar, J.C., Hamperl, S., Bocek, M.J., Chung, M., Bass, T.E., Cisneros-Soberanis, F., Samejima, K., Xie, L., Paulson, J.R., Earnshaw, W.C., Cortez, D., Meyer, T. & Cimprich, K.A. 2018, "An intrinsic S/G(2) checkpoint enforced by ATR", Science (New York, N.Y.), vol. 361, no. 6404, pp. 806-810.

      Segeren, H.A., van Liere, E.A., Riemers, F.M., de Bruin, A. & Westendorp, B. 2022, "Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53", Oncogene, vol. 41, no. 19, pp. 2719-2733.

      Wu, Q., Liu, C., Tai, M., Liu, D., Lei, L., Wang, R., Tian, M. & Lu, Y. 2010, "Knockdown of FoxM1 by siRNA interference decreases cell proliferation, induces cell cycle arrest and inhibits cell invasion in MHCC-97H cells in vitro", Acta Pharmacologica Sinica, vol. 31, no. 3, pp. 361-366.

      Yang, K., Jiang, L., Hu, Y., Yu, J., Chen, H., Yao, Y. & Zhu, X. 2015, "Short hairpin RNA- mediated gene knockdown of FOXM1 inhibits the proliferation and metastasis of human colon cancer cells through reversal of epithelial-to-mesenchymal transformation", Journal of experimental & clinical cancer research : CR, vol. 34, no. 1, pp. 40-1.

      We want to thank both reviewers for their thorough and constructive review of our manuscript. Below, we have re-iterated their comments followed by an explanation of how we have revised the manuscript to address this.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02545

      Corresponding author(s): Woo Jae, Kim

      1. General Statements

      We sincerely appreciate the positive and constructive feedback provided by all three reviewers. Their insightful comments have been invaluable in guiding our revisions. In response, we have made every effort to address their suggestions through additional experiments and by restructuring our manuscript to improve clarity and coherence.

      In this revision, we have streamlined the presentation of our data to enhance the narrative flow, ensuring that it is more accessible to a general readership. We believe that these changes not only strengthen our manuscript but also align with the reviewers' recommendations for improvement.

      We are hopeful that the revisions we have implemented meet the expectations of the reviewers and contribute to a clearer understanding of our findings. Thank you once again for your thoughtful critiques, which have greatly aided us in refining our work.


      2. Point-by-point description of the revisions

      Reviewer #1

      General comment: This manuscript by Song et al. investigates the molecular mechanisms underlying changes in mating duration in Drosophila induced by previous experience. As they have shown previously, they find that male flies reared in isolation have shorter mating duration than those reared in groups, and also that male flies with previous mating experience have shorter mating duration than sexually naïve males. They have conducted a myriad of experiments to demonstrate that the neuropeptide SIFa is required for these changes in mating duration. They have further provided evidence that SIFa-expressing neurons undergo changes in synaptic connectivity and neuronal firing as a result of previous mating experience. Finally, they argue that SIFa neurons form reciprocal connections with sNPF-expressing neurons, and that communication within the SIFa-sNPF circuit is required for experience-dependent changes in mating duration. These results are used to assert that SIFa neurons track the internal state of the flies to modulate behavioral choice.

         __Answer:__ We appreciate the reviewer's thoughtful comments and commendations regarding our manuscript. The recognition of our investigation into the molecular mechanisms influencing mating duration in *Drosophila* is greatly valued. In particular, we are grateful for the reviewer's positive remarks about our comprehensive experimental approach to demonstrate the role of the neuropeptide SIFa in these changes. The evidence we provided indicating that SIFa-expressing neurons undergo alterations in synaptic connectivity and neuronal firing due to previous social experiences is crucial for elucidating the underlying neural circuitry involved in experience-dependent behaviors. Finally, we are thankful for the recognition of our assertion that SIFa neurons form reciprocal connections with sNPF-expressing neurons, emphasizing the importance of this circuit in modulating behavioral choices based on internal states. To provide stronger evidence for the interactions between SIFa and sNPF, we conducted detailed GCaMP experiments, which revealed intriguing neural connections between these two neuropeptides. We have included this new data in our main figure. We believe these insights contribute significantly to the existing literature on neuropeptidergic signaling and its implications for understanding complex behaviors in *Drosophila*. We look forward to addressing any further comments and enhancing our manuscript based on your invaluable feedback. Thank you once again for your constructive critique and support.
      

      Major concerns:

      Comment 1. The authors are to be commended for the sheer quantity of data they have generated, but I was often overwhelmed by the figures, which try to pack too much into the space provided. As a result, it is often unclear what components belong to each panel. Providing more space between each panel would really help.

         __Answer:__ We sincerely appreciate the reviewer’s commendation regarding the extensive data we have generated in our study. It is gratifying to know that our efforts to provide a comprehensive analysis of the molecular mechanisms underlying changes in mating duration have been recognized. We understand the concern regarding the density of information presented in our figures. We aimed to convey a wealth of data to support our findings, but we acknowledge that this may have led to some confusion regarding the organization and clarity of the panels. We are grateful for your constructive feedback on this matter. In response, we have significantly reduced the density of the main figures and decreased the size of the graphs to improve clarity. We have also increased the spacing between panels to ensure that each component is more easily distinguishable. Further details will be provided in our responses to each comment below.
      
      • *

      Comment 2. This is a rare instance where I would recommend paring down the paper to focus on the more novel, clear and relevant results. For example, all of Figure 2 shows the projection pattern of SIFa+ neuron dendrites and axons, which have been reported by multiple previous papers. Figure 7G and J show trans-tango data and SIFaR-GAL4 expression patterns, which were previously reported by Dreyer et al., 2019. These parts could be removed to supplemental figures. Figure 5 details experiments that knock down expression of different neurotransmitter receptors within the SIFa-expressing cells. The results here are less definitive than the SIFa knockdown results, and the SCope data supporting the idea that these receptors are expressed in SIFa-expressing neurons is equivocal. I would recommend removing these data (perhaps they could serve as the basis for another manuscript) or focusing solely on the CCHa1R results, which is the only manipulation that affects both LMD and SMD.

         __Answer:__ We sincerely appreciate the reviewer’s positive feedback regarding the extensive data generated in our study. We also fully agree with the reviewer that the sheer volume of our data made it challenging to support our hypothesis that SIFa neurons serve as a hub for integrating multiple neuropeptide inputs and orchestrating various behaviors related to energy balance, as highlighted in our new Figure 5N.
      
         In response to the reviewer's suggestions, we have streamlined our manuscript by removing excessive and redundant data to enhance clarity and simplicity. First, we have moved Figure 2 to the supplementary materials as the reviewer noted that the branching patterns of SIFa neurons are well-documented in previous literature. Second, we relocated the trans-tango data from Figure 7G to Figure S7, since this information is also well-established. We retained this data in the supplementary section to illustrate the connection of SIFa to our recent findings regarding SIFaR24F06 neuron connections. Additionally, we have completely removed the neuropeptide receptor input screening data previously included in Figure 5, as well as Figure S8, which presented fly SCope tSNE data. As suggested by the reviewer, we plan to utilize these data for a future paper focused on investigating the underlying mechanisms of SIFa inputs that modulate SIFa activity. Thanks to the reviewer’s constructive suggestions, we believe our manuscript is now more convincing and clearer for readers.
      

      Comment 3. Finally, I would like the authors to spend more time explaining how they think the results tie together. For example, how do the authors think the changes in branching and activity in SIFa-expressing neurons tie to the change in mating duration provoked by previous experience? It would benefit the manuscript to simplify and clarify the message about what the authors think is happening at the mechanistic level. The various schematics (eg. Fig 7N) describe the results but the different parts feel like separate findings rather than a single narrative. (MECHANISMS diagram and explanation)

         __Answer:__ We appreciate the reviewer’s constructive comments, which have significantly improved our manuscript and conclusions for our readers. As the reviewer will see, we have made substantial revisions in line with the suggestions provided. We dedicated additional time to clarify the electrical activities and synaptic plasticity of SIFa neurons in relation to internal states that orchestrate various behaviors. We have summarized our hypothesis regarding the mechanistic role of SIFa neurons in Figure 5N. In brief, we propose that SIFa neurons function as a hub that receives diverse neuropeptidergic signals, which subsequently alters their electrical activity and synaptic branching. This, in turn, leads to different internal states. The internal states of SIFa neurons can then be interpreted by SIFaR-expressing cells, which help orchestrate various behaviors and physiological responses. We aim to address these aspects further in another manuscript that has been co-submitted alongside this one [1].
      

      Comment 4. Most of the experiments lack traditional controls. For example, in experiments in Fig 1C-K, one would typically include genetic controls that contain either the GAL4 or UAS elements alone. The authors should explain their decision to omit these control experiments and provide an argument for why they are not necessary to correctly interpret the data. In this vein, the authors have stated in the methods that stocks were outcrossed at least 3x to Canton-S background, but 3 outcrosses is insufficient to fully control for genetic background.

         __Answer:__ We sincerely thank the reviewer for insightful comments regarding the absence of traditional genetic controls in our study of LMD and SMD behaviors. We acknowledge the importance of such controls and wish to clarify our rationale for not including them in the current investigation. The primary reason for not incorporating all genetic control lines is that we have previously assessed the LMD and SMD behaviors of GAL4/+ and UAS/+ strains in our earlier studies. Our past experiences have consistently shown that 100% of the genetic control flies for both GAL4 and UAS exhibit normal LMD and SMD behaviors. Given these findings, we deemed the inclusion of additional genetic controls to be non-essential for the present study, particularly in the context of extensive screening efforts. We understand the value of providing a clear rationale for our methodology choices. To this end, we have added a detailed explanation in the "MATERIALS AND METHODS" section and the figure legends of Figure 1. This clarification aims to assist readers in understanding our decision to omit traditional controls, as outlined below.
      

      "Mating Duration Assays for Successful Copulation

      The mating duration assay in this study has been reported[33,73,93]. To enhance the efficiency of the mating duration assay, we utilized the Df (1)Exel6234 (DF here after) genetic modified fly line in this study, which harbors a deletion of a specific genomic region that includes the sex peptide receptor (SPR)[94,95]. Previous studies have demonstrated that virgin females of this line exhibit increased receptivity to males[95]. We conducted a comparative analysis between the virgin females of this line and the CS virgin females and found that both groups induced SMD. Consequently, we have elected to employ virgin females from this modified line in all subsequent studies. For naïve males, 40 males from the same strain were placed into a vial with food for 5 days. For single reared males, males of the same strain were collected individually and placed into vials with food for 5 days. For experienced males, 40 males from the same strain were placed into a vial with food for 4 days then 80 DF virgin females were introduced into vials for last 1 day before assay. 40 DF virgin females were collected from bottles and placed into a vial for 5 days. These females provide both sexually experienced partners and mating partners for mating duration assays. At the fifth day after eclosion, males of the appropriate strain and DF virgin females were mildly anaesthetized by CO2. After placing a single female in to the mating chamber, we inserted a transparent film then placed a single male to the other side of the film in each chamber. After allowing for 1 h of recovery in the mating chamber in 25℃ incubators, we removed the transparent film and recorded the mating activities. Only those males that succeeded to mate within 1 h were included for analyses. Initiation and completion of copulation were recorded with an accuracy of 10 sec, and total mating duration was calculated for each couple. All assays were performed from noon to 4pm. Genetic controls with GAL4/+ or UAS/+ lines were omitted from supplementary figures, as prior data confirm their consistent exhibition of normal LMD and SMD behaviors [33,73,93,96,97]. Hence, genetic controls for LMD and SMD behaviors were incorporated exclusively when assessing novel fly strains that had not previously been examined. In essence, internal controls were predominantly employed in the experiments, as LMD and SMD behaviors exhibit enhanced statistical significance when internally controlled. Within the LMD assay, both group and single conditions function reciprocally as internal controls. A significant distinction between the naïve and single conditions implies that the experimental manipulation does not affect LMD. Conversely, the lack of a significant discrepancy suggests that the manipulation does influence LMD. In the context of SMD experiments, the naïve condition (equivalent to the group condition in the LMD assay) and sexually experienced males act as mutual internal controls for one another. A statistically significant divergence between naïve and experienced males indicates that the experimental procedure does not alter SMD. Conversely, the absence of a statistically significant difference suggests that the manipulation does impact SMD. Hence, we incorporated supplementary genetic control experiments solely if they deemed indispensable for testing. All assays were performed from noon to 4 PM. We conducted blinded studies for every test[98,99] .

         While we have previously addressed this type of reviewer feedback in our published manuscript [2–7], we appreciate the reviewer’s suggestion to include traditional genetic control experiments. In response, we conducted all feasible combinations of genetic control experiments for LMD/SMD during the revision period. The results are presented in the supplementary figures and are described in the main text.
      
         We appreciate the reviewer's inquiry regarding the genetic background of our experimental lines. In response to the comments, we would like to clarify the following. All of our GAL4, UAS, or RNAi lines, which were utilized as the virgin female stock for outcrosses, have been backcrossed to the Canton-S (CS) genetic background for over ten generations. The majority of these lines, particularly those employed in LMD assays, have been maintained in a CS backcrossed status for several years, ensuring a consistent genetic background across multiple generations. Our experience has indicated that the genetic background, particularly that of the X chromosome inherited from the female parent, plays a pivotal role in the expression of certain behavioral traits. Therefore, we have consistently employed these fully outcrossed females as virgins for conducting experiments related to LMD and SMD behaviors. It is noteworthy that, in contrast to the significance of genetic background for LMD behaviors, we have previously established in our work [6] that the genetic background does not significantly influence SMD behaviors. This distinction is important for the interpretation of our findings. To provide a comprehensive understanding of our experimental design, we have detailed the genetic background considerations in the __"Materials and Methods"__ section, specifically in the subsection __"Fly Stocks and Husbandry"__ as outlined below.
      

      "To reduce the variation from genetic background, all flies were backcrossed for at least 3 generations to CS strain. For the generation of outcrosses, all GAL4, UAS, and RNAi lines employed as the virgin female stock were backcrossed to the CS genetic background for a minimum of ten generations. Notably, the majority of these lines, which were utilized for LMD assays, have been maintained in a CS backcrossed state for long-term generations subsequent to the initial outcrossing process, exceeding ten backcrosses. Based on our experimental observations, the genetic background of primary significance is that of the X chromosome inherited from the female parent. Consequently, we consistently utilized these fully outcrossed females as virgins for the execution of experiments pertaining to LMD and SMD behaviors. Contrary to the influence on LMD behaviors, we have previously demonstrated that the genetic background exerts negligible influence on SMD behaviors, as reported in our prior publication [6]. All mutants and transgenic lines used here have been described previously."

      Comment 5. Throughout the manuscript, the authors appear to use a single control condition (sexually naïve flies raised in groups) to compare to both males raised singly and males with previous sexual experience. These control conditions are duplicated in two separate graphs, one for long mating duration and one for short mating duration, but they are given different names (group vs naïve) depending on the graph. If these are actually the same flies, then this should be made clear, and they should be given a consistent name across the different "experiments".

         __Answer:__ We are grateful to the reviewer for highlighting the potential for confusion among readers regarding the visualization methods used in our figures. In response to this valuable feedback, we have now included a more detailed explanation of the graph visualization techniques in the legends of Figure 1, as detailed below. This additional information should enhance the clarity and understanding of the figure for all readers.
      

      In the mating duration (MD) assays, light grey data points denote males that were group-reared (or sexually naïve), whereas blue (or pink) data points signify males that were singly reared (or sexually experienced). The dot plots represent the MD of each male fly. The mean value and standard error are labeled within the dot plot (black lines). Asterisks represent significant differences, as revealed by the unpaired Student’s t test, and ns represents non-significant differences M.D represent mating duration. DBMs represent the 'difference between means' for the evaluation of estimation statistics (See MATERIALS AND METHODS). Asterisks represent significant differences, as revealed by the Student’s t test (* p

      Comment 6. The authors use SCope data to provide evidence for co-expression of SIFa and other neurotransmitters or neuropeptide receptors. The graphs they show are hard to read and it is not clear to what extent the gene expression is actually overlapping. It would be more definitive to show graphs that indicate which percentage of SIFa-expressing cells co-express other neurotransmitter components, and what the actual level of expression of the genes is. The authors should also provide more information on how they identified the SIFa+ cells in the fly atlas dataset. These are important pieces of information to be able to interpret the effects of manipulation of these other neurotransmitter systems within SIFa-expressing cells on mating duration.

      __ Answer: We appreciate the reviewer for pointing out the potential for confusion among readers regarding the visualization methods used in our figures, particularly concerning the tSNE plots of scRNA-seq data. As mentioned in our previous response, we have removed most of the tSNE plots related to co-expression data with SIFa and NPRs, which we believe will reduce any confusion for readers interpreting these plots. However, we have retained a few tSNE plots, specifically Figures 2N-O, to confirm the potential co-expression of the ple and Vglut genes in SIFa cells. We understand the reviewer’s concerns about the clarity of the presented data and the necessity for more detailed information regarding the extent of co-expression and the identification of SIFa-expressing cells. To address these concerns, we have included a comprehensive description of our methods in the __MATERIALS AND METHODS section below.

      "Single-nucleus RNA-sequencing analyses

      The snRNAseq dataset analyzed in this paper is published in [112] and available at the Nextflow pipelines (VSN, https://github.com/vib-singlecell-nf), the availability of raw and processed datasets for users to explore, and the development of a crowd-annotation platform with voting, comments, and references through SCope (https://flycellatlas.org/scope), linked to an online analysis platform in ASAP (https://asap.epfl.ch/fca). For the generation of the tSNE plots, we utilized the Fly SCope website (https://scope.aertslab.org/#/FlyCellAtlas/*/welcome). Within the session interface, we selected the appropriate tissues and configured the parameters as follows: 'Log transform' enabled, 'CPM normalize' enabled, 'Expression-based plotting' enabled, 'Show labels' enabled, 'Dissociate viewers' enabled, and both 'Point size' and 'Point alpha level' set to maximum. For all tissues, we referred to the individual tissue sessions within the '10X Cross-tissue' RNAseq dataset. Each tSNE visualization depicts the coexpression patterns of genes, with each color corresponding to the genes listed on the left, right, and bottom of the plot. The tissue name, as referenced on the Fly SCope website is indicated in the upper left corner of the tSNE plot. Dashed lines denote the significant overlap of cell populations annotated by the respective genes. Coexpression between genes or annotated tissues is visually represented by differentially colored cell populations. For instance, yellow cells indicate the coexpression of a gene (or annotated tissue) with red color and another gene (or annotated tissue) with green color. Cyan cells signify coexpression between green and blue, purple cells for red and blue, and white cells for the coexpression of all three colors (red, green, and blue). Consistency in the tSNE plot visualization is preserved across all figures.

      Single-cell RNA sequencing (scRNA-seq) data from the Drosophila melanogaster were obtained from the Fly Cell Atlas website (https://doi.org/10.1126/science.abk2432). Oenocytes gene expression analysis employed UMI (Unique Molecular Identifier) data extracted from the 10x VSN oenocyte (Stringent) loom and h5ad file, encompassing a total of 506,660 cells. The Seurat (v4.2.2) package (https://doi.org/10.1016/j.cell.2021.04.048) was utilized for data analysis. Violin plots were generated using the “Vlnplot” function, the cell types are split by FCA.

         We have also included detailed descriptions in the figure legends for the initial tSNE plot presented below to help readers clearly understand the significance of this visualization.
      

      "Each tSNE visualization depicts the coexpression patterns of genes, with each color corresponding to the genes listed on the left, right, and/or bottom of the plot. The tissue name, as referenced on the Fly SCope website is indicated in the upper left corner of the tSNE plot. Consistency in the tSNE plot visualization is preserved across all figures."

      Comment 7. I would like to see more information on how the thresholding and normalization was done for immunohistochemistry experiments. Was thresholding applied equally across all datasets? Furthermore, "overlap" of Denmark and Syt-eGFP is taken as evidence for synaptic connectivity, but the latter requires more than just overlap in the location of the axon terminal and dendrite regions of the neuron.

      __ Answer: Thank you for your continued engagement with our manuscript and for highlighting the need for further clarification on our methods. Your attention to the details of our immunohistochemistry experiments is commendable, and we agree that providing a clear explanation of our thresholding and normalization procedures is essential for the transparency and reproducibility of our results. We concur that the intensity of these signals is indeed correlated with the area measurements, which is a critical factor to consider. In response to the reviewer's valuable suggestion, we have revised our approach and now present our data based on intensity measurements. Additionally, we have updated the labeling of our Y-axis to "Norm. GFP Int.", which stands for "normalized GFP intensity". This change ensures clarity and consistency in the presentation of our data. We primarily adhered to the established methods outlined by Kayser et al. [8]. To address your first point, we have now included a more detailed description of our thresholding and normalization procedures in the __MATERIALS AND METHODS section as below.

      "Quantitative analysis of fluorescence intensity

      To ascertain calcium levels and synaptic intensity from microscopic images, we dissected and imaged five-day-old flies of various social conditions and genotypes under uniform conditions. The GFP signal in the brains and VNCs was amplified through immunostaining with chicken anti-GFP primary antibody. Image analysis was conducted using ImageJ software. For the quantification of fluorescence intensities, an investigator, blinded to the fly's genotype, thresholded the sum of all pixel intensities within a sub-stack to optimize the signal-to-noise ratio, following established methods [93]. The total fluorescent area or region of interest (ROI) was then quantified using ImageJ, as previously reported. For CaLexA or TRIC signal quantification, we adhered to protocols detailed by Kayser et al. [94], which involve measuring the ROI's GFP-labeled area by summing pixel values across the image stack. This method assumes that changes in the GFP-labeled area and intensity are indicative of alterations in the CaLexA and TRIC signal, reflecting synaptic activity. ROI intensities were background-corrected by measuring and subtracting the fluorescent intensity from a non-specific adjacent area, as per Kayser et al. [94]. For normalization, nc82 fluorescence is utilized for CaLexA, while RFP signal is employed for TRIC experiments, as the RFP signal from the TRIC reporter is independent of calcium signaling [76]. For the analysis of GRASP or tGRASP signals, a sub-stack encompassing all synaptic puncta was thresholded by a genotype-blinded investigator to achieve the optimal signal-to-noise ratio. The fluorescence area or ROI for each region was quantified using ImageJ, employing a similar approach to that used for CaLexA or TRIC quantification [93]. 'Norm. GFP Int.' refers to the normalized GFP intensity relative to the RFP signal."

      Comment 8. None of the RNAi experiments have been validated to demonstrate effective knockdown. In many cases, this would be difficult to do because of a lack of an antibody to quantify in a cell-specific manner; however, this fact should be acknowledged, especially in cases where there was found to be a lack of phenotype, which could result from lack of knockdown. The authors could also look for evidence in the literature of cases where RNAi lines they have used have been previously validated. For SIFa, knockdown can be easily confirmed with the SIFa antibody the authors have used elsewhere in the manuscript.

      __ Answer:__ We appreciate the reviewer’s constructive and critical comments regarding the validation of our RNAi experiments through effective knockdown. We understand the reviewer’s concerns about achieving effective knockdown with RNAi; however, we have demonstrated in our unpublished preprint that the neuronal knockdown using independent SIFa-RNAi lines aligns with the SIFa mutant phenotype, which is consistent with our current findings on SIFa knockdown (Wong 2019). In most cases involving RNAi experiments, we have utilized independent RNAi strains to confirm consistent phenotypes and have compared these results with those from mutant phenotypes [1,9]. Therefore, we are confident that our observed SIFa phenotype results from effective RNAi knockdown. Nevertheless, we respect the reviewer’s comments and have conducted additional SIFa knockdown experiments using various GAL4 drivers, followed by immunostaining with SIFa antibodies. As shown in Figure S1B, both neuronal GAL4 drivers and SIFa-GAL4 effectively reduced SIFa immunoreactivity. We believe this indicates that our SIFa knockdown efficiently phenocopies the SIFa mutant phenotype. We also described this result in manuscript as below:

      "Using the GAL4SIFa.PT driver and the elavc155 driver, we observed a significant decrease in SIFa immunoreactivity following SIFa-RNAi treatment, thereby confirming the effective knockdown of SIFa in these cells. In contrast, when SIFa-RNAi was expressed under the control of the repo-GAL4 driver, no significant change in SIFa immunoreactivity was detected (Fig. S1B). This control experiment highlights the specificity of the SIFa-RNAi effect and supports the conclusion that the behavioral changes observed in SMD and LMD are likely attributable to the targeted reduction of SIFa in the intended neuronal populations."

      Minor comments:

      Comment 1. There are quite a lot of citations to preprints, including preprints of the manuscripts under review. It seems inappropriate to cite a preprint of the manuscript you are submitting because it gives a false sense of strengthening the assertions being made in the manuscript.

         __Answer:__ We agree with the reviewer and have omitted all preprints that are currently under review, except for those that are deemed necessary, such as the Zhang et al. 2024 preprint, which is being submitted alongside this manuscript.
      

      Comment 2. It seems that labels are incorrect on a number of the immunohistochemistry figures. For example, in Fig 2N, it labels dendrites as green, but this is sytEGFP, which is the presynaptic terminal.

      __ Answer:__ We thoroughly reviewed and corrected the errors in the labels.

      Comment ____3. Fig 4N shows grasp between SIFa-LexA and sNPF-R-GAL4, but the authors have argued that these two components should both be expressed in SIFa-expressing cells. This would make grasp signal misleading, because it would appear in the SIFa-expressing cells even without synaptic contacts due to both split GFP molecules being expressed in these cells.

         __Answer:__ We appreciate the reviewer’s critical comments regarding the interpretation of our GRASP experiments. As the reviewer noted, we acknowledge that the GRASP results also indicate synaptic contacts between SIFa cells. We have elaborated on these results in the following sections.
      

      "This indicates that the synapses between SIFa cells expressing sNPF-R become stronger (S5K to S5M Fig)."

         However, we understand that readers may find the interpretation of this GRASP data confusing, so we have included additional explanations below to clarify.
      

      This indicates that the synapses between SIFa cells expressing sNPF-R become stronger (S5K to S5M Fig) since we have found that SIFa cells express sNPF-R (Fig 3M, S5E and S5G)

      Comment 4. For quantifying TRIC and CaLexA experiments (eg. Figure 6A-E), intensity of signal should be measured in addition to the area covered by the signal.

      __ Answer:__ We concur with the reviewer. Since all of our analyses indicated that the area covered by the signal correlates with the signal intensity, we opted to use normalized intensity rather than area coverage.

      Conclusive Comments: This study will be most relevant to researchers interested in understanding neuronal control of behavior. It has provided novel information about the mechanisms underlying mating duration in flies, which is used to delineate how internal state influences behavioral outcomes. This represents a conceptual advance, particularly in identifying a cell type and molecule that influences mating duration decisions. The strength of the manuscript is the number of different assays used to investigate the central question from a number of angles. The limitation is that there is a lack of a big picture tying the different components of the manuscript together. Too much data is presented without providing a framework to understand how the data points fit together.

      • Answer: We sincerely appreciate the reviewer’s positive feedback regarding our study and the recognition of its relevance to researchers interested in understanding the neuronal control of behavior. We are grateful for the acknowledgment of our novel insights into the mechanisms underlying mating duration in Drosophila*, particularly in how internal states influence behavioral outcomes. The identification of specific cell types and molecules that affect mating duration decisions indeed represents a significant conceptual advance. We also appreciate the reviewer’s commendation of the diverse array of assays employed in our investigation, which allowed us to approach our central question from multiple perspectives.

        In response to the reviewer’s constructive criticism regarding the lack of a cohesive framework tying the various components of our manuscript together, we have completely restructured our manuscript. We removed redundant data and incorporated additional convincing experiments, such as GCaMP analyses, to enhance clarity and coherence. Furthermore, we have provided a simplified yet comprehensive overview that describes the role of SIFa as a hub for neuropeptidergic signaling. This framework illustrates how SIFa orchestrates multiple behaviors related to energy balance through calcium signaling and synaptic plasticity via SIFaR-expressing cells.

        We believe these revisions address the reviewer’s concerns and provide a clearer understanding of how the different elements of our study fit together, ultimately strengthening the overall impact of our manuscript. Thank you for your valuable feedback, which has guided us in improving our work.

      Reviewer #2

      General Comments:* In the present study, the authors employ mating behavior in male fruit flies, Drosophila melanogaster, to investigate the behavioral roles of the neuropeptide SIFamide. The duration of mating behavior in these animals varies depending on context, previous experience, and internal metabolic state. The authors use this variability to explore the neuronal mechanisms that control these influences. In an abstraction step, they compare the different mating durations to concepts of neuronal interval timing.

      The behavioral functions of the neuropeptide SIFamide have been thoroughly characterized in several studies, particularly in the contexts of circadian rhythm and sleep, courtship behavior, and food uptake. This study adds new data, demonstrating that SIFamide is essential for the proper control of mating behavior, highlighting the interconnection of various state- and motivation-dependent behaviors at the neuronal level. However, the hypothesis that mating behavior is related to interval timing is not convincingly supported.

      Experimentally, the authors show that RNAi-mediated downregulation of SIFamide affects mating duration in male flies. They use combinations of RNAi lines under the control of various Gal4 lines to identify additional neurotransmitters, neuropeptides, and receptors involved in this process. This approach is complemented by neuroanatomical staining and single-cell RNA sequencing.*

      * Overall, the study advances our knowledge about the behavioral roles of SIFamide, which is certainly important, interesting, and worthy of being reported. However, the manuscript also raises several serious caveats and includes points that remain speculative, are less convincing, or are simply incorrect.*

      • Answer: We would like to thank the reviewer for their thoughtful and constructive comments regarding our study. We appreciate the recognition of our investigation into the behavioral roles of the neuropeptide SIFamide in male Drosophila melanogaster*, particularly how we explored the variability in mating duration influenced by context, previous experience, and internal metabolic state. We are grateful for the acknowledgment that our study adds valuable data demonstrating the essential role of SIFamide in regulating mating behavior, highlighting the interconnectedness of various state- and motivation-dependent behaviors at the neuronal level.

        We also appreciate the reviewer's recognition of our experimental approach, which includes RNAi-mediated downregulation of SIFamide, the use of various Gal4 lines to identify additional neurotransmitters, neuropeptides, and receptors involved in this process, as well as our incorporation of neuroanatomical staining and single-cell RNA sequencing.

        In response to the reviewer’s concerns regarding the hypothesis that mating behavior is related to interval timing, we acknowledge that this aspect requires further clarification and support. We have revisited this hypothesis in our manuscript to strengthen its foundation and address any speculative elements. We aim to provide more robust evidence and clearer connections between mating behavior and neuronal interval timing.

        Furthermore, we have taken care to address any points that may have been perceived as less convincing or incorrect. We are committed to refining our manuscript to ensure that all claims are well-supported by our data. Thank you once again for your valuable feedback. We believe that these revisions will enhance the clarity and impact of our study while addressing the concerns raised.

      Major concerns:

      Comment 1. The authors conclude from their mating experiments that SIFamide controls interval timing. This conclusion is not supported by the data, which only indicate that SIFamide is required for normal mating duration and modulates the motivation-dependent component of this behavior. There is no clear evidence linking this to interval timing.

      __ Answer: __We appreciate the reviewer’s insightful comments regarding our conclusion linking SIFamide to interval timing in mating behavior. We acknowledge that our data primarily demonstrate that SIFamide is required for normal mating duration and modulates the motivation-dependent aspects of this behavior, and we recognize the need for clearer evidence connecting these observations to interval timing. Current research by Crickmore et al. has shed light on how mating duration in Drosophila serves as a powerful model for exploring changes in motivation over time as behavioral goals are achieved. For instance, at approximately six minutes into mating, sperm transfer occurs, leading to a significant shift in the male's nervous system: he no longer prioritizes sustaining the mating at the expense of his own survival. This change is driven by the output of four male-specific neurons that produce the neuropeptide Corazonin (Crz). When these Crz neurons are inhibited, sperm transfer does not occur, and the male fails to downregulate his motivation, resulting in matings that can last for hours instead of the typical ~23 minutes [10].

         Recent research by Crickmore et al. has received NIH R01 funding (Mechanisms of Interval Timing, 1R01GM134222-01) to explore mating duration in *Drosophila* as a genetic model for interval timing. Their work highlights how changes in motivation over time can influence mating behavior, particularly noting that significant behavioral shifts occur during mating, such as the transfer of sperm at approximately six minutes, which correlates with a decrease in the male's motivation to continue mating [10]. These findings suggest that mating duration is not only a behavioral endpoint but may also reflect underlying mechanisms related to interval timing.
      
         We believe that by leveraging the robustness and experimental tractability of these findings, along with our own work on SIFamide's role in mating behavior, we can gain deeper insights into the molecular and circuit mechanisms underlying interval timing. We will revise our manuscript to clarify this relationship and emphasize how SIFamide may interact with other neuropeptides and neuronal circuits involved in motivation and timing.
      
         In addition to the efforts of Crickmore's group to connect mating duration with a straightforward genetic model for interval timing, we have previously published several papers demonstrating that LMD and SMD can serve as effective genetic models for interval timing within the fly research community. For instance, we have successfully connected SMD to an interval timing model in a recently published paper [6], as detailed below:
      

      "We hypothesize that SMD can serve as a straightforward genetic model system through which we can investigate "interval timing," the capacity of animals to distinguish between periods ranging from minutes to hours in duration.....

      In summary, we report a novel sensory pathway that controls mating investment related to sexual experiences in Drosophila. Since both LMD and SMD behaviors are involved in controlling male investment by varying the interval of mating, these two behavioral paradigms will provide a new avenue to study how the brain computes the ‘interval timing’ that allows an animal to subjectively experience the passage of physical time [11–16]."

         Lee, S. G., Sun, D., Miao, H., Wu, Z., Kang, C., Saad, B., ... & Kim, W. J. (2023). Taste and pheromonal inputs govern the regulation of time investment for mating by sexual experience in male Drosophila melanogaster. *PLoS Genetics*, *19*(5), e1010753.
      
         We have also successfully linked LMD behavior to an interval timing model and have published several papers on this topic recently [4,5,7].
      
         Sun, Y., Zhang, X., Wu, Z., Li, W., & Kim, W. J. (2024). Genetic Screening Reveals Cone Cell-Specific Factors as Common Genetic Targets Modulating Rival-Induced Prolonged Mating in male Drosophila melanogaster. *G3: Genes, Genomes, Genetics*, jkae255.
      
         Zhang, T., Zhang, X., Sun, D., & Kim, W. J. (2024). Exploring the Asymmetric Body’s Influence on Interval Timing Behaviors of Drosophila melanogaster. *Behavior Genetics*, *54*(5), 416-425.
      
         Huang, Y., Kwan, A., & Kim, W. J. (2024). Y chromosome genes interplay with interval timing in regulating mating duration of male Drosophila melanogaster. *Gene Reports*, *36*, 101999.
      
         Finally, in this context, we have outlined in our INTRODUCTION section below how our LMD and SMD models are related to interval timing, aiming to persuade readers of their relevance. We hope that the reviewer and readers are convinced that mating duration and its associated motivational changes such as LMD and SMD provide a compelling model for studying the genetic basis of interval timing in *Drosophila*.
      

      "The mating duration of male fruit flies is a suitable model for studying interval timing and it could change based on internal states and environmental context. Previous studies by our group[27–30] and others[31,32] have established several frameworks for investigating the mating duration using sophisticated genetic techniques that can analyze and uncover the neural circuits’ principles governing interval timing. In particular, males exhibit LMD behavior when they are exposed to an environment with rivals, which means they prolong their mating duration. Conversely, they display SMD behavior when they are in a sexually saturated condition, meaning they reduce their mating duration[33,34]."

      Comment 2. On line 160, the authors state, "The connection between the dendrites and axons of the SIFamide neuronal processes is unknown." This is not entirely correct. State-of-the-art connectome analyses can determine synaptic connectivities between SIFamidergic neurons and pre-/postsynaptic neurons. The authors also overlook the thorough connectivity analysis by Martelli et al. (2017), which includes functional analyses and detailed anatomical descriptions that the current study confirms.

      __ Answer:__ We appreciate the reviewer for acknowledging the efforts of Martelli et al. in elucidating the neuronal architecture of SIFa neurons. We recognize that it was an oversight on our part to state that "the connection between the dendrites and axons of SIFa neurons is unknown." This error arose because our manuscript has been in preparation for over ten years, predating the publication of Martelli et al.'s work. That statement likely reflects an outdated section of the manuscript.

      We fully acknowledge the findings from previous publications and have removed that sentence entirely from our manuscript. In its place, we have added the following statement:

      "The established connections and architecture of SIFa neurons has been described by Martelli et al., which enhances our understanding of their functional roles within the neuronal circuitry [51]. To identify the dendritic and axonal components of SIFa-neuronal processes, we employed a similar approach to that reported by Martelli [51]."

      Thank you for your valuable feedback, which has helped us improve the clarity and accuracy of our manuscript.

      Comment 3. The mating experiments are overall okay, with sufficiently high sample sizes and appropriate statistical tests. However, many experiments lack genetic controls for the heterozygous parental strains, such as Gal4-ines AND UAS-lines. This is of course of importance and common standard.

      __ Answer: __While we have previously addressed this type of reviewer feedback in our published manuscript [2–7] as well as this manuscript by Reviewer #1, we appreciate the reviewer’s suggestion to include traditional genetic control experiments. In response, we conducted all feasible combinations of genetic control experiments for LMD/SMD during the revision period. The results are presented in the supplementary figures and are described in the main text.

      Comment 4. *Using a battery of RNAi lines, the authors aim to uncover which neurotransmitters might be co-released from SIFamide neurons to influence mating behavior. However, a behavioral effect of an RNAi construct expressed in SIFamidergic neurons does not demonstrate that the respective transmitter is actually released from these neurons. Alternative methods are needed to show whether glutamate, dopamine, serotonin, octopamine, etc., are present and released from SIFamide neurons. It is particularly challenging to prove that a certain substance acts as a transmitter released by a specific neuron. For example, anti-Tdc2 staining does not actually cover SIFamide neurons, and dopamine has not been described as present in SIFamide neurons. *

      __ Answer:__ We appreciate the reviewer’s constructive comments regarding the need to demonstrate the presence of the responsible neurotransmitters in SIFa neurons. While many studies utilize neurotransmitter-synthesizing enzymes such as TH, VGlut, Gad1, and Trhn to assess neurotransmitter effects, we recognize the importance of conclusively establishing that glutamate and dopamine play significant roles in modulating energy balance within SIFa neurons.

         First, the enrichment of tyramine (TA), octopamine (OA), and dopamine (DA) in SIFa neurons was suggested in the study by Croset et al. (2018) [17]. Although we tested Tdc2-RNAi and observed interesting phenotypes, we chose not to publish these findings, as our data on glutamate and dopamine provide a more compelling explanation for how SIFa cotransmission with these neurotransmitters can independently influence various behaviors, including sleep and mating duration.
      
         To confirm the expression of DA in SIFa neurons, we employed a well-established genetic toolkit for dissecting dopamine circuit function in *Drosophila* [18]. Our findings indicate that TH-C-GAL4 specifically labels SIFa neurons, which have been confirmed as dopaminergic (S4M Fig). Our genetic intersection data, along with Xie et al.'s findings from 2018, confirm that a subset of SIFa neurons is indeed dopaminergic. We have described these new results in the main text as follows:
      

      To further verify the presence of DA neurons within the SIFa neuron population, we utilized a well-established genetic toolkit for dissecting DA circuits and confirmed part of SIFa neurons are dopaminergic (S4M Fig) [58].

          To confirm the glutamatergic characteristics of SIFa neurons, we conducted several experiments that established glutamate as the most critical neurotransmitter for generating interval timing in both SIFa and SIFaR neurons. First, to demonstrate the presence of glutamatergic synaptic vesicles in SIFa neurons, we utilized a conditional glutamatergic synaptic vesicle marker for *Drosophila*, developed by Certel et al. [19]. Our results confirmed that SIFa neurons exhibit strong expression of glutamatergic synaptic vesicles (Fig. 2P and Fig. S4N as a genetic control). We have described these new results in the main text as follows:
      

      “To further verify the presence of DA neurons within the SIFa neuron population, we utilized a well-established genetic toolkit for dissecting DA circuits and confirmed part of SIFa neurons are dopaminergic (S4M Fig) [58]. We also employed a conditional glutamatergic synaptic vesicle marker to confirm the presence of glutamatergic SIFa neurons (Fig 2P and Fig S4N) [59].”

         To further confirm that glutamate release from SIFa neurons influences the function of SIFaR neurons, we tested several RNAi strains targeting glutamate receptors. Our results showed that the knockdown of glutamate receptors in SIFaR-expressing neurons produced phenotypes similar to those observed with VGlut-RNAi knockdown in SIFa neurons (Fig. G-L). We believe that this series of experiments demonstrates that glutamate and dopamine work in conjunction with SIFa to modulate interval timing and other behaviors related to energy balance. We have described these new results in the main text as follows:
      

      "To further substantiate the role of glutamate in SIFa-mediated behaviors. we targeted knockdown of VGlut receptors in SIFaR-expressing neurons. Strikingly, the knockdown of VGlut receptors in these neurons also disrupted SMD behavior, mirroring the phenotype observed upon direct suppression of glutamatergic signaling in SIFa neurons (S4G to S4L Fig). This suggests that glutamate is an essential neurotransmitter for modulating interval timing in SIFa neurons.”

      Comment 5. Single-cell RNA sequencing data alone is insufficient to claim multiple transmitter co-release from SIFamide neurons. Figures illustrating single-cell RNA sequencing, such as Figure 3P-R, are not intuitively understandable, and the figure legends lack sufficient information to clarify these panels. As a side note, Tdc2 is not only present in octopaminergic neurons, but also in tyraminergic neurons.

      __ Answer:__ We agree with the reviewer that scRNA-seq data alone is insufficient to support claims of multiple transmitter co-release in SIFa neurons. We also appreciate the reviewer for highlighting the potential for confusion among readers regarding the visualization methods used in our figures, particularly the tSNE plots of the scRNA-seq data. As noted in our previous response to Reviewer #1, we have removed most of the tSNE plots related to co-expression data involving SIFa and NPRs, which we believe will help clarify the interpretation for readers. However, we have retained a few tSNE plots, specifically Figures 2N-O, to illustrate the potential co-expression of the ple and Vglut genes in SIFa cells.

         We understand the reviewer’s concerns regarding the clarity of the presented data and the need for more detailed information about the extent of co-expression and the identification of SIFa-expressing cells. To address these concerns, we have provided a comprehensive description of our methods in the __MATERIALS AND METHODS__ section below.
      

      "Single-nucleus RNA-sequencing analyses

      The snRNAseq dataset analyzed in this paper is published in [20]and available at the Nextflow pipelines (VSN, https://github.com/vib-singlecell-nf), the availability of raw and processed datasets for users to explore, and the development of a crowd-annotation platform with voting, comments, and references through SCope (https://flycellatlas.org/scope), linked to an online analysis platform in ASAP (https://asap.epfl.ch/fca). For the generation of the tSNE plots, we utilized the Fly SCope website (https://scope.aertslab.org/#/FlyCellAtlas/*/welcome). Within the session interface, we selected the appropriate tissues and configured the parameters as follows: 'Log transform' enabled, 'CPM normalize' enabled, 'Expression-based plotting' enabled, 'Show labels' enabled, 'Dissociate viewers' enabled, and both 'Point size' and 'Point alpha level' set to maximum. For all tissues, we referred to the individual tissue sessions within the '10X Cross-tissue' RNAseq dataset. Each tSNE visualization depicts the coexpression patterns of genes, with each color corresponding to the genes listed on the left, right, and bottom of the plot. The tissue name, as referenced on the Fly SCope website is indicated in the upper left corner of the tSNE plot. Dashed lines denote the significant overlap of cell populations annotated by the respective genes. Coexpression between genes or annotated tissues is visually represented by differentially colored cell populations. For instance, yellow cells indicate the coexpression of a gene (or annotated tissue) with red color and another gene (or annotated tissue) with green color. Cyan cells signify coexpression between green and blue, purple cells for red and blue, and white cells for the coexpression of all three colors (red, green, and blue). Consistency in the tSNE plot visualization is preserved across all figures.

      Single-cell RNA sequencing (scRNA-seq) data from the Drosophila melanogaster were obtained from the Fly Cell Atlas website (https://doi.org/10.1126/science.abk2432). Oenocytes gene expression analysis employed UMI (Unique Molecular Identifier) data extracted from the 10x VSN oenocyte (Stringent) loom and h5ad file, encompassing a total of 506,660 cells. The Seurat (v4.2.2) package (https://doi.org/10.1016/j.cell.2021.04.048) was utilized for data analysis. Violin plots were generated using the “Vlnplot” function, the cell types are split by FCA."

         We have also included detailed descriptions in the figure legends for the initial tSNE plot presented below to help readers clearly understand the significance of this visualization.
      

      "Each tSNE visualization depicts the coexpression patterns of genes, with each color corresponding to the genes listed on the left, right, and/or bottom of the plot. The tissue name, as referenced on the Fly SCope website is indicated in the upper left corner of the tSNE plot. Consistency in the tSNE plot visualization is preserved across all figures."

         We appreciate the reviewer for acknowledging that Tdc2 is present in both TA and OA neurons. As we mentioned earlier, we have completely removed the Tdc2-related results from this manuscript, as we believe that more detailed experiments are necessary to confirm the roles of TA and OA in SIFa neurons.
      

      Comment 6. The same argument applies to the expression of sNPF receptors in SIFamide neurons. The rather small anatomical stainings shown in figure 4M do not convincingly and unambiguously show that actually sNPF receptors are located on SIFamide neurons.

      __ Answer:__ We appreciate the reviewer for pointing out that the co-expression of sNPF-R and SIFa needs further verification, and we agree with this assessment. To confirm the co-expression of SIFa with sNPF-R, we conducted a mini-screen of various sNPF-R driver lines and found that the chemoconnectome (CCT) sNPF-R2A driver which represent the physiological expression patterns of sNPF-R, consistently labels SIFa neurons [21].

         To further establish the functional connection between the SIFa and sNPF systems, we performed GCaMP experiments using SIFa-driven GCaMP in conjunction with sNPF-R neurons expressing P2X2, which can be activated by ATP treatment. As shown in Figures 3N-P, we demonstrated that activation of sNPF-R neurons by ATP significantly increases calcium levels in SIFa neurons. Our results strongly suggest that the sNPF-sNPF-R/SIFa system is functionally present and plays a role in modulating interval timing behaviors.
      

      Comment 7. The authors use the GRASP technique (figure 4N) to determine whether synaptic connections are subject to modulation as a result from the animals' individual experience. The overall extremely bright fluorescence at the dorsal areas of both brain hemispheres (figure 4 N, middle panel) raises doubts whether this signal is actually a specific GRASP fluorescence between two small populations of neurons.

      Answer: We appreciate the reviewer for critically highlighting the inadequacies in our presentation of the GRASP data. We agree that one of our previous panels contained excessive background noise, making it difficult for reviewers and readers to discern the different neuronal connections. To address this issue, we have replaced it with a more representative image that clearly illustrates the strengthening of synaptic connections from SIF to sNPF-R in several neurons, including SIFa cells (Fig. S5J). We hope that this updated image will help convince both the reviewer and readers of the validity of our GRASP data.

      Comment 8. The authors cite Martelli et al. (2017) with the hypothesis that sNPF-releasing neurons provide input signals to SIFamide neurons to modulate feeding behavior. However, the cited manuscript does not contain such a hypothesis. The authors should review the reference in more detail.

      __ Answer:__ We appreciate reviewer to correctly point our misunderstanding of references. We agree with reviewer that Martelli et al.'s paper didn't mention about sNPF signaling transmits hunger and satiety information to SIFa neurons. We removed this sentence and replaced it as below correctly mentioning that sNPF signaling is related to feeding behavior however it's connection to SIFa neurons are not known. We greatly appreciate the reviewer for acknowledging our efforts to accurately cite previous articles that support our rationale and ideas.

      " Short neuropeptide F (sNPF) signaling plays a crucial role in regulating feeding behavior in Drosophila melanogaster, influencing food intake and body size [60,66,67]. However, there is currently no direct evidence reported linking sNPF signaling to SIFa neurons."

      Comment ____9. In lines 281 ff., the authors state that SIFamide neurons receive inputs from peptidergic neurons but simultaneously claim that "this speculation is based on morphological observations." This is incorrect. The functional co-activation/imaging analyses provided in Martelli et al. (2017) should not be ignored.

      * Answer: We fully agree with the reviewer that we misinterpreted Martelli et al.'s analysis. We have removed "this speculation is based on morphological observations." from* the following sentence and finalize as below:

      "The SIFa neurons receive inputs from many peptidergic pathways including Crz, dilp2, Dsk, sNPF, MIP, and hugin"

      Comment 10. Figure 6: A transcriptional calcium sensor (TRIC) was used to quantify the accumulation GFP induced by calcium influx in SIFamide neurons. However, I could not find any description of the method in the materials and methods section, nor any explanation how the data were acquired or analyzed. What is the RFP expression good for? How exactly are thresholds determined, and why are areas rather than fluorescence intensities quantified? Overall, this part of the manuscript is rather confusing and needs more explanation.

      __ Answer: Thank you for your continued engagement with our manuscript and for highlighting the need for further clarification on our methods. Your attention to the details of our immunohistochemistry experiments is commendable, and we agree that providing a clear explanation of our thresholding and normalization procedures is essential for the transparency and reproducibility of our results. We primarily adhered to the established methods outlined by Kayser et al. [8]. To address your first point, we have now included a more detailed description of our thresholding and normalization procedures in the __MATERIALS AND METHODS section as below.

      "Quantitative analysis of fluorescence intensity

      To ascertain calcium levels and synaptic intensity from microscopic images, we dissected and imaged five-day-old flies of various social conditions and genotypes under uniform conditions. The GFP signal in the brains and VNCs was amplified through immunostaining with chicken anti-GFP, rabbit anti-DsRed, and mouse anti-nc82 primary antibodies. Image analysis was conducted using ImageJ software. For the quantification of fluorescence intensities, an investigator, blinded to the fly's genotype, thresholded the sum of all pixel intensities within a sub-stack to optimize the signal-to-noise ratio, following established methods [100]. The total fluorescent area or region of interest (ROI) was then quantified using ImageJ, as previously reported. For CaLexA or TRIC signal quantification, we adhered to protocols detailed by Kayser et al. [101], which involve measuring the ROI's GFP-labeled area by summing pixel values across the image stack. This method assumes that changes in the GFP-labeled area and intensity are indicative of alterations in the CaLexA and TRIC signal, reflecting synaptic activity. ROI intensities were background-corrected by measuring and subtracting the fluorescent intensity from a non-specific adjacent area, as per Kayser et al. [101]. For normalization, nc82 fluorescence is utilized for CaLexA, while RFP signal is employed for TRIC experiments, as the RFP signal from the TRIC reporter is independent of calcium signaling [72] . For the analysis of GRASP or tGRASP signals, a sub-stack encompassing all synaptic puncta was thresholded by a genotype-blinded investigator to achieve the optimal signal-to-noise ratio. The fluorescence area or ROI for each region was quantified using ImageJ, employing a similar approach to that used for CaLexA or TRIC quantification [100]. 'Norm. GFP Int.' refers to the normalized GFP intensity relative to the RFP signal.

      • *

      __Comment 11. __Similarly, it remains unclear how exactly syteGFP fluorescence and DenMark fluorescence were quantified. Why are areas indicated and not fluorescence intensity values? In fact, it appears worrisome that isolation of males should lead to a drastic decline in synaptic terminals (as measure through a vesicle-associated protein) by ~ 30%, or, conversely, keeping animals in groups lead to an respective increase (figure 7D). The technical information how exactly this was quantified is not sufficient.

      __ Answer: __Thank you for your ongoing engagement with our manuscript and for emphasizing the need for clarification on our methods. We appreciate your attention to the details of our immunohistochemistry experiments and agree that a clear explanation of our thresholding and normalization procedures is vital for transparency and reproducibility. We acknowledge that signal intensity correlates with area measurements, which is an important consideration. In response to your valuable suggestion, we have revised our approach to present data based on intensity measurements and updated the Y-axis labeling to "Norm. GFP Int." (normalized GFP intensity) for clarity. We primarily followed the established methods from Kayser et al. (2014) [8]. Additionally, we have included a more detailed description of our thresholding and normalization procedures in the "Quantitative analysis of fluorescence intensity" in __MATERIALS AND METHODS __section as we quoted above.

      • *

      Minor concerns:

      Comment 1. Reference 29 and reference 33 are the same.

         __Answer:__ We removed reference 29.
      

      Comment 2. In figure legends, abbreviations should be explained when used first (e.g., figure 1 A "MD", is explained below for panel C-F), or "CS males". __ __

      __Answer: __We have ensured that abbreviations are explained only when they are first used in the figure legends.

      Comment 3. Indications for statistical significance must be shown in all figure legends at the end of each figure legend, not only in figure 1. __ __

      __ Answer:__ We appreciate the reviewer’s advice. However, we have published all our other manuscripts using the same format for mating duration, stating, "The same notations for statistical significance are used in other figures," in the first figure where we describe our statistical significances. We intend to continue with this approach initially and will then adhere to the journal's policy.

      Comment 4. The figures appear overloaded. For example why do you need two different axis designations (mating duration and differences between means)? __ __

      __ Answer: __We appreciate the reviewer's suggestion to refine our figures, and we have indeed reformatted them to provide clearer presentation and improved readability. Our decision is based on the fact that our analysis encompasses not only traditional t-tests but also incorporates estimation statistics, which have been demonstrated to be effective for biological data analysis [22]. The inclusion of DBMs is essential for the accurate interpretation of these estimation statistics, ensuring a comprehensive representation of our findings. This is the primary area where we present two different axis designations.

      Comment 5. Line: 1154: Typo: gluttaminergic should be glutamatergic.

         __Answer:__ We fixed all.
      

      Comment 6. The authors frequently write "system" when referring to transmitter types, e.g., "glutaminergic system", "octopaminergic system", etc. It I not clear what the term "system" actually refers to. If the authors claim that SIFamide neurons release these transmitters in addition to SIFamide, they should state that precisely and then add experiments to show that this is the case.

         __Answer:__ We agree with reviewer and removed the word 'system' after the name of neurotransmitter's name.
      

      Comment 7. Figure S6: It is not explained in the figure legend what fly strain "UAS-ctrl" actually is. Does "ctrl" mean control? And what genotype is hat control? __ __

      __Answer: __It was wild-type strain. We fixed it as "+".

      Comment 8. Figure legend S6, line 1371: The authors indicate experiments using UAS-OrkDeltaC. I could not find these data in the figure. __ __

      __Answer: __It's now in Fig.S6U-W.

      Comment 9. Line 470: "...reduced branching of SIFa axons at the postsynaptic level" should perhaps be "presynaptic level"?

      Answer: Reviewer is correct. We fixed it.

      Conclusive Comments:* Overall, the study advances our knowledge about the behavioral roles of SIFamide, which is certainly important, interesting, and worthy of being reported. However, the manuscript also raises several serious caveats and includes points that remain speculative and are less convincing.

      Overall, the neuronal basis of action selection based on motivational factors (metabolic state, mating experience, sleep/wake status, etc.) is not well understood. The analysis of SIFamide function in insects might provide a way to address the question how different motivational signals are integrated to orchestrate behavior.*

      • *Answer: Thank you for your thoughtful review and for recognizing the significance of our study in advancing knowledge about the behavioral roles of SIFamide. We appreciate your acknowledgment that our work is important, interesting, and worthy of publication.

      We understand your concerns regarding the caveats and speculative points raised in the manuscript. We agree that the neuronal basis of action selection influenced by motivational factors—such as metabolic state, mating experience, and sleep/wake status—remains poorly understood. We believe that our analysis of SIFamide function in insects offers valuable insights into how various motivational signals are integrated to orchestrate behavior.

      In response to your comments, we have made revisions to clarify our findings and address the concerns raised. We aim to strengthen the arguments presented in the manuscript and provide a more robust discussion of the implications of our results. Thank you once again for your constructive feedback, which has been instrumental in improving the clarity and impact of our work.

      • *

      * *

      Reviewer #3

      General Comments:* The Manuscript Peptidergic neurons with extensive branching orchestrate the internal states and energy balance of male Drosophila melanogaster by Yuton Song and colleagues addresses the question how SIFamidergic neurons coordinate behavioral responses in a context-dependent manner. In this context the authors investigate how SIFa neurons receive information about the physiological state of the animal and integrate this information into the processing of external stimuli. The authors show that SIFamidergic neurons and sNPPF expressing neurons form a feedback loop in the ventral nerve cord that modulate long mating (LMD) and shorter mating duration (SMD).

      The manuscript is well written and very detailed and provides an enormous amount of data corroborating the claims of the authors. However, before publication the authors may want to address some points of concern that warrant some deeper explanation.*

      • *__Answer: __Thank you for your positive feedback on our manuscript. We appreciate your recognition of the importance of our study in investigating how SIFa neurons integrate information about the physiological state of the animal with external stimuli, as well as your acknowledgment of the substantial data we provide to support our claims. We understand your concerns regarding certain points that require deeper explanation, and we are committed to addressing these issues to enhance the clarity and robustness of our findings. Your insights into the neuronal basis of action selection influenced by motivational factors are invaluable, and we believe that our exploration of SIFamide function in insects contributes significantly to understanding how various motivational signals orchestrate behavior. Thank you once again for your constructive comments, which will help us improve our manuscript before publication.

      Major concerns:

      Comment 1. On page 6 line 110 the authors describe that knocking-down SIFamide in glia cell does not change LMD or SMD and say that SIFa expression in glia does not contribute to interval timing behavior. However, the authors do not provide any information why they investigate the role of SIFa expression in glia. Is there any SIFa-expression in glia? The authors should somehow demonstrate using antibody labelling against SIFamide whether any glia specific expression of this peptide is to be expected. If they cannot provide this data - the take home message of the experiment cannot be that glia knockdown of SIFamide does not affect the behavior because you cannot knockdown anything that is not there.

      • *

      • In the latter case the experiment could be considered as a nice negative control for the elav-Gal4 pan-neuronal knockdown of SIFamide. The authors provide some Figure supplement where they use repo-Gal80 to partially answer this question. However, the authors should keep in mind that Gal4-drivers are not always complete in the expression pattern. Accordingly, the result should be corroborated with immune-labelling against SIFamide directly.*

      __ Answer: __We appreciate the reviewer's constructive and critical comments regarding the use of our glial cell drivers. As the reviewer rightly pointed out, we believe that glial control is not essential for our manuscript, given that the expression of SIFa is well established in only four neurons. Therefore, we have removed the data related to glial drivers from this manuscript.

      Comment 2. At this point I would like to directly comment on the figure quality. The figures are so crowded that the described anatomical details are hardly visible. In my opinion the manuscript would profit from less data in the main part and more stringent description of the core of the biological problem the authors want to address. The authors may want to reduce data from the main text and provide additional data that are not directly related to the main story as supplementary information.

      __ Answer: __We agree with the reviewer. As another reviewer also suggested that we streamline our figures and data, we have completely restructured our figures and their presentation. In response, we have significantly reduced the density of the main figures and decreased the size of the graphs to enhance clarity. Additionally, we have increased the spacing between panels to ensure that each component is more easily distinguishable. Further details will be provided in our responses to each comment below.

      • *

      Comment 3. On page 8 starting with line 140 the authors describe the architecture of SIFamidergic neurons using several anatomical markers e.g., Denmark and further state that they have discovered that the dendrites of SIFa neurons span just the central brain area. Seeing that these data have been published in Martelli et al., 2017 the authors should tune down the claim that this was discovered in their work but rather corroborated earlier results.

      __ Answer: __We acknowledge this error, as another reviewer also raised this issue. We have corrected our manuscript as follows:

      "The established connections and architecture of SIFa neurons has been described by Martelli et al., which enhances our understanding of their functional roles within the neuronal circuitry [51]. To identify the dendritic and axonal components of SIFa-neuronal processes, we employed a similar approach to that reported by Martelli [51]."

      Comment 4. In the next chapter, the authors aim at identifying the presynaptic inputs from SIFa positive neurons that may influence interval timing behavior and make a broad RNAi knock-down screen targeting a majority of neuromodulators. The authors claim that glutaminergic and dopaminergic signaling is necessary for interval timing behavior. I guess the authors mean "glutamatergic" instead of "glutaminergic" as glutamine is the precursor but not the neurotransmitter.

      __ Answer: __The reviewer is correct. We have corrected this error and changed all instances to "glutamatergic."

      Comment 5____. Furthermore, the authors show that the knock down of Tdc2 with RNAi has comparable effects on SMD than Glutamate and dopamine but appear to not further discuss this in the main text. To me it is not clear why the authors exclude Tdc2 from their resume. The authors should explain this in detail.

         __Answer:__ We appreciate the reviewer’s constructive comments regarding the need for a more detailed demonstration of the role of Tdc2 data. While we did test Tdc2-RNAi and observed interesting phenotypes, we decided not to include these findings in our publication, as our data on glutamate and dopamine offer a more compelling explanation for how SIFa cotransmission with these neurotransmitters can independently influence various behaviors, such as sleep and mating duration. Consequently, we have removed all data related to Tdc2. We believe that further evaluation is necessary to better understand the roles of the tyramine and octopamine systems in SIFa neurons.
      

      Comment 6. The authors base their assumptions that the tested neurotransmitters are expressed in SIFamidergic neurons on Scope database analysis. But a transcript does not necessarily mean that it will be translated too. To my knowledge there is no available data in the literature showing that tyrosine hydroxylase is expressed in SIFamidergic neurons (see e.g., Mao and Davis, 2010). To show that ple or Tdc2 are indeed expressed and translated into functional enzymes in SIFamidergic neurons the authors should provide the according antibody labelling corroborating the result from the transcriptome analysis.

      __ Answer:__ We appreciate the reviewer’s constructive comments regarding the role of neurotransmitters in conjunction with SIFa in modulating interval timing behaviors. To confirm the expression of dopamine (DA) in SIFa neurons, we utilized a well-established genetic toolkit for dissecting dopamine circuit function in Drosophila [18]. Our findings demonstrate that TH-C-GAL4 specifically labels SIFa neurons, which have been confirmed to be dopaminergic (Fig. S4M). This aligns with the genetic intersection data and the findings from Xie et al. (2018), confirming that a subset of SIFa neurons is indeed dopaminergic. We have included these new results in the main text as follows:

      " To further verify the presence of DA neurons within the SIFa neuron population, we utilized a well-established genetic toolkit for dissecting DA circuits and confirmed part of SIFa neurons are dopaminergic (S4M Fig) [58]."

         To confirm the glutamatergic characteristics of SIFa neurons, we conducted several experiments that established glutamate as the most critical neurotransmitter for generating interval timing in both SIFa and SIFaR neurons. First, to demonstrate the presence of glutamatergic synaptic vesicles in SIFa neurons, we utilized a conditional glutamatergic synaptic vesicle marker for *Drosophila*, developed by Certel et al. [19]. Our results confirmed that SIFa neurons exhibit strong expression of glutamatergic synaptic vesicles (Fig. 2P and Fig. S4N as a genetic control). We have described these new results in the main text as follows:
      

      "To further substantiate the role of glutamate in SIFa-mediated behaviors. we targeted the expression of VGlut receptor in neurons that carry the SIFaR. Strikingly, the knockdown of VGlut receptor in these neurons also disrupted SMD behavior, mirroring the phenotype observed upon direct suppression of glutamatergic signaling in SIFa neurons (S4O-L Fig)."

         To further confirm that glutamate release from SIFa neurons influences the function of SIFaR neurons, we tested several RNAi strains targeting glutamate receptors. Our results showed that the knockdown of glutamate receptors in SIFaR-expressing neurons produced phenotypes similar to those observed with VGlut-RNAi knockdown in SIFa neurons (Fig. S4I-N). We believe that this series of experiments demonstrates that glutamate and dopamine work in conjunction with SIFa to modulate interval timing and other behaviors related to energy balance. We have described these new results in the main text as follows:
      

      "We also further verified that the knockdown of glutamate receptors in SIFaR-expressing neurons produces phenotypes similar to those resulting from VGlut knockdown in SIFa neurons (S4G to S4L Fig). This suggests that glutamate is an essential neurotransmitter for modulating interval timing in SIFa neurons."

      Comment 7. The authors compare the LMD and SMD behavior of the animals with reduced expression with "heterozygous control animals" the authors should describe in detail what these are - are these controls the driver lines or the effector lines or a mix of both? The authors should provide the data for heterozygous driver line controls as well as heterozygous effector line controls to exclude any genetic background influence on the measured behavior. Accordingly, the authors should provide the data for the same controls for the sleep experiment in figure 3O and all the other behavioral experiments in the following parts of the manuscript.

      __ Answer: __We sincerely thank the reviewer for insightful comments regarding the absence of traditional genetic controls in our study of LMD and SMD behaviors. We acknowledge the importance of such controls and wish to clarify our rationale for not including them in the current investigation. The primary reason for not incorporating all genetic control lines is that we have previously assessed the LMD and SMD behaviors of GAL4/+ and UAS/+ strains in our earlier studies. Our past experiences have consistently shown that 100% of the genetic control flies for both GAL4 and UAS exhibit normal LMD and SMD behaviors. Given these findings, we deemed the inclusion of additional genetic controls to be non-essential for the present study, particularly in the context of extensive screening efforts. We understand the value of providing a clear rationale for our methodology choices. To this end, we have added a detailed explanation in the "MATERIALS AND METHODS" section and the figure legends of Figure 1. This clarification aims to assist readers in understanding our decision to omit traditional controls, as outlined below.

      "Mating Duration Assays for Successful Copulation

      The mating duration assay in this study has been reported [33,73,93]. To enhance the efficiency of the mating duration assay, we utilized the Df (1) Exel6234 (DF here after) genetic modified fly line in this study, which harbors a deletion of a specific genomic region that includes the sex peptide receptor (SPR)[94,95]. Previous studies have demonstrated that virgin females of this line exhibit increased receptivity to males [95]. We conducted a comparative analysis between the virgin females of this line and the CS virgin females and found that both groups induced SMD. Consequently, we have elected to employ virgin females from this modified line in all subsequent studies. For naïve males, 40 males from the same strain were placed into a vial with food for 5 days. For single reared males, males of the same strain were collected individually and placed into vials with food for 5 days. For experienced males, 40 males from the same strain were placed into a vial with food for 4 days then 80 DF virgin females were introduced into vials for last 1 day before assay. 40 DF virgin females were collected from bottles and placed into a vial for 5 days. These females provide both sexually experienced partners and mating partners for mating duration assays. At the fifth day after eclosion, males of the appropriate strain and DF virgin females were mildly anaesthetized by CO2. After placing a single female in to the mating chamber, we inserted a transparent film then placed a single male to the other side of the film in each chamber. After allowing for 1 h of recovery in the mating chamber in 25℃ incubators, we removed the transparent film and recorded the mating activities. Only those males that succeeded to mate within 1 h were included for analyses. Initiation and completion of copulation were recorded with an accuracy of 10 sec, and total mating duration was calculated for each couple. All assays were performed from noon to 4pm. Genetic controls with GAL4/+ or UAS/+ lines were omitted from supplementary figures, as prior data confirm their consistent exhibition of normal LMD and SMD behaviors [33,73,93,96,97]. Hence, genetic controls for LMD and SMD behaviors were incorporated exclusively when assessing novel fly strains that had not previously been examined. In essence, internal controls were predominantly employed in the experiments, as LMD and SMD behaviors exhibit enhanced statistical significance when internally controlled. Within the LMD assay, both group and single conditions function reciprocally as internal controls. A significant distinction between the naïve and single conditions implies that the experimental manipulation does not affect LMD. Conversely, the lack of a significant discrepancy suggests that the manipulation does influence LMD. In the context of SMD experiments, the naïve condition (equivalent to the group condition in the LMD assay) and sexually experienced males act as mutual internal controls for one another. A statistically significant divergence between naïve and experienced males indicates that the experimental procedure does not alter SMD. Conversely, the absence of a statistically significant difference suggests that the manipulation does impact SMD. Hence, we incorporated supplementary genetic control experiments solely if they deemed indispensable for testing. All assays were performed from noon to 4 PM. We conducted blinded studies for every test[98,99] .

         While we have previously addressed this type of reviewer feedback in our published manuscript [2–7], we appreciate the reviewer’s suggestion to include traditional genetic control experiments. In response, we conducted all feasible combinations of genetic control experiments for LMD/SMD during the revision period. The results are presented in the supplementary figures and are described in the main text.
      

      __Comment 8. __On page 11 line 231 to page 12 line 233 the authors claim that "sNPF signaling transmits hunger and satiety information to SIFa neurons in order to control food search and feeding" and cite Martelli et al., 2017. Could the authors explain more in detail how the Martelli paper somehow proposes this idea? I do not find the link between sNPF signaling hunger and SIFamide in this precise paper.

      __ Answer:__ We appreciate the reviewer for accurately pointing out our misunderstanding of the references. We agree that Martelli et al.'s paper does not mention that sNPF signaling transmits hunger and satiety information to SIFa neurons. Consequently, we have removed the relevant sentence and replaced it with a statement correctly indicating that while sNPF signaling is related to feeding behavior, its connection to SIFa neurons remains unknown. We are grateful to the reviewer for acknowledging our efforts to accurately cite previous articles that support our rationale and ideas.

      " Short neuropeptide F (sNPF) signaling plays a crucial role in regulating feeding behavior in Drosophila melanogaster, influencing food intake and body size [60,66,67] . However, there is currently no direct evidence reported linking sNPF signaling to SIFa neurons."


      Comment 9. On page 15 line 302 - 303 the authors write that "except for PK2-R2, all other genes coexpress with SIFa in SCope data, indicating that hugin inputs to SIFa may not be transmitted through peptidergic signaling" - if SIFamidergic neurons do not express hugin-receptors how do the authors explain the inverted effect of PK2-R2-RNAi on single housed male courtship index when compared to heterozygous SIFaPT Gal4 control that show a reduction under comparable conditions.

      __ Answer:__ We appreciate the reviewer’s constructive comments. In line with another reviewer’s suggestion, we have completely removed results of other neuropeptidergic inputs, focusing instead on how sNPF inputs modulate SIFa-mediated behavioral modulation using more advanced techniques such as GCaMP (Fig 3N). Consequently, the phenotypes resulting from various knockdowns of neuropeptide receptors are currently under investigation for a separate manuscript that we are preparing. We hope to successfully address how different neuropeptidergic inputs regulate SIFa neuron activity through various strategies.

      Comment 10. On page 17 line 350 - 351 the authors write that "Stimulation of SIFa neurons resulted in an elevation in food consumption. Further, the authors write that "deactivation of SIFa neurons leads to a decrease in food consumption in male flies". From the way this is formulated it is not visible that the role of SIFamide in feeding control was published by Martelli and colleagues before. As the authors do not discuss the finding further in their discussion but cite the concerned paper in other aspects it appears as the authors intentionally want to omit this information to the reader. The authors may add a note that this has been shown before for female flies by Martelli and colleagues.

      __ Answer:__ We appreciate reviewer's concern for properly mention previous Martelli et al.'s results about female feeding behavior modulated by SIFa neurons' activity. We agree with reviewer and added sentence as below in main text.

      "Nevertheless, the temporary deactivation of SIFa neurons leads to a decrease in food consumption in male flies (Fig 4N and S6F to S6H) as previously described by Martelli et al.'s report in female flies [43]."

      Comment 11. SIFamide receptor and GnIHR are discussed as descendants from a common ancestor and the authors nicely demonstrate that SIFamide does not only control homeostatic behavior as shown by Martelli and colleagues but also controls reproductive behavior. The evolution of such behavior control mechanisms may be integrated in the discussion too.

      Answer: We appreciate the reviewer’s constructive comments, which enhance the evolutionary significance of our study. We agree with the reviewer and have added the following paragraph to the DISCUSSION section:

      "The relationship between SIFamide receptors (SIFaR) and gonadotropin inhibitory hormone receptors (GnIHR) [89] highlights an intriguing evolutionary connection, as both are believed to have descended from a common ancestor [90,91]. This study expands on previous findings by Martelli et al., demonstrating that SIFamide not only regulates homeostatic behaviors but also plays a significant role in reproductive behavior [43]. GnIHR regulates food intake and reproductive behavior in opposing directions, thereby prioritizing feeding behavior over other behavioral tasks during times of metabolic need [92]. The evolution of these behavioral control mechanisms suggests a complex interplay between neuropeptides that modulate both physiological states and reproductive strategies. As SIFamide influences various behaviors, including feeding and sexual activity, it may be integral to understanding how organisms adapt their reproductive strategies in response to environmental and internal cues. This integration of behavioral modulation underscores the evolutionary significance of SIFamide signaling in coordinating essential life functions in Drosophila melanogaster and potentially other species, revealing pathways through which neuropeptides can shape behavior across different contexts."

      Conclusive Comments: The manuscript by Song and colleagues is very interesting and may attract a broad readership. However, the authors miss to make clear what was already known and published on the role of SIFamide in homeostatic behavior control before their own study. Seen that the receptors for SIFamide and GnRHI derive from a common ancestor and apparently both GnRHI and SIFamide share similar roles in behavioral control this might indeed suggests that the basic function of this SIFaR/GnIHR-signaling pathway is conserved. This more broad evolutionary aspect is missing in the discussion of the manuscript.

      • *Answer: We wholeheartedly agree with the reviewer regarding the evolutionary significance of SIFaR's function in relation to GnIHR, and we have expanded the DISCUSSION section to emphasize this important aspect.

      "The relationship between SIFamide receptors (SIFaR) and gonadotropin inhibitory hormone receptors (GnIHR) [89] highlights an intriguing evolutionary connection, as both are believed to have descended from a common ancestor [90,91]. This study expands on previous findings by Martelli et al., demonstrating that SIFamide not only regulates homeostatic behaviors but also plays a significant role in reproductive behavior [43]. GnIHR regulates food intake and reproductive behavior in opposing directions, thereby prioritizing feeding behavior over other behavioral tasks during times of metabolic need [92]. The evolution of these behavioral control mechanisms suggests a complex interplay between neuropeptides that modulate both physiological states and reproductive strategies. As SIFamide influences various behaviors, including feeding and sexual activity, it may be integral to understanding how organisms adapt their reproductive strategies in response to environmental and internal cues. This integration of behavioral modulation underscores the evolutionary significance of SIFamide signaling in coordinating essential life functions in Drosophila melanogaster and potentially other species, revealing pathways through which neuropeptides can shape behavior across different contexts."





      Reference

      1. Zhang T, Wu Z, Song Y, Li W, Sun Y, Zhang X, et al. Long-range neuropeptide relay as a central-peripheral communication mechanism for the context-dependent modulation of interval timing behaviors. bioRxiv. 2024; 2024.06.03.597273. doi:10.1101/2024.06.03.597273
      2. Kim WJ, Jan LY, Jan YN. A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating. Neuron. 2013;80: 1190–1205. doi:10.1016/j.neuron.2013.09.034
      3. Kim WJ, Jan LY, Jan YN. Contribution of visual and circadian neural circuits to memory for prolonged mating induced by rivals. Nat Neurosci. 2012;15: 876–883. doi:10.1038/nn.3104
      4. Zhang T, Zhang X, Sun D, Kim WJ. Exploring the Asymmetric Body’s Influence on Interval Timing Behaviors of Drosophila melanogaster. Behav Genet. 2024; 1–10. doi:10.1007/s10519-024-10193-y
      5. Sun Y, Zhang X, Wu Z, Li W, Kim WJ. Genetic Screening Reveals Cone Cell-Specific Factors as Common Genetic Targets Modulating Rival-Induced Prolonged Mating in male Drosophila melanogaster. G3: Genes, Genomes, Genet. 2024; jkae255. doi:10.1093/g3journal/jkae255
      6. Lee SG, Sun D, Miao H, Wu Z, Kang C, Saad B, et al. Taste and pheromonal inputs govern the regulation of time investment for mating by sexual experience in male Drosophila melanogaster. PLOS Genet. 2023;19: e1010753. doi:10.1371/journal.pgen.1010753
      7. Huang Y, Kwan A, Kim WJ. Y chromosome genes interplay with interval timing in regulating mating duration of male Drosophila melanogaster. Gene Rep. 2024; 101999. doi:10.1016/j.genrep.2024.101999
      8. Kayser MS, Yue Z, Sehgal A. A Critical Period of Sleep for Development of Courtship Circuitry and Behavior in Drosophila. Science. 2014;344: 269–274. doi:10.1126/science.1250553
      9. Wong K, Schweizer J, Nguyen K-NH, Atieh S, Kim WJ. Neuropeptide relay between SIFa signaling controls the experience-dependent mating duration of male Drosophila. Biorxiv. 2019; 819045. doi:10.1101/819045
      10. Thornquist SC, Langer K, Zhang SX, Rogulja D, Crickmore MA. CaMKII Measures the Passage of Time to Coordinate Behavior and Motivational State. Neuron. 2020;105: 334-345.e9. doi:10.1016/j.neuron.2019.10.018
      11. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6: 755–765. doi:10.1038/nrn1764
      12. Merchant H, Harrington DL, Meck WH. Neural Basis of the Perception and Estimation of Time. Annu Rev Neurosci. 2012;36: 313–336. doi:10.1146/annurev-neuro-062012-170349
      13. Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the Internal Clock: First- and Second-Order Principles of Subjective Time. Annu Rev Psychol. 2013;65: 743–771. doi:10.1146/annurev-psych-010213-115117
      14. Rammsayer TH, Troche SJ. Neurobiology of Interval Timing. Adv Exp Med Biol. 2014; 33–47. doi:10.1007/978-1-4939-1782-2_3
      15. Golombek DA, Bussi IL, Agostino PV. Minutes, days and years: molecular interactions among different scales of biological timing. Philosophical Transactions Royal Soc B Biological Sci. 2014;369: 20120465. doi:10.1098/rstb.2012.0465
      16. Jazayeri M, Shadlen MN. A Neural Mechanism for Sensing and Reproducing a Time Interval. Curr Biol. 2015;25: 2599–2609. doi:10.1016/j.cub.2015.08.038
      17. Croset V, Treiber CD, Waddell S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife. 2018;7: e34550. doi:10.7554/elife.34550
      18. Xie T, Ho MCW, Liu Q, Horiuchi W, Lin C-C, Task D, et al. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila. Cell Reports. 2018;23: 652–665. doi:10.1016/j.celrep.2018.03.068
      19. Certel SJ, Ruchti E, McCabe BD, Stowers RS. A conditional glutamatergic synaptic vesicle marker for Drosophila. G3. 2022;12: jkab453. doi:10.1093/g3journal/jkab453
      20. Li H, Janssens J, Waegeneer MD, Kolluru SS, Davie K, Gardeux V, et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science. 2022;375: eabk2432. doi:10.1126/science.abk2432
      21. Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, et al. Chemoconnectomics: Mapping Chemical Transmission in Drosophila. Neuron. 2019;101: 876-893.e4. doi:10.1016/j.neuron.2019.01.045
      22. Claridge-Chang A, Assam PN. Estimation statistics should replace significance testing. Nat Methods. 2016;13: 108–109. doi:10.1038/nmeth.3729

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      - The manuscript needs comprehensive proofreading for language and formatting. In many instances, spaces are missing or not required.

      Thank you for your comments. The manuscript has been thoroughly proofread for errors in language and formatting.

      - Could the authors explore correlation network analyses to get additional insights into the structure of different clusters? 

      We have added a co-occurrence analysis (at species taxonomic level) based on SparCC to the manuscript (Figure 2).

      This is described on Page 9 line 141-148

      - The GitHub link is not correct. 

      The github repository has now been made public.

      - It is not possible to access the dataset on ENA. 

      We have changed the ENA study PRJEB57401 status to open.

      - Add the graphs obtained with decontam analysis as a supplementary figure. 

      We have added the outputs of decontam (.csv files with feature lists of ASVs that were filtered based on the prevalence and frequency tests) to the github repository.

      - There is nothing about the RPL group in the results section, while the authors discuss this issue in the introduction. What about the controls with proven fertility? 

      Thank you. We have amended the manuscript to compare characteristics between the RPL, unexplained subfertility and controls groups.

      Line 1279-130 page 8:  

      “The study group represented 85% of samples with high sperm DNA fragmentation, 85% of samples with elevated ROS and 79% of samples with oligospermia. Rates of abnormal seminal parameters including low sperm concentration, reduced progressive motility and ROS concentrations were found to be highest in the MFI group (Supplementary Figure 1). Baseline characteristics between the RPL, unexplained subfertility and controls groups were similar.

      Line 150-154 Page 9: 

      “Bacterial richness, diversity and load were similar between all patient groups examined in the study (Supplementary Figure 4).

      - While correctly stated in the title, the term microbiota should be used throughout the manuscript instead of "microbiome" 

      Thank you. This misnomer has been amended throughout the manuscript.

      Minor corrections:

      Line 25: provoke is not a good term here. 

      Thank you. The term ‘provoke’ has been removed

      Line 26: why does semen culture have a limited scope? 

      Thank you. Line 40-41 Page 3 has been amended:

      “It is therefore plausible that asymptomatic seminal infections may be associated with impaired reproductive function in some men. Since semen culture has a limited scope for studying the seminal microbiota due to its inability to identify all present microbiota next generation sequencing (NGS) approaches have been reported recently by a growing number of investigators (13, 14, 15, 16, 17, 18, 19)”.

      Line 68: write μl correctly

      Thank you. This has been corrected

      Line 131: several organisms at the genus level. 

      Thank you. This has been corrected

      Line 136: what are the relative abundances of these genera? Is this relevant? 

      The mean relative abundances for the key taxa mention in each cluster are all above 20%. This information has been added to the manuscript text on page 9, line 153.

      Line 173: Molina et al. 

      Thank you. This has been corrected

      Line 173: the contaminations are referred to the low biomass nature of testicular samples. If present, bacteria of accessory gland secretions are an integral part of the seminal microbiota itself. Please review these sentences. 

      Thank you. This had been reworked to highlight the important of urethral contamination, which you later allude to as a limitation of our study is the failure to provide paired urine and semen samples.

      Page 11 line 194-196

      “Molina et al report that 50%-70% of detected bacterial reads may be environmental contaminants in a sample from extracted testicular spermatozoa (35); with the addition of passage along the urethra it is likely that contamination of ejaculated semen would be much higher.”

      Table 1: remove results interpretation from table caption. 

      Thank you this has been acted upon.

      Table 1: why in some cases, like in DNA fragmentation index, the total is not equal to n=223? 

      This is due to missing data/ analysis not possible for some men due to the requirement of a minimum number of sperm in the ejaculate to perform DNA fragmentation testing.

      Table 1: "frag" is not defined. 

      Thank you, this has been amended

      Tables 2, 3 & 4: bacterial genera in italics. 

      Thank you, this has been amended

      Figure 1A: add the fertility status information above the cluster colors. 

      Thank you, this has been amended in Figure 1.

      Figure 1C: the color code is confusing. Use different colors for each cluster. 

      Figure 1 legend: bacterial genera in italics. 

      Figures 1 & 2: the authors should use similar chart formatting in the two tables. 

      Thank you, this has been amended

      Reviewer 2:

      (1) The patient groups have different diagnoses and should be handled as different groups, and not fused into one 'patient' group in analyses. <br /> Why are the data in tables presented as controls and cases? I would consider men from couples with recurrent pregnancy loss, unexplained infertility, and male factor infertility to have different seminal parameters (not to fuse them into one group). This means, that the statistical analyses should be performed considering each group separately, and not to fuse 3 different infertility diagnoses into one patient group. 

      We have conducted detailed analyses, requested by the reviewer, comparing seminal DNA, ROS and microbiota characteristics between each individual patient groups (Supplimental figures 1 and 4). No specific taxa (at either genera or species-level) were found to differ in relative abundance between the diagnostic groups. However, we expect associations between parameters such as reactive oxygen species, or DNA fragmentation, and relative abundance of bacterial species, to be general and not restricted to or specific to each diagnostic group. Therefore, we also conducted further analyses aggregating data from all patient groups to investigate relationships common to these different forms of male reproductive dysfunction.

      (2) Were any covariables included in the statistical analyses, e.g. age, BMI, smoking, time of sexual abstinence, etc? 

      Covariates were not included in the statistical analyses. This has been added in the manuscript to the limitations.

      Page 14 line 267-268

      “Additionally, we did not have other covariables such as smoking status with which to include in further analyses”.

      (3) Furthermore, it is known that 16S rRNA gene analysis does not provide sensitive enough detection of bacteria on the species level. How much do the authors trust their results on the species level? 

      The limitations of taxonomic assignment using 16S rRNA gene metataxonomics are well documented. However, the capacity to assign sequence amplicons at species level depends on the sequence variability of the 16S rRNA gene for each of the taxa reported and the specific gene region chosen. In this study, amplification of the V1-V2 region was performed using a mixed 28f primer set (see methods for details) that enables resolution and assignment of several bacterial species highly relevant to the reproductive tract including Lactobacillus spp., such as L. crispatus and L. iners, (e.g. https://doi.org/10.3389/fcell.2021.641921, https://doi.org/10.1128/msystems.01039-23, https://doi.org/10.1186/s12915-023-01702-2). In this study, we report the presence of L. iners, but not L. crispatus in semen samples, and we have also identified a specific association/co-occurrence between Gardnerella vaginalis and Lactobacillus iners, similar to that observed in vaginal bacterial communities.

      (4) Were the analyses of bacterial genera and species abundances with seminal quality parameters controlled for diagnosis and other confounders? 

      As stated in point 2, no adjustment was made for co-variates. No differences in microbiome composition were observed among the three diagnostic groups, so no adjustments were made to our analysis.

      (5) The authors stress that their study is the biggest on the microbiome in semen. However, when considering that the study consists of 4 groups (with n=46-63), it does not stand out from previous studies. 

      Our study is overall the largest investigating interactions between the seminal microbiome and male reproductive dysfunction. Other studies have included greater numbers of men with infertility.

      (6) Weaknesses: There is a lack of paired seminal/urinal samples. 

      Thank you. This limitation has been added.

      Page 14 line 266-267

      “A further limitation of this study, and others, is the lack of reciprocal genital tract microbiota testing of the female partners, or paired seminal and urinary samples from male participants”.

      Recommendation for authors to consider:

      Including previous classical reviews in the introduction: DOI:10.1097/MOU.0000000000000742 <br /> DOI: 10.1038/s41585-019-0250-y 

      Thank you. This has been added.

      Mentioning in the M&M section that there is a supplementary text with a more detailed M&M part. 

      Thank you. This has been added. Further methodological detail can be found in supplementary text.

      Revising the use of 'microbiota' and 'microbiome', they are not synonyms. When talking of 16S rRNA gene analysis, we consider 'microbiome' analysis. 

      Thank you. This misnomer has been amended throughout the manuscript.

      Revising the text, there are several erratas (e.g. verb missing, etc). 

      Thank you for your comments. The manuscript has been thoroughly proofread for errors in language and formatting.

    1. eachoptimization step in our work generates new prompts that aim to increase the test accuracy based ona trajectory of previously generated prompts, instead of editing one input prompt according to naturallanguage feedback (Pryzant et al., 2023) or requiring the new prompt to follow the same semanticmeaning (Zhou et al., 2022b)

      Khác với các nghiên cứu gần đây sử dụng LLM cho việc sinh prompt tự động, mỗi bước tối ưu hóa sẽ tạo sinh các prompt mới có mục tiêu tăng điểm accuracy dựa trên lân cận của các prompt đã được tạo sinh trước đó, thay vì chỉnh sửa một prompt đầu vào dựa trên phản hồi ngôn ngữ tự nhiên hoặc yêu cầu prompt mới phải có ý nghĩa ngữ cảnh tương tự.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary: 

      In the manuscript entitled "Magnesium modulates phospholipid metabolism to promote bacterial phenotypic resistance to antibiotics", Li et al demonstrated the role of magnesium in promoting phenotypic resistance in V. alginolyticus. Using standard microbiological and metabolomic techniques, the authors have shown the significance of fatty acid biosynthesis pathway behind the resistance mechanism. This study is significant as it sheds light on the role of an exogenous factor in altering membrane composition, polarization, and fluidity which ultimately leads to antimicrobial resistance. 

      Strengths: 

      (1) The experiments were carried out methodically and logically. 

      (2) An adequate number of replicates were used for the experiments. 

      Weaknesses: 

      (1) The introduction section needs to be more informative and to the point.  

      Thank you so much for your suggestion. We have revised the introduction to make it more informative and to the point as following:

      “Non-inheritable antibiotic or phenotypic resistance represents a serious challenge for treating bacterial infections. Phenotypic resistance does not involve genetic mutations Phenotypic resistance does not involve genetic mutations and is transient, allowing bacteria to resume normal growth. Biofilm and bacterial persisters are two phenotypic resistance types that have been extensively studied (Brandis et al., 2023; Corona & Martinez, 2013). Biofilms have complex structures, containing elements that impede antibiotic diffusion, sequestering and inhibiting their activity (Ciofu et al., 2022). Biofilm-forming bacteria and persisters also have distinct metabolic states that significantly reduce their antibiotic susceptibility (Yan & Bassler, 2019). These two types of phenotypic resistance share the common feature in their retarded or even cease of growth in the presence of antibiotics (Corona & Martinez, 2013). However, specific factors that promote phenotypic resistance and allow bacteria to proliferate in the presence of antibiotics remain poorly defined.

      Metal ions have a diverse impact on the chemical, physical, and physiological processes of antibiotic resistance  (Booth et al, 2011; Lu et al, 2020; Poole, 2017). This includes genetic elements that confer resistance to metals and antibiotics (Poole, 2017) and metal cations that directly hinder (or enhance) the activity of specific antibiotic drugs (Zhang et al., 2014). The metabolic environment can also impact the sensitivity of bacteria to antibiotics (Jiang et al., 2023; Lee & Collins, 2012; Peng et al., 2015; Zhang et al., 2020; Zhao et al., 2021). Light metal ions, such as magnesium, sodium, and potassium, can behave as cofactors for different enzymes (Du et al., 2016) and influence drug efficacy. Heavy metal ions, including Cu2+ and Zn2+, confer resistance to antibiotics (Yazdankhah et al., 2014; Zhang et al., 2018). Recent reports suggest that sodium negatively regulates redox states to promote the antibiotic resistance of Vibrio alginolyticus (Yang et al., 2018), while actively growing Bacillus subtilis cope with ribosome-targeting antibiotics by modulating ion flux (Lee et al, 2019). In Gram-negative bacteria, by contrast, zinc enhances antibiotic efficacy by potentiating carbapenem, fluoroquinolone, and β-lactam-mediated killing (Isaei et al., 2016; Zhang et al., 2014). Magnesium influences bacterial structure, cell motility, enzyme function, cell signaling, and pathogenesis (Wang et al., 2019). This mineral also modulates microbiota to harvest energy from the diet (Garcia-Legorreta et al., 2020), allowing Bacillus subtilis to cope with ribosome-targeting antibiotics by modulating ion flux (Lee et al., 2019). However, the role of magnesium in promoting phenotypic resistance is less well understood.

      Vibrios inhabit seawater, estuaries, bays, and coastal waters, regions full of metal ions such as magnesium (Kumarage et al., 2022). Magnesium is the second most dissolved element in seawater after sodium. At a salinity of 3.5% seawater, the magnesium concentration is about 54 mM (Potis, 1968), and in deep seawater, can be as high as 2,500 mM (Wang et al., 2024). Vibrio parahaemolyticus and V. alginilyticus are two representative Vibrio pathogens that infect humans and aquatic animals, resulting in illness and economic loss, respectively (Grimes, 2020). (Fluoro)quinolones such as balofloxacin are used to treat Vibrio infection, however, resistance has emerged due to overuse (Suyamud et al., 2024). Indeed, (fluoro)quinolones are one of China's two primary residual chemicals associated with aquaculture (Liu et al., 2017). Vibrio can develop quinolone resistance through mutations in the DNA gyrase gene or through plasmid-mediated mechanisms (Dutta et al., 2021). Thus, the use of V. parahaemolyticus and V. alginilyticus as bacterial representatives, and balofloxacin as a quinolone-based antibacterial representative, can help to define novel magnesiumdependent phenotypic resistance mechanisms of pathogenic Vibrio species. 

      The current study evaluated whether magnesium induces phenotypic resistance in Vibrio species and defined the molecular/genetic basis for this resistance. Genetic approaches, GC-MS analysis of metabolite and membrane remodeling upon antibiotic exposure, membrane physiology, and extensive antimicrobial susceptibility testing were used for the evaluations.”

      (2) The weakest point of this paper is in the logistics through the results section. The way authors represented the figures and interpreted them in the results section (or the figure legends) does not match. The figures are difficult to interpret and are not at all self-explanatory. 

      Thank you so much for your suggestion. We have followed your suggestion to check the match between result and figures. They are now revised. 

      (3) There are too many mislabeling of the figure panels in the main text which makes it difficult to find out which figures the authors are explaining. There should be more explanation on why and how they did the experiments and how the results were interpreted. 

      Thank you so much for your suggestion. We have checked the figures and main text to ensure that we make every figure clearly stated.  

      Reviewer #2 (Public Review): 

      Summary: 

      In this study, the authors aimed to identify if and how magnesium affects the ability of two particular bacteria species to resist the action of antibiotics. In my view, the authors succeeded in their goals and presented a compelling study that will have important implications for the antibiotic resistance research community. Since metals like magnesium are present in all lab media compositions and are present in the host, the data presented in this study certainly will inspire additional research by the community. These could include research into whether other types of metals also induce multi-drug resistance, whether this phenomenon can be observed in other bacterial species, especially pathogenic species that cause clinical disease, and whether the underlying molecular determinants (i.e. enzymes) of metal-induced phenotypic resistance could be new antimicrobial drug targets themselves. 

      Strengths: 

      This study's strengths include that the authors used a variety of methodologies, all of which point to a clear effect of exogenous Mg2+ on drug resistance in the targeted species. I also commend the authors for carrying out a comprehensive study, spanning evaluation of whole cell phenotypes, metabolic pathways, genetic manipulation, to enzyme activity level evaluation. The fact that the authors uncovered a molecular mechanism underlying Mg2+-induced phenotypic resistance is particularly important as the key proteins should be studied further.

      Weaknesses: 

      I believe there are weaknesses in the manuscript, however. The authors take for granted that the reader is familiar with all the assays utilized, and do not properly explain some experiments, and thus I highly suggest that the authors add a brief statement in each situation describing the rationale for each selected methodology (more details are in the private review to the authors). The Results section is also quite long and bogs down at times, and I suggest that the authors reduce its length by 10 to 20%. In contrast, the Introduction is sparse and lacks key aspects, for example, there should be mention of the study's main purpose and approaches, plus an introduction to the authors' choice of species and their known drug resistance properties, as well as the drug of choice (balofloxacin). Another notable weakness is that the authors evaluated Mg2+-induced phenotypic resistance only against two closely related species, and thus the generalizability of this mechanism of drug resistance is not known. The paper would be strengthened if the authors could demonstrate this type of phenotypic resistance in at least one more Gram-negative species and at least one Gram-positive species (antimicrobial susceptibility evaluations would suffice), each of which should be pathogenic to humans. Demonstrating magnesium-induced phenotypic drug resistance in the WHO Priority Bacterial Pathogens would be particularly important. 

      In general, the conclusions drawn by the authors are justified by the data, except for the interpretation of some experiments. Importantly, this paper has discovered new antimicrobial resistance mechanisms and has also pointed to potential new targets for antimicrobials. 

      Thank you so much for your suggestion! We followed your idea the revise the manuscript as following:

      (1) We added a brief statement in the situation to explain the result and methodology according to your suggestion in the private review.

      (2) To make the streamline of the story more logic, we moved the whole second result to supplementary text and supplementary figure. 

      (3) We revised the introduction part by adding additional information to make it informative and to the point as following:

      “Non-inheritable antibiotic or phenotypic resistance represents a serious challenge for treating bacterial infections. Phenotypic resistance does not involve genetic mutations Phenotypic resistance does not involve genetic mutations and is transient, allowing bacteria to resume normal growth. Biofilm and bacterial persisters are two phenotypic resistance types that have been extensively studied (Brandis et al., 2023; Corona & Martinez, 2013). Biofilms have complex structures, containing elements that impede antibiotic diffusion, sequestering and inhibiting their activity (Ciofu et al., 2022). Biofilm-forming bacteria and persisters also have distinct metabolic states that significantly reduce their antibiotic susceptibility (Yan & Bassler, 2019). These two types of phenotypic resistance share the common feature in their retarded or even cease of growth in the presence of antibiotics (Corona & Martinez, 2013). However, specific factors that promote phenotypic resistance and allow bacteria to proliferate in the presence of antibiotics remain poorly defined.

      Metal ions have a diverse impact on the chemical, physical, and physiological processes of antibiotic resistance  (Booth et al, 2011; Lu et al, 2020; Poole, 2017). This includes genetic elements that confer resistance to metals and antibiotics (Poole, 2017) and metal cations that directly hinder (or enhance) the activity of specific antibiotic drugs (Zhang et al., 2014). The metabolic environment can also impact the sensitivity of bacteria to antibiotics (Jiang et al., 2023; Lee & Collins, 2012; Peng et al., 2015; Zhang et al., 2020; Zhao et al., 2021). Light metal ions, such as magnesium, sodium, and potassium, can behave as cofactors for different enzymes (Du et al., 2016) and influence drug efficacy. Heavy metal ions, including Cu2+ and Zn2+, confer resistance to antibiotics (Yazdankhah et al., 2014; Zhang et al., 2018). Recent reports suggest that sodium negatively regulates redox states to promote the antibiotic resistance of Vibrio alginolyticus (Yang et al., 2018), while actively growing Bacillus subtilis cope with ribosome-targeting antibiotics by modulating ion flux (Lee et al, 2019). In Gram-negative bacteria, by contrast, zinc enhances antibiotic efficacy by potentiating carbapenem, fluoroquinolone, and β-lactam-mediated killing (Isaei et al., 2016; Zhang et al., 2014). Magnesium influences bacterial structure, cell motility, enzyme function, cell signaling, and pathogenesis (Wang et al., 2019). This mineral also modulates microbiota to harvest energy from the diet (Garcia-Legorreta et al., 2020), allowing Bacillus subtilis to cope with ribosome-targeting antibiotics by modulating ion flux (Lee et al., 2019). However, the role of magnesium in promoting phenotypic resistance is less well understood.

      Vibrios inhabit seawater, estuaries, bays, and coastal waters, regions full of metal ions such as magnesium (Kumarage et al., 2022). Magnesium is the second most dissolved element in seawater after sodium. At a salinity of 3.5% seawater, the magnesium concentration is about 54 mM (Potis, 1968), and in deep seawater, can be as high as 2,500 mM (Wang et al., 2024). Vibrio parahaemolyticus and V. alginilyticus are two representative Vibrio pathogens that infect humans and aquatic animals, resulting in illness and economic loss, respectively (Grimes, 2020). (Fluoro)quinolones such as balofloxacin are used to treat Vibrio infection, however, resistance has emerged due to overuse (Suyamud et al., 2024). Indeed, (fluoro)quinolones are one of China's two primary residual chemicals associated with aquaculture (Liu et al., 2017). Vibrio can develop quinolone resistance through mutations in the DNA gyrase gene or through plasmid-mediated mechanisms (Dutta et al., 2021). Thus, the use of V. parahaemolyticus and V. alginilyticus as bacterial representatives, and balofloxacin as a quinolone-based antibacterial representative, can help to define novel magnesiumdependent phenotypic resistance mechanisms of pathogenic Vibrio species. 

      The current study evaluated whether magnesium induces phenotypic resistance in Vibrio species and defined the molecular/genetic basis for this resistance. Genetic approaches, GC-MS analysis of metabolite and membrane remodeling upon antibiotic exposure, membrane physiology, and extensive antimicrobial susceptibility testing were used for the evaluations.”

      (4) We examined the effect of magnesium in WHO listed priority strains, which confirmed the results as following:

      “Importantly, exogenous MgCl2 also increased MICs of clinic isolates, carbapenemresistant Escherichia coli, carbapenem-resistant Klebsiella pneumoniae, carbapenemresistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii to balofloxacin (Fig 1G).”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      (1) There are many grammatical mistakes to point out. The manuscript needs proofreading and editing.

      We appreciate this comment! The manuscript has been revised by a native speaker.

      (2) The introduction could be more informative. A little more description of magnesium - such as what it does to antibiotics and how it's known to affect the microbiome - might be helpful for the general readers. The question remains why out of all the metal ions that might affect antibiotic resistance (many of them are less explored), authors particularly decided to work on the effect of magnesium. The introduction should cover the rationale of their hypothesis. Also, the authors might want to briefly talk about the model organisms (V. algonolyticus and V. parahemolyticus) describing how threatening they are and how they are becoming resistant to antibiotics. 

      We appreciate this comment! We revise the introduction by providing additional information as following:

      “In Gram-negative bacteria, by contrast, zinc enhances antibiotic efficacy by potentiating carbapenem, fluoroquinolone, and β-lactam-mediated killing (Isaei et al., 2016; Zhang et al., 2014). Magnesium influences bacterial structure, cell motility, enzyme function, cell signaling, and pathogenesis (Wang et al., 2019). This mineral also modulates microbiota to harvest energy from the diet (Garcia-Legorreta et al., 2020), allowing Bacillus subtilis to cope with ribosome-targeting antibiotics by modulating ion flux (Lee et al., 2019). However, the role of magnesium in promoting phenotypic resistance is less well understood.

      Vibrios inhabit seawater, estuaries, bays, and coastal waters, regions full of metal ions such as magnesium (Kumarage et al., 2022). Magnesium is the second most dissolved element in seawater after sodium. At a salinity of 3.5% seawater, the magnesium concentration is about 54 mM (Potis, 1968), and in deep seawater, can be as high as 2,500 mM (Wang et al., 2024). Vibrio parahaemolyticus and V. alginilyticus are two representative Vibrio pathogens that infect humans and aquatic animals, resulting in illness and economic loss, respectively (Grimes, 2020). (Fluoro)quinolones such as balofloxacin are used to treat Vibrio infection, however, resistance has emerged due to overuse (Suyamud et al., 2024). Indeed, (fluoro)quinolones are one of China's two primary residual chemicals associated with aquaculture (Liu et al., 2017). Vibrio can develop quinolone resistance through mutations in the DNA gyrase gene or through plasmid-mediated mechanisms (Dutta et al., 2021). Thus, the use of V. parahaemolyticus and V. alginilyticus as bacterial representatives, and balofloxacin as a quinolone-based antibacterial representative, can help to define novel magnesiumdependent phenotypic resistance mechanisms of pathogenic Vibrio species. 

      The current study evaluated whether magnesium induces phenotypic resistance in Vibrio species and defined the molecular/genetic basis for this resistance. Genetic approaches, GC-MS analysis of metabolite and membrane remodeling upon antibiotic exposure, membrane physiology, and extensive antimicrobial susceptibility testing were used for the evaluations. ”

      (3) Figure 1C is mislabeled as 1B (line 100). Line 101: The sentence is not clear and very confusing. What is meant by 15.6mM - 62.4 mM? Are they talking about the concentration of BLFX (though in the figure the concentration was shown in µg)? Please rewrite the sentence in a simplified way. Also, the zone of inhibition was decreased with increasing MgCl2, not increased. 

      We appreciate this comment! These have been revised, including that Fig 1B is now corrected as Fig. 1C. Line 101, which is now Line 122. The sentence was revised as following:

      “At balofloxacin doses of 1.56, 3.125, 6.25, and 12.5 µg, the zone of inhibition decreased with increasing MgCl2 (Fig 1D)”

      (4) In the western blot images, it would be nice to indicate the MW of the protein bands shown. The loading control used for the experiments should be clearly mentioned in the figure legends. 

      We appreciate this comment! The MWs are indicated in the western-blot image throughout the manuscript. 

      The loading control is clearly stated in the figure legend as following:

      “Whole cell lysates resolved by SDS-PAGE gel was stained with Coomassie brilliant blue as loading control.”. 

      (5) Figures 2 B and C: the figure legend does not explain what the authors wanted to show. It's not clear how they plotted the inhibitory curve, or the binding efficacy. These panels need an explanation of how the analysis was done.

      We appreciate this comment! The figure 2 is now removed to Suppl. Fig 2, and the description of figure 2 is moved to Suppl. Text. We revise the description of the result as following, which is in Suppl. Text:

      “Prior studies suggest that the chelation of antibiotics by magnesium ions inhibits antibiotic uptake (Deitchman et al., 2018; Lunestad and Goksøyr, 1990). To investigate whether magnesium binds to balofloxacin, balofloxacin was pre-incubated with magnesium, and zone of inhibition (ZOI) analysis was conducted. Six different concentrations of balofloxacin were separately incubated with six different concentrations of MgCl2, and then spotted on filter paper so that a defined amount of balofloxacin could be used for ZOI. While lower concentrations of MgCl2, (0.78, 3.125, or 12.5 mM) did not alter the ZOI, higher concentrations, including 50 and 200 mM MgCl2, decreased the ZOI (Suppl. Fig 2A), suggesting that even high doses of magnesium had only a partial effect on balofloxacin through direct binding. For example, at 200 mM MgCl2 and 5 or 10 μg/mL balofloxacin, the balofloxacin ZOI was 53.2 and 70.3% of the ZOI at 0 mM MgCl2, suggesting that  50% of the antibiotics were still functional. Intracellular BLFX also decreased with increasing MgCl2 (Suppl. Fig 2B), while exogenous Mg2+ increased intracellular Mg2+ levels in a dose-dependent manner. For example, exogenous 50 and 200 mM MgCl2 increased intracellular Mg2+ levels to 1.21 and 1.31 mM, respectively (Suppl. Fig 2C). The relationship between TolC, an efflux pump that transports quinolones from bacterial cells, and Mg2+ was also assessed (Kobylka et al., 2020; Song et al., 2020). The expression of TolC/tolC was unaffected by Mg2+ (Suppl. Fig 2D). Magnesium is critical for LPS stability. LPS levels increased at 200 mM Mg2+ (Suppl. Fig 2E), however, the loss of waaF, lpxA, and lpxC, three key genes involved in LPS biosynthesis, did not influence balofloxacin sensitivity/resistance in the presence of Mg2+ (Suppl. Fig 2F). These findings suggest that magnesium-induced LPS biosynthesis does not contribute directly to BLFX resistance and demonstrate that Mg2+ influx is involved in balofloxacin resistance.”

      (6) For the metabolomics results, it will help immensely if the authors provide a volcano plot of the identified metabolites and plot the heat map according to the -log2 metabolite intensities. In Figure 3A, it's not clear what information is conveyed through Euclidean distance calculations of the heat map. In Figure 3 B, the authors mentioned that the OPLS-DA test was conducted, although the figure shows a PCA plot, so it's not clear how these two are connected. Figure 3 E: the figure legend says scattered plot, but the panel represents color-coded numerical values, not a scattered plot. Also, it's not clear how they got those values. 

      We appreciate this comment! We quite agree with you that if the differential metabolites could be shown as volcano plot. However, we didn’t adopt volcano plot in this study because this is a magnesium concentration-dependent metabolomes that includes 6 groups in parallel. Volcano plots may give a complex view of the comparison among different groups. We also tried to plot the heat map according to the -log2 metabolite intensities. Although this analysis cluster 200 mM and 50 mM groups better, the data of low magnesium concentrations was not consistent, which may be due to the minor metabolic change of low concentrations magnesium. Thank you for your understanding. 

      For Euclidean distance calculations, we explain in the figure legend as following:

      “Euclidean distance calculations were used to generate a heatmap that shows clustering of the biological and technical replicates of each treatment.” 

      In Figure 2B, which was Figure 3B in previous version, it has been replaced with OPLS-DA analysis in the revised version. 

      In Figure 2E, which was Figure 3E in previous version, it is revised as following:

      “E. Areas of the peaks of palmitic acid and stearic acid generated by GC-MS analysis.” 

      (7) In Figure 4, the figure legends (as well as the in the text) are not properly referred to. Please make sure to refer to the correct panel. 

      We appreciate this comment! The figure legends have been corrected to match the panel and text. 

      Figure 4F: how was the synergy analysis done? In the methods section, the authors described the antibiotic bactericidal assay protocol, but there was no clear indication of how they generated the isobologram. 

      We appreciate this comment! We provide additional information in the Figure 3F legend, which was Figure 4F in previous version,  as following: 

      “Synergy analysis for BFLX with palmitic acid for V. alginolyticus. Synergy was performed by comparing the dose needed for 50% inhibition of the synergistic agents (white) and non-synergistic (i.e., additive) agents (purple).”

      (8) Figure 5 A: the scatter plot is plotted according to the area along the Y axis: which "area" is represented here? There is absolutely no explanation, neither in the results nor in the figure legends. Using box plots might be a better option than using a scattered plot.

      We appreciate this comment! “Area” has been noted in the revised manuscript as following:

      “The area indicates the area of the peak of the metabolite in total ion chromatography of GC-MS.” 

      (9) In Figure 6 A, the heat map is plotted according to the column Z scores. What is meant by "column Z score"? The corresponding figure legend says, "heat map showing differential abundance of lipid". Z scores do not represent an abundance of a variable, so the conclusion might not be appropriate here. 

      We appreciate this comment! In Figure 5A, which was Figure 6A in previous version, column Z score shows the abundance of metabolites analyzed, which is automatically generated in the heat map analysis to give a sign of these metabolites tested. The legend has been revised as following: 

      “Heatmap showing changes in differential lipid levels at the indicated concentration of MgCl2.”  

      (10) Line 313-314: it should be Figure EV6C.  

      We appreciate this comment! The citation has been corrected.

      (11) The authors have shown that Mg+2 does not alter the LPS transport system, however, there was some significant increase in LPS expression at 200mM MgCl2. It would be interesting if the authors could also check if Mg+2 has any effect on the outer membrane protein (OMP) integrity (by checking OMP components BamA and LptD).  

      We appreciate this comment!  We have carefully examined the membrane permeability in Figure 7. We thus didn’t perform additional experiment here to see the change of BamA and LptD. Thank you very much for your understanding.

      (12) I wonder if the authors could check the effect of extracellular Mg+2 during the co-treatment of palmitic acid, linoleic acid, and balofloxacin. Will there still be the antagonistic effect or the presence of Mg+2 could change the phenotype? 

      We appreciate this comment! Additional experiments is performed as following:

      “Furthermore, magnesium had a minimal effect on the antagonistic effect of palmitic acid, linolenic acid, and balofloxacin (Fig 4G), suggesting that this mineral functions through lipid metabolism.” 

      Reviewer #2 (Recommendations For The Authors)

      (1) As mentioned in the Public Review, I strongly believe that the impact of this study will be more significant if magnesium-induced phenotypic drug resistance could be demonstrated in at least one other Gram-negative and one other Grampositive species, both of which should be human pathogens. The full suite of experiments would not be necessary for this suggestion; evaluation of the effect of Mg concentration in growth media on the drug resistance of other species, testing the different antibiotic types used in this study, would be sufficient. 

      We appreciate this comment! Additional experiments have performed to test this idea. Mg2+ has the similar effect on carbapenem-resistant Escherichia coli, carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii as the similar as on the Vibrio species in shown in Figure 1G. These have been described following as

      “Importantly, exogenous MgCl2 also increased MICs of clinic isolates, carbapenemresistant Escherichia coli, carbapenem-resistant Klebsiella pneumoniae, carbapenemresistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii to balofloxacin (Fig 1G).”

      (2) I recommend that the Introduction section be expanded. I recommend one or two sentences introducing the two Vibrio species selected for study. I.e. why did the authors choose these two species? What is known about their phenotypic drug resistance in the literature? Why did the authors select balofloxacin for their studies, is it a common antimicrobial used vs Vibrios? As well, the end of the Introduction section ends abruptly with no transition to the present study itself. The end of the introduction should include one or two sentences introducing the main purpose of the study, its approach, and the techniques undertaken. For example, "In this study, we evaluated whether magnesium induces phenotypic resistance in Vibrio species and the molecular/genetic basis for such resistance. We used genetic approaches, GC-MS analysis of metabolite and membrane remodeling upon antibiotic exposure, membrane physiology, and extensive antimicrobial susceptibility evaluations." 

      We appreciate this comment! We revise the introduction by providing additional information as following:

      “In Gram-negative bacteria, by contrast, zinc enhances antibiotic efficacy by potentiating carbapenem, fluoroquinolone, and β-lactam-mediated killing (Isaei et al., 2016; Zhang et al., 2014). Magnesium influences bacterial structure, cell motility, enzyme function, cell signaling, and pathogenesis (Wang et al., 2019). This mineral also modulates microbiota to harvest energy from the diet (Garcia-Legorreta et al., 2020), allowing Bacillus subtilis to cope with ribosome-targeting antibiotics by modulating ion flux (Lee et al., 2019). However, the role of magnesium in promoting phenotypic resistance is less well understood.

      Vibrios inhabit seawater, estuaries, bays, and coastal waters, regions full of metal ions such as magnesium (Kumarage et al., 2022). Magnesium is the second most dissolved element in seawater after sodium. At a salinity of 3.5% seawater, the magnesium concentration is about 54 mM (Potis, 1968), and in deep seawater, can be as high as 2,500 mM (Wang et al., 2024). Vibrio parahaemolyticus and V. alginilyticus are two representative Vibrio pathogens that infect humans and aquatic animals, resulting in illness and economic loss, respectively (Grimes, 2020). (Fluoro)quinolones such as balofloxacin are used to treat Vibrio infection, however, resistance has emerged due to overuse (Suyamud et al., 2024). Indeed, (fluoro)quinolones are one of China's two primary residual chemicals associated with aquaculture (Liu et al., 2017). Vibrio can develop quinolone resistance through mutations in the DNA gyrase gene or through plasmid-mediated mechanisms (Dutta et al., 2021). Thus, the use of V. parahaemolyticus and V. alginilyticus as bacterial representatives, and balofloxacin as a quinolone-based antibacterial representative, can help to define novel magnesiumdependent phenotypic resistance mechanisms of pathogenic Vibrio species. 

      The current study evaluated whether magnesium induces phenotypic resistance in Vibrio species and defined the molecular/genetic basis for this resistance. Genetic approaches, GC-MS analysis of metabolite and membrane remodeling upon antibiotic exposure, membrane physiology, and extensive antimicrobial susceptibility testing were used for the evaluations. ”

      (3) The authors introduce the acronym AWST but never use it again in the paper, instead they use SWT. The authors should introduce SWT only for consistency. 

      We appreciate this comment! We have corrected all the “SWT” to “ASWT”

      (4) Line 76 is not clear: what is meant by "some of which could influence drug efficacy" - the enzymes that utilize light metal ions are co-factors? Or the metals directly?  

      We appreciate this comment! The information we wanted to deliver is that light metal ions can serve as cofactors to catalyze biochemical reaction. Such chemical reaction would alter the drug efficacy, e.g. the Fe-S cluster are metallocofactor for proteins which regulates redox chemistry including antibioticinduced redox change. However, this information is not appropriate for this manuscript, so we delete this sentence. 

      (5) Line 90: add a reference corroborating that this chemical composition is a mimic of marine water. The NaCl concentration used in particular looks quite low. 

      We appreciate this comment! It was a typo error. The NaCl concentration was 210 mM as shown in Suppl. Table 1. We also provide details of the chemical composition of the marine water as following:

      “Marine environments and agriculture, where antibiotics are commonly used, are rich in magnesium. To investigate whether this mineral impacts antibiotic activity, the minimal inhibitory concentration (MIC) of V. alginolyticus ATCC33787 and V. parahaemolyticus VP01, which we referred as ATCC33787 and VP01 afterwards, isolated from marine aquaculture, to balofloxacin (BLFX) in Luria-Bertani medium

      (LB medium) plus 3% NaCl as LBS medium and “artificial seawater” (ASWT) medium that included the major ion species in marine water (Wilson, 1975) (LB medium plus 210 mM NaCl, 35 mM Mg2SO4, 7 mM KCl, and 7 mM CaCl2) were assessed”

      (6) Line 98 and Figure 1B. M9 is indicated in the text but does not appear in the figure, the figure only shows SWT. This should be checked. Line 99: based on Figure 1C, the authors are adding MgCl2 to SWT, SWT should be mentioned in this line. Line 100: I believe this is referring to Figure 1C, which should be checked. 

      We appreciate this comment! 

      Line 98, which is now Line 118: We have corrected M9 to ASWT as following:

      “However, the MIC for BLFX was higher in ASWT medium supplemented with Mg2SO4 or MgCl2 than in LB medium (Fig 1B).”

      Line 99, which is now Line 133: the sentence is corrected as following:

      “The MIC for BLFX increased at higher concentrations of MgCl2 in ASWT”

      Line 100, which is now Line 135: we have corrected Fig 1B to Fig. 1C.

      (7) Line 101: text and Figure 1D are not consistent, as Figure 1D does not show this level of precision in added MgCl2 as indicated in the text (15.6 - 62.4 mM).  

      We appreciate this comment! The sentence has been corrected as following: “At balofloxacin doses of 1.56, 3.125, 6.25, and 12.5 µg, the zone of inhibition decreased with increasing MgCl2 (Fig 1D)””.  

      (8) MgCl2 clearly induces increasing levels of BLFX resistance, and to high levels, but not for every antibiotic. For example, the level of increased resistance to blactams is low (ceftriaxone) and plateaus (ceftazidime). As well, resistance to gentamicin plateaus at a lower level than the other aminoglycosides. These observations do not take away from the conclusion that Mg induces multi-drug resistance, but since the behaviour of the MICs for these drugs is different than the other drugs, they should be mentioned. Also, Figure 1F - tetracyclines (plural) is used for vertical axis label - does this refer to the tetracycline itself or the class itself, and if the class, which one was tested? 

      We appreciate this comment! We revise the description as following: “Notably, magnesium had a reduced effect on ceftriaxone and gentamicin than other antibiotics.”

      The tetracyclines is labeled as “Oxytetracycline” in the revised manuscript. 

      - The magnesium chelation experiments presented in Figure 2 are not clear. The authors should briefly mention how this was done around line 128, and what data underlies the values in Figure 2C. Figure 2B is also not clear to me at all. Similarly, how the authors measured intracellular balofloxacin and Mg2+ is not clear and should be mentioned briefly around lines 130-132. 

      We appreciate this comment! These have been rewritten following as  “To investigate whether magnesium binds to balofloxacin, balofloxacin was preincubated with magnesium, and zone of inhibition (ZOI) analysis was conducted. Six different concentrations of balofloxacin were separately incubated with six different concentrations of MgCl2, and then spotted on filter paper so that a defined amount of balofloxacin could be used for ZOI. While lower concentrations of MgCl2, (0.78, 3.125, or 12.5 mM) did not alter the ZOI, higher concentrations, including 50 and 200 mM MgCl2, decreased the ZOI (Suppl. Fig 2A), suggesting that even high doses of magnesium had only a partial effect on balofloxacin through direct binding. For example, at 200 mM MgCl2 and 5 or 10 μg/mL balofloxacin, the balofloxacin ZOI was 53.2 and 70.3% of the ZOI at 0 mM MgCl2, suggesting that  50% of the antibiotics were still functional. Intracellular BLFX also decreased with increasing MgCl2 (Suppl. Fig 2B), while exogenous Mg2+ increased intracellular Mg2+ levels in a dose-dependent manner. For example, exogenous 50 and 200 mM MgCl2 increased intracellular Mg2+ levels to 1.21 and 1.31 mM, respectively (Suppl. Fig 2C). The relationship between TolC, an efflux pump that transports quinolones from bacterial cells, and Mg2+ was also assessed (Kobylka et al., 2020; Song et al., 2020). The expression of TolC/tolC was unaffected by Mg2+ (Suppl. Fig 2D). Magnesium is critical for LPS stability. LPS levels increased at 200 mM Mg2+ (Suppl. Fig 2E), however, the loss of waaF, lpxA, and lpxC, three key genes involved in LPS biosynthesis, did not influence balofloxacin sensitivity/resistance in the presence of Mg2+ (Suppl. Fig 2F). These findings suggest that magnesium-induced LPS biosynthesis does not contribute directly to BLFX resistance and demonstrate that Mg2+ influx is involved in balofloxacin resistance.”

      - Line 135: LPS cannot be "expressed", as the authors word it here. This should be corrected. Also, the inspection of Figure 2G actually shows the levels of LPS increase with increased Mg2+. The authors should re-evaluate these results and change their description around this area of the Results. 

      We appreciate this comment! We have removed the whole Figure 2 to Supplementary Text and Supplementary Figure 2. We rewrite this part as following: “The relationship between TolC, an efflux pump that transports quinolones from bacterial cells, and Mg2+ was also assessed (Kobylka et al., 2020; Song et al., 2020). The expression of TolC/tolC was unaffected by Mg2+ (Suppl. Fig 2D). Magnesium is critical for LPS stability. LPS levels increased at 200 mM Mg2+ (Suppl. Fig 2E), however, the loss of waaF, lpxA, and lpxC, three key genes involved in LPS biosynthesis, did not influence balofloxacin sensitivity/resistance in the presence of Mg2+ (Suppl. Fig 2F). These findings suggest that magnesium-induced LPS biosynthesis does not contribute directly to BLFX resistance and demonstrate that Mg2+ influx is involved in balofloxacin resistance.”

      - Section: MgCl2 affects bacterial metabolism. Authors switched to M9 medium - why? This contrasts with other sections using SWT and should be explained. Also, I cannot evaluate whether the statistical analysis of the data here was performed correctly and was appropriate for this type of experiment. I advise the authors to move the details in lines 166-169 to the Materials and Methods and replace this section instead with a more accessible description of the statistical analysis that a non-expert would be able to appreciate. Furthermore, analysis of Figure 3A indicates that the levels of asparagine, 4-hydroxybutyric acid, uracil, cystathionine, fumaric acid, and aminoethanol have significantly changed at high MgCl2, but these are not mentioned in the text. I suggest the authors mention these if they are relevant to the 12 enriched pathways, especially the biosynthesis of fatty acids. 

      We appreciate this comment! 

      We indicate the reason we use M9 medium as following:

      “To better understand how magnesium affects bacterial metabolism” for explaining why the M9 medium was used.”

      The information lines 166-169 indicated has been removed to M &M. 

      We have carefully examined the abundance of the metabolites and the enriched pathway. Among the listed metabolites, only fumarate is within the enriched pathways. We mention this point in our revised manuscript as following:

      “The increase in fatty acid biosynthesis could be partially explained by an imbalanced pyruvate cycle/TCA cycle, in which fumarate levels increased at higher Mg2+ while succinate levels increased at lower Mg2+ (Suppl. Fig 5B). These findings indicated that glycolysis fluxes into fatty acid biosynthesis rather than the pyruvate cycle/TCA cycle. The relevance of fatty acids and BLFX was demonstrated by the observation that exogenous palmitic acid increased bacterial resistance to balofloxacin (Fig 2F). These results suggest that fatty acid metabolism may be critical to magnesium-based phenotypic resistance.”

      - Line 211 appears to refer to Figure 4F and should be checked. Similarly in line 216 - appears this should be Figure 4H, and line 218 should be Figure 4H. Line 226: add a reference to Fig 4I (after arcA was decreased). Line 227: what are genes N646_1004 and N646_1885? Based on Fig 4J these are crp - authors should add to line 227. Line 228 appears to refer to Figure 4J, not Figure 4I. Line 229 - should be Figure 4K, not Figure 4I. Line 231 - should be 4L, not 4K. Line 239 - should be 4M.

      We appreciate this comment! The text and figure is now matched. 

      - Line 312: the descriptions of "11 lipids, 32 lipids, and 53", and then "26 lipids, 52 lipids, and 107 lipids" are not clear at all and should be corrected. 

      We appreciate this comment! The sentence is revised as following:

      “The abundance of 11, 32, and 53 lipids was increased in 3.125, 50, and 200 mM MgCl2-treated bacteria, respectively, while the abundance of 26, 52, and 107 lipids was decreased in 3.125, 50, and 200 mM MgCl2-treated bacteria, respectively (Suppl. Fig 7C)”

      - Line 340. What is the assay the authors are using to measure the levels of the PGS and PSS enzymes? This is not mentioned or clear in this part of the Results.  

      We appreciate this comment!  We provide the information in the manuscript as following:

      “Levels of PGS and PSS were quantified by ELISA kits according to manufacture’s instruction (Shanghai Fusheng Industrial Co., Ltd., China)”

      - Line 372: What is the assay for measuring membrane depolarization? This is not mentioned and I suggest it should be. Line 374: Figure 7B does not show time dependence, only dose dependence, this should be corrected, it is assumed the authors are referring to Fig 7C for the time dependence data. 

      We appreciate this comment! We provide the information in the result as following:  

      “The voltage-sensitive dye, DiBAC4(3) showed that 12.5–200 mM MgCl2 promoted membrane depolarization in a dose-dependent manner (Fig 6A)”

      We also explain how DiBAC4(3) can be used to measure membrane depolarization in the Materials and Methods section as following:

      “DiBAC4(3) is a s voltage-sensitive probe that penetrates depolarized cells, binding intracellular proteins or membranes exhibiting enhanced fluorescence and red spectral shift.”

      To make it clear the specific figure, we revise the sentence as following:

      “Meanwhile, MgCl2 had a dose-dependent (Fig 6B) and time-dependent (Fig 6C) effect on proton motive force (PMF).”

      - Line 384: mention how FM5-95 measures membrane permeability. The authors should also clarify how this reagent is used to measure membrane fluidity, and it is not clear if the data for this is presented in Figure 7 - please clarify. Regarding SYTO9 dye experiment: the authors should briefly explain the experimental design - how SYTO9 dye operates and why FACS was chosen. What is labeled with FITC?  

      We appreciate this comment! We clarify the reason we use FM5-95 in the Methods and Materials section as following:

      “Measurement of fluidity by fluorescence microscopy

      Measurement of membrane fluidity is performed as previously described (Wen et al., 2022). Briefly, ATCC33787 were cultured in medium with indicated concentrations of MgCl2, collected and then adjusted to OD 0.6. Aliquot of 100 μL bacteria cells of each sample were diluted to 1 mL and 10 μL (10 mg/mL) FM5-95 (Thermo Fisher

      Scientific, USA) was added. FM5-95 is a lipophilic styryl dye that insert into the outer leaflet of bacterial membrane and become fluorescence. This dye preferentially bind to the microdomains with high membrane fluidity(Wen et al., 2022). After incubated for 20 min at 30 ℃ at vibration without light, the sample was centrifuged for 10 min at 12,000 rpm. The pellets were resuspended with 20 μL of 3% NaCI. Aliquot of 2 μL sample was dropped on the agarose slide, and take photos under the inverted fluorescence microscope.”

      This data is presented as micrographs in Fig. 6D, which shows the decreased FM5-95 staining with increasing concentrations of MgCl2. We make this description clear with the following revision:

      “FM5-95 staining decreased with increasing concentrations of Mg2+, and no staining was observed in the presence of 200 mM Mg2+ (Fig 6D).”

      We explain the reason why we use SYTO9 as following:

      “SYTO9, a green fluorescent dye that binds to nucleic acid, enters and stains bacteria cells when there is an increase in membrane permeability (Lehtinen et al., 2004; McGoverin et al., 2020). Staining decreased with increasing MgCl2, indicating that bacterial membrane permeability declined in an Mg2+ dose-dependent manner (Fig 6E).”

      We didn’t use FACS in this study, while we only analyze the fluorescence distribution with the equipment. To make it clear, we revise the sentence as following:

      “After incubated for 15 min at 30 ℃ at vibration without light, the mixtures were filtered and measured by flow cytometry (BD FACSCalibur, USA).”

      - Lines 391-397. The statement that palmitic acid shifts the peaks in Figure 7F is not supported by the data. There is essential no change in the major peak position within each MgCl2 concentration set with increasing palmitic acid. For the linolenic acid data, it is clear that linolenic acid increases permeability only at 50 mM MgCl2-this should be mentioned in the text. 

      We appreciate this comment! We revise the sentence as following:

      “Exogenous palmitic acid also shifted the fluorescence signal peaks to the left in an MgCl2-dependent manner while palmitic acid only slightly shifted the peaks (Fig 6F). In contrast, exogenous linolenic acid shifted the peak to the right in a dose-dependent manner at 50 mM MgCl2 (Fig 6G).” 

      - Line 404-405 - as mentioned earlier, the assay for the update of BLFX should be mentioned (if it is done so earlier in the text, then it does not need to be here).  

      We appreciate this comment! It has been mentioned in the introduction.  

      - Discussion: CpxA/R-OmprF pathway is mentioned here for the first time. Is this one of the pathways modified by MgCl2 as determined during the course of the study? If so, this should be reworded to mention that. If not, the relevance of this particular pathway as it relates to light metals and phenotypic resistance should be discussed.

      We appreciate this comment! Since it is not relevant to the discussion of Mg2+ and fatty acid biosynthesis, we delete this sentence in the revised manuscript.  

      -The following grammatical errors should be corrected:

      -line 55 change to: "genetic mutations; instead, this type of resistance is transient, and bacteria resume normal growth"

      -line 57: change to "resistance types are biofilm" 

      -line 61: change to "states that significantly" 

      -line 63: change to "resistance share the common feature in they retard or even cease in the presence" 

      -line 65: change to "resistance that allow bacteria to proliferate" 

      -line 81: change "But whether" to "Whether" 

      -line 178: change to "may be critical to the Mg-based phenotypic resistance"

      -line 86: change to "Marine environments and agriculture are rich in magnesium, where..." 

      -line 93: change in to vs

      -line 154: insert space after metabolism 

      -line 158: change 'identified" to "focused on the levels of" 

      -line 160: change "The levels of forty-one metabolites" 

      -line 198: change shared to share 

      -line 310: increased is duplicated, delete one 

      -line 451: add "the" before ratio 

      -line 453: gram should be capitalized 

      -line 462: "the regulation" should be reworded to "More importantly, the effect of exogenous MgCl targets the..." 

      -line 469: add dash between Mg2+ and limited

      -line 478: change "the crucial" to "a crucial" 

      -there are numerous locations in the manuscript where the word "magnetism" is used when clearly the word is supposed to be magnesium - this should be corrected

      We appreciate this comment! These have been corrected or revised. 

      Editors comments:

      Page 2 line 27; Page 25 line number 426; page 27 line number 481: In the abstract and discussion, only Vibrio alginolyticus was mentioned, even though two Vibrio species were used in the study. It would be helpful to understand the rationale behind the focus on this particular species.

      We appreciate this comment! We have revised the introduction to provide additional information as following:

      “Vibrios inhabit seawater, estuaries, bays, and coastal waters, regions full of metal ions such as magnesium (Kumarage et al., 2022). Magnesium is the second most dissolved element in seawater after sodium. At a salinity of 3.5% seawater, the magnesium concentration is about 54 mM (Potis, 1968), and in deep seawater, can be as high as 2,500 mM (Wang et al., 2024). Vibrio parahaemolyticus and V. alginilyticus are two representative Vibrio pathogens that infect humans and aquatic animals, resulting in illness and economic loss, respectively (Grimes, 2020). (Fluoro)quinolones such as balofloxacin are used to treat Vibrio infection, however, resistance has emerged due to overuse (Suyamud et al., 2024). Indeed, (fluoro)quinolones are one of China's two primary residual chemicals associated with aquaculture (Liu et al., 2017). Vibrio can develop quinolone resistance through mutations in the DNA gyrase gene or through plasmid-mediated mechanisms (Dutta et al., 2021). Thus, the use of V. parahaemolyticus and V. alginilyticus as bacterial representatives, and balofloxacin as a quinolone-based antibacterial representative, can help to define novel magnesium-dependent phenotypic resistance mechanisms of pathogenic Vibrio species.”

      On Page 2, line 34: The abstract contains some undefined abbreviations, such as 'PE' and 'PG', which should be explained. 

      We appreciate this comment! We explain the PE and PG in the revised abstract as following:

      “phosphatidylethanolamine (PE) biosynthesis is reduced and phosphatidylglycerol (PG)”

      On Page 2, line 31-32: For the statement "Exogenous supplementation of fatty acids confirm the role of fatty acids in antibiotic resistance…" it would be beneficial to specify whether the fatty acids were saturated or unsaturated. 

      Response, We appreciate this comment! We revise the sentence as following:

      “Exogenous supplementation of unsaturated and saturated fatty acids increased and decreased bacterial susceptibility to antibiotics, respectively, confirming the role of fatty acids in antibiotic resistance.”

      The potential effects of the specific ions (SO4 and Cl2) present in the Mg2SO4 and MgCl2 compounds used in the study were not discussed. It would be useful to understand if these ions had any influence on the observed outcomes.

      We appreciate this comment! We revise the sentence as following:

      “However, the MIC for BLFX was higher in ASWT medium supplemented with Mg2SO4 or MgCl2 than in LB medium (Fig 1B). And Mg2SO4 or MgCl2 had no

      difference on MIC, suggesting it is Mg2+ not other ions contribute to the MIC change.”

      On Page 8, line 141: The heading of Figure 2, "Mg2+ elevates intracellular Mg2+," seems redundant and could be revised for clarity or modified. 

      We appreciate this comment! Figure 2 is now moved to supplementary figure as Suppl. Fig 2. The title is revised as following:

      “Figure 2. Mg2+ decreases balofloxacin uptake.”

      On Page 4, line 91: some terms/abbreviations, such as 'LB' and 'M9,' require expansion or definition to ensure the reader's understanding.

      We appreciate this comment! We include the expansion for LB and M9 in the  revised manuscript as following:

      “Luria-Bertani medium (LB medium)” and “M9 minimal medium (M9 medium)”

      Page 4, line 92: The real seawater composition used in the experiments should be supported by a reference.

      We appreciate this comment! We provide the reference in the revised manuscript as following:

      ““artificial seawater” (ASWT) medium that included the major ion species in marine water (Wilson, 1975) (LB medium plus 210 mM NaCl, 35 mM Mg2SO4, 7 mM KCl, and 7 mM CaCl2)”

      Page 4 line, number 93: the he full names of the bacterial strains (e.g., ATCC33787 and VP01) should be provided instead of just the strain numbers.

      We appreciate this comment! We revised the sentence as following:

      “To investigate whether this mineral impacts antibiotic activity, the minimal inhibitory concentration (MIC) of V. alginolyticus ATCC33787 and V. parahaemolyticus VP01, which we referred as ATCC33787 and VP01 afterwards,”

      Finally, there appears to be a potential contradiction between the statements on page 12, lines 211-212 and 214-216, regarding the effects of Mg2+ on the synthesis of unsaturated fatty acids. Further explanation may be needed to reconcile these seemingly contradictory points.

      We appreciate this comment! For line 221-226, which was previously line 211-212, is about the gene expression for fatty acid biosynthesis. While, Line 228 and 233, which was previously line 214-216 is about the gene expression for fatty acid degradation. We agree that the previous description is a little bit confuse. We revise the sentence to emphasize that we focus on fatty acid degradation so that the readers can tell them apart. 

      In the text, we revised it as following:

      “In addition, we also quantified gene expression during fatty acid degradation to determine whether Mg2+ affects this process”  In the figure legend, we also indicate that 

      “H. qRT-PCR for the expression of genes encoding fatty acid degradation in the absence or presence of the indicated concentrations of MgCl2”

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02648

      Corresponding author(s): Kevin Berthenet (kevin.berthenet@lyon.unicancer.fr) and Gabriel Ichim (gabriel.ichim@lyon.unicancer.fr)

      1. General Statements

      We thank all the reviewers for their time and their constructive criticism, based on which we propose the revision plan detailed bellow. All our responses are indicated in italics font. When is the case, the figures for the reviewers are included just below the answer. Only where indicated they have been included in the manuscript. The line numbers indicated here refer to those in original manuscript.

      The two reviews are listed in full at the end of the document.

      2. Description of the planned revisions

      Reviewer #1

      In this manuscript, the authors report a non-apoptotic role for caspase 3 in promoting cell migration. RNA sequencing revealed a "gene signature" associated with caspase 3 knockdown in a melanoma cell line, although there is no investigation of the connection between caspase 3 expression and the regulation of gene expression. Mass spectrometry-based experiments (AP-MS and BioID) identified numerous interacting proteins, with coronin 1B being the most extensively characterized. Data provided indicates that there is a direct interaction between caspase 3 and coronin 1B, and that caspase 3 influences coronin 1B phosphorylation basally and following ligand stimulation. Both proteins are required for efficient cell migration in scratch wound assays. Data is provided indicating that the actions of caspase 3 are independent of proteolytic activity, although the pharmacological inhibition of caspase activity is not complete, nor is the knockdown of BAX/BAK, making these conclusions poorly substantiated. Evaluation of pathways regulating caspase 3 expression implicates the SP1 transcription factor.

      Response: We thank the reviewer for their supportive comment. Regarding specific pharmacological inhibition of caspase-3, work is under way to complement the results obtained with a pan-caspase inhibitor (qVD-OPh). We will use specific effector caspases inhibitors, complemented by several other approaches: complete KO of BAX and BAK proteins to prevent all eventual mitochondrial permeabilization and low-level effector caspase activation, overexpression (OE) of the anti-apoptotic protein BCL-xL to also prevent residual mitochondrial permeabilization, while also OE XIAP, a potent caspase inhibitor. The promising preliminary data using two effector caspases specific inhibitors (Ac-DEVD-CHO and Ac-DNLD-CHO) in two different melanoma cells, during wound healing migration, is shown below, with no effect on melanoma cell migration.

      Line 129 - The data in Sup. Fig. 1H-L are technical, but where are the mass spectrometry results from the BioID2 experiments? These technical figures are really only relevant if the BioID2 system has been used for protein pull-downs, not for the IF analysis in Fig. 2B.

      Response: We apologize for lack of precision in the article logical flow, we will now incorporate the MS data based on the BioID2 experiment earlier in the manuscript.

      Line 143 - Figure 2C - it is not entirely convincing that caspase 7 is not associated with the cytoskeleton, there is a visible band in lysates from both cell lines, in contrast with GAPDH which is convincingly cytoplasmic. This is particularly true in the WM852 cell lines, in which the Caspase 3 band is almost the same as Caspase 7. These results would also be more convincing if there was IF of Caspase 7 and actin to show whether it is or is not enriched in regions of higher F-actin levels.

      Response: Indeed, our data points towards an enrichment of caspase-3 at the cell cortex. Since generally caspase-7 protein levels are lower, we detected it less in the cytosolic fraction. As suggested, now we performed more sensitive IF colocalization confocal imaging between caspase-7 and F-actin and find it also partially localized to the cortical cytoskeleton (see below). However, this effector caspase is not involved in melanoma cell migration (see wound healing assay below, with two different siRNAs for CASP7 and the positive control of siRNA CASP3).

      Figure 2D - knockdowns with only a single siRNA are insufficient, this should be replicated with additional siRNAs. In addition to the effect on actin anisotropy, it appears as though cells are smaller, is this and any other morphological changes reproducible?

      Response: We plan to strengthen the data shown in Fig.2D with additional siRNAs, as shown below. In addition, high-content screening (HCS) microscopy will provide several other cell morphology descriptors.

      Figure 2D-E. Is it cytochalasin B or D used in these experiments? The text and figures don't agree with each other. 5. Figure 2F-G, same comments above for 2D-E (i.e. comments 3 & 4).

      Response: The experimental conditions will be better detailed in the revised manuscript.

      Figure 2F-G, it appears as though the fewer focal adhesions in the Caspase 3 knockdown cells are bigger per focal adhesion, is this a consistent result? If so, what is the explanation?

      Response: In addition to number, we also plan to quantify the size of focal adhesions.

      Figure 2H - it's not clear how this RNAseq data is relevant to the manuscript. There are some genes in the heat map, but it's not clear which ones are changed in their expression in the caspase 3 knockdown cells, nor is it clear how this is relevant to the proposed mechanisms of Caspase 3 interacting with and influencing the phosphorylation of coronin 1B. If there is no connection, then these data can be removed.* *

      Response: As suggested by the reviewer, the RNAseq data presented in Figure 2H will be removed from the revised manuscript since it is not very relevant.

      Supp. Figure 3 - given that there is data from multiple siRNAs for the incucyte migration data, it should be in the primary figures. And since there are multiple siRNAs and CRISPR/Cas9 KO cells, there should be nothing limiting the replication of the other data presented from only a single siRNA.

      Response: Several siRNA are now used for replicating key results as shown above.

      Figure 3A - how was cell adhesion measured? The methods section says "cell adhesion was determined through cell shape analysis and scoring" But this is very vague.

      Response: We thank the reviewer for spotting out this ambiguity, in the revised manuscript we will be more precise in Material and Methods section.

      Figure 3L - was the Casp7 knockdown experiments done with multiple siRNAs? Both melanoma cell lines? Why is this figure only shown out to 24 hours, whereas the other Incucyte experiment run out to 48 hours? Where is the western blot confirming the caspase 7 knockdown? This is important to establish a clear lack of effect.

      Response*: We apologize for lacking more details, we now provide several siRNA for caspase-7, all showing no or minimal effect of melanoma cell migration (see answer to point 2). *

      Line 190 - it is not true to say that in the presence of QVD there is no longer any caspase activity induced by actinomycin D/ABT263 in supplemental Figures 3J-K. The way that the Y axis has been broken diminishes the difference between untreated and treated cells. In fact, there is apparently over 3-4 times more caspase activity in the actinomycin D/ABT263 treated cells in the presence of QVD relative to basal caspase activity. As a result, it cannot be concluded that there is no residual caspase activity.

      Response: We were not precise enough in describing the data in S3J-K. In the revised manuscript we will clearly say that since treatment with a pan-caspase inhibitor does not have the effect of lowering any basal caspase activity (column 1 versus 2), we conclude that in melanoma cells (WM793 and WM852) there is no basal caspase activation that could drive cell motility. The ActD/ABT263 treatment was used as positive control for bona fide induction of effector caspase activation. These results will be complemented by BAX/BAK DKO and BCLxL OE.

      Line 192 - Does the knockout of BAX/BAK (which apparently reduced but did not eliminate BAX/BAK protein levels in Supp. Fig. 3L) actually "completely block" caspase activity via the mitochondrial pathway? This has not been demonstrated.

      Response: We now provide a fluorometric effector caspases assay showing abrogation of caspase activity in BAX/BAK DKO cells (see below, caspase activating treatment is ActinomycinD plus ABT263). In addition, we will improve the DKO efficacy.

      Line 217 - coronin 1B was a hit from which assays? IP-MS and/or BioID2? I see that this is shown in Figure 5A but not referenced in this sentence.

      Line 218 - the reference to Figure 5A should be in the previous sentence. Line 220 - Can it really be said that the interaction is specific since there is a coronin 1B band in the GFP "negative" control?__ __

      Response*: The revised manuscript will address these inadequacies. *

      Line 222 - it is a good control to show that siRNA-knockdown of Caspase 3 reduced the PLA signal in Figure 5C, but the reciprocal experiment of looking at what happens with Coronin 1B knockdown should be included. How does the PLA signal relate to phalloidin-stained F-actin?

      Response: The proximity ligation assay (PLA) is now complemented by KD of Coronin 1B (see below) and we will try to also add the phalloidin staining for F-actin, if compatible with the PLA protocol.

      Line 224 - looking at the line scans, is the lack of recruitment of coronin 1B to the F-actin at the edge of the protrusion in the Caspase 3 knockdown cells reproducible? Is the point that caspase 3 recruits Coronin 1B? There is an obvious difference in the F-actin at the cell edge, but if the F-actin were as dense in the Caspase 3 knockdown cells as they are for the control, would the same lack of coronin 1B be apparent?

      Response: This aspect will be better addressed/discussed in the revised manuscript.

      Line 227 - where is the western blot showing the effectiveness of the coronin 1B knockdown to accompany Figure 5F.

      Response: The efficacy of coronin 1B KD will be added in the revised manuscript.

      Figure 5G - the blots indicate that there is no change in phospho-PKCalpha in the caspase 3 knockdown cells, although phospho-coronin 1B does decrease. This has not been commented upon in the text. Is the implication that there is a non-PKCalpha mediated mechanism for coronin 1B phosphorylation that is dependent on caspase 3?

      Figure 5H - following from the previous point, there is no phospho-PKCalpha blot that would be a positive control for the effect of PDGF stimulation on PKC activation, in control and caspase 3 knockdown cells, to evaluate whether the effect on coronin 1B phosphorylation was upstream or downstream of PKCalpha. This is also true for Supp. Fig. 4H.

      Response*: Since there are several PKC isoforms that might be co-expressed in melanoma cells, it is possible that PKCalpha is not the one responsible for phosphorylating Coronin 1B. We will be more precise in our investigations by using a pan-phospho-PKC antibody. *

      Does phosphorylation of coronin 1B affect its interaction with caspase 3?

      Response: We will assess by Co-IP the interaction of caspase-3 with both non-phosphorylated and phosphorylated Coronin 1B.

      Figure 6 - as before, only a single siRNA to knockdown SP1 is insufficient to robustly support the conclusions.

      Response: As shown below, we addressed this helpful comment by using several siRNAs to assess the role of SP1 in melanoma cell motility, in two different melanoma cell lines.

      • *

      Reviewer #2

      In this manuscript, the authors provide substantial amounts of experimental evidence that caspase-3, more precisely pro-caspase-3, might be involved in promoting melanoma cell migration and invasion. As such, this function, which might stem from scaffolding roles independent of proteolytic activity (yet not shown entirely convincingly), could possibly be similar to those attributed to other caspases, yet the latter omitted experiments testing for the necessity of enzyme activity. The data are novel and interesting and obviously deserve publication. Yet, a number of criticisms need to be listed.

      Response*: We thank the reviewer for upholding the novelty of our study. As also rightfully pointed by R1, we will strive in a revised manuscript to definitely show that caspase-3 participate to melanoma cell motility independently of its pro-apoptotic protease role: we will use two effector caspases specific inhibitors (Ac-DEVD-CHO and Ac-DNLD-CHO, as shown above) complemented by several other approaches: complete KO of BAX and BAK protein to prevent all eventual mitochondrial permeabilization and low-level effector caspase activation, OE of the anti-apoptotic protein BCL-xL to also prevent residual mitochondrial permeabilization, while also OE XIAP, a potent caspase inhibitor. *

      • *

      • First and foremost, I don't seem to find ethical approval information on the animal experiments. While I do not work with zebrafish myself, I am also somewhat concerned by the size of tumours seen in some of the depicted fish. It is highly important that appropriate information in this direction, including possible endpoints, is provided. Response*: We completely agree with the reviewer, yet the ethical approval is already provided in the manuscript (line 588) and will be complemented by adding the endpoints. *

      The second major issue lies in figure 1. The figure as a whole seems to be very much forced to support or motivate later experimental findings. The authors lack sufficient clarity on some of the approaches and seem to judge on the data to a good bit as they see fit. (…)

      I´d suggest to largely take out Fig1 in its current form, spend time on properly describing any analysis of public data, carefully interpret these and move them probably to the end of the results. Currently, it just leaves the impression that the data were pushed as hard as possible to promote the good work that follows.

      Response*: We will carefully consider the reviewer’s comments and rework the bioinformatics analysis presented in Figure 1 (and associated supplementary figure), making sure we will present certain data as correlation (and not causality) and go into more details on the physio-pathological features of melanoma patients with low/high caspase-3 expression. *

      • *

      The text on line 129ff seems to have omitted any outcomes from the Suppl. Fig1H-L. What was found and what are we supposed to learn from this?

      Response: We apologize for lack of precision in the article logical flow, we will now incorporate the MS data based on the BioID2 experiment earlier in the manuscript.* *

      Lines 146/147 state similar effects upon CASP3 depletion and cytochalasin D. I cannot make that out from Fig.2D. Can you be more specific or visualize this better?

      Response: We will fix this by including zoomed and detailed images of individual cells.

      • Is it possible to state whether effects such as in Fig.3B are general rather than showing just 1 cell?

      Response: The defects in cell adhesion for caspase-3-depleted cells are quantified in Figure 3A. Moreover, we will add representative images.

      • *

      It is unclear how the genes in Fig.2H were defined and why would all of these differ (unless this was an inclusion criterion for the panel). Are these considered to be downstream of CASP3 somehow? I don't fully get the message here. Is this panel even required here?

      Response: As it brings little information, panel 2H will be excluded from the revised manuscript.

      To fully prove independence of caspase-3 activity, it would be appropriate to k/o caspase-3 to then reconstitute the cells with inactive caspase-3.

      • *

      Response: We will try our best of addressing this comment in the revised manuscript.

      Fig.4C and associated text: Statements on changes in tumor size cannot be made from data on tumor free survival.

      Response: We apologize for the misleading data interpretation; this will be tuned down in a revised manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript, the authors report a non-apoptotic role for caspase 3 in promoting cell migration. RNA sequencing revealed a "gene signature" associated with caspase 3 knockdown in a melanoma cell line, although there is no investigation of the connection between caspase 3 expression and the regulation of gene expression. Mass spectrometry-based experiments (AP-MS and BioID) identified numerous interacting proteins, with coronin 1B being the most extensively characterized. Data provided indicates that there is a direct interaction between caspase 3 and coronin 1B, and that caspase 3 influences coronin 1B phosphorylation basally and following ligand stimulation. Both proteins are required for efficient cell migration in scratch wound assays. Data is provided indicating that the actions of caspase 3 are independent of proteolytic activity, although the pharmacological inhibition of caspase activity is not complete, nor is the knockdown of BAX/BAK, making these conclusions poorly substantiated. Evaluation of pathways regulating caspase 3 expression implicates the SP1 transcription factor.

      Major comments:

      1. Line 129 - The data in Sup. Fig. 1H-L are technical, but where are the mass spectrometry results from the BioID2 experiments? These technical figures are really only relevant if the BioID2 system has been used for protein pull-downs, not for the IF analysis in Fig. 2B.
      2. Line 143 - Figure 2C - it is not entirely convincing that caspase 7 is not associated with the cytoskeleton, there is a visible band in lysates from both cell lines, in contrast with GAPDH which is convincingly cytoplasmic. This is particularly true in the WM852 cell lines, in which the Caspase 3 band is almost the same as Caspase 7. These results would also be more convincing if there was IF of Caspase 7 and actin to show whether it is or is not enriched in regions of higher F-actin levels.
      3. Figure 2D - knockdowns with only a single siRNA are insufficient, this should be replicated with additional siRNAs. In addition to the effect on actin anisotropy, it appears as though cells are smaller, is this and any other morphological changes reproducible?
      4. Figure 2D-E. Is it cytochalasin B or D used in these experiments? The text and figures don't agree with each other.
      5. Figure 2F-G, same comments above for 2D-E (i.e. comments 3 & 4).
      6. Figure 2F-G, it appears as though the fewer focal adhesions in the Caspase 3 knockdown cells are bigger per focal adhesion, is this a consistent result? If so, what is the explanation?
      7. Figure 2H - it's not clear how this RNAseq data is relevant to the manuscript. There are some genes in the heat map, but it's not clear which ones are changed in their expression in the caspase 3 knockdown cells, nor is it clear how this is relevant to the proposed mechanisms of Caspase 3 interacting with and influencing the phosphorylation of coronin 1B. If there is no connection, then these data can be removed.
      8. Supp. Figure 3 - given that there is data from multiple siRNAs for the incucyte migration data, it should be in the primary figures. And since there are multiple siRNAs and CRISPR/Cas9 KO cells, there should be nothing limiting the replication of the other data presented from only a single siRNA.
      9. Figure 3A - how was cell adhesion measured? The methods section says "cell adhesion was determined through cell shape analysis and scoring" But this is very vague.
      10. Figure 3L - was the Casp7 knockdown experiments done with multiple siRNAs? Both melanoma cell lines? Why is this figure only shown out to 24 hours, whereas the other Incucyte experiment run out to 48 hours? Where is the western blot confirming the caspase 7 knockdown? This is important to establish a clear lack of effect.
      11. Line 190 - it is not true to say that in the presence of QVD there is no longer any caspase activity induced by actinomycin D/ABT263 in supplemental Figures 3J-K. The way that the Y axis has been broken diminishes the difference between untreated and treated cells. In fact, there is apparently over 3-4 times more caspase activity in the actinomycin D/ABT263 treated cells in the presence of QVD relative to basal caspase activity. As a result, it cannot be concluded that there is no residual caspase activity.
      12. Line 192 - Does the knockout of BAX/BAK (which apparently reduced but did not eliminate BAX/BAK protein levels in Supp. Fig. 3L) actually "completely block" caspase activity via the mitochondrial pathway? This has not been demonstrated.
      13. Line 217 - coronin 1B was a hit from which assays? IP-MS and/or BioID2? I see that this is shown in Figure 5A but not referenced in this sentence.
      14. Line 218 - the reference to Figure 5A should be in the previous sentence.
      15. Line 220 - Can it really be said that the interaction is specific since there is a coronin 1B band in the GFP "negative" control?
      16. Line 222 - it is a good control to show that siRNA-knockdown of Caspase 3 reduced the PLA signal in Figure 5C, but the reciprocal experiment of looking at what happens with Coronin 1B knockdown should be included. How does the PLA signal relate to phalloidin-stained F-actin?
      17. Line 224 - looking at the line scans, is the lack of recruitment of coronin 1B to the F-actin at the edge of the protrusion in the Caspase 3 knockdown cells reproducible? Is the point that caspase 3 recruits Coronin 1B? There is an obvious difference in the F-actin at the cell edge, but if the F-actin were as dense in the Caspase 3 knockdown cells as they are for the control, would the same lack of coronin 1B be apparent?
      18. Line 227 - where is the western blot showing the effectiveness of the coronin 1B knockdown to accompany Figure 5F?
      19. Figure 5G - the blots indicate that there is no change in phospho-PKCalpha in the caspase 3 knockdown cells, although phospho-coronin 1B does decrease. This has not been commented upon in the text. Is the implication that there is a non-PKCalpha mediated mechanism for coronin 1B phosphorylation that is dependent on caspase 3?
      20. Figure 5H - following from the previous point, there is no phospho-PKCalpha blot that would be a positive control for the effect of PDGF stimulation on PKC activation, in control and caspase 3 knockdown cells, to evaluate whether the effect on coronin 1B phosphorylation was upstream or downstream of PKCalpha. This is also true for Supp. Fig. 4H.
      21. Does phosphorylation of coronin 1B affect its interaction with caspase 3?
      22. Figure 6 - as before, only a single siRNA to knockdown SP1 is insufficient to robustly support the conclusions.

      Minor comments:

      1. Figure 2C - all caps for CASP7
      2. Figures 2D,F - Cytochalsin
      3. Figure 2H, the labelling of gene names is too small to read.
      4. Supplemental Fig 1A - why is A375 here? Why plot a graph and not just write a percentage protein remaining under the figure? There are no errors indicated, so presumably this is N = 1.
      5. Line 127 - smal

      Significance

      The manuscript is interesting and novel, making it relevant for a broad basic research audience. The role of caspase 3 in non-apoptotic biological processes is not extensively characterized, making this study an advance in the field. The methods are appropriate and well-executed. The statistical methods are mostly appropriate, although some assays (e.g. wound healing assays) do not have associated statistical analysis. Most of the conclusions are adequately substantiated by the results, but as indicated above and in the points below, this is not entirely consistent. There is an issue with only a single siRNA being used in several experiments that should be addressed.

    1. We have integrated studies X,Y,Z studies that help bridge the gap between concepts. Please see lines XXX

      We made more explicit the connection between individual herbivore nutrition and population- and landscape-level patterns and integrated more studies throughout the introduction.

    1. Definiría la agonía del sujeto moderno como la lucha contra la culpabilidad de no ser capaz de tenerlo todo.

      Este párrafo me parece muy interesante y logrado. Creo que marca un ecuador en el texto que sube la intensidad. Además hay cierta musicalidad que lo hace genial.

    1. haz clic en este subrayado amarillo

      Esto es Hypothesis. Una tecnología que permite anotar colaborativamente la web. La iniciativa surgió desde el mundo académico intentando responder a la pregunta: ¿cómo sería tomar notas colectivas en internet? De ahí surgió este proyecto. Puedes tomar notas públicas, privadas o en grupo. Lo bueno es que cualquier persona que llegue a la página en concreto verá tus comentarios y podrá seguirlos. En Filosofía PEC está activado por defecto pero si lo activas en tu navegador podrás tomar notas de todas las webs que desees. Tienes más info en https://hypothes.is

    1. la vida espiritual tiene sus “contraseñas”: hay palabras que tocan el corazón porque remiten a aquello por lo que somos más sensibles. El tentador, es decir el diablo, conoce bien estas palabras-clave, y es importante que las conozcamos también nosotros, para no encontrarnos ahí donde no quisiéramos.

      la parte dura de esto

    1. ips for a clear and informative notice There is no one, right way to give notice, and different situations may require more or less complicated notices and marking. The following tips may be helpful, however, in designing a clear and informative notice. 1. Define the work Substantively define the work to which you are applying the license. A notice that "this work" is offered under a CC license tells a user much less than one that gives the work's title or defines the work. If you intend to license a song, name the song. If you intend to license part of a work, describe that part. For instance, an author of a novel could offer one chapter under a CC license and use the following notice: "Chapter X of Novel Y by Author Z is offered under [license version].” Licensors who define the licensed work make it easier for users to understand which works and parts of works are licensed and available for use. 2. Identify any parts of the work to which the license does not apply Here the licensor should describe all of the elements of the work (as defined in the first step) to which the license does not apply, and thus are not available for use under the license terms. You may list reserved elements in the general notice, or you can describe and implement a marking procedure such as watermarking or text notices that you will use to denote those elements of the work that are not licensed. Licensors should inform users about any portions of the work to which the license cannot apply because the licensor does not have the necessary rights, and any places where the licensor has opted not to apply the license as a strategic matter. 3. Identify the rights licensed that you have in the work (as far as you know) and any rights that are not licensed because you do not have them. When licensors are the owners of, or are authorized to exercise, all rights related to their creative works, including copyright and publicity/privacy rights, marking a work is not problematic. However, some licensors do not own all rights related to their works. Copyright is a bundle of rights, such as the right to copy and the right to distribute, which are divisible and may be held by different parties. A licensor without all the rights should list those they have. For instance, a licensor who holds the performance rights to a recording of a song, but not the rights in the composition, should say so. Licensors should attempt to alert users of any rights held by others that may impact their ability to reuse the work. 4. Grant any additional permissions Licensors can use notices to grant additional permissions beyond the license grant. For instance, a licensor who chooses a NoDerivatives or NonCommercial license can grant users permission to create derivatives or make commercial uses under specific conditions. Note that licensors can use notices to broaden the license grant and give additional permissions, but notices cannot restrict any permissions already granted by the CC license. 5. Convey any supplementary requests or information Licensors should use notices to inform us

      Some useful tips

    1. y plan is to create a study plan each week to create t

      Have you actively engaged in this competency in the past few months since starting the program? If so, can you reflect on your efforts? If not--what is required for change?

    1. (add 5) 1

      add is a curried function so partial application returns another function. (add 5) 1 would be roughly equivalent to (func y -> 5 + y) 1 which evaluates to the integer 6

  2. Nov 2024
    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Urination requires precise coordination between the bladder and external urethral sphincter (EUS), while the neural substrates controlling this coordination remain poorly understood. In this study, Li et al. identify estrogen receptor 1-expressing neurons (ESR1+) in Barrington's nucleus as key regulators that faithfully initiate or suspend urination. Results from peripheral nerve lesions suggest that BarEsr1 neurons play independent roles in controlling bladder contraction and relaxation of the EUS. Finally, the authors performed region-specific retrograde tracing, claiming that distinct populations of BarEsr1 neurons target specific spinal nuclei involved in regulating the bladder and EUS, respectively.

      Strength:

      Overall, the work is of high quality. The authors integrate several cutting-edge technologies and sophisticated, thorough analyses, including opto-tagged single unit recordings, combined optogenetics, and urodynamics, particularly those following distinct peripheral nerve lesions.

      Weakness:

      (1) My major concern is the novelty of this study. Keller et al. 2018 have shown that BarEsr1 neurons are active during urination and play an essential role in relaxing the external urethral sphincter (EUS). Minimally, substantial content that merely confirms previous findings (e.g. Figures 1A-E; Figures 3A-E) should be move to the supplementary datasets.

      Indeed, we are aware of and have carefully studied the literature of Keller et al. Our manuscript here presents novel experiments beyond the scopes of that paper. Thanks to this comment, we will substantially revise our manuscript to enhance the visibility of novel data while keeping the agreeing data in the supplementary.

      (2) I also have concerns regarding the results showing that the inactivation of BarEsr1 neurons led to the cessation of EUS muscle firing (Figures 2G and S5C). As shown in the cartoon illustration of Figure 8, spinal projections of BarEsr1 neurons contact interneurons (presumably inhibitory) that innervate motor neurons, which in turn excite the EUS. I would therefore expect that the inactivation of BarEsr1 should shift the EUS firing pattern from phasic (as relaxation) to tonic (removal of relaxation), rather than stopping their firing entirely. Could the authors comment on this and provide potential reasons or mechanisms for this finding?

      We agree with this point. We meant that the EUS’ phasic bursting pattern was rapidly stopped upon BarEsr1 photoinhibition, but not all the firing stopped instantaneously. According to the previous studies (Chang et al., 2007, de Groat, 2009, de Groat and Yoshimura, 2015, Kadekawa et al., 2016), the voiding physiology of rodents is probably different from that of humans, such that for rodents the urine is step-wise pumped out in the gap time between multiple consecutive EUS phasic bursting epochs, and for humans the urine is continuously pumped out once the EUS firing is almost fully inhibition during a period of time. Namely, for mice, the EUS display sustained tonic activity following phasic bursting, while, in contrast, for humans the EUS keeps tonic firing until the moment of voiding onset (complete inhibition, muscle relaxed). Despite the prominent differences in the basic physiological properties, our assumption is that the logic of circuits from the brainstem to the urethra in this pathway is evolutionally conserved for both species; thus the logic of brainstem coordination of voiding could also be the same for both species, which is the main interest of our study (of using an animal model to address concerns of human health). Thus, to interpret our data for a broader audience we made a simplified and inaccurate expression. We apologize for the inaccuracy and we will correct our previous inaccurate description in the revised manuscript.

      (3) Current evidence is insufficient to support the claim that the majority of BarEsr1 neurons innervate the SPN but not DGC. The current spinal images are uninformative, as the fluorescence reflects the distribution of Esr1- or Crh-expressing neurons in the spinal cord, along with descending BarEsr1 or BarCrh axons. Given the close anatomical proximity of these two nuclei, a more thorough histological analysis is required to demonstrate that the spinal injections were accurately confined to either the SPN or the DGC.

      We agree that current evidence is insufficient to support the current claim. To address this concern and strengthen our claim, we will repeat the retrograde viral tracing experiments, combined with CTB647 injections to label the injection site, to validate specific targeting of SPN or DGC populations. We will also add higher-magnification imaging to distinguish BarESR1 axonal projections targeting SPN versus DGC. Results from these ongoing experiments will be incorporated into the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The authors have performed a rigorous study to assess the role of ESR1+ neurons in the PMC to control the coordination of bladder and sphincter muscles during urination. This is an important extension of previous work defining the role of these brainstem neurons, and convincingly adds to the understanding of their role as master regulators of urination. This is a thorough, well-done study that clarifies how the Pontine micturition center coordinates different muscle groups for efficient urination, but there are some questions and considerations that remain.

      Strengths:

      These data are thorough and convincing in showing that ESR1+PMC neurons exert coordinated control over both the bladder and sphincter activity, which is essential for efficient urination. The anatomical distinctions in pelvic versus pudendal control are clear, and it's an advance to understand how this coordination occurs. This work offers a clearer picture of how micturition is driven.

      Weaknesses:

      The dynamics of how this population of ESR1+ neurons is engaged in natural urination events remains unclear. Not all ESR1+neurons are always engaged, and it is not measured whether this is simply variation in population activity, or if more neurons are engaged during more intense starting bladder pressures, for instance. In particular, the response dynamics of single and doubly-projecting neurons are not defined. Additionally, the model for how these neurons coordinate with CRH+ neuron activity in the PMC is not addressed, although these cell types seem to be engaged at the same time. Lastly, it would be interesting to know how sensory input can likely modulate the activity of these neurons, but this is perhaps a future direction.

      In response to the reviewer’s comments, we will attempt perform the following revisions for this round:

      (1) Engagement of ESR1+ neurons in natural urination events:

      We agree that probably not all ESR1+ neurons are consistently engaged during urination. To address this, we will perform a detailed analysis of the opto-tagged single unit recordings data.

      (2) Response dynamics of single- and doubly-projecting neurons:

      (a) We will use retrograde labelling combined with Ca2+ photometry recordings to differentiate the response dynamics of SPN- and DGC-projecting neurons during urination.

      (b) We will perform functional validations to assess the specific roles of single- and doubly-projecting neurons in coordinating bladder and EUS activity.

      (3) Coordination with CRH+ neurons in the PMC:<br /> We appreciate the suggestion to include CRH+ neurons in our model. We will expand our model to incorporate CRH+ neurons and their potential interactions with ESR1+ neurons.

      (4) Sensory modulation of ESR1+ neurons:<br /> The reviewer raises an excellent point regarding sensory input modulation of ESR1+ neuron activity. Although this is beyond the scope of our current study, we recognize its importance and propose to include this as a future direction.

      Reviewer #3 (Public review):

      Summary:

      The paper by Li et al explored the role of Estrogen receptor 1 (Esr1) expressing neurons in the pontine micturition center (PMC), a brainstem region also known as Barrington's nucleus (Hou et al 2016, Keller et al 2018). First, the author conducted bulk Ca2+ imaging/unit recording from PMCESR1 to investigate the correlations of PMCESR1 neural activity to voiding behavior in conscious mice and bladder pressure/external urethral muscle activity in urethane anesthetized mice. Next, the authors conducted optogenetics inactivation/activation of PMCESR1 to confirm the contribution to the voiding behavior also conducted peripheral nerve transection together with optogenetics activation to confirm the independent control of bladder pressure and urethral sphincter muscle.

      Weaknesses:

      (1) The study demonstrates that pelvic nerve transection reduces urinary volume triggered by PMCESR1+ cell photoactivation in freely moving mice. Could the role of pudendal nerve transection also be examined in awake mice to provide a more comprehensive understanding of neural involvement?

      Thank you for the suggestion, the pudendal nerve transection in awake mice is indeed a challenging experiment that has been missed. We will try it for the revision.

      (2) While the paper primarily focuses on PMCESR1+ cells in bladder-sphincter coordination, the analysis of PMCESR1+-DGC/SPN neural circuits - given their distinct anatomical projections in the sacral spinal cord - feels underexplored. How do these circuits influence bladder and sphincter function when activated or inhibited? Also, do you have any tracing data to confirm whether bladder-sphincter innervation comes from distinct spinal nuclei?

      Thank you for this great comment. The projection-specific neuronal function analysis is, as also suggested by Reviewer 2 in a similar comment (#8), missing in our first submission. These are so challenging experiments that we have missed in the first round of tests, but we decide to pursuit this goal again. Namely, we will perform photometry recordings of PMC neurons projecting to the DGC/SPN during measuring bladder pressure and urethral sphincter EMG activity. Additionally, while our study does not include direct tracing data to confirm distinct spinal nuclei for bladder and sphincter innervation, this has been well-documented in classic literature (Yao et al., 2018, Karnup and De Groat, 2020, Karnup, 2021). Specifically, anatomical studies have shown that SPN primarily innervates the bladder, while the DGC is associated with the innervation of the urethral sphincter. We will cite these references to provide context and support for our interpretations.

      (3) Although the paper successfully identifies the physiological role of PMCESR1+ cells in bladder-sphincter coordination, the study falls short in examining the electrophysiological properties of PMCESR1+-DGC/SPN cells. A deeper investigation here would strengthen the findings.

      While our study primarily focuses on the functional role of PMCESR1+ neurons in bladder-sphincter coordination, we acknowledge that understanding their intrinsic electrophysiological characteristics could further strengthen our findings. However, this aspect falls beyond the scope of the current study. Nevertheless, we recognize the significance of this direction and are excited to pursue it in future research. We appreciate the reviewer’s suggestion, as it highlights an important avenue for expanding upon our current findings.

      (4) The parameters for photoactivation (blue light pulses delivered at 25 Hz for 15 ms, every 30 s) and photoinhibition (pulses at 50 Hz for 20 ms) vary. What drove the selection of these specific parameters? Moreover, for photoactivation experiments, the change in pressure (ΔP = P5 sec - P0 sec) is calculated differently from photoinhibition (Δpressure = Ppeak - Pmin). Can you clarify the reasoning behind these differing approaches?

      We sincerely thank the reviewer for raising these important points and for the opportunity to clarify our experimental design and data analysis methods.

      Photoactivation versus photoinhibition parameters: The differences in photoactivation (25 Hz, 15 ms pulses) and photoinhibition (50 Hz, 20 ms pulses) protocols are based on the distinct physiological and technical requirements for activating versus inhibiting PMCESR1+ neurons. For photoactivation, 25 Hz stimulation aligns with the natural firing patterns of central neurons, allowing for intermittent activation without exceeding the neuronal refractory period. The shorter pulse duration (15 ms) minimizes phototoxicity and avoids overstimulation, as performed in previous studies (Keller et al., 2018). In contrast, photoinhibition requires sustained suppression of neuronal activity, achieved through higher frequencies (50 Hz) and longer pulses (20 ms) to ensure continuous coverage of neuronal activity.

      Calculation of pressure changes (ΔP) for photoactivation and photoinhibition: The differing methods for calculating pressure changes reflect the distinct physiological effects we aimed to capture. In photoactivation experiments (ΔP = P5 sec - P0 sec), the pressures before (P0 sec) and 5 seconds after (P5 sec) light delivery were compared to capture the immediate effect of light activation on bladder pressure, focusing on the onset and early dynamics of activation. In contrast, photoinhibition experiments assessed the immediate impact of light-induced suppression on bladder pressure during an ongoing voiding event. Here, Δpressure was calculated as Ppeak – Pmin to measure the rapid drop in pressure directly attributable to neuronal inhibition.

      We will expand these details in the methods section of the revised manuscript to provide greater transparency.

      (5) The discussion could further emphasize how PMCESR1+ cells coordinate bladder contraction and sphincter relaxation to control urination, highlighting their central role in the initiation and suspension of this process.

      We fully agree with this point. Additionally, in response to your and other reviewers’ suggestions, we are preparing a new round of experiments with projection-specific recording, and thus our discussion and conclusion will also be updated according to the newly obtained data.

      (6) In Figure 8, The authors analyze the temporal sequence of bladder pressure and EUS bursting during natural voiding and PMC activation-induced voiding. It would be acceptable to consider the existence of a lower spinal reflex circuit, however, the interpretation of the data contains speculation. Bladder pressure measurement is hard to say reflecting efferent pelvic nerve activity in real time. (As a biological system, bladder contraction is mediated by smooth muscle, and does not reflect real-time efferent pelvic nerve activity. As an experimental set-up, bladder pressure measurement has some delays to reflect bladder pressure because of tubing, but EUS bursting has no delay.) Especially for the inactivation experiment, these factors would contribute to the interpretation of data. This reviewer recommends a rewrite of the section considering these limitations. Most of the section is suitable for the results.

      Thank you for mentioning the possibility of bladder pressure measurement delay. We would prefer to perform a physical control test to quantify how much delay this measurement is under our experimental conditions. We will use a small ballon to mimic the bladder and use two identical pressure sensors, one with a very short tube inserted into the ballon and one with an extended tube same as in our animal experiments. We will then mimic both contraction initiation and halting, and quantify the delay between the two sensors.

      References

      • Chang HY, Cheng CL, Chen JJJ, de Groat WC. 2007. Serotonergic drugs and spinal cord transections indicate that different spinal circuits are involved in external urethral sphincter activity in rats. American Journal of Physiology-Renal Physiology 292: F1044-F1053. DOI: 10.1152/ajprenal.00175.2006

      • de Groat WC. 2009. Integrative control of the lower urinary tract: preclinical perspective. British Journal of Pharmacology 147. DOI: 10.1038/sj.bjp.0706604

      • de Groat WC, Yoshimura N. 2015. Anatomy and physiology of the lower urinary tract. Handb Clin Neurol 130: 61-108. DOI: 10.1016/B978-0-444-63247-0.00005-5

      • Kadekawa K, Yoshimura N, Majima T, Wada N, Shimizu T, Birder LA, Kanai AJ, de Groat WC, Sugaya K, Yoshiyama M. 2016. Characterization of bladder and external urethral activity in mice with or without spinal cord injury—a comparison study with rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 310: R752-R758. DOI: 10.1152/ajpregu.00450.2015

      • Karnup S. 2021. Spinal interneurons of the lower urinary tract circuits. Autonomic Neuroscience 235. DOI: 10.1016/j.autneu.2021.102861

      • Karnup SV, De Groat WC. 2020. Mapping of spinal interneurons involved in regulation of the lower urinary tract in juvenile male rats. IBRO Rep 9: 115-131. DOI: 10.1016/j.ibror.2020.07.002

      • Keller JA, Chen J, Simpson S, Wang EH-J, Lilascharoen V, George O, Lim BK, Stowers L. 2018. Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nature Neuroscience 21: 1229-1238. DOI: 10.1038/s41593-018-0204-3             

      • Yao J, Zhang Q, Liao X, Li Q, Liang S, Li X, Zhang Y, Li X, Wang H, Qin H, Wang M, Li J, Zhang J, He W, Zhang W, Li T, Xu F, Gong H, Jia H, Xu X, Yan J, Chen X. 2018. A corticopontine circuit for initiation of urination. Nature Neuroscience 21: 1541-1550. DOI: 10.1038/s41593-018-0256-4

    1. The potential for cuts in 2030 is 31 gigatons of CO2 equivalent – which isaround 52 per cent of global greenhouse gas emissions in 2023 – and 41gigatons in 2035.· Increased deployment of solar photovoltaic technologies and wind energy coulddeliver 27 per cent of this total emission reduction potential in 2030 and 38 percent in 2035.· Action on forests could deliver around 20 per cent of the potential in both years.• Other strong options include efficiency measures, electrification and fuelswitching in the buildings, transport and industry sectors.

      for - stats - 27% of the gap can be reduced by wind and solar deployment and 20% by action on forests, while efficiency, electrification, fuel switching in buildings, transport and industry sectors can also contribute - UN Emissions Gap Report 2024 - Key Messages

    2. f only current NDCs are implemented and no further ambition is shown in the newpledges, the best we could expect to achieve is catastrophic global warming of up to2.6°C over the course of the century

      for - stats - Current National Declared Commitments (NDCs) only take us to a disastrous 2.6 Deg. C over the course of the century.- UN Emissions Gap Report 2024 - Key Messages

    3. Since greenhouse gas emissions grew 1.3 per cent year-on-year to 57.1 gigatonsof carbon dioxide equivalent in 2023, the task has become harder; 7.5 per centmust be shaved off emissions every year until 2035 for 1.5°C

      for - stats - GHG emissions grew 1.3 % year-on-year to 57.1 Gton CO2 eq in 2023 - UN Emissions Gap Report 2024 - Key Messages - stats - 7.5% decarbonization rate is now required every year to stay under 1.5 Deg C - UN Emissions Gap Report 2024 - Key Messages

    1. Para Randi, y para casi todos los otros magos profesionales, lo fascinante es que quienes los miren traten, infructuosamente, de darse cuenta de cómo están logrando

      ¿Es realmente eso lo que fascina a los magos? ¿Que el público intente averiguar, sin éxito, cómo hacen lo que hacen? ¿O más bien disfrutan ver el asombro de la gente?

    2. Si perdiéramos irreversiblemente el método de la ciencia, estaríamos condenados a que nuestro conocimiento se detuviera donde está, y a ser incapaces de entender el mundo.

      Parece demasiado cientificista. ¿Siempre hubo "ciencia"? ¿Cómo conocíamos el mundo antes, si no?

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Rühling et al analyzes the mode of entry of S. aureus into mammalian cells in culture. The authors propose a novel mechanism of rapid entry that involves the release of calcium from lysosomes via NAADP-stimulated activation of TPC1, which in turn causes lysosomal exocytosis; exocytic release of lysosomal acid sphingomyelinase (ASM) is then envisaged to convert exofacial sphingomyelin to ceramide. These events not only induce the rapid entry of the bacteria into the host cells but are also described to alter the fate of the intracellular S. aureus, facilitating escape from the endocytic vacuole to the cytosol.

      Strengths:

      The proposed mechanism is novel and could have important biological consequences.

      Weaknesses:

      Unfortunately, the evidence provided is unconvincing and insufficient to document the multiple, complex steps suggested. In fact, there appear to be numerous internal inconsistencies that detract from the validity of the conclusions, which were reached mostly based on the use of pharmacological agents of imperfect specificity.

      We thank the reviewer for the detailed evaluation of our manuscript. We will address the criticism below.

      We agree with the reviewer that many of the experiments presented in our study rely on the usage of inhibitors. However, we want to emphasize that the main conclusion (invasion pathway affects the intracellular fate/phagosomal escape) was demonstrated without the use of inhibitors or genetic ablation in two key experiments (Figure4 G/H). These experiments were in line with the results we obtained with inhibitors (amitriptyline [Supp. Figure 4E], ARC39, PCK310, [Figure 4c] and Vacuolin-1 [Supp. Figure4f]). Importantly, the hypothesis was also supported by another key experiment, in which we showed the intracellular fate of bacteria is affected by removal of SM from the plasma membrane before invasion, but not by removal of SM from phagosomal membranes after bacteria internalization (Figure4d-f). Taken together, we thus believe that the main hypothesis is strongly supported by our data.

      Moreover, we either used different inhibitors for the same molecule (ASM was inhibited by ARC39, amitriptyline and PCK310 with similar outcome) or supported our hypothesis with gene-ablated cell pools (TPC1, Syt7, SARM1), as we will point out in more detail below.

      Firstly, the release of calcium from lysosomes is not demonstrated. Localized changes in the immediate vicinity of lysosomes need to be measured to ascertain that these organelles are the source of cytosolic calcium changes. In fact, 9-phenantrol, which the authors find to be the most potent inhibitor of invasion and hence of the putative calcium changes, is not a blocker of lysosomal calcium release but instead blocks plasmalemmal TRPM4 channels. On the other hand, invasion is seemingly independent of external calcium. These findings are inconsistent with each other and point to non-specific effects of 9-phenantrol. The fact that ionomycin decreases invasion efficiency is taken as additional evidence of the importance of lysosomal calcium release. It is not clear how these observations support involvement of lysosomal calcium release and exocytosis; in fact treatment with the ionophore should itself have induced lysosomal exocytosis and stimulated, rather than inhibited invasion. Yet, manipulations that increase and others that decrease cytosolic calcium both inhibited invasion.

      With respect to lysosomal Ca2+ release, we agree with the reviewer that direct visual demonstration of lysosomal Ca2+ release upon infection will improve the manuscript. We therefore will perform additional experimentation to show alterations of Ca2+ at the lysosomes during infection.

      As to the TRPM4 involvement in S. aureus host cell internalization, it has been reported that TRPM4 is activated by cytosolic Ca2+. However, the channel conducts monovalent cations such as K+ or Na+ but is impermeable for Ca2+ 1, 2. The following of our observations are supporting this:

      i) S. aureus invasion is dependent on intracellular Ca2+, but is independent from extracellular Ca2+  (Figure 1c).

      ii) 9-phenantrol treatment reduces S. aureus internalization by host cells, illustrating the dependence of this process on TRPM4 (Figure 1b). We therefore hypothesize that TRPM4 is activated by Ca2+ released from lysosomes (see above).

      TRPM4 is localized to focal adhesions and is connected to actin cytoskeleton3, 4 – a requisite of host cell entry of S. aureus.5, 6 This speaks for an important function of TRPM4 in uptake of S. aureus in general, but does not necessarily have to be involved exclusively in the rapid uptake pathway.

      TRPM4 itself is not permeable for Ca2+ but is activated by the cation.  Thus, it is unlikely to cause lysosomal exocytosis. The stronger bacterial uptake reduction by treatment with 9-phenantrol when compared to Ned19 thus may be caused by the involvement of TRPM4 in additional pathways of S. aureus host cell entry involving that association of TRPM4 with focal adhesions or, as pointed out by the reviewer, unspecific side effects of 9-phenantrol that we currently cannot exclude. We will include this information in the revised manuscript.

      Regarding the reduced S. aureus invasion after ionomycin treatment, we agree with the reviewer that ionomycin is known to lead to lysosomal exocytosis as was previously shown by others7 as well as our laboratory8.

      We hypothesized that pretreatment with ionomycin would trigger lysosomal exocytosis and thus would reduce the pool of lysosomes that can undergo exocytosis before host cells are contacted by S. aureus. As a result, we should observe a marked reduction of S. aureus internalization in such “lysosome-depleted cells”, if the lysosomal exocytosis is coupled to bacterial uptake. Our observation of reduced bacterial internalization after ionomycin treatment supports this hypothesis.

      However, ionomycin treatment and S. aureus infection of host cells are distinct processes.

      While ionomycin results in strong global and non-directional lysosomal exocytosis of all “releasable” lysosomes (~5-10 % of all lysosomes according to previous observations)7, we hypothesize that lysosomal exocytosis upon contact with S. aureus only involves a very small proportion of lysosomes at host-bacteria contact sites.

      Since ionomycin disturbs the overall cellular Ca2+ homeostasis, we agree with the reviewer that this does not directly show lysosomal Ca2+ liberation. We will discuss this in more detail in the revised manuscript.

      The proposed role of NAADP is based on the effects of "knocking out" TPC1 and on the pharmacological effects of Ned-19. It is noteworthy that TPC2, rather than TPC1, is generally believed to be the primary TPC isoform of lysosomes. Moreover, the gene ablation accomplished in the TPC1 "knockouts" is only partial and rather unsatisfactory. Definitive conclusions about the role of TPC1 can only be reached with proper, full knockouts. Even the pharmacological approach is unconvincing because the high doses of Ned-19 used should have blocked both TPC isoforms and presumably precluded invasion. Instead, invasion is reduced by only ≈50%. A much greater inhibition was reported using 9-phenantrol, the blocker of plasmalemmal calcium channels. How is the selective involvement of lysosomal TPC1 channels justified?

      As to partial gene ablation of TPC1: To avoid clonal variances, we usually perform pool sorting to obtain a cell population that predominantly contains cells -here- deficient in TPC1, but also a small proportion of wildtype cells as seen by the residual TPC1 protein on the Western blot. We observe a significant reduction of bacterial uptake in this cell pool suggesting that the uptake reduction in a pure K.O. population may be even larger.

      As to the inhibition by Ned19: We agree with the reviewer that Ned19 inhibits TPC1 and TPC2. Since ablation of TPC1 reduced invasion of S. aureus, we concluded that TPC1 is important for S. aureus host cell invasion. We thus agree with the reviewer that a role for TPC2 cannot be excluded. We will clarify this in the reviewed manuscript. It needs to be noted, however, that deficiency in either TPC1 or TPC2 alone was sufficient to prevent Ebola virus infection9, which is in line with our observations.

      The 50% reduction of invasion upon Ned19 treatment (Figure 1d) is comparable with the reduction caused by other compounds that influence the ASM-dependent pathway (such as amitriptyline, ARC39 [Figure 2c], BAPTA-AM [Figure 1c], Vacuolin-1 [Figure 2a], β-toxin [Figure 2e] and ionomycin [Figure 1a]). Further, the partial reduction of invasion is most likely due to the concurrent activity of multiple internalization pathways which are not all targeted by the used compounds.

      Invoking an elevation of NAADP as the mediator of calcium release requires measurements of the changes in NAADP concentration in response to the bacteria. This was not performed. Instead, the authors analyzed the possible contribution of putative NAADP-generating systems and reported that the most active of these, CD38, was without effect, while the elimination of SARM1, another potential source of NAADP, had a very modest (≈20%) inhibitory effect that may have been due to clonal variation, which was not ruled out. In view of these data, the conclusion that NAADP is involved in the invasion process seems unwarranted.

      Our results from two independent experimental set-ups (Ned19 [Figure 1d] and TPC1 K.O. [Figure 1e & Figure 2f]) indicate the involvement of NAADP in the process. However, the measurement of NAADP concentration is non-trivial. However, we can rule out clonal variation in the SARM1 mutant since experiments were conducted with a cell pool as described above in order to avoid clonal variation of single clones.

      The mechanism behind biosynthesis of NAADP is still debated. CD38 was the first enzyme discovered to possess the ability of producing NAADP. However, it requires acidic pH to produce NAADP10 -which does not match the characteristics of a cytosolic NAADP producer. HeLa cells do not express CD38 and hence, it is not surprising that inhibition of CD38 had no effect on S. aureus invasion in HeLa cells. However, NAADP production by HeLa cells was observed in absence of CD3811. Thus CD38-independent NAADP generation is likely. SARM1 can produce NAADP at neutral pH12 and is expressed in HeLa, thus providing a more promising candidate.

      We agree with the reviewer that the reduction of S. aureus internalization after ablation of SARM1 is less pronounced than in other experiments of ours. This may be explained by NAADP originating from other enzymes, such as the recently discovered DUOX1, DUOX2, NOX1 and NOX213, which – with exception of DUOX2- possess a low expression even in HeLa cells. We will discuss this in the revised manuscript.

      The involvement of lysosomal secretion is, again, predicated largely on the basis of pharmacological evidence. No direct evidence is provided for the insertion of lysosomal components into the plasma membrane, or for the release of lysosomal contents to the medium. Instead, inhibition of lysosomal exocytosis by vacuolin-1 is the sole source of evidence. However, vacuolin-1 is by no means a specific inhibitor of lysosomal secretion: it is now known to act primarily as a PIKfyve inhibitor and to cause massive distortion of the endocytic compartment, including gross swelling of endolysosomes. The modest (20-25%) inhibition observed when using synaptotagmin 7 knockout cells is similarly not convincing proof of the requirement for lysosomal secretion.

      We agree that the manuscript will strongly benefit from a functional analysis of lysosomal exocytosis. We therefore will conduct assays to investigate exocytosis in the revision. However, we previously showed i) by addition of specific antisera that LAMP1 transiently is exposed on the plasma membrane during ionomycin and pore-forming toxin challenge and ii) demonstrated the release of ASM activity into the culture medium under these conditions.8 Both measurements are not compatible with S. aureus infection, since LAMP1 antibodies also are non-specifically bound by protein A and another IgG-binding protein on the S. aureus surface, which would bias the results. Since protein A also serves as an adhesin, we cannot simply delete the ORF without changing other aspects of staphylococcal virulence. Further, FBS contains a ASM background activity that impedes activity measurements of cell culture medium. We previously removed this background activity by a specific heat-inactivation protocol.8 However, S. aureus invasion is strongly reduced in culture medium containing this heat-inactivated FBS.

      We agree with the reviewer that Vacuolin-1 has unspecific side effects. We will address this in the revised version of the manuscript.

      As to the involvement of synaptotagmin 7:

      Synaptotagmin 7 is not the only protein possibly involved in Ca-dependent exocytosis. For instance, SYT1 has been shown to possess an overlapping function.14 This may explain the discrepancy between our vacuolin-1 and SYT7 ablation experiments. We will add an according section to the discussion.

      ASM is proposed to play a central role in the rapid invasion process. As above, most of the evidence offered in this regard is pharmacological and often inconsistent between inhibitors or among cell types. Some drugs affect some of the cells, but not others. It is difficult to reach general conclusions regarding the role of ASM. The argument is made even more complex by the authors' use of exogenous sphingomyelinase (beta-toxin). Pretreatment with the toxin decreased invasion efficiency, a seemingly paradoxical result. Incidentally, the effectiveness of the added toxin is never quantified/validated by directly measuring the generation of ceramide or the disappearance of SM.

      Although pharmacological inhibitors can have unspecific side effects, we want to emphasize that the inhibitors used in our study act on the enzyme ASM by completely different mechanisms. Amitriptyline is a so called functional inhibitor of ASM (FIASMA) which induces the detachment of ASM from lysosomal membranes resulting in degradation of the enzyme.15 By contrast, ARC39 is a competitive inhibitor.16, 17

      We do not see inconsistencies in our data obtained with ASM inhibitors. Amitriptyline and ARC39 both reduce the invasion of S. aureus in HuLEC, HuVEC and HeLa cells (Figure 2c). ARC39 needs a longer pre-incubation, since its uptake by host cells is slower (data not shown). We observe a different outcome in 16HBE14o- and Ea.Hy 926 cells, with 16HBE14o- even demonstrating a slightly increased invasion of S. aureus upon ARC39 treatment. Amitriptyline had no effect (Figure 2c). Moreover, both inhibitors affected the invasion dynamics (Figure 3d), phagosomal escape (Figure 4c and Supp. Figure 4e) and Rab7 recruitment (Figure 4a and Supp. Figure 4b) in a similar fashion. Proper inhibition of ASM by both compounds in all cell lines used was validated by enzyme assays (Supp. Figure 2e), which suggests that the ASM-dependent pathway does only exist in specific cell lines. This also may serve as an argument that we here do not observe unspecific side effects of the compounds. We will clarify this in the revised manuscript.

      ASM is a key player for SM degradation and recycling. In clinical context, deficiency in ASM results in the so-called Niemann Pick disease type A/B. The lipid profile of ASM-deficient cells is massively altered18, which will result in severe side effects. Short-term inhibition by small molecules therefore poses a clear benefit when compared to the usage of ASM K.O. cells.

      As to the treatment with a bacterial sphingomyelinase:

      Treatment with the bacterial SMase (bSMase, here: β-toxin) was performed in two different ways:

      i) Pretreatment of host cells with β-toxin to remove SM from the host cell surface before infection. This removes the substrate of ASM from the cell surface prior to addition of the bacteria (Figure 2e, Figure 4d-f). Since SM is not present on the extracellular plasma membrane leaflet after treatment, a release of ASM cannot cause localized ceramide formation at the sites of lysosomal exocytosis. Similar observations were made by others.19

      ii) Addition of bSMase to host cells together with the bacteria to complement for the absence of ASM (Figure 2f).

      Removal of the ASM substrate before infection (i) prevents localized ASM-mediated conversion of SM to Cer during infection and resulted in a decreased invasion, while addition of the SMase during infection resulted in an increased invasion in TPC1 and SYT7 ablated cells. Thus, both experiments are consistent with each other and in line with our other observations.

      Removal of SM from the plasma membrane by β-toxin was indirectly demonstrated by the absence of Lysenin recruitment to phagosomes/escaped bacteria when host cells were pretreatment with the toxin before infection (Figure4F). In another publication, we recently quantified the effectiveness of β-toxin treatment, even though with slightly longer treatment times (75 min vs. 3h).20 We will repeat the measurements also for shorter treatment times.

      To clarify our experimental approaches to the readership we will add an explanatory section to the revised manuscript.

      As to the general conclusions regarding the role of ASM: ASM and lysosomal exocytosis has been shown to be involved in uptake of a variety of pathogens19, 21-25 supporting its role in the process.

      The use of fluorescent analogs of sphingomyelin and ceramide is not well justified and it is unclear what conclusions can be derived from these observations. Despite the low resolution of the images provided, it appears as if the labeled lipids are largely in endomembrane compartments, where they would presumably be inaccessible to the secreted ASM. Moreover, considering the location of the BODIPY probe, the authors would be unable to distinguish intact sphingomyelin from its breakdown product, ceramide. What can be concluded from these experiments? Incidentally, the authors report only 10% of BODIPY-positive events after 10 min. What are the implications of this finding? That 90% of the invasion events are unrelated to sphingomyelin, ASM, and ceramide?

      During the experiments with fluorescent SM analogues (Figure 3a,b), S. aureus was added to the samples immediately before start of video recording. Hence, bacteria are slowly trickling onto the host cells and we thus can image the initial contact between them and the bacteria, for instance, the bacteria depicted in Figure 3a contact the host cell about 9 min before becoming BODIPY-FL-positive (see Supp. Video 1, 55 min). Hence, we think that in these cases we see the formation of phagosomes around bacteria rather than bacteria in endomembrane compartments. Since generation of phagosomes happens at the plasma membrane, SM is accessible to secreted ASM.

      The “trickling” approach for infection is an experimental difference to our invasion measurements, in which we synchronized the infection by a very slow centrifugation. This ensures that all bacteria have contact to host cells and are not just floating in the culture medium. However, live cell imaging of initial bacterial-host contact and synchronization of infection is technically not combinable.

      In our invasion measurements -with synchronization-, we typically see internalization of ~20% of all added bacteria after 30 min. Hence, most bacteria that are visible in our videos likely are still extracellular and only a small proportion was internalized. This explains why only 10% of total bacteria are positive for BODIPY-FL-SM after 10 min. The proportion of internalized bacteria that are positive for BODIPY-FL-SM should be way higher but cannot be determined with this method.

      We agree with the reviewer that we cannot observe conversion of BODIPY-FL-SM by ASM. In order to do that, we attempted to visualize the conversion of a visible-range SM FRET probe (Supp. Figure 3), but the structure of the probe is not compatible with measurement of conversion on the plasma membrane, since the FITC fluorophore released into the culture medium by the ASM activity thereby gets lost for imaging. In general, the visualization of SM conversion with subcellular resolution is challenging and even with novel tools developed in our lab26 visualization of SM on the plasma membrane is difficult.

      The conclusion we draw from these experiments are that i.) S. aureus invasion is associated with SM and ii.) SM-associated invasion can be very fast, since bacteria are rapidly engulfed by BODIPY-FL-SM containing membranes.

      It is also unclear how the authors can distinguish lysenin entry into ruptured vacuoles from the entry of RFP-CWT, used as a criterion of bacterial escape. Surely the molecular weights of the probes are not sufficiently different to prevent the latter one from traversing the permeabilized membrane until such time that the bacteria escape from the vacuole.

      We here want to clarify that both, the Lysenin as well as the CWT reporter have access to rupture vacuoles (Figure 4b). We used the Lysenin reporter in these experiments for estimation of SM content of phagosomal membranes. If a vacuole is ruptured, both the bacteria and the luminal leaflet of the phagosomal membrane remnants get in contact with the cytosol and hence with the cytosolically expressed reporters YFP-Lysenin as well as RFP-CWT resulting in “Lysenin-positive escape” when phagosomes contained SM (see Figure 4f). By contrast, either β-toxin expression by S. aureus or pre-treatment with the bSMase resulted in absence of Lysenin recruitment suggesting that the phagosomal SM levels were decreased/undetectable (Figure 4f, Supp Figure 5f, g, i, j).

      This approach does not enable a quantitative measurement of phagosomal SM and rather gives a “yes or no” answer. However, we think this method is sufficient to show that β-toxin expression and pretreatment markedly decreased phagosomal SM levels in the host cells.

      The approach we used here to analyze “Lysenin-positive escape” can clearly be distinguished from Lysenin-based methods that were used by others.27 There Lysenin was used to show trans-bilayer movement of SM before rupture of bacteria-containing phagosomes.

      To clarify the function of Lysenin in our approach we will add an additional figure to the revised manuscript.

      Both SMase inhibitors (Figure 4C) and SMase pretreatment increased bacterial escape from the vacuole. The former should prevent SM hydrolysis and formation of ceramide, while the latter treatment should have the exact opposite effects, yet the end result is the same. What can one conclude regarding the need and role of the SMase products in the escape process?

      As pointed out above, pretreatment of host cells with SMase removes SM from the plasma membrane and hence, ASM does not have access to its substrate. Hence, both treatment with either ASM inhibitors or pretreatment with bacterial SMase prevent ASM from being active on the plasma membrane and hence block the ASM-dependent uptake (Figure 2 c, e). Although overall less bacteria were internalized by host cells under these conditions, the bacteria that invaded host cells did so in an ASM-independent manner.

      Since blockage of the ASM-dependent internalization pathway (with ASM inhibitor [Figure 4c], SMase pretreatment [Figure 4e] and Vacuolin-1[Supp. Fig.4f]) always resulted in enhanced phagosomal escape, we conclude that bacteria that were internalized in an ASM-independent fashion cause enhanced escape. Vice versa, bacteria that enter host cells in an ASM-dependent manner demonstrate lower escape rates.

      This is supported by comparing the escape rates of “early” and “late” invaders [Figure 4g/h], which in our opinion is a key experiment that supports this hypothesis. The “early” invaders are predominantly ASM-dependent (see e.g. Figure 3e) and thus, bacteria that entered host cell in the first 10 min of infection should have been internalized predominantly in an ASM-dependent fashion, while slower entry pathways are active later during infection. The early ASM dependent invaders possessed lower escape rates, which is in line with the data obtained with inhibitors (e.g. Figure 4c and Supp. Fig. 4f).

      We hypothesize that the activity of ASM on the plasma membrane during invasion mediates the recruitment of a specific subset of receptors, which then influence downstream phagosomal maturation and escape. This hypothesis is supported by the fact that the subset of receptors interacting with S. aureus is altered upon inhibition of the ASM-dependent uptake pathway. We describe this in another study that is currently under evaluation elsewhere.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Ruhling et al propose a rapid uptake pathway that is dependent on lysosomal exocytosis, lysosomal Ca2+ and acid sphingomyelinase, and further suggest that the intracellular trafficking and fate of the pathogen is dictated by the mode of entry.

      The evidence provided is solid, methods used are appropriate and results largely support their conclusions, but can be substantiated further as detailed below. The weakness is a reliance on chemical inhibitors that can be non-specific to delineate critical steps.

      Specific comments:

      A large number of experiments rely on treatment with chemical inhibitors. While this approach is reasonable, many of the inhibitors employed such as amitriptyline and vacuolin1 have other or non-defined cellular targets and pleiotropic effects cannot be ruled out. Given the centrality of ASM for the manuscript, it will be important to replicate some key results with ASM KO cells.

      We thank the reviewer for the critical evaluation of our manuscript and plenty of constructive comments.

      We agree with the reviewer, that ASM inhibitors such as functional inhibitors of ASM (FIASMA) like amitriptyline used in our study have unspecific side effects given their mode-of-action. FIASMAs induce the detachment of ASM from lysosomal membranes resulting in degradation of the enzyme.15  However, we want to emphasize that we also used the competitive inhibitor ARC39 in our study16, 17 which acts on the enzyme by a completely different mechanism. All phenotypes (reduced invasion [Figure 2c, d], effect on invasion dynamics [Figure 3d], enhanced escape [Figure 4c and Supp Figure 4e] and differential recruitment of Rab7 [Supp. Figure 4b]) were observed with both inhibitors thereby supporting the role of ASM in the process.

      We further agree that experiments with genetic evidence usually support and improve scientific findings. However, ASM is a cellular key player for SM degradation and recycling. In a clinical context, deficiency in ASM results in a so-called Niemann Pick disease type A/B. The lipid profile of ASM-deficient cells is massively altered18, which in itself will result in severe side effects. Thus, the usage of inhibitors provides a clear benefit when compared to ASM K.O. cells, since ASM activity can be targeted in a short-term fashion thereby preventing larger alterations in cellular lipid composition.

      Most experiments are done in HeLa cells. Given the pathway is projected as generic, it will be important to further characterize cell type specificity for the process. Some evidence for a similar mechanism in other cell types S. aureus infects, perhaps phagocytic cell type, might be good.

      Whenever possible we performed the experiments not only in HeLa but also in HuLECs. For example, we refer to experiments concerning the role of Ca2+ (Figure 1c/Supp.Figure1e), lysosomal Ca2+/Ned19 (Figure1d/Supp Figure 1g), lysosomal exocytosis/Vacuolin-1 (Figure 2a/Supp. Figure2a), ASM/ARC39 and amitriptyline (Figure 2c), surface SM/β-toxin (Figure 2e/Supp. Figure 2g), analysis of invasion dynamics (complete Figure 3) and measurement of cell death during infection (Figure 5c-e, Supp. Figure 6a+b).

      HuLECs, however, are not really genetically amenable and hence we were not able to generate gene deletions in these cells and upon introduction of the fluorescence escape reporter the cells are not readily growing.

      As to ASM involvement in phagocytic cells: a role for ASM during the uptake of S. aureus by macrophages was previously reported by others.23 However, in professional phagocytes S. aureus does not escape from the phagosome and replicates within the vacuole.28

      I'm a little confused about the role of ASM on the surface. Presumably, it converts SM to ceramide, as the final model suggests. Overexpression of b-toxin results in the near complete absence of SM on phagosomes (having representative images will help appreciate this), but why is phagosomal SM detected at high levels in untreated conditions? If bacteria are engulfed by SM-containing membrane compartments, what role does ASM play on the surface? If surface SM is necessary for phagosomal escape within the cell, do the authors imply that ASM is tuning the surface SM levels to a certain optimal range? Alternatively, can there be additional roles for ASM on the cell surface? Can surface SM levels be visualized (for example, in Figure 4 E, F)?

      We initially hypothesized that we would detect higher phagosomal SM levels upon inhibition of ASM, since our model suggests SM cleavage by ASM on the host cell surface during bacterial cell entry. However, we did not detect any changes in our experiments (Supp. Figure 4d). We currently favor the following explanation: SM is the most abundant sphingolipid in human cells.29 If peripheral lysosomes are exocytosed and thereby release ASM, only a localized and relative small proportion of SM may get converted to Cer, which most likely is below our detection limit. In addition, the detection of cytosolically exposed phagosomal SM by YFP-Lysenin is not quantitative and provides a “Yes or No” measurement. Hence, we think that the rather limited SM to Cer conversion in combination with the high abundance of SM in cellular membranes does not visibly affect the recruitment of the Lysenin reporter.

      In our experiments that employ BODIPY-FL-SM (Figure 3a+b), we cannot distinguish between native SM and downstream metabolites such as Cer. Hence, again we cannot make any assumptions on the extent to which SM is converted on the surface during bacterial internalization. Although our laboratory recently used trifunctional sphingolipid analogs to analyze the SM to Cer conversion20, the visualization of this process on the plasma membrane is currently still challenging.

      Overall, we hypothesize that the localized generation of Cer on the surface by released ASM leads to generation of Cer-enriched platforms. Subsequently, a certain subset of receptors may be recruited to these platforms and influence the uptake process. These platforms are supposed to be very small, which also would explain that we did not detect changes in Lysenin recruitment.

      Related to that, why is ASM activity on the cell surface important? Its role in non-infectious or other contexts can be discussed.

      ASM release by lysosomal exocytosis is implied in plasma membrane repair upon injury. We will this discuss this in the revised version of the manuscript.

      If SM removal is so crucial for uptake, can exocytosis of lysosomes alone provide sufficient ASM for SM removal? How much or to what extent is lysosomal exocytosis enhanced by initial signaling events? Do the authors envisage the early events in their model happening in localized confines of the PM, this can be discussed.

      Ionomycin treatment led to a release of ~10 % of all lysosomes and also increased extracellular ASM activity.7, 8 However, it is currently unclear– to our knowledge -to which extent the released ASM affects surface SM levels. Also, it is unknown which percentage of the lysosomes is released during infection with S. aureus. However, one has to speculate that this will be only a fraction of the “releasable lysosomes” as we assume that the effects (lysosomal Ca2+ liberation, lysosomal exocytosis and ASM activity) are very localized and take place only at host-pathogen contact sites (see also above). In initial experimentation we attempted to visualize the local ASM activity on the cell surface by using a visible range FRET probe (Supp. Fig. 3). Cleavage of the probe by ASM on the surface leads to release of FITC into the cell culture medium which does not contribute a measurable signal at the surface.

      How are inhibitor doses determined? How efficient is the removal of extracellular bacteria at 10 min? It will be good to substantiate the cfu experiments for infectivity with imaging-based methods. Are the roles of TPC1 and TPC2 redundant? If so, why does silencing TPC1 alone result in a decrease in infectivity? For these and other assays, it would be better to show raw values for infectivity. Please show alterations in lysosomal Ca2+ at the doses of inhibitors indicated. Is lysosomal Ca2+ released upon S. aureus binding to the cell surface? Will be good to directly visualize this.

      Concerning the inhibitor concentrations, we either used values established in published studies or recommendations of the suppliers (e.g. 2-APB, Ned19, Vacuolin-1). For ASM inhibitors, we determined proper inhibition of ASM by activity assays. Concentrations of ionomycin resulting in Ca2+ influx and lysosomal exocytosis was determined in earlier studies of our lab.8, 30

      As to the removal of bacteria at 10 min p.i.: Lysostaphin is very efficient for removal of extracellular S. aureus and sterilizes the tissue culture supernatant. It significantly lyses bacteria within a few minutes, as determined by turbidity assays.31

      As to imaging-based infectivity assays: We will add an analysis of imaging-based invasion assays in the revised manuscript.

      Regarding the roles of TPC1 and TPC2: from our data we cannot conclude whether the roles of TPC1 and TPC2 are redundant. One could speculate that since blockage of TPC1 alone is sufficient to reduce internalization of bacteria, that both channels may have distinct roles. On the other hand, there might be a Ca2+ threshold in order to initiate lysosomal exocytosis that can only be attained if TPC1 and TPC2 are activated in parallel. Thus, our observations are in line with another study that shows reduced Ebola virus infection in absence of either TPC1 or TPC2.32

      As to raw CFU counts: whereas the observed effects upon blocking the invasion of S. aureus are stable, the number of internalized bacteria varies between individual biological replicates, for instance, by differences in host cell fitness or growth differences in bacterial cultures, which are prepared freshly for each experiment.

      With respect to visualization of lysosomal Ca2+ release: we agree with the reviewer that direct visual demonstration of lysosomal Ca2+ release upon infection will improve the manuscript. We therefore will perform additional experimentation to show alterations of Ca2+ at the lysosomes during infection.

      The precise identification of cytosolic vs phagosomal bacteria is not very easy to appreciate. The methods section indicates how this distinction is made, but how do the authors deal with partial overlaps and ambiguities generally associated with such analyses? Please show respective images. The number of events (individual bacteria) for the live cell imaging data should be clearly mentioned.

      We apologize for not having sufficiently explained the technology to detect escaped S. aureus. The cytosolic location of S. aureus is indicated by recruitment of RFP-CWT.33 CWT is the cell wall targeting domain of lysostaphin, which efficiently binds to the pentaglycine cross bridge in the peptidoglycan of S. aureus. This reporter is exclusively and homogenously expressed in the host cytosol. Only upon rupture of phagoendosomal membranes the reporter can be recruited to the cell wall of now cytosolically located bacteria. S. aureus mutants, for instance in the agr quorum sensing system, cannot break down the phagosomal membrane in non-professional phagocytes and thus stay unlabeled by the CWT-reporter.33 We will include respective images/movies of escape events and the bacteria numbers for live cell experiments in the revised version of the manuscript.

      In the phagosome maturation experiments, what is the proportion of bacteria in Rab5 or Rab7 compartments at each time point? Will the decreased Rab7 association be accompanied by increased Rab5? Showing raw values and images will help appreciate such differences. Given the expertise and tools available in live cell imaging, can the authors trace Rab5 and Rab7 positive compartment times for the same bacteria?

      We will include the proportion of Rab7-associated bacteria in the revised manuscript. Usually, we observe that Rab5 is only transiently (for a few minutes) present on phagosomes and only afterwards the phagosomes become positive for Rab7. We do not think that a decrease in Rab7-positive phagosomes would increase the proportion of Rab5-positive phagosomes. However, we cannot exclude this hypothesis with our data.

      We can achieve tracing of individual bacteria for recruitment of Rab5/Rab7 only manually, which impedes a quantitative evaluation. However, we will include information that illustrates the consecutive recruitment of the GTPases.

      The results with longer-term infection are interesting. Live cell imaging suggests that ASM-inhibited cells show accelerated phagosomal escape that reduces by 6 hpi. Where are the bacteria at this time point ? Presumably, they should have reached lysosomes. The relationship between cytosolic escape, replication, and host cell death is interesting, but the evidence, as presented is correlative for the populations. Given the use of live cell imaging, can the authors show these events in the same cell?

      We think that most bacteria-containing phagoendosomes should have fused with lysosomes 6 h p.i. as we have previously shown by acidification to pH of 5 and LAMP1 decoration.34

      We will provide images/videos to show the correlation between escape and replication in the revised manuscript.

      Given the inherent heterogeneity in uptake processes and the use of inhibitors in most experiments, the distinction between ASM-dependent and independent pathways might not be as clear-cut as the authors suggest. Some caution here will be good. Can the authors estimate what fraction of intracellular bacteria are taken up ASM-dependent?

      We agree with the reviewer that an overlap between internalization pathways is likely. A clear distinction is therefore certainly non-trivial. Alternative to ASM-dependent and ASM-independent pathways, the ASM activity may also accelerate one or several internalization pathways. We will address this limitation in the revised manuscript. 

      Early in infection (~10 min after contact with the cells), the proportion of bacteria that enter host cells ASM-dependently is relatively high amounting to roughly 75% in HuLEC. After 30 min, this proportion is decreasing to about 50%. We will include this information in the revised version of the manuscript.

      References

      (1) Launay, P. et al. TRPM4 Is a Ca2+-Activated Nonselective Cation Channel Mediating Cell Membrane Depolarization. Cell 109, 397-407 (2002).

      (2) Nilius, B. et al. The Ca<sup>2+</sup>‐activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5‐biphosphate. The EMBO Journal 25, 467-478-478 (2006).

      (3) Cáceres, M. et al. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS One 10, e0130540 (2015).

      (4) Silva, I., Brunett, M., Cáceres, M. & Cerda, O. TRPM4 modulates focal adhesion-associated calcium signals and dynamics. Biophysical Journal 123, 390a (2024).

      (5) Schlesier, T., Siegmund, A., Rescher, U. & Heilmann, C. Characterization of the Atl-mediated staphylococcal internalization mechanism. International Journal of Medical Microbiology 310, 151463 (2020).

      (6) Jevon, M. et al. Mechanisms of Internalization ofStaphylococcus aureus by Cultured Human Osteoblasts. Infection and Immunity 67, 2677-2681 (1999).

      (7) Rodriguez, A., Webster, P., Ortego, J. & Andrews, N.W. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 137, 93-104 (1997).

      (8) Krones & Rühling et al. Staphylococcus aureus alpha-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Front Microbiol 12, 694489 (2021).

      (9) Sakurai, Y. et al. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347, 995-998 (2015).

      (10) Aarhus, R., Graeff, R.M., Dickey, D.M., Walseth, T.F. & Lee, H.C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem 270, 30327-30333 (1995).

      (11) Schmid, F., Fliegert, R., Westphal, T., Bauche, A. & Guse, A.H. Nicotinic acid adenine dinucleotide phosphate (NAADP) degradation by alkaline phosphatase. J Biol Chem 287, 32525-32534 (2012).

      (12) Angeletti, C. et al. SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. iScience 25, 103812 (2022).

      (13) Gu, F. et al. Dual NADPH oxidases DUOX1 and DUOX2 synthesize NAADP and are necessary for Ca(2+) signaling during T cell activation. Sci Signal 14, eabe3800 (2021).

      (14) Schonn, J.-S., Maximov, A., Lao, Y., Südhof, T.C. & Sørensen, J.B. Synaptotagmin-1 and -7 are functionally overlapping Ca<sup>2+</sup> sensors for exocytosis in adrenal chromaffin cells. Proceedings of the National Academy of Sciences 105, 3998-4003 (2008).

      (15) Kornhuber, J. et al. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 26, 9-20 (2010).

      (16) Naser, E. et al. Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. J Lipid Res 61, 896-910 (2020).

      (17) Roth, A.G. et al. Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew Chem Int Ed Engl 48, 7560-7563 (2009).

      (18) Schuchman, E.H. & Desnick, R.J. Types A and B Niemann-Pick disease. Mol Genet Metab 120, 27-33 (2017).

      (19) Miller, M.E., Adhikary, S., Kolokoltsov, A.A. & Davey, R.A. Ebolavirus Requires Acid Sphingomyelinase Activity and Plasma Membrane Sphingomyelin for Infection. Journal of Virology 86, 7473-7483 (2012).

      (20) M. Rühling, L.K., F. Wagner, F. Schumacher, D. Wigger, D. A. Helmerich, T. Pfeuffer, R. Elflein, C. Kappe, M. Sauer, C. Arenz, B. Kleuser, T. Rudel, M. Fraunholz, J. Seibel Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy. Nat Commun accepted in principle (2024).

      (21) Peters, S. et al. Neisseria meningitidis Type IV Pili Trigger Ca(2+)-Dependent Lysosomal Trafficking of the Acid Sphingomyelinase To Enhance Surface Ceramide Levels. Infect Immun 87 (2019).

      (22) Grassmé, H. et al. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91, 605-615 (1997).

      (23) Li, C. et al. Regulation of Staphylococcus aureus Infection of Macrophages by CD44, Reactive Oxygen Species, and Acid Sphingomyelinase. Antioxid Redox Signal 28, 916-934 (2018).

      (24) Fernandes, M.C. et al. Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion. J Exp Med 208, 909-921 (2011).

      (25) Luisoni, S. et al. Co-option of Membrane Wounding Enables Virus Penetration into Cells. Cell Host & Microbe 18, 75-85 (2015).

      (26) Rühling, M. et al. Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy. Nature Communications 15, 7456 (2024).

      (27) Ellison, C.J., Kukulski, W., Boyle, K.B., Munro, S. & Randow, F. Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles. Curr Biol 30, 2974-2983 e2976 (2020).

      (28) Moldovan, A. & Fraunholz, M.J. In or out: Phagosomal escape of Staphylococcus aureus. Cell Microbiol 21, e12997 (2019).

      (29) Slotte, J.P. Biological functions of sphingomyelins. Progress in Lipid Research 52, 424-437 (2013).

      (30) Stelzner, K. et al. Intracellular Staphylococcus aureus Perturbs the Host Cell Ca(2+) Homeostasis To Promote Cell Death. mBio 11 (2020).

      (31) Kunz, T.C. et al. The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy. Front Cell Infect Microbiol 11, 644750 (2021).

      (32) Sakurai, Y. et al. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347, 995-998 (2015).

      (33) Grosz, M. et al. Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin alpha. Cell Microbiol 16, 451-465 (2014).

      (34) Giese, B. et al. Staphylococcal alpha-toxin is not sufficient to mediate escape from phagolysosomes in upper-airway epithelial cells. Infect Immun 77, 3611-3625 (2009).

    1. Reviewer #2 (Public review):

      The study by Liu et al provides a functional analysis of lnc-FANCI-2 in cervical carcinogenesis, building on their previous discovery of FANCI-2 being upregulated in cervical cancer by HPV E7.

      The authors conducted a comprehensive investigation by knocking out (KO) FANCI-2 in CaSki cells and assessing viral gene expression, cellular morphology, altered protein expression and secretion, altered RNA expression through RNA sequencing (verification of which by RT-PCR is well appreciated), protein binding, etc. Verification experiments by RT-PCR, Western blot, etc are notable strengths of the study.

      The KO and KD were related to increased Ras signaling and EMT and reduced IFN-y/a responses.

      Although the large amount of data is well acknowledged, it is a limitation that most data come from CaSki cells, in which FANCI-2 localization is different from SiHa cells and cancer tissues (Figure 1). The cytoplasmic versus nuclear localization is somewhat puzzling.

  3. drive.google.com drive.google.com
    1. Medición reproducible: es aquella que realizamos utilizando un instrumento di-señado, construido y calibrado para cuantificar apropiadamente la magnitud quenos interesa

      quedó claro

    2. A los estudiantes interesados en aprender más de este tema se les sugiere consultar lassiguientes referencias Baird [2] y Bevington y Robinson [3].

      Muchas gracias por compartirnos su trabajo para complementar nuestro curso Dr. Sinhué

    3. Cada método tiene sus ventajas y desventajas

      En el análisis de datos algunas veces podemos confundir las variables dependientes con las independientes, yo pienso que a veces varía según lo que queramos encontrar

    4. provocando aberración esférica dado que las ondas de luzque venían cerca del borde del espejo tenían un plano focal diferente con respecto a losrayos que provenían del centr

      Pienso que si integraran a científicos de diferentes países y todos colaboraran, habría menor error de medición dado el sistema que utilizan en sus países, así todos llegan de acuerdo a trabajar con un sólo sistema y se evitan de este tipo de errores

    5. La importancia de la hipótesis se sustenta en el nexo entre la teoría y la realidadempírica ya que sirve para orientar y delimitar una investigación

      La hipótesis es muy importante al realizar un experimento porque es la base de la investigación, el punto de partida

    6. que tenían 12 pulgadas, mientras que otras dos medían pies deÁmsterdam, con 11 pulgadas.

      En la ingeniería como en medicina, es muy importante tener valores precisos y medir el error para evitar accidentes

    1. Author response:

      The following is the authors’ response to the original reviews.

      We greatly appreciate the opportunity to submit a revision of our manuscript entitled: "The Autophagy Protein, ATG14 Safeguards Against Unscheduled Pyroptosis Activation to Enable Embryo Transport During Early Pregnancy" by Popli et al. We thank all three Referees for underscoring the importance of our findings as well as the constructive critiques that we used to improve our paper. Most notably, we added the following new data:

      · To provide more insight into whether pyroptosis activation occurs distinctly in the oviduct, we looked for GSDMD, (primary executioner of the pyroptosis pathway) expression in the uterus and ovary too. We observed no signs of pyroptosis activation in response to ATG14 loss in either the uterus or ovary of Atg14 cKO mice compared to control ones suggesting that ATG14 plays a distinct role in regulating pyroptosis specifically in the oviduct (Revised Figure 5F).

      · To better understand the molecular mechanisms of pyroptosis activation in the oviducts, we examined various key markers of mitochondrial integrity, architecture, and function in control and Atg14 cKO oviducts. Our findings indicate a significant loss of mitochondrial structural and functional integrity, possibly contributing to the embryo retention phenotype via activating the pyroptosis pathway in the oviduct. (Revised Figure 5B & C).

      · To address the spatiotemporal and region-specific expression of ATG14 in the oviduct, we performed immunofluorescence analysis and observed the consistent expression of ATG14 in all the cellular compartments of oviducts including ciliary epithelial cells, secretory epithelial cells, and smooth muscle cells. Moreover, the region-specific expression analysis revealed that distinct expression of ATG14 in the ampullary region of cKO mice oviduct helps to preserve its structural integrity. Conversely, its loss in the isthmus region of the oviduct in concordance with active PR-cre activity causes completely distorted epithelial structures with luminal obliteration or narrowing resulting in an unorganized and obstructed lumen leading to embryo retention, suggesting that ATG14 is essential for maintaining the structural integrity of the oviduct (Revised Figure 3F & S2A).

      · Considering the expression of PR-cre in the pituitary, which could potentially influence hormonal secretion and ovulation, we evaluated the levels of E2 and P4 during pregnancy. Our findings show that these hormone levels remained unchanged in Atg14 cKO mice, indicating that the absence of ATG14 does not negatively affect the HPG axis or pituitary function (Revised Figure 2F).

      · ATG14 is an essential factor for the initiation of autophagy, and its loss can lead to reduced or inhibited autophagic activity. Consistently, we observed elevated levels of LC3b and p62 proteins, two well-known markers of autophagic flux in the oviducts of Atg14-deficient mice implying that loss of ATG14 leads to defective autophagy potentially disturbing the structural integrity of oviductal epithelial cells and impairing embryo transport. (New Supplementary Figure S2B).   

      Reviewer #1 (Public Review):

      This study by Popli et al. evaluated the function of Atg14, an autophagy protein, in reproductive function using a conditional knockout mouse model. The authors showed that female mice lacking Atg14 were infertile partly due to defective embryo transport function of the oviduct and faulty uterine receptivity and decidualization using PgrCre/+; Atg14f/f mice. The findings from this work are exciting and novel. The authors demonstrated that a loss of Atg14 led to an excessive pyroptosis in the oviductal epithelial cells that compromises cellular integrity and structure, impeding the transport function of the oviduct. In addition, the authors use both genetic and pharmacological approaches to test the hypothesis. Therefore, the findings from this study are high-impact and likely reproducible. However, there are multiple major concerns that need to be addressed to improve the quality of the work.

      Major comments:

      (1) It is interesting that deletion of Atg14 using PgrCre results in pyroptosis only in the oviduct; the authors should speculate/evaluate why the oviduct, but not the uterus or follicles. Is there any cellular specificity that is sensitive to autophagy/pyroptosis in the oviduct but not in other cell types? This has not been evaluated or discussed in the manuscript. Is it possible to include GSDMD IHC for the uterine section to ensure that there was no pyroptosis event in the cKO uteri?

      We performed GSDMD IHC and found that, unlike in the oviduct, the cKO uteri and ovaries do not exhibit detectable pyroptosis (Revised Figure 5F). Additionally, we have added text to the discussion section addressing possible reasons for the differential impact of Atg14 loss on pyroptosis along the reproductive tract continuum (Line number: 532-538)

      (2) Please include an explanation of how a loss of Atg14, important for the initiation process of autophagy (as indicated in line 88), can lead to pyroptosis. There was some discussion about inflammation. But the connection is still missing.

      We thank the reviewer for noting on this. We have now included a possible explanation of how autophagy could impact pyroptosis in the discussion section (Line number: 532-538)  

      (3) No expression data of ATG14 using IHC/IF analysis were included in the manuscript - this is missing. This is needed and important as the authors found that Foxj1Cre/+; Atg14f/f cKO mice had no fertility defect. Is it possible that ATG14 is not present in the ciliated epithelial cells of the oviduct? In addition, the data in Figure 5B also points to this speculation. This is because the GSDMD (the pyroptosis marker) is only observed in the isthmus region but not the ampulla.

      We thank the reviewer for this nice suggestion. We performed the immunofluorescence analysis for ATG14 expression in control and Atg14 cKO oviducts and observed the consistent expression of ATG14 in all the cellular compartments of oviducts including ciliary epithelial cells, secretory epithelial cells, and smooth muscle cells (New Supplementary Figure S2A). We also looked for α-tubulin expressions in the oviduct of Foxj1Cre/+; Atg14 f/f mice and control mice and observed that ciliated epithelial cells that were positive for acetylated α-tubulin staining did not appear to be different in Foxj1Cre/+; Atg14 f/f mice oviduct compared to controls (Revised Figure 4C). However, due to the unavailability of reliable fluorescent-labeled antibodies for both Foxj1 and Atg14, we were unable to conduct the co-localization study as intended. This limitation hindered our ability to precisely determine the spatial overlap of these proteins within the tissue.

      (4) In line with the previous comment, is ATG14 present in the human Fallopian tube? If so, which cell type? This needs to be addressed.

      Author’s Response: We appreciate the reviewer's valuable suggestion. While we currently lack access to human fallopian tube biopsies, the Human Protein Atlas (https://www.proteinatlas.org/ENSG00000126775-ATG14) demonstrates distinct ATG14 expression in various fallopian tube cell types, with localization in the cytoplasm, membrane, and nucleus.

      (5) As PgrCre is also expressed in the pituitary, is it possible that the deletion of Atg14 using PgrCre would affect pituitary function – hence a change in the FSH/LH secretion that subsequently affects ovulation? Although the uterine and ovarian histology in the Atg14 cKO looks similar to the controls, is it possible that cyclicity is also affected? The authors should evaluate whether the estrous cycle takes place regularly.

      Author’s Response: Thank you for the insightful comment. However, evaluating the estrous cycle requires significant time and effort and is beyond the scope of the current manuscript. Nonetheless, we have now shown that both P4 and E2 levels were not altered in Atg14 cKO mice, indicating that the loss of Atg14 did not adversely impact the HPG axis, and by extension, pituitary function (Revised Figure 2F).

      (6) The number of total embryos/oocytes in the cKO compared to the control has not been evaluated - this data must be included. Do the changes in autophagy in Atg14 cKO affect preimplantation embryo development? Please categorize the embryos found in the oviduct/uterus in both genotypes. i.e., % blastocyst, % morula, % developmentally delayed, % non-viable etc. It would be interesting to evaluate if the oviduct with heavy pyroptosis can support preimplantation embryo development.

      Author’s Response: We thank the reviewer for this nice suggestion. We categorized the embryos into different categories as suggested and included the data (Revised Figure 3C and Figure 6D).

      (7) It is unclear why the superovulation+mating experiment (Figure 3C) was performed. Please provide justification. Why was the data from natural mating (Figure 3A) insufficient?

      Author’s Response: In Figure 3C, superovulation was employed to complement the natural mating studies and to provide stronger evidence for the embryo retention phenotype observed in the oviduct.

      (8) In lines 297-298, the conclusion that "ATG14 is required for P4-mediated but not for E2-mediated actions during uterine receptivity" is not entirely correct. This is because the authors also observed that the downregulation of MUC1 (E2-target protein) is absent in the PgrCre/+;Atg14f/f cKO female uteri.

      We thank the reviewer for noting this. We detected more E2-induced targets in D-4 pregnant uterine samples and found no change in their expression in response to Atg14 depletion in cKO females (Revised Figure 2E).

      (9) Figure 3D: Please include an image that also represents the ampulla region. All images are from the isthmus region. It would be informative to see if the loss of cell boundaries also takes place at the ampulla region in the cKO oviduct.

      We thank the reviewer for this nice suggestion. We included the ampulla section from the cKO and control female oviducts (Revised Figure 3F). As PR-cre activity is limited to isthmus only [1, 2], we did not see any structural abnormality in ampulla sections of cKO oviducts.

      (10) Figure 3E: Please indicate which region the TEM was performed. Isthmus? Ampulla? Were the changes in mitochondrial phenotype observed across all oviductal regions?

      The TEM imaging was performed by the WashU Core services. Although we clearly mentioned the core person to look into the isthmus region only, we are not sure if they accurately follow the instructions.

      (11) Figure 4B; the evaluation of FOXJ1 IHC. The authors need to include sections that also have an ampulla region-especially in the cKO. In addition, it is misleading to state that there were fewer FOXJ1+ cells (line 361) in the cKO if the region being evaluated is the isthmus (which has a lot fewer ciliated epithelial cells in general) while the control image showed an ampulla where the abundancy of ciliated epithelial cells (FOXJ1+) is higher than that of the isthmus. The authors also need to include a higher resolution image (a zoom-in at the ciliated epithelial cells with FOXJ1+ signal) as well as the quantification of FOXJ1+ cells.

      We appreciate the reviewer for the suggestion. In Figure 4A, we have already shown the ampulla region from both control and cKO oviducts, wherein alpha-tubulin staining was evident in both oviducts.  

      We agree with the reviewer that the isthmus usually has fewer ciliary epithelial cells than the ampulla, however, as illustrated in Figures 4A and 4B, Atg14 depletion causes a marked disruption of structural integrity with loss of cell boundaries specifically in the isthmus, which is far more pronounced than in the ampulla. One reason for this is the reported Pgr Cre activity, which is much more robust in the isthmus than in the ampulla [1, 2] . This disruption leads to the substantial loss of both ciliated and secretory cells, compromising the epithelial architecture to such an extent that it is impossible to accurately quantify the Foxj1 signal as can be seen in higher resolution images in New Supplementary Figure S3.

      For more clarity, we modified the statement in the revised file (Line Number: 393-396)

      (12) All IHC/IF and embryo images need to include the scale bars.

      We thank the reviewer for this suggestion. We now included the scale bar in all the images.

      (13) Figure 5H: although IL1B is being discussed, there was no data in this study to support the figure.

      In Figure 5H, IL1B is presented as part of the pyroptosis signaling pathway. As we have already shown other key executioners of this pathway: Caspase 1 and GSDMD, we believe that additional IL1B data would not provide new insights beyond what has already been shown.

      Minor comments:

      (1) Please include n (sample size) for all data, including the histology image in the figure legends for all studies.

      We now included the sample size in figure legends for all data shown in the manuscript.

      (2) Line 32, did the authors mean to say, "Self-digestion of..." instead of "Self-digestion for..."?

      In Line 32, we meant, “Cellular self-digestion for female reproductive tract functions”. We have now corrected the statement.

      Fig. 1A - please include negative control.

      We included the negative control (Revised Figure 1)

      (3) Figure 1E left panel and Figure 4C - please label "Average no. of pups/female/litter" as each female has more than one litter over her reproductive lifespan. If the authors represent pups/females, then the number should be accumulative in the range of 35-40pups/females in the control group.

      We thank the reviewer for noting this. We now corrected the label in both Revised Figure 1E and Revised Figure 4E.

      (4) Line 273: please remove "& F" as there is no Figure F in the image.

      We removed “&F” from the Line 273.

      (5) The presence of CL is not always indicative of normal hormonal levels; therefore, the authors should include the measurement of progesterone levels at 3.5 dpc in the cKO compared to the control group. Hormonal regulation is also crucial for embryo transport.

      We thank the reviewer for this suggestion. We measured not only P4 but also E2 levels in D4 pregnant females and found no significant difference in their levels compared to corresponding controls (Revised Figure 2F).

      (6) Figure 2A shows that KRT expression is not present in the control uteri. Although the KRT8 levels may have decreased at 4 dpc, they should be present (see Figure S2A).

      We observed no decrease in KRT expression in control uteri on 5 dpc. We included better-resolution images for KRT expression (Revised Figure 2A).

      (7) The dotted white lines in Figure 2A are too thick. It's difficult to see the Ki67 positive signal in the luminal epithelial cells. Please also add a quantitative analysis of Ki67+ cells in the luminal epithelium vs. stromal cells.

      We now corrected the dotted lines in Revised Figure 2B. However, as the Ki-67 proliferation is evident in the representative images, we believe quantification analysis will not add anything new to the existing conclusion.

      (8) Figure 2D - the y-axis mentions the weight ratio. However, the figure legend describes the transcript levels of Atg14 - please correct this.

      We corrected the label in the revised manuscript.

      (9) Line 294 - Please correct Figure 2C to Figure 2B.

      We corrected it.

      (10) Line 308 - Please correct Figure 2E to Figure 2F.

      We corrected it.

      (11) Line 310 - Please correct Figure 2F to Figure 2G.

      We corrected it.

      (12) Line 311 - Please correct Figure 2F to Figure 2G.

      We corrected it.

      (13) Information in Figure S2A and S2B should be included in the main figure.

      We thank the reviewer for this nice suggestion. We now included the figures S2A and S2B in the main figure (Revised Figure 2C & D).

      (14) Figure 3C - due to a lot of cellular debris after flushing, it's difficult to see. But it seems like there are secondary follicles in the flushing of control oviducts - this is highly unlikely. This could be due to an artifact of an accidental poking of the ovaries during collection.

      We agree with the reviewer. It might be due to the unintentional poking of the ovaries. We will take extra care in future experiments to avoid this and ensure clean flushing to prevent any confusion from debris or artifacts.

      (15) Figure 2B and Figure 3D signals from DAPI are missing - it's black with no blue signal. This could be the data loss during file compression for manuscript submission.

      We included better-resolution pictures for the DAPI signal in Revised Figure 2B & Figure 3F.

      (16) Explain why some embryos in the cKO make it to the uterus when the females are superovulated.

      It might be due to the heightened hormonal stimulation provided by the superovulation which could facilitate the movement of some embryos through the oviduct despite any defects or abnormalities caused by the loss of ATG14 in the oviduct.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Popli et al investigated the roles of the autophagy-related gene, Atg14, in the female reproductive tract (FRT) using conditional knockout mouse models. By ablation of Atg14 in both oviduct and uterus with PR-Cre (Atg14 cKO), the authors discovered that such females are completely infertile. They went on to show that Atg14 cKO females have impaired embryo implantation and uterus receptivity due to impaired response to P4 stimulation and stromal decidualization. In addition to the uterus defect, the authors also discovered that early embryos are trapped inside the oviduct and cannot be efficiently transported to the uterus in these females. They went on to show that oviduct epithelium in Atg14 cKO females showed increased pyroptosis, which disrupts oviduct epithelial integrity and leads to obstructive oviduct lumen and impaired embryo transport. Therefore, the authors concluded that autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable proper embryo transport.

      Strengths:

      This study revealed an important and unexpected role of the autophagy-related gene Atg14 in preventing pyroptosis and maintaining oviduct epithelial integrity, which is poorly studied in the field of reproductive biology. The study is well designed to test the roles ofATG14 in mouse oviduct and uterus. The experimental data in general support the conclusion and the interpretations are mostly accurate. This work should be of interest to reproductive biologists and scientists in the field of autophagy and pyroptosis.

      Weaknesses:

      Despite the strengths, there are several major weaknesses raising concerns. In addition, the mismatched figure panels, the undefined acronyms, and the poor description/presentation of some of the data significantly hinder the readability of the manuscript.

      (1) In the abstract, the authors stated that "autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable embryo transport". This statement is not substantiated. Although Atg14 is an autophagy-related gene and plays a critical role in oviduct homeostasis, the authors did not show a direct link between autophagy and pyroptosis/oviduct integrity. In addition, the authors pointed out in the last paragraph of the introduction that none of the other autophagy-related genes (ATG16L, FIP200, BECN1) exhibited any discernable impact on oviduct function. Therefore, the oviduct defect is caused by Atg14 specifically, not necessarily by autophagy.

      We thank the reviewer for noting this. We corrected the statement in the revised manuscript (Line number: 53-54).

      (2) In lines 412-414, the authors stated that "Atg14 ablation in the oviduct causes activation of pyroptosis", which is also not supported by the experimental data. The authors did not show that Atg14 is expressed in oviduct cells. PR-Cre is also not specific in oviduct cells. It is possible that Atg14 knockout in other PR-expressing tissues (such as the uterus) indirectly activates pyroptosis in the oviduct. More experiments will be required to support this claim. In line with the no defect when Atg14 has knocked out in oviduct ciliary cells, it will be good to use the secretory cells Cre, such as Pax8-Cre, to demonstrate that Atg14 functions in the secretory cells of the oviduct thus supporting this conclusion.

      We now included the ATG14 expression data in the oviduct (New Supplementary Figure S2A). Consistent with previous studies reporting PR-cre activity in the isthmus [1, 2] , we observed that Atg14 depletion was more pronounced in the isthmus compared to the ampulla. However, generating a secretory Pax-8 cell Cre mice model will require a substantial amount of time and effort, and we respectfully note that this is beyond the scope of the current manuscript.

      (3) With FOXJ1-Cre, the authors attempted to specifically knockout Atg14 in ciliary cells, but there are no clear fertility and embryo implantation defects in Foxj1/Atg14 cKO mice. The author should provide verification data to show that Atg14 had been effectively depleted in ciliary cells if Atg14 is normally expressed.

      We understand the reviewer’s concern. We included new data for ATG14 expression in control and Atg14 cKO mice oviducts (New Supplementary Figure S2A). However, due to the unavailability of reliable fluorescent-labeled antibodies for both Foxj1 and Atg14, we could not conduct the co-localization studies as intended, and this limitation hindered our ability to precisely determine the spatial overlap of these proteins within the oviduct. Nonetheless, Foxj1-cre is a widely used mice model with reported cre-activity in ciliary epithelial cells including oviduct tissues [3]. Given the widespread expression of ATG14 in all the ciliary and secretory cells (New Supplementary Figure S2A) and distinct FOXJ1 expression in the oviduct (New Supplementary Figure S3), we are confident that Atg14 is deleted in the ciliary epithelial cells of Foxj1/Atg14 cKO mice oviducts.

      (4) In lines 307-313, the author tested whether ATG14 is required for the decidualization of HESCs. The author stated that "Control siRNA transfected cells when treated with EPC seemed to change their morphological transformation from fibroblastic to epithelioid (Fig. 2E) and had increased expression of the decidualization markers IGFBP1 and PRL by day three only (Fig. 2F)". First, the labels in Figure 2 are not corresponding to the description in the text. Second, the morphology of the HESCs in the control and Atg14 siRNA group showed no obvious difference even at day 3 and day 6. The author should point out the difference in each panel and explain in the text or figure legend.

      Decidualization is a post-implantation event, whereas our study primarily focuses on pre-implantation events in the oviduct. Therefore, we have removed all data related to human and mouse decidualization to enhance the clarity and precision of our study.

      (5) In lines 332-336, the authors pointed out that the cKO mice oviduct lining shows marked eosinophilic cytoplasmic change, but there's no data to support the claim. In addition, the authors further described that "some of the cells showed degenerative changes with cytoplasmic vacuolization and nuclear pyknosis, loss of nuclear polarity, and loss of distinct cell borders giving an appearance of fusion of cells (Fig. 3D)". First, Figure 3D did not show all these phenotypes, and it is likely a mismatch to Figure 3E. Even in Figure 3E, it is not obvious to notice all the phenotypes described here. The figure legend is overly simple, and there's no explanation of the arrowheads in the panel. More data/images are required to support the claim here and provide a clear indication and explanation in the figure legend.

      Dr. Ramya Masand, Chief pathologist in the Pathology Department at the Baylor College of Medicine, and a contributing author, assessed the H&E-stained oviduct sections from control and cKO mice. We have now included a new Supplementary Figure S3 with previous representative H&E images that depict the cellular alterations described in lines 332–336.

      (6) In lines 317-325, it is rather confusing about the description of the portion of embryos from the oviduct and uterus. In addition, the total number of embryos was not provided. I would recommend presenting the numerical data to show the average embryos from the oviduct and uterus instead of using the percentage data in Figures 3A and 5G.

      We thank the reviewer for this nice suggestion. We calculated the average number of embryos and found no difference in the number of embryos recovered from cKO or polyphyllin-treated pregnant mice at 4 dpc compared to their controls. (New Supplementary Figure S4A & B).

      (7) In lines 389-391, authors tested whether Polyphyllin VI treatment led to activated pyroptosis and blocked embryo transport. Although Figures 5F-G showed the expected embryo transport defect, the authors did not show the pyroptosis and oviduct morphology. It will be important to show that the Polyphyllin VI treatment indeed led to oviduct pyroptosis and lumen disruption.

      We performed the GSDMD staining IHC in Polyphyllin VI or vehicle-treated mice oviducts and observed elevated GSDMD expression with Polyphyllin V (New Figure 6E). However, no significant lumen disruption was detected, which may be attributed to the short-term exposure of the oviducts to pyroptosis induction, in contrast to the more pleiotropic effects observed in genetically induced models. Nonetheless, this observation clearly indicates that unscheduled or unwarranted activation of pyroptosis impedes embryo transport.

      (8) In line 378, it would be better to include a description of pyroptosis and its molecular mechanisms to help readers better understand your experiments. Alternatively, you can add it in the introduction.

      We thank the reviewer for this nice suggestion. We included literature on the pyroptosis pathway in the introduction section (Line Number: 105-118).

      (9) Please make sure to provide definitions for the acronyms such as FRT, HESCs, GSDMD, etc.

      We added definitions for the acronyms such as FRT, HESCs, and GSDMD used in the study.

      (10) It is rather confusing to use oviducal cell plasticity in this manuscript. The work illustrated the oviducal epithelial integrity, not the plasticity.

      We thank the reviewer for the suggestion. We have revised the manuscript accordingly to ensure clarity and precision in describing the oviductal epithelial structural changes observed in the absence of ATG14.

      A few of the additional comments for authors to consider improving the manuscript are listed below.

      (1) Some of the figures are missing scale bars, while others have inconsistent scale bars. It would be better to be consistent.

      We now included the scale bars in all images.

      (2) On a couple of occasions, the DAPI signal cannot be seen, such as in Figure 2B and Figure 3D.

      We now included better-resolution images for the DAPI signal in all fluorescent images shown in the revised manuscript.

      (3) Overall, the figure legends can be improved to provide more detailed information to help the reader to interpret the data.

      We included additional details in all the figure legends in the revised manuscript.

      (4) In Figure 2D, the Y-axis showed the stimulated/unstimulated uterine weight ratio, why did the author put "Atg14" at the top of the graph? At the same time, the X-axis title is missing in Figure 2D.

      We apologize for the typo error. We removed “Atg14” from the top of the graph and included the X-axis title in the revised manuscript.

      (5) In the left panel of Figure 2G, "ATG14" at the top should be "Atg14" to be consistent.

      In Figure 2G, we are representing “ATG14” according to human gene annotation.

      (6) In line 559, there miss "(A)" in front of Immunofluorescence analysis of GSDMD.

      We thank the reviewer for noting this. We corrected it in the revised manuscript.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript by Pooja Popli and co-authors tested the importance of Atg14 in the female reproductive tract by conditionally deleting Atg14 using Pr Cre and also Foxj1cre. The authors showed that loss of Atg14 leads to infertility due to the retention of embryos within the oviduct. The authors further concluded that the retention of embryos within the oviduct is due to pyroptosis in oviduct cells leading to defective cellular integrity. The manuscript has some interesting findings, however there are also areas that could be improved.

      Strengths:

      The importance of Atg14 and autophagy in the female reproductive tract is incompletely understood. The manuscript also provide spatial evidence about a new mechanism linking Atg14 to pyroptosis.

      We thank the reviewer for the positive statements and constructive comments on our manuscript.

      Weaknesses:

      (1) It is not clear why the loss of Atg14 selectively induces Pyroptosis within oviduct cells but not in other cellular compartments. The authors should demonstrate that these events are not happening in uterine cells.

      We thank the reviewer for this nice suggestion. We performed GSDMD IHC and found that, unlike in the oviduct, the cKO uteri and ovaries do not exhibit detectable pyroptosis (Revised Figure 5F). Additionally, we have added text to the discussion section addressing possible reasons for the differential impact of Atg14 loss on pyroptosis along the reproductive tract continuum (Line number: 532-538)

      (2) The manuscript never showed any effect on the autophagy upon loss of Atg14. Is there any effect on autophagy upon Atg14 loss? If so, does that contribute to the observation?

      We thank the reviewer for the nice suggestion. We found LC3b and p62 protein levels, two well-known markers of autophagic flux are elevated due to Atg14 loss in the oviduct (New Supplementary Figure S2B).  Since, p62 accumulation is an indicative of the reduced autophagic flux [4], we posit loss of Atg14 results in defective autophagy in the oviduct. Importantly, this defective autophagy adversely impacted the structural integrity of oviductal epithelial cells, causing impairment in embryo transport.

      (3) It is not clear what the authors meant by cellular plasticity and integrity. There is no evidence provided in that aspect that the plasticity of oviduct cells is lost. Similarly, more experimental evidence is necessary for the conclusion about cellular integrity.

      We thank the reviewer for the suggestion. We have revised the text for clarity and precision in describing the oviductal epithelial structural changes observed in the absence of ATG14. To avoid ambiguity, we have removed the term "cellular plasticity." We have already provided extensive evidence, including multiple H&E stains and immunofluorescence analyses for KRT8 and smooth muscle actin to illustrate cellular integrity in both control and cKO oviducts. However, we respectfully believe that performing additional experiments on cellular integrity would not contribute further to the conclusions already drawn.

      (4) The mitochondrial phenotype shown in Figure 3 didn't appear as severe as it is described in the results section. The analyses should be more thorough. They should include multiple frames (in supplemental information) showing mitochondrial morphology in multiple cells. The authors should also test that aspect in uterine cells. The authors should measure Feret's diagram. Diff erence in membrane potential etc. for a definitive conclusion.

      We appreciate the reviewer’s suggestion. We carried out the TOM20 (mitochondrial structural marker) and cytochrome C (mitochondrial damage and cell death marker) immune-colocalization study and found loss of TOM20 signal with concomitant cytochrome c leakage into the peri-nuclear space (Revised Figure 5B). Additionally, we also observed reduced expression of mitochondrial structural and functional markers by qPCR analysis (Revised Figure 5C). However, we respectfully argue that conducting membrane potential studies on murine oviducts is extremely complex and is beyond the scope of this study.

      (5) The comment that the loss of Atg14 and pyroptosis leads to the narrowing of the lumen in the oviduct should be experimentally shown.

      We have now included a New Supplementary Figure S3 with representative previous immunofluorescence images that clearly show the narrowing of the lumen with Atg14 loss in the oviduct.

      (6) The manuscript never showed the proper mechanism through which Atg14 loss induces pyroptosis. The authors should link the mechanism.

      We respectfully disagree with the reviewer on this point. We have provided substantial evidence regarding the cellular mechanisms through which the loss of Atg14 may lead to the activation of pyroptosis as outlined below:

      (1) Cellular Changes: Loss of ATG14 in the oviduct results in cellular swelling and the formation of fused membranous structures, which are characteristic features of pyroptosis activation.

      (2) Expression of Key Pyroptosis Proteins: We observed an induced expression of GSDMD and Caspase-1, primary executioners of the pyroptotic pathway, in response to Atg14 loss.

      (3) Inflammatory Markers: Elevated levels of inflammatory markers such as TNF-α and CXCR3 were detected, both of which are known to promote pyroptosis [5, 6].

      (4) Mitochondrial Damage: We have added new data demonstrating disrupted colocalization of TOM20 (a mitochondrial structural marker) and Cytochrome c (a cell death marker), resulting in Cytochrome c leakage into the perinuclear space (Revised Figure 5B). Additionally, qPCR analysis revealed reduced expression of mitochondrial structural and functional markers in cKO oviduct tissues (Revised Figure 5C).

      Based on these evidences, we can clearly say that Atg14 has some direct or indirect link to inflammasome activation. However, understanding the complex rheostat between the Atg14-mediated autophagy and inflammation regulatory axis will necessitate future studies employing sophisticated models, such as combined knockout mice where ATG14 is deleted alongside key inflammatory regulators (e.g., NLRP3, GSDMD, or CASPASE-1). These dual knockout models could provide crucial insights into how ATG14 modulates inflammatory pathways.

      References:

      (1) Herrera, G.G.B., et al., Oviductal Retention of Embryos in Female Mice Lacking Estrogen Receptor alpha in the Isthmus and the Uterus. Endocrinology, 2020. 161(2).

      (2) Soyal, S.M., et al., Cre-mediated recombination in cell lineages that express the progesterone receptor. Genesis, 2005. 41(2): p. 58-66.

      (3) Zhang, Y., et al., A transgenic FOXJ1-Cre system for gene inactivation in ciliated epithelial cells. Am J Respir Cell Mol Biol, 2007. 36(5): p. 515-9.

      (4) Mizushima, N., T. Yoshimori, and B. Levine, Methods in mammalian autophagy research. Cell, 2010. 140(3): p. 313-26.

      (5) Vaher, H., Expanding the knowledge of tumour necrosis factor-alpha-induced gasdermin E-mediated pyroptosis in psoriasis. Br J Dermatol, 2024. 191(3): p. 319-320.

      (6) Liu, C., et al., CXCR4-BTK axis mediate pyroptosis and lipid peroxidation in early brain injury after subarachnoid hemorrhage via NLRP3 inflammasome and NF-kappaB pathway. Redox Biol, 2023. 68: p. 102960.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Qin and colleagues analysed data from the Human Connectome Project on four right-handed subgroups with different gyrification patterns in Heschl's gyrus. Based on these groups, the authors highlight the structure-function relationship of planum temporale asymmetry in lateralised language processing at the group level and next at the individual level. In particular, the authors propose that especially microstructural asymmetries are related to functional auditory language asymmetries in the planum temporale.

      Strengths:

      The study is interesting because of an ongoing and long-standing debate about the relationship between structural and functional brain asymmetries, and in particular whether structural brain asymmetries can be seen as markers of functional language brain lateralisation.

      In this debate, the relationship between Heschl's gyrus asymmetry and planum temporale asymmetry is rare and therefore valuable here. A large sample size and inter-rater reliability support the findings.

      Weaknesses:

      In this case of multiple brain measures, it would be important to provide the reader with some sort of effect size (e.g. Cohen's d) to help interpret the results.

      Thank you for pointing this out. In the revised version, the effect size, i.e., Cohen's d, has been incorporated into the results (page 8, line 159-160; page 9, line 181-186, supplementary page 14, Table S14).

      In addition, the authors highlight the microstructural results in spite of the macrostructural results. However, the macrostructural surface results are also strong. I would suggest either reducing the emphasis on micro vs macrostructural results or adding information to justify the microstructural importance.

      In the original manuscript, we highlighted the results of microstructural measures because the correlations between PT microstructural and functional measures were more pronounced both within the hemispheres and in terms of asymmetry, compared with the significant results of surface area. Following your comments here, we now lowered the tone of microstructure results (page 2, line 40; page 14, line 267), and added relevant discussion regarding the macrostructural results in the revised version (page 18, line 363-370; as copied below):

      “As for macrostructural measures, the asymmetric PT surface area was also associated with speech comprehension AI. Given that the within-hemispheric coupling tendency between surface and speech comprehension existed only in the left PT, it was possible that the larger surface area of the left PT led to a less recruitment of its right homologous, and therefore the lateralization of functional activity would be more pronounced. Additionally, an opposite tendency was found between the correlation of speech perception and comprehension with surface area, potentially implying the segregation of the different speech processing in the PT area.”

      Recommendations for the authors:

      I have only some comments that I wish to be addressed by the authors:

      (1) Please always specify "structural" or "functional" asymmetry or lateralisation, as the reader may be confused.

      This has been done in relevant places.

      (2) Please state that the scale is not the same between the results in Figure 3.

      This have been specified, as suggested (see below).

      “Notably, we did not standardize these structural measures, so the scales differed between indicators.”

      (3) It may be of interest to the reader to learn more about interpretations of how Heschl's gyrus and planum temporale asymmetries are related.

      Thank you for this comment. Given that the asymmetry of Heschl's gyrus was not analyzed in the present study, we do not have direct data/results for such an interpretation. Also, we reviewed the literature but found no relevant results on how Heschl's gyrus and planum temporale asymmetries are related. To address this, specific investigation targeting on this topic is needed. This has now been added in the discussion (page 20, line 415-417).

      (4) As this manuscript builds somewhat on the Science Advances article by Ocklenburg et al. (2018), it would be important to discuss how this more liberal planum temporale definition might (or might not) affect the results compared to the more conservative planum temporale definition described here.

      Yes, the definition of planum temporale varies across studies. Our current manual one is relatively more conservative than the Ocklenburg et al. (2018), in which the planum temporale was automatically derived from the Destrieux atlas. We believe that the definition of the planum temporale likely have non-trivial impact on the results, and our current manual definition with the consideration of the HG duplication should be more reliable and accurate, therefore favored, relative to the other ones. This has been briefly discussed in the revision (page 15-16, line 300-304).

      (5) I would like the authors to briefly but critically discuss what exactly the MRI NODDI model measures and how this is interpreted as measuring microstructural properties of tissue.

      We now provided relevant information regarding the NODDI measures (page 26, line 552-558; as copied below).

      “NODDI is a highly effective method for detecting key features of neurite morphology, which employs a tissue model that detects three microstructural environments: the intracellular, extracellular and cerebrospinal fluid compartments (Zhang et al., 2012). In the grey matter of the cerebral cortex, the neurite density index (NDI) is an estimated volume fraction of the intracellular microstructural environment, with higher NDIs indicating greater neurite density (Jespersen et al., 2010; Zhang et al., 2012). The orientation dispersion index (ODI) is a measure of the alignment or dispersion of neurite, with higher ODIs indicating more dispersed neurite and lower ODIs indicating more aligned neurite (Jespersen et al., 2012; Zhang et al., 2012).”

      (6) While not mandatory, I would be interested to read the authors' thoughts on the evolution of such a functional/(micro)structural lateralisation link of the planum temporale, in light of the literature on planum temporale asymmetries in (newborn) non-human primate species.

      Thank you for this inspiring suggestion. We have incorporated relevant discussion into the revised version (page 15, line 281-288; as copied below).

      “Moreover, there exist evolutionary evidence supporting the role of the PT as an anatomical substrate for language lateralization. For example, the leftward structural asymmetry of the PT have been observed in multiple non-human primates, including chimpanzees, macaques, and baboons (Becker et al., 2024; Gannon et al., 1998; Xia et al., 2019). Particularly, recent studies on baboons further demonstrated that PT structural leftward asymmetry in newborn baboons could predict future development of communicative gestures, implying a key role of PT structural asymmetry in the lateralized communication system for human and non-human brain evolution (Becker et al., 2024, 2021).”

      Reference

      Becker Y, Phelipon R, Marie D, Bouziane S, Marchetti R, Sein J, Velly L, Renaud L, Cermolacce A, Anton J-L, Nazarian B, Coulon O, Meguerditchian A. 2024. Planum temporale asymmetry in newborn monkeys predicts the future development of gestural communication’s handedness. Nat Commun 15:4791. doi:10.1038/s41467-024-47277-6

      Becker Y, Sein J, Velly L, Giacomino L, Renaud L, Lacoste R, Anton J-L, Nazarian B, Berne C, Meguerditchian A. 2021. Early Left-Planum Temporale Asymmetry in newborn monkeys (Papio anubis): A longitudinal structural MRI study at two stages of development. NeuroImage 227:117575. doi:10.1016/j.neuroimage.2020.117575

      Gannon PJ, Holloway RL, Broadfield DC, Braun AR. 1998. Asymmetry of Chimpanzee Planum Temporale: Humanlike Pattern of Wernicke’s Brain Language Area Homolog. Science 279:220–222. doi:10.1126/science.279.5348.220

      Jespersen SN, Bjarkam CR, Nyengaard JR, Chakravarty MM, Hansen B, Vosegaard T, Østergaard L, Yablonskiy D, Nielsen NChr, Vestergaard-Poulsen P. 2010. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy. NeuroImage 49:205–216. doi:10.1016/j.neuroimage.2009.08.053

      Jespersen SN, Leigland LA, Cornea A, Kroenke CD. 2012. Determination of Axonal and Dendritic Orientation Distributions Within the Developing Cerebral Cortex by Diffusion Tensor Imaging. IEEE Trans Med Imaging 31:16–32. doi:10.1109/TMI.2011.2162099

      Xia J, Wang F, Wu Z, Wang L, Zhang C, Shen D, Li G. 2019. Mapping hemispheric asymmetries of the macaque cerebral cortex during early brain development. Hum Brain Mapp. doi:10.1002/hbm.24789

      Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. 2012. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61:1000–1016. doi:10.1016/j.neuroimage.2012.03.072

      Reviewer #2 (Public Review):

      Summary:

      The authors assessed the link between structural and functional lateralization in area PT, one of the brain areas that is known to exhibit strong structural lateralization, and which is known to be implicated in speech processing. Importantly, they included the sulcal configuration of Heschl's gyrus (HG), presenting either as a single or duplicated HG, in their analysis. They found several significant associations between microstructural indices and task-based functional lateralization, some of which depended on the sulcal configuration.

      Strengths:

      A clear strength is the large sample size (n=907), an openly available database, and the fact that HG morphology was manually classified in each individual. This allows for robust statistical testing of the effects across morphological categories, which is not often seen in the literature.

      Weaknesses:

      - Unfortunately, no left-handers were included in the study. It would have been a valuable addition to the literature, to study the effect of handedness on the observed associations, as many previous studies on this topic were not adequately powered. The fact that only right-handers were studied should be pointed out clearly in the introduction or even the abstract.

      Thank for pointing this out. We have explicitly specified this in the Abstract and Introduction.

      - The tasks to quantify functional lateralization were not specifically designed to pick up lateralization. In the interest of the sample size, it is understandable that the authors used the available HCP-task-battery results, however, it would have been feasible to access another dataset for validation. A targeted subset of results, concerning for example the relationship between sulcal morphology and task-based functional lateralization, could be re-assessed using other open-access fMRI datasets.

      Yes, the fMRI task was not specifically designed to evaluate PT functional lateralization, which has been acknowledged in the discussion (page 17, line 330-342). Given the observed small effect size of our current structural-functional relationship, reproducing similar results with other datasets would require a cohort with a large sample size. This would induce a quite labor-intensive work given our current manual protocol for outlining PT and HG for everyone. The lack of validation with independent dataset has been discussed as a limitation in the revised version. We will try to conduct such a validation in future work, likely after developing an automatic pipeline for accurately extracting the PT and HG in the individual space (like the manual outlining protocol).

      - The study is mainly descriptive and the general discussion of the findings in the larger context of brain lateralization comes a bit short. For example, are the observed effects in line with what we know from other 'language-relevant' areas? What could be the putative mechanisms that give rise to functional lateralization based on the microstructural markers observed? And which mechanisms might be underlying the formation of a duplicated HG?

      Thank you for these insightful comments. As suggested, we strengthened the discussion as below:

      “Another possible explanation could be that higher myelin content and larger surface area in left PT potentially indicated more white matter connection with other language-related regions such as Broca’s area, and therefore is more involved in language tasks than its right homolog (Allendorfer et al., 2016; Catani et al., 2005; Giampiccolo and Duffau, 2022).

      The distinct roles of left and right PT in speech processing have been well-documented. A number of studies substantiated that PT of the left hemisphere responded more strongly to lexical-semantic and syntactic aspects of sentence processing, whereas the right hemisphere demonstrated a greater involvement in the speech melody (Albouy et al., 2020; Meyer et al., 2002).

      These findings are consistent with those reported for the arcuate fasciculus (AF). The left AF has been identified as a crucial structure for language function (Giampiccolo and Duffau, 2022; Zhang et al., 2021). Disruption to this pathway has been linked to multimodal phonological and semantic deficits (Agosta et al., 2010), while injuries in the right AF did not affect language function (Zeineh et al., 2015).”

      Regarding the mechanism underlying the formation of a duplicated HG, we did not come up with good thoughts after careful literature review. Also, we feel that this is kind of out of the scope of the present study and therefore did not add more discussion on this topic.

      Recommendations for the authors:

      (1) The data availability statement makes no explicit mention of the manual labels of HG configuration. Would the authors consider making available a list of HCP-subject-ID with a morphological group (L1/R1, L1/R2, etc.) for replicability and for re-use by other researchers?

      The list of HCP-subject-ID with a morphological group (L1/R1, L1/R2, etc.) is now available in the supplementary material 2. We have specified this in the revised version.

      (2) It would be helpful to state again the statistical tests associated with the p-value in the figure/table caption, e.g. Table 2.

      As suggested, we now specified the statistical method in the figure/table caption.

      (3) Sometimes, the y-axis labels are missing or not clear, for example in Figure S2.

      Sorry about these. We double-checked all the figures, and corrected the missing or unclear labels for Figure S2 and S3 in the revised version.

      (4) In a few instances the font sizes vary within a figure caption.

      This has been corrected in the revision.

      Reference

      Agosta F, Henry RG, Migliaccio R, Neuhaus J, Miller BL, Dronkers NF, Brambati SM, Filippi M, Ogar JM, Wilson SM, Gorno-Tempini ML. 2010. Language networks in semantic dementia. Brain J Neurol 133:286–299. doi:10.1093/brain/awp233

      Albouy P, Benjamin L, Morillon B, Zatorre RJ. 2020. Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 367:1043–1047. doi:10.1126/science.aaz3468

      Allendorfer JB, Hernando KA, Hossain S, Nenert R, Holland SK, Szaflarski JP. 2016. Arcuate fasciculus asymmetry has a hand in language function but not handedness. Hum Brain Mapp 37:3297–3309. doi:10.1002/hbm.23241

      Catani M, Jones DK, Ffytche DH. 2005. Perisylvian language networks of the human brain. Ann Neurol 57:8–16. doi:10.1002/ana.20319

      Giampiccolo D, Duffau H. 2022. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain J Neurol 145:1242–1256. doi:10.1093/brain/awac057

      Meyer M, Alter K, Friederici AD, Lohmann G, von Cramon DY. 2002. FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum Brain Mapp 17:73–88. doi:10.1002/hbm.10042

      Zeineh MM, Kang J, Atlas SW, Raman MM, Reiss AL, Norris JL, Valencia I, Montoya JG. 2015. Right arcuate fasciculus abnormality in chronic fatigue syndrome. Radiology 274:517–526. doi:10.1148/radiol.14141079

      Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. 2012. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61:1000–1016. doi:10.1016/j.neuroimage.2012.03.072

      Zhang J, Zhong S, Zhou L, Yu Yamei, Tan X, Wu M, Sun P, Zhang W, Li J, Cheng R, Wu Y, Yu Yanmei, Ye X, Luo B. 2021. Correlations between Dual-Pathway White Matter Alterations and Language Impairment in Patients with Aphasia: A Systematic Review and Meta-analysis. Neuropsychol Rev 31:402–418. doi:10.1007/s11065-021-09482-8

      Reviewing Editor:

      I encourage the authors to incorporate the suggestions of the reviewers, such as:

      (1) to provide more in-depth interpretations about how and why structural and functional lateralization relate,

      Done.

      (2) to provide statistical effect sizes,

      Done.

      (3) to make their sulcal-morphology classification openly available,

      Done.

      (4) to provide statistical effect sizes,

      Done

      (5) to discuss the possible impact of diverging PT definitions with regard to previous studies,

      Done.

      (6) to provide more in-depth interpretations about how and why structural and functional lateralization relate.

      Done.

      Detailed comments:

      In an impressive cohort of 907 human participants, the present paper presents a very interesting set of data on PT asymmetries not only at the macro-structural but also at the microstructural levels in order to investigate their potential correlates with PT functional asymmetry in relation to perceptual acoustic language tasks.

      I believe this is a key paper for the following reasons:

      (1) it provides critical data and results for addressing a controversial but important question: the relevance of measures of anatomical asymmetry for inferring its language-related functional hemispheric specialization;

      (2) to do so, the authors made a very impressive effort to manually trace the anatomical delineation of the planum temporale at different levels in every participant, the best (but crazy time-consuming) approach so far to document interindividual variability of the PT and to address such a question;

      (3) the contribution is particularly relevant regarding the statistical power of the study, the study and measures having been done in 907 participants!

      (4) I also found the study well designed and well written with great relevance of the findings for the field.

      As the results, the authors reported asymmetric measures of microstructural asymmetry (including intracortical myelin content, neurite density, and neurite orientation) but also of macrostructural asymmetries in relation to functional lateralization for language.

      Comments:

      I have only 2 additional minor comments of my own:

      (1) In agreement with reviewer 2, I don't understand why the authors seem to downplay the links they found between gross PT asymmetry and functional lateralization. I recommend the authors to highlight and discuss this important result, just as the microstructural PT asymmetries and their functional links.

      This has been done (page 18, line 363-370).

      (2) PT structural asymmetry (both micro & macro) has been well documented in nonhuman primates (and their functional link with manual lateralization for gestural communication). Without detailing this literature, I recommend the authors at least mention this literature as a comparative perspective in the introduction and/or discussion in order to make the question of PT asymmetry less anthropocentric.

      This has been done (page 15, line 281-288).

    1. eLife Assessment

      This study investigates the molecular mechanisms underlying chronic pain-related memory impairment by focusing on S1P/S1PR1 signaling in the dentate gyrus (DG) of the hippocampus. Through behavioral tests (Y-maze and Morris water maze) and RNA-seq analysis, the researchers discovered that S1P/S1PR1 signaling is crucial for determining susceptibility to memory impairment, with decreased S1PR1 expression linked to structural plasticity changes and memory deficits. This work has important significance and a convincing level of evidence, thus offering new insights into the mechanisms underlying chronic pain-related memory impairment.

    2. Reviewer #2 (Public review):

      Summary:

      The study investigates the molecular mechanisms underlying chronic pain-related memory impairment by focusing on S1P/S1PR1 signaling in the dentate gyrus (DG) of the hippocampus. Through behavioural tests (Y-maze and Morris water maze) and RNA-seq analysis, the researchers segregated chronic pain mice into memory impairment-susceptible and -unsusceptible subpopulations. They discovered that S1P/S1PR1 signaling is crucial for determining susceptibility to memory impairment, with decreased S1PR1 expression linked to structural plasticity changes and memory deficits.

      Knockdown of S1PR1 in the DG induced a susceptible phenotype, while overexpression or pharmacological activation of S1PR1 promoted resistance to memory impairment and restored normal synaptic structure. The study identifies actin cytoskeleton-related pathways, including ITGA2 and its downstream Rac1/Cdc42 signaling, as key mediators of S1PR1's effects, offering new insights and potential therapeutic targets for chronic pain-related cognitive dysfunction.

      This manuscript consists of a comprehensive investigation and significant findings. The study provides novel insights into the molecular mechanisms of chronic pain-related memory impairment, highlighting the critical role of S1P/S1PR1 signaling in the hippocampal dentate gyrus. The clear identification of S1P/S1PR1 as a potential therapeutic target offers promising avenues for future research and treatment strategies. The manuscript is well-structured, methodologically sound, and presents valuable contributions to the field.

      Strengths:

      (1) The manuscript is well-structured and written in clear, concise language. The flow of information is logical and easy to follow.

      (2) The segregation of mice into memory impairment-susceptible and -unsusceptible subpopulations is innovative and well-justified. The statistical analyses are robust and appropriate for the data.

      (3) The detailed examination of S1PR1 expression and its impact on synaptic plasticity and actin cytoskeleton reorganization is impressive. The findings are significant and contribute to the understanding of chronic pain-related memory impairment.

      Comments on revisions:

      The authors have satisfactorily addressed all the issues raised.

    1. Author response:

      The following is the authors’ response to the original reviews.

      This study presents a valuable finding on sperm flagellum and HTCA stabilization. The evidence supporting the authors' claims is incomplete. The work will be of broad interest to cell and reproductive biologists working on cilium and sperm biology.

      We thank the Editor and the two reviewers for their time and thorough evaluation of our manuscript. We greatly appreciate their valuable guidance on improving our study. In the revised manuscript, we have conducted additional experiments and provided quantitative data in response to the reviewers' comments. Furthermore, we have refined the manuscript and added further context to elucidate the significance of our findings for the readers.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper, Wu et al. investigated the physiological roles of CCDC113 in sperm flagellum and HTCA stabilization by using CRISPR/Cas knockouts mouse models, co-IP, and single sperm imaging. They find that CCDC113 localizes in the linker region among radial spokes, the nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) RS, N-DRC, and DMTs and interacts with axoneme-associated proteins CFAP57 and CFAP91, acting as an adaptor protein that facilitates the linkage between RS, N-DRC, and DMTs within the sperm axoneme. They show the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and CFAP91, DRC2 could not colocalize with DMTs in Ccdc113-/- spermatozoa. Interestingly, the data also indicate that CCDC113 could localize on the HTCA region, and interact with HTCA-associated proteins. The knockout of Ccdc113 could also produce acephalic spermatozoa. By using Sun5 and Centlein knockout mouse models, the authors further find SUN5 and CENTLEIN are indispensable for the docking of CCDC113 to the implantation site on the sperm head. Overall, the experiments were designed properly and performed well to support the authors' observation in each part. Furthermore, the study's findings offer valuable insights into the physiological and developmental roles of CCDC113 in the male germ line, which can provide insight into impaired sperm development and male infertility. The conclusions of this paper are mostly well supported by data, but some points need to be clarified and discussed.

      We thank Reviewer #1 for his or her critical reading and the positive assessment.

      (1) In Figure 1, a sperm flagellum protein, which is far away from CCDC113, should be selected as a negative control to exclude artificial effects in co-IP experiments.

      We greatly appreciate Reviewer #1’s insightful suggestion. In response, we selected two sperm outer dense fiber proteins, ODF1 and ODF2, which are located distant from the sperm axoneme, as negative controls in the co-IP experiments. As shown in Figure 1- figure supplement 1A and B, neither ODF1 nor ODF2 bound to CCDC113, indicating the interaction observed in Figure 1 is not an artifact.

      (2) Whether the detachment of sperm head and tail in Ccdc113-/- mice is a secondary effect of the sperm flagellum defects? The author should discuss this point.

      Good question. Considering that CCDC113 is localized in the sperm neck region and interacts with SUN5 and CENTLEIN, it may play a direct role in connecting the sperm head and tail. Indeed, PAS staining revealed that Ccdc113–/– sperm heads exhibit abnormal orientation in stages V–VIII of the seminiferous epithelia (Figure 6C-D). Furthermore, transmission electron microscopy (TEM) analysis indicated that the absence of CCDC113 caused detachment of the damaged coupling apparatus from the sperm head in step 9–11 spermatids (Figure 6E). These results suggest that the detachment of the sperm head and tail in Ccdc113–/– mice may not be a secondary effect of sperm flagellum defects. We have discussed this point further below:

      “CCDC113 can interact with SUN5 and CENTLEIN, but not PMFBP1 (Figure 7A-C), and left on the tip of the decapitated tail in Sun5–/– and Centlein–/– spermatozoa (Figure 7K and L). Furthermore, CCDC113 colocalizes with SUN5 in the HTCA region, and immunofluorescence staining in spermatozoa shows that SUN5 is positioned closer to the sperm nucleus than CCDC113 (Figure 7G and H). Therefore, SUN5 and CENTLEIN may be closer to the sperm nucleus than CCDC113. PAS staining revealed that Ccdc113–/– sperm heads are abnormally oriented in stages V–VIII seminiferous epithelia (Figure6 C and D), and TEM analysis further demonstrated that the disruption of CCDC113 causes the detachment of the destroyed coupling apparatus from the sperm head in step 9–11 spermatids (Figure 6E). All these results suggest that the detachment of sperm head and tail in Ccdc113–/– mice may not be a secondary effect of sperm flagellum defects.”

      (3) Given that some cytoplasm materials could be observed in Ccdc113-/- spermatozoa (Fig. 5A), whether CCDC113 is also essential for cytoplasmic removal?

      Good question. Unremoved cytoplasm could be detected in spermatozoa by using transmission electron microscopy (TEM) analysis, including disrupted mitochondria, damaged axonemes, and large vacuoles. These observations indicate defects in cytoplasmic removal in Ccdc113–/– mice. We have discussed this point as below:

      “Moreover, TEM analysis detected excess residual cytoplasm in spermatozoa, including disrupted mitochondria, damaged axonemes, and large vacuoles, indicating defects in cytoplasmic removal in Ccdc113–/– mice (Figure 5A).”

      (4) Although CCDC113 could not bind to PMFBP1, the localization of CCDC113 in Pmfbp1-/- spermatozoa should be also detected to clarify the relationship between CCDC113 and SUN5-CENTLEIN-PMFBP1.

      We appreciate Reviewer #1’s suggestion. We have analyzed the localization of CCDC113 in Pmfbp1-/- spermatozoa and found that CCDC113 was located at the tip of the decapitated tail in Pmfbp1-/- spermatozoa (Figure 7K and L). This finding has been incorporated into the revised manuscript as below:

      “To further elucidate the functional relationships among CCDC113, SUN5, CENTLEIN, and PMFBP1 at the sperm HTCA, we examined the localization of CCDC113 in Sun5-/-, Centlein–/–, and Pmfbp1–/– spermatozoa. Compared to the control group, CCDC113 was predominantly localized on the decapitated flagellum in Sun5-/-, Centlein–/–, and Pmfnp1–/– spermatozoa (Figure 7K and L), indicating SUN5, CENTLEIN, and PMFBP1 are crucial for the proper docking of CCDC113 to the implantation site on the sperm head. Taken together, these data demonstrate that CCDC113 cooperates with SUN5 and CENTLEIN to stabilize the sperm HTCA and anchor the sperm head to the tail.”

      Reviewer #2 (Public Review):

      Summary:

      In the present study, the authors select the coiled-coil protein CCDC113 and revealed its expression in the stages of spermatogenesis in the testis as well as in the different steps of spermiogenesis with expression also mapped in the different parts of the epididymis. Gene deletion led to male infertility in CRISPR-Cas9 KO mice and PAS staining showed defects mapped in the different stages of the seminiferous cycle and through the different steps of spermiogenesis. EM and IF with several markers of testis germ cells and spermatozoa in the epididymis indicated defects in flagella and head-to-tail coupling for flagella as well as acephaly. The authors' co-IP experiments of expressed CCDC113 in HEK293T cells indicated an association with CFAP91 and DRC2 as well as SUN5 and CENTLEIN.

      The authors propose that CCDC113 connects CFAP91 and DRC2 to doublet microtubules of the axoneme and CCDC113's association with SUN5 and CENTLEIN to stabilize the sperm flagellum head-to-tail coupling apparatus. Extensive experiments mapping CCDC13 during postnatal development are reported as well as negative co-IP experiments and studies with SUN5 KO mice as well as CENTLEIN KO mice.

      Strengths:

      The authors provide compelling observations to indicate the relevance of CCDC113 to flagellum formation with potential protein partners. The data are relevant to sperm flagella formation and its coupling to the sperm head.

      We are grateful to Reviewer #2 for his or her recognition of the strength of this study.

      Weaknesses:

      The authors' observations are consistent with the model proposed but the authors' conclusions for the mechanism may require direct demonstration in sperm flagella. The Walton et al paper shows human CCDC96/113 in cilia of human respiratory epithelia. An application of such methodology to the proteins indicated by Wu et al for the sperm axoneme and head-tail coupling apparatus is eagerly awaited as a follow-up study.

      We thank Reviewer 2 for his/her kindly help in improving the manuscript.  We now understand that directly detection of CCDC113 precise localization in sperm axoneme and head-tail coupling apparatus (HTCA) using cryo-electron microscopy (cryo-EM) could powerfully strengthen our model. Recent advances in cryo-EM have indeed advanced our understanding of axonemal structures analysis of axonemal structures and determined the structures of native axonemal DMTs from mouse, bovine, and human sperm (Leung et al., 2023; Zhou et al., 2023). However, high-resolution structures of sperm axoneme and HTCA regions, including those involving CCDC113, have yet to be fully characterized. Thus, we would like to discuss this point and consider it a valuable direction for future research.

      “Given that the cryo-EM of sperm axoneme and HTCA could powerfully strengthen the role of CCDC113 in stabilizing sperm axoneme and head-tail coupling apparatus, it a valuable direction for future research.”

      References:

      Bazan, R., Schröfel, A., Joachimiak, E., Poprzeczko, M., Pigino, G., & Wloga, D. (2021). Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet, 17(3), e1009388.

      Ghanaeian, A., Majhi, S., McCafferty, C. L., Nami, B., Black, C. S., Yang, S. K., Legal, T., Papoulas, O., Janowska, M., Valente-Paterno, M., Marcotte, E. M., Wloga, D., & Bui, K. H. (2023). Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. Nat Commun, 14(1), 5741.

      Leung, M. R., Zeng, J., Wang, X., Roelofs, M. C., Huang, W., Zenezini Chiozzi, R., Hevler, J. F., Heck, A. J. R., Dutcher, S. K., Brown, A., Zhang, R., & Zeev-Ben-Mordehai, T.  (2023). Structural specializations of the sperm tail. Cell, 186(13), 2880-2896.e2817

      Walton, T., Gui, M., Velkova, S., Fassad, M. R., Hirst, R. A., Haarman, E., O'Callaghan, C., Bottier, M., Burgoyne, T., Mitchison, H. M., & Brown, A. (2023). Axonemal structures reveal mechanoregulatory and disease mechanisms. Nature, 618(7965), 625-633.

      Zhou, L., Liu, H., Liu, S., Yang, X., Dong, Y., Pan, Y., Xiao, Z., Zheng, B., Sun, Y., Huang, P., Zhang, X., Hu, J., Sun, R., Feng, S., Zhu, Y., Liu, M., Gui, M., & Wu, J. (2023). Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell, 186(13), 2897-2910.e2819.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Please provide full gel for the Figure 2C experiment (could be as a supplementary file).

      Thanks for your insightful suggestions. We have replaced Figure 2C and provided the full gel in Figure 2-figure supplement 1A.

      (2) The authors write on Line 163 "In contrast, the flagellum staining appeared reduced in Ccdc113-/- seminiferous tubules (Fig. 2J, red asterisk)." However, the magnification of the pictures is not sufficient to distinguish anything in the panel mentioned, please provide others.

      Many thanks for pointing this out. We have provided the iconic figure to show the flagella defect in seminiferous tubules.

      (3) Please add statistical p-values for figures.

      Thanks for your valuable advice. We have added statistical p-values to the figures in the revised manuscript.

      (4) Line 128: Should "speculate" be "speculated"?

      Thank you for pointing out this problem. We have corrected it in the revised manuscript, as shown below:

      “Given that CFAP91 has been reported to stabilize RS on the DMTs (Bicka et al., 2022; Dymek et al., 2011; Gui et al., 2021) and cryo-EM analysis shows that CCDC113 is closed to DMTs, we speculated that CCDC113 may connect RS to DMTs by binding to CFAP91 and microtubules.”

      (5) In lines 384-385, more "-" is typed.

      Thank you for pointing out this problem. We have corrected it in the revised manuscript, as shown below:

      “Furthermore, CCDC113 colocalizes with SUN5 in the HTCA region, and immunofluorescence staining in spermatozoa shows that SUN5 is closer to the sperm nucleus than CCDC113 (Figure 7G and H). Therefore, SUN5 and CENTLEIN may be closer to the sperm nucleus than CCDC113.”

      (6) In general, the article has many typos and should be professionally proofread.

      Many thanks for pointing this out. We have thoroughly revised the manuscript with the assistance professional proofreading.

      Reviewer #2 (Recommendations For The Authors):

      Can the authors indicate in the Materials and Methods if n=3 biological replicates were done for all co-IP, EM, LM, and IF studies? The statistical analysis section indicates this but quantification is missing for most figures including co-IP, most IF, PAS staining, EM, etc.

      We thank Reviewer 2 for the insightful comments and guidance to improve our data quality. All the experiments in this study were repeated at least three times to ensure reproducibility. We have quantified the co-IP experiments in Figures 1C-H and 7A-F, the IF data in Figures 2K, 5C, and 5D, as well as the PAS staining in Figure 6C. Since electron microscopy samples require very little testicular tissue and the sections obtained are very thin, the likelihood of capturing sections specifically at the sperm head-tail junction is considerably low. This challenge makes it difficult to perform quantitative analysis and statistical evaluation in the TEM experiment. To address this limitation, we have quantified the percentage of _Ccdc113-/-_sperm heads with abnormal orientation in stages V–VIII of the seminiferous epithelium to indicate impaired head-to-tail anchorage.

      Figure S2 is compelling and might be indicated as a major figure instead of a supplementary figure.

      We appreciate the positive comment. We have included it as a major figure in Figure 3F.

      Figure 4A may be incomplete. Data sets for RNA expression suggest high expression in the ovary and other organs in males and females including the brain and are not indicated by the authors. Figure 4A may be considered for removal with a more complete study for another paper.

      Thank you for pointing out this issue. We reviewed RNA expression data from various tissues using RNA-Seq data from Mouse ENCODE (https://www.ncbi.nlm.nih.gov/gene/244608) and found that CCDC113 is highly expressed in the testis, but not significantly in the ovary and brain (Figure 4- figure supplement 1A). Additionally, we re-evaluated CCDC113 protein levels in the spleen, lung, kidney, testis, intestine, stomach, brain, and ovary, confirming that it is highly expressed in the testes, with negligible expression in the ovary and brain (Figure 4- figure supplement 1B). In line with Reviewer 2's suggestion, we have removed Figure 4A in the revised manuscript.

      There are grammatical errors throughout the manuscript and Figure 7 is truncated.

      Thank you for pointing out this problem. We have thoroughly revised the manuscript with the assistance professional proofreading.

      The Introduction and Discussion parts of the paper may need some clarification for the general reader. The material in the "Additional Context " section of the critique below may be a helpful place to introduce what a stage is, and the steps in germ cell development in the testis with the latter of course where and when the flagellum develops.

      We appreciate your valuable suggestions. We have referred to the material in the “Additional Context” section to introduce the stages of spermatogenesis and the steps in germ cell development in the testis in the introduction and results.

      “Male fertility relies on the continuous production of spermatozoa through a complex developmental process known as spermatogenesis. Spermatogenesis involves three primary stages: spermatogonia mitosis, spermatocyte meiosis, and spermiogenesis. During spermiogenesis, spermatids undergo complex differentiation processes to develop into spermatozoa, which includes nuclear elongation, chromatin remodeling, acrosome formation, cytoplasm elimination, and flagellum development (Hermo et al., 2010).”

      Hermo, L., Pelletier, R. M., Cyr, D. G., & Smith, C. E. (2010). Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microscopy research and technique, 73(4), 241–278. https://doi.org/10.1002/jemt.20783

      “Pioneering work in the mid-1950s used the PAS stain in histologic sections of mouse testis to visualize glycoproteins of the acrosome and Golgi in seminiferous tubules (Oakberg, 1956). The pioneers discovered in cross-sectioned seminiferous tubules the association of differentiating germ cells with successive layers to define different stages that in mice are twelve, indicated as Roman numerals (XII). For each stage, different associations of maturing germ cells were always the same with early cells in differentiation at the periphery and more mature cells near the lumen. In this way, progressive differentiation from stem cells to mitotic, meiotic, acrosome-forming, and post-acrosome maturing spermatocytes was mapped to define spermatogenesis with the XII stages in mice representing the seminiferous cycle. The maturation process from acrosome-forming cells to mature spermatocytes is defined as spermiogenesis with 16 different steps that are morphologically distinct spermatids (O'Donnell L, 2015).”

      Oakberg, E. F. (1956). A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. The American journal of anatomy, 99(3), 391-413. https://doi.org/10.1002/aja.1000990303

      O'Donnell L. (2015). Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis, 4(2), e979623. https://doi.org/10.4161/21565562.2014.979623

      For the Discussion, the authors indicate that the function of CCDC113 in mammals is unknown yet the authors point to the work of Walton et al on human respiratory epithelia that points to a function for CCDC96/113. The work in the manuscript here does indicate a role in sperm flagella and the head-to-tail coupling apparatus but remains descriptive until the methodology of Walton et al is applied. Hopefully, the authors will consider it for a follow-up study.

      Thank you for pointing out this problem. We have revised this part and highlighted the Walton et al’s work in the Discussion.

      “CCDC113 is a highly evolutionarily conserved component of motile cilia/flagella. Studies in the model organism, Tetrahymena thermophila, have revealed that CCDC113 connects RS3 to dynein g and the N-DRC, which plays essential role in cilia motility (Bazan et al., 2021; Ghanaeian et al., 2023). Recent studies have also identified the localization of CCDC113 within the 96-nm repeat structure of the human respiratory epithelial axoneme, and localizes to the linker region among RS, N-DRC and DMTs (Walton et al., 2023). In this study, we reveal that CCDC113 is indispensable for male fertility, as Ccdc113 knockout mice produce spermatozoa with flagellar defects and head-tail linkage detachment (Figure 3D).”

      “Overall, we identified CCDC113 as a structural component of both the flagellar axoneme and the HTCA, where it performs dual roles in stabilizing the sperm axonemal structure and maintaining the structural integrity of HTCA. Given that the cryo-EM of sperm axoneme and HTCA could powerfully strengthen the role of CCDC113 in stabilizing sperm axoneme and head-tail coupling apparatus, it a valuable direction for future research.”

      The Discussion may be focused on the key aspects of CCDC113 related to sperm flagella and the head-to-tail coupling apparatus that represent a genuine advance. The more speculative parts of the Discussion that have not been addressed by experimentation in the Results section may be considered for removal in the Discussion section.

      Thank you for pointing out this. We have removed the speculative parts of the Discussion that have not been addressed by experimentation in the Results section.

      Additional Context to help readers understand the significance of the work:

      Pioneering work in the mid-1950s used the periodic acid Schiff (PAS) stain in histologic sections of rodent testis to visualize glycoproteins of the acrosome and Golgi in seminiferous tubules. The pioneers discovered in cross-sectioned seminiferous tubules the association of differentiating germ cells with successive layers to define different stages that in mice are twelve, indicated as Roman numerals (XII). For each stage, different associations of maturing germ cells were always the same with early cells in differentiation at the periphery and more mature cells near the lumen. In this way, progressive differentiation from stem cells to mitotic, meiotic, acrosome-forming, and post-acrosome maturing spermatocytes was mapped to define spermatogenesis with the XII stages in mice representing the seminiferous cycle. The maturation process from acrosome-forming cells to mature spermatocytes is defined as spermiogenesis with 19 different steps that are morphologically distinct spermatids. It is from steps 8-19 of spermiogenesis that the formation of the flagellum takes place. Final maturation occurs in the epididymis as sperm move through the caput, corpus, and cauda of the organ with motile spermatozoa generated.

      Thank you very much!

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Syngnathid fishes (seahorses, pipefishes, and seadragons) present very particular and elaborated features among teleosts and a major challenge is to understand the cellular and molecular mechanisms that permitted such innovations and adaptations. The study provides a valuable new resource to investigate the morphogenetic basis of four main traits characterizing syngnathids, including the elongated snout, toothlessness, dermal armor, and male pregnancy. More particularly, the authors have focused on a late stage of pipefish organogenesis to perform single-cell RNA-sequencing (scRNA-seq) completed by in situ hybridization analyses to identify molecular pathways implicated in the formation of the different specific traits. 

      The first set of data explores the scRNA-seq atlas composed of 35,785 cells from two samples of gulf pipefish embryos that authors have been able to classify into major cell types characterizing vertebrate organogenesis, including epithelial, connective, neural, and muscle progenitors. To affirm identities and discover potential properties of clusters, authors primarily use KEGG analysis that reveals enriched genetic pathways in each cell types. While the analysis is informative and could be useful for the community, some interpretations appear superficial and data must be completed to confirm identities and properties. Notably, supplementary information should be provided to show quality control data corresponding to the final cell atlas including the UMAP showing the sample source of the cells, violin plots of gene count, UMI count, and mitochondrial fraction for the overall

      dataset and by cluster, and expression profiles on UMAP of selected markers characterizing cluster identities. 

      We thank the reviewer for these suggestions, and have added several figures and supplemental files in response. We added a supplemental UMAP showing the sample that each cell originated (S1). We also added supplemental violin plots for each sample showing the gene count, unique molecular identifier (UMI) count, mitochondrial fraction, and the doublet scores (S2). We added feature plots of zebrafish marker genes for these major cell types and marker genes identified from our dataset to the supplement (S3:S57). We also provided two supplemental files with marker genes. These changes should clarify the work that went into labeling the clusters. Although some of the cluster labels are general, we decided it would be unwise to label clusters with speculated specific annotations. We only gave specific annotations to clusters with concrete markers and/or in situ hybridization (ISH) results that cemented an annotation.  As shown in the new supplemental figures and files, certain clusters had clear, specific markers while others did not. Therefore, we used caution when we annotated clusters without distinct markers. 

      The second set of data aims to correlate the scRNA-seq analysis with in situ hybridizations (ISH) in two different pipefish (gulf and bay) species to identify and characterize markers spatially, and validate cell types and signaling pathways active in them. While the approach is rational, the authors must complete the data and optimize labeling protocols to support their statements. One major concern is the quality of ISH stainings and images; embryos show a high degree of pigmentation that could hide part of the expression profile, and only subparts and hardly detectable tissues/stainings are presented. The authors should provide clear and good-quality images of ISH labeling on whole-mount specimens, highlighting the magnification regions and all other organs/structures (positive controls) expressing the marker of interest along the axis. Moreover, ISH probes have been designed and produced on gulf pipefish genome and cDNA respectively, while ISH labeling has been performed indifferently on bay or gulf pipefish embryos and larvae. The authors should specify stages and species on figure panels and should ensure sequence alignment of the probe-targeted sequences in the two species to validate ISH stainings in the bay pipefish. Moreover, spatiotemporal gene expression being a very dynamic process during embryogenesis, interpretations based on undefined embryonic and larval stages of pipefish development and compared to 3dpf zebrafish are insufficient to hypothesize on developmental specificities of pipefish features, such as on the absence of tooth primordia that could represent a very discrete and transient cell population. The ISH analyses would require a clean and precise spatiotemporal expression comparison of markers at the level of the entire pipefish and zebrafish specimens at well-defined stages, otherwise, the arguments proposed on teleost innovations and adaptations turn out to be very speculative. 

      We are appreciative of the reviewer’s feedback. We primarily used the in situ hybridization (ISH) data as supplementary to the scRNAseq library and we are aware that further evidence is necessary to identify origins of syngnathid’s evolutionary novelties. Our goal was to provide clues for the developmental genetic basis of syngnathid derived features.  We hope that our study will inspire future investigations and are excited for the prospect that future research could include this reviewer’s ideas. 

      All of the developmental stages and species information for the embryos used were in the figure captions as well as in supplemental file 6. Because we primarily used wild caught embryos, we did not have specific ages of most embryos. Syngnathid species are challenging to culture in the laboratory, and extracting embryos requires euthanizing the father which makes it difficult to obtain enough embryos for ISH. In addition, embryos do not survive long when removed from the brood pouch prematurely. We supplemented our ISH with bay pipefish caught off the Oregon coast because these fish have large broods. Wild caught pregnant male bay pipefish were immediately euthanized, and their broods were fixed. Because we did not have their age, we classified them based on developmental markers such as presence of somites and the extent of craniofacial elongation. Although these classification methods are not ideal, they are consistent with the syngnathid literature (Sommer et al. 2012). Since the embryos used for the ISH were primarily wild caught, we had a few different developmental stages represented in our ISH data. For our tooth primordia search, we used embryos from the same brood (therefore, same stage) for these experiments.

      We understand the concern for the degree of pigmentation in the samples. We completed numerous bleach trials before embarking on the in situ hybridization experiments. After completing a bleach trial with a probe created from the gene tnmd for ISH_,_ we noticed that the bleached embryos were missing expression domains found in the unbleached embryos. We were, therefore, concerned that using bleached embryos for our experiments would result incorrect conclusions about the expression domains of these genes. We sparingly used bleaching at older stages, hatched larvae, where it was fundamentally necessary to see staining. As stated above, the primary goal of this manuscript was to generate and annotate the first scRNA-seq atlas in a syngnathid, and the ISHs were utilized to support inferred cluster annotations only through a positive identification of marker gene expression in expected tissues/cells. Therefore, the obscuring of gene expression by pigmentation would have resulted in the absence of evidence for a possible cluster annotation, not an incorrect annotation.

      For the ease of viewing the ISHs, we improved annotations and clarity. We increased the brightness and contrast of images. In the original submission, we had to lower the image resolution to make the submission file smaller. We hope that these improvements plus the true image quality improves clarity of ISH results. We also included alignments in our supplementary files of bay pipefish sequences to the Gulf pipefish probes to showcase the high degree of sequence similarity. 

      Sommer, S., Whittington, C. M., & Wilson, A. B. (2012). Standardised classification of pre-release development in male-brooding pipefish, seahorses, and seadragons (Family Syngnathidae). BMC Developmental Biology, 12, 12–15. 

      To conclude, whereas the scRNA-seq dataset in this unconventional model organism will be useful for the community, the spatiotemporal and comparative expression analyses have to be thoroughly pushed forward to support the claims. Addressing these points is absolutely necessary to validate the data and to give new insights to understand the extraordinary evolution of the Syngnathidae family. 

      We really appreciate the reviewer’s enthusiasm for syngnathid research, and hope that the additional files and explanation of the supporting role of the ISHs have adequately addressed their concerns. We share the reviewer’s enthusiasm and are excited for future work that can extend this study. 

      Reviewer #2 (Public Review):

      Summary: 

      The authors present the first single-cell atlas for syngnathid fishes, providing a resource for future evolution & development studies in this group. 

      Strengths: 

      The concept here is simple and I find the manuscript to be well written. I like the in situ hybridization of marker genes - this is really nice. I also appreciate the gene co-expression analysis to identify modules of expression. There are no explicit hypotheses tested in the manuscript, but the discovery of these cell types should have value in this organism and in the determination of morphological novelties in seahorses and their relatives.  

      We are grateful for this reviewer’s appreciation of the huge amount of work that went into this study, and we agree that the in situ hybridizations (ISHs) support the scRNAseq study as we intended. We appreciate that the reviewer thinks that this work will add value to the syngnathid field.

      Weaknesses: 

      I think there are a few computational analyses that might improve the generality of the results. 

      (1) The cell types: The authors use marker gene analysis and KEGG pathways to identify cell types. I'd suggest a tool like SAMap (https://elifesciences.org/articles/66747) which compares single-cell data sets from distinct organisms to identify 'homologous' cell types - I imagine the zebrafish developmental atlases could serve as a reasonable comparative reference. 

      We appreciate the reviewer’s request, and in fact we would have loved to integrate our dataset with zebrafish. However, syngnathid’s unique craniofacial development makes it challenging to determine the appropriate stage for comparison. While 3 days post fertilization (dpf) zebrafish data were appropriate for comparisons of certain cell types (e.g. epidermal cells), it would have been problematic for other cell types (e.g. osteoblasts) that are not easily detectable until older zebrafish stages. Therefore, determining equivalent stages between these species is difficult and contains potential for error. Future research should focus on trying to better match stages across syngnathids and zebrafish (and other fish species such as stickleback). Studies of this nature promise to uncover the role of heterochrony in the evo-devo of syngnathid’s unique snouts.

      (2) Trajectory analyses: The authors suggest that their analyses might identify progenitor cell states and perhaps related differentiated states. They might explore cytoTRACE and/or pseudotime-based trajectory analyses to more fully delineate these ideas.

      We thank the reviewer for this suggestion! We added a trajectory analysis using cytoTRACE to the manuscript. It complemented our KEGG analysis well (L172-175; S73) and has improved the manuscript.

      (3) Cell-cell communication: I think it's very difficult to identify 'tooth primordium' cell types, because cell types won't be defined by an organ in this way. For instance, dental glia will cluster with other glia, and dental mesenchyme will likely cluster with other mesenchymal cell types. So the histology and ISH is most convincing in this regard. Having said this, given the known signaling interactions in the developing tooth (and in development generally) the authors might explore cell-cell communication analysis (e.g., CellChat) to identify cell types that may be interacting. 

      We agree! It would have been a wonderful addition to the paper to include a cell-cell communication analysis. One limitation of CellChat is that it only includes mouse and human orthologs. Given concerns of reviewer #3 for mouse-syngnathid comparisons, we decided to not pursue CellChat for this study. We are looking forward to future cell communication resources that include teleost fishes.

      Reviewer #3 (Public Review): 

      Summary: 

      This study established a single-cell RNA sequencing atlas of pipefish embryos. The results obtained identified unique gene expression patterns for pipefish-specific characteristics, such as fgf22 in the tip of the palatoquadrate and Meckel's cartilage, broadly informing the genetic mechanisms underlying morphological novelty in teleost fishes. The data obtained are unique and novel, potentially important in understanding fish diversity. Thus, I would enthusiastically support this manuscript if the authors improve it to generate stronger and more convincing conclusions than the current forms. 

      Thank you, we appreciate the reviewer’s enthusiasm!

      Weaknesses: 

      Regarding the expression of sfrp1a and bmp4 dorsal to the elongating ethmoid plate and surrounding the ceratohyal: are their expression patterns spatially extended or broader compared to the pipefish ancestor? Is there a much closer species available to compare gene expression patterns with pipefish? Did the authors consider using other species closely related to pipefish for ISH? Sfrp1a and bmp4 may be expressed in the same regions of much more closely related species without face elongation. I understand that embryos of such species are not always accessible, but it is also hard to argue responsible genes for a specific phenotype by only comparing gene expression patterns between distantly related species (e.g., pipefish vs. zebrafish). Due to the same reason, I would not directly compare/argue gene expression patterns between pipefish and mice, although I should admit that mice gene expression patterns are sometimes helpful to make a hypothesis of fish evolution. Alternatively, can the authors conduct ISH in other species of pipefish? If the expression patterns of sfrp1a and bmp4 are common among fishes with face elongation, the conclusion would become more solid. If these embryos are not available, is it possible to reduce the amount of Wnt and BMP signal using Crispr/Cas, MO, or chemical inhibitor? I do think that there are several ways to test the Wnt and/or BMP hypothesis in face elongation. 

      We appreciate the reviewer’s suggestion, and their recognition for challenges within this system. In response to this comment, we completed further in situ hybridization experiments in threespine stickleback, a short snouted fish that is much more closely related to syngnathids than is zebrafish, to make comparisons with pipefish craniofacial expression patterns (S76-S79). We added ISH data for the signaling genes (fgf22, bmp4, and sfrp1a) as well as prdm16. Through adding this additional ISH results, we speculated that craniofacial expression of bmp4, sfrp1a, and prdm16 is conserved across species. However, compared to the specific ceratohyal/ethmoid staining seen in pipefish, stickleback had broad staining throughout the jaws and gills. These data suggest that pipefish have co-opted existing developmental gene networks in the development of their derived snouts. We added this interpretation to the results and discussion of the manuscript (L244-L248; L262-277; L444-470).

      Recommendations for the authors:  

      Reviewing Editor (Recommendations for the Authors)

      We hope that the eLife assessment, as well as the revisions specified here, prove helpful to you for further revisions of your manuscript. 

      Revisions considered essential: 

      (1) Marker genes and single-cell dataset analyses. While these analyses have been performed to a good standard in broad terms, there is a majority view here that cell type annotations and trajectory analyses can be improved. In particular, there is question about the choice of marker genes for the current annotation. For one it can depend on the use of single marker genes (see tnnti1 example for clusters 17 and 31). Here, we recommend incorporating results from SAMap and trajectory analysis (e.g., cytoTRACE or standard pseudotime).

      Because of the reviewer comments, we became aware that we insufficiently communicated how cell clusters were annotated. We did mention in the manuscript that we did not use single marker genes to annotate clusters, but instead we used multiple marker genes for each cluster for the annotation process. We used both marker genes derived from our dataset and marker genes identified from zebrafish resources for cluster annotation. We chose single marker genes for each cluster for visualization purposes and for in situ hybridizations. However, it is clear from the reviewers’ comments that we needed to make more clear how the annotations were performed. To make this effort more clear in our revision, we included two new supplementary files – one with Seurat derived marker genes and one with marker genes derived from our DotPlot method. We also included extensive supplementary figures highlighting different markers. Using Daniocell, we identified 6 zebrafish markers per major cell type and showed their expression patterns in our atlas with FeaturePlots. We also included feature plots of the top 6 marker genes for each cluster. We hope that the addition of these 40+ plots (S3:S57) to the supplement fully addresses these concerns. 

      We appreciated the suggestion of cytotrace from reviewer #2! We ran cytotrace on three major cell lineages (neural, muscle, and connective; S73) which complemented our KEGG analysis in suggesting an undifferentiated fate for clusters 8, 10, and 16. We chose to not run SAMap because it is a scRNA-seq library integration tool. Although we compared our lectin epidermal findings to 3 dpf zebrafish scRNA-seq data, we did not integrate the datasets out of concern that we could draw erroneous conclusions for other cell types.  Future work that explores this technical challenge may uncover the role of heterochrony in syngnathid craniofacial development. We detail these changes more fully in our responses to reviewers.

      (2) The claims regarding evolutionary novelty and/or the genes involved are considered speculative. In part, this comes from relying too heavily on comparisons against zebrafish, as opposed to more closely related species. For example, the discussion regarding C-type lectin expression in the epidermis and KEGG enrichment (lines 358 - 364) seems confusing. Another good example here is the discussion on sfrp1a (lines 258 - 261). Here, the text seems to suggest craniofacial sfrp1a expression (or specifically ethmoid expression?) is connected to the development of the elongated snout in pipefish. However, craniofacial expression of sfrp1a is also reported in the arctic charr, which the authors grouped into fishes with derived craniofacial structures. Separately, sfrp2 expression was also reported in stickleback fish, for example. Do these different discussions truly support the notion that sfrp1a expression is all that unique in pipefish, rather than that pipefish and zebrafish are only distantly related and that sfrp1a was a marker gene first, and co-opted gene second? The authors should respond to the comments in the public review related to this aspect, and include more informative comparison and discussion. 

      A much more nuanced discussion with appropriate comparisons and caveats would be strongly recommended here.  

      We appreciate this insight and used it as a motivator to complete and add select comparative ISH data to this manuscript. We added in situ hybridization experiments from stickleback fish for craniofacial development genes (sfrp_1a, prdm16, bmp4_, and fgf22; S76-S79).  After adding stickleback ISH to the manuscript, we were able to make comparisons between pipefish and stickleback patterns and draw more informed conclusions (L244-L248; L262-277; L444-470). We added additional nuance to the discussion of the head, tooth (L485-489), and male pregnancy (L358-L391) sections to address concerns of study limitations. We describe in more detail these additional data in response to reviewers.

      (3) In situ hybridization results: as already included above, there is generally weak labeling of species, developmental stages, and other markings that can provide context. The collective feeling here is that as it is currently presented, the ISH results do not go too far beyond simply illustrative purposes. To take these results further, more detailed comparison may be needed. At a minimum, far better labeling can help avoid making the wrong impression. 

      Based on the reviewers’ comments, we made changes to improve ISH clarity and add select comparative ISH findings. ISH was used to further interpretation of the scRNAseq atlas. All the developmental stages and species information for the embryos used were in the figure captions as well as in supplemental file 4. Since we primarily used wild caught embryos, we did not have specific ages of most embryos. The technical challenges of acquiring and staging Syngnathus embryos are detailed above. Because we did not have their age, we classified them based on developmental markers (such as presence of somites and the extent of craniofacial elongation). Although these classification methods are not ideal, they are consistent with the syngnathid literature (Sommer et al. 2012).  

      We followed reviewer #1’s recommendations by adding an annotated graphic of a pipefish head, aligning bay and Gulf pipefish sequences for the probe regions, expanding out our supplemental figures for ISH into a figure for each probe, and improving labeling. These changes improved the description of the ISH experiments and have increased the quality of the manuscript.

      We would have loved to complete detailed comparative studies as suggested, but doing such a complete analysis was not feasible for this study. Therefore, we completed an additional focused analysis. We followed reviewer #3’s idea and added ISHs from threespine stickleback, a short snouted fish, for 4 genes (sfrp1a, prdm16, fgf22, and bmp4). While more extensive ISHs tracking all marker genes through a variety of developmental stages in pipefish and stickleback would have provided crucial insights, we feel that it is beyond the scope of this study and would require a significant amount of additional work. We, thus, primarily interpreted the ISH results as illustrative data points in our discussion. As we state in the response to reviewer 1, the generation and annotation of the first scRNA-seq atlas in a syngnathid is the primary goal of this manuscript.  The ISHs were utilized primarily to support inferred cluster annotations if a positive identification of marker gene expression in expected tissues/cells occurred. 

      Reviewer #1 (Recommendations For The Authors): 

      While the scRNA-seq dataset offers a valuable resource for evo-devo analyses in fish and the hypotheses are of interest, critical aspects should be strengthened to support the claims of the study. 

      Concerning the scRNA-seq dataset, the major points to be addressed are listed below: 

      - Supplementary file 3 reports the single markers used to validate cluster annotations. To confirm cluster identities, more markers specific to each cluster should be highlighted and presented on the UMAP. 

      We recognize the reviewer’s concern and had in reality used numerous markers to annotate the clusters. Based upon the reviewer’s comment we decided to make this clear by creating feature plots for every cluster with the top 6 marker genes. These plots showcase gene specificity in UMAP space. We also added feature plots for zebrafish marker genes for key cell types. Through these changes and the addition of 54 supplementary figures (S3:S57), we hope that it is clear that numerous markers validated cluster identity.

      For example, as clusters 17 and 37 share the same tnnti1 marker, which other markers permit to differentiate their respective identity. 

      This is a fair point. Cluster 17 and 37 both are marked by a tnni1 ortholog.

      Different paralogous co-orthologs mark each cluster (cluster 17: LOC125989146; cluster 37: LOC125970863). In our revision to the above comment, additional (6) markers per cluster were highlighted which should remedy this concern. 

      - L146: the low number of identified cartilaginous cells (only 2% of total connective tissue cells) appears aberrant compared to bone cell number, while Figure 1 presents a welldeveloped cartilaginous skeleton with poor or no signs of ossification. Please discuss this point. 

      We also found this to be interesting and added a brief discussion on this subject to the results section (L147-L149). Single cell dissociations can have variable success for certain cell types. It is possible that the cartilaginous cells were more difficult to dissociate than the osteoblast cells.

      - L162: pax3a/b are not specific to muscle progenitors as the genes are also expressed in the neural tube and neural crest derivatives during organogenesis. Please confirm cluster 10 identity.  

      Thank you for the reminder, we added numerous feature plots that explored zebrafish (from Daniocell) and pipefish markers (identified in our dataset). Examining zebrafish satellite muscle markers (myog, pabpc4, and jam2a) shows a strong correspondence with cluster #10.

      - L198: please specify in the text the pigment cell cluster number. 

      We completed this change.

      - L199: it is not clear why considering module 38 correlated to cluster 20 while modules 2/24 appear more correlated according to the p-value color code. 

      We thank the reviewer for pointing this confusing element out! Although the t-statistic value for module 38 (3.75) is lower than the t-statistics for modules 2 and 24 (5.6 and 5.2, respectively), we chose to highlight module 38 for its ‘connectivity dependence’ score. In our connectivity test, we examined whether removing cells from a specific cell cluster reduced the connectivity of a gene network. We found that removing cluster 20 led to a decrease in module 38’s connectivity (-.13, p=0) while it led to an increase in modules 2 and 24’s connectivity (.145, p=1; .145, p=9.14; our original supplemental files 9-10). Therefore, the connectivity analysis showed that module 38’s structure was more dependent on cluster 20 than in comparison with modules 2 and 24. Although you highlighted an interesting quandary, we decided that this is tangential to the paper and did not add this discussion to the manuscript. 

      - Please describe in the text Figure 4A. 

      Completed, we thank the reviewer for catching this! 

      Concerning embryo stainings, the major points to be addressed are listed below: 

      - Figure 1: please enhance the light/contrast of figures to highlight or show the absence of alcian/alizarin staining. Mineralized structures are hardly detectable in the head and slight differences can be seen between the two samples. The developmental stage should be added. Please homogenize the scale bar format (remove the unit on panels E and, G as the information is already in the text legend). It would be useful to illustrate the data with a schematic view of the structures presented in panels B, and E, and please annotate structures in the other panels.  

      We thank the reviewer for these suggestions to improve our figure. We increased the brightness and contrast for all our images. We also added an illustration of the head with labels of elements. As discussed, we used wild caught pregnant males and, therefore, do not know the exact age of the specimens. However, we described the developmental stage based on morphological observations. Slight differences in morphology between samples is expected. We and others have noticed that

      developmental rate varies, even within the same brood pouch, for syngnathid embryos. We observed several mineralization zones including in the embryos including the upper and lower jaws, the mes(ethmoid), and the pectoral fin. We recognize the cartilage staining is more apparent than the bone staining, though increasing image brightness and contrast did improve the visibility of the mineralization front.

      - All ISH stainings and images presented in Figures 4-6/ Figures S2-3 should be revised according to comments provided in the public review. 

      We thank the reviewer for providing thorough comments, we provided an in-depth response to the public review. We made several improvements to the manuscript to address their concerns. 

      - Figure 4: Figure 4B should be described before 4C in the text or inverse panels / L222 the Meckel's cartilage is not shown on Figure 4C. The schematic views in H should be annotated and the color code described / the ISH data must be completed to correlate spatially clusters to head structures. 

      We thank the reviewer for pointing this out, we fixed the issues with this figure and added annotations to the head schematics.

      - Figure 5: typo on panels 'alician' = alcian. 

      We completed this change. 

      - Figures S2-3: data must be better presented, polished / typo in captions 'relavant'= relevant. 

      Thank you for this critique, we created new supplementary figures to enhance interpretation of the data (S59-S71). In these new figures, we included a feature plot for each gene and respective ISHs.

      - Figure S3: soat2 = no evidence of muscle marker neither by ISH presented nor in the literature. 

      We realized this staining was not clear with the previous S2/S3 figures. Our new changes in these supplementary figures based on the reviewer’s ideas made these ISH results clearer. We observed soat2 staining in the sternohyoideus muscle (panel B in S71).

      Other points: 

      - The cartilage/bone developmental state (Alcian/alizarin staining) and/or ISH for classical markers of muscle development (such as pax3/myf5) could be used to clarify the This could permit the completion of a comparative analysis between the two species and the interpretation of novel and adaptative characters.  

      We appreciate this idea! We thought deeply about a well characterized comparative analysis between pipefish and zebrafish for this study. We discussed our concerns in our public response to reviewer 2. We found that it was challenging to stage match all cell types, and were concerned that we could make erroneous conclusions. For example, our pipefish samples were still inside the male brood pouch and possessed yolk sacs. However, we found osteoblast cells in our scRNAseq atlas, and in alizarin staining. Although zebrafish literature notes that the first zebrafish bone appears at 3 dpf (Kimmel et al. 1995), osteoblasts were not recognized until 5 dpf in two scRNAseq datasets (Fabian et al. 2022; Lange et al. 2023). A 5dpf zebrafish is considered larval and has begun hunting. Therefore, we chose to not integrate our data out of concern that osteoblast development may occur at different timelines between the fishes. 

      Fabian, P., Tseng, K.-C., Thiruppathy, M., Arata, C., Chen, H.-J., Smeeton, J., Nelson, N., & Crump, J. G. (2022). Lifelong single-cell profiling of cranial neural crest diversification in zebrafish. Nature Communications 2022 13:1, 13(1), 1–13. 

      Lange, M., Granados, A., VijayKumar, S., Bragantini, J., Ancheta, S., Santhosh, S., Borja, M., Kobayashi, H., McGeever, E., Solak, A. C., Yang, B., Zhao, X., Liu, Y., Detweiler, A. M., Paul,

      S., Mekonen, H., Lao, T., Banks, R., Kim, Y.-J., … Royer, L. A. (2023). Zebrahub – Multimodal Zebrafish Developmental Atlas Reveals the State-Transition Dynamics of Late-Vertebrate Pluripotent Axial Progenitors. BioRxiv, 2023.03.06.531398. 

      Kimmel, C., Ballard, S., Kimmel, S., Ullmann, B., Schilling, T. (1995). Stages of Embryonic Development of the Zebrafish. Developmental Dynamics 203:253:-310.

      'in situs' in the text should be replaced by 'in situ experiments'.  

      We made this change (L395, L663, L666, L762).

      - Lines 562-565: information on samples should be added at the start of the result section to better apprehend the following scRNA-seq data.

      We thank the reviewer for pointing out this issue. Although we had a few sentences on the samples in the first paragraph of the result section, we understand that it was missing some critical pieces of information. Therefore, we added these additional details to the beginning of the results section (L126-L132). 

      - Lines 629-665: PCR with primers designed on gulf pipefish genome could be performed in parallel on bay and gulf cDNA libraries, and amplification products could be sequenced to analyze alignment and validate the use of gulf pipefish ISH probes in bay pipefish embryos. Probe production could also be performed using gulf primers on bay pipefish cDNA pools. 

      After the submission of this manuscript, a bay pipefish genome was prepared by our laboratory. We used this genome to align our probes, these alignments demonstrate strong sequence conservation between the species. We included these alignments in our supplemental files.

      - L663: the bleaching step must be optimized on pipefish embryos. 

      We understand this concern and had completed several bleach optimization experiments prior to publication. Although we found that bleaching improved visibility of staining, we noticed with the probe tnmd that bleached embryos did not have complete staining of tendons and ligaments. The unbleached embryos had more extensive staining than the bleached embryos. We were concerned that bleaching would lead to failures to detect expression domains (false negatives) important for our analysis. Therefore, we did not use bleaching with our in situs experiments (except with hatched fish with a high degree of pigmentation). 

      - Indicate the number of specimens analyzed for each labeling condition.  

      We thank the reviewer for noticing this issue. We added this information to the methods (L766-767).

      - Describe the fixation and pre-treatment methods previous to ISH and skeleton stainings

      We thank the reviewer for pointing out this issue, we added these descriptions (L765-766; L772-774). 

      Reviewer #3 (Recommendations For The Authors): 

      (1) If sfrp1a expression is observed also in other fish species with derived craniofacial structures, it's important to discuss this more in the Discussion. This could be a common mechanism to modify craniofacial structures, although functional tests are ultimately required (but not in this paper, for sure). Can lines 421-428 involve the statement "a prolonged period of chondrocyte differentiation" underlies craniofacial diversity?

      This is a great idea, and we added a sentence that captures this ethos (L451-452).

      (2) Lines 334-346 need to be rephrased. It's hard to understand which genes are expressed or not in pipefish and zebrafish. Did "23 endocytosis genes" show significant enrichment in zebrafish epidermis, or are they expressed in zebrafish epidermis? 

      We thank the reviewer for this comment, we re-phrased this section for clarity (L365-368).

      (3) Figure 4 is missing the "D" panel and two "E" panels. 

      We thank the reviewer for noticing this, we fixed this figure.

      (4) Line 302: "whole-mount" or "whole mount"

      We thank the reviewer for the catch!

    1. Western leader, thereis no evidence to support it

      Putins tucker carlson interview, Russian ideologues and philosphers, Russia department of defense, Russian media, Russian generals, Russia's actions, the promotion of the common origins theory, Russias behavior in minsk, Russisa highlighting the 2008 Russian world project a goal to revassalize neighbors, y ea no evidence. No you just refuse to discuss the evidence

    1. In all of the runs, one observes the self-organization of structured developmental tra-jectories, where the robot explores objects and actions in a progressively more complexstage-like manner while acquiring autonomously diverse affordances and skills that canbe reused later on and that change the learning progress in more complicated tasks. Thefollowing developmental sequence was typically observed:1. In a first phase, the learner achieves unorganized body babbling.2. In a second phase, after learning a first rough model and meta-model, the robotstops combining motor primitives, exploring them one by one, but each primitive isexplored itself in a random manner.P.-Y. Oudeyer, L. B. Smith / Topics in Cognitive Science (2016) 5

      In a third phase, the learner begins to experiment with actions toward zones of its environment where the external observer knows there are objects (the robot is not provided with a representation of the concept of “object”), but in a non-affordant manner (e.g., it vocalizes at the non-responding elephant or tries to bash the teacher robot which is too far to be touched). 4. In a fourth phase, the learner now explores the affordances of different objects in the environment: typically focusing first on grasping movements with the elephant, then shifting to bashing movements with the hanging toy, and finally shifting to explorations of vocalizing toward the imitating teacher. 5. In the end, the learner has learned sensorimotor affordances with several objects, as well as social affordances, and has mastered multiple skills. None of these specific objectives were pre-programmed. Instead, they self-organized through the dynamic interaction between curiosity-driven exploration, statistical inference, the properties of the body, and the properties of the environment

    2. ig. 1. The playground experiment (Oudeyer & Kaplan, 2006; Oudeyer et al., 2007). (A) The learning context.(B) The computational architecture for curiosity-driven exploration in which the robot learner probabilisticallyselects experiences according to their potential for reducing uncertainty, that is, for learning progress. (C) Illustra-tion of a self-organized developmental sequence where the robot automatically identifies, categorizes, and shiftsfrom simple to more complex learning experiences. Figure adapted with permission from Gottlieb et al. (2013).4 P.-Y. Oudeyer, L. B. Smith / Topics in Cognitive Science (2016)

      diagram with rough setup

    3. The learner is equipped with a repertoire of motor primitives parameterized by severalcontinuous numbers that control movements of its legs, head, and a simulated vocal tract.Each motor primitive is a dynamical system controlling various forms of actions: (a) turningthe head in different directions; (b) opening and closing the mouth while crouching withvarying strengths and timing; (c) rocking the leg with varying angles and speed; (d) vocaliz-ing with varying pitches and lengths. These primitives can be combined to form a large con-tinuous space of possible actions. Similarly, sensory primitives allow the robot to detectvisual movement, salient visual properties, proprioceptive touch in the mouth, and pitch andlength of perceived sounds. For the robot, these motor and sensory primitives are initiallyblack boxes and he has no knowledge about their semantics, effects, or relations.P.-Y. Oudeyer, L. B. Smith / Topics in Cognitive Science (2016) 3

      Basic primitives which are just numbers to the robot.

    1. Briefing Doc : Approche scientifique et droits des enfants

      Ce document synthétise les principaux thèmes et idées abordés lors de l'intervention de Gabrielle Chouin et Marie-Pierre Mackiewicz sur le sujet de l'approche scientifique et des droits des enfants, notamment en lien avec la protection de l'enfance.

      Thèmes principaux :

      La scolarité des enfants protégés : * Difficultés rencontrées par ces enfants (redoublement, orientation spécialisée, accès limité aux études supérieures...) * Manque d'information et de coordination entre les institutions (protection de l'enfance et éducation nationale) * Importance de la continuité scolaire et de l'accès aux mêmes droits que les autres élèves * Exemples de disparités : bonification Parcoursup, accès aux stages en voie professionnelle... * Nécessité d'une meilleure collaboration entre professionnels (mise en place d'alliances éducatives) * La recherche participative avec des mineurs protégés : * Importance de la participation des personnes concernées pour une meilleure compréhension des problématiques * Difficultés et enjeux éthiques de ce type de recherche (gestion des rapports de pouvoir, protection des enfants, fiabilité des résultats...) * Nécessité de protocoles spécifiques et d'une adaptation des méthodes de recherche (rythme, durée, lieu, accompagnement, convivialité...) * Exemples de recherches menées : étude sur la sortie des jeunes de la protection de l'enfance, étude sur le vécu d'enfants pris en charge * Le droit à la participation des enfants : * Importance de donner la parole aux enfants et de prendre en compte leur point de vue * Différents niveaux de participation (instances scolaires, politique, recherche...) * Difficultés de faire entendre la voix des enfants et de dépasser le stade des anecdotes

      Idées/faits importants :

      • Citation : "Il y avait des jeunes [...] qui était un peu perdu sur des logiques d'orientation qui étaient parfois complètement opposées et qui pouvait pas s'associer en mettant l'acteur le le jeune en en capacité de choisir son orientation." (Gabrielle Chouin) - Souligne le manque d'information et de coordination entre les institutions concernant l'orientation des jeunes protégés.
      • Citation : "C'est comment une population qui subit des inégalités et qui est assignée au niveau identitaire [...] peut prendre parti sans être assigné au niveau identitaire." (Marie-Pierre Mackiewicz) - Met en avant l'enjeu des rapports de pouvoir et de l'identité dans la recherche participative.
      • Citation : "Le chercheur va toujours être le représentant des normes sociales de de par ce statutl et comment peut-il de ce fait accéder à la parole de de groupes stigmatisés." (Marie-Pierre Mackiewicz) - Pose la question de la légitimité du chercheur et de sa capacité à comprendre les réalités des groupes marginalisés.
      • Statistiques : 35% des jeunes sortant de l'aide sociale à l'enfance n'ont aucun diplôme ou seulement le brevet contre 16% pour les jeunes de même milieu. (France Stratégie, 2024) - Illustre les inégalités en matière de réussite scolaire pour les enfants protégés.

      Recommandations de lecture :

      Revue de littérature "Scolarité des enfants protégés" d'Aurélie Pico (2020) Note d'analyse "Scolarisation des enfants protégés" par France Stratégie (septembre 2024) Fiche "La participation collective des enfants protégés" par l'Observatoire national de la protection de l'enfance (ONPE)

      Conclusion :

      L'intervention met en lumière les défis et les opportunités liés à l'inclusion des enfants protégés, tant au niveau de leur scolarité que de leur participation à la société.

      La recherche participative apparaît comme un outil prometteur pour mieux comprendre leurs réalités et faire évoluer les politiques publiques en leur faveur.

      Remarques :

      Ce briefing doc est basé sur une transcription orale et peut contenir des erreurs de transcription. Il est important de se référer aux sources originales pour une analyse plus approfondie.

      Chronologie des événements

      • Malheureusement, les sources fournies ne permettent pas d’établir une chronologie précise des événements. Le texte est une transcription d’une intervention orale, sans marqueurs temporels clairs.
      • Cependant, on peut extraire quelques éléments pour une chronologie partielle:

      Avant 2011:

      • Marie-Pierre Mackiewicz travaille comme assistante sociale en Picardie et participe à la protection de l’enfance.
      • Elle entreprend des études en sciences de l’éducation et rédige un mémoire sur la scolarité des élèves protégés.
      • Manque de recherches et de ressources sur la scolarité des élèves protégés en France.

      2011-2014:

      • Gabrielle Chouin, alors étudiante, participe aux premières concertations nationales sur le droit à l'écoute et à la participation des enfants protégés.
      • Elle rencontre Marie-Pierre Mackiewicz lors de ces concertations.
      • Début des recherches universitaires sur la scolarité des élèves protégés.

      2014:

      Marie-Pierre Mackiewicz obtient un poste de maître de conférence à l’IUFM du Nord-Pas-de-Calais.

      Entre 2014 et 2023:

      • Marie-Pierre Mackiewicz travaille à l’Observatoire national de l’enfance en danger (devenu Observatoire national de l’enfance).
      • Elle obtient un poste de maître de conférence à l’université de Créteil.
      • Elle mène plusieurs recherches, dont une recherche majeure avec des jeunes majeurs passés par la protection de l’enfance, qui donne lieu à une pièce de théâtre.
      • Une autre recherche est menée avec des enfants encore pris en charge, mais rencontre des difficultés et est moins valorisée.
      • Une recherche sur la scolarité des enfants protégés est menée sans la participation de jeunes.
      • 4 avril 2023:

      Victoire pour les élèves placés : ils bénéficient désormais de la bonification lors de leurs vœux sur Parcoursup. 2020:

      La Cour des comptes pointe des défaillances dans le suivi de la scolarité des enfants protégés. La Stratégie nationale de prévention concernant la protection de l’enfance définit des mesures pour améliorer la scolarité et l’accompagnement scolaire de ces enfants.

      Personnages principaux

      • Marie-Pierre Mackiewicz: Maître de conférence et chercheuse en sciences de l’éducation, spécialisée dans la protection de l’enfance. Elle a travaillé comme assistante sociale avant de se consacrer à la recherche. Elle a mené plusieurs recherches participatives avec des jeunes passés par la protection de l’enfance et s’intéresse particulièrement à la scolarité de ces enfants.
      • Gabrielle Chouin: Ancienne enfant placée, elle est devenue une militante pour les droits des enfants et des jeunes. Elle s'est impliquée dans des concertations nationales et a participé à des recherches sur la protection de l'enfance. Elle travaille avec des associations d’anciens enfants placés.
      • Laurence Rossignol: Ministre des Familles, de l'Enfance et des Droits des femmes de 2014 à 2016. Elle a mis en place les premières concertations nationales sur le droit à l'écoute et à la participation des enfants protégés.
      • Adrien Taquet: Secrétaire d'État chargé de l'Enfance et des Familles de 2019 à 2022. Il a présidé un groupe de travail sur l'ambition scolaire des enfants protégés.
      • Valérie Cabuil: Rectrice d’académie. Elle a co-présidé avec Adrien Taquet le groupe de travail sur l'ambition scolaire des enfants protégés.
      • Pierine Robin: Chercheuse en sciences de l’éducation, elle a collaboré avec Marie-Pierre Mackiewicz sur plusieurs recherches, notamment celles menées avec des jeunes majeurs et des enfants encore pris en charge.
      • Régine Sirota: Sociologue française, elle a contribué à l’établissement de la sociologie de l’enfance en France. Ses travaux interrogent la participation des enfants dans la recherche et les enjeux de la représentation de leur parole.

      Remarques

      • La transcription est parfois difficile à suivre et il manque des informations contextuelles pour une analyse plus approfondie.
      • La chronologie est partielle et il est possible que certains événements n’aient pas été relevés.
      • La liste des personnages n’est pas exhaustive et ne mentionne que les personnes les plus importantes.
      • J'espère que ces informations vous seront utiles.

      Table des Matières: Approche Scientifique et Droits des Enfants

      Introduction

      Cette table des matières structure l'intervention de Gabrielle Chouin et Marie-Pierre Mackiewicz lors d'une conférence portant sur l'approche scientifique et les droits des enfants.

      I. Intervention de Gabrielle Chouin: Témoignage et Plaidoyer pour les Droits des Enfants Protégés

      A. Contexte personnel et engagement initial (2011-2014)

      Gabrielle Chouin évoque son premier mémoire universitaire portant sur la scolarité des élèves protégés et l'influence du partenariat entre la protection de l'enfance et l'éducation nationale. Elle souligne le manque d'information et de communication entre ces deux institutions, conduisant à des orientations scolaires parfois contradictoires et à un manque de choix pour les jeunes. Son engagement l'amène à participer à des concertations nationales, où elle défend le droit à l'écoute et à la participation effective des jeunes.

      B. Importance des associations d'anciens protégés et l'évolution de la recherche

      Gabrielle Chouin insiste sur le rôle crucial des associations d'anciens protégés (ADPEP) dans l'information et la défense des droits des jeunes. Elle note un développement significatif de la recherche sur la scolarité des élèves protégés au cours des dix dernières années.

      C. Exemples de disparités et plaidoyer pour une continuité scolaire

      Des exemples concrets de disparités entre élèves protégés et autres élèves sont présentés, notamment concernant l'accès aux bourses et aux stages (PFMP). Gabrielle Chouin plaide pour une meilleure collaboration entre protection de l'enfance et éducation nationale, afin d'assurer une continuité scolaire et des droits égaux pour tous.

      D. L'importance du droit à la participation et la collaboration entre acteurs

      Le droit à la participation ne doit pas être réservé aux élèves protégés, mais s'étendre à tous, via des instances comme les Conseils de Vie Collégienne et Lycéenne.

      L'intervention souligne la nécessité d'une collaboration entre différents acteurs (professionnels, chercheurs, associations) pour faire progresser les droits des enfants. II. Intervention de Marie-Pierre Mackiewicz: La Recherche Participative avec des Mineurs Protégés

      A. Introduction et parcours personnel

      Marie-Pierre Mackiewicz présente son parcours professionnel et ses recherches en sciences de l'éducation, notamment sur la coéducation et la protection de l'enfance.

      Elle introduit le concept de "coéducation professionnalisée", où la communication concernant la situation d'un enfant se fait entre professionnels de l'école et de la protection de l'enfance.

      B. La recherche par les pairs: contexte et conditions

      Présentation d'une recherche par les pairs menée avec 14 jeunes passés par la protection de l'enfance, en partenariat avec l'ONE, des conseils départementaux et des institutions.

      Importance de créer des conditions de travail spécifiques pour ce type de recherche, incluant des espaces et des horaires flexibles, afin de favoriser la collaboration et la confiance.

      C. Mise en perspective des recherches participatives

      Historique des recherches participatives, apparues dans les années 70, et leur objectif de donner la parole aux populations marginalisées et de questionner les rapports de pouvoir.

      Lien avec la protection de l'enfance et la nécessité de sortir d'une vision de l'enfant "symptôme" ou "à problème".

      D. Questionnements et enjeux des recherches participatives avec des mineurs protégés

      Différents questionnements sont abordés: la place des jeunes au-delà de la simple participation à l'enquête, la fiabilité et l'intérêt des résultats, le risque d'émancipation ou de réassignation identitaire.

      Discussion sur les ambiguïtés de "faire entendre la voix de l'enfant": comment parler pour l'enfant, comment structurer les anecdotes, comment tenir compte du contexte et des "gatekeepers" institutionnels.

      E. Protocoles de protection et adaptation des méthodes de recherche

      Nécessité de mettre en place des protocoles spécifiques pour protéger les enfants impliqués dans la recherche, tout en assurant la validité des données.

      Adaptation des méthodes de recherche en fonction de l'âge des enfants: la capacité d'élaborer un discours sur le passé diffère entre adolescents et jeunes enfants.

      F. Difficultés et défis de la recherche participative

      La dissymétrie de pouvoir entre chercheurs et populations marginalisées, la nécessité pour le chercheur de se décentrer et de reconnaître les pratiques "illégitimes" des personnes étudiées.

      Risque d'exposition et de mise à mal des participants, obligation de respecter leurs limites et d'accepter d'être remis en question.

      G. Exemples de recherches menées et leçons apprises

      Présentation de deux recherches participatives: l'une sur la sortie des jeunes de la protection de l'enfance, ayant donné lieu à une pièce de théâtre et à la création d'une association; l'autre sur le vécu d'enfants encore pris en charge.

      Différences observées en fonction de l'âge des participants et de l'implication des chercheurs pairs dans l'analyse et l'écriture.

      H. L'importance des partenariats et la résistance aux pressions institutionnelles

      Difficultés liées aux partenariats avec les institutions: imposition de priorités, sélection des participants, filtrage des résultats, enjeux d'image de marque et de financement.

      Nécessité pour les chercheurs de résister à ces pressions et de préserver l'intégrité de leurs travaux.

      III. La Scolarisation des Enfants de la Protection de l'Enfance: Un Enjeu Majeur

      A. Évolution du paysage et prise de conscience des difficultés

      Changements récents dans la prise en charge de la scolarité des enfants protégés, suite à des rapports de la Cour des comptes et à la stratégie nationale de prévention.

      Mesures mises en place pour améliorer l'accompagnement scolaire et lutter contre les inégalités.

      B. Données chiffrées et constats alarmants

      Présentation de statistiques alarmantes sur la scolarité des enfants protégés: taux d'obtention de diplômes, redoublements, orientations spécialisées, accès aux études supérieures, emplois disqualifiés.

      Comparaison avec les enfants de milieux sociaux similaires, soulignant l'impact spécifique de la protection de l'enfance.

      C. Obstacles à la réussite scolaire et facteurs de risque

      Identification des obstacles liés à la trajectoire familiale des enfants avant et pendant la prise en charge: placements multiples, instabilité, précarité, etc.

      Impact de la durée, du type de placement et de l'âge de l'enfant sur ses chances de réussite scolaire.

      D. Appel à l'engagement et à la confiance en la capacité de réussite de ces enfants

      Importance de croire en la possibilité pour les enfants protégés de réussir leur scolarité et d'avoir des parcours positifs.

      Responsabilité collective de tous les acteurs (professionnels, institutions, chercheurs, etc.) pour soutenir ces enfants et lutter contre les inégalités.

      Conclusion

      L'intervention de Gabrielle Chouin et Marie-Pierre Mackiewicz met en lumière les défis et les enjeux de la recherche participative avec des mineurs protégés, en soulignant l'importance de l'écoute, de la collaboration et de la confiance pour promouvoir leurs droits et améliorer leur scolarité.

      Guide d'Étude: Approche Scientifique et Droits des Enfants

      Quiz

      Questions à réponse courte:

      • Quel est le point commun entre les discours de Gabrielle Chouin lors des premières concertations nationales et ceux tenus lors de la deuxième concertation sur l'ambition scolaire ? (2-3 phrases)
      • Expliquez la notion de "coéducation professionnalisée" dans le contexte de la protection de l'enfance. (2-3 phrases)
      • Quels sont les objectifs principaux des recherches participatives, en particulier lorsqu'elles impliquent des mineurs protégés ? (2-3 phrases)
      • Selon Régine Sirota, quelles sont les ambiguïtés liées à l'objectif de "faire entendre la voix de l'enfant" ? (2-3 phrases)
      • Quels sont les défis spécifiques posés par l'implication de jeunes enfants dans des recherches participatives, par rapport aux adolescents ? (2-3 phrases)
      • En quoi la situation de dissymétrie entre les chercheurs et les populations marginalisées pose-t-elle un défi dans le cadre de recherches participatives ? (2-3 phrases)
      • Expliquez l'importance de la création d'un sentiment de "collectif" dans les recherches impliquant des personnes en situation de disqualification. (2-3 phrases)
      • Quels sont les aspects positifs et négatifs de l'implication des chercheurs-pairs dans l'analyse et l'écriture des résultats de recherche ? (2-3 phrases)
      • Quels sont les principaux obstacles à la réussite scolaire des enfants placés, liés à la fois à leur trajectoire familiale et aux prises en charge ? (2-3 phrases)
      • Outre les rapports de recherche traditionnels, quelles sont les autres formes de restitution des résultats qui peuvent être envisagées dans le cadre de recherches participatives ? (2-3 phrases)

      Corrigé du Quiz

      Le point commun est l'importance de la collaboration entre le monde de la protection de l'enfance et celui de l'éducation nationale. Chouin a plaidé pour une meilleure communication, une formation commune et des partenariats concrets pour garantir aux élèves protégés l'accès aux mêmes droits et opportunités que les autres élèves.

      La "coéducation professionnalisée" se réfère à la communication et à la collaboration entre professionnels de différents secteurs, comme l'école et la protection de l'enfance, concernant la situation d'un enfant. Dans ce contexte, les professionnels, plutôt que les parents, échangent des informations et travaillent ensemble pour élaborer des stratégies d'intervention.

      Les recherches participatives visent à donner du pouvoir aux populations marginalisées en les impliquant activement dans le processus de recherche. Elles cherchent à rapprocher les savoirs experts et les savoirs profanes, à questionner les rapports de pouvoir et à promouvoir l'émancipation des participants. Sirota souligne la difficulté de parler "pour" l'enfant et de garantir une réelle prise en compte de son point de vue. Elle interroge la représentativité des témoignages individuels, la difficulté de situer les anecdotes dans un contexte plus large et les obstacles à l'accès aux enfants, souvent contrôlé par les institutions.

      Les jeunes enfants ont un accès au langage et une capacité d'élaboration du discours moins développés que les adolescents. Leur participation à la recherche peut se traduire par une multitude d'anecdotes difficiles à structurer et à analyser. L'implication des chercheurs-pairs dans l'analyse et l'écriture peut être plus limitée.

      La dissymétrie entre chercheurs et populations marginalisées peut créer des rapports de domination et influencer la parole des participants. Le chercheur, de par son statut, incarne les normes sociales et peut avoir du mal à accéder à la parole authentique des groupes stigmatisés.

      Le sentiment de "collectif" permet de créer un espace de confiance et d'égalité entre chercheurs et participants. Il favorise l'expression libre et authentique des expériences et des points de vue, en minimisant les rapports de pouvoir et de domination.

      L'implication des chercheurs-pairs enrichit l'analyse et l'écriture des résultats en apportant des perspectives vécues et une expertise issue de l'expérience. Cependant, elle peut aussi complexifier le processus de recherche et limiter la diffusion des résultats, en raison des difficultés de coordination et de l'impact émotionnel sur les participants.

      Les obstacles liés à la trajectoire familiale incluent des antécédents d'échec scolaire et des difficultés socio-économiques. Les obstacles liés aux prises en charge sont la multiplicité des placements, l'instabilité des parcours et le manque de continuité dans l'accompagnement scolaire.

      Au-delà des rapports, la restitution des résultats peut prendre la forme de pièces de théâtre, de films, d'expositions ou d'ateliers participatifs. Ces formes alternatives permettent de diffuser les résultats à un public plus large et de donner une voix aux participants, en valorisant leurs expériences et leurs points de vue.

      Questions de dissertation

      Analysez les enjeux éthiques liés à la participation de mineurs protégés à des recherches en sciences sociales. Discutez des mesures à prendre pour garantir leur protection et leur bien-être tout au long du processus de recherche.

      Comparez et contrastez les approches traditionnelles et les approches participatives en recherche. En vous appuyant sur les exemples donnés dans les extraits, discutez des avantages et des limites de chaque approche dans le contexte de la recherche sur la protection de l'enfance.

      Expliquez comment les recherches participatives peuvent contribuer à l'émancipation des populations marginalisées. Discutez du rôle des chercheurs-pairs dans ce processus et des défis liés à la reconnaissance de leur expertise et à la diffusion de leurs savoirs.

      En vous appuyant sur les données présentées sur la scolarité des enfants placés, analysez les facteurs de risque et de protection qui influencent leur réussite éducative. Proposez des pistes d'action pour améliorer leur parcours scolaire et leur insertion sociale.

      Discutez de l'importance de la collaboration entre les différents acteurs impliqués dans la protection de l'enfance, notamment l'éducation nationale, les services sociaux et les associations. En quoi cette collaboration peut-elle contribuer à garantir le respect des droits des enfants et à favoriser leur épanouissement ?

      Glossaire

      Termes clés:

      • Recherche participative: Méthode de recherche qui implique activement les personnes concernées par le sujet d'étude dans toutes les étapes du processus de recherche, de la définition des questions de recherche à l'analyse des données et à la diffusion des résultats.
      • Mineurs protégés: Enfants et adolescents bénéficiant de mesures de protection de l'enfance, suite à une situation de danger ou de risque pour leur sécurité, leur santé ou leur développement.
      • Chercheurs-pairs: Personnes ayant une expérience vécue du sujet d'étude et qui participent à la recherche en tant que co-chercheurs, aux côtés des chercheurs académiques.
      • Dissymétrie: Situation d'inégalité de pouvoir et de statut social entre les chercheurs et les populations marginalisées, pouvant influencer la parole des participants et la validité des résultats.
      • Collectif: Sentiment d'appartenance à un groupe uni par un objectif commun, permettant de créer un espace de confiance et d'égalité entre chercheurs et participants.
      • Gatekeepers: Personnes ou institutions contrôlant l'accès aux populations cibles de la recherche, pouvant influencer la sélection des participants et le déroulement de l'étude.
      • Stigmatisation: Processus social par lequel un individu ou un groupe est marqué d'une étiquette négative, conduisant à la discrimination et à l'exclusion.
      • Émancipation: Processus par lequel un individu ou un groupe acquiert le pouvoir de prendre des décisions et de contrôler sa propre vie, en se libérant des rapports de domination.
      • Restitution des résultats: Action de partager les résultats de la recherche avec les participants et les autres parties prenantes, en utilisant des formats adaptés et accessibles.
      • Trajectoire familiale: Ensemble des expériences vécues par un individu au sein de sa famille, pouvant influencer son parcours scolaire, son développement et son intégration sociale.

      FAQ : Approche scientifique et droits des enfants 1. Quel est le lien entre la protection de l'enfance et la scolarité des élèves protégés ?

      La protection de l'enfance a un impact majeur sur la scolarité des élèves protégés. Les recherches montrent que le partenariat entre les services de protection de l'enfance et l'Éducation nationale est crucial pour que ces élèves puissent réussir leur scolarité et obtenir un diplôme. Le manque de communication et d'information entre ces deux institutions peut entraîner des difficultés d'orientation et un manque d'accès aux droits communs pour ces jeunes.

      2. Quels sont les obstacles à la réussite scolaire des enfants placés ?

      Les obstacles à la réussite scolaire des enfants placés sont multiples. Ils peuvent être liés à leur trajectoire familiale antérieure, souvent marquée par l'échec scolaire, mais aussi aux caractéristiques de leur prise en charge : placements multiples, instables, tardifs, en institution plutôt qu'en famille d'accueil. La complexité de ces situations peut entraîner des redoublements, des retards, des orientations spécialisées et un accès limité aux études supérieures.

      3. Quelles sont les initiatives prises pour améliorer la scolarité des enfants protégés ?

      La prise de conscience de l'importance de la scolarité pour les enfants protégés a mené à la mise en place de différentes initiatives. La Cour des comptes a pointé les défaillances du système en matière de suivi scolaire, et la stratégie nationale de prévention de la protection de l'enfance a défini des mesures pour améliorer l'accompagnement scolaire de ces enfants. De plus, des dispositifs comme les alliances éducatives visent à renforcer la collaboration entre les différents acteurs impliqués dans la scolarité de ces élèves.

      4. En quoi consiste la recherche participative avec des mineurs protégés ?

      La recherche participative vise à impliquer les personnes concernées par une problématique, en l'occurrence les mineurs protégés, dans le processus de recherche. Il s'agit de reconnaître leurs savoirs et expériences, et de leur donner une voix pour contribuer à la production de connaissances. Cette approche permet de mieux comprendre les réalités vécues par ces jeunes, et de proposer des solutions adaptées à leurs besoins.

      5. Quelles sont les difficultés rencontrées dans la mise en place de recherches participatives avec des enfants ?

      La recherche participative avec des enfants présente des défis particuliers. Il est important de mettre en place des protocoles spécifiques pour protéger les enfants et respecter leur rythme et leur durée d'attention. La collaboration avec les institutions qui accueillent les enfants peut être complexe, car elles peuvent imposer leurs priorités et filtrer les résultats. De plus, l'implication des enfants dans l'analyse et l'écriture des résultats peut être difficile à mettre en œuvre.

      6. Quel est l'impact de la participation des jeunes à la recherche sur leur identité ?

      La participation des jeunes à la recherche peut avoir un impact positif sur leur identité. En s'engageant dans le processus de recherche, ils peuvent sortir d'une identité stigmatisée et expérimenter d'autres rôles sociaux, comme celui de "jeune chercheur". Cela peut contribuer à leur émancipation et à la construction d'une image positive d'eux-mêmes.

      7. Comment les résultats de ces recherches sont-ils diffusés et utilisés ?

      Les résultats des recherches participatives avec des mineurs protégés peuvent être diffusés sous différentes formes : rapports, publications scientifiques, pièces de théâtre, films.

      L'objectif est de sensibiliser le public et les décideurs aux réalités vécues par ces jeunes, et de promouvoir des politiques publiques plus efficaces pour les soutenir.

      8. Quel rôle peuvent jouer les professionnels de l'éducation dans l'amélioration de la scolarité des enfants protégés ?

      Les professionnels de l'éducation ont un rôle essentiel à jouer dans l'amélioration de la scolarité des enfants protégés.

      Ils doivent être sensibilisés aux difficultés spécifiques rencontrées par ces élèves, et adopter une posture bienveillante et encourageante.

      Il est important de croire en leur potentiel de réussite et de mettre en place des dispositifs d'accompagnement adaptés à leurs besoins.

      La collaboration avec les services de protection de l'enfance est également cruciale pour assurer la continuité de leur parcours scolaire.

    1. Briefing Doc : Point de vue institutionnel des droits de l'enfant

      Intervenante : Marie Derain de Vaucresson, ancienne Défenseure des enfants (2011-2014)

      Contexte : Journée de réflexion organisée par le Rectorat du Nord sur la scolarisation des enfants placés et accompagnés.

      Thèmes principaux:

      Histoire de la protection de l'enfance et émergence des droits de l'enfant Principes fondamentaux de la Convention internationale des droits de l'enfant (CIDE) Rôle et évolution du Défenseur des enfants et du Défenseur des droits Défis et perspectives de la scolarisation des enfants placés

      Idées et faits importants:

      L'approche de la protection de l'enfant est apparue au 17e siècle, initialement axée sur la charité. L'approche par les droits de l'enfant est beaucoup plus récente, impulsée par la CIDE adoptée en 1989. La CIDE s'adresse aux États et non aux enfants, les obligeant à la transposer en droit national et à la rendre accessible aux enfants. La France a ratifié la CIDE en 1990 et a créé le Défenseur des enfants en 2000. Le Défenseur des enfants a fusionné avec d'autres institutions en 2011 pour former le Défenseur des droits, renforçant ses pouvoirs d'intervention. La loi de 2007 sur la protection de l'enfance a structuré le dispositif mais a été critiquée pour son "profilialisme". La loi de 2016 a opéré un changement de paradigme en plaçant l'enfant au centre du dispositif. La scolarisation des enfants placés présente des défis importants, notamment en termes de continuité du parcours et d'adaptation aux besoins spécifiques. La pluridisciplinarité, l'articulation des acteurs et la concertation sont essentielles pour garantir les droits de l'enfant.

      Citations clés:

      • "Tous les enfants sont protégés et sont à protéger et il n'y a pas des enfants plus protégés que d'autres."
      • "L'approche par les droits n'a jamais été acquise en protection de l'enfance et elle est encore un combat à défendre."
      • "Les droits de l'enfance c'est ici et maintenant dans tous les lieux où sont où c'est où sont les enfants y compris quand ils sont placés bien évidemment."
      • "La question des droits de l'enfant c'est ni plus ni moins qu'une manière de répondre aux besoins des enfants."
      • "Les solutions elles sont jamais évidentes elles sont très propres à des contextes et en particulier à des territoires."
      • Recommandations:
      • Poursuivre et renforcer les efforts de concertation entre les acteurs de la protection de l'enfance, y compris l'Éducation nationale.
      • Développer des solutions innovantes pour garantir la continuité du parcours scolaire des enfants placés, en s'adaptant aux moments clés de leur scolarité.
      • Sensibiliser l'ensemble de la communauté éducative aux droits de l'enfant et aux besoins spécifiques des enfants placés.

      Conclusion:

      Le discours de Marie Derain de Vaucresson souligne l'importance cruciale de l'approche par les droits de l'enfant dans le contexte de la protection de l'enfance.

      La scolarisation, en tant que droit fondamental, joue un rôle majeur dans le développement et l'épanouissement de tous les enfants, y compris ceux en situation de placement.

      L'engagement collectif et la recherche de solutions concertées sont indispensables pour garantir le respect de leurs droits et leur offrir les meilleures chances de réussite.

      Chronologie des événements clés XVIIe siècle:

      Emergence de la protection des enfants avec Vincent de Paul qui met en place un système d'accueil pour les enfants abandonnés. XIXe siècle:

      • 1842: Loi sur le travail des enfants. Mise en place d'un âge minimum (8 ans) pour travailler dans les mines et limitation du temps de travail.
      • 1882: Loi sur l'obligation d'instruction de 6 à 13 ans.
      • XXe siècle:
      • 1924: Janusz Korczak, médecin polonais, développe une approche pédagogique centrée sur la participation des enfants et rédige une première déclaration des droits de l'enfant.
      • 1959: La Déclaration des droits de l'enfant de 1924 est renforcée.
      • 1979: Année internationale de l'enfant, impulsée par l'ONU.
      • 20 novembre 1989: Adoption de la Convention internationale des droits de l'enfant (CIDE) à l'unanimité.
      • XXIe siècle:
      • Août 1990: Ratification de la CIDE par la France.
      • 2000: Création du Défenseur des enfants en France.
      • 2007: Loi relative à la protection de l'enfance. Organisation de la protection de l'enfance autour des conseils départementaux et des cellules de recueil d'informations préoccupantes (CRIP).
      • 2011: Création du Défenseur des droits, intégrant le Défenseur des enfants. Renforcement des pouvoirs d'intervention en matière de défense des droits des enfants.
      • 2012: Interdiction du mariage avant 18 ans en France.
      • 2016: Loi relative à la protection de l'enfant. Changement de paradigme : l'approche par les droits de l'enfant et la satisfaction de ses besoins sont placées au centre du dispositif.
      • 2022: Loi relative à la protection des enfants (loi Taquet). Remobilisation de l'État dans la protection de l'enfance et consolidation du dispositif.

      Personnages principaux

      • Vincent de Paul (1581 - 1660): Prêtre catholique français connu pour ses œuvres de charité. Il a mis en place au XVIIe siècle un système d'accueil pour les enfants abandonnés, marquant une étape importante dans l'histoire de la protection de l'enfance.
      • Janusz Korczak (1878 - 1942): Médecin et pédagogue polonais. Précurseur dans l'approche pédagogique centrée sur la participation des enfants. Il a rédigé une première déclaration des droits de l'enfant en 1924. Il a été déporté et assassiné à Treblinka avec les enfants de son orphelinat.
      • Claire Brisset (née en 1948): Première Défenseure des enfants en France de 2000 à 2006. Elle a joué un rôle important dans la promotion et la défense des droits de l'enfant, notamment en obtenant l'interdiction du mariage avant 18 ans.
      • Dominique Bodis: Défenseur des droits de 2011 à 2014. A succédé à Claire Brisset et a poursuivi son action en matière de défense des droits des enfants.
      • Marie Derain de Vaucresson: Défenseure des enfants adjointe de Dominique Bodis de 2011 à 2014. Experte en droits de l'enfant et de la protection de l'enfance. Elle a notamment travaillé sur la question de la scolarisation des enfants placés et des mineurs non accompagnés.
      • Adrien Taquet: Secrétaire d'État chargé de l'Enfance et des Familles de 2019 à 2022. Il a porté la loi relative à la protection des enfants de 2022, visant à remobiliser l'État dans la protection de l'enfance.
      • Agès Jean duuc: Directrice de la recherche à l'ENPJJ. A collaboré avec Marie Derain de Vaucresson sur des concertations concernant la protection de l'enfance et la scolarisation des enfants placés.
      • Laurence Rossignol: Ministre des Familles, de l'Enfance et des Droits des femmes de 2016 à 2017. A conduit des travaux de concertation sur la protection de l'enfance en 2016.
      • Jean-Pierre Rosenczveig: Magistrat et expert en justice des mineurs. Membre de la "bande des quatre" avec les anciennes Défenseures des enfants, il s'engage pour la défense des droits des enfants.
      • Dominique Houf: Philosophe du droit et éducateur, il a critiqué l'éloignement de la protection de l'enfance d'une philosophie des droits de l'enfant.
      • Gabrielle: Personne non identifiée dans le texte, mais qui semble intervenir après Marie Derain de Vaucresson et aborder la question de la concertation et de la co-construction dans la protection de l'enfance.
    2. L'enfant au cœur du système: Droits de l'enfant et protection de l'enfance

      Résumé du contenu

      Ce document retranscrit une intervention de Marie Derain de Vaucresson, ancienne Défenseure des enfants, lors d'une journée de réflexion sur les droits de l'enfant et la protection de l'enfance.

      Elle y aborde l'histoire de la protection de l'enfance, l'évolution de l'approche par les droits, les grands principes de la Convention internationale des droits de l'enfant (CIDE) et son application en France, et les défis de la scolarisation des enfants placés.

      L'intervention met en lumière l'importance de la CIDE, un traité international qui impose aux États des obligations en matière de promotion et de protection des droits de l'enfant.

      En France, la création du Défenseur des enfants puis du Défenseur des droits a permis de renforcer l'accès au droit des enfants et de leur garantir une meilleure protection.

      La loi de 2007, qui structure la protection de l'enfance, est analysée avec ses forces et ses faiblesses.

      L'accent est mis sur l'importance d'une prise en compte des besoins de l'enfant, de la stabilité de son parcours et de l'adaptation du dispositif à sa situation.

      Enfin, Marie Derain de Vaucresson souligne les défis spécifiques de la scolarisation des enfants placés, notamment la continuité du parcours scolaire, les ruptures liées aux placements successifs, et l'importance de l'apprentissage de la lecture et de la socialisation.

      Elle appelle à une pluridisciplinarité, une articulation des acteurs et une concertation au plus près des réalités des territoires pour répondre au mieux aux besoins des enfants.

      Quiz

      Instructions: Répondez aux questions suivantes en 2-3 phrases.

      • Pourquoi Marie Derain de Vaucresson s'oppose-t-elle à l'expression "enfants protégés"?
      • Quelles sont les deux grandes étapes de l'évolution de la protection des enfants au XIXème siècle ?
      • Qui est Janusz Korczak et quel est son rôle dans l'histoire des droits de l'enfant ?
      • Pourquoi la Convention internationale des droits de l'enfant (CIDE) est-elle importante ?
      • Quelle est la différence entre une déclaration et une convention en droit international ?
      • Quels sont les deux grands principes de la CIDE mis en avant par Marie Derain de Vaucresson ?
      • Quel est le rôle du Défenseur des enfants / du Défenseur des droits en France ?
      • Quelles sont les principales critiques adressées à la loi de 2007 sur la protection de l'enfance ?
      • En quoi la loi de 2016 marque-t-elle un changement de paradigme dans l'approche de la protection de l'enfance ?
      • Quels sont les défis spécifiques de la scolarisation des enfants placés ?

      Corrigé du quiz

      • Marie Derain de Vaucresson s'oppose à l'expression "enfants protégés" car elle sous-entend qu'il existe des catégories d'enfants plus protégés que d'autres, ce qui est contraire à l'esprit de la Convention des droits de l'enfant qui affirme que tous les enfants doivent être protégés.
      • Les deux grandes étapes de l'évolution de la protection des enfants au XIXème siècle sont la loi de 1842 sur le travail des enfants qui fixe un âge minimum pour travailler dans les mines et limite le temps de travail, et la loi de 1882 qui rend l'instruction obligatoire pour les enfants de 6 à 13 ans.
      • Janusz Korczak est un médecin et pédagogue polonais qui a développé une approche novatrice de l'éducation des enfants, basée sur la participation et l'autonomie. Il est considéré comme un pionnier des droits de l'enfant et a joué un rôle important dans la rédaction de la première déclaration des droits de l'enfant en 1924.
      • La CIDE est importante car c'est un traité international juridiquement contraignant qui impose aux États des obligations en matière de promotion et de protection des droits de l'enfant. Elle garantit un socle commun de droits à tous les enfants du monde et constitue un cadre de référence pour les politiques publiques en faveur de l'enfance.
      • En droit international, une déclaration est un texte qui exprime des intentions ou des principes, mais qui n'a pas force obligatoire pour les États. Une convention, en revanche, est un traité international qui crée des obligations juridiques pour les États qui l'ont ratifié.
      • Les deux grands principes de la CIDE mis en avant par Marie Derain de Vaucresson sont le meilleur intérêt de l'enfant et la non-discrimination.
      • Le Défenseur des enfants / du Défenseur des droits est une institution indépendante qui a pour mission de promouvoir et de défendre les droits de l'enfant en France. Il peut intervenir auprès des pouvoirs publics et des institutions pour faire respecter les droits des enfants et proposer des solutions aux problèmes qu'ils rencontrent.
      • La loi de 2007 est critiquée pour son manque de prise en compte des besoins spécifiques des enfants placés, pour l'absence de garanties de sorties sécurisées du dispositif de protection de l'enfance, et pour les parcours chaotiques des enfants qui en découlent.
      • La loi de 2016 marque un changement de paradigme dans l'approche de la protection de l'enfance en plaçant l'enfant au cœur du système. Elle met l'accent sur la satisfaction des besoins de l'enfant, la reconnaissance de ses droits, et la recherche de son meilleur intérêt dans toutes les décisions qui le concernent.
      • Les défis spécifiques de la scolarisation des enfants placés sont la continuité du parcours scolaire souvent interrompue par les placements successifs, le risque de retard scolaire lié aux ruptures et aux absences, et la nécessité d'une prise en charge adaptée aux besoins spécifiques de ces enfants.
      • Questions pour une dissertation
      • En quoi l'histoire de la protection de l'enfance en France reflète-t-elle l'évolution de la place de l'enfant dans la société ?
      • Comment concilier le principe de protection de l'enfant avec celui de sa participation dans la mise en œuvre de ses droits ?
      • Quels sont les obstacles à la pleine application de la Convention internationale des droits de l'enfant en France ?
      • Comment l'école peut-elle mieux répondre aux besoins spécifiques des enfants placés et contribuer à leur réussite scolaire ?
      • Quel est le rôle de la société civile dans la promotion et la protection des droits de l'enfant ?

      Glossaire des termes clés

      • Convention internationale des droits de l'enfant (CIDE): Traité international adopté en 1989 qui définit l'ensemble des droits civils, politiques, économiques, sociaux et culturels de tous les enfants.
      • Protection de l'enfance: Ensemble des mesures prises par les pouvoirs publics pour garantir la sécurité, le bien-être et le développement des enfants en danger ou en risque de l'être.
      • Placement d'enfant: Décision judiciaire ou administrative qui confie la garde d'un enfant à une personne ou à un service spécialisé, lorsque sa famille n'est pas en mesure d'assurer sa protection.
      • Aide sociale à l'enfance (ASE): Service du Conseil départemental chargé de mettre en œuvre la politique de protection de l'enfance au niveau local.
      • Cellule de recueil des informations préoccupantes (CRIP): Service chargé de recueillir, d'analyser et de transmettre aux autorités compétentes les informations préoccupantes concernant des enfants en danger ou en risque de l'être.
      • Défenseur des enfants / Défenseur des droits: Institution indépendante chargée de promouvoir et de défendre les droits de l'enfant en France.
      • Intérêt supérieur de l'enfant / Meilleur intérêt de l'enfant: Principe fondamental de la CIDE qui impose de prendre en considération l'intérêt de l'enfant dans toutes les décisions qui le concernent.
      • Non-discrimination: Principe qui interdit toute distinction, exclusion ou restriction fondée sur des motifs tels que la race, la couleur, le sexe, la langue, la religion, l'opinion politique ou toute autre opinion, l'origine nationale ou sociale, la fortune, la naissance ou toute autre situation.
      • Participation de l'enfant: Droit de l'enfant à exprimer son opinion sur les décisions qui le concernent et à être entendu.
      • Transversalité: Principe qui impose de prendre en compte les droits de l'enfant dans tous les domaines de la vie sociale et dans toutes les politiques publiques.
      • FAQ : Droits de l'enfant et protection de l'enfance

      1. Quelle est la différence entre l'approche traditionnelle de la protection de l'enfance et l'approche par les droits de l'enfant ?

      L'approche traditionnelle de la protection de l'enfance, apparue au 17ème siècle, se focalisait sur une vision sanitaire et sociale, visant à assurer une force de travail saine. L'approche par les droits de l'enfant, issue de la Convention internationale des droits de l'enfant de 1989, place l'enfant au centre et reconnaît ses droits fondamentaux, notamment le droit à la participation, à la non-discrimination et à vivre dans un environnement familial stable.

      2. Pourquoi la terminologie "enfant protégé" est-elle critiquée ?

      L'expression "enfant protégé" peut laisser entendre qu'il existe des catégories d'enfants plus protégés que d'autres, ce qui est contraire à l'esprit de la Convention des droits de l'enfant. Tous les enfants, sans exception, doivent être protégés et avoir leurs droits respectés.

      3. Quels sont les principaux apports de la Convention internationale des droits de l'enfant ?

      La Convention de 1989 a introduit des principes fondamentaux pour la protection de l'enfance, notamment :

      Le meilleur intérêt de l'enfant : toute décision concernant un enfant doit prendre en compte son meilleur intérêt. La non-discrimination : tous les enfants doivent avoir les mêmes droits, sans distinction de sexe, d'origine, de religion, de handicap, etc. Le droit à la participation : les enfants doivent pouvoir exprimer leur opinion et être associés aux décisions qui les concernent. Le droit de vivre dans une famille : l'enfant doit pouvoir grandir dans un environnement familial stable et aimant.

      4. Quel est le rôle du Défenseur des droits en matière de protection de l'enfance ?

      Le Défenseur des droits, institution indépendante créée en 2011, a pour mission de promouvoir et de défendre les droits de l'enfant. Il peut intervenir pour signaler des manquements au respect de ces droits, enquêter sur des situations problématiques et formuler des recommandations aux autorités compétentes. Il dispose de pouvoirs renforcés d'intervention, comme l'accès aux centres de rétention administrative.

      5. Quels sont les principaux défis de la scolarisation des enfants placés ?

      Les enfants placés sont confrontés à des difficultés accrues en matière de scolarisation :

      Ruptures de parcours : les changements fréquents de lieu de placement entrainent des interruptions de scolarité et des retards d'apprentissage.

      Manque de continuité et de stabilité : l'adaptation à un nouvel environnement scolaire et la reconstruction de liens avec les enseignants et les camarades de classe peuvent être difficiles. Absence de suivi individualisé : les besoins spécifiques des enfants placés en matière d'apprentissage ne sont pas toujours pris en compte.

      6. Comment améliorer la prise en charge scolaire des enfants placés ?

      Plusieurs pistes peuvent être envisagées pour améliorer la scolarisation des enfants placés :

      Assurer la continuité du parcours scolaire : faciliter les transferts de dossiers scolaires, organiser des accompagnements individualisés lors des changements d'établissement, mettre en place des dispositifs de soutien pédagogique adaptés.

      Favoriser la stabilité des placements : limiter les changements de lieu de placement, privilégier les solutions d'accueil durables. Sensibiliser les professionnels de l'éducation : former les enseignants aux besoins spécifiques des enfants placés, développer des partenariats entre l'Éducation nationale et les services de protection de l'enfance.

      Encourager la participation des enfants : les associer aux décisions concernant leur scolarité, leur donner la parole pour exprimer leurs difficultés et leurs besoins.

      7. Quelle est l'importance de la concertation entre les différents acteurs de la protection de l'enfance ?

      La protection de l'enfance nécessite une approche pluridisciplinaire et une collaboration étroite entre les différents acteurs concernés (Éducation nationale, santé, justice, services sociaux, associations...). La concertation permet d'échanger des informations, de coordonner les actions et de construire des solutions adaptées aux besoins des enfants sur chaque territoire.

      8. Quel est le rôle de la société civile dans la protection de l'enfance ?

      La protection de l'enfance est une responsabilité collective qui engage l'ensemble de la société. Les citoyens, les associations et les organisations non gouvernementales peuvent jouer un rôle important en :

      • Sensibilisant l'opinion publique aux droits de l'enfant.
      • Soutenant les familles en difficulté.
      • Accompagnant les enfants placés.
      • Participant à la mise en œuvre des politiques de protection de l'enfance.
      • L'engagement de tous est essentiel pour garantir le respect des droits de l'enfant et son épanouissement dans un environnement protecteur et bienveillant.
  4. 0331ivg3m-y-https-accessmedicina-mhmedical-com.itmsp.museknowledge.com 0331ivg3m-y-https-accessmedicina-mhmedical-com.itmsp.museknowledge.com
    1. La vidéo "L’abc du X,Y : rendre accessibles les données aux non experts grâce à la dataviz" de Toulouse DataViz aborde plusieurs points clés. Voici un résumé détaillé avec les minutages :

      0:00 - 10:00 Introduction et contexte :

      La vidéo commence par une introduction sur l'importance de la datavisualisation pour rendre les données accessibles aux non-experts.

      Les présentateurs expliquent comment la datavisualisation peut transformer des données brutes en informations compréhensibles et exploitables.

      10:01 - 20:00 Principes de base de la datavisualisation :

      Les intervenants discutent des principes fondamentaux de la datavisualisation, tels que la clarté, la précision et l'efficacité.

      Ils expliquent comment choisir les bons types de graphiques et de visualisations en fonction des données et du message à transmettre.

      20:01 - 30:00 Outils et techniques de datavisualisation :

      La vidéo présente différents outils et logiciels de datavisualisation, comme Tableau, Power BI et D3.js.

      Les intervenants montrent comment utiliser ces outils pour créer des visualisations interactives et engageantes.

      30:01 - 40:00 Études de cas et exemples concrets :

      Des études de cas et des exemples concrets de datavisualisation sont présentés pour illustrer les bonnes pratiques.

      Les intervenants expliquent comment ces visualisations ont été utilisées pour résoudre des problèmes spécifiques et communiquer des informations complexes de manière claire.

      40:01 - 49:06 Conclusion et perspectives d'avenir :

      La vidéo se termine par une réflexion sur l'avenir de la datavisualisation et son rôle croissant dans la prise de décision basée sur les données.

      Les présentateurs encouragent les spectateurs à continuer à explorer et à expérimenter avec la datavisualisation pour améliorer la compréhension et l'utilisation des données.

      Pour plus de détails, vous pouvez regarder la vidéo sur YouTube.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer 1 (Public Review):

      The authors explain that an action potential that reaches an axon terminal emits a small electrical field as it ”annihilates”. This happens even though there is no gap junction, at chemical synapses. The generated electrical field is simulated to show that it can affect a nearby, disconnected target membrane by tens of microvolts for tenths of a microsecond. Longer effects are simulated for target locations a few microns away.

      To simulate action potentials (APs), the paper does not use the standard Hodgkin-Huxley formalism because it fails to explain AP collision. Instead, it uses the Tasaki and Matsumoto (TM) model which is simplified to only model APs with three parameters and as a membrane transition between two states of resting versus excited. The authors expand the strictly binary, discrete TM method to a Relaxing Tasaki Model (RTM) that models the relaxation of the membrane potential after an AP. They find that the membrane leak can be neglected in determining AP propagation and that the capacitive currents dominate the process.

      The strength of the work is that the authors identified an important interaction between neurons that is neglected by the standard models. A weakness of the proposed approach is the assumptions that it makes. For instance, the external medium is modeled as a homogeneous conductive medium, which may be further explored to properly account for biological processes.

      The authors provide convincing evidence by performing experiments to record action potential propagation and collision properties and then developing a theoretical framework to simulate the effect of their annihilation on nearby membranes. They provide both experimental evidence and rigorous mathematical and computer simulation findings to support their claims. The work has the potential of explaining significant electrical interaction between nerve centers that are connected via a large number of parallel fibers.

      We thank the reviewer for the distinct analysis of our work and the assessment that we ’identified an important interaction between neurons that is neglected by standard models’.

      Indeed, we modeled the external (extracellular) medium as homogeneous conductive medium and, compared to real biological systems, this is a simplification. Our intention is to keep our formal model as general as possible, however, it can be extended to account for specific properties. Accessory structures at axon terminals (such as the pinceau at Purkinje cells) most likely evolved to shape ephaptic coupling. In addition, the extracellular medium is neither homogeneous nor isotropic, and to fully mimic a particular neural connection this has to be implemented in a model as well. We agree and look forward to see how specific modification of the external medium in biological systems will affect ephaptic coupling. We hope to facilitate progress on this question by providing our source code for further exploration. Using the tools that have been developed by the BRIAN community one can generate or import arbitrary complex cell morphologies (e.g. NeuroML files). Our source code adds the TM- and RTM model, which allows exploring the direct impact of extracellular properties on target neurons.

      Reviewer 2 (Public Review):

      In this study, the authors measured extracellular electrical features of colliding APs travelling in different directions down an isolated earthworm axon. They then used these features to build a model of the potential ephaptic effects of AP annihilation, i.e. the electrical signals produced by colliding/annihilating APs that may influence neighbouring tissue. The model was then applied to some different hypothetical scenarios involving synaptic connections. The conclusion was that an annihilating AP at a presynaptic terminal can ephaptically influence the voltage of a postsynaptic cell (this is, presumably, the ’electrical coupling between neurons’ of the title), and that the nature of this influence depends on the physical configuration of the synapse.

      As an experimental neuroscientist who has never used computational approaches, I am unable to comment on the rigour of the analytical approaches that form the bulk of this paper. The experimental approaches appear very well carried out, and here I just have one query - an important assumption made is that the conduction velocity of anti- and orthodromically propagating APs is identical in every preparation, but this is never empirically/statistically demonstrated.

      My major concern is with the conclusions drawn from the synaptic modelling, which, disappointingly, is never benchmarked against any synaptic data. The authors state in their Introduction that a ’quantitative physical description’ of ephaptic coupling is ’missing’, however, they do not provide such a description in this manuscript. Instead, modelled predictions are presented of possible ephaptic interactions at different types of synapses, and these are then partially and qualitatively compared to previous published results in the Discussion. To support the authors’ assertion that AP annihilation induces electrical coupling between neurons, I think they need to show that their model of ephaptic effects can quantitatively explain key features of experimental data pertaining to synaptic function. Without this, the paper contains some useful high-precision quantitative measurements of axonal AP collisions, some (I assume) high-quality modelling of these collisions, and some interesting theoretical predictions pertaining to synaptic interactions, but it does not support the highly significant implications suggested for synaptic function.

      We thank the reviewer for highlighting the potential and the limitation of our model. We demonstrated with empirical data that measured conduction velocities of anti- and orthodromic propagating APs are indeed very similar and values are provided in Appendix 3 – table 1.

      In order to address how our model ’of ephaptic effects can quantitatively explain key features of experimental data’, we used the measured modulation of AP rates in Purkinje fibers by Blot and Babour (2014) and our results are now included in the manuscript. In our model, we implemented the ephaptic coupling of the Basket cell (with an annihilating AP) and predicted the modulation of AP rate in the Purkinje cell. Our model predictions are compared to the measured modulation of AP-rates in Purkinje cells and is added as Fig. 5 to the main manuscript (line 264 to 284 ). With this example, we show that ephaptic coupling as described with our RTM model can quantitatively describe key features of experimental data. Both, the rapid inhibition and the rebound activity is described by our model with implementation of non-excitable parts at the pinceau of the Basket cell. Future, experimental research can use the provided formalism to investigate in more detail the ephaptic coupling in systems like the Mauthner cell and the Purkinje cell by exploring how accessory structures and concomitant physical parameters, e.g. the extracellular properties impact ephaptic coupling.

      Reviewer 3 (Public Review):

      This manuscript aims to exploit experimental measurements of the extracellular voltages produced by colliding action potentials to adjust a simplified model of action potential propagation that is then used to predict the extracellular fields at axon terminals. The overall rationale is that when solving the cable equation (which forms the substrate for models of action potential propagation in axons), the solution for a cable with a closed end can be obtained by a technique of superposition: a spatially reflected solution is added to that for an infinite cable and this ensures by symmetry that no axial current flows at the closed boundary. By this method, the authors calculate the expected extracellular fields for axon terminals in different situations. These fields are of potential interest because, according to the authors, their magnitude can be larger than that of a propagating action potential and may be involved in ephaptic signalling. The authors perform direct measurements of colliding action potentials, in the earthworm giant axon, to parameterise and test their model.

      Although simplified models can be useful and the trick of exploiting the collision condition is interesting, I believe there are several significant problems with the rationale, presentation, and application, such that the validity and potential utility of the approach is not established.

      Simplified model vs. Hogdkin and Huxley

      The authors employ a simplified model that incorporates a two-state membrane (in essence resting and excited states) and adds a recovery mechanism. This generates a propagating wave of excitation and key observables such as propagation speed and action potential width (in space) can be adjusted using a small number of parameters. However, even if a Hodgkin-Huxley model does contain a much larger number of parameters that may be less easy to adjust directly, the basic formalism is known to be accurate and typical modifications of the kinetic parameters are very well understood, even if no direct characterisations already exist or cannot be obtained. I am therefore unconvinced by the utility of abandoning the HodgkinHuxley version.

      In several places in the manuscript, the simplified model fits the data well whereas the Hodgkin-Huxley model deviates strongly (e.g. Fig. 3CD). This is unsatisfying because it seems unlikely that the phenomenon could not be modelled accurately using the HH formulation. If the authors really wish to assert that it is ”not suitable to predict the effects caused by AP [collision]” (p9) they need to provide a good deal more analysis to establish the mechanism of failure.

      We are not as convinced as the reviewer that, at the current state of parameter estimation, the HH model is suited for predicting ephaptic coupling after ’adjusting’ parameters. There are strong arguments against such an approach. A major function of a model is to make testable predictions rather than to just mimic a biological phenomenon. The predictive power of a model heavily depends on how reasonable model parameters can be estimated or measured. As the reviewer correctly points out in the specific comments (”... the parameters adjusted to fit the model are the membrane capacitance and intracellular resistance. These have a physical reality and could easily be measured or estimated quite accurately...”), our model contains only parameters that can be assessed experimentally, thus it has a better predictive power compared to the HH model with a multitude of parameters for which ”no direct characterisations already exist or cannot be obtained” (citing reviewer from above).

      Already the founders of the HH model were well aware of the limitations, as stated by Hodgkin and Huxley in 1952 (J Physiol 117:500–544):

      An equally satisfactory description of the voltage clamp data could no doubt have been achieved with equations of very different form ... The success of the equations is no evidence in favour of the mechanism of permeability change that we tentatively had in mind when formulating them.

      A catchy but sloppy description for the problem of overfitting with too many parameters is given by the quote of John von Neumann: With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

      We do not rule out the possibility that the HH model eventually can be used to predict ephaptic coupling. However, at the moment, parameter estimation for the HH model prevents its usability for predicting ephaptic coupling.

      (In)applicability of the superposition principle

      The reflecting boundary at the terminal is implemented using the symmetry of the collision of action potentials. However, at a closed cable there is no reflecting boundary in the extracellular space and this implied assumption is particularly inappropriate where the extracellular field is one objective of the modelling, as here. I believe this assumption is not problematic for the calculation of the intracellular voltage, because extracellular voltage gradients can usually be neglected1, but the authors need to explain how the issue was dealt with for the calculation of the extracellular fields of terminals. I assume they were calculated from the membrane currents of one-half of the collision solution, but this does not seem to be explained. It might be worth showing a spatial profile of the calculated field.

      We disagree with the reviewer’s statement ’...at a closed cable there is no reflecting boundary in the extracellular space and this implied assumption is particularly inappropriate...’. We do not imply this assumption in our model! We do not assume any symmetry or boundary condition in the extracellular space. Instead, the extracellular field is calculated for an infinite homogeneous volume conductor (Eq.

      6).

      We conduct separate calculations for (1) source membrane current, (2) resulting extracellular field, and (3) impact upon a target neuron. The boundary condition used for our calculations only refers to the axial current being zero at the axon terminal. Consequently all the internal current that enters the last compartment must leave the last compartment as membrane current and contributes to the extracellular current and field.

      The extracellular field around the axon terminal is not symmetric, as can be seen by it’s impact upon a target in Figure 4—figure supplement 1 which is also not symmetric. The symmetry of the extracellular field when APs are colliding (Cf. symmetry in Fig 1C) is merly the result of the symmetric stimulation and counterpropagation of two APs. We now are describing more specifically the bounday condition for colliding and terminating APs already in the introduction: ’A suitable boundary condition (intracellular, axial current equals zero) can be generated experimentally by a collision of two counter-propagating APs ... Within any cable model, the very same boundary condition also exists within the axon at the synaptic terminal due to the broken translation symmetry for the current loops ...’ Later, at the result section (Discharge of colliding APs), we continue with ’AP propagation is blocked when the axial current is shut down at a boundary condition, e.g. by reaching the axon terminal or by AP collision....’ and implement this condition in our calculations for the axon terminals.

      Missing demonstrations

      Central analytical results are stated rather brusquely, notably equations (3) and (4) and the relation between them. These merit an expanded explanation at the least. A better explanation of the need for the collision measurements in parameterising the models should also be provided.

      We thank the reviewer for pointing out the insufficient explanation of the equations 3 and 4. We rephrased the paragraph ’Discharge of colliding APs’ in order to clarify the origin and the function of the two equations (eq. 3: how much charge is expelled and eq. 4: the resulting extracellular potential that is used for model validation).

      Later, in the Discussion, we rephrased the paragraph where we describe the annihilation process and explain further that one term of eq. 4 sometimes is refered to ’activating function’ when using microelectrodes for stimulation.

      With respect to the ’explanation of the need for the collision measurement’, we think that the explanations we give at several locations in the manuscript are sufficient as is. We explain and elaborate in the introduction: ’We explore the behaviour of APs at boundaries ... In this study, we first focus on collisions of APs. Our experimental observation of colliding APs provides unique access to the spatial profile of the extracellular potential around APs that are blocked by collisions and thus annihilate..... Recording propagating APs allows to determine both the propagation velocity and the amplitude of the extracellular electric potentials. The collision experiment provides additional information ... In the results we recall: ’The width of the collision is a measure of the characteristic length λ⋆ of the AP and is uniquely revealed by a collision sweep experiment.’

      Adjusted parameters

      I am uncomfortable that the parameters adjusted to fit the model are the membrane capacitance and intracellular resistance. These have a physical reality and could easily be measured or estimated quite accurately. With a variation of more than 20-fold reported between the different models in Appendix 2 we can be sure that some of the models are based upon quite unrealistic physical assumptions, which in turn undermines confidence in their generality.

      The fact that the parameters of our model have physical realities is clearly in favor of our models. We rephrased the legend of the table, now explaining the procedure for the model fitting and the rational behind. Although the values of g⋆ can differ by a factor of 15 and the resulting amplitude is very different, the relationship ri cm \= vpλ⋆ is very similar, independently of the model used and this confirms our analytical framework.

      p8 - the values of both the extracellular (100 Ohm m) and intracellular resistivity (1 Ohm m) appear to be in error, especially the former.

      We have the following justification for the resistivity values we used. For the intracellular resistivity, literature values range from 0.4 - 1.5 Ohm m, and therefore we selected 1 Ohm m. See: Carpenter et al (1975) doi: 10.1085/jgp.66.2.139; Cole et al (1975) doi: 10.1085/jgp.66.2.133; Bekkers (2014) doi: 10.1007/978-1-46147320-6 35-2.

      Estimating extracellular resistivity is less straight forward, since it depends crucially on the structure around the synapse which consists of conducting saline and insulating fatty tissue. Ranges from 3 to 600 Ohm m are reported (Linden et al (2011) doi: 10.1016/j.neuron.2011.11.006) and Bakiri et al (2011) doi: 10.1113/jphysiol.2010.201376). Weiss et al (2008; doi: 10.1073/pnas.0806145105) report extracellular resistivities in the Mauthner Cap between 50-600 Ohm m in SI. Since the pinceau is structurally similar to the Mauthner cells axon cap, we argue that a value of 100 Ohm m is a reasonable choice for our calculations. Additionally, we derived a value from Blot and Barbour (doi:c10.1038/nn.3624), rephrased the paragraph in the main text and added our calculation to the supplementary material (Appendix 1).

      (In)applicability to axon terminals

      The rationale of the application of the collision formalism to axon terminals is somewhat undermined by the fact that they tend not to be excitable. There is experimental evidence for this in the Calyx of Held and the cerebellar pinceau.

      The solution found via collision is therefore not directly applicable in these cases.

      We do not agree with the reviewer’s statement that ’the solution found via collision is (therefore) not directly applicable...’. Our model is well suited for application on axon terminals that are not excitable, e.g. the pinceau of the basket cell, as the reviewer points out. We have included a calculation for this case and present the results in the new Fig. 5 (main text line 264 to 284 ).

      Comparison with experimental data

      More effort should be made to compare the modelling with the extracellular terminal fields that have been reported in the literature.

      As outlined above (see: Reponse to reviewer 2), we now compare directly the predictions of our models with measured modulation of AP rates in Purkinje fibers (Blot and Babour 2014) and our results are included in the manuscript (Fig. 5 and main text line 264 to 284). See also our response to reviewer 2 in which we address how our model ’of ephaptic effects can quantitatively explain key features of experimental data’.

      Choice of term ”annihilation”

      The term annihilation does not seem wholly appropriate to me. The dictionary definitions are something along the lines of complete destruction by an external force or mutual destruction, for example of an electron and a positron. I don’t think either applies exactly here. I suggest retaining the notion of collision which is well understood in this context.

      Experimentally, we generated a collision of APs and showed that colliding APs dissapear and do not pass each other. For this process the term annihilation is used in our and in other studies (see e.g. Berg et al (2017) doi: 10.1103/PhysRevX.7.028001; Johnson et al (2018) doi: 10.3389/fphys.2018.00779; Follmann (2015) doi: 10.1103/PhysRevE.92.032707; Shrivastava et al (2018) doi: 10.1098/rsif.2017.0803). The physical processes involved in the termination of an AP at a closed end are essentially identical to those of two colliding APs. This we think justifies using the term annihilation for those processes.

      Recommendations for the authors:

      We believe the work is of high quality and should motivate future experimental work. We are including the review comments here for your information. The main piece of feedback we are offering is that the broad claims need to be adjusted to the strength of evidence provided: as is, the manuscript provides compelling predictions but the claim that these predictions are in full agreement with data remains to be substantiated. A technical concern raised by the reviewers is that the reflecting boundary condition may need further justification. The authors may wish to respond to this issue in a rebuttal and/or adjust the manuscript as necessary.

      We substantiated our claim that our predictions are in full agreement with experimental data. We added to the manuscript a section in which we compare our models’ predictions to published, experimental data. To this aim, we extracted date from the publication of Blot and Babour (2014), we elaborated on the parameters used and run our model accordingly. We added to the Results/Model of ephaptic coupling a paragraph on ’The modulation of activity in Purkinje cells...’ (line 264), where we describe our results and we also included another figure to the main text for illustration (Fig. 5).

      We clarified the term ’boundary condition’ by rephrasing parts of the introduction and we explain the rational behind in ’Discharge of colliding APs (...AP propagation is blocked when axial current is shut down...) and in ’Model of ephaptic coupling (Within any cable model, the same boundary...). See also our response to the general comments of reviewer 3 above.

      Reviewer 1 (Recommendations For The Authors):

      Major:

      Accessing data and code requires signing in, which should not be required. The link provided also seems to be not accessible yet - could be pending review.

      The repository is now publicly availible. We did provide an access code within the letter to the editor, this code is no longer required.

      Line 74: how about morphology? Authors should clarify and emphasize in the introduction that the TM model is a spatially continuous model with partial differential equations as opposed to discrete morphological models to simulate HH equations.

      The reviewer is correct that the TM model is continous. However, so is the HH model. The difference between HH and TM is only that the TM model can be solved analytically, which yields a spatially homogeneous analytical solution. It should be noted that this analytical solution can only be valid for a homogeneous (therefore infinite) nerve. Every numerical computation, be it HH or TM, requires a finite number of discrete compartments. In our calculations, we used identical compartment models for HH, TM and RTM model. In each compartment, the differential equations are solved numerically. Since there is no fundamental difference between these models, we obstain from changing the text.

      Minor:

      Major typo: ventral nerve cord, not ”chord”. Repeated in several places.

      Thank you for indicating this typo to us.

      Line 25: inhibition, excitation, and modulation?

      We changed the line to: ... leads to modulation, e.g. excitation or inhibition

      Line 70: better term for ”length” of AP would be ”duration”. Also, the sentence could be simplified to use either ”its” or ”of the AP”

      Space and time are not interchangable. Thus, the term lenght can not be replaced by duration. We simplified the structure of the sentence as suggested.

      Fig 1A/B: it’s strange that panel B precedes panel A.

      Exchanged

      Fig 1C: don’t see the ”horizontal line”; also regarding ”The recording was at a medial position”, the caption is not clear until one reads the main text.

      We changed the legend to: ... The collision is captured in the recording line at y-position 0 mm, while orthodromic propagation is at the top and antidromic propagation is at the bottom. (D) The peak amplitude as a function of the distance to the collision. Examples of four sweeps at three positions along the nerve cord....

      Line 127: the per distance measures could be named as ”specific” conductivity, etc.

      We explicitly provide the units thereby defining the quantities unambigously.

      Line 176: typo ”ad-hoc”.

      Thank you.

      Fig 4B: should clarify that the circle in the schematic is not the soma but a synaptic bouton.

      We rephrased to ’...(B,C) when the AP is annihilating at a bouton of a neuron terminal (upper neuron in end-to-shaft geometry, similar to the Basket cell–Purkinje cell synapse)...’, and we added a label to Fig 4B.

      Reviewer 2 (Recommendations For The Authors):

      Can the authors’ model be quantitatively compared with experimental data of ephaptic interactions at synapses (e.g. the Blot & Barbour study described in the Discussion)?

      We did so as outlined in our response to the reviewer above.

      Can statistical evidence be provided that the velocities of anti- and orthodromic APs are indeed identical in the earthworm nerve recordings?

      These data and statistics are available in Appendix 2, now 3 – table 1

      Why not reorder ABCD in Fig1 so the subpanels run from left to right?

      We adjusted the labels accordingly.

    1. Well, they show up, and we have to sit in a room all day and hear about stuff we already know. The sessions are boring, so we sit there and talk about , 8 “I’d hate that too,” Devona agreed. “But, what if your trainer of trainers met you on your floor, got to know you, and really listened to and affirmed you? What if you became comfortable telling her where you wanted to im ore a the trainer of trainers worked with you, showed you exactly how to improve in your chosen area by working with your patients, and then watched you and gave you hel i pful suggestions and support unti easily do the new skill?” —_— “Oh, Fd love that,” said Devona’s friend. “That's what I do,” said Devona. - a ie what instructional coaches do. Shoulder to shoulder with Ra, bet hee share teaching strategies that help teachers meet Faches are “y i 0 accomplish this, we have found that instructional A partners vo ‘ e ective when they do two things: (a) position teachers at coaching really is two teachers talking with each other Chapter 1 | What Does It Mean to Improve? 3

      I am sad that is is their experience, and I know it is what many teachers feel as well. How do we change this?

    1. Also, empirical findings generally un-veil that SNS addiction is related to impaired health and well-being.

      Des conséquences négatives sur la santé et le bien-être ont été observées. Il y a un manque d'études sur la prévention et le traitement de cette addiction comportementale.

    1. “S-SHUT UP! I don’t want to hear it! You- stupid, fucking little golden boy, mommy’s favorite- why! WHY- why why why were you her f-favorite! H-How-! You c-can’t talk, you’re an i-idiot, can’t do a-anything- y-you’re- just the worst!”

      Reshaa, Ranboo and their mother's dynamic reminds me of Zuko, Azula and their mom. In both cases, the girls wanted their mother's love but didn't get it because they were too much like their dad. Zuko and Ranboo are both people who their mothers saw kindness in, saw the possibility that they would get out of the toxic environment and culture of their upbringing, but lost their mothers guidance, the only one who loved them, and had to make it out and become better people than their families.Your mother didn't like you, Reshaa, because you gave in to what you grew up in, fell into the twisted political game.

    1. children of low socioeconomic status have significantly higher cortisol levels than children of high socioeconomic status, and that this effect emerges as early as age 6 y.

      high levels of cortisol in low-income students --> mental health problems.

    2. The observed mean weight of 22.5 kg and mean age of 6.23 y at kindergarten corresponded roughly to the 65th percentile weight-for-age for the U.S. population. Three years later, the observed mean weight of 34.26 kg corresponded roughly to the 75th percentile weight-for-age for the U.S. population (25).

      high weight percentiles

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors describe the construction of an extremely large-scale anatomical model of juvenile rat somatosensory cortex (excluding the barrel region), which extends earlier iterations of these models by expanding across multiple interconnected cortical areas. The models are constructed in such a way as to maintain biological detail from a granular scale - for example, individual cell morphologies are maintained, and synaptic connectivity is founded on anatomical contacts. The authors use this model to investigate a variety of properties, from cell-type specific targeting (where the model results are compared to findings from recent large-scale electron microscopy studies) to network metrics. The model is also intended to serve as a platform and resource for the community by being a foundation for simulations of neuronal circuit activity and for additional anatomical studies that rely on the detailed knowledge of cellular identity and connectivity.

      Strengths:

      As the authors point out, the combination of scale and granularity of their model is what makes this study valuable and unique. The comparisons with recent electron microscopy findings are some of the most compelling results presented in the study, showing that certain connectivity patterns can arise directly from the anatomical configuration, while other discrepancies highlight where more selective targeting rules (perhaps based on molecular cues) are likely employed. They also describe intriguing effects of cortical thickness and curvature on circuit connectivity and characterize the magnitude of those effects on different cortical layers.

      The detailed construction of the model is drawn on a wide range of data sources (cellular and synaptic density measures, neuronal morphologies, cellular composition measures, brain geometry, etc.) that are integrated together; other data sources are used for comparison and validation. This consolidation and comparison also represent a valuable contribution to the overall understanding of the modeled system.

      We thank the reviewer for the kind comments.

      Weaknesses:

      The scale of the model, which is a primary strength, also can carry some drawbacks. In order to integrate all the diverse data sources together, many specific decisions must be made about, for example, translating findings from different species or regions to the modeled system, or deciding which aspects of the system can be assumed to be the same and which should vary. All these decisions will have effects on the predicted results from the model, which could limit the types of conclusions that can be made (both by the others and by others in the community who may wish to use the model for their own work).

      We agree that this is a downside of the principle of biophysically detailed modeling that is best addressed by continuous refinement in collaboration with the community. We would like to once again invite any interested party to participate in this process.

      As an example, while it is interesting that broad brain geometry has effects on network structure (Figure 7), it is not clear how those effects are actually manifested. I am not sure if some of the effects could be due to the way the model is constructed - perhaps there may be limited sets of morphologies that fit into columns of particular thicknesses, and those morphologies may have certain idiosyncrasies that could produce different statistics of connectivities where they are heavily used. That may be true to biology, but it may also be somewhat artifactual if, for example, the only neurons in the library that fit into that particular part of the cortex differ from the typical neurons that are actually found in that region (but may not have been part of the morphological sampling).

      We agree that the limited pool of morphological reconstructions can lead to artifactual results in the way the reviewer pointed out. To investigate that hypothesis, we added a supplementary figure (S14) where we characterize (1): to what degree the morphological composition of a columnar subvolume reflects the overall composition of the model; and (2): The level of morphological diversity in each columnar subvolume. We discuss the results at the end of section 2.6. Briefly, while we cannot fully rule out the possibility of an artificial result, we found a high and virtually uniform level of morphological diversity in all columns and layers. This makes it unlikely that individual idiosyncratic morphologies strongly affect the local connectivity. However, we acknowledge that the minimum level of morphological diversity required is unknown. We believe that at this stage all we can do is characterize this and leave final interpretation to the reader.

      I also wonder how much the assumption that the layers have the same relative thicknesses everywhere in the cortex affects these findings, since layer thicknesses do in fact vary across the cortex.

      We agree that layer thickness variation would affect circuit properties. Variability of layer thickness can be split into two components: variability stemming from differences in total thickness, which our model covers, and variability of relative, i.e., normalized layer thickness, which we miss. In this region of cortex, though, data on the relative thickness of cortical layers is sparse. The Waxholm Atlas does not distinguish somatosensory cortical layers in its labels [Kleven et al, 2023]. Yusufoğulları (2015) compares layer thicknesses of rat hindlimb and barrel field regions. After normalization against total thickness, the relative difference increased towards the superficial layers from 0 in L6 to 33% in L1. Variability of normalized thicknesses within developed rat barrel cortex, based on layer boundaries reported in Narayanan et al. (2017) vary by 2% to 5% over approximately 2 mm. One major effect of such variability would be to scale the number of neurons in a given layer locally by the corresponding factors. For comparison, the resulting variability in neuron counts due to differences in conicality (Fig. 7D1) was around +-25%. A further effect of variable relative layer thickness would be its impact on the selection of suitable morphologies to be placed in the volume.

      In summary, adjustment of layer thickness is a refinement which should be done in future versions of the model, once more data is available. The discussion section has been updated to acknowledge this limitation. However, as outlined at the beginning of this point-by-point reply, we will not conduct such updates to the model in the context of this manuscript, as it describes the version of the model used for a number of follow-up studies.

      In addition, the complexity of the model means that some complicated analyses and decisions are only presented in this manuscript with perhaps a single panel and not much textual explanation. I find, for example, that the panels of Figure S2 seem to abstract or simplify many details to the point where I am not clear about what they are actually illustrating - how does Figure S2D represent the results of "the process illustrated in B"? Why are there abrupt changes in connectivity at region borders (shown as discontinuous colors), when dendrites and axons span those borders and so would imply interconnectivity across the borders? What do the histograms in E1 and E2 portray, and how are they related to each other?

      We apologize for the confusion. We have updated the figure caption of Figure S2 to better explain its contents.

      Overall, the model presented in this study represents an enormous amount of work and stands as a unique resource for the community, but also is made somewhat unwieldy for the community to employ due to the weight of its manifold specific construction decisions, size, and complexity.

      Reviewer #2 (Public Review):

      Summary:

      The authors build a colossal anatomical model of juvenile rat non-barrel primary somatosensory cortex, including inputs from the thalamus. This enhances past models by incorporating information on the shape of the cortex and estimated densities of various types of excitatory and inhibitory neurons across layers. This is intended to enable an analysis of the micro- and mesoscopic organisation of cortical connectivity and to be a base anatomical model for large-scale simulations of physiology.

      Strengths:

      • The authors incorporate many diverse data sources on morphology and connectivity.

      • This paper takes on the challenging task of linking micro- and mesoscale connectivity.

      • By building in the shape of the cortex, the authors were able to link cortical geometry to connectivity. In particular, they make an unexpected prediction that cortical conicality affects the modularity of local connectivity, which should be testable.

      • The author's analysis of the model led to the interesting prediction that layer 5 neurons connect local modules, which may be testable in the future, and provide a basis to link from detailed anatomy to functional computations.

      • The visualisation of the anatomy in various forms is excellent.

      • A subnetwork of the model is openly shared (but see question below).

      We thank the reviewer for their kind comments.

      Weaknesses:

      • Why was non-barrel S1 of the juvenile rat cortex selected as the target for this huge modelling effort? This is not explained.

      We have added an explanation of this decision to the third paragraph of the introduction.

      • There is no effort to determine how specific or generalisable the findings here are to other parts of the cortex. Although there is a link to physiological modelling in another paper, there is no clear pathway to go from this type of model to understand how the specific function of the modelled areas may emerge here (and not in other cortical areas).

      With respect to generality against specific findings, our philosophy is as follows: Despite the fact that most of our source data comes from juvenile rat somatosensory cortex, we also had to generalize many data sources across organisms, ages or regions. Hence, in this iteration we focused on investigating the general features of the (multi-region) mammalian cortex, e.g., high-order motifs, connected by L5 neurons across subregions or the effect of curvature on the connectivity. In the future, more specific data sources can be used to build diverging versions of the model, e.g. one for adult vs. juvenile rat. They can then be used to contrast the ages and focus on more specific findings. We already defined a number of structural metrics that can be used to contrast more specific versions of the model quantitatively.

      We now clarify this pathway to understanding more specific function in the last paragraph of the discussion.

      • In a few places the manuscript could be improved by being more specific in the language, for example:

      - "our anatomy-based approach has been shown to be powerful", I would prefer instead to read about specific contributions of past papers to the field, and how this builds on them.

      - similarly: "ensuring that the total number of synapses in a region-to-region pathway matches biology." Biology here is a loose term and implies too much confidence in the matching to some ground truth. Please instead describe the source of the data, including the type of experiment.

      We have removed or rewritten the mentioned parts. We now clarify that we work based on biological estimates from experiments and cite the experiment sources. We also provide brief descriptions of the types of data and how they were derived.

      • Some of the decisions seem a little ad-hoc, and the means to assess those decisions are not always available to the reader e.g.

      - pg. 10. "Based on these results, we decided that the local connectome sufficed to model connectivity within a region.". What is the basis for this decision? Can it be formalised?

      - "In the remaining layers the results of the objective classification were used to validate the class assignments of individual pyramidal cells. We found the objective classification to match the expert classification closely (i.e., for 80-90% of the morphologies). Consequently, we considered the expert classification to be sufficiently accurate to build the model." The description of the validation is a little informal. How many experts were there? What are their initials? Was inter-rater or intra-rater reliability assessed? What are these numbers? The match with Kanari's classification accuracy should be reported exactly. There are clearly experts among the author list, but we are all fallible without good controls in place, and they should be more explicit about those controls here, in my opinion.

      - "Morphology selection was then performed as previously (Markram et al., 2015), that is, a morphology was selected randomly from the top 10% scorers for a given position." A lot of the decisions seem a little ad-hoc, without justification other than this group had previously done the same thing. For example, why 10% here? Shouldn't this be based on selecting from all of the reasonable morphologies?

      We have clarified that the density of local connectivity is verified against the validation datasets by comparing the diagonals in Figure 4B, in addition to the quantification of Figure 4C.

      For the classification, we have now published a detailed preprint describing the objective confirmation of expert classification by a variety of methods (see Kanari et al. 2024 https://www.biorxiv.org/content/10.1101/2024.09.13.612635v1). We cannot include the full methodology in the current paper, due to its large extent. For the benefit of the reader, we have included the appropriate citation and extended the short description of the methodology. As described in this paper, the classification accuracy varies per layer, cell type, etc. We have now described in more details these results, that can be accessed in details in out preprint.

      • I would like to know if one of the key results relating to modularity and cortical geometry can be further explored. In particular, there seem to be sharp changes in the data at the end of the modelled cortical regions, which need to be explored or explained further.

      We now explore these results further in supplementary figure S15, which we discuss in the results Section 2.6.

      • The shape of the juvenile cortex - a key novelty of this work - was based on merely a scalar reduction of the adult cortex. This is very surprising, and surely an oversimplification. Huge efforts have gone into modelling the complex nonlinear development of the cortex, by teams including the developing Human Connectome Project. For such a fundamental aspect of this work, why isn't it possible to reconstruct the shape of this relatively small part of the juvenile rat cortex?

      We agree that a more complex approach should be used in the future. However, as outlined at the beginning of this point-by-point reply, we will not conduct such updates to the model in the context of this manuscript, as it describes the version of the model used for a number of follow-up studies.

      • The same relative laminar depths are used for all subregions. This will have a large impact on the model. However, relative laminar depths can change drastically across the cortex (see e.g. many papers by Palomero-Gallagher, Zilles, and colleagues). The authors should incorporate the real laminar depths, or, failing that, show evidence to show that the laminar depth differences across the subregions included in the model are negligible.

      This point has also been raised by reviewer #1 above. For convenience, we repeat our reply below.

      We agree that layer thickness variation would affect circuit properties. Variability of layer thickness can be split into two components: variability stemming from differences in total thickness, which our model covers, and variability of relative, i.e., normalized layer thickness, which we miss. In this region of cortex, though, data on the relative thickness of cortical layers is sparse. The Waxholm Atlas does not distinguish somatosensory cortical layers in its labels [Kleven et al, 2023]. Yusufoğulları (2015) compares layer thicknesses of rat hindlimb and barrel field regions. After normalization against total thickness, the relative difference increased towards the superficial layers from 0 in L6 to 33% in L1. Variability of normalized thicknesses within developed rat barrel cortex, based on layer boundaries reported in Narayanan et al. (2017) vary by 2% to 5% over approximately 2 mm. One major effect of such variability would be to scale the number of neurons in a given layer locally by the corresponding factors. For comparison, the resulting variability in neuron counts due to differences in conicality (Fig. 7D1) was around +-25%. A further effect of variable relative layer thickness would be its impact on the selection of suitable morphologies to be placed in the volume.

      In summary, adjustment of layer thickness is a refinement which should be done in future versions of the model, once more data is available. The discussion section has been updated to acknowledge this limitation. However, as outlined at the beginning of this point-by-point reply, we will not conduct such updates to the model in the context of this manuscript, as it describes the version of the model used for a number of follow-up studies.

      • The authors perform an affine mapping between mouse and rat cortex. This is again surprising. In human imaging, affine mappings are insufficient to map between two individual brains of the same species and nonlinear transformations are instead used. That an affine transformation should be considered sufficient to map between two different species is then very surprising. For some models, this may be fine, but there is a supposed emphasis here on biological precision in terms of anatomical location.

      We agree that this is a weakness that we will address in future revisions of the model.

      • One of the most interesting conclusions, that the connectivity pattern observed is in part due to cooperative synapse formation, is based on analyses that are unfortunately not shown.

      We originally decided not to show this part as we underestimated the interest in this particular result. We have now included the result in supplementary figure S10 and discuss the figure in the results.

      • Open code:

      - Why is only a subvolume available to the community?

      We have now made the entire model available under doi.org/10.7910/DVN/HISHXN. The Data and Code availability section has been updated to clarify this.

      - Live nature of the model. This is such a colossal model, and effort, that I worry that it may be quite difficult to update in light of new data. For example, how much person and computer time would it take to update the model to account for different layer sizes across subregions? Or to more precisely account for the shape of the juvenile rat cortex?

      To provide more information to people interested in participating in model refinements, we have added a new Figure 9. We discuss potential opportunities for refinement at the end of the discussion section.

      Reviewer #3 (Public Review):

      This manuscript reports a detailed model of the rat non-barrel somatosensory cortex, consisting of 4.2 million morphologically and biophysically detailed neuron models, arranged in space and connected according to highly sophisticated rules informed by diverse experimental data. Due to its breadth and sophistication, the model will undoubtedly be of interest to the community, and the reporting of anatomical details of modeling in this paper is important for understanding all the assumptions and procedures involved in constructing the model. While a useful contribution to this field, the model and the manuscript could be improved by employing data more directly and comparing simple features of the model's connectivity - in particular, connection probabilities - with relevant experimental data.

      The manuscript is well-written overall but contains a substantial number of confusing or unclear statements, and some important information is not provided.

      Below, major concerns are listed, followed by more specific but still important issues.

      Major issues

      (1) Cortical connectivity.

      Section 2.3, "Local, mid-range and extrinsic connectivity modeled separately", and Figure 4: I am confused about what is done here and why. The authors have target data for connectivity (Figure 4B1). But then they use an apposition-based algorithm that results in connectivity that is quite different from the data (Figure 4B2, C). They then use a correction based on the data (Figure 4E) to arrive at a more realistic connectivity. Why not set the connectivity based on the data right away then? That would seem like a more straightforward approach.

      We have completely re-written our description and discussion of connectivity in the model. We now more explicitly motivate our connectivity modeling choices in the first paragraph of section 2.3 of the results and in the second paragraph of the discussion.

      The same comment applies to Section 2.4., "Specificity of axonal targeting": the distributions of synapses on different types of target cell compartments were not well captured by the original model based on axon-dendrite overlap and pruning, so the authors introduced further pruning to match data specificity. While details of this process and what worked and what didn't may be interesting to some, overall it is not surprising, as it has been well known that cell types exhibit connectivity that is much more specific than "Peters rule" or its simple variations. The question is, since one has the data, why not use the data in the first place to set up the connectivity, instead of using the convoluted process of employing axon-dendrite overlap followed by multiple corrections?

      We would like to point out that we are not employing “Peters rule”, we now make this explicit in the revision in the first paragraph of section 2.3 of the results. Furthermore, we would argue that the match to the Motta et al. data indicates that our approach is more than just a “simple variation”. Finally, we believe that there is important insight in: 1. The specific ways in which the algorithm had to be changed to match the Schneider-Mizell data, e.g. that the connectivity of SST positive neurons did not have to be adapted at all. 2. That the specificity of the other two types could still be matched by a selection of a subset of axonal appositions (i.e., of potential synapses).

      Most importantly, what is missing from the whole paper is the characterization of connection probabilities, at least for the local circuit within one area. Such connection probabilities can be obtained from the data that the authors already use here, such as the MICRONS dataset. Another good source of such data is Campagnola et al., Science, 2022. Both datasets are for mouse V1, but they provide a comprehensive characterization across all cortical layers, thus offering a good benchmark for comparison of the model with the data. It would be important for the authors to show how connection probabilities realized in their model for different cell types compared to these data.

      We now report connection probabilities in the reworked figure 4 and compare them to reported connection probabilities from many different sources and labs in supplementary figure S8. We prefer a comparison to a wide range of sources to relying on a single report.

      (2) Section 2.5, "Structure of thalamic inputs" and Figure 6.

      The text in section 2.5 should provide more details on what was done - namely, that the thalamic axons were generated based on the axon density profiles and then synapses were established based on their overall with cortical dendrites. Figure S10 where the target axon densities from data and the model axon densities are compared is not even mentioned here. Now, Figure S10 only shows that the axon densities were generated in a way that matches the data reasonably well. However, how can we know that it results in connectivity that agrees with data? Are there data sources that can be used for that purpose? For example, the authors show that in their model "the peaks of the mean number of thalamic inputs per neuron occur at lower depths than the peaks of the synaptic density". Is this prediction of the model consistent with any available data?

      Most importantly, the authors should show how the different cell types in their model are targeted by the thalamic inputs in each layer. Experimental studies have been done suggesting specificity in targeting of interneuron types by thalamic axons, such as PV cells being targeted strongly whereas SST and VIP cells being targeted less.

      We have updated the Results section to provide context for the thalamic axon placement, and referred the reader to the methods for more detail. A reference to Figure S10 has now been added to this section as well.

      As for validations of the structure of the thalamo-cortical inputs: We found that the existing literature on the topic, such as Cruikshank et al., 2007, 2010 and more recently Sermet et al., 2019, is predominately on the physiological strengths of the pathways. We acknowledge that the authors provide compelling arguments that their findings are likely partially due to differences in the anatomical innervation strengths. On the other hand, Sporns, 2013 cautioned against mixing up structural and functional connectivity. Overall, we believe that it is simply cleaner to perform this validation in the accompanying manuscript (“Part II: Physiology and Experimentation”), using the full physiological model. Note that we have actually performed that validation in the manuscript (see preprint under the following doi: 10.1101/2023.05.17.541168, Figure 3H1).

      Note that a higher physiological strength onto PV+ neurons is observed.

      (3) "We have therefore made not only the model but also most of our tool chain openly available to the public (Figure 1; step 7)."

      In fact it is not the whole model that is made publicly available, but only about 5% of it (211,000 out of 4,200,000 neurons). Also, why is "most" of the tool chain made openly available, and not the whole tool chain?

      We have now made the entire model available under doi.org/10.7910/DVN/HISHXN. This has also been added to the Key resource table.

      With regard to the tool chain, everything is on our public github (https://github.com/BlueBrain/) except for the algorithm for detecting axonal appositions. For that tool there are currently unresolved potential copyright issues with former collaboration partners. We are working to resolve them.

      Other issues

      "At each soma location, a reconstruction of the corresponding m-type was chosen based on the size and shape of its dendritic and axonal trees (Figure S6). Additionally, it was rotated to according to the orientation towards the cortical surface at that point."

      After this procedure, were cells additionally rotated around the white matter-pia axis? If yes, then how much and randomly or not? If not, then why not? Such rotations would seem important because otherwise additional order potentially not present in the real cortex is introduced in the model affecting connectivity and possibly also in vivo physiology (such as the dynamics of the extracellular electric field).

      They are indeed additionally randomly rotated. We have clarified this in the revision.

      The term "new in vivo reconstructions" for the 58 neurons used in this paper in addition to "in vitro reconstructions" is a misnomer. It is not straightforward to see where the procedure is described, but then one finds that the part of Methods that describes experimental manipulations is mostly about that (so, a clearer pointer to that part of Methods could be useful). However, the description in Methods makes it clear that it is only labeling that is done in vivo; the microscopy and reconstruction are done subsequently in vitro. I would recommend changing the terminology here, as it is confusing. Also, can the authors show reconstructions of these neurons in the supplementary figures? Is the reconstruction shown in Figure 4A representative?

      The term is used because the staining is done in vivo. To the best of our knowledge, the reconstruction process cannot be performed in vivo. However, to avoid any confusion we modified the text to clarify this distinction to in-vivo stained.

      With respect to the reconstruction in Figure 4: The intent of the panel is to demonstrate the concept of targeted long-range axons that our morphologies are missing, necessitating the use of a second algorithm for longer-range connectivity. As such, it is not one of the reconstructions we used, but one of Janelia MouseLight. While we mentioned MouseLight in the figure caption, we formulated it in a way that could be misunderstood to mean that we merely used the MouseLight browser to render one of our morphologies. We apologize for the confusion, and we have fixed the figure caption.

      In this revision we have added exemplars of representative morphology reconstructions (in slice stained and in vivo stained) in a new supplementary figure, as requested (Figure S5). It is referenced in the last paragraph of section 2.1.

      In the Discussion, "This was taken into account during the modeling of the anatomical composition, e.g. by using three-dimensional, layer-specific neuron density profiles that match biological measurements, and by ensuring the biologically correct orientation of model neurons with respect to the orientation towards the cortical surface. As local connectivity was derived from axo-dendritic appositions in the anatomical model, it was strongly affected by these aspects.

      However, this approach alone was insufficient at the large spatial scale of the model, as it was limited to connections at distances below 1000μm."

      As mentioned above, it is not clear that this approach was sufficient for local connectivity either. It would be great if the authors showed a systematic comparison of local connection probabilities between different cell types in their model with experimental data and commented here in the Discussion about how well the model agrees with the data.

      As mentioned in the reply to a previous comment, we now report connection probabilities.

      In the Discussion: "The combined connectome therefore captures important correlations at that level, such as slender-tufted layer 5 PCs sending strong non-local cortico-cortical connections, but thick-tufted layer 5 PCs not." (Also the corresponding findings in Results.)

      If I understand this statement correctly, it may not agree with biological data. See analysis from MICRONS dataset in Bodor et al., https://www.biorxiv.org/content/10.1101/2023.10.18.562531v1.

      Our statement was indeed misleading and formulated too strongly. While thick-tufted pyramidal cells do form long-range intra-cortical connections, the structural strength of these pathways is weaker than for slender-tufted PCs, which are associated with the IT (intra-telencephalic) projection type. We have made this clear in the revision.

      Table 2 is confusing. What do pluses and minuses mean? What does it mean that some entries have two pluses? This table is not mentioned anywhere else in the text. If pluses mean some meaningful predictions of the model, then their distribution in the table seems quite liberal and arbitrary. It is not clear to me that the model makes that many predictions, especially for type-specificity and plasticity. Also, why is the hippocampus mentioned in this table? I don't see anything about the hippocampus anywhere else in the paper.

      We have clarified the description of the table in its caption and removed references to hippocampus, which were left from an earlier draft of the paper.

      In the Discussion, "Thus, we made the tools to improve our model also openly available (see Data and Code availability section)."

      As mentioned before, the authors themselves write that they made "most of our tool chain openly available to the public", but not all of it.

      With regard to the tool chain, everything is on our public github (https://github.com/BlueBrain/) except for the algorithm for detecting axonal appositions. For that tool there are currently unresolved potential copyright issues with former collaboration partners. We are working to resolve them.

      Table S2 has multiple question marks. It is not clear whether the "predictions" listed in that table are truly well-thought-out and/or whether experimental confirmations are real.

      Some of the citations in that table were broken due to technical difficulties with the citation manager used. We apologize and have fixed this in the revision.

      Introduction: It would be quite appropriate to cite here Einevoll et al., Neuron, 2019 ("The Scientific Case for Brain Simulations").

      We now reference this important work.

      Recommendations for the authors:

      Reviewing Editor's note:

      Consultation with the reviewers highlighted three main issues: the integration of connection probability profiles, non-uniform cortical thickness, and the overall organization of the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      Apart from the points discussed in the public review, my main concern is that the manuscript itself is not as tightly constructed as it should be, to the detriment of the reader's ability to understand the model itself and the conclusions from the presented analyses.

      There are places where the text references seemingly incorrect figure panels or refers to panels that don't exist:

      - Section 2.2, first paragraph - refers to Figure 2D, E but those panels do not exist in Figure 2.

      - Section 2.2, second paragraph - refers to Figure 3D3 - perhaps it should be 3B3?

      - Section 2.8, first paragraph - has no figure references but seems like it should be referring to parts of Figure 8 (perhaps Figure 8B1 specifically?)

      - Is the reference to Figure S11A on page 16 supposed to be to S12A?

      In other places, figure labels and descriptions are not clear, and terminology is not always well-defined or explained.

      - Figure 8 and the associated section 2.8 are very difficult to draw conclusions from as presented - several of the terms used are opaque and not clearly defined in the text or legends. I could not easily infer how the normalization works for the "normalized node participation per layer", or what "position in simplex" means for "unique neurons in core", and what their "relative counts" are relative to.

      - Are "targets" in Figure S12A the same as "sinks"? If so, it would be better to use a single term consistently throughout.

      - Figure S12 - figures in part B do not have enough labels to interpret - what is the y-axis of the "rich-club analysis" graph? Also, the figures in part B bottom are labeled "long-range" rather than "mid-range" connections.

      In general, I found the use of both letters and numbers for figure panels (e.g. Figure 7E1) more confusing than helpful - it didn't seem like panels with the same letter were visually grouped consistently, and it sometimes made it more difficult to follow the flow of a figure. I would recommend using only letters in nearly every case here.

      We thank the reviewer for directing our attention to these issues. We have fixed them in the revision. However, we have decided to keep our original panel numbering scheme. Panels with the same letter are meant to be conceptually grouped as they address related or similar measures.

      Other minor points:

      - Section 2.4 - paragraph 2 - sentence 5 "inhbititory" -> "inhibitory".

      - Figure 5B figure legend - references Schneider-Mizell et al. 2023 but probably should be Motta et al. 2019?

      - Figure 5C - figure key "expcected" -> "expected".

      - The lower part of Figure 7C looks like it belongs to panel D2 instead of panel C due to relative spacing.

      We once again thank the reviewer, and we have fixed the listed issues.

      Reviewer #2 (Recommendations For The Authors):

      (1) Abstract:

      - Is it really 'integrating whole brain-scale data'? This seems a bit misleading.

      - "We delineated the limits of determining connectivity from anatomy" - here I think you mean determining connectivity from morphology, or dendrite/axon appositions. Electron microscopy is still anatomy and presumably would be much closer to function.

      We originally used the term “anatomy” as connectivity depends on the correct placement of neurons in addition to their morphology. However, as the reviewer points out, this term is misleading as it would encompass electron microscopy, which can go beyond what we do with the model. We have updated the text to read “morphology and placement”.

      (2) Introduction:

      "Investigating the multi-scale interactions that shape perception requires a model of multiple cortical subregions with inter-region connectivity, but it also requires the subcellular resolution provided by a morphologically detailed model." - This statement, as written, is not true in my opinion. You can argue for the value of morphologically-detailed neuron models to the study of perception, but they are not required for the investigation of perception.

      We have updated the text to be clearer: subcellular resolution is only required for certain aspects that are related to perception.

      (3) Results:

      - Pg. 9/10. There are three sentences in a row that are of the style: "ensuring that the total number of synapses in a region-to-region pathway matches biology." Biology here is a loose term and implies too much confidence in the matching to some ground truth. Please instead describe the source of the data, including the type of experiment here already. o Pg. 10. On the first read, I found it quite hard to follow what exactly was done in Figure 4.

      What are the target values adapted from Reimann et al., 2019, for example?

      - Pg. 10. "Based on these results, we decided that the local connectome sufficed to model connectivity within a region.". What is the basis for this decision? Can it be formalised? o Pg. 16, Figure 7 B-C. The apparent effect of geometry on modularity is potentially very interesting. However, are the sharp drop-offs in values for modularity (but also conicality and height) true, or are some artefacts due to columns at the edges of the sampled area?

      We have discussed these points above in the general comments and strengths and weaknesses.

      - Pg. 18. Simplicial cores define central subnetworks, tied together by mid-range connections. This work, in particular leading to the conclusion of the layer 5 highway hubs, stands out as being a successful attempt to simplify the highly detailed model to a degree that it generates useable new understanding.

      We thank the reviewer for the kind comment.

      (4) Figures:

      Figure 2: The caption doesn't seem to match the Figure (e.g. there are no brain regions depicted in A). o Figure 4f. This is a key panel, but is squished into a small corner of Figure 4, and therefore hard-to-read.

      We have fixed this in the revision.

      Reviewer #3 (Recommendations For The Authors):

      In Major comments, point (1) discusses the issue of connectivity known from data. For all the aspects of connectivity mentioned there, I would recommend the authors re-build their model using the connectivity data directly. It would be interesting to test whether a model constructed in such a way would have any difference in simulated neural activity relative to the model they have constructed.

      This is indeed a very interesting avenue of research. However, we believe that it is best conducted in separate manuscripts. First, in Pokorny et al., 2024 (https://doi.org/10.1101/2024.05.24.593860) we conduct this investigation, comparing the emerging activity in the model to the one for simpler connectivity models. Additionally, in Egas-Santander et al., 2024 (https://www.biorxiv.org/content/10.1101/2024.03.15.585196v3) we found that simpler connectomes lead to less reliable spiking activity globally. Finally, in the accompanying manuscript (https://www.biorxiv.org/content/10.1101/2023.05.17.541168v5) we compare activity with and without the targeting specificity of Schneider-Mizell et al.

      In Major comments, point (2) discusses thalamic inputs. I would recommend the authors to address the issues mentioned there.

      We have replied to those comments above.

      In addition, panels F and G of Figure 6 are mentioned in the caption but are not shown in the figure. In panel B, the choice of visualization is strange. It would make sense to show box plots for all the data instead of bars for mean values and points for randomly selected 50 cells. Panels E1 and E2 lack units.

      We have removed mentions of panels F and G and changed the style of plot. Units for E1 and E2 are now explained in the figure caption.

      In Major comments, point (3) touches upon model and tool sharing. I would recommend making such statements more accurate and reflecting what exactly is provided to the community since not everything is shared.

      We have now made the entire model available under doi.org/10.7910/DVN/HISHXN.

      With regard to the tool chain, everything is on our public github (https://github.com/BlueBrain/) except for the algorithm for detecting axonal appositions. For that tool there are currently unresolved potential copyright issues with former collaboration partners. We are working to resolve them.

      I would recommend the authors address all the other points mentioned in the public review as well. In addition, below are some smaller issues that should be fixed.

      Figure 2: the caption appears to be partially wrong and partially misassigned to the figure panels.

      We fixed the issue.

      Also, note that in L6 the types L6_TPC:A and L6_TPC:C are listed in the figure, but L6_TPC:B is not mentioned.

      There is indeed no TPC:B type in layer 6. The distinction between TPC:A and TPC:B is based on early or late bifurcations of the apical dendrite and is only observed in layer 5.

      Figure 3, panel B2: the caption refers to colors in panel (C), but the authors probably meant to refer to panel (A).

      We fixed the issue.

      "The placement of morphological reconstructions matched expectation, showing an appropriately layered structure with only small parts of neurites leaving the modeled volume (Figure 2D, E)."

      Figure 2 does not have panels D and E.

      "The volume was clearly dominated by dendrites, filling between 23% and 47% of the space, compared to 2% to 11% for axons (Figure 3D3)." There is no panel D or D3 in Figure 3.

      "Recently, the MICrONS dataset (MICrONS-Consortium et al., 2021) has been analyzed with respect to the axonal targeting of inhibitory subtypes in a 100 x 100 μm subvolume spanning all layers (Schneider-Mizell et al., 2023)."

      100 x 100 μm is an area (and should be 100 x 100 μm^2), not a volume.

      Figure S11B requires a legend for the color map.

      We fixed the issues.

      Table S1: What is the difference between L6_BP and L6_BPC? They both are referred to as L6 bipolar cells.

      We have changed the description of L6_BPC to “Layer 6 bitufted pyramidal cell”.

  5. learninglab.gitlabpages.inria.fr learninglab.gitlabpages.inria.fr
    1. L

      Remarques générales: * dans un module mobile learning il faut viser la concision (peut de place à l'écran et modules qui doivent être courts). * dans les listes à puces : chaque puce doit présenter un élément différent, de même nature. Dans certaines listes, il y a 2 éléments et le 2e est en fait une description du premier. Cela ne justifie donc pas qu'il soit dans une autre puce.

    2. Situé sur la droite de l’interface, ce panneau permet de configurer les détails du composant sélectionné.

      Texte raccourci : "- permet de configurer le composant sélectionné : par exemples ajout de vignette sur une vidéo, insertion d'un texte de présentation. Les paramètres personnalisables sont spécifiques à chaque composant."

      S'il n y a au final qu'un item dans la liste à puces, peut-être ne pas mettre de puce ?

    1. Reviewer #2 (Public review):

      Summary:

      The author developed a new device to overcome current limitations in the imaging process of 3D spheroidal structures. In particular, they created a system to follow in real-time tumour spheroid formation, fusion and cell migration without disrupting their integrity. The system has also been exploited to test the effects of a therapeutic agent (chemotherapy) and immune cells.

      Strengths:

      The system allows the in situ observation of the 3D structures along the 3 axes (x,y and z) without disrupting the integrity of the spheroids; in a time-lapse manner it is possible to follow the formation of the 3D structure and the spheroids fusion from multiple angles, allowing a better understanding of the cell aggregation/growth and kinetic of the cells.

      Interestingly the system allows the analysis of cell migration/ escape from the 3D structure analysing not only the morphological changes in the periphery of the spheroids but also from the inner region demonstrating that the proliferating cells in the periphery of the structure are more involved in the migration and dissemination process. The application of the system in the study of the effects of doxorubicin and NK cells would give new insights in the description of the response of tumor 3D structure to killing agents.

    1. Rien qui ressemble à ce qu’on appelle une “évaluation par les pairs” n’aura jamais croisé sa trajectoire

      Je me fais l'avocate du démon mais même l'évaluation par les pairs peut avoir ses manques en terme de fact checking. C'est peut-être un tout autre contexte de dérives de publication mais il y a aussi ces universitaires qui se s'auto-publient en vase clos, relus par leurs très chers amis.

    1. Author response:

      eLife Assessment

      “The work presented is important for our understanding of the development of the cardiac conduction system and its regulation by T-box transcription factors. The conclusions are supported by convincing data. Overall, this is an excellent study that advances our understanding of cardiac biology and has implications beyond the immediate field of study.”

      We appreciate the positive assessment of this work and the recognition of its importance in advancing our understanding of the cardiac conduction system, its regulation by T-box transcription factors, and contribution beyond the immediate field.

      Reviewer #1 (Public review):

      Summary:

      In a heroic effort, Ozanna Burnicka-Turek et al. have made and investigated conduction system-specific Tbx3-Tbx5 deficient mice and investigated their cardiac phenotype. Perhaps according to expectations, given the body of literature on the function of the two T-box transcription factors in the heart/conduction system, the cardiomyocytes of the ventricular conduction system seemed to convert to "ordinary" ventricular working myocytes. As a consequence, loss of VCS-specific conduction system propagation was observed in the compound KO mice, associated with PR and QRS prolongation and elevated susceptibility to ventricular tachycardia.

      Strengths:

      Great genetic model. Phenotypic consequences at the organ and organismal levels are well investigated. The requirement of both Tbx3 and Tbx5 for maintaining VCS cell state has been demonstrated.

      We thank Reviewer #1 for acknowledging the effort involved in generating and characterizing the Tbx3/Tbx5 double conditional knockout mouse model and for highlighting the significance of this work in elucidating the role of these transcription factors in maintaining the functional and transcriptional identity of the ventricular conduction system.

      Weaknesses:

      The actual cell state of the Tbx3/Tbx5 deficient conducting cells was not investigated in detail, and therefore, these cells could well only partially convert to working cardiomyocytes, and may, in reality, acquire a unique state.

      We agree with Reviewer #1 that the Tbx3/Tbx5 double mutant ventricular conduction myocardial cells may only partially convert to working cardiomyocytes or may acquire a unique state.  The transcriptional state of the double mutant VCS cells was investigated by bulk profiling of key genes associated with specific conduction and non-conduction cardiac regions, including fast conduction, slow conduction, or working myocardium. Neither the bulk transcriptional approaches nor the optical mapping approaches we employed capture single-cell data; in both cases, the data represents aggregated signals from multiple cells (1, 2). Single cell approaches for transcriptional profiling and cellular electrophysiology would clarify this concern and are appropriate for future studies.

      (1) O’Shea C, Nashitha Kabri S, Holmes AP, Lei M, Fabritz L, Rajpoot K, Pavlovic D (2020) Cardiac optical mapping – State-of-the-art and future challenges. The International Journal of Biochemistry & Cell Biology 126:105804. doi: 10.1016/j.biocel.2020.105804.

      (2) Efimov IR, Nikolski VP, and Salama G (2004) Optical Imaging of the Heart. Circulation Research 95:21-33. doi: 10.1161/01.RES.0000130529.18016.35.

      Reviewer #2 (Public review):

      Summary:

      The goal of this work is to define the functions of T-box transcription factors Tbx3 and Tbx5 in the adult mouse ventricular cardiac conduction system (VCS) using a novel conditional mouse allele in which both genes are targeted in cis. A series of studies over the past 2 decades by this group and others have shown that Tbx3 is a transcriptional repressor that patterns the conduction system by repressing genes associated with working myocardium, while Tbx5 is a potent transcriptional activator of "fast" conduction system genes in the VCS. In a previous work, the authors of the present study further demonstrated that Tbx3 and Tbx5 exhibit an epistatic relationship whereby the relief of Tbx3-mediated repression through VCS conditional haploinsufficiency allows better toleration of Tbx5 VCS haploinsufficiency. Conversely, excess Tbx3-mediated repression through overexpression results in disruption of the fast-conduction gene network despite normal levels of Tbx5. Based on these data the authors proposed a model in which repressive functions of Tbx3 drive the adoption of conduction system fate, followed by segregation into a fast-conducting VCS and slow-conduction AVN through modulation of the Tbx5/Tbx3 ratio in these respective tissue compartments.

      The question motivating the present work is: If Tbx5/Tbx3 ratio is important for slow versus fast VCS identity, what happens when both genes are completely deleted from the VCS? Is conduction system identity completely lost without both factors and if so, does the VCS network transform into a working myocardium-like state? To address this question, the authors have generated a novel mouse line in which both Tbx5 and Tbx3 are floxed on the same allele, allowing complete conditional deletion of both factors using the VCS-specific MinK-CreERT2 line, convincingly validated in previous work. The goal is to use these double conditional knockout mice to further explore the model of Tbx3/Tbx5 co-dependent gene networks and VCS patterning. First, the authors demonstrate that the double conditional knockout allele results in the expected loss of Tbx3 and Tbx5 specifically in the VCS when crossed with Mink-CreERT2 and induced with tamoxifen. The double conditional knockout also results in premature mortality. Detailed electrophysiological phenotyping demonstrated prolonged PR and QRS intervals, inducible ventricular tachycardia, and evidence of abnormal impulse propagation along the septal aspect of the right ventricle. In addition, the mutants exhibit downregulation of VCS genes responsible for both fast conduction AND slow conduction phenotypes with upregulation of 2 working myocardial genes including connexin-43. The authors conclude that loss of both Tbx3 and Tbx5 results in "reversion" or "transformation" of the VCS network to a working myocardial phenotype, which they further claim is a prediction of their model and establishes that Tbx3 and Tbx5 "coordinate" transcriptional control of VCS identity.

      We appreciate Reviewer #2’s detailed summary of the study’s aims, methodologies, and findings, as well as their thoughtful suggestions for further analysis. We are grateful for their recognition of our genetic model’s novelty and robustness.

      Overall Appraisal:

      As noted above, the present study does not further explore the Tbx5/Tbx3 ratio concept since both genes are completely knocked out in the VCS. Instead, the main claims are that the absence of both factors results in a transcriptional shift of conduction tissue towards a working myocardial phenotype, and that this shift indicates that Tbx5 and Tbx3 "coordinate" to control VCS identity and function.

      We agree with this reviewer’s assessment of the assertions in our manuscript.  The novel combined Tbx5/Tbx3 double mutant model does not further explore the TBX5/TBX3 ratio concept, which we previously examined in detail (1). Instead, as the Reviewer notes, this manuscript focuses on testing a model that the coordinated activity of Tbx3 and Tbx5 defines specialized ventricular conduction identity.

      (1) Burnicka-Turek O, Broman MT, Steimle JD, Boukens BJ, Petrenko NB, Ikegami K, Nadadur RD, Qiao Y, Arnolds DE, Yang XH, Patel VV, Nobrega MA, Efimov IR, Moskowitz IP (2020) Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circulation Research 127:e94-e106. doi:10.1161/CIRCRESAHA.118.314460. 

      Strengths:

      (1) Successful generation of a novel Tbx3-Tbx5 double conditional mouse model.

      (2) Successful VCS-specific deletion of Tbx3 and Tbx5 using a VCS-specific inducible Cre driver line.

      (3) Well-powered and convincing assessments of mortality and physiological phenotypes.

      (4) Isolation of genetically modified VCS cells using flow.

      We thank Reviewer #2 for acknowledging the listed strengths of our study.

      Weaknesses:

      (1) In general, the data is consistent with a long-standing and well-supported model in which Tbx3 represses working myocardial genes and Tbx5 activates the expression of VCS genes, which seem like distinct roles in VCS patterning. However, the authors move between different descriptions of the functional relationship and epistatic relationship between these factors, including terms like "cooperative", "coordinated", and "distinct" at various points. In a similar vein, sometimes terms like "reversion" are used to describe how VCS cells change after Tbx3/Tbx5 conditional knockout, and other times "transcriptional shift" and at other times "reprogramming". But these are all different concepts. The lack of a clear and consistent terminology for describing the phenomena observed makes the overarching claims of the manuscript more difficult to evaluate.

      We discriminate prior work on the “long-standing and well-supported model’ supported by investigation of the role of Tbx5 and Tbx3 independently from this work examining the coordinated role of Tbx5 and Tbx3. Prior work demonstrated that Tbx3 represses working myocardial genes and Tbx5 activates expression of VCS genes, consistent with the reviewer’s suggestion of their distinct roles in VCS patterning. However, the current study uniquely evaluates the combined role of Tbx3 and Tbx5 in distinguishing specialized conduction identify from working myocardium, for the first time.

      We appreciate Reviewer #2’s feedback regarding the need for consistent terminology when describing the impact of the double Tbx3 and Tbx5 mutant. We will edit the manuscript to replace terms like “reversion” with “transcriptional shift” or “transformation” when describing the observed phenotype, and we will use “coordination” to describe the combined role of Tbx5 and Tbx3 in maintaining VCS-specific identity.

      (2) A more direct quantitative comparison of Tbx5 Adult VCS KO with Tbx5/Tbx3 Adult VCS double KO would be helpful to ascertain whether deletion of Tbx3 on top of Tbx5 deletion changes the underlying phenotype in some discernable way beyond mRNA expression of a few genes. Superficially, the phenotypes look quite similar at the EKG and arrhythmia inducibility level and no optical mapping data from a single Tbx5 KO is presented for comparison to the double KO.

      We thank Reviewer #2 for the suggestions that a direct comparison between Tbx5 single conditional knockout and Tbx3/Tbx5 double conditional knockout models may help isolate the specific contribution of Tbx3 deletion in addition to Tbx5 deletion.

      Previous studies have assessed the effect of single Tbx5 CKO in the VCS of murine hearts (1, 3, 5). Arnolds et al. demonstrated that the removal of Tbx5 from the adult ventricular conduction system results in VCS slowing, including prolonged PR and QRS intervals, prolongation of the His duration and His-ventricular (HV) interval (3). Furthermore, Burnicka-Turek et al. demonstrated that the single conditional knockout of Tbx5 in the adult VCS caused a shift toward a pacemaker cell state, with ectopic beats and inappropriate automaticity (1). Whole-cell patch clamping of VCS-specific Tbx5-deficient cells revealed action potentials characterized by a slower upstroke (phase 0), prolonged plateau (phase 2), delayed repolarization (phase 3), and enhanced phase 4 depolarization - features characteristic of nodal action potentials rather than typical VCS action potentials (3). These observations were interpreted as uncovering nodal potential of the VCS in the absence of Tbx5. Based on the role of Tbx3 in CCS specification (2), we hypothesized that the nodal state of the VCS uncovered in the absence of Tbx5 was enabled by maintained Tbx3 expression. This motivated us to generate the double Tbx5 / Tbx3 knockout model to examine the state of the VCS in the absence of both T-box TFs.

      In the current study, we demonstrate that the VCS-specific deletion of Tbx3 and Tbx5 results in the loss of fast electrical impulse propagation in the VCS, similar to that observed in the single Tbx5 mutant. However, unlike the Tbx5 single mutant, the Tbx3/Tbx5 double deletion does not cause a gain of pacemaker cell state in the VCS. Instead, the physiological data suggests a transition toward non-conduction working myocardial physiology. This conclusion is supported by the presence of only a single upstroke in the optical action potential (OAP) recorded from the His bundle region and VCS cells in Tbx3/Tbx5 double conditional knockout mice. The electrical properties of VCS cells in the double knockout are functionally indistinguishable from those of ventricular working myocardial cells. As a result, ventricular impulse propagation is significantly slowed, resembling activation through exogenous pacing rather than the rapid conduction typically associated with the VCS. We will edit the text of the manuscript to more carefully distinguish the observations between these models, as suggested.

      (1) Burnicka-Turek O, Broman MT, Steimle JD, Boukens BJ, Petrenko NB, Ikegami K, Nadadur RD, Qiao Y, Arnolds DE, Yang XH, Patel VV, Nobrega MA, Efimov IR, Moskowitz IP (2020) Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circulation Research 127:e94-e106. doi:10.1161/CIRCRESAHA.118.314460. 

      (2) Mohan RA, Bosada FM, van Weerd JH, van Duijvenboden K, Wang J, Mommersteeg MTM, Hooijkaas IB, Wakker V, de Gier-de Vries C, Coronel R, Boink GJJ, Bakkers J, Barnett P, Boukens BJ, Christoffels VM (2020) T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proc Natl Acad Sci U S A. 117:18617-18626. doi: 10.1073/pnas.1919379117.

      (3) Arnolds DE, Liu F, Fahrenbach JP, Kim GH, Schillinger KJ, Smemo S, McNally EM, Nobrega MA, Patel VV, Moskowitz IP (2012) TBX5 drives Scn5a expression to regulate cardiac conduction system function. The Journal of Clinical Investigation 122:2509–2518. doi: 10.1172/JCI62617.

      (4) Frank DU, Carter KL, Thomas KR, Burr RM, Bakker ML, Coetzee WA, Tristani-Firouzi M, Bamshad MJ, Christoffels VM, Moon AM (2012) Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci U S A. 109:E154-63. doi: 10.1073/pnas.1115165109.

      (5) Moskowitz IP, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupershmidt S, Roden D, Berul CI, Seidman CE, Seidman JG (2004) The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131:4107-4116. doi: 10.1242/dev.01265. PMID: 15289437.

      (3) The authors claim that double knockout VCS cells transform to working myocardial fate, but there is no comparison of gene expression levels between actual working myocardial cells and the Tbx3/Tbx5 DKO VCS cells so it's hard to know if the data reflect an actual cell state change or a more non-specific phenomenon with global dysregulation of gene expression or perhaps dedifferentiation. I understand that the upregulation of Gja1 and Smpx is intended to address this, but it's only two genes and it seems relevant to understand their degree of expression relative to actual working myocardium. In addition, the gene panel is somewhat limited and does not include other key transcriptional regulators in the VCS such as Irx3 and Nkx2-5. RNA-seq in these populations would provide a clearer comparison among the groups.

      And

      the main claims are that the absence of both factors results in a transcriptional shift of conduction tissue towards a working myocardial phenotype, and that this shift indicates that Tbx5 and Tbx3 "coordinate" to control VCS identity and function. However, only limited data are presented to support the claim of transcriptional reprogramming since the knockout cells are not directly compared to working myocardial cells at the transcriptional level and only a small number of key genes are assessed (versus genome-wide assessment).

      We appreciate Reviewer #2’s suggestion to expand the gene expression analysis in Tbx3/Tbx5-deficient VCS cells by including other specific genes and comparisons with “native”/actual working ventricular myocardial cells and broadening the gene panel. In this study, we evaluated core cardiac conduction system markers, revealing a loss of conduction system-specific gene expression in the double mutant VCS. Furthermore, we evaluated key working myocardial markers normally excluded from the conduction system, Gja1 and Smpx, revealing a shift towards a working myocardial state in the double mutant VCS (Figure 4). We agree that a more comprehensive analysis, such as transcriptome-wide approaches, would offer greater clarity on the extent and specificity of the observed shift from conduction to non-conduction identity. These approaches are appropriate directions for future studies.

      (4) From the optical mapping data, it is difficult to distinguish between the presence of (a) a focal proximal right bundle branch block due to dysregulation of gene expression in the VCS but overall preservation of the right bundle and its distal ramifications; from (b) actual loss of the VCS with reversion of VCS cells to a working myocardial fate. Related to this, the authors claim that this experiment allows for direct visualization of His bundle activation, but can the authors confirm or provide evidence that the tissue penetration of their imaging modality allows for imaging of a deep structure like the AV bundle as opposed to the right bundle branch which is more superficial? Does the timing of the separation of the sharp deflection from the subsequent local activation suggest visualization of more distal components of the VCS rather than the AV bundle itself? Additional clarification would be helpful.

      And

      In addition, the optical mapping dataset is incomplete and has alternative interpretations that are not excluded or thoroughly discussed.

      We agree with Reviewer #2 that the resolution of the optical mapping experiment may be insufficient to precisely localize the conduction block due to the limited signal strength from the VCS. It is possible that the region defined as the His Bundle also includes portions of the right bundle branch. Our control mice show VCS OAP upstrokes consistent with those reported by Tamaddon et al. (2000) using Di-4-ANEPPS (1). We appreciate the Reviewer’s attention to alternative interpretations, and we will incorporate these caveats into the manuscript text.

      (1) Tamaddon HS, Vaidya D, Simon AM, Paul DL, Jalife J, Morley GE (2000) High-resolution optical mapping of the right bundle branch in connexin40 knockout mice reveals slow conduction in the specialized conduction system. Circulation Research 87:929-36. doi: 10.1161/01.res.87.10.929. 

      Impact:

      The present study contributes a novel and elegantly constructed mouse model to the field. The data presented generally corroborate existing models of transcriptional regulation in the VCS but do not, as presented, constitute a decisive advance.

      And

      In sum, while this study adds an elegantly constructed genetic model to the field, the data presented fit well within the existing paradigm of established functions of Tbx3 and Tbx5 in the VCS and in that sense do not decisively advance the field. Moreover, the authors' claims about the implications of the data are not always strongly supported by the data presented and do not fully explore alternative possibilities.

      We appreciate Reviewer # 2’s acknowledgment of the elegance and novelty of the mouse model we generated. However, we respectfully disagree with their assessment that this work merely corroborates existing models without providing a decisive advance. Previous studies have investigated single Tbx5 or Tbx3 gene knockouts in-depth and established the T-box ratio model for distinguishing fast VCS from slow nodal conduction identity (1) that the reviewer alludes to in earlier comments. In contrast, this study aimed to explore a different model, that the combined effects of Tbx5 and Tbx3 distinguish adult VCS identity from non-conduction working myocardium. The coordinated Tbx3 and Tbx5 role in conduction system identify remained untested due to the lack of a mouse model that allowed their simultaneous removal. The very model the reviewer recognizes as “novel and elegantly constructed” has allowed the examination of the coordinated role of Tbx5 and Tbx3 for the first time. While we acknowledge the opportunity for additional depth of investigation of this model in future studies, the data we present provides consistent experimental support for the coordinated requirement of both Tbx5 and Tbx3 for ventricular cardiac conduction system identity.

      (1) Burnicka-Turek O, Broman MT, Steimle JD, Boukens BJ, Petrenko NB, Ikegami K, Nadadur RD, Qiao Y, Arnolds DE, Yang XH, Patel VV, Nobrega MA, Efimov IR, Moskowitz IP (2020) Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circulation Research 127:e94-e106. doi:10.1161/CIRCRESAHA.118.314460. 

      Reviewer #3 (Public review):

      Summary:

      In the study presented by Burnicka-Turek et al., the authors generated for the first time a mouse model to cause the combined conditional deletion of Tbx3 and Tbx5 genes. This has been impossible to achieve to date due to the proximity of these genes in chromosome 5, preventing the generation of loss of function strategies to delete simultaneously both genes. It is known that both Tbx3 and Tbx5 are required for the development of the cardiac conduction system by transcription factor-specific but also overlapping roles as seen in the common and diverse cardiac defects found in patients with mutations for these genes. After validating the deletion efficiency and specificity of the line, the authors characterized the cardiac phenotype associated with the cardiac conduction system (CCS)-specific combined deletion of T_bx5_ and Tbx3 in the adult by inducing the activation of the CCS-specific tamoxifen-inducible Cre recombination (MinK-creERT) at 6 weeks after birth. Their analysis of 8-9-week-old animals did not identify any major morphological cardiac defects. However, the authors found conduction defects including prolonged PR and QTR intervals and ventricular tachycardia causing the death of the double mutants, which do not survive more than 3 months after tamoxifen induction. Molecular and optical mapping analysis of the ventricular conduction system (VCS) of these mutants concluded that, in the absence of Tbx5 and Tbx3 function, the cells forming the ventricular conduction system (VCS) become working myocardium and lose the specific contractile features characterizing VCS cells. Altogether, the study identified the critical combined role of Tbx3 and Tbx5 in the maintenance of the VCS in adulthood.

      Strengths:

      The study generated a new animal model to study the combined deletion of Tbx5 and Tbx3 in the cardiac conduction system. This unique model has provided the authors with the perfect tool to answer their biological questions. The study includes top-class methodologies to assess the functional defects present in the different mutants analyzed, and gathered very robust functional data on the conduction defects present in these mutants. They also applied optical action potential (OAP) methods to demonstrate the loss of conduction action potential and the acquisition of working myocardium action potentials in the affected cells because of Tbx5/Tbx3 loss of function. The study used simpler molecular and morphological analysis to demonstrate that there are no major morphological defects in these mutants and that indeed, the conduction defects found are due to the acquisition of working myocardium features by the VCS cells. Altogether, this study identified the critical role of these transcription factors in the maintenance of the VCS in the adult heart.

      We appreciate the Reviewer’s comments regarding the originality and utility of our model and the strengths of our methodological approach. The Reviewer’s appreciation of the molecular and morphological analyses as well as their constructive feedback is highly valuable.

      Weaknesses:

      In the opinion of this reviewer, the weakness in the study lies in the morphological and molecular characterization. The morphological analysis simply described the absence of general cardiac defects in the adult heart, however, whether the CCS tissues are present or not was not investigated. Lineage tracing analysis using the reporter lines included in the crosses described in the study will determine if there are changes in CCS tissue composition in the different mutants studied. Similarly, combining this reporter analysis with the molecular markers found to be dysregulated by qPCR and western blot, will demonstrate that indeed the cells that were specified as VCS in the adult heart, become working myocardium in the absence of Tbx3 and Tbx5 function.

      We appreciate the reviewer’s concern regarding the morphology of the cardiac conduction system in the Tbx3/Tbx5 double conditional knockout model. We did not observe any structural abnormalities, as the Reviewer notes. We agree with their suggestion for using Genetic Inducible Fate Mapping to mark cardiac conduction cells expressing MinKCre. In fact, we utilized this approach to isolate VCS cells for transcriptional profiling. Specifically, we combined the tamoxifen-inducible MinKCreERT allele with the Cre-dependent R26Eyfp reporter allele to label MinKCre-expressing cells in both control VCS and VCS-specific double Tbx3/Tbx5 knockouts. EYFP-positive cells were isolated for transcriptional studies, ensuring that our analysis exclusively targeted conduction system-lineage marked cells. The ability to isolate MinKCre-marked cells from both controls and Tbx5/Tbx3 double mutants indicates that VCS cells persisted in the double knockout. Nonetheless, the suggestion for in-vivo marking by Genetic Inducible Fate Mapping and morphologic analysis is a valuable recommendation for future studies.

    1. Sociologie de l'éducation: Inégalités et Performances Scolaires

      https://via.hypothes.is/https://www.youtube.com/watch?v=5En-prJfm4A

      Révision

      Ce guide vous aidera à réviser les concepts clés abordés dans les extraits de "Questions d’éducation (suite) (2) - Pierre-Michel Menger (2024-2025)".

      Nous explorerons l'impact de la scolarisation sur les inégalités sociales, le rôle des familles et de l'école dans le développement du capital humain, et les différentes politiques éducatives visant à réduire les disparités de réussite scolaire.

      Quiz

      Instructions: Répondez aux questions suivantes en 2 à 3 phrases.

      Selon l'économiste Eric Hanushek, quelle est la relation entre les taux de croissance économique à long terme et les résultats des tests internationaux?

      Quelle critique Pierre-Michel Menger adresse-t-il au simple allongement de la scolarisation sans amélioration de la qualité de l'apprentissage?

      Quels sont les trois points de convergence entre les théories de Bourdieu et Passeron d'une part, et de Baudelot et Establet d'autre part, concernant l'impact de l'école sur les inégalités?

      Pourquoi l'école en tant qu'unité d'analyse pertinente pour étudier la production de la réussite scolaire s'est-elle imposée plus tôt aux États-Unis qu'en France?

      Qu'est-ce que le concept d'"effet école" et pourquoi a-t-il suscité un regain d'intérêt dans les années 1980?

      Quelles sont les principales conclusions du rapport Coleman (1966) et quelles critiques ont été formulées à son encontre?

      Quelles sont les deux types de compétences que David C. Neil distingue dans son analyse de la production d'éducation?

      Expliquez la notion de "fonction de production de l'éducation" et les variables qu'elle prend en compte.

      En quoi la scolarisation en jardin d'enfant et en maternelle peut-elle contribuer à réduire les inégalités sociales entre les élèves?

      Quelle solution radicale est proposée par certains pour contrer l'emprise des diplômes sur la réussite professionnelle et la stratification sociale, et quels en sont les arguments?

      Clé de correction du quiz

      Hanushek observe une forte corrélation entre les taux de croissance économique et les scores obtenus aux tests internationaux en mathématiques et en sciences.

      Il estime que les différences de résultats à ces tests peuvent expliquer les trois quarts de la variation des taux de croissance entre les pays.

      Menger souligne que prolonger la scolarisation sans garantir un apprentissage de qualité est une politique inefficace.

      Il insiste sur la nécessité d'une effectivité de l'apprentissage, c'est-à-dire un rapport optimal entre quantité et qualité.

      Bourdieu et Passeron, ainsi que Baudelot et Establet, s'accordent sur trois points: * l'origine sociale influence fortement la réussite scolaire, l'école semble incapable de jouer un rôle indépendant de * la structure sociale, et * l'analyse des situations concrètes de scolarisation est insuffisante.

      L'école comme unité d'analyse s'est imposée plus tôt aux USA car les écoles y jouissent d'une plus grande autonomie.

      Elles définissent en partie leur programme, recrutent leurs enseignants et ont des objectifs propres.

      En France, l'homogénéité du système scolaire rendait cette approche moins pertinente dans les années 60.

      L'"effet école" désigne l'impact des caractéristiques propres d'une école sur la réussite des élèves.

      L'intérêt pour ce concept a resurgi dans les années 1980, car les chercheurs ont affiné leurs méthodes et démontré l'existence de liens entre les résultats des élèves et les spécificités des écoles.

      Le rapport Coleman conclut que les ressources des écoles ont un faible impact sur la réussite des élèves, privilégiant l'influence du milieu socio-économique.

      Cette vision a été critiquée car elle ne prenait pas en compte les processus internes à l'école et limitait le nombre de variables explicatives.

      David C. Neil distingue deux types de compétences: * les compétences productives (type 1) directement utilisables dans la vie professionnelle, et * les compétences d'apprentissage (type 2) qui facilitent l'acquisition de nouvelles compétences.

      La fonction de production de l'éducation est un modèle qui cherche à expliquer le capital humain acquis par un élève en fonction de différents facteurs, notamment * ses compétences d'apprentissage, * les ressources pédagogiques fournies par l'école et la famille, * l'effort d'étude de l'élève, et * des variables aléatoires.

      La scolarisation précoce, en particulier lorsqu'elle est gratuite, bénéficie davantage aux enfants de milieux défavorisés.

      Elle permet de compenser les disparités d'investissement familial en matière d'éducation et de développer des compétences d'apprentissage dès le plus jeune âge.

      Certains proposent de réduire l'emprise des diplômes en comprimant les différences de revenus entre les professions. Ils argumentent que la course aux diplômes, contrôlée par les familles, génère une compétition excessive. Valoriser la diversité des métiers et le sens du travail permettrait une stratification sociale moins hiérarchisée.

      Questions pour dissertations

      En vous appuyant sur les travaux de Pierre-Michel Menger et d'autres auteurs, discutez du rôle de l'école dans la reproduction ou la réduction des inégalités sociales.

      Analysez les critiques adressées au rapport Coleman (1966) et discutez de la pertinence du modèle "input-output" pour étudier les performances scolaires.

      Expliquez la distinction entre compétences productives et compétences d'apprentissage selon David C. Neil.

      En quoi cette distinction éclaire-t-elle le débat sur l'impact respectif de la famille et de l'école sur la réussite scolaire?

      Discutez des différentes politiques éducatives envisageables pour compenser les inégalités d'investissement familial en matière d'éducation.

      Analysez les arguments pour et contre la suppression de la "course aux diplômes" comme solution pour réduire les inégalités sociales.

      Glossaire des termes clés

      Capital humain: Ensemble des compétences, connaissances et aptitudes d'un individu, valorisables sur le marché du travail.

      Effet école: Influence des caractéristiques propres d'une école (équipe pédagogique, projets, ambiance...) sur la réussite des élèves.

      Modèle input-output: Approche qui analyse les performances d'un système en fonction des ressources qu'il reçoit (input) et des résultats qu'il produit (output).

      Compétences productives: Compétences directement applicables à la production de biens et services, valorisables sur le marché du travail.

      Compétences d'apprentissage: Capacité d'un individu à acquérir de nouvelles connaissances et compétences de manière efficace.

      Scolarisation: Processus d'intégration des individus dans le système éducatif, indépendamment de leurs performances scolaires.

      Inégalités sociales: Disparités d'accès aux ressources (économiques, culturelles, sociales...) entre différents groupes sociaux.

      Reproduction sociale: Mécanisme par lequel les inégalités sociales se perpétuent de génération en génération, notamment à travers l'éducation.

      Fonctionnalisme: Courant de pensée sociologique qui analyse les phénomènes sociaux en termes de fonctions qu'ils remplissent pour le maintien de l'ordre social.

      Contrefactuel: Scénario hypothétique utilisé pour évaluer l'impact d'une intervention en se demandant ce qui se serait passé en son absence.

    2. Briefing Doc : Pierre-Michel Menger, Questions d’éducation (suite) (2) https://via.hypothes.is/https://www.youtube.com/watch?v=5En-prJfm4A

      Thèmes principaux:

      • Le rôle de l'école dans la réduction des inégalités sociales.
      • L'école peut-elle compenser les inégalités sociales d'origine des élèves ?
      • L'interaction complexe entre les investissements familiaux et l'efficacité scolaire.
      • Comment les compétences développées en famille influencent-elles la réussite scolaire ?
      • L'impact de l'allongement de la scolarisation sans amélioration de la qualité de l'apprentissage.
      • Est-il suffisant de scolariser plus longtemps pour garantir l'égalité des chances ?
      • La recherche d'un modèle de production de l'éducation plus robuste.
      • Quels sont les facteurs déterminants du capital humain acquis par les élèves ?
      • L'analyse des leviers d'action pour améliorer l'équité et l'efficacité du système éducatif.
      • Quelles politiques peuvent être mises en place pour optimiser l'impact de l'école ?

      Idées et faits importants :

      L'école comme boîte noire : Les premières recherches sociologiques sur l'école ont souvent négligé l'analyse des processus internes de l'institution.

      "[...] il manque une analyse des situations de scolarisation complète euh euh concrète pardon dans cette dans ces dans ces théories et cette analyse elle n'est pas dans le dans le viseur de ces de ces chercheurs." (26:41)

      L'effet école : Des recherches plus récentes ont mis en évidence l'existence d'un "effet école", c'est-à-dire que les caractéristiques des écoles ont une incidence sur les résultats des élèves.

      Le rôle crucial de la famille : Les investissements familiaux, notamment dans le développement des compétences d'apprentissage, jouent un rôle crucial dans la réussite scolaire.

      "les enfants très compétents avant même ou assez compétent avant même l'entrée en scolarité avant même l'âge scolaire bénéficieront davantage de l'enseignement scolaire que les enfants initialement moins dotés en compétences dans d'apprentissage par leur famille" (1:16:49)

      Compétences de type 1 et 2 : Pierre-Michel Menger distingue les compétences productives (type 1), utilisées dans la vie professionnelle, et les compétences d'apprentissage (type 2), qui facilitent l'acquisition de nouvelles compétences.

      La tension entre équité et efficacité : L'école est soumise à un double impératif d'équité et d'efficacité, qui crée des tensions dans son fonctionnement.

      L'impact des vacances scolaires : Les vacances scolaires peuvent aggraver les écarts de réussite entre les élèves, en raison des investissements différenciés des familles.

      La réduction du temps scolaire en France : L'école élémentaire française se caractérise par une réduction progressive du temps d'enseignement, ce qui soulève des questions sur son efficacité. "il y a une réduction progressive du temps consacré à l'enseignement élémentaire qui relève à la fois de des modes de vie des loisirs du fonctionnement de l'école des bon des revendications professionnelles enseignants [...]" (1:33:13)

      La discipline scolaire : La France se distingue par un niveau de discipline scolaire relativement faible, ce qui peut affecter l'apprentissage. Pistes d'action :

      • Développer la scolarisation en maternelle, en particulier pour les enfants de milieux défavorisés.
      • Investir dans des programmes de soutien scolaire et d'activités extrascolaires pour les élèves en difficulté.
      • Réformer l'organisation du temps scolaire pour maximiser l'apprentissage et limiter l'impact des vacances.
      • Encourager la mixité sociale dans les établissements scolaires.
      • Expérimenter de nouvelles approches pédagogiques pour améliorer l'efficacité de l'enseignement.

      Conclusion :

      L'exposé de Pierre-Michel Menger souligne la complexité des interactions entre la famille, l'école et la société dans la production des inégalités scolaires.

      Il met en lumière l'importance de dépasser les analyses simplistes et de prendre en compte la diversité des situations et des processus en jeu.

      Il invite à une réflexion critique sur les leviers d'action possibles pour améliorer l'équité et l'efficacité du système éducatif.

    1. on the volatility coefficients and on B and B∗ to distinguish the Brownian motion driving S from the Brownian motion driving Y and to distinguish their volatilities are not needed here

      this is grammatically confusing

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work investigated the role of CXXC-finger protein 1 (CXXC1) in regulatory T cells. CXXC1-bound genomic regions largely overlap with Foxp3-bound regions and regions with H3K4me3 histone modifications in Treg cells. CXXC1 and Foxp3 interact with each other, as shown by co-immunoprecipitation. Mice with Treg-specific CXXC1 knockout (KO) succumb to lymphoproliferative diseases between 3 to 4 weeks of age, similar to Foxp3 KO mice. Although the immune suppression function of CXXC1 KO Treg is comparable to WT Treg in an in vitro assay, these KO Tregs failed to suppress autoimmune diseases such as EAE and colitis in Treg transfer models in vivo. This is partly due to the diminished survival of the KO Tregs after transfer. CXXC1 KO Tregs do not have an altered DNA methylation pattern; instead, they display weakened H3K4me3 modifications within the broad H3K4me3 domains, which contain a set of Treg signature genes. These results suggest that CXXC1 and Foxp3 collaborate to regulate Treg homeostasis and function by promoting Treg signature gene expression through maintaining H3K4me3 modification.

      Strengths:

      Epigenetic regulation of Treg cells has been a constantly evolving area of research. The current study revealed CXXC1 as a previously unidentified epigenetic regulator of Tregs. The strong phenotype of the knockout mouse supports the critical role CXXC1 plays in Treg cells. Mechanistically, the link between CXXC1 and the maintenance of broad H3K4me3 domains is also a novel finding.

      Weaknesses:

      (1) It is not clear why the authors chose to compare H3K4me3 and H3K27me3 enriched genomic regions. There are other histone modifications associated with transcription activation or repression. Please provide justification.

      Thank you for highlighting this important point. We prioritized H3K4me3 and H3K27me3 because they are well-established markers of transcriptional activation and repression, respectively. These modifications provide a robust framework for investigating the dynamic interplay of chromatin states in Treg cells, particularly in regulating the balance between activation and suppression of key genes. While histone acetylation, such as H3K27ac, is linked to enhancer activity and transcriptional elongation, our focus was on promoter-level regulation, where H3K4me3 and H3K27me3 are most relevant. Although other histone modifications could provide additional insights, we chose to focus on these two to maintain clarity and feasibility in our analysis. We are happy to further elaborate on this rationale in the manuscript if necessary.

      (2) It is not clear what separates Clusters 1 and 3 in Figure 1C. It seems they share the same features.

      We apologize for not clarifying these clusters clearly. Cluster 1 and 3 are both H3K4me3 only group, with H3K4me3 enrichment and gene expression levels being higher in Cluster 1. At first, we divided the promoters into four categories because we wanted to try to classify them into four categories: H3K4me3 only, H3K27me3 only, H3K4me3-H3K27me3 co-occupied, and None. However, in actual classification, we could not distinguish H3K4me3-H3K27me3 co-occupied group. Instead, we had two categories of H3K4me3 only, with cluster 1 having a higher enrichment level for H3K4me3 and gene expression levels.

      (3) The claim, "These observations support the hypothesis that FOXP3 primarily functions as an activator by promoting H3K4me3 deposition in Treg cells." (line 344), seems to be a bit of an overstatement. Foxp3 certainly can promote transcription in ways other than promoting H3K3me3 deposition, and it also can repress gene transcription without affecting H3K27me3 deposition. Therefore, it is not justified to claim that promoting H3K4me3 deposition is Foxp3's primary function.

      We appreciate the reviewer’s thoughtful observation regarding our claim about FOXP3’s role in promoting H3K4me3 deposition. We acknowledge that FOXP3 is a multifunctional transcription factor with diverse mechanisms of action, including transcriptional activation independent of H3K4me3 deposition and transcriptional repression that does not necessarily involve H3K27me3 deposition.

      Our intention was not to imply that promoting H3K4me3 deposition is the exclusive or predominant function of FOXP3 but rather to highlight that this mechanism contributes significantly to its role in regulating Treg cell function. We agree that our wording may have overstated this point, and we will revise the text to provide a more nuanced interpretation. Specifically, we will clarify that our observations suggest FOXP3 can facilitate transcriptional activation, in part, by promoting H3K4me3 deposition, but this does not preclude its other regulatory mechanisms.

      (4) For the in vitro suppression assay in Figure S4C, and the Treg transfer EAE and colitis experiments in Figure 4, the Tregs should be isolated from Cxxc1 fl/fl x Foxp3 cre/wt female heterozygous mice instead of Cxxc1 fl/fl x Foxp3 cre/cre (or cre/Y) mice. Tregs from the homozygous KO mice are already activated by the lymphoproliferative environment and could have vastly different gene expression patterns and homeostatic features compared to resting Tregs. Therefore, it's not a fair comparison between these activated KO Tregs and resting WT Tregs.

      Thank you for this insightful comment and for pointing out the potential confounding effects associated with using Treg cells from homozygous Foxp3Cre/Cre (or Cre/Y) Cxxc1fl/fl mice. We agree that using Treg cells from _Foxp3_Cre/+ _Cxxc1_fl/fl (referred to as “het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (referred to as “het-WT”) female mice would provide a more balanced comparison, as these Treg cells are less likely to be influenced by the activated lymphoproliferative environment present in homozygous KO mice.

      To address this concern, we will perform additional experiments using Treg cells isolated from _Foxp3_Cre/+ _Cxxc1_fl/fl (“het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (“het-WT”) female mice. We will update the manuscript with these new data to provide a more accurate assessment of the impact of CXXC1 deficiency on Treg cell function.

      (5) The manuscript didn't provide a potential mechanism for how CXXC1 strengthens broad H3K4me3-modified genomic regions. The authors should perform Foxp3 ChIP-seq or Cut-n-Taq with WT and Cxxc1 cKO Tregs to determine whether CXXC1 deletion changes Foxp3's binding pattern in Treg cells.

      Thank you for your insightful comments and valuable suggestions. We greatly appreciate your recommendation to explore the potential mechanism by which CXXC1 enhances broad H3K4me3-modified genomic regions.

      In response, we plan to conduct CUT&Tag experiments for Foxp3 in both WT and Cxxc1 cKO Treg cells.

      Reviewer #2 (Public review):

      FOXP3 has been known to form diverse complexes with different transcription factors and enzymes responsible for epigenetic modifications, but how extracellular signals timely regulate FOXP3 complex dynamics remains to be fully understood. Histone H3K4 tri-methylation (H3K4me3) and CXXC finger protein 1 (CXXC1), which is required to regulate H3K4me3, also remain to be fully investigated in Treg cells. Here, Meng et al. performed a comprehensive analysis of H3K4me3 CUT&Tag assay on Treg cells and a comparison of the dataset with the FOXP3 ChIP-seq dataset revealed that FOXP3 could facilitate the regulation of target genes by promoting H3K4me3 deposition.

      Moreover, CXXC1-FOXP3 interaction is required for this regulation. They found that specific knockdown of Cxxc1 in Treg leads to spontaneous severe multi-organ inflammation in mice and that Cxxc1-deficient Treg exhibits enhanced activation and impaired suppression activity. In addition, they have also found that CXXC1 shares several binding sites with FOXP3 especially on Treg signature gene loci, which are necessary for maintaining homeostasis and identity of Treg cells.

      The findings of the current study are pretty intriguing, and it would be great if the authors could fully address the following comments to support these interesting findings.

      Major points:

      (1) There is insufficient evidence in the first part of the Results to support the conclusion that "FOXP3 functions as an activator by promoting H3K4Me3 deposition in Treg cells". The authors should compare the results for H3K4Me3 in FOXP3-negative conventional T cells to demonstrate that at these promoter loci, FOXP3 promotes H3K4Me3 deposition.

      We appreciate the reviewer’s critical observation regarding our claim about FOXP3’s role in promoting H3K4me3 deposition. We acknowledge that FOXP3 is a multifunctional transcription factor with diverse mechanisms of action, including transcriptional activation independent of H3K4me3 deposition and transcriptional repression that does not necessarily involve H3K27me3 deposition.

      Our intention was not to imply that promoting H3K4me3 deposition is the exclusive or predominant function of FOXP3 but rather to highlight that this mechanism contributes significantly to its role in regulating Treg cell function. We agree that our wording may have overstated this point, and we will revise the text to provide a more nuanced interpretation. Specifically, we will clarify that our observations suggest FOXP3 can facilitate transcriptional activation, in part, by promoting H3K4me3 deposition, but this does not preclude its other regulatory mechanisms.

      We will compare H3K4me3 levels at the promoter loci of interest between FOXP3-negative conventional T cells and FOXP3-positive regulatory T cells. This comparison will help elucidate whether FOXP3 directly promotes H3K4me3 deposition at these loci.

      (2) In Figure 3 F&G, the activation status and IFNγ production should be analyzed in Treg cells and Tconv cells separately rather than in total CD4+ T cells. Moreover, are there changes in autoantibodies and IgG and IgE levels in the serum of cKO mice?

      We appreciate the reviewer’s constructive feedback on the analyses presented in Figures 3F and 3G and the additional suggestion to investigate autoantibodies and serum immunoglobulin levels.

      Regarding Figures 3F and 3G, we agree that separating Treg cells and Tconv cells for analysis of activation status and IFN-γ production would provide a more precise understanding of the cellular dynamics in Cxxc1 cKO mice.

      To address this, we will reanalyze the data to examine Treg and Tconv cells independently and include these results in the revised manuscript.

      As for the changes in autoantibodies and serum IgG and IgE levels, we acknowledge that these parameters are important indicators of systemic immune dysregulation.

      We will now measure serum autoantibodies and immunoglobulin levels in Cxxc1 cKO mice and WT controls.

      (3) Why did Cxxc1-deficient Treg cells not show impaired suppression than WT Treg during in vitro suppression assay, despite the reduced expression of Treg cell suppression assay -associated markers at the transcriptional level demonstrated in both scRNA-seq and bulk RNA-seq?

      Thank you for your thoughtful question. We appreciate your interest in understanding the apparent discrepancy between the reduced expression of Treg-associated suppression markers at the transcriptional level and the lack of impaired suppression observed in the in vitro suppression assay.

      There are several potential explanations for this observation:

      (1) Functional Redundancy: Treg cell suppression is a complex, multi-faceted process involving various effector mechanisms such as cytokine production (e.g., IL-10, TGF-β), cell-cell contact, and metabolic regulation. Thus, even though the transcriptional signature of suppression-associated genes is altered, compensatory mechanisms may still allow Cxxc1-deficient Treg cells to retain functional suppression capacity under these specific in vitro conditions.

      (2) In Vitro Assay Limitations: The in vitro suppression assay is a simplified model of Treg function that may not capture all the complexities of Treg-mediated suppression in vivo. While we observed altered gene expression in Cxxc1-deficient Treg cells, this might not directly translate to a functional defect under the specific conditions of the assay. In vivo, additional factors such as cytokine milieu, cell-cell interactions, and tissue-specific environments may be required for full suppression, which could be missing in the in vitro assay.

      (4) Is there a disease in which Cxxc1 is expressed at low levels or absent in Treg cells? Is the same immunodeficiency phenotype present in patients as in mice?

      Thank you for your insightful question regarding the role of CXXC1 in Treg cells and its potential link to human disease. To our knowledge, no specific human disease has been identified where CXXC1 is expressed at low levels or absent specifically in Treg cells. There is currently no direct evidence of an immunodeficiency phenotype in human patients that parallels the one observed in Cxxc1-deficient mice.

      Reviewer #3 (Public review):

      In the report entitled "CXXC-finger protein 1 associates with FOXP3 to stabilize homeostasis and suppressive functions of regulatory T cells", the authors demonstrated that Cxxc1-deletion in Treg cells leads to the development of severe inflammatory disease with impaired suppressive function. Mechanistically, CXXC1 interacts with Foxp3 and regulates the expression of key Treg signature genes by modulating H3K4me3 deposition. Their findings are interesting and significant. However, there are several concerns regarding their analysis and conclusions.

      Major concerns:

      (1) Despite cKO mice showing an increase in Treg cells in the lymph nodes and Cxxc1-deficient Treg cells having normal suppressive function, the majority of cKO mice died within a month. What causes cKO mice to die from severe inflammation?

      Considering the results of Figures 4 and 5, a decrease in Treg cell population due to their reduced proliferative capacity may be one of the causes. It would be informative to analyze the population of tissue Treg cells.

      We thank the reviewer for this insightful comment and acknowledge the importance of understanding the causes of severe inflammation and early mortality in cKO mice. Based on our data and previous studies, we propose the following explanations:

      (1) Reduced Treg Proliferative Capacity: As shown in Figure 5I, the decreased proportion of FOXP3+Ki67+ Treg cells in cKO mice likely reflects impaired proliferative capacity, which may limit the expansion of functional Treg cells in response to inflammatory cues, particularly in peripheral tissues where active suppression is required.

      (2) Altered Treg Function and Activation: Cxxc1-deficient Treg cells exhibit increased expression of activation markers (Il2ra, Cd69) and pro-inflammatory genes (Ifng, Tbx21). This suggests a functional dysregulation that may impair their ability to suppress inflammation effectively, despite their presence in lymphoid organs.

      (3) Tissue Treg Populations: Although our study focuses on lymph node-resident Treg cells, tissue-resident Treg cells play a crucial role in maintaining local immune homeostasis. It is plausible that Cxxc1 deficiency compromises the accumulation or functionality of tissue Treg cells, contributing to uncontrolled inflammation in non-lymphoid organs. Unfortunately, we currently lack data on tissue Treg populations, which limits our ability to directly address this hypothesis.

      Regarding the suggestion to analyze tissue Treg populations, we agree that this would be an important next step in understanding the cause of the severe inflammation and early mortality in Cxxc1-deficient mice.

      We plan to perform detailed analyses of Treg cell populations in various tissues, including the gut, lung, and liver, to determine if there are specific defects in tissue-resident Treg cells that could contribute to the observed phenotype.

      (2) In Figure 5B, scRNA-seq analysis indicated that Mki67+ Treg subset are comparable between WT and Cxxc1-deficient Treg cells. On the other hand, FACS analysis demonstrated that Cxxc1-deficient Treg shows less Ki-67 expression compared to WT in Figure 5I. The authors should explain this discrepancy.

      Thank you for pointing out the apparent discrepancy between the scRNA-seq and FACS analyses regarding Ki-67 expression in Cxxc1-deficient Treg cells.

      In Figure 5B, the scRNA-seq analysis identified the Mki67+ Treg subset as comparable between WT and Cxxc1-deficient Treg cells. This finding reflects the overall proportion of cells expressing Mki67 transcripts within the Treg population. In contrast, the FACS analysis in Figure 5I specifically measures Ki-67 protein levels, revealing reduced expression in Cxxc1-deficient Treg cells compared to WT.

      To address this discrepancy more comprehensively, we will further analyze the scRNA-seq data to directly compare Mki67 mRNA expression levels between WT and Cxxc1-deficient Treg cells.

      In addition, the authors concluded on line 441 that CXXC1 plays a crucial role in maintaining Treg cell stability. However, there appears to be no data on Treg stability. Which data represent the Treg stability?

      We appreciate the reviewer’s observation and recognize that our wording may have been overly conclusive. Our data primarily highlight the impact of Cxxc1 deficiency on Treg cell homeostasis and transcriptional regulation, rather than providing direct evidence for Treg cell stability. Specifically, the downregulation of Treg-specific suppressive genes (Nt5e, Il10, Pdcd1) and the upregulation of pro-inflammatory markers (Gzmb, Ifng, Tbx21) indicate a shift in functional states. While these findings may suggest an indirect disruption in the maintenance of suppressive phenotypes, they do not constitute a direct measure of Treg cell stability.

      To address the reviewer’s concern, we will revise our conclusion to more accurately state that our data support a role for CXXC1 in maintaining Treg cell homeostasis and functional balance, without overextending claims about Treg cell stability. Thank you for bringing this to our attention, as it will help us improve the clarity and precision of our manuscript.

      (3) The authors found that Cxxc1-deficient Treg cells exhibit weaker H3K4me3 signals compared to WT in Figure 7. This result suggests that Cxxc1 regulates H3K4me3 modification via H3K4 methyltransferases in Treg cells. The authors should clarify which H3K4 methyltransferases contribute to the modulation of H3K4me3 deposition by Cxxc1 in Treg cells.

      Thank you for pointing out the need to clarify the role of H3K4 methyltransferases in the modulation of H3K4me3 deposition by CXXC1 in Treg cells.

      In our study, we found that Cxxc1-deficient Treg cells exhibit reduced H3K4me3 levels, as shown in Figure 7. CXXC1 has been previously reported to function as a non-catalytic component of the Set1/COMPASS complex, which contains H3K4 methyltransferases such as SETD1A and SETD1B. These methyltransferases are the primary enzymes responsible for H3K4 trimethylation.

      References:

      (1) Lee J.H., Skalnik D.G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 2005; 280:41725–41731.

      (2). J. P. Thomson, P. J. Skene, J. Selfridge, T. Clouaire, J. Guy, S. Webb, A. R. W. Kerr, A. Deaton, R. Andrews, K. D. James, D. J. Turner, R. Illingworth, A. Bird, CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

      (3) Shilatifard, A. 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81:65–95.

      (4) Brown D.A., Di Cerbo V., Feldmann A., Ahn J., Ito S., Blackledge N.P., Nakayama M., McClellan M., Dimitrova E., Turberfield A.H. et al. The SET1 complex selects actively transcribed target genes via multivalent interaction with CpG Island chromatin. Cell Rep. 2017; 20:2313–2327.

      Furthermore, it would be important to investigate whether Cxxc1-deletion alters Foxp3 binding to target genes.

      Thank you for this important suggestion regarding the impact of Cxxc1 deletion on FOXP3 binding to target genes. We agree that understanding whether Cxxc1 deficiency affects FOXP3’s ability to bind to its target genes would provide valuable insight into the regulatory role of CXXC1 in Treg cell function.

      To address this, we plan to perform CUT&Tag experiments to assess FOXP3 binding profiles in Cxxc1-deficient versus wild-type Treg cells. These experiments will allow us to determine if Cxxc1 loss disrupts FOXP3’s occupancy at key regulatory sites, which may contribute to the observed functional impairments in Treg cells.

      (4) In Figure 7, the authors concluded that CXXC1 promotes Treg cell homeostasis and function by preserving the H3K4me3 modification since Cxxc1-deficient Treg cells show lower H3K4me3 densities at the key Treg signature genes. Are these Cxxc1-deficient Treg cells derived from mosaic mice? If Cxxc1-deficient Treg cells are derived from cKO mice, the gene expression and H3K4me3 modification status are inconsistent because scRNA-seq analysis indicated that expression of these Treg signature genes was increased in Cxxc1-deficient Treg cells compared to WT (Figure 5F and G).

      Thank you for the insightful comment. To clarify, the Cxxc1-deficient Treg cells analyzed for H3K4me3 modification in Figure 7 were indeed derived from Cxxc1 conditional knockout (cKO) mice, not mosaic mice.

      The scRNA-seq analysis presented in Figures 5F and G revealed an upregulation of Treg signature genes in Cxxc1-deficient Treg cells. This finding suggests that the loss of Cxxc1 drives these cells toward a pro-inflammatory, activated state, underscoring the pivotal role of CXXC1 in maintaining Treg cell homeostasis and suppressive function.

      Regarding the apparent discrepancy between the reduced H3K4me3 levels and the increased expression of these genes, it is important to note that H3K4me3 primarily functions as an epigenetic mark that facilitates chromatin accessibility and transcriptional regulation, acting as an upstream modulator of gene expression. However, gene expression levels are also influenced by downstream compensatory mechanisms and complex inflammatory environments. In this context, the reduction in H3K4me3 likely reflects the direct role of CXXC1 in epigenetic regulation, whereas the upregulation of gene expression in Cxxc1-deficient Treg cells may result as a side effect of the inflammatory environment.

      To further substantiate our findings, we performed RNA-seq analysis on Treg cells from Foxp3_Cre/+ _Cxxc1_fl/fl (“het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (“het-WT”) female mice, as presented in Figure S6C. This analysis revealed a notable reduction in the expression of key Treg signature genes, including _Icos, Ctla4, Tnfrsf18, and Nt5e, in het-KO Treg cells. Importantly, the observed changes in gene expression were consistent with the altered H3K4me3 modification status, further supporting the epigenetic regulatory role of CXXC1. These results further emphasize the critical role of CXXC1 promotes Treg cell homeostasis and function by preserving the H3K4me3 modification.

    2. Reviewer #1 (Public review):

      Summary:

      This work investigated the role of CXXC-finger protein 1 (CXXC1) in regulatory T cells. CXXC1-bound genomic regions largely overlap with Foxp3-bound regions and regions with H3K4me3 histone modifications in Treg cells. CXXC1 and Foxp3 interact with each other, as shown by co-immunoprecipitation. Mice with Treg-specific CXXC1 knockout (KO) succumb to lymphoproliferative diseases between 3 to 4 weeks of age, similar to Foxp3 KO mice. Although the immune suppression function of CXXC1 KO Treg is comparable to WT Treg in an in vitro assay, these KO Tregs failed to suppress autoimmune diseases such as EAE and colitis in Treg transfer models in vivo. This is partly due to the diminished survival of the KO Tregs after transfer. CXXC1 KO Tregs do not have an altered DNA methylation pattern; instead, they display weakened H3K4me3 modifications within the broad H3K4me3 domains, which contain a set of Treg signature genes. These results suggest that CXXC1 and Foxp3 collaborate to regulate Treg homeostasis and function by promoting Treg signature gene expression through maintaining H3K4me3 modification.

      Strengths:

      Epigenetic regulation of Treg cells has been a constantly evolving area of research. The current study revealed CXXC1 as a previously unidentified epigenetic regulator of Tregs. The strong phenotype of the knockout mouse supports the critical role CXXC1 plays in Treg cells. Mechanistically, the link between CXXC1 and the maintenance of broad H3K4me3 domains is also a novel finding.

      Weaknesses:

      (1) It is not clear why the authors chose to compare H3K4me3 and H3K27me3 enriched genomic regions. There are other histone modifications associated with transcription activation or repression. Please provide justification.

      (2) It is not clear what separates Clusters 1 and 3 in Figure 1C. It seems they share the same features.

      (3) The claim, "These observations support the hypothesis that FOXP3 primarily functions as an activator by promoting H3K4me3 deposition in Treg cells." (line 344), seems to be a bit of an overstatement. Foxp3 certainly can promote transcription in ways other than promoting H3K3me3 deposition, and it also can repress gene transcription without affecting H3K27me3 deposition. Therefore, it is not justified to claim that promoting H3K4me3 deposition is Foxp3's primary function.

      (4) For the in vitro suppression assay in Figure S4C, and the Treg transfer EAE and colitis experiments in Figure 4, the Tregs should be isolated from Cxxc1 fl/fl x Foxp3 cre/wt female heterozygous mice instead of Cxxc1 fl/fl x Foxp3 cre/cre (or cre/Y) mice. Tregs from the homozygous KO mice are already activated by the lymphoproliferative environment and could have vastly different gene expression patterns and homeostatic features compared to resting Tregs. Therefore, it's not a fair comparison between these activated KO Tregs and resting WT Tregs.

      (5) The manuscript didn't provide a potential mechanism for how CXXC1 strengthens broad H3K4me3-modified genomic regions. The authors should perform Foxp3 ChIP-seq or Cut-n-Taq with WT and Cxxc1 cKO Tregs to determine whether CXXC1 deletion changes Foxp3's binding pattern in Treg cells.

    1. PORV

      Mě se ty dva následující grafy moc nelíbí. Chápu, co chcete ukázat, ale podle mě tento typ není vhodný, máš tu sloupce, kdy jeden menší má hodnotu 90 % a vedlejší větší 81 %.

      Není to přehledné a ztrácí se tam ta informace. Dal bych na osu y procenta, ať z těch sloupců jasně vidím, jak ty kraje na tom jsou z hlediska podílu lidí žijících v obcích a přidal bych druhou vertikální osu a pomocí spojnicové přímky zobrazil počet obyvatel.

      U toho prvního grafu bude dobře vidět, že ta struktura obcí je podobná, ale liší se počet obyvatel, u toho druhého pak bude mnohem lépe pak vidět, že jsou rozdíly v podílu obyvatel žijících v obcích do/nad 3K.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The manuscript by Rowell et al aims to identify differences in TCR recombination and selection between foetal and adult thymus in mice. Authors sequenced the unpaired bulk TCR repertoire in foetal and adult mice thymi and studied both TCRB and TCRa characteristics in the double positive (DP, CD4+CD8+) and single positive (SP4 CD4+CD8CD3+ and SP8 CD4-CD8+CD3+) populations. They identified age-related differences in TCRa and TCRB segment usage, including a preferential bias toward 3'TRAV and 5' TRAJ rearrangements in foetal cells compared to adults who had a larger perveance for 5'TRAV segments. By depleting the thymocyte population in adult thymi using hydrocortisone, the authors demonstrated that the repertoire became more foetal like, they therefore argue that the preferential 5'TRAV rearrangements in adults may be resulting from prolonged/progressive TCRa rearrangements in the adult thymocytes. In line with previous studies, Authors demonstrate that the foetal TCR repertoire was less diverse, less evenly distributed and had fewer non-template insertions while containing more clonal expansions. In addition, the authors claim that changes in V-J usage and CDR1 and CDR2 in the DP vs SP repertoires indicated that positive selection of foetal thymocytes are less dependent on interactions with the MHC. 

      Strengths: 

      Overall, the manuscript provides an extensive analysis of the foetal and adult TCR repertoire in the thymus, resulting in new insights in T cell development in foetal and adult thymi. 

      Weaknesses: 

      Three major concerns arise:

      (1) the authors have analysed TCR repertoires of only 4 foetal and 4 adult mice, considering the high spread the study may have been underpowered. 

      Given the concerns of the reviewer we have sequenced more libraries and added more data to include repertoires from 7 embryos and 6 young adults (biological replicates from different sorts). We believe that including more replicates has indeed strengthened our study. 

      Our experimental approach was to sequence TCR transcripts, and in studies using RNA-sequencing of inbred mice, often only 3 individuals (biological replicates) are sequenced.

      Our study sequenced from 7 foetal thymuses (generating TCRα and TCRβ repertoires from 4 FACS-sorted cell populations); 6 adult thymuses (generating TCRα and TCRβ repertoires from 4 FACS-sorted cell populations); and 5 adult thymuses from hydrocortisone-treated mice (generating TCRα and TCRβ repertoires from FACS-sorted CD3lo and CD3hi DP populations). We thus analysed 124 distinct repertoires from different populations and libraries, and many tens of thousands of unique sequences.  

      (2) Gating strategies are missing and 

      We have included gating strategies for cell-sorting as SFig7 and SFig8.

      (3) the manuscript is very technical and clearly aimed for a highly specialised audience with expertise in both thymocyte development and TCR analysis. Authors are recommended to provide schematics of the TCR rearrangements/their findings and include a summary conclusions/implications of their findings at the end of each results section rather than waiting till the discussion. This will help the reader to interpret their findings while reading the results. 

      We have modified the manuscript to include a more general introductory paragraph (page 3) to introduce the reader to the topic and we have included brief summaries of the findings at the end of each result section (pages 7,9,10,12,13,15).

      Reviewer #2 (Public Review): 

      Summary: 

      The authors comprehensively assess differences in the TCRB and TCRA repertoires in the fetal and adult mouse thymus by deep sequencing of sorted cell populations. For TCRB and

      TCRA they observed biased gene segment usage and less diversity in fetal thymocytes. The TCRB repertoire was less evenly distributed and displayed more evidence of clonal expansions and repertoire sharing among individuals in fetal thymocytes. In both fetal and adult thymocytes they show skewing of V segment (CDR1-2) repertoires in CD4 and CD8 as compared to DP thymocytes, which they attribute to MHC-I vs MHC-II restriction during positive selection. However the authors assess these effects to be weaker in fetal thymocytes, suggesting weaker MHC-restriction. They conclude that in multiple respects fetal repertoires are distinct from and more innate-like than adult. 

      Strengths: 

      The analyses of the F18.5 and adult thymic repertoires are comprehensive with respect to the cell populations analyzed and the diversity of approaches used to characterize the repertoires. Because repertoires were analyzed in pre- and post-selection thymocyte subsets, the data offer the potential to assess repertoire selection at different developmental stages. The analysis of repertoire selection in fetal thymocytes may be unique. 

      Weaknesses: 

      (1) Problematic experimental design and some lack of familiarity with prior work have resulted in highly problematic interpretations of the data, particularly for TCRA repertoire development. 

      The authors note fetal but not adult thymocytes to be biased towards usage of 3' V segments and 5'J segments. It should be noted that these basic observations were made 20 years ago using PCR approaches (Pasqual et al., J.Exp.Med. 196:1163 (2002)), and even earlier by others.

      We have cited this manuscript (Introduction, page 5) which used PCR of genomic DNA to investigate some TCRα VJ rearrangements in foetal and adult thymus. In contrast, our study uses next generation sequencing of transcripts to investigate all possible combinations of TCRα and TCRβ VJ combinations in different sorted thymocyte populations ex vivo. The greater sensitivity of this more modern technology has thus enabled us to detect many more TCRαVJ rearrangements than the 2002 study, and to conclude on basis of stringent statistical testing that the foetal repertoire is enriched for 3’V to 5’J combinations (Fig. 4). 

      The authors also note that in fetal thymus this bias persists after positive selection, and it can be reproduced in adults during recovery from hydrocortisone treatment. The authors conclude that there are fewer rounds of sequential TCRA rearrangements in the fetal thymus, perhaps due to less time spent in the DP compartment in fetus versus adult. However, the repertoire difference noted by the authors does not require such an explanation. What the authors are analyzing in the fetus is the leading edge of a synchronous wave of TCRA rearrangements, whereas what they are analyzing in adults is the unsynchronized steady state distribution. It is certainly true, as has been shown previously, that the earliest TCRA rearrangements use 3' TRAV and 5'TRAJ segments. But analysis of adult thymocytes has shown that the progression from use of 3' TRAV and 5' TRAJ to use of 5' TRAV and 3' TRAJ takes several days (Carico et al., Cell Rep. 19:2157 (2017)). The same kinetics, imposed on fetal development, would put development of a more complete TCRA repertoire at or shortly after birth. In fact, Pasqual showed exactly this type of progression from F18 through D1 after birth, and could reproduce the progression by placing F16 thymic lobes in FTOC. It is not appropriate to compare a single snapshot of a synchronized process in early fetal thymocytes to the unsynchronized steady state situation in adults. In fact, the authors' own data support this contention, because when they synchronize adult thymocytes by using hydroxycortisone, they can replicate the fetal distribution. Along these lines, the fact that positive selection of fetal thymocytes using 3' TRAV and 5' TRAJ segments occurs within 2 days of thymocyte entry into the DP compartment does not mean that DP development in the fetus is intrinsically rapid and restricted to 2 days. It simply means that thymocytes bearing an early rearranging TCR can be positively selected shortly after TCR expression. The expectation would be that those DP thymocytes that had not undergone early positive selection using a 3' TRAV and a 5' TRAJ would remain longer in the DP compartment and continue the progression of TCRA rearrangements, with the potential for selection several days later using more 5'TRAV and 3'TRAJ. 

      We agree with this summary provided by the reviewer which corresponds closely to the points we made ourselves in the manuscript. Indeed, we discuss the synchronization and kinetics of first wave of T-cell development in Results page 13 and Discussion page 17, which was the rationale for the hydrocortisone experiment.  We have also discussed findings from Carico et al 2017 in this context (see pages 13, 16, 17).  

      (2) The authors note 3' V and 5'J biases for TCRB in fetal thymocytes. The previously outlined concerns about interpreting TCRA repertoire development do not directly apply here. But it would be appropriate to note that by deep sequencing, Sethna (PNAS 114:2253 (2017)) identified skewed usage of some of the same TRBV gene segments in fetal versus adult.  It should also be noted that Sethna did not detect significantly skewed usage of TRBJ  segments. Regardless, one might question whether the skewed usage of TRBJ segments detected here should be characterized as relating to chromosomal location. There are two logical ways one can think about chromosomal location of TRBJ segments - one being TRBJ1 cluster vs TRBJ2 cluster, the other being 5' to 3' within each cluster. The variation reported here does not obviously fit either pattern. Is there a statistically significant difference in aggregate use of the two clusters? There is certainly no clear pattern of use 5' to 3' across each cluster. 

      We have included a statistical comparison of the aggregate TRBJ use between the J1 cluster and the J2 cluster (see SFig5) and Results page 9. 

      (3) The authors show that biases in TCRA and TCRB V and J gene usage between fetal and adult thymocytes are mostly conserved between pre- and post-selection thymocytes (Fig 2). In striking contrast, TCRA and TCRB combinatorial repertoires show strong biases preselection that are largely erased in post-selection thymocytes (Fig 3). This apparent discrepancy is not addressed, but interpretation is challenging. 

      I think the reviewer is referring to heatmaps for individual gene segment usage shown in Figure 2 in comparison to combinatorial usage shown in Figure 4. There is not a discrepancy in the data, but rather the differences between these two figures lie in the way in which the comparisons are made and visualised.  The heatmaps in Figure 2A-D show mean proportional usage of each individual gene segment for each cell type in the two life stages, clustered by Euclidian distance. This visualisation clearly shows bias in foetal 3’ TRAV usage and 5’TRAJ usage (looking at areas of red, which have higher usage), with less pronounced enrichment for TRBV and TRBJ.  The heatmaps also show differences in intensity between different cell populations in each life-stage. 

      In contrast, in Figure 4 the tiles show combinations with statistically significant (P<0.05) differences in mean counts for each VJ combination in each cell type between 7 foetal and 6 adult repertoires by Student’s t-test, after correcting for False discovery rate (FDR) due to multiple combinations.  It is the case, that there are fewer significant differences in proportional combinatorial VxJ use between foetal and adult repertoires after selection. We find this an interesting finding and have expanded our discussion of this aspect of the data (page 10).  More than half of the significant differences persist after repertoire selection, and the reduction in each individual SP population, of course in part reflects the lineage divergence.

      (4) The observation that there is a higher proportion of nonproductive TCRB rearrangements in fetal thymus compared to adult is challenging to interpret, given that the results are based upon RNA sequencing so are unlikely to reflect the ratio in genomic DNA due to processes like NMD.

      We have added two sentences to explain that transcripts of non-productive rearrangements are eliminated by nonsense-mediated decay (NMD), but some non-productive transcripts are detected in many studies of TCR repertoire sequencing, and we have cited three studies from different groups that document this (see Results, page 10-11). We have not commented on how the increase in non-productive TCR rearrangements in the foetal populations (in comparison to adult) relates to rearrangements in genomic DNA or NMD.   We have likewise not commented on the possible significance or biological role of nonproductive TCR transcripts, but simply reported our findings.

      (5) An intriguing and paradoxical finding is that fetal DP, CD4 and CD8 thymocytes all display greater sharing of TCRB CDR3 sequences among individuals than do adults (Fig 5DE), whereas DP and CD8 thymocytes are shown to display greater CDR3 amino acid triplet motif sharing in adults (with a similar trend in CD4). 

      As foetal DP, CD4SP and CD8SP TCRbeta repertoires have fewer non-template insertions and lower means CDR3 length, they are expected to share more CDR3 repertoires than their adult counterparts.  However, in the case of CDR3 amino acid triplet motifs (k-mers) what is being analysed is the sharing of each possible individual k-mer. If k-mers are shared more in the adult for some populations, but CDR3 repertoires are shared more in the foetus, we think it means that some k-mers appear in many different CDR3 sequences in the adult, so that they are over-represented in multiple different CDR3s (presumably due to selection processes, although we agree that this is just an assumption).  

      The authors attribute high amino acid triplet sharing to the result of selection of recurrent motifs by contact with pMHC during positive selection. But this interpretation seems highly problematic because the difference between fetal and adult thymocytes is dramatic even in unfractionated DP thymocytes, the vast majority of which have not yet undergone positive selection. How then to explain the differences in CDR3 sharing visualized by the different approaches? 

      The TCRβ repertoire has been selected in the adult DP population through the process of β-selection, which is believed to involve immune synapse formation and MHC-interactions (Allam et al 2021,10.1083/jcb.201908108). We have now included this reference in the introduction to make this clear (page 4). However, we agree with the reviewer’s comments that it is challenging to explain the k-mer analysis and that we have not been able to actually show that increased k-mer sharing in the adult is a direct consequence of increased positive selection: it was our interpretation of this seemingly paradoxical finding.  For clarity, we have therefore removed the k-mer analyses from the manuscript.

      (6) The authors conclude that there is less MHC restriction in fetal thymocytes, based on measures of repertoire divergence from DP to CD4 and CD8 populations (Fig. 6). But the authors point to no evidence of this in analysis of TRBV usage, either by PC or heatmap analyses (A,B,D). The argument seems to rest on PC analysis of TRAV usage (Fig S6), despite the fact that dramatic differences in the SP4 and SP8 repertoires are readily apparent in the fetal thymocyte heatmaps. The data do not appear to be robust enough to provide strong support for the authors' conclusion. 

      We have written the text very carefully so as not to make the claim too strong, stating in the abstract: “In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire.” We are not saying that MHC-restriction does not impact VJ gene usage in foetal repertoires, but rather that it has less influence (particularly when compared to life-stage).  Evidence for this comes from:  [1] Heatmaps in Fig2A-D which show that all repertoires cluster first by life-stage ahead of cell type; [2] Fig3A and B: PCA of adult and foetal TCRβ VXJ combinations: All repertoires cluster by life-stage on PC1.  PC2 separates adult repertoires by cell type (adult SP8 are positive on PC2 while adult SP4 are negative on PC2, and DP cells are between them) but for foetal repertoires the SP8 and SP4 are highly dispersed with some SP4 cells falling on positive side of PC2.  Only foetal DP repertoires cluster tightly. [3] Fig6A-C: PCA of β−chain CDR1xCDR2 (corresponding to Vβ gene segment usage) again shows the same pattern.  Adult repertoires separate by cell type on PC2, (SP8 positive on PC2, SP4 negative on PC2, with DP in between), but foetal SP8 repertoires are much more dispersed.  [5] SFig6J-K: PCA of α−chain CDR1xCDR2 (Vα usage) frequency distributions: adult repertoires cluster together and are separated by cell type on PC2 (SP4 positive, SP8 negative), but foetal populations are highly dispersed and fail to cluster by cell type on either axis. [6] We have additionally added new PCA analyses to explore differences in MHC-restriction between foetal and adult SP populations.  This is shown in the new Figure 7. We reasoned that in a PCA that included foetal and adult repertoires together, the foetal repertoires might not segregate by SP cell type (MHC-restriction) because of their overall bias towards particular VJ combinations, which would mean that effectively the PCA would be imposing adult MHC restriction on the foetal repertoires.  We therefore carried out PCA in which we analysed the adult repertoires separately from the foetal repertoires.  As expected for adult repertoires, PCA separated SP4 repertoires from SP8 repertoires on PC1 in each comparison (β-chain VxJ (Fig. 7B), α-chain VxJ (Fig. 7F), β-chain CDR1xCDR2 (V region) (Fig. 7H) and α-chain CDR1xCDR2 (V region) (Fig. 7L)). In contrast, for foetal TCRα repertoires (α-chain VxJ and α-chain CDR1xCDR2 (V region)), PCA failed to separate SP4 from SP8 repertoires on PC1 or PC2, so we did not detect impact of MHC-restriction on foetal TCRβ repertoires (Fig. 7E and K).  For foetal TCRβ repertoires, PCA separated SP4 β-chain VxJ from SP8 on PC2, accounting for only 11.1% of variance (Fig. 7A) (in contrast to the 44.2% of variance accounted for by MHC-restriction in adult β-chain VxJ PCA (Fig. 7B)). Thus, in adult repertoires ~4-fold more of the variance in β-chain VxJ usage can be accounted for by MHC-restriction than in foetal repertoires. PCA of foetal β-chain CDR1xCDR2 (V region) separated SP4 from SP8 on PC1, accounting for 28.8% of variance, whereas in PCA of adult β-chain CDR1xCDR2, MHCrestriction accounted for 56.1% (>2-foldmore than in foetus).  Thus, even when we  considered only V-region usage alone, we detected a stronger influence of MHC-restriction on the TCRβ repertoire in adult compared to foetal thymus.  

      Reviewer #3 (Public Review): 

      Summary:

      This study provides a comparison of TCR gene segment usage between foetal and adult thymus.

      Strengths:

      Interesting computational analyses was performed to find interesting differences in TCR gene usage within unpaired TCRa and TCRb chains between foetal and adult thymus.  

      Weaknesses:

      This study was significantly lacking insight and interpretation into what the data analysed actually means for the biology. The dataset discussed in the paper is from only two experiments. One comparing foetal and adult thymi from 4 mice per group and another which involved hydrocortisone treatment. The paper uses TCR sequencing methodology that sequences each TCR alpha and beta chains in an unpaired way, meaning that the true identity of the TCR heterodimer is lost. This also has the added problem of overestimating clonality, and underestimating diversity.

      We have discussed the limitations and benefits of our approach of sequencing TCRβ and TCRα repertoires separately in the Discussion (page 19).  This approach allows the analysis of thousands of sequences from different cell types and different individuals at relatively low cost. We have made no claims in our manuscript about overall diversity or pairing, and given that each chain’s gene locus rearranges at a different time point in development, we believe it is of interest to consider the repertoires individually within this context.

      Limited detail in the methods sections also limits the ability for readers to properly interpret the dataset. What sex of mice were used? Are there any sex differences? What were the animal ethics approvals for the study?

      We have included this information in the Methods (page 19).  Both sexes were used and we found no sex differences, although that was not the focus of our study. All animal experimentation in the UK is carried out under UK Home Office Regulations (following ethical review). This is included in the Methods (page 19).  

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors): 

      Major points: 

      - Group sizes are very small (4 foetal and 4 adult mice). Considering the spread in TCR analysis (eg fig 1 B-H, Sup figures 2-4), the study is likely underpowered as it often looks like one mouse prevents or supports a statistical difference. Authors should therefore consider increasing the group size. 

      We have sequenced more libraries and included more data, from 7 foetal and 6 young adult animals (biological replicates).  

      - The authors should include a gating strategy for their sorted cells. This is essential to verify the quality of their findings. 

      We have added this to the Methods and SFig7 and SFig8.

      Authors should include a summary sentence at the end of each result section which interprets the main finding. Furthermore, the manuscript would greatly benefit from a schematic figure of their main findings, particularly with regards to the rearrangements and selection differences in foetal and adult thymi. 

      We have added a summary sentence to the end of each results section.

      - Authors should be more careful with their claim that MHC has less of an effect foetal TCR selection. Authors demonstrated that there is a difference in VJ recombination between the foetal and adult TCR repertoire, skewing the foetal TCR repertoire to certain variable and junctional segments. Since both CDR1 and CDR2 are encoded by the variable gene, this is likely to affect their ability to interact with the MHC during positive selection. Have Authors considered whether the selection process is actually a bystander effect of the differences in the rearrangement process? One way to support the authors claim is to demonstrate that mice with an alternative MHC background, have similar foetal/adult gene rearrangements but a different TCR repertoire in the SP populations. 

      Time and resources have prevented us from repeating our experiments in another strain of inbred mice.  However, we note that a previous PCR study that showed 3’TRAV to 5’TRAJ bias in foetal repertoires was carried out in BALB/c mice (Pasqual JEM 2002). We have added this point to the Discussion (page 17). 

      - (supplementary) tables have not been provided. 

      Supplementary Tables were uploaded with the submission.  STables 1 and 2 show antibodies used for cell sorts and STable 3 primers used.

      Moderate points: 

      - The loading plots in Figure 3 onward are visually strong. Authors could consider including an V and J (separate) loading plots for Figure 3 E, F and G to demonstrate preferential V and J usage. 

      We have included additional loading plots in Figure 7 for the new PCA we have added (see Fig. 7C, D,I and J).

      - "the proportion of non-productive rearrangements was higher in the foetal SP8 population than adults (Fig 5A)" Authors should explain how non-productive TCRs end up in SP populations as they need to pass positive and negative selection which both require interactions between the TCR and the MHC. 

      As we used RNA sequencing in our study, we did not comment on how the increase in nonproductive TCRbeta rearrangements in the foetal populations (in comparison to adult) relates to rearrangements in genomic DNA or to nonsense-mediated decay (NMD) that is believed to down-regulate transcripts of non-productively rearranged TCR.  We have not commented on the possible significance or biological role of non-productive TCR transcripts, but simply reported our findings. 

      - Authors have studied CDR3 sequential amino acid triplets (k-mers). However, CDR3 regions are longer than 3 amino acids in length, hence authors should provide 1) an overview/comparison of the identified k-mers in foetal or adult thymocytes 2) explain how different k-mers relate to each other, eg whether they are expressed in the same TCR. Have authors considered using alternative programs to identify CDR3 motifs that are based on the full CDR3amino acid sequence, eg TCRdist provides motifs and indicated which amino acids are germline encoded or inserted. 

      In light of this comment from this reviewer and also comments from Reviewer 2, we have removed the comparison of k-mers from the manuscript.  Please see response to point 5 of Reviewer 2.  

      - The term "innate-like" is confusing as it implies that foetal cells are not antigen specific.

      However, once in the circulation, foetal cells will respond in an antigen-specific manner.

      Hence authors should use another term. 

      We have removed the term “innate-like” from the abstract and the first time we used it in the first paragraph of the Discussion. However, the second time we used the term, we are actually taking it from the manuscript we cited (Beaudin et al 2016) and in this case we left it in. We agree that foetal cells are likely to respond in an antigen-specific manner. 

      - To support their hypothesis in the discussion "However, as TCRd gene segments are nested.... so that 5' TRAV segments are not favoured" can authors confirm that there are indeed less yd T cells in the foetal repertoire? 

      We have removed this section from the discussion, because although it is interesting, it is highly speculative, and the manuscript is already quite complicated to interpret.

      Minor points: 

      - The authors may find the publication by De Greef 2021 PNAS of interest to identify TRBD segments 

      - Authors need to clarify that they mean CDR3-beta in the sentence "The mean predicted CDR3 length.... compared to young adult" 

      We have included new data in the manuscript to show that mean CDR3 length is lower in all foetal populations of beta (Fig5C) and alpha (SFig5C) and clarified which we are referring to in the text. 

      - Authors should bring the section "During TCRb gene rearrangement, these segments.... Initiating the sequence of rearrangements" forward and include a schematic." Forward to figure 2 and provide the reader with a visual schematic of the foetal vs adult recombination events. 

      - Discussion: "The first wave of foetal abT-cells that leave the thymus... tolerant to both self and maternal MHC/antigens". Have Authors considered the alternative hypothesis published by Thomas 2019 in Curr Opin System Biol that the observed bias could potentially provide better protection against childhood pathogens? 

      We have indeed considered this, as stated in the first paragraph of the Discussion “The first wave of foetal αβT-cells that leave the thymus must provide early protection against infection in the neonatal animal”. We have now cited the Thomas 2019 study.

      - Discussion: Authors should rephrase the sentence "The transition from DP to SP cell in the foetus.... From DN3 to SP cell may be slower" as it is unclear what the authors mean. 

      We have rephrased this (see page 17)

      - Discussion "TRAV and TRAJ Array" do authors mean "TRAV and TRAJ area"? 

      We did indeed mean array (as in series of gene segments) but we have changed the wording for clarity (page 14).

      - Methods, Fluorescence activated cell sorting: can authors clarify whether they stained, sorted and sequenced the full thymus and /or specify how many cells were included. Can authors also explain why foetal and adult cells were treated differently (eg the volume of master mix)? 

      - Methods Fluorescence activated cell sorting authors should specify what they mean with "mastermix of either 1:50 (foetal thymus) or 1:100 (adult thymus)". Does this mean all antibodies in the foetal mastermix were 1:50 and all antibodies in the adult master mix were 1:100? If so, why were different concentrations used and why were antibodies not individually titrated before use?  

      We have clarified the methods and antibodies used are listed with clones in supplementary tables.

      Figures: 

      - Several figures did not fit on the page and therefore missed the top or side 

      - Figure 1A: missing a label on the Y axis

      This is visible

      - Figure 2A-D: please indicate the 5' and 3' terminus in each graph. The cell type legend should include two separate colours for the two DP populations. 

      We have added 5’ and 3’ labels.  The two DP populations are clearly labelled.

      - Figure 4: please indicate the 5' and 3' terminus in each graph. 

      We have added 5’ and 3’ labels.   

      - Figure 5C: y axis should read mean CDR3B length (aa), Figure 5D and E: y axis should read Jaccard Index CDR3B, Figure 5 F and G: y axis should read Jaccard index CDR3B k-mers. Same comment for Sup Fig 5 but then CDR3a. 

      We have added these labels for both Figure 5 and Supplementary Figure 6 (was SFig5 previously).

      - Figure 6C top label should read CDR1B x CDR2B with highest contribution 

      We have added this label.

      - Figure 7: please indicate the 5' and 3' terminus in each graph. 

      We have added 5’ and 3’ labels.  This is now Figure 8, as we have added new analyses (new Figure 7).

      - Supplementary Figure 1-4 are missing a colour legend next to the graphs.

      We have added the legends in.  

      Reviewer #2 (Recommendations For The Authors): 

      (1) The authors need to provide better support for the notion that the fetal thymus produces ab T cells with properties and functions that are distinct from adult T cells. There are several  ways they might provide a more meaningful assessment: (1) They could analyze the fetal repertoire at multiple time points. (2) They could compare instead the steady state distributions in early postnatal and adult thymus samples. (3) They could compare the peripheral T cell repertoires in the first week of life versus adult. This last approach would allow them to draw the most impactful conclusion. 

      We appreciate these suggestions.  Sadly, it is beyond our budget for the current manuscript and beyond the scope of our current study that we believe provides interesting new information.

      (2) Fig S2D shows TRBJ1-4 in black lettering meant to indicate no significant difference whereas the figure shows use of this gene segment to be elevated in adult. I believe TRBJ1-4 should be in blue lettering.

      This is now coloured correctly.

      (3) The figure call out on p11 (Fig5I-J) should be H-I.

      This is now corrected.

      (4) Please indicate in the main text that Jaccard analysis in Fig 5 D-E is for TCRB.

      This is now corrected.

      (5) The analysis of usage of TCRB CDR1xCDR2 combinations in Fig6D is said to "reflect the bias observed in their TRBV gene usage (Fig 2C)". Isn't it the case that every TRBV gene presents a distinct CDR1xCDR2 combination, meaning that there is no difference between TRBV usage and TRBV CDR1xCDR2 usage? If so, please make this clearer.

      Yes, this is the case, we have made this clearer in the text.

      Reviewer #3 (Recommendations For The Authors): 

      In general, although there is lots of interesting analyses that can be done with these large datasets, I feel as though the authors did not fully interpret the real meaning and significance of many of these results. Whilst there were some speculation on why a foetal repertoire might be different to those of adults in the discussion sections, the rationale for each individual analyses was not clearly explained. I would suggest that the rationale and a thorough explanation of each analyses be added to the results section, including a finishing sentence on what it means. 

      We have added short summaries to each results section to make the points we are making clearer.

      The authors did not mention how many cells were sorted for from each thymus for sequencing. Was the cell number normalised between each population? As this might have an influence on various downstream measurements of diversity, evenness and clonality, if there is a sampling issue. 

      This is explained in the methods.  We used sampling to allow comparisons between repertoires of different sizes, and this is also explained in the methods.

      The authors should include the cell sorting profiles and example flow cytometry plots, including gating strategies and the post sort purity of each sorted population. 

      We have included sorting strategies in the methods (SFig7 and SFig8).

      I think the manuscript could also be improved if there were some basic characterisation of foetal vs. adult thymus development. How many thymocytes are in a foetal vs adult thymus at the timepoints chosen? 

      I think there were some interesting findings in this paper. Given that overall, the foetal thymus appeared to be less diverse than that of the adult, one question I thought would be interesting to discuss was the overlap between the two repertoires. Is the foetal thymus simply a sub-fraction of the adult repertoire or is it totally distinct with no overlapping sequences? 

      Our analyses indicate that the repertoires are actually different. This is evident in Fig4 and in PCA loading plots shown in Fig, 3C and new Fig. 7C, D, I and J.

      I think that some of the interpretation in the results section may be a bit vague. "When we compaired by thymocyte population, each adult population clustered together, with adult SP4 separating from adult SP8 on PC2 and DP cells scoring in between, suggesting that PC2 might correspond to MHC restriction of the adult populations." - whilst I think I know what the authors mean, I do believe that this could be explained in clearer detail and more explicit. SP4 and SP8 are known to be positively selected in the thymus on distinct MHC class I and MHC class II molecules for example. 

      We have tried to clarify the text describing that PCA and additionally added a new Figure (new Fig. &) to compare the influence of MHC-restriction on the TCR repertoire in foetal and adult thymus.

      In the methods section, the age and sex of mice used were not explained at all. What was used in the experiment? Are there any sex differences? 

      Age and sex of mice is given in the methods.  We have not detected sex differences.

      This is a huge omission from the manuscript. In general, I don't believe the methods section has described the analysis in sufficient detail for replication. All analysis code and data should be publicly accessible and be in a format that allows for the reader to replicate the figures in the paper upon running the code. Perhaps even allowing them to run their own TCR datasets.  Overall, I think the manuscript needs some rewriting to include additional details and deeper interpretation of each individual analyses. 

      Sequencing data files will be made publicly available on UCL Research Data Repository.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors report compound heterozygous deleterious variants in the kinase domains of the non-receptor tyrosine kinases (NRTK) TNK2/ACK1 in familial SLE. They suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis.

      Strengths: 

      The identification of similar mutations in non-receptor tyrosine kinases (NRTKs) in two different families with familial SLE is a significant finding in human disease. Furthermore, the paper provides a detailed analysis of the molecular mechanisms behind the impairment of efferocytosis caused by mutations in ACK1 and BRK.

      Weaknesses: 

      A critical point in this paper is whether the loss of function of ACK1 or BRK contributes to the onset of familial SLE. The authors emphasize that inhibitors of ACK1/BRK worsened IgG deposition in the kidneys in a pristane-induced SLE model, which contributes not to the onset but to the exacerbation of SLE, thus only partially supporting their claim.

      The evidence supporting that the loss of function of ACK1 or BRK contributes to the onset of SLE in the patients from the 2 families mostly relies on the genetic analysis. As the reviewer states, the observation that inhibitors of ACK1/BRK worsened IgG deposition in the kidneys in a pristane-induced SLE model supports the genetic evidence.

      To further address the possible role of ACK1 or BRK variants in the onset of autoimmunity in vivo, we treated wild-type (WT) BALB/cByJ female mice with inhibitors in the absence of pristane.

      The results indicated that mice that had received a weekly injection of ACK1 or BRK inhibitors developed a large array of serum anti-nuclear IgG antibodies, including but not limited to autoantibodies associated with SLE such as anti-histones, anti-chromatin, anti U1-snRNP, anti-SSA, and anti-Ku in comparison to the control group inhibitor treated mice (Revised Fig 3A). However, they did not develop glomerular deposit of IgG after 12 weeks of treatment, in contrast to mice that have received Pristane (Revised Fig. 3B,C, Figure 3-figure supplement 1).

      These additional data suggests that inhibition of ACK1 and BRK stimulates the production of serum autoantibodies, which strengthen the claim that ACK1 and BRK kinase deficiency contribute to autoimmunity in BALB/cByJ.

      Reviewer #2 (Public Review):

      Summary: 

      In this manuscript, the authors revealed that genetic deficiencies of ACK1 and BRK are associated with human SLE. First, the authors found that compound heterozygous deleterious variants in the kinase domains of the non-receptor tyrosine kinases (NRTK) TNK2/ACK1 in one multiplex family and PTK6/BRK in another family. Then, by an experimental blockade of ACK1 or BRK in a mouse SLE model, they found an increase in glomerular IgG deposits and circulating autoantibodies. Furthermore, they reported that ACK and BRK variants from the SLE patients impaired the MERTK-mediated anti-inflammatory response to apoptotic cells in human induced pluripotent stem cells (hiPSC)-derived macrophages. This work identified new SLE-associated ACK and BRK variants and a role for the NRTK TNK2/ACK1 and PTK6/BRK in efferocytosis, providing a new molecular and cellular mechanism of SLE pathogenesis.

      Strengths: 

      This work identified new SLE-associated ACK and BRK variants and a role for the NRTK TNK2/ACK1 and PTK6/BRK in efferocytosis, providing a new molecular and cellular mechanism of SLE pathogenesis.

      Weaknesses: 

      Although the manuscript is well-organized and clearly stated, there are some points below that should be considered:

      In this study, the authors used forward genetic analyses to identify novel gene mutations that may cause SLE, combined with GWAS studies of SLE. To further explore the importance of these variants, haplotype analysis of two candidate genes could be performed, to observe the evolution and selection relationship of candidate genes in the population (UK 1000 biobank, for example). 

      To investigate whether ACK1/TNK2 or BRK/PTK6 were subject to selection, we gathered data using different metrics quantifying negative selection in the human genome. We collected the f parameter from SnIPRE1, lofTool2, and evoTol3, as well as intraspecies metrics from RVIS4, LOEUF5, and pLI6 (including pRec). We also used our in-house CoNeS metric7. None of these indicators suggest that the genes are under strong negative selection (Revised Figure 2-figure supplement 2). This is consistent with the deficiency being recessive. We also tested the variants with a MAF greater than 0.005. We found them to be neutral. We therefore did not test whether they were associated with any phenotype in the UK Biobank.

      Although the authors focused on SLE and macrophage efferocytosis in their studies, direct evidence of how macrophage efferocytosis significantly affects SLE is lacking. This point should at least be explicitly introduced and discussed by citing appropriate literature.

      We provide a more detailed description of the role of macrophage efferocytosis in autoimmunity and SLE in the revised manuscript. Specifically, we state (in the results section, paragraph: ACK1 and BRK kinase domain variants may lose the ability to link MERTK to RAC1, AKT and STAT3 activation for efferocytosis): “NRTKs such as ACK1 8 and PTK2/FAK 9 are also downstream targets of the TAM family receptor MERTK which is expressed on macrophages and controls the anti-inflammatory engulfment of apoptotic cells, a process known as efferocytosis 10-12. Efferocytosis allows for the clearance of apoptotic cells before they undergo necrosis and release intracellular inflammatory molecules, and simultaneously leads to increased production of anti-inflammatory molecules (TGFb, IL-10, and PGE2) and a decreased secretion of proinflammatory cytokines (TNF-alpha, IL-1b, IL-6) 10-14. In line with these findings, mice deficient in molecular components used by macrophages to efficiently perform efferocytosis, such as MFG-E8, MERTK, TIM4, and C1q, develop phenotypes associated with autoimmunity10,11,14-27. Furthermore, defects in efferocytosis are also observed in patients with SLE and glomerulonephritis14,28-31.“

      It is still not clear how the target molecules identified in this paper may influence macrophage efferocytosis. More direct evidence should be established. 

      Our studies show that wt -but not variants- of ACK1 and BRK are activated by MERTK, a key receptor that mediates the recognition of apoptotic cells. Our studies also show that wt -but not variants- activate RAC1 which is necessary for engulfment and phosphorylate AKT and STAT3 which are involved in the anti-inflammatory response to PtdSer recognition.

      The TAM family receptor MERTK mediates recognition of PtdSer on apoptotic cells via GAS6 and Protein S 10,15,32 leading to their engulfment, which involves activation of RAC1 for actin reorganization and the formation of a phagocytic cup 9,33. Using IP kinase assays we show that MERTK and GAS6 can activate the kinase activity of wild-type ACK1 8 or BRK but not of the patient’s ACK1 or BRK variant alleles (Figure 4D). To further support the role of ACK1 and BRK downstream from PtdSer recognition and uptake of apoptotic cells, we show that reference ACK1 and BRK alleles, in contrast to the patient variant alleles, can activate RAC1 to generate RAC-GTP which is necessary for engulfment 9,33 (Figure 4C).

      PtdSer recognition also typically stimulates an anti-inflammatory process mediated in part via AKT 34 and STAT3 and their target genes such as SOCS3 35-41 and results in the inhibition of LPS-mediated production of inflammatory mediators such as TNF and IL-1b, and the production of cytokines such as IL-10, TGFb 11,25-27,42. Consistent with this literature and the findings of the paper, we show that reference ACK1 and BRK, unlike the patient’s variant alleles, can phosphorylate AKT and STAT3 (Figure 4A, B). The role of ACK1 and BRK in these signaling pathways is further supported by our transcriptomics data comparing the response of controls, patients, and inhibitor-treated iPSC-derived macrophages to apoptotic thymocytes by RNA-seq. Specifically, we show Transcriptional repressors including the AKT targets ATF3, TGIF1, NFIL3, and KLF4, the STAT3 targets SOCS3 and DUSP5, as well as CEBPD and the inhibitor of E-BOX DNA Binding ID3 were among the top-ten genes which expression is induced by apoptotic cells in WT macrophages (Figure 4F), but this regulation was lost in mutant and inhibitor-treated macrophages (Figure 4F).

      For some transcriptional repressors mentioned in their studies, the authors should check whether there is clear experimental evidence. If not, it is recommended to supplement the experimental verifications for clarity.

      Transcriptional repressors including the AKT targets ATF3, TGIF1, NFIL3, and KLF4, the STAT3 targets SOCS3 and DUSP5, as well as CEBPD and the inhibitor of E-BOX DNA Binding ID3 were among the top-ten genes which expression is induced by apoptotic cells in WT macrophages (Figure 4F), but this regulation was lost in mutant and inhibitor-treated macrophages (Figure 4F).

      In the manuscript we cited published evidence, to the best of our knowledge, for the role of these genes in the regulation of inflammatory responses. Specifically we state: “ATF3, TGIF1, NFIL3, and KLF4 are involved in the negative regulation of inflammation in macrophages 35-38, SOCS3 is an inhibitor of the macrophage inflammatory response and DUSP5 is a negative regulator of ERK activation 39,40,43. These data suggest that the kinase domain of ACK1 and BRK contribute to the macrophage anti-inflammatory gene expression program driven by apoptotic cells.”

      In Figures 4C and 4D, it is seen that the usage of inhibitors causes cytoskeletal changes, however this reviewer would not have expected such large change. Did the authors check whether the cells die after heavy treatment by the inhibitors?

      We carefully examine the viability of Isogenic WT, BRK and ACK1 mutant macrophages (left panel) and of WT macrophages treated with ACK1 or BRK inhibitors and we did not observed changes in viability (Figure 4-figure supplement 2).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      A crucial step in the development of SLE is the production of autoantibodies. It is shown in Figure 2F that inhibitors of ACK1/BRK enhanced the production of autoantibodies against histones and SSA in a pristane-induced SLE model, which is a significant result that could support the authors' claim. Strangely, this autoantigen panel does not include double-stranded DNA, RNP, or Sm, which should be presented regarding antibody production.

      We thank the reviewer for this comment. In the revised manuscript (Revised Figure 3 – Supplement 1) we added the remainder of the autoantibody panel, which includes double-stranded DNA, RNP, and Sm autoantibody levels. We also added the results for serum IgG autoantibody levels in BALB/cByJ mice treated for three months with DMSO, ACK1, or BRK inhibitors but did not receive a pristane injection (Revised Figure 3A). This data shows that mice which received ACK1 or BRK inhibitors had increased serum IgG autoantibodies in comparison to DMSO treated controls.

      Additionally, if there is information that inhibitors of ACK1/BRK promote the differentiation of follicular helper T cells, memory B cells, and plasma cells in a pristane-induced SLE model, it could be considered indirect evidence supporting the authors' claims.

      These are not available at present to the best of our knowledge.

      Reviewer #2 (Recommendations For The Authors):

      Minor points:

      * In the literature, unpaired t-tests and ordinary one-way ANOVA (Tukey's multiple comparisons test) were used for statistical analysis, which requires data to be normally distributed. This part of the proposal is reflected in the text, and the non-conforming results need to be statistically analyzed using the non-parametric test of graphpad prism.

      We would like to thank the reviewer for pointing out this oversight. In the revised manuscript, for all applicable datasets, we tested whether the data was normally distributed using a Shapiro-Wilk normality test. For datasets that were normally distributed statistical significance was determined by a Student t test or ordinary one-way ANOVA with Tukey’s multiple comparisons test depending on the number of conditions being compared and the experimental setup. In contrast, for datasets that were not normally distributed statistical significance was determined using a Mann-Whitney, Kruskal-Wallis multiple comparisons tests, or Wilcoxon matched-pairs signed rank test depending on the experimental setup. P values below 0.05 were considered significant for all statistical tests.

      The authors used different methods to represent the level of significant difference. Therefore, it is suggested that the significance level should be expressed by letters. 

      As suggested by the reviewer, in the revised manuscript we have designated the significance level throughout all figures using letters (p, or q values).

      For RNA-seq, more information should be provided in the paper. For example, the correlation between sample biological replicates, the total number of differentially expressed genes, and randomly selected genes for qRT-PCR results verification.

      We would like to thank the reviewer for pointing out this oversight. In the revised manuscript we provided more information regarding the RNA-seq dataset, including a Principal Component Analysis (PCA) showing correlation between sample replicates (Revised Figure 4-figure supplement 1A), as well as a table indicating the number of upregulated and downregulated genes between relevant datasets (Revised Figure 4-figure supplement 1B).

      The results of the RNA-seq analysis indicated that ACK1 and BRK contribute to the macrophage anti-inflammatory gene expression program driven by apoptotic cells. MERTK-dependent anti-inflammatory program elicited by apoptotic cells on macrophages is best evidenced by the reduction of LPS-mediated production of inflammatory mediators such as TNF or IL1b 25-27,34,44. Therefore, to validate the RNA-seq results in a functional manner we tested the decrease of LPS-induced production of TNF and IL1b by apoptotic cells in isogenic WT, ACK1 deficient, and BRK deficient macrophages. Consistent with the RNA-seq data, the functional assays indicated that ACK1 and BRK kinase activities are required for the decrease of TNF and IL1b production induced by LPS in response to apoptotic cells (Revised Figure 4H,I).

      The raw data files for the RNA-seq analysis have been deposited in the NCBI Gene Expression Omnibus under accession number GEO: GSE118730.

      The authors did not have the formats for some of the citations correct. This should be fixed. 

      References were reformatted.

      (1) Eilertson, K. E., Booth, J. G. & Bustamante, C. D. SnIPRE: selection inference using a Poisson random effects model. PLoS Comput Biol 8, e1002806 (2012). https://doi.org:10.1371/journal.pcbi.1002806

      (2) Fadista, J., Oskolkov, N., Hansson, O. & Groop, L. LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics 33, 471-474 (2017). https://doi.org:10.1093/bioinformatics/btv602

      (3) Rackham, O. J., Shihab, H. A., Johnson, M. R. & Petretto, E. EvoTol: a protein-sequence based evolutionary intolerance framework for disease-gene prioritization. Nucleic Acids Res 43, e33 (2015). https://doi.org:10.1093/nar/gku1322

      (4) Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9, e1003709 (2013). https://doi.org:10.1371/journal.pgen.1003709

      (5) Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443 (2020). https://doi.org:10.1038/s41586-020-2308-7

      (6) Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291 (2016). https://doi.org:10.1038/nature19057

      (7) Rapaport, F. et al. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc Natl Acad Sci U S A 118 (2021). https://doi.org:10.1073/pnas.2001248118

      (8) Mahajan, N. P., Whang, Y. E., Mohler, J. L. & Earp, H. S. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 65, 10514-10523 (2005). https://doi.org:10.1158/0008-5472.CAN-05-1127

      (9) Wu, Y., Singh, S., Georgescu, M. M. & Birge, R. B. A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118, 539-553 (2005). https://doi.org:10.1242/jcs.01632

      (10) Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207-211 (2001). https://doi.org:10.1038/35075603

      (11) Henson, P. M. & Bratton, D. L. Antiinflammatory effects of apoptotic cells. J Clin Invest 123, 2773-2774 (2013). https://doi.org:10.1172/JCI69344

      (12) Henson, P. M. Cell Removal: Efferocytosis. Annu Rev Cell Dev Biol 33, 127-144 (2017). https://doi.org:10.1146/annurev-cellbio-111315-125315

      (13) deCathelineau, A. M. & Henson, P. M. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 39, 105-117 (2003). https://doi.org:10.1042/bse0390105

      (14) Nagata, S. Apoptosis and Clearance of Apoptotic Cells. Annu Rev Immunol 36, 489-517 (2018). https://doi.org:10.1146/annurev-immunol-042617-053010

      (15) Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196, 135-140 (2002). https://doi.org:10.1084/jem.20012094

      (16) Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147-1150 (2004). https://doi.org:10.1126/science.1094359

      (17) Miyanishi, M., Segawa, K. & Nagata, S. Synergistic effect of Tim4 and MFG-E8 null mutations on the development of autoimmunity. Int Immunol 24, 551-559 (2012). https://doi.org:10.1093/intimm/dxs064

      (18) Colonna, L., Parry, G. C., Panicker, S. & Elkon, K. B. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity. Clin Immunol 163, 84-90 (2016). https://doi.org:10.1016/j.clim.2015.12.017

      (19) Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619-630 (2010). https://doi.org:10.1016/j.cell.2010.02.014

      (20) Kimani, S. G. et al. Contribution of Defective PS Recognition and Efferocytosis to Chronic Inflammation and Autoimmunity. Front Immunol 5, 566 (2014). https://doi.org:10.3389/fimmu.2014.00566

      (21) Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A. & Nagata, S. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182-187 (2002). https://doi.org:10.1038/417182a

      (22) Kawano, M. & Nagata, S. Lupus-like autoimmune disease caused by a lack of Xkr8, a caspase-dependent phospholipid scramblase. Proc Natl Acad Sci U S A 115, 2132-2137 (2018). https://doi.org:10.1073/pnas.1720732115

      (23) Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314-317 (1992). https://doi.org:10.1038/356314a0

      (24) Singer, G. G., Carrera, A. C., Marshak-Rothstein, A., Martinez, C. & Abbas, A. K. Apoptosis, Fas and systemic autoimmunity: the MRL-lpr/lpr model. Current opinion in immunology 6, 913-920 (1994).

      (25) Cvetanovic, M. & Ucker, D. S. Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition. J Immunol 172, 880-889 (2004). https://doi.org:10.4049/jimmunol.172.2.880

      (26) Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Westcott, J. Y. & Henson, P. M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101, 890-898 (1998). https://doi.org:10.1172/JCI1112

      (27) Voll, R. E., Herrmann, M., Roth, E. A., Stach, C., Kalden, J. R. & Girkontaite, I. Immunosuppressive effects of apoptotic cells. Nature 390, 350-351 (1997). https://doi.org:10.1038/37022

      (28) Herrmann, M., Voll, R. E., Zoller, O. M., Hagenhofer, M., Ponner, B. B. & Kalden, J. R. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41, 1241-1250 (1998). https://doi.org:10.1002/1529-0131(199807)41:7<1241::AID-ART15>3.0.CO;2-H

      (29) Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 46, 191-201 (2002). https://doi.org:10.1002/1529-0131(200201)46:1<191::AID-ART10027>3.0.CO;2-K

      (30) Schrijvers, D. M., De Meyer, G. R. Y., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscl Throm Vas 25, 1256-1261 (2005). https://doi.org:10.1161/01.ATV.0000166517.18801.a7

      (31) Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity 50, 1149-1162 (2019). https://doi.org:10.1016/j.immuni.2019.04.018

      (32) Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J Immunol 178, 5635-5642 (2007). https://doi.org:10.4049/jimmunol.178.9.5635

      (33) Mao, Y. & Finnemann, S. C. Regulation of phagocytosis by Rho GTPases. Small GTPases 6, 89-99 (2015). https://doi.org:10.4161/21541248.2014.989785

      (34) Sen, P. et al. Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kappaB activation in dendritic cells. Blood 109, 653-660 (2007). https://doi.org:10.1182/blood-2006-04-017368

      (35) Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K. & Tsatsanis, C. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J Immunol 198, 1006-1014 (2017). https://doi.org:10.4049/jimmunol.1601515

      (36) Byles, V. et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4, 2834 (2013). https://doi.org:10.1038/ncomms3834

      (37) Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest 121, 2736-2749 (2011). https://doi.org:10.1172/JCI45444

      (38) Roberts, A. W., Lee, B. L., Deguine, J., John, S., Shlomchik, M. J. & Barton, G. M. Tissue-Resident Macrophages Are Locally Programmed for Silent Clearance of Apoptotic Cells. Immunity 47, 913-927 e916 (2017). https://doi.org:10.1016/j.immuni.2017.10.006

      (39) Matsukawa, A. et al. Stat3 in resident macrophages as a repressor protein of inflammatory response. J Immunol 175, 3354-3359 (2005).

      (40) Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122, 787-795 (2012). https://doi.org:10.1172/JCI59643

      (41) Yi, Z., Li, L., Matsushima, G. K., Earp, H. S., Wang, B. & Tisch, R. A novel role for c-Src and STAT3 in apoptotic cell-mediated MerTK-dependent immunoregulation of dendritic cells. Blood 114, 3191-3198 (2009). https://doi.org:10.1182/blood-2009-03-207522

      (42) Rothlin, C. V., Carrera-Silva, E. A., Bosurgi, L. & Ghosh, S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol 33, 355-391 (2015). https://doi.org:10.1146/annurev-immunol-032414-112103

      (43) Seo, H. et al. Dual-specificity phosphatase 5 acts as an anti-inflammatory regulator by inhibiting the ERK and NF-kappaB signaling pathways. Sci Rep 7, 17348 (2017). https://doi.org:10.1038/s41598-017-17591-9

      (44) Camenisch, T. D., Koller, B. H., Earp, H. S. & Matsushima, G. K. A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J Immunol 162, 3498-3503 (1999).

    1. Joint Public Review:

      The subject area will have general appeal to those interested in the study of Pavlovian conditioning. The paper is important, showcasing a rigorous experimental design, several different approaches to data analysis, careful consideration of prior literature, and a thorough introduction. The results indicate that the rate of Pavlovian learning is determined by the ratio of reward rate during cue to the overall reward rate, and that the asymptotic response rate is determined by the reward rate during cue. These findings provide context to many conflicting recent results on this topic and are supported by strong/convincing evidence.

      It is additionally claimed that the parameter that governs the acquisition and asymptote of responding in rats is exactly the same as that which governs the acquisition and asymptote of responding in the Gibbon and Balsam (1981) study that used pigeons as experimental subjects; and that the rates of responding during the inter-trial interval and the cue are proportional to the corresponding reward rates with the same proportionality constant. In both of these respects, there are several points that stand in need of clarification - at present, the strength of the evidence in support of these claims is solid. More generally, there are some points that could clarify aspects of rate estimation theory and, thereby, increase the rating of the paper from important to fundamental. These points range from analytical to conceptual and are presented below.

      ANALYTICAL

      (1) A key claim made here is that the same relationship (including the same parameter) describes data from pigeons by Gibbon and Balsam (1981; Figure 1) and the rats in this study (Figure 3). The evidence for this claim, as presented here, is not as strong as it could be. This is because the measure used for identifying trials to criterion in Figure 1 appears to differ from any of the criteria used in Figure 3, and the exact measure used for identifying trials to criterion influences the interpretation of Figure 3***. To make the claim that the quantitative relationship is one and the same in the Gibbon-Balsam and present datasets, one would need to use the same measure of learning on both datasets and show that the resultant plots are statistically indistinguishable, rather than simply plotting the dots from both data sets and spotlighting their visual similarity. In terms of their visual characteristics, it is worth noting that the plots are in log-log axis and, as such, slight visual changes can mean a big difference in actual numbers. For instance, between Figure 3B and 3C, the highest information group moves up only "slightly" on the y-axis but the difference is a factor of 5 in the real numbers. Thus, in order to support the strong claim that the quantitative relationships obtained in the Gibbon-Balsam and present datasets are identical, a more rigorous approach is needed for the comparisons.

      ***The measure of acquisition in Figure 3A is based on a previously established metric, whereas the measure in Figure 3B employs the relatively novel nDKL measure that is argued to be a better and theoretically based metric. Surprisingly, when r and r2 values are converted to the same metric across analyses, it appears that this new metric (Figure 3B) does well but not as well as the approach in Figure 3A. This raises questions about why a theoretically derived measure might not be performing as well on this analysis, and whether the more effective measure is either more reliable or tapping into some aspect of the processes that underlie acquisition that is not accounted for by the nDKL metric.

      (2) Another interesting claim here is that the rates of responding during ITI and the cue are proportional to the corresponding reward rates with the same proportionality constant. This too requires more quantification and conceptual explanation. For quantification, it would be more convincing to calculate the regression slope for the ITI data and the cue data separately and then show that the corresponding slopes are not statistically distinguishable from each other. Conceptually, it is not clear why the data used to test the ITI proportionality came from the last 5 conditioning sessions. What were the decision criteria used to decide on averaging the final 5 sessions as terminal responses for the analyses in Figure 5? Was this based on consistency with previous work, or based on the greatest number of sessions where stable data for all animals could be extracted?

      If the model is that animals produce response rates during the ITI (a period with no possible rewards) based on the overall rate of rewards in the context, wouldn't it be better to test this before the cue learning has occurred? Before cue learning, the animals would presumably only have attributed rewards in the context to the context and thus, produce overall response rates in proportion to the contextual reward rate. After cue learning, the animals could technically know that the rate of rewards during ITI is zero. Why wouldn't it be better to test the plotted relationship for ITI before cue learning has occurred? Further, based on Figure 1, it seems that the overall ITI response rate reduces considerably with cue learning. What is the expected ITI response rate prior to learning based on the authors' conceptual model? Why does this rate differ from pre and post-cue learning? Finally, if the authors' conceptual framework predicts that ITI response rate after cue learning should be proportional to contextual reward rate, why should the cue response rate be proportional to the cue reward rate instead of the cue reward rate plus the contextual reward rate?

      (3) There is a disconnect between the gradual nature of learning shown in Figures 7 and 8 and the information-theoretic model proposed by the authors. To the extent that we understand the model, the animals should simply learn the association once the evidence crosses a threshold (nDKL > threshold) and then produce behavior in proportion to the expected reward rate. If so, why should there be a gradual component of learning as shown in these figures? In terms of the proportional response rule to the rate of rewards, why is it changing as animals go from 10% to 90% of peak response? The manuscript would be greatly strengthened if these results were explained within the authors' conceptual framework. If these results are not anticipated by the authors' conceptual framework, this should be explicitly stated in the manuscript.

      (4) Page 27, Procedure, final sentence: The magazine responding during the ITI is defined as the 20 s period immediately before CS onset. The range of ITI values (Table 1) always starts as low as 15 s in all 14 groups. Even in the case of an ITI on a trial that was exactly 20 s, this would also mean that the start of this period overlaps with the termination of the CS from the previous trial and delivery (and presumably consumption) of a pellet. It should be indicated whether the definition of the ITI period was modified on trials where the preceding ITI was < 20 s, and if any other criteria were used to define the ITI. Were the rats exposed to the reinforcers/pellets in their home cage prior to acquisition?

      (5) For all the analyses, the exact models that were fit and the software used should be provided. For example, it is not necessarily clear to the reader (particularly in the absence of degrees of freedom) that the model discussed in Figure 3 fits on the individual subject data points or the group medians. Similarly, in Figure 6 there is no indication of whether a single regression model was fit to all the plotted data or whether tests of different slopes for each of the conditions were compared. With regards to the statistics in Figure 6, depending on how this was run, it is also a potential problem that the analyses do not correct for the potentially highly correlated multiple measurements from the same subjects, i.e. each rat provides 4 data points which are very unlikely to be independent observations.

      CONCEPTUAL

      (1) We take the point that where traditional theories (e.g., Rescorla-Wagner) and rate estimation theory (RET) both explain some phenomenon, the explanation in terms of RET may be preferred as it will be grounded in aspects of an animal's experience rather than a hypothetical construct. However, like traditional theories, RET does not explain a range of phenomena - notably, those that require some sort of expectancy/representation as part of their explanation. This being said, traditional theories have been incorporated within models that have the representational power to explain a broader array of phenomena, which makes me wonder: Can rate estimation be incorporated in models that have representational power; and, if so, what might this look like? Alternatively, do the authors intend to claim that expectancy and/or representation - which follow from probabilistic theories in the RW mould - are unnecessary for explanations of animal behaviour?***

      ***If the authors choose to reply to these points, they should consider taking advantage of an "Ideas and Speculation" subsection within the Discussion that is supported by eLife [ https://elifesciences.org/inside-elife/e3e52a93/elife-latest-including-ideas-and-speculation-in-elife-papers ].

      (2) The discussion of Rescorla's (1967) and Kamin's (1968) findings needs some elaboration. These findings are already taken to mean that the target CS in each design is not informative about the occurrence of the US - hence, learning about this CS fails. In the case of blocking, we also know that changes in the rate of reinforcement across the shift from stage 1 to stage 2 of the protocol can produce unblocking. Perhaps more interesting from a rate estimation perspective, unblocking can also be achieved in a protocol that maintains the rate of reinforcement while varying the sensory properties of the US (Wagner). How does rate estimation theory account for these findings and/or the demonstrations of trans-reinforcer blocking (Pearce-Ganesan)? Are there other ways that the rate estimation account can be distinguished from traditional explanations of blocking and contingency effects? If so, these would be worth citing in the discussion. More generally, if one is going to highlight seminal findings (such as those by Rescorla and Kamin) that can be explained by rate estimation, it would be appropriate to acknowledge findings that challenge the theory - even if only to note that the theory, in its present form, is not all-encompassing. For example, it appears to me that the theory should not predict one-trial overshadowing or the overtraining reversal effect - both of which are amenable to discussion in terms of rates. I assume that the signature characteristics of latent inhibition and extinction would also pose a challenge to rate estimation theory, just as they pose a challenge to Rescorla-Wagner and other probability-based theories. Is this correct?

    2. Author response:

      ANALYTICAL

      (1) Figure 3 shows that the relationship between learning rate and informativeness for our rats was very similar to that shown with pigeons by Gibbon and Balsam (1981). We used multiple criteria to establish the number of trials to learn in our data, with the goal of demonstrating that the correspondence between the data sets was robust. To establish that they are effectively the same does require using an equivalent decision criterion for our data as was used for Gibbon and Balsam’s data. However, the criterion they used—at least one peck at the response key on at least 3 out of 4 consecutive trials—cannot be sensibly applied to our magazine entry data because rats make magazine entries during the inter-trial interval (whereas pigeons do not peck at the response key in the inter-trial interval). Therefore, evidence for conditioning in our paradigm must involve comparison between the response rate during CS and the baseline response rate. There are two ways one could adapt the Gibbon and Balsam criterion to our data. One way is to use a non-parametric signed rank test for evidence that the CS response rate exceeds the pre-CS response rate, and adopting a statistical criterion equivalent to Gibbon and Balsam’s 3-out-of-4 consecutive trials (p<.3125). The second method estimates the nDkl for the criterion used by Gibbon and Balsam. This could be done by assuming there are no responses in the inter-trial interval and a response probability of at least 0.75 during the CS (their criterion). This would correspond to an nDkl of 2.2 (odds ratio 27:1). The obtained nDkl could then be applied to our data to identify when the distribution of CS response rates has diverged by an equivalent amount from the distribution of pre-CS response rates.

      (2) A single regression line, as shown in Figure 6, is the simplest possible model of the relationship between response rate and reinforcement rate and it explains approximately 80% of the variance in response rate. Fixing the log-log slope at 1 yields the maximally simple model. (This regression is done in the logarithmic domain to satisfy the homoscedasticity assumption.) When transformed into the linear domain, this model assumes a truly scalar relation (linear, intercept at the origin) and assumes the same scale factor and the same scalar variability in response rates for both sets of data (ITI and CS). Our plot supports such a model. Its simplicity is its own motivation (Occam’s razor).

      If regression lines are fitted to the CS and ITI data separately, there is a small increase in explained variance (R2 = 0.82). We leave it to further research to determine whether such a complex model, with 4 parameters, is required. However, we do not think the present data warrant comparing the simplest possible model, with one parameter, to any more complex model for the following reasons:

      · When a brain—or any other machine—maps an observed (input) rate to a rate it produces (output rate), there is always an implicit scalar. In the special case where the produced rate equals the observed rate, the implicit scalar has value 1. Thus, there cannot be a simpler model than the one we propose, which is, in and of itself, interesting.

      · The present case is an intuitively accessible example of why the MDL (Minimum Description Length) approach to model complexity (Barron, Rissanen, & Yu, 1998; Grünwald, Myung, & Pitt, 2005; Rissanen, 1999) can yield a very different conclusion from the conclusion reached using the Bayesian Information Criterion (BIC) approach. The MDL approach measures the complexity of a model when given N data specified with precision of B bits per datum by computing (or approximating) the sum of the maximum-likelihoods of the model’s fits to all possible sets of N data with B precision per datum. The greater the sum over the maximum likelihoods, the more complex the model, that is, the greater its measured wiggle room, it’s capacity to fit data. Recall that von Neuman remarked to Fermi that with 4 parameters he could fit an elephant. His deeper point was that multi-parameter models bring neither insight nor predictive power; they explain only post-hoc, after one has adjusted their parameters in the light of the data. For realistic data sets like ours, the sums of maximum likelihoods are finite but astronomical. However, just as the Sterling approximation allows one to work with astronomical factorials, it has proved possible to develop readily computable approximations to these sums, which can be used to take model complexity into account when comparing models. Proponents of the MDL approach point out that the BIC is inadequate because models with the same number of parameters can have very different amounts of wiggle room. A standard illustration of this point is the contrast between logarithmic model and power-function model. Log regressions must be concave; whereas power function regressions can be concave, linear, or convex—yet they have the same number of parameters (one or two, depending on whether one counts the scale parameter that is always implicit). The MDL approach captures this difference in complexity because it measures wiggle room; the BIC approach does not, because it only counts parameters.

      · In the present case, one is comparing a model with no pivot and no vertical displacement at the boundary between the black dots and the red dots (the 1-parameter unilinear model) to a bilinear model that allows both a change in slope and a vertical displacement for both lines. The 4-parameter model is superior if we use the BIC to take model complexity into account. However, 4-parameter has ludicrously more wiggle room. It will provide excellent fits—high maximum likelihood—to data sets in which the red points have slope > 1, slope 0, or slope < 0 and in which it is also true that the intercept for the red points lies well below or well above the black points (non-overlap in the marginal distribution of the red and black data). The 1-parameter model, on the other hand, will provide terrible fits to all such data (very low maximum likelihoods). Thus, we believe the BIC does not properly capture the immense actual difference in the complexity between the 1-parameter model (unilinear with slope 1) to the 4-parameter model (bilinear with neither the slope nor the intercept fixed in the linear domain).

      · In any event, because the pivot (change in slope between black and red data sets), if any, is small and likewise for the displacement (vertical change), it suffices for now to know that the variance captured by the 1-parameter model is only marginally improved by adding three more parameters. Researchers using the properly corrected measured rate of head poking to measure the rate of reinforcement a subject expects can therefore assume that they have an approximately scalar measure of the subject’s expectation. Given our data, they won’t be far wrong even near the extremes of the values commonly used for rates of reinforcement. That is a major advance in current thinking, with strong implications for formal models of associative learning. It implies that the performance function that maps from the neurobiological realization of the subject’s expectation is not an unknown function. On the contrary, it’s the simplest possible function, the scalar function. That is a powerful constraint on brain-behavior linkage hypotheses, such as the many hypothesized relations between mesolimbic dopamine activity and the expectation that drives responding in Pavlovian conditioning (Berridge, 2012; Jeong et al., 2022; Y.  Niv, Daw, Joel, & Dayan, 2007; Y. Niv & Schoenbaum, 2008).

      The data in Figure 6 are taken from the last 5 sessions of training. The exact number of sessions was somewhat arbitrary but was chosen to meet two goals: (1) to capture asymptotic responding, which is why we restricted this to the end of the training, and (2) to obtain a sufficiently large sample of data to estimate reliably each rat’s response rate. We have checked what the data look like using the last 10 sessions, and can confirm it makes very little difference to the results.<br /> Finally, as noted by the reviews, the relationship between the contextual rate of reinforcement and ITI responding should also be evident if we had measured context responding prior to introducing the CS. However, there was no period in our experiment when rats were given unsignalled reinforcement (such as is done during “magazine training” in some experiments). Therefore, we could not measure responding based on contextual conditioning prior to the introduction of the CS. This is a question for future experiments that use an extended period of magazine training or “poor positive” protocols in which there are reinforcements during the ITIs as well as during the CSs. The learning rate equation has been shown to predict reinforcements to acquisition in the poor-positive case (Balsam, Fairhurst, & Gallistel, 2006).

      (3) One of us (CRG) has earlier suggested that responding appears abruptly when the accumulated evidence that the CS reinforcement rate is greater than the contextual rate exceeds a decision threshold (C.R.  Gallistel, Balsam, & Fairhurst, 2004). The new more extensive data require a more nuanced view. Evidence about the manner in which responding changes over the course of training is to some extent dependent on the analytic method used to track those changes. We presented two different approaches. The approach shown in Figures 7 and 8, extending on that developed by Harris (2022), assumes a monotonic increase in response rate and uses the slope of the cumulative response rate to identify when responding exceeds particular milestones (percentiles of the asymptotic response rate). This analysis suggests a steady rise in responding over trials. Within our theoretical model, this might reflect an increase in the animal’s certainty about the CS reinforcement rate with accumulated evidence from each trial. While this method should be able to distinguish between a gradual change and a single abrupt change in responding (Harris, 2022) it may not distinguish between a gradual change and multiple step-like changes in responding and cannot account for decreases in response rate.<br /> The other analytic method we used relies on the information theoretic measure of divergence, the nDkl (Gallistel & Latham, 2023), to identify each point of change (up or down) in the response record. With that method, we discern three trends. First, the onset tends to be abrupt in that the initial step up is often large (an increase in response rate by 50% or more of the difference between its initial value and its terminal value is common and there are instances where the initial step is to the terminal rate or higher). Second, there is marked within-subject variability in the response rate, characterised by large steps up and down in the parsed response rates following the initial step up, but this variability tends to decrease with further training (there tend to be fewer and smaller steps in both the ITI response rates and the CS response rate as training progresses). Third, the overall trend, seen most clearly when one averages across subjects within groups is to a moderately higher rate of responding later in training than after the initial rise. We think that the first tendency reflects an underlying decision process whose latency is controlled by diminishing uncertainty about the two reinforcement rates and hence about their ratio. We think that decreasing uncertainty about the true values of the estimated rates of reinforcement is also likely to be an important part of the explanation for the second tendency (decreasing within-subject variation in response rates). It is less clear whether diminishing uncertainty can explain the trend toward a somewhat greater difference in the two response rates as conditioning progresses. It is perhaps worth noting that the distribution of the estimates of the informativeness ratio is likely to be heavy tailed and have peculiar properties (as witness, for example, the distribution of the ratio of two gamma distributions with arbitrary shape and scale parameters) but we are unable at this time to propound an explanation of the third trend.

      (4) There is an error in the description provided in the text. The pre-CS period used to measure the ITI responding was 10 s rather than 20 s. There was always at least a 5-s gap between the end of the previous trial and the start of the pre-CS period.

      (5) Details about model fitting will be added in a revision. The question about fitting a single model or multiple models to the data in Figure 6 is addressed in response 2 above. In Figure 6, each rat provides 2 behavioural data points (ITI response rate and CS response rate) and 2 values for reinforcement rate (1/C and 1/T). There is a weak but significant correlation between the ITI and CS response rates (r = 0.28, p < 0.01; log transformed to correct for heteroscedasticity). By design, there is no correlation between the log reinforcement rates (r = 0.06, p = .404).

      CONCEPTUAL

      (1) It is important for the field to realize that the RW model cannot be used to explain the results of Rescorla’s (Rescorla, 1966; Rescorla, 1968, 1969) contingency-not-pairing experiments, despite what was claimed by Rescorla and Wagner (Rescorla & Wagner, 1972; Wagner & Rescorla, 1972) and has subsequently been claimed in many modelling papers and in most textbooks and reviews (Dayan & Niv, 2008; Y. Niv & Montague, 2008). Rescorla programmed reinforcements with a Poisson process. The defining property of a Poisson process is its flat hazard function; the reinforcements were equally likely at every moment in time when the process was running. This makes it impossible to say when non-reinforcements occurred and, a fortiori, to count them. The non-reinforcements are causal events in RW algorithm and subsequent versions of it. Their effects on associative strength are essential to the explanations proffered by these models. Non-reinforcements—failures to occur, updates when reinforcement is set to 0, hence also the lambda parameter—can have causal efficacy only when the successes may be predicted to occur at specified times (during “trials”). When reinforcements are programmed by a Poisson process, there are no such times. Attempts to apply the RW formula to reinforcement learning soon foundered on this problem (Gibbon, 1981; Gibbon, Berryman, & Thompson, 1974; Hallam, Grahame, & Miller, 1992; L.J. Hammond, 1980; L. J. Hammond & Paynter, 1983; Scott & Platt, 1985). The enduring popularity of the delta-rule updating equation in reinforcement learning depends on “big-concept” papers that don’t fit models to real data and discretize time into states while claiming to be real-time models (Y. Niv, 2009; Y. Niv, Daw, & Dayan, 2005).

      The information-theoretic approach to associative learning, which sometimes historically travels as RET (rate estimation theory), is unabashedly and inescapably representational. It assumes a temporal map and arithmetic machinery capable in principle of implementing any implementable computation. In short, it assumes a Turing-complete brain. It assumes that whatever the material basis of memory may be, it must make sense to ask of it how many bits can be stored in a given volume of material. This question is seldom posed in associative models of learning, nor by neurobiologists committed to the hypothesis that the Hebbian synapse is the material basis of memory. Many—including the new Nobelist, Geoffrey Hinton— would agree that the question makes no sense. When you assume that brains learn by rewiring themselves rather than by acquiring and storing information, it makes no sense.

      When a subject learns a rate of reinforcement, it bases its behavior on that expectation, and it alters its behavior when that expectation is disappointed. Subjects also learn probabilities when they are defined. They base some aspects of their behavior on those expectations, making computationally sophisticated use of their representation of the uncertainties (Balci, Freestone, & Gallistel, 2009; Chan & Harris, 2019; J. A. Harris, 2019; J.A. Harris & Andrew, 2017; J. A. Harris & Bouton, 2020; J. A. Harris, Kwok, & Gottlieb, 2019; Kheifets, Freestone, & Gallistel, 2017; Kheifets & Gallistel, 2012; Mallea, Schulhof, Gallistel, & Balsam, 2024 in press).

      (2) Rate estimation theory is oblivious to the temporal order in which experience with different predictors occurs. The matrix computation finds the additive solution, if it exists, to the data so far observed, on the assumption that predicted rates have remained the same. This is the stationarity assumption, which is implicit in a rate computation and was made explicit in the formulation of RET (C.R. Gallistel, 1990). When the additive solution does not exist, the RET algorithm treats the compound of two predictors as a third predictor, and computes the additive solution to the 3-predictor problem. Because it is oblivious to the order in which the data have been acquired, it predicts one-trial overshadowing and retroactive blocking and unblocking (C.R. Gallistel, 1990 pp 439 & 452-455).

      The RET algorithm is but one component of the information-theoretic model of associative learning (aka, TATAL, The Analytic Theory of Associative Learning Wilkes & Gallistel, 2016)). It solves the assignment-of-credit problem, not the change-detection problem. Because rates of reinforcement do sometimes change, the stationarity assumption, which is essential to the RET algorithm, must be tested when each new reinforcement occurs and when the interval since the last reinforcement has become longer than would be expected or the number of reinforcements has become significantly fewer than would be expected given the current estimate of the probability of reinforcement (C. R. Gallistel, Krishan, Liu, Miller, & Latham, 2014). In the information-theoretic approach to associative learning, detecting non-stationarity is done by an information-theoretic change-detecting algorithm. The algorithm correctly predicts that omitted reinforcements to extinction will be a constant (C.R. Gallistel, 2024 under review; Gibbon, Farrell, Locurto, Duncan, & Terrace, 1980). To put the prediction another way, unreinforced trials to extinction will increase in proportional to the trials/reinforcement during training (C.R. Gallistel, 2012; Wilkes & Gallistel, 2016). In other words, it predicts the best and most systematic data on the partial reinforcement extinction effect (PREE) known to us. The profound challenge to neo-Hullian delta-rule updating models that is posed by the PREE has been recognized for the better part of a century. To the best of our knowledge, no other formalized model of associative learning has overcome this challenge (Dayan & Niv, 2008; Mellgren, 2012). Explaining extinction algorithmically is straightforward when one adopts an information-theoretic perspective, because computing reinforcement-by-reinforcement the Kullback-Leibler divergence in a sequence of earlier rate (or probability!) estimates from the most recent estimate and multiplying the vector of divergences by the vector of effective sample sizes (C. R. Gallistel & Latham, 2022) detects and localized changes in rates and probabilities of reinforcement (C.R. Gallistel, 2024 under review). The computation presupposes the existence of a temporal map, a time-stamped record of past events. This supposition is strongly resisted by neuroscience-oriented reinforcement-learning modelers, who try to substitute the assumption of decaying eligibility traces.

      The very interesting Pearce-Ganesan findings (Ganesan & Pearce, 1988) are not predicted by RET, but nor do they run counter its predictions. RET has nothing to say about how subjects categorize appetitive reinforcements; nor, at this time, does the information-theoretic approach to an understanding of associative have anything to say about that.

      The same is not true for the Betts, Brandon & Wagner results (Betts, Brandon, & Wagner, 1996). They pretrained a blocking cue that predicted a painful paraorbital shock to one eye of a rabbit. This cue elicited an anticipatory blink in the threatened eye. It also potentiated the startle reflex made to a loud noise in one ear. A new cue that was then introduced, which always occurred in compound with the pretrained blocking cue. In one group, the painful shock continued to be delivered to the same eye as before; in another group, it was delivered to the skin around the other eye. In the group that continued to receive the shock to the same eye, the old cue effectively blocked conditioning of the new cue for both the eyeblink and the potentiated startle response. However, in the group for which the location of the shock changed to the other eye, the old cue did not block conditioning of the eyeblink response to the new cue but did block conditioning of the startle response to the new cue. The information-theoretic analysis of associative learning focusses on the encoding of measurable predictive temporal relationships, rather than on general and, to our mind, vague notions like CS processing and US processing. A painful shock elicits fear in a rabbit no matter where on the body surface it is experienced, because fear is a reaction to a very broad category of dangers, and fear potentiates the startle reflex regardless of the threat that causes fear. Once that prediction of such a threat is encoded; redundant cues will not be encoded that same way because the RET algorithm blocks the encoding of redundant predictions. A painful shock near an eye elicits a blink of the threatened eye as well as the fear that potentiates the startle. An appropriate encoding for the eye blink must specify the location of the threat. RET will attribute prediction of the threat to the new eye to the new cue—and not to the old cue, the pretrained blocker— while continuing to attribute to the old cue the prediction of a fear-causing threat, because the change in location does not alter that prediction. Therefore, the new cue will be encoded as predicting the new location of the threat to the eye, but not as predicting the large category non-specific threats that elicit fear and the potentiation of the startle, because that prediction remains valid. Changing that prediction would violate the stationarity assumption; predictive relations do not change unless the data imply that they must have changed. Unless we have made a slip in our logic, this would seem to explain Betts et al’s (1996) results. It does so with no free parameters, unlike AESOP, which has a notoriously large number of free parameters.

      Balci, F., Freestone, D., & Gallistel, C. R. (2009). Risk assessment in man and mouse. Proceedings of the National Academy of Science U S A, 106(7), 2459-2463. doi:10.1073/pnas.0812709106

      Balsam, P. D., Fairhurst, S., & Gallistel, C. R. (2006). Pavlovian contingencies and temporal information. Journal of Experimental Psychology: Animal Behavior Processes, 32, 284-294.

      Barron, A., Rissanen, J., & Yu, B. (1998). The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory, 44(6), 2743-2760.

      Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience.

      Betts, S. L., Brandon, S. E., & Wagner, A. R. (1996). Dissociation of the blocking of conditioned eyeblink and conditioned fear following a shift in US locus. Animal Learning and Behavior, 24(4), 459-470.

      Chan, C. K. J., & Harris, J. A. (2019). The partial reinforcement extinction effect: The proportion of trials reinforced during conditioning predicts the number of trials to extinction. Journal of Experimental Psychology: Animal Learning and Cognition, 45(1). doi:http://dx.doi.org/10.1037/xan0000190

      Dayan, P., & Niv, Y. (2008). Reinforcement learning: The good, the bad and the ugly. Current Opinion in Neurobiology, 18(2), 185-196.

      Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: Bradford Books/MIT Press.

      Gallistel, C. R. (2012). Extinction from a rationalist perspective. Behav Processes, 90, 66-88. doi:10.1016/j.beproc.2012.02.008

      Gallistel, C. R. (2024 under review). Reconceptualized associative learning. Perspectives on Behavioral Science (Special Issue for SQAB 2024).

      Gallistel, C. R., Balsam, P. D., & Fairhurst, S. (2004). The learning curve: Implications of a quantitative analysis. Proceedings of the National Academy of Sciences, 101(36), 13124-13131.

      Gallistel, C. R., Krishan, M., Liu, Y., Miller, R. R., & Latham, P. E. (2014). The perception of probability. Psychological Review, 121, 96-123. doi:10.1037/a0035232

      Gallistel, C. R., & Latham, P. E. (2022). Bringing Bayes and Shannon to the Study of Behavioral and Neurobiological Timing. Timing & Time Perception. timing & TIME Perception, 1-61. doi:10.1163/22134468-bja10069

      Ganesan, R., & Pearce, J. M. (1988). Effect of changing the unconditioned stimulus on appetitive blocking. Journal of Experimental Psychology: Animal Behavior Processes, 14, 280-291.

      Gibbon, J. (1981). The contingency problem in autoshaping. In C. M. Locurto, H. S. Terrace, & J. Gibbon (Eds.), Autoshaping and conditioning theory (pp. 285-308). New York: Academic.

      Gibbon, J., & Balsam, P. (1981). Spreading association in time. In C. M. Locurto, H. S. Terrace, & J. Gibbon (Eds.), Autoshaping and conditioning theory (pp. 219-253). New York: Academic Press.

      Gibbon, J., Berryman, R., & Thompson, R. L. (1974). Contingency spaces and measures in classical and instrumental conditioning. Journal of the Experimental Analysis of Behavior, 21(3), 585-605. doi: 10.1901/jeab.1974.21-585

      Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J., & Terrace, H. S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning and Behavior, 8, 45–59. doi:doi.org/10.3758/BF03209729

      Grünwald, P. D., Myung, I. J., & Pitt, M. A. (2005). Advances in minimum description length: theory and applications. Cambridge, MA: MIT Press.

      Hallam, S. C., Grahame, N. J., & Miller, R. R. (1992). Exploring the edges of Pavlovian contingency space: An assessment of contignency theory and its various metrics. Learning and Motivation, 23, 225-249.

      Hammond, L. J. (1980). The effect of contingency upon the appetitive conditioning of free operant behavior. Journal of  the Experimental Analysis of Behavior, 34, 297-304. doi:10.1901/jeab.1980.34-297

      Hammond, L. J., & Paynter, W. E. (1983). Probabilistic contingency theories of animal conditioning: A critical analysis. Learning and Motivation, 14, 527-550. doi:10.1016/0023-9690(83)90031-0

      Harris, J. A. (2019). The importance of trials. Journal of Experimental Psychology: Animal Learning and Cognition, 45(4).

      Harris, J. A. (2022). The learning curve, revisited. Journal of Experimental Psychology: Animal Learning and Cognition, 48, 265-280.

      Harris, J. A., & Andrew, B. J. (2017). Time, Trials and Extinction. Journal of Experimental Psychology: Animal Learning and Cognition, 43(1), 15-29.

      Harris, J. A., & Bouton, M. E. (2020). Pavlovian conditioning under partial reinforcement: The effects of non-reinforced trials versus cumulative CS duration. The Journal of Experimental Psychology: Animal Learning & Cognition, 46, 256-272.

      Harris, J. A., Kwok, D. W. S., & Gottlieb, D. A. (2019). The partial reinforcement extinction effect depends on learning about nonreinforced trials rather than reinforcement rate. Journal of Experimental Psychology: Animal Behavior Learning and Cognition, 45(4). doi:10.1037/xan0000220

      Jeong, H., Taylor, A., Floeder, J. R., Lohmann, M., Mihalas, S., Wu, B., . . . Namboodiri, V. M. K. (2022). Mesolimbic dopamine release conveys causal associations. Science. doi:10.1126/science.abq6740

      Kheifets, A., Freestone, D., & Gallistel, C. R. (2017). Theoretical Implications of Quantitative Properties of Interval Timing and Probability Estimation in Mouse and Rat. Journal of the Experimental Analysis of Behavior, 108(1), 39-72. doi:doi.org/10.1002/jeab.261

      Kheifets, A., & Gallistel, C. R. (2012). Mice take calculated risks. Proceedings of the National Academy of Science, 109, 8776-8779. doi:doi.org/10.1073/pnas.1205131109

      Mallea, J., Schulhof, A., Gallistel, C. R., & Balsam, P. D. (2024 in press). Both probability and rate of reinforcement can affect the acquisition and maintenance of conditioned responses. Journal of Experimental Psychology: Animal Learning and Cognition.

      Mellgren, R. (2012). Partial reinforcement extinction effect. In N. M. Seel (Ed.), Encyclopedia of the Sciences of Learning. Boston, MA: Springer.

      Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53, 139-154.

      Niv, Y., Daw, N. D., & Dayan, P. (2005). How fast to work: response vigor, motivation and tonic dopamine. In Y. Weiss, B. Schölkopf, & J. R. Platt (Eds.), NIPS 18 (pp. 1019–1026). Cambridge, MA: MIT Press.

      Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology, 191(3), 507-520.

      Niv, Y., & Montague, P. R. (2008). Theoretical and empirical studies of learning. In  (., eds), pp. , Academic Press. In P. W. e. a. Glimcher (Ed.), Neuroeconomics: Decision-Making and the Brain (pp. 329–349). New York: Academic Press.

      Niv, Y., & Schoenbaum, G. (2008). Dialogues on prediction errors. Trends in Cognitive Sciences, 12(7), 265-272. doi:10.1016/j.tics.2008.03.006

      Rescorla, R. A. (1966). Predictability and the number of pairings in Pavlovian fear conditioning. Psychonomic Science, 4, 383-384.

      Rescorla, R. A. (1968). Probability of shock in the presence and absence of CS in fear conditioning. Journal of Comparative and Physiological Psychology, 66(1), 1-5. doi:10.1037/h0025984

      Rescorla, R. A. (1969). Conditioned inhibition of fear resulting from negative CS-US contingencies. Journal of Comparative and Physiological Psychology, 67, 504-509.

      Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II (pp. 64-99). New York: Appleton-Century-Crofts.

      Rissanen, J. (1999). Hypothesis selection and testing by the MDL principle. The Computer Journal, 42, 260–269. doi:10.1093/comjnl/42.4.260

      Scott, G. K., & Platt, J. R. (1985). Model of response-reinforcement contingency. Journal of  Experimental Psychology: Animal Behavior Processes, 11(2), 152-171.

      Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Appllication of a theory. In R. A. Boakes & S. Halliday (Eds.), Inhibition and learning. New York: Academic.

      Wilkes, J. T., & Gallistel, C. R. (2016). Information Theory, Memory, Prediction, and Timing in Associative Learning (original long version).

    1. T O T   A L   I T   Y

      This is basically "last Christmas's message" (below this brand-knew intraducrigel) redux'ed into the new book (did he say new?).  The point, at least the point I see in it all is that this is all planned, it's been planned for a very, very long time--and on top of that you can see proof of the plan all over our map; and proof of it's intended destination as something that we all used to want very much to find... the read to Heaven.    It's more than seeing just "DNA storage" encoded in my "C U R A GROUP" message, it's understanding how that's connected to soul searching and soul storage, and that this link was woven into not only my life but into names like "Whatson and Crick?"  There's plenty more than just "storage" and a map to how and why the Two of Everything God and the "indivisible sea" work totether to turn this monolithic place of darkness into a strippingly redunantsystemic foundation of "Heaven" that is both disaster proof, and monster proof.  The point of course, is that to truly be "monster proof" we need to really get the key.s.lamc.la "know everything why" of this message is literally to protect our common good from the danger of someone just like me copying an entire civilization or a few pretty girls and sticking them in an heoven-like-orgy-maker.  That's a significantly more real threat than we might imagine, as we look around at a work that will soon have the storage capacity and the technology to put us all in Coccoonish swimming pools against our will.  What I am trying to say is that no matter how you look at it,moving forward here in this place where something this big can be hidden from the entire world--granted you know--granted you see, but do you understand the only thing being kept from each and every one of you is your fucking opinion and your fucking reaction?

      F U C K   Y O U   S I   O N 

      IT'S NOT JUST computers and information technology; this map of clear anachronism in language and religion shows us that things like "solar fusion" the power of the son itself; is encoded in places high and low you can erasilly find them, places like the name of the Fifth book of the Holy Bible and Don Quixote; where you might liken "DEUTERON" to ... the actual fuel of fusion; and wind mills to a battle fought against blindness resulting in seeing that not "reacting" to this message is just about the same thing as being a foolish robot building a castle for another foolish robot to do nothing in forever.  With some light, you can see how this event; albeit strange and unsettling, has been designed to reinforce the American foundations of free speech, common sense, and collaboration--a sort of "press and release" on these things that he says will stay in our memories for a long, long time--though he also says "he's not torturing me" and he's wrong about that.  So are you. 

      See that the most interesting, important, and invoking story of all time has been hidden from the world, from the public eye, and from "public response" for well over two years now; see that's not possible at all without mass mind control and that I and this story are designed to help us see how easily it is that same thing can be used to end addiction, and mental health issues, and stupidity and that the biggest and most imporotant step to getting there is "public disclosure."  See the light of being carrolling angels this Christmas; sing with me--it builds Heaven from Hell and it's clear as day and n.

       

      Quite a bit of this story and message deals with problems like these-things that won't really be seen as something we are fighting against the actual usage of right this very moment; but the sacredness of our memories and their relationship to our souls are just as important as whether or not "you have the space to save them."  This isn't what I want to be doing, I'm not a very good writer; and this message is so confusing that working on it all alone with very little feedback is frustrating if not to say defeating the purpose of exactly what it is and what it's designed to do.  This is a searching mechanism, like in the stories of Ra searching for his children in ancient Egypt using the Eye you see--and it's connection to the "Sons of Liberty" and why I know that too, is about me.  This is a tool to start a Renaissance of thinking connecting technology and religion to everything that we are--to our culture and our hopes and dreams--and it's failing for me at "hello."   I would much rather be working on "virtual reality stuff" or on "the sword of Arthor" and I see very clearly that those two things are coming shortly--to the world that doesn't see yet they are here and broken until we fix them.  Moving forward here brings change, not just here in this place where we need it too--but in the skies above, a change from the mentality of "we aren't not helping because we told you that we aren't allowed to not pretend we aren't helping in Stargate.  See that we are the children of "the Ancients" and they are trying to decide between being Morgenz and Marlin.

      I can't make you set yourselves free.  I sure am trying, though.  Yesterday I connected the "Arimathea" of Joseph to the "serdenicity" and this the me of "itime" and "topics" will probably light some of you up as much as me... if only you took the time to look at what those words really mean.   From the city that never sleeps at night, I hope you will take this chance to act today on "securing the ringing of liberty forever and ever."

      (cough)                               

      THERE IS A METHOD TO THE MADDEN AND WE AR 

      BEYOND THUNDERDON

      ​ 

      T H E    W R I T I N G    I S    O N    T H E    W A L L

      LIKE, WILL IT RAIN TODAY?

      take action, it is the foundation of not only democracy but civilization and life itself--pucker up the phone and call the NYPOST.

      News Tips: Email tips@nypost.com, call 212-930-8288, or use our anonymous form

      Online Editorial: online@nypost.com or 646-357-3838

      Letters to the Editor: letters@nypost.com

      Sports: sports@nypost.comor 212-930-8700

       

      Let there be $ight in Creation, a brief highlighting of the story of my life.


      align="right">Sat, Dec 3, 2016 at 8:39 AM

      This is like a few emails combined to ease the pain you feel when you get an extra one in your inbox, OK So.. eventually this is all about proof that religion is a message sent through time--so, time travel.  But right now, let's talk about the fun stuff: here's some clues to that effect... by way of prescient mention of modern technology (like virtual reality, I mean, Heaven):

      Either way, we're still about to *build *Heaven*...  to-get-her*

      from the mythical carpenter... ourself.

      .

      *** ... ***and some corroborating ideas connecting religion and computer science... on Wikipedia:

      So from me to you, I'm filled with this stuff, it's way brighter and more prevalent than you think... and if you take the time to listen to me--it will make your... day.  Meanwhile, I need your help--happy new year.

      Oh, LET THERE BE LIGHT

         

      Ho, again; grow a Halo and become famous... the world needs your help--so I've decided once again to take it upon myself to "bother you" with the most singular most important task in the Universe.  The patterns that I am revealing to you--mostly within names--are not coincidence, it's a series of statistically verifiable artifacts which do nothing short of reveal the slavery of Egypt--that we are all being controlled.  If you remember Transformers--this is a message from Starfleet, there is more than meets the eye.  This is the fulfillment of the story of of Exodus--we are being lead from slavery, and in one final non-coincidental name, that book is called "Names" in Hebrew.

      You should now have a very good idea who is speaking to you--as much of the world already does.  I have no idea what it is that inhabits the cavities below that space where most of you should see significant personal gain and motivation from trying to ... grow a Halo--but there are so many people that just don't care... that it too is another sign, of slavery.  I am not an expert in language construction, nor in statistics--but I can assure you that if you can find the other half of that equation... in your hands is the staff of Aaron, the magical weapon that will free us all... knowing is half the battle.

      Uh, I have the power, to bring about "morning," but if I have to go to school and do it all myself... it's really just a long, long ni-i-i-ight.

      Hi there, I'm the messiah.  You don't know that much about me, so let me explain, I would like you to know me as Adam.

      Seriously, there's something going on the world around you--for the last several months I've been having quite a bit of trouble delivering what amounts to statistical proof of Creation--that religion and ancient myths are a map to this very moment--this time that you will probably affiliate soon with being in Eden.  I am pretty sure that's a good thing, but every new begging starts with some other beginnings end... so today I'd like to try to get you to see the light of ending censorship and a hidden censor wall that we know Biblically as the Wall of Jericho.  Quickly approaching is the Feast of Trumpets, and *this year is different from all other years... *  Bored already?  Have a look at what I call the Sign of the Son, which to me is proof that Exodus's Burning Bush is a former President--who is helping us walk out of a dark time of confusion... commonly referred to as a wilderness or desert.  He proved during his inauguration that there is Biblical foreknowledge of the 9/11 attack--and in doing so hopefully began a chain reaction that will stop things like that from ever happening again.  Here's a short "video" that explains the Sign of the Son... and another one that I think explains the .. Holy Grail.

      This is The (actual) Taming of the Spanglishrew, in which the protagonist... named Bianca, is taught Latin in several hundred year old reference to Rattling the Rod of Jesus Christ--it's purpose to is to show us that it's more than names we have in our arsenal against mind controlled slavery--we have all of history too... literature and movies and music... all with the divine purpose of revealing with bright light a form of control that otherwise could have gone on hidden for centuries.  It was, and continues to be done on purpose... because your freedom is more important than control of the Universe.  To us, you don't seem to feel the same way.

      ​See that timer on the clock, you could start right now.  It might be interesting to pose the question of whether or not the Second Coming is news... you know, to your friends.  By the way, both Herbert (like from H.W. Bush, who by the way coined for us the 1,000 points of light phrase) and Goertzel strongly suggest that "everyone really" is Christ (you know, after me)... FYI, this is the Matrix solution to that:

      y

      o

      the **l u C i f E R ** isa means jesus, mesa thinks

      i     s olv e      .... "or"* means shine -l***

      g       r e a      t

      h         R L      << agree?  send to other people

      t   ((a)) Y l      shine:  suggest they do the same

      1 y      world saved.  

      A BRIEF HISSTORY OF TIME

      I'm attempting to pull out the things that I now look back on and see as "written into me" by God--once I would have called it "The Microcosm of the Messiah" but there are now so many--these things aren't necessarily particularly important to me, and I've left out some interesting but unrelated details related to my Jewish upbringing; as well as the true light of my life--the two loving and long-term relationships (and later... briefly a rael family) that have dominated the last 15 years.  Religion has always been an interest, but I wouldn't consider it to have been particularly important at all... until I no longer had any love in my life.  It's probably worth noting that all my "I'm single" crap really means lonely and isolated--I'm not really playing a "part," but I've never been anything near the "player" the light appears to be warning against.  Sons of God and uh... please.  For the last 4 years I have done absolutely nothing but think about you, live and analyze "The Cross" and put into words ... as best I can ... the amazing flash of light that I am experiencing. 

      Well, just a little religion... :)  I was born on December 8, 1980; which is the date of the annual Feast of the Immaculate Conception, I've always been a slob (like one of us) and often "ish" Yankee Doodle's "a real live son of our uncle Sam... born on the..." to this.. I mean in my head.   My last name, you've probably read me repeat over and over ... is DOB-rin, which I read as "Date of Birth, our in" and does a fair job of highlighting the Name Server's work, which I am sure gives Exodus it's name in Hebrew, which is "Names."  My Hebrew name--a Jewish custom--is Avram, which is Abraham's name prior to the covenant.  I have written extensively about the fact that Isaac's near death interaction donated his "Ha" (his name means... He laughs) to his father.... and it should be clear that Abraham's covenant with God is without doubt related to my fiery altar.. even though it is anachronistic in the Biblical account.   For the first 18 years of my life I lived on Sunrise Blvd, and only a half mile away you'll find Sunset Strip--it's noteworthy to understand that Jewish calendar days begin at sundown... and that He once in 2013 very clearly spoke to me "you need the night before the day."

      Of all the people in my early life growing up, it's pretty clear that nobody on this Earth loved me more than my grandmother Julia, who my son is named after.  First for my mother, and then me as a very small child--she would ritually say a bedtime poem, it's words are very relevant.

      Good night, sleep tight.. have happy dreams and wake up bright

      to do what's right, in the morning's light... with all your might.

      In one of my books I spent a decent amount of time writing about how silly I was not to realize that my intelligence was augmented my entire life--I just thought I was really smart, and really good with computers.  I commented that this particular belief is probably a good microcosmic parallel for all humanity--as a body of people we have been truly gifted with knowledge and capabilities that we simply do not recognize as a gift--or didn't for a long time.  I probably wasn't silly not to realize... since nobody ever told me they were helping me--I never heard the voice of God until much, much later.   I was 30 the first time I had a conversation with Him, except for two very brief ... "thoughts in my head" which now seem very obviously an external voice--though then it may have sounded just like my inner voice.

      Around the age of 7 I thought to myself... for no reason at all... "what if you were the messiah?"  I was standing outside my home, probably playing with a car in the driveway... and distinctly remember smiling to myself and thinking in return "yeah, I'm the messiah." I I've always had a very vivid imagination. The thought was dismissed as being ridiculously arrogant about two seconds later, and was absent from my thought process for the next 21 years or so.

      "DAMNISN\ Jim. I'm a Yeoman, not a Wise Owl. The clock is ticking... tack .. "

      PHENIX

      Following that lead, I started programming in BASIC and then Visual Basic around the age of 11, something I took to very quickly... and then shortly after found myself on America Online--one of the first "internet-like" environments.  There, I quickly got into the "hacking scene" (hey, it's Y-its-Hack) which basically revolved around writing software to manipulate the AOL client's messaging systems.  The defacto-standard for the day was a program called AOHell, and, if you can't tell already, I am pretty good at taking a theme and making it my own.  I wrote a program called Doomsday, a mass mailing program; can you see how God speaks?  So Phenix, a mythical bird that rises from the fire... in the wake of ... this macrocosmic equivalent of that event.  It's really obvious, right?  There's quite a bit more "microcosm" from this time, recorded in "From Adam to Mary" and available at fromthemachine dot org.

      Around the same time I began attending a preparatory school in Fort Lauderdale called Pine Crest--it's one of the best of its kind, and while I was always something of a class clown my grades were fair and I scored with perfect consistency in the top percent on every standardized test from the FCAT to the PSAT and SAT.  By the time I received a full scholarship to college I had already completed more than a full year of credits through AP courses.  It was in studying American History and Government in that place that I formed such strong opinions about our need to maintain freedom, adhere to the wisdom of the founding Father(s) (<3 if you get that) and stand up and shout today as a rogue government is taking away every single one of the rights granted to you in their own law.  You've lost freedom of speech, and our ability to speak seems to be not far behind.  The privacy of our thoughts gone--and in like kind the sanctity of who we are is being taken away as our beliefs are changed without our real knowledge or understanding.  You can see the justice system crumbling, incarceration rates skyrocket and the "right to bail and a fair trial" legislated away through underhanded deals relating to plea bargains and a "point system" that you might as well call a gas chamber.  As far as voting, I'll have much more to say tomorrow--but I'm telling you that your thoughts and beliefs are being altered, who cares how technologically retarded our polling system is--the vote is a complete fraud.

         

      As far as the Second Coming... this same sort of possession... manifested through organized behavior tells me now that it is clear that this is definately not the "first time around" for Adam being Christ; a number of my friends as I approached high school used a repeated phrase, "my parents love you," which isn't bad in and of itself... what's bad is the fact that they were all using the same words, and probably didn't know why--or what they were saying.  Behind there eyes, I'm sure some thing that believes it's an angel was telling me something... (they of course... didn't know me at all, except for what was probably a ... "wild" reputation) does that tell you anything?  Much later, as the "Apocalypse of Adam" began in 2011, a number of family members would repeat this similar behavior, speaking the phrase "this is not what I wanted."

      As icing on the cake, on my birthday during my senior year... one of the administrators of the school commented to me that was also the Feast of the Immaculate Conception, and then the words.... "of course it's your birthday."

      I started doing drugs around the 10th grade, and I would not be wrong to say that the Universe that wrote a book calling the Redeemer the God Most High conspired to plunge me into a dark world.  People around me too, in a hidden conspiracy to chain me to the American legal system for about four years.  Looking back today I now clearly see that I saw a darkness in their eyes, a hidden reason to want to hurt me.  It was to stop this from happening, but I had no idea then... the darkness I saw is akin to the "sun disk" you see in Christian and Egyptian iconography, and without doubt it s a sign of control, possession, a single foreign mind controlling and organizing many of us just like puppets.  Much later in my story... for another day... the manifestation of this possession as thought modification will become clear--I've spent quite a bit of time "listening" to a war in my head, thoughts clearly not mine swaying in the gusting torrent of winds as what (who?) is the center of this storm.

      This infestation of organized darkness uses our injustice system as a weapon against it's victims--something you should see akin to Heaven using human sacrifice to alter the future.  It abuses the legal system at every level, making a mockery of law enforcement, the supposedly adversarial court system... all the way to the top--to the Supreme Court and Congress.  See the Church Committee Hearings, and a very smart senator echoing my words today "it must never be allowed to happen again."  

      Can't you see it's more than being manipulated... it is Hell revealing itself to the only thing that can stop it.  What I am giving you is the weapon, it's the light that sets us free and stops this from happening.  In our modern myths this is Leeloo staring up at the sky to stop the destruction of Earth... in reality it is not so simple, I can't just put some elements or rocks on pedestals and scream at Heaven to kill their darkness--we have to do it, here, together.  Believe me, knowing the truth is a big part of why it works--this will not be hidden, it will not be "forgiven," we are being controlled and destroyed from the outside; made to blame ourselves and each other for ... well, you probably don't know what the ni-i-i-ight means anyway, do you?  The Guardian against Darkness is showing it to you, remember--there is only one me.  Hear me.. light this fire now.

      ALACHUA

      I went to school the University of Florida, and got a semi-professional job doing database development in Delphi (seriously, catch on to the names thing, it's not just the U.S. military, it's pretty much all software too... following in this "mythology" theme that nobody really seems to care about), I worked there for about two years... at a company called Jenmar--which uh, in Spanglishrew is "J in the sea."

      It's some kind of ironic "coincidence" but I am at this very moment on my way to Gainesville, FL... to this place where a car Crash nearly destroyed my life.  In my world of idioms delivering religious secrets, I imagine I must be a "pain in the neck" which was broken during this accident... one in which I imagine i did not survive in some parallel timeline--that itself did not survive.  So here we are, back in the House of the Great Light ... about to see if we are worth our salt.  It's the thing that gave one of Dave Matthews most famous songs it's name--and The Pretty Reckless, believe it or not.  It was an attempted assassination, to stop the .. apocalypse ... to stop the darkness from being destroyed--there is no doubt, it's how that dark monster hides its handiwork... but many of US know that already.  

      In the Living Book of Names--this place we are in, there are many patterns--the "car" pattern stands out for me; as this place says "Icarus."  Flying high right now, I am showing you that the light of salvation is coming from us--from you and I--walking on the Earth; whether or not there is any light left in the Sun remains to be seen--take a look around you.  You can trace the "car" names to Jim Carrey (that's "Car reason why") and Christoff in the Truman Show (that's Amon-TV)... a world I know I am in, and you too; to Bruce Almighty and to the Grinch--who-ah, Taylor.  Trace it back to Joseph McCarthy and to help why (that's thy) believe "the red scare" is really about Christian charity--about ending world hunger, and healing the sick.  This red fire ends Hell.  Adam by the way, means "red man" in Hebrew.  So here's your new Crash Override, I'm back again telling you that ending world hunger is not "optional," we are doing it.  Barbara McCarthy's name fits, but I'm not really sure what the "why" is... that was my first judge in the "trial of whether or not Jesus Christ can ever exist."  There's probably more, like Car-l-y Si-mon-day... all the gang on Broad-way, and me still dreaming it will one day be.

      If the name "America" were a map in time, starting with the I AM of the story of Exodus... this particular ER, as I woke from a dream not knowing where I was, marked the spot where I really became Christ Adam.  It was a bad accident, and I wound up spending 9 months in the Alachua County jail as a result, a Mountain set up for my by God.  That place too is marked with names, and for the vast majority of the time I was there with only four shift changing guards:

      I mean, I think it's statistically meaningful.  For what it's worth, from my very abundant experience at this point it was a very nice Jail, the food was good and it was clean.  Everyone in the building was kind... well, Sims was kinda grumpy. :)  Starkly contrasted, the Broward County Jail has the most disgusting food service in the country, gave Dr. Seuss's Green Eggs and Ham it's meaning--and is the reason I know exactly who Samael is.  Hey, don't cry Sherrif Israel... when you fix it, you're an angel.  Believe me, believe the light, I've seen them all--it's near the worst in the country.

      So this whole thing is about saving everyone--something we are quite closer to than you think... you see we are already "in Heaven" in form--just not function.  So here I am, trying my hardest to show you that our home is the original source of "Heaven" once we are aware that we are living in the machine, that we can do things here that are impossible in reality, and that we should be doing everything we can to preserve and improve the great strides that have come in the last few centuries.  Do not let freedom slip through your fingers.

      Really, everyone, so understand that we are doing everything we can to remove all obstacles from that path.  One of those obstacles may have once been storage space for your soul, another is definitely crime and punishment--and I'm pretty sure the time travelers have a working solution (I see it every day).

      There are proactive things coming from this--not just ... "look we aren't doing what we want, and should change it;" though it's difficult to explain how this wisdom stands out in my eyes.  I guess we have to jump into the future a bit, to 2014, in San Diego (that's Saint Jacob, by the way).  If Lazarus died once in a car accident at 21, I died again that year, of an over dose this time.  I'm pretty sure that's where ODIN's name comes from, just like my last name.. "over dose... and in."  So we might see some humor... in the moniker he has... "they're all Father."  So I awoke from a dream, and started talking to the jinn (that's "angels and demons") about a Revelation linking some tightly packed light together... about storage space and how a large alphabet (read more than 4-nucleotides CY later) DNA (desperately need adam) based solution for molecular storage appears to be written in this book as the solution to Heaven's biggest problem.  CAT, learning from biology--seeing that we really are already advanced machines... is a big part of the message telling us why we should not so quickly lose it in a process of ascension (mind uploading, immortality) that has most likely in the past resulted in a loss of a check on mind control that we have here... we think, and our visualized "biological neural networks" give us an advantage over what we might create to "soup it up a little."  It is why this place is the front-line--because we have the ability to break the bonds of darkness and control by thinking... making the computational task of control much more expensive... and as the fire spreads, nearly impossible to achieve.  Starting this fire will inherently free us from this hidden slavery.

      Anyway I published the idea in 2014, in the same book that I guess this e-mail is reminding me about, "in $ight of Creation," and lo, and behold a few years later we now have the top computing companies in the world working diligently on doing it ... well, just a little bit more robustly than our cell replication system works. *Abracadabra. *

      CURA GROUP

      So that one reads "see, you are a group;" and it's a place that I worked with my father for many years.  That's probably some sort of symbolic reference to another place, and another alliance--here he has no faith in God, never really has, and has a hard time doing anything but telling me not to try to help you.  I have very little respect for that stance, and let me tell you--I think "silence" is a similar gesture.  I didn't come here for your love, I am here to stop our descent into the abyss.

      Back to the DNA stuff, SalesLogix--which is the CRM we used there, uses for it's "primary key" an auto-incrementing alphanumeric index--it's probably bad form to do that because it makes the indexing system less efficient, increases storage requirements, and doesn't give you the obvious benefit of an alpha-key... actually being able to encode something useful in it, like the name of the record.  So all these things stand out to me in a sort of bad-obvious way, I call it malovious, and when I see things like that nowadays it's always pointing out something that should be fixed--go figure, more to the point it's being highlighted on purpose.  It's help to see it, because this particular thing is where the light of seeing that a 24 nucleotide DNA strand would probably be much more robust than a 4 or 8 nucleotide strand--it also stands about because the stock beginning of all of SalesLogix's keys was "A0RME," which, I mean, means something to "is-a" who... is me.  Oh right, that's seeing the "light" that turns "a" into "me."  So this is where the "revelation" about using DNA "came from" and at the same time it's proof... that it came from "a group," not just me.  Where are they?  Hello?  Or well, maybe it's just Carmen and San Diego.

      I did some other stuff there, like write a data transformation and warehousing program from scratch, I called it heiroglyph (you do understand I didn't know why I am naming everything the way I was), that sucked mutivalue data out of an IBM product called U2/Universe--which might be a hidden reference to a multiverse that might now be in a more efficent "relational" kind of place, like a MS-SQL datawarehouse-universe.  It was a relatively big feat, reverse engineering the closed databases dictionary and storage formats, and converting them... absolutely automagically into multiple flat relational tables and summary registers.  All told, the data availability and access efficiency was increased ... a thousand-fold with only the need for a nightly process.

      I'm not sure if you are following the metaphor here, for the creation of Heaven, or moving to a better place.. but tomorrow I will talk a little more about how I am pretty sure our history was "lifted" from the Universe and virtualized here, you know, so we could save everyone and ... build Heaven.

      WORLD DOMINATION

      Oh crap, 2008 another car crash, another failed assassination attempt LazarusLives++, and this one paid me some cash for my trouble.  What a pain in the neck.  Anyway, this one caused some depression and an inability to go out for a while, as I had to wear a neck brace for some months.  I started playing a game on the internet, it was called KDice and it basically amounted to multiplayer-risk.

      My battery is running low, so I have to skip some stuff, and finish up for the day.  Basically instant messaging was not allowed, but was done in secret almost ubiquitously.  I argued with the creator of the game that it should be made part of the game since everyone did it... (see a metaphor about this communication thing and what's happening right now) he disagreed.  I made a very large network of people and dominated the game for a few months, like really dominated.  I don't think I ever lost.  I don't think I can lose. 

      Skipping some stuff.  I stopped playing when I got better, and then a few years later went back and rekindled some old friendships.  I used a program then called "Scarab" which lets you see server/client communication to find a bug in the game that basically made me God.  I could erase other people's dice, basically leveling the map and rendering them completely powerless.  I didn't use it that much, you know, just had some fun.  I of course explained the bug and how to fix it.  But, you aren't listening.

      Here we are.  Light...

      So if you managed to wade through the last few days gibberish, you might have noted that I mentioned we might be able to use "mind control" to highlight things in our heads--I did a bad job of describing it, but since I am currently experiencing just such a phenomenon, I think I'll give it another go.  These things that I am sharing with you--links between religion and music and movies, they aren't something I actively go out seeking... I'm not scouring through imdb.com or reading lyrics all day long... these are things that are glowing embers in front of my eyes.. which is why I am sharing them with you.  I'm always in the dark... but I'm living in a powder keg and giving off sparks.  I'm a big fan of that song by the way, because you are the heart, and I think it means I'm going to eclipse the world--which basically means "come."

      Anyway, I have this horrible feeling inside that you think I'm just trying to get a date, or marry a rock star, or even worse that I think I deserve to get laid... and that's what this is all about.  Less to the point, this really isn't about me at all, or what I think, in my mind I am just showing you something that I think the world has overlooked-not really because you are stupid (but I mean, you probably are) but because some outside force is literally and actively hiding these things from you.  Pointing them out makes your brain do funny things, it's like anEpiphany and that little leap of understanding in your head might create a cascade.. something that changes not only the way you see the world as an individual--but the entire course of history as a group, if we are taking about it together.  Seriously, it's that big of a deal.

      So here we are (that's the third time, but I'm just guessing) and I'm trying to tell you that I don't really care if you agree with my opinions--even though I firmly believe that God shares them and that's why he has made this fiery altar of "dick and apocalypse" for Adam... I mean Isaac (which by the was is Isa+Adam Christ.. in uh, my mind) for everyone to glare at while they sit around doing absolutely nothing.  That's not fair, we're here because of you, because this is the last civilization--sort of recreated from the ashes of Edom... because you are really the way to everlasting life.  Still, what I am trying to explain is that all around you is a bright light--it's in everything: from our history, to music, to movies, to literature from RattleRod to Dick... and while you might not agree with me (again, that would be OK) what is not OK is that there seems to be a uniform and global desire just not to think about it or talk about it at all.  It's such a big deal, that it stands out like a sore thumb--this ... blind eye or head in the sand... that everyone on Earth appears to have.  The whole point of putting this light absolutely everywhere is so that we will see it ... everywhere we look ... and not only think about it, but discuss it publicly with each other.  That's the thing that brings about ... you say apocalypse (unveiling of truth?) ... I say survival.  Right now, we need to see that something is forcing us not to do something, that we have no logical reason not to do... it's a thing lots of people really want to know about... whether it be the hidden secrets of the Universe, the path to Heaven, or the... the... absolute and literal pathway to freedom.  Listen, sharing it, and talking about it... that's the way we defeat ... whatever it is that "ni-i-i-ight" means.   

      Understand, it's for you to decide... what it means... but it's in everything from ancient Egyptian and Hebrew theology all the way to the American Revolution and today... well, it's nearly every song I hear on the radio nowadays: if that tells you anything.

      So here we are, and I can't tell you how many anchors, reporters, and "breaking news editors" I've personally spoken to that have absolutely no interest at all in pursuing the thing that would not only make their careers--but probably give them immortal souls.  This thing... I keep telling everyone it can be mathematically... statistically proven... well, to be honest it's the unsealing of the Ark of Religion that our civilization has been carrying around for thousands of years.  It's the way to salvation, it's ... verifiable proof of not only Creation... but that the purpose of Creation is to get every single one of us * to Heaven.  Who wouldn't want that?  I mean, do you want to get there and hear that Taylor's not around because she wouldn't kiss me?  That would never happen by the way, I'm sure she will.  Seriously though, there's no judge here... there's a ... light telling you to make this place better or your place sucks and gets suckier.  Anyway, the point is nobody is acting in their own best interest, or in the best interest of the whole--and we are just "deciding" in this ... fictitious and hidden manner that we "don't want to hear about" a way to actually change the world .... more quickly than ... the last time around.  That's not us, it's something keeping us from seeing just how important this thing--this key turning the lock on what is thousands and thousands of years of religion... how important that really is.  So looking at the world around us... I mean, if everything screaming that we need to care about this isn't enough--and your own personal desire and benefit don't matter... can someone please tell me what you think is the benefit of doing nothing about Hell?*

      á§

      á§

      It's "rael," and a great deal of the message of religion and history is designed to not only prove that to us, but to tell us why it's important for the "continuity of reality" to be broken.  That's the thing that God uses to keep this world in Hell--in what I call "simulated reality," to keep us from shaking the foundation of civilization by doing the only civilized thing possible when you find out and ending world hunger, healing the sick, and building Heaven.  It is "why I am," and why God and some gaggle of angels have spent the last several years proving to me that we are most definitely not in the place that I call the "progenitor universe."  I've seenwalls disappear, with my own eyes I've seen the stars fall from the sky, and I've seen our reality shift in recent times in such a way that would be absolutely impossible without having been simulated and without having the "beginning" changed significantly as a result of "now."  What all that tells me is that religion, the Apocalypse, and I are here because we need to know that these things are possible in order to continue progressing from this point as a civilization.  With a little bit of thought, you might see how the computer revolution, video games, and virtual reality are divine gifts from above to help us to understand not only where we are, but where we are going.  It's why he tagged Ai as "I J Good," it's a primer in the tools we will need to actually build Heaven.  It's why Jesus occupation in our ancient time shifted story of now is "carpenter" and in "raelity" you will one day find out that I am a computer programmer (again).  It's what sets the Masons apart from Freemasons--understanding what is going on, and participating of our own free will in the construction and decorating of this grand place that we will one day be proud is our co-created home.  

      Look up, because what I am trying to tell you is that if we collectively, all humanity... started snapping their fingers at the same time to the tune of "putting on the ritz" we could end world hunger--and then we could be proud to be making Heaven.  This really is almost what I see and believe--honestly the issue isn't that we need to synchronize our snapping, but we really need to discuss with each other openly and honestly how on Earth we would do such a thing... because there are definitely mistakes that probably happened n the past.  For instance, ending world hunger by stopping the need to eat has probably resulted in a Last Supper.  Doing so by putting milk and honey or chocolate on tap or in rivers probably resulted in the loss of cows and bees and a stable ecosystem, and the ability to colonize other planets after this place of final ascension.  And so we are here, with a proverbial garden of life in a virtual world designed to teach us what not to lose--like don't lose the balance between stability and adaptability that comes from sexual reproduction at the exact time when our species might be transiting to a place with the biggest change in environment (the thing that we are being protected from) ever... just because Adam wants to be immortal.

      Every once in awhile my father surprises me with his religious insight.  In his life, just like mine, he's gone through phases of increasing and decreasing religiosity--which probably correlate in his case logically to ups and downs in his life.  I tend to get angry at God when things don't go well for me--which is probably not how most people react, it's really the difference between knowing he's there and not... at least in my mind.  Anyway, some 50 years ago he was apparently taught that the "knowledge of good and evil" in Eden was directly correlated to the population explosion that would occur if we were actually all immortal and continued to have children--so it was this promise of immortality that was "evil," I suppose.  God adds in his little Holy Grail that the heart of his spirit is "Kin," and I'm sharing with you that it's not his immediate family but rather the concept of family and the fact that the light of many of our hearts is our children that he is highlighting as our reason (y) that family is the bridge between Eve and Everyone... as the light of God.  

      Here's that once again:

      ``` In the beginning God created the heaven and the earth. And the earth was without form, and void; and darkness was upon the face of the deep. And the Spirit of God SHE KIN AH moved upon the face of the waters. ---------- EVE RY ONE And God said, Let there be light: and there was light.

      ```

      |

      | |

      |

      Copyleft^MT^ RIGEL.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This important study addresses how 3' splice site choice is modulated by the conserved spliceosome-associated protein Fyv6. The authors provide compelling evidence Fyv6 functions to enable selection of 3' splice sites distal to a branch point and in doing so antagonizes more proximal, suboptimal 3' splice sites. The study would be improved through a more nuanced discussion of alternative possibilities and models, for instance in discussing the phenotypic impact of Fyv6 deletion.

      We thank the editors and reviewers for their supportive comments and assessment of this manuscript. We have improved the discussion at several points as suggested by the reviewers to include discussion of alternative possibilities.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      A key challenge at the second chemical step of splicing is the identification of the 3' splice site of an intron. This requires recruitment of factors dedicated to the second chemical step of splicing and exclusion of factors dedicated to the first chemical step of splicing. Through the highest resolution cyroEM structure of the spliceosome to-date, the authors show the binding site for Fyv6, a factor dedicated to the second chemical step of splicing, is mutually exclusive with the binding site for a distinct factor dedicated to the first chemical step of splicing, highlighting that splicing factors bind to the spliceosome at a specific stage not only by recognizing features specific to that stage but also by competing with factors that bind at other stages. The authors further reveal that Fyv6 functions at the second chemical step to promote selection of 3' splice sites distal to a branch point and thereby discriminate against proximal, suboptimal 3' splice site. Lastly, the authors show by cyroEM that Fyv6 physically interacts with the RNA helicase Prp22 and by genetics Fyv6 functionally interacts with this factor, implicating Fyv6 in 3'SS proofreading and mRNA release from the spliceosome. The evidence for this study is robust, with the inclusion of genomics, reporter assays, genetics, and cyroEM. Further, the data overall justify the conclusions, which will be of broad interest.

      Strengths:

      (1) The resolution of the cryoEM structure of Fyv6-bound spliceosomes at the second chemical step of splicing is exceptional (2.3 Angstroms at the catalytic core; 3.0-3.7 Angstroms at the periphery), providing the best view of this spliceosomal intermediate in particular and the core of the spliceosome in general.

      (2) The authors observe by cryoEM three distinct states of this spliceosome, each distinguished from the next by progressive loss of protein factors and/or RNA residues. The authors appropriately refrain from overinterpreting these states as reflecting distinct states in the splicing cycle, as too many cyroEM studies are prone to do, and instead interpret these observations to suggest interdependencies of binding. For example, when Fyv6, Slu7, and Prp18 are not observed, neither are the first and second residues of the intron, which otherwise interact, suggesting an interdependence between 3' splice site docking on the 5' splice site and binding of these second step factors to the spliceosome.

      (3) Conclusions are supported from multiple angles.

      (4) The interaction between Fyv6 and Syf1, revealed by the cyroEM structure, was shown to account for the temperature-sensitive phenotypes of a fyv6 deletion, through a truncation analysis.

      (5) Splicing changes were observed in vivo both by indirect copper reporter assays and directly by RT-PCR.

      (6) Changes observed by RNA-seq are validated by RT-PCR.

      (7) The authors go beyond simply observing a general shift to proximal 3'SS usage in the fyv6 deletion by RNA-seq by experimentally varying branch point to 3' splice site distance experimentally in a reporter and demonstrating in a controlled system that Fyv6 promotes distal 3' splice sites.

      (8) The importance of the Fyv6-Syf1 interaction for 3'SS recognition is demonstrated by truncations of both Fyv6 and of Syf1.

      (9) In general, the study was executed thoroughly and presented clearly.

      We thank the reviewer for their recognition of the strengths of our multi-faceted approach that led to highly supported conclusions.

      Weaknesses:

      (1) Despite the authors restraint in interpreting the three states of the spliceosome observed by cyroEM as sequential intermediates along the splicing pathway, it would be helpful to the general reader to explicitly acknowledge the alternative possibility that the difference states simply reflect decomposition from one intermediate during isolation of the complex (i.e., the loss of protein is an in vitro artifact, if an informative one).

      We thank the reviewer for noticing our restraint in interpreting these structures, and we agree that the scenario described by the reviewer is a possibility. We have now explicitly mentioned this in the Discussion on lines 755-757.

      (2) The authors acknowledge that for prp8 suppressors of the fyv6 deletion, suppression may be indirect, as originally proposed by the Query and Konarska labs - that is, that defects in the second step conformation of the spliceosome can be indirectly suppressed by compensating, destabilizing mutations in the first step spliceosome. Whereas some of the other suppressors of the fyv6 deletion can be interpreted as impacting directly the second step spliceosome (e.g., because the gene product is only present in the second step conformation), it seems that many more suppressors beyond prp8 mutants, especially those corresponding to bulky substitutions, which would more likely destabilize than stabilize, could similarly act indirectly by destabilization of first step conformation. The authors should acknowledge this where appropriate (e.g., for factors like Prp8 that are present in both first and second step conformations).

      We agree that this is also a possibility and have now included this on lines 480-486.

      Reviewer #2 (Public Review):

      In this manuscript, Senn, Lipinski, and colleagues report on the structure and function of the conserved spliceosomal protein Fyv6. Pre-mRNA splicing is a critical gene expression step that occurs in two steps, branching and exon ligation. Fyv6 had been recently identified by the Hoskins' lab as a factor that aids exon ligation (Lipinski et al., 2023), yet the mechanistic basis for Fyv6 function was less clear. Here, the authors combine yeast genetics, transcriptomics, biochemical assays, and structural biology to reveal the function of Fyv6. Specifically, they describe that Fyv6 promotes the usage of distal 3'SSs by stabilizing a network of interactions that include the RNA helicase PRP22 and the spliceosome subunit SYF1. They discuss a generalizible mechanism for splice site proofreading by spliceosomsal RNA helicases that could be modulated by other, regulatory splicing factors.

      This is a very high quality study, which expertly combines various approaches to provide new insights into the regulation of 3'SS choice, docking, and undocking. The cryo-EM data is also of excellent quality, which substantially extends on previous yeast P complex structures. This is also supported by the authors use of the latest data analysis tools (Relion-5, AlphaFold2 multimer predictions, Modelangelo). The authors re-evaluate published EM densities of yeast spliceosome complexes (B*, C,C*,P) for the presence or absence of Fyv6, substantiate Fyv6 as a 2nd step specific factor, confirm it as the homolog of the human protein FAM192A, and provide a model for how Fyv6 may fit into the splicing pathway. The biochemical experiments on probing the splicing effects of BP to 3'SS distances after Fyv6 KO, genetic experiments to probe Fyv6 and Syf1 domains, and the suppressor screening add substantially to the study and are well executed. The manuscript is clearly written and we particularly appreciated the nuanced discussions, for example for an alternative model by which Prp22 influences 3'SS undocking. The research findings will be of great interest to the pre-mRNA splicing community.

      We thank the reviewer for their positive comments on our manuscript.

      We have only few comments to improve an already strong manuscript.

      Comments:

      (1) Can the authors comment on how they justify K+ ion positions in their models (e.g. the K+ ion bridging G-1 and G+1 nucleotides)? How do they discriminate e.g. in the 'G-1 and G+1' case K+ from water?

      The assignment of K+ at this position is justified by both longer coordination distances and relatively high cryo-EM density compared to structured water molecules in the same vicinity. We have added a panel to figure3-figure supplement 4C to show the density for the G-1/G+1 bridging K+ ion and to show the adjacent density for putative water molecules which coordinate the ion. The K+ ion density is larger and has stronger signal than the adjacent water molecules. The coordination distances are also longer than would be expected for a Mg2+. For these reasons and because K+ was present in the purification buffer, we modelled the density as K+.

      (2) The authors comment on Yju2 and Fyv6 assignments in all yeast structures except for the ILS. Can the authors comment on if they have also looked into the assignment of Yju2 in the yeast ILS structure in the same manner? While it is possible that Fyv6 could dissociate and Yju2 reassociate at the P to ILS transition, this would merit a closer look given that in the yeast P complex Yju2 had been misassigned previously.

      We thank the reviewer for pointing out this very interesting topic! We have used ModelAngelo to analyze the S. cerevisiae ILS structure for support of density assignment as Yju2 (and not Fyv6). This analysis supports the assignment as Yju2 in this structure and we have no evidence to doubt its presence in those particular purified spliceosomes. We have updated Figure 4- figure supplement 1B accordingly.

      That being said, we do think that this issue should be studied more carefully in the future. The S. cerevisiae ILS structure (5Y88) was determined by purifying spliceosome complexes with a TAP-tag on Yju2. So the conclusion that Yju2 is part of the ILS spliceosome involves some circular logic: Yju2 is part of ILS spliceosome complexes because it is present in ILS complexes purified with Yju2. We also note that Yju2 was absent in ILS complexes recently determined from metazoans by the Plaschka group.  We have added some additional nuance to the Discussion to raise this important mechanistic point at lines 711-718.

      (3) For accessibility to a general reader, figures 1c, d, e, 2a, b, would benefit from additional headings or labels, to immediately convey what is being displayed. It is also not clear to us if Fig 1e might fit better in the supplement and be instead replaced by Supplementary Figure 1a (wt) , b (delta upf1), and a new c (delta fyv6) and new d (delta upf1, delta fyv6). This may allow the reader to better follow the rationale of the authors' use of the Fyv6/Upf1 double deletion.

      We thank the reviewer for the suggestion and have updated Figures 1 C-E to include additional information in the headings and labels. We have not changed the labels in Figures 2A, B but have added additional clarifying language to the legend.

      In terms of rearranging the figures, we thank the reviewer for the suggestion but have decided that the figures are best left in their current ordering.

      (4) The authors carefully interpret the various suppressor mutants, yet to a general reader the authors may wish to focus this section on only the most critical mutants for a better flow of the text.

      We thank the reviewer for this suggestion. While this section of the manuscript does contain (to quote Reviewer #3) “extensive new information regarding functional interactions”, it was a bit long. We have reduced this section of the manuscript by ~200 words for a more focused presentation for general readers.

      Reviewer #3 (Public Review):

      In this manuscript the authors expand their initial identification of Fyv6 as a protein involved in the second step of pre-mRNA splicing to investigate the transcriptome-wide impact of Fyv6 on splicing and gain a deeper understanding of the mechanism of Fyv6 action.

      They first use deep sequencing of transcripts in cells depleted of Fyv6 together with Upf1 (to limit loss of mis-spliced transcripts) to identify broad changes in the transcriptome due to loss of Fyv6. This includes both changes in overall gene expression, that are not deeply discussed, as well as alterations in choice of 3' splice sites - which is the focus of the rest of the manuscript

      They next provide the highest resolution structure of the post-catalytic spliceosome to date; providing unparalleled insight into details of the active site and peripheral components that haven't been well characterized previously.

      Using this structure they identify functionally critical interactions of Fyv6 with Syf1 but not Prp22, Prp8 and Slu7. Finally, a suppressor screen additionally provides extensive new information regarding functional interactions between these second step factors.

      Overall this manuscript reports new and essential information regarding molecular interactions within the spliceosome that determine the use of the 3' splice site. It would be helpful, especially to the non-expert, to summarize these in a table, figure or schematic in the discussion.

      We thank the reviewer for the positive comments and suggestions. We did include a summary figure in panel 7H. However, it was a bit buried. To highlight the summary figure more clearly, we have moved panel 7H to its own figure (Fig. 8).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The resolution of some panels is poor, nearly illegible (e.g., Supp Fig 1A, B).

      The resolution of panels in supplemental figure 1 has been increased. However, this may be an artifact of the PDF conversion process. We will pay attention to this during the publication process.

      (2) Panel S6B: 6HYU is a structure of DHX8, not DDX8

      We have corrected DDX8 to DHX8 in Supplemental Fig. S6D and associated figure legend.

      (3) The result that Syf1 truncations can suppress the Fyv6 deletion is impressive. The subsequent discussion seems muddled. A discussion of Fyv6 binding at the first step, instead of Yju2, doesn't seem relevant here (though worthy of consideration in the discussion), given that the starting mutation is the Fyv6 deletion. Further, conjuring rebinding of Yju2 based on the data in the paper seems unnecessarily speculative (assumes that biochemical state III is on pathway), unless I am unaware of some other evidence for such rebinding. Instead, a simpler explanation would seem to be that in the absence of Fyv6, Syf1 inappropriately binds Yju2 instead at the second step and that deletion of the common Fyv6/Yju2 binding site on Syf1 suppresses this defect. In this case, the ts phenotype of the Fyv6 deletion would result from inappropriate binding of Yju2, and the splicing defect would be due to loss of Fyv6 activity. Alternatively, especially considering the work of the labs of Query and Konarska, the authors should consider the possibility that i) the Fyv6 deletion destabilizes the second step conformation, shifting an equilibrium to the first step conformation, and that ii) the Syf1 truncation destabilizes binding of Yju2, thereby restoring the equilibrium. In this case the ts phenotype of the Fyv6 deletion is due to a disturbed equilibrium and the splicing defect is due to the failure of Fyv6 to function at the second step.

      We believe the reviewer is specifically referencing the final paragraph of this Results section (the paragraph that comes just before the section “Mutations in many different splicing factors…”). In retrospect, we agree that our discussion was convoluted. In particular, we emphasized rebinding of Yju2 based on its presence in the cryo-EM structure of the yeast ILS complex. However, given some uncertainties about whether or not Yju2 is a bona fide ILS component (as discussed above). We don’t think it is appropriate to over-emphasize rebinding of Yju2 and have decided to incorporate the elegant mechanisms proposed by the reviewer. This paragraph has now been edited accordingly (lines 386-395).

      (4) The authors imply they have performed biochemical studies, which I think is misleading. Of course, RT-PCR and primer extension assays for example are performed in vitro, but these are an analysis of RNA events that occurred in vivo. In my view a higher threshold should be used for defining "biochemistry". To me "biochemistry" would imply that the authors have, for example, investigated 3' splice site usage in splicing extracts of the fyv6 deletion or engaged in an analysis of the Syf1-Fyv6 interaction involving the expression of the interacting domains in bacteria followed by a binding analysis in the test tube.

      We disagree with the reviewer on this point. Biochemistry is defined as the “branch of sciences concerned with the chemical substances, reactions, and physico chemical processes which occur within living organisms; biological or physical chemistry.” (Oxford English Dictionary). Biochemical studies are not defined by whether or not they take place in vitro, in vivo, or even in silico. Indeed, much of the history of biochemistry (especially in studies of metabolism, for example) involved experiments occurring in vivo that reported on the molecular properties and mechanisms of biological processes. We think many of our experiments fall into this category including our structure/function analysis of splicing factors and the use of the ACT1-CUP1 reporter substrate.

      (5) The monovalents are shown; inositol phosphate is shown; is the binding of Prp22 to RNA shown?

      We have added a panel to Figure 3-figure supplement 4D showing density for the 3' exon within Prp22.

      (6) The authors invoke undocking of the 3'SS in the P complex. Where is the 3'SS in the ILS? The author's model predicts: undocked.

      In all ILS structures to date, the 3′ SS is undocked, in agreement with this prediction. We have now noted this observation in line 760.

      (7) Would be helpful to show fyv6 deletion in Fig 1b.

      We have included growth data for an additional fyv6 deletion strain (in a cup1Δ background) in Figure 1b. The results are quite similar to the upf1_Δ_ background except with slightly worse growth at 23°C.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments

      (1) Fig.3b is the arrow indicating the right rotation?

      This typo has been fixed.

      (2) Fig.4b, panel H is annotated, which should read 'F'.

      This typo has been fixed.

      (3) Line 178: "Finally, we analyzed the sequence features of the alternative 3ʹ SS activated by loss of Fyv6." We would suggest 'used after' instead of 'activated by'.

      We have replaced ‘activated by’ with ‘with increased use after’.

      (4) In Line 544, the authors speculate on a Slu7 requirement for 3'SS docking and on 3'SS docking maintenance. In the results section (Line 265) they however only mention the latter possibility. These statements should be consistent.

      We thank the reviewer for pointing this out. We have added a reference to docking maintenance to the results section at line 325.

      (5) Line 476: "Unexpectedly, Prp22 I1133R was actually deleterious when Fyv6 was present for this reporter." We suggest removing "actually".

      We have removed ‘actually’.

      (6) The authors describe the observed changes in splicing events in absolute numbers (e.g. in Fig 1c). To better assess for the reader whether these numbers reflect large or small effects of Fyv6 in defining mRNA isoforms, it would be more useful to state these as percent changes of total events or to provide a reference number for how many introns are spliced in S.c. See for example the statements in Lines 132 and 145.

      We have added a percentage at line 138 that indicates ~20% of introns in yeast showed splicing changes.

      Reviewer #3 (Recommendations For The Authors):

      Do the authors have a proposed explanation for the observed DGE in non-intron containing genes in the Fyv6 depleted cells?

      The simplest explanation is that this is an indirect effect due to splicing changes occurring in other genes (such as transcription factors, ribosomal protein genes, etc..). It is possible that this can be further dissected in the future using shorter-term knockdown of Fyv6 using Anchors Away or AID-tagging. However, that is beyond the scope of the current manuscript, and we do not wish to comment on these non-intron containing genes further at present.

      Figure 2A - What is going on with the events that show no FAnS value under one condition (i.e. are up against the X or Y axis)? These are of interest as most on the Y- axis are blue.

      The events along one of the axes denote alternative splice sites that are only detected under one condition (either when Fyv6 is present or when it is absent). At this stage, we do not wish to interpret these events further since most have a relatively low number of reads overall.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In their manuscript, Gomez-Frittelli and colleagues characterize the expression of cadherin6 (and -8) in colonic IPANs of mice. Moreover, they found that these cdh6-expressing IPANs are capable of initiating colonic motor complexes in the distal colon, but not proximal and midcolon. They support their claim by morphological, electrophysiological, optogenetic, and pharmacological experiments.

      Strengths:

      The work is very impressive and involves several genetic models and state-of-the-art physiological setups including respective controls. It is a very well-written manuscript that truly contributes to our understanding of GI-motility and its anatomical and physiological basis. The authors were able to convincingly answer their research questions with a wide range of methods without overselling their results.

      We greatly appreciate the reviewer’s time, careful reading and support of our study.

      Weaknesses:

      The authors put quite some emphasis on stating that cdh6 is a synaptic protein (in the title and throughout the text), which interacts in a homophilic fashion. They deduct that cdh6 might be involved in IPAN-IPAN synapses (line 247ff.). However, Cdh6 does not only interact in synapses and is expressed by non-neuronal cells as well (see e.g., expression in the proximal tubuli of the kidney). Moreover, cdh6 does not only build homodimers, but also heterodimers with Chd9 as well as Cdh7, -10, and -14 (see e.g., Shimoyama et al. 2000, DOI: 10.1042/0264-6021:3490159). It would therefore be interesting to assess the expression pattern of cdh6-proteins using immunostainings in combination with synaptic markers to substantiate the authors' claim or at least add the possibility of cell-cell-interactions other than synapses to the discussion. Additionally, an immunostaining of cdh6 would confirm if the expression of tdTomato in smooth muscle cells of the cdh6-creERT model is valid or a leaky expression (false positive).

      We agree with the reviewer that Cdh6 could be mediating some other cell-cell interaction besides synapses between IPANs, and will include more on this in the discussion. Cdh6 primarily forms homodimers but, as the reviewer points out, has been known to also form heterodimers with some other cadherins. We performed RNAscope in the colonic myenteric plexus with Cdh7 and found no expression (data not shown). Cdh10 is suggested to have very low expression (Drokhlyansky et al., 2020), possibly in putative secretomotor vasodilator neurons, and Cdh14 has not been assayed in any RNAseq screens. We attempted to visualize Cdh6 protein via antibody staining (Duan et al., 2018) but our efforts did not result in sufficient signal or resolution to identify synapses in the ENS, which remain broadly challenging to assay. Similarly, immunostaining with Cdh6 antibody was unable to confirm Cdh6 protein in tdT-expressing muscle cells, or by RNAscope. We will address these caveats in the discussion section.

      (1) E. Drokhlyansky, C. S. Smillie, N. V. Wittenberghe, M. Ericsson, G. K. Griffin, G. Eraslan, D. Dionne, M. S. Cuoco, M. N. Goder-Reiser, T. Sharova, O. Kuksenko, A. J. Aguirre, G. M. Boland, D. Graham, O. Rozenblatt-Rosen, R. J. Xavier, A. Regev, The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 182, 1606-1622.e23 (2020).

      (2) X. Duan, A. Krishnaswamy, M. A. Laboulaye, J. Liu, Y.-R. Peng, M. Yamagata, K. Toma, J. R. Sanes, Cadherin Combinations Recruit Dendrites of Distinct Retinal Neurons to a Shared Interneuronal Scaffold. Neuron 99, 1145-1154.e6 (2018).

      Reviewer #2 (Public review):

      Summary:

      Intrinsic primary afferent neurons are an interesting population of enteric neurons that transduce stimuli from the mucosa, initiate reflexive neurocircuitry involved in motor and secretory functions, and modulate gut immune responses. The morphology, neurochemical coding, and electrophysiological properties of these cells have been relatively well described in a long literature dating back to the late 1800's but questions remain regarding their roles in enteric neurocircuitry, potential subsets with unique functions, and contributions to disease. Here, the authors provide RNAscope, immunolabeling, electrophysiological, and organ function data characterizing IPANs in mice and suggest that Cdh6 is an additional marker of these cells.

      Strengths:

      This paper would likely be of interest to a focused enteric neuroscience audience and increase information regarding the properties of IPANs in mice. These data are useful and suggest that prior data from studies of IPANs in other species are likely translatable to mice.

      We appreciate the reviewer’s support of our study and insightful critiques for its improvement.

      Weaknesses:

      The advance presented here beyond what is already known is minimal. Some of the core conclusions are overstated and there are multiple other major issues that limit enthusiasm. Key control experiments are lacking and data do not specifically address the properties of the proposed Cdh6+ population.

      Major weaknesses:

      (1) The novelty of this study is relatively low. The main point of novelty suggests an additional marker of IPANs (Cdh6) that would add to the known list of markers for these cells. How useful this would be is unclear. Other main findings basically confirm that IPANs in mice display the same classical characteristics that have been known for many years from studies in guinea pigs, rats, mice and humans.

      We appreciate the already existing markers for IPANs in the ENS and the existing literature characterizing these neurons. The primary intent of this study was to use these well established characteristics of IPANs in both mice and other species to characterize Cdh6-expressing neurons in the mouse myenteric plexus and confirm their classification as IPANs.

      (2) Some of the main conclusions of this study are overstated and claims of priority are made that are not true. For example, the authors state in lines 27-28 of the abstract that their findings provide the "first demonstration of selective activation of a single neurochemical and functional class of enteric neurons". This is certainly not true since Gould et al (AJP-GIL 2019) expressed ChR2 in nitrergic enteric neurons and showed that activating those cells disrupted CMC activity. In fact, prior work by the authors themselves (Hibberd et al., Gastro 2018) showed that activating calretinin neurons with ChR2 evoked motor responses. Work by other groups has used chemogenetics and optogenetics to show the effects of activating multiple other classes of neurons in the gut.

      We believe our phrasing in this sentence was misleading. Whilst single neurochemical classes of enteric neurons have been manipulated to alter gut functions, all such instances to date do not represent manipulation of a single functional class of enteric neurons. In the given examples, NOS and calretinin are each expressed to varying degrees across putative motor neurons, interneurons and IPANs. In contrast, Chd6 is restricted to IPANs and therefore this study is the first optogenetic investigation of enteric neurons from a single putative functional class. We will alter this segment in the revised manuscript to emphasize this point and differentiate this study from those previous.

      (3) Critical controls are needed to support the optogenetic experiments. Control experiments are needed to show that ChR2 expression a) does not change the baseline properties of the neurons, b) that stimulation with the chosen intensity of light elicits physiologically relevant responses in those neurons, and c) that stimulation via ChR2 elicits comparable responses in IPANs in the different gut regions focused on here.

      We completely agree controls are essential. However, our paper is not the first to express ChR2 in enteric neurons. Authors of our paper have shown in Hibberd et al. 2018 that expression of ChR2 in a heterogeneous population of myenteric neurons did not change network properties of the myenteric plexus. This was demonstrated in the lack of change in control CMC characteristics in mice expressing ChR2 under basal conditions (without blue light exposure). Regarding question (b), that it should be shown that stimulation with the chosen intensity of light elicits physiologically relevant responses in those neurons. We show the restricted expression of ChR2 in IPANs and that motor responses (to blue light) are blocked by selective nerve conduction blockade.

      Regarding question (c), that our study should demonstrate that stimulation via ChR2 elicits comparable responses in IPANs in the different gut regions. We would not expect each region of the gut to behave comparably. This is because the different gut regions (i.e. proximal, mid, distal) are very different anatomically, as is anatomy of the myenteric plexus and myenteric ganglia between each region, including the density of IPANs within each ganglia, in addition to the presence of different patterns of electrical and mechanical activity [Spencer et al., 2020]. Hence, it is difficult to expect that between regions stimulation of ChR2 should induce similar physiological responses. The motor output we record in our study (CMCs) is a unified motor program that involves the temporal coordination of hundreds of thousands of enteric neurons and a complex neural circuit that we have previously characterized [Spencer et al., 2018]. But, never has any study until now been able to selectively stimulate a single functional class of enteric neurons (with light) to avoid indiscriminate activation of other classes of neurons.

      (1) T. J. Hibberd, J. Feng, J. Luo, P. Yang, V. K. Samineni, R. W. Gereau, N. Kelley, H. Hu, N. J. Spencer, Optogenetic Induction of Colonic Motility in Mice. Gastroenterology 155, 514-528.e6 (2018).

      (2) N. J. Spencer, L. Travis, L. Wiklendt, T. J. Hibberd, M. Costa, P. Dinning, H. Hu, Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon. American Journal of Physiology-Gastrointestinal and Liver Physiology 318, G244–G253 (2020).

      (3) N. J. Spencer, T. J. Hibberd, L. Travis, L. Wiklendt, M. Costa, H. Hu, S. J. Brookes, D. A. Wattchow, P. G. Dinning, D. J. Keating, J. Sorensen, Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle. J. Neurosci. 38, 5507–5522 (2018).

      (4) The electrophysiological characterization of mouse IPANs is useful but this is a basic characterization of any IPAN and really says nothing specifically about Cdh6+ neurons. The electrophysiological characterization was also only done in a small fraction of colonic IPANs, and it is not clear if these represent cell properties in the distal colon or proximal colon, and whether these properties might be extrapolated to IPANs in the different regions. Similarly, blocking IH with ZD7288 affects all IPANs and does not add specific information regarding the role of the proposed Cdh6+ subtype.

      Our electrophysiological characterization was guided to be within a subset of Cdh6+ neurons by Hb9:GFP expression. As in the prior comment (1) above, we used these experiments to confirm classification of Cdh6+ (Hb9:GFP+) neurons in the distal colon as IPANs. We will clarify that these experiments were performed in the distal colon and agree that we cannot extrapolate that these properties are also representative of IPANs in the proximal colon. We apologize that this was confusing. Finally, we agree with the reviewer that ZD7288 affects all IPANs in the ENS and will clarify this in the text.

      (5) Why SMP IPANs were not included in the analysis of Cdh6 expression is a little puzzling. IPANs are present in the SMP of the small intestine and colon, and it would be useful to know if this proposed marker is also present in these cells.

      We agree with the reviewer. In addition to characterizing Cdh6 in the myenteric plexus, it would be interesting to query if sensory neurons located within the SMP also express Cdh6. Our preliminary data (n=2) show ~6-12% tdT/Hu neurons in Cdh6-tdT ileum and colon (data not shown). We will add a sentence to the discussion.

      (6) The emphasis on IH being a rhythmicity indicator seems a bit premature. There is no evidence to suggest that IH and IT are rhythm-generating currents in the ENS.

      Regarding the statement there is no evidence to suggest that IH and IT are rhythm-generating currents in the ENS. We agree with the reviewer that evidence of rhythm generation by IH and IT in the ENS has not been explicitly confirmed. We are confident the reviewer agrees that an absence of evidence is not evidence of absence, although the presence of IH has been well described in enteric neurons. We will modify the text in the results to indicate more clearly that IH and IT are known to participate in rhythm generation in thalamocortical circuits, though their roles in the ENS remain unknown. Our discussion of the potential role of IH or IT in rhythm generation or oscillatory firing of the ENS is constrained to speculation in the discussion section of the text.

      (7) As the authors point out in the introduction and discuss later on, Type II Cadherins such as Cdh6 bind homophillically to the same cadherin at both pre- and post-synapse. The apparent enrichment of Cdh6 in IPANs would suggest extensive expression in synaptic terminals that would also suggest extensive IPAN-IPAN connections unless other subtypes of neurons express this protein. Such synaptic connections are not typical of IPANs and raise the question of whether or not IPANs actually express the functional protein and if so, what might be its role. Not having this information limits the usefulness of this as a proposed marker.

      We agree with the reviewer that the proposed IPAN-IPAN connection is novel although it has been proposed before (Kunze et al., 1993). As detailed in our response to Reviewer #1, we attempted to confirm Cdh6 protein expression, but were unsuccessful, due to insufficient signal and resolution. We therefore discuss potential IPAN interconnectivity in the discussion, in the context of contrasting literature.

      (1) W. A. A. Kunze, J. B. Furness, J. C. Bornstein, Simultaneous intracellular recordings from enteric neurons reveal that myenteric ah neurons transmit via slow excitatory postsynaptic potentials. Neuroscience 55, 685–694 (1993).

      (8) Experiments shown in Figures 6J and K use a tethered pellet to drive motor responses. By definition, these are not CMCs as stated by the authors.

      The reviewer makes a valid criticism as to the terminology, since tethered pellet experiments do not record propagation. We believe the periodic bouts of propulsive force on the pellet is triggered by the same activity underlying the CMC. In our experience, these activities have similar periodicity, force and identical pharmacological properties. Consistent with this, we also tested full colons (n = 2) set up for typical CMC recordings by multiple force transducers, finding that CMCs were abolished by ZD7288, similar to fixed pellet recordings (data not shown).

      (9) The data from the optogenetic experiments are difficult to understand. How would stimulating IPANs in the distal colon generate retrograde CMCs and stimulating IPANs in the proximal colon do nothing? Additional characterization of the Cdh6+ population of cells is needed to understand the mechanisms underlying these effects.

      We agree that the different optogenetic responses in the proximal and distal colon are challenging to interpret, but perhaps not surprising in the wider context. It is not only possible that the different optogenetic responses in this study reflect regional differences in the Chd6+ neuronal populations, but also differences in neural circuits within these gut regions. A study some time ago by the authors showed that electrical stimulation of the proximal mouse colon was unable to evoke a retrograde (aborally) propagating CMC (Spencer, Bywater, 2002), but stimulation of the distal colon was readily able to. We concluded that at the oral lesion site there is a preferential bias of descending inhibitory nerve projections, since the ascending excitatory pathways have been cut off. In contrast, stimulation of the distal colon was readily able to activate an ascending excitatory neural pathway, and hence induce the complex CMC circuits required to generate an orally propagating CMC. Indeed, other recent studies have added to a growing body of evidence for significant differences in the behaviors and neural circuits of the two regions (Li et al., 2019, Costa et al., 2021a, Costa et al., 2021b, Nestor-Kalinoski et al., 2022). We will expand this discussion.

      (1) N. J. Spencer, R. A. Bywater, Enteric nerve stimulation evokes a premature colonic migrating motor complex in mouse. Neurogastroenterology & Motility 14, 657–665 (2002).

      (2) Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P (2019) Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. Elife 8.

      (3). Costa M, Keightley LJ, Hibberd TJ, Wiklendt L, Dinning PG, Brookes SJ, Spencer NJ (2021a) Motor patterns in the proximal and distal mouse colon which underlie formation and propulsion of feces. Neurogastroenterol Motil e14098.

      (4) Costa M, Keightley LJ, Hibberd TJ, Wiklendt L, Smolilo DJ, Dinning PG, Brookes SJ, Spencer NJ (2021b) Characterization of alternating neurogenic motor patterns in mouse colon. Neurogastroenterol Motil 33:e14047.

      (5) Nestor-Kalinoski A, Smith-Edwards KM, Meerschaert K, Margiotta JF, Rajwa B, Davis BM, Howard MJ (2022) Unique Neural Circuit Connectivity of Mouse Proximal, Middle, and Distal Colon Defines Regional Colonic Motor Patterns. Cell Mol Gastroenterol Hepatol 13:309-337.e303.

    1. Author response:

      The following is the authors’ response to the original reviews.

      First of all, we would like to thank the reviewers for their very constructive comments, which helped us to improve the manuscript! In response to the raised issues, we have performed new experiments and made necessary changes on the manuscript.

      eLife Assessment

      The study describes a valuable new technology in the field of targeted protein degradation that allows identification of E3-ubiquitin ligases that target a protein of interest. The presented data are convincing, however, it is unclear whether the proposed system can be successfully used in high throughput applications. This technology will serve the community in the initial stages of developing targeted protein degraders.

      We thank the eLife editors for the positive assessment and have clarified the scalability of our system for high throughput applications in the revised manuscript (see our response to both reviewer’s comment on weakness point 1).

      Reviewer #1 (Public Review):

      Summary:

      PROTACs are heterobifunctional molecules that utilize the Ubiquitin Proteasome System to selectively degrade target proteins within cells. Upon introduction to the cells, PROTACs capture the activity of the E3 ubiquitin ligases for ubiquitination of the targeted protein, leading to its subsequent degradation by the proteasome. The main benefit of PROTAC technology is that it expands the "druggable proteome" and provides numerous possibilities for therapeutic use. However, there are also some difficulties, including the one addressed in this manuscript: identifying suitable target-E3 ligase pairs for successful degradation. Currently, only a few out of about 600 E3 ligases are used to develop PROTAC compounds, which creates the need to identify other E3 ligases that could be used in PROTAC synthesis. Testing the efficacy of PROTAC compounds has been limited to empirical tests, leading to lengthy and often failure-prone processes. This manuscript addressed the need for faster and more reliable assays to identify the compatible pairs of E3 ligases-target proteins. The authors propose using the RiPA assay, which depends on rapamycin-induced dimerization of FKBP12 protein with FRB domain. The PROTAC technology is advancing rapidly, making this manuscript both timely and essential. The RiPA assay might be useful in identifying novel E3 ligases that could be utilized in PROTAC technology. Additionally, it could be used at the initial stages of PROTAC development, looking for the best E3 ligase for the specific target.

      The authors described an elegant assay that is scalable, easy-to-use, and applicable to a wide range of cellular models. This method allows for the quantitative validation of the degradation efficacy of a given pair of E3 ligase-target proteins, using luciferase activity as a measure. Importantly, the assay also enables the measurement of kinetics in living cells, enhancing its practicality.

      Strengths:

      (1) The authors have addressed the crucial needs that arise during PROTAC development. In the introduction, they nicely describe the advantages and disadvantages of the PROTAC technology and explain why such an assay is needed.

      (2) The study includes essential controls in experiments (important for generating new assay), such as using the FRB vector without E3 ligase as a negative control, testing different linkers (which may influence the efficacy of the degradation), and creating and testing K-less vectors to exclude the possibility of luciferase or FKBP12 ubiquitination instead of WDR5 (the target protein). Additionally, the position of the luc in the FKBP12 vector and the position of VHL in the FRB vector are tested. Different E3 ligases are tested using previously identified target proteins, confirming the assay's utility and accuracy.

      (3) The study identified a "new" E3 ligase that is suitable for PROTAC technology (FBXL).

      We greatly appreciate the reviewer’s positive feedback on our work. To evaluate our system further, in our revised manuscript we have conducted additional analysis on KRASG12D degradation via VHL and CRBN within our K-less system. Consistent with previous findings of VHL-harnessing PROTACs, our assay demonstrated that VHL mediated efficient degradation of KRASG12D while CRBN induced only a minor effect. This new data is presented in Figure 2 - figure supplement 1C of the revised manuscript.

      Weaknesses:

      · It is not clear how feasible it would be to adapt the assay for high-throughput screens.

      The design of our study is a well-based assay. It is therefore possible but not realistic to evaluate all 600 and more human E3 ligases. Nonetheless, if interested in all E3 ligases, our assay could be adapted for pooled experimental strategies, as demonstrated in Poirson, J., Cho, H., Dhillon, A. et al., Nature 628, 878–886 (2024).

      Our system offers several advantages over pooled screens, including the generation of more quantitative data and faster testing of selected candidates. Pooled screens, by contrast, require more time due to the necessity of next-generation sequencing and bioinformatics analysis. Moreover, in response to the reviewers comment, we have included a schematic in the revised manuscript (Figure 4 - figure supplement 1A) that outlines the assay duration and hands-on time for target and E3 ligase candidates.

      · In some experiments, the efficacy of WDR5 degradation tested by immunoblotting appears to be lower than luciferase activity (e.g., Figure 2G and H).

      We concur with the reviewer that in some instances, the degradation observed via immunoblotting appears lower than that indicated by luciferase activity. Thus, we have quantified the western and added it to the respective blots. This discrepancy may result from the non-linearity of western blots.

      Reviewer #2 (Public Review):

      Summary:

      Adhikari and colleagues developed a new technique, rapamycin-induced proximity assay (RiPA), to identify E3-ubiquitin (ub) ligases of a protein target, aiming at identifying additional E3 ligases that could be targeted for PROTAC generation or ligases that may degrade a protein target. The study is timely, as expanding the landscape of E3-ub ligases for developing targeted degraders is a primary direction in the field.

      Strengths:

      The study's strength lies in its practical application of the FRB:FKBP12 system. This system is used to identify E3-ub ligases that would degrade a target of interest, as evidenced by the reduction in luminescence upon the addition of rapamycin. This approach effectively mimics the potential action of a PROTAC.

      We are delighted with this assessment of our work by the reviewer. To evaluate our system further, in our revised manuscript we have conducted additional analysis on KRASG12D degradation via VHL and CRBN within our K-less system. Consistent with previous findings of VHL-harnessing PROTACs, our assay demonstrated that VHL mediated efficient degradation of KRASG12D while CRBN induced only a minor effect. This new data is presented in Figure 2 - figure supplement 1C of the revised manuscript.

      Weaknesses:

      (1) While the technique shows promise, its application in a discovery setting, particularly for high-throughput or unbiased E3-ub ligase identification, may pose challenges. The authors should provide more detailed insights into these potential difficulties to foster a more comprehensive understanding of RiPA's limitations.

      The design of our study is well-based assay . It is therefore possible but not realistic to evaluate all 600 and more human E3 ligases. Nonetheless, if interested in all E3 ligases, our assay could be adapted for pooled experimental strategies, as demonstrated in Poirson, J., Cho, H., Dhillon, A. et al., Nature 628, 878–886 (2024).

      Our system offers several advantages over pooled screens, including the generation of more quantitative data and faster testing of selected candidates. Pooled screens, by contrast, require more time due to the necessity of next-generation sequencing and bioinformatics analysis. Moreover, in response to the reviewers comment, we have included a schematic in the revised manuscript (Figure 4 - figure supplement 1A) that outlines the assay duration and hands-on time for target and E3 ligase candidates.

      We also added the following sentences to the Limitations of the study section of the revised manuscript (line 322-326): “While our system offers easy testing of different tagging approaches and due to its simple workflow facilitates the rapid characterization of novel E3 ligases across multiple targets, it is currently not optimized for high-throughput evaluation of all 600+ E3 ligases. Achieving such scale would necessitate further adaptations, including the incorporation of pooled experimental strategies.”

      (2) While RiPA will help identify E3 ligases, PROTAC design would still be empirical. The authors should discuss this limitation. Could the technology be applied to molecular glue generation?

      We agree with the reviewer that our assay rationalizes the choice of E3 ligases but that PROTAC design (“linkerology”) is still mostly empirical. To address this, we included the following line in the Limitations of the study section of our initial manuscript (line 327-330): “Conversely, it is also conceivable that an E3 ligase that can efficiently decrease the levels of a particular target in the RiPA setting may be less suitable for PROTACs, since PROTACs that mimic the steric interaction of the target/E3 pair may not be easily identified in the chemical space.”

      Regarding molecular glues, our assay could also be instrumental in identifying suitable E3 ligases for a target protein prior to screening for molecular glues, provided that the screening system specifically screens E3 ligase and target pairs. However, as most molecular glue screens are currently agnostic to specific E3 ligases or targets, our system may not be applicable in those cases. We have elaborated on this in the discussion section of the revised manuscript (line 271-274): “We envision that this setting will be valuable for identifying the most suitable E3 ligase candidates for PROTACs aimed at specific proteins, and for guiding E3 ligase selection when screening for molecular glues targeting specific E3 ligase and protein pairs.”

      (3) Controls to verify the intended mechanism of action are missing, such as using a proteasome inhibitor or VHL inhibitors/siRNA to verify on-target effects. Verification of the target E3 ligase complex after rapamycin addition via orthogonal approaches, such as IP, should be considered.

      We thank the reviewer for the comment. Particularly VHL siRNA is not beneficial in this setup, as we overexpress the E3 ligase rather than relying on endogenous protein.

      To verify mechanism of action, we performed additional experiments in the presence of proteosomal inhibitor MG132 and neddylation inhibitor MLN4924 with target KRASG12D and E3 ligase VHL. The results is shown in Figure 2H of the revised manuscript.

      Minor concern:

      The graphs in Figure 1E are missing.

      We thank the reviewer for pointing this out. We corrected the figure in the revised manuscript.

      Reviewer #1 (Recommendations For The Authors):

      •  Optionally, the authors could add control experiments with Aurora B and Crb vectors (there shouldn't be any degradation) and experiments confirming that the degradation occurs via the proteasome. For example, the addition of proteasome inhibitors (such as bortezomib) should decrease the efficiency of the target degradation and confirm that targets are degraded via the proteasome system.

      Regarding Aurora-B degradation, as far as we know, there are no specific Aurora-B PROTACs reported. Thus, there is no definitive evidence that CRBN could not degrade Aurora-B. Nevertheless, we performed assays with Aurora-B and VHL, CRBN, or FRB, and observed more effective degradation of Aurora-B by VHL than CRBN. This data is now included in Figure 2 - figure supplement 1B of the revised manuscript.

      • It would also be helpful to provide a possible explanation for why the ratio 1:1 of vectors did not induce the degradation (regarding Figure 1D).

      We believe the lack of degradation with 1:1 vector ratio is due to the differential expression levels of endogenous FKBP12 and mTOR in HEK293 cells. According to Human Protein Atlas, the normalized protein-coding transcripts per million (nTPM) for FKBP12 and mTOR in HEK293 cells are 160 and 24 respectively, indicating that FKBP12 is expressed at levels approximately 6.7 times higher than mTOR. This disparity likely limits the heterodimerization of exclusively fusion proteins upon rapamycin addition. To increase the likelihood of FKBP12 and FRB fusion protein dimerization, we used a higher ratio of the FRB component during transfection, considering the higher endogenous expression of FKBP12.

      • It would be helpful to add more explanation for the data in Figure 1F, including whether there is a difference between vectors with different positions of VHL and FRB and why the FRB-VHL vector is less expressed without rapamycin.

      We thank the reviewer for the comment. Regarding the vector orientations of VHL/FRB and WDR5/Luc/FKBP12, we have consistently observed different migration behaviors for WDR5 and VHL constructs, despite their same molecular weights. This observation aligns with literature reports where differential running behavior is noted when FRB or FKBP12 (or their mutants) are tagged to the N- or C-terminus of a protein (Bondeson, D.P., Mullin-Bernstein, Z., Oliver, S. et al. Nat Commun 13, 5495 (2022); Mabe, S., Nagamune, T. & Kawahara, M. Sci Rep 4, 6127 (2014)). We have now included the following explanation in the figure legend of Figure 1F of the revised manuscript: “WDR5 and VHL fusion proteins tagged at the N- and C-terminal show different migration behaviors despite having same molecular weight.”

      Additionally, the stabilizing effect of rapamycin on FRB (or its mutants), FRB fusion proteins, and FRB-containing proteins has been documented (Stankunas, K., Bayle, J.H., Havranek, J.J. et al. ChemBioChem, 8(10), 1162-1169 (2007); Stankunas, K., Bayle, J.H., Gestwicki J.E. et al. Mol Cell, 12(6), 1615–1624 (2003); Zhang, C., Cui, M., Cui, Y. et al. J. Vis. Exp. (150), e59656 (2019)). We believe that the degree of stabilization by rapamycin could differ between N- and C-terminal FRB fusion proteins.

      • Finally, the mistake in Figure 2G (where the lanes are wrongly labelled, BRBN-FRB and FRB) should be corrected. Also please correct the graph in Figure 1E (there seems to be a problem with bars for 1:100). There are some typos, such as in lines 38, 277, and 288.

      Thank you for bringing this to our attention. We have corrected all the mentioned errors.

    Annotators

    1. References

      Update v1.1

      The following references have been added:

      1. FDA approves pembrolizumab for cutaneous squamous cell carcinoma. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-cutaneous-squamous-cell-carcinoma

      2. FDA approves toripalimab-tpzi for nasopharyngeal carcinoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-toripalimab-tpzi-nasopharyngeal-carcinoma

      3. Food and Drug Administration, Coherus BioSciences. LOQTORZ (toripalimab-tpzi) prescribing information. Available: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761240 Accessed 6/27/24.

      4. Gillison ML, Blumenschein Jr G, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington KJ, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias Docampo LC, Haddad R, Rordorf T, Kiyota N, Tahara M, Monga M, Lynch M, Li L, Ferris RL. CheckMate 141: 1‐Year Update and Subgroup Analysis of Nivolumab as First‐Line Therapy in Patients with Recurrent/Metastatic Head and Neck Cancer. The Oncologist, 2018 Sept. https://doi.org/10.1634%2Ftheoncologist.2017-0674"10.1634/theoncologist.2017-0674

      5. Dzienis MR, Cundom JE, Fuentes CS, Hansen AR, Nordlinger MJ, Pastor AV, Oppelt P, Neki A, Gregg RW, Lima IPF, Franke FA, daCunha Junior GF, Tsent JE, Loree T, Joshi AJ, Mccarthy JS, Naicker N, Sidi Y, Gumuscu B, De Castro Jr G. 651O Pembrolizumab (pembro) + carboplatin (carbo) + paclitaxel (pacli) as first-line (1L) therapy in recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): Phase VI KEYNOTE-B10 study. Annals of Oncology, 2022 Sept. https://doi.org/10.1016/j.annonc.2022.07.775

      6. Fayette J, Cropet C, Gautier J, Toullec C , Burgy M, Bruyas A, Sire C, Lagrange A, Clatot F, Calderon B, Vinches M, Iacob M, Martin L, Neidhardt Berard EM, Kaminsky MC, Vansteene D, Salas S, Champagnac A, Pérol D, Bourhis J. Results of the multicenter phase II FRAIL-IMMUNE trial evaluating the efficacy and safety of durvalumab combined with weekly paclitaxel carboplatin in first-line in patients (pts) with recurrent/metastatic squamous cell carcinoma of the head and neck (R/M SCCHN) not eligible for cisplatin-based therapies. J Clin Oncol 41, 2023 (suppl 16; abstr 6003).

    1. Reviewer #2 (Public review):

      In this manuscript, Li and collaborators set out to investigate the neuronal mechanisms underlying "subjective time estimation" in rats. For this purpose, they conducted calcium imaging in the prefrontal cortex of water-restricted rats that were required to perform an action (nose-poking) for a short duration to obtain drops of water. The authors provided evidence that animals progressively improved in performing their task. They subsequently analyzed the calcium imaging activity of neurons and identify start, duration, and stop cells associated with the nose poke. Specifically, they focused on duration cells and demonstrated that these cells served as a good proxy for timing on a trial-by-trial basis, scaling their pattern of actvity in accordance with changes in behavioral performance. In summary, as stated in the title, the authors claim to provide mechanistic insights into subjective time estimation in rats, a function they deem important for various cognitive conditions.

      This study aligns with a wide range of studies in system neuroscience that presume that rodents solve timing tasks through an explicit internal estimation of duration, underpinned by neuronal representations of time. Within this framework, the authors performed complex and challenging experiments, along with advanced data analysis, which undoubtedly merits acknowledgement. However, the question of time perception is a challenging one, and caution should be exercised when applying abstract ideas derived from human cognition to animals. Studying so-called time perception in rats has significant shortcomings because, whether acknowledged or not, rats do not passively estimate time in their heads. They are constantly in motion. Moreover, rats do not perform the task for the sake of estimating time but to obtain their rewards are they water restricted. Their behavior will therefore reflect their motivation and urgency to obtain rewards. Unfortunately, it appears that the authors are not aware of these shortcomings. These alternative processes (motivation, sensorimotor dynamics) that occur during task performance are likely to influence neuronal activity. Consequently, my review will be rather critical. It is not however intended to be dismissive. I acknowledge that the authors may have been influenced by numerous published studies that already draw similar conclusions. Unfortunately, all the data presented in this study can be explained without invoking the concept of time estimation. Therefore, I hope the authors will find my comments constructive and understand that as scientists, we cannot ignore alternative interpretations, even if they conflict with our a priori philosophical stance (e.g., duration can be explicitly estimated by reading neuronal representation of time) and anthropomorphic assumptions (e.g., rats estimate time as humans do). While space is limited in a review, if the authors are interested, they can refer to a lengthy review I recently published on this topic, which demonstrates that my criticism is supported by a wide range of timing experiments across species (Robbe, 2023). In addition to this major conceptual issue that casts doubt on most of the conclusions of the study, there are also several major statistical issues.

      Main Concerns

      (1) The authors used a task in which rats must poke for a minimal amount of time (300 ms and then 1500 ms) to be able to obtain a drop of water delivered a few centimeters right below the nosepoke. They claim that their task is a time estimation task. However, they forget that they work with thirsty rats that are eager to get water sooner than later (there is a reason why they start by a short duration!). This task is mainly probing the animals ability to wait (that is impulse control) rather than time estimation per se. Second, the task does not require to estimate precise time because there appear to be no penalties when the nosepokes are too short or when they exceed. So it will be unclear if the variation in nosepoke reflects motivational changes rather than time estimation changes. The fact that this behavioral task is a poor assay for time estimation and rather reflects impulse control is shown by the tendency of animals to perform nose-pokes that are too short, the very slow improvement in their performance (Figure 1, with most of the mice making short responses), and the huge variability. Not only do the behavioral data not support the claim of the authors in terms of what the animals are actually doing (estimating time), but this also completely annihilates the interpretation of the Ca++ imaging data, which can be explained by motivational factors (changes in neuronal activity occurring while the animals nose poke may reflect a growing sens of urgency to check if water is available).

      (2) A second issue is that the authors seem to assume that rats are perfectly immobile and perform like some kind of robots that would initiate nose pokes, maintain them, and remove them in a very discretized manner. However, in this kind of task, rats are constantly moving from the reward magazine to the nose poke. They also move while nose-poking (either their body or their mouth), and when they come out of the nose poke, they immediately move toward the reward spout. Thus, there is a continuous stream of movements, including fidgeting, that will covary with timing. Numerous studies have shown that sensorimotor dynamics influence neural activity, even in the prefrontal cortex. Therefore, the authors cannot rule out that what the records reflect are movements (and the scaling of movement) rather than underlying processes of time estimation (some kind of timer). Concretely, start cells could represent the ending of the movement going from the water spout to the nosepoke, and end cells could be neurons that initiate (if one can really isolate any initiation, which I doubt) the movement from the nosepoke to the water spout. Duration cells could reflect fidgeting or orofacial movements combined with an increasing urgency to leave the nose pokes.

      (3) The statistics should be rethought for both the behavioral and neuronal data. They should be conducted separately for all the rats, as there is likely interindividual variability in the impulsivity of the animals.

      (4) The fact that neuronal activity reflects an integration of movement and motivational factors rather than some abstract timing appears to be well compatible with the analysis conducted on the error trials (Figure 4), considering that the sensorimotor and motivational dynamics will rescale with the durations of the nose poke.

      (5) The authors should mention upfront in the main text (result section) the temporal resolution allowed by their Ca+ probe and discuss whether it is fast enough in regard of behavioral dynamics occurring in the task.

      Comments on the revised version

      I have read the revised version of the manuscript and the rebuttal letter. My major concern was that the task used is not a time estimation task but primarily taps into impulse control and that animals are not immobile during the nose-poking epoch. I provided factual evidence for this (the animal's timing performance is poor and, on average, animals struggle to wait long enough), and I pointed to a review that discusses the results of many studies congruent with the importance of movement/motivation, not only in constraining the timing of reward-oriented actions during so-called time estimation tasks but also in powerfully modulating neuronal activity.

      The authors' responses to my comments are puzzling and unconvincing. First, on the one hand, they acknowledge in their rebuttal letter the difficulty of demonstrating a neuronal representation of explicit internal estimation of time. Then, they seem to imply that this issue is beyond the scope of their study and focus in the rebuttal on whether the neuronal activity they report shows signs of being sensitive to movement and motivation, which they claim is independent of movement and motivation. This leads the authors to make no major changes in their manuscript. Their title, abstract, introduction, and discussion are largely unchanged and do not reflect the possibility that there are major confounding factors in so-called time estimation (rodents are not disembodied passive information processors) that may well explain some of the neuronal patterns. Evidently, the dismissive treatment by the authors is not satisfying. I will briefly restate my comments and reply to their responses and their new figure, which not only is unconvincing but raises new questions.

      My comments were primarily focused on the behavioral task. The authors replied: "Studying the neural representation of any internal state may suffer from the same ambiguity [by ambiguity they meant that it is difficult to know if animals are explicitly estimating time]. With all due respect, however, we would like to limit our response to the scope of our results. According to the reviewer, two alternative interpretations of the task-related sequential activity exist." The authors imply that my comments are beyond the scope of their study. That is not true. My comments were targeted at the behavior of the animals, behavior they rely on to title their study: "Stable sequential dynamics in prefrontal cortex represents a subjective estimation of time." When I question whether the task and behavioral data presented are congruent with "subjective estimation of time," my comments are not beyond the scope of the study-they directly tackle the main point of the authors. Other researchers will read the title and abstract of this manuscript and conclude: "Here is a paper that provides evidence of a mechanism for animals estimating duration internally (because subjective time perception is assumed to be different from using clocks)." Still, there is a large body of literature showing that the behavior of animals in such tasks can be entirely explained without invoking subjective time perception and internal representation. How can the authors acknowledge that they can't be sure that mice are estimating time and then have such an affirmative title and abstract?

      In my opinion, science is not just about forcing ideas (often reflecting philosophical preconceptions) on data and dismissing those who disagree. It is about discussing alternative possibilities fairly and being humble. In their revised version, I see no effort by the authors to investigate the importance of movement and motivation during their task or seriously engage with this idea. It's much easier to dismiss my comments as being beyond the scope of their results. According to the authors, it seems that movements and motivations play no role in the task. Still, the animals are water-restricted, and during the task, they will display decreased motivation (due to increased satiety), and their history of rewarded vs. non-rewarded trials will affect their behavior. This is one of the most robust effects seen across all behavioral studies. Moreover, the animals are constantly moving. Maybe the authors used a special breed of mice that behave like some kind of robots? I acknowledge that this is not easy to investigate, but if the authors did not use high-quality video recording or an experimental paradigm that allows disentangling motivational confounds, then they should refrain from using big words such as subjective time estimation and discuss alternative representations by acknowledging the studies that do find that movement and motivation are present during reward-based timing tasks and do in fact modulate neuronal activity, even in associative brain regions.

      To sustain their claim that what they reported is movement-independent, the authors provided a supplementary figure in which they correlated neuronal activity and head movement tracked using DeepLabCut. I have to say that I was particularly surprised by this figure. First, in the original manuscript, there was absolutely no mention of video recording. Now it appears in the methods section, but the description is very short. There is no information on how these video recordings were made. The quality of the images provided in Figure S2 is far from reassuring. It is unclear whether the temporal and spatial resolution would be good enough to make meaningful correlations. Fast head/orofacial movements that occur during nose-poking can be on the order of 20 Hz. To be tracked, this would require at least a 40 Hz sampling rate. But no sampling information is provided. The authors should explain how they synchronized behavioral and neuronal data acquisition. Could the authors share behavioral videos of the 5 sessions shown in Figure S2 so we can judge the behavior of the animals, the quality of the video, and the possibility of making correlations?

      Figure S2A-F: I am not sure why the authors correlated nose-poking duration (time estimation) and the duration between upper and lower nose-pokes (reward-oriented movement). It is not relevant to the issue I raised. Without any information about video acquisition frame rate, the y-axis legend (frame) is not very informative. Still, in Figure S2A-F, Rat 5 shows a clear increase in nose-poke duration, which is congruent with decreased impulsivity. Is the time coding different in this rat compared to other rats? There are some similar trends in other animals (Rat 1 and maybe Rat 3), but what is surprising is the huge variability (big downward deflections in the nose-poke duration). I would not be surprised if those deflections occurred after a long pause in activity. Could the authors plot trial time instead of trial number? How do the authors explain such a huge deflection if the animals are estimating time?

      Regarding Figure S2H: I don't see how it addresses my concern. My concern is that some of the Ca activity recorded during nose-poking reflects head movements. The authors need to show if they can detect head movement during nose-poking. Aligning the Ca data relative to head movement should give the same result as when aligning the data relative to the time at which the animals pull out of the upper nose-poke.

      Minor comments:

      In their introduction, the authors wrote: "While these findings [correlates of time perception] provide strong evidence for a neural mechanism of time coding in the brain, true causal evidence at single-cell resolution remains beyond reach due to technical limitations. Although inhibiting certain brain regions (such as medial prefrontal cortex, mPFC,22) led to disruption in the performance of the timing task, it is difficult to attribute the effect specifically to the ramping or sequential activity patterns seen in those regions as other processes may be involved. Lacking direct experimental evidence, one potential way of testing the causal involvement of 'time codes' in time estimation function is to examine their correlation at a finer resolution."<br /> This statement is inaccurate at two levels. First, very good causal evidence has been obtained on this topic (see Monteiro et al., 2023, Nature Neuroscience), and see my News & Views on the strengths and weaknesses of this paper. Second, their proposal is inaccurate. Looking at a finer correlation will still be a correlative approach, and the authors will not be able to disentangle motor/motivation confounds.

    1. Si vous arrivez à donner une définition claire, on pourra l’implémenter dans un modèle formel.

      Je suis un peu déçu par ce raccourci qui apparaît aussi en début d'article :

      1. "dans un modèle formel" : en fait dans plusieurs, ou de plusieurs façons. Tu le sous-entends mais c'est important de le dire ;
      2. le modèle formel, malgré toute la bonne volonté du monde et la puissance algorithmique (amen), aura une part d'interprétation, et donc il va se jouer quelque chose dans l'interstice des formules entre le langage et l'implémentation informatique. Je ne dis pas qu'il y aura un décalage, mais que l'implémentation va probablement influencer sur la définition, du fait des contraintes algorithmiques. C'est ce qui est visible dans cet article, et c'est très intéressant.
    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      We thank Reviewer #1 for the relevant and insightful comments on our paper. Please find our detailed answers below in the Recommendations to the Authors section.

      Summary: 

      The researchers examined how individuals who were born blind or lost their vision early in life process information, specifically focusing on the decoding of Braille characters. They explored the transition of Braille character information from tactile sensory inputs, based on which hand was used for reading, to perceptual representations that are not dependent on the reading hand. 

      They identified tactile sensory representations in areas responsible for touch processing and perceptual representations in brain regions typically involved in visual reading, with the lateral occipital complex serving as a pivotal "hinge" region between them.

      In terms of temporal information processing, they discovered that tactile sensory representations occur prior to cognitive-perceptual representations. The researchers suggest that this pattern indicates that even in situations of significant brain adaptability, there is a consistent chronological progression from sensory to cognitive processing. 

      Strengths: 

      By combining fMRI and EEG, and focusing on the diagnostic case of Braille reading, the paper provides an integrated view of the transformation processing from sensation to perception in the visually deprived brain. Such a multimodal approach is still rare in the study of human brain plasticity and allows us to discern the nature of information processing in blind people's early visual cortex, as well as the time course of information processing in a situation of significant brain adaptability. 

      Weaknesses: 

      The lack of a sighted control group limits the interpretations of the results in terms of profound cortical reorganization, or simple unmasking of the architectural potentials already present in the normally developing brain. 

      We thank the reviewer for raising this important point! We acknowledge that our claims regarding the unmasking of architectural potentials in both the normally developing and visually deprived brain are limited by the study design we employed. However, we note that defining an appropriate control group and assessing non-visual reading in sighted participants is far from straightforward. We discuss these issues in our response to the Public Review of Reviewer 2.

      Moreover, the conclusions regarding the behavioral relevance of the sensory and perceptual representations in the putatively reorganized brain are limited due to the behavioral measurements adopted.

      We agree with the reviewer that the relation between behavior and neural representations as established via perceived similarity judgments are task-dependent, and that a richer assessment of behavior would be valuable. Please note, however, that this limitation pertains to any experimental task used to assess behavior in the laboratory. Our major goal was to assess whether the identified neural representations are suitably formatted to be used by the brain for at least one behavior rather than being epiphenomenal. We found that the representations are suitably formatted for similarity judgments, thus establishing that they are relevant for at least this behavior. We also argue that judging similarity is a complex task that may underlie many other relevant behaviors. We discuss this point further in response to the Recommendations to the Authors.

      Reviewer #2 (Public Review): 

      We thank the reviewer for the considerate and thoughtful suggestions. Please find a detailed description of the implemented changes below.

      Summary: 

      Haupt and colleagues performed a well-designed study to test the spatial and temporal gradient of perceiving braille letters in blind individuals. Using cross-hand decoding of the read letters, and comparing it to the decoding of the read letter for each hand, they defined perceptual and sensory responses. Then they compared where (using fMRI) and when (using EEG) these were decodable. Using fMRI, they showed that low-level tactile responses specific to each hand are decodable from the primary and secondary somatosensory cortex as well as from IPS subregions, the insula, and LOC. In contrast, more abstract representations of the braille letter independent from the reading hand were decodable from several visual ROIs, LOC, VWFA, and surprisingly also EVC. Using a parallel EEG design, they showed that sensory hand-specific responses emerge in time before perceptual braille letter representations. Last, they used RSA to show that the behavioral similarity of the letter pairs correlates to the neural signal of both fMRI (for the perceptual decoding, in visual and ventral ROIs) and EEG (for both sensory and perceptual decoding). 

      Strengths: 

      This is a very well-designed study and it is analyzed well. The writing clearly describes the analyses and results. Overall, the study provides convincing evidence from EEG and fMRI that the decoding of letter identity across the reading hand occurs in the visual cortex in blindness. Further, it addresses important questions about the visual cortex hierarchy in blindness (whether it parallels that of the sighted brain or is inverted) and its link to braille reading. 

      Weaknesses: 

      Although I have some comments and requests for clarification about the details of the methods, my main comment is that the manuscript could benefit from expanding its discussion. Specifically, I'd appreciate the authors drawing clearer theoretical conclusions about what this data suggests about the direction of information flow in the reorganized visual system in blindness, the role VWFA plays in blindness (revised from the original sighted role or similar to it?), how information arrives to the visual cortex, and what the authors' predictions would be if a parallel experiment would be carried out in sighted people (is this a multisensory recruitment or reorganization?). The data has the potential to speak to a lot of questions about the scope of brain plasticity, and that would interest broad audiences. 

      We thank the reviewer for the opportunity to provide clearer theoretical conclusions from our data. We elaborate on each of the points raised by the reviewer in the discussion section.

      Concerning the direction of information flow in the reorganized visual system in blindness, we focus on information arrival to EVC and information flow beyond EVC.

      p. 11, ll. 376-386, Discussion 4.1:

      “Overall, identifying braille letter representations in widespread brain areas raises the question of how information flow is organized in the visually deprived brain. Functional connectivity studies report deprivation-driven changes of thalamo-cortical connections which could explain both arrival of information to and further flow of information beyond EVC. First, the coexistence of early thalamic connections to both S1 and V1 (Müller et al., 2019) would enable EVC to receive from different sources and at different timepoints. Second, potentially overlapping connections from both sensory cortices to other visual or parietal areas (Ioannides et al., 2013) could enable the visually deprived brain to process information in a widespread and interconnected array of brain areas. In such a network architecture, several brain areas receive and forward information at the same time. In contrast to information discretely traveling from one processing unit to the next in the sighted brain’s processing cascade, we can rather picture information flowing in a spatially and functionally more distributed and overlapping fashion.”

      Regarding the role of VWFA, we propose that the functional organization of VWFA is modality-independent.

      p. 10, ll. 346-348, Discussion 4.1:

      “Second, we found that VWFA contains perceptual but not sensory braille letter representations. By clarifying the representational format of language representations in VWFA, our results support previous findings of the VWFA being functionally selective for letter and word stimuli in the visually deprived brain (Reich et al., 2011; Striem-Amit et al., 2012; Liu et al., 2023). Together, these findings suggest that the functional organization of the VWFA is modality-independent (Reich et al., 2011), depicting an important contribution to the ongoing debate on how visual experience shapes representations along the ventral stream (Bedny et al., 2021).” Lastly, we would like to share our thoughts about carrying out a parallel experiment in sighted people. 

      In general, we agree that it seems insightful to conduct a parallel, analogous experiment in sighted participants with the aim to disentangle whether the effects seen in blind participants are due to multisensory recruitment or reorganization. However, before making predictions regarding the outcome, we would have to define an analogous experiment in sighted participants that taps into the same mechanisms. This, however, is difficult to do as it is unclear what counts as analogous. For example, if we compare braille reading to reading visually presented braille dot arrays or Roman letters, we will assess visual object processing, a different mechanism from that involved in braille reading. Alternatively, if we compare braille reading to sighted participants reading embossed Roman letters haptically or ideally even reading Braille after extensive training, we still face the inherent problem that sighted participants have visual experiences and could use visual imagery strategies in these nonvisual tasks. As we cannot experimentally ensure that sighted participants do not use visual strategies to solve a task, this would always complicate drawing conclusions about the underlying processes. More specifically, we could never pinpoint whether differences between sighted and blind participants are due to measuring different mechanisms or measuring the same mechanism and unravelling underlying changes (i.e., multisensory recruitment or reorganization). Finally, apart from potential confounds due to visual imagery, considering populations of sighted readers and Braille readers as only differing with regard to their input modality and otherwise being comparable is problematic: In general, blind populations are more heterogenous than most typical samples due to various factors such as aetiologies, onset and severity (Merabet & Pascual-Leone, 2010). Even when carrying out studies in highly specific population subsamples, such as in congenitally blind braille readers, vast within-group differences remain, e.g., the quality and quantity of their braille education, as well as across braille and print readers, e.g., different passive exposure to braille versus written letters during childhood (Englebretson et al., 2023). Hence, to fully match the groups in terms of learning experience we would, for example, have to teach sighted infants braille reading in childhood and follow them up until a comparable age. This approach does not seem feasible. 

      p. 10, ll. 328-341, Discussion 4.1:

      “We note that our findings contribute additional evidence but cannot conclusively distinguish between the competing hypotheses that visually deprived brains dynamically adjust to the environmental constraints versus that they undergo a profound cortical reorganization. Resolving this debate would require an analogous experiment in sighted people which taps into the same mechanisms as the present study. Defining a suitable control experiment is, however, difficult. Any other type of reading would likely tap into different mechanism than braille reading. Further, whenever sighted participants are asked to perform a haptic reading task, outcomes can be confounded by visual imagery driving visual cortex (Dijkstra et al., 2019). Thus, the results would remain ambiguous as to whether observed differences between the groups index different mechanisms or plastic changes in the same mechanisms. Last, matching groups of sighted readers and braille readers such that they only differ with regard to their input modality seems practically unfeasible: There are vast differences within the blind population in general, e.g., aetiologies, onset and severity, and the subsample of congenitally blind braille readers more specifically, e.g., the quality and quantity of their braille education, as well as across braille and print readers, e.g., different passive exposure to braille versus written letters during childhood (Englebretson et al., 2023; Merabet & Pascual-Leone, 2010).”

      While we appreciate that the conclusions we can draw from our results are limited by our sample and defining an appropriate parallel experiment in sighted participants is difficult for the reasons discussed above, we would still like to share our speculations regarding the process underlying our result pattern. We think that our results, taken together with results of previous studies, suggest that EVC does not undergo fundamental reorganization in the case of visual deprivation. Rather, it can flexibly adjust to given processing requirements. This flexibility is not infinite; adjustments are limited by the area’s architectural and computational capacity. Importantly, we think that this claim refers to an unmasking of preexisting potential rather than multisensory recruitment.

      To aid in drawing even more concrete conclusions about the flow of information, I suggest that the authors also add at least another early visual ROI to plot more clearly whether EVC's response to braille letters arrives there through an inverted cortical hierarchy, intermediate stages from VWFA, or directly, as found in the sighted brain for spoken language. 

      We thank the reviewer for this comment. However, EVC here consists of V1 to V3, and we already also assess V4, LOC, VWFA and LFA. Thus, we assess regions at all levels of processing from mid- over low- to high-level and cannot add a further interim ROI. Our results using this ROI set do not allow us to arbitrate between the hypotheses raised by the reviewer.

      Similarly, it may be informative to look specifically at the occipital electrodes' time differences between decoding for the different parameters and their correlation to behavior.

      We thank the reviewer for this suggestion. However, the spatial resolution of EEG measurements is limited, and we cannot convincingly determine the neural source of signals being recorded from specific electrodes, i.e., occipital. When we reduce the number of electrodes before analysis, we primarily see comparable qualitative trends in the data albeit with a reduction in signal-to-noise-ratio.

      To illustrate, we repeated the EEG time decoding and the EEG-behavior RSA with only occipital and parieto-occipital electrodes (n=8) instead of all electrodes (n=63) and added the results to the Supplementary Material (see Supplementary Figure 3 and 4). Overall, we observe a reduction in signal-to-noise-ratio. This is not surprising given that the EEG searchlight decoding results (Figure 3b) reveal sources of the decoding signals extend beyond occipital and parieto-occipital electrodes. 

      In the EEG time decoding analysis, we see a comparable trend to the whole brain EEG analysis but do not find a significant difference in onsets of sensory and perceptual representation. 

      In the behavior-EEG RSA, we do find that the correlations between behavior and sensory representations emerge significantly earlier than correlations between behavior and perceptual representations. (N = 11, 1,000 bootstraps, one-tailed bootstrap test against zero, P< 0.001). This result is in line with the whole brain EEG analysis.

      Regarding the methods, further detail on the ability to read with both hands equally and any residual vision of the participants would be helpful.

      We thank the reviewer for raising this point. We assessed participants’ letter reading capabilities in a short screening task prior to the experiment. Participants read letters with both hands separately and we used the same presentation time as in the experiment. As the result showed that average performance for recognizing letters with the left hand (89%) and right hand (88%) were comparable. We did not measure continuous reading in the present study, and we did not assess further information about participants’ ability to read equally well with both hands. 

      While the information about the screening task was previously included in Methods section 5.3.2 EEG experiment, we now moved it into a separate section 5.3.3 Braille screening task to make the information better accessible. 

      p. 14, ll. 529-533, Methods 5.3.3:

      “Prior to the experiment, participants completed a short screening task during which each letter of the alphabet was presented for 500ms to each hand in random order. Participants were asked to verbally report the letter they had perceived to assess their reading capabilities with both hands using the same presentation time as in the experiment. The average performance for the left hand was 89% correct (SD = 10) and for the right hand it was 88% correct (SD = 13).”

      We thank the reviewer for the suggestion to include information regarding participant’s residual vision. We now added information about participants’ residual light perception to Supplementary Table 1.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      (1) ROI vs Searchlight Results: Figures 2 b and c do not seem to match. The ROI results (b) should be somehow consistent with the whole brain results (c), but "perceptual" decoding in the searchlight (in green) seems localized in sensorimotor areas while for the same classification, no sensorimotor ROI is significant. can the authors clarify this difference?

      Similarly, perceptual decoding does not emerge in EVC with the searchlight analysis, whereas is quite strong in ROI analysis.

      We agree that the results of the ROI and searchlight decoding do not show a direct match. We think that this difference is due to methodological reasons. For example, ROI decoding can be more sensitive when ROIs follow functionally relevant boundaries in the brain, in comparison to spheres used in searchlight decoding that do not. In turn, searchlight decoding may be more sensitive when information is distributed across functional boundaries that would be captured in different ROIs rather than combined, or when ROI definition is difficult (such as here in the visual system of blind participants).

      However, we point out that the primary goal of our searchlight decoding was to show that no other areas beyond our hypothesized ROIs contained braille letter representations, rather than reproducing the ROI results.

      Decoding accuracies are tested against chance (50% for pairwise classifications) according to methods. In the case of "sensory and perceptual" and "perceptual" classification, this is straightforward. In the case of the analysis that isolates "sensory" representations though the difference is computed between "sensory and perceptual" and "perceptual" decoding accuracies, the accuracies resulting from this difference should thus be centered around 0.

      Are the accuracies tested against 0 in this case? This is not specified in the methods. Furthermore, the data reported in Figure 2 and Figure 3. seem to have 0% as a baseline and the label states "decoding accuracy". Can the authors clarify whether the reported data are the difference in accuracy with an estimated empirical baseline or an expected baseline of 50%? 

      The reviewer is correct in stating that we tested “sensory and perceptual” and “perceptual” against chance level and the difference score “sensory” against 0 and that this information was missing in the methods section.

      We now specify in the methods that we are testing the accuracies for the “sensory” analysis against 0.

      p. 16, ll. 625-627, Methods 5.6:

      “We conducted subject-specific braille letter classification in two ways. First, we classified between letter pairs presented to one reading hand, i.e., we trained and tested a classifier on brain data recorded during the presentation of braille stimuli to the same hand (either the right or the left hand). This yields a measure of hand-dependent braille letter information in neural measurements. We refer to this analysis as within-hand classification. Second, we classified between letter pairs presented to different hands in that we trained a classifier on brain data recorded during the presentation of stimuli to one hand (e.g., right), and tested it on data related to the other hand (e.g., left). This yields a measure of hand-independent braille letter information in neural measurements. We refer to this analysis as across-hand classification. We tested both within-hand and across-hand pairwise classification accuracies against a chance level of 50%. We also calculated a within-across hand classification score which we compared against 0.”

      Regarding Figures 2 and 3, we plot the results as decoding accuracies minus chance level to standardize the y-axes for all three analyses, i.e., compare them to 0. We have corrected the y-axis labels accordingly. 

      In our analyses, we assumed an expected baseline of 50%. But in the response below we provide evidence that our results remain stable whether using an expected or empirical baseline.

      If my understanding is correct, a potential problem persists. The different analyses may not be comparable, because in the "sensory" analysis the baseline is empirically defined, being the classification accuracies of the "perceptual" decoding, while in the other two analyses, the baseline is set at 50%. There are suggestions in the literature to derive empirically defined baselines by randomly shuffling the trial labels and repeating the classification accuracies [grootswagers 2017]. In the context of the present work, its use will make the different statistical analyses more comparable. I would thus suggest the authors define the baseline empirically for all their analyses or, given the high computational demand of this analysis, provide evidence that the results are not affected by this difference in the baseline. 

      We thank the reviewer for raising this point. As the reviewer correctly stated, the “sensory” analysis has an empirically defined baseline because it is a difference score while in the other two analyses the baseline is set at 50%.

      To provide evidence that our results are not affected by this difference in baseline, we now re-ran the EEG time decoding. We derived null distributions from the empirical data for all three analyses, following the guidelines from Grootswagers 2017 (page 688, section “Evaluation of Classifier Performance and Group Level Statistical Testing Statistical”):

      “Another popular alternative is the permutation test, which entails repeatedly shuffling the data and recomputing classifier performance on the shuffled data to obtain a null distribution, which is then compared against observed classifier performance on the original set to assess statistical significance (see, e.g., Kaiser et al., 2016; Cichy et al., 2014; Isik et al., 2014). Permutation tests are especially useful when no assumptions about the null distribution can be made (e.g., in the case of biased classifiers or unbalanced data), but they take much longer to run (e.g., repeating the analysis 10,000 times).”

      Running a sign permutation test with 10,000 repetitions, we show that the results are comparable to the previously reported results based on one-sided Wilcoxon signed rank tests. We are, therefore, confident that our reported results are not affected by this difference in baseline. We now added this control analysis to the results section and supplementary material (see Supplementary Figure 5).

      p. 7-8, ll. 213-215, Results 3.2: 

      “Importantly, the temporal dynamics of sensory and perceptual representations differed significantly. Compared to sensory representations, the significance onset of perceptual representations was delayed by 107ms (21-167ms) (N = 11, 1,000 bootstraps, one-tailed bootstrap test against zero, P= 0.012). This results pattern was consistent when defining the analysis baseline empirically (see Supplementary Figure 5).”

      (2) According to the authors, perceptual rather than sensory braille letter representations identified in space are suitably formatted to guide behavior. However, they acknowledge that this finding is likely to be task-dependent because it is based on subject similarity ratings.

      Maybe they could use a more objective similarity measurement of Braille letters similarity?

      For instance, they can compare letters using Jaccard similarity (See for instance: Bottini et al. 2022). 

      We thank the reviewer for the opportunity to clarify. We acknowledge that our findings regarding the behavioral relevance of the identified neural representations are task-dependent. But, importantly, this is not because we use perceived similarity ratings as a measurement, but because we only use one measurement while there are infinitely many other potential tasks to assess behavior. This means that the same limitation holds when using another similarity measure like Jaccard similarity. We now clarify this in the Discussion section: 

      p. 12, ll. 419-420, Discussion 4.3:

      “Our results clarified that perceptual rather than sensory braille letter representations identified in space are suitably formatted to guide behavior. However, we only use one specific task to assess behavior and, therefore, acknowledge that this finding is taskdependent.”

      Nevertheless, we calculated Jaccard similarity based on the definition used in Bottini et. al. There are no significant correlations for the EEG-behavior or fMRI-behavior RSA when we use the Jaccard matrix and subject-specific EEG or fMRI RDMs (see Supplementary Figure 6).

      This demonstrates that braille letter similarity ratings are significantly correlated with neural representations in space and time but Jaccard similarity of braille dot overlaps is not. 

      (3) If the primacy of perceptual similarity holds also with more objective measures of letter similarity, I think the authors should spend a few more words characterizing the results in fMRI and EEG that are rather divergent (concerning this analysis). Indeed, EEG analysis shows a significant correlation between similarity ratings and within-hand classification accuracy, although this correlation does not emerge in the "sensory" ROIs. I think these findings can be put together, hypothesizing that sensory-based similarity correlates with behavior but only in perceptual ROIs. However, why so? Can the authors provide a more mechanistic explanation? Am I missing something? 

      We thank the reviewer for this intriguing idea. We now speculate about how we could harmonize the results from the behavior-EEG and behavior-fMRI RSAs in the discussion section. 

      p. 12, ll. 438-442, Discussion 4.3:

      “Similarity ratings and sensory representations as captured by EEG are correlated, and so are similarity ratings and representations in perceptual ROIs, but not sensory ROIs. This might be interpreted as suggesting a link between the sensory representations captured in EEG and the representations in perceptual ROIs. However, we do not have any evidence towards this idea. Differing signalto-noise ratios for the different ROIs and sensory versus perceptual analysis could be an alternative explanation.“

      (4) In the methods they state that EEG decoding is tested against chance at each time point but these results are not reported, only latency analysis is reported. Can the authors report the significant time points of the EEG time series decoding?  

      We thank the reviewer for catching this inconsistency! We have now added this information to Figure 3a.

      (5) In fMRI ROI definition procedure, the top 321 voxels of each anatomical ROI that had the highest functional activation were selected. The number of voxels is based on the smaller ROI, which to my understanding means that for this ROI all the voxels were selected potentially introducing noise and impacting the comparison between ROIs. Can the authors clarify which ROI was the smallest? 

      Thank you for the question! The smallest ROI was V4. This indeed means that for this ROI all voxels were selected. This could have led to our results being noisy in V4 but should not influence the results in other ROIs. We now added this information to the methods section.  p. 15, ll. 592, Methods 5.4.4:

      “The smallest mask was V4 which included 321 voxels.”

      (6) Finally, the author suggests that: "Importantly, higher-level computations are not limited to the EVC in visually deprived brains. Natural sound representations 41 and language activations 53 are also located in EVC of sighted participants. This suggests that EVC, in general, has the capacity to process higher-level information 54. Thus, EVC in the visually deprived brain might not be undergoing fundamental changes in brain organization 53. This promotes a view of brain plasticity in which the cortex is capable of dynamic adjustments within pre-existing computational capacity limits 4,53-55." - The presence of a sighted control group would have strengthened this claim. 

      We agree with the reviewer and now discuss the limitations of our approach in the discussion section (see response to weaknesses raised by Reviewer 2 in the Public Review above).

      Reviewer #2 (Recommendations For The Authors): 

      (1) Can the authors comment on the reaction time of the two reading hands? Completely ambidextrous reading is not necessarily common, so any differences in ability or response time across the hands may affect the EEG results. Alternatively, do the authors have any additional behavioral data about the participants' ability to read well with both hands? 

      We thank the reviewer for these questions! We did not assess reaction times and acknowledge this as a limitation. We did, however, measure accuracies and would have expected to see a speed-accuracy-trade off if reaction times would differ between hands, i.e., we would have expected lower accuracy for the hand with higher RTs. But this was not the case: our participants had comparable accuracy values when reading letters with both hands (see methods section 5.3.3 and answer to Public Review above). This measure indicated that participants recognized Braille letters presented for 500ms equally well with both index fingers.

      (2) Please add information about any residual sight in the blind participants (or are they all without light perception?)

      We have now added information about residual light perception in Supplementary Table 1 (see above in response to Public Review).

      (3) Is active tactile exploration involved, or are the participants not moving their fingers at all over the piezo-actuators? Can the authors elaborate more on how the participants used this passive input?

      We thank the reviewer for the opportunity to clarify. Our experimental setup does not involve tactile exploration or sliding motions. Instead, participants rest their index fingers on the piezo-actuators and feel the static sensation of dots pushing up against their fingertips. We assume that participants used the passive input of specific dot stimulation location on fingers to perceive a dot array which, in turn, led to the percept of a braille letter.

      We now specify this information in the methods section.

      p. 13, ll. 474-475, Methods 5.2:

      “The modules were taped to the clothes of a participant for the fMRI experiment and on the table for the EEG and behavioral experiment. This way, participants could read in a comfortable position with their index fingers resting on the braille cells to avoid motion confounds. Importantly, our experimental setup did not involve tactile exploration or sliding motions. We instructed participants to read letters regardless of whether the pins passively stimulated their immobile right or left index finger.”

      (4) I appreciated the RSA analysis, but remain curious about what the ratings were based on.

      Do the authors know what parameters participants used to rate for? Were these consistent across participants? That would aid in interpreting the results.

      We thank the reviewer for the interest in our representational similarity analyses linking the neural representations to behavior. 

      We do not know which parameters participants explicitly used to rate the similarity between letters. We instructed participants to freely compare the similarity of pairs of braille letters without specifying which parameters they should use for the similarity assessment. We speculate that participants used a mixture of low-level features such as stimulation location on fingers and higher-level features such as linguistic similarity between letters. We now clarify the free comparison of braille letter pairs in the methods section:

      p. 14, ll. 538-539, Methods 5.3.4:

      “Each pair of letters was presented once, and participants compared them with the same finger. We instructed participants to freely compare the similarity of pairs of Braille letters without specifying which parameters they should use for the similarity assessment. The rating was without time constraints, meaning participants decided when they rated the stimuli. Participants were asked to verbally rate the similarity of each pair of braille letters on a scale from 1 = very similar to 7 = very different and the experimenter noted down their responses.”

      (5) Can the authors provide confusion matrices for the decoding analyses in the supplementary materials? This could be informative in understanding what pairs of letters are most discernable and where. 

      We have added confusion matrices for within- and between-hand decoding for all ROIs and for the time points 100ms, 200ms, 300ms and 400ms to the Supplementary Material (see Supplementary Figures 7-10).

      (6) Was slice time correction done for the fMRI data? This is not reported. 

      We now added this information to the methods section - our fMRI preprocessing pipeline did not include slice timing correction.  

      p. 14, ll. 554, Methods 5.4.2:

      “We did not apply high or low-pass temporal filters and did not perform slice time correction.”

    1. For natural numbers x,yx,yx, y, and zzz, if xy+yz=19xy+yz=19x y+y z=19 and yz+xz=51yz+xz=51y z+x z=51, then the minimum possible value of xyzxyzx y z is

      all equations cnnot bbe solved some has to be analysed

    1. For some real numbers aaa and bbb, the system of equations x+y=4x+y=4x+y=4 and (a+5)x+(b2−15)y=8b(a+5)x+(b2−15)y=8b(a+5) x+\left(b^2-15\right) y=8 b has infinitely many solutions for xxx and yyy. Then, the maximum possible value of ababa b is

      a/a1=b/b1=c/c1

    1. superior understanding of the topic a

      Pas sûr... Socrate dit toujours de ne pas savoir. Ici peut-être les LLM peuvent avoir un sens "socratique". Il y a par contre des questions éthiques... on peut apprendre aussi en dialoguant avec son chien alors, et cela implique moins de consommation d,énergie (juste un peu de bouffe pour chiens)!

    2. ChatGPT will make errors, which will take time to track and correct.

      Il y a la question des erreurs, en effet (question de performance). Mais il y a aussi une autre question: pourquoi on délègue cette tâche à un algorithme (et pas le bon ici)? Parce qu'on la considère - à tort - "triviale". Il faut se rendre compte que structurer une bibliographie est une tâche intellectuelle!

    1. Author response:

      The following is the authors’ response to the previous reviews.

      (1) We agreed that there was insufficient evidence for the authors' conclusion that Myc-overexpressing clones lacking Fmi become losers. We request that the authors change the text to discuss that suppression of Myc clone growth through Fmi depletion is reminiscent of a cell acquiring loser status, although at this point in the manuscript there is no clear demonstration whether this is mostly driven by growth suppression and/or an increase in apoptosis.

      We agree that at the point in the manuscript where we have only described the clone sizes, one cannot make firm conclusions about competition, so we have changed the language to reflect this. We argue that after showing our apoptosis data, those conclusions become firm. Please see the more lengthy responses to reviewers below.

      (2) We agreed that the apoptosis assay, data and interpretation need to be improved. The graphs in Fig. 4O and P should be better discussed in the text and in the legend. Additionally, the graphs are lacking the red lines that are written in the text.

      We regret that we did not adequately explain the data displayed in these two graphs. Supercompetition tends to cause apoptosis in both winners and losers, with the ratio between WT and super-competitor cells being critical in deciding the outcome of competition. We wanted to represent this visually but failed to properly explain our analysis. We have rewritten the figure legend and our discussion in the main text, hopefully making it clearer. 

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This paper is focused on the role of Cadherin Flamingo (Fmi) in cell competition in developing Drosophila tissues. A primary genetic tool is monitoring tissue overgrowths caused by making clones in the eye disc that expression activated Ras (RasV12) and that are depleted for the polarity gene scribble (scrib). The main system that they use is ey-flp, which make continuous clones in the developing eye-antennal disc beginning at the earliest stages of disc development. It should be noted that RasV12, scrib-i (or lgl-i) clones only lead to tumors/overgrowths when generated by continuous clones, which presumably creates a privileged environment that insulates them from competition. Discrete (hs-flp) RasV12, lgl-i clones are in fact out-competed (PMID: 20679206), which is something to bear in mind. They assess the role of fmi in several kinds of winners, and their data support the conclusion that fmi is required for winner status. However, they make the claim that loss of fmi from Myc winners converts them to losers, and the data supporting this conclusion is not compelling.

      Strengths:

      Fmi has been studied for its role in planar cell polarity, and its potential role in competition is interesting.

      Weaknesses:

      I have read the revised manuscript and have found issues that need to be resolved. The biggest concern is the overstatement of the results that loss of fmi from Myc-overexpressing clones turns them into losers. This is not shown in a compelling manner in the revised manuscript and the authors need to tone down their language or perform more experiments to support their claims. Additionally, the data about apoptosis is not sufficiently explained.

      We take issue with this reviewer’s framing of their criticism. First, the reviewer is selectively reporting the results published in PMID: 20679206. They correctly state that those authors show that small discreet clones of RasV12 lgl are eliminated (Fig. 3B), but they omit the fact that the authors also show that larger RasV12 lgl clones induce apoptosis in the surrounding wild type cells, and therefore behave as winners (Fig. 3C). Hence, the size of the clone appears to determine its winner/loser status. Of course, lgl is not scrib, and it is not a certainty that they would behave similarly, but they also show that large RasV12 scrib clones induce considerable apoptosis of the neighboring wild type cells. 

      The reviewer then discusses “continuous” clones induced by ey-flp, as we use in our manuscript. Here, the term “continuous” is probably misleading; because ey is expressed ubiquitously in the disc from early in development, it is most likely the case that the majority of cells have flipped relatively early, resulting in ~half the cells becoming clone and the other ~half twin spot. The clone cells then likely fuse to make larger clones. We show that ey-flp induced RasV12 scrib clones also behave as winners. It is logical to conclude that this is because they are large. The reviewer talks about “a privileged environment that insulates them from competition,” but if they were insulated from competition, how could they become winners? Because they occupy more territory than the wild type cells, and because they induce apoptosis in the wild type neighbors, they are winners. 

      Having shown that ey-flp induced RasV12 scrib clones behave as winners, we then remove Fmi from these clones, and show that they behave as losers by the same criteria: they occupy less area than the wild type cells (our Fig. 1 and Fig. 1 Supp 2), and they induce apoptosis in the wild type cells (our Fig 4A-H). 

      With respect to the comment about additional experiments are needed to support the claim that loss of Fmi from Myc winners converts them to losers, we’re not sure what additional data the reviewer would want. As for the tumor clones, we show that >>Myc clones get bigger than the twin control clones (Fig. 2), and we measure similar low levels of apoptosis in each (Fig. 4I-K, O). In contrast >>Myc fmi clones are out-grown by wild type clones, and apoptosis is higher in the >>Myc fmi clones than in the wild type clones (Fig. 4L-N, P-S). We therefore believe it is correct to say that >>Myc clones become losers when Fmi is removed.

      In additional comments, the reviewer takes issue with using winner and loser language at the point in the manuscript where we have only shown the clone sizes but not yet the apoptosis data, and about this we agree. We have changed the language accordingly. 

      Re explanation of the apoptosis data, see the response to reviewer #3.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Bosch et al. reveal Flamingo (Fmi), a planar cell polarity (PCP) protein, is essential for maintaining 'winner' cells in cell competition, using Drosophila imaginal epithelia as a model. They argue that tumor growth induced by scrib-RNAi and RasV12 competition is slowed by Fmi depletion. This effect is unique to Fmi, not seen with other PCP proteins. Additional cell competition models are applied to further confirm Fmi's role in 'winner' cells. The authors also show that Fmi's role in cell competition is separate from its function in PCP formation.

      Strengths:

      (1) The identification of Fmi as a potential regulator of cell competition under various conditions is interesting.

      (2) The authors demonstrate that the involvement of Fmi in cell competition is distinct from its role in planar cell polarity (PCP) development.

      Weaknesses:

      (1) The authors provide a superficial description of the related phenotypes, lacking a mechanistic understanding of how Fmi regulates cell competition. While induction of apoptosis and JNK activation are commonly observed outcomes in various cell competition conditions, it is crucial to determine the specific mechanisms through which they are induced in fmi-depleted clones. Furthermore, it is recommended that the authors utilize the power of fly genetics to conduct a series of genetic epistasis analyses.

      We agree that it is desirable to have a mechanistic understanding of Fmi’s role in competition, but that is beyond the scope of this manuscript. Here, our goal is to report the phenomenon. We understand and share with the reviewer the interest in better understanding the relationship between Fmi and JNK signaling in competition. The role of JNK in competition, tumorigenesis and cell death is infamously complex. In some preliminary experiments, we explored some epistasis experiments, but these were inconclusive so we elected to not report them here. In the future, we will continue with additional analyses to gain a better understanding of the mechanism by which Fmi affects competition.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, Bosch and colleagues describe an unexpected function of Flamingo, a core component of the planar cell polarity pathway, in cell competition in Drosophila wing and eye disc. While Flamingo depletion has no impact on tumour growth (upon induction of Ras and depletion of Scribble throughout the eye disc), and no impact when depleted in WT cells, it specifically tunes down winner clone expansion in various genetic contexts, including the overexpression of Myc, the combination of Scribble depletion with activation of Ras in clones or the early clonal depletion of Scribble in eye disc. Flamingo depletion reduces proliferation rate and increases the rate of apoptosis in the winner clones, hence reducing their competitiveness up to forcing their full elimination (hence becoming now "loser"). This function of Flamingo in cell competition is specific of Flamingo as it cannot be recapitulated with other components of the PCP pathway, does not rely on interaction of Flamingo in trans, nor on the presence of its cadherin domain. Thus, this function is likely to rely on a non-canonical function of Flamingo which may rely on downstream GPCR signaling.

      This unexpected function of Flamingo is by itself very interesting. In the framework of cell competition, these results are also important as they describe, to my knowledge, one of the only genetic conditions that specifically affect the winner cells without any impact when depleted in the loser cells. Moreover, Flamingo do not just suppress the competitive advantage of winner clones, but even turn them in putative losers. This specificity, while not clearly understood at this stage, opens a lot of exciting mechanistic questions, but also a very interesting long term avenue for therapeutic purpose as targeting Flamingo should then affect very specifically the putative winner/oncogenic clones without any impact in WT cells.

      The data and the demonstration are very clean and compelling, with all the appropriate controls, proper quantifications and backed-up by observations in various tissues and genetic backgrounds. I don't see any weakness in the demonstration and all the points raised and claimed by the authors are all very well substantiated by the data. As such, I don't have any suggestions to reinforce the demonstration.

      While not necessary for the demonstration, documenting the subcellular localisation and levels of Flamingo in these different competition scenarios may have been relevant and provide some hints on a putative mechanism (specifically by comparing its localisation in winner and loser cells).

      While we did not perform a thorough analysis, our current revision of the manuscript shows Fmi staining results that do not support a change in subcellular localization of Fmi. In our images, Fmi seemed to localize similarly along the winner-loser clone boundaries, and inside and outside the clones. We cannot rule out that a subtle change in localization is taking place that could perhaps be detected with higher resolution imaging.

      Also, on a more interpretative note, the absence of impact of Flamingo depletion on JNK activation does not exclude some interesting genetic interactions. JNK output can be very contextual (for instance depending on Hippo pathway status), and it would be interesting in the future to check if Flamingo depletion could somehow alter the effect of JNK in the winner cells and promote downstream activation of apoptosis (which might normally be suppressed). It would be interesting to check if Flamingo depletion could have an impact in other contexts involving JNK activation or upon mild activation of JNK in clones.

      See our comment to Reviewer 2 regarding JNK.

      Strengths:

      A clean and compelling demonstration of the function of Flamingo in winner cells during cell competition

      One of the rare genetic conditions that affects very specifically winner cells without any impact in losers, and then can completely switch the outcome of competition (which opens an interesting therapeutic perspective on the long term) Weaknesses:

      The mechanistic understanding obviously remains quite limited at this stage especially since the signaling does not go through the PCP pathway.

      We agree that in the future, it will be desirable to gain a mechanistic understanding of Fmi’s role in competition.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have read the revised manuscript and have found issues that need to be resolved. The biggest concern is the overstatement of the results that loss of fmi from Myc-overexpressing clones turns them into losers. This is not shown in a compelling manner in the revised manuscript and the authors need to tone down their language or perform more experiments to support their claims.

      (1) I do not agree with the language used by the authors last paragraph of p. 4 stating loss of fmi from Myc supercompetitors (Fig. 2) makes them losers. At this point in the paper, they only use clone size as a readout. By definition, losers in imaginal discs die by apoptosis, which is not measured in this figure. As such, the authors do not prove that fmi-mutant Myc over-expressing clones are now losers at this point in the manuscript. The authors should discuss this in the results section regarding Fig. 2.

      We have modified the language in text and figure legend to acknowledge that the clone size data alone do not demonstrate competition.

      (2) Related to point #1, I do not agree with the language in the legend of Fig. 2H that the graph is measuring "supercompetition". They are only measuring clone ratios, not apoptosis. Growing to a smaller size does not make a clone have loser status without also assessing cell death.

      (a) I suggest that the authors remove the sentence "A ratio over 0 indicates supercompetition of nGFP+ clones, and below 0 indicates nGFP+ cells are losers." in the legend to Fig. 2H. Instead, they should describe the assay in times of clone ratios.

      The reviewer raises a valid point, as at this point in the manuscript we did not quantify cell death and proliferation. However, based on decades of knowledge of supercompetiton, Myc clones are classified as super-competitors in every instance they’ve been studied. (Myc clones show apoptosis when competing with WT cells, while at the same time they eliminate WT neighbors by apoptosis to become winners. Their faster proliferation rate may be what ultimately makes them winners.) We changed the language to address this distinction. 

      (3) In Fig. 4, they do attempt to monitor apoptosis, which is the fate of bona fide losers in imaginal tissue. However, I have several concerns about these data (panels 4I-K, O and P have been added to the revised manuscript.)

      (a) In Fig. 4I-K, why is there no death of WT cells which would be expected based on de la Cova Cell 2004? The authors need to comment on this.

      (b) Cell death should also be observed in the Myc over-expressing clones but none is seen in this disc (see de la Cova 2004 and PMID: 18257071 Fig. 4). The authors need to comment on this.

      We do not understand why the reviewer raises these two points. We see some cell death in >Myc eye discs both in winners and losers, as displayed in the graph. In our hands, the levels were on average very low. The example shown is representative of the analysis and shows apoptosis both in WT and >Myc cells, highlighted by the arrows in 4J. We added a mention to the arrows in the figure legend to make it clearer. In the main text, we already compared our observations to the same publication the reviewer mentions (De la Cova 2004). 

      (c) The data in panel 4O is not explained sufficiently in the legend or results section. What do the lines between the data points in the left side of the panel mean? Why is there a bunch of clustered data points in the right part of the Fig. 4O, when two different genotypes are listed below? I would have expected two clusters of points. The authors need to comment on this.

      We intended to convey as much information as possible in an informative manner in these graphs, and we regret not explaining better the analysis shown. We modified the legends for the apoptosis analysis to better explain the displayed data.

      (d) What is the sample size (n) for the genotypes listed in this figure? The authors need to comment on this and explicitly list the sample size in the legend.

      We added the n for both conditions to the figure. 

      (e) In panels 4L-N, why is the death occurring in the apparent center of the fmiE59>>Myc clone. If these clones are truly losers as the authors claim, then apoptosis should be seen at the boundaries between the fmiE59>>Myc clone and the WT clones. The results in this figure are not compelling, yet this is the critical piece of data to support their claim that fmiE59>>Myc clone are losers. The authors need to comment on this.

      The majority of cell death in this example is observed 1-3 cells away from the clone boundary. In some cases, we observe cell death farther from the boundary, but those cells were not counted in our analyses. As described in our methods, we only considered for the analysis cells at the clone boundary or in the vicinity, as those are the ones that most probably have apoptosis triggered by the neighboring clone.

      (f) There is no red line in Fig. 4O and 4P, in contrast to what is written in the legend in the revised manuscript. This should be corrected.

      We thank the reviewer for catching the error about the line. We have now simplified the graph by removing the line at Y=0 and just leave one dashed line, representing the mean difference between WT and >>Myc cells.

      (4) On p. 10, the reference Harvey and Tapon 2007 to support hpo-/- supercompetitor status is incorrect. The references are Ziosi 2010 and Neto-Silva 2010. This should be changed.

      We thank the reviewer for the correction. While the review we provided discusses the role of the Hpo pathway in proliferation and cancer, it does not discuss competition. The reference we intended to include here was Ziosi 2010. We now cite both in the revised manuscript.

      (5) The legend for Fig. 3A-H is missing from the revised manuscript. This needs to be added.

      This was likely a copy-edit glitch. The missing parts of the legend have been restored.

      (6) Material and methods is missing details on the hs-induced clones. The authors need to specifically state when the clones were generated and when they were analyzed in hours after egg laying.

      The timing of the heat-shock and analysis was described in the methods: “Heat-shock was performed on late first instar and early second instar larvae, 48 hrs after egg laying (AEL). Vials were kept at 25ºC after heat-shock until larvae were dissected”. And additionally, in the dissection methods: “Third instar wandering larvae (120 hrs AEL) were dissected…” We have included in this revision the length of the heat-shock (15 min). 

      I have read the rebuttal and some of my concerns are not sufficiently addressed.

      (8) I raised the point of continuously-generated clones becoming large enough to evade competition, and I disagree with the authors' reply. I think that competition of RasV12, scrib (or lgl) competition largely depends the size of the clone, which is de facto larger when generated by continuous expression of flp (such as eyeless or tubulin promoters used in this study). I think that at that point, we are at an impasse with respect to this issue, but I wanted to register my disagreement for the record. Related to this, one possible reason for the fragmentation of the fmimutant Myc overexpressing clones in the wing disc is because they were not continuously generated and hence did not merge with other clones.

      Please see the discussion above in the public comments. We remain unclear about what, exactly, the reviewer disagrees. As stated above, we think they are correct that the size of the clone is critical in determining winner vs loser status.

      Reviewer #2 (Recommendations for the authors):

      Although the authors have addressed some of my concerns, I still feel that a detailed mechanistic understanding is essential. I hope the authors will conduct additional experiments to solve this issue.

      We also consider the mechanism of interest and will pursue this in the future. To test our hypotheses we require a set of genetic mutants that are still in the making that will help us dissect the function and potential partners of Fmi, and we hope to have these results in a future publication.

      Reviewer #3 (Recommendations for the authors):

      - There is no clear demonstration that the relative decrease of clone size in UASMyc/Fmi mutant is mostly driven by either a context dependant suppression of growth and/or an increase of apoptosis (the latter being the more classic feature of loser phenotype).

      We believe that it is driven by both, and refrain from making assumptions about the magnitude of contribution from each. This question is something that we will be interested to explore in the future.

      The distribution of cell death in Fmi/UAS-Myc mutant is somehow surprising and may not fit with most of the competition scenarios where death is mostly restricted to clone periphery (although this may be quite variable and would require much more quantification to be clear).

      While we observe some cell death far from clone boundaries, most of the dying cells are a few cells away from a clone boundary. In other publications quantifying cell death, examples of cell death farther from the boundary are not rare (See for example Moreno and Basler 2004 Fig 6, De la Cova et al. Fig 2, Meyer et al 2014 Fig 2). We did not count cells dying far from clone boundaries in our analysis.

      I just noticed a few mistakes in the legend :

      Figure 3M legend is missing (it would be useful to know at which stage the quantification is performed)

      Another reviewer brought to our attention the problems with Fig 3 legend. We restored the missing parts.

      It would be good to give an estimate of the number of larvae observed when showing the representative cases in Figure 1 .

      This is a good point. We now include these numbers in the figure legend.